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Abstract 

 

Neuroblastoma is the most common extracranial solid tumor in childhood. The survival rates of 

patients with neuroblastoma, especially those in the high-risk category, are still low despite varied 

therapies. The detailed understanding of the molecular mechanisms underlying the pathogenesis of 

neuroblastoma is essential to develop better therapeutics and improve the poor survival rates. This 

study provides a multi-omic analysis of neuroblastoma datasets from the Therapeutically Applicable 

Research to Generate Effective Treatments (TARGET) neuroblastoma project and the Gene 

Expression Omnibus (GEO) data portals to better understand the molecular mechanisms of 

neuroblastoma. For this, bioinformatics methods, including differential gene expression, gene and 

disease enrichment, gene regulatory network, differential methylation, Cox regression, Kaplan-Meier 

estimates and machine learning (ML), were applied to identify genetic signatures that can serve as 

biomarkers of survival time and MYCN amplification in high-risk neuroblastoma. A 16-gene 

expression signature was found to be predictive of survival time in high-risk neuroblastoma. This 

gene expression signature was validated in an external neuroblastoma dataset obtained from the GEO 

using Support Vector Machine (SVM) and Artificial Neural Networks (ANN) algorithms. The gene 

regulatory networks of short survival samples revealed the importance of the SMIM28, MAPK15 and 

UBC genes as the origins of most connections. The differentially expressed genes (DEGs) identified 

are involved in tumor proliferating activities, and some are already associated with neuroblastoma 

and other cancers, while others are novel and reported here for the first time. In addition, a 25-CpG 

signature was discovered to be diagnostic of the amplification and non-amplification of MYCN in 

neuroblastoma. This DNA methylation signature was validated in three external neuroblastoma 

datasets obtained from the GEO using the SVM algorithm. Eight of the 25-CpGs were associated 

with overall survival, with the methylation of cg13558971 (ATP2BP4), cg25310824 (SEPP1) and 

cg07476617 (CFLAR) indicating a poor outcome in MYCN amplified neuroblastoma. The accuracy 

of the gene expression and methylation signatures in predicting survival and clinical events 
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demonstrate their utility for clinical use. These signatures may also be combined and translated into 

clinical use in the immediate as well as be developed into a robust standardized clinical test for 

neuroblastoma diagnosis and prognosis in the near future. 
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Chapter 1 
 

 

Introduction 
 

Cancer is a significant cause of morbidity and mortality globally, irrespective of the level of socio-

economic development. It is an important public health problem worldwide with an estimated 19.3 

million new cases and almost 10 million deaths in 2020 (Sung et al., 2021) and remains a leading 

cause of death globally. The burden of cancer grows and continues to exert tremendous emotional, 

physical and financial strain on individuals, families, communities and health systems.  

 

Cancer is a generic term used to describe a large number of diseases characterized by the development 

of abnormal cells that divide without constraints and have the ability to spread and negatively impact 

normal body tissues. It can develop at any stage in life and in any organ of the body. Normal cells are 

continuously subjected to cues that instruct them to undergo mitosis, maintain basic physiological 

cellular functions and/or apoptose. Cancer cells develop some pathological autonomy from these 

signals, thereby resulting in unconstrained growth and proliferation. Cancer genes are genes that, if 

altered in sequence, copy number or expression level, can initiate and/or contribute to tumorigenesis. 

Cancer genes can be categorized into two classes, namely oncogenes and tumour suppressor genes 

(Klein, 1988; Stass and Mixson, 1997; Guo et al., 2014). Oncogene alterations and/or overexpression 
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results in the activation of cellular events that promote cell growth, proliferation and survival. Some 

risk factors associated with cancer include tobacco, infectious agents (e.g bacteria and viruses; 

Helicobacter pylori, Epstein-Barr virus, HIV-1, Human Papilloma Virus), alcohol consumption, 

exposure to ultraviolet and ionizing radiation, chemicals and family history (Vineis and Wild, 2014). 

 

Cancer is a complex, heterogeneous and highly dynamic disease with multiple evolving molecular 

components (Moses et al., 2018). Hanahan and Weinberg, (2011) defined hallmarks of cancer as 

functional abilities acquired by cancer cells that allow them to survive, proliferate and invade. These 

hallmarks include proliferative signalling sustenance, growth suppressors evasion, resistance to cell 

death, enabling of replicative immortality, angiogenesis induction, activation of invasion and 

metastasis, cellular energetics deregulation and avoidance of immune destruction (Hanahan and 

Weinberg, 2011). Pavlova and Thompson (2016) organized metabolic changes due to cancer into six 

hallmarks, namely: (1) deregulated uptake of glucose and amino acids, (2) use of opportunistic modes 

of nutrient acquisition, (3) use of glycolysis/TCA cycle intermediates for biosynthesis and NADPH 

production, (4) increased demand for nitrogen, (5) alterations in metabolite-driven gene regulation, 

and (6) metabolic interactions with the microenvironment (Pavlova and Thompson, 2016).  

 

1.1 Pediatric Cancer 

  

Cancer is also a major cause of death in children worldwide and the most common cause of death in 

children in developed nations, with the recorded incidence rate increasing yearly (Kaatsch, 2010; 

Steliarova-Foucher et al., 2017). Every year, around 300,000 children between infancy to fourteen 

years of age are diagnosed with cancer worldwide (Steliarova-Foucher et al., 2017). The incidence of 

cancer in childhood has long been noted to vary by age, sex and ethnicity. The incidence of most 

types of cancer is lower in Black, Asian and Hispanic children than in white children (Spector et al., 

2015). The burden of childhood cancer globally remains poorly qualified, as there are limited data 
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from middle and low-income countries (Bhakta et al., 2019). Furthermore, since children who survive 

cancer are at increased risk for early mortality, second malignancies, cardiac impairments, 

musculoskeletal abnormalities, chronic diseases, and fertility issues, among other problems (Ness and 

Gurney, 2007; Ward et al., 2014), they are regularly monitored after treatment. The most common 

pediatric cancers are acute lymphoblastic leukemia (ALL), central nervous system (CNS) tumors, 

neuroblastoma, soft tissue sarcomas, Wilms tumor, osteosarcoma and retinoblastoma. Of interest to 

this study is pediatric neuroblastoma. 

 

Sequencing studies have shown that there are salient differences between adult and pediatric cancers. 

One such difference is the substantially lower number of somatic mutations in most pediatric cancers 

compared to adult cancers, with the exception of germline mutations in cancer predisposition genes 

(Lawrence et al., 2013; Vogelstein et al., 2013; Campbell et al., 2017). This lower mutational burden 

has been proposed to be the result of embryonic genesis of these cancers, alteration of developmental 

pathways, and a smaller contribution of environmental cancer-causing agents (Sweet-Cordero and 

Biegel, 2019). Another difference is the diversity observed in the types of genomic alterations likely 

driving pediatric cancer growth including fusions of genes, alterations in copy number, enhancer 

hijacking events and chromoplexy (Sweet-Cordero and Biegel, 2019) which are prognostic of many 

pediatric cancer subtypes.  

 

1.1.1 Neuroblastoma 

 

Neuroblastoma is the most common extracranial solid tumor in childhood (mostly under five years 

of age). It is an embryonal malignancy of early childhood with a poor prognosis for children diag-

nosed at over 18 months of age with disseminated disease, accounting for approximately 15% of 

childhood cancer mortality (Maris, 2010; Smith et al., 2010, Ward et al., 2014). It is a malignancy of 
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the sympathetic nervous system occurring anywhere in the system and often presenting with wide-

spread metastatic disease, resulting in survival rates of less than 50% (Maris et al., 2007; Maris, 2010). 

Sixty percent of the tumors occur within the abdomen, commonly in the adrenal medulla (Zhang et 

al., 2018). Clinical presentation of children with neuroblastoma varies depending on tumor location 

and extent of disease. This may include abdominal mass, abdominal pain, bone pain, inability to walk, 

polymyoclonic ataxia, opsoclonus, nausea, vomiting, weight loss, nystagmus and Horner’s syndrome 

(Holland et al., 1980; Weinstein et al., 2003).  

 

Diagnosis is made using histology, chemical profiling and imaging (Swift et al., 2018). As neuroblas-

toma often expresses catecholamine metabolism enzymes, elevated serum and urine levels of vanil-

lylmandelic acid and homovanillic acid may also indicate chemical evidence of the disease (Swift et 

al., 2018). A very heterogenous clinical course characterizes the disease with the observation of cases 

presenting with spontaneous regression to relentless progression and eventual death despite extensive 

and prompt therapy (Baali et al., 2018; Newman and Nuchtern, 2016). The mechanisms for this het-

erogeneous clinical course are not yet fully understood. 

 

The Children’s Oncology Group (COG) uses age at diagnosis, disease stage, MYCN amplification 

status, the International Neuroblastoma Pathology Classification and DNA ploidy to stratify risk 

groups. High-risk disease presents with poor outcome even with intensive and varied mode of therapy 

while low risk group have good outcomes (Zhang et al., 2018). However, patients within the same 

risk group can still show variable prognosis (Baali et al., 2018). A disproportionate number of patients 

with high-risk neuroblastoma will die or suffer significant treatment-related morbidity with 5-year 

overall survival rates of approximately 20% (Oeffinger et al., 2006; Yu et al., 2010, Maris, 2010; 

London et al., 2010).  
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The genetic repertoire underlying the genesis and progression of neuroblastoma is still not completely 

understood (Barr and Applebaum, 2018). Analysis of multi-omic datasets from patients with 

neuroblastoma is therefore imperative to determine and fully understand the mechanisms of the 

disease and the development of new therapeutic targets and approaches to improve survival while 

minimizing toxicity. The TARGET initiative (https://ocg.cancer.gov/programs/target/overview) 

employs extensive molecular characterization to investigate the drivers of hard-to-treat, high-risk 

pediatric cancer initiation and progression to produce comprehensive genomic profiles. Therefore, it 

was utilised as one of the main sources of neuroblastoma genetic data for this study.  

 

1.2 Justification 

 

Dissecting the underlying events driving high-risk neuroblastoma remains a major hurdle for 

clinicians and researchers. In addition, the survival rate of high-risk neuroblastoma is still low despite 

multimodal therapy. Analysing different genomic data types has the potential to provide new 

knowledge about the mechanisms of the disease as well as provide novel therapeutic targets. 

Assessing the changes that occur in the transcriptome and methylome using computational tools and 

methods may provide accurate prognostic, diagnostic and predictive tools for assessing neoplastic 

disease.  

 

Genomic biomarkers (transcriptomic and methylomic) have advantages that makes them suitable for 

broad use in diagnostics. Therefore, finding the appropriate biomarkers that are accurately diagnostic 

and predictive of disease states is crucial. Finding diagnostic and prognostic markers with the 

potential to improve the survival of high-risk neuroblastoma patients as well as low and intermediate 

risk patients is a necessity. This study therefore proposes to address these important gaps, with 

accurate prognosis being necessary to enable upfront initiation of targeted therapy and ultimately 

improve survival.  

http://etd.uwc.ac.za/ 
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1.3 Aims and objectives 

 

The main aim of this research project was to find novel genetic signatures that are prognostic and/or 

diagnostic of MYCN amplification and survival time in high-risk neuroblastoma.  

The specific objectives were to: 

(1) Identify genes that are differentially expressed between short and long survival groups in 

neuroblastoma. 

(2) Perform gene and disease ontology enrichment analysis to functionally annotate the 

identified differentially expressed genes. 

(3) Apply machine learning (ML) techniques to validate the differential gene expression 

results. 

- Apply ML techniques to predict survival time in neuroblastoma using gene expression 

profiles. 

(4) Uncover the genetic regulatory networks underlying survival time in neuroblastoma using 

gene expression data. 

(5) Identify genes differentially methylated between MYCN amplified and MYCN non-

amplified neuroblastoma. 

(6) Identify CpG methylation biomarkers diagnostic of MYCN amplification using ML 

techniques.  

(7) Identify CpG methylation biomarkers associated with survival and poor prognosis. 

         - Determine significant CpGs best correlated with patient survival using Cox regression model. 

         - Compute Kaplan-Meier estimates and Hazard Ratio for overall and event-free survival.  

1.4 Scope 

 

This thesis is organised into five chapters. Chapter 1 provides a background to neuroblastoma as well 

as the aims and objectives of this project. Chapter 2 (literature review) details the multi-omics 

approach to disease analysis and characterization, available bioinformatics resources, biomarker 
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discovery, the origin, genomic and epigenetic basis of neuroblastoma as well as therapeutic 

implications. Chapter 3 outlines the use of transcriptomic data for network analysis and finding 

predictive gene expression biomarkers of survival time in neuroblastoma. In Chapter 4, ML 

techniques are applied to tumor DNA methylation data for the discovery of diagnostic biomarkers of 

MYCN amplification and prediction of survival prognosis in neuroblastoma. The project conclusions, 

potential future research and clinical applications are discussed in chapter 5. 
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Chapter 2 

 

Literature Review 
 

2.1 Multi-omic approach to diseases 

 

High-throughput technologies have revolutionized biomedical research and are now a standard 

method of carrying out biological research. Omics is the comprehensive characterization, and 

quantification of many molecules grouped according to fundamental structural or functional 

biological similarities that they demonstrate (Perakakis et al., 2018). The currently important omics 

levels include genomics, epigenomics, transcriptomics, proteomics and metabolomics. Genomics 

uses sequencing and bioinformatic methods to sequence, assemble and analyze the structure and 

function of genomes. It allows the identification of genetic variants associated with disease (Hasin et 

al., 2017) using experimental techniques like genome-wide association studies, genotype arrays 

(Hirschhorn and Daly, 2005; Ragoussis, 2009), exome sequencing (Ng et al., 2009) and next 

generation sequencing for whole genome sequencing (Koboldt et al., 2013). Epigenomics 

characterizes reversible modifications of DNA and histone proteins (Esteller, 2007). Transcriptomics 

identifies and quantifies all RNA levels in the genome (Blow, 2009; Sager et al., 2015). Proteomics 

examines and quantifies proteins present in the biological system (Aslam et al., 2017). Metabolomics 
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qualifies and quantifies small molecules such as carbohydrates, fatty acids, amino acids and other 

products of cellular metabolism (Pinu et al., 2019). Since cancer is a complex disease, it requires 

investigation at different omics levels.  

 

Multi-omics is a robust and multifaceted approach for probing biological systems, encompassing 

multiple layers of biological information (Brademan et al., 2020). It allows the understanding of 

information flow that underlies a disease. Each omics data type can be valuable as markers of disease 

process and inform about differential pathways between control and disease groups. Omics data have 

enabled the characterization of the molecular features of cancer, allows for cancer subtyping, and 

identification and prediction of biomarkers, thereby ultimately facilitating the understanding of 

oncological mechanisms (Iorio et al., 2016; Subramanian et al., 2020).   

 

A major advantage of multi-omics is the breadth of information it provides. Multi-omics analysis 

allows the identification of disease factors at different omics levels, thus increasing the likelihood of 

identifying the underlying cause of a disease. Multi-omics datasets can provide molecular insights 

beyond the sum of individual omics. The availability of large omics datasets is also enduring, ensuring 

that they can be reanalyzed repeatedly if needed. Therefore, the development of multi-omics 

resources and bioinformatics methods and tools to extract knowledge from existing data types is 

important.  

 

2.2 Multi-omics Resources 

 

The continued growth and complexity of cancer genomics data arising from numerous technological 

advancements and their continued reduction in costs created a need for large repositories and 

databases to store this data. Most of these resources are publicly available for researchers to query, 

use and study without restrictions for purposes of reproducibility, discovery, and validation of 
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findings (Yang et al., 2015; Pavlopoulou et al., 2015). Several types of data are curated in 

bioinformatics resources globally. Two classes of these data types are omics data, and transcription 

factors and signal transduction pathways (Chen, 2015). These types of data are stored in different file 

formats and can be retrieved from relevant cancer data repositories such as UCSC Xena, TCGA, 

TARGET, and GEO.  

 

2.2.1 UCSC Xena Browser 

 

UCSC Xena (http://xena.ucsc.edu) is a high-performance visualization and analysis tool for multi-

omics data of large public repositories and private datasets with a front-end browser and a back end 

hub (Goldman et al., 2020).  Xena hosts over 1600 datasets from more than 50 different cancer types, 

including datasets from the TCGA, ICGC, TCGA Pan-Cancer Atlas, PCAWG (Pan-Cancer analysis 

of Whole Genomes) and the Genomic Data Commons (GDC). It also hosts results from the UCSC 

Toil RNA-Seq Recompute Compendium, which uniformly realigned gene and transcript expression 

dataset for all TCGA, TARGET and GTEx samples to allow for comparison between samples of these 

datasets.  

 

The Xena Browser (https://xenabrowser.net) is web-based and enables data exploration across 

multiple hubs, along with a wide variety of analysis and visualization tools, including survival 

analyses, scatter plots, bar graphs and statistical tests.  Current supported data types are clinical data 

and sample annotations, phenotype, DNA methylation, RNA-seq gene expression counts and 

normalized counts, copy number variations, ATAC-Seq peak signals and large structural variants 

(Goldman et al., 2020). For example, the GDC TARGET neuroblastoma dataset available in Xena 

includes RNA-Seq gene expression data in log-normalized count/FPKM/FPKM-UQ formats, 

phenotype information and survival data. These type of datasets in Xena Browser are open access and 

easy to retrieve and download. Several bioinformatics studies have used data (Zhu et al., 2019; Wu 
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et al., 2019; Barman et al., 2020; Giwa et al., 2020), published data (Kang et al., 2020), and made 

visualizations (Barman et al., 2020; Zheng and Fu, 2020; Zhang et al., 2020) from or on the Xena 

browser.       

 

2.2.2 Therapeutically Applicable Research to Generate Effective Treatments 

(TARGET) 

 

The TARGET program comprehensively characterizes the molecular changes that drive pediatric 

cancers at the transcriptome, genome and epigenome level. The program is organized into disease-

specific project teams of five cancers (acute lymphoblastic leukemia, acute myeloid leukemia, kidney 

tumors, neuroblastoma, osteosarcoma) collaborating. Available data types include transcriptome 

sequences (RNA-Seq, mRNA-Seq, miRNA-Seq), copy number variation, whole genome sequences, 

whole exome sequences and DNA methylation.  The data are organized at four levels, namely level 

1 data is raw or low-level data files, level 2 and 3 are normalized and integrated data, and level 4 data 

are summarized results. These data levels are made available in 

(https://ocg.cancer.gov/programs/target/data-matrix) and their access is open or restricted depending 

on the type of data. 

 

Open access data are freely accessible and downloadable, and are typically analyzed data, which 

cannot be used to identify individual patients. This includes de-identified clinical information, tissue 

pathology data, chromosome specific (segmented) copy number alterations, loss of heterozygosity, 

gene expression and methylation arrays. Controlled access data, on the other hand, are data presenting 

a certain risk of patient re-identification. Controlled access data have specific tumor/patient 

information and raw molecular data (DNA and RNA sequence files). Therefore, approvals must be 

submitted and obtained from NCBI’s Database of Genotypes and Phenotypes (dbGaP) (Mailman et 

al., 2007; Tryka et al., 2014; Wong et al., 2016) to access and use this type of data.  
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The TARGET neuroblastoma cohort comprises nearly 200 high-risk cases, including some low-risk 

and intermediate-risk cases (Pugh et al., 2013; Oldridge et al., 2015; Eleveld et al., 2015; Wei et al., 

2018). The patients are managed through the Children’s Oncology Group (COG), a clinical trials 

group focused on childhood cancers. A fully characterized case consists of nucleic acid samples that 

have been extracted from primary tumor samples obtained at diagnosis, normal tissue sample(s) 

and/or peripheral blood or bone marrow (case-matched), as well as relapsed tumor sample(s) (case-

matched) when available. Open access data on the data matrix include level 3 gene expression array 

files, level 3 DNA methylation files (beta values), level 3 copy number array files, level 3 and 4 whole 

genome sequence files, as well as level 3 whole exome sequencing files, clinical information and 

sample matrix files. For this study, level 3 gene expression and DNA methylation data were used. 

Clinical information including gender, first event, event-free survival time, overall survival time, vital 

status, MYCN status, International Neuroblastoma Staging System stage and COG risk group of the 

TARGET samples were made available (https://target-

data.nci.nih.gov/Public/NBL/clinical/harmonized/TARGET_NBL_ClinicalData_Discovery_201705

25.xlsx). 

 

2.2.3 The Cancer Genome Atlas (TCGA) 

 

The TCGA is one of the largest cancer genomics programs to date and a joint project of the National 

Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI).   The TCGA 

provides a comprehensive map of the important genomic changes that occur in the major types and 

subtypes of cancer. It contains clinical information, genomic characterization data and high-level 

sequence analysis of tumor genomes (Cancer Genome Atlas Research Network, 2013). The TCGA 

program has generated and analyzed genomic data on over 11000 individuals and 30 different types 

of cancer (Wang et al., 2016). Data types are categorized into open access data and controlled data, 

which require application and approval for access. The data available at the GDC is broadly 
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categorized into biospecimen and clinical data, molecular analysis data and analysis metadata (Gao 

et al., 2019). Data levels consist of either raw or processed data. An example of a raw file includes an 

Affymetrix CEL file, while processed files can be VCF or MAF file types. TCGA data can be accessed 

directly via the data portal (https://portal.gdc.cancer.gov/) or by using software such as the R 

packages, TCGAbiolinks (Colaprico et al., 2016), TCGA2STAT (Wan et al., 2016), TCGAIntegrator 

and xenaPython python package.  

 

2.2.4 Gene Expression Omnibus (GEO) 

 

The Gene Expression Omnibus (GEO) database (https://ncbi.nlm.nih.gov/geo/) is an international 

public repository of high-throughput gene expression and functional genomics datasets submitted by 

the research community (Clough and Barrett, 2016). It started out as a resource for gene expression 

studies only, but has evolved to accept data from newer technologies such as genome methylation, 

chromatin structure, and genome-protein interactions (Edgar et al., 2002; Barret et al., 2013; Clough 

and Barrett, 2016). The main goals of GEO are to efficiently store data in the right format and 

annotations in an easily accessible manner. As of June 2021, there were 4348 dataset records and 

22258 platforms. Data on the GEO can be programmatically accessed, and can also be visualized and 

analyzed using the GEO2R and GEOProfiles tools.  Data on GEO are stored in text and spreadsheet 

formats and raw files are also available in tar file formats, with links provided to navigate to the raw 

sequence data (if available). Prior to any data analysis, data preprocessing is a required step to ensure 

efficient and accurate results. 

 

2.3 Data Preprocessing  

 

Data preprocessing is a very important initial step in the analysis of raw data. It is necessary to get 

data into a format that will be more easily and efficiently processed and to ensure the data quality is 
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maintained for accurate downstream analysis and biological inference. Data preprocessing aims to 

deal with noise, missing values, high-dimensionality and inconsistent format of data. Preprocessing 

methods to deal with these issues include sampling, dimensionality reduction, imputation, and data 

normalization (Roy et al., 2019).  

 

The goal of sampling is to use only a small representative sample of a large dataset, and is obtained 

by methods such as Simple Random, Stratified and Cluster sampling (Lee et al., 1998; Ali et al., 2019; 

Mishra et al., 2020). Dimensionality reduction aims to select only relevant attributes by removing 

unnecessary or insignificant ones from data. A commonly used technique for dimensionality 

reduction is principal component analysis (PCA). It is a statistical procedure that uses an orthogonal 

transformation to map a set of observations of possibly correlated variables into a set of values of 

linearly uncorrelated variables called principal components (Hotelling, 1933). PCA reduces the 

complexity in high-dimensionality data by transformation into fewer dimensions called principal 

components aiming to find the best summary of the data using a limited number of principal 

components (Lever et al., 2017). Missing values could be handled by either ignoring and discarding 

the missing data or by imputation. The imputation method is the replacement of missing data with 

estimated values using information present in the whole data. Imputed value could be obtained by 

mean imputation, regression or k-nearest neighbour methods (Schmitt et al., 2015; Song et al., 2020).  

 

Normalization transforms data from one domain to another to make it roughly normally distributed 

(Roy et al., 2019). Normalization methods include log2 transformation, min-max, z-score, and 

quantile (Baumgartner et al., 2011; Roy et al., 2019). Log2 transformation is a widely used 

normalization for gene expression data (Quackenbush, 2002; Anders and Huber, 2010). As such, some 

catalogues like the Xena Browser allow downloading normalized gene expression data in log2 

transformed format for most cancers, including the TARGET neuroblastoma dataset used in this study 

(Goldman et al., 2020). Quantile normalization makes two or more distributions identical statistically 

http://etd.uwc.ac.za/ 
 



 

15 
 

(Bolstad et al., 2003). In Min-Max normalization, the attribute value is transformed to a new value 

based on the value of the minimum and maximum values of the data. 

𝑋 =
𝑥−𝑚𝑖𝑛

𝑚𝑎𝑥−𝑚𝑖𝑛
 

Finally, for z-score normalization, the values of the variable is transformed based on the mean and 

standard deviation of the distribution.  

𝑋 =
𝑥−𝑚𝑒𝑎𝑛

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Normalization is required to account for systematic biases introduced during sample processing and 

data generation (Chawade et al., 2014). For numerical data with features of different ranges, 

normalization changes the values to a common scale without distorting the underlying differences. 

Failure to account for the biases and scale differences in data could lead to wrong conclusions from 

quantitative analyses (Chawade et al., 2014). 

2.4 Bioinformatics tools and methods 

Developing methods that accurately extract knowledge from ever-growing multi-omics datasets is a 

necessity. Bioinformatics tools and methods used to analyse the different levels of omics data are 

continually developed and improved upon (Reich et al., 2006; Afgan et al., 2018). For example, 

Bioconductor (https://bioconductor.org) is one of the largest open source projects for omics data 

analysis (Huber et al., 2015) with the latest version (v3.13) containing 2042 software packages. 

Bioinformatics tools and software packages are generally developed in R language (e.g. 

Bioconductor) or Python environment (e.g. Bioconda). Differential gene expression (DGE) analysis 

and Differential methylation analysis (DMA) are bioinformatics methods used for extracting 

biological meaning from transcriptome and DNA methylation data, respectively. The DGE and DMA 

methods were employed in this study to uncover the molecular mechanism differences in 

neuroblastoma. 
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DGE analysis is a statistical method for evaluating differences in abundance of gene transcripts 

between experimental groups (Conesa et al., 2016). Some of the tools used for DGE analysis include 

edgeR (Robinson et al., 2010), DESeq2 (Love et al., 2014), limma (Ritchie et al., 2015), Cuffdiff 

(Trapnell et al., 2012) and NOISeq (Tarazona et al., 2011). The output of DGE analysis is a list of 

genes that have significant differences in gene expression between the experimental groups being 

compared. The output file contains the gene names/ID, log2 fold change value, p-value and p-adjusted 

value.  DMA identifies genomic loci with different levels of methylation among distinct biological 

conditions or experimental groups (Park and Wu, 2016). Some of the tools used for DMA include 

ChAMP (Morris et al., 2014; Tian et al., 2017), RnBeads (Assenov et al., 2014), methylKit (Akalin 

et al., 2012), and minfi (Aryee et al., 2014). The output of DMA is a list of genes that have significant 

differences in CpG methylation sites between the compared biological conditions. The output file 

typically contains gene names/CpG ID, beta value difference (Δβ) and p-values. With the growing 

applicability of ML in genomics, several algorithms could be applied to the outputs of DGE analysis 

and DMA for prediction and validation studies.  

2.5 Machine Learning (ML) 

 

ML focuses on methods for developing computer programs that learn from experience with respect 

to specific tasks (Mitchell, 1997). It represents a powerful set of algorithms that can characterize, 

adapt, learn, predict and analyse data (DeGregory et al., 2018). The ultimate goal in many ML tasks 

is to optimize performance of models built on independent test datasets (Zou et al., 2019). ML can be 

categorized into supervised learning, unsupervised learning and semi-supervised learning.  

2.5.1  Supervised learning 

 

In supervised learning, a classifier is built which then makes predictions on future input to allot their 

class labels (Kotsiantis, 2007; Yousef et al., 2014). A training dataset (that will be used to build the 

classifier) and a testing dataset (that will be used to measure the performance of the classifier) 
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constitute the data parts in supervised learning. Examples of supervised learning algorithms include, 

decision trees (Yuan and Shaw, 1995), support vector machines (SVMs) (Vapnik, 1995) and artificial 

neural networks (ANN) (McCulloch and Pitts, 1943). Decision trees are trees that classify instances 

by sorting them based on feature values. In contrast, SVMs separate classes in training data by 

producing a separating hyperplane (Fig. 2.1A). Applying SVMs with feature selection methods, like 

recursive feature elimination (RFE), has been demonstrated to improve classification performance 

(Guyon et al., 2002). Feature selection generates more robust classification models by eliminating 

noisy and unimportant features (Krishnapuram et al., 2004), as well as more compact and faster 

models (Guyon and Elisseeff, 2003). SVMs have recently been widely used in bioinformatics tasks. 

Another popular classification method, ANN, processes information like the neurons of the human 

nervous system. It relays information across layers of nodes (neurons) with varying degrees of 

interconnectedness (Agrawal and Agrawal, 2015; Nagy et al., 2020) (Fig. 2.1B). Information is 

passed to an input layer, processed by hidden layers and finally to an output layer (Nagy et al., 2020).  

 

 

 

 

Figure 2.1: Simplified illustrations of the SVM and ANN classification model. (A) SVM 

classification of input data where tumors are classified according to their size and patient’s age. 

Arrows show the misclassified tumors. (B) An illustration of ANN structure. The arrows connect the 

output of one node to the input of another. From Kourou et al. (2015). 
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2.5.2 Unsupervised learning 

 

Unsupervised learning infers inherent patterns in data with unknown labels (Lopez et al., 2018). 

Clustering and PCA are popular examples of unsupervised learning and are of wide use in 

bioinformatics research (Xu and Jackson, 2019; Zou et al., 2019). Clustering methods divide input 

data into clusters based on some common or shared characteristics according to a defined distance 

measure (Yousef et al., 2014). There are four basic types of clustering, namely exclusive clustering 

(e.g. K-means algorithm) (MacQueen, 1967), overlapping clustering (e.g. fuzzy c-means algorithm) 

(Dunn, 1973; Bezdek, 1981), hierarchical clustering (Johnson, 1967) and probabilistic clustering (e.g. 

expectation-maximization algorithm) (Dempster et al., 1997). Clustering and PCA are powerful tools 

for data exploration and outlier detection (Witten, 2013).  

 

2.5.3 Semi-supervised learning 

 

Semi-supervised learning is a fusion of both supervised and unsupervised learning and combines 

unlabelled and labelled data in order to build an accurate learning model (Kourou et al., 2015). It is 

typically used when there are more unlabelled datasets than labelled sets. Semi-supervised learning 

models include self-training, mixture models, co-training and multiview learning, graph-based 

methods and semi-supervised support vector machines (Zhu and Goldberg, 2009).   

 

2.5.4 Machine learning in multi-omics and cancer  

 

ML has been broadly and extensively applied in genomics (Libbrecht and Noble, 2015; Telenti et al., 

2018; Koumakis, 2020; Talukder et al. 2021). In addition, different ML approaches were applied in 

transcriptomics, for example prediction of transcript abundance (Washburn et al., 2019), target gene 

expression (Chen et al., 2016), gene expression profiles from genotypes (Xie et al., 2017) and tissue 
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specific expression (Zhou et al., 2018). Other applications of ML in other types of omics data include 

prediction of regulatory elements and non-coding variant effects from DNA sequence (Zou et al., 

2019; Barshai et al., 2020), missing SNPs imputation and DNA methylation states (Angermueller et 

al., 2017; Sun and Kardia, 2008) and variant calling (Poplin et al., 2018). Prediction in healthcare is 

very important considering the costs of delayed diagnosis and treatment (Agarwal and Dhar, 2014). 

Cancer ML techniques are widely applied, becoming a standard approach with a multitude of 

publications produced as a result (Waddell et al., 2005; Xu et al., 2012; Chen et al., 2014; Gupta et 

al., 2014; Capper et al., 2018; Li et al., 2021). Fig. 2.2 depicts a classification example in cancer using 

machine learning. The general application of ML in cancer is in finding and validating potential 

biomarkers of the underlying pathology that may be useful for diagnosis, prognosis and disease 

monitoring (Yamada et al., 2019; Matek et al., 2019).  The broad aim of this study is to identify gene 

expression and DNA methylation biomarkers in neuroblastoma.  

 

 

 

Figure 2.2: Cancer classification using machine learning. A labelled input data is fed to a machine 

learning algorithm trained to learn the structure inherent in the data (cancerous and non-cancerous). 

The model then makes prediction of the classes in which items in the testing data belongs. (Sharma 

and Rani, 2021). 
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2.6 Biomarkers  

 

Advances in high-throughput sequencing and the molecular characterization of cancer tissue have led 

to a prominent rise in attempts to measure and target affected pathways at the molecular level 

(Goossens et al., 2015). These high-throughput techniques allow for the comparison of diseased 

samples with control samples, which is the most common experimental design for biomarker 

discovery studies. The processes involved in biomarker development include discovery in research 

studies, validation and clinical implementation, with the aim of establishing clinically applicable 

biomarker assays to inform clinical decision-making in improving patient outcomes (Parkinson et al., 

2014; Sawyers and van’t Veer, 2014).  

 

Bioinformatics plays an important role in the discovery and validation of biomarkers underlying 

certain abnormal biological states or pharmacological response to a therapeutic intervention 

(Veytsman and Baranova, 2014). The aim of clinical biomarkers is to empower clinicians with 

relevant information about the absence or presence of disease, as well as disease and patient 

characteristics that influence treatment choices (Bock, 2009). Biomarkers are classified into three 

categories; diagnostic, prognostic and predictive. The diagnostic biomarkers detect presence or 

absence of disease. Predictive biomarkers provide information about clinical outcome based on 

treatment decisions, while prognostic biomarkers provide information about the patient’s clinical 

outcome irrespective of therapy, such as disease recurrence or progression (Ballman, 2015).  

 

2.6.1 Biomarker discovery 

 

The quantification of various molecules in biological tissues and fluids is the primary method of 

finding biomarkers (Veytsman and Baranova, 2014). Cancer biomarkers can be found at the genomic, 

transcriptomic, proteomic and metabolomic levels. The deregulation of the expression of certain 

genomic/transcriptomic biomarkers collectively is indicative of a particular underlying 
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pathophysiology (Bhattacharya and Mariani, 2009). Gene expression technologies (microarray and 

RNA-Seq) are able to identify the expression of genes at any given disease state, and scientists have 

employed bioinformatics (see Section 2.4) on gene expression data to discover biomarkers in several 

types of cancer such as in lung cancer (Li et al., 2019; Sheng et al., 2020), glioblastoma (Fatai and 

Gamieldien, 2018; Sheng et al., 2020), papillary thyroid carcinoma (Han et al., 2018), nasopharyngeal 

carcinoma (Ye et al., 2019) and neuroblastoma (Asgharzadeh et al., 2006; He et al., 2020; Wang et 

al., 2020; Chen et al., 2021). Other technologies used for biomarker discovery include liquid 

chromatography coupled to tandem mass spectrometry for the search of metabolomic biomarkers, 

and mass spectrometry for the discovery of protein biomarkers (Dettmer et al., 2007; Lenz and 

Wilson, 2007). Protein biomarkers reflect the cellular state determined by the expression of a set of 

common genes (Baumgartner et al., 2011). Generally, the discovery, interpretation and validation of 

disease biomarkers require innovations in high throughput techniques, biostatistics and 

bioinformatics.   

 

2.6.2 Biomarkers in clinic 

 

The discovery and validation of biomarkers is an important prerequisite for the development of 

anticancer drugs (Sarker and Workman, 2007). They are assessed by clinical trials after their 

validation. Although there have been thousands of potential biomarkers in the published literature, 

few have been translated to clinical use. Some adduced reasons include the requirement for a large 

interdisciplinary effort and funding challenges. Clinically approved biomarkers include Mammaprint 

(70-gene expression) (Van de Vijer et al., 2002) and Oncotype Dx (21-gene expression) (Paik et al., 

2004) prognostic biomarker tests for recurrence prediction in breast cancer patients. ClonoSEQ, an 

NGS clinical test, is used for the detection of minimal residual disease in patients with acute 

lymphoblastic leukemia and multiple myeloma (Hristova and Chan, 2019). Cologuard is a multigene 

stool DNA test for colorectal cancer screening (Imperiale et al., 2014; Bering et al., 2017). Some other 
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biomarkers approved for clinical use include; Prostate Specific Antigen (PSA) for Prostrate cancer 

screening (Bell et al., 2014; Tikkinen et al., 2018), MYCN amplification in neuroblastoma (Brodeur 

et al., 1984; Seeger et al., 1985), α-fetoprotein (AFP) in liver and testicular cancer (Kew, 1974; Wang 

and Wang, 2018), CA125 antigen in ovarian cancer (Felder et al., 2014; Dochez et al., 2019; 

Bonifacio, 2020), MGMT methylation for Glioblastoma (Iafrate and Louis, 2008; Mikeska et al., 

2007) and BRCA1 and BRCA2 in breast cancer (Toland et al., 2018). There is currently a paucity of 

clinically approved biomarkers in neuroblastoma.  

 

2.7 Neuroblastoma 

 

2.7.1 Origin 

 

Neuroblastoma is an embryonal tumor originating from the sympathoadrenal lineage of the neural 

crest during development. The sympathetic nervous system comprises the sympathetic chain and 

truncus ganglia, paraganglia and the adrenal gland (De Preter et al., 2006). Neuroblastoma tumors 

can develop anywhere along the sympathetic trunk from the neck to the pelvis, within the 

paravertebral sympathetic ganglia and the adrenal gland (Delloye-Bourgeois and Castellani, 2019). 

Due to the heterogeneity of neuroblastoma, it has been suggested that it is possible that neuroblastoma 

also originated from earlier neural crest (NC) derivatives before the development of the 

sympathethoadrenal lineage but after the initial fate specification (Brodeur, 2003; Maris et al., 2007). 

Kerosuo et al. (2018) noted that for some forms of aggressive neuroblastoma, some priming event 

may have occurred before neural emigration from the central nervous system and well before 

sympathoadrenal specification. Neuroblastoma is thought to be a result of a blockage or delay in 

development of the NC lineage. Neuroblastoma mainly develops in the abdomen (65%), more often 

in the adrenal medulla, and in other sites such as the chest (20%), pelvis (5%) and neck (5%) (Maris 

et al., 2007).  
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Neural crest cells (NCCs) are derived from the embryonic ectoderm and are unique to vertebrates. 

They are multipotent, highly migratory cells arising in the neural folds at the border between neural 

and non-neural ectoderm in early embryos (Theveneau and Mayor, 2012; Gammill and Bronner-

Fraser, 2003). One of the genes important for NCC development is MYCN, which has been found to 

be an oncogenic driver in neuroblastoma (Otte et al., 2021). The expression of MYCN begins in 

migrating NCCs during the later stages of embryonic development and its main function is to preserve 

the proliferative and self-renewal abilities of NCCs (Huang and Weiss, 2013). Its expression increases 

during sympathoadrenal development and decreases during the differentiation process (Marshall et 

al., 2014). Olsen et al. (2017) succeeded in transforming primary NCCs into neuroblastoma by 

overexpression of MYCN with the resulting tumors phenotypically and molecularly similar to MYCN-

amplified neuroblastoma. In addition, Schulte et al. (2013) showed that enforced expression of MYCN 

in NCCs is enough to drive a neuroblastoma-like phenotype. As such, amplification and 

overexpression of MYCN is important for neuroblastoma development and progression. 

Amplification of MYCN allows pre-neuroblastoma cells to escape apoptosis (Otte et al., 2021). 

Furthermore, it is a strong indicator of poor prognosis in high-risk neuroblastoma (Brodeur et al., 

1984; Seeger et al., 1985). Other genomic alterations including gene polymorphisms and mutations 

are implicated in neuroblastoma. 

 

2.7.2 Genomic alterations in neuroblastoma 

 

Neuroblastoma is mainly a sporadic disease with only about 1-2% of cases being familial/genetic 

(Knudson and Strong 1972, Kushner et al., 1986, Dodge 1945, Chompret et al., 1998). It is inherited 

in an autosomal dominant fashion with the PHOX2B (Trochet et al., 2004) and ALK (Mosse et al., 

2008) genes implicated. Induction of neuronal differentiation with retinoic acid has been shown to 

downregulate expression of PHOX2B, confirming the role of PHOX2B in the regulation of 

neuroblastoma differentiation and stemness maintenance (Yang et al., 2016). ALK is a receptor 
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tyrosine kinase expressed in the nervous system (Hurley et al., 2006; Degoutin et al., 2009) for which 

activating mutations have been discovered for both sporadic and familial neuroblastoma cases 

(George et al., 2008; Chen et al., 2008; Mosse et al., 2008; Janoueix-Lerosey et al., 2008).  

 

Results from Genome Wide Association Studies (GWAS) have shown that sporadic neuroblastoma 

ensues from the interaction of multiple common, low penetrance risk alleles (Deyell and Attiyeh, 

2011). However, there is a relative paucity of somatic mutations in neuroblastoma. Pugh et al. (2013) 

reported few recurrently mutated genes in a small proportion of cases, including ALK, ATRX, MYCN, 

NRAS and PTPN11, as well as rare potentially pathogenic variants for the ALK, CHECK2, PINK1 

and BARD1 genes. ALK is the most common somatically mutated gene in neuroblastoma seen in 

approximately 9% and 14% of cases, respectively, in primary neuroblastoma tumors and high-risk 

neuroblastoma (Mosse et al., 2008; Janoueix-Lerosey et al., 2008; Bresler et al., 2014, Caren et al., 

2008; Chen et al., 2008), and such alterations portends a poorer prognosis (Bresler et al., 2014). Also, 

TERT rearrangements (Valentijn et al., 2015; Peifer et al., 2015) and DAXX alterations (Cheung et al., 

2012; Peifer et al., 2015; Kurihara et al., 2014) have been reported in neuroblastoma, associating with 

poorer prognosis. In addition, polymorphisms in genes including BARD1, LMO1, CASC15, MMP20, 

DDX1 have been found to increase susceptibility to neuroblastoma (Capasso et al., 2009; Wang et al., 

2011; Russell et al., 2015; Chang et al., 2017; Jin et al., 2020).  

 

Chromosomal instability has been proposed to be the primary driver of neuroblastoma oncogenesis 

(Ciriello et al., 2013; Tonini, 2017). It has been observed that low-risk and intermediate-risk tumors 

with good prognosis exhibit several numerical copy number variations (CNVs) while tumors from 

high-risk patients with poor prognosis display several structural CNVs (Coco et al., 2012; Fusco et 

al., 2018). The chromosomes of stage 4 tumor cells exhibit a variety of damage, including 

rearrangements, chromothripsis and deletions (Molenaar et al., 2012; Tonini and Capasso, 2020). The 

most frequently observed segmental chromosomal alterations in neuroblastoma include losses of 
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chromosome 1p, 3p, 4p, 11q and gains in chromosome 1q, 2p (MYCN, ALK), 17q (Schleiemacher et 

al., 2014). These alterations can lead to changes in the expression of several genes possibly causing 

the loss of cell cycle control as well as other necessary cell functions (Coco et al., 2012; Stigliani et 

al., 2012). Gain of 17q is the most frequent copy number abnormality and is associated with more 

aggressive disease and decreased survival (Lastowska et al., 1997; Bown et al., 1999). In addition, 

the main copy number amplification observed in neuroblastoma is MYCN amplification which is a 

predictor of poor prognosis (Brodeur et al., 1984; Seeger et al., 1985). 

2.7.3 Neuroblastoma and MYCN 

 

The MYCN gene belongs to the MYC transcription factor family of proto-oncogenes (Ruiz-Pérez et 

al., 2017). It is located in the 2p24.3 locus and was first identified in neuroblastoma by Schwab et al. 

(1983). Expression of MYCN is restricted to the nervous system, lung, kidney and spleen during 

embryo development (Galderisi et al., 1999). It interacts with DNA through the E-box consensus 

sequence (CACGTG) and heterodimerizes with MAX to facilitate transcription of many target genes 

(Chayka et al., 2015, Gherardi et al., 2013). These target genes are involved in cell proliferation, 

growth, cycle and apoptosis (Huang and Weiss, 2013). The amplification of MYCN was shown to be 

linked to progressing disease and poor outcome in neuroblastoma (Brodeur et al., 1984; Seeger et al., 

1985) and has remained the most reliable prognostic marker in this disease. 

 

The role of MYCN as a direct cause of neuroblastoma was established with the demonstration of 

development of neuroblastoma in mice through its targeted misexpression in the peripheral neural 

crest (Weiss et al., 1997). Its inhibition causes regression of neuroblastoma in vitro and in vivo 

(Burkhart et al., 2003), reverses stem-like phenotype (Kang et al., 2006) and stops aberrant 

proliferation (Tweddle et al., 2001, Muth et al., 2010, Bell et al., 2007, Yaari at al., 2005). MYCN 

amplified cells are often undifferentiated or poorly differentiated (Dang, 2012; Adhikary and Eilers, 

2005). MYCN blocks differentiation pathways and maintains pluripotency (Cotterman and Knoepfler, 
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2009). In addition, it prevents neuronal differentiation by repressing transcription of genes such as 

ERα (Dzieran et al., 2018), CDKL5 (Valli et al., 2012) and NLRR3 (Koppen et al., 2007; Akter et al., 

2011). The expression of ERα correlates with clinical markers for good prognosis (Dzieran et al., 

2018). A 157-gene signature directly correlating with MYCN mRNA levels but not with MYCN 

amplification was identified by Valentijn et al. (2012). Twenty-one of these genes were involved in 

neuronal differentiation and were downregulated (Valentijn et al. 2012).  

 

The tumorigenic effect of MYCN promoting cell proliferation and cell cycle progression is well 

characterized. MYCN is involved in all metastatic processes including adhesion, motility, extracellular 

matrix (ECM) degradation and invasion (Zaizen et al., 1993; Goodman et al., 1997; Cohn et al., 2009). 

It facilitates endothelial growth by causing the loss of endothelial growth inhibitors which promotes 

angiogenesis (Fotsis et al., 1999). Furthermore, MYCN allows neuroblastoma cells escape the immune 

system by downregulating Major Histocompatibility Complex (MHC) molecules (Versteeg et al., 

1990) and inhibiting Natural Killer T (NKT) cells causing upregulation of tumor associated 

macrophages (Song et al., 2007, 2009). Tumor-associated macrophages are cells that create an 

immunosuppressive tumor microenvironment that promotes and aids metastasis (Lin et al., 2019; 

Yang et al., 2020). Neuroblastoma tumors with MYCN amplification are characteristically aggressive 

and therapy resistant (Hogarty, 2003). This amplification phenotype is also associated with increased 

expression of MRP1 gene which is implicated in chemotherapy failure (Haber et al., 1999, 2006).  

 

High expression of Survivin (BIRC5) is reported in advanced stage neuroblastoma in conjunction 

with MYCN amplification and is indicative of poor prognosis (Bown et al., 1999; Miller et al., 2006; 

Bell et al., 2010). MYCN increases the expression of TFAP4 whose higher expression is linked with 

poorer outcome in neuroblastoma patients (Xue et al., 2016). In addition, MYCN upregulates these 

miRNAs; miR-221, miR-9 and miR-350-5p, which have an oncogenic function (Schulte et al., 2008, 

Swarbrick et al., 2010; Ma et al., 2010). For example, miR-9 suppresses E-cadherin, thus contributing 
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to epithelial-mesenchymal transition (EMT) (Ma et al., 2010), a process essential for tumor invasion 

(Yeung and Yang, 2017; Mittal, 2018). RNA interference or use of antisense oligonucleotides to 

silence expression of MYCN causes apoptosis, differentiation and suppression of tumor growth in 

neuroblastoma (Burkhart et al., 2003; Gustafson and Weiss, 2010). MYCN epigenetically regulates 

global gene expression through DNA methylation as well as the recruitment of histone 

acetyltransferase complexes that keep chromatins active (Frank et al., 2003; Knoepfler et al., 2006; 

Beltran, 2014).  

 

2.7.3.1 Therapeutic targeting of MYCN 

 

There are no clinical drugs available that directly target MYCN despite its discovery in neuroblastoma 

38 years ago. This is because MYCN is difficult to block directly due to its structural specifications 

wherein it lacks appropriate surfaces where drugs can bind to (Bielinsky, 2015; Futami and Sakai, 

2010) and its tertiary structure which is variable in solution (Moreno et al., 2020). Instead, research 

has been geared towards indirectly targeting it through its binding partners and downstream targets 

(Moreno et al., 2020). Zhang et al. (2015) demonstrated that forced overexpression of miR-375 

inhibits the translation of MYCN’s mRNA through an IRES-dependent mechanism showing that miR-

375 negatively regulates MYCN. Schramm and Lode (2016), explored the possibility of targeting 

MYCN through DNA vaccination. Oncolytic viral suppression of MYCN amplified neuroblastoma 

cells was also demonstrated by Tanimoto et al. (2020). Finally, Yoda et al. (2019) developed a novel 

DNA-alkylating pyrrole-imidazole polyamide (MYCN-A3) which targets MYCN by directly binding 

to and alkylating DNA at homing motifs within the MYCN transcript. These novel approaches requires 

further validation before they can be certified for clinical use.  
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2.7.4 Epigenetics 

 

Epigenetics covers all chemical changes that can alter gene expression without changing the DNA 

sequence. These include DNA methylation, histone modification and RNA-associated silencing. 

Tumor development is a multi-step process comprising multiple epigenetic and genetic alterations 

(Macaluso et al., 2003; Coyle et al., 2017). Proteins that regulate the epigenome have been found to 

have mutations in almost all cancer types including neuroblastoma (Baylin and Jones, 2011; Shen 

and Laird, 2013; Garraway and Lander, 2013; You and Jones, 2012). The epigenome, during 

tumorigenesis, undergoes multiple alterations such as global changes in histone modification marks 

(Kanwal and Gupta, 2012; Fraga et al., 2005; Hosseini and Minucci, 2018), deregulation of non 

coding RNA networks (Liz and Esteller, 2015; Esteller, 2011), global DNA methylation loss and CpG 

promoter islands hypermethylation of tumor suppressor genes (Baylin and Jones, 2016; Fernandez et 

al., 2012). In neuroblastoma, CpG promoter islands hypermethylation acts by regulating the 

expression of tumor suppressor genes including RASSF1A and BLU, and correlates with poor 

outcome (Asada et al., 2013; Abe et al., 2005, 2007, 2008; Banelli et al., 2012, 2013).  

2.7.4.1 DNA methylation 

 

This was the first epigenetic alteration identified in cancer (Feinberg and Vogelstein, 1983; Riggs and 

Jones, 1983) which is now established to be common. It is involved with bioprocesses such as 

repression of transcription, stem cell differentiation, inactivation of transposons and genomic 

imprinting (Smith and Meissner, 2013). Methylation of DNA generally results in transcriptional 

repression while unmethylation of DNA allow for gene transcription. The well known type of DNA 

methylation is the transfer of a methyl group from D-adenosyl-L-methionine to cytosine at the 5th 

position of its carbon ring (5-mc) especially at CpG sites (Cheng et al., 2019, Rauluseviciute et al., 

2019). This chemical process is catalyzed by enzymes, called DNA methyltransferases (DNMTs) 

which are four including DNMT1, DNMT3a, DNMT3b and DNMT3L. The expression of DNMTs are 
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altered in neuroblastoma (Jubierre et al., 2018). Several advantages qualify DNA methylation 

biomarkers for broad use as in vitro diagnostics such as its cell type specificity, its binary 

measurement (each CpG is methylated or unmethylated), the availability of infrastructure for assaying 

them in many clinical diagnostics laboratories, ease of integration into routine clinical workflows and 

DNA methylation patterns are retained for a long time in well-stored samples (Bock et al., 2016). 

Chapter 4 of this thesis demonstrates the utility of DNA methylation in neuroblastoma tumor 

segregation and prediction of MYCN amplification. 

 

2.7.4.2 Histone modifications 

 

The compaction of large amounts of DNA in eukaryotic cells is mediated by histone proteins in which 

the DNA is wrapped. The wrapping of the DNA in the histone octamers forms a nucleosome which 

are assembled to form chromosomes. The nucleosome builds chromatin which can exist as either the 

transcriptionally active form, euchromatin or the transcriptionally inactive form, heterochromatin. 

The compaction of chromatin is regulated by modifications such as methylation, acetylation, 

phosphorylation and sumoylation on the histone tails (Jubierre et al., 2018). The enzymes involved 

include writers which add these modifications, erasers which remove these modifications and readers 

which recognize these modifications (Jubierre et al., 2018). These enzymes include histone 

deacetylases (HDACs), histone acetyltransferases (HATs) and histone demethylases (HDMs). The 

effect of altered expression of some of these enzymes in neuroblastoma have been investigated by 

several researchers. Overexpression of HDAC8 significantly correlated with poor prognosis (Oehme 

et al., 2009). It was also shown that the neuroblastoma oncogene MYCN cooperates with HDACs to 

downregulate their target genes (Fabian et al., 2016; Lodrini et al., 2013).  
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2.7.4.3 Micro RNAs 

 

MicroRNAs (miRNA) are non-coding RNAs approximately 22 nucleotides in length. They are part 

of the epigenetic system as they modulate gene expression without changing the DNA sequence. They 

act by base pairing with the 3’UTRs of mRNAs thereby negatively regulating gene expression. In 

cancer, miRNA can function as oncogenes or tumor suppressors depending on the function of their 

target genes (Zhang et al., 2007, Ruan et al., 2009; Su et al., 2015). They play an important role in 

neuroblastoma pathology (Stallings, 2009). Some have been identified as being epigenetically 

regulated in malignant neuroblastoma, such as miR-184, let-7, miR-9, miR-101, miR-340, miR-34a, 

miR-335 and miR-202 (Romania et al., 2012; Das et al., 2013). Parodi et al. (2016) identified 

hypermethylated and downregulated miRNAs (miR-34b-3p, miR-34b-5p, miR-34c-5p and miR-124-

2-3p) involved in apoptosis, cell cycle regulation, and in MYCN expression regulation. Twenty-one 

miRNA prognostic marker candidates in high-risk neuroblastoma were identified by Ramraj et al. 

(2016). Zhao et al. (2018) identified miR-2110 to possess oncosuppressive functions in 

neuroblastoma. These results therefore, demonstrate the importance of miRNAs as therapeutic targets 

in neuroblastoma. 

 

2.7.4.4 The epigenome as a therapeutic target 

 

Unlike genetic mutations, epigenetic alterations are potentially reversible to their normal state 

(Sharma et al., 2010). The aim of epigenetic therapies is therefore to make the affected cells revert to 

a more normal state. The three main families of epigenetic proteins; readers, erasers and writers can 

be targeted therapeutically. Epigenetic therapies are an emerging form of therapy for overcoming drug 

resistance (Strauss and Figg, 2016; Lu et al., 2020; Quagliano et al., 2020; Keyvani-Ghamsari et al., 

2021). Most epigenetic drugs act at the level of DNA methylation, histone modifications and blockage 

of interpretation of epigenetic modifications (Jubierre et al., 2018). DNA methylation can be 

modulated by targeting DNMTs while histone modifications can be targeted by inhibiting the 
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enzymes involved in histone modifications. Epigenetic drugs are classified into; Histone deacetylase 

inhibitors (HDACIs), DNA methyltransferase inhibitors (DNMTIs) and non-coding RNA (ncRNA) 

based therapeutics (Lu et al., 2020).  

2.7.5 Therapy 

 

Treatment for neuroblastoma depends on the risk and disease stage. Low-risk neuroblastoma (Stage 

1, 2A, 2B disease) are usually treated with surgery alone, but chemotherapy could also be included 

for patients with non-metastatic neuroblastoma who exhibit symptoms of their organs being 

threatened at diagnosis (Park et al., 2008). Treatment of intermediate-risk neuroblastoma involves 

surgery and moderate multiple dose chemotherapy. Children with tumors that exhibit favorable 

characteristics have greater than 95% survival chance (Matthay et al., 1998; Schmidt et al., 2000).  

 

High-risk neuroblastoma poses the biggest challenge because despite multimodal and improved 

therapy, only 30-40% of patients survive long-term (Matthay et al., 1999), which accounts for 12% 

of pediatric cancer deaths (Smith et al., 2010). Neuroblastoma demonstrates high cell heterogeneity, 

evades the immune system, thereby limiting the effectiveness of the approaches currently used 

(Kholodenko et al., 2018). Standard therapy involves three phases; induction, consolidation and post-

consolidation therapy. The induction phase aims to reduce the amount of disease not only at the 

primary sites but also at metastatic sites and includes multi-agent chemotherapy and surgery 

(Armideo at al., 2017). In the consolidation phase, myeloablative chemotherapy is applied alongside 

stem cell rescue and external-beam radiation therapy (Greengard et al., 2013). The post consolidation 

phase aims to eliminate residual disease that might exist after intensive treatment, and includes 

immunotherapy (ch14.18 monoclonal antibody against GD2), granulocyte macrophage stimulating 

factor (GM-CSF), interleukin-2 (IL-2)) and a differentiating agent (isotretinoin) (Greengard et al., 

2013). Key cytotoxic agents for neuroblastoma include doxorubicin, vinctistine, carboplatin, 

cyclophosphamide, cisplatin, ifosfamide and etoposide (Berthold et al., 2017; Berlanga et al., 2017). 
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Significant side effects and toxicity of standard neuroblastoma therapy include anemia, internal organ 

damage, fertility issues and hair loss (Kholodenko et al., 2018). Newer therapeutic approaches such 

as the use of oncolytic viruses (Tanimoto et al., 2020) are being developed, but their clinical safety 

and validation still needs to be demonstrated before their acceptance.  

 

2.8 Summary 

 

High-risk neuroblastoma presents with poor outcome even with intensive and varied therapy (Zhang 

et al., 2018), and patients in the same risk group may have a variable prognosis. Current risk-

stratification schemes do not account for an ultra-high-risk subgroup within the high-risk group. 

Using gene expression data, studies have proposed expression signatures of 238 genes (Liu et al. 

2020), 27 genes (Russo et al., 2017), and 18 genes (Formicola et al., 2016) for the identification of 

ultra-high-risk groups. Finding a gene expression signature of fewer number of genes will have the 

potential to be cost effective and easy to implement. Furthermore, identifying sub-groups within the 

high-risk group with the worst prognosis should be a good strategy to optimize treatment decisions 

(This is the basis of Chapter 3). 

 

MYCN amplification in neuroblastoma is a predictor of poor prognosis (Brodeur et al., 1984; Seeger 

et al., 1985), although patients without it may have poor outcome (Baali et al., 2018). Its diagnosis is 

a clinical standard in the management of neuroblastoma. The current diagnostic technique is by 

fluorescence in situ hybridization technique (FISH) which is technically difficult, expensive and not 

readily available in low- and middle-income countries (Nwose, 2016). It is therefore important to 

develop easily accessible and less expensive potential diagnostic techniques to detect MYCN 

amplification. In the future, a simpler and faster blood test to detect MYCN amplification could 

potentially be developed. We attempted to discover DNA methylation biomarkers diagnostic of the 

amplification of MYCN and prognostic of poor outcome which, in future research, could potentially 
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lead to the development of a simple blood test procedure. As it is also difficult to directly target MYCN 

for therapeutic purposes, it is pertinent to uncover the genomic signatures associated with its 

amplification as this could reveal the underlying mechanisms and provide possible candidates for 

indirect targeting of MYCN. We attempted to find these possible candidates using DNA methylation 

data (Chapter 4).  
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Chapter 3 

 

Identification of novel prognostic markers of survival 

time in high-risk neuroblastoma using gene expression 

profiles  
 

Published Paper  

 

Abdulazeez Giwa, Azeez Fatai, Junaid Gamieldien, Alan Christoffels, Hocine Bendou. Identification 

of novel prognostic markers of survival time in high-risk neuroblastoma using gene expression 

profiles. Oncotarget. 2020;11(46):4293-4305. https://doi.org/10.18632/oncotarget.27808. [PubMed: 

33245713] 

 

3.1 Abstract 

 

Neuroblastoma is the most common extracranial solid tumor in childhood. Patients in high-risk group 

often have poor outcomes with low survival rates despite several treatment options. This study aimed 

to identify a genetic signature from gene expression profiles that can serve as prognostic indicators 

of survival time in patients of high-risk neuroblastoma, and that could be potential therapeutic targets. 

RNA-seq count data was downloaded from UCSC Xena browser and samples grouped into Short 
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Survival (SS) and Long Survival (LS) groups. Differential gene expression (DGE) analysis, 

enrichment analyses, regulatory network analysis and machine learning (ML) prediction of survival 

group were performed. Forty differentially expressed genes (DEGs) were identified including genes 

involved in molecular function activities essential for tumor proliferation. DEGs used as features for 

prediction of survival groups included EVX2, NHLH2, PRSS12, POU6F2, HOXD10, MAPK15, 

RTL1, LGR5, CYP17A1, OR10AB1P, MYH14, LRRTM3, GRIN3A, HS3ST5, CRYAB and NXPH3. An 

accuracy score of 82% was obtained by the ML classification models. SMIM28 was revealed to 

possibly have a role in tumor proliferation and aggressiveness. Our results indicate that these DEGs 

can serve as prognostic indicators of survival in high-risk neuroblastoma patients and will assist 

clinicians in making better therapeutic and patient management decisions. 

 

3.2 Introduction  

 

Neuroblastoma is the most common extracranial solid tumor in childhood accounting for 

approximately 15% of pediatric cancer death (Maris, 2010; Smith et al., 2010; Ward et al., 2014). It 

develops anywhere along the sympathetic nervous system, with 60% of the tumors occurring in the 

abdomen, commonly in the adrenal gland (Zhang et al., 2018; Johnsen et al., 2019). Outcomes ranging 

from spontaneous regression to relentless progression despite extensive therapies indicate the 

heterogeneity of neuroblastoma (Baali et al., 2018). The Children’s Oncology Group (COG) classifies 

neuroblastoma patients into low, intermediate and high-risk groups. Patients classified in low risk 

groups have good outcomes contrary to high-risk groups who present poor outcomes despite 

extensive therapies (Zhang et al., 2018) and with a disproportionate number dying or suffering 

profound treatment related morbidities (Oeffinger et al., 2006; Yu et al., 2010). Tumors in high-risk 

neuroblastoma patients are often metastatic, resulting in survival rates of less than 50% (Maris, 2010).  

Genomic studies associated high-risk neuroblastoma with mutations or alterations in a number of 

genes, such as ALK, ATRX and TERT (Mosse et al., 2008; Cheung et al., 2012; Valentijn et al., 2015; 
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Peifer et al., 2015). Furthermore, genome wide association studies have revealed genetic markers, 

such as CASC15, LMO1, DUSP2 and BARD1 to be neuroblastoma susceptibility genes (Maris et al., 

2008; Capasso et al., 2009; Capasso et al., 2014; Diskin et al., 2009; Wang et al., 2011; Bosse et al., 

2012; Oldridge et al., 2015; Russell et al., 2015). However, these genes do not provide information 

about patient survival. The objective of our study is to identify a genetic signature from gene 

expression data that can serve as prognostic indicators of survival time in high-risk neuroblastoma 

patients and that could be therapeutic targets in that patient category. 

 

3.3 Methods 

 

The workflow describing the steps and methods undertaken in this study is illustrated in Figure 3.1. 

It includes five essential steps; dataset retrieval, differential gene expression, disease/gene ontology 

enrichment, gene regulatory network inference and machine learning.  

 

3.3.1 Datasets 

 

The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative 

employed comprehensive molecular characterization of hard-to-treat childhood cancers which 

included neuroblastoma. TARGET data is accessible via the TARGET data matrix as well as via the 

Xena browser. The Xena browser is a web-based visualization and exploration tool for multi-omic 

data large public repositories and private datasets (Goldman et al., 2020). The TARGET 

neuroblastoma dataset in the Xena database (Vivian et al., 2017; Goldman et al., 2020) is composed 

of high-risk neuroblastoma samples with available clinical information. Gene expression RNA-Seq 

read counts of the TARGET neuroblastoma dataset (dataset ID: TARGET-NBL.htseq_counts.tsv) 

were obtained from the GDC hub in Xena browser using xenaPython package. Fields used in querying 

the dataset are described in Table 3.1. The dataset itself was composed of 151 samples in total. 
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Querying the dataset with the above fields returned 32 neuroblastoma samples; 20 of which with an 

overall survival time of less than 730 days (2 years) and vital status is “dead”, were considered short 

survival (SS), while 12 samples with overall survival time greater than 2555 days (7 years) and vital 

status is “alive” were considered long survival (LS).  

 
  

Table 3.1: Query criteria for short survival (SS) and long survival (LS) sample selection 

 

Field SS values LS values 

Diagnostic category Neuroblastoma Neuroblastoma 

INSS stage Stage 4 Stage 4 

COG risk group High risk High risk 

Vital status Dead  Alive 

Overall survival time 730 days 2555 days 

 

 

3.3.2 Differential Gene Expression analysis 

 

Normalized expression counts were converted to raw counts and filtered to remove low expressed 

genes using the edgeR filterByExpr function in R (Robinson et al., 2010). We then performed a 

differential gene expression (DGE) analysis between the short and long survival groups using the 

DESeq2 package in R (Love et al., 2014). Differentially expressed genes (DEGs) were selected by 

meeting criteria of adjusted p-value < 0.05. Gene Ontology (GO) enrichment analysis was carried 

out to functionally annotate the DEGs using clusterProfiler (Yu et al., 2012) and visualized using 

enrichplot. The DOSE R library (Yu et al., 2015) was used to detect the diseases enriched by the 

upregulated and downregulated DEGs. 
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3.3.3 Machine learning 

 

Scikit-learn (Pedregosa et al., 2011) and LibSVM (Chang and Lin, 2011) libraries were used for 

machine learning (ML) model creation and classification tasks. Features (genes) not present in the 

test dataset (GSE49711) were not used for machine learning prediction. The top upregulated and 

downregulated genes used as features for ML prediction of patient survival were; EVX2, NHLH2, 

PRSS12, POU6F2, HOXD10, MAPK15, RTL1, LGR5, CYP17A1, OR10AB1P, MYH14, LRRTM3, 

GRIN3A, HS3ST5, CRYAB, NXPH3. The features were extracted from the log-normalized counts 

data. Algorithms used for training and evaluation of the models include; Support Vector Machines 

(SVM) and Artificial Neural Networks (ANN). For LibSVM, the feature values of the training and 

test sets were scaled using a built-in python script. With regards to ANN, the feature values of the 

training and test sets were scaled with the Scikit-learn MinMaxScaler function. 5-fold cross validation 

was done to determine the best parameters of the SVM and ANN models which was then applied to 

our test samples. Both models, created with LibSVM and ANN were applied to predict the 

classification of samples in an external dataset (GSE49711) with same sample characteristics (overall 

survival < 730 days with vital status as dead for SS samples, and overall survival > 2555 days with 

vital status as alive for LS samples). The evaluation metrics for the LibSVM and ANN models were 

precision, recall and accuracy. 

 

3.3.4 Regulatory network analysis 

 

The GENIE3 package (Huynh-Thu et al., 2010) in R was used for genetic regulatory network 

inference analysis. The GENIE3 algorithm uses a Random Forest or Extra Randomized Trees 

approach to infer gene regulatory networks from gene expression data (Huynh-Thu et al., 2010). It 

outputs a ranked list of each pairwise comparison from the most to the least confident regulatory 

connection. The library was run on the gene expression counts from the SS and LS samples separately. 

For the output analysis, only connections involving the DEGs were considered. In addition, a 
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weighting threshold of 0.00251 was applied to reduce the large number of connections and also to 

focus on high confident regulatory connections. Cytoscape (Shannon et al., 2003) was used for the 

visualization of gene regulatory networks. 

 

3.3.5 Availability of data and materials 

 

The R and python scripts implemented for this study are available at https://github.com/SANBI-

SA/NBSurvival.   
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Figure 3.1: Workflow outlining the steps and methods undertaken in this study 
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3.4 Results 

 

Querying the Xena TARGET dataset returned 20 and 12 SS and LS samples, respectively. Based on 

the gene expression levels in these samples, the edgeR filterByExpr function removed 35,873 low 

expressed genes and kept 24,610 genes for downstream analysis. The DGE analysis with DESeq2 

identified 40 DEGs between the SS and LS groups, of which 21 genes were upregulated and 19 genes 

were downregulated. Table 3.2 shows information about the 40 DEGs.  

 

The Gene Ontology (GO) Molecular Function enrichment analysis revealed that upregulated genes 

were mainly enriched in MAP kinase activity, retinol binding and RNA polymerase II activating 

transcription factor binding, as well as, in other activities shown in (Fig. 3.2A). No statistically 

significant results (p-adjusted value < 0.05) were obtained for the downregulated genes as well as for 

the other GO categories; Biological Process and Cellular Component. In addition, the Disease 

Ontology enrichment analysis associated upregulated and downregulated genes with several genetic 

disorders; intellectual disability, cardiac dysfunction, bone development, impaired infertility and 

pulmonary dysfunction caused by diaphragm-associated abnormalities (Fig. 3.2B-C).  
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Table 3.2: Upregulated and downregulated DEGs in SS neuroblastoma samples compared to LS 

samples 

 

Symbol Name log2FC p-adj Status 

SMIM28 small integral membrane protein 28 5.4652 0.0146 Up 

EVX2 even-skipped homeobox 2 4.9304 0.0014 Up 

NHLH2 nescient helix-loop-helix 2 4.2404 0.0046 Up 

PRSS12 serine protease 12 3.4788 0.0168 Up 

POU6F2 POU class 6 homeobox 2 3.4534 0.0430 Up 

HOXD10 homeobox D10 3.3386 0.0357 Up 

MAPK15 mitogen-activated protein kinase 15 3.0939 0.0499 Up 

RTL1 retrotransposon Gag like 1 2.8233 0.0241 Up 

LGR5 leucine rich repeat containing G protein-coupled 

receptor 5 

2.7453 0.0386 Up 

DPY19L2P4 DPY19L2 pseudogene 4 2.6439 0.0187 Up 

STRA6 signaling receptor and transporter of retinol STRA6 2.5625 0.0437 Up 

MEG9 maternally expressed 9 1.9449 0.0146 Up 

LINC01410 long intergenic non-protein coding RNA 1410 1.6411 0.0334 Up 

CYP17A1 cytochrome P450 family 17 subfamily A member 1 4.1951 0.0005 Down 

OR10AB1P olfactory receptor family 10 subfamily AB member 1 

pseudogene 

4.0068 0.0146 Down 

MYH14 myosin heavy chain 14 3.7783 0.0317 Down 

LRRTM3 leucine rich repeat transmembrane neuronal 3 3.6646 0.0168 Down 

GRIN3A glutamate ionotropic receptor NMDA type subunit 

3A 

-3.1104 0.0445 Down 

HS3ST5 heparan sulfate-glucosamine 3-sulfotransferase 5 -2.9968 0.0168 Down 

NBAS NBAS subunit of NRZ tethering complex -2.8992 0.0146 Down 

FNDC9 fibronectin type III domain containing 9 -2.8611 0.0419 Down 

H1-4 H1.4 linker histone, cluster member -2.8427 0.0146 Down 

CRYAB crystallin alpha B -2.7802 0.0146 Down 

NXPH3 neurexophilin 3 -2.5502 0.0348 Down 

MYL3 myosin light chain 3 -2.5310 0.0437 Down 

CMYA5 cardiomyopathy associated 5 -2.4531 0.0311 Down 

AMIGO2 adhesion molecule with Ig like domain 2 -2.2807 0.0499 Down 

SIK1B salt inducible kinase 1B (putative) -2.2002 0.0446 Down 

EDIL3 EGF like repeats and discoidin domains 3 -2.1682 0.0311 Down 

UBC ubiquitin C -1.1926 0.0499 Down 

lnc-FANCC-1  2.6996 0.0437 Up 
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lnc-KLHL28-1  2.5450 0.0311 Up 

lnc-TBCCD1-4  2.1511 0.0051 Up 

lnc-CDC27-8  2.1123 0.0146 Up 

lnc-SPG21-45  2.0232 0.0166 Up 

AC137695.1  2.0062 0.0146 Up 

Lnc-NSUN6-1  1.5671 0.0499 Up 

Lnc-ZNF814-1  1.3445 0.0146 Up 

Lnc-METRNL-8  -2.8955 0.0311 Down 

Lnc-METRNL-1  -2.5951 0.0437 Down 

Shown are gene symbols, gene names, fold change (log2FC), p-adjusted value and gene expression 

status. Genes without names are non-coding RNAs (LNCipedia GeneIDs) except AC137695.1 
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Figure 3.2: Gene and Disease enrichment analyses. Molecular Function activities enriched by the 

upregulated DEGs (A). Network representations of enriched diseases for upregulated DEGs (B) and 

downregulated DEGs (C) (absolute value of fold change > 1.5). The size of the circles represents the 

number of genes that enrich a disease 
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Reconstruction of gene regulatory networks, using the GENIE3 algorithm, for the SS and LS samples 

respectively deduced 1,966,606 and 1,967,020 weighted interactions involving the DEGs. Applying 

a weight threshold of 0.00251 resulted in 1018 and 650 DEG interactions for the SS and LS groups, 

respectively. The visualization of the 1018 DEG interactions using Cytoscape enabled the detection 

of 4 essential regulatory networks (Fig. 3.3). The first network (Fig. 3.3A) involves SMIM28, LGR5, 

PRSS12, EVX2, NHLH2 and HOXD10. All of these DEGs are upregulated, and the last three genes 

are transcription factors. The following network (Fig. 3.3B) interconnect MAPK15, Lnc-ZNF814-1, 

EDIL3, NBAS and CYP17A1. The first two genes are upregulated and the last three genes are 

downregulated. Most of the DEGs in the third and last networks (Fig. 3.3C-D) are downregulated, 

with the exception of MEG9 and STRA6, which are upregulated. Interestingly, these interactions 

between the DEGs are not present in the LS group and the following genes; SMIM28, HOXD10, 

PRSS12, NHLH2, MEG9, MAPK15, Lnc-ZNF814-1 and FNDC9, have no interactivity with any other 

DEG.    

Filtering the GSE49711 dataset with the query criteria in Table 3.1 yielded 43 SS and 19 LS samples, 

respectively. DEGs that do not have an associated NCBI GeneID were not found in this dataset, 

particularly, those that are identified as long non-coding RNAs (lncRNAs). Only 25 of the 40 DEGs 

have expression data in this dataset. Based on the results of feature selection with scikit-learn and 

several classification tests, the following 16 features were selected for the machine learning 

construction of the training and test sets; EVX2, NHLH2, PRSS12, POU6F2, HOXD10, MAPK15, 

RTL1, LGR5, CYP17A1, OR10AB1P, MYH14, LRRTM3, GRIN3A, HS3ST5, CRYAB and NXPH3. The 

evaluation of the Support Vector Machines (SVM) and Artificial Neural Networks (ANN) models 

using 5-fold cross-validation resulted in an accuracy of 78% and 87% for SVM and ANN, 

respectively. By testing the ML models on the GSE49711 test set, ANN again achieved better results 

with an accuracy of 82% of samples correctly classified as SS or LS compared to SVM which 

obtained an accuracy of 79% (Table 3.3). 
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Figure 3.3(A-D): Gene Regulatory Network Analysis. Regulatory networks for the DEG interactions 

in the SS group. The brown hexagonal nodes are DEGs and the blue rectangles are intermediate genes 

connecting two DEGs. DEGs that do not interact with other DEGs are omitted. 
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Table 3.3: Machine learning results for the classification of the GSE49711 test set of high-risk 

neuroblastoma samples with SVM and ANN models. 

 

 SVM ANN 

Class Precision Recall Precision Recall 

Short Survival 0.87 0.81 0.86 0.88 

Long Survival 0.64 0.74 0.72 0.68 

Accuracy 79% 82% 

 

 

3.5 Discussion 

 

We aimed at identifying genes that are differentially expressed between high-risk SS and LS patients 

that could be potential prognostic indicators and or therapeutic targets. The results of the DGE 

analysis between the two groups showed the upregulation and downregulation of genes associated 

with neuroblastoma and other cancers.  

 

3.5.1 Differentially expressed genes 

 

3.5.1.1    Upregulated genes 

 

The upregulated DEGs included some genes whose overexpression in the SS group have been 

correlated with poor survival in neuroblastoma and other cancers. Higher expression levels of NHLH2 

were found to be higher in unfavourable neuroblastomas and was significantly associated with a poor 

prognosis (Aoyama et al., 2005). Additional roles of NHLH2 in obesity and fertility has also been 

uncovered (Good and Braun, 2013; Vella et al., 2007). The upregulation of PRSS12 in this study is 

similar to the results of Hiyama et al. (2003), which reported the overexpression of PRSS12 in 

neuroblastoma tumors with high telomerase activity correlating with unfavourable tumors. Serine 
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proteases are often altered and significantly upregulated in cancer as malignant cells need proteolytic 

activities to enable their growth, survival and expansion. Our result support that upregulation of 

PRSS12 is indicative of poor survival in neuroblastoma. HOXD10 is a transcription factor whose 

expression is altered in many cancers. Its high expression gives cancer cells proliferative and 

migratory abilities (Hakami et al., 2014). Elevated expression of HOXD genes including HOXD10 

was reported to be associated with unfavourable prognosis and poor outcome in neuroblastoma 

(Kocak et al., 2013), which supports our results indicating a more aggressive disease in the SS group. 

LGR5 is a stem cell marker which is highly expressed and associated with an aggressive phenotype 

in neuroblastoma (Vieira et al., 2015; Forgham et al., 2015). It has also been associated with 

pancreatic ductal adenocarcinoma (Kuraishi et al., 2019) and colorectal cancer (Morgan et al., 2018). 

LGR5 potentially contributes to stem cell maintenance and self-renewal and is indicative of poor 

survival in high-risk neuroblastoma. SMIM28 is a less studied protein whose upregulation is 

indicative of poor survival in this study. Similar to our results, Jiang et al. (2018) reported the 

upregulation of SMIM28 in prostate cancer. EVX2 is a homeobox transcription factor essential for 

vertebrate spinal cord neuronal specification (Juarez-Morales et al., 2016). POU6F2 belongs to the 

POU class homeobox family whose members are transcriptional regulators and is involved in 

hereditary predisposition to Wilms tumor, a pediatric malignancy of the kidney (Perotti et al., 2004). 

Functional studies are required to elucidate the roles of SMIM28, EVX2 and POU6F2 in high-risk 

neuroblastoma.  

 

MAPK15, a protein kinase involved in many cellular activities including cell proliferation was 

upregulated in this study. Highest levels of MAPK15 was found in aggressive embryonal carcinomas 

and it acts by sustaining the progression of the cell cycle of embryonal carcinomas by limiting p53 

activation and preventing the facilitation of p53 dependent mechanisms that results to the arrest of 

the cell cycle (Rossi et al., 2016). Neuroblastoma is a malignancy of embryonal origin and 

upregulation of MAPK15 would be expected to facilitate tumor progression and indicative of 
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aggressive disease and poor survival as in the SS group. RTL1, a paternally expressed imprinted gene 

highly expressed in the fetus, placenta and brain. It has been reported to be a driver of hepatocellular 

carcinoma (Riordan et al., 2013). Being a protease, it possibly promotes tumor invasion and 

metastasis in neuroblastoma tumors. Higher expression of RTL1 is thus suggestive of poor prognosis 

in neuroblastoma. Also upregulated is STRA6, a plasma membrane protein that transports retinol and 

is involved in a signalling mediated by JAK2, STAT3 and STAT5 (Berry et al., 2014). Its upregulation 

indicates poor survival in our study possibly through its maintenance of cancer stem cells and 

promotion of tumor formation as reported in colorectal cancer (Berry et al., 2014; Karunanithi et al., 

2017).  

 

Ten lncRNAs were upregulated in this study. Three of these (lnc-SPG21-45, lnc-NSUN6-1 and lnc-

KLHL28-1) are antisense to ANKDD1A, CACNB2 and C14orf28 genes, respectively, which are 

associated with other cancers and diseases, possibly by regulating their expression. C14orf28 has 

been observed to be overexpressed in colorectal cancer cells, promoting proliferation, migration and 

invasion (Yang et al., 2017). ANKDD1A has been described as a functional tumor suppressor with 

germline variants predicting poor patient outcomes in low-grade glioma (Chatrath et al., 2019), and 

is frequently methylated in glioblastoma multiforme (Feng et al., 2019) and in clinically non-

functioning pituitary adenomas (Cheng et al., 2019). CACNB2 is a calcium channel protein linked to 

diabetic retinopathy (Vuori et al., 2019), bipolar disorder (Liu et al., 2019), hypertension (Niu et al., 

2010) and autism spectrum disorders (Breitenkamp et al., 2014). The role of calcium signalling in 

cancer has been reviewed by (Yang et al., 2010; Stewart et al., 2015; Cui et al., 2017). MEG9, is 

located in an imprinted non-coding RNA genomic region, DLK1-DIO3 (Hagan et al., 2009; Benetatos 

et al., 2013). LINC01410 is a lncRNA highly expressed in pancreatic cancer tissues and cell lines (Cai 

et al., 2019). High expression in cholangiocarcinoma and gastric cancer patients have been associated 

with poor prognosis and survival (Zhang et al., 2018; Jiang et al., 2020). These lncRNAs may be 

facilitating the promotion of tumor progression, proliferation and invasion which might have 
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impacted the survival of patients in the short survival group. It is well established that metastasis is 

the primary cause of cancer mortality. Functional studies are required to evaluate the roles of these 

lncRNAs in neuroblastoma.  

3.5.1.2    Downregulated genes 

 

The downregulated genes include genes such as AMIGO2, LRRTM3, GRIN3A, MYH14, EDIL3, 

FNDC9, involved in neural function and development, and in ECM organization. AMIGO2 is a 

transmembrane molecule expressed in neuronal tissues and participates in their formation (Kuja-

Panula et al., 2003). EDIL3 is an inducer of the epithelial-mesenchymal transition, that promotes 

angiogenesis and invasion in hepatocellular carcinoma (Xia et al., 2015). FNDC9 which exhibits 

biased expression in the brain is an ECM protein involved in tumorigenesis in different cancers (Wang 

and Hielscher, 2017). MYH14 is a myosin, an actin-dependent motor protein that plays a role in 

neuritogenesis. Members of the mysoin superfamily have been known to enhance or suppress tumor 

progression (Ouderkirk and Krendel, 2014). MYH14 could be suppressing tumor progression in high-

risk neuroblastoma. The downregulation of these ECM associated genes could be promoting the 

invasion and metastasis of neuroblastoma tumors.   

 

OR10AB1P belongs to the olfactory receptor family of genes. Olfactory receptors are expressed in 

various human tissues and are involved in different cellular processes such as migration and 

proliferation. Some are biomarkers for prostate, lung and small intestine carcinoma tissues (Weber et 

al., 2018). Decreased expression of CRYAB indicated its tumor suppressor function in bladder cancer 

(Ruan et al., 2020). It may thus also be functioning as a tumor suppressor in neuroblastoma. Ubiquitin 

C (UBC) is a polyubiquitin precursor. Ubiquitination has been associated with many cellular 

processes, which play roles in tumorigenesis.  

CYP17A1 is a key enzyme in the steroidogenic pathway with restricted expression in the adrenal 

gland. Neuroblastoma tumors commonly occur in the adrenal medulla. The downregulation of 
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CYP17A1 may be an indicator of poor prognosis in neuroblastoma. LRRTM3 has high expression in 

the brain and belongs to a group of proteins involved in nervous system development. How it 

contributes to neuroblastoma remains to be investigated but it is currently a candidate gene for 

Alzheimer’s disease (Reitz et al., 2012; Wang et al., 2014), a neurological disorder. NBAS is thought 

to be involved in golgi-to-ER transport and is typically amplified in MYCN-amplified neuroblastoma 

tumors (Wimmer et al., 1999). GRIN3A is a glutamate receptor that promotes nerve outgrowth (Shi 

et al., 2016). The downregulation of GRIN3A may suggest a higher level of disease because glutamate 

is a major excitatory neurotransmitter in the CNS that is involved in many neuronal processes. 

Functional studies are required to investigate how these genes contribute to poor survival in 

neuroblastoma.  

 

3.5.2 Gene and Disease Ontology enrichment analyses 

 

The molecular function activities; MAP kinase activity, retinol binding and RNA polymerase II 

activating transcription factor binding, enriched by the upregulated genes MAPK15, STRA16 and 

NHLH2 respectively, are activities that promote tumor cell proliferation. Deregulation of the MAPK 

signalling was associated with cancer development, progression and cell proliferation (Dhillon et al., 

2007; Jin et al., 2015). Retinol binding through the STRA6 upregulation activates a signalling cascade 

that is found to play a role in cancer initiation, maintenance and growth (Karunanithi et al., 2017). 

Furthermore, the increased global transcription activity (activation of RNA polymerase II) indicates 

an intensity of a rapid proliferation of cancer cells (Yokoyama, 2019). These activities again 

demonstrate the aggressiveness of the neuroblastoma tumors in SS patients compared to LS patients.  

 

The enriched diseases by the upregulated and downregulated genes, particularly the disorders 

inducing heart failure (Cardiomyopathy and Congenital heart disease) and respiratory illness 

(Diaphragmatic dysfunction) may have negative impact on survival (Best and Rankin, 2016; Dube 
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and Dres, 2016), and could be the cause of death in the SS neuroblastoma patients. There is no 

indication in the clinical information accompanying the gene expression counts dataset if the patients 

suffered from additional disorders in addition to neuroblastoma. However, it is reported that high-risk 

neuroblastoma survivors treated with intensive multimodal therapy are at risk for a broad variety of 

treatment-related late effects including cardiac dysfunction, bone development disease, pulmonary 

dysfunction and impaired fertility (Friedman and Henderson, 2018). These treatment-related 

morbidities were enriched by the upregulated and downregulated DEGs (Figure 3.1B-C), suggesting 

that the cause of death in patients with SS neuroblastoma may be due to treatment complications.  

 

3.5.3 Regulatory network analysis 

 

After the application of a weight threshold of 0.00251 to the GENIE3 output, the numbers of 

interactions involving the DEGs in the SS and LS groups were 1018 and 650, respectively. There is 

a clear substantial difference in number of interactions between the two groups, indicating a higher 

cellular/tumor activity in the SS group which could be a sign of tumor aggressiveness in patients with 

SS neuroblastoma. In addition, it is noticeable from the networks in Figure 3.2 the importance of the 

genes SMIM28, MAPK15 and UBC as origins of most of the interactions. The role of MAPK15 and 

UBC in tumorigenesis has been reported in many previously discussed scientific works, while 

SMIM28 is a less studied gene with an unclear role in cancer. However, observation of the role of the 

final target genes of SMIM28 in Figure 3.2A network, which are LGR5 and HOXD10, can shed light 

on the role of this gene. As reported previously, both LGR5 and HOXD10 were associated with cancer 

cell proliferation and tumor aggressiveness in neuroblastoma. Thus, it is possible that SMIM28 (Small 

Integral Membrane Protein 28) is part of a signalling pathway whose role is to accelerate 

neuroblastoma tumor proliferation, making it a possible new gene therapy target in high-risk 

neuroblastoma cancer. Further investigations are required to elucidate precisely the role of SMIM28 

in the aggressiveness of neuroblastoma tumors.   

http://etd.uwc.ac.za/ 
 



 

53 
 

3.5.4 Machine Learning  

 

Although not all the DEGs were included in the training and testing of the machine learning models, 

the obtained prediction results were significantly good. The ANN model obtained the highest 

accuracy of 82% for the classification of the external neuroblastoma samples (GSE49711) into short 

and long survival classes. This high classification accuracy makes it possible to consider that the DEG 

expression profiles have been preserved in the various high-risk neuroblastoma tumors, although 

neuroblastoma is known to be heterogeneous. Therefore, the DEG list can serve as prognostic 

indicators (genetic signature) for survival time in high-risk neuroblastoma patients and can be targets 

for drug discovery analyses. Relatively similar to our study, other studies have proposed genetic 

signatures for prognostic stratification of patients with neuroblastoma. Liu et al. (2020) used an 

unsupervised biclustering machine learning technique to find high-risk neuroblastoma subtypes. They 

proposed a signature of 238 neuroblastoma-specific immune genes to identify ultra high-risk and 

high-risk neuroblastoma subtypes. Russo et al. (2017) applied K-means clustering to 27 kinome gene 

signature to identify ultra high-risk subtypes of high-risk neuroblastoma. Formicola et al. (2016) used 

Cox regression and Kaplan-Meier analysis methods to propose a 18-gene expression based risk 

scoring system to predict overall survival of patients with stage 4 neuroblastoma. We demonstrated 

the use of a shorter signature in a 16-gene expression classifier based on survival time to stratify high-

risk neuroblastoma into SS (ultra high-risk) and LS subtypes. The number of genes in our classifier 

should provide the advantage of being less costly and easier to implement.  

 

3.6 Conclusion 

 

The DGE analysis is a powerful technique for the identification of DEGs in a studied condition. In 

this study, using DESeq2 we identified 40 DEGs between SS and LS neuroblastoma samples. Many 

of the DEGs were found to be related to different cancers (including neuroblastoma), thus 

strengthening their possibility of being associated with neuroblastoma. The ML models based on 16 
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DEGs were capable of stratifying high-risk neuroblastoma samples on the basis of survival time, 

demonstrating their ability to be used as a genetic signature or prognostic indicators of survival in 

high-risk neuroblastoma patients. This study furthers our understanding of the molecular mechanisms 

of neuroblastoma in high-risk patients. We identified SMIM28 gene to be critical for tumor 

proliferation making it as a possible gene therapy target. Nevertheless, additional studies are required 

to elucidate the role of SMIM28 in the pathogenesis of neuroblastoma. Finally, prognostic 

stratification of high-risk neuroblastoma patients will help clinicians in making better therapeutic and 

patient management decisions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://etd.uwc.ac.za/ 
 



 

55 
 

 

 

 

Chapter 4 
 

Predicting amplification of MYCN using CpG 

methylation biomarkers in neuroblastoma  
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[PubMed: 34751044] 

 

4.1 Abstract 

 

Neuroblastoma is the most common extracranial solid tumor in childhood. Amplification of MYCN 

is found in 22% of neuroblastomas and is a predictor of poor prognosis. Here, we aimed to identify a 

DNA methylation signature that is diagnostic of MYCN amplification, and prognostic of patient 

survival. DNA methylation data was downloaded from the TARGET data matrix, and samples were 

stratified into two groups based on their MYCN amplification status, as either amplified or not 

amplified. Using ChAMP R package, we identified 663 CpGs from 369 genes to be differentially 
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methylated between 45 MYCN amplified and 81 non-amplified samples. Of these 369 genes, 14 were 

highly methylated, having at least six significant CpGs. Applying recursive feature selection (RFE) 

on the 663 CpGs, 25 CpGs were selected for machine learning (ML) classification tasks. The beta 

values of each of the 25 selected CpGs were used to perform clustering analysis and to create a 

Support Vector Machine (SVM) model for MYCN amplification prediction. We achieved 100% 

clustering accuracy of the 126 TARGET samples into their respective MYCN amplification groups. 

The validation of the SVM model was performed on 3 external datasets, and high accuracy scores of 

100%, 97% and 93% were obtained for all three test sets. The Cox regression analysis and Kaplan-

Meier estimates identified 8 survival-associated CpGs with the methylation of cg13558971 

(ATP2BP4), cg25310824 (SEPP1) and cg07476617 (CFLAR), indicative of poor outcome in MYCN 

amplified neuroblastoma.  The results demonstrate the efficacy of the method used here and the utility 

of the identified CpGs in helping clinicians to make better targeted therapeutic management decisions.  

 

4.2 Introduction  

 

Neuroblastoma is the most commonly occuring extracranial solid tumor in childhood and accounts 

for approximately 15% of pediatric cancer-related deaths (Maris, 2010; Smith et al., 2010; Ward et 

al., 2014). It can develop anywhere along the sympathetic nervous system, with 60% of tumors 

occurring in the abdominal region, of which approximately half are located in the medulla of the 

adrenal glands (Zhang et al., 2018; Johnsen et al., 2019). Tumors in high-risk neuroblastoma patients 

are often metastatic, resulting in survival rates of less than 50% (Maris, 2010). Characteristics for 

high-risk neuroblastoma include age, loss of chromosome 1p or 11q and amplification of MYCN 

(Mueller and Matthay, 2009; Tonini et al., 2012). Amplification of MYCN is a well-studied genomic 

alteration found in approximately 22% of cases (Newman and Nuchtern, 2016) and is a predictor of 

poor prognosis (Brodeur et al., 1984; Seeger et al., 1985), although patients without MYCN 

amplification may also have a poor outcome (Baali et al., 2018). Neuroblastoma is a heterogeneous 
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disease with outcomes ranging from spontaneous regression, as seen in some tumors, to relentless 

progression despite extensive and varied therapies (Baali et al., 2018).  

 

Some alterations identified in neuroblastoma include mutations in ALK, ATRX and TERT (Mossé et 

al., 2008; Cheung et al., 2012; Valentijn et al., 2015; Peifer et al., 2015). Through genomic 

sequencing, it is now known that pediatric cancers, including neuroblastoma, have lower numbers of 

mutations compared to adult cancers (Vogelstein et al., 2013; Sweet-Cordero and Biegel, 2019), with 

many primary neuroblastomas not containing recognisable driver mutations. This suggests the 

involvement of epigenetic alterations. It has been shown that epigenetic factors, especially alterations 

in DNA methylation, play a role in the pathogenesis of neuroblastoma (Ratner et al., 2016; Decock 

et al., 2011). For example, hypermethylation of TERT was proposed as a biomarker for poor prognosis 

in neuroblastoma (Olsson et al., 2016). In addition, DNA methylation of CASP8 and RASSF1A was 

linked to the development and progression of neuroblastoma (Decock et al., 2011) and were 

associated with poor prognosis (Hassan et al., 2020).   

 

Another indicator of poor prognosis and survival in cancer is the CpG island methylator phenotype 

(CIMP) (Decock et al., 2016). It was first established in colorectal (CRC) cancer and then adopted in 

neuroblastoma (Asada et al., 2013). In a genome-wide study of 140 neuroblastomas, CIMP was 

defined by methylation of 5 CpG islands (CGIs) in the PCDHB family, and was associated with the 

methylation of promoter CGIs of several tumor suppressor genes such as RASSF1A and BLU (Abe et 

al., 2005). Most of MYCN amplified cases exhibited CIMP. However, the presence of CIMP was also 

detected in many cases without MYCN amplification (Abe et al., 2005), therefore emphasising the 

need for an accurate predictor of MYCN amplification. 

 

While some studies have proposed different methods of diagnosing MYCN amplification in 

neuroblastoma (such as PCR based and hybridization laboratory methods) (Hiyama et al., 1999; Oude 
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Luttikhuis et al., 2000; Mathew et al., 2001; Yagyu et al., 2016), we are unaware of any assessing the 

use of CpG methylation biomarkers. Therefore, in this study, we are interested in identifying a CpG 

methylation signature that is diagnostic of MYCN amplification. In addition, we aim to identify CpGs 

that are associated with survival and poor prognosis. The use of methylation biomarkers for the 

diagnosis of MYCN amplification and prognosis of survival has the potential to be clinically useful 

in deciding treatment strategy and could be cost effective as well. 

4.3 Methods 

 

The complete workflow describing the steps and methods undertaken in this study is shown in Figure 

4.1. It included five essential steps; data retrieval, data preprocessing (imputation, normalization and 

batch effect removal), differential methylation analysis, machine learning, and, Cox regression & 

Kaplan-Meier estimates.   

 

4.3.1 Dataset 

 

The Therapeutically Applicable Research to Generate Effective Treatments (TARGET) 

(https://ocg.cancer.gov/programs/target) initiative uses comprehensive genomic approaches for the 

molecular characterization of hard-to-treat childhood cancers. Neuroblastoma methylation data is 

accessible via the TARGET data matrix portal and is mainly composed of high-risk samples with 

available clinical information. The level 3 methylation dataset includes beta values from 235 samples 

(https://target-data.nci.nih.gov/Public/NBL/methylation_array/L3/). Based on the clinical 

information contained in the metadata file (https://target-

data.nci.nih.gov/Public/NBL/clinical/harmonized/TARGET_NBL_ClinicalData_Discovery_201705

25.xlsx), International Neuroblastoma Staging System (INSS) stage 4 samples with known MYCN 

status were considered. A total of 126 samples (45 samples with MYCN amplification and 81 samples 

without MYCN amplification) were downloaded from the TARGET data matrix portal. Missing values 

were imputed using methyLImp package (Di Lena et al., 2019) which applies a computationally 
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efficient imputation method based on linear regression. The R-package ChAMP (Morris et al., 2014; 

Tian et al., 2017) was used for data normalisation and elimination of variability and batch effects 

between groups. A total of 396,065 CpGs were used for downstream analysis.  

 

 

4.3.2 Differential methylation analysis 

 

Differential methylation analysis was done using the ChAMP package (Morris et al., 2014; Tian et 

al., 2017). In finding biologically relevant differentially methylated probes, the ChAMP package uses 

the limma R-package (Ritchie et al., 2015) to compare two groups. We performed differential 

methylation analysis between MYCN amplified and non-amplified groups as illustrated in Figure 1. 

Differentially methylated CpGs with a p-value < 0.05 and an absolute value of delta-beta > 0.4 were 

called as significant. Heatmaps were plotted with the gplots R package. Gene Ontology (GO) and 

Disease enrichment analysis was carried out to functionally annotate the differentially methylated 

genes (DMGs) using Enrichr (Chen et al., 2013; Kuleshov et al., 2016).  

 

4.3.3 Machine learning 

 

The factoextra R package (Kassambara and Mundt, 2020) was used to create and visualize clustering 

of samples based on all significant CpGs into their respective groups. A dendrogram plotting function 

was applied to data object produced from the application of an ensemble of hierarchical and k-means 

clustering algorithms to the significant CpGs (Kassambara and Mundt, 2020). Recursive feature 

elimination (RFE) was done to extract the most important features and eliminate those that create bias 

and negatively contribute to the model performance. In the RFE, linear support vector machine 

(SVM) algorithm was used for building ML models which were evaluated with repeated stratified 

10-fold cross-validation (3 repeats) to determine the best parameters and features to use in the ML 

classification.  
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The CpG features selected by RFE were then used to create an SVM model. LibSVM (Chang and 

Lin, 2011) was used to create the SVM model with the following parameters; kernel = linear, cost = 

10. The SVM model was then tested on tumor methylation samples from two independent GEO 

datasets, GSE54719 (Gomez et al., 2015) and GSE120650 (Ackermann et al., 2018), as well as on 

matched primary tumor and relapse samples from another independent GEO dataset, GSE65306 

(Schramm et al., 2018). These independent datasets are composed of samples of different INSS stages 

(Stage 1, 2, 3, 4 and 4s) and with known MYCN amplification statuses. The evaluation metrics for the 

SVM model was precision, recall and accuracy.  

 

4.3.4 Cox regression analysis and Kaplan-Meier estimates 

To determine among the most highly significant CpGs those that best correlated with patient survival, 

we used a Cox regression model based on the LASSO algorithm of the glmnet R package (Friedman 

et al., 2010; Simon et al., 2011; Tibshirani et al., 2012) and which was evaluated by leave-one-out 

cross-validation. The model assigns each CpG a regression coefficient value. CpGs with a zero 

coefficient were considered to have no effect on survival and were therefore eliminated. The method 

described by Ng et al. (2016) was followed, whereby a CpG score value is calculated for each patient 

as a linear combination of beta values of the top significant CpGs weighted by their corresponding 

coefficients obtained from the Cox regression model. A median value was inferred from the patient 

scores. Each score was then compared to the median, and patients were assigned a status value of 1 

or 0, depending on whether the score was above or below the median. Kaplan-Meier (K-M) estimates 

and Hazard Ratio (HR) were then calculated for the overall survival (OS) and event-free survival 

(EFS) according to patient status information. Additionally, we performed K-M analysis using the 

CpGs identified by the Cox regression model on one of the independent test dataset, GSE65306, as it 

is the only dataset providing survival information. K-M curves were generated using the ggsurvplot 

function from the survminer R package. 
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4.3.5 Availability of data and materials 

 

R and python scripts were implemented for this study and are available in   

https://github.com/SANBI-SA/NBMethyl.git.     
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Figure 4.1: Workflow depicting the steps and tools used in this analysis. The workflow has 5 principal 

steps; data retrieval from data matrix portal, data preprocessing using methyLImp and ChAMP R 

packages, differential methylation analysis with ChAMP, ML training and testing using SVM, and 

survival analysis using glmnet R package and Kaplan-Meier (K-M) curves.       
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4.4 Results 

 

4.4.1 Differential methylation analysis 

 

Differential methylation analysis between the MYCN amplified and MYCN non-amplified groups 

identified 663 differentially methylated CpGs of 369 DMGs. Of these 369 DMGs, 238 and 131 DMGs 

had high and low methylation, respectively, in the MYCN amplified group compared to the non-

amplified group. Fourteen genes were highly methylated between the MYCN amplified and non-

amplified groups. Table 4.1 shows information about the highly methylated genes, defined as having 

at least six differentially methylated CpGs with NXPH1 having the highest number of differentially 

methylated CpGs.  

 

Pathway enrichment analysis indicate that the DMGs were enriched in pathways of ECM 

organization, cardiac hypertrophic response and neural crest differentiation (Table 4.2). Concerning 

molecular function and biological processes, GO analysis revealed that the DMGs were mainly 

enriched in regulation of transcription and cell differentiation. In addition, for disease enrichment 

analysis, the DMGs were associated with different cancers (kidney, liver, nasopharynx) as well as 

heart conduction disease (Table 4.2).  

 

4.4.2 Machine learning (ML) 

 

Recursive feature selection (RFE) was performed which selected 25 CpGs as the most important for 

classifying samples by their amplification groups (Table 4.3). These 25 CpGs accurately clustered 

(100% precision) the 126 TARGET samples by their MYCN amplification group, with no sample 

misclassified (Fig. 4.2). The dendrogram plot of hierarchical and k-means applied to the total 663 

significant CpGs resulted in correct clustering of 122 (96%) of the 126 TARGET samples (Fig. 4.3) 

The 25 CpGs selected by RFE from the 663 CpGs as the most informative features in the data were 

then used in ML training and test set construction (Table 4.3). The training set was built on the 126 
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TARGET data matrix samples, while the test sets comprised 35, 58 and 28 samples from the 

GSE54719, GSE120650 and GSE65306 datasets, respectively. Repeated stratified 10-fold cross-

validation yielded an accuracy of 96%. Evaluation of the SVM model using the GSE54719, 

GSE120650, and GSE65306 test sets resulted in high accuracies of 100%, 97%, and 93%, 

respectively, of correctly predicted samples (Table 4.4). 

 

4.4.3 Cox regression analysis and Kaplan-Meier estimates 

 

A minimal subset of 8 CpGs with a non-zero coefficient was selected by the Cox regression model 

(Table 4.5). These CpGs are believed to have a role in patient survival. All 8 CpGs were associated 

with overall survival, while only 5 were associated with event-free survival. The positive coefficient 

CpGs were methylated in the MYCN amplified group, while the negative coefficient CpGs were 

methylated in the MYCN non-amplified group. The CpGs and their coefficients were used to calculate 

a CpG score and assign a status value of 1 or 0 for each patient. K-M estimates for OS and EFS based 

on patient statuses were derived and shown in Figure 4.4. MYCN status correlated with CpG score 

and survival (OS: HR=5.11; P<0.0001, EFS: HR=4.845; P<0.0001). Patients with a CpG score above 

the median were predominantly MYCN amplified and those below were mostly non-amplified. Same 

significant results were observed in the GSE65306 test dataset (OS: HR=35.87; P<0.0001, EFS: 

HR=7.99: P<0.00041). The K-M plots for the GSE65306 test dataset are shown in Figure 4.5. 
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Table 4.1: Fourteen highly methylated genes between the MYCN amplified and MYCN non-amplified 

groups. These genes have ≥ 6 significantly methylated CpGs. 

 

Gene Gene name Chr Number of 

significant CpG 

NXPH1 neurexophilin 1 7 14 

SOX2-OT SOX2 overlapping transcript 3 12 

DLX5 distal-less homeobox 5 7 10 

TFAP2D transcription factor AP-2 delta 6 10 

CAVIN3 caveolae associated protein 3 11 8 

VAX2 ventral anterior homeobox 2 2 8 

TERT telomerase reverse transcriptase 5 7 

HHEX hematopoietically expressed homeobox 10 7 

KRT19 keratin 19 17 7 

RNF207 ring finger protein 207 1 7 

MIRLET7BHG MIRLET7B host gene 22 7 

CHRNE cholinergic receptor nicotinic epsilon subunit 17 6 

DLX6-AS1 DLX6 antisense RNA 1 7 6 

TMCO3 transmembrane and coiled-coil domains 3 13 6 
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Table 4.2: Enrichment analysis of the 369 differentially methylated genes 

 

Pathways, Disease, Ontology adj p-

value 

Number of 

overlapped 

genes 

Genes 

WikiPathways    

Cardiac hypetrophic response WP2795 0.030335 6 HDAC4, PPP3CA, NPPA, GUCA1A, AKT1, PRKCA 

Neovascularisation processes WP4331 0.030335 4 FLT4, CXCR4, AKT1, EPHB4 

Neural crest differentiation WP2064 0.030335 8 HDAC4, TFAP2B, DLX5, TLX2, MPZ, ETS1, BMP7, SOX5 

Reactome    

Extracellular matrix organization Homo sapiens 

R-HSA-1474244 

0.014525 17 PTPRS, COL22A1, COL23A1, LTBP4, PDGFA, PRKCA, PCOLCE, LTBP2, 

BMP7, COL5A1, COL4A1, COL4A4, TIMP2, NCAM1, CD44, DDR2, 

ITGA9 

Jensen Diseases    

Kidney cancer 0.01632 74 SAMD9L, TRIO, PTPRS, FLT4, CHD5, KNDC1, FRY, AFF3, SIPA1L3, 

CELSR3, PTPRG, DOCK10, CDH4, HEPHL1, GRM6, AKT1, RNF150, 

ERC2, MCF2L2, EPHB4, SOX5, ARHGEF10, MEF2C, UNC13A, RIPK4, 

TET1, EBF3, WDR72, FRMD4A, NAV1, TYK2, DNM2, ADCY9, BANK1, 

COL4A1, PARD3, COL4A4, ANGPTL2, DDR2, ANKRD11, LTBP2, LRP2, 

THBS2, ACACA, ARNTL, KIAA0556, GRIN2A, CUX1, PCBP1, CDH22, 

G3BP1, MAN1C1, TRPM8, NCAM2, RGS22, XDH, DYNC1I1, TMEM132D, 

FARP1, TFAP2B, DNAH10, TFAP2D, COL22A1, PTCH1, DAB2IP, 

ATP2B4, NFATC1, TMCO3, SDK1, COL5A1, KCNS2, ZNF536, RGS12, 

DZIP3 

Heart conduction disease 0.02058 8 SFRP2, RNF207, CXCR4, FRMD4A, C9ORF3, PTPRG, FOXP1, ITGA9 

Liver cancer 0.03701 24 RSPH6A, TMEM132D, SAMD9L, TRIO, DNAH10, PTPRS, COL22A1, 

AGAP2, KNDC1, LRP2, FRY, THBS2, ACACA, SDK1, SNTG2, CUX1, 

COL5A1, COL4A1, GRM6, PARD3, ZNF536, FAM65B, NCAM1, ERC2 
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Nasopharynx carcinoma 0.04403 3 HLA-A, HS3ST4, ITGA9 

GO Biological Process    

Positive regulation of cell differentiation 

(GO:0045597) 

0.0224 14 IFITM1, MEF2C, ZBTB16, SOX11, BMP7, ARNTL, SFRP2, PDPN, MYF6, 

AKT1, ASB4, CMKLR1, SOX5, DDR2 

Negative regulation of cell differentiation 

(GO:0045596) 

0.0224 12 TBX1, TRIO, SFRP2, COL5A1, ZBTB16, PTCH1, DAB2IP, ANP32B, XDH, 

MEIS2, SMAD7, ARNTL 

Positive regulation of ossification 

(GO:0045778) 

0.0224 7 IFITM1, MEF2C, ZBTB16, FZD9, SOX11, BMP7, DDR2 

Regulation of transcription from RNA 

polymerase ΙΙ promoter (GO:0006357) 

0.0224 49 ZCCHC12, CD40, CHD5, ENO1, ETS1, PPP3CA, HHEX, CHP2, TEAD4, 

MEF2C, SMARCC1, ZHX2, TET1, EBF3, SOX11, FOXP1, SFRP2, GAL, 

ETV3L, EZR, SKAP1, HDAC4, DLX5, DOT1L, GATA4, ARNTL, RXRA, 

CUX1, DEAF1, HSF5, TBX1, WWOX, TFAP2B, TFAP2D, BCL11B, PTCH1, 

ZBTB16, DAB2IP, ATP2B4, NFATC1, BMP7, MEIS2, FLI1, SMAD7, NFIB, 

TLX2, NFIC, MYF6, ZNF536 

Cellular response to growth factor stimulus 

(GO:0071363) 

0.0224 11 TBX1, WWOX, MEF2C, DLX5, FLT4, DAB2IP, AKT1, BMP7, CD44, SOX5, 

SMAD7 

Positive regulation of transcription DNA-

templated (GO:0045893) 

0.02774 39 HDAC4, CD40, DLX5, DOT1L, GATA4, ETS1, ARNTL, PPP3CA, HHEX, 

RXRA, DEAF1, ATOH8, CHP2, AKT1, TEAD4, TBX1, WWOX, TFAP2B, 

MEF2C, SMARCC1, BCL11B, ZBTB16, DAB2IP, TET1, EBF3, SOX11, 

NFATC1, BMP7, MEIS2, FLI1, SMAD7, DNM2, SFRP2, GAL, NFIB, TLX2, 

NFIC, MYF6, SKAP1 

Positive regulation of transcription from RNA 

polymerse ΙΙ promoter (GO:0045944) 

0.02774 32 HDAC4, CD40, DLX5, DOT1L, GATA4, ETS1, ARNTL, PPP3CA, HHEX, 

RXRA, TERT, CHP2, TEAD4, TBX1, WWOX, TFAP2B, MEF2C, BCL11B, 

DAB2IP, TET1, EBF3, SOX11, NFATC1, MEIS2, SMAD7, SFRP2, GAL, 

NFIB, TLX2, NFIC, MYF6, SKAP1 

Regulation of transmembrane receptor protein 

seine/threonine kinase signaling pathway 

(GO:0090092) 

0.03248 5 TFAP2B, LTBP4, SOX11, BMP7, SMAD7 

GO: Molecular Function    

RNA polymerase ΙΙ regulatory region sequence- 0.01956 22 TFAP2B, MEF2C, SMARCC1, TFAP2D, DLX5, ZBTB16, SOX11, GATA4, 
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specific DNA binding (GO:0000977) NFATC1, ENO1, ETS1, MEIS2, HHEX, RXRA, CUX1, NFIB, DEAF1, NFIC, 

ZFP42, MYF6, ZNF536, HSF5 

Transcription factor activity RNA polymerase ΙΙ 

core promoter proximal region sequence-

specific binding (GO:0000982) 

0.04652 15 MEF2C, BCL11B, DLX5, EBF3, SOX11, ENO1, ETS1, MEIS2, ARNTL, 

HHEX, NFIB, NFIC, ZFP42, ZNF536, ZNF467 
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Table 4.3: Twenty-five (25) differentially methylated CpGs between the MYCN amplified and MYCN 

non-amplified groups selected by RFE 

 

 

CpG adjusted p-value 

cg00540828 4.276078e-29 

cg01710189 2.392558e-24 

cg13558971 5.777789e-23 

cg23930334 2.474014e-22 

cg03364683 7.279483e-22 

cg19944656 6.866947e-20 

cg23186333 1.801227e-19 

cg25310824 1.964955e-19 

cg20818806 3.380732e-19 

cg09973986 1.051204e-18 

cg06484432 4.085595e-18 

cg07476617 2.075058e-17 

cg22865905 2.403524e-17 

cg09175843 4.275436e-17 

cg22886575 1.358736e-16 

cg25841625 1.564289e-16 

cg26487157 4.648216e-16 

cg22871253 1.528965e-15 

cg12595667 5.146262e-15 

cg17939889 9.408868e-15 

cg14020052 1.592441e-14 

cg02658690 1.720897e-14 

cg15455864 4.358962e-14 

cg16047279 1.709752e-13 

cg22076311 9.729690e-12 
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Figure 4.2: Heatmap of methylation level of the 25 top significant CpG sites (selected by RFE) in the 

MYCN amplification groups plotted with the gplots R package. 126 samples were classified including 

45 MYCN amplified samples and 81 MYCN non-amplified samples. Two main clusters were identified 

with the MYCN amplified samples principally clustered in the left cluster while the MYCN non-

amplified samples were principally clustered in the right cluster. MYCN amplifed samples are coded 

black while MYCN non-amplified samples are coded pink. No sample was misclassified. The heatmap 

colors represent intensity ranging from a lower intensity of red to a higher intensity of yellow.   
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Figure 4.3: Clustering of MYCN amplification samples using all 663 significant CpGs plotted with 

the factoextra R package. The samples are on the x-axis, with MYCN amplified samples labelled with 

A and MYCN non-amplified samples labelled with NA. Two main clusters were identified with the 

MYCN amplified samples principally clustered in the left cluster (black box) while the MYCN non-

amplified samples were principally clustered in the right cluster (red box). 126 samples were clustered 

including 45 MYCN amplified samples and 81 MYCN non-amplified samples. Four (2 MYCN 

amplified and 2 MYCN non-amplified) samples were misclassified. 
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Table 4.4: Results of the machine learning prediction of MYCN amplification of the samples from 

GSE54719, GSE120650 and GSE65306 test sets 

 

 GSE54719 GSE120650 GSE65306 

MYCN 

amplification 

Precision Recall Precision Recall Precision Recall 

Yes 1.0 1.0 1.0 0.87 0.83 1.0 

No 1.0 1.0 0.96 1.0 1.0 0.89 

Accuracy 100% (35/35) 97% (56/58) 93% (26/28) 

 

 

 

 

 

Table 4.5: CpGs selected by the Cox regression model and their respective regression coefficients for 

overall survival (OS) and event-free survival (EFS). Eight CpGs and 5 CpGs were found to be 

significantly associated with OS and EFS respectively. 

 

 

CpG Coefficient OS DMG  CpG Coefficient EFS DMG 

cg00540828 -0.01461534 CUX1  cg01710189 -1.25426856 PDLIM2 

cg01710189 -1.86558620 PDLIM2  cg13558971 0.56167125 ATP2B4 

cg13558971 0.36211640 ATP2B4  cg25310824 0.46332724 SEPP1 

cg25310824 0.53756846 SEPP1  cg07476617 0.44985062 CFLAR 

cg07476617 0.51575895 CFLAR  cg12595667 -0.06647858 CXCR4 

cg22886575 0.18633969 HMX2  

cg12595667 -0.21609796 CXCR4  

cg15455864 0.13284453 SYMPK  
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Figure 4.4: Kaplan-Meier (K-M) estimates of (A) overall survival (OS) and (B) event-free survival 

(EFS) according to MYCN amplification and patient status values; 1 or 0 depending on whether CpG 

scores were above or below the median. Estimates for MYCN amplified patients are in yellow and 

non-amplified in blue. 
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Figure 4.5: Kaplan-Meier (K-M) estimates for the test dataset GSE65306 of (A) overall survival 

(OS) and (B) event-free survival (EFS) according to MYCN amplification and patient status values; 

1 or 0 depending on whether CpG scores were above or below the median. Estimates for MYCN 

amplified patients are in yellow and non-amplified in blue. 
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4.5 Discussion 

 

We aimed at identifying predictive methylation biomarkers of the amplification of MYCN in 

neuroblastoma. The differential methylation analysis identified genes that have also been associated 

with neuroblastoma (Olsson et al., 2016; Decock et al., 2016; Duan et al., 2018) and other cancers 

(Li et al., 2018; Zhang et al., 2020). The differential methylation analysis and clustering results (Fig. 

4.2 and 4.3) also demonstrate that MYCN amplification alters the methylation landscape in 

neuroblastoma and that this methylation landscape differs from that in MYCN non-amplified 

neuroblastoma. The accuracy of the clustering based on all significant CpGs (Fig. 4.3) validated the 

differential methylation results and demonstrated their possible utility as features for ML prediction.  

 

Transcriptional regulation, which was enriched by the molecular function and biological process 

ontologies, is an activity that promotes tumor cell proliferation. Therefore, an increase in global 

transcription activity suggests rapid proliferation of tumor cells. We had also earlier suggested that 

cardiac disorders may be a cause of mortality in neuroblastoma patients (Giwa et al., 2020), and that 

this may be a treatment-related late effect (Friedman and Henderson, 2018). In addition, the ECM 

organization was also enriched in the GO analysis and this correlates with the fact that the ECM is a 

major structural component of the tumor microenvironment, and also plays an important role in tumor 

progression and tumor cell signalling (Walker et al., 2018; Poltavets et al., 2018; Eble and Niland, 

2019; Nallanthigal et al., 2019).  

 

Regardless of the stage of neuroblastoma cancer (i.e. INSS stage 1, 2, 3, 4 and 4s), the high accuracies 

obtained by the SVM model (Table 4.4), constructed on the basis of the 25 significant CpGs selected 

by RFE, demonstrate the validity of these CpGs for the diagnostic identification of MYCN 

amplification in neuroblastoma. The accuracy obtained from the prediction of MYCN amplification 

in both tumor and relapse samples of the GSE65306 dataset, indicates the specificity and accuracy of 

the CpGs in identifying MYCN amplification in neuroblastoma patients. The 2 misclassified samples 
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were from the paired primary tumor and relapse sample of the same patient. The CpG sites found 

here can serve as methylation biomarkers of MYCN amplification and assist our understanding of 

tumorigenesis in MYCN amplified and MYCN non-amplified neuroblastoma. This knowledge could 

allow for the development of reliable and rapid diagnostic assessment of MYCN amplification with 

potential cost and time saving advantages. In addition, the methylated genes can serve as possible 

therapeutic targets as the amplification of MYCN is a known indicator of poor prognosis in 

neuroblastoma.  

 

CIMP has also been used to assess the prognosis of patients with neuroblastoma. However, as noted 

in the introduction, CIMP phenotype can be observed in patients without MYCN amplification, which 

may therefore limit its utility as a biomarker for MYCN amplification. In addition, conflicting findings 

have been reported for the prognostic role of CIMP in CRC cancer due to differences in CIMP 

definitions (Jia et al., 2016). This issue of defining CIMP can also occur in neuroblastoma.  

 

Loss of CASP8 expression by methylation was believed to be a predictor of MYCN amplification 

(Teitz et al., 2000). However, in a large-scale study, no correlation was observed between the 

expression of CASP8 and the amplification of MYCN (Fulda et al., 2006). This may explain why 

CASP8 was not among the identified DMGs in our study, although we found that its paralog, CFLAR, 

was differentially methylated and associated with both overall and event-free survival. Being a 

biomarker for poor outcome, for example methylation of RASSF1A and CASP8, does not necessarily 

mean a biomarker for MYCN amplification as poor outcome can also be observed in non-amplified 

cases (Baali et al., 2018). Our method determined a CpG methylation signature specific for predicting 

MYCN amplification phenotype and poor prognosis in neuroblastoma.                  

 

By reducing the list of CpGs obtained from the ML analysis, the Cox regression model selected 8 

CpGs related to patient overall survival (Table 4.5). The K-M curves (Fig. 4.4 and 4.5) show the 
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ability of these 8 CpGs to distinguish between shorter and longer OS i.e., MYCN amplified and non-

amplified groups respectively, with a significant p-value<0.0001 and HR>1. Additionally, the results 

of the survival analysis (Fig. 4.4 and 4.5) validated the poor prognosis in patients with MYCN 

amplified (Brodeur et al., 1984; Seeger et al., 1985), and suggested 8 CpGs for the prognostic 

diagnosis of MYCN amplification. Since a CpG score above the median is associated with a shorter 

survival, higher methylation of the 3 CpGs with positive coefficients, cg13558971, cg25310824, 

cg07476617 from ATP2B4, SEPP1 and CFLAR genes respectively (Table 4.5), predicts MYCN 

amplification as well as indicates poor prognosis outcome.                                                                                                                     

 

CFLAR is an apoptosis regulator, with significantly higher expression in lung cancer tissues (Zheng 

et al., 2019). Apoptosis resistance is one of the hallmarks of cancer initiation and progression 

(Hanahan and Weinberg, 2011) and the role of apoptosis in cancer and its potential as a cancer therapy 

target has been reviewed (Lowe and Lin, 2000; Pfeffer and Singh, 2018). SEPP1 is involved in 

selenium transport and has been associated with neuroblastoma (Wang et al., 2020) and some other 

cancers, including prostate cancer (Gonzalez-Moreno et al., 2011), gastric adenocarcinoma (Wang et 

al., 2009) and renal cell cancer (Meyer et al., 2012). Similar to our results, Wang et al. (2020) also 

found SEPP1 and thirteen other genes to be prognostic for overall survival in neuroblastoma. ATP2B4 

belongs to a family of plasma membrane pumps (Ca2+-ATPases) involved in calcium homeostasis. 

Cellular processes important for tumorigenesis, such as proliferation, apoptosis, and angiogenesis are 

influenced by calcium ions (Monteith et al., 2007). The association of cg13558971 (ATP2B4) 

methylation with survival is suggestive of the importance of calcium transport in neuroblastoma. 

Satheesh and Busselberg (2015) reviewed the role of intracellular calcium in the development and 

treatment of neuroblastoma and Florea et al. (2017) confirmed the importance of calcium signaling 

in neuroblastoma cells in response to chemotherapy. The specific roles and mechanisms of these 

genes in neuroblastoma still need to be fully clarified, however our study shows that their methylation 
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is associated with amplification of MYCN and poor outcome. This knowledge could be used to 

develop a predictive biomarker panel to assess patient survival in MYCN amplified groups. 

 

Among the fourteen highly methylated genes were genes related to neuroblastoma, and other cancers. 

NXPH1 is a neuronal glycoprotein involved in neuronal differentiation that forms a complex with 

alpha neurexin proteins that promote adhesion between dendrites and axons. Decock et al. (2016) 

proposed NXPH1 as a prognostic methylation biomarker for event-free survival in neuroblastoma. 

NXPH1 may be promoting the growth of tumors by stimulating the proliferation of neuroblastoma 

stem cells. SOX2-OT is a long non-coding RNA with restricted expression towards the brain. It 

regulates SOX2, a key regulator of pluripotency. It has been associated with several cancers such as 

gastric cancer (Farhangian et al., 2018; Qu and Cao, 2018), pancreatic cancer (Li et al., 2018), 

hepatocellular carcinoma (Shi and Teng, 2015) and Cholangiocarcinoma (Li et al., 2018). DLX5 is a 

homeobox-containing transcription factor that promotes neuronal differentiation, neural crest 

development and is essential for osteogenesis (Merlo et al., 2000; Heo et al., 2017). In acute myeloid 

leukemia (AML), promoter hypermethylation of DLX5 led to reduced expression, and correlated with 

lesser overall survival (Zhang et al., 2020). Higher methylation of DLX5 has also been reported in 

colorectal cancer tissue (Mitchell et al., 2014) and breast cancer (Karsli-Ceppioglu et al., 2017). 

DLX6-AS1 is a long non-coding RNA that partially enhances the proliferation, migration and invasive 

abilities of neuroblastoma cells (Li et al., 2020). Olsson et al. (2016) reported similar results with the 

hypermethylation of DLX5 and DLX6-AS1 in aggressive INRG stage M neuroblastoma tumors. 

 

TFAP2D belongs to the activator protein-2 transcription factor family that are essential in cellular 

processes such as apoptosis, migration and differentiation, and have been implicated in cancer (Sun 

et al., 2014; Li et al., 2018). Hypermethylation of a member of its protein family, TFAP2E, is 

associated with clinical non-responsiveness to chemotherapy in colorectal cancer (Ebert et al., 2012) 

and acts as a tumor suppressor in neuroblastoma (Hoshi et al., 2017). TFAP2D may also possibly be 
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acting the same role and further studies are required to establish this claim. TERT rearrangements was 

reported to be the most frequent genetic alteration after MYCN amplification in high-risk 

neuroblastoma (Valentijn et al., 2015; Peifer et al., 2015). Consistent with our results, Olsson et al. 

(2016) also reported hypermethylation of TERT in aggressive tumors of INRG stage M 

neuroblastoma. Cancer cells activate TERT to maintain their telomeres (Valentijn et al., 2015). 

TMCO3 belongs to a family of transporter proteins involved in the coupling of export of monovalent 

cations such as potassium or sodium to import protons across the cellular membrane. Mutations in 

TMCO3 alongside other genes has been suggested as markers for evaluating the effects of 

chemotherapy in neuroblastoma patients (Duan et al., 2018). Methylation of TMCO3 may likely be 

associated with a more favorable prognosis in neuroblastoma. 

 

CAVIN3 plays an important role in the protein kinase c-delta tumor suppression pathway (Lee et al., 

2008). The loss of CAVIN3 has been observed in different cancers, such as breast (Roy et al., 2003), 

cervix (Kozlowski et al., 2006), bladder (Panani et al., 2004), lung (Zhao and Bepler, 2001) and 

stomach (Moskaluk and Rumpel, 1998) cancers. It is commonly altered in colorectal cancer by 

promoter hypermethylation (Lee et al., 2011). It is also downregulated in breast cancer, possibly due 

to methylation (Wikman et al., 2012). KRT19 is highly expressed in multiple cancers serving as a 

diagnostic marker (Sharma et al., 2019). High KRT19 expression is associated with clinical 

progression in lung cancer (Yuan et al., 2021) and correlates with poor prognosis in breast cancer 

(Saloustros et al., 2011; Kabir et al., 2014). Further studies are necessary to uncover the precise roles 

of these genes in neuroblastoma.                                                                                                                  

 

In this study, we aimed to propose a CpG signature that accurately predicts MYCN amplification and 

is associated with patient survival. Our method, summarized in (Fig. 4.1), generated a CpG signature 

capable of predicting MYCN amplification with high precision. We used the ChAMP R package 

(Morris et al., 2014; Tian et al., 2017) to discover DMGs between MYCN amplified and non-amplified 
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neuroblastoma tumors and the ChAMP.DMP() function was designed to compare methylation 

between two phenotypes. The high prediction accuracy scores obtained from the SVM model 

demonstrates the correctness of the obtained CpG signature, with the number of the significant CpGs 

used in the prediction selected by RFE. DNA methylation based diagnostic methods is increasingly 

used in clinical practice (Sahm et al., 2018; Capper et al., 2018, Liu et al., 2020). Aberrant DNA 

methylation patterns have been observed and reported to play a role in neuroblastoma pathogenesis 

(Abe et al., 2005). It is expected that epigenetic prognostics and therapeutics will be commonplace in 

the clinic in the near future. This is a purely computational based study. Although some of the DMGs 

identified here have already been associated with neuroblastoma, functional studies are still needed 

to discover the role of certain DMGs in the pathogenesis of neuroblastoma. 

 

4.6 Conclusion  

 

This study demonstrated the utility of CpG methylation profiling for subgrouping neuroblastoma 

tumors and for predicting clinical events. We identified 25 CpGs capable of stratifying neuroblastoma 

samples on the basis of MYCN amplification status, thereby demonstrating their ability to be used as 

diagnostic indicators of MYCN amplification in neuroblastoma. We also evaluated the impact of the 

25 CpGs methylation on the survival of patients with neuroblastoma using Cox regression analysis 

and identified a list of 8 CpGs associated with survival in neuroblastoma. The DMGs reported in this 

study include some known genes associated with neuroblastoma as well as novel ones. This study 

furthers our understanding of the mechanisms of tumor progression in neuroblastoma. Therapeutic 

interventions may need to be targeted at patient subgroups level in order to optimize treatment 

outcomes and improve survival.                   
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Chapter 5 

 

5.0 Conclusions and further considerations  

 

5.1 Summary 

 

5.1.1 What was done 

 

We requested for and obtained approval to access the TARGET neuroblastoma dataset 

(phs000218.v22.p8) in NCBI Database of Genotypes and Phenotypes (dbGaP). The data was 

accessed through https://www.globus.org and downloaded to the SANBI compute cluster. The results 

were then reviewed in conjunction with the original study, Pugh et al. (2013). TARGET gene 

expression RNA-Seq counts on the Xena database were then programmatically accessed. Differential 

gene expression analysis, Gene Ontology enrichment analysis, gene regulatory network analysis and 

machine learning techniques were applied to the gene expression dataset to uncover a novel genetic 

signature prognostic of survival time in high-risk neuroblastoma. We also accessed Neuroblastoma 

tumor methylation data from the TARGET data matrix. Differential methylation analysis, clustering 

analysis, Cox regression & Kaplan-Meier estimates, and machine learning prediction were applied to 

the methylation dataset to uncover a novel methylation signature diagnostic of MYCN amplification, 

and prognostic of survival and poor prognosis in neuroblastoma.   
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5.1.2 What was found 

 

As reported in Pugh et al. (2013) and in the pediatric oncology community, there is relative paucity 

of mutations in neuroblastoma. Analysis of other omics data types such as the transcriptome and 

methylome is therefore critical and necessary. A 16-gene (EVX2, NHLH2, PRSS12, POU6F2, 

HOXD10, MAPK15, RTL1, LGR5, CYP17A1, OR10AB1P, MYH14, LRRTM3, GRIN3A, HS3ST5, 

CRYAB and NXPH3) expression signature was discovered capable of predicting survival time in high-

risk neuroblastoma. It was also uncovered that the less studied gene SMIM28 may possibly have a 

role in the proliferation and aggressiveness of neuroblastoma tumors. 663 CpGs of 369 genes were 

found to be differentially methylated between MYCN amplified and MYCN non-amplified samples. 

Application of machine learning techniques found a 25-CpG signature to be diagnostic of the 

amplification and non-amplification of MYCN in neuroblastoma. Eight CpGs were also found 

associated with survival, with methylation of cg13558971 (ATP2BP4), cg25310824 (SEPP1) and 

cg07476617 (CFLAR), indicative of poor outcome in MYCN amplified neuroblastoma. Some of the 

differentially expressed and methylated genes reported in this research project are associated with 

neuroblastoma while many are novel, being reported for the first time.  

 

5.2 Potential future research 

 

The novel genes identified in this project provide opportunities for the development of functional 

validation assays to assess their roles in neuroblastoma. This can be through designing experiments 

where the expression of these genes are knockdown or silenced using molecular techniques such as 

RNA interference, small molecule inhibitors and CRISPR-Cas9 on neuroblastoma cell lines and 

Mouse models. Epigenetic targeting of these novel genes with DNA methyltransferase inhibitors and 

histone deacetylase inhibitors can also be explored. It also opens the possibility of combinatorial 

therapy where genes can be targeted at multiple levels as described above, at the same time.     

http://etd.uwc.ac.za/ 
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5.3 Potential clinical applications 

 

The results obtained in this project has strong potential to be clinically used to stratify neuroblastoma 

patients. This knowledge can improve diagnosis and prognosis of clinical events in neuroblastoma 

patients and can thus be translated to clinical use. It can be used in combination with current clinical 

methods in follow-up or management of neuroblastoma patients. 

5.3.1 Clinical applications: Immediate 

 

Based on the results of this research project, a pediatric oncologist can obtain gene expression and 

methylation data from a neuroblastoma patient at diagnosis, and using machine learning techniques 

as reported in this study, determine if that patient has or does not have MYCN amplification, as well 

as make a combined survival time prognosis using both gene expression and methylation data. This 

information can then influence clinical management decisions by the pediatric oncologist with the 

goal to ensure survival with possible minimal toxicity (Figure 5.1). 

 

5.3.2 Clinical applications: Future  

 

In the future, standardized laboratory tests and kits can be developed for first line use during diagnosis 

and management of neuroblastoma patients. Combining the gene expression and methylomic 

signatures should improve the prognostic performance of such standardized tests. The utility of 

applying machine learning algorithms to methylation data is fast growing. Liu et al. (2020) developed 

an exciting methylation-based blood test that detects more than 50 cancer types across stages with 

high specificity. This test was based on applying machine learning algorithms on methylation data 

from cell free DNA in the blood of individuals. We are moving to a point in medicine where 

methylation-based biomarkers and epigenetic therapeutics will be commonplace in the cancer 

therapeutic space. The results of this research project are in line with this vision. 

http://etd.uwc.ac.za/ 
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Figure 5.1: Summary of the potential clinical application of the findings of this research project 

http://etd.uwc.ac.za/ 
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