
UNIVERSITY OF THE WESTERN CAPE
UNIVERSITEIT VAN WES-KAAPLAND

This book must be returned on or before the
last date shown below.

Hierdie boek moet terugbesorg word voor of op
die laaste datum hieronder aangegee.

NB: Telephonic renewals only between 17hOO- 22hOO
at issue desk 959 2946

www.etd.ac.za



UNIVERSITY OF THE WESTERN CAPE

The Efficacy of the Eigenvector
Approach to South African Sign

Language Identification

Vaughn Mackman Segers

A thesis submitted in fulfilment of the
degree of Master of Science

in the
Faculty of Science

Department of Computer Science

February 2010

www.etd.ac.za



__ InEIf VAN WES- KAMlANa
1J8L1OTEeK-.... , r

51'2.Q 43-bSCf G
tlt!RARv

'l'NIV!IIIItITV Of THiE WEI'rEnDt CAM

www.etd.ac.za



Declaration of Authorship

I, Vaughn Mackman Segers, declare that this thesis titled, 'The Efficacy of the Eigen-
vector Approach to South African Sign Language Identification' and the work presented
in it are my own. I confirm that:

• This work was done wholly or mainly while in candidature for a research degree
at this University.

• Where any part of this thesis has previously been submitted for a degree or any
other qualification at this University or any other institution, this has been clearly
stated.

• Where I have consulted the published work of others, this is always clearly at-
tributed.

• Where I have quoted from the work of others, the source is always given. With
the exception of such quotations, this thesis is entirely my own work.

• I have acknowledged all main sources of help.

• Where the thesis is based on work done by myself jointly with others, I have made
clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

:: .

www.etd.ac.za



"If I am still standing at the end of the mee, hit me unih. a board and knock me down,
because that means I didn't run hard enouqh."

-Steve Jones, Welsh athlete and former world marathon record holder.
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Abstract

The communication barriers between deaf and hearing society mean that interaction
between these communities is kept to a minimum. The South African Sign Language
research group, Integmtion of Signed and Verbal Communication: South African Sign
Language Recognition and Animation (SASL), at the University of the Western Cape
aims to create technologies to bridge the communication gap.

In this thesis we address the subject of whole hand gesture recognition. We demonstrate
a method to identify South African Sign Language classifiers using an eigenvector ap-
proach. The classifiers researched within this thesis are based on those outlined by the
Thibologa Sign Language Institute for SASL. Gesture recognition is achieved in real-
time. Utilising a pre-processing method for image registration we are able to increase
the recognition rates for the eigenvector approach.
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Chapter 1

Introduction

1.1 Background

Gesture Recognition

There has been a recent surge in research into gesture controlled interfaces. A catalyst for

this increase in interest is the application to gaming. The Nintendo Wii gaming device

allows for intuitive game-play by mimicking user movements within a game. This appli-

cation has prompted companies to start developing controller and camera gesture-based

games and applications. Gesture controlled games generally involve players interacting

with virtual environments using the movement of their bodies.

Simple gesture recognition, such as that required for gaming, has revitalised this field of

research. The challenge remains, however, to use inexpensive means to achieve accurate

results on an established gesture set such as sign language.

Challenges for creating a gesture recognition system include:

• Accurate recognition while still having the potential to cover the entire signed

language.

• The division of signs into units for recognition, such as applying phonetic logic

present in verbal language to sign language.

• Making sign language translation systems mobile, where data transfer and com-

pression complications exist.

1
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Chapter 1. Introduction 2

Interactive gaming offers insight into potential solutions to the question of gesture recog-

nition but does little to contribute to the mobility of recognition systems. Sign language

users require a translation solution that can be used anywhere. Mobile gesture recogni-

tion is considered pivotal to future gesture recognition applications.

Sign Language

Sign languages develop independently of spoken languages, from the need for the deaf to

communicate among themselves. There is little correlation between signed and spoken

languages. Holt [Ij writes that the deaf are largely illiterate. Strong [2Jstates that the

reading and writing competencies of deaf students were well below the accepted level of

hearing learners in the same grade. It was also shown that speaking a language builds

on the writing ability of the user [3J, an avenue of learning wholly unavailable to the

deaf. Therefore, the assumption that the deaf can read and write is largely false, and

is another misconception that further widens the divide between the deaf and hearing

community. This can make even the accepted means of computer interaction, a mouse

and keyboard, a daunting prospect for the deaf user.

Sign languages are as rich and complex as spoken languages, and are built to fully express

the wide range of actions, objects and emotions encountered on a daily basis. South

African Sign Language is also a protected language under the South African constitution

[4], and the language is used by over 600 000 South Africans [4J. South African Sign

language consists of body movements, known as gestures. These gestures can be either

manual or non-manual. Manual gestures are performed by moving the hands, arms,

fingers and head in relation to the signer's body. Non-manual gestures are the more

subtle movements of the face. Non-manual gestures are performed by the raising of the

eyebrows, frowning, smiling and similar actions. Both manual and non-manual gestures

are required to fully understand the emotion and intentions of the signer. There are two

groups of deaf individuals, the hard of hearing with minimal hearing ability, and the

completely deaf who are usually born deaf. Therefore members of the deaf community

can have different levels of exposure to spoken language.

Integration of Signed and Verbal Communication: South African Sign Language Recog-

nition and Animation(SASL) is a research group at the University of the Western Cape

formed to use technology to integrate signed and verbal communication. The group is

www.etd.ac.za



Chapter 1. Introduction 3

concerned with SASL recognition and animation. The group aims to create a system

that:

• Translates SASL to English, and

• Translates English to SASL

Eigenvectors

This thesis forms part of the work done by the SASL group. The SASL group aims to

create a mobile system for the recognition of sign language. SASL has created a digital

phrasebook known as iSign which:

• Translates whole-body SASL phrases into English.

• Translates English to SASL.

• Provides a phrase search feature, and

• Operates on a mobile phone with processing done on a server.

iSign does not recognise the hand shapes of the user. A fast method for hand shape

recognition is needed. Tills thesis investigates the eigenvector approach applied to fast

hand shape recognition.

Eigenvectors are used to reduce the dimensionality of a set of values. Therefore, large

images can be reduced in size but still retain necessary variation. Lowered dimensionality

makes comparisons of different hand shapes less computationally expensive.

1.2 Motivation

Imagine a simple trip to the doctor's office. Consider the lines of communication between

the deaf patient and the English speaking doctor. The doctor would require some sort

of English to sign language interpretation, as a deaf individual would likely not know

how to write in English [2]to communicate with the doctor. The deaf individual would

also require interpretation, to translate from sign language to English.

www.etd.ac.za



Chapter 1. Introduction 4

In these situations the services of a sign language interpreter are required. In the South

African context, these services can be difficult to access. Not only are these services

costly, but there are also few properly trained interpreters available [4]. In instances

where a deaf parent is accompanied by a family member such as a hearing child, this

offers a solution to the problem of interpretation [4]. In some cases, hearing teachers

of sign language act as interpreters. These informal interpreters are not fluent in all

aspects of sign language as they largely interact with a hearing world, Le. where children

of deaf parents would likely be reared by their hearing family [4]. Consider also the

implications of privacy on a situation such as this. These interpreters are not versed in

the obvious ethical issues involved in interpersonal communication. Privacy is also an

obvious problem if professional interpreters are enlisted.

Professional interpreters also have to be scheduled in advance, making spur of the mo-

ment interpretation near impossible. Lotriet [4]highlights the problems at South African

police stations and courts where "gross injustices" [4] occur as deaf members of society

have little to no access to professional interpretation. It is in these situations that an

automated, real-time, non human-reliant system would be of great assistance.

Beyond the aforementioned there are other areas of application of real-time gesture

recognition. These areas include:

• Computer game control

• Human-robot interaction

• Human Computer interaction (HCI) and

• Automated homes.

1.3 Problem Statement

Gesture recognition has been extensively studied within the SASL project. Whole body

gesture recognition has been researched by Naidoo and Connan [5]. Non-manual gestures

of the face have been studied by Whitehill [6].

Hand gestures have not been researched within the SASL project. Hand gestures are

difficult to recognise due to changes in shape between hand signs and individuals. The

www.etd.ac.za



Chapter 1. Introduction 5

challenge for this thesis is to accurately recognise hand gestures between different indi-

viduals.

1.4 Research Question

Can eigenvectors be applied to hand shape recoqnitiotiï

Can eiqenuectors be used in a sign language recognition system such as the SASL project?

1.5 Research Hypothesis

• SASL hand shapes can be separated into distinct classes.

• Eigenvectors can be applied to hand shape recognition.

• Eigenvectors can provide real-time recognition speeds.

• This system can be incorporated into the larger SASL project.

• Low resources are needed for recognition.

1.6 TechnicalObjectives

To address the questions raised above we must perform the following tasks:

• Gather a data set: Test subjects must be gathered to obtain test and training

data. The data set must contain all hand shapes in our chosen classifier system.

Video recordings from different individuals are needed for the training and recog-

nition process.

• Pre-processing: As gesture recognition is known to decrease in accuracy with

large amounts of image noise, we must determine proper image registration tech-

niques. Image registration is needed to focus recognition on the hand only in the

captured image. As we train the system we will consider which method provides

the greatest accuracy with the least impact on real-time operation.

www.etd.ac.za



Chapter 1. Introduction 6

• Recognition: Accuracy of classifier recognition is the central system goal. The

system must identify a particular hand shape from different unseen users.

• Time Complexity: To be usable in real-world situations we need to keep com-

putational complexity to a minimum. The objective is for the system to perform

in real-time.

1.7 ResearchMethodology

The methods we use to achieve our technical objectives arc the following:

• Random non-natural SASL users are asked to perform the signs. The signs are

described by the Thibologa Sign Language Institute and bridge discrepancies in

signs from various signing groups.

• Our image registration methods find the regions of interest within the images

captured. We only train our system on images containing the hands, but test

images have greater freedom of movement. We use the contours of the hand and

the known parameters of the image to assist the registration techniques. We re-size

the images to known bounds to ensure correlation between all images.

• Our recognition follows known eigenvector techniques successfully used on facial

recognition. We apply these techniques to our set of hands to gauge the usefulness

of this technique to the task of hand gesture recognition.

• We implement code in an efficient manner to ensure the system remains real-time.

Eigenvectors are chosen as they are suited to real-time applications. Registration

methods that assist the time complexity are given preference.

1.8 Research Contributions

As stated previously, there has been great interest in the area of gesture recognition.

Systems have been built around invasive hardware that is largely not intended for mobile

use. Systems have been built incorporating complex methods that cannot perform in

real-time. A system is required to recognise sign language hand gestures in the South

African context, in real time.

www.etd.ac.za



Chapter 1. Introduction 7

1.9 Outline of Thesis

The remainder of this thesis is organised as follows:

• Chapter 2 Sign Language Classifier Predicates This chapter outlines the use of

classifiers within verbal and sign language systems around the world. We describe

how oral languages identify classifiers. We give particular consideration to the

classifier methods used in SASL. We consider the similarities and differences for

various sign languages and what each defines as a classifier. We describe the chosen

classifier method and outline advantages, disadvantages, and the use thereof in a

SASL recognition system.

• Chapter 3 Communicating through Gestures In this chapter we consider the re-

search already done in the field of gesture recognition. We consider all forms of

gesture recognition, from whole-body to hand-only gesture recognition. Popular,

novel, as well as recent methods in this field are analysed. We place particular

emphasis on the application of eigenvector systems to gesture recognition. To

complete this argument we also review the application of eigenvectors to other

areas of research, such as faces. From this review we draw conclusions on the

feasibility of an eigenvector-based system.

• Chapter 4 Eigenvector' Theory and Implementation This chapter gives an overview

of the theory behind eigenvectors. A mathematical approach is taken to give an

understanding of the statistical justification of the method employed. Formulas

as well as derivations are given, along with a brief introduction to the prerequisite

knowledge to better understand the subject matter. A graphical illustration of the

application of the theory is presented, and the ability of eigenvectors to compress

matrix data efficiently is shown.

• Chapter 5 Image Registration This chapter explains the important step of image

registration. The pre-processing methods used for cropping and resizing the image

to remove only the hand are explained. We outline the importance of such pre-

processing to this particular form of recognition and the reasoning behind the use

of each step. Where necessary, graphical demonstrations of the operation of the

pre-processing step are provided.

www.etd.ac.za



Chapter 1. Introduction 8

• Chapter 6 Experimental Setup and Testing The testing chapter outlines three

areas of the system. Firstly, the implementation and experimental setup is de-

scribed. This explains the creation of the system. Thereafter we describe the data

acquisition methods for testing and training of the system. Finally, we present the

test results of the system in terms of accuracy and time complexity on the test

and training images.

• Chapter 7 Conclusions and Directions for Future Work This chapter presents

the conclusions and potential areas for future work for this research. We conclude

on the reliability and accuracy of an eigenvector-based system and the real-time

application thereof. For future work we consider what is required to extend this

work to a full SASL recognition system and other areas of interest.

1.10 Summary

In this chapter we have introduced the work done within this thesis. A background

to gesture recognition, SASL and eigenvectors has been provided. We have introduced

our problem statement, research hypotheses and methodology. The research goals are

outlined as well as a summary of the chapters within this thesis.

www.etd.ac.za



Chapter 2

Sign Language Classifier

Predicates

In this chapter we cover the uses and definitions of sign language classifiers. To introduce

the concept of classifiers, we introduce and explain their use in verbal language. We then

consider the arguments for and against classifier use in sign language. Finally, we outline

the merits of our selected classifier system.

2.1 Verbal Language Classifiers

The term classifier is largely accepted and understood when used in reference to spoken

language, where parts of speech are divided into classes such as nouns and verbs. The

term classifier is derived from the word classifij, which means to "arrange in classes or

categories" [7]. Therefore we provide an introduction to classifiers in verbal languages.

Classification systems in verbal languages are researched in terms of morphemes. A

morpheme is considered "a meaningful morphological unit of a language that cannot

be further divided (e.g. in, come, -ing forming incoming)" [8]. An extensive study

by Aikhenvald [9] presents the nature of classification in over 500 natural languages

from around the world. The languages studied are from areas such as East Asia, South

America, the South Pacific and Australia. Studying the morphological patterns classi-

fying nouns, comparisons are made between these greatly differing languages. Classi-

fiers are found to perform similar tasks across the languages studied, such as numerical

9
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Classifier Type Semantic and Pragmatic Function

Numerical Classifier Quantification, Enumeration
Noun Classifier Determination
Verbal Classifier Object/Subject Agreement
Relational Classifier Possession
Possessed Classifier Possession
Locative Classifier Spacial Location
Deictic Classifier Spatial Location, determination

TABLE 2.1: Functions of classifiers in verbal language as identified by Zwitserlood in
[10].

Class Prefix + Stem Quantitative Noun English
Class 1 um- + -fundi umfundi student
Class 2 aba- + -fundi abafundi students

TABLE 2.2: A Table representing the numerical classification of nouns in Xhosa [11].

classifiers, which enumerate nouns. Other cross-linguistic classifiers identified include

possessive classifiers, relational classifiers, verbal classifiers, locative classifiers and de-

ietic classifiers. Though Aikenvald states that no language contains all classifiers noted

previously.

In Table 2.1, we see classifiers as defined by Zwitserlood [10J,similar to those described

by Aikhenvald [9J.

The work of Aikhenvald [9Jprovides a comprehensive insight into classifier use in various

verbal languages. We now provide an example of noun classification from the South

African languages of Xhosa and Afrikaans.

Xhosa

The Xhosa language divides nouns into classes by prefix. This example considers the

Xhosa Numerical Classifier. Within the Xhosa language nouns are always divided into

the parts: prefix + stem [11J.An example of this can be found in Table 2.2.

The example in Table 2.2 demonstrates the numerical classifier defined in Table 2.1.

Class 1 defines the singular object, while Class 2 defines the plural. In Xhosa the prefix,

in this example um- and aba-, indicates the class of the noun. In Class 1 and Class 2,

these prefixes also quantify the noun. The stem, in this example -fundi, is the meaning

www.etd.ac.za



Chapter 2. Sign Language Classifier Predicates 11

Class 1 (singular) Class 2 (plural) English (singular)
umfundi abafundi student
umntu abantu person
umntwana abantwana child
umfazi abafazi woman
umfana abafana young man

TABLE2.3: A Table demonstrating the creation of noun plurals by altering the prefix.

Class 1 (singular) Class 2 (plural) English (singular)
tand tande tooth
wiel wiele wheel
stoel stoele chair
tou toue rope
tong tonge tongue

TABLE2.4: A table demonstrating the use of the -e suffix in creating plural nouns in
Afrikaans [12].

of the noun. Classes 1 and 2 apply to people only, with further examples shown in Table

2.3.

Afrikaans

Another example of classifiers used in verbal language can be seen in the Afrikaans

language demonstrated in Table 2.4.

Just as in many other languages, Afrikaans contains word classes such as nouns, verbs

and pronouns. In this example, we demonstrate the numerical classification of nouns in

Afrikaans. The suffix -e is used to denote the plurals of many nouns in the Afrikaans

language [12]. Basic use of the plural noun can be seen in Table 2.4.

The provided examples from both Xhosa and Afrikaans show how numerical classifiers

are used in verbal languages. Changes in morphemes such as prefixes and suffixes are

shown to alter the meaning of a word. We now consider the extension of this classifier

system to sign languages.

2.2 Signed Language Classifiers

Some linguists believe that these same linguistic traits can be applied to sign languages.

This idea of classifiers, or "iconicity", was fust introduced by Frishberg [13] in 1975,
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Chapter 2. Sign Language Classifier Predicates 12

putting forward the notion that a pre-defined hand-shape and location are representative

of an entity. There are, however, some researchers who disagree with this supposition.

Not all linguists agree that classifiers in signed languages can be identified in the same

way as verbal language classifiers [14] [15] [16].

Verbal Language Views of Sign Language Classifiers

We first consider the definition from researchers who agree that some commonality

exists between sign and verbal language classifiers. William Stokoe was one of the first

researchers in this field. Stokoe [17], the inventor of the Stokoe notation", says this of

classifiers in American Sign Language (ASL):

Possibly to be counted as a kind of pronoun, [CLASSIFIERS} is a special

class of signs that share some of the functions of collective nouns and in-

definite in pronouns English. These signs were called "classifiers" by Kegl

f3 Wilbur [1S}. ASL like many languages requires special forms to go with

antecedents semantically classified; e.g. "somethinq long and thin", "some-

thing hollow", "something self-propelled".

Stokoe designates the dez, sig and tab aspects of a sign language gesture. They represent

the designator, action and place elements respectively within the gesture. Classifiers are

considered as a dez aspect of a sign gesture.

Ted Supalla [19] was the first to look closely at these classifiers, with a view to classify

the classifiers. He designated signs into two types: "Size and Shape Specifiers" (SASS),

which, as the name implies, denotes the size and shape of a referred entity by hand shape.

The position and bending of all fingers contribute to the meaning of the classifier. The

second type is known as a "semantic classifier", where a particular hand shape can

represent a general class, such as a vehicle. Examples of these two classifiers are shown·

in Figure 2.1. A third classifier, known as the "handling classifier" , was introduced by

Schick in 1990 [20]. This classifier is used when an entity is referred to that is handled

or gripped. An example of a handling classifier can be seen in Figure 2.2.

lStokoe notation is a scripting method for sign languages.
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Chapter 2. Sign Language Classifier Predicates 13

(b) (c) (d)

FIGURE 2.1: ASL Entity Classifiers (a) & (b): Vehicle, Object.
ISL SASS classifiers (c) & (d): Flat Object-Car, Flat Object-Bike [21].

FIGURE 2.2: Two Examples of handling classifiers in ASL

FIGURE 2.3: The hand of the signer moves down.

Inge Zwitserlood also offers insight into classifying hand configurations in sign language

in [10]. According to Zwitserlood, sign language classifiers are usually considered "mean-

ingful hand configurations". Her work shares many ideas with that of Stokoe [17]and

Supalla [19]. In her study of the sign language system of the Netherlands2(NGT), she

notes that these "meaningful hand configurations" are accompanied by movement and

motion within a sign when gesturing. Movement refers to the articulation of the hand

within the sign, whereas motion applies to the motion of the hand referred to. The

differences between movement and motion are illustrated in Figures 2.3 and 2.4.

Zwitserlood also distinguishes between manual and body gestures. Manual gestures

do not include the use of the body of the signer, and it is these manual gestures that

are covered in her study. The classifiers for motion and movement can be seen in the

examples from NGT in Figures 2.5 and 2.6.

2The full name for Netherlands sign language is Nederlanase Gebarentaal.
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FIGURE 2.4: The hand of the signer changes shape.

a. b.

FIGURE 2.5: The NGT signage for 'a man falls' and 'a book falls' respectively [10].

a. b.

FIGURE 2.6: The GT signage for 'to sew' and 'watch' respectively [10].

In Figure 2.5 we see the same action falls accompanied by different classifiers, man

and book respectively. The same motion is used to represent the action of falling. The

classifiers used determine the object referred to. The "meaningful hand configuration"

containing the extended index and middle fingers in Figure 2.5a refers to a legged entity,

in this case, a human being. In Figure 2.5b the flat open hand configuration refers to

a flat entity, a book, in this instance. From here we can see how classifiers, otherwise

known as the configuration of the hand, change the meaning in a signed phrase in NGT.

This notion of hand shapes representing objects is not only seen in NGT. For example,

the sign for 'small animals' in ASL is shown by the hand configuration in Figure 2.7.

FIGURE 2.7: The ASL signage for 'small animal' [10].
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FIGURE 2.8: Clockwise from top-left, these linages represent the South African Sign
Language (SASL) sign for 'mouse' in computing [23].

Schematic Views on Sign Language

Alternatively, the view expressed by Cogill-Koez [22J,Schembri [15Jand Liddell [16Jis

that the division by morphemes of signed gestures, location or movement, is generally

non-linguistic. Their argument views sign language gestures as a simplified gestural

representation of the event or action. In other words, a specialised and sophisticated

form of pantomime or playing charades. This particularly applies to what is classed

as verbs in oral languages. The argument of Cogill-Koez [22Jproposes that signs are

inherently schematic in their strategy.

The SASL sign for mouse, in terms of a computer, is an example of this. The sign for

computer can be seen in Figure 2.8, occurring in the first 3 frames, as a subgesture of

the full sign. Movements shown across all frames are needed to perform the sign. The

final two frames are seen to be an imitation of the use of a mouse. The imitation of the

use of the mouse is a schematic representation of it's use.

Cogill-Koez further emphasises the separation between spoken languages and signed

languages. It is concluded that not all gestures are created from a sum of basic classifiers,

instead drawing from the convenience of performing the gesture. It is suggested that

with this realization classifier predicates are unnecessary in the description of signed

languages. It is shown that, rather than doing away with classifier predicates, classifier

predicates can and must be studied alongside these schematic representations of signs

[22J. The linguistic basis of signs is therefore thought to be modified to include these

schematic representations into the area of sign language research.
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2.3 Classifiers for SASL

As shown above, there exist many definitions for classifier predicates in sign languages.

A definition was sought for the specific SASL context. The Thibologa Sign Language

Institute(TSLI), established in 2005, defines a set of SASL classifiers. The purpose of the

TSLI is to assist the South African deaf by easing communication between themselves

and the hearing by using SASL. As such, the Thibologa Sign Language Institute has

defined classifiers as shown in Figure 2.9. The Thibologa Institute has made these

classifiers available to the public through their SASL instruction booklet [23].

FIGURE 2.9: Classifiers defined by the TSLI described in Table 2.5

These images demonstrate that the TSLI SASL classifiers are visibly similar to those

found in the work of Supalla [19]and Supalla and Liddell [24]. The meaning of the signs

in Figure 2.9 are found in Table 2.5.
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Index Hand Description Possible Sign
l. Palm/Flat Child, House, Care, Happy
2. Two long thin bent extensions Issue, Research, Book, Rat, Rules
3. Narrow/Shallow Flat Object Money, Video, Sandwich, Document
4. Round/Spherical Object Duster, Audiology, Act, Exercise, Drive
5. Flat/Long Smooth Surface Make-up, Butter, Brown, Baking Tray, Paper
6. Fist Cough, Run, Cook, Hold tight, Bath towel
7. Flat/Triangular Object There, Opinion, Snake, Bring, Decorate
8. Index Five Colour, Ball, Light, Encourage, Integrity
9. Compact Mass with Salient Extension Good, Bad, Lift, Neighbour

TABLE2.5: The nine SASL classifiers and the various possible signs they represent.

2.4 Conclusion

We conclude that whether a hand shape is classified in relation to verbal language or

schematic methods, the specific "meaningful hand configuration" always portrays a class

of meaning to sign language, and specifically to SASL.

2.5 Summary

In this chapter we introduced and described the use of classifiers in a broad spectrum of

languages studied by Aikhenvald [9], and specifically in the verbal languages of Xhosa

and Afrikaans. We have extended this idea to explore classifiers in sign language. We

have discussed the arguments for and against the two methods proposed for classifier

interpretation in sign languages. We have also introduced the chosen classifier set used

in this thesis to be that defined by the TSLI.
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Chapter 3

Communicating through Gestures

In this chapter we review different recognition methods. We consider the use of gestures

in human communication, from simple gesticulation to complex sign languages. We

describe gesture recognition methods relating to the recognition of whole-body gestures

and hand-shape specific gestures. We also describe the implementation, application and

results for these various techniques.

3.1 Gestures

Gestures form a vital part of everyday human interaction. Gestures comprise movements

of the hands, arms, head, face and even the body to convey messages or emotions.

Gestures are used to interact with the environment, and also occur in differing social

situations.

FIGURE 3.1: An example of a simple gesture [25J.

18
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Gestures offer a complete communication tool for sign language users. All sign language

communication consists of manual and non-manual gestures. Manual gestures arc move-

ments of either the hand or arm, or a combination of the two. Non-manual gestures are

movements of the face in the form of facial expressions. It is a combination of these

manual and non-manual gestures that are used to communicate in sign language. It is a

common misconception that sign language is merely another representation of a spoken

language, as writing English is to speaking English. As diverse as spoken languages are

from one another, so too does sign languages vary from region to region among different

cultures. For example, British Sign Language (BSL) is used in Britain, whereas South

African Sign Language is used in South Africa. Neither of these sign language systems

are related to a spoken language.

General gestures, not attributed to specific sign languages, are "ambiguous" and "in-

completely specified", as detailed by Mitra and Acharya in [26]. An example is the

gesture to stop talking, generally attributed to an index finger pointed upwards, placed

over the mouth. This same expression can also be gestured by a pinching action over the

lips. There can be differences in a particular sign when considered by different cultures,

people, and even the same person at differing instances. It is common for people to use

gestures, Le. gesticulate, when talking on the phone. Even blind people are known to

gesticulate when speaking.

Gestures have also been used for Human-Computer Interaction (HCI) to make interfaces

simpler and more intuitive. Typically, these have been used to improve the interactions

with virtual environments, such as the cellular phone or the computer desktop. Examples

of this include using a wave of the hand to navigate menus or performing a specific hand-

shape to start and stop music playback.

These examples show how gestures are important to human communication, providing

the basis for gesture recognition.

3.2 Gesture Recognition

With the knowledge of gestures as discussed in Section 3.1, we now look at the various

methods used for gesture recognition. These methods cover areas such as statistics, arti-

ficial intelligence, and others, in their approach to gesture recognition. These approaches
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include Hidden Markov Models (HMM), Neural Networks (NN), Support Vector Ma-

chines (SVM) and others. This section concentrates on whole body recognition while

hand shape recognition is considered separately in Section 3.3. Systems comprising both

static and dynamic recognition techniques are covered. Static gestures, where a specific

shape is made and then held, are also known as postures. Dynamic gestures are gestures

made over time, such as waving a hand. Figure 3.2 is an example of a static gesture.

FIGURE 3.2: An example of the thumbs up gesture.

3.2.1 Hidden Markov Models

HMM's have been successfully used in handwriting and speech recognition [27]. The use

of HMM's is seen as favourable to apply to the problem of sign language recognition

when the Movement-Hold (MH) model is used. The MH model states that signs are

built of a sequential series of movement and hold positions [16].

Starner, Weaver and Pentland present a HMM system for the recognition of American

Sign Language on a 40 word lexicon [28J.Their system works in two modes, with the user

in front of the camera and with the camera placed on the head of the user. Both methods

place the user in a seated position and capture whole-body signs. The system captures

the hand by skin detection and tracks the skin as blobs. These blobs are differentiated

as left and right hands depending on which is leftmost and rightmost in the image. They

note that their skin detection model is not reliable under differing lighting conditions,

which can lead to unreliable tracking of the hands. It is useful to note that this work

is an extension of earlier work done by T. Starner and A. Pentland [29Jwhich relied
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on coloured gloves to identify the hands. Gloves however are not practical to everyday

situations and thus an a priori skin map is the next step to demonstrate effectiveness

without coloured gloves. The recognition accuracy of the system is 92%when the camera

is in front of the user and increases to 98% when the cap-worn system is used. Their

work shows a high accuracy and gives credibility to the use of HMM's.

One significant restricting factor to the use of HMM's and the MH model is the large

number of training images that need to be used. To achieve the level of accuracy

obtained, 384 sentences were required for training on their 40 word lexicon. This amounts

to almost ten training sentences per word, with 5 words per sentence. To put this into

perspective, there are 6000 ASL signs, each requiring a minimum of 10 x 5 training

examples for effective recognition. Thus 300000 training images are needed to cover the

entire language.

3.2.2 Neural Networks

The work done by Marcel et al. [30]combines the advantages of neural networks(NN)

and input-output Hidden Markov Models (IOHMMs) for a full-body gesture recognition

system. The first step in recognition for this system is to detect the face, as detec-

tion is calculated on a face-centered basis. Hands are then found corresponding to skin

colour blobs, after which a neural network is used to detect the hand posture on the

face-centered space of the user. IOHMMs have been used in this method over the typ-

ical HMM approach as it allows for mapping of the input sequences onto the output

sequences. Gesture paths are extracted in a 2D space by detecting the skin-blob cor-

responding to the hand and tracking the motion over time. The goal of this work is

to differentiate between two classes of gestures, deictic and symbolic. Deictic gestures

occur when a pointing movement is made to the left or right of the body-face space.

Symbolic movements also occur on the left and right of the body-face space but denote

gestures intended for commands such as grasping or rotating. Their method achieves a

recognition rate of between 90% and 100%.
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3.2.3 MiscellaneousRecognition Methods

This section looks at other methods that do not fall into a specific category but use

differing and unique methods to achieve gesture recognition.

A novel method is put forward by AIon et al. in their work on gesture recognition and

spatiotemporal gesture segmentation [31]. Their system does not require any segmenta-

tion of the hand, as bad segmentation can adversely affect the outcome of recognition. A

colour-based method is used to detect the skin, but they take an interesting approach to

choosing the skin region. Rather than finding the first or largest connected skin region,

their system finds every skin region. This gives multiple candidate regions for the posi-

tion of the hand. Unlike other methods which segment and then recognise, this method

performs segmentation with recognition. Recognition is performed on each of these can-

didate locations and as such processing time increases with each possible hand region

detected. Training and test data for the system is comprised of continuous numerical

digits gestured by the signer. An example of this can be seen in Figures 3.3 and 3.4. A

problem for this type of matching is that the gesture for the number 5 is a subgesture of

the number 8. Using this method it is seen that if one gesture is fully within another, all

but the lowest matching model will be pruned away. Therefore, the first gesture found

will not be flagged as the gesture until it is conclusively found not to be a subgesture.

Experimentation involved users performing the numbered gestures in sequence. Tests

were done to compare the effect of the subgesture reasoning on the test outcomes. Hard

and easy data sets were used. The easy data set contained only the user in front

of the camera, while the hard data set intentionally contains background movement

including non-gesture skin regions. The accuracy was improved from 79% to 94.6%

when subgesture reasoning was introduced to the easy data set. On the hard data set,

an accuracy of 69.2% was achieved before subgesture reasoning, and 85% thereafter.

This method is computationally complex, and made more so when more potential hands

are introduced. This is because all skin coloured objects are tracked as hands until

shown to be otherwise. A pruning method [31]was later introduced so that a tracked

hand, found not to be within the training boundaries, was removed immediately to

speed up processing. This method offers acceptable accuracy along with novel ideas for

continuous gesture recognition.
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FIGURE 3.3: The gestures performed for the numbers four and five respectively [31J.

FIGURE 3.4: The gestures performed for the numbers eight and nine respectively [31J.

3.3 Hand shape Recognition

We now consider the specific field of hand shape recognition as applied to gesture and

sign language recognition. Factors which increase the difficulty of hand shape recognition

include:

1. Segmentation of the hands between signs [32],

2. Hand segmentation from the image background [32],

3. Gesture differences between different signers [32], and

4. Gesture differences between the same signer at different instances [32].

As such segmentation from cluttered backgrounds presents a challenge for this field of

study.

3.3.1 Elastic Graph Matching

We consider the work by Joehen Triesch and Christoph von der Malsburg [33]. Their

work called "A System for Person-Independent Hand Posture Recognition against Com-

plex Backgrounds" proposes a method for hand shape recognition using Elastic Graph

Matching (EGM). This view-based method was used for the inherent ability of EGM to
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handle the variations in hand shape and as well as not requiring a perfectly segmented

hand. EGM has been successfully used for face detection and recognition as well as the

recognition of objects.

In this method, the images are represented by a series of graphs. This series of nodes and

edges placed over an image denotes the shape of the hand. Using this manually created

graph of the hand, a series of feature types are extracted at the nodes of each graph. An

example of a manually created elastic graph can be seen in Figure 3.5. Gabor Jets, Bunch

Graphs, Compound Jets, Compound Bunch Graphs, Color Average and the Color Gabor

Jet are the features extracted from every node. These nodes contain color, 2D position,

whole image and average image information of the nodes in each graph. Recognition

is achieved by shifting the trained graph over the test graph until a match is found.

The graph, along with the edges and nodes, moves within certain allowable parameters

while searching for a match over the test image. In this way minor deformations in the

hand shape, size and orientation are accounted for. The system makes use of a set of

more than 1000color images, 72 of which are used for training. Under this EGM system,

combined with one or more extracted features, recognition rates of up to 92% were found

on simple backgrounds and 85.8% on complex backgrounds. A large amount of manual

work is done to label the images with the nodes and edges of the elastic graph. Triesh

and von der Malsburg note this as a limiting factor to the amount of images placed in

their training set.

FIGURE 3.5: A visual representation of Elastic Graph Matching [33].

3.3.2 Chamfer Distance

Potamias and Athitsos [34] perform hand shape recognition using a Chamfer distance

matching approach. The intention of their work is to detect 20 different hand signs

using a large data set of signs. The challenges of this task are to effectively label and
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index the images for searching. Embedded and hash-based methods are used to search

the data set. The system then needs to find the closest match between the data set of

images and the input image. To do this, edge images are created that will be compared

using the Chamfer distance [35],a method known to find the distance between two edge

images. To find these edge irnages they use the Canny edge detector [36]. They find

that using the Chamfer distance on their data set takes an unacceptably long time of

two minutes, thus they propose an embedding system to speed up the process.

Boostmap and Lipschitz embedding is used for embedding the edge images into a vector

space. Embedding is effective in speeding-up the process significantly without a great

impact on the recognition rate of the system. Test results reveal a 90% to 99% retrieval

accuracy depending on the embedding method used. These results are. offset against

the comparative time taken for the brute force method to complete the same matching.

When comparing the embedding to brute-force, a speedup factor of 300 is obtained.

3.3.3 Depth Mapping

R. Feris et al. present a method for hand-shape recognition using image-depth capturing

hardware [37]. The system consists of a camera with four flashbulbs placed on either

side, as well as above and below the camera.

The flashbulbs flash sequentially, highlighting depth discontinuities from the four op-

posing perspectives. A combination of these four images produce a depth map found to

show more relevant edging than that of Canny edge detection, as seen in Figure 3.6. A

shape descriptor [38]is applied to the set of training images to classify them, invariant

to image translation and scale. A nearest neighbour classifier is used for recognition.

When a test image is encountered and the edges found, the shape descriptor is ap-

plied. The image is identified by a nearest neighbour comparison to the training images.

This method achieved a recognition rate of 96%, compared to the Canny images, which

achieved a recognition rate of 88%.

Another technique for reliable hand-shape recognition is presented by Fujimura and Liu

. This method has been applied to the recognition of Japanese Sign Language (JSL).

A unique depth-camera is used to determine the depth of images within a scene. The
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FIGURE 3.6: The fist column represents a hand image, the second column shows Canny
edge detection. The third column demonstrates the depth-based edging. Each row

shows a different hand shape and ambient lighting condition [37].

depth camera was developed by 3DV Systems [39] and calculates scene-depth in real-

tirnel. Using a large set of training data, the system achieves an "error rate [OF] 5% or

less" [40].

Depth information from the 3DV camera is lighting invariant and reduces the problems

encountered due to occlusions. It is clear that depth information provides a useful aid

to reliable gesture recognition.

FIGURE 3.7: An example of the depth map produced by the 3DV camera. Lighter
areas are closer to the camera [40], darker areas are further away.

13DV Systems bas been acquired by Microsoft Inc. and this technology is being used with their
Xbox360 gaming system.
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3.4 EigenvectorVision Systems

The eigenvector approach2 has been used extensively in the area of facial recognition

[41J[42J [43J[44J. The term eigenfaces3 has since been coined to describe eigenvectors

when used in a facial recognition system.

An eigenface approach is essentially a 2D matching technique, using face-forward images

of the face in controlled lighting conditions.

3.4.1 Eigenfaces

The work of Sirovich and Kirby [51J [52Jcontributed greatly to other systems under

review within this section. Their 1986 work [51J continues the use of eigenvectors in

facial recognition. This initial study was done on 115 different face images. The images

were all taken under the same conditions with respect to lighting and head orientation.

Their later work [52Jbuilds on this by making use of the same image set, but setting

about the recognition in a different manner.

In [51Jthe images subjected to eigenvector matching are cropped over the eyes and nose.

These fitted and cropped faces are used for training the eigenvector system. The test

subjects were also carefully chosen to maintain a relatively homogeneous population.

Test subjects were randomly chosen smooth-skinned Caucasian males. From these ex-

periments it was concluded that there exists enough variance in parts of the human face

(the eyes and nose) for accurate recognition. It was also found that to use the full face

would increase the number of features and the number of errors in recognition.

In [52J, the authors take a different approach to modifying the images before training

and recognition. This approach used vertically mirrored images in the training set,

thereby extending the amount of images in training. This manipulation is done to reduce

the approximation error for images not included in the original ensemble of images.

Final conclusions determine that these modifications are beneficial to recognition. The

eigenvector approach also successfully reduces the amount of data required to recognise

a human face.
2The eigenvector approach is also known as Principal Component Analysis or PCA.
3Those who recognise faces term them eigenfaces [45) [46) [47), while those who recognise images term

them eigenimages [48) [49), ad infinitum. This thesis will use the term eigenvector as in previous work,
[50).
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In the 1991 work of Matthew Turk and Alex Pentland [47], they describe a near real-time

system for facial recognition using eigenfaces. Their work, influenced by Sirovich and

Kirby [51] [52], further explores the conditions around creating an effective eigenface sys-

tem for facial recognition. A set of 2500 facial images are used in their study, consisting

of faces in various lighting conditions, orientations and sizes. The effectiveness of eigen-

faces under these varying conditions is given considerable attention, though primarily

they seek to create an effective real-time facial recognition system. From this work we

see how different lighting conditions, sizes and orientations have an effect on recognition

rates. Specifically, according to their results, when a particular face is to be recognised,

lighting would reduce recognition by 19%, orientation would reduce recognition by 39%

and size would reduce recognition by 60%.

From these results it is clear that registration is a challenge facing any eigenvector-based

recognition system. Registration is the ability to crop and scale the images to match

the training set. Their suggested solutions are to either crop and scale the images, or

to ensure that the training set contains versions of the image at va.rious sizes. The

near real-time implementa.tion and a.ppa.rent robust performance to cha.nges in lighting

conditions ma.ke the overa.ll results a. success.

This is continued in the work of Pentla.nd et a.l. in [46]. They delve extensively into the

use of eigenvectors for the ma.tching a.nd cha.ra.cterisa.tion of huma.n faces on a. large set

of ima.ges. Their 1994 pa.per on "View-Based Modula.r Eigenspa.ces for face recognition"

tests the eigenface concept on the largest face set a.t the time.

Their research used a. set of 7562 facia.l ima.ges of a.pproxima.tely 3000 different people.

This was significa.ntly grea.ter than compara.tive research which only used a. few hun-

dred face ima.ges. Ima.ges were full-face, with ima.ges of the sa.me person occurring with

different fa.cia.lexpressions, ha.ir styles, glasses, etc. Each of these faces were manually

a.nnota.ted before tra.ining. Their resultant system gave rise to a.novel a.pplica.tion ca.lled

Photobook, which could sort a set of ima.ges on their similarity to a user selected image.

Pentland, Moghadda.m and Starner exa.mine two methods of approaching the eigenspace

problem, from a view-based and from a para.metric view. The parametric view is simplis-

tic in that eigenvectors are calcula.ted over the entire face set for recognition. The view

based a.pproach first classifies the different faces by size and orientation, i.e. different

views, before recognition.
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In their different testing scenarios the view-based method only slightly out-performed

the parametric based recognition. The test data included 189 images of 21 people

in 9 different views. View-based recognition achieved 90% accuracy while parametric

based recognition achieved 88% accuracy. From this, they again identify the importance

of registration in eigenspace methods. A feature detection system, to find the eyes,

nose and mouth, was also created. Testing on these eigenfeatures, versus eigenfaces,

revealed little difference in recognition rates, as they both achieved recognition of 95%.

A combination of the two systems saw recognition increase to 98%.

From this work we see the success of the eigenvector approach on a large image data

set. Furthermore we can see that sufficient variation exists in faces to recognise them

using an eigenface approach.

..-.- .. " -- .. ~ i.._aL - ~
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FIGURE 3.8: A visual representation of different facial characteristics emphasised by

the eigenvectors [46].

3.4.2 Eigenobjects

A. Leonardis and H. Bischof present an eigenimage approach to recognition that achieves

a high recognition rate [53J. Using eigenvector recognition they emphasise the negative

effect that outliers can have on recognition. A novel approach to the selection of the

coefficients of the eigenimages is suggested to improve the recognition rates. On the

set of 15 test images, no-false positives are reported during recognition. The real-time

application of this system is however not addressed.

A method for matching objects using eigenvector techniques is presented by M.J. Black

and A.D. Jepson [54J. This method emphasises making the matching technique more

robust by applying a least-squares reconstruction to the eigenspace images. The work

is tested on objects, in this case a soda can, for which they achieve a 96% recognition

rate.
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FIGURE 3.9: peA object recognition by Black and Jepson [54].

3.4.3 Conclusions from Eigenvector Matching

We have analysed various methods of eigenface and eigenobject matching in Sections

3.4.1 and 3.4.2 above. Though differences exist between hand and face recognition, we

can draw the followingconclusions from these methods:

• An eigenspace approach to recognition, once trained, is a fast method of recogni-

tion.

• This fast recognition lends towards the creation of real-time systems.

• This method can be scaled to large image data sets.

• Lighting conditions have little effect on the accuracy of an eigenspace system.

• Registration in terms of image segmentation is necessary for consistent accurate

recognition.

• Features within an object, such as the eyes and nose within a face, do little to

improve the accuracy of the system.

It can be reasonably concluded that the eigenspace approach can be applied to objects

other than faces, and forms the basis for this thesis.
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Chapter 4

Eigenvector Theory and

Implementation

4.1 Introduction

In this chapter we describe the theory and implementation of eigenvectors and eigenval-

ues. We give a mathematical representation of eigenvectors and eigenvalues, followed by

an example to illustrate the derivation thereof. The technical derivation of eigenvectors

is followed by a graphical representation of the algorithmic procedure for eigenvector

recognition.

4.2 MathematicalRepresentation

Given a covariance matrix C, we define a non-zero vector u as an eigenvector I , if it

satisfies the equation, Equation 4.1.

CU=AU (4.1)

Where, for some scalar value A, A is known as the eigenvalue corresponding to the

eigenvector u.
1 Eigen is the German word meaning characteristic of or peculiar to. Hilbert is believed to have

first used the term in relation to eigenvectors and eigenvalues in 1904. Hence some authors refer to
eigenvalues as characteristic values.

31
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4.3 Example

Consider the example equations 4.2 and 4.3:

(4.2)

(4.3)

In Equation 4.3 we say that (~) is an eigenvector of the matrix (~ ~) since the resulting

vector is an integer multiple of the original vector. The resulting vector is 3 times the

original vector. Equation 4.2 is an example of a non-eigenvector as the resulting vector

( 2t) is not an integer multiple of the original vector, (5)'

This example also introduces the eigenvalue. There is no eigenvalue in Equation 4.2

as there are no eigenvectors either. In Equation 4.3 the integer 3 is the eigenvalue

corresponding to the eigenvector (~). Therefore demonstrating that eigenvectors and

eigenvalues always occur in pairs [55J.

As we now know what eigenvectors and eigenvalues are, we move on to more complex

methods of determining them, It is only relatively simple to calculate the eigenvectors

and eigenvalues on a matrix smaller than 3 x 3 [55J, after which, programming methods

are needed.

4.4 Background

To explain the concept of eigenvector and eigenvalue derivation we must first cover

the prerequisite knowledge. We present a brief explanation of statistical variance and

covariance.
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Variance

Variance measures how data is spread within a one dimensional set. The formula for

variance is shown in Equation 4.4

(X)
_ I:~-l(Xi- X)2

var - ( )n-l
(4.4)

Where rt is the number of elements within the set, and X is an element within the set.

Explicitly, for each element X, subtract the mean X from X and square the result. Sum

these values and divide by (n - 1) to determine the variance.

Covariance

Covariance extends the use of variance to two dimensions. The formula for covariance

can be seen in Equation 4.5

cov(X, Y) = (n ~ 1)"'2JXi - X)(Yi - Y)
=1

(4.5)

By expanding the squared term in Equation 4.4, we note that the variance appears

similar to the covariance:

cov(X X) = I:~-1(Xi - X) (Xi - X)
, (n - 1)

In utilising the covariance values, we can see how much data differs from the mean in

relation to each other.

4.4.1 Covariance Matrix

Situations exist where a data set has more than 2 dimensions. These situations require

the use of a matrix to calculate covariance. A covariance matrix for a data set of rt

dimensions is defined as follows:
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C"?" = (c .. C... = cov(Dim· Dim .))"7.,), -a 1,)

As such, a 3 x 3 covariance matrix with dimensions X, y and z is represented as follows:

(

COV(X,X) cov(x,y)

c = cov(y,x) cov(y,y)

cov(z,x) cov(z,y)

cov(X, z))
cov(y,z)

cov(z,z)

4.5 Computing Eigenvectors and Eigenvalues

The aim of eigen decomposition is to project a data set onto a lower dimensional space

with minimal data loss. This is achieved by choosing the best eigenvectors to describe the

data set. The best eigenvector corresponds to the largest eigenvalue. We demonstrate

the calculation of eigenvectors in training and recognition in the sections to follow.

4.5.1 Training

Training Theory

First, let the hand image Xi be an array of size m x n. Let the set I' = {Xl, X2, ... , Xk},

where k is the number of images in I'. Re-order the elements of the set I' to be the

matrix I', such that the images are row elements of length mn and the matrix contains

k number of rows. Therefore each row in r is an image.

r=

Define the average image x over all the images in the data set. The average image is

computed by the sum of all images in the set r, divided by the number of images in r,
k:
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(4.6)

Thus, each pixel in the average image contains a value representative of an average over

all images in I'. Center- r by subtracting the calculated mean of the image set, X, from

every element in the set:

<1>i = Xi - X (4.7)

Kirby and Sirovich term the subtracted image <1> as the "caricature" [52]. Every carica-

ture <1>i is combined to form the matrix A such that A = [<1>1, <1>2, ..• , <1>K]. A matrix of

size mn x k, The covariance matrix C is given by:

(4.8)

Finally, utilising Equation 4.9, calculate the eigenvectors and eigenvalues/ of C:

Cu = AU (4.9)

The eigenvalues are ordered such that C : Al > A2 > ...> )IN. The eigenvectors also

ordered, C: Ul,U2, ... ,UK, in relation to their corresponding eigenvalues. To reduce the

dimensionality of the data set the eigenvectors corresponding to the largest eigenvalues

are selected.

For each training image x the projection onto the eigenspace is given by Equation 4.10.

q

X -x= LaiUi
i=1

(4.10)

with ai as the principal component. Therefore, if U = [UI, ... ,uq] and a = [al, ... , aq]T

then a = UT(x - x). Each principle component will define an image class.

2An alternative method of calculating the eigenvectors and eigenvalues is to calculate the Singular
Value Decomposition (SVD) of C.
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Training Methodology

To train an eigenvector system the following is needed:

• A training set of sample hand images.

• From this set of hand shapes, calculate the eigenvectors according to the theoretical

derivation described above.

• From the calculated eigenvectors, store those corresponding to the largest eigen-

values. These stored eigenvectors are known as the eigenspace.

• By taking a projection of each hand onto the eigenspace, determine the principal

components which classify each hand.

Training Implementation

We have implemented our system based on functions from the OpenCV imaging library

[56]. OpenCV provides useful tools for fast image processing. The OpenCV framework

was developed by IBM and contains functions for many image processing techniques.

Among these are the image processing functions for various methods of image manipu-

lation such as edge detection, colour modification and resizing. Importantly, image data

processing methods are also included such as those for matrix conversion, singular value

decomposition and the calculation of a dot product. Our implementation makes use of

the OpenCV eigenvalue constructs to perform eigen decomposition on our data set.

During this phase the system processes images to form the basis for testing new images.

All images are ordered sequentially to create a complete matrix of images. We now

seek to lower the dimensionality of this large set of data. The OpenCV function cvCal-

cEigenObjects reduces this image matrix to a smaller one containing the eigenvectors

of the data set. These eigenvectors contain all the variance in the set and will later be

used to classify new images.

Utilising our calculated eigenvectors and eigenvalues, we use the cvEigenDecomposite

function to project each training image onto the eigenspace. This process evaluates a

principal component by which we class our training images.
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An illustration of the training process can be found in Figure 4.1. The OpenCV function

definition for cvCalcEigenObjects can be found in Appendix A.

4.5.2 Recognition

Recognition Theory

When the system encounters a new image y, this image must be projected onto the

eigenspace for classification. Classification is performed by first creating a caricature

of y. This is done in the same way as training the system, by subtracting the average

image from the input image. The resultant image is then manipulated in combination

with the saved eigenvectors, as in Equation 4.11.

q

Qy = L::(y - X)Ui
i=l

(4.11)

Where Qy is the principal component attributed to the image y. These values are the

differentiating factors in classifying each new image into the separate hand classes. To

determine the class to which a particular hand shape belongs, we look to minimise

the Euclidean distance between test and training principal components. The Euclidean

distance is determined as follows:

(4.12)

In this manner a hand class is identified during the recognition process. Therefore, to

see if a hand to be tested belongs to a particular class, perform the followingsteps:

• Find the caricature of the new hand, as before, by Equation 4.7.

• Find the principal components of the new hand by Equation 4.11.

• Find the shortest Euclidean distance between the test and training images by

Equation 4.12.
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Recognition Methodology

To recognise hand classes in an eigenvector system, proceed as follows:

• Create the set of eigenvectors from the original set of hand images.

• Choose eigenvectors corresponding to the largest eigenvalues.

• Determine the principal components using these eigenvectors to characterise the

hand class.

• Determine the threshold which assigns a given image into the relevant hand cate-

gory.

• Determine <I> for each new image to be recognised.

• Project <I> onto the eigenspace and find the corresponding principal components.

• Determine the Euclidean distance from the training to the test principal compo-

nents to determine the hand class.

Recognition Implementation

Recognition was also implemented using the eigenvector functionality of OpenCV. Dur-

ing this phase the principal components of a test image is needed. The cvEigenDecom-

posite function is used to calculate these components from the test image.

In the work of Sirovich and Kirby, they find the use of the first 40 eigenvectors to be

sufficient to approximate a face [51J.We have determined that the fust 45 eigenvectors

are needed to classify a hand gesture.

It is by the calculation of the Euclidean distance between this value and the saved

principal components of the training images that the image class is determined. The

image is classified to a certain class if the shortest Euclidean distance is found within

the classification threshold.

An illustration of the recognition process can be found in Figure 4.2. The OpenCV

function definition for cvEigenDecomposite can be found in Appendix A.
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FIGURE 4.2: A diagram representing the flow of data when recognising a hand.

4.5.3 Summary

In this chapter we have given an outline of the theory of eigenvectors. We have also

demonstrated the use thereof in this SASL classifier system.
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Chapter 5

Image Registration

5.1 Introduction

Image registration is the acquisition of the area of interest for recognition [57], in this

case, the hand. More explicitly, registration is the process of aligning two or more images

by some translation of the image. We align the hands during training and testing to

allow for accurate recognition. In this chapter we address the challenges faced in pre-

processing an image before image recognition.

As videos are no more than a series of frames, we discuss image registration on a repre-

sentative image, which is a frame from the video.

5.2 Removal of Outliers

A large problem facing the accuracy of eigenvector recognition systems is encountered

in registration [57]. Outliers can have drastic negative effects on the recognition of an

eigenvector system [53] [55]. Outliers are also known as noise. This negative effect occurs

as unimportant noise data is recognised as genuine image variation. For this reason all

areas around, and not relating to the hand, must be eliminated. Using prior knowledge of

the images captured, we propose the following methods for the removal of these outliers.

Three transformations are performed on the image to reduce outlier interference. These

transformations are grayscale conversion, contour detection and hand extraction. This

chapter outlines these transformations.

41
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FIGURE 5.1: A figure displaying different skin tones from the set of hand images. Also
note the differences in hand size in the images.

5.2.1 Grayscale Conversion

Skin tone varies greatly in the images collected in our test data. These differences can

be seen in the sample images in Figure 5.1. An overview of the test set, training set and

data acquisition methods can be found in Chapter 6.

To compensate for this visible variation in skin colour, a grayscale image is used instead

of the original colour image. This provides less variation within the set of images. Eigen-

vector matching encodes any differences in the set of images into a matching component.

Reducing the skin variation in the set allows for skin tone to be more easily discarded

as a discriminating factor between hands.

OpenCV was used to convert the image to grayscale. The typical method to convert an

image to grayscale is outlined below.

To convert an image to grayscale:

• The image is converted to red, green and blue(RGB) colour components .

• Compute 30% of the red value, 59% of the green value and 11% of the blue value.
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> >

FIGURE 5.2: A graphical representation of grayscale conversion.

• Sum these components to produce the grayscale image.

We can see the process and result of grayscale conversion on an ima.gein Figure 5.2.

. These images still contain noise, that is, sleeves, wrists, shadows and image background,

which contribute negatively to recognition. These outliers arc to be dealt with in the

following sections.

5.2.2 Contour Detection

Our goal is to remove the hand from the image. To do this we first broadly search for

a region of interest to find the hand. To accomplish the task of removing this region

of interest, we extract the contour lines from the image. These contours represent the

outline of the image. Using contour lines, the image can be cropped to the size of the

hand while a binary image thereof is also created.

Cropping using Image Contours

Contour detection within the OpenCV environment requires either an edge or binary

image. As our image contains only the hand with varying degrees of arm and wrist

inclusion, we can accomplish this by converting the image to edges. Edge detection is

shown in Figure 5.3.
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>

FIGURE 5.3: Canny Edge Detection applied to an image with a threshhold of 30.

FIGURB 5.4: Clockwise from top left, edge thresholds of 10%, 100%, and the chosen
threshold 30% are shown after smoothing.

Edges are computed by using the Canny Edge detection method [36]. Canny Edge

Detection was chosen as it is well known to generate continuous edges. An edge threshold

of 30% was used as higher thresholds lost too much information. Lower thresholds

captured increasing amounts of image noise. We can see the effect different thresholds

have on the edges detected in Figure 5.4.

Images are further smoothed to remove excess noise. The cvSmooth function is used to

smooth the edge image. An example of this smoothing technique can be seen in Figure
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>

FIGURE 5.5: The left image is the original Canny Edge Detection. The image on the
right is smoothed using the cvSmooth method.

5.5, where smoothing ensures continuity in edges. A large continuous edge is of greater

interest than smaller, short edges.

A group of the largest of these edges is taken to be the outline of our region of interest.

We know this as the region of interest as it requires further processing to determine if

this region contains the hand.

.Theso edges represent the outline of the hand and wrist. From these edges, selected

continuous contours are extracted using OpenCV. Many erroneous edges are found and

detected as contours. We determine that only the largest contours are needed to suffi-

ciently estimate the area of interest of the hand. We have chosen to only examine the

five largest contours.

As each contour is detected, a summation is made to the region of interest. We can see

the detected contours and their corresponding hand data in Figures 5.6 and 5.7. We

show the before and after images for the extraction of the two long thin bent extensions

gesture in Figure 5.8.

As each contour is detected, so the region of interest grows. Within this region we

identify the hand. This process removes most background elements from the image,

effectively cropping the image around the gesturing region.

Binary Image from Contours

Hands vary in size and shape between people. The hand shape needs to be generalized

to recognise many different people. We do this by creating a binary image of the hand.

The same contours detected above are filled in, as shown in Figure 5.9. We thus reduce

the variation between people performing the same gesture. It is this binary image on

which eigen training and recognition will be performed.
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FIGURE 5.6: A figure illustrating the five largest contour lines identified from an edge
image.

5.2.3 Hand Extraction

For the purpose of this thesis we have only considered images of the gesturing hand,

ignoring the rest of the body. These images, however, are still not perfectly segmented

to only display the hand. Image input to the system would be too restrictive to a

potential user if only the hand was permitted to appear within the image. As such we

see areas where the wrist and sleeves are included in the images.

The presence of the wrist, sleeve or arm presents a problem to recognition, and can

reduce the accuracy of the system [53] [55]. A method is therefore needed to remove

these problem areas from the images.
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-

FIGURE 5.7: Images progressively extracted utilising contour information. The final
image is used in hand extraction.

>

FIGURE 5.8: A figure illustrating the before and after images for the extraction of the
two long thin bent extensions gesture.

We assumed that the image obtained from contour extraction contains the hand. By

narrowing and resizing the image we can eliminate areas that are not part of the hand.

We narrow the image from the side by five pixels recursively to create a candidate

image. Each of these candidate images are compared against the image data set. Eigen

recognition is performed on the re-sized region. By finding the Euclidean distance at

this point, the hand is then classified.

This wrist removal process is applied to both the training and test sets. During this hand

extraction phase images are also corrected for size by resizing to a pre-defined image size,

200x150 pixels. This process results in recognition of only the image region containing

the hand, a process essential to eigenvector recognition. Figure 5.10 demonstrates the
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FIGURE 5.9: Various hand shapes and their corresponding binary images.

FIGURE 5.10: Starting with the original contour-cropped image, we progressively re-
move pixels from the side of the image in the top tow. In the bottom row the image is
then re-sized to the sta.ndard 20Ox150pixels from which recognition is performed.

hand extraction method.

5.3 Conclusion

In this chapter we have addressed the problem of image registration for this eigenvector

system.

We have addressed the problems of:

• Large skin-tone differences by grayscale conversion.
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• Region of interest identification by contour cropping.

• Hand extraction by broad image resizing.

• Erroneous outlier removal by image smoothing.

All these pre-processing methods are necessary to ensure accurate identification of vari-

ance in the image set. These steps ensure that only the hand is used in recognition.

This produces acceptable hand extraction to use in the recognition phase. It must also

be noted that such a real-time system is allowed to operate due the computational sim-

plicity of the eigenvector system. Thus we have reduced the registration errors usually

encountered by an eigenvector system.

www.etd.ac.za



Chapter 6

Experimental Setup and Testing

6.1 Introduction

In this chapter we describe the setup used in the creation of this system and outline the

hardware and software components used. Data acquisition techniques for obtaining test

and training data is described. The test results of performing image recognition on the

data gathered is then presented in tabular form.

6.2 Experimental Setup

This section describes the hardware and software components used for the creation of

the SASL classifier recognition system.

6.2.1 Hardware Components

This work forms part of a larger full-gesture SASL recognition system. The full gesture

recognition system is described by Naidoo and Connan in [5]. The eigenvector system is

required to perform in real-time, with minimal computational cost to the larger system.

The following is used during the experimental testing stage:

1. CPU: 1.2Ghz Intel Centrino Duo, a low power CPU used in many laptop com-

puters.

50
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2. RAM: 2Gb, a more than sufficient amount for our purpose.

3. Webcam: Logitech Quickcam Chat, a relatively inexpensive camera with accept-

able image quality.

6.2.2 Software Components

The following software is used:

1. Operating System: Ubuntu Linux 8.04 is used. Ubuntu is a Linux distribution

with regular system updates and readily available support.

2. Image Capture: The Gnome camera application Cheese is used for the acquisi-

tion of training and test data. Cheese is a free and open-source camera application.

3. Computer Vision Library: The OpenCV computer vision library is used.

4. Programming Language: The C++ programming language is used. C++ is

commonly used for real-time image processing applications.

6.2.3 High-Level Design

The system uses either live or pre-recorded video as input. Dring live usage, the user

is required to place his or her hand between the webcam and a plain background. The

user is then able to see their hand on the computer monitor in real-time. A diagram of

this setup can be seen in Figure 6.1.

Above the video of the user's hand is the name of the classified sign as determined by

the system. A demonstration of this can be seen in Figure 6.2. When using pre-recorded

video the system does not present the user with a graphical user interface (GUl).

6.2.4 Data Acquisition

Unfortunately no standard hand gesture data set exists for the recognition of hand

shapes, as exists for faces with the use of the FERET face data set [58]. Our test and

training data is based on the classifiers outlined by the TSLl, described in Chapter 2.
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FIGURE 6.1: The user is required to use the system as demonstrated in this diagram.

Area for
recognized sign

Area for live video

FIGURE 6.2: The live video area is placed below the recognition area. in the final system.
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Using this classification system does not require the use of natural SASL speakers as the

hand shapes are generic in nature. It is still necessary for the set to be diverse in terms

of those performing the hand shapes for training and testing. We acquired our data set

by using students at the University of the Western Cape. Students were asked to give a

moment of their time to perform the nine hand shapes in front of a camera.

Each student was required to observe a set of previously signed examples of the classifiers.

Each participant was asked to perform the hand shapes sequentially, and a video was

captured thereof. A diverse group of skin hues were sought for the test and training

data sets, as this would be more reflective of the South African context.

These hand gestures were captured in a continuous video. Thus, not only were the

individual hand gestures captured, but also the intermediate hand orientation between

gestures. The videos were then split into individual frames for training and testing.

Videos were captured over an arbitrary length of time, that is, however long the students

required to perform the classifier satisfactorily. The shortest video is 18 seconds long.

The longest video is 49 seconds in length.

Individual frames are used for training and testing the system. The videos were cap-

tured at a resolution of 320x240 pixels, at 25 frames per second (Ips], in the .ogg video

format. Each frame was manually annotated for inclusion, or exclusion, in each of the

nine gesture classes. Intermediate gestures were not included, that is, those hand shapes

which occurred between the gesturing of classifiers. The number of frames captured

range from 183 to 1225 frames. The videos were captured in a typical computer lab-

oratory environment with no control enforced on the surrounding lighting conditions.

Confirmation that the hand gesture performed by the participant sufficiently resembled

the original gesture was the task of the researcher.

We abbreviate the names of the TSLI SASL gestures as described in Table 6.1. The

data set can be seen in Table 6.2.
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I SASL TSLI Gesture I Abbreviation I
Palm/Flat G1
Two long thin bent extensions G2
Narrow/Shallow Flat Object G3
Round/Spherical Object G4
Flat/Long Smooth Surface G5
Fist G6
Flat/Triangular Object G7
Index Five G8
Compact Mass with Salient Extension G9

TABLE6.1: Abbreviations for the TSLI SASL gestures used within this chapter.

6.2.5 Training and Testing Phases

Training

For training the system, videos of each participant are used. Individual frames are taken

from these videos. Training is outlined as follows:

1. The training images are loaded by the system.

2. OpenCV is used to compute the Eigenvectors and Eigenvalues of these images.

3. This eigenvalue and eigenvector data is saved to the hard disk for later recognition

use by the system.

Testing

The system can operate on either live or pre-recorded video. Pre-recorded video testing

is used to determine the overall accuracy of the system.

The software performs the following operations:

1. Eigenvector data generated by the training phase is loaded from the hard disk.

2. Each frame is subjected to image registration, cropping the hand from the image.

3. Eigen decomposition is performed on the cropped hand using the OpenCV eigen-

vector functionality [56].

4. The matching classifier is determined by a nearest neighbour calculation.

www.etd.ac.za



Chapter 6. Experimental Setup and Testing 55

r-- t--ro .n t-- 0 -.:tI ~ co co ~ C'?.... t-- 0 0 -.:tI -.:tI ~ 0) 0 ~ 0

~
0)~ N N N N N ~ N N ~
=

~......
00 -.::!' ~ cv:> cv:> cv:> ~ IJ?<U .-< .-< c» ~ .-< .-< .-< .-< .-< ~

'"tS ~
~

............
C'?0 0 t- t- -.::!' IJ? 0 cv:> IJ? ~<U .-< cv:> .-< .-< .-< ~ .-< ~ cv:> co

'"tS ~
~

I--
<;:)......

C'?0 .-< -.::!' -.::!' co co 0 co<U 00 00 ~
'"tS .-< .-< .-< .-< .-< .-< .-< ~
~

I--
0,
0 .n<U 00 00 co ~ 0 t- t- .-< co co'"tS cv:> ~ ~ ~ .-< .-< .-< ~
~ ~

co
0 t--<U t- o t- -.::!' 0 00 0> IJ? t- ~'"tS .-< .-< .-< .-< ~ .-< .-< cv:> .-<

~ ~

l:--
0 N<U 00 t- ~ -.::!' -.::!' .-< cv:> ~ -.::!' N'"tS .-< .-< .-< .-< .-< .-< .-< .-<

~ ~
-

IC
0 ~<U IJ? 0 00 co cv:> cv:> ~ 0 ~ C'?'"tS ~ ~ .-< .-< .-< .-< .-< .-<

~ ~
I--

le:>
0 t-<U 0 t- t- .-< co t- ~ cv:> -.::!' .n'"tS cv:> .-< ~ cv:> cv:> ~ cv:> cv:> ~
~ N

.....".g t- IJ? t- co IJ? -.::!' cv:> .-< 00 ~
'"tS .-< .-< .-< .-< .-< .-< ~ .-< .-< -.:tI

~ ~

<0>:1
0 .n<U .-< 0 ~ .-< t- cv:> ~ .-< 00 C'?'"tS .-< ~ ~ -.::!' C'l cv:> cv:> cv:> .-<

~ N

I--
~s cv:> -.::!' IJ? ~ C'l cv:> co co cv:> -.:tI
'"tS .-< .-< .-< .-< t--
~

-
......
0 0)
<U -.::!' co c» .-< IJ? cv:> .-< C'l 00 t--'"tS .-< .-< -.::!' -.::!' C'l .-< .-<

~ ~

-c::l
l:--

....
...... ~ <0>:1 0" le:> IC co 0,

~\.!) \.!) \.!) \.!) \.!) \.!) \.!) \.!)

www.etd.ac.za



Chapter 6. Experimental Setup and Testing 56

Excluding Image Registration Including Image Registration
Mean 49.43ms 109.96ms

Standard Deviation 2.47ms 2.62ms

TABLE 6.3: A table demonstrating the increase in recognition times when image reg-
istration is used. The mean and standard deviation are given.

6.3 System Performance

The following properties of the system are investigated:

• Does the system perform in real-time?

• How accurately are hands classified?

• Which gestures are incorrectly classified?

Test cases are presented to determine the performance of the system in relation to each

of these questions.

6.3.1 Real-time operation

Different systems use different time-scales to define real-time operations. For example,

virtual-human animation requires the movements of an avatar to appear realistic to

a human viewer. In this instance, Kennaway defines real-time to be 15 frames per

second (fps) [59]. For CCTV (Closed Circuit Television) systems, however, Keval et al

determined that operators require at least 8fps to correctly identify persons from video

[60].

Our system shows live video to the user. If 8fps is sufficient for security purposes in

a CCTV system, then this is an adequate lower-bound for viewing a hand-shape. The

upper-bound is the speed at which we record video, which is 25fps.

• Therefore our system must perform between:

- The Upper Bound of 40ms

- The Lower Bound of 125ms
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Note: All timing-based tests have been computed multiple times (100 times) and the

average of these tests taken, in order to account for CPU task scheduling which may

influence timing results.

The mean time to recognise an image is more than doubled when using our image

registration technique. Our system is able to operate at approximately 9 fps. This is

slower than the upper bound, but faster than the lower bound for real-time recognition.

Training the system would have no effect on real-time performance. This is due to

training occurring before the system is tested, i.e. offline, with training results stored to

the hard disk. The time taken for training, however, docs change with the inclusion of

more training data, due to images being loaded by the system and the increased number

of computations necessitated by the larger image matrix. In Figure 6.3 we present

results for the training times on various image-set sizeswith comparison to the inclusion

or exclusion of image registration. Note: All images used are frames taken from training

videos.

The Effect of Image Registration on Training Times
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FIGURE 6.3: A graph demonstrating the changes in training time compared to the
number of images used. The results with and without image registration are shown.

increases.

Figure 6.3 shows a linear increase in training time as the number of training images
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Number of users 12
Number of Signs per User 9
Total Number of Images 1907
Recognition Accuracy 100%

TABLE 6.4: The system was tested on seen data and performed as expected.

6.3.2 Seen User Recognition

Our first evaluation of the system was to test the accuracy when using seen user data.

This test is performed to check that our system works as expected. For this test we used

videos from seen users split into frames. These frames were manually grouped into the

9 different SASL hand classifiers. Every frame was used for training as well as testing.

Under these circumstances the system performed correctly, predicting all hands accu-

rately, as in Table 6.4.

This was the expected result of an eigenvector approach to the recognition of seen data.

In cases where the input image is the same as the training image, the new irnage perfectly

maps onto the eigenspace. When eigen decomposition is performed on the same training

and test images the exact same principal component value is returned. In these instances

the Euclidean distance between the test image and the training images is zero, a perfect

match.

6.3.3 Recognition on Multiple Users

In this experiment we test the recognition of multiple hand shapes from multiple users.

For this test, we train our system on half of our users while testing is performed on the

remaining users.

6.3.3.1 Recognition of a Single Frame

In this test we separate our data into two randomly disjoint sets for training and testing.

We are testing on unseen data and incorporating all12 users in our training and testing.

Training Data:

• 54 frames
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- 6 users.

9 signs.

1 frame per sign, per user.

Test Data

• 432 frames

- 6 remaining users not used for training.

- 9 signs.

- 8 frames per sign, per user.

We chose users that have a minimum of 8 frames for each sign for testing the system.

Users with less than 8 frames per sign is used for training. The results of our system

testing on a single frame can be seen in Table 6.5.

In Table 6.6 we present the accuracy of the system when used with and without the

use of our image registration step. The number of misclassifications by the system is

approximately halved when using our image registration step. Therefore we see the

importance of image registration to an eigenvector recognition system.

Table 6.7 represents the average recognition rates when observed by sign, as weil as

the mean and standard deviation. Table 6.6 shows great variation in the classification

accuracy of system, dependent on the gesture performed.

Some SASL classifiers are similar in shape and more likely to be misclassified, such as

those in Figure 6.4. Figure 6.5 shows the palm/flat classifier, considered easy to perform

and demonstrates the consistencies in execution by different participants.

The two long-bent extensions shape was considered difficult to perform by participants.

This is expected to reflect negatively on classifier recognition. In Figure 6.6 we see the

inconsistent interpretation of the two long-bent extensions classifier by different par-

ticipants. Some signers performed the two long-bent extensions classifier with the two

extended fingers close together, while others spread these same fingers. Signers are also

inconsistent in terms of the extent to which fingers were bent. This was not due to a

lapse on the part of the signers, but rather an inability to perform the specific hand

shape due to the restrictions on the articulation of their hands and fingers.
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Test Subject % Accuracy % Accuracy
with Registration without Registration

User! 70.83 16.7
User2 68.06 41.7
User3 51.39 26.4
User4 38.89 0
User5 48.61 48.6
User6 62.50 37.5
Mean 56.71 28.47
Standard Deviation 12.68 17.98

TABLE6.6: In this table we show test results as recognition is performed on a single
frame.

Gesture % Accuracy with Registration
Palm/Flat 100
Two long thin bent extensions 16.67
Narrow /Shallow Flat Object 83.33
Round/Spherical Object 66.67
Flat/Long Smooth Surface 58.33
Fist 29.17
Flat/Triangular Object 43.75
Index Five 43.75
Compact Mass with Salient Extension 68.75
Mean 56.71
Standard Deviation 26.29

TABLE6.7: We demonstrate the recognition rates of our system analysed by sign.

66.67% Accuracy 29.17% Accuracy

FIGURE6.4: The hand gesture representing the 1'Ound/spherical object and fist clas-
sifiers respectively. Similarities in these gestures were expected to weaken recognition

performance. Recognition accuracy is given below the respective gesture.
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FIGURE 6.5: The Palm/Flat classifier as performed by test participants.

FIGURE 6.6: The classifier representing Two Long Thin Bent Extensions was described
as difficult to perform by some users and thus showed inconsistency in execution between

users. This was expected to impact negatively on recognition performance.
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These results (57.71% Accuracy) do not compare favourably to the performance of eigen-

vectors in facial recognition systems (88 -98% Accuracy).

The aim of this system is to form part of the larger SASL system. In order to achieve

this, the hand shape does not need to be classified within each frame, only each time it

changes. Therefore we can submit a series of frames to the system, and when a gesture

is held over a number of frames, it needs to be recognised only in a single frame in order

to be considered successful. We can safely assume that the video input to the system

will contain multiple frames of a hand in a given hand shape. Only one of these frames

needs to be recognised.

We therefore re-look at the results from this experiment, taking this construct into

consideration.

6.3.3.2 Recognition on Multiple Frames

The same test results obtained in Section 6.3.3.1 are used to demonstrate the effective-

ness of the system when multiple frames are used. Under the test conditions shown

in Table 6.5, the system is required to recognise at least one image in 8 frames to be

considered a success. In Table 6.8 we demonstrate this for the 9 signs for each user.

This result (74.07) compares much more favourably to to face recognition systems using

eigenvectors.

The basic characteristics of a sign language gesture consist of movement and hold posi-

tions of the hand [16]. The hold positions are required when dividing the testing video

into frames. The hand class is identified from these hold positions, where the hand

remains stationary or moves slowly.

Table 6.8 also shows the accuracy of the system for different users when presented with

8 frames for each user. From Table 6.8 we can see that the system performs well when

recognition is undertaken on multiple frames. Table 6.9 shows each classifier and the

recognition accuracy associated with.
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Gl G2 G3 G4 G5 G6 G7 G8 G9 Total %
Accuracy

Userl .; x .; .; .; .; .; .; .; 8/9 88.89
User2 .; x .; .; .; x .; .; .; 7/9 77.78
User3 .; x .; x x .; .; .; .; 6/9 66.67
User4 .; x .; .; .; .; x x .; 6/9 66.67
User5 .; .; .; x .; x x .; .; 6/9 66.67
User6 .; x .; x .; .; .; .; .; 7/9 77.78

I Total
%

TABLE 6.8: Successfully recognised hand gestures within 8 frames.

100% 16.67% 83.33%

TABLE 6.9: TSLI SASL Classifiers and their respective recognition accuracies
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Classification Rate on Unseen Data ,
" Projected Gesture ,
II G1 , G2 , G3 , G4 , G5 , G6 , G7 , G8 , G9 ,

G1 48 0 0 0 0 0 0 0 0
<lJ G2 11 8 8 8 5 8 0 0 0...
;:::1 G3 0 0 40 0 0 0 8 0 0...,
00
<lJ G4 0 0 0 32 0 16 0 0 0Cj

~ G5 0 14 0 0 28 0 0 6 0
;:::1

G6 0 8 0 17 0 14 9 0 0...,
o
<: G7 0 4 0 9 0 7 28 0 0

G8 0 0 9 0 4 0 10 21 4
G9 0 0 0 6 0 0 8 0 34

TABLE6.10: The number of correctly classified and incorrectly classified TSLI SASL
gestures are shown in the table above

6.3.4 Cross-Testing

Identified in Table 6.10 are the recognised gestures as well as their incorrect classifica-

tions.

Table 6.10 shows that the only gesture on which 100% recognition rate is achieved is

Gl, the palm/flat gesture. The large misclassification rate of gesture G2 is also noted,

as expected from the different interpretations of the same sign by different signers.

Gesture G3, the narrow/shallow flat object gesture is misclassified to the flat/triangular

object, G7. These gestures appear similar and this result is understandable. The same

can be said for gesture G4, the round/spherical object, which is mostly misclassified as

G6, the fist gesture.

We observe that other incorrect classifications are more random.

6.4 Summary

In this chapter we have discussed the experimental setup of the system, including hard-

ware, software, high-level design and data acquisition.

In testing the system we have studied the real-time performance, seen and unseen user

accuracy and the cross testing results on multiple users. The syst.em is found to perform

at an adequate real-time frame-rate. Due to the fast recognition time, the system is

found to be appropriate for integration into the larger SASL project.
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Accuracy on seen data was found to be 100%, as expected of this system. The recognition

of the system on unseen data consisting of a single frame from multiple users was found to

be 56.71% when using the image registration technique, halving the errors encountered

without image registration.

When applying the system to to multiple frames from multiple users, the accuracy of

the system improves to 74.07%. The two long thin bent extensions gesture is frequently

incorrectly classified and has the lowest recognition rate. Therefore recognition can be

significantly improved with the removal of this inconsistently recognised gesture.
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Chapter 7

Conclusions and Directions for

Future Work

7.1 Introduction

Human computer interaction (HCI) and computer vision are advancing rapidly as a

consequence of ubiquitous hardware improving. The use of cameras, accelerometers, and

gyroscopes have spurred research into more intuitive HCI systems. Every PC user can

now have access to interactive technologies other than the ordinary keyboard and mouse.

PC's and mobile phones are commonly equipped with cameras. The average technology

user now expects intuitive interaction with their computing devices. Therefore exciting

research is happening in the field of computer vision. The average person is now expecting

their PC to conform to their HCI needs and moving away from the traditional methods

of computer interaction.

The expectations of people arc the same for linguistic translation. It does not feel

natural to use a digital dictionary where words need to be typed-in and then read.

People expect to speak to their PC or mobile phone and have their voice automatically

translated. Frequent international travel leads to greater numbers of people constantly

needing simpler methods of interaction through the linguistic divide.

67

www.etd.ac.za



Chapter 7. Conclusions and Directions [or Future Work 68

7.2 Conclusions

The aim of this work is to apply the eigenvector technique to hand detection, thereby

making gesture recognition better for SASL translation. To do this weneeded to perform

image registration as well as apply eigenvector recognition to the hands.

Image registration was used to remove the hand from a uniform background. We perform

image registration to generalize the hand shape across different individuals. A uniform

background was used, as ultimately the hand will be extracted from a whole-body video

by the larger SASL system. Background noise is to be dealt with at the time of integra-

tion. Image registration removes the hand from the image by first creating a grayscale

and edge-detected image. Contour detection determines the outline of the hand in the

image and this information is used to crop the hand from the larger image. Once the

hand is cropped this resultant binary image is filled and ready for the recognition phase.

To recognise the hands we need to apply eigenvector recognition to the binary images.

On single frames our performance was 57%. This does not compare favourably to the

recognition rates found with eigenvector-based face recognition systems. Testing on

multiple frames improves the system performance (74%) and is closer to the recognition

rates achieved by face recognition systems. Though the TSLI SASLclassifier set is small,

the classifiers represent real-world gestures. The system requires low computational

resources and is fast when recognizing gestures. Therefore the larger SASL system, which

has greater processing needs, will not be affected when hand recognition is included.

Referring to the research hypothesis, we have shown that SASL hand shapes can be

divided into specific classes, namely those defined by the TSLI. These hand shapes can

be recognised by using eigenvectors in real-time. The fast processing time demonstrates

that the system can also be incorporated into the larger SASL project because of the

low computational resources needed for recognition.

Referring to our research question, we have found that eigenvectors can be applied to

hand shape recognition. Recognition rates of 57% were found when applied to single

frames and 74%when applied to multiple frames. This includes bad training classifiers,

such as the two long thin bent extensions, without which the system accuracy would

increase. Therefore eigenvectors can be used in a sign language system such as the

SASL sign language recognition system.
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7.3 Directions for Future Work

• Registration:

- Image registration is a difficult task and can be seen as a separate area of

research, especially in the area of hand registration. Background noise needs

to be addressed in image registration. Certain outliers can weaken image

registration and therefore more can be done to build on the present image

registration technique.

• Testing Set Size:

- FUture work can be extended by increasing the size of the test set. More

users can be obtained to perform the gestures and to create a large-scale

implementation of the system.

• Real World Video:

- The system uses only video captured within laboratory conditions. Extending

to real-world video is also an area for continued research.

• Native SASL Signers:

- The test and training data was compiled on non-native SASL signers. The

performance of the classifiers by native signers can add to future research,

highlighting the similarities or differences between the different groups.

• Other Applications:

- This thesis has shown the application of eigenvectors to SASL recognition.

The application of the same technique to other recognition tasks is an inter-

esting direction for future research.

7.4 Final Comments

This thesis has provided the author with insight into the world of the deaf that was

hereunto unknown. I have also gained knowledge of the challenges facing the computer

vision community and the potential solutions proposed. It is hoped that this active area

of research will continue to grow and be of benefit to more marginalised communities
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around the world, as well as furthering the aims of the SASL group at the University of

the Western Cape.
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Appendix A

OpenCV Eigen Functions

Below are the definitions for the two OpenCV eigen funtions from the OpenCV docu-

mentation [61]:

A.1 CalcEigenObjects

Calculates orthonormal eigen basis and averaged object for a group of input objects

void cvCalcEigenObjects( int nObjects, void* input, void* output, int ioFlags,
int ioBufSize, void* userData, CvTermCriteria* calclimit,
Ipllmage* avg, float* eigVals );

nObjects Number of source objects.

input Pointer either to the array of IplImage input objects or to the read callback

function according to the value of the parameter ioFlags.

output Pointer either to the array of eigen objects or to the write callback function

according to the value of the parameter ioFlags .

ioFlags Input/output flags.

ioBufSize Input/output buffer size in bytes. The size is zero, if unknown.

userData Pointer to the structure that contains all necessary data for the callback

functions.
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calcLimit Criteria that determine when to stop calculation of eigen objects.

avg Averaged object.

eigVals Pointer to the eigenvalues array in the descending order; may be NULL.

The function cvCalcEigenObjects calculates orthonormal eigen basis and the averaged

object for a group of the input objects. Depending on ioFlags parameter it may

be used either in direct access or callback mode. Depending on the parameter cal-

cLimit, calculations are finished either after first calcLimit. max/ter's dominating eigen

objects are retrieved or if the ratio of the current eigenvalue to thc largest eigen-

value comes down to calcLimit.epsilon threshold. The value calcLimit -> type must

be CV_TERMCR/T_NUMB, CV_TERMCR/T_EPS, or

CV_TERMCR/T_NUMB I CV_TERMCR/T_EPS . The function returns the real values

calcLimit -> max/ter- and calcLimit -> epsilon .

The function also calculates the averaged object, which must be created previously.

Calculated eigen objects are arranged according to the corresponding eigenvalues in the

descending order. The parameter e'igVals may be equal to NULL, if eigenvalues are not

needed.

The function cvCalcEigenObjects uses the function cvCalcCovarMatrixEx.

A.2 EigenDecomposite

Calculates all decomposition coefficients for an input object

void cvEigenDecomposite( IplImage* obj, int nEigObjs, void* eigInput,
int ioFlags, void* userData, IplImage* avg, float* coeffs );

obj Input object.

nEigObjs Number of eigen objects.

eiglnput Pointer either to the array of /pl/mage input objects or to the read callback

function according to the value of the parameter ioFlags.
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ioFlags Input/output flags.

user Data Pointer to the structure that contains all necessary data for the callback

functions.

avg Averaged object.

coeffs Calculated coefficients; an output parameter.

The function cvEigenDecomposite calculates all decomposition coefficients for the in-

put object using the previously calculated eigen objects basis and the averaged object.

Depending on ioFlags parameter it may be used either in direct access or callback mode.
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Appendix B

Image Registration Code

Below is the code for the image registration technique:

B.l Image Registration

lpllmage* ImageRegClpllmage* input_image, int resize_me)
{

CvBox2D box2d; Ilfor drawing the rectangle
CvPoint2D32f box_vtx[4]; Ilfor drawing the rectangle
int i; Ilfor drawing rectangle
CvPoint ptO, pt; Ilfor drawing rectangle
CvPoint Copy_of_ptO; lisaving a copy for getting the ROl
lpllmage* roi = NULL; Ilfor showing the ROl
int lo_x;
int lo_y;
int hi_x;
int hi_y;
int x_diff;
int y_diff;
int edge_thresh = 44;
int count_contours; Ilcount the number of contours in a point set
int count_points; Iinumber of points in a contour

80
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CvSeq* temp; I/store re-orederd sequences
CvSeq* Top5; //accumulate all 5 point sets
int size_arr_totals = 500;

int arr_totals[size_arr_totals]; I/array to store sequence totals
int count_totals; //variable to keep track of totals

Ipllmage* my_original_image = input_image;
Ipllmage* my_black_image NULL;

my_black_image cvLoadlmage( placeholder_image,
CV_LOAD_IMAGE_GRAYSCALE );

Ipllmage* resize_temp = cvCreatelmageC cvGetSizeCmy_black_image), 8, 1 );
Ipllmage* resize_temp2 = cvCreatelmageC cvGetSizeCmy_black_image), 8, 1 );
cvResizeCmy_original_image , resize_temp);
resize_temp2 = cvClonelmageCresize_temp);

Ipllmage* img_mine
Ipllmage* img_edge

cvCreatelmageC cvGetSize(my_black_image), 8, 1 );
cvCreatelmageC cvGetSizeCmy_black_image), 8, 1 );

Ipllmage* subtacted_img = cvCreatelmage(cvGetSizeCmy_black_image), 8, 1);
CvMemStorage* storage cvCreateMemStorageC);
CvSeq* first_contour = NULL;
cvSubCresize_temp, my_black_image, subtacted_img);
cvCannyCsubtacted_img, subtacted_img, (float)edge_thresh,
(float)edge_thresh*3,3);
cvSmoothCsubtacted_img, img_mine, CV_GAUSSIAN, 3, 3,1);
cvThresholdC img_mine, img_edge, 40, 200, CV_THRESH_BINARY );

int Nc = cvFindContoursC
img_edge,
storage,
&first_contour,
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sizeof(CvContour),
CV_RETR_LIST

) ;

int n=O,k;

lo_x INT_MAX;
lo_y INT_MAX;
hi x 0;

hi_y 0;

fore count_totals=O; count_totals < size_arr_totals; count_totals++ )
{

arr_totals[count_totals] 0;
}

count_contours = 0;
CvSeq* c = first_contour;
count_totals = 0;

fore c=first_contour; c!=NULL; c=c->h_next )
{

if(c->total > 15)
{

arr_totals[count_totals] c->total;
count_totals++;
}

}

qsort(arr_totals, size_arr_totals, sizeof(int), compare_int);

fore c=first_contour; c!=NULL; c=c->h_next )
{

if ( c->total
c->total
c->total

arr_totals[O] I I c->total
arr_totals[2] I I c->total
arr_totals[4])

arr_totals [1] II

arr_totals [3] I I

{
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fore int i=O; i<c->total; ++i )
{

CvPoint* p = CV_GET_SEQ_ELEM( CvPoint, c, i );
IIBEGIN: save the highest and lowest x and y values
if(hi_x < (p->x)) hi_x = p->x;
if(hi_y < (p_>y)) hi_y = p->y;
if(lo_x > (p_>x)) lo_x p_>x;
if(lo_y > (p_>y)) lo_y p_>y;
IIEND

}

IIBEGIN: display the found image region of interest
roi = cvCloneImage(resize_temp2);
cvResetImageROI( roi );

x_diff hi_x-lo_x;
y_diff hi_y-lo_y;
if(x_diff < 1) x_diff 1;
if(y_diff < 1) y_diff 1;
cvSetImageROI(roi,cvRect(lo_x, lo_y, x_diff _ resize_me, y_diff));
IIEND

n++;
}

}

cvReleaseImage( &my_original_image );
cvReleaseImage( &resize_temp );
cvReleaseImage( &img_edge );
cvReleaseImage( &img_mine );
cvReleaseImage( &subtacted_img );
cvReleaseImage( &my_black_image );

return roi;
}
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Notes on Image Registration

C.l Image Registration Output

This evaluation shows the output of the image registration step and how this normal-

izes the image of the hand. We show the differences in output on different hands and

demonstrate how these images are changed by pre-processing.

Pre-processing in this way removes outliers which can reduce recognition efficacy.

Table C.l demonstrates that the output of our image registration remains consistent

among different signers. Discrepancies in the output occur when:

• There are clearly visible shadows

- The Canny edge detector will sometimes see these shadows as edges.

- We did not eliminate shadows as system is intended to be used on live video.

This tested the system for robustness.

• Different users perform a particular sign differently

- Sign G2 has different outputs for all signers. We can therefore see the differ-

ences in each users interpretation of the sign.

84
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Gesture Original Image Image Registration
Output

Gl

Signer 4

G2

Signer 1

Signer 2

Signer 3

Signer 4

Signer 2

Signer 3

TABLEC.l: Image registration results shown on 2 signs from 4 different signers. The
original image is on the left with the corresponding image registration output image

visible on the right.
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