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Abstract

Order estimation, also known as source enumeration, is a classical problem in ar-
ray signal processing which consists in estimating the number of signals received by
an array of sensors. In the last decades, numerous approaches to this problem have
been proposed. However, the need of working with large-scale arrays (like in massive
MIMO systems), low signal-to-noise-ratios, and poor sample regime scenarios, intro-
duce new challenges to order estimation problems. For instance, most of the classical
approaches are based on information theoretic criteria, which usually require a large
sample size, typically several times larger than the number of sensors. Obtaining
a number of samples several times larger than the number of sensors is not always
possible with large-scale arrays. In addition, most of the methods found in literature
assume that the noise is spatially white, which is very restrictive for many practical
scenarios.

This dissertation deals with the problem of source enumeration for large-scale
arrays, and proposes solutions that work robustly in the small sample regime under
various noise models. The first part of the dissertation solves the problem by apply-
ing the idea of subspace averaging. The input data are modeled as subspaces, and an
average or central subspace is computed. The source enumeration problem can be
seen as an estimation of the dimension of the central subspace. A key element of the
proposed method is to construct a bootstrap procedure, based on a newly proposed
discrete distribution on the manifold of projection matrices, for stochastically gener-
ating subspaces from a function of experimentally determined eigenvalues. In this
way, the proposed subspace averaging (SA) technique determines the order based on
the eigenvalues of an average projection matrix, rather than on the likelihood of a
covariance model, penalized by functions of the model order. The proposed SA cri-
terion is especially effective in high-dimensional scenarios with low sample support
for uniform linear arrays in the presence of white noise.

In Chapter 3, the proposed SA method is extended for: i) non-white noises, and
ii) non-uniform linear arrays. The SA criterion is sensitive with the chosen dimension
of extracted subspaces. To solve this problem, we combine the SA technique with a
majority vote approach. The number of sources is detected for increasing dimensions
of the SA technique and then a majority vote is applied to determine the final esti-
mate. Further, to extend SA for arrays with arbitrary geometries, the SA is combined
with a sparse reconstruction (SR) step. In the first step, each received snapshot is
approximated by a sparse linear combination of the rest of snapshots. The SR prob-
lem is regularized by the logarithm-based surrogate of the `0-norm and solved using
a majorization-minimization approach. Based on the SR solution, a sampling mecha-
nism is proposed in the second step to generate a collection of subspaces, all of which
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approximately span the same signal subspace. Finally, the dimension of the average
of this collection of subspaces provides a robust estimate for the number of sources.

The second half of the dissertation introduces a completely different approach to
the order estimation for uniform linear arrays, which is based on matrix completion
algorithms. Chapter 4 discusses the problem of order estimation in the presence of
noise whose spatial covariance structure is a diagonal matrix with possibly different
variances. The diagonal terms of the sample covariance matrix are removed and, af-
ter applying Toeplitz rectification as a denoising step, the signal covariance matrix is
reconstructed by using a low-rank matrix completion method adapted to enforce the
Toeplitz structure of the sought solution. The proposed source enumeration criterion
is based on the Frobenius norm of the reconstructed signal covariance matrix ob-
tained for increasing rank values. The proposed method performs robustly for both
small and large-scale arrays with few snapshots.

Finally, an approach to work with a reduced number of radio–frequency (RF)
chains is proposed in Chapter 5. The receiving array relies on antenna switching so
that at every time instant only the signals received by a randomly selected subset of
antennas are downconverted to baseband and sampled. Low-rank matrix completion
(MC) techniques are then used to reconstruct the missing entries of the signal data
matrix to keep the angular resolution of the original large-scale array. The proposed
MC algorithm exploits not only the low- rank structure of the signal subspace, but
also the shift-invariance property of uniform linear arrays, which results in a better
estimation of the signal subspace. In addition, the effect of MC on DOA estimation
is discussed under the perturbation theory framework. Further, this approach is ex-
tended to devise a novel order estimation criterion for missing data scenario. The
proposed source enumeration criterion is based on the chordal subspace distance
between two sub-matrices extracted from the reconstructed matrix after using MC
for increasing rank values. We show that the proposed order estimation criterion
performs consistently with a very few available entries in the data matrix.



Resumen

La estimación del orden, también conocida como enumeración de fuentes, es un
problema clásico en el procesamiento de señal en array que consiste en estimar el
número de señales recibidas por un conjunto de sensores. En las últimas décadas, se
han propuesto numerosas formas de enfocar este problema. Sin embargo, la necesi-
dad de trabajar con arrays de gran tamaño (como, por ejemplo, en sistemas MIMO
masivos), bajas relaciones señal a ruido y escenarios con pocas muestras plantean
nuevos desafíos para los problemas de estimación de orden. La mayoría de los en-
foques clásicos se basan en criterios de teoría de la información, que suelen requerir
un tamaño de muestra grande, generalmente varias veces mayor que el número de
sensores. Obtener un número de muestras varias veces mayor que la cantidad de
sensores no siempre es posible con arrays de gran tamaño. Además, la mayoría de
los métodos propuestos en la literatura asumen que el ruido es espacialmente blanco,
lo cual resulta muy restrictivo para muchos escenarios prácticos.

Esta tesis trata el problema de la enumeración de fuentes para arrays con un el-
evado número de antenas y propone soluciones que funcionan de manera robusta
en regímenes de pocas muestras bajo la presencia de varios modelos de ruido. La
primera parte de la tesis resuelve este problema aplicando la idea del promediado de
subespacios, que consiste en modelar los datos de entrada como subespacios y cal-
cular un subespacio central o promedio. El problema de la enumeración de fuentes
puede verse entonces como una estimación de la dimensión del subespacio central.
Un elemento clave del método propuesto es la construcción de un procedimiento
bootstrap, basado en una distribución discreta propuesta recientemente sobre la var-
iedad de las matrices de proyección, para generar subespacios estocásticamente a
partir de una función de autovalores determinados experimentalmente. De esta man-
era, la técnica de promediado de subespacios (SA) propuesta determina el orden
basándose en los valores propios de una matriz de proyección promedio, en vez de
en la verosimilitud de un modelo de covarianza, penalizado por funciones del orden
del modelo. El criterio de SA propuesto es especialmente eficaz en escenarios de alta
dimensionalidad con poco soporte de muestra para arrays lineales y uniformes en
presencia de ruido blanco.

En el capítulo 3, el método SA propuesto se extiende para: i) ruidos no blancos
y ii) arrays lineales no uniformes. El criterio SA es sensible a la dimensión escogida
para los subespacios extraídos. Para resolver este problema, se combina la técnica SA
con un enfoque de voto mayoritario. El número de fuentes es detectado para dimen-
siones crecientes de la técnica SA y, posteriormente, se aplica un voto mayoritario
para determinar la estima final. Además, para extender SA a arrays con geometrías
arbitrarias, este se combina con un procedimiento de reconstrucción dispersa (SR).
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En el primer paso, cada snapshot recibido se aproxima mediante una combinación
lineal dispersa del resto de snapshots. El problema SR se regulariza mediante la
sustitución basada en logaritmos de la norma `0 y se resuelve mediante un enfoque
de Mayorización-Minimización. Basado en la solución SR, se propone un mecanismo
de muestreo en el segundo paso para generar una colección de subespacios, todos los
cuales abarcan aproximadamente el mismo subespacio de señal. Finalmente, la di-
mensión del promedio de esta colección de subespacios proporciona una estimación
robusta del número de fuentes.

La segunda mitad de la tesis presenta un enfoque completamente diferente para
la estimación del orden aplicada a arrays lineales y uniformes, que se basa en al-
goritmos matrix-completion. El capítulo 4 analiza el problema de la estimación del
orden en presencia de ruido cuya estructura de covarianza espacial es una matriz
diagonal con varianzas posiblemente diferentes. Los términos diagonales de la ma-
triz de covarianza de la muestra se eliminan y, después de aplicar la rectificación de
Toeplitz como paso de eliminación de ruido, la matriz de covarianza de la señal se
reconstruye utilizando un método matrix-completion de bajo rango adaptado para
reforzar la estructura de Toeplitz de la solución buscada. El criterio de enumeración
de fuentes propuesto está basado en la norma de Frobenius de la matriz de covari-
anza de la señal reconstruida obtenida para valores de rango crecientes. El método
propuesto presenta un buen rendimiento tanto para arrays de pequeña como de gran
escala con pocos snapshots.

Por último, en el capítulo 5 se realiza una propuesta para trabajar con un número
reducido de cadenas de radiofrecuencia (RF). El array receptor está basado en la
conmutación de antenas de modo que en cada instante de tiempo solo las señales
recibidas por un subconjunto de antenas seleccionado al azar se convierten a banda
base y se muestrean. Después, se utilizan técnicas matrix-completion (MC) de bajo
rango para reconstruir las entradas no observadas de la matriz de datos de la señal
para conservar la resolución angular del array de gran tamaño original. El algoritmo
MC propuesto no solo aprovecha la estructura de bajo rango del subespacio de la
señal, sino también la propiedad de invariancia de desplazamiento de los arrays lin-
eales y uniformes, lo que da como resultado una mejor estimación del subespacio de
la señal. Además, se analiza el efecto de MC en la estimación de DOA dentro del
marco de la teoría de perturbaciones. Además, se amplía este enfoque para diseñar
un nuevo criterio de estimación del orden para escenarios en los que falten datos.
El criterio de enumeración de fuentes propuesto se basa en la distancia cordal entre
dos sub-matrices extraídas a partir de la matriz reconstruida después de usar MC
para aumentar los valores del rango. Por último, se demuestra que el criterio de esti-
mación del orden propuesto funciona de manera consistente cuando hay muy pocas
entradas disponibles en la matriz de datos.



Notation and Acronyms

Used Notation
a Scalar (lowercase)
a Column vector (lowercase boldface)
A Matrix (uppercase boldface)
A(i, j) Entry in ith row and jth column of matrix A
a∗ Complex conjugate of a complex number a
AT Transpose of matrix A
AH Hermitian of matrix A
aH

i ith row of A
tr(A) Trace of matrix A
rank(A) Rank of matrix A
|a| Absolute value of a
Re(a) Real part of complex a
Im(a) Imaginary part of complex a
‖A‖F Frobenius norm of matrix A
‖A‖∗ Nuclear norm of matrix A
‖A‖∞ Infinity norm of matrix A
‖a‖0 `0-norm of vector a
‖a‖2 `2-norm of vector a
A � B Matrix A− B is positive semidefinite
RM×N Space of M× N real matrices
CM×N Space of M× N complex matrices
Cn Space of n-dimensional complex vectors
〈A〉 A subspace of the complex vector space Cn spanned by the

unitary frame A
dim(〈A〉) Dimension of 〈A〉
dgeo(〈U〉 , 〈V〉) Geodestic or intrinsic distance between 〈U〉 and 〈V〉
d(〈U〉 , 〈V〉) Extrinsic distance between 〈U〉 and 〈V〉
blkdiag(A1, A2) Block diagonal matrix which matrices A1, A2 as diagonal
diag(a1 . . . aN) Diagonal matrix with elements a1 . . . aN along the main diagonal
In Identity matrix of size n
PA Orthogonal projection onto 〈A〉
CN (0, 1) Complex Gaussian distribution with zero mean and unit variance
x ∼ CN n(0, R) Complex Gaussian vector in Cn with zero mean and covariance R
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S(q, n) Complex Stiefel manifold of orthonormal q-frames in Cn

G(q, n) Complex Grassman manifold of q-dimensional linear subspaces of
the n-dimensional complex vector space Cn

P(q, n) Set of all projection matrices of rank q
U(q) Set of all unitary matrices of rank-q
D(U,α) Distribution with orientations U and concentrations α
U (a, b) Uniformly distributed random variables between a and b
T Set of Toeplitz matrices
D Set of diagonal complex matrices
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General symbol use and conventions

A Steering matrix
cn Sparse representation for nth snapshot
E Noise component of data matrix
Hs Unknown multiple input multiple output channel
K Number of sources/signals
k̂ Estimated number of sources
k̂BIC Estimated order via Bayesian information criterion
k̂MDL Estimated order via minimum description length method
k̂NE Estimated order via the method proposed by Nadakuditi

and Edelman
k̂SA Estimated order via subspace averaging method
k̂SA−Ma jVote Estimated order via subspace averaging with majority vote

approach
k̂SIMC Estimated order via shift-invariant matrix completion

(SIMC) method
k̂SSA Estimated order via sparse subspace averaging method
k̂SDRP Estimated order via source detection as regression problem

(SDRP) method
k̂TMC Estimated order via Toeplitz matrix completion method
k̂VTRS Estimated order via variance of transformed rotational submatrix

(VTRS) method
kmax Dimension of the extracted subspace
L Dimension of the subarrays in subspace averaging method
Ls Number of sensors sampled for each snapshot
M Number of sensors in an array
N Number of snapshots
P Average projection matrix
PΩ Projection operator that sets to zero the missing entries and leaves

the observed ons unchanged
Ps Percentage of missing data
Q Rotation matrix
R Covariance matrix
R̂ Sample covariance matrix
Rs Signal covariance matrix
Rn Noise covariance matrix
RML Maximum likelihood estimate for a covariance matrix with the

required structure
sk[n] Vector of complex gain for kth source and nth snapshot
s[n] nth signal vector
e[n] nth noise vector
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X Data matrix
Xm Data matrix with missing entries
Xs noiseless signal component of data matrix
x[n] nth snapshot
Xn Data matrix X after removing the nth snapshot
θk Direction-of-arrival for kth source (electrical angle)
∆θ Electrical angel separation among the sources
λm mth eigenvalue of sample covariance matrix
σ2 Noise variance
σ2

m Noise variance at the mth sensor
σ2

s Common signal variance
νk number of free-adjusted real parameters
Ω Set of observed indices
η Tolerance parameter for matrix completion algorithms
µ Regularization parameter for matrix completion algorithms
µs Regularization parameter for sparse reconstruction process
δ Small constant to avoid numerical issues
εd Parameter to control the spatial non-whiteness of the noise

with diagonal covariance matrix
ρc Correlation coefficient for correlated noise
L(·) Langevin distribution
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Acronyms

AIC Akaike’s Information Criterion
BIC Bayesian Information Criterion
CCA Canonical Correlation Analysis
CRLB Cramer-Rao Lower Bound
DOA Directions Of Arrival
ESPRIT Estimation of Signal Parameters via Rotational Invariance

Technique
iid Independent and Identically Distributed
LASSO Least Absolute Shrinkage and Selection Operator
LS Least Square
LS-MDL Linear Shrinkage - Minimum Description Length
MC Matrix Completion
MDL Minimum Description Length
MDL-unc Minimum Description Length for Uncorrelated Noises

(When noise covariance matrix is diagonal with different variances)
MIMO Multiple-Input Multiple-Output
ML Maximum Likelihood
MM Majorization-Minimization
NE The method proposed by Nadakuditi and Edelman
NULA Non-Uniform Linear Array
OSE Optimal Subspace Estimation
PCA Principal Component Analysis
RF Radio-Frequency
RMSE Root Mean Square Error
SA Subspace Averaging
SCM Sample Covariance Matrix
SDRP Source Detection as Regression Problem
SIMC Shift-Invariant Matrix Completion
SNR Signal-to-Noise Ratio
SR Sparse Reconstruction
SSA Sparse Subspace Averaging
TMC Toeplitz Matrix Completion
ULA Uniform Linear Array
VTRS Variance of Transformed Rotational Submatrix
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Chapter1
Introduction

Detecting the number of signals received by an array of sensors is an important
problem in many applications of statistical signal processing such as radar and wire-
less communications to biomedical and geophysical signal processing [Trees, 2002,
Scharf, 1991]. This is an order estimation problem, also known as source enumer-
ation in the array processing literature. A number of approaches to this problem
have been proposed in the last decades based on information theoretic criteria such
as Akaike’s information criterion (AIC) [Akaike, 1974], minimum description length
(MDL) criterion [Rissanen, 1978, Wax and Kailath, 1985], and Bayesian information
criterion (BIC) [Schwarz, 1978, Lu and Zoubir, 2013], all of which are functions of
the eigenvalues of the sample covariance matrix (SCM). A conventional approach
to order determination is to compute likelihoods for a sequence of rank-k plus di-
agonal covariance models for multivariate normal measurements [Anderson, 1963],
[Wax and Kailath, 1985], and then to penalize likelihoods for large ranks k. The re-
sulting formulas use sums and products of sub-dominant eigenvalues of a sample
covariance matrix in what amount to tests of whiteness of the trailing sequence of
eigenvalues. In these methods, the scale of the rank-k and diagonal components are
implicitly estimated in the estimation of the covariance model. Given a sufficiently
large sample size (at least several times the number of sensors), and assuming that
the noise is spatially white and Gaussian, these methods perform satisfactorily and
provide accurate estimates for the number of sources.

The need of large bandwidths in 5G networks motivates to operate in mm-Wave
bands, which require large-scale antenna arrays to compensate for the path loss
[Rappaport et al., 2015, Rappaport et al., 2013]. Indeed, research in wireless com-
munication systems has been shifted towards the use of large antenna arrays as
in massive multiple-input multiple-output (MIMO) systems [Rusek et al., 2013]. In
this scenario, achieving the sample size several times larger than number of sen-
sors is often not possible. This forces to work in the so-called small sample regime
[Nadakuditi and Edelman, 2008], where the number of snapshots, N, is in the order
of the number of sensors, M, a regime in which the performance of above mentioned
methods degrade drastically. Based on recent results from random matrix theory,
several methods have been proposed for source enumeration in the small sample
regime [Nadakuditi and Edelman, 2008, Huang and So, 2013, Huang et al., 2016].
Nevertheless, all these methods also assume white noise and hence provide in gen-
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eral poor results in other noise conditions such as spatially correlated noise or noise
with diagonal covariance matrix with unknown elements.

When the noise is spatially correlated with an arbitrary unknown covariance ma-
trix, source enumeration has been considered under different assumptions on the ar-
ray geometry and the temporal correlation of the noise in [Zhang and Wong, 1993,
Wu and Wong, 1994, Stoica and Cedervall, 1997, Jiang and Ingram, 2004]. In
[Zhang and Wong, 1993] the authors assume that two well-separated sensor arrays
are available and thus the noise spatial covariance matrix is block diagonal. The
resulting test is based on the canonical correlations estimated from the sample co-
herence matrix. The method in [Jiang and Ingram, 2004] assumes that the signal
is received by a uniform linear array (ULA) for which a property called shift invari-
ance holds [Paulraj et al., 1986, Roy and Kailath, 1989, Li and Vaccaro, 1991], and
propose an ad-hoc test based on the elements of the rotation matrix that relates
the signal subspaces extracted from the two subarrays. These methods, however,
require accurate estimates of the sample covariance or the coherence matrix and
therefore their performance degrades when only a few snapshots are available. To
alleviate this problem, [Song et al., 2016] applies a principal component analysis
(PCA) rank-reduction pre-processing step before applying the Bartlettt-Lawley test
[Bartlett, 1941, Lawley, 1959].

When the noise covariance matrix is diagonal with unknown elements, estimat-
ing the number of sources is equivalent to estimating the number of common factors
in a multivariate factor analysis problem, for which several tests have been pro-
posed in the statistics literature [Mardia et al., 1979, Lawley and Maxwell, 1971].
Algorithms to maximize the likelihood function for this problem can be found in
[Pesavento and Gershman, 2001, Ramirez et al., 2011]. But again these methods
perform poorly in the small sample regime.

In addition, performance of source enumeration methods degrade if some data
is missing or with faulty sensors. This might happen when i) one or more sensors
are damaged or ii) only few sensors are sampled intentionally to reduce the overall
hardware cost. For this problem, matrix completion based methods can be used to
reconstruct either the complete data matrix or the covariance matrix. Matrix comple-
tion (MC) techniques have been used in array signal processing recently for different
applications such as denoising or reconstruction of missing data. But there is a need
of more research in the problem of order estimation with missing data. A matrix
completion based approach may be used when only a few sensors are sampled. By
using a low rank matrix completion algorithm, it is possible reconstructing the com-
plete data matrix, which could be used further for order estimation and direction of
arrival applications. This idea is explored in this thesis.

In summary, source enumeration is still a challenging problem in scenarios such
as; i) in small sample regime, ii) in the presence of non-white noises, and iii) in miss-
ing data scenario. This dissertation works towards finding solutions for the above-
mentioned problems. First, a subspace averaging (SA) based method is proposed for
order estimation for ULA in small sample regime in the presence of white noise. By
exploiting the shift invariance property of ULAs, the SA method estimates the low-
dimensional signal subspace (and its dimension) as the average of a collection of
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subspaces extracted from consecutive sub-arrays. The SA method is then extended
for source enumeration for ULAs in the presence of non-white noises. The number
of sources is detected for increasing dimensions of the SA technique and then a ma-
jority vote approach is applied to determine the final estimate. Furthermore, SA is
combined with a sparse representation step in order to extend the applications of SA
for non-uniform linear arrays.

The second half of the dissertation is devoted to develop source enumeration
methods by using matrix completion algorithms. The signal covariance matrix is i)
Toeplitz, ii) low rank, and iii) satisfies the shift invariance property. By exploiting
these properties with matrix completion algorithms, a better estimate of the signal
subspace is achieved. This part of the dissertation first develops a source enumeration
method based on matrix completion by exploiting Toeplitz and low rank structures of
the signal covariance matrix, which outperforms other methods for ULAs in the pres-
ence of a noise with diagonal noise covariance matrix. A denoising step of Toeplitz
rectification is used as a pre-processing step. Further, this concept is extended to
solve the problem of source enumeration in missing data scenario. Shift invariance
property is exploited with matrix completion here, which provides a consistent solu-
tion even if percentage of available data is small. Note that for missing data scenario,
we only consider the case of ULAs and white noise in this dissertation.

1.1 Order Estimation in Array Processing

Let us consider K narrowband signals impinging on a large, uniform, half-wavelength
linear array with M antennas (cf. Fig. 1.1). The received signal is

x[n] = [a(θ1) · · · a(θK)] s[n] + e[n] = As[n] + e[n], (1.1)

where s[n] =
[
s1[n], . . . , sK[n]

]T is the vector of complex gains sk[n] for M × 1

complex array response a(θk) =
[
1 e− jθk e− jθk(M−1)

]T
to the kth source whose

direction-of-arrival (DOA) θk is unknown; and A = [a(θ1) · · · a(θK)] is the steering
matrix. In the case of narrowband sources, free space propagation, and a ULA with
inter-element spacing d, the spatial frequency or electrical angle is

θk =
2π
λ

d sin(φk),

where λ is the wavelength and φk is the direction-of-arrival (DOA). We will refer
to θk as the DOA of source k for simplicity. Note that for a half-wavelength ULA
θk = π sin(φk), and the spatial frequency varies between −π and π when φk varies
between −π/2 and π/2, with 0◦ being the broadside direction.

The signal and noise vectors are modeled as s[n] ∼ CN K(0, Ψ) and e[n] ∼
CNM(0, Rn), respectively. The dimensions are these: x ∈ CM, A ∈ CM×K, s ∈ CK,
and e ∈ CM. From the signal model (1.1), the theoretical covariance matrix is

R = E
[
x[n]xH[n]

]
= AΨAH + Rn, (1.2)
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where Rn is an M×M noise covariance matrix. We assume that the K signals are un-
correlated, therefore Ψ is a K× K diagonal matrix. Unless stated otherwise, sources
have equal power. We further assume there are N snapshots collected in the data
matrix X =

[
x[1] . . . x[N]

]
, and the sample covariance matrix is

R̂ =
1
N

N

∑
n=1

x[n]xH[n] =
1
N

XXH (1.3)

The order estimation problem consists of estimating K from X or R̂. Throughout
the dissertation we assume that the array is composed of a large number of antenna
elements, and that the number of snapshots is in the order of number of antennas,
that is, we operate in small sample regime.
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Figure 1.1: Source enumeration problem in large scale arrays: estimating the num-
ber of sources K in a ULA with a high number of antenna elements M.

Different noise models have been discussed in the literature, which can be classi-
fied as follow:

• Noise Model 1: We assume here that the noise is spatially white with the noise
covariance matrix Rn = σ2I, where σ2 is the noise variance. Most of the order
estimation methods are designed under this assumption.

• Noise Model 2: Uncorrelated noises across antennas so that the noise covari-
ance matrix is diagonal with unknown elements along its diagonal

Rn = diag
(
σ2

1 ,σ2
2 , . . . ,σ2

M

)
where σ2

m is the noise variance at the mth sensor. The noise variances are mod-
eled as uniformly distributed independent random variables: σ2

m ∼ U [σ2(1−
εd),σ2(1 +εd)], where σ2 is a common noise variance and 0 ≤ εd ≤ 1 allows



1.2 Prior Work 5

us to control the spatial non-whiteness of the noise. Notice that for εd = 0 the
noise is spatially white with covariance matrix Rn = σ2I

• Noise Model 3: We consider an exponentially correlated noise model whose
noise covariance matrix is defined as Rn(i, j) = ρ

|i− j|
c , where 0 ≤ ρc ≤ 1 is

the correlation coefficient. Like noise model 2, the noise is spatially white with
Rn = σ2I for ρc = 0.

• Noise Model 4: Here we consider Gaussian noise with arbitrary unknown co-
variance matrix, that is, the noise covariance matrix is drawn from a complex
Wishart distribution with M degrees of freedom and scale matrix proportional
to I. The noise covariance matrix for this noise model is Rn � 0.

1.2 Prior Work

In this section we review some representative methods for order estimation. Most of
these methods exploit random matrix results and are specifically designed to operate
in the small sample regime. Unless stated otherwise, these methods are designed for
a general linear array, not specifically a ULA. Further, most of them are functions of
the eigenvalues λ1 ≥ · · · ≥ λM of the sample covariance matrix R̂. A brief description
of the methods is presented here, which is divided into different categories, based on
the assumptions of the noise model. These methods are also used for comparison in
this dissertation.

1.2.1 Methods suitable for Noise Model 1

The following order estimation criteria for white noise can be used in small sample
regime:

• LS-MDL criterion in [Huang and So, 2013]: The standard MDL method pro-
posed by Wax and Kailath in [Wax and Kailath, 1985], based on a fundamental
result of Anderson [Anderson, 1963], is

k̂MDL = argmin
0≤k≤M−1

(M − k)N log
(

a(k)
g(k)

)
+

1
2

k(2M − k) log N, (1.4)

where a(k) and g(k) are the arithmetic and the geometric mean, respectively, of
the M− k smallest eigenvalues of R̂. When the number of snapshots is smaller
than the number of sensors or antennas (N < M), the sample covariance be-
comes rank-deficient and (1.4) can not be applied directly.

The LS-MDL method proposed by Huang and So in [Huang and So, 2013] re-
places the noise eigenvalues λi in the MDL criterion by a linear shrinkage, cal-
culated as

ρ
(k)
i = β(k)a(k) + (1−β(k))λi, i = k + 1, . . . , M,



6 Introduction

where β(k) = min(1,α(k)), with

α(k) =

M

∑
i=k+1

λ2
i + (M− k)2a(k)2

(N + 1)

(
M

∑
i=k+1

λ2
i − (M− k)a(k)2

) .

• NE criterion in [Nadakuditi and Edelman, 2008]: The method proposed by
Nadakuditi and Edelman in [Nadakuditi and Edelman, 2008], which we refer
to as the NE criterion, is given by

k̂NE = argmin
0≤k≤M−1

{
1
2

(
Ntk
M

)2
}
+ 2(k + 1),

where

tk =

[
∑

M
i=k+1 λ

2
i

a(k)2(M− k)
−
(

1 +
M
N

)]
M.

• BIC method for large-scale arrays in [Huang et al., 2016]: The variant of the
Bayesian Information Criterion (BIC) [Lu and Zoubir, 2013] for large-scale ar-
rays proposed in [Huang et al., 2016] is

k̂BIC = argmin
0≤k≤M−1

2(M− k)N log
(

a(k)
g(k)

)
+ P(k, M, N),

where

P(k, M, N) = Mk

(
log(2N)− 1

k

k

∑
i=1

log
(

λi

a(k)

))
.

1.2.2 Method suitable for Noise Model 2

Source enumeration in the presence of noise whose noise covariance matrix is di-
agonal with different variances is still a challenging scenario for which not enough
discussion is found in the literature. However, the MDL for this noise model can be
developed from its general expression as follows:

• MDL-unc: The general expression of the MDL criterion is [Rissanen, 1978]

k̂MDL = argmin
k=0,...,M−1

{
− log f (X|R̂ML) +

1
2
νk log N

}
, (1.5)

where X is the data matrix with collected snapshots, R̂ML denotes the Maxi-
mum Likelihood (ML) estimate for a covariance matrix with the required struc-
ture (low-rank plus diagonal) for a fixed order k, and νk = M + k(2M − k)
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is the number of free-adjusted real parameters [Vazquez-Vilar et al., 2011].
Although a closed-form ML estimate under non-iid noises is not pos-
sible, it can be obtained by using iterative algorithms [Joreskog, 1967,
Pesavento and Gershman, 2001, Ramirez et al., 2011]. It is noted here that this
method does not exploit any property of ULA, and should perform for non-
uniform linear array as well.

1.2.3 Methods suitable for Noise Models 3 and 4

When the noise is spatially correlated in an arbitrary way or if it is exponentially
correlated, MDL or any other information theoretic criteria perform poorly. The only
alternatives for this noise model in the literature either assume the availability of two
well-separated subarrays such that the noise covariance matrix can be assumed to be
block-diagonal [Zhang and Wong, 1993, Song et al., 2016], or exploit the shift in-
variance property of the signal subspace [Jiang and Ingram, 2004] of ULA. Recently
a solution for source enumeration in the presence of colored noise is proposed in
[Eguizabal et al., 2019], where source detection is modelled as a regression prob-
lem. In the following, we briefly review these approaches.

• CCA: Let us divide the array into two equal-sized non-overlapping subarrays
of dimension M/2 (we assume M even wlog). The composite vector for the
received signal is written as x[n] = (x1[n]T , x2[n]T)T, where x1[n] and x2[n]
are the signals received at each subarray. Assuming now that the noise vec-
tors at the two subarrays are uncorrelated, the noise covariance matrix is block
diagonal Rn = blkdiag(Rn1, Rn2). Under these assumptions, it was shown
in [Zhang and Wong, 1993] (see also [Santamaria et al., 2017]) that the max-
imum of the log-likelihood function in (1.5) can be written as

− log f (X|R̂ML) = −N
M/2

∑
i=k+1

log(1− k2
i ), (1.6)

where ki is the ith sample canonical correlation, that is the ith eigenvalue of
the coherence matrix Ĉ = R̂−1/2

x1x1 R̂x1x2 R̂−1/2
x2x2 . On the other hand, the number

of free parameters for this noise model is νk = 2k(M− k + 1/2). Admittedly,
this MDL criterion is obtained for a structured block-diagonal noise covariance
matrix, which is different from the spatially correlated noise model. Neverthe-
less, it is used for comparison in this dissertation. This canonical correlation
analysis (CCA) based criterion was combined with a PCA rank-reduction pre-
processing step in [Song et al., 2016], to improve its performance in the small
sample regime.

• VTRS: Jiang and Ingram proposed a method in [Jiang and Ingram, 2004] that
uses the variance of transformed rotational submatrix (VTRS) as a criterion for
detecting the number of sources for ULA. The VTRS criterion is

k̂VTRS = argmin
1≤k≤M−1

||∆k||2F
(M− k− 1)k

,
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where || · ||2F denotes the squared Frobenius norm and

∆k =


Ψvk+1,1 Ψvk+1,2 . . . Ψvk+1,k
Ψvk+2,1 Ψvk+2,2 . . . Ψvk+2,2

...
... . . . ...

ΨvM−1,1 ΨvM−1,2 . . . ΨvM−1,k


is a submatrix of Ψv, which is given as Ey = ExΨv, where the matrices Ex and
Ey contain the first M − 1 and the last M − 1 rows of the eigenvectors of R̂,
respectively.

The VTRS criterion exploits the shift invariance property of ULA, and can be
used with arbitrarily correlated noises. However, it is neither designed to work
with small sample support nor designed to work with non-uniform linear ar-
rays.

• SDRP: In [Eguizabal et al., 2019], source detection problem is modeled as a
regression problem to detect the number of sources in the presence of colored
noise. Information-theoretic criterion is used to determine the model order of
the regression. In this dissertation we are denoting this method as source detec-
tion as regression problem (SDRP). The observed data is separated in two sub-
sets of N1 and N2 snapshots such as N1 + N2 = N, and X1 =

[
x(1), . . . , x(N1)

]
and X2 =

[
x(N1 + 1), . . . , x(N1 + N2)

]
. Further, order estimation criterion

is developed based on the Maximum Likelihood (ML) estimates of the model
parameters, which is as follows:

k̂SDRP = argmin
k

[
(N2 log(|Σ̂k|) + tr

(
ÊH(Σ̂

n
k )
−1Ê)

)
+ νk

]
,

and
Ê = X2 − PkB̂k,

where Pk is the matrix of regressors containing the eigenvectors correspond-
ing to the k largest eigenvalues of R̂xx = 1

N1
X1XH

1 , and B̂k and Σ̂k are the
constrained maximum likelihood estimates of the model parameters for model
order k. Here, tr() denotes the trace of the matrix.

For the sample-poor case, when N < M, Σk is modelled as block-diagonal
with block size of s × s. This results in d = bM

s c blocks, that is Σ̂k =

blkdiag
(
Σ̂

1
k , . . . Σ̂

d
k

)
, where b·c is the floor function. Based on this, the order

estimation criterion for poor-sample case is reformulated as

k̂SDRP = argmin
k

[ d

∑
n=1

(N2 log(|Σ̂n
k |) + tr

(
ÊH(Σ̂

n
k )
−1Ê)

)
+ νk

]
The reader is referred to [Eguizabal et al., 2019] for more details about this
method. Note that SDRP does not exploit shift invariance property, therefore it
can be used for non-uniform linear arrays as well.
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1.3 Outline and Contributions

The technical content and contributions in this dissertation are structured in two
parts, namely: order estimation via subspace averaging and order estimation via
matrix completion. In addition, the final chapter summarizes the main conclusions
and a brief reflection on the research lines to be considered as further work. In this
section, we summarize the contents provided in each chapter:

• Chapter 1 introduces the dissertation in the context of the order estimation
in statistical signal processing. The existing literature on order estimation is
reviewed in this section, and the challenging scenarios for which a study on
source enumeration is still required are pointed out. Some already existing
methods of order estimation are also briefly reviewed in this section.

• Part I discusses the order estimation criteria based on subspace averaging tech-
nique. First, subspace averaging method is designed for ULA and white noise
scenario, and then this work is extended for non-white noises. Furthermore,
subspace averaging for non-uniform linear arrays is also proposed.

Chapter 2 addresses the problem of subspace averaging, with special emphasis
placed on the question of estimating the dimension of the average. The results
suggest that the enumeration of sources in a multi-sensor array, which is a prob-
lem of estimating the dimension of the array manifold, and as a consequence
the number of radiating sources, may be cast as a problem of averaging sub-
spaces. This point of view stands in contrast to conventional approaches, which
cast the problem as one of identifying covariance models in a factor model. This
chapter has produced the following publication:

– [Garg et al., 2019] V. Garg, I. Santamaria, D. Ramirez, and L. L. Scharf,
“Subspace averaging and order determination for source enumeration,”
IEEE Trans. Signal Process., vol. 67, pp. 3028–3041, 2019.

Chapter 3 extends the SA technique for various scenarios. First, this chapter
addresses the problem of source enumeration for ULAs in the challenging con-
ditions of: i) large uniform arrays with few snapshots, and ii) non-white or
spatially correlated noises with arbitrary correlation. To solve this problem, the
SA technique is combined with a majority vote approach. Later, the SA tech-
nique is extended for arrays with arbitrary geometries. A sparse reconstruction
step is combined with SA technique, which approximates each snapshot by a
sparse linear combination of the rest of the snapshots. This sparse expansion
is used to generate a collection of subspaces, which further used for averaging
step of the SA technique. Based on this work, the following publications have
been produced:

– [Garg and Santamaria, 2019] V. Garg and I. Santamaria, “Source enumer-
ation in non-white noise and small sample size via subspace averaging,”
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in 27th European Signal Processing Conference (EUSIPCO), A Coruña,
Spain, Sep. 2019.

– [Garg et al., 2021c] V. Garg, D. Ramirez and I. Santamaria,"Sparse sub-
space averaging for order estimation", Submitted to the IEEE Statistical
Signal Processing (SSP) Workshop, July 2021.

• Part II introduces the matrix completion approaches to source enumeration.
The properties of ULAs are exploited with low rank matrix completion tech-
nique in order to achieve better performance. This part of the dissertation first
proposes a novel solution to source enumeration for ULAs in the presence of
the noise whose noise covariance matrix is diagonal. Further, this approach is
used to design a source enumeration method for the challenging scenario of
missing data.

Chapter 4 addresses the problem of source enumeration by an array of sensors
in the presence of noise whose spatial covariance structure is a diagonal matrix
with possibly different variances. To tackle this problem, in the first step a de-
noising step of Toeplitz rectification is applied. After that, the diagonal terms
of the sample covariance matrix are removed, and the signal covariance matrix
is reconstructed by using a low-rank matrix completion method. The proposed
matrix completion method is tailored to exploit the Toeplitz structure of the sig-
nal covariance matrix. The proposed source enumeration criterion is based on
the Frobenius norm of the reconstructed signal covariance matrix obtained for
increasing rank values. This chapter has produced the following publication:

– [Garg et al., 2020] V. Garg, P. Giménez-Febrer, A. Pagès-Zamora, and
I. Santamaria, “Source enumeration via Toeplitz matrix completion,” in
IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP), Barcelona, Spain, May 2020.

Chapter 5 first discusses the possibility of working with a reduced number of
radio-frequency chains. The receiving array relies on antenna switching so that
at every time instant only the signals received by a randomly selected subset of
antennas are downconverted to baseband and sampled. Low-rank matrix com-
pletion techniques are then used to reconstruct the missing entries of the signal
data matrix to keep the angular resolution of the original large-scale array. The
proposed MC algorithm exploits not only the low- rank structure of the signal
subspace, but also the shift-invariance property of ULAs, which results in a bet-
ter estimation of the signal subspace. Further, an order estimation technique
for missing data scenario is introduced, which is based on the proposed matrix
completion technique. This chapter has produced the following publications:

– [Garg et al., 2021a] V. Garg, P. Giménez-Febrer, A. Pagès-Zamora, and I.
Santamaria,“DOA estimation via shift-invariant matrix completion”. Sig-
nal Processing, volume 183, 2021.
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– [Garg et al., 2021b] V. Garg, A. Pagès-Zamora, and I. Santamaria,“Order
estimation with missing data for massive MIMO systems”, Submitted to
the IEEE Signal Processing Letters, 2021.

• Finally, Chapter 6 presents the conclusion of the dissertation, including future
research lines.
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Chapter2
Order Estimation via Subspace

Averaging for Uniform Linear Arrays
and White Noise

This chapter addresses the problem of subspace averaging, with special emphasis
placed on the question of estimating the dimension of the average. The results sug-
gest that the enumeration of sources in a multi-sensor array, which is a problem of
estimating the dimension of the array manifold, and as a consequence the number
of radiating sources, may be cast as a problem of averaging subspaces. This point of
view stands in contrast to conventional approaches, which cast the problem as one
of identifying covariance models in a factor model. We present a robust formulation
of the proposed order fitting rule based on majorization–minimization algorithms.
A key element of the proposed method is to construct a bootstrap procedure, based
on a newly proposed discrete distribution on the manifold of projection matrices, for
stochastically generating subspaces from a function of experimentally determined
eigenvalues. In this way, the proposed subspace averaging (SA) technique deter-
mines the order based on the eigenvalues of an average projection matrix, rather
than on the likelihood of a covariance model, penalized by functions of the model
order. By means of simulation examples, we show that the proposed SA criterion is
especially effective in high-dimensional scenarios with low sample support.

2.1 Introduction

In many applications of statistical signal processing, high-dimensional data exhibits
a low dimensional structure that admits a subspace representation. In pattern recog-
nition and machine learning applications, for instance, discriminative features are
typically obtained after a principal component analysis (PCA) stage that selects a sub-
space to explain a large fraction of the variance in the original data [Burges, 2009].
In computer vision applications, the set of images under different illuminations can
be represented by a low-dimensional subspace [Basri and Jacobs, 2003]. And sub-
spaces appear also as invariant representations of signals geometrically deformed
under a set of affine transformations [Hagege and Francos, 2016]. There are many
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more applications where low-dimensional subspaces capture the intrinsic geometry
of the problem, ranging from array processing [Scharf and Friedlander, 1994], mo-
tion segmentation [Vidal et al., 2008], subspace clustering [Vidal, 2011], spectrum
sensing for cognitive radio [Ramirez et al., 2011], or noncoherent multiple-input
multiple-output (MIMO) wireless communications [Gohary and Davidson, 2009,
Zheng and Tse, 2002].

When input data are modeled as subspaces, possibly of different dimensions, a
fundamental problem is to compute an average or central subspace and, more im-
portantly, to determine the dimension of the average or prototype. When all sub-
spaces have the same dimension, they are formally represented as points on the
Grassmann manifold. Geodesic, or intrinsic, distances on the Grassmannian are mea-
sured based on the arc length (`2-norm of the vector of principal angles), and the
average subspace according to this canonical distance metric is the Riemannian cen-
ter of mass also known as the Karcher mean [Karcher, 1977]. The Karcher mean
is typically found by iterative algorithms that map the subspaces to and from the
tangent plane at a given point (using Exp and Log maps), which make them compu-
tationally costly [Turaga et al., 2011]. Another drawback of the intrinsic distance
metric is that a unique optimal Karcher mean is not always guaranteed to exist
[Marrinan et al., 2014].

As an alternative to the intrinsic mean of the manifold, Srivastava and Klassen
proposed the extrinsic mean in [Srivastava and Klassen, 2002], which uses a chordal
distance metric in the ambient vector space defined as the squared Frobenius norm of
the difference between projection matrices. Unlike the intrinsic mean, the extrinsic
mean of a collection of subspaces is always unique, it is easy to compute, and can
be used for subspaces that have different dimensions and therefore live in a union of
Grassmannians. For these reasons, as in [Santamaria et al., 2016], we focus on the
extrinsic distance to compare subspaces that might not live in the same manifold.

We address the problem of determining the optimal order of the low-dimension
average subspace that minimizes an extrinsic distance measure. The solution to this
problem provides a simple order fitting rule based on thresholding the eigenvalues
of the average projection matrix, and thus it is free of penalty terms or other tun-
ing parameters commonly used by other model order estimation techniques. The
proposed rule appears to be particularly well suited to problems involving high-
dimensional data and low sample support, such as the determination of the number
of sources with a large array of sensors: the so-called source enumeration problem
[Zhu and Kay, 2018],[Huang et al., 2016],[Nadakuditi and Edelman, 2008].

In multi-sensor signal processing, temporal snapshots are typically used to esti-
mate a second-order spatial covariance matrix. The eigenvalues of this sample covari-
ance matrix are used for detection and localization, using methods that are inspired
variations on factor analysis. But the use of these eigenvalues for source enumeration
is fraught with difficulties, as they scale with source powers and background noise
levels, and this fact conflicts with the fact that the dimension of an array manifold is
invariant to scale. So the fundamental problem is to extract from a sample covariance
matrix a scale invariant subspace. In summary, our approach to find this subspace
is this; We replace a large sensor array by an overlapping sequence of subarrays,
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as inspired by [Vaccaro and Ding, 1993, Vaccaro, 2017], and extract a collection of
subspaces from the measurements made in each such subarray. These subspaces are
then averaged, and from this average the dimension of the array manifold is deter-
mined. We propose a method for extracting subspaces based on a bootstrap sampling
for subspaces drawn from a distribution determined by eigenvalues. This method is
quite different in philosophy from previously published methods, based on asymp-
totic formulas for the distribution of eigenvalues

The order fitting rule for subspace averaging was first published in
[Santamaria et al., 2016], and an unrefined application to source enumeration was
presented in [Santamaria et al., 2018]. In this thesis, these works are extended and
refined to provide a common framework for subspace averaging and its application
to source enumeration. The main contributions of this chapter may be summarized
as follows:

• We consider continuous and discrete distributions on the manifold of projec-
tion matrices as underlying distributions from which the measured collection
of subspaces is a random draw. From this standpoint, the eigenvalues of the
average projection matrix admit a probabilistic interpretation that enables a
better understanding of the proposed order estimation rule.

• We propose a robust formulation of the problem to account for outliers within
the set of measured subspaces. The standard extrinsic mean distance is replaced
by a smooth concave function such as the `1 norm or the Huber loss function
that limits the effect of subspaces far away from the average. Majorization-
minimization (MM) algorithms [Sun et al., 2017] are then used to find the
minimizer of this robust distance measure, which, in turn, provides a robust
order fitting rule.

• The application of SA techniques to source enumeration in
[Santamaria et al., 2018] is enhanced by including a sampling mecha-
nism to generate random subspaces based on the eigenstructure of the sample
covariance matrix. When exploited jointly with the shift invariance property of
uniform linear arrays (ULAs), this random sampling scheme enhances the per-
formance of SA in high-resolution scenarios in comparison to the preliminary
results presented in [Santamaria et al., 2018]. Further, the method is proven
to provide a consistent estimate of the number of sources as the number of
samples or the signal-to-noise-ratio grow.

The structure of the chapter is as follows. In Section 2.2 we derive the order
estimation rule for the average subspace using an extrinsic distance measure. As re-
ported in [Marrinan et al., 2014, Santamaria et al., 2016], an average of projection
matrices, not itself a projection matrix, is the key quantity summarizing all informa-
tion needed to solve this problem. We also present in this section a robust version of
the SA problem and solve it using MM algorithms. Section 2.3 reviews uniform and
non-uniform distributions on the Grassmannian, and proposes a new discrete distri-
bution motivated by interpreting the eigenvalues of the average projection matrix as
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probabilities. The application of the SA technique to source enumeration in large
uniform linear arrays in the presence of white noise is discussed in detail in Section
2.4. Section 2.5 evaluates the performance of the order fitting rule through numer-
ical simulations, paying special attention to the application to source enumeration.
Finally, the main conclusions are summarized in Section 2.6.

2.2 Order Estimation via Subspace Averaging

2.2.1 Distances between Subspaces

Let us consider two subspaces 〈V〉 ∈ G(qV , n) and 〈U〉 ∈ G(qU , n), where, G(q, n)
denotes complex Grassman manifold of q-dimensional linear subspaces of the n-
dimensional complex vector space Cn. Let V ∈ Cn×qV be a matrix whose columns
form a unitary basis for 〈V〉. Then VHV = IqV , and PV = VVH is the idempotent
orthogonal projection onto 〈V〉. Notice that PV is a unique representation of 〈V〉,
whereas V is not unique, because if G is an arbitrary unitary qV × qV matrix, then
VG will be another representation of 〈V〉 with orthonormal columns. In a similar
way, we define U and PU for the subspace 〈U〉.

To measure the distance between two subspaces we need the concept of principal
angles, which is introduced in the following definition [Golub and Van Loan, 1996].

Definition 2.1. Let 〈V〉 and 〈U〉 be subspaces of Cn whose dimensionality satisfy
dim (〈V〉) = qV ≥ dim (〈U〉) = qU ≥ 1. The principal angles θ1, . . . ,θqU ∈ [0, π/2]
between 〈V〉 and 〈U〉 are defined recursively by

cos(θk) = max
u∈〈U〉

max
v∈〈V〉

Re(uHv) = Re(uH
k vk)

subject to ||u|| = ||v|| = 1,

uHui = 0, i = 1, . . . , k− 1,

vHvi = 0, i = 1, . . . , k− 1,

for k = 1, 2, . . . , qU, where Re(·) denotes the real part of the complex number.
Assume that U and V are unitary bases for the two subspaces. Then the singular

values of UHV are
(
cos(θ1), . . . , cos(θqU)

)
[Björk and Golub, 1973]. The principal

angles induce several distance metrics, from which the most widely used are the
geodesic or intrinsic distance [Edelman et al., 1998, Karcher, 1977]

dgeo (〈U〉 , 〈V〉)2 =
qU

∑
r=1

θ2
r ,

and the extrinsic distance, which is given by the Frobenius norm of the dif-
ference between the respective projection matrices [Srivastava and Klassen, 2002,



2.2 Order Estimation via Subspace Averaging 19

Marrinan et al., 2014],

d (〈U〉 , 〈V〉)2 =
1
2
‖PU − PV‖2

F

=
1
2

(
qV + qU − 2

qU

∑
r=1

cos(θr)
2

)

=
|qV − qU|

2
+

(
qU −

qU

∑
r=1

cos(θr)
2

)
. (2.1)

The second term in the right hand side of (2.1) measures the chordal distance de-
fined by the principal angles, whereas the first term accounts for projection matrices
of different ranks.

There are arguments in favor of the extrinsic distance (2.1), among them, its
uniqueness and its computational simplicity in contrast to the intrinsic distance that
needs to compute the singular values of VHU. Also, the extrinsic distance is related
to the squared error in resolving the standard basis for the ambient space, {ei}n

i=1,
onto the subspace 〈V〉 as opposed to the subspace 〈U〉,

n

∑
i=1

eT
i (PU − PV)

H(PU − PV)ei = tr
(
(PU − PV)

H(PU − PV)
)

= ‖PU − PV‖2
F

= 2d (〈U〉 , 〈V〉)2

2.2.2 Order Selection Rule

Let us consider a collection of measured subspaces {〈Vr〉}R
r=1 of Cn, each with re-

spective dimension dim(〈Vr〉) = qr < n. To simplify the notation, we denote the
orthogonal projection matrix onto the rth subspace as Pr. Each subspace 〈Vr〉 is a
point on the Grassmann manifold G(qr, n), and the collection of subspaces lives on
a disjoint union of Grasmannians. Without loss of generality, the dimension of the
union of all subspaces is assumed to be the ambient space dimension n.

Using the extrinsic distance metric between subspaces, an order estimation crite-
rion for the central subspace that “best approximates” the collection is

(s∗, P∗s ) = arg min
s∈ {0,1,...,n}
P∈P(s,n)

1
2R

R

∑
r=1
‖P− Pr‖2

F , (2.2)

where P(s, n) denotes the set of all idempotent projection matrices of rank s. For
completeness, we also accept solutions P = 0 with rank s = 0, meaning that there is
no central “signal subspace” shared by the collection of input subspaces.

Expanding the cost function in (2.2) we obtain the equivalent problem

min
s∈ {0,1,...,n}
P∈P(s,n)

1
2

tr
(
P(I− 2P) + P

)
, (2.3)
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where P is an average of orthogonal projection matrices

P =
1
R

R

∑
r=1

Pr, (2.4)

with compact eigendecomposition P = FKFH, where K = diag (k1, . . . , kn) with
1 ≥ k1 ≥ k2 ≥ . . . ≥ kn.

Now, discarding constant terms and writing the projection matrix as P = UUH,
where U is a unitary n× s matrix, problem (2.3) can be rewritten as

min
U∈S(s,n)

tr
(

UH(I− 2P)U
)

,

where S(s, n) denotes the complex Stiefel manifold of orthonormal s-frames in Cn.
Hence, the optimal order s∗ is the number of negative eigenvalues of the matrix

S = I− 2P,

or, equivalently, the number of eigenvalues of P larger than 1/2, which is the order
fitting rule proposed in [Santamaria et al., 2016]. The proposed rule can be written
alternatively as

s∗ = arg min
s∈ {0,1,...,n}

s

∑
i=1

(1− ki) +
n

∑
s+1

ki.

A similar rule was developed in [Hlawatsch and Kozek, 1994] for the problem of
designing optimum time-frequency subspaces with a specified time-frequency pass
region.

Once the optimal order s∗ is known, a basis for the average subspace can be
obtained as the solution of the following optimization problem

max
U∈S(s∗ ,n)

tr
(

UHFKFHU
)

whose solution is given by any unitary matrix whose column space is the same as the
subspace spanned by the s∗ principal eigenvectors of F

U∗ = (f1, f2, . . . , fs∗) = Fs∗ ,

and P∗ = U∗(U∗)H. So the average subspace is constructed by quantizing the eigen-
values of the average projection matrix at 0 or 1.

2.2.3 Properties of the Average Projection Matrix

The average of projection matrices in (2.4) is not a projection matrix itself, and
therefore is not idempotent. However, it has the following properties:

1. It is symmetric and positive semidefinite.
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2. Its eigenvalues are real and satisfy 0 ≤ ki ≤ 1.

1) is trivially proved by noticing that P is an average of symmetric and positive
semidefinite projection matrices. To prove 2) let us take without loss of generality
the ith eigenvalue-eigenvector pair (ki, fi), then we have

ki = fH
i Pfi =

1
R

R

∑
r=1

fH
i Prfi

(a)
=

1
R

R

∑
r=1

fH
i P2

r fi =
1
R

R

∑
r=1
||Prfi||2 ≤ 1,

where (a) holds because all Pr are idempotent, and the inequality follows from the
fact that each term ||Prfi||2 is the squared norm of the projection of a unit norm
vector, fi, onto the subspace 〈Vr〉 and therefore ||Prfi||2 ≤ 1 with equality only if the
eigenvector belongs to the subspace.

Assuming that Vr =
[
vr1, . . . , vrqr

]
is a unitary basis for the rth subspace, the

eigenvalues of the average projection matrix can be further expressed as

ki =
1
R

R

∑
r=1

q j

∑
j=1
||vH

r jfi||2,

and hence they can be interpreted as the squared norm of the average projection
along the direction fi. It is important to remark, however, that the eigenvalues of P
are invariant to a common change in the basis of all subspaces. That is, we can apply
an arbitrary change of basis V′r = VrQ′ for r = 1, . . . , R with Q′ unitary, and the
eigenvalues ki do not change.

2.2.4 Robust Version

In some applications there is a need to account for outliers within our collection of
measured or extracted subspaces. To this end, we discuss in this section a robust
formulation of the proposed order fitting rule based on majorization-minimization
(MM) algorithms [Sun et al., 2017].

The simplest robust formulation of Problem (2.2) is

min
s∈ {0,1,...,n}
P∈P(s,n)

1
R

R

∑
r=1

ρ
(

d2
r (P)

)
(2.5)

where
d2

r (P) =
1
2
‖P− Pr‖2

F

and ρ (·) is a smooth concave increasing function that saturates so that outliers or
subspaces far away from the average have a limited effect. Examples of robust func-
tions are [Lerman and Maunu, 2018]:
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• `p-norm:
ρ (t) = tp/2 (2.6)

where 0 < p ≤ 2 with the nonrobust `2-norm formulation recovered for p = 2.

• Huber: for T > 0,

ρH (t) =
{

t/
√

T t ≤ T,√
t t > T.

(2.7)

For T = 0 we obtain the median estimator ρH(t) =
√

t.

• Log-loss:
ρLL (t) = θ ln (θ+ t) ,

where θ ≥ 1.

• Logistic:

ρL (t) =
1

1 + e−t

• Geman-McClure estimator [Geman and Reynolds, 1992, Barron, 2017]: for
θ > 0,

ρGM (t) =
t

θ+ t
.

The idea of the MM algorithm [Sun et al., 2017] is, at each iteration, to find
a majorizer of the objective function. Since the robust function ρ (·) is a smooth
concave function, we can easily majorize at some point simply by linearizing:

ρ (t) ≤ ρ (t0) + ρ′ (t0) (t− t0) .

In the context of our problem, the problem at iteration k (where a central sub-
space P(k) of dimension s(k) is available) is

min
P∈P(s,n)

1
R

R

∑
r=1

ρ
(

d2
r

(
P(k)

))
+ ρ′

(
d2

r

(
P(k)

)) (
d2

r (P)− d2
r

(
P(k)

))
or, removing unnecessary constant terms,

min
P∈P(s,n)

1
R

R

∑
r=1

ρ′
(

d2
r

(
P(k)

))
d2

r (P) .

Let us now define the normalized weights that define a simplex

w̄(k)
r =

ρ′
(

d2
r

(
P(k)

))
∑

R
r=1 ρ

′ (d2
r
(
P(k)

)) , w̄(k)
r ≥ 0, ∑

r
w̄(k)

r = 1.
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With this definition we can obtain the next iterate P(k+1) as the solution to

min
s∈ {0,1,...,n}
P∈P(s,n)

1
2

R

∑
r=1

w̄(k)
r ‖P− Pr‖2

F . (2.8)

Expanding the cost function (2.8), we obtain

min
s∈ {0,1,...,n}
P∈P(s,n)

1
2

tr
(

P(I− 2P(k)
w ) + P(k)

w

)
, (2.9)

where we have used the fact that ∑
R
r=1 w̄(k)

r tr(P) = tr(P) and P(k)
w is the weighted

average projection matrix given by

P(k)
w =

R

∑
r=1

w̄(k)
r Pr

Writing the projection matrix in (2.9) as P = UUH and discarding constant terms,
the optimization problem can be rewritten as

min
U∈S(s,n)

tr
(

UH(I− 2P(k)
w )U

)
.

Then, the optimal order at iteration k + 1, s(k+1), is the number of negative eigen-
values of the matrix

S(k) = I− 2P(k)
w . (2.10)

While the non-robust average projection matrix in (2.4) equally weights all sub-
spaces in the collection by w̄(k)

r = 1/R, the robust version uses different weights at

each iteration. It is also clear that P(k)
w is symmetric with real eigenvalues bounded

above by one, like its non-robust version P = ∑r Pr/R. A unitary basis for the central

subspace at iteration k + 1 is given by the s(k+1) largest eigenvectors of P(k)
w , where

recall that s(k+1) is the number of non-negative eigenvalues of S(k) in (2.10).
Notice that the objective function (2.5) is bounded below and that the sequence

of objective values at each iteration is non-increasing. Then, the convergence of the
sequence of robust order estimates s(1), s(2), . . . , to a stationary point s∗ is guaran-
teed. For a more detailed study of the convergence of MM algorithms, the reader is
referred to [Sun et al., 2017].

2.3 Distributions on the Manifold of Projection Matri-
ces

In many problems it is useful to assume that the measured subspaces {〈Vr〉}R
r=1 are

random samples drawn from an underlying distribution. Uniform and non-uniform
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distributions on the Grassmann manifold G(k, n) or, equivalently, on the manifold
of projection matrices of rank = k, P(k, n), have been extensively discussed in
[Chikuse, 2003]. For uniform distributions the basic experiment is this: generate
X as a random n × k matrix with i.i.d CN (0, 1) random variables. Perform a QR
decomposition of this random matrix as X = QRx, then, QHx where Hx ∈ U(k) is
any unitary matrix independent of X, is uniformly distributed on G(k, n), and QQH

is uniformly distributed on P(k, n). Remember that points on G(k, n) are equivalence
classes of n× k matrices, where Q1 ∼ Q2 if Q1 = Q2Hx for some Hx ∈ U(k).

If P is uniformly distributed on P(k, n), it is immediate to prove that (see
[Chikuse, 2003], pp. 29)

E[P] =
k
n

In,

so all eigenvalues of the mean projection matrix when the subspaces are uniformly
distributed are identical to ki = k/n, i = 1, . . . , n, indicating no preference for any
particular direction. In this way, the proposed order fitting rule, applied to an average
of uniformly-distributed subspaces, will tend to return 0 if k < n/2, and n otherwise,
in both cases suggesting there is no central low-dimensional subspace.

The matrix Langevin (or von Mises-Fisher) has been suggested as a non-
uniform distribution on the Stiefel and Grassmann manifolds [Chikuse, 2003,
Khatri and Mardia, 1977, Chikuse, 1990]. For real n × k orthogonal frame X, the
matrix Langevin, as defined by Downs in [Downs, 1972], has an exponential dis-
tribution of the form L(X) ∝ exp

{
tr(BTX)

}
, where B = UDVT is a matrix that

parameterizes the distribution with U an n× k slice of an n× n orthogonal matrix, V
a k× k orthogonal matrix, and D a k× k diagonal matrix with positive entries. The
matrices U and V are interpreted as orientations, while the diagonal elements of D
are concentration parameters along the k directions determined by U and V. The
matrix Langevin L(X) is unimodal and the density is maximized at X = UVT, which
is the central k-frame or subspace of the distribution. Note that when B = 0 we
recover the uniform distribution. As suggested in [Chikuse, 2003], to generate sam-
ples from L(X) we might use a rejection sampling mechanism with the uniform as
proposal density. This rejection sampling, however, can be very inefficient for large n
and k > 1. More efficient sampling algorithms have been proposed in [Hoff, 2013].

The uniform and the matrix Langevin are continuous distributions on the mani-
fold of projection matrices of fixed rank = k. To deal with subspaces or projection
matrices that do not live on the same manifold we would need distributions defined
over unions of Grassmannians, which, to the best of our knowledge, have not been
studied. Nevertheless, it is possible to define the following discrete distribution that
will be useful for the application of the proposed subspace averaging technique to
array processing in Section 2.4.

Definition 2.2. Let U =
[
u1 . . . un

]
∈ U(n) be an arbitrary unitary basis of the

ambient space, and let α = (α1, . . . ,αn) with 0 ≤ αi ≤ 1; the αi are ordered from
largest to smallest, but they need not sum to 1. We define a discrete distribution D on
the set of random projection matrices P = VVH (or, equivalently, the set of random
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subspaces 〈V〉, or set of frames V) with parameter vector α and orientation matrix U.
The distribution of P will be denoted P ∼ D(U,α) or V ∼ D(U,α).

To shed some light on this distribution, let us explain the experiment that deter-
mines D. Draw 1 includes u1 with probability α1, and excludes it with probability
(1 −α1); draw 2 includes u2 with probability α2, and excludes it with probability
(1−α2); continue in this way until draw n includes un with probability αn, and ex-
cludes it with probability (1−αn). We may call the string i1, i2, . . . , in, the indicator
sequence for the draws; that is, ik = 1, if uk is drawn on draw k, and ik = 0 otherwise.
In this way Pascal’s triangle shows that the probability of drawing the subspace 〈V〉
is p(〈V〉) = ∏I αi ∏I(1−α j), where the index set I is the set of indices k for which
ik = 1 in the construction of V. This is also the probability law on frames V and
projections P. For example, the probability of drawing an empty frame is ∏

n
1(1−αi),

the probability of drawing the dimension-1 frame uiuH
i isαi ∏ j 6=i(1−α j), and so on.

It is clear from this pdf on the 2n frames that all probabilities lie between 0 and 1,
and that they sum to 1.

Let Pr ∼ D(U,α), r = 1, . . . , R, be a sequence of i.i.d. draws from the distribution
D, and let P = ∑r Pr/R be its sample mean with eigenvalues (k1, . . . , kn). Then, we
have the following properties:

1. E[Pr] = Udiag(α)UH, that is, the mean is not generally a projection.

2. E [tr(Pr)] = ∑
n
i=1αi.

3. E [ki] = αi.

These properties follow directly from the definition of D(U,α).

Remark 1. The αi’s control the concentrations or probabilities in the directions deter-
mined by the unitary basis U. For instance, if αi = 1 all random subspaces contain
direction ui, whereas if αi = 0 the angle between ui and all random subspaces drawn
from that distribution will be π/2.

Example 1. Suppose U = [u1, u2, u3] is the standard basis in R3 and let α =
(3/4, 1/4, 1/4). The discrete distribution P ∼ D(U,α) has an alphabet of 23 = 8
subspaces with the following probabilities:

• Pr (P = 0) = 9/64

• Pr
(
P = u1uH

1
)
= 27/64

• Pr
(
P = u2uH

2
)
= 3/64

• Pr
(
P = u3uH

3
)
= 3/64

• Pr
(
P = u1uH

1 + u2uH
2
)
= 9/64

• Pr
(
P = u1uH

1 + u3uH
3
)
= 9/64
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• Pr
(
P = u2uH

2 + u3uH
3
)
= 1/64

• Pr (P = I) = 3/64

The distribution is unimodal with mean

E[P] = Udiag(α)UH .

and expected dimension E[tr(P)] = 5/4. Given R draws from the distribution P ∼
D(U,α), the eigenvalues of the sample average projection P = ∑

R
r=1 Pr/R converge

to ki → αi as R grows, and the proposed order fitting rule will return s∗ = 1 as the
dimension of the central subspace for this example. It is easy to check that the probability
of drawing a dimension-1 subspace for this example is 33/64.

2.4 Subspace Averaging for Source Enumeration

In this section we apply the proposed order fitting rule for subspace averaging
to the problem of estimating the number of signals received by a sensor array,
which is referred to as source enumeration. This is a classic and well-researched
problem in radar, sonar, and communications [Scharf, 1991, Trees, 2002], and nu-
merous criteria have been proposed over the last decades to solve this problem,
most of which are given by functions of the eigenvalues of the sample covariance
matrix [Akaike, 1974, Wax and Kailath, 1985, Rissanen, 1978, Lu and Zoubir, 2013,
Kay, 2005, Xu and Kay, 2008, Zhu and Kay, 2018, Quinlan et al., 2007]. These meth-
ods tend to underperform when the number of antennas is large and the number of
snapshots is relatively small in comparison to the number of antennas, the so-called
small-sample regime, which is the situation of interest here. The proposed method
is to construct a collection of subspaces based on the array geometry and a random
sampling procedure from a specifically designed distribution D, and then use the
order fitting rule for averages of projections to enumerate the sources.

We consider K narrowband signals impinging on a large, uniform, half-
wavelength linear array with M antennas, in the presence of white noise (Noise
Model 1). Therefore, the noise is modeled as e[n] ∼ CNM(0,σ2I), and the covari-
ance matrix in (1.2) for this model is

R = AΨAH +σ2I. (2.11)

As described in Section 1.1, the objective here is to estimate K from X or R̂.

2.4.1 Subspace Generation

A key ingredient of the proposed method is the method of generating the collection
of subspaces from which to estimate the average projection matrix and its dimension.
In some applications, such as image or video processing, the collection of subspaces
might be given, but in array processing the signal subspace is an array manifold, to
be estimated from array snapshots. For instance, when a uniform linear array (ULA)
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is used, we can exploit the shift-invariance property to estimate a subspace from the
data acquired by a subarray of the sensors. The subspaces could also be estimated
from subsets of L < N snapshots randomly selected from the original dataset, which
would be appropriate for cyclostationary snapshots, or using any other bootstrapping
scheme.

For the SA method to be effective, it is important that the subspaces to average
overlap as much as possible with the true signal subspace. In fact, as long as each ex-
tracted subspace contains a large common portion of the signal subspace and (more
or less) independent portions of the noise subspace, then, the averaging procedure
enhances signal coordinates while averaging out noise coordinates.

In the following, we describe a subspace generation procedure that has proven
to be effective for this particular application. It generates random subspaces by ran-
domly sampling from the distribution D(U,α), whose orientations U and concentra-
tionsα are determined by the eigenvectors and eigenvalues of the sample covariance
matrix. Moreover, it exploits the shift invariance property of ULAs. A preliminary ver-
sion of this method that only exploited the shift-invariance property was presented
in [Santamaria et al., 2018].

2.4.2 Shift Invariance

When uniform linear arrays are used, a property called shift invariance holds, which
forms the basis of the ESPRIT method [Paulraj et al., 1986, Roy and Kailath, 1989]
and its many variants. Let Ad be the L×K matrix with rows d, . . . , d+ L− 1 extracted
from the steering matrix A. This steering matrix for the dth subarray is illustrated in
Fig.2.1.

2/

L elements

subarray 2 

subarray 1

M antennas

Figure 2.1: L-dimensional subarrays extracted from a uniform linear array with
M > L elements.

Then, from (1.1) it is readily verified that

Addiag(e− jθ1 , . . . , e− jθK) = Ad+1, d = 1, . . . , M− L + 1,
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which is the shift invariance property. In this way, Ad and Ad+1 are related by a
nonsingular rotation matrix,

Q = diag(e− jθ1 , . . . , e− jθK),

and therefore they span the same subspace. That is, 〈Ad〉 = 〈Ad+1〉, with
dim(〈Ad〉) = K < L. In ESPRIT, two sub-arrays of dimension L = M − 1 are
considered, and thus we have A1Q = A2, where A1 and A2 select, respectively, the
first and the last M− 1 rows of A.

There is an interesting characterization of the shift invariance property. Let
xd[n] be an L× 1 vector containing the noise-free observations acquired by sensors
d, . . . , d + L− 1 of x[n], and let S r denote a shift operator, so that S rxd[n] = xd+r[n].
Then, in the noise-free model xd[n] = Ads[n], this shift invariance produces.

S rxd[n] = S rAds[n] = Ad+rs[n] = AdQrs[n].

The source signal Qrs[n] is distributed as s[n] is distributed, provided s[n] is complex
normal with covariance matrix σ2

s I, making Q a measure-preserving transformation.
So shift on xd[n] is measure-preserving on s. This property leaves second-order ma-
trices invariant.

It is also possible to show that, when the signal covariance matrix in (2.11) is Ψ =
σ2

s I, the K principal eigenvectors of R are also shift-invariant [Roy and Kailath, 1989,
Li and Vaccaro, 1991]. When noise is present, however, the shift-invariance property
does not hold for the main eigenvectors extracted from the sample covariance ma-
trix. The Optimal Subspace Estimation (OSE) technique proposed by Vaccaro et
al. obtains an improved estimate of the signal subspace with the required struc-
ture (up to the first order) [Li and Vaccaro, 1991]. The OSE has recently been used
with the subspace averaging of [Santamaria et al., 2016] to improve DOA estimation
[Vaccaro, 2017, Palka, 1996, Palka and Vaccaro, 2017]. Nevertheless, the OSE tech-
nique requires the dimension of the signal subspace to be known in advance and,
therefore, does not apply directly to the source enumeration problem.

From the L × 1 (L > K) sub-array snapshots xd[n] we can estimate an L × L
sample covariance as

R̂d =
1
N

N

∑
n=1

xd[n]xH
d [n].

Note that each R̂d block corresponds to an L × L submatrix of the full sample co-
variance R̂ extracted along its diagonal, that is, in Matlab notation R̂d = R̂(d :
d + L− 1, d : d + L− 1).

Due to the shift invariance property of uniform linear arrays the noiseless signal
subspaces of the theoretical Rd are identical. Since there are M sensors and we
extract L-dimensional subarrays, there are D = M − L + 1 different submatrices
R̂d, d = 1, . . . , D. For each R̂d we compute its eigendecomposition R̂d = UdΛdUH

d ,
where Λd = diag (λd,1, . . . , λd,L), λd,1 ≥ . . . ≥ λd,L.

For each R̂d we can define a distribution D(Ud,αd) from which to draw random
subspaces: Pdk, k = 1, . . . , K. Obviously a key point for the success of the SA method
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is to determine a good distribution D(Ud,αd) and a good sampling procedure to
draw random subspaces. This is described in the next subsection.

2.4.3 Random Generation of Subspaces

To describe the random sampling procedure for subspace generation, let us take
for simplicity the full M × M sample covariance matrix R̂ = UΛUH, where Λ =
diag (λ1, . . . , λM), λ1 ≥ . . . ≥ λM.

Each random subspace 〈V〉 has dimension dim(〈V〉) = kmax, where kmax <
min(M, N) is an overestimate of the maximum number of sources that we expect
in our problem. The subspace is iteratively constructed as follows:

1. Initialize 〈V〉 = ∅

2. While rank(V) ≤ kmax do

(a) Generate a random draw 〈G〉 ∼ D(U,α), according to the sampling de-
scription in Definition 2.2

(b) 〈V〉 = 〈V〉⋃ 〈G〉
The orientation matrix U of the distribution D is given by the eigenvectors of

the sample covariance matrix. On the other hand, the concentration parameters
should be chosen such that the signal subspace directions are selected more often
than the noise subspace directions, and, consequently, they should be a function of
the eigenvalues of the sample covariance λk. In this work we propose to use the
following concentration parameters for D(U,α)

αi =
∆λi

∑i ∆λi
, (2.12)

where

∆λi =

{
λi − λi+1, i = 1, . . . , M− 1,

0, i = M. (2.13)

Here is a motivating example for this choice. Consider the wide-sense station-
ary time series {x[n]} with covariance r[k] = E[x[n]x∗[n + k]] = β sin(βπk)/(βπk)
for all k, where 0 < β < 1 determines the signal bandwidth. A snapshot x =
[x[0], . . . , x[M− 1]] has symmetric Toeplitz covariance matrix R with entries r[k] on
its kth diagonal. This covariance matrix may be written

R =
∫ βπ

−βπ
dθ
2π

S(θ)ψ(θ)ψH(θ)

where ψ = [1, e jθ, . . . , e jθ(M−1)]T, and S(θ) = 1. The trace of this matrix is βM,
so the sum of its eigenvalues is this trace. The eigenvalue decomposition of the
covariance R is R = FKFT, where the columns of F are the discrete prolate spheroidal
wave functions, or Slepian sequences [Slepian and Pollack, 1961]. The first bβMc
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Algorithm 1: Generation of a Random Subspace.
Input: R̂ = U0ΛUH

0 , kmax
Output: Unitary basis for a random subspace V
Initialization: U = U0, λ = diag(Λ), and V = ∅
while rank(V) ≤ kmax do

/* Generate concentration parameters α */

M = |λ|
αi =

∆λi
∑i ∆λi

, i = 1, . . . , M with ∆λi given by (2.13)
/* Sample from D(U,α) */

g = (gi, . . . , gM) with gi ∼ U (0, 1)
I = {i | gi ≤ αi}
G = U(:, I)
/* Append new subspace */

V =
[
V G

]
/* Eliminate selected directions */

U = U(:, I)
λ = λ(I)

eigenvalues λi are approximately 1, and the trailing M − bβMc are approximately
0. Moreover, the matrix FKFT is approximately a rank bβMc projection onto the
subspace spanned by the first bβMc columns of the matrix FKFT. An estimator of
this rank is argmaxi(λ1 − λi+1), which returns the integer part of βM. This suggests
that the function αi = λi − λi+1, after proper normalization, would be a suitable
function of the eigenvalues to use in a sequence of stochastic draws of subspaces, as
outlined previously.

With this choice for D(U,α), the probability of picking the ith direction from U is
proportional to λi − λi+1, thus placing more probability on jumps of the eigenvalue
profile. Notice also that whenever λi = λi+1 then αi = 0, which means that ui will
never be chosen in any random draw. We take the convention that if ∆λi = 0, ∀i,
then we do not apply the normalization in Eq. (2.12) and hence the concentration
parameters are also all zero: αi = 0, ∀i.

A summary of the proposed algorithm is shown in Algorithm 1.

2.4.4 SA Criterion

For each subarray sample covariance matrix we can generate T random subspaces
according to the procedure described in the previous section. Since we have D sub-
array matrices, we get a total of R = T D subspaces. The SA approach simply finds
the average projection matrix

P =
1

TD

D

∑
d=1

T

∑
t=1

Pdt,



2.4 Subspace Averaging for Source Enumeration 31

Algorithm 2: Subspace Averaging Criterion.
Input: R̂, L = M− 5, T and kmax;
Output: Order estimate k̂SA
for d = 1, . . . , D do

Extract R̂d from R̂ and obtain R̂d = UdΣdUH
d

Generate T random subspaces from R̂d using Algorithm 1
Compute the projection matrices Pdt = VdtVH

dt

Compute P and its eigenvalues (k1, . . . , kL)

Estimate k̂SA as the number of eigenvalues of P larger than 1/2

to which the order estimation method described in Sec. 2.2 can be applied. Notice
that the only parameters in the method are the dimension of the subarrays, L, the
dimension of the extracted subspaces, kmax, and the number T of random subspaces
extracted from each subarray. For large-scale arrays (M ≥ 50), we have found that
L = M − 5, kmax = bM/5c, and T = 20 provide in general good performance for
many scenarios.

A summary of the proposed algorithm is shown in Algorithm 2.

2.4.5 Consistency of the SA Method

In this section we show that the SA criterion equipped with the proposed subspace
generation procedure is consistent in the classic asymptotic regime (fixed M, N →∞).

Theorem 2.3. Let R = AΨAH + σ2I be an M × M theoretical covariance matrix
with eigenvalues µ1 ≥ µ2 ≥ . . . ,≥ µK > µK+1 = . . . = µM, corresponding to an
scenario with K uncorrelated sources. Let R̂ be the sample covariance matrix formed by
N snapshots and let us denote its eigenvalues as λi, i = 1, . . . , M. Then, if M ≥ L >
kmax ≥ K, k̂SA is a consistent estimator of K as N → ∞.

Proof. Let us take without loss of generality the case M = L, that is, we only generate
subspaces from the full sample covariance matrix. In the classic fixed system-size
M, large sample-size asymptotic regime N → ∞, the eigenvalues of the sample
covariance estimated from independent snapshots converges to the theoretical ones
λi → µi, i = 1, . . . , M. Then, in the first draw to construct each random subspace we
sample from D(U,α) where the orientation matrix U contains the eigenvectors of R
and the concentration parameters are

α = (α1, . . . ,αK, 0, . . . , 0) . (2.14)

In (2.14) the M − K trailing concentration values are zero because they are con-
structed from (normalized) differences of eigenvalues, whose M− K smallest values
are identical in the asymptotic regime: µK+1 = . . . = µM.
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Therefore, the first draw samples exclusively from the signal directions. Since
we sample until the dimension of the subspace is kmax, or until all concentration
parameters are zero, then, as long as kmax ≥ K, all random subspaces will be the true
signal subspace. Consequently, for any number of generated subspaces the average
projection matrix has exactly K eigenvalues equal to 1 and M− K eigenvalues equal
to zero, and the SA criterion returns k̂max = K, thus proving the result.

Notice that this consistency results also holds as the noise variance σ2 → 0, un-
like the MDL criterion which, as shown in [Ding and Kay, 2011], is inconsistent with
increasing signal-to-noise ratio.

2.5 Simulation Results

In this section we evaluate the performance of the proposed order fitting rule by
means of numerical examples. Firstly, we study the performance of the order fitting
rule, as well as its robust version. Secondly, we consider the application of subspace
averaging techniques as a method of enumerating sources in large linear arrays, un-
der conditions of low sample support.

2.5.1 Performance of the Order Fitting Rule

Experiment 1: In the first example, we generate a collection of R subspaces, 〈Vr〉 ∈
G(k, n), r = 1, . . . , R, as follows: we first generate

Gr =
[
V0 | 0n×(n−k)

]
+σZr, r = 1, . . . , R (2.15)

where V0 ∈ Cn×k is a matrix whose columns form an orthonormal basis for a central
subspace 〈V0〉, 0n×(n−k) is an n × (n − k) zero matrix, and Zr ∈ Cn×n is a matrix
whose entries are independent and identically distributed (iid) complex Gaussian
random variables with zero mean and variance σ2 = 1/n. The value of σ determines
the signal-to-noise-ratio, which determines the spread of the subspaces around its
mean and is defined as SNR = 10 log10

(
k

nσ2

)
.

An orthogonal basis for the rth subspace, Vr, is then constructed from the first k
orthonormal vectors of the QR decomposition of Gr. For this example all subspaces
in the collection have exactly the same dimension.

Fig. 2.2 shows the estimated order as a function of the SNR for different values
of (k, n) and a total number of R = 200 subspaces. The curves represent averaged
results of 500 independent simulations. As we can see, there is phase-transition
behavior between s∗ = 0 (no central subspace) and the right order s∗ = k.

Experiment 2: In the second experiment we evaluate the robust order fitting rule
proposed in 2.2.4. To this end, we create a collection of subspaces contaminated by
outliers as follows: we first generate

Gr =
[
V0 | 0n×(n−k)

]
+ Zr, r = 1, . . . , R (2.16)
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Figure 2.2: Estimated order as a function of the SNR for different values of (k, n).
In all examples the number of measured subspaces is R = 200.

where now the elements of Zr are drawn from a Gaussian mixture Zr(i, j) ∼ (1−
ε)CN (0,σ2

1/n) + ε CN (σ2
2/n), where σ2

2 >> σ2
1 . In words, with probability (1 −

ε) the central subspace is additively perturbed by a random matrix whose entries
are i.i.d. zero-mean Gaussians random variables with variance σ2

1/n, whereas with
probability ε the entries of the noise matrix are drawn from a Gaussian distribution
with variance σ2

2/n >> σ2
1/n. Again, an orthogonal basis for the rth subspace, Vr,

is constructed from the first k orthonormal vectors of the QR decomposition of X. In
this way, we emulate a Gaussian mixture model for this problem. For low values of
σ2

1 , with probability 1−ε the subspaces are well clustered around V0. On the other
hand, with probability ε the subspaces are generated with a much higher variance
σ2

2 >> σ2
1 and hence they can be interpreted as outliers.

The signal-to-noise-ratio for the normal data (inliers) and the outliers is defined

as SNRi = 10 log10

(
k

nσ2
i

)
for i = 1, 2. For this example, we estimate the order

of the central subspace using the extrinsic mean squared error distance, and the
robust versions using the `1 norm (2.6) and the Huber loss function with T = 0.5
(2.7). In all simulations, the MM algorithm converged in less than 5 iterations. We
consider a set of R = 100 subspaces of dimension k = 3 in an ambient space of
dimension n = 20. The proportion of outliers to ε = 0.5, and its signal-to-noise ratio
is SNR2 = −20 dB. Fig. 2.3 shows the probability of correct order estimation as the
signal-to-noise-ratio, SNR1, for the inliers varies, where increased robustness of both
the `1 and Huber cost functions are evident.
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Figure 2.3: Probability of correct order detection for robust and non-robust methods
(M = 100, k = 3, n = 40, SNR2 = −20 dB and ε = 0.5).

2.5.2 Application to Source Enumeration

We consider a scenario with K narrowband incoherent unit-power signals and DOAs
separated ∆θ (in electrical angle) impinging on a uniform linear array with M anten-
nas and half-wavelength element separation (cf. Fig. 1.1). The number of snapshots
is N. The proposed SA method uses subarrays of size L = M− 5, hence for M = 100,
the total number of subarrays is D = 6. From the sample covariance matrix of each
subarray we generate T = 20 random subspaces of dimension kmax = bM/5c, which
gives us a total of R = 120 subspaces (for M = 100) on the Grassmann manifold
G(kmax, L) to compute the average projection matrix P.

Some representative methods for source enumeration with high-dimensional data
and few snapshots have been selected for comparison. They exploit random matrix
results and are specifically designed to operate in this regime. Further, all of them are
functions of the eigenvalues λ1 ≥ · · · ≥ λM of the sample covariance matrix R̂. For
comparison, LS-MDL [Huang and So, 2013], NE [Nadakuditi and Edelman, 2008]
and BIC [Huang et al., 2016] are considered. These methods have been briefly de-
scribed in Section 1.2.

Experiment 3: In this example we consider an array with M = 100 antennas
receiving K = 3 sources with electrical angle separation ∆θ = 10◦, and N = 60
snapshots, thus yielding a rank-deficient sample covariance matrix. The Rayleigh
limit for this scenario is 2π/100 ≈ 3.6◦, so in this example the sources are well
separated.
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Fig. 2.4 shows the probability of correct detection vs. the signal-to-noise-ratio
(SNR) for all methods under comparison. Increasing the number of snapshots to
N = 150 and keeping fixed the rest of the parameters, we obtain the results shown
in Fig. 2.5. For this scenario, where source separations are roughly 3 times the
Rayleigh limit, the SA method outperforms competing methods.
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Figure 2.4: Probability of correct detection vs. SNR for all methods. In this experi-
ment, there are K = 3 sources with electrical angle separation ∆θ = 10◦, the number
of antennas is M = 100, the number of snapshots is N = 60 and L = bM− 5c

Experiment 4: To analyze the impact of the separation between sources, we
consider again a scenario with M = 100 antennas, and K = 3 sources but now
separated at angles of ∆θ = 2◦, which is within the Rayleigh limit of approximately
3.6◦. The results for N = 150 and N = 60 snapshots are shown in Figs. 2.6 and
2.7, respectively. Again, the SA method provides the best performance. Also, the LS-
MDL method seems to be more robust than NE and BIC for very low sample support
scenarios (N = 60).

Experiment 5: In this experiment we compare the performance for an increasing
number of snapshots when the number of antennas is fixed to M = 100 antennas,
the signal-to-noise-ratio is SNR = −16 dB, and there are K = 3 uncorrelated sources
separated ∆θ = 10◦. As Fig. 2.8 shows, the SA method provides very competitive
results with only a few snapshots, while the other methods require a much higher
number of snapshots to consistently estimate the right number of sources.

Experiment 6: In the next experiment we consider an array with M = 120 an-
tennas, the signal-to-noise-ratio is SNR = −16 dB, and there are K = 6 uncorrelated
sources now with separation of ∆θ = 12◦. As Fig. 2.9 shows, the SA method starts
performing well with very few snapshots.
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Figure 2.5: Probability of correct detection vs. SNR for all methods. In this experi-
ment, there are K = 3 sources with electrical angle separation ∆θ = 10◦, the number
of antennas is M = 100, the number of snapshots is N = 150 and L = bM− 5c

Experiment 7: In the next experiment we assume two sources with unequal
powers P1 and P2 respectively. We assume that initially both sources have equal
power as P1 = P2, and then, we fix the P1 and decrease the P2 gradually, and the
probability of correct detection vs. the ratio of two powers P2

P1
is shown in Fig. 2.10.

We consider an array with M = 100 antennas, the number of samples N = 60, the
signal-to-noise-ratio is SNR = −10 dB, and the source separation ∆θ = 10◦. As the
P2 decreases, all methods start underestimating the number of sources, however, SA
performs well for small values of ratio P2

P1
.

Experiment 8: In the last experiment, we evaluate the impact of having corre-
lated sources. We consider a scenario with K = 2 correlated sources when M = 100,
N = 150, SNR = −10 dB, and ∆θ = 10◦. The correlation coefficient between two
sources, ρ, varies from 0 to 1, where ρ = 0 denotes uncorrelated signals and ρ = 1
denotes fully correlated signals. As Fig. 2.11 shows, SA outperforms the rest of
methods and provides accurate results even for highly correlated sources ρ < 0.8.
Nevertheless, the performance of SA under correlated sources needs additional the-
oretical analysis.

Discussion: It may be said that the method NE uses asymptotic results, based on
large random matrix theory, to derive an order fitting rule. The rule is then applied
to randomly generated eigenvalues computed from finite samples of finite matrices,
as if these eigenvalues behaved as the eigenvalues for a large random matrix. They
do, approximately. The methods LS-MDL (based on MDL), and BIC use geometric
and arithmetic means of sub-dominant eigenvalues, derived from likelihood formulas,



2.5 Simulation Results 37

−14 −12 −10 −8 −6 −4 −2 0
0

0.2

0.4

0.6

0.8

1

SNR (dB)

P
ro
b
a
b
il
it
y
o
f
co
rr
ec
t
d
et
ec
ti
o
n

SA

LS-MDL

NE

BIC

Figure 2.6: Probability of correct detection vs. SNR for all methods. In this experi-
ment, there are K = 3 sources with electrical angle separation ∆θ = 2◦, the number
of antennas is M = 100, the number of snapshots is N = 150 and L = bM− 5c

to determine the likelihood of a factor model of a fixed order. In fact, in the compu-
tation of likelihood, it is the likelihood of a signal covariance matrix FΛFH, of order k,
plus a diagonal noise covariance σ2I of unknown variance σ2 that is computed. So, in
a very real sense, all these methods are based on the likelihood of a full covariance
model for multivariate normal data, and likelihoods of different models are rank- or-
dered after penalties for large order are applied. This rank ordering depends critically
on the scales of the components FΛFH and σ2 that are identified in the likelihood
computation. The method SA, treats eigenvalues computed from finite samples of
finite matrices as variables that only indicate which model subspace could have pro-
duced these eigenvalues as the eigenvalues of a corresponding covariance matrix.
Importantly, all eigenvalues are used in a bootstrap, and not only the sub-dominant
eigenvalues. Perhaps more importantly, scale is removed from consideration. That
is, the methods LS-MDL and BIC account for scale of the low-rank and diagonal
components of covariance in the fitting of a covariance model to the data, whereas
the method of SA is scale-invariant, as it computes scale-invariant probabilities from
the covariance eigenvalues, without a low-rank-plus diagonal covariance model, and
then produces draws of randomly-generated, scale-invariant, subspaces. Subspace
modeling seems better matched to the problem of order determination for an array
manifold than does covariance modeling. The experiments in this section indicate
that this normalization with respect to scale is useful for estimating model order in
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Figure 2.7: Probability of correct detection vs. SNR for all methods. In this experi-
ment, there are K = 3 sources with electrical angle separation ∆θ = 2◦, the number
of antennas is M = 100, the number of snapshots is N = 60 and L = bM− 5c

experiments where the scales of the signal covariance and the noise covariance are
unknown, and the SNR and/or sample support are small.

2.6 Conclusions

In this chapter we have studied the problem of source enumeration from measure-
ments in a uniform linear array. The approach is to extract a subspace from each
of several subarrays, and then average these subspaces for a subspace whose dimen-
sion is the estimated number of far-field sources. A key element of the method is
the automatic order-fitting rule for extracting the dimension of the average subspace
that minimizes the mean-squared error between the average and each individual
subspace. The net of this procedure is that eigenvalues of a sample covariance ma-
trix determine a distribution on subspaces that could have produced the measured
covariance matrix. This procedure normalizes scale by replacing scale-dependent co-
variance models by scale-invariant subspace models. The method requires no penalty
terms for controlling the estimated order.

Simulations indicate performance that is superior to other published methods,
over a range of signal-to-noise ratios, sample supports, and source separations. The
results suggest that the problem of source enumeration may be viewed as a problem
of identifying an approximating subspace, and its dimension, from a set of subspaces
estimated from measurements. This point of view stands in contrast to methods that
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Figure 2.8: Probability of correct detection vs. Number of Snapshots for all methods.
In this experiment, there are K = 3 sources with electrical angle separation ∆θ = 10◦,
the number of antennas is M = 100, the Signal to Noise Ratio is SNR = −16 dB and
L = bM− 5c

compute likelihood for covariance models, where scale is retained, and then penalize
these likelihoods for large dimension.
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Figure 2.9: Probability of correct detection vs. number of snapshots for all methods.
In this experiment, there are K = 6 sources with electrical angle separation ∆θ = 12◦,
the number of antennas is M = 120, SNR = −16 dB and L = bM− 5c.
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Figure 2.10: Probability of correct detection vs. power ratio of two sources P2
P1

for all
methods. In this experiment, there are K = 2 sources with electrical angle separation
∆θ = 10◦, the number of antennas is M = 100, N = 60, SNR = −10 dB and
L = bM− 5c.
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Figure 2.11: Probability of correct detection vs. correlation coefficient between
two sources ρ for all methods. In this experiment, there are K = 2 sources with
electrical angle separation ∆θ = 10◦, the number of antennas is M = 100, N = 150,
SNR = −10 dB and L = bM− 5c.
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Chapter3
Extension to Non-White Noises

and/or Non-Uniform Linear Arrays

In Chapter 2, we discussed the problem of source enumeration for uniform linear
arrays in the presence of white noise, and provided a solution based on subspace
averaging. However, in many practical applications, the assumptions of ULA and
white noise are too restrictive, and hence, SA method can not be applied. In this
chapter, we relax these assumptions and extend SA for: i) non-white noises, and ii)
non-uniform linear arrays. For the first extension, we combine SA technique with
a majority vote approach. The number of sources is detected for increasing dimen-
sions of the SA technique and then a majority vote is applied to determine the final
estimate. To extend SA for arrays with arbitrary geometry, each received snapshot is
approximated by a sparse linear combination of rest of the snapshots. Based on the
sparse reconstruction (SR) solution, a sampling mechanism is proposed in the second
step to generate a collection of subspaces, all of which approximately span the same
signal subspace. Finally, the dimension of the average of this collection of subspaces
provides a robust estimate for the number of sources.

3.1 Introduction

The assumption of white noise is too restrictive in many scenarios. For exam-
ple, when the receivers are uncalibrated or due to hardware nonidealities, the
noise covariance matrix might be diagonal with unknown elements. In addition
to that, for underwater sonar systems, the noise is generally spatially correlated
[Urick, 1983, Wenz, 1972, Cron and Sherman, 1962]. Also, close sensors generally
have a strong correlation among each-other [Stoica and Cedervall, 1997]. As dis-
cussed in Chapter 1, source enumeration in these non-white noise cases with high-
dimensional data (i.e., large arrays) and few snapshots is still a challenging problem
for which not many methods have been found in the literature that work robustly
under different models for the noise covariance matrix.

On the other hand, SA exploits the shift invariance property of ULAs to produce
submatrices spanning the same signal subspace. If a non-uniform linear array is used,
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the shift invariance property does not hold, and therefore SA in its original form can
not be applied.

In this chapter, we first extend SA for non-white noises and ULAs. To tackle this
problem, SA is combined with a majority vote approach, and an improved version of
the SA technique for order estimation is presented. Under non-white noise scenar-
ios, the original SA criterion is very sensitive to the chosen dimension of extracted
subspaces kmax. To increase the robustness of the SA method, we apply the SA order
estimation rule for increasing values of kmax and then apply a majority vote to deter-
mine the final estimate of the number of sources. This simple modification, makes SA
a very robust method of enumerating sources in large linear arrays under conditions
of low sample support and under different models for the noise covariance matrix.

Furthermore, we extend the SA enumeration technique to arrays with arbitrary
geometry, and Gaussian noises with arbitrary covariance matrix. The method first
approximates each snapshot by a sparse linear combination of rest of the received
snapshots. In a noiseless situation, the number of nonzero coefficients of the sparse
expansion would directly reveal the signal subspace dimension. In a noisy situation,
the sparse expansions can be used to generate a collection of subspaces that, when
averaged, will provide the order estimate using the SA method. This method, which
combines sparse reconstruction with subspace averaging, is termed sparse subspace
averaging (SSA).

The sparse reconstruction (SR) problem is solved by generalizing to
complex-valued signals the well-known logarithm-based surrogate of the `0-norm
[Candès et al., 2008]. Using the majorization-minimization (MM) framework
[Sun et al., 2017], we show that the SR problem amounts to solving a reweighted
regularized least squares (LS) problem. Based on the SR solution, a sampling mech-
anism is proposed to generate a collection of random subspaces, all of which ap-
proximately span the same signal subspace. Finally, an average or central subspace
is estimated as in Chapter 2, and the dimension of this average provides a robust
estimate for the number of sources impinging on the array. Sparse reconstruc-
tion approaches have been used before in array signal processing, but mainly for
direction-of-arrival (DOA) estimation problems [Li et al., 2014, Yin and Chen, 2011,
Malioutov et al., 2005]. Differently from these works, here we use sparse reconstruc-
tion methods as a means to generate multiple approximations to the signal subspace
that, when averaged, provide accurate estimates of the underlying signal subspace
rank.

The structure of the chapter is as follows. Section 3.2 extends the SA method for
non-white noises for ULAs, and a majority vote approach is proposed in Section 3.2.1.
Section 3.3 discusses the source enumeration problem for non-uniform linear arrays.
A sparse representation method is discussed in Section 3.3.1, and then a method to
generate subspaces randomly is proposed in Section 3.3.2. Further, the SSA criterion
is proposed in Section 3.3.3. Section 3.4 evaluates the performance of the proposed
methods. Finally, the conclusions are summarized in Section 3.5.
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3.2 Extension to Non-White Noises: SA with Majority
Vote

This section extends the subspace averaging technique for non-white noises. It is
noted here that for this section, we are still working with ULAs. We assume that K
narrowband signals are impinging on a large, uniform, half-wavelength linear array
with M antennas. However, differently to Chapter 2, we do not assume any particular
structure for the noise covariance matrix. Therefore, the noise is modeled here as
e[n] ∼ CNM(0, Rn), and the covariance matrix for this scenario is

R = AΨAH + Rn, (3.1)

where Rn is an M × M non-white noise covariance matrix. Similar to Chapter 2,
we assume here as well that the array is composed of a large number of antenna
elements, and that the number of snapshots is possibly smaller than the number of
antennas, that is, N < M.

As discussed earlier, the SA method provides competitive results when the noises
are i.i.d., but its performance degrades under spatially correlated noises. In the next
subsection we present a simple modification to SA to accurately detect the num-
ber of sources in non-white noises and with a small sample size. This modification
suggests to apply SA technique for varying values of dimension of extracted sub-
space kmax. It is important to note here that preliminary SA method proposed in
[Santamaria et al., 2018] is used here, which does not exploit the generation of ran-
dom subspace discussed in Section 2.4.3. For the sake of clarity and completeness,
the SA method proposed in [Santamaria et al., 2018] is reviewed here, which is as
follows:

Let xd[n] be the nth snapshot of the dth subarray (Fig. 2.1), and let R̂d be the
L× L sample covariance, which corresponds to a submatrix of the full sample covari-
ance. Since there are M sensors and we extract L-dimensional subarrays, there are
D = M− L + 1 different submatrices R̂d, d = 1, . . . , D. Due to the shift invariance
property of uniform linear arrays the noiseless signal subspaces of the theoretical
Rd are identical. The SA method extracts for each subarray a subspace formed by
the kmax largest eigenvectors of Rd. A unitary basis for this subspace is denoted as
Vd ∈ CL×kmax , and the orthogonal projection matrix onto the subspace is Pd = VdVH

d .
The SA order determination rule first computes the average projection matrix

P =
1
D

D

∑
d=1

Pd, (3.2)

and its eigenvalues 1 ≥ k1 ≥ k2 ≥ . . . ≥ kL. Finally, the number of sources is
determined as the number of eigenvalues larger than 1/2.

3.2.1 The Majority Vote Approach

A limitation of the SA method is that its performance is sensitive to the dimension
of extracted subspaces kmax. This problem becomes more important under spatially
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correlated noises because the directions of the extracted subspaces that correspond
to the noise subspace tend to be correlated for consecutive subarrays.

Fig. 3.1 illustrates the influence of kmax in the order estimate provided by SA
when the noise is spatially correlated with arbitrary invariance matrix Rn � 0. For
this example we assume M = 100 antennas, N = 50 snapshots and different number
of sources with electrical angle separation ∆θ = 10◦. Fig. 3.1 clearly shows that K̂SA
first increases with the value of kmax, and then becomes constant for K̂SA = K. How-
ever, if we further increase the value of kmax, the K̂SA increases again. This example
suggests a simple procedure for estimating K. First, the SA order estimation rule is
applied for a sequence of increasing values of kmax, 1 ≤ kmax ≤ dmax, where dmax is
an overestimate of the maximum number of sources that we expect in our problem.
The final estimate is obtained by majority vote. This simple modification makes the
SA method a robust source enumeration technique suitable for noises with different
spatial correlation models and with very few snapshots. In comparison to the original
SA method for white noise (as discussed in Section 3.2), the computational cost is
increased by a factor of dmax. A summary of the final algorithm is shown in Algorithm
3.
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Figure 3.1: Estimated number of sources for SA method vs. kmax (dimension of
extracted subspaces) in non-white noise (arbitrary noise with Rn � 0) for M = 100,
N = 50, ∆θ = 10◦ and SNR = 0 dB.
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Algorithm 3: Subspace Averaging with Majority Vote Approach.
Input: R̂, L;
Output: Order estimate k̂SA−Ma jVote
Initialization: K = 0dmax×1
for t = 1 . . . dmax do

for d = 1, . . . , D do
Extract R̂d from R̂ and obtain R̂d = UdΣdUH

d
Compute the projection matrices Pdt = VdtVH

dt, where
Vdt = [ud,1, . . . , ud,t]

Compute P and its eigenvalues (k1, . . . , kL)

Estimate k̂ as the number of eigenvalues of P larger than 1/2
K(t) = k̂

Select k̂SA−Ma jVote as the majority decision from the collection of all
estimated k̂ in K

3.3 Extension to Non-Uniform Linear Arrays: Sparse
Subspace Averaging

The method proposed in previous section is designed to perform in the presence of
non-white noises. However, this method still exploits the shift invariance property,
and hence, it is not suitable for non-uniform linear arrays. In this section, we extend
the SA method for arrays with arbitrary geometries, which is referred to as Sparse
Subspace Averaging (SSA). We assume K narrowband signals impinging on an array
of arbitrary geometry composed of M antennas. The received signal is

x[n] = Hss[n] + e[n], (3.3)

where Hs is the M × K unknown multiple input multiple output (MIMO) channel.
The signals are assumed to be uncorrelated. Here as well, we do not assume any
particular structure (scale identity, diagonal) for the noise covariance matrix Rn.

Similar to the previous section and from (3.3), the covariance matrix of the re-
ceived signal is

R = HsΨHH
s + Rn

Note that since the MIMO channel Hs is unknown, we can assume without loss of
generality that Ψ = I.

The key idea of subspace averaging for order estimation is to average subspaces
that contain correlated (or ideally identical) versions of the signal subspace, but un-
correlated portions of the noise subspace. For ULAs, these subspaces are obtained
from consecutive subarrays by exploiting the shift invariance property, as discussed
in Chapter 2. When the MIMO channel Hs has no particular structure, however, a
different approach to generate these subspaces is needed. The SSA method generates
the subspaces from the sparse reconstructions of each snapshot, as we describe in the
following subsections.
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3.3.1 Sparse Representation

In a noiseless situation a basis for the K-dimensional signal subspace can be con-
structed from K randomly chosen columns of the data matrix X. This means that each
snapshot can be represented as linear combination of other K snapshots that lie in
the same subspace. Note that the K snapshots will be linearly independent with prob-
ability one. In a noisy situation, such an expansion will not exist in general, but still
we can find a sparse representation of each snapshot in terms of the rest of snapshots.
The snapshots selected by the sparse reconstruction algorithm will allow us to build
(or generate) approximate basis for the signal subspace. Note also that the number
of sources is typically much smaller than the number of snapshots K � N. This is the
idea behind the sparse reconstruction stage in SSA. Similar ideas have successfully
been applied to sparse subspace clustering problems in [Elhamifar and Vidal, 2009].

The sparse expansion for each snapshot is obtained by solving

min
cn
‖cn‖0 subject to x[n] = Xncn (3.4)

where Xn is the data matrix X after removing the nth column/snapshot and cn =
[cn,1, . . . , cn,N−1]

T is the sparse representation for nth snapshot that provides the
sparsest linear combination. However, the optimization problem in (3.4) is NP-hard.
One well-known solution to this problem is to replace the `0-norm with the `1-norm
[Donoho, 2006], which can be solved by the least absolute shrinkage and selection
operator (LASSO) optimization algorithm [Tibshirani, 1996]. Nevertheless, the `1-
norm surrogate function can sometimes perform poorly and other proxies for the `0-
norm are preferred, such as the logarithm of the absolute value [Candès et al., 2008].
Moreover, the equality constraint in (3.4) is not adequate for low signal-to-noise-ratio
(SNR) scenarios. Hence, here the SR will be obtained as the solution to

min
cn
‖x[n]− Xncn‖2

2 +µs

N−1

∑
i=1

log(|cn,i|+ δ) (3.5)

which is the Lagrangian form of (3.4) where we have substituted the `0-norm by the
log-surrogate and the equality by an inequality. Here, µs is a regularization parameter
and δ is a small constant to avoid numerical issues. Since (3.5) is not convex, we
propose to use an MM-based approach [Sun et al., 2017]. The majorizer of the cost
function in (3.5) is based on a first-order Taylor series of the logarithm, that is,

N−1

∑
i=1

log(|cn,i|+ δ) =
N−1

∑
i=1

log
(√
|cn,i|2 + δ

)
≤

N−1

∑
i=1

1

2
∣∣c(t)n,i

∣∣2 + 2δ
∣∣c(t)n,i

∣∣ (∣∣cn,i
∣∣2 − ∣∣c(t)n,i

∣∣2)
where c(t)n,i is the ith component of the solution at the tth iteration. Hence, the solution
at the (t + 1)th iteration is computed from

min
cn
‖x[n]− Xncn‖2

2 +µscH
n Dscn, (3.6)
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where Ds = diag (d1, . . . , dN), with

di =
1

2
∣∣c(t)i

∣∣2 + 2δ
∣∣c(t)i

∣∣+ δ

where a small value δ has been added to the denominator to avoid divisions by zero.
Now, we can find a closed-form solution to (3.6) by taking the derivative and setting
it to zero, which yields

c(t+1)
n =

(
XH

n Xn +µsDs
)−1XH

n x[n]. (3.7)

3.3.2 Random Generation of Subspaces

In this subsection we develop a method to randomly generate subspaces based on
the SR obtained in Section 3.3.1, which follows the lines of the method presented in
Section 2.4.3. In noisy conditions, it is important for the SA method that the extracted
subspaces contain a large common portion of the signal subspace and independent
portions of the noise subspace. This translates into an averaging procedure that
enhances signal coordinates while averaging out noise coordinates. Concretely, the
subspace associated to the nth snapshot is constructed by randomly selecting columns
from Xn, with probabilities proportional to the sparse coefficients cn as

γn,i =
|cn,i|

∑
N−1
j=1 |cn, j|

. (3.8)

This process can be interpreted as sampling from the discrete distribution
D(Xn,γn), where γn = [γn,1, . . . ,γn,N−1]

T in (3.8) are the concentration parame-
ters of the distribution.

Finally, the subspaces are the column spaces of the matrices iteratively con-
structed as shown in Algorithm 4. This algorithm considers two thresholds: 1) bmax,
which is the maximum dimension of the signal subspace (in practice an overestima-
tion of K), and is selected as the number of |ci,n| greater than µc maxi(|ci,n|), with
0 < µc < 1 (we used in the simulations µc = 0.1); and 2) Tγ, which is a minimum
value for the probabilities in γ, and is chosen as Tγ = 1

2 ∑
N−1
i=1 |cn,i|. Note that, if bmax

is high enough, the method is not sensitive to its value.

3.3.3 Sparse Subspace Averaging Criterion

The random generation procedure can be repeated T times to generate T subspaces
for each value of cn, n = 1, . . . , N. Therefore, we get a total of N T orthogonal
projection matrices to be used in the SA procedure. The average projection matrix is

P =
1

NT

N

∑
n=1

T

∑
t=1

Pnt, (3.9)
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Algorithm 4: Generation of a Random Subspace for SSA
Input: Xn, cn, bmax, Tγ
Initialization: X̃n = Xn, Ant = ∅, compute γn from (3.8), and M = N − 1
while rank(Ant) ≤ bmax or ∑i γn,i ≥ Tγ do

/* Sample from D(X̃n,γn) */

g = [gi, . . . , gM]T , with gi ∼ U (0, 1)
I = {i | gi ≤ γn,i} and I = {i | gi > γn,i}
G = X̃n(:, I)
/* Append new submatrix */

Ant =
[
Ant G

]
/* Eliminate selected directions */

X̃n = X̃n(:, I), γ = γ(I), and M = |I|
Output: Projection matrix onto the subspace Pnt = Ant(AH

ntAnt)−1AH
nt

Algorithm 5: Sparse Subspace Averaging
Input: X, µs, dmax;
Output: Order estimate k̂SSA
for n = 1, . . . , N do

Compute ĉn by solving (3.7)
Select bmax and Tγ as suggested in Section 3.3.2
Generate T random submatrices from Xn using Algorithm 4

Compute P using (3.9)
Obtain k̂SSA using (3.10)

Once we get P, its eigenvalues 1 ≥ k1 ≥ k2 ≥ · · · ≥ kdmax are used to determine
number of sources as

k̂SSA = argmax
1≤k≤dmax

kk − kk+1. (3.10)

Basically, the criterion in (3.10) detects the gap between the signal and noise eigen-
values. It is noted here that to avoid numerical issues and to save computational
cost, we are considering only the largest dmax eigenvalues of P, where dmax � K is
an overestimation of K. A summary of the proposed method is shown in Algorithm
5.

3.4 Simulation Results

In this chapter, we proposed two extensions of the SA method. The first extension
is designed to work with ULAs in the presence of non-white noises, and the second
extension considers arrays with arbitrary geometries. In this section, the performance
of both methods is compared with some representative techniques that exist in the
literature.
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Figure 3.2: Probability of correct detection vs. SNR for ULA and noise with diagonal
covariance matrix when εd = 0.4, M = 100, N = 50, K = 3 and ∆θ = 2◦.

3.4.1 SA with Majority Vote

This subsection studies the performance of SA method combined with the major-
ity vote approach, and hence denoted as SA-MajVote here. For comparison we
use the following methods: the LS-MDL [Huang and So, 2013], the BIC for large-
scale arrays [Huang et al., 2016], the MDL for diagonal noise (for noise model
with diagonal noise covariance matrix, denoted here as MDL-unc), the SDRP
[Eguizabal et al., 2019], the CCA method in [Song et al., 2016], and the VTRS
method in [Jiang and Ingram, 2004]. These methods have been briefly described
in Section 1.2

We consider a scenario with K narrowband incoherent unit-power signals and
DOAs separated ∆θ impinging on a uniform linear array with M antennas and half-
wavelength element separation. For the SA method, we use L = M− 5 as the subar-
ray size, and dmax = M

5 . The signal-to-noise-ratio is SNR = 10 log tr(AΨAH)
tr(Rn)

, where
tr() denotes trace. Average of 500 independent simulations is used to represent each
curves.

For the first three experiments we assume uncorrelated noises across antennas
so that the noise covariance matrix is diagonal with unknown elements, which is
described as Noise Model 2 in Section 1.1.

Experiment 1: In the first experiment we consider an array with M = 100 anten-
nas, K = 3 sources with electrical angle separation ∆θ = 2◦, and N = 50 snapshots.
The noise is drawn according to noise model 2 with εd = 0.4. Fig. 3.2 shows the
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Figure 3.3: Probability of correct detection vs. SNR for ULA and noise with diagonal
covariance matrix when εd = 0.4, M = 100, N = 150, K = 3 and ∆θ = 2◦.

probability of correct detection vs SNR. Although the LS-MDL and the BIC methods
assume i.i.d. noises, in this scenario with very few snapshots their performance is
rather robust against a mismatched model. The MDL-unc and the SDRP perform
competitively as well. Nevertheless, the SA-MajVote outperforms the other methods.

Increasing the number of snapshots to N = 150 and keeping fixed the rest of the
parameters, we obtain the results shown in Fig. 3.3. As N increases, the performance
of LS-MDL improves, however, it shows an inconsistent behaviour at high SNR due
to non-whiteness of the noise. SA-MajVote outperforms competing methods here as
well.

Experiment 2: Fig. 3.4 shows the results when εd varies (recall that for εd = 0
noise is spatially white). For large values of εd, the performance of both the LS-
MDL and the BIC criteria degrade, whereas the MDL-unc specifically designed for
this model performs better. The SDRP does not perform consistently for this scenario
and its performance further degrades for higher values of εd. Interestingly, the SA-
MajVote provides accurate estimates across the whole range of εd.

Experiment 3: In the next experiment, we assume two sources with unequal
powers P1 and P2 respectively. We assume that initially sources have equal power
(P1 = P2), and then, we fix the P1 and decrease the P2 gradually, and the probability
of correct detection vs. the ratio of two powers P2

P1
is shown in Fig. 3.5. We consider

an array with M = 100 antennas, the number of samples N = 60, the signal-to-
noise-ratio is SNR = −10 dB, the electrical angle separation ∆θ = 10◦, and εd = 0.6.
LS-MDL is not consistent in this very example. In addition, as the P2 decreases, all
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Figure 3.4: Probability of correct detection vs. εd for ULA and noise with diagonal
covariance matrix when M = 50, N = 80, K = 3, SNR = −9 dB and ∆θ = 10◦.
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Figure 3.5: Probability of correct detection vs. power ratio of two sources P2
P1

for ULA
and noise with diagonal covariance matrix when εd = 0.6, M = 100, N = 80, K = 2,
SNR = −10 dB and ∆θ = 10◦.
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other methods start underestimating the number of sources, however, SA-MajVote
performs well for small values of ratio P2

P1
.

For the experiments 4 and 5, we assume that the noise has an arbitrary psd co-
variance matrix Rn � 0 (Noise model 4 in Section 1.1). The performance of the
proposed method for this noise model is compared with the CCA, the VTRS, and the
SDRP methods.

Experiment 4: For this experiment we consider an array with M = 80 sensors,
K = 3 sources separated ∆θ = 5◦, and the number of snapshots is N = 150. We
observe in Fig. 3.6 that the CCA method does not perform consistently in this sce-
nario, and the SDRP method requires high SNR to perform satisfactorily. For the CCA
method we use two equal-sized subarrays of 40 antennas each. The assumed noise
model for the CCA criterion is mismatched to noise model 4, so, not surprisingly, its
estimates are not always good. The proposed SA-MajVote method starts detecting
the correct number of sources from very low SNR, and therefore it is a clear winner
here. Now, if we decrease the number of snapshots to N = 50, the performances
of the CCA and the SDRP degrade further, as it can be observed in Fig. 3.7. In the
small sample regime, only SA-MajVote and VTRS perform well at low SNR, however,
SA-MajVote outperforms the competing methods for this scenario as well.
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Figure 3.6: Probability of correct detection vs. SNR for ULA and an arbitrary noise
model when M = 80, N = 150, K = 3, and ∆θ = 5◦.

Experiment 5: In the last experiment we consider an array with M = 100 sen-
sors, K = 4 sources separated ∆θ = 10◦, the SNR is fixed, and the results is shown
in Fig. 3.8. The number of snapshots varies between N = 5 and N = 400 for SA-
MajVote and VTRS, and since CCA and SDRP do not perform well for small N, it is
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Figure 3.7: Probability of correct detection vs. SNR for ULA and an arbitrary noise
model when M = 80, N = 50, K = 3, and ∆θ = 5◦.

varied between N = 20 and N = 400 for these two methods. We observe that the
VTRS method requires at least N = 300 snapshots to provide accurate estimates,
and the SDRP requires even more snapshots to perform well at low SNR. For the CCA
method we use two equal-sized subarrays of 50 antennas each and for this scenario
as well, its estimates are not always good. Finally, the proposed SA method with
majority vote (SA-MajVote) detects the correct number of sources with high accuracy
with only N = 50 snapshots.

3.4.2 Sparse Subspace Averaging (SSA)

In this subsection, the performance of the SSA method is compared with some
representative methods for different noise models. For all simulations we assume
that K uncorrelated narrowband equal-power signals are impinging on an array
with arbitrary geometry with M antennas. The signal-to-noise-ratio is defined as
SNR = 10 log tr(HsΨHH

s )
tr(Rn)

, and 2000 Monte Carlo simulations are averaged for all the

results. The parameters of the proposed method are selected as follows: µs = M
2N ,

T = 20, dmax = M
5 and δ = 10−15.

Experiment 1: In the first experiment, we assume that the noise is uncorrelated
across antennas with different variances at each sensor, namely noise model 2 in
Section 1.1. As methods for comparison, we select the LS-MDL, the BIC, the MDL-
unc, and the SDRP methods. Fig. 3.9 shows the probability of correct detection
vs. εd for M = 70, N = 100, K = 5, and SNR = −2 dB. In this example SSA
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Figure 3.8: Probability of correct detection vs. N for ULA and an arbitrary noise
model when M = 100, K = 4, SNR = −10 dB and ∆θ = 10◦.
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Figure 3.9: Probability of correct detection vs. εd for the array with arbitrary ge-
ometry in the presence of noise with diagonal covariance matrix in a scenario with
M = 70, N = 100, K = 5, and SNR = −2 dB.
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Figure 3.10: Probability of correct detection vs. ρc for the array with arbitrary ge-
ometry in the presence of exponentially correlated noise in a scenario with M = 20,
N = 80, K = 3, and SNR = 10 dB.

provides robust and accurate detection results over the entire range of variation of
εd. Since LS-MDL and BIC are originally designed for white noise, their performances
degrade for higher values of εd. The performance of the SDRP also degrades for
higher values of εd. Finally, MDL-unc provides good results for higher values of εd,
but its performance degrades when the noise is nearly spatially white.

Experiment 2: In the second experiment, we consider an exponentially corre-
lated noise model, namely noise model 3 in Section 1.1. Fig. 3.10 shows probability
of correct detection vs. ρc for an array with M = 20 antennas, N = 80 snapshots,
K = 3 sources, and SNR= 10 dB. For this noise model, we are comparing the results
of MDL-unc, the SDRP and the CCA. As Fig. 3.10 suggests, the proposed SSA method
again provides a robust solution for the whole range of ρc. All other methods fail
when ρc increases.

Experiment 3: In the last experiment, we consider Gaussian noise with arbitrary
unknown covariance matrix, namely noise model 4 in Section 1.1. The scenario has
M = 100 antennas, K = 4 sources, SNR = 15 dB, and the number of snapshots N
varies up to 100, so that we are in the small sample regime. Since CCA and SDRP
do not usually provide good results with few snapshots, we are considering N ≥ 15
for these methods, however, lower values of N are considered for SSA. As it is shown
in Fig. 3.11, CCA does not perform well for this noise model in the small sample
regime, while the SDRP provides good results for sufficiently large N. Finally, SSA
performs satisfactorily even when N/M is around 0.1.
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Figure 3.11: Probability of correct detection vs. N for the array with arbitrary geom-
etry in the presence of an arbitrary noise model in a scenario with M = 100, K = 4,
and SNR = 15 dB.

3.5 Conclusions

This chapter extended the SA method for different scenarios proposing two differ-
ent methods. The first method addressed the problem of source enumeration for
ULAs in the presence of non-white noises under the condition of low sample support.
The method applies subspace averaging (SA) technique for increasing dimensions of
the extracted subspaces. For each dimension, we get an estimate of the number of
sources, and the final estimate is obtained by a majority vote rule. This method per-
forms robustly under different noise models ranging from uncorrelated noises with
different variances to arbitrarily correlated noises.

The second method presented an order estimation technique for arbitrary geom-
etry arrays and noise with unknown spatial correlation. The key idea to generate a
collection of subspaces to be averaged is obtaining a sparse representation of each
snapshot as a linear combination of the others. To perform this sparse recovery (SR)
problem, we proposed a generalization of the log-surrogate of the `0-norm, which
is solved using the majorization-minimization approach. Then, based on the sparse
coefficients of the reconstruction, a sampling mechanism is presented to obtain pro-
jection matrices that share a large common portion of the signal subspace. Finally,
the eigenvalues of an average projection matrix are then used to estimate the num-
ber of sources. It is illustrated by some simulation examples that the proposed sparse
subspace averaging (SSA) method performs robustly for a wide range of noise mod-
els in the small sample regime. Nevertheless, with the help of two proposed methods
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in this chapter, the source enumeration problem can be solved for variety of different
scenarios from ULA to arrays with arbitrary geometry in the presence of different
noise models.
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Chapter4
Order Estimation via Toeplitz

Matrix Completion

In the part I of this dissertation, we discussed the subspace averaging approach to
solve the problem of source enumeration for both uniform linear arrays and arrays
with arbitrary geometries for different noise models. In part II, a completely different
approach to source enumeration is discussed. Here we use the matrix completion
(MC) techniques to develop order estimation criteria for: i) noises with diagonal
covariance and ii) missing data scenarios. We assume a uniform linear array (ULA)
in this part.

This chapter addresses the problem of source enumeration by an array of sensors
in the presence of noise whose spatial covariance structure is a diagonal matrix with
possibly different variances, when the sources are uncorrelated. The diagonal terms
of the sample covariance matrix are removed and, after applying Toeplitz rectification
as a denoising step, the signal covariance matrix is reconstructed by using a low-rank
matrix completion method adapted to enforce the Toeplitz structure of the sought
solution. The proposed source enumeration criterion is based on the Frobenius norm
of the reconstructed signal covariance matrix obtained for increasing rank values.
The proposed method performs robustly for both small and large-scale arrays with
few snapshots, i.e. small-sample regime.

4.1 Introduction

Matrix completion refers to the problem of recovering missing entries of a
partially observed low-rank matrix. In last few years, it has proved its
usefulness in many applications of various fields such as compressed sens-
ing [Candes and Wakin, 2008], recommendation system [Koren et al., 2009],
medical resonance imaging [hu et al., 2018], large-scale network moni-
toring [Xie et al., 2015], traffic sensing [Du et al., 2015] and multi-task
learning [Argyriou et al., 2008]. Many approaches of matrix completion
[Keshavan et al., 2009, Ramlatchan et al., 2018, Li et al., 2019] have been pro-
posed for various applications and scenarios. In this dissertation, the MC technique
is modified to exploit the properties of ULA in the reconstruction process, which
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results in finding a better estimate of the signal subspace, and therefore pro-
vides a consistent solution for order estimation in small sample regime and low
signal-to-noise ratio scenarios.

Low-rank matrix completion methods have been used before in array signal pro-
cessing problems. In [Pal and Vaidyanathan, 2014], for instance, MC is used for
direction-of-arrival (DOA) estimation, when the number of sources exceeds the num-
ber of sensors. An iterative reweighted nuclear norm minimization method is used
in [Tan and Feng, 2019] for DOA estimation with nested arrays. The case of non-iid
noises is considered in [Liao et al., 2016], where matrix completion algorithms are
used to reconstruct the zeroed entries of the sample covariance matrix along its diag-
onal. All these methods, however, address the DOA estimation problem and assume
that the number of sources is known. Differently from these works, here we exploit
the MC algorithms to devise novel order estimation criteria.

This chapter presents a method for enumerating sources for ULAs in the presence
of Gaussian noise with diagonal covariance matrix (Noise Model 2), that performs
satisfactorily in a wide number of scenarios, including the small-sample regime both
with large and short arrays, and low signal-to-noise-ratio environments. The method
obtains an estimate of the signal covariance matrix that is i) Toeplitz, and ii) low-
rank. The idea behind proposed method is that since noise covariance matrix is
diagonal, only diagonal entries of sample covariance matrix would get affected by
noise. Therefore, we can remove noisy diagonal entries of SCM, and recover them
from non-noisy off-diagonal entries by using a matrix completion method. To this
end, we use a low-rank matrix completion method that includes an additional reg-
ularization term to enforce a Toeplitz structure in the solution. The MC algorithm
takes as input the denoised version of the SCM where the elements along the main
diagonal have been removed. An additional denoising process known as Toeplitz rec-
tification [Vallet and Loubaton, 2017, Forster, 2001] is used to find a better estimate
of the signal covariance matrix. Finally, we propose an order estimation criterion
which is based on the Frobenius norm of the matrices reconstructed for increasing
rank values.

The structure of this chapter is as follows. Section 4.2 defines the problem state-
ment for this chapter. The Toeplitz matrix completion (TMC) algorithm is proposed
in Section 4.3, and then a novel order estimation criterion via TMC is proposed in
Section 4.4. Section 4.5 first studies the performance of the TMC method and shows
that a better estimated signal subspace is achieved by using TMC. Further, this sec-
tion compares the performance of the proposed order estimation criterion with some
representative methods. Finally the conclusions are summarized in Section 4.6.

4.2 Problem Statement

Let us consider K narrowband signals impinging on a uniform linear array with M
antennas. For this chapter we consider that the noise is uncorrelated across antennas
with diagonal noise covariance matrix. As mentioned in Chapter 1, the noise covari-
ance matrix for a diagonal noise model can be defined as Rn = diag

(
σ2

1 ,σ2
2 , . . . ,σ2

M
)
,
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where σ2
m ∼ U [σ2(1− εd),σ2(1 + εd)] is the noise variance at the mth sensor, and

0 ≤ εd ≤ 1 allows us to control the spatial non-whiteness of the noise. εd = 0 would
provide the white noise with covariance matrix Rn = σ2I. Therefore, the covariance
matrix for the observations is

R = Rs + Rn, (4.1)

where Rs = AΨAH is the signal covariance matrix.
The objective of this chapter is to design an order estimation criterion based on

MC technique, which can estimate K from X or R̂. The proposed order determination
criterion builds upon the reconstruction of the signal covariance matrix Rs in (4.1)
for increasing values of its rank. To this end, we apply a matrix completion (MC)
approach, which is described in the following section. Then, we introduce the pro-
posed order fitting rule, which is based on the Frobenius norm of the reconstructed
matrices.

4.3 Toeplitz Matrix Completion

The signal covariance matrix Rs is Toeplitz and low-rank, which can be verified
as follows. Since signals are uncorrelated, Ψ is diagonal and can be defined as
Ψ = diag(Ψ1, . . . , ΨK), where Ψk denotes the power of the kth source. Also, as
mentioned in Chapter 1, the steering matrix for ULAs is A = [a(θ1) · · · a(θK)],
where a(θk) =

[
1 e− jθk e− jθk(M−1)

]T
. Therefore, the entry in the mth row and nth

column of Rs is

Rs(m, n) =
K

∑
k=1

ΨkA(k, m)AH(k, n) =
K

∑
k=1

Ψke− j(m−n)θk , (4.2)

and it can easily be verified from (4.2) that

Rs(m, n) = Rs(m + 1, n + 1), and
Rs(m, n) = R∗s (n, m)

which are the conditions for a Toeplitz matrix. Here, (·)∗ denotes the complex con-
jugate. In addition, since A ∈ CM×K and Ψ is a K × K positive semidefinite matrix,
Rs = AΨAH is a rank-K M×M matrix. However, these two properties are not ful-
filled by the sample covariance matrix R̂, which is symmetric (but non-Toeplitz) and
full-rank. In addition, since Rn in (4.1) is diagonal, the off-diagonal terms of R are
unaffected by the noise covariance matrix. Therefore, the diagonal entries of R̂ will
be more affected by the noise. These noiser diagonal entries of R̂ can be removed
and matrix completion algorithms can then be used to reconstruct the low-rank sig-
nal covariance matrix from the off-diagonal terms of R̂. This process is explained
step by step in the following subsections.
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4.3.1 Matrix Completion for Signal Covariance Matrix Estimation

Let Ω = {(i, j) : i 6= j, i = 1, . . . , M, j = 1, . . . , M} be the set of indices for the
off-diagonal entries of R̂. According to [Candes and Plan, 2010], we can recover Rs
by solving

min
Rs∈CM×M

||Rs||∗ (4.3)

subject to ||PΩ(Rs − R̂)||F ≤ η

where PΩ denotes the projection operator that sets to zero the entries with indices
not belonging to Ω and leaves the rest unchanged, ||Rs||∗ denotes the nuclear norm
of Rs, and η > 0 is a tolerance parameter that limits the fitting error.

Matrix completion can be performed here by means of matrix factorization
[Srebro et al., 2005]. Since the signal covariance matrix is Hermitian, we can fac-
torize it as Rs = WWH, where W ∈ CM×p and p is a fixed value that limits the rank
of the reconstructed matrix. Then, using the identity [Srebro et al., 2005]

||Rs||∗ = min
Rs=WWH

||W||2F,

Rs can be estimated by solving the following optimization problem

Ŵ = argmin
W∈CM×p

∥∥PΩ

(
R̂−WWH

)∥∥2
F +µ

∥∥W
∥∥2

F

(4.4)

where µ is a regularization parameter. Note that the term weighted by µ regulates
the nuclear norm of the solution, hence leading to a sparse eigenvalue distribution
as µ grows.

4.3.2 Toeplitz Rectification

Due to the fact that we are dealing with a limited number of snapshots, the
nonzero entries in PΩ(R̂) are still noisy [Vallet and Loubaton, 2017] and thus re-
covering the full Rs via (4.4) might yield unreliable estimates in the low-sample
regime. Therefore, we propose to use a denoising step called Toeplitz rectification
[Vallet and Loubaton, 2017, Forster, 2001, Vinogradova et al., 2019] before applying
matrix completion, and enforce the Toeplitz structure in the reconstruction process.

An unbiased estimator of sample covariance with Toeplitz structure is obtained
by averaging its entries along each subdiagonal as [Vinogradova et al., 2019]

R̂toep(i, j) =
1

M− |i− j| ∑
l−m=i− j

R̂(l, m). (4.5)

This process reduces the noise in the off-diagonal terms and provides a better recon-
struction of the signal covariance matrix.
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4.3.3 Optimization Problem

After Toeplitz correction, R̂ in (4.4) is replaced by the less noisy R̂toep. Also, since Rs

is Toeplitz, the solution R̂mc = ŴŴH should also be Toeplitz. To this end, a Toeplitz
constraint is enforced in (4.4). Therefore, (4.4) can be written as:

Ŵ = argmin
W∈CM×p

∥∥PΩ

(
R̂toep −WWH

)∥∥2
F +µ

∥∥W
∥∥2

F

s.t. WWH ∈ T (4.6)

where the constraint restricts the solution to a set T , which we define as the set of
Toeplitz matrices in CM×M. An approximate solution to (4.6) can be obtained by
introducing the Toeplitz constraint in the form of an additional regularization term
as follows

Ŵ = argmin
W∈CM×p

∑
(i, j)∈Ω

∣∣∣R̂toep(i, j)−wH
i w j

∣∣∣2 +µ
M

∑
i=1

∥∥wi
∥∥2

2

+α
M−1

∑
m=0

M−m−1

∑
i=1

∣∣∣wH
i wi+m −wH

i+1wi+1+m

∣∣∣2 (4.7)

where wH
i is the ith row vector of W, and α is a regularization scalar. The solution

R̂mc = ŴŴH can be obtained by iteratively optimizing over each wi.

4.4 Order Estimation Criterion

The main insight for the proposed order estimation criterion is that, due to the eigen-
value sparsity enforced by the MC algorithm, as long as p (the rank used in the fac-
torization) is larger than K, the reconstructed signal covariance matrix R̂mc should
not change significantly. This intuition can be understood by an example which is
corroborated in Fig. 4.1a which shows how the Frobenius norm of R̂mc changes with
p. For this example we assume an array of M = 100 sensors with N = 150 snapshots,
εd = 0.5 and SNR = −10dB. The sources are separated by ∆θ = 10◦. It can be ob-
served that the norm grows until p = K, but once p exceeds K it is almost constant.
This suggests to use the difference function D(p) defined as

D(p) = ‖R̂mc(p)‖2
F − ‖R̂mc(p− 1)‖2

F (4.8)

where R̂mc(p) denotes the reconstructed signal covariance matrix at a particular
value of p. Since D(p) will take very small values for p > K, finding the posi-
tion at which this sharp decline change occurs will yield an order estimate. To this
end, we propose the following criterion

k̂TMC = argmax
1≤p≤pmax

D(p)
D(p + 1) + δ

(4.9)
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Algorithm 6: Order Estimation using TMC
Input: R̂, µ, α, pmax;
Output: Order estimate k̂TMC
Find R̂toep using (4.5)
for p = 1, . . . , pmax do

Find R̂mc(p− 1) and R̂mc(p) using (4.7)
Find D(p) using (4.8)

Estimate number of sources as k̂TMC = argmax
1≤p≤pmax

D(p)
D(p+1)+δ

where pmax is an overestimation of K and δ is a small constant to avoid numerical
issues. Fig. 4.1b shows D(p)

D(p+1)+δ
for different K for the same example, and each line

has been normalized by its maximum value to enhance visibility. We observe that the
peaks are positioned at p = K, thus evidencing that the chosen criterion is adequate.
A summary of the order estimation via Toeplitz matrix completion (TMC) algorithm
is shown in Algorithm 6.

4.5 Simulation Results

4.5.1 Performance of the TMC

This subsection discusses the effect of removing diagonal entries from SCM and re-
covering them back by the TMC method described in Section 4.3. As a figure of merit
we use the chordal subspace distance between the true signal subspace, and the esti-
mated signal subspace to assess how different these subspaces are. For comparison,
we include the performance of the following methods:

• SCM: The original sample covariance matrix R̂, without eliminating the diago-
nal terms.

• MC: The diagonal entries of SCM are eliminated and the standard MC algorithm
solution given in (4.4) is used to reconstruct Rs.

• TMC: The diagonal entries of SCM are eliminated and TMC algorithm given in
(4.7) is used to reconstruct Rs.

For this subsection we assume that K is known and exactly the K largest eigen-
vectors of the covariance matrices are used to determine the signal subspace in each
case. Also, for the MC and the TMC, p = K is considered. Further, for all simulations
we assume that K uncorrelated narrowband signals with a separation of ∆θ are im-
pinging on a uniform linear array with M half-wavelength separated antennas. For
TMC, we use µ = M

2 and α = M
10 . The signal-to-noise-ratio is SNR= 10 log tr(Rs)

tr(Rn)
.
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Figure 4.1: (a) ‖R̂mc(p)‖2
F vs. p, and (b) Normalized D(p)

D(p+1)+δ
vs. p for M = 100,

N = 150, εd = 0.5, SNR = −10 dB and sources are separated by 10◦.
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Figure 4.2: Subspace distance vs. SNR for M = 100, N = 150, K = 3, εd = 0.4,
∆θ = 5◦ and equal-power sources.

Experiment 1: The first experiment shows subspace distance vs. SNR for an
array of M = 100 sensors, N = 150 snapshots, K = 3 sources with the separation
of ∆θ = 5◦ and εd = 0.4. The sources have equal power. As we can observe from
Fig. 4.2, the subspace distances for SCM and MC are almost the same, however, the
estimated signal subspace for TMC is much closer to the true signal subspace, thanks
to the denoising step of Toeplitz rectification and enforcement of Toeplitz structure
into the matrix completion algorithm.

Experiment 2: A similar result is obtained from the next experiment when
sources have unequal powers. For this experiment, we considered a scenario with
M = 100, N = 80, K = 3, εd = 0.5, ∆θ = 10◦, and Ψ = σ2

s diag(1, 0.8, 0.5), where
σ2

s is the common signal variance. The result is shown in Fig. 4.3 clearly suggesting
the usefulness of the TMC technique.

Experiment 3: Fig. 4.4 shows subspace distance vs. number of snapshots for a
scenario with M = 80, K = 4, εd = 0.6, ∆θ = 12◦, and SNR = 0 dB. The sources
are assumed to have equal power here. Here as well the benefit of removing the
diagonal entries from the SCM and recover them via TMC is clearly observed. We
can conclude that a much better estimate of the signal subspace can be found by
removing the more noisy diagonal entries of the SCM and recovering them back
from off-diagonal entries by using TMC algorithm.
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Figure 4.3: Subspace distance vs. SNR for M = 100, N = 80, K = 3, εd = 0.5,
∆θ = 10◦ Ψ = σ2

s diag(1, 0.8, 0.5).
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Figure 4.4: Subspace distance vs. number of snapshots (N) for M = 80, K = 4,
εd = 0.6, ∆θ = 12◦, SNR = 0 dB and equal-power sources.
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4.5.2 Application to Source Enumeration

In this subsection we compare the performance of the proposed TMC method for
order estimation, referred to as OE-TMC, with some representative methods for order
estimation in the presence of the noise with diagonal covariance matrix and/or with
low sample support, such as the LS-MDL, the MDL-unc, and the SDRP. These methods
have been briefly discussed in Section 1.2. We are also comparing the results with the
SA majority vote approach (denoted as SA-MajVote), which was discussed in Chapter
3.
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Figure 4.5: Probability of correct detection vs. SNR for M = 100, N = 150, K = 3,
εd = 0.3, ∆θ = 10◦ and Ψ = σ2

s diag(1, 0.8, 0.6).

Experiment 1: Fig. 4.6 depicts the probability of correct detection with respect to
SNR for an array of M = 100 antennas, K = 3 sources with ∆θ = 10◦, N = 150 snap-
shots and εd = 0.3. Sources have unequal powers so that Ψ = σ2

s diag(1, 0.8, 0.6). We
observe that OE-TMC provides better performance than competing methods. Thanks
to the Toeplitz rectification and the denoising of R̂, the OE-TMC method reliably de-
tects the rank of the signal covariance matrix at lower SNRs than the rest of methods
and hence yields a more robust source enumeration method.

Experiment 2: In the next experiment, the probability of correct detection with
respect to SNR is shown for M = 80, N = 120, K = 4, ∆θ = 12◦, and a very high
value of εd is considered as εd = 0.8. Sources are assumed to have equal power.
Since LS-MDL is designed for white noise, it does not performs well in this scenario
of very high εd. The other methods provide consistent results, however, OE-TMC is a
clear winner.
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Figure 4.6: Probability of correct detection vs. SNR for M = 80, N = 120, K = 4,
εd = 0.8, ∆θ = 12◦ and equal-power sources.

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

Number of sensors in array (M)

P
ro
b
a
b
il
it
y
o
f
co
rr
ec
t
d
et
ec
ti
o
n

OE-TMC

SA-MajVote

LS-MDL

MDL-unc

SDRP

Figure 4.7: Probability of correct detection vs. number of sensors in array (M) for
M
N = 1, ∆θ = 2π

M , K = 3, εd = 0.3 and SNR = -10 dB and equal-power sources.



74 Order Estimation via Toeplitz Matrix Completion

Experiment 3: Fig. 4.7 shows the probability of correct detection vs. the number
of sensors when K = 3, εd = 0.3, SNR is fixed to −10 dB and all sources have equal
power. The ratio between the number of sensors and the number of snapshots is
M
N = 1 and the separation between sources is ∆θ = 2π

M . Since SDRP does not work
properly for small values of N (or M), we consider M > 20 for this method. This
example shows that OE-TMC provides accurate results in the small sample regime
for arrays of varying number of sensors.
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Figure 4.8: Probability of correct detection vs. SNR for OE-TMC when M = 50,
∆θ = 10◦ and equal-power sources for different values of K, N and εd.

Experiment 4: In the last experiment the robustness of the OE-TMC method
against the non-whiteness parameter, εd, is examined in different scenarios. Since
the diagonal terms of R̂ are eliminated as a pre-processing step, it is expected that
the OE-TMC results will not be affected by changes in εd. This behavior can be
observed for two different scenarios: i) K = 2 and N = 200 and ii) K = 6 and
N = 50, in Fig. 4.8, which shows the probability of correct detection with respect to
SNR for M = 50, ∆θ = 10◦ and equal power sources. It can be noticed that for both
scenarios, results are almost unaffected by εd. Let us recall that εd = 0 represents
the white noise case; therefore, TMC is robust under both uncorrelated non-iid and
iid noises.

4.6 Conclusions

This chapter addressed the problem of source enumeration for ULAs when the noise
covariance matrix is diagonal with unknown entries and with relatively few snap-
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shots. A novel matrix completion based approach is proposed to this problem. The
diagonal terms of the sample covariance matrix, which are most affected by this noise
model, are eliminated and the off-diagonal terms are further denoised by Toeplitz rec-
tification. The low-rank and Toeplitz signal covariance matrix is then reconstructed
with matrix completion techniques. We have shown that the reconstructed matrix
can provide a better estimation of the signal subspace, i.e. TMC can be used for de-
noising the sample covariance matrix for the given noise model. We also have shown
that the Frobenius norm of the signal covariance matrix reconstructed by the pro-
posed denoising+MC technique provides an accurate order determination criterion.
The method performs robustly for iid and non-iid noises, as well as for small and
large arrays, in the small-sample regime.
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Chapter5
Order Estimation with Missing Data

In this chapter, we extend the MC-based order estimation approach for missing data
scenario by applying MC directly to the data matrix. We assume that at every time
instant only the signals received by a randomly selected subset of antennas are down-
converted to baseband and sampled. Low-rank matrix completion techniques are
then used to reconstruct the missing entries of the signal data matrix to keep the an-
gular resolution of the original large-scale array. The proposed MC algorithm exploits
not only the low- rank structure of the signal subspace, but also the shift-invariance
property of ULAs, which results in a better estimation of the signal subspace. Further,
this approach is extended to develop an order estimation criterion for a data matrix
with missing entries.

5.1 Introduction

The need of large bandwidths in modern 5G networks requires to operate with large-
scale antenna arrays. However, a large-scale antenna array introduces new chal-
lenges such as hardware and computational complexities and high energy consump-
tion requirements. A possible solution to this problem is to reduce the number of
radio frequency (RF) transceiver chains by performing antenna selection at the re-
ceiving array (cf. Fig. 5.1). At every time instant a random switch selects a subset
of antennas whose RF signals are downconverted and further processed. Since the
number of targets or sources is typically much smaller than the number of antennas,
it is feasible to reconstruct (or at least to approximate) the low-rank signal data ma-
trix using MC algorithms as if it had been received by the full array, as long as we
sample a sufficiently large fraction of the sensors [Candes and Plan, 2010]. However,
to achieve the optimum solution from the MC algorithm, the true rank of the noise-
less data matrix is required, which is the same as the number of sources, and not
always known. This opens up a requirement of an order estimation criterion. How-
ever, the performance of existing order estimation methods degrade if some data is
missing. A data matrix with missing data can also be found if one or more sensors are
damaged. This further increases the importance of developing a source enumeration
method for missing data scenario.
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Figure 5.1: Simplified large-scale multi-switch array architecture where Ls out of M
sensors are randomly selected and sampled at each time instant.

This chapter first discusses the feasibility of the process of reducing the number
of RF chains, and recovering the missing entries by using a matrix completion tech-
nique. We show here that the signal subspace of the reconstructed matrix is not
much affected by this process and the angular resolution of the original large scale
array is kept. In our approach, the matrix completion problem is tailored to enforce
the shift-invariance property of ULAs by including an additional regularization term
in the MC cost function. Then, the Optimal Subspace Estimation (OSE) technique
proposed by Vaccaro and Ding in [Vaccaro and Ding, 1993] is used to estimate the
signal subspace. With the help of the simulation results, we show that the signal sub-
space generated from the reconstructed matrix is close to the original signal subspace
generated by complete data matrix, and therefore, the number of RF chains can be
largely reduced without significant performance loss.

Furthermore, this approach is extended to account for the order estimation in
missing data scenario by exploiting the shift invariance property of ULAs. The pro-
posed source enumeration criterion is based on the chordal subspace distance be-
tween two submatrices extracted from the reconstructed matrix after using MC for
increasing rank values. By means of simulation results, we show that the proposed
order estimation criterion performs consistently in missing data scenario.

The structure of this chapter is as follows. Section 5.2 explains the problem state-
ment for order estimation in missing data scenario and the used system model is
explained. Section 5.3 reviews the matrix completion problem, and then, the shift-
invariance matrix completion is explained in Section 5.4. A direct application of the
Davis–Kahan theorem [Davis and Kahan, 1970] allows us to analyze in Section 5.5
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the chordal distance between the true signal subspace and the signal subspace of
the sparse and reconstructed matrices. Section 5.6 proposes the order estimation
criterion, and then Section 5.7 discusses the corresponding results. Section 5.7 first
discusses the feasibility of working with a reduced number of RF chains, and fur-
ther, it shows the performance of the proposed order estimation criterion. Finally,
conclusive remarks are provided in Section 5.8.

5.2 Signal Subspace Estimation with Missing Data

For a fully digital receiver with M RF-branches, the system model is defined in Section
1.1. Let us assume that after collecting N snapshots, the full data matrix X can be
written as

X = Xs + E (5.1)

where E =
[
e[1] . . . e[N]

]
, and Xs = AS is the noiseless signal component with

S =
[
s[1] . . . s[N]

]
. A simplified receiver architecture composed of an M × Ls RF

switching network is considered such that, at each snapshot, it randomly selects Ls
out of the M antennas to be downconverted and sampled at baseband (see Fig. 5.1).
Multi-switch antenna selection techniques for massive MIMO have been studied and
experimentally validated in [Gao et al., 2015]. After downconversion and sampling,
the Ls × N samples are arranged in a Xm ∈ CM×N matrix so that the missing entries
are replaced with zeros. The sampling process can be compactly expressed as

Xm = PΩ(X), (5.2)

where Ω ⊆ {1, . . . , M} × {1, . . . , N} is the set of observed (antenna, time) indexes
in Xm.

The problem addressed in this chapter is as follows. Given the observed data
matrix Xm in (5.2), to estimate the rank-K noiseless signal subspace by assuming that
K in known, which can be used further for direction-of-arrival (DOA) estimation.
Further, to design an order estimation method to estimate K from Xm. It is assumed
that K satisfies K � Ls < M.

5.3 Matrix Completion for Data Matrix Estimation

We discussed the matrix completion for a Hermitian covariance matrix in Section
4.3.1. Here, we want to estimate the low-rank signal matrix Xs from Xm ∈ CM×N,
which is not Hermitian, and hence (4.4) can not be applied. Therefore, we rede-
fine the MC problem for data matrix in this section. We can recover Xs by solving
[Candes and Plan, 2010]

min
Xs∈CM×N

||Xs||∗ (5.3)

subject to ||PΩ(Xs − Xm)||F ≤ η
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where ||Xs||∗ denotes the nuclear norm of Xs.
The main assumption for a successful recovery in low-rank MC is that of incoher-

ence, which means that each singular vector of the unknown matrix must be evenly
spread across its coordinates instead of having a few entries with large value i.e., sin-
gular vectors are not too sparse. Intuitively, this implies that there is no underlying
matrix structure and that all entries have similar importance. Formally, the coherence
of the column space of a rank-K matrix Y ∈ CM×N is defined as

τ(Y) =
M
K

max
1≤i≤M

||PYei||2

where PY = Y(YHY)−1YH is the orthogonal projection matrix onto the column space
of Y, and ei is the ith vector of the Euclidean basis.

As shown in [Weng and Wang, 2012], in array processing τ(Xs) and τ(XH
s ) are

small enough that the complete matrix Xs can be recovered via (5.3). Indeed, in
the noiseless case an exact recovery is possible with high probability provided that
we observe |Ω| ≥ DmKN

6
5 log N for a constant Dm assuming a random uniform

sampling distribution and N > M [Candes and Plan, 2010]. In our problem we have
|Ω| = NLs, therefore Ls ≥ DmKN

1
5 log N antenna elements need to be sampled for

successful recovery. In the noisy case, Xs is recovered with an error proportional to η

as long as ||PΩ(E)||F ≤ η [Candes and Plan, 2010].
While standard MC assumes uniform random sampling, this scheme does not

exactly match the multi-switch array architecture in Fig. 5.1. In the proposed archi-
tecture, exactly Ls sensors, chosen at random, are sampled per snapshot, which is
termed as uniform spatial sampling in [Weng and Wang, 2012] and does not cor-
respond to uniform random sampling across X. Nevertheless, as it is proved in
[Weng and Wang, 2012], the uniform spatial sampling scheme satisfies the coher-
ence conditions for matrix recovery and hence it can be used in array processing
problems.

Xs can be factored as Xs = WHH, where W ∈ CM×p and H ∈ CN×p, where
p = K limits the rank of the reconstructed matrix. Then, using the identity
[Srebro et al., 2005]

||Xs||∗ = min
Xs=WHH

1
2

(∥∥W
∥∥2

F +
∥∥H
∥∥2

F

)
,

rank-p Xs can be estimated by solving the optimization problem

{Ŵ, Ĥ} = argmin
W∈CM×p

H∈CN×p

∥∥PΩ

(
Xm −WHH

)∥∥2
F +µ

(∥∥W
∥∥2

F +
∥∥H
∥∥2

F

)
(5.4)

In the next section, we modify (5.4) to exploit the shift-invariance property of the
steering matrix A.
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5.4 Shift-invariant Matrix Completion (SIMC)

In addition to being a low-rank matrix, Xs has additional structure inherited from
the array geometry that can be exploited by the MC method. Specifically, when ULAs
are employed, the shift-invariance property holds, which has been briefly discussed
in Chapter 2. According to this property, each row of the steering matrix A is related
to the previous one as follows

aH
i Q = aH

i−1 i = 2, . . . , M (5.5)

where aH
i is the ith row of A and Q = diag(e jθ1 , . . . , e jθK), as it can be readily verified

from (1.1). From the shift-invariance property, it follows that the column span of X↑s ,
formed by the first M− 1 rows of Xs, and the column span of X↓s , formed by the last
M− 1 rows of Xs, are identical. In other words, the K-dimensional signal subspaces
of X↑s and X↓s are the same.

It is then clear that the factor W in

Xs = WHH (5.6)

should satisfy the shift-invariance property as well. Since the factorization (5.6) is not
unique, we use a relaxed version of (5.5) to enforce the following relation between
the rows of W, i.e.,

wH
i T = wH

i−1 i = 2, . . . , M (5.7)

where wH
i is the ith row of W and T ∈ D where D is the set of p × p diagonal

complex matrices not necessarily unitary.
To enforce (5.7), the shift-invariant matrix completion (SIMC) problem (5.4) in-

cludes an additional regularization term:

{Ŵ, Ĥ, T̂} = argmin
W∈CM×p

H∈CN×p

T∈D

∑
(i, j)∈Ω

∣∣Xm(i, j)−wH
i h j

∣∣2 +µ
( M

∑
i=1
‖wi‖2

2 +
N

∑
j=1
‖h j‖2

2

)

+α
M

∑
i=2
‖wH

i T−wH
i−1‖2

2 (5.8)

where hH
j is the jth row of H and α is an additional regularization parameter.

The solution X̂s = ŴĤH can be obtained by iteratively optimizing (5.8) over each
wH

i , hH
j and T until convergence. To optimize (5.8) for wH

i , we take the derivative

with respect to wH
i , assuming H and T fixed, and equate it to zero, which provides

the following solution

wH
i =



(
gH

1 + gH
2

)(
Y1 +αI

)−1
if i = 1(

gH
1 + gH

2 + gH
3

)(
Y1 + Y2 +αI

)−1
if 1 < i < M(

gH
1 + gH

3

)(
Y1 + Y2

)−1
if i = M

(5.9)
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where

gH
1 = ∑

j∈Ji

Xm(i, j)hH
j

gH
2 = αwH

i+1T

gH
3 = αwH

i−1TH

Y1 = ∑
j∈Ji

h jhH
j +µI

Y2 = αTTH

and Ji is the set of observed indices of the ith row of Xm. Similarly, (5.8) can be
optimized for hH

j to find the solution as

hH
j =

(
∑

i∈I j

Xm(i, j)∗wH
i

)(
∑

i∈I j

wiwH
i +µI

)−1
(5.10)

where I j is the set of observed indices of the jth column of Xm. Since T =
diag(t1, . . . , tp) is a diagonal matrix, (5.8) can be optimized for each diagonal el-
ement tk individually. To this end, the third term in the right hand side of (5.8) can
be rewritten in terms of tk as

M

∑
i=2
‖wH

i T−wH
i−1‖2

2 =
M

∑
i=2

K

∑
k=1

∣∣tkW(i, k)−W(i− 1, k)
∣∣2, (5.11)

which can be optimized with respect to tk to get

tk =
∑

M
i=2 W(i− 1, k)W∗(i, k)

∑
M
i=2

∣∣W(i, k)
∣∣2 (5.12)

5.4.1 Post-processing via Optimal Subspace Estimation (OSE)

As the shift-invariance property is enforced through a regularization term, the solu-
tion of (5.8) provides a low-rank data matrix, X̂s, which has the required structure
only in an approximate fashion. This motivates applying the Optimal Subspace Es-
timation (OSE) technique as a final post-processing step of our algorithm. The OSE
algorithm takes X̂s as input and provides an estimate of the underlying noise-free
signal subspace with the required shift-invariant structure. Let Uose ∈ CM×K be a
basis for this subspace, and let Pose = UoseUH

ose be its orthogonal projection matrix.
Then, the output of the OSE algorithm is

R̂ose = PoseX̂s (5.13)

For a full account of the OSE method the reader is referred to
[Vaccaro and Ding, 1993, Vaccaro, 2017, Grayson, 2016].
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5.4.2 Selection of Regularization Parameters

The values of α and µ in (5.8) control the trade-off among the fulfillment of the
shift-invariance property, the fitting to the observed data and the nuclear norm of the
solution. Since α enforces the shift-invariance property into X̂s, its value should de-
pend on some measure that quantifies the compliance of the shift-invariance property
by the original sparse matrix Xm. As we know, given a rank-p matrix for which the
shift-invariance property holds, the subspaces spanned by the first and the last M− 1
rows are identical. Thus, the regularization parameterα is chosen to be a function of
the chordal subspace distance [Srivastava and Klassen, 2002] between X↑m and X↓m,
which are formed by the first and the last M− 1 rows of the sparse Xm, respectively.

Specifically, let U1 ∈ C(M−1)×p and U2 ∈ C(M−1)×p be the p largest left singular
vectors (that is, those associated to the p largest singular values) of X↑m and X↓m,
respectively. Then, the chordal subspace distance between X↑m and X↓m is

dcs = ‖U1UH
1 −U2UH

2 ‖F. (5.14)

A large value of dcs implies that the p-dimensional subspaces extracted from X↑m
and X↓m are far apart from each other and, consequently, the shift-invariance property
does not hold. This in turn implies that a large α must be used in the reconstruction
process. According to our simulations, a value that provides good performance for a
wide range of scenarios is

α = dcsµ, (5.15)

where µ = M
20 .

A summary of the shift-invariant matrix completion method, denoted as SIMC, is
provided in Algorithm 7. Once R̂ose is obtained, any subspace-based method can be
used further to estimate the DOAs.

Algorithm 7: Shift-Invariant Matrix Completion (SIMC)
Input: Xm, µ, p, itrmax
Output: R̂ose
Initialization: T̂ = I, itr = 1
Compute the SVD of Xm = FΛGH and initialize Ŵ = FpΛ

1/2
p and

Ĥ = GpΛ
1/2
p , using the p largest singular vectors and singular values of Xm

(best p-rank approximation of Xm)
Set α as in (5.15)
REPEAT
Compute Ŵ, Ĥ and T̂ using (5.9), (5.10) and (5.12), respectively
itr = itr + 1
Until Convergence = true or itr = itrmax
Compute X̂s = ŴĤH

Apply OSE algorithm to estimate R̂ose = PoseX̂s

The SIMC algorithm has a computational cost of O((M + N)K3) per iteration,
which is basically the cost of standard MC algorithms based on alternating least
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squares, since the extra cost due to (5.12) is negligible. The OSE post-processing
step, has a computational complexity of

(
O(M2N) + 2O((MK)3)

)
. Finally, the pro-

posed initialization step performs a compact SVD with cost O(MK2). Note that for
this problem K � M.

5.5 Perturbation Analysis

The main factor impacting the performance of the random multi-switch sampling
scheme is how well the signal subspace is preserved. The SIMC algorithm aims at
estimating an improved signal subspace by leveraging its shift-invariant low-rank
structure. Here we analyze how DOA estimation is impacted when performed after
MC.

Since the DOA estimates are essentially determined by the singular vectors of the
signal subspace, we want to assess how much the principal directions change after
each processing step of the original sparse data matrix. To do so, we will analyze
the problem from a matrix perturbation standpoint. A perturbed matrix is a matrix
which has its singular values and vectors altered after an addition with a second
matrix. Thus, Xm in (5.2) is a perturbed version of Xs, with the perturbation being
caused by the missing entries and noise. The Davis-Kahan theorem is a useful tool
to measure the angular difference between the singular vectors of two matrices. We
show below Theorem 5.1 in [Yu et al., 2015] adapted to our use-case.

Theorem 5.1. Davis-Kahan sin theorem.[Yu et al., 2015] Let UX and UX̃ denote the
first K left singular vectors of Xs and the perturbed X̃s, respectively, and Θ(UX , UX̃) be
the K× K diagonal matrix containing the principal angles cos−1(ξi)

K
i=1, where ξi is the

ith singular value of UH
X UX̃. Then,

|| sin Θ(UX , UX̃)||F ≤
2
√

K(2||Xs||2 + ||Xs − X̃s||2)min(||Xs − X̃s||2, 1√
K
||Xs − X̃s||F)

λK(Xs)
(5.16)

Theorem 5.1 shows that the subspace distance between the singular vectors UX
and UX̃ scales with the norm difference between Xs and X̃s. Interestingly, it also
shows that the larger the Kth singular value is, the smaller the subspace distance will
be. Below, we leverage the Davis-Kahan theorem to compare the signal space of Xs
firstly with that of the sparse matrix Xm, and secondly with the recovered estimate
X̂MC in (5.4) obtained through MC.

Clearly, due to the missing data, Xm is a poor approximation to Xs.
Nevertheless, the K first singular vectors of the sampled matrix are of-
ten used as a crude estimate or initialization point for iterative algorithms
[Giménez-Febrer and Pagès-Zamora, 2017]. Let PK(Xm) denote the projection of Xm
onto the subspace spanned by its first K left singular vectors, which is obtained by
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setting λk(Xm) = 0, ∀ k > K. Moreover, let us assume a uniform random sam-
pling scheme where each entry in X is sampled with probability qp = Ls/M. From
[Keshavan et al., 2009], we have the bound

||Xs −
1
qp

PK(Xm)||2 ≤ C||Xs||∞ N
3
4

M
1
4
√qp

+ Cσ

√
N log M

qp
(5.17)

which is satisfied with probability greater than 1 − 1
M3 for some constant C. Note

the scaling 1
qp

of PK(Xm) in (5.17), which compensates for the norm loss due to the

missing entries. Thus, since 1
qp

PK(Xm) and Xm share the first K left singular vectors,
then

|| sin Θ(UX , UXm)||F = || sin Θ(UX , U 1
q PK(Xm)

)||F
and we can use (5.17) in conjunction with Theorem 5.1 to bound the subspace dis-
tance.

With regard to X̂MC, assuming that N ≥ M the recently developed bounds in
[Chen et al., 2019] show that

||Xs − X̂MC||2 ≤ ||Xs||2
σ

λK(Xs)

√
N
qp

. (5.18)

with probability exceeding 1− 1
N3 .

Assuming constant qp = Ls/M and M, and bounded ||Xs||∞, we have that the

bound for PK(Xm) in (5.17) grows as O(N
3
4 ). Therefore, comparing it to that of X̂MC

in (5.18), we observe that the bound for X̂MC grows as O(
√

N). Therefore, we can
conclude that MC will improve the DOA estimates.

5.6 Order Estimation via SIMC

When K is known, SIMC algorithm can reconstruct the R̂ose by setting p = K, how-
ever when K in unknown, an order estimation method is required. The standard
order estimation methods do not provide consistent results in the missing data sce-
nario. One possible solution to this problem could be to reconstruct X̂s or R̂ose with
an overestimated value of K, such as K < p < min(M, N), and apply any standard
source enumeration technique. However, since the process of matrix completion
enforces the eigenvalue sparsity (also mentioned in Section 4.4) thus changing the
eigenvalue profile of the covariance matrix, we found that the standard source enu-
meration methods such as LS-MDL and BIC do not provide consistent solutions even
after MC. In this section, we propose an order estimation method based on SIMC.

As discussed in Section 5.4.2, in a noiseless condition dcs (see (5.14)) should be
a small value, which is achieved for p = K when a complete data matrix is available.
On the one hand, the matrix completion algorithm does not provide an optimum
solution for p < K, and on the other hand, p > K includes the noise directions which
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Algorithm 8: Order Estimation using SIMC
Input: Xm, µ, pmax, itrmax;
Output: Order estimate k̂SIMC
for p = 1, . . . , pmax do

Find R̂ose using Algorithm 7
Find R̂1 and R̂2 from R̂ose
Find UR1 and UR2 as the p largest left singular vectors of R̂1 and R̂2

Estimate number of sources as k̂SIMC = argmin
1≤p≤pmax

‖UR1UH
R1−UR2UH

R2‖F
p

eventually increases the value of dcs. Based on this, an order estimation criterion
is proposed here, which first reconstructs R̂ose for increasing values of p, and then
estimates the chordal subspace distance between R̂1 := R̂ose(1 : M− 1, 1 : M− 1)
and R̂2 := R̂ose(2 : M, 2 : M), by selecting p largest left singular vectors of R̂1 and
R̂2. The subspace distance is the smallest for p = K.

If UR1 ∈ C(M−1)×p and UR2 ∈ C(M−1)×p be the p largest left singular vectors of
R̂1 and R̂2 respectively, the proposed order estimation criterion can be given as

k̂SIMC = argmin
1≤p≤pmax

‖UR1UH
R1 −UR2UH

R2‖F

p
(5.19)

where pmax is an overestimation of K. Note that we are normalizing (5.19) with the
number of left singular vector used in each case. A summary of proposed method is
shown in Algorithm 8.

5.7 Simulation Results

5.7.1 Performance of the SIMC

In this subsection, we illustrate the feasibility of using a reduced number of RF chains
by sampling only a random subset of sensors. For this purpose, the performance of
SIMC algorithm is evaluated by means of Monte Carlo simulations. As figures of
merit we use: i) the chordal subspace distance between the true signal subspace and
the estimated signal subspace, and ii) the Root Mean Squared Error (RMSE) for the
DOA estimates in radians. The chordal distance between the true signal subspace or
column span of Xs, and the estimated signal subspace or column span of X̂s is shown
to assess how different these subspaces are. Note that this distance is different from
the chordal distance in (5.14) used to select the regularization parameter α. The
estimation of signal parameters via rotational invariance technique (ESPRIT) method
[Roy and Kailath, 1989] is used to compute the DOAs for all competing methods. We
assume for this study that K is known and figures of merit are determined for p = K.
For comparison, we include the performance of the following methods:

• SCM: The sample covariance matrix without MC is estimated as R̂m = 1
N XmXH

m .
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• OSE: The shift-invariance property is enforced by applying OSE to Xm (without
MC).

• MC: The standard MC algorithm solution given by (5.4) is used to reconstruct
Xs from Xm.

• MC-OSE: OSE is applied as a post-processing step to the previous method.

• SIMC: The proposed method.

For all simulations we assume that K uncorrelated narrowband signals with a sep-
aration of ∆θ are impinging on a ULA with M half-wavelength separated antennas.
Unless stated otherwise, sources have equal power. For both SIMC and MC, we use
µ = M/20 and itrmax = 200. SNR = 10 log tr(Rs)

Mσ2 , where Rs is the signal covariance
matrix andσ2 is the noise variance. Ls denotes the number of randomly sampled sen-
sors per snapshot. The Cramer-Rao lower bound (CRLB) [Stoica and Nehorai, 1990]
when the full data matrix X is available is included as a reference benchmark.

Experiment 1: In the first example, we consider a sample-poor scenario with
M = 100 antennas, N = 80 snapshots, K = 5 sources and ∆θ = 10◦. At each
time instant the multi-switch network randomly selects Ls = 50 out of the M =
100 antennas. Fig. 5.2 shows the subspace distance and the RMSE vs. the SNR.
The performance of SCM and OSE without MC saturates at high SNR due to the
relatively high fraction of missing entries. The benefits of using MC techniques in
combination with enforcing the shift-invariance property are evident, specially at low
or moderate SNRs. In fact, even with 50 % of missing data and SNR≈ 0, we observe
that SIMC is close to the CRLB (which gives us the performance limit when all data
are available). At high SNRs MC-OSE and SIMC have identical performances, which
suggest that the post-processing OSE step is sufficient to enforce in the solution the
required invariance to displacements.

Experiment 2: The second example considers a scenario with M = 50 antennas,
K = 4 sources with ∆θ = 10◦, N = 50 snapshots and Ls = 25 (i.e., 50% of missing
entries in Xm). The sources in this example have unequal powers with signal covari-
ance matrix Ψ = σ2

s diag(1, 0.8, 0.6, 0.5), where σ2
s is the common signal variance. A

similar behavior to the previous example is observed in Fig. 5.3, with SIMC providing
satisfactory performance over a large range of SNR values.

Experiment 3: The third example compares the performance of the methods
with respect to N for M = 200, K = 4, SNR= −5 dB, ∆θ = 5◦, and Ls = 100. We
can observe in Fig. 5.4 that if N is large enough, SIMC, MC-OSE and OSE provide
very similar results. However, SIMC outperforms the rest of methods when N is
small. This example demonstrates a clear advantage of the proposed method in the
small-sample regime where N ≤ M.

Experiment 4: The next example compares the performances of arrays of differ-
ent number of antennas when the number of sampled sensors Ls is fixed. Therefore,
the spatial sampling ratio Ls/M decreases as M increases. We consider ULAs with
M = 25, M = 50 and M = 100 antennas using a fixed value of Ls = 25 so that at
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Figure 5.2: Subspace distance (a) and RMSE (b) vs. SNR for M = 100, N = 80,
K = 5, ∆θ = 10◦ and Ls = 50.
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Figure 5.3: Subspace distance (a) and RMSE (b) vs. SNR for M = 50, N = 50,
K = 4, ∆θ = 10◦, Ψ = σ2

s diag(1, 0.8, 0.6, 0.5) and Ls = 25.
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Figure 5.4: Subspace distance (a) and RMSE (b) vs. number of snapshots (N) for
M = 200, K = 4, SNR= −5 dB, ∆θ = 5◦, and Ls = 100.
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Figure 5.5: Subspace distance (a) and RMSE (b) vs. SNR for ULAs with different
number of antennas when K = 3, ∆θ = 10◦, N = 100 and Ls = 25.
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every snapshot the percentages of sampled sensors are 100%, 50% and 25%, respec-
tively. For all three cases, the number of snapshots is N = 100 and K = 3 sources
with ∆θ = 10◦ of separation impinge on each array. Since Ls and N are fixed, the
energy consumption will be roughly the same for all array architectures. However,
the effective spatial resolution is improved as M increases, as it is observed in Fig.
5.5. In this way, the proposed SIMC algorithm allows us to increase the spatial reso-
lution of an array with a fixed number of RF chains. In other words, we can trade-off
spatial resolution by energy consumption.

Experiment 5: The following experiments analyze the impact of the percentage
of missing data on the methods under comparison. We consider a scenario with
M = 50 antennas, N = 80, snapshots and K = 3 sources with a separation of
∆θ = 10◦. Fig. 5.6 shows the subspace distance and the RMSE curves vs. the SNR
when the number of sampled antennas is Ls = 50, Ls = 25, or Ls = 12. Obviously,
the best performance is achieved when all sensors are sampled. Nevertheless, per-
formance degrades smoothly with Ls and hence both the hardware costs and energy
consumption can be substantially reduced with only a minor performance degrada-
tion. As we increase Ls, we observe more entries of the data matrix and the MSE of
the SIMC method approaches the CRLB.

Experiment 6: Fig. 5.7 shows results for the same scenario when the number of
sampled sensors is Ls = bM(100−Ps)

100 c, where Ps is the percentage of missing data and
b·c is the floor function. It can be observed in Fig. 5.7 that the performance of SIMC
is robust against missing data, providing satisfactory performance for Ps < 70%.
The results of Fig. 5.7 allow us to conclude that to obtain accurate signal subspace
and DOA estimates it is important to exploit in the reconstruction of the data matrix
both its low-rank structure and its shift-invariant structure. When exploited indepen-
dently, the shift-invariant structure (OSE) provides more benefits than the low-rank
structure (MC) for Ps < 50%.

Experiment 7: In the last experiment, we evaluate the impact of having corre-
lated sources. We consider a scenario with K = 2 correlated sources when M = 100,
N = 80, SNR= 0 dB, ∆θ = 5◦, and L = 25. The correlation coefficient between
the two sources, ρ, varies from 0 (uncorrelated) to 1 (fully correlated). As Fig. 5.8
shows, SIMC outperforms the rest of methods and provides accurate DOA estimates
even for highly correlated sources ρ < 0.8. Nevertheless, the performance of SIMC
under correlated sources needs additional theoretical analysis.

5.7.2 Application to Source Enumeration

This subsection demonstrates the performance of the proposed order estimation cri-
terion with missing data, which is referred as OE-SIMC here. As discussed in Section
5.6, no standard method provides a consistent solution with missing data, so we use
the SA method, which is described in Algorithm 2 for comparison. For SIMC, we use
pmax = M

5 and the rest of parameters are the same as in the previous subsection. It
is noted here that Xm or R̂m, without using any matrix completion method is used as
input for both methods.
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Figure 5.6: Subspace distance (a) and RMSE (b) vs. SNR when M = 50, N = 80,
K = 3 and ∆θ = 10◦ for Ls = (50, 25, 12) .
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Figure 5.7: Subspace distance (a) and RMSE (b) vs. Percentage of missing data
when M = 50, N = 50, K = 5, ∆θ = 10◦, SNR = 5 dB and equal-power sources.
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Figure 5.8: Subspace distance (a) and RMSE (b) vs. correlation coefficient between
two sources ρ for M = 100, N = 80, K = 2, SNR= 0 dB, ∆θ = 5◦, L = 25.
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Figure 5.9: Probability of correct detection vs. SNR for M = 100, N = 80, K = 4,
∆θ = 10◦, Ls = 50 and equal-power sources.

Experiment 1: First experiment shows the probability of correct detection vs.
SNR for a scenario of M = 100, N = 80, K = 4, ∆θ = 10◦ and Ls = 50, and
the result is shown in Fig. 5.9. To our surprise, SA performs well in this scenario
when only 50% entries in the data matrix are available. The possible reason behind
this behaviour is that the missing entries affect both the signal subspace and noise
subspace and hence the averaging mechanism of SA is able to distinguish the two
subspaces. OE-SIMC also provides a consistent result, thanks to the enforcement of
the shift-invariance property into MC method.

Experiment 2: Fig. 5.10 shows the probability of correct detection vs. SNR for
M = 100, N = 50, K = 3, ∆θ = 8◦ and Ls = 25, i.e. only 25% sensors are sampled
for each snapshot. A very similar result is obtained in this scenario. SA in general
performs well but becomes slightly inconsistent at higher SNRs. Nevertheless, OE-
SIMC is a clear winner here as well.

Making the signal powers unequal as Ψ = σ2
s (1, 0.8, 0.5) and keeping fixed the

rest of the parameters, we obtain the results shown in Fig. 5.11. For this scenario,
where sources have unequal powers, the performances of both methods are almost
the same. This shows the robustness of both methods with unequal power sources.

Experiment 3: In the next experiment, probability of correct detection is evalu-
ated with respect to the percentage of missing data. Like previous subsection, here as
well the number of sampled sensors is Ls = bM(100−Ps)

100 c, where Ps is the percentage
of missing data. We consider a scenario with M = 100, N = 150, K = 5, ∆θ = 5◦,
and SNR= 0 dB. The percentage of missing data is varied between 0% and 95%. As
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Figure 5.10: Probability of correct detection vs. SNR for M = 100, N = 50, K = 3,
∆θ = 8◦, Ls = 25 and equal-power sources.
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Figure 5.11: Probability of correct detection vs. SNR for M = 100, N = 50, K = 3,
∆θ = 8◦, Ls = 25 and Ψ = σ2

s (1, 0.8, 0.5).
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Figure 5.12: Probability of correct detection vs. percentage of missing data for
M = 100, N = 150, K = 5, ∆θ = 5◦, SNR = 0 dB and equal-power sources.
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Figure 5.13: Probability of correct detection vs. percentage of missing data for
M = 50, N = 50, K = 5, ∆θ = 10◦, SNR = 20 dB and equal-power sources.
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it can be observed in Fig. 5.12, the SA performs generally well for a wide range of
percentage of missing data, but OE-SIMC outperforms SA and provides good results
for very few available data. It is noted here that if more than 95% data is missing,
both methods fails.

Now the parameters are changed to M = 50, N = 50, K = 5, ∆θ = 10◦ and
SNR= 20 dB, and the results are shown in Fig. 5.13. In this experiment where a
small array is used, both methods provide a robust result in the small sample regime.
SA performs robustly till the 60% data are missing and OE-SIMC performs well even
if more than 80% data are missing. These two examples shows a clear improvement
of OE-SIMC over SA.
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Figure 5.14: Probability of correct detection vs. number of snapshots (N) for M =
50, K = 6, ∆θ = 10◦, Ls = 13, SNR = 20 dB and equal-power sources.

Experiment 4: Now we study the effect of the number of snapshots on the prob-
ability of correct detection. We assume that K = 6, ∆θ = 10◦ and SNR = 20 dB. We
consider two different scenarios with M = 50 and M = 100, and in both cases only
25% data is available, therefore the number of sampled sensors for each snapshot is
Ls = 13 and Ls = 25, respectively. N is varied from 10 to 200. As Fig. 5.14 suggests,
for M = 50 and Ls = 13, the SA does not perform well in small sample regime, how-
ever OE-SIMC performs well with very few snapshots. When we increase the number
of sensors in the array to M = 100, SA starts performing well in small sample regime
for the large-scale array. OE-SIMC is a clear winner here as well. This experiment
clearly shows that OE-SIMC performs well in small sample regime with very small
value of Ls.
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Figure 5.15: Probability of correct detection vs. number of snapshots (N) for M =
100, K = 6, ∆θ = 10◦, Ls = 25, SNR = 20 dB and equal-power sources.
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Figure 5.16: Probability of correct detection vs. SNR for M = 100, N = 120, K = 3,
and ∆θ = 10◦, Ls = (100, 50, 25) and equal-power sources.
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Experiment 5: The last experiment analyzes the impact of the missing data on
the proposed OE-SIMC method. Here, probability of correct detection is shown with
respect to SNR for M = 100, N = 120, K = 3, and ∆θ = 10◦ for different values
of Ls for OE-SIMC. As it can be observed from Fig. 5.16, the best performance is
achieved when all sensors are sampled, as expected. As Ls decreases, the OE-SIMC
method starts performing poorly at lower SNRs. Clearly, Ls affects the performance
of the proposed method, nevertheless, for high enough SNR, it provides a consistent
solution for the missing data scenario.

5.8 Conclusion

The high hardware complexity and energy consumption of massive MIMO systems is
a challenge for its fully-digital implementation. A solution is to reduce the number
of RF chains by performing random antenna selection techniques, which result in a
data matrix with multiple missing entries. In this chapter we have proposed a matrix
completion technique tailored to this array processing architecture. The reconstruc-
tion algorithm exploits both the low-rank structure of the partially observed matrix
and the shift-invariance property of uniform linear arrays. We showed with the help
of simulation results that as long as the number of RF chains is sufficiently larger
than the number of sources, the proposed shift-invariant matrix completion (SIMC)
method provides a substantial reduction of hardware costs and energy consumption
without significant performance loss in resolution or DOA estimation accuracy. Fur-
thermore, SIMC is extended to design a novel order estimation criterion for missing
data scenario. The SIMC is used for increasing values of dimension and order is esti-
mated by evaluating chordal subspace distances between two submatrices generated
from the reconstructed matrix. The simulation results show that proposed method is
consistent and provides good results even if the percentage of available data is very
low.
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Chapter6
Conclusions and Further Lines

This dissertation addressed the problem of order estimation for large-scale arrays in
low sample support scenarios. To tackle this problem we considered two approaches:
i) order estimation via subspace averaging, and ii) order estimation via matrix com-
pletion. First approach cast the source enumeration problem as a problem of averag-
ing subspaces, and provided order estimation criteria based on the eigenvalues of an
average projection matrix. Second approach used the matrix completion method and
exploited the properties of uniform linear array to first design an order estimation cri-
terion for uniform linear array in the presence of a noise with diagonal covariance
matrix, and then proposed a method of source enumeration with missing data.

6.1 Conclusions

In the foregoing lines, we briefly summarize the contributions and conclusions cor-
responding to each of the studies that have been conducted in the dissertation:

• Chapter 2 proposed a subspace averaging based order estimation method for
uniform linear array in the presence of the white noise. The approach was
to extract a subspace from each of several subarrays, and then average these
subspaces for a subspace whose dimension is the estimated number of far-
field sources. This procedure normalizes scale by replacing scale-dependent
covariance models by scale-invariant subspace models. The method requires
no penalty terms for controlling the estimated order. The results suggest that
the problem of source enumeration may be viewed as a problem of identifying
an approximating subspace, and its dimension, from a set of subspaces esti-
mated from measurements.

• Chapter 3 extended the SA order estimation criterion for: i) non-white noises,
and ii) non-uniform linear arrays. A majority vote approach was combined
with the SA in order to estimate number of sources for uniform linear array in
the presence of non-white noises in small sample regime. The method applies
SA technique for increasing dimensions of the extracted subspaces. For each
dimension, we get an estimate of the number of sources, and the final estimate
is obtained by a majority vote rule.
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• To extend the SA for arrays with arbitrary geometries, SA is combined with a
sparse reconstruction (SR) step. The collection of subspaces to be averaged is
generated by obtain a sparse representation of each snapshot as a linear combi-
nation of the others. A generalization of the log-surrogate of the `0-norm is pro-
posed to perform the SR, which is solved using the majorization-minimization
approach. Then, based on the sparse coefficients of the reconstruction, a sam-
pling mechanism is presented to obtain projection matrices that share a large
common portion of the signal subspace. Finally, the eigenvalues of an average
projection matrix are then used to estimate the number of sources.

• Chapter 4 proposed a matrix completion based order estimation method for
uniform linear array, when the noise covariance is diagonal with unknown en-
tries. The most-noisy diagonal terms of the sample covariance matrix are elim-
inated and the off-diagonal terms are further denoised by Toeplitz rectification.
The low-rank and Toeplitz signal covariance matrix is then reconstructed with
matrix completion techniques. The proposed order estimation criterion is based
on the Frobenius norm of the reconstructed matrices, which are reconstructed
for increasing values of its rank. We have shown that the proposed method
outperforms other methods for large and small arrays in small sample regime.

• Finally, Chapter 5 proposed to work with a reduced number of radio-frequency
(RF) chains. The hardware complexity and energy consumption of massive
MIMO systems is a challenge. A solution is to reduce the number of RF chains
by performing random antenna selection techniques, which result in a data ma-
trix with multiple missing entries. A matrix completion technique is then used
to recover these missing entries. Matrix completion technique not only exploits
the low rank of the noiseless data matrix, but also exploits the shift invariance
property of uniform linear arrays. We showed that a better signal subspace
was estimated by proposed matrix completion methods, which can be used
further for DOA estimation. Then, based on the proposed matrix completion
algorithm, an order estimation criterion is proposed for missing data scenario,
which is based on the chordal subspace distance of two submatrices extracted
from the reconstructed matrix for increasing values of its rank. We showed that
the proposed method can estimate the number of sources accurately even when
very few data is available.

6.2 Further Lines

This dissertation discussed the order estimation problem and variety of solutions are
proposed. However, no research is ever quite complete. Here, we list some research
lines that could complement the present work.

• In this dissertation, we reviewed several existing methods for order estimation
and proposed some novel approaches which were based on: i) subspace averag-
ing and ii) matrix completion. However, snapshots or subspaces are generally
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received sequentially in practical problems, and most methods process the re-
ceived data in batches. In this case, a large memory is required to store all the
data and the computational cost is also high. The solution to this problem is to
process the data sequentially as it is received. To this end, an online algorithm
is needed so that the proposed methods can work sequentially.

• In this dissertation we worked with linear arrays. For instance, Chapter 2 dis-
cussed the order estimation problem for uniform linear array, and shift invari-
ance property was exploited. The shift invariance property would exist for
uniform rectangular arrays as well, and subspace averaging technique might
be useful to design an order estimation criterion for uniform rectangular 2-D
arrays. It would also be interesting to study uniform circular arrays. Conclu-
sively, a thorough study of the performance of subspace averaging technique
for planar arrays is required.

• In Chapter 4, a matrix completion approach is used with Toeplitz rectification
to denoise a covariance matrix whose noise covariance matrix was diagonal
with unknown elements. This approach can be extended to other noise mod-
els. For example, if the noise is exponentially correlated, the entries close to
the main diagonal of the covariance matrix would be affected more with the
noise. Nevertheless, the signal covariance matrix always possesses the Toeplitz
structure. This suggests us to extend the Toeplitz matrix completion method to
other spatially correlated noise models.

• Chapter 5 proposed an order estimation technique with missing data. The pro-
posed method performs consistently, however, the computational cost of the
method is high. In addition, the proposed method is restricted to work with
uniform linear array in the presence of white noise. At this point we believe
that a more in-depth study is required for missing data scenarios, considering
other noise models or other array geometries.

• We observed in Chapter 5 that the subspace averaging method performs ro-
bustly with missing data. However, other methods that use the eigenvalues of
the sample covariance matrix to estimate the number of sources do not pro-
vide consistent results. There is a need to study further the effect of missing
entries on the eigenvalues and the eigenvectors of the data matrix or sample
covariance matrix.

• In the end, it is important to point it out that we assumed Gaussian noises
throughout the dissertation. The performances of the proposed methods for
non-Gaussian noises are further required to be studied. It is understandable
that some of these methods might not perform well as they are designed for
Gaussian noises. To this regard, an order estimation criterion in presence of
non-Gaussian noises by using subspace averaging or matrix completion ap-
proaches in the challenging scenarios of massive MIMO systems with low sam-
ple support is required to be designed.
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Conclusiones y Ĺıneas Futuras

En esta tesis, se ha tratado el problema de la estimación del orden para arrays de
gran tamaño en escenarios con pocas muestras. Para abordar este problema, se han
considerado dos enfoques: i) estimación del orden mediante el promediado de sube-
spacios, y ii) estimación del orden vía matrix completion. Con el primer enfoque, se
ha planteado el problema de enumeración de fuentes como un problema de prome-
diado de subespacios y se han propuesto criterios de estimación del orden basados en
los autovalores de una matriz de proyección promedio. En el segundo enfoque, se ha
utilizado el método matrix-completion y se han aprovechado las propiedades de los
arrays lineales y uniformes para diseñar primero un criterio de estimación del orden
para este tipo de arrays en presencia de un ruido con matriz de covarianza diagonal
y después proponer un método de enumeración de fuentes con datos no observados.

Conclusiones

En las siguientes líneas, se resumen brevemente los aportes y conclusiones corre-
spondientes a cada una de las investigaciones que se han realizado en esta tesis:

• En el capítulo 2, se ha propuesto un método de estimación del orden basado
en el promediado de subespacios para arrays lineales y uniformes en presencia
de ruido blanco. Esta estrategia consiste en extraer un subespacio de cada uno
de los varios subarrrays para luego promediarlos en un subespacio cuya dimen-
sión es el número estimado de fuentes de campo lejano. Este procedimiento
lleva a cabo la normalización de escala reemplazando los modelos de covari-
anza dependientes de ella por modelos de subespacios invariantes a la escala.
Este método no requiere términos de penalización para controlar el orden es-
timado. Los resultados obtenidos sugieren que el problema de la enumeración
de fuentes puede verse como un problema de identificación de un subespacio
aproximado y su dimensión a partir de un conjunto de subespacios estimados
a partir de medidas.

• En el capítulo 3, se ha extendido el criterio de estimación del orden SA a: i)
ruidos no blancos y ii) arrays lineales no uniformes. Se ha combinado una es-
trategia de voto mayoritario con el SA para estimar el número de fuentes para
un array lineal y uniforme en presencia de ruidos no blancos en regímenes
con pocas muestras. Este método aplica la técnica SA para aumentar las di-
mensiones de los subespacios extraídos. Para cada dimensión, se obtiene una
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estimación del número de fuentes y la estimación final se obtiene mediante una
regla de voto mayoritario.

• Para extender el SA a arrays con geometrías arbitrarias, este se ha combinado
con una fase de reconstrucción dispersa (SR). La colección de subespacios a
promediar se genera obteniendo una representación dispersa de cada snapshot
como combinación lineal de las demás. Se ha propuesto una generalización de
la sustitución basada en logaritmos de la norma `0 para realizar la SR, que se re-
suelve utilizando la técnica de mayorización-minimización. Después, en base a
los coeficientes dispersos de la reconstrucción, se ha presentado un mecanismo
de muestreo para obtener matrices de proyección que comparten una gran por-
ción común con el subespacio de la señal. Finalmente, los valores propios de la
matriz de proyección promedio se utilizan para estimar el número de fuentes.

• En el capítulo 4, se ha propuesto un método de estimación del orden basado
en la técnica de matrix-completion para arrays lineales y uniformes cuando la
covarianza de ruido es una matriz diagonal con entradas desconocidas. Los
términos diagonales más ruidosos de la matriz de covarianza de la muestra son
eliminados y a los términos de fuera de la diagonal principal se les reduce el
ruido mediante la rectificación de Toeplitz. La matriz de covarianza Toeplitz de
bajo rango es reconstruida después con técnicas matrix-completion. El criterio
de estimación del orden propuesto está basado en la norma Frobenius de las
matrices reconstruidas para valores crecientes de su rango. Se ha demostrado
que el método propuesto supera a otros métodos para arrays de pequeño y gran
tamaño en regímenes con pocas muestras.

• Finalmente, en el capítulo 5 se ha propuesto trabajar con un número reducido
de cadenas de radiofrecuencia (RF). La complejidad del hardware y el con-
sumo de energía de los sistemas MIMO masivos constituyen un auténtico de-
safío. Una posible solución consiste en reducir el número de cadenas de RF
mediante la realización de técnicas de selección aleatoria de antenas, que dan
como resultado una matriz de datos con múltiples entradas faltantes. A contin-
uación, se utiliza una técnica matrix-completion para recuperar estas entradas
faltantes. La técnica matrix-completion no solo explota el bajo rango de la ma-
triz de datos sin ruido, sino que también aprovecha la propiedad de invariancia
de desplazamiento de los arrays lineales y uniformes. Se ha demostrado que se
estima un mejor subespacio de señal mediante los métodos matrix-completion
propuestos, pudiendo ser utilizados además para la estimación de DOA. A con-
tinuación, basado en el algoritmo matrix-completion propuesto, se ha propuesto
un criterio de estimación del orden para escenarios con datos faltantes que se
basa en la distancia cordal entre dos submatrices extraídas a partir de la ma-
triz reconstruida para valores crecientes de su rango. Se ha demostrado que
el método propuesto es capaz de estimar el número de fuentes con precisión
incluso cuando hay muy pocos datos disponibles.



109

Líneas futuras

En esta tesis, se ha tratado el problema de la estimación del orden y se han propuesto
varias soluciones al mismo. Sin embargo, ninguna línea de investigación está del todo
completa. A continuación, se enumeran algunas líneas de investigación que podrían
complementar el presente trabajo.

• En esta tesis, se han revisado varios métodos existentes para la estimación del
orden y se han propuesto algunos enfoques novedosos basados en: i) promedi-
ado de subespacios y ii) técnicas matrix-completion. Sin embargo, los snapshots
o subespacios son recibidos generalmente de forma secuencial en la práctica y
la mayoría de los métodos propuestos procesan los datos recibidos por lotes. En
estos casos, se requiere una gran capacidad de almacenamiento para guardar
todos los datos y el costo computacional también es alto. La solución a este
problema consistiría en procesar los datos secuencialmente a medida que se
van recibiendo. Para ello, sería necesario un algoritmo online para que los
métodos propuestos puedan trabajar de forma secuencial.

• En esta tesis, se ha trabajado con arrays lineales. Por ejemplo, en el Capítulo
2 se ha discutido el problema de la estimación del orden para arrays lineales y
uniformes y se ha aprovechado la propiedad de invariancia de desplazamiento.
La propiedad de invariancia de desplazamiento también es válida para arrays
rectangulares uniformes y la técnica de promediado de subespacios podría ser
útil para diseñar un criterio de estimación del orden para arrays rectangulares
2-D uniformes. También sería interesante estudiar arrays circulares uniformes.
En conclusión, se requiere un estudio exhaustivo del rendimiento de la técnica
de promediado de subespacios para arrays planos.

• En el capítulo 4, se usan técnicas matrix-completion con rectificación de Toeplitz
para eliminar el ruido de una matriz de covarianza cuya matriz de covarianza
de ruido es diagonal con elementos desconocidos. Este enfoque puede ser ex-
tendido a otros modelos de ruido. Por ejemplo, si el ruido está correlado de
manera exponencial, las entradas cercanas a la diagonal principal de la matriz
de covarianza se verían más afectadas por el ruido. Sin embargo, la matriz de
covarianza de la señal siempre posee la estructura de Toeplitz. Esto sugiere
extender el método Toeplitz-matrix-completion a otros modelos de ruido espa-
cialmente correlacionados.

• En el capítulo 5, se ha propuesto una técnica de estimación del orden con datos
faltantes. El método propuesto funciona de manera consistente, sin embargo, el
coste computacional del método es bastante alto. Además, el método propuesto
está restringido a trabajar con arrays lineales y uniformes en presencia de ruido
blanco. Llegados a este punto, se cree que se requiere un estudio más profundo
para escenarios con datos faltantes, considerando otros modelos de ruido u
otras geometrías de array.
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• En el capítulo 5, también se ha observado que el método de promediado de
subespacios funciona de manera robusta cuando faltan algunos datos. Sin em-
bargo, otros métodos que utilizan los autovalores de la matriz de covarianza
de la muestra para estimar el número de fuentes no proporcionan resultados
consistentes. Sería necesario estudiar más a fondo el efecto de los datos no
observados sobre los valores y vectores propios de la matriz de datos o de la
matriz de covarianza de la muestra.

• Finalmente, es importante señalar que se han asumido ruidos Gaussianos a lo
largo de toda la tesis. Resultaría necesario estudiar más a fondo las prestaciones
de los métodos propuestos para escenarios con ruidos no Gaussianos. Es com-
prensible que algunos de estos métodos puedan no funcionar del todo bien, ya
que están diseñados para ruidos Gaussianos. A este respecto, se requeriría dis-
eñar un criterio de estimación del orden en presencia de ruidos no Gaussianos
mediante el uso del promediado de subespacios o técnicas matrix-completion en
los desafiantes escenarios de sistemas MIMO masivos con escasez de muestras.
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