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 ABSTRACT 
 

Groundwater dependent vegetation (GDV) communities are increasingly threatened by the 

transformation of the natural environment to different land use/land cover, over-exploitation of 

groundwater resources and the proliferation of invasive species within the Cape Floristic Region 

(CFR). These changes affect the groundwater regime, level, and quality, which supports GDV. 

Natural resource managers often lack an understanding at appropriate scales of the nature of 

dependency of GDV to make informed sustainable decisions. This work thus assesses the spatial 

distribution of GDV and their responses to groundwater variability within the Cape floristic region 

from June 2017 to July 2018. To achieve this aim, firstly a literature review on the background of 

GDV, threats and the impact of climate change was assessed. Further, the literature elaborated on 

progress of geospatial technology for GDV detection and monitoring, associated challenges, and 

possible future research directions. The review has indicated that scientific research on GDV has 

gained considerable attention. Of significant importance is an increase in studies integrating field 

measurements and model-based techniques with remotely sensed estimates. Despite the progress 

in GDV scientific research, further remote sensing studies are required to understand the annual 

and inter-annual vegetation response to groundwater variability at local scales. Moreover, new 

generation remote sensing products integrated with machine learning techniques have the potential 

to improve GDV assessments. The review has also revealed that vegetation response to 

groundwater variability is dependent on the type of vegetation at certain thresholds. Secondly, the 

performance of the two multispectral data from Landsat 8 OLI (L8) and Sentinel 2A (S2) were 

investigated. Further, the influence of derived spectral indices in mapping the potential distribution 

of GDV in the catchment was also assessed. The GDV distribution maps were produced by 

integrating vegetation productivity, landcover, slope and surface curvature layers as GDV potential 

indicators. Landcover, slope, and surface curvature layers were kept constant while the vegetation 

productivity layers were derived from the normalised difference vegetation index (NDVI) and the 

soil-adjusted vegetation index (SAVI). The findings of the study revealed that the GDV 

classification had no significant difference based on the McNemar’s test. Specifically, the S2-

derived SAVI mapped GDV areas with the highest overall accuracy (97%), followed by the L8-

derived SAVI with 96%. The L8(NDVI) derived GDV map has an accuracy of 92%. Overall, the 

area has a 2.34-2.60% coverage of potential GDV. It was further observed that the north western 
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parts of the catchment had a high potential for GDV when compared to other areas. This work 

demonstrated the capabilities of a combined remote sensing and GIS methodology to improve 

knowledge on GDV and their management. Lastly, groundwater and vegetation interaction during 

a drought period (June 2017 to July 2018) was investigated for riparian and hillslope environments 

using moderate resolution remote sensing data. The NDVI derived from Moderate Resolution 

Imaging Spectroradiometer (MODIS) was used as a vegetation proxy to assess vegetation 

dynamics. In addition, the relationship between vegetation productivity, rainfall, and temperature 

was analysed using regression techniques. The time series analysis and linear regression indicated 

that groundwater depth is strongly associated with 1-month lagged R (0.54 - 0.71) compared to the 

non-lagged R (0.45 - 0.62).  Hillslope vegetation was observed to be more sensitive to groundwater 

than riparian vegetation. This was evidenced by the larger gain/loss range in NDVI with variations 

in groundwater levels. However, these responses varied significantly between the sites under 

study. The study demonstrated that groundwater depth variability is a function of seasonal changes, 

which induces a response to vegetation productivity. Rainfall and groundwater depth had minimal 

impacts on vegetation productivity, except for riparian vegetation that demonstrated a strong 

association with rainfall. The findings of this study underscore the relevance of remote sensing 

datasets and statistical analysis methods in understanding prevalent groundwater-vegetation 

interactions in semi-arid environments. 

Keywords: Arid environments; fynbos ecosystem; invasive species; satellite data; vegetation 

health; water scarcity  
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CHAPTER ONE 

1.1 Introduction 

Terrestrial vegetation is a major component of terrestrial ecosystems and plays a vital role in 

energy flow, global carbon, and water cycles (Zhao et al., 2018). Not only do natural terrestrial 

ecosystems contribute to the economy through ecotourism; they are also the genetic hub for 

bioprospecting and the preservation of biodiversity (Williams, 2018). Vegetation provides 

valuable ecosystem services such as flood control, water purification, pollinator habitats and 

recreational opportunities. In arid regions, vegetation is a major producer of organic material 

contributing biological components to the soil (Lv et al., 2013). Vegetation buffers desertification 

process and maintains natural environmental conditions (Lv et. al., 2013; Wang et al., 2011). With 

the many benefits gained from terrestrial vegetation, it is imperative that these are protected and 

safeguarded. 

Factors such as precipitation, temperature, and groundwater affect vegetation distribution and 

vigour. In arid and semi-arid environments, potential evaporation exceeds annual precipitation. 

Two-thirds of the sub-Saharan African landscape comprises arid and semi-arid land that 

experiences less than 500mm/yr of precipitation and of that amount; only 2% replenishes 

groundwater resources (Wada et al., 2010; Xu and Beekman, 2003). Terrestrial vegetation has 

limited access to surface water. Therefore, groundwater is an important resource affecting soil 

moisture availability, which affects vegetation structure and distribution (Liu et al., 2017). Some 

terrestrial vegetation in semi-arid regions is maintained by direct and indirect access to 

groundwater and is collectively called Groundwater Dependent Vegetation (GDV) (Zhang et al., 

2019). Global environmental change, infrastructural developments and the overexploitation of 

water resources threaten the ecological integrity of GDV (McDowell and Moll, 1992; Rouget et 

al., 2003). For instance, global change has widespread effects on the Earth’s terrestrial ecosystems 

such as habitat loss and fragmentation, biological invasions, pollution, and climate change, which 

are rapidly eroding biodiversity and threaten ecosystem functioning and services (Foley et al. 

2005; Maxwell et al. 2016). This compromises the sustained provision of ecosystem goods and 

services (Rouget et al., 2003; Shadwel and Febraury, 2017). Monitoring vegetation condition and 

its response to environmental and global changes overtime creates an understanding of change 

processes and potential areas affected and at risk (Franklin et al. 2016). Information on vegetation-
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groundwater interactions will guide in policy making, setting restrictions and strategic planning 

for groundwater use within the region. Such information is also critical for supporting agendas on 

sustainable future development, e.g., the United Nations’ (UN) Sustainable Development Goal 15 

on ‘Life on Land’ (United Nations, 2018). Vegetation condition and its response to global change, 

is specified in the lists of Essential Climate Variables (Bojinski et al. 2014) and Essential 

Biodiversity Variables (Pereira et al. 2013). 

The trade-off that exists between the efficiency, level of detail, costs offered by the monitoring 

techniques limits groundwater-vegetation interaction monitoring (Hoyos et al., 2016). Only water 

chemistry indicators can give conclusive evidence to groundwater and vegetation interactions and 

may help identify where plants use groundwater and the amount of water used. Other indicators 

are indirect and include Eddy correlation, Bowen ratio, climatic indices, sap flow measurements, 

plant phenology, ground-based leaf area index etc. to assess the influence of groundwater 

variability on vegetation (Colvin et al, 2003; Eamus et al., 2015; Hoyos et al., 2016). While these 

methods provide highly detailed information, the low spatial and temporal scale limits their 

applicability at broad scales. These methods are also costly and labour intensive. 

Remote sensing has emerged as an efficient monitoring tool that can provide crucial vegetation 

information about its status and even response to change or changing disturbance regimes at 

community or landscape scale (Griffiths et al., 2018; Wessels et al., 2007; Zhu et al. 2019). The 

potential for remote sensing in monitoring vegetation-groundwater interaction must be determined 

(Münch and Conrad, 2007; Rohde et al., 2017). There is a lack of knowledge on the applicability 

of satellite and spectral data in determining groundwater-vegetation interactions, especially at 

species and community levels. Therefore, Sentinel 2, with a 5-day revisit period and 10m pixel 

size, is likely to provide new opportunities for vegetation mapping–a previously challenging task 

with coarse resolution satellite products. Unlike its predecessors, i.e., Landsat series, MODIS, 

AVHRR data, Sentinel 2 data provides new information in other applications which include 

vegetation mapping (Grabska et al, 2019; Da Silveira et al., 2018), biomass estimation (Sibanda et 

al., 2015) and water quality monitoring (Du Y, et al., 2016). It is on this premise that this study 

utilises sensors with improved sensing characteristics to identify and assess GDV and the response 

to groundwater dynamics. This study proposes a remote sensing methodological framework to 

understand vegetation responses to groundwater variability under extreme climate conditions. 

http://etd.uwc.ac.za/ 
 



3 
 

1.2 Problem Statement 

Climate variability and its associated changes in rainfall distribution and amount pose a threat to 

groundwater resources and related groundwater dependent vegetation (Eamus et al., 2015a). There 

is adequate understanding of vegetation responses under normal seasonal variations in 

groundwater, and the effects of a declining water table because of over abstraction. However, there 

is a gap in understanding vegetation response under extreme climate conditions, such as droughts. 

The lack of knowledge is because of the hydrological complexities of groundwater-vegetation 

interactions intensified by the heterogeneity, anisotropy, difficulty in setting parameters and scale 

issues (Naumburg et al., 2005; Eamus et al., 2015). There is thus a need to establish robust 

methodologies that can aid in monitoring groundwater dependent vegetation and its response to 

variations in groundwater under a drought period. The information gained will facilitate the 

adaptive management of groundwater and help conserve the endemic fauna. The following 

research questions need to be addressed. 

1. To what degree can remote sensing be used to delineate groundwater dependent vegetation in 

the Cape floristic region? 

2. How does terrestrial vegetation productivity respond to groundwater fluctuations? 

3. What is the strength of vegetation dependence on groundwater? 

4. Do vegetation responses to groundwater variability vary between riparian and hillslope 

environments? 
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1.3 Main Aim 

The aim of this study is to assess the distribution of groundwater dependent vegetation and their 

responses to groundwater variability within the Cape floristic region in the Western Cape, South 

Africa.  

Specific objectives: 

i. To determine the spatial distribution of groundwater dependent vegetation within the 

Heuningnes catchment. 

ii. To characterize dominant vegetation species within this catchment. 

iii. To assess riparian and hillslope vegetation responses to groundwater variability over time 

and space. 

iv. To assess the influence of climate factors on riparian and hillslope vegetation productivity. 

1.4 Thesis Outline 

General outline of the thesis 

This dissertation comprises five chapters, with three standalone papers that are based on the 

literature review and two analysis papers from the objectives. Some of these have been presented 

as published in the international journals, and some have a few minor adjustments suitable to fit 

the dissertation format. However, repetition or overlaps may be present because of the consistency 

of each manuscript with the overall aim of this study.  

Chapter 1: Introduction 

This chapter provides the overview and background of this study. The driving research questions, 

principal aim and objectives of this study are presented. 

Chapter 2: Literature Review 

This chapter aims to provide a detailed overview of the progress in remote sensing of terrestrial 

groundwater dependent vegetation (GDV). The chapter provides a background on GDV and 

threats, and then further explores recent knowledge on vegetation response to groundwater 

variability and climate change impacts on GDV. This review also focuses on recent progress in 
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remote sensing (RS) and geographic information systems (GIS) based techniques for mapping and 

monitoring of GDV and explores the available satellite products and classification techniques. 

Finally, the challenges of remote sensing and future research direction are explored. 

Chapter 3: Objective one and two 

This chapter aimed to assess and map the potential distribution of GDV within the Heuningnes 

Catchment using multispectral remotely sensed (i.e., Landsat 8: L8 and Sentinel 2: S2) and in situ 

data. The study also compared the performance of the two multispectral data and the influence of 

derived spectral indices in mapping the distribution of GDV in the catchment. 

Chapter 4: Objective three and four 

This chapter aimed to assess groundwater and vegetation interaction during a drought period 

between June 2017 to July 2018 for riparian and hillslope environments using multispectral remote 

sensing data. In addition, the relationship between the vegetation productivity, rainfall and 

temperature was analysed. Specifically, the vegetation and groundwater depth correlation were 

investigated for immediate and lagged interactions. 

Chapter 5: Synthesis 

This chapter summarises the main findings, conclusions, and recommendations drawn from the 

study. 
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CHAPTER TWO 

Impacts of Groundwater and Climate Variability on Groundwater Dependent 
Vegetation: A Review of Geospatial Assessment Approaches, Challenges and 

Possible Future Research Directions 
 

Abstract 

Groundwater dependent vegetation (GDV) are crucial ecosystems which provide important goods 

and services such as carbon sequestration, habitat, water purification and aesthetic benefits in semi-

arid environments. Global climate change and anthropogenic effects on surface water resources 

have led to increased competing claims on groundwater resources to meet an exponential water 

demand for environmental, agricultural and developmental needs. This has led to the unsustainable 

exploitation of groundwater resources, resulting in groundwater table decline that threatens the 

sustainability of GDV. It is on this premise that this chapter aims to provide a detailed overview 

on the progress in remote sensing of GDV. Specifically, the chapter provides a background on 

GDV and threats, and then further explores recent knowledge on vegetation response to 

groundwater variability and climate change impacts on GDV. This chapter also focuses on recent 

progress in remote sensing (RS) and geographic information systems (GIS) based techniques for 

mapping and monitoring of GDV and explores the available satellite products and classification 

techniques. Finally, the challenges of remote sensing and future research direction are explored. 

To date, research on GDV has gained considerable interest with the year 2020 releasing the most 

publications. Of significant importance is an increase in studies integrating field measurements, 

model-based techniques with remotely sensed estimates. Despite this progress, only 0.06% of 

groundwater dependent ecosystems (GDE) research has utilized remote sensing techniques in the 

past 20 years, with the top three publishing countries namely, Australia, USA, and China. The 

literature reveals that GDV communities are highly heterogenous, complex ecosystems with 

unique responses to variable groundwater tables. The vegetation responses differ with the 

landscape, vegetation type, and seasonality at specific groundwater table thresholds. Despite 

progress in GDV scientific research, further remote sensing studies are required to understand the 

annual and inter-annual vegetation response to groundwater variability at local scales. Further, 

climate impacts are difficult to discriminate from other influences such as disturbances, 
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management, and anthropogenic activities. Moreover, new generation remote sensing products 

integrated with machine learning techniques have the potential to improve GDV delineation. 

Despite these challenges, the development of cloud computing technologies such as google earth 

engine (GEE) and artificial intelligence (AI) provide advanced computer-processing capabilities 

for long-term monitoring and integration of multi-source datasets required to capture the effects 

of climate and groundwater variability on GDV. 

Keywords: Arid environments; Cloud computing; Groundwater resources; Satellite data; 
Vegetation responses 

2.1 Introduction 

Vegetation is a major component of terrestrial ecosystems and plays a vital role in energy flow, 

global carbon circulation, and the hydrological cycle (Zhao et al., 2012). It is estimated that 29% 

of global carbon emissions are decreased by terrestrial vegetation, thus reducing the accumulation 

of atmospheric carbon dioxide (Cernusak et al., 2019). Further, desertification processes are 

buffered by vegetation cover which maintain healthy natural environmental conditions (Lv et al., 

2013). About 25-40 tonnes of the topsoil is eroded annually, due to vegetation clearing and 

cultivation as well as poor land management practices (FAO and ITPS, 2015; Lv et al., 2013). 

During this process, 23-42 tonnes of phosphorous and nitrogen are transported from land, 

decreasing the soils ability to regulate nutrients, carbon, and water (FAO and ITPS, 2015). In 

addition, the vegetation communities provide other valuable ecosystem services such as flood 

control, water purification, pollinator habitats and recreational opportunities (DeFries and 

Bounoua, 2004; Gerten et al., 2004; Northcote and Atagi, 1997). A study by Blevins and Aldous, 

(2011) revealed that 17% of terrestrial vegetation in the United States were groundwater dependent 

and provided habitat for 39% invertebrates. In arid regions, vegetation is a major contributor of 

soil organic material which fosters soil aggregation, water attenuation and nutrient accumulation 

(Lv et al., 2013). Furthermore, vegetation contributes to the economy through ecotourism, as a 

genetic hub for bioprospecting and in the preservation of biodiversity (Williams., 2018). In 2011, 

the global economic value of ecosystem services was estimated at 124.8 trillion USD and the 

benefits of ecosystem conservation far exceed the costs of conservation (Costanza et al., 2014). 

Therefore, it is imperative that vegetation is protected and safeguarded from both natural and 

anthropogenic threats.  
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Climate variability affects water availability and temperature which in turn affect vegetation 

distribution, health and productivity (Barron et al., 2014; Kløve et al., 2014). Moreover, a third of 

the sub-Saharan African landscape consist of arid and semi-arid land, which experiences low 

rainfall with annual averages below 500mm/yr. Only 2% of the average rainfall replenishes 

groundwater resources (Wada et al., 2010; Xu and Beekman, 2003). Available surface water for 

terrestrial vegetation in these regions is highly limited. Therefore, groundwater is an important 

resource for growth, species composition and structure as well as the distribution of terrestrial 

vegetation (Liu, 2011). In addition, some terrestrial vegetation in arid and semi-arid regions is 

maintained by direct and indirect access to groundwater and is collectively referred to as 

groundwater dependent vegetation (GDV) and sometimes as phreatophytes (Richardson and 

Kruger, 1990). These are a type of groundwater dependent ecosystems (GDE). 

 

Global environmental change, infrastructural developments and most importantly, over-

exploitation of surface and groundwater resources has largely compromised the ecological 

integrity of ecosystems (McDowell and Moll, 1992; Rouget et al., 2003). Global change has 

widespread impacts on the Earth’s terrestrial ecosystems such as habitat loss and fragmentation, 

biological invasions, pollution, frequent droughts, and climate change which rapidly erode 

biodiversity and threaten ecosystem functioning (Lv et al., 2013). For instance, available water for 

terrestrial vegetation has been compromised due to escalating air temperature, prolonged droughts 

as well as over-exploitation of groundwater resources for anthropogenic activities (Williams, 

2018; Krogulec, 2018). Subsequently, this compromises the ability for GDV to provide essential 

ecosystem goods and services (Rouget et al., 2003; Shadwel and Febraury, 2017). Monitoring 

vegetation conditions and its response to environmental and global changes overtime improves our 

understanding of change processes, and help identify affected and vulnerable areas (Franklin et 

al., 2016). Information on the nature and types of vegetation-groundwater interactions will guide 

policymaking, setting restrictions and developing strategic mechanisms for groundwater use 

within the region. In this regard, such information is also critical for supporting agendas on 

sustainable future development, for example the United Nations’ (UN) Sustainable Development 

Goal 15 on ‘Life on Land’ (United Nations, 2017). Vegetation condition and its response to global 

change, is specified in the lists of Essential Climate Variables (Bojinski et al., 2014) and Essential 

Biodiversity Variables (Pereira et al., 2013).  
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So far, groundwater-vegetation interaction monitoring has been limited by the trade-off that exists 

between the costs, efficiency, and level of detail offered by the techniques employed (Hoyos et al., 

2016). Water chemistry indicators can give direct evidence to groundwater and vegetation 

interactions, which helps determine groundwater dependence (Colvin et al., 2007; Orellana et al., 

2012). Other indicators are inferential and include; Eddy correlation, Bowen ratio, climatic indices, 

sap flow measurements, plant phenology, and  leaf area index using ground-based equipment 

(specialized leaf area meter), to assess the influence of groundwater variability on vegetation 

(Colvin et al., 2003; Eamus et al., 2015a; Hoyos et al., 2016). While these methods provide highly 

detailed information, they are limited in that they are costly, resource intensive, and are unsuitable 

for catchment scale assessment of GDV as they provide site specific information. 

Remote sensing has emerged as an efficient monitoring tool that can provide crucial vegetation 

information on the status and response to environmental change at community or landscape scale 

(Griffiths et al., 2019; Wessels et al., 2008; Zhu, 2017). The success of remote sensing in assessing 

vegetation response to water availability is well documented in literature (Colvin et al., 2003; 

Boulton and Hancock, 2006; Münch and Conrad, 2007; Rohde et al., 2017a; Parker et al., 2018). 

However, there is a dearth in knowledge on the applicability of satellite and spectral data for 

determining groundwater-vegetation interactions, especially at species level. Current research 

primarily focuses on global groundwater availability and its impact on society with limited 

research focusing on ecosystem impacts. The state of knowledge on vegetation and groundwater 

interactions (Le Maitre et al., 1999; Colvin et al., 2003; Eamus and Froend, 2006; Bertrand et al., 

2012) and recent techniques for mapping and assessing GDV (Eamus et al., 2015a; Hoyos et al., 

2016; Klausmeyer et al., 2018) is well documented. Therefore, this review chapter aims to develop 

a detailed synthesis on the progress and development of remote sensing integrated with geographic 

and information systems in assessing GDV over fine spatial and temporal scales. More 

specifically, the review objectives are to a) provide a detailed background on GDEs b) Give an 

overview of groundwater vegetation interactions, assess the effects of climate induced 

groundwater variability on groundwater dependent vegetation c) exemplify the application of 

remote sensing (RS) and geographic information systems (GIS) in identifying GDV d) discuss the 

application potential role of RS and GIS in future applications. The chapter will be a synthesis of 

the state of knowledge on the physical response patterns and threshold to acquire a comprehensive 

understanding on the degree of dependency of GDV in arid environments. The assessment on 
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recent techniques in identifying GDV should prompt research on their potential to acquire 

information useful for GDV management. 

 2.2 Literature Search on Groundwater Dependent Ecosystems  

Relevant literature was acquired from several search engines such as google scholar, SCOPUS, 

and the Web of Science Core Collection (WoSCC). Numerous expressions or topic search key 

words were used, and these included: “groundwater”, “groundwater dependent ecosystems”, 

“remote sensing”, “climate and groundwater”, “semi-arid and arid”, “phreatophytes” and 

“terrestrial vegetation” were used to source literature from international peer-reviewed journals. 

These words were selected to retrieve information that provides the background on the interaction 

of groundwater and the dependent vegetation and highlight the progress in the use of remote 

sensing approaches. The literature search range was from 2000-2021 with a total of 200 articles 

from international peer reviewed journals, thesis and reports. An additional source for literature 

was obtained through a rigorous assessment of references cited by the read papers. Due to the 

paucity of studies of remote sensing applications the review was not limited to a specific criterion. 

Consequently, studies that used remote sensing data for the assessment and monitoring of GDV 

were considered. The literature search revealed that most publications largely focused on GDEs in 

general, 52% of those were on groundwater dependent vegetation with only 0.06% GDE 

incorporating remote sensing approaches. An increase in the number of publications on 

groundwater dependent ecosystems and GDV was noted (Figure 2.1).  
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Figure 2. 1 Number of publications on GDEs, GDV and remote sensing of GDEs from 2000-
2021 
   

 2.3 Background on Groundwater Dependent Ecosystems 

GDEs are communities of plants, animals and microorganisms that continuously or to some extent 

rely on the available groundwater to maintain their structure and functioning (Colvin et al., 2003; 

Kløve et al., 2011). GDEs may be maintained by direct or indirect access to groundwater and rely 

on the flow regime and chemical characteristics of groundwater (Hatton and Evans, 1998). In this 

regard, when groundwater is limited, the functioning and structure of these ecosystems will be 

significantly altered. Various classification systems have been introduced based on the geographic 

setting in which they exist and the type of aquifer-ecosystem interface (Hatton and Evans 2003; 

Sinclair 2001; Colvin et al., 2007). A classification system with three basic classes based on the 

type of groundwater reliance was introduced by Eamus et al., (2006). The ecosystem classification 

method makes distinguishing and identifying groundwater dependence much easier and improves 

ecological risk assessments. This review focuses on the terrestrial vegetation class and moreover 

the third class according to Eamus et al., (2006) which is a classification system (Table 2.1).  
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Table 2. 1 Summary of GDE Classification according to Eamus et al., (2006) 

Class Ecosystem type Members 
I Aquifer and cave systems Stygofauna 
Ii Ecosystems dependent on the surface expression of 

Groundwater 
wetlands, river base flow, 
floodplains, riparian vegetation, 
low lying springs, mound springs 

Iii Ecosystems dependent on the subsurface expression of 
Groundwater 

Terrestrial vegetation 
(Phreatophytes) and associated 
dependent flora and fauna  

 

GDV is vital for biodiversity conservation and provides ecological resources in terrestrial 

ecosystems. Surface water and groundwater resource quality is maintained by groundwater 

dependent vegetation (Hoyos et al., 2016). For example, vegetation aid in the attenuation and 

infiltration of surface water recharge into the aquifer. Terrestrial vegetation also play an important 

role in preventing soil erosion, provide vital habitats and act as corridors for migratory species 

(Kreamer et al., 2015). Terrestrial vegetation dependent on groundwater also acts as nutrient 

pumps and provide water to shallow rooted plants through hydraulic lift. In recreational areas such 

as national parks and fisheries, GDV have economic and aesthetic value and provide ecosystem 

services such as runoff interception and carbon capture (Rohde et al., 2017; de Klerk et al., 2012). 

Therefore, research on GDV has continued to develop, and has renewed interest due to increased 

natural and anthropogenic threats (Chambers et al., 2013; Mawdsley et al., 2009).  

 2.4 Threats to GDV 

Groundwater and associated ecosystems are increasingly threatened by global environmental 

change. These are planetary-scale changes in the Earths’ systems (land, oceans, atmosphere, the 

planet’s natural cycles and deep earth processes), which encompass changes in population, climate, 

resource use, land use and land cover (Noone et al., 2011). An ever-growing population, 

agricultural and economic development coupled with a changing climate have heightened the 

pressure on water resources. Climate change has decreased the reliability of surface water 

resources. As a result greater consideration has been given to groundwater as a resilient freshwater 

resource that can augment surface water resources (MacKay, 2006; Kundzewicz and Döll, 2009). 

Subsequently, groundwater exploitation has drastically increased with 33% of the global available 

freshwater supply obtained from groundwater (Vaux, 2011; Richey et al., 2015). Moreover, global 

groundwater levels and volume have been reported to be on the decline (Richey et al., 2015). 
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Modification of groundwater levels and the deviation of flow patterns from the natural 

groundwater regime due to anthropogenic influence and climate change have detrimental impacts 

on the structure and functioning of groundwater dependent vegetation communities (Kløve et al., 

2014; Loomes et al., 2013). Therefore, there is a need to develop management plans and policies, 

which promote the sustainable use of groundwater resources. Thereby mitigating negative 

environmental impacts such as storage depletion, saltwater intrusion, wetland and riparian habitat 

loss, land subsidence and reductions in stream flow. The influence of elevated groundwater 

demand is exacerbated by a rapidly changing climate (IPCC, 2014). Long term variability in 

precipitation, temperature and wind threatens the health and abundance of GDV which is 

influenced by the spatial and temporal availability of groundwater (Chambers et al., 2013). Global 

average surface temperatures have been estimated to increase by 0.84 degrees Celsius from 1880-

2012. This rise has been associated with negative impacts on groundwater quantity and quality. 

Under all climate scenarios, global surface temperatures are expected to rise. Further, drought and 

flood events are predicted to increase in the 21st century (IPCC, 2014). Reduced precipitation and 

elevated temperatures are detrimental on groundwater levels because of limited groundwater 

recharge and increased plant water demand (Noone et al., 2011; Kløve et al., 2014). There is a 

large body of literature on anthropogenic impacts on GDV (Muñoz-Reinoso, 2001; Krause et al., 

2007; Huang et al., 2020). However, there is little scientific research focus on the impacts of 

climate variability especially on terrestrial vegetation (Barron et al., 2012; Kløve et al., 2011; 

Taylor and Tindimugaya, 2011). Groundwater and associated ecosystems are particularly 

vulnerable to climate impacts as the resource is unseen and there exists a time lag before the 

response is noticed (Morsy et al., 2017). In some instances, inappropriate management policies 

and strategies have also been linked to the degradation of GDV (Morsy et al., 2017). Therefore, a 

comprehensive synthesis of knowledge on the interactions and response mechanisms for 

groundwater and dependent vegetation will ensure the formation of adaptive and holistic 

management plans.  

 2.5 GDV Response to Groundwater Variability 

Groundwater availability affects the spatial distribution and abundance of terrestrial vegetation 

(Orellana et al., 2012). Numerous studies have been conducted to establish the relationship 

between groundwater and vegetation (Eamus et al., 2006; Rodriguez-Iturbe and Porporato, 2005; 
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Le Maitre et al., 1999). Vegetation response to fluctuating groundwater levels varies  from non-

observable changes to alterations of the entire community structure based on their physical and 

biological properties (Naumburg et al., 2005). Several studies were conducted to characterize 

phreatophytes according to their relations to groundwater depth (Robinson, 1958; Loheide et al., 

2005). They reported that a decreasing water table could result in severe plant water stress when 

the rate of plant root development is insufficient or when the soil has low water holding capacity. 

Therefore, a declining water table limits the amount of water available for vegetation resulting in 

plant water stress and decreased plant productivity (Loheide et al., 2005; Naumburg et al., 2005). 

Further , Han and He, (2020) reported a decrease in leaf intensity with a receding water table. 

Alternatively, a rising water table can flood plant roots resulting in anoxic stress (Naumburg et al., 

2005). In another study, Meinzer, (1929) reviewed GDV species and characterized them according 

to their rooting depth. Results revealed that rooting density decreased with an increase in depth to 

groundwater, the physiological characteristics of GDV included dimorphic roots, which allow 

them to exploit deep groundwater sources. It was also determined by Laio et al., (2009) that a 

decline in groundwater level may cause an increase in the plants rooting zone and an increased 

aerated soil profile suitable for new root development. Additionally, Zhang et al., (2020) modelled 

the spectral vegetation response to depth to groundwater table using the Tsallis Entropy Theory. It 

was reported that vegetation response was not uniform, different thresholds exist for grassland, 

shrubland, and forest vegetation. They found that at depths (>1m) normalised vegetation index 

(NDVI) decreased with increasing depth, the alternative was also true, whereby NDVI declined 

with the rising water table at depths (< 1m) (Figure 2.2). Therefore, deeper water tables increase 

soil volume available for the storage of precipitation and hydraulically lifted water that can 

drastically increase the water available for plant use and growth. Also, in arid environments 

evapotranspiration can result in salt accumulation in soils, elevated groundwater levels limit the 

rooting zone to saline soils resulting in plant stress from the access saline water (Zhang et al., 

2020).  
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Figure 2. 2 The relationship between NDVI of a) grass land b) forest land c) shrub forest and 
groundwater depth (GWD) based on Tsellis Theory in Ejina oasis in Hei (Source:  Zhang et al., 
2020) 

 

A declining groundwater table has negative effects on plant physiology (Kath et al., 2014). During 

transpiration, water from the soil is pulled into the plant roots, then transported through the xylem 

to exit through the leaf surface. A deficit in soil moisture increases the potential pressure in the 

xylem to the extent where xylem cavitation occurs. When this threshold is reached, the amount of 

water transported to plant leaves is decreased which causes stomatal closure, a reduction in 

photosynthetic activity and then branch and crown mortality (Le Maitre et al., 1999; Kath et al., 

2014). For instance, Huang et al., (2016) reported the decrease in the ratio of actual 

evapotranspiration, potential evapotranspiration and a declining groundwater table. Different plant 

species have different xylem cavitation resistances (Kath et al., 2014; Naumburg et al., 2005). It 

is reported that riparian vegetation cannot tolerate limited water supply and therefore are 

vulnerable to xylem cavitation as well as crown and branch mortality (Kath et al., 2014; Hancock 

et al., 2009; Johansen et al., 2018). On the other hand, xeric phreatophytes are drought tolerant 

vegetation species and can survive significant water table declines, despite losing some branches 

and leaf area. In a different study, Muñoz-Reinoso, (2001) examined vegetation changes in Spain 

and the processes causing those changes. Results revealed species composition change into 

xerophytic communities due to decrease in water availability.  

Ecosystems dependent on groundwater show low seasonal variability in vegetation health and 

transpiration rates when compared to non-GDEs. The effects of  groundwater extraction on coastal 

GDEs in New South Wales were assessed by Adams et al, (2015). Their findings indicated that 
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long-term changes in evapotranspiration from groundwater dependent vegetation occur seasonally. 

Evapotranspiration rates had low variability than that of vegetation dependent on surface water. 

Further, tree ring analysis have demonstrated that groundwater availability is an important factor 

on plant growth rates (Xia et al., 2012; Gholami et al., 2015). Hydraulic lift of moisture from 

deeper soil horizons provides water for shallow rooted herbaceous vegetation during water stress 

conditions. Increasing groundwater depth has been associated with reduced plant growth rate. In 

addition, increased growth rates are associated with deeper water tables (Osmond et al., 1987; 

Sarris et al., 2007). Vegetation response to groundwater variability differs with the plants anoxic 

and water stress tolerance, water uptake capacity and the change in the distribution and size of the 

active rooting zone (Naumburg et al., 2005). The variable plant responses to groundwater 

variability mean that studies on GDV should not take a generalized approach. However, valuable 

insights maybe attained from long-term understanding of the relationship between groundwater, 

GDV and climate. Understanding the relationship on how groundwater availability affects 

vegetation and how that translates in terms of spectral signatures, has opened a more cost-effective, 

efficient methodology for the long term monitoring of GDV (Barron et al., 2014). A detailed 

summary of recent studies that have exploited the spectral response of DGV to assess their 

interaction with groundwater is provided in Table 2.2.  

Table 2. 2 Summary of recent studies on vegetation response to groundwater variability 

Application Results Reference 
Hydrological controls 
on vegetation 
dynamics 

The annual correlation between terrestrial water storge and NDVI is greater 
than that of rainfall and NDVI. 
monthly/seasonal correlation between rainfall and NDVI is greater than that 
of Terrestrial water storage and NDVI.  

(Ndehedehe et al., 
2019) 
West and Central 
Africa 

Ecohydrological 
response 

Response to water convergence: 80-day time lag for groundwater 
4-7 years for vegetation 

(Liao et al., 2020) 
China 

Groundwater and 
GDE response to 
ecological water 
conveyance 

Decrease in Depth to water (DT)T (p<0.05) 
increase in NDVI (p<0.05) 
 
 

(Huang et al., 2020) 
China 

GDE veg Index using 
Entropy theory 

At DT >1m) NDVI declines with increasing DT 
At DT <1m) veg growth is restricted.  
NDVI correlation coefficient (p<0.01) 
 

(G. Zhang et al., 2020) 
Northern China 

Estimate crop 
groundwater use 

50% of irrigation water from groundwater. Seasonal crops more reliant on 
groundwater than perennial crops.  
Groundwater dependence increases with drying conditions.  

(Hunink et al., 2015a) 
Spain 

Effects if 
Groundwater 
extraction on Et rates, 

Long term change in Et close to extraction zones 
Sig change Et for Facultative communities (p<0.01) 

(Adams et al., 2015) 
New South Wales 

http://etd.uwc.ac.za/ 
 



17 
 

Role of climate, GW 
availability and land 
management on veg 
vigour 

Strong correlation between changes in plant vigour, precipitation, 
groundwater depth and evaporative demand. 

(Huntington et al., 
2016) 
United States 

Veg response to 
groundwater 
drawdown 

Vegetation ecophysiology negatively affected by groundwater drawdown. (Antunes et al., 2018) 
Spain 

Quantify groundwater 
contribution to Salix 
psammophila water 
use.  

Groundwater contribution to evapotranspiration ration decreases with 
increasing depth to groundwater table.  

(Huang et al., 2016) 
China 

Demonstrate the role 
of hydraulic path in 
determining plant 
intensity. 

Leafing intensity decreases with increasing groundwater table depth and 
plant height 

(Han and He, 2020) 
China 

Effects of 
groundwater table 
decline on vegetation 
transpiration. 

Transpiration rates decrease with declining groundwater table, critical depth 
is at 3.6 and 2.0 m depths. Groundwater depth correlation with 
evapotranspiration is 0.98 

(Wang et al., 2020) 
China 

Relationship between 
riparian vegetation 
and groundwater 
depth 

Peak evapotranspiration rates at groundwater depths <3m, and 
evapotranspiration values significantly lower at depths greater than 3m.  

(Lurtz et al., 2020) 
United States 

Assess spatio-
temporal 
evapotranspiration 
patterns of TGDV 

Vegetation in shallow groundwater had high actual evapotranspiration rates 
as compared to those on deeper groundwater table, during the growth 
season.  

(Sommer et al., 2016) 

Influence of water 
table depth on 
evapotranspiration 
rates of in the amazon 
arc of deforestation 

There were no differences in Evapotranspiration (ET), Land surface 
Temperature (LST) and Enhanced Vegetation Index (EVI) between 
vegetation and deep and shallow groundwater tables. Higher ET in shallow 
water table cops than those from deeper water tables during the dry season 
transition.  

(O’connor et al., 2019) 
Brazil 

Show the extent of 
groundwater-
vegetation interaction 
distribution 

Positive relationships (shallow DT with high Plant productivity) for shrubs 
in mesic regions. Negative relationship (deep DT with high plant 
productivity) for forests in humid regions. Vegetation primary productivity 
and groundwater depth are correlated in more than two thirds of the global 
vegetated area. 
 

(Koirala et al., 2017) 
Global 

 

 

 

2.6 Climate impact on groundwater and dependent ecosystems 

 
Changes in climate on annual or multi-decadal time scales have been seen to impact groundwater 

recharge and levels, depending on the aquifer size (Huss et al., 2010; Taylor and Tindimugaya, 

2011). Groundwater resources and associated vegetation depend on the distribution, amount, 

timing of precipitation, evaporation loss, and land use/landcover characteristics. An aquifer 
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recharge potential depends on the groundwater level. Higher depths to the water table increase 

recharge potential and capture zones. Properties of the aquifer are also vital; smaller shallow 

unconfined aquifers are more sensitive to climate change, whereas larger confined aquifers are 

likely to have a more delayed response (Poiani et al., 1996; Scibek and Allen, 2006). Confined 

non-renewable groundwater will be less sensitive to direct effects of climate change and variability 

but vulnerable to indirect effects of increased abstractions (Poiani et al., 1996; Scibek and Allen, 

2006). Subsequently, the degree at which GDV are affected by climate variability depends on the 

aquifer characteristics, therefore, vegetation dependent on groundwater from small and shallow 

unconfined aquifers are more vulnerable to the effects of climate change (Poiani et al., 1996).  

Climate warming can influence the availability and demand for groundwater resources thus 

affecting water available for sustaining ecological functions (Barron et al., 2012; Wattendorf et al., 

2010). Further studies on the effects of climate on groundwater and associated vegetation are 

outlined in Table 2.3.  Climate change impacts on general water resources have been widely 

investigated. Although impacts on groundwater resources have gained increasing attention over 

the years, there is limited information on how GDV are impacted. The seasonal distribution of 

precipitation and the temperature determine global climate zones and consequently the distribution 

of ecosystems, including GDV (Richards et al., 1975). As they are adapted to specific water 

regimes, many ecosystems are vulnerable to climate change. For example, the study by Barron et 

al., (2012) noted that reduced surface water flows and longer dry periods, place GDV at high risk 

with an estimated 19% decrease in current habitats in Australia. In addition, GDEs are increasingly 

likely to be threatened by groundwater abstraction. Extreme climate conditions change the 

hydrological regime, whereas the extent and seasonality of aquatic environments change the 

environmental conditions of GDV (Kløve et al., 2014).   
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Table 2. 3 Impacts of climate change on groundwater and associated ecosystems 

Application Key Findings Reference 

Identify key hazards of 
climate change to 
develop a DGE risk 
assessment and decision-
making framework 

Ecosystem change affected by threshold tolerance of biota. 
GDV threatened by groundwater decline due to low rainfall, 
increased water extraction and land use change to pine 
plantations. The temporal regime of temperature, groundwater 
depth were significant floristic change drivers. 

(Chambers et al., 
2013) 

 

Australia 

Revealing Impacts of 
Climate Change on 
GDEs 

Temperature and rainfall variability may be the primary threats 
to groundwater and GDEs. they reduce recharge and possibly 
increase groundwater withdrawal rates. Climate change further 
accentuated the degradation of spring biota by causing changes 
in the precipitation and evapotranspiration regimes. 

(Morsy et al., 2017) 

Kuwait 

Impacts of predicted 
climate change on 
groundwater flow 
systems: Can wetlands 
disappear due to 
recharge reduction? 

Flow systems their hierarchy can change from nested flow 
systems to a set of single flow cells. Preservation of GDV 
becomes a challenge under these conditions since long-term 
climate change could potentially have serious consequences, 
including wetland disappearance. 

(Havril et al., 2018) 

Hungary 
 

Assessing the role of 
climate and resource 
management on 
groundwater dependent 
ecosystem changes in 
arid environments. 

Time series analysis clearly illustrates that there are strong 
correlations between changes in vegetation vigour, 
precipitation, evaporative demand, depth to groundwater, and 
riparian restoration. Trends in summer NDVI and groundwater 
level changes were found to be statistically significant, and 
interannual summer NDVI was found to be moderately 
correlated to interannual water-year precipitation. 

(Huntington et al., 
2016) 

United States 

Impacts and uncertainties 
of climate/CO2 change 
on net primary 
productivity (NPP) in 
dryland vegetation. 

Simulations showed consistent temporal pattern of the regional 
NPP during 2000–2014 that increased during 2008–2011 and 
decreased during 2005–2006 and 2013–2014. All simulations 
indicated that ecosystems at high altitudes (> 47°) and were 
dominated by precipitation change. 

(Fang et al., 2019) 

China 

 

Climate induced changes in groundwater- surface water interactions will directly and indirectly 

affect wetlands and GDV. Impacts on GDV will likely result from changes in groundwater and 

surface water levels and will vary in intensity depending on the location of the landscape, scale of 

the system and land use changes. Local and intermediate systems are overly sensitive to 

groundwater level dynamics and increased temperatures lead to significant changes on these 

systems. Regional scales systems are less impacted by extreme events, seasonal fluctuations in 
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groundwater level, recharge and increases evapotranspiration rates. For GDV, a shift in local 

species composition will occur and decreased leaf density and primary productivity (Mawdsley et 

al., 2009 ; Naumburg et al., 2005; Shafroth et al., 2000). Additionally, Albano et al., (2020) 

demonstrated that long-term riparian vegetation response due to climate variability is driven by 

changes in groundwater and surface water dependence as compared to upland vegetation which is 

controlled by the aridity gradient.  Other studies also indicated that riparian vegetation had greater 

potential for groundwater dependence and were therefore sensitive to climate induced groundwater 

variability (Barron et al., 2012; Barron et al., 2014; Froend and Sommer, 2010). Further, Kath et 

al., (2014) demonstrated that climate induced groundwater decline resulted in the deteriorated tree 

canopy and a shift in species composition from non- vascular to vascular plants. 

 Highly variable rainfall could result in the reduction of groundwater resources due to a higher 

frequency of low or high groundwater levels and sea water intrusion on coastal aquifers (Kumar, 

2013). Climate warming is predicted to alter the magnitude and timing of recharge (Scanlon et al., 

2006; Kløve et al., 2014)). This will result in a shift in the mean seasonal and annual groundwater 

levels depending on the rainfall distribution (Liu, 2011; Scanlon et al., 2006). Long-term 

fluctuations in groundwater levels may also be a result of climate variability, in addition to land-

use/landcover and anthropogenic induced alterations (Anderson and Emanuel, 2008; Gurdak et al., 

2007). Further, in areas with highly variable vegetation productivity, it is unclear or difficult to 

determine if climate variability is the main contributor to changes in vegetation productivity since 

these systems may gain access to precipitation, shallow groundwater, and surface water, varying 

across temporal and spatial scales. Therefore, discriminating the influence of climate variability 

from management practices, disturbance and other long-term human activities requires long term 

monitoring (Hausner et al., 2018). A review of literature revealed that there are limited studies that 

focused on the impact of climate change (Hancock et al., 2009; Shafroth et al., 2000; Huang et al., 

2020). Most studies mainly investigated impacts on surface water and little work has been done 

on groundwater, this may be because GDV communities are highly complex and heterogenous 

systems that are influenced by multiple factors, which makes it hard to account for their status 

based on one factor. The integration of scientifically sound methodologies like long-term data 

handling and cloud-computing techniques with newer approaches that have high processing 

efficiency has the potential to mitigate these challenges (Hausner et al., 2018; Huntington et al., 

2016). 
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2.7 Geospatial Approaches for Identifying and Assessing GDV. 

 The first step for effective management of GDV begins with the knowledge on their location, 

distribution and areal extent (Rohde et al., 2017a). Groundwater dependent ecosystems at 

catchment scale can be identified mainly through field or floristic assessment, numerical modelling 

and (geospatial) RS and GIS approaches (Eamus et al., 2015; Glanville et al., 2016). The choice 

of the selected approach is dependent on the temporal and spatial extent of the study as well as 

available resources.  

2.7.1 Field based methods for identifying GDEs 
 

Groundwater use by phreatophytes has been assessed using field techniques: isotope analysis 

(Eamus, 2009; Chapman et al., 2003; Cartwright et al., 2010), water balance methods (Le Maitre 

and Hughes, 2003), and assessment of ground-based leaf area index (Eamus, 2006; Hatton & 

Evans, 1998), vegetation rooting depth (Eamus, 2006; Shafroth et al., 2000) as well as depth to 

groundwater models (Hoogland et al., 2010; Eamus, 2009). For instance, water flux measurements 

were used in determining groundwater use for deciduous black oak trees in California (Miller et 

al., 2010). The study indicated that black oak trees were obligate phreatophytes, with a 

groundwater uptake ranging from 4mm/month to 25mm/month. Dependence was most in the dry 

season with 80% of evapotranspiration from groundwater (Miller et al., 2010). In Australia, Jones 

et al., (2019) emphasized the importance of validating ecohydrological conceptual models of 

GDV. While field techniques offer the most detailed insight on the nature, extent, and degree of 

groundwater ecosystem dependence, they are resource intensive, expensive and represent one-

point in time (Eamus et al., 2015b). Therefore, they are ideal for testing and developing a 

conceptual understanding of GDV and validating GDV mapping (Glanville et al., 2016a; Gow et 

al., 2010). However, although these studies demonstrate the importance of field-based methods in 

GDV characterisation, most of these techniques lack spatial representation which makes it difficult 

to upscale to larger areas and is complex in areas characterised by heterogeneous plant species. 

 
2.7.2 modelling approach for identifying GDV 
 

Numerical modelling provides simulations on groundwater-vegetation interactions that can be 

used to infer on ecosystem dependence on groundwater. Model-based methods have been used in 
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conjunction with geospatial techniques (Münch and Conrad, 2007) and field studies (Móricz, 

2010; Wu et al., 2015). These methods demonstrate a unique opportunity in understanding GDV 

as they integrate numerous dataset such as soil water data, groundwater depth and underlying 

hydrogeological conditions. Due to this ability, it was therefore noted that groundwater 

contribution and consumption could be modelled with low estimation errors of 0.007 (Wu et al., 

2015; Móricz, 2010). However, like any other method, these techniques have their own inherent 

challenges. For example, while numerical models provide innumerable insights; they are not 

entirely suitable for GDE mapping at catchment scale especially in data sparse areas. In addition, 

the numerical modelling approach can be time consuming and resource intensive. 

 

2.7.3 Geospatial approach for identifying and assessing GDV 
 

Remote sensing and GIS techniques are robust methods for mapping GDV at catchment scale. 

Their implementation however, requires basic knowledge on groundwater-ecosystem interactions 

and their spectral signature response (Barron et al., 2014). These approaches relate the presence of 

vegetation in unexpected areas and dark soils to high soil moisture content and groundwater 

availability (Brodie, et al., 2002). Remote sensing technologies such as airborne sensors, Light 

detection and Ranging (LIDAR), Synthetic Aperture Radar (SAR) and space borne satellite 

sensors provide land surface information used in GDV identification. For example, LIDAR 

produces high quality digital elevation models (DEM) used to obtain topographic indicators for 

locating GDEs such as aspect, slope and topographic wetness index (Hoyos et al., 2016). Based 

on the assumption that surface water is the surface expression of groundwater, the SAR provides 

information on seasonal fluctuations of the water table, surface water inundation, vegetation 

patterns etc. SAR data can help infer on GDV water balance and hydrological boundaries. Satellite 

sensors are also widely used to obtain GDV indicators such as vegetation pattern, 

evapotranspiration, and soil moisture saturation (Table 2.4). Remote sensing equates GDEs to a 

distinct ecosystem type (green islands), however groundwater dependence is one factor effecting 

ecosystem productivity.  

Literature search has revealed an increase in the use of remote sensing and GIS approaches in eco- 

hydrogeology and related environmental studies (Table 2.2 and 2.4). Remote sensing can offer 
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new applications that can quickly and synoptically monitor and manage areas at different temporal 

and spatial resolutions. For example, remote sensing has support timely and spatially explicit 

assessment of groundwater dependent ecosystems, wetland, water quality monitoring and aquatic 

weeds etc. (Zhang et al., 2020; Klausmeyer et al., 2018; Thamaga and Dube, 2018; Lv et al., 2013). 

Moreover, continual coverage of sensors provides both near real time and long-term data required 

for monitoring GDE response to changing groundwater regimes resulting from climate variability. 

As such, the use of satellite imagery has provided a reliable source of data that is intensively used 

in hydrology and ecology (Ali and Alandjani, 2019). Several satellite sensors are suitable for 

extracting variables utilized in determining the location of GDV and their probable response to 

groundwater fluctuations. Sensor suitability has influenced research needs in terms of spatial, 

temporal, radiometric and spectral resolution. While sensor resolution is an important 

consideration, the cost of the satellite imagery is usually the major limiting factor. In general, there 

exists a trade-off between spatial resolution and acquisition; this is also true for spatial and 

temporal resolution. Very high-resolution sensors such as QuickBird, SPOT, IKONOS and Aerial 

photography with spatial resolutions < 0.5m are high cost. GDE potential have been estimated in 

Portugal, using SPOT 4 and 5 products (Marques et al., 2019). The high spectral resolution sensors 

are ideal for vegetation mapping and change detection at species specific and community level. 

MODIS is a low-cost sensor with low spatial resolution (250m-1000m) and multispectral and 

multi-date data sets are therefore useful for global scale evapotranspiration estimation, monitoring 

photosynthetic activity, vegetation mapping (Hoyos et al., 2016). MODIS products have been 

incorporated with other satellite products for GDV assessments (Gou et al., 2015; Hunink et al., 

2015; Doody et al., 2017; Huang et al., 2020; Liao et al., 2020). While MODIS datasets are widely 

used, they lack the spatial resolution suitable for GDV delineation at scales below community 

level. The low spatial resolution has resulted in misclassification errors in heterogenous 

environments with mixed vegetation.   

Medium spatial resolution (30m) and multispectral sensors such as the LANDSAT series have 

been extensively used in landcover change detection, vegetation mapping and photosynthetic 

activity assessments applications at community level ( Roy et al., 2016; Kalbus et al, 2006; Yates 

et al., 2010; O.  Barron et al., 2014; Adams et al., 2015; Doody et al., 2017; Mtengwana et al., 

2020; Shoko et al., 2016). Landsat series data are easily accessible and have an archive of historical 

data great for applications in developing economies (Dube et al., 2016). An extensive review on 
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literature has revealed that the potential for new generation multispectral remote sensing products 

such as Landsat 8 Operational Land Imager (OLI) and Sentinel 2 have yet to be developed in 

mapping and monitoring GDV. Landsat 8 OLI has improved signal to noise characteristics, 

improved calibration and higher radiometric resolution and spectrally narrower wavebands than 

the previous Landsat 7 ETM+ (Roy et al., 2016). The location of potential GDV can be greatly 

improved through these new features. Sentinel 2 has a high spatial and temporal resolution of 10m 

and 5-day revisit time, making it suitable for community level classification of GDV. In Western 

Australia, Macintyre et al., (2020) assessed the efficacy of Sentinel 2 imagery for classifying multi-

seasonal changes in vegetation for complex areas at fine scales. The classification scheme utilized 

24 target classes and 60/40 split used for model building and validation. A comparison of the 

seasonal variations in vegetation indices, spectral bands, classification trees and principal 

component transformations were used as input for machine learning to separate classes. The study 

findings revealed that Sentinel 2 has a high potential to determine compositional vegetation 

characteristics with high accuracies. However, further investigations must be considered to 

determine the potential for vegetation indices derived from new generation sensors in delineating 

GDV. Landsat 8 OLI and Sentinel 2 datasets provide spatially and site-specific timely information 

on GDEs that may be used in setting management decisions. However, their applicability is limited 

to the local and community levels. Advancements in remote sensing technological developments 

have resulted in the introduction of space and air borne hyperspectral sensors with fine spatial 

resolution (<10m), with strategically positioned spectral bands such as panchromatic and red edge, 

as well as improved signal to noise ratio. For example, Worldview 2 has been used in assessing 

arid vegetation health in response to environmental variables such as depth to water, groundwater 

depletion and management practices at tree level (Chávez and Clevers, 2012). Unmanned aerial 

vehicles (AUVs) is an emerging topic in vegetation studies that has the potential to bridge the gap 

between expensive satellite remote sensing, fieldwork, and classical manned photographs. AUVs 

combined with multispectral camera and hyperspectral remote sensors produce high quality 

datasets with user determined revisit period, suitable for long term monitoring of GDV. AUVs 

have been used in determining vegetation distribution at individual species level with overall 

accuracies of 88.9- 94.31% (Zhaoming, 2020; Kaneko and Nohara, 2014). As the field of AUVs 

is gradually expanding in vegetation studies, there is great potential for AUV application in GDV 

mapping in complex heterogenous environments, due to the high spatial resolution (<1cm), and 
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ability to increase pixel purity by adjusting the flying altitude. Hyperspectral remote sensing data 

improves GDV investigations, but the datasets are often large. The rapidly increasing archive of 

data for long term GDV monitoring has associated challenges such as data storage, computational 

efficiency, and band width mismatch from multigenerational satellites. The Google Earth Engine 

(GEE) cloud computing environmental platform and Climate Engine have emerged as the solution. 

GEE, stores Petabyte scale multi sensor databased vector datasets, and parallelised cloud 

computing. The strength of Cloud Based computing is that it does not need high computer 

processing power or the latest software, which opens new research opportunities for resource poor 

regions to engage in GDV analysis at the advanced nations (Mutanga and Kumar, 2019; Gxokwe 

et al., 2020). While there are advancements in remote sensing and vegetation analysis, there 

remains a gap in assessing their effectiveness in GDV investigations.     

Another widely used remote sensing technique for mapping groundwater dependent ecosystems is 

through satellite-derived indices such as the Normalized Difference Vegetation Index (NDVI), 

which determines vegetation health and photosynthetic activity, as well as other indicators of 

vegetation density and moisture condition. Previously employed vegetation indices include the 

Enhanced Vegetation Index (EVI), Leaf Area Index (LAI), the Tasseled Cap Wetness Index 

(TCWI) and the Normalized Difference Wetness Index (NDWI). A wide range of studies ( Roy et 

al., 2016; Kalbus et al, 2006; Yates et al., 2010;  Barron et al., 2014; Adams et al., 2015; Doody et 

al., 2017; Gu et al., 2007; Hunink et al., 2015) have demonstrated the capabilities of indices in 

locating GDV. For example, the study by Gow et al., (2010) collated multiple remotely sensed 

information from MODIS-EVI, SRT DEM, and water table surface to identify and monitor GDEs 

within the Hat Head National Park. In Australia, Barron et al., (2014) proposed a method for 

identifying GDEs from Landsat-TM derived indices. Mapping had high producer accuracy ranging 

from 59% to 91% increasing from regional to local scales. Results showed GDV with permanent 

access to groundwater had no significant change in seasonal GDV size. However, a substantial 

reduction of 26 - 56% in total GDV size is observed over the 10-year period. Mapping 

demonstrated good agreement with field data. GDV was associated with riparian vegetation, 

terrestrial vegetation with access to shallow groundwater depths (~6m) and found close to springs. 

Expert knowledge, field techniques and remote sensing techniques were used to develop a 

catchment scale mapping method of GDEs in Queensland, Australia (Glanville et al., 2016b). They 

produced a catchment scale map of GDEs, which can be scaled up or down, and the study 
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emphasized the value in integrating local experts’ knowledge with available spatial data and 

information. While remote sensing data indices are a robust methodology, the literature indicated 

that GDV identification can be substantially improved by the selection of appropriate classification 

technique. Given, these indices perform differently in different environments due to pixel mixing, 

cloud cover, shadows in mountainous and built-up areas. However, their performance can also be 

significantly improved by the sensor’s spectral characteristics such as the availability of red edge, 

near infrared II and panchromatic bands.  
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Table 2. 4 Summary of key research that utilises geospatial techniques to identify potential GDV 

Sensor Type classifier Key Findings Limitations  

Landsat 5 TM NDVI 
Principal 
Component 

Compared Top of Atmosphere Reflectance and the 
Atmospherically corrected images (AC) for inflow dependent 
vegetation.  TOA and AC are in good agreement, Kappa = 0.83. 
Both methods show high accuracies for capturing Known IDV, 
85-91%. 
 

Accuracy of the delineated IDV extent may vary due 
to difference in landscape characteristics and 
variations in vegetation type. 

(Emelyanova et al., 2018a) 

Landsat 5 TM 
MODIS 

MODIS (ET, 
MSSR, Pid) 
 (NDVI, NDWI) 

34% of Australian continent contains GDEs of those 5% have 
high potential for GDEs. Emphasized the need to integrate 
expert knowledge to gain a conceptual understanding for setting 
ruled in identifying potential GDEs. 

Broad scale approach cannot identify GDEs <25X25 
m. the method provides a snapshot and GDEs that 
may be in decline due to other factors may be missed. 
The GDE atlas requires regular updating. 

(Doody et al., 2017) 
Australian /continent 

WorldView-2 
SPOT-7 
Landsat 8 OLI 

Maximum 
likelihood Classifier 
Object Based Image 
Classifier 
 

SPOT-7 (Overall Accuracy= 69%) 
WorldView-2 (Overall Accuracy= 72%) 
GDEs are likely to occur in low land areas and break of slope 
where groundwater is discharged to the surface. 

High misclassification (Overestimation) error along 
the hillslopes during the wet period and higher 
misclassifications on the riparian zone during the dry 
season.  

(Dlikilili, 2019) 
South Africa  

Landsat MS, TM, 
ETM, OLI 

1NDMI, NDVI 
Parameter-elevation 
Regressions on 
Independent Slopes 
Model (PRISM) 
precipitation data 

(0.02%) of Landsat data not included. The map constitutes of 
layers of local datasets for identifying possible locations of 
GDEs, in a heavily modified environment. 

Not all areas included updated landcover layers, gaps 
in groundwater depth datasets. GDEs are dynamic 
systems, therefore require regular updating. 

(Klausmeyer et al., 2019) 
United States 

Landsat 7 ETM 
MODIS 

NDVI 
LAI 
K-means Classifier 

Not all phreatophytes and wetlands are groundwater dependent, 
only 9% of phreatophytes had high groundwater use potential. 
75% of identified GDEs were at soil depths below 45cm. 

The use of vegetation indicators led to 
overestimations. Cells with mixed vegetation 
coverage groundwater dependence was not accurately 
reflected. Resampling of MODIS images may have 
led to information loss. Lack of previous GDE studies 
hinders verification of results. 

(Gou et al., 2015) 
Texas, United States 

MODIS Terra 7 Standardized NDV 
K-means cluster 
classifier 

Pixels were likely to be GDV where the groundwater table was 
shallow.  

Standardized NDVI does allow for observing areas 
with low seasonal variability or inter annual 
variability. No quantitative method to validate results. 
Areas with low tree density, GDV were not captured.  

(Páscoa et al., 2020) 

 

1 NDMI = Normalised Difference Moisture index 
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2.8 Available GDE Classification Algorithms 

Spectral discrimination of GDV types in complex environments is challenging as different 

vegetation types may have similar spectral characteristics, alternatively they may show 

different spectral signatures. Image classification can aid group image pixels into meaningful 

clusters. Automatic image classification can be done in two ways, unsupervised or supervised, 

parametric or non-parametric classification. Unsupervised classifiers such as IsoData and K-

means, use clustering mechanisms to group satellite image pixels into unlabelled classes, which 

are later assigned meaningful labels to produce a well-classified image (Ismail, 2009). 

Unsupervised Classification techniques have been extensively used in mapping and assessing 

potential GDEs (Barron et al., 2014; Davies et al., 2016; Gou et al., 2015; Münch and Conrad, 

2007; Páscoa et al., 2020). Supervised classification requires input from the analyst in the form 

of training datasets. For supervised classifiers, classification accuracy depends on the 

representativeness of the training sample (Ismail, 2009). When training cannot account for the 

complex spatial variations, statistical based (unsupervised) clustering can produce better results 

(Rozenstein and Karnieli, 2011). Common supervised classifiers are Artificial Neural 

Networks (ANN), Decision tree (DT), Maximum likelihood classifier, K-nearest neighbour 

etc. The Maximum Likelihood Classifier (ML) is the most extensively used supervised 

classification algorithm. The application of pixel classifiers to mixed pixel images often 

produces unsatisfactory classification results due to poor spectral and spatial resolutions 

(Barron et al., 2012; Glanville et al., 2016b; Gow et al., 2010). Increased availability of higher 

resolution images coupled with the development of machine learning algorithms can 

significantly improve classification accuracies (Hoyos et al., 2016). These include support 

vector algorithm (SVM) (Boser et al., 1992), ANN (Paola and Schowengerdt, 1995) and 

Random Forest (RF) classifiers. The random forest or random decision forest is a learning 

method for classification operated by construction of a multitude of decision trees during 

training and the output is class made of the predicted mean of the individual tree (Raczko and 

Zagajewski, 2017). The advantage to the RF is the short classification time and the method 

resistance to overfitting of training datasets (Sabat-Tomala et al., 2020). A previous study by 

Hoyos et al., (2016) compared the classification and regression tree (CART) and RF for 

estimating GDV potential. Results revealed the RF classifier was superior to CART in terms 

of estimates, accuracy of training data, and sensitivity.  
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SVM produces significant accuracies with little computation power, they work well on small 

testing data and noisy datasets (Song et al., 2012).  Classes are produced from training data 

models which transforms the space into an optimal hyperplane in the multidimensional of the 

feature space which separates features into classes with the greatest margin of separation 

(Mountrakis et al., 2011). The SVM classifier has an advantage on ANN in that they are simple 

to use, reliable, stable and has a faster processing speed (Raczko and Zagajewski, 2017). 

Reducing training data sample size per sample compromises classification accuracies, however 

the SVM seems to be insensitive to this effect (Shafroth et al., 2000; Mountrakis et al., 2011). 

In South Africa Cooper, (2010) investigated the potential for SVM recursive feature eliminator 

(RFE) approach to detect the presence of Solamum mauritianum (Bugweed) alien plant within 

a forest plantation. The SVM-RFE produced an outstanding classification accuracy of 93% and 

a skills statistics value of 0.83. ANN are complex models that are inspired by biological neural 

networks to develop classification rules. Raczko and Zagajewski, (2017) studied tree species 

composition in Poland using the SVM, RF and AAN algorithms for tree species classification. 

The ANN outperformed the other learning algorithms with 77% overall accuracy while the 

SVM and RF produced 68% and 62.5% respectively. Literature reveals that unsupervised 

classification techniques are reliable and widely developed (Hoyos et al., 2016; Peters et al., 

2008) while other studies have indicated the potential for machine learning algorithms in GDE 

assessment (Peters et al., 2007; Klausmeyer et al., 2019; Páscoa et al., 2020). These methods 

demonstrate a great potential in retrieving GDEs information with a reasonable accuracy. 

However, their performance is also dependent on the scale of application, satellite spectral and 

spatial data characteristics. Further, the supervised machine learning algorithms produced great 

results, although significant limitations have been reported. For example, ANN and SVM are 

not easily automated and require adjustments to several parameters; whereas models such as 

the RF have been reported to overfit for datasets as small as the size of a tree, which can take 

up memory. Thus, cloud image processing simplifies the issues related to supervised machine 

learning algorithms, however the literature shows that these techniques are underused 

especially in GDV assessments (Gxokwe et al., 2020). 

2.9 Challenges in Remote Sensing of GDEs 

Several studies have noted various limitations in the remote sensing approach for detecting and 

mapping groundwater dependent vegetation communities. Remote sensors can detect land 

surface features such as temperature, vegetation and landcover, therefore information on 
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groundwater is only from indirect inferences. Groundwater-vegetation interactions can only be 

inferred from indicator variables such as vegetation, temperature and surface water (Barron et 

al., 2014). As such, information gathered are only estimates that mainly indicate potential GDV 

thus the results should be validated using field data. Although numerous works have been done 

in regional GDV mapping, most of the studies have not been validated through ground-truthing. 

For instance, Jones et al., (2020) investigated groundwater dependent vegetation communities 

using stable isotope and found that 75% of reported GDV site were using groundwater. Remote 

sensing offers a snapshot of GDV, those outside the range may not be identified. There is often 

a lag between changes in water availability and vegetation response (Gow et al., 2010). Further, 

ecosystems dependent on groundwater affected by a drought may not be identified as GDV if 

their phenology was in decline at the time. Remote sensing is suitable for places that are 

minimally modified, in urban or cultivated areas vegetation greenness may be attributed to the 

return in irrigation, runoff and dam releases. Also, there is minimal integration between field, 

chemical assessment and remote sensing datasets. As a result, remote sensing and GIS derived 

information is being undervalued and underutilised. Remote sensing identifies GDV based on 

the principle that vegetation that is greener than their surroundings during dry periods is likely 

to be maintained by groundwater, therefore it is suitable for areas with distinct wet and dry 

seasons (Barron et al., 2012). This method has been criticized because vegetation greenness 

may be a result of other factors (Glanville et al., 2016a). For example, wild fires may results in 

green islands, as resistant forest vegetation are surrounded by fire prone vegetation (Bowman, 

2000; Glanville et al., 2016). Further, remote sensing generates GDV maps with little or no 

information on how vegetation communities are connected to groundwater within the 

landscape.  

 The potential for remote sensing applications in GDV monitoring has not been fully explored. 

This is attributable to the inaccessibility of remote sensing products. This has been primarily 

attributed to their high acquisition costs, the low temporal resolution and smaller swath width. 

The freely available medium resolution products such as Landsat are limited in the level of 

detail that can be achieved for assessing GDV. For instance, some groundwater dependent 

communities are at sub-pixel level (<30m) and may be masked out in mixed feature pixels. 

Thus, GDV monitoring, and assessment can benefit from a multidisciplinary approach through 

the integration of ecohydrological data, geology, soil information, land use and land 

management practices, soil characteristics, groundwater flux and recharge rates. So far, 

however such collaborations are limited. Cloud computing techniques provides access to multi-
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sensor datasets and computing efficiency that can enhance GDV detection and monitoring 

especially in resource poor regions at low costs. However, challenges due to unreliable network 

or internet connectivity, unskilled personnel, and the lack of high-performance computing 

power limit their applicability in underdeveloped countries where it is needed the most. 

2.10 Possible Future Direction in Remote Sensing and GIS Applications for GDEs. 

Several strides have been made in mapping and monitoring GDV and its response to 

groundwater variability using satellite data. There is still however limited information on long 

term monitoring of vegetation response to changing groundwater regimes especially associated 

with climate change. Investigating the impacts on climate change is limited by the high 

complexities of GDV, where multiple factors influence the plants phenology, distribution, and 

chemical processes. Most of such studies are dominant mainly in Australia, the United States 

and China; however, there is a dearth in knowledge in resource poor areas such as the arid 

regions of Africa. The major limitation is that these methods for GDV identification or 

delineation are likely to change with differing landscapes, vegetation types and climates; 

therefore, geospatial techniques need to be evaluated under diverse environmental conditions. 

Likewise, determining whether changes in groundwater regime and associated vegetation are 

products of climate change requires long-term (>50 years) monitoring (Kløve et al., 2014). To 

fully understand these vegetation communities, groundwater-vegetation responses should be 

monitored seasonally at catchment or species-specific scales. There have been huge 

developments in geospatial technologies such as hyperspectral and AUVs datasets providing 

new opportunities for species level vegetation monitoring, however they have been poorly 

utilized in GDV assessments. Hyperspectral drones, AUVs and Worldview data potential 

should be investigated for GDV assessments. Sentinel 1 offers high spatial and spectral 

resolution datasets that provide valuable information for vegetation mapping and validation. 

For example, the ground penetrating E band offers soil moisture data, a valuable variable for 

GDV mapping. This will provide detailed information useful for decision makers when 

drawing up strategic catchment management plans. As groundwater dependence is one 

characteristic of GDV mapping, there is therefore a need to find the best ancillary (variables) 

data and predictive models that can be integrated with freely available datasets. Further, 

Landsat series and MODIS datasets are the widely used in GDV mapping, however the major 

limitation is their low spatial resolution (>30m). Despite these limitations, the Landsat series 

has a large historical archive that has not been fully exploited. The introduction of advanced 
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cloud computing methods such as GEE, peta-scale image processing and artificial intelligence 

(AI) have the potential to overcome limitations of spatial resolution, and temporal range 

through the integration of hyperspectral and coarse scale multispectral datasets. Cloud 

computing methods can provide new insight in GDV monitoring and offer new opportunities 

to resource poor nations where, GDV investigations were hindered by the cost of acquiring 

these datasets. Further, more studies integrating field methods with remote sensing in assessing 

GDV should be prioritized as this will increase the reliability of the derived spatial and thematic 

GDV maps. When there is a large body of local information on GDV occurrence, geospatial 

methods can be adequately evaluated and indicate areas of improvement. Further, machine-

learning algorithms such as ANN, SVM, and regression tree-based classifiers need to be 

explored for GDV assessments and distribution mapping.   

2.11 Conclusions 

Groundwater resources are increasingly deteriorating and constantly under threat due to global 

change, and increased abstraction impacts vegetation. Literature has revealed the effects of a 

reduced groundwater table in areas where GDV is dominant. There is a large base of literature 

on GDV response to groundwater variability.  Most of these studies have shown that GDV 

have responded variably to groundwater availability based on the plant physiological 

characteristics, such as the plant rooting depth etc. Literature shows that the major responses 

to a declining groundwater table are reduced photosynthetic rates, plant productivity, reduced 

leaf area and the change in species composition and distribution. However, GDV is also 

affected by the timing/ groundwater regime and this needs to be explored further especially 

with the advent of climate change. Elevated surface temperature and low rainfall are associated 

with groundwater depth decline leading to GDV degradation and floristic change. The research 

reveals the effects of climate variability on GDV are difficult to isolate. Therefore, further long-

term climate-vegetation interaction research is required. Remote sensing has emerged as a 

popular method for GDV mapping and assessment, because of the efficiency, unique spatial, 

spectral, and temporal Characteristics that allow GDV assessment at different scales. While 

readily available datasets (MODIS and Landsat) have provided critical insights on the state of 

GDV, they are however limited by the poor (low) spatial and spectral characteristics. There is 

therefore a need to enhance remote sensing potential by integrating multiple indicator variables 

in GDV investigations. In addition, new generation sensors (Landsat 8 OLI and Sentinel 2) 

with improved spatial and temporal resolutions and advances in Machine Learning algorithms 
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can further improve the identification and monitoring of groundwater dependent vegetation. 

Moreover, the potential of integrating multisource datasets such as drones, AUVs, Worldview 

and Sentinel 1 to calibrate GDV models should be assessed. Emerging cloud-based image 

computing techniques such as Google Earth Engine (GEE) can significantly improve the long-

term monitoring of GDV. The effects of climate change have created a need to adequately 

delineate vulnerable groundwater dependent vegetation communities to ensure their 

sustainability when allocating groundwater resources for anthropogenic activities. 
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CHAPTER THREE 

Assessing the potential for using multispectral, remotely sensed data to 
identify groundwater dependent vegetation in the Greater Floristic Region of 

the Western Cape, South Africa 

Abstract 

Groundwater Dependent Vegetation (GDV) is increasingly threatened by the transformation of the 

natural environment to different land uses/land covers, the over-exploitation of groundwater 

resources and the proliferation of invasive species within the Cape Floristic Region (CFR). These 

changes affect the regime, level and quality of the groundwater that supports the GDV. Natural 

resource managers often lack an understanding of the appropriate scale of the nature of GDV, 

which prevents them from making sound sustainable decisions. The first step in the effective 

management of GDV requires a detailed comprehension of its distribution, its possible threats, and 

its health condition. This chapter aims to assess and map the potential distribution of GDV within 

the Heuningnes Catchment using multispectral remotely sensed (i.e. Landsat 8 (L8) and Sentinel 

2 (S2)) and in-situ data. This study also compares the performance of the two types of multispectral 

data and the influence of derived spectral indices in mapping the spatial distribution of GDV in 

the catchment. The GDV distribution maps were produced by integrating the vegetation 

productivity, landcover, slope and surface curvature layers as the potential GDV indicators. The 

landcover, slope and surface curvature layers were kept constant, while the vegetation productivity 

layers were derived from the Normalised Difference Vegetation Index (NDVI) and the Soil-

Adjusted Vegetation Index (SAVI). This was undertaken to assess the performance of the 

vegetation indices for GDV classification. The findings of the study revealed that the spectral 

indices had a significant influence on the sensor’s GDV classification performance. Specifically, 

GDV detected from the S2(SAVI) index had the highest overall accuracy (97%), followed by the 

S2-derived NDVI, with an accuracy of 95%. Comparatively, the L8(NDVI) GDV map was 

achieved with an overall accuracy of 92% and the L8(SAVI) map had an overall accuracy of 96%. 

Overall, the area has a 2.34-2.60% coverage of the potential GDV. All four models also produced 

similar GDV distribution patterns. It was further observed that the north-western parts of the 

catchment have a high potential for GDV, compared to other areas. This work demonstrated the 
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capabilities of a combined remote sensing and GIS methodology, which can improve our 

knowledge on GDV and its management. 

Keywords: Arid environments; catchment management; fynbos; moderate resolution; invasive 
plants; groundwater; satellite data; water resources management 

3.1 Introduction 

Some terrestrial vegetation in arid and semi-arid regions may be maintained by the direct and 

indirect access to groundwater, and this is collectively called Groundwater Dependent Vegetation 

(GDV) (Zhang et al., 2020). Factors such as precipitation, temperature and groundwater affect the 

distribution and vigour of GDV. Vegetation is a major component of terrestrial ecosystems and 

plays a vital role in energy flow, global carbon and the water cycle (Zhao et al., 2012). 

Furthermore, terrestrial vegetation boosts the economy of arid regions. For example, the Cape 

Floristic region contributes 10% of South Africa’s Gross Geographic Product (GGP), and the same 

applies to other regions across the globe. Not only do natural terrestrial ecosystems contribute to 

the economy through ecotourism, but they are also the genetic hub for bioprospecting, as well as 

for the preservation of biodiversity (Williams, 2018). Vegetation provides valuable ecosystem 

services, such as flood control, water purification, pollinator habitats and recreational 

opportunities. In arid regions, vegetation is a major producer of organic material and contributes 

to the necessary biological components of the soil (Lv et al., 2013). The vegetation cover buffers 

the desertification process and maintains the natural environmental conditions (Lv et al., 2013; 

Wang et al., 2018). Because of the numerous benefits that are gained from terrestrial vegetation, 

it is imperative that these ecosystems are protected and safeguarded.  

Plantation forestry, urban development and the conversion of natural land to agriculture 

(McDowell and Moll, 1992; Rouget et al., 2003), as well as the over-exploitation of  water 

resources (Rouget et al., 2003), are the main threats to the sustainability of GDV. Reduced 

groundwater levels, due to over-abstraction for supporting agriculture, urban and industrial 

development, endanger the GDV. The excessive use of groundwater resources is further 

compounded by extreme climatic conditions, such as droughts and climate variability. For 

example, with the advent of the 2015-2017 drought in the Western Cape, South Africa, alternative 

surface water resources had to be rapidly explored and developed, to meet the demand for water. 
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This included the abstraction of groundwater resources for agricultural, municipal and industrial 

use. The groundwater levels were reported to have declined substantially over the previous four 

years, with 65% of the groundwater resources being consumed by the agricultural sector (Seyler, 

2017). A decline in groundwater levels has been found to negatively affect terrestrial vegetation 

(Froend and Sommer, 2010). Furthermore, the long-term effects of groundwater abstraction were 

assessed in Western Australia. It was determined that the increased depth of the groundwater (2.2 

m), coupled with the extreme summer temperatures, resulted in a 20-80% adult mortality rate of 

the over-story vegetation and up to a 64% mortality rate of the understory vegetation (Groom et 

al., 2000). Plantation forestry reduces the groundwater recharge and the surface water flow, and it 

increases the groundwater discharge. For instance, Munoz-Reinoso (2001) reported a greater depth 

of groundwater in Donana, Spain, due to the increased drawdown and abstraction of the urban 

water supply and the transpiration of large pine plantations. In South Africa, areas that are heavily 

encroached by alien invasive plants, have reported reduced stream flow and groundwater levels 

(Dzikiti et al., 2013; Fourie et al., 2002; Scott et al., 2008; Prinsloo and Scott, 1999), which has an 

adverse effect on the native GDV (Vila et al., 2011). Invasive plant species can tap into multiple 

water sources; thus, they outcompete the endemic vegetation (Dawson and Elleringer, 1991). The 

rate of spread of invasive alien plants indicates that there is a higher likelihood of water scarcity 

(Hoffman and Cowling, 1990; van Wilgen and Richardson, 2012), which is a growing concern. 

Since the role of groundwater for augmenting water resources is increasing, it is important to 

determine the vegetation that is dependent on this groundwater and its distribution within the 

landscape. This will help to set up effective groundwater management strategies, to ensure 

ecological sustainability. Monitoring the condition of the vegetation and its response to 

environmental and global changes over time, creates an understanding of the change processes and 

the possible areas that are affected and that are at risk (Franklin et al., 2016). Information on the 

distribution on GDV helps to determine the ecological water allocation, the setting up of 

conservation hotspots, as well as the restrictions and strategic planning for groundwater use within 

the region. Such information is also critical for supporting an agenda for sustainable future 

development e.g., the United Nations’ (UN) Sustainable Development Goal 15 on ‘Life on Land’ 

(United Nations 2018). The condition of the vegetation, as well as its response to environmental 

changes, is specified in the lists of Essential Climate Variables (Bojinski et al., 2014) and Essential 

Biodiversity Variables (Pereira et al. 2013).  
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The monitoring of groundwater dependent vegetation has been limited because of the trade-off 

that exists between the efficiency, the level of detail and the cost of the measurement techniques 

(Hoyos et al., 2016). Only water chemistry indicators can give conclusive evidence of the 

groundwater and vegetation interactions and may help to identify where plants use groundwater 

and how much is used. Other indicators for assessing the influence of groundwater variability on 

the vegetation are indirect; these include Eddy correlation, Bowen ratio, climatic indices, sap flow 

measurements, plant phenology and the ground-based leaf area Index (Colvin et al., 2003; Eamus 

et al., 2015a; Hoyos et al., 2016). Although these methods provide highly detailed information, 

they are limited by their low spatial and temporal scale, costly, and labour intensive. Remote 

Sensing (RS) has emerged as an efficient monitoring tool that can provide crucial information 

regarding the status of vegetation, its response to change, as well as the disturbance regimes on a 

community or landscape scale (Griffiths et al., 2019; Wessels et al., 2008; Zhu, 2017; Móricz, 

2010). Remote sensing adaptations provide a robust methodology for mapping GDV on a regional 

and local scale, and they help to successfully identify GDV by understanding the relationship 

between groundwater, vegetation and the spectral signatures of GDV, in contrast to the 

surrounding vegetation (Barron et al., 2014). This can be seen by the plant density, the vegetation 

productivity (greenness) and vegetation spatial distribution, which are derived from spectral 

indices. For instance, Dresel et al. (2010) utilised the MODIS EVI standard deviation, the mid-

summer Landsat NDVI and the unsupervised classification of Landsat spectral data to produce a 

state-wide GDV map. Barron et al. (2014) also used Landsat 8-derived NDVI and NDWI metrics 

to identify Groundwater Dependent Ecosystems (GDEs), by evaluating vegetation with active 

greenness during dry periods. Their methodology had a high-performance level and had a producer 

accuracy greater than 91%. GDE mapping can occur on a continental, regional and local scale 

(Glanville et al., 2016; Doody et al., 2017; Brodie et al., 2002; Dresel et al., 2010). Advances in 

sensor technologies have led to the acquisition of freely available satellite imagery, such as S2 and 

L8, which is suitable for GDV mapping, especially in resource-limited areas. They provide the 

appropriate detection resolutions required to map GDV, compared to previous non-commercial 

sensors, such as MODIS. Due to the sporadic distribution of GDV in semi-arid environments, 

identifying GDV remains a challenge, as it requires a high spatial and spectral resolution (Hoyos 

et al., 2016). In this sense, sensors with a high spectral, spatial, temporal, and radiometric 

resolution are required on a broader scale to understand the distribution of GDV and to enhance 
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management practices. Characterised by their finer spatial (10-30 m), spectral (11-13 bands, 

including red edge) resolution and swath width (185-285 km), Landsat 8 and Sentinel 2 are suitable 

for detecting subtle changes and for the broadscale mapping of GDV, which is often obscured by 

the background (Shoko et al., 2016; Thamaga et al., 2021). For instance, Doody et al. (2017) 

identified the location of GDEs in Australia by integrating expert knowledge, RS data and GIS 

analysis. In another study, Münch and Conrad (2007) used a combination of Landsat imagery for 

extracting the bioclimatic indicators, vegetation productivity and RS modelling, to identify GDV 

in the Western Cape, South Africa. In addition, GDE identification has been enhanced by 

incorporating machine learning and vegetation indices. For example, Pérez Hoyos et al. (2016) 

used the classification of Trees and Random Forest to identify the probable GDV, by modelling 

the relationship between the known location of GDEs and the climatic factors (the aridity index 

and the water table depth) with a high accuracy (97%). Vegetation indices, such as the Normalised 

Vegetation Index (NDVI) and Soil Adjusted Vegetation Index (SAVI), enhance the detection of 

GDV. Vegetation indices overcome the effects of the soil background, the zenith angle and the 

atmospheric composition, while they improve the vegetation signal when determining the 

vegetation characteristics (Thamaga et al., 2021). For instance, Thamaga et al. (2018) observed 

that spectral vegetation indices derived from Landsat 8 and Sentinel 2 outperformed the raw 

spectral bands in discriminating vegetation. The performance of vegetation indices may be linked 

to the ability of the NDVI to minimize the background effects, such as shadows, soil and 

atmospheric impurities, when compared to the spectral bands. It is therefore perceived that data 

from Sentinel 2 and Landsat 8, with a 5- to 16-day revisit period and 10-30 m pixel size, are likely 

to offer information on the distribution of GDV, at the appropriate scales, for continued GDV 

mapping. This study assesses the potential of a GIS and remote sensing approach to map the 

distribution of GDV within the Heuningnes Catchment. 
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3.2 Research Methodology 

3.2.1 Study area description 

The Cape Floristic Region (CFR) is a biodiversity hotspot and part of the six floral kingdoms of 

the world. It has the most outstanding diversity, with 95 000 species that are endemic to the area. 

The region is home to 1406 of the red data book plant species, which is the largest concentration 

globally (Allsopp et al., 2019). This study will concentrate on a portion of the CFR, namely, the 

Heuningnes Catchment (Figure 3.1). Covering an area of 1403 km2, the catchment is located in 

the Cape Algulhas region in the Western Cape and it is straddled by the Bredasdorp Mountains 

along the northern watershed (Kinoti, 2019). It is characterised by several ephemeral ponds, rivers, 

freshwater springs, and wetlands (riparian and non-riparian). The main rivers are the Nuwejaars 

and Kars Rivers, and there are several wetlands, such as the Soetendalsvlei and the Voelvlei, that 

are interlinked with streams. The riparian zones are infested by invasive plant species such as 

acacia longifolia (Geartner et al., 2012). The geology is distributed into three main groups, 

namely, the Table Mountain Group (TMG), which consists of quartzic sandstone, while shale and 

siltstone dominate the north-western parts of the catchment. The TMG is affected by deformation, 

which has resulted in a fractured secondary aquifer. The Bokkeveld Group overlies the TMG and 

occupies the eastern and middle parts of the catchment in the Elim and Soetendalsvlei areas. The 

shales of the Bokkeveld Group have notable fractures and faults and saline groundwater. The 

Bredasdorp Group, which consists of shallow Cenozoic marine aeolian deposits, overlies the TMG 

and Bokkeveld Group (Mkunyana et al., 2019; Mokoena, 2019). The characteristic lithology of 

calcified dunes and coastal limestone are found in the southern coastal regions of the catchment. 

The groundwater flow is heavily influenced by the underlying geology and structural 

characteristics, and therefore follows the topography. The groundwater is characterised by both 

primary and secondary aquifers (Mkunyana et al., 2019), and the region has primarily fractured 

aquifer types, with several springs distributed along the catchment. However, the lower part of the 

catchment is characterised by an intergranular aquifer with low-yielding shale (Mokoena, 2019). 

The groundwater in the area is used for livestock farming and domestic use. The land cover is 

mainly natural, with dominant shrubland fynbos, which is in demand for the ornamental industry 

and for pharmaceuticals (Turpie et al., 2003). Natural eco-tourism contributes to the economy by 

means of the two conservation areas, namely, the De Mond Nature Reserve and the Algulhas 
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National Park. The major land uses are agricultural, with mainly wheat and livestock farming, as 

well as a few vineyards (Thamaga and Dube, 2018) and pine plantations (Kinoti, 2019). Since the 

economic activities rely on water, there is a fundamental challenge to support economic 

development and social redress, while also ensuring the environmental functioning of the water-

dependent ecosystems. This is exacerbated by the competing demands of agriculture, the ecology 

and invasive plants that may be utilizing the environmental water reserves.  

 

 

 

 

Figure 3. 1 The Heuningnes Catchment study area and its geology in the Western Cape region 
of South Africa 
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3.2.2 Data acquisition 

 3.2.2.1 Floristic survey 

Field data were collected to map and validate the groundwater dependent vegetation within the 

Heuningnes Catchment. The vegetation data were acquired from reference data and a floristic 

survey conducted during the wet and flowering seasons for easy plant identification. Plot sizes of 

10 m x 10 m were delineated to collect the Global Positioning System (GPS) coordinates where 

the vegetation was sampled. The dominant vegetation, plant phenology and other land cover types 

in the area were noted. Overall, there were 12 sampling points within the G50B quaternary 

catchment, with the dominant vegetation species being identified and recorded in each of them. 

Species locations were recorded by using the eTrex 10 Garmin GPS, with an error margin of 3 m 

(Garmin, 2019). Samples of the dominant vegetation within the sample plots were collected, 

including their pictures, and these were for further species identification by using the SANBI 

iNaturalist Plant Identification application. The application uses crowd-sourced data and artificial 

intelligence identification algorithm that provides the real time identification of the organisms 

posted.  

3.2.2.2 Satellite data 

The study sought to compare the Sentinel 2- and Landsat 8-derived models to map the potential 

distribution of the GDV. These models were produced from bio-indicators (vegetation 

productivity), landcover, as well as the topographic features, including the slope and surface 

curvature (Brodie et al., 2002; Münch and Conrad, 2007). The L8 Level 1C satellite dataset was 

downloaded from the online USGS Earth Explorer Earth Observation database 

(https://earthexplorer.usgs.gov/). Satellite images from the dry season were specifically selected 

to exploit the impacts of water scarcity on the vegetation. Groundwater dependent vegetation with 

access to groundwater has a higher vegetation productivity than the surrounding vegetation when 

surface water resources are limited. The images were mainly for the year 2017. A single L8 scene, 

which was acquired on the 15th of January, covered the entire expanse of the study area. Two S2 

Level 1C products with minimal cloud cover (<2%) were obtained from the 11th and 08th of January 

2017. The images were acquired on different dates because of the need for cloud-free images. It is 

assumed that land cover changes were negligible within that period. The Shuttle Radar 

Topography Mission (SRTM) void-filled image, with a 30 m spatial resolution, was also 
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downloaded from the USGS online resource. The landcover map was obtained from the 

Department of Forestry, Fisheries and Environment database 

(https://egis.environment.gov.za/gis_data_downloads). The acquired map had an overall 

classification accuracy of 90.14%. Multi-seasonal Sentinel 2 images were used to generate the 

landcover map, which was useful for extracting the areas with natural vegetation that are suitable 

for GDV.  

3.2.3 Data processing and classification 

Level 1C products for L8 and S2 are radiometrically and geometrically corrected, with spatial 

registration and ortho-rectification (Suhet, 2015). The Top of Atmosphere (TOA) reflectance was 

used for determining the vegetation indices, as Emelyanova et al. (2018) demonstrated that the 

TOA and Atmospheric Correction (AC) reflectance are equally appropriate for GDV mapping. 

The L8 and S2 images were re-projected to the WGS84 UTM zone 34S geographical co-ordinate 

system. The Normalised Difference Vegetation Index (NDVI) and Soil Adjusted Vegetation Index 

(SAVI) were used as a proxy for vegetation productivity. The NDVI has been extensively used in 

literature (Doody et al., 2017; Jovanovic et al., 2011; Liao et al., 2020; Münch and Conrad, 2007; 

Thamaga et al., 2018; G. Zhang et al., 2020), with great results for GDV mapping. The SAVI 

minimises the influence of soil brightness on the vegetation spectral reflectance, which is suitable 

for areas with a low vegetation cover (Huete, 1988; Rhyma et al., 2020). The relevant bands 

required for calculating the SAVI and NDVI were processed further by clipping them to fit the 

extent of the study area. The vegetation indices (VI) were then calculated (Equations 1 and 2) by 

using the map algebra tool from the spatial analyst tools in ARMAP 10.8.  

           𝑁𝐷𝑉𝐼 =  (
𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅+𝑅
)       (1)                            𝑆𝐴𝑉𝐼 =  (

𝑁𝐼𝑅−𝑅

𝑁𝐼𝑅 +𝑅+𝐿
) × (1 + 𝐿)   (2) 

Where NIR is Band 5 for L8 and Band 8 for S2, R is Band 4 for L8 and Band 4 for S2. The 

brightness correction factor, L = (0.5). 

The VI spatial layers were also classified by using the IsoData Unsupervised Classification 

technique. There were a total of five classes, ranging from 1 to 5. VI Class 5 represented the highly 

productive vegetation associated with water availability, while Classes 1-4 characterized 

vegetation with limited access to groundwater. Therefore, the first four classes were masked out, 
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leaving Class 5, which represented the areas with the highest potential for groundwater 

dependence. Vegetation with an above-average productivity indicates that it has access to surface 

water resources. The landcover dataset was resampled to fit the study area. From the landcover 

layer, only the wetland and natural vegetation classes are suitable for GDV; therefore, the other 

classes were masked out.  

The SRTM void-filled dataset was also clipped and used to calculate the slope and profile 

curvature. The rules for selecting the areas with topographic characteristics suitable for GDV were 

set as the areas with a gentle slope of less than 3%, and a positive profile curvature value 

(depressions) has a high potential for GDV (Münch and Conrad, 2007). Figure 3.2 summarized 

the steps for potential GDV distribution mapping. The land cover, slope, profile curvature and VI 

layers were reclassified into two classes. The class with the pixel value of 1 represents the pixels 

with a high potential for GDV and 0 represents those pixels with no potential. The four layers 

(landcover, slope, vegetation productivity and surface curvature) were integrated by using the 

weighted sum overlay tool, with pixel values above three indicating the potential GDV, and those 

below three being masked out, as they did not satisfy the criteria. The final outputs were four 

potential GDV maps, which were derived by using the different indices from the two sensors 

(L8(SAVI), L8(NDVI), S2(SAVI) and S2(NDVI)). The area extent of the GDV and non-GDV 

classes was computed to estimate the percentage coverage of GDV within the Heuningnes 

Catchment. 

The validity of the four binary classified maps was assessed on a reference Google Earth image 

with a 5m resolution. The landcover characteristics at the time were obtained from the Google 

Earth image. There were 196 randomly generated accuracy assessment points (40 for the GDV 

class and 156 for the non-GDV class). These were overlaid on the January 2017 image to assess 

the quality of information derived from the classified models. The 196 points were created because 

the area is relatively small and sample point allocation per class unbalanced because the binary 

classification is unbalanced (Foody, 2002; Stehman, 2009, 2000). The classification accuracy was 

assessed through binary confusion matrix to compute the producers, users, and overall accuracies. 

Cohen’s Kappa Coefficient indicating the level of agreement between the reference image and the 

classified images was computed. The allocation of omission and commission errors was 

determined following  Olofsson et al., (2013). The commission errors are determined by deducting 
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the producer’s accuracy from the total percentage of pixels to indicate overestimation. Omission 

errors are determined by deducting the User’s accuracy from the total percentage of pixels to 

indicate underestimation. The McNemar’s test was performed to find out if there were any 

significant differences in the overall performance of the classified images.  

 

Figure 3. 2 Flow chart summarizing the critical analysis steps for mapping the potential 
distribution of GDV 
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3.1 Results 

3.1.1 Potential GDV model classification assessment 
 

Overall, the S2(SAVI) model produced the best results for identifying the potential GDV, with an 

Overall Accuracy OA of 97% and the highest level of agreement (93%). Table 3.1 shows the GDV 

and Non-GDV classification accuracies for the Heuningnes Catchment, with overall accuracies 

ranging from 92% to 97%. The GDV classification has better User Accuracy (UA) than Producer 

Accuracy (PA), while the opposite is true for the non-GDV classification (Table 3.1). When 

looking at the L8 models, the L8(SAVI) model performed better than the L8(NDVI) model, in 

terms of the PA, the UA and the OA. This shows that, when using L8, the SAVI is the better-

performing index for determining bio-indicators. This is also true for the S2-derived maps, where 

the SAVI maps had a higher PA (93%) and UA (95%) compared to the NDVI PA (88%) and UA 

(90%) for the GDV classification. When looking at the sensors, S2(SAVI) outperformed 

L8(SAVI) by 1%, and by 3% for the NDVI model. Overall, the results reveal S2 performs better 

than L8 when evaluating the capability for detecting and mapping the potential distribution of 

GDV and areas with limited GDV potential. 

Table 3. 1 Accuracy assessment results for the binary classification of potential GDV for the 
Heuningnes Catchment 

  PA UA OA Kappa 
L8(NDVI) GDV 79.55 85.37 92.35 0.77 

 Non-GDV 96.05 94.19   
L8(SAVI) GDV 90.24 92.50 96.43 0.89 

 Non-GDV 98.06 97.44   
S2(NDVI) GDV 87.80 90.00 95.41 0.86 

 Non-GDV 97.42 96.79   
S2(SAVI) GDV 92.68 95.00 97.45 0.93 

 Non-GDV 98.71 98.08   
 

The level of agreement and disagreement for the four models is shown on Figure 3.3. The level of 

agreements is higher than the level of disagreement (errors of commission and omission) for both 

classes. However, the error of omission is high for the GDV class, while the non-GDV class has a 
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higher error of commission. The L8(NDVI) performed the least, with a high level of disagreement 

(35%), mainly from the high omission error (20.45%) for the GDV class. The classification from 

S2(SAVI) had an overall disagreement (4%) equally contributed by the commission and the 

omission errors for the GDV class. The performance difference between the sensors indicated that 

potential GDV can be more accurately detected when using Sentinel 2 within the Heuningnes 

Catchment. The McNemar statistical test (p>0.05) revealed that there were no significant 

differences in the performance of the classifications.  

 

 

Figure 3. 3 Allocation of agreement, commission, and omission errors for the four potential 
GDV maps 

3.1.2 Vegetation species as an indicator of GDV occurrence 

Vegetation that is known to be dependent on groundwater can be used to assess the GDV 

classification, and if the known GDV is found in the identified areas, the classification is validated 

(le Maitre et al., 1999; Páscoa et al., 2020). Since the north-western regions have a high-density 

potential for GDV, the G50B quaternary catchment was chosen for the floristic survey. The 

dominant vegetation within the quaternary catchment consisted of the Acacia pycnatha, Poacea 

(grasses), Acacia longifolia, Acacia saligna, Helichrysum petiolare, Restionaceae, Ornithogalum 

thrrsoids, Diospyros glabra and Pinus. The report by le Maitre et al. (1999) produced a provincial 

list of GDV, based on the vegetation setting. The Acacia, Thyrsoides and Diospyros species were 
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included in the list for the Western Cape. Studies on the impact of the Acacia species have revealed 

that it has led to a reduction in the water table and that its water use exceeds the rainfall (Shoko et 

al., 2020; Groengroeft et al., 2018; Khanzada et al., 1998). Groundwater is important on the 

quaternary sands on the western, south-eastern coasts and on the limestone laterites of the Algulhas 

coastal plain (Scott and le Maitre, 1998).       

 

3.1.3 Indicator variables for potential GDV mapping and the resultant GDV indices 

The southern regions of the catchment are characterised by gentle slopes, when compared to the 

northern regions, while the surface depressions are evenly spread within the catchment. Natural 

vegetation dominates the catchment and the L8 and S2 vegetation indices indicate similar results 

for areas with a high vegetation productivity. The catchment areas with Class 1 are characterised 

by gentle slopes of less than 3%, depression areas, natural vegetation and highly productive 

vegetation. Class 0 areas do not have potentially suitable characteristics for GDV potential (Figure 

3.4). 

http://etd.uwc.ac.za/ 
 



49 
 

 

Figure 3. 4 The binary classification of indicator variables used in producing the four potential 
GDV indices; Class 1 indicates the areas with GDV suitability, with Class 0 indicating the 
unsuitable areas 

 

A visual description of the potential GDV, as well as its distribution within the catchment, is 

presented in Figure 3.5. The four models produced visually similar results on the distribution of 

GDV. This is in line with the quantitative results, where the L8 models show about 2.6% of the 

area is suitable for GDV, when compared to the S2(SAVI) and S2(NDVI), which determine that 

2.4% and 2.34% of the area has GDV potential, respectively. The north-western region of the 

catchment has a higher potential for GDV, when compared to the other lower parts of the 

catchment, were the GDV is widely spread and sporadic. The GDV in the north-western region 

seems to be riparian vegetation where the groundwater level is close to the surface. The GDV in 

the south of the catchment taps into the shallow primary aquifer of the Bredasdorp Group. The 
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GDV communities are not only distributed along the riparian zone, but they are also found in areas 

further away from the streams.  

 

 

Figure 3. 5 Distribution of potential GDV within the Heuningnes Catchment derived from the 
GDV indices: a) S2(SAVI), b) L8(SAVI), c) S2(NDVI) and d) L8(NDVI) 
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3.2 Discussion 

The study found that moderate spatial resolution sensors have a high potential for GDV 

identification, with an overall accuracy of above 90% in the Heuningnes Catchment. The accurate 

prediction of the spatial GDV distribution is important when determining the ecological reserves 

and also for the allocation of groundwater resources (Colvin et al., 2003; Colvin et al., 2007). 

There were small differences in the sensor performance for the GDV classification, with the S2 

models outperforming the L8 models. This is in accordance with previous studies that compared 

the two sensors, which established that S2 has superior capabilities for vegetation mapping than 

L8 (Thamaga and Dube, 2018; Mtengwana et al., 2020). The significant difference between the 

sensor performances indicates that the pixel size is an important factor in the classification of the 

GDV. The distribution of GDV is widely spread and patchy within the catchment, while some 

GDV clusters may be small, therefore increasing the need for a smaller pixel size. The S2 has a 

spatial resolution (10 m) that is three times finer than the L8, thereby decreasing the effects of the 

mixed pixels. Therefore, it can detect the spatial distribution of smaller and isolated GDV 

communities effectively. Moreover, the estimations of the L8 models were higher for the potential 

areal coverage of GDV, compared to those of the S2. For L8, the GDV communities that were 

larger than half the pixel size, were misclassified as being fully covered by GDV, which resulted 

in the over-estimation seen in the results. In terms of the vegetation indices, the SAVI has the 

capabilities to improve sensor performance for potential GDV detection when compared to the 

NDVI. The SAVI considers the effects of senescent vegetation and background soil effects which 

results in the estimation errors caused by soil brightness and the cover of bare soil (Colvin et al., 

2003; Dube et al., 2019; Parker et al., 2018; Thamaga et al., 2018). Thus, the SAVI is more suitable 

for estimating GDV cover seen at low densities during dry periods. The McNemar test also 

revealed no significant differences (α = 0.05) between the potential GDV indices classification.  

The occurrence of vegetation that is known to be associated with groundwater use has been used 

as a qualitative verification method for GDV/GDE mapping in previous studies (Dzikiti et al., 

2013; Páscoa et al., 2020; Scott and le Maitre, 1998). This study found a high potential for GDV 

occurrence in the north-western region of the Heuningnes Catchment. The identified vegetation 

species were the native and alien invasive species. The endemic plants belong to the Renosterveld  

of  the  South  Coast  Centre and Mountain Centre vegetation and have been indicated to 
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be xeric (Colvin et al., 2003; Rutherford et al., 2006). The renosterveld shrubs may develop 

deep roots, where possible, but have limited interaction because of the hard shales. 

Groundwater may play a critical role in the quaternary sands on the western, southern and 

south-eastern coasts, as well as on the limestones on the laterites of the Agulhas-Riversdale 

coastal plain (le Maitre et al., 1999). The north-western region of the catchment has a secondary 

fractured aquifer (Mokoena, 2019), and it is possible that these vegetation communities may be 

maintained by springs. This study revealed that both endemic and invasive vegetation potentially 

rely on the groundwater within the catchment. Invasive GDV threatens the endemic GDV, as it 

can out-compete the endemic GDV and is more resilient to the decreasing groundwater levels 

(Maitre et al., 1996; Rouget et al., 2003; van Wilgen et al., 2008; Jovanovic et al., 2013). Not only 

do invasive vegetation and GDV exploit the groundwater resources, but they also reduce the 

groundwater recharge, which limits the available water for the endemic GDV. 

The findings imply that biodiversity conservation management should consider the ecological 

groundwater reserves that could be consumed by invasive species; therefore, the need for invasive 

species control and restoration is emphasised (Currie et al., 2009).  Overall, S2- and L8-derived 

GDV have a high potential for GDV mapping. A suitable vegetation index for determining the 

bioclimatic indicators and using a sensor with a higher spatial resolution can improve the 

classification accuracy. The distribution of GDV is important for setting up proactive and 

preventative management strategies. For example, a GDV map can be used as a layer that is 

integrated with other spatial datasets to understand the distribution of GDV and how they are 

connected to the broader hydrological processes within the landscape (Glanville et al., 2016b). 

Furthermore, they serve as baseline data that are provided for planning, for assessments and for 

regulating the development activities of specific areas, which may affect the GDV within the 

Heuningnes Catchment.    

This research observed two major limitations relating to the method used for GDV mapping. 

Firstly, as seen from the visual representation, some GDV communities have been ommitted on 

the four maps because of the selected threshold that tried to capture areas with the highest potential 

for GDV. For example, the GDV communities located on a higher slope and close to water bodies 

could have been masked out because they are located at slopes >3%. The quality of the potential 

GDV mapping can be improved by investigating alternative vegetation indices, and by machine 
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learning algorithms and their performance across a range of index values. The spatial relationship 

between the groundwater depth and the distribution of potential GDV can be used to improve the 

confidence in the models. However, groundwater depth datasets could not be included as a spatial 

layer, because the data had significant gaps, they were sparse and were unevenly distributed within 

the landscape. Secondly, the field verification of the GDV indicator species was not easily 

quantifiable, because the indicator species groups were highly fragmented within the landscape. 

They also had similar spectral signatures to the adjacent landcover and could not be discriminated 

by the remotely-sensed datasets. The indicator vegetation is useful for gauging the reliablity of the 

maps, rather than a quantitative assessment of the GDV maps. However, the findings from this 

study provides useful insights on the state of the environment in the Heuningnes Catchment and 

this information can be used as baseline data for further work on GDV monitoring and 

management in the area and beyond. 

3.2 Conclusion 

This study determined the suitable L8 and S2 models that can be used for mapping the potential 

GDV within the Heuninges Catchment. The main indicators for the GDV potential were the 

topographic characteristics of the landcape, the landcover and the productivity of the vegetation. 

The models showed great potential for GDV mapping within the catchment; however, the 

S2(SAVI) model showed the greatest potential, in terms of its overall assessment. The  L8(NDVI) 

model’s performance was lower, which was attributed to the misclassifications that resulted from 

the Landsat’s coarser spatial resolution. Overall, the findings provide valuable data for further 

GDV assessments within the Heuningnes Catchment. The GDV is densely distributed in the north-

western region, with some found along the riparian zone; however, in the south-eastern region, 

GDV is quite sporadic and relies on the shallow alluvial aquifer. Moreover, GDV is both endermic 

and invasive within the catchment and this has major implications for biodiversity and 

conservation managent. The findings  suggest the need for further investigations into the types of 

GDV distributed across the catchment, how  they are linked to the groundwater, as well as their 

level of dependency.  
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CHAPTER FOUR 

Multispectral remote sensing of vegetation responses to groundwater 
variability in the Greater Floristic Region of the Western Cape, South Africa 

 

Abstract 

The interaction of groundwater and vegetation during the drought period, from June 2017 to July 

2018, was investigated for riparian and hillslope environments, using multispectral remote sensing 

data (MODIS-NDVI). In addition, the relationship between the vegetation productivity, the rainfall 

and the temperature was analysed. Specifically, the vegetation and groundwater depth correlation 

were tested for immediate and lagged interactions. A time series analysis and linear regression 

indicated that the groundwater depth is strongly associated with the 1-month lagged R(-0.54--

0.71), compared to the non-lagged R(-0.45--0.62). The hillslope vegetation was observed to be 

more sensitive to groundwater than the riparian vegetation. This was evidenced by the larger 

gain/loss range in the NDVI, with variations in the groundwater level. However, these responses 

varied significantly between the sites under study. Generally, the groundwater depth variability is 

a function of the seasonal changes, which induces a response in the productivity of vegetation. For 

instance, the water table is higher in the wet months; therefore, the vegetation productivity is 

higher, when compared to the dry season, when the water table is deeper. In contrast, temperature 

was a significant (p < 0.05) contributing factor to the hillslope vegetation dynamics. The rainfall 

and groundwater depth had a minimal impact on vegetation productivity, except for riparian 

vegetation, which demonstrated a strong association with rainfall. Overall, high NDVI (>0.6) 

values were observed throughout the monitoring period, despite it being a drought period. This 

chapter highlighted the value of remote sensing datasets and statistical analysis methods for 

understanding the prevalent groundwater-vegetation interactions in semi-arid environments. 

Keywords: Climate factors, Invasive vegetation, MODIS, semi-arid, groundwater resource 
management 
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4.1 Introduction 

Vegetation plays a significant role by providing crucial ecosystem services, such as carbon 

sequestration, providing biodiverse habitats and the regulation of climate systems (Gauthier et al., 

2015; Ndehedehe et al., 2019). However, these functions may be compromised when the 

vegetation is degraded. In semi-arid environments, vegetation is vulnerable to water shortages 

caused by unsustainable land-use practices, rapid socio-economic development and the impacts of 

climate change (Elmore et al., 2006, Xia et al., 2017). Managing the competing uses of freshwater 

resources is a challenge for the future development and management of water resources. Moreover, 

the impacts of drought are a growing concern (Froend and Sommer, 2010; Kath et al., 2014). 

Droughts that are related to climate change result in an over-reliance on groundwater resources, 

which affects the vegetation growth patterns. This is of great concern for water resource managers 

and ecologists. 

Groundwater variability is significant for determining the availability of water for Groundwater 

Dependent Vegetation (GDV). Although the relationship between vegetation and natural 

groundwater variability is well understood, there is still a need to understand the response of the 

vegetation to groundwater variability during a drought period. This is of significance in a 

Mediterranean climate environment, which is characterised by wet winters, when there is a low 

evaporative demand, and dry summers, when there is a high evaporative demand (Gasith and Resh, 

1999; Swift et al., 2008). Furthermore, numerous studies focus on riparian vegetation, with limited 

attention being given to hillslope and mountain groundwater dependent vegetation. For instance, 

Froend and Sommer (2010) investigated the long-term riparian vegetation responses to climate- 

and abstraction-induced groundwater draw-down at a plant community level, and they found 

dissimilarities, as well as changes, in the floristic composition in areas with a high draw-down rate. 

Furthermore, GDV is assimilated to a specific groundwater depth range; therefore, not all GDV 

responds to a decline in the groundwater in the same way. At greater depths to groundwater, 

vegetation response may be mediated by soil moisture. The plants  extensive roots may tap  soil 

water instead of water from an aquifer (Zencich et al., 2002). In addition, most studies have been 

conducted in temperate ecosystems, thus there is a need to elucidate the seasonal vegetation 

responses to groundwater dynamics within an arid Mediterranean environment (Shafroth et al., 

2000; Naumburg et al., 2005; Scott and le Maitre, 1998). The majority of these studies also used 
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indirect physiological variables (stomatal conductance, stem diameter, abundance, composition 

and basal area) as indicators for vegetation productivity (Froend and Sommer, 2010; Hoogland et 

al., 2010; Kath et al., 2014; Martinetti et al., 2021; Shafroth et al., 2000; Silva Mota et al., 2018; 

Zencich et al., 2002). For example, Froend and Sommer (2010) collated the 7-year tree condition 

data that was acquired from field surveys to determine the non-linear vegetation responses to the 

decline in groundwater. Acquiring in-situ vegetation data is inefficient and labour-intensive, and 

it limits the spatial and temporal scope of a study. In addition, the upscaling of in-situ 

measurements, from a plant and stand level to a larger scale, is challenging because of the 

heterogeneity of the vegetation characteristics. These studies also concentrated on the 

physiological structure of the vegetation, whereas hydrologists, water engineers and geoscientists 

are focused on ecosystem restoration and the catchment water balance; thus, transpiration and 

photosynthesis are the main components of interest (Orellana et al., 2012). Remote sensing 

mitigates the limitations of in-situ measurements by providing an archive of vegetation and climate 

data that may not be available for study in inaccessible and data-scarce areas. Moreover, remote 

sensing presents the transpiration and vegetation health estimates over large areas, with a high 

spatial coverage and temporal frequencies, and at a low cost. Vegetation indices derived from 

multispectral data may be used as proxies for vegetation productivity, to investigate the vegetation 

dynamics and their relationship to hydrology and the climate variables. The Normalised Difference 

Index (NDVI) defines the absorbed photosynthetic active radiation because the mesophyll of 

healthy vegetation strongly reflects near infrared radiation, while leaf chlorophylls and other 

pigments largely absorb visual red radiation (Wang et al., 2003). NDVI has been extensively used 

to investigate green biomass (Northcote and Atagi, 1997; Shoko et al., 2016) and patterns of 

productivity (Chávez and Clevers, 2012; Jin et al., 2014; Lv et al., 2013; Mtengwana et al., 2020). 

Environmental factors, such as the hydrology, climate and land use, influence the health of the 

vegetation, which influences the NDVI. Thus, the NDVI has been widely employed for 

investigating vegetation dynamics in response to climate factors (Bhatt et al., 2020; Dlikilili, 2019; 

Graw et al., 2017; Morsy et al., 2017; Yang et al., 2012). Furthermore, Moderate Resolution 

Imaging Spectrometer (MODIS)-derived transpiration and the NDVI have been successfully 

employed to investigate the hydraulic link between vegetation and the groundwater table (Adams 

et al., 2015; Gow et al., 2010; Jin et al., 2011; Sommer et al., 2016). A simple linear regression 

and Mann Kendall test are reliable and useful analysis methods for examining the relationship 
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between groundwater and the vegetation health (Gow et al., 2010; Graw et al., 2017; Shafroth et 

al., 2000a). For instance, Shafroth et al. (2000) determined the response of woody riparian 

vegetation to changing alluvial water table regimes by using a simple regression. Previous studies 

have indicated that the response of vegetation to a groundwater regime change is related to the 

previous groundwater regime adaptation. Moreover, plants that have access to shallow 

groundwater are more sensitive to a groundwater decline than those with a variable groundwater 

regime (Shafroth et al., 2000; Adams et al., 2015). Therefore, a knowledge of natural groundwater 

regime adaptation provides water resource managers with critical information for determining the 

vegetation response to climate change and abstraction (Froend and Sommer, 2010). Knowledge of 

the extent and degree of groundwater influence on the vegetation productivity is still required. 

Therefore, this paper assesses the inter-annual vegetation response to natural groundwater 

variability between the riparian and hillslope vegetation. Furthermore, the strength of the 

relationship between the NDVI and the groundwater depth, rainfall and temperature will be 

quantified. The acquired information will help to develop water resource management and 

planning that does not compromise groundwater dependent vegetation, and subsequently, it will 

contribute to achieving the SDG 15 for life on earth.  

4.2 Research Methodology 

4.2.1 Study site 

The study area has a Mediterranean climate, with hot dry summers and with 60-75% of the rainfall 

occurring on the winter months. The annual average rainfall range is 445 mm/yr in the east and 

540 mm/yr in the west (Kraaij et al., 2009). This study focused on the 5G0B, which forms the 

quaternary catchment of the Nuwejaars Catchment within the Heuningnes Catchment (Figure 4.1). 

The major river flowing in this catchment is the Nuwejaars River, which has three main tributaries, 

namely, the Jan Swartskraal, Koue and Pietersielieskloof Rivers. The headwater environment for 

these rivers is in the mountainous areas, and wetlands are found in the lowlands of the catchment. 

The Jan Swartskraal River is 18.3 km long at an elevation of 534 m; it has an average slope of 3.9 

degree and a maximum slope of 30.8 degrees in the mountainous regions. The Koue River is 18.9 

km in length at an elevation of 527 m, with an average slope of 2.4 m and 20.7 m in the 

mountainous regions. The Pietersielieskloof River is 14.7 km long and has an elevation of 365 m 

at its source and 27 m at its confluence with the Nuwejaars River. The average slope along this 
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river is 2.9°, with a maximum of 27.5° in the mountainous region. The Nuwejaars (Moddervlei) 

wetland forms at the confluence of the Jan Swartskraal, Koue and Pietersielieskloof Rivers (Mehl, 

2019). 

The Nuwejaars Catchment is mostly cultivated with woodlands in the mountainous regions.  There 

are pine plantations in the mountainous regions and fynbos and protea flower farms in the Jan 

Swartskraal, Koue and Pietersielieskloof river sub-catchments. The main agricultural activities are 

livestock, wheat and canola farming. There are also vineyards in the Moddervlei and 

Pietersielieskloof sub-catchments. The geology of the coastal mountains of the Nuwejaars 

Catchment consists of Cape Fold Belt sandstone, which is overlaid with limestone. The area is 

largely underlain with the Palaeozoic sediments of the Cape Supergroup and sandstone, and the 

low mountains and coastal ridges are comprised of quartzite of the Table Mountain Group (TMG). 

The soils produced from these rocks are acidic and mostly infertile. Fynbos vegetation occurs 

naturally in the catchment. According to Mazvimavi (2017), a connection exists between the 

groundwater and surface water in the upper regions of the catchment. The source of the constant 

base flow for the Koue, Pietersielieskloof and Jan Swartskraal tributaries are the upstream springs. 

The catchment consists of both primary and secondary aquifers. The primary aquifers are 

characterised by unconsolidated sediments that were deposited during sea level changes and occur 

at a depth of 8 m and 30 m. The secondary aquifers consist of fractured bedrock, which is semi-

confined. Groundwater flow within the catchment is controlled by the recharge areas that are 

underlain by the TMG formations and existing fault systems. Springs occur upstream within the 

TMG region of the catchment and are closely linked to the fault systems. They supply the town of 

Elim with water for domestic and agricultural purposes (Mazvimavi, 2017). The area is heavily 

invaded by the acacia species and black wattle; however, the northern parts of Jan Swartskraal are 

being rehabilitated by the planting of natural fynbos.  
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Figure 4. 1 Location of the G50B quaternary catchment and study sites within the Heuningnes 
Catchment   

4.2.2 Data acquisition 

The daily groundwater level data were obtained from an ongoing hydrological monitoring program 

at the University of the Western Cape, which has been monitoring groundwater levels from the 

Nuwejaars River Catchment. The data range was from 22/06/2017 to 24/07/2018. The daily 

groundwater levels were converted to monthly averages, in order to correspond with the remotely 

sensed NDVI. The data of five shallow boreholes distributed around the G50B quaternary 

catchment were selected, based on their consistent availability and the occurrence of individual 

pixels for vegetation data (Table 4.1). The groundwater data that covered riparian and hillslope 

areas were used to investigate the effects of elevation and the distance from the surface water. 

Forty-seven atmospherically corrected scenes of MODIS NDVI data were downloaded from 

https://ladsweb.modaps.eosdis.nasa.gov/search/. The MODIS NDVI, with a 16-day temporal 
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resolution, was suitable for a time series analysis. The 250 m resolution had no effect on the 

acquiring vegetation data since each sampling point was on a specific pixel. The mean daily 

temperature data for the G50B were downloaded from 

https://app.climateengine.org/climateEngine/. The vegetation data were extracted at each sampling 

point on ArcMap 10.8, which covers the study period, and these values were averaged, to 

determine the monthly averages.    

Table 4. 1 Location of sampling points and borehole depth 

Name Location Latitude Longitude 
Borehole depth 
(m) Zone Elevation 

BH 7 Moddervlei -34.60561 19.79753 20 Riparian <150 

BH 8 Moddervlei -34.60531 19.79741 8 Riparian <150 

BH 10 Spanjaardskloof -34.52961 19.75252 20 Hillslope >150 

BH 12 Boskloof -34.53485 19.8291 20 Hillslope >150 

BH 14 Uitsig -34.58694 19.66944 20 Mountain >200 
 

4.2.3 Data analysis 

The NDVI, groundwater depth, temperature and rainfall data underwent an exploratory data 

analysis. The Shapiro-wilk test for normality revealed that all four variables were parametric. 

Therefore, the Bayesian Pearson correlation and multiple linear regression were used to investigate 

the relationship between the NDVI and the three independent variables. The temporal trends in 

vegetation productivity and groundwater depth were evaluated by using the time series plot. A 

time series analysis is a statistical method that utilises past data within a certain period, to predict 

the future. It is comprised of an arrangement of data at equal intervals, and in this instance, the 

monthly interval was used. A time series analysis helps to determine the trends, seasonality, and 

heteroscedasticity. Further the gain/loss plot determined the monthly differences in the 

groundwater depth and NDVI from the monthly averages.  

The Pearson coefficient correlation determines the strength of the linear relationship between the 

mean monthly depth of the groundwater and the mean monthly NDVI. The strength of the 

relationship between the two variables is determined by using the correlation coefficient (r2).  The 
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results of the perfect negative and positive relationships are indicated by the values 1 and -1, 

respectively. The values between 1 and -1 describe the degree of linear independence between the 

variables. The r2 value of zero indicates a non-linear relationship between the variables (Dodhia, 

2005; Laar, 2018). In addition, the Bayes Factor (BF) summarizes the strength of the evidence in 

the study, which supports or goes against the null hypothesis. A multiple regression analysis was 

also used to determine the correlation and significance of the groundwater depth, temperature and 

rainfall effects on the NDVI.  

4.3 Results 

4.3.1 NDVI and groundwater depth trend during the study period 

The groundwater depth was influenced by seasonality; the lower depths (min- 1.35) were 

associated with the wet season (May-Aug) and the higher depths (max- 2.67) were associated with 

the dry months. Figure 4.2a shows the time series plot of the mean groundwater depth and NDVI 

during the study period. The trend displayed an inverse relationship between the groundwater and 

NDVI. The average NDVI value was 0.59 and average groundwater depth was 2.06 m during the 

study period. Figure 4.2b shows the monthly deviations from the average NDVI and average 

groundwater depth. With a few exceptions, there was a clear trend, where an increase in the 

groundwater depth is associated with a decrease in NDVI in the riparian environment (Figure 

4.2b).     
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 a)  b) 

Figure 4. 2 a) Monthly time series of groundwater depth and vegetation greenness for the 
study period for vegetation around Bh7; and b) Groundwater depth and NDVI deviation from 
their annual average for vegetation around Bh7. The 0-line is the mean NDVI and groundwater 
depth throughout the study period 

 
Bh8 is a deeper shallow borehole within the riparian zone. Figures 4.3a and b describe the 

relationship between the mean groundwater depth and vegetation productivity. The time series plot 

of the mean groundwater depth and the NDVI revealed that the annual trend of the NDVI increased 

with a decrease in the groundwater depth. Groundwater levels peaked at 1.8 m in July and were 

the deepest, at 3.05 m, in March. The NDVI also followed a similar trend, with high values (0.64) 

in June/July and low values (0.5) in Jan/Feb. The groundwater variability followed a similar trend 

as in Bh7; however, it had a slightly deeper groundwater level. Figure 4.3b shows the NDVI and 

groundwater depth deviations from their annual average. The NDVI trends followed the same 

pattern as those around Bh7, as they fall on the same pixel. However, the groundwater table peak 

was 0.10 m lower than Bh7 during the 2017 wet season. 
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 a)   b) 

Figure 4. 3 a) Monthly time series of groundwater depth and vegetation greenness for the 
study period for vegetation around Bh8; and b) Groundwater depth and NDVI deviation from 
their annual average for vegetation around Bh8. The 0-line is the mean NDVI and groundwater 
depth throughout the study period 

 

The NDVI is affected by seasonality, with it peaking at 0.72 in the wet season and then plummeting 

to 0.54 during the dry months (Figure 4.4a). The groundwater depth increases steadily throughout 

the study period, with low groundwater depths (3.76 and 3.95) in the wet months Jun/July. During 

the 2017 wet season, the NDVI values are associated with a lower groundwater depth; however, 

during the dry season, the NDVI increases with the groundwater depth, until the beginning of the 

wet season 2018. This suggests that there is a strong relationship between NDVI and groundwater 

depth during the wet period. Figure 4.4b displays the seasonal differences from the mean NDVI 

(0.66) and groundwater depth (5.24 m). The increased NDVI range (0.01-0.06) in the wet months 

of 2017 was associated with a 0.1 m increase in the water table. 
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a)  b) 

Figure 4. 4 a) Monthly time series of groundwater depth and vegetation greenness for the study 
period for vegetation around Bh10; and b) Groundwater depth and NDVI deviation from their 
annual average for vegetation around Bh10. The 0-line is the mean NDVI and groundwater depth 
throughout the study period 

 
The time series plot of the groundwater depth and NDVI is displayed in Figure 4.5a. The depths 

to the groundwater were the lowest in the Aug/Sept (9.26) months and gradually increased, until 

they plummeted to 11.47 m in the next dry season. The NDVI values changed with the seasons, 

with high values (0.67) in the wet months of May-Sept, which then decreased during the early dry 

season to 0.55 in the mid-dry season and picked up again from autumn (Fig. 4.5a). The average 

groundwater depth (9.94 m) and NDVI (0.62) are displayed in Figure 4.5b. The groundwater depth 

deviation ranged from -0.70 to 1.53 m, and the inverse relationship with the NDVI was pronounced 

during the 2017 wet season.  
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a)   b) 

Figure 4. 5 a) Monthly time series of groundwater depth and vegetation greenness for the study 
period for vegetation around Bh12; and b) Groundwater depth and NDVI deviation from their 
annual average for vegetation around Bh12. The 0-line is the mean NDVI and groundwater depth 
throughout the study period 

The time series plot of the monthly mean groundwater depth and NDVI are displayed in Figure 

4.6a. The depth to the groundwater was the lowest in July (0.72) and decreased during spring, to a 

low (0.45) in the dry season. The groundwater levels increased from the mid-dry season to the next 

wet season. The seasonal variability in the groundwater depth was pronounced in this area. This is 

evidenced by the shallow depth (2.34) in the wet season and the deep-water table (5.12) at the end 

of the dry season (Fig. 4.6a). The average groundwater depth (3.50 m) and NDVI (0.57) are 

displayed in Fig. 4.6b. The differences between the mean NDVI and groundwater depth 

emphasised the seasonal inverse relationship between the two variables.  The groundwater depth 

deviation ranged from -1.46 to 1.63, and 0.15 to -0.12, from the wet to the dry seasons.   
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a)   b) 

Figure 4. 6 a) Monthly time series of groundwater depth and vegetation greenness for the study 
period for vegetation around Bh14; and b) Groundwater depth and NDVI deviation from their 
annual average for vegetation around Bh14. The 0-line is the mean NDVI and groundwater depth 
throughout the study period 

4.3.2 Quantitative relation between groundwater and NDVI 

The relationship between the vegetation and the groundwater depth were quantified by using the 

Bayesian Pearson correlation. The vegetation and groundwater depth correlation were tested for 

immediate and lagged interactions, and the results are summarised in Table 4.2. The productivity 

of the riparian vegetation has a negative moderate (r 2 = -0.51) correlation with groundwater depth, 

which increases (r2 = -0.65) with the lagged vegetation response. The hillslope vegetation indicated 

a weaker immediate correlation to the groundwater depth, when compared to the riparian 

vegetation. However, the NDVI of the hillslope vegetation found in the vicinity of Bh14 suggests 

that there is a strong relationship between the two variables. The Bayes Factor (BF) summarises 

the strength of evidence for the association between the NDVI and groundwater depth, and it 

(BF<1) indicates anecdotal evidence that supports the null hypothesis. Therefore, there is no 

significant evidence to accept or reject that there is a correlation between groundwater depth and 

vegetation productivity.   

 

 

 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

1

2

3

4

5

6

N
D

V
I

D
ep

th
 t

o
 g

ro
u

n
d

w
at

er

GWL NDVI

-1.5

-1

-0.5

0

0.5

1

1.5

2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0
5

_2
0

1
7

0
7

_2
0

1
7

0
9

_2
0

1
7

1
1

_2
0

1
7

0
1

_2
0

1
8

0
3

_2
0

1
8

0
5

_2
0

1
8

C
H

A
N

G
E 

IN
 N

D
V

I

C
H

A
N

G
EE

 IN
 G

R
O

U
N

D
W

A
TE

R
 D

EP
TH

NDVI GWL

http://etd.uwc.ac.za/ 
 



67 
 

 
Table 4. 2 Summary of the Bayesian correlation for the groundwater depth and NDVI 

 0-month lag 1-month lag 

R square Bayes Factor R square Bayes Factor 

Bh7 -0.51 0.89 -0.65 0.27 

Bh8 -0.51 0.85 -0.65 0.28 

Bh10 -0.47 1.15 -0.54 0.76 

Bh12 -0.45 1.37 -0.70 0.19 

Bh14 -0.62 0.31 -0.71 0.17 

 

4.3.3 Mean temperatures and monthly mean rainfall for the study period 
 

The mean daily temperatures within the G50B catchment are affected by seasonality (Figure 4.7). 

The temperatures begin to decrease (May-Sep) and then intensify in the spring/summer months 

(Oct-Mar) and decrease again in May. A minimum mean temperature was experienced in winter, 

July 2017 (12.38°C) and it peaked in January 2018 (20.99°C). The mean monthly temperature is 

16.42 for the study period, with a standard deviation of 0.80. 

 

Figure 4. 7 Mean daily temperature for the study period 

The average monthly rainfall figures are compared in Figure 4.8. The average rainfall for the four 

sites was 34.61 mm, 38.96 mm, 37.41 mm, 36.37 mm for Bh7, Bh8, Bh10, Bh12 and Bh14, 
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respectively. Bh7 and Bh8 are in the same rainfall area. Figure 4.8 demonstrates that December 

2017 was the driest month, with an average rainfall of 10.49 mm, and that June 2018 was the 

wettest month, with 85.83 mm. The riparian sites received slightly lower rainfall than the hillslope 

sites, with the areas around Bh10 receiving the most rainfall. The rainfall trend shows that most 

months received rainfall below the average of 50 mm, which indicates that this was a period of 

low precipitation (Fig. 4.8). The Coefficient of Variation (CV) was used to measure the variability 

of the rainfall for the period, and the areas displayed a moderate average rainfall variability 

(56.46%).  

 

 

Figure 4. 8 Mean monthly rainfall for the four study sites within the G60B catchment   

 

4.3.4 Quantitative relation between NDVI with groundwater depth, rainfall and temperature 

A multiple regression analysis was computed to demonstrate the impacts of rainfall, groundwater 

depth and temperature on the vegetation productivity of riparian and hillslope vegetation. The 

results indicate that 63.1% of the NDVI variability was determined by the three variables. For the 

hillslope area, rainfall, groundwater depth and temperature account for 67.1% of the NDVI 

variability, while the vegetation around Bh12 was significantly influenced by these variables. This 

is indicated by the r square values in Table 4.3.  The three variables (groundwater depth, rainfall, 

and temperature) had a significant influence (p<0.05) on riparian and hillslope vegetation 

productivity, which may not be true for the vegetation around Bh10 (p>0.05).   
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Table 4. 3 Multiple Regression model summary 

 Test for sign. Dif. R square 

Riparian 
Bh7 0.02 0.63 
Bh8 0.02 0.63 

Hillslope 

Bh10 0.06 0.50 
Bh12 0.00 0.75 
Bh14 0.01 0.67 

The unstandardised coefficients and p-values, as summarised in Table 4.4, indicate the 

contributing factors of rainfall, groundwater depth and temperature on the monthly NDVI 

variability. In the riparian region, the NDVI has no significant relationship with the three variables 

(p>0.05). However, the relationship is stronger with the rainfall, followed by the temperature, but 

it is limited with the groundwater depth. The hillslope area revealed a weak relationship between 

NDVI and the three variables; however, the vegetation around Bh12 and 14 displayed a significant 

relationship between the NDVI and temperature (p<0.05). Rainfall plays a more significant role in 

NDVI for the vegetation around Bh10 and Bh12, while the vegetation close to Bh14 is influenced 

more by the groundwater depth than by the rainfall.  

   
Table 4. 4 The correlation and level of significance of the relationship of the NDVI with 
rainfall, groundwater depth and temperature 

  Rainfall  GWL  Temp  
 Site coefficients p-value coefficients p-value coefficients p-value 

Riparian Bh7 0.00 0.14 -0.00 0.95 -0.01 0.24 
 Bh8 0.00 0.14 -0.00 0.90 -0.01 0.25 

Hillslope Bh10 0.00 0.47 0.02 0.54 -0.01 0.07 
 Bh12 0.00 0.42 0.00 0.96 -0.01 0.00 
 Bh14 0.00 0.97 -0.02 0.45 -0.02 0.04 
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4.4 Discussion 

4.4.1 Relational trends between the groundwater depth and the NDVI 

This study examined the spatial and temporal strength of the relationship between the groundwater 

depth and the NVDI. The results demonstrated a general pattern, showing that the groundwater 

levels increase during the onset of the wet season and decrease in the dry season. In the riparian 

area, the water table was shallow (<3 m), but it was slightly higher around Bh7 than around Bh8. 

Moreover, there was a stronger groundwater depth correlation with 1-month lag NDVI, compared 

to the 0-month NDVI. This suggests that the vegetation condition has a delayed response to 

groundwater variability within this area. No significant differences were observed between the 

vegetation responses within the riparian sites. The response of the vegetation to the groundwater 

dynamics is subtle; for example, the lowered water table may prevent seedling recruitment and 

photosynthetic activity, with little obvious impact in the short-term (le Maitre et al., 1999). The 

vegetation around Bh7 was slightly more sensitive to the groundwater depth variations, when 

compared to the vegetation close to Bh8. Because the two sites fell on the same pixel, contrasting 

the riparian NDVI-depth to groundwater relationship was compromised. 

The riparian area is dominated by invasive acacia species, such as Acacia longifolia and Acacia 

Saligna (le Maitre et al., 2000). Acacia longifolia (long-leafed wattle) were introduced in South 

Africa in 1864 and are evergreen shrubs with yellow flowers that sprout from August to October 

(Mkunyana et al., 2019; Richardson et al., 2004). Endemic vegetation, such as Ornithogalum 

thysoids, Restionaceae and Kiggelaria Africana, are present. The hillslopes have also been invaded 

by A. Longifolia, A. Saligna, and P. pinaster, as well as the native vegetation helichrysum petiolare 

and diospyros glabria species. Invasive species that are found in the hillslope environment have 

smaller and shorter stems than those found in riparian environments (Dzikiti et al., 2013; le Maitre 

et al., 2000; Mazvimavi, 2018; Mkunyana et al., 2019). The hillslope water table is deeper than 

the riparian water table, namely <7 m, <12 m and <6 m for Bh10, Bh12 and Bh14, respectively. 

Therefore, the NDVI relates variably with the groundwater depth in the hillslope environment. The 

relationship between the groundwater table and the NDVI increased from Bh10, Bh14 to Bh12, as 

indicated by the high negative r2-values. These findings corroborate those of Martinetti et al. 

(2021), where vegetation from the deep groundwater table (Bh12) was more sensitive to the 

groundwater level dynamics, compared to the riparian vegetation. The correlation coefficients for 
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the groundwater depth and NDVI indicated a moderate association. Moreover, the Bayes Factors 

(-1> BF<1) showed that there is no strong evidence to reject/accept there is any correlation 

between the NDVI and depth to the groundwater. 

4.4.2 Relational trends between NDVI, groundwater depth, rainfall, and temperature 

A multiple regression analysis was carried out to understand the influence of the groundwater 

depth, rainfall, and temperature on the vegetation productivity. The results indicate that vegetation 

productivity was strongly linked to the three variables (p<0.05), compared to the water table 

(p>0.05). Climate factors play an important role in the dynamics of vegetation productivity 

(Dlikilili, 2019; Graw et al., 2017; Martinetti et al., 2021; Yang et al., 2012; W. Zhang et al., 

2020).The variables had a significant impact on the NDVI for both the riparian and hillslope 

vegetation (p<0.05), except for the hillslope area around Bh10. The results also demonstrated that 

temperature plays a significant role in vegetation productivity, compared to the other variables for 

the hillslope environments (Bh12 and Bh14). Rainfall plays an important role in riparian 

vegetation productivity; however, it is not statistically significant. These results are in accordance 

with the findings of Dlikilili (2019), who indicated that vegetation productivity in the Touws River 

Catchment in South Africa had a stronger relationship with temperature than with rainfall. 

Furthermore, Mkunyana et al. (2019) examined the water use of riparian and hillslope invasive 

species at the study site, and their findings indicated that temperature and wind speed are important 

factors that influence the transpiration rate. They also observed a close link between water use and 

the soil moisture content of the vegetation. During the dry summer months, soil moisture is high 

in the riparian areas, compared to the dry hillslopes. Moreover, Mkunyana et al. (2019) found that 

a decrease in soil moisture resulted in reduced water use, which is contrary to the belief that the 

vegetation would tap into the groundwater. Despite the drought period and seasonal dynamics in 

vegetation productivity, the NDVI values remained high in both the riparian and hillslope sites. 

While the riparian vegetation may have water available from moisture in the soil, the hillslope 

vegetation is physiologically adapted to survive dry periods, based on its height and stem size 

(Koirala et al., 2017; Mkunyana et al., 2019; Rodriguez-Iturbe and Porporato, 2005; Scott and le 

Maitre, 1998). For example, Koirala et al. (2017) determined the relationship between gross 

primary productivity of the vegetation and the groundwater depth. Their results indicated that the 

vegetation characteristics are more closely linked to soil moisture than to differences in the climate 
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and surface variables. This suggests that vegetation productivity may be influenced by other 

factors that have not been included in this study. Therefore, more information can be gained from 

assessing additional factors on vegetation productivity. It is expected that temperatures in Africa 

will increase by 3-6°C, by the end of the century. This means that southern Africa will experience 

a sharp increase in temperatures and frequent drought events (IPCC, 2014). Excluding the 

pressures of groundwater abstraction and incompatible land use and land cover, such as the 

proliferation of invasive species, this will result in  a lower NDVI for endemic vegetation (Sommer 

et al., 2016). Therefore, this study demonstrates the capabilities of remote sensing data for 

determining the response of vegetation to variabilities in the groundwater table, and more 

specifically, for acquiring baseline data in data-scarce areas. This will be useful for ecological 

resources management, planning and vulnerability assessments, and it is in line with SDG Goal 

15, which aims to protect, restore, and promote the sustainable use of terrestrial ecosystems.  

4.5 Limitations and recommendations 

In this chapter, remote sensing data were utilised to quantify the influence of the groundwater 

depth, rainfall, and temperature on vegetation productivity. MODIS-NDVI, with a 250 m spatial 

resolution, could accurately quantify the vegetation dynamics between riparian and hillslope 

environments. However, the riparian sample sites fell within the same pixel, thus compromising 

the vegetation dynamics. It is therefore recommended that the potential of moderate-resolution 

satellite datasets (Sentinel 2A and Landsat 8 OLI) be explored for investigating the response of 

the vegetation to groundwater variability at a community level. Furthermore, the area displays a 

heterogeneity, in terms of its species composition, such as invasive and endemic vegetation, and 

the use of Unmanned Aerial Vehicles (AUVs) and hyperspectral satellite datasets could provide 

species-specific responses to the groundwater dynamics. This study examined the relationship 

between vegetation productivity and the three dependent variables over a period of 13 months, by 

using the available groundwater level data. The phenological trends may vary slightly from year 

to year; therefore, a more comprehensive understanding of groundwater depth-vegetation 

interaction could be gained from long-term studies. Finally, it should be noted that the results 

presented in this paper represent the aggregates for a 16-day MODIS-NDVI, and therefore, the 

vegetation dynamics possess substantial uncertainties; however, the methodology was impartial.  
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4.6 Conclusion 

Multispectral remote sensing data were used to determine the response of vegetation to the 

variability in the groundwater level in a Mediterranean climate region. The impact of climate 

variables was also investigated. The depth to groundwater is affected by seasonality given that 

during dry periods groundwater resources are limited and this has an impact on vegetation health. 

Therefore, water resource managers and biodiversity conservationists should ensure the 

sustainable use of groundwater resources during these periods. Further, hillslopes are invaded by 

alien species which uses both surface water and groundwater resources. This emphasises the need 

for invasive plant clearing to conserve water. Overall, the study revealed the power of remote 

sensing as an efficient preliminary investigation tool into hydrological and ecological interactions, 

which is critical for sustainable water resource management. Significant information can be 

obtained when we compare the vegetation-groundwater depth dynamics of the normal and dry 

periods. Therefore, it is recommended that a long-term study be conducted, and that moderate and 

hyperspectral remote sensing data be used to determine the vegetation dynamics, in response to 

groundwater variability. This is critical for catchments such as the Heuningnes Catchment, which 

has heterogeneous vegetation of both invasive and endemic species.  
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CHAPTER FIVE 

Multispectral remote sensing of vegetation responses to groundwater 
variability in the Greater Floristic Region of the Western Cape, South Africa: 

Synthesis 

5.1 Summary of the Study Findings 

This study aimed to assess the spatial distribution of groundwater dependent vegetation and their 

responses to groundwater variability within the Heuningnes Catchment. The specific objectives 

were to determine the spatial distribution of GDV, characterise the dominant vegetation within the 

catchment and assess riparian and hill-slope vegetation responses to groundwater variability to 

achieve the study aim. The following finding were obtained: 

First, an extensive literature review was conducted to provide the background on GDV and the 

current state of knowledge. The progress of GIS and remote sensing techniques for GDV mapping 

and monitoring was also assessed. Groundwater resources are rapidly deteriorating because of 

global change and increased reliance on groundwater (Kløve et al., 2014; Morsy et al., 2017; 

Richards et al., 1975). Water scarcity threatens vegetation health and productivity, which induces 

several vegetation responses such as reduced photosynthetic rates, plant productivity, change in 

species composition and abundance. The study has showed that sustainable groundwater resource 

development with limited consideration of ecological impacts has become a concern. Therefore, 

research on GDV has increased over the past twenty years (Chiloane et al., 2021; Davies et al., 

2016; Kløve et al., 2011; Morsy et al., 2017; Hoyos et al., 2016). GIS and remote sensing 

techniques have emerged as popular methods for GDV mapping and monitoring because of their 

efficiency, unique spatial, spectral, and temporal characteristics that allow GDV assessments at 

multiple scales. GDV assessments have used MODIS and the Landsat series datasets extensively, 

because of the large historical archive, which is suitable for long-term studies (Barron et al., 2014; 

Doody et al., 2017; Glanville et al., 2016a; Münch and Conrad, 2007). New generation sensors 

such as Landsat 8 OLI and Sentinel 2A with improved temporal and spatial resolutions and 

Machine Learning Algorithms have the potential to improve the identification and monitoring of 

GDV. However, there is still a need to assess the potential for the new remote sensing techniques. 

http://etd.uwc.ac.za/ 
 



75 
 

Secondly, Sentinel 2A and Landsat 8 OLI derived potential GDV distribution models based on 

SAVI and NDVI were compared. GDV distribution was determined, based on the assumption that 

vegetation, which remains green during dry periods, on gentle slopes (<3%), surface depressions 

and are naturally occurring, are likely to be groundwater dependent potential. The study 

determined that ~ 3% of the area was suitable for GDV, and their distribution was dense in the 

north-western regions and sporadic in the south-eastern regions of the catchment. Vegetation 

within the Heuningnes Catchment is heterogeneous with both endemic and invasive plant species. 

Therefore, invasive, and endemic vegetation competes for groundwater resources. The study 

demonstrates that moderate resolution satellite data has a high potential for mapping the potential 

distribution of GDV with high overall accuracies > 90%. Moreover, S2(SAVI) model 

outperformed the other models, a result of the differences in sensor spatial resolution and the 

enhanced ability for the SAVI to discriminate healthy vegetation from soil. 

Lastly, an assessment of vegetation responses to groundwater variability during the drought period 

from June 2017 to July 2018 was done. The time series and gain/loss plots were used to assess the 

temporal dynamics of depth to groundwater and NDVI. The results showed that groundwater 

dynamics are influenced by seasonality, which induces a response to NDVI. Groundwater depth-

vegetation interactions are more pronounced during the wet season and hillslope vegetation is more 

sensitive to groundwater variability than to riparian vegetation. The strength of NDVI and depth 

to groundwater associations was evaluated using the Bayesian Pearson Correlation. Further, results 

show a moderate to low negative association; however, the lagged vegetation response to 

groundwater depth reveals a stronger negative correlation. Move over, the Bayes Factor (-1 > BF 

< 1) shows there is no firm evidence to accept/ reject the hypothesis that there is a correlation 

between groundwater depth and NDVI within the study sites. A multiple regression was computed 

to determine the impact of groundwater depth, rainfall, and temperature on vegetation. The results 

showed no significant impact of the three variables on NDVI in riparian environments. However, 

temperature had a significant negative impact on NDVI for hillslope vegetation. Rainfall plays an 

important role in riparian NDVI, while hillslope NDVI is more sensitive to groundwater 

variability.  
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5.2 Conclusions 

 

• The study predicted that GDV occupies ~3% of the Heuningnes Catchment, however, that 

is reliant on the predictor variables used. Groundwater dependent vegetation communities 

are unevenly distributed within the catchment. They occur densely in the north-western 

regions and distributed sporadically in the south and eastern regions of the catchment.  

• Sentinel 2 and Landsat 8 performed well for detecting the spatial distribution of GDV. 

However, S2 has improved detection capabilities with a less overestimation of GDV than 

L8 data. The higher spectral and spatial resolution of S2 reduces the generalization of 

features as compared to L8. Moreover, L8 has an extensive archive of earth observation 

data than S2 and can play a complementary role. 

• Dominant vegetation within this area is both endermic and invasive plants. These included; 

Acacia pycnatha, Poacea (grasses), Acacia longifolia, Acacia saligna, Helichrysum 

petiolare, Restionaceae, Ornithogalum thrrsoids, Diospyros glabra and Pinus pinaster. 

The proliferation of invasive species is a challenge in this area. Therefore, the results 

emphasize the need for invasive species eradication as they compete with endemic 

vegetation for groundwater resources. 

• MODIS-NDVI provides accurate data for assessing the spatio-temporal dynamics of 

vegetation health. Showing that satellite derived indices provide valuable information for 

monitoring vegetation-groundwater interactions. 

• Vegetation responses are likely lagged within this area. However, NDVI values remained 

relatively high during the study period. This is attributed to the physiological characteristics 

of the vegetation and the nature of MODIS-NDVI to be saturated. 

• Temperature was a significant contributor factor on NDVI for hillslope vegetation, 

therefore there is a need to investigate the long-term effects of climate on GDV. 

• Overall, the findings of the study provide valuable baseline data for determining 

groundwater restrictions that ensure the sustainability of groundwater dependent 

vegetation and highlight the significance of remote sensing data for assessing and routine 

monitoring of GDV. 
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5.3 Recommendations 

• There is a need to assess GDV long-term responses to groundwater and climate dynamics at 

species level. 

• Although the study demonstrated the capabilities of moderate resolution data for detecting and 

monitoring GDV over space and time, their performance is limited in heterogenous vegetation 

communities. Therefore, hyperspectral remote sensors, such as Sentinel 1, Worldview 2 and 

AUVs with unique sensing characteristics, require consideration. 

• Groundwater dependent vegetation detection and monitoring can be improved by integrating 

robust machine learning algorithms and cloud computing platforms, such as Google Earth 

Engine (GEE). 

• There is a need to incorporate ecologically meaningful remotely sensed variables for detecting 

the potential distribution of GDV.   
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