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Abstract: The intensity in energy consumption due to food production systems represents a major
issue in a context of natural resources depletion and an increasing worldwide population. In this
framework, at least a third of global food production is being lost or wasted. Moreover, about 38% of
the energy embedded in total food production is being lost. Consequently, the assessment of energy
consumption in food systems, and in food loss and waste valorization systems, is an increasing trend
in recent years. In this line, this work presents a systematic review, selecting 74 articles from a search
of 16,930 papers regarding the key words “energy assessment food”. The aim was to determine the
current and historical trends in this field of research. Results pointed to a worldwide acceleration
in trends since 2014, standing out in China and other Asian countries. Concerning the topics of
the publications, energy consumption in the food sector is a research field which has existed since
1979. Moreover, the study of energy valorization systems using food loss and waste is an increasing
trend since 2010. Additionally, publications focused on the water–energy–food nexus appeared
firstly in 2014 and have grown exponentially. Moreover, life cycle assessment highlights as the most
widespread methodology used.

Keywords: energy assessment; food systems; food loss and waste; water–energy–food nexus;
anaerobic digestion

1. Introduction

If the impacts along the whole life cycle are considered, the food supply chain (FSC)
appears as one of the most polluting daily activities [1]. It is due to different reasons, among
which stands out, the highly mechanized agricultural production and its use of agrochemi-
cal products, the long transportation distance for distributing food, the overpacked food,
and the increase in processed foods consumption, highlighting the so-called fourth and fifth
range products, which are ready to be eaten and sold frozen [2]. These factors have entailed
an increase in the energy consumption throughout the entire supply chain, transforming it
from a net producer of energy to a net consumer of energy [3]. Consequently, over time,
according to different works, such as Cuellar and Webber in 2010 [4], Lin et al. in 2011 [5],
and Vittuari et al. in 2016 [6], the energy inputs began to be higher than the energy outputs,
and today the FSC requires 10–15 kJ of fossil fuel to produce 1 kJ of food. Therefore, the
energy intensity of modern food systems represents a major issue in a current framework
of decreasing limited resources, and growing population [7].

On the other hand, more than a third of the worldwide produced food is being lost or
wasted, representing about 38% of the energy embedded in its production [8]. In this line,
food loss and waste (FLW) have central consequences on the energy balance of the FSC,
which leads to environmental impacts: natural resources are grind down, biodiversity and
habitats are lost, soil and water are degraded, and climate change is aggravated through
the emission of greenhouse gas (GHG) [5].
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In this entire context, the assessment of the energy systems along the whole FSC is
being an increasing field of research with different approaches and scopes. Among them,
the emerging framework of the water–energy–food nexus stands out. It is considered by
any authors as a promising field for guiding policy development and governance structures
in a world that is facing climate change, population growth, and inequality in terms of
access to resources [9]. In this line, the main reasons behind the increasingly acceptance
of the nexus concept are linked with the problem of water scarcity and pollution, the
high levels of energy consumption, which are associated with enormous levels of GHG
emissions, and the need to achieve food security [10]. Additionally, the management
of FLW with energy recovery, following different possible paths, such as incineration or
anaerobic digestion (AD), is another important trend of research which is standing out in
recent years. More concretely, in Hoehn et al. [11] it was highlighted as a potential path
for contributing to improve the energy inefficiencies of the FSC, reducing the net energy
consumption. This work presents a systematic review, by selecting works concerning the
different approaches in the research field of energy systems in the food supply chain and
in the FLW management. With this purpose, different aspects have been assessed: the
specific topic of each paper, the country of publication, the publication year, the number
of citations, the scope of the assessment, and if all food is considered or only concrete
fractions. Moreover, as life cycle assessment (LCA) is a highly used methodology in
the field of research, it has been used to analyze the number of publications using that
methodology. The objective was to determine current and historical trends in this field of
research, with the initial hypothesis of a relatively recent origin of the first publications,
with an exponential growth trend in the last decade. The results of this systematic review
aim to serve as a reference guide when it comes to visualizing the state of the art in this
field of research.

2. Material and Methods
2.1. Literature Search Strategy, Inclusion Criteria, and Analysis of Study Findings

In order to develop the review protocol, the Preferred Reporting Items for Systematic
review and meta-analysis protocols (PRIMA-P) guideline was used as a reference [12]. For
searching the publications in the field of study, this review has used Scopus as the database
for the development of the review, based in the reviewing methodology presented in other
publications in the literature, such as Fernández–Ríos et al. [13]. In order to do a complete
follow-up of all the publications registered around the analyzed topic, a first round of
searching, using the keywords “energy assessment food” was carried out on 14 October
2021, as shown in Figure 1. The keywords were selected considering the search spectrum
broad enough so that most, or perhaps all, of the scientific publications to date could fall
within the scope of the search. Through it, from the 16,930 documents found in Scopus,
411 documents where firstly preselected, in which the keywords were coinciding with
topics related to energy systems of food production, FLW management or nexus pub-
lications which included the energy pillar and were linked to the food system. The
411 preselected papers were used for the assessment of the geographic distribution, and
the time evolution. It was done a first general assessment of the three different fields
of research analyzed in this study: (i) energy assessment in the food sector (Group 1),
(ii) energy recovery from FLW (Group 2), and (iii) water–energy–food nexus publications
related or close to the food sector (Group 3). Secondly, from the 411 papers preselected, a
second filter was implemented by selecting those articles with 40 or more cites, reducing
the number of works to the 74 articles with the highest impact in the scientific community.
This element has been considered in this study as a valid filter of the high interest of those
publications in the scientific community, as it is the most evolved criterion for measuring
of a scientist or group or nation [14]. On the other hand, articles that focused on analysis
only of energy crops were excluded. The exceptions were water–energy–food nexus papers
linked to energy from biomass, as they were considered to be directly or indirectly linked
to energy and food systems. Moreover, those works focused on the nutritional energy of
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food or FLW, were excluded, as well as articles on AD of general waste or of solid waste.
Additionally, some of the publications included in Group 1 or Group 2 could potentially be
considered related to Group 3, but since they did not use the novel Nexus concept, they
were not linked to it.
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Figure 1. The methodology implemented for the selection of the papers assessed throughout this
study. The three fields of research detected in the 74 selected papers regarding energy assessments in
the food sector are highlighted.

As represented in Figure 1, once the 74 papers were selected, they were classified and
assessed relating the three topics of research. All works were described, as well as classified
depending on the year of publication, the scope of the study, the fact of considering all food
or only concrete fractions, and, as LCA was detected to be the highest used methodology,
they were also classified in terms of (i) using LCA or (ii) not using LCA.

2.2. Limitations of the Study

There are different methodological gaps which have to be highlighted. Firstly, this
review only used the Scopus database, even though several good databases are available
such as EBSCO, Web of Science, ProQuest, ScienceDirect, etc. However, it was assumed
that the result would not vary considerably since almost 19,000 articles were taken into
account in the first filter in this search. Moreover, the consideration of the number of cites
as a filter between the pre-selection and the selection round, although it is a reference
measure of quality within the scientific community, using the citation criteria may follow
few major issues such as citations in lower reputed journals, self-citation, high visibility
and advertisement of a paper, equal credit in case of multiple authors [14]. Additionally,
given that the search was carried out in October 2021, and the publication of the article
has been delayed a few months, other potentially impactful publications that could have
been included in the review could be left out. In any case, the fact of putting the barrier of
40 publications also helps to limit this effect in the short term.

Finally, the selected keywords of searching were a subjective decision. In this line,
other potentially related terms of the field of study were not included, which could have
increased the spectrum of publications found, such as “energy feeding” or “primary
energy nutrition”.
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3. Results of the Preliminary Paper Selection
3.1. Mapping of the Publications in the Field of Research

The 411 preselected publications have been used for this assessment. As presented in
Figure 2, the papers were developed in 54 different countries. The USA (58 publications),
China (46 publications), Italy (46 publications), and the United Kingdom (41 publications)
where the countries with higher number of publications. It is noteworthy that in the case
of China, as well as in other Asian countries on a smaller scale, the publications in the
assessed field of research are popping up in recent years. In the case of China, despite being
the second country with more publications, the first work dates back to 2012, whereas the
first paper carried out in the United States was published in 1973. More concretely, from
46 publications, 38 of them were published since 2018 in China. Other Asian countries with
similar trends since 2018 are Singapore (7 of 7 papers counted), Malaysia (6 of 7 papers
counted), South Korea (2 of 3 papers counted), and Thailand (4 of 5 papers counted). At the
other extreme, in the USA only 28 of 48 publications detected are due to the period 2018
and 2021. A similar behavior was found in Australia (1 of 6 papers counted) or Sweden
(6 of 12 papers counted). If the complete continents are assessed, Europe represents 45.5%
of total publications, Asia 30.4%, North America 15.8%, South America 5.1%, Africa 1.7%,
and Oceania 1.5%.
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Figure 2. Geographical distribution of the publications included in the review, considering the
preselected 411 publications between 1979 and 2021.

3.2. Time Evolution of the Publications

This section also considers the 411 preselected articles. According to them, until 2014,
Group 1 was clearly the most dominated topic of articles. The articles included in the topic
of Group 2 have been increasingly published in the last years, and especially since 2011.
Before that date, only one article in 1996, and two more in 1979, were found. It is interesting
to note that despite the possibility of using AD systems as an option for energy recovery
from FLW being an issue that in recent years has emerged as a novelty, there was already
a publication in the USA in 1979 surrounding this field. It highlighted AD as technically
capable of converting agricultural feedstocks into a stabilized sludge and biogas without
the labor intensiveness of the Asian systems or the cost and technical sophistication of
western sewage treatment plants. The study considered that the use of animal wastes
for both cooperative and single farm systems had greater potential than other residues
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such as food plant wastes and cellulosic feedstocks from both a technical and economic
perspective [15]. Finally, publications focused on the field of Group 3 are currently in an
exponential emergency process. Nevertheless, it is a field of study whose first references
are from 2014, with no previous precedents detected.

Concerning the total number of works from the 411 preselected articles, Group 1
represents 29.0% (119 publications), Group 2 works are the 45.0% (185 publications), and
Group 3 represents the 26.0% (107 publications). On the other hand, in relation only to
the works selected based on their number of citations (64), those of Group 1 account 32.8%
of the papers (21 publications), Group 2 represents 53.1% (34 publications), and Group 3
accounts only 14.1% (9 publications). An overview is presented in Figure 3.
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4. Results of the High-Cited Papers
4.1. Energy in the Food System

As presented in Table 1, the majority of the publications have a global approach (8),
follow by national (6) and international approaches. Concerning the methodology, LCA
is present in only 6 of the publications. Regarding the food assessment, the majority are
related to specific fractions (12), in comparison with those considering food in general (11).

Highly cited publications of Group 1 were found since many decades, being the first
study found developed by Slesser in 1973 [16]. It focused on the assessment of food pro-
duction, both agricultural and industrial processes, in energy terms for 131 food producing
systems. The methodology developed was presented to be especially applicable to the
less developed countries. Later, in 1992, Giampietro [17] developed an energy analysis of
the agricultural ecosystem management, using a set of parameters derived from energy
analysis, for examining the ecological aspects of agricultural management. More than a
decade later, in 2004, Kim and Dale [18] estimated the energy and global warming im-
pacts regarding the production of corn, soybeans, alfalfa, and switchgrass. Moreover, they
assessed the impacts of these crops’ transportation to a central crop processing facility,
which was called “biorefinery”. For that objective, data from eight different States of the
United States were used. Results indicated that each crop has different functions, and are
thereby allocated the environmental burdens to the different functions delivered by the
assessed crops is needed for directly comparing one crop to another. Moreover, Schlicht
and Fleissner [19] presented an assessment of regional energy turnover and a comparison
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with the global produced food, considering the ecology of scale. The recorded data of fruit
juices and of lamb meat suggested a strong relation of the specific energy turnover and
the business size. Consequently, they concluded by emphasizing that it was not important
the rationality of the business. Just the efficiency and logistics of the production and the
operations determined the specific energy turnover. In 2006, Piringer and Steinberg [20]
presented an assessment of the energy use linked to the United States produced wheat
production. Lakshmi et al. [21] developed an energy assessment concerning the energy con-
sumption in microwave cooking of rice, and presented a comparison with other domestic
appliances. Hermes et al. [22] created a simplified model to assess the energy performance
of household refrigerators and freezers via a steady-state simulation. Moreover, Mushtag
et al. [23] developed an assessment of the complex energy, water and economics dynamics
concerning a selection of countries with highest rice production worldwide.

Table 1. The 23 selected works, concerning the so-called Group 1 and relating the different scopes,
methodologies and food assessments.

Publication
Year

Paper Reference
Scope

Methodology Food Assessment
Global International National Regional Local

1973 Slesser [16] x Energy subsidy General
1992 Giampietro [17] x Energy analysis General
2004 Kim and Dale [18] x LCA Corn/soybean/alfalfa
2005 Schlich and

Fleissner [19] x LCA General

2006 Piringer and
Steinberg [20] x Input/output

model Wheat production

2007 Lakshmi et al. [21] x Experiments Rice cooking
2008 Hernes et al. [22] x Model General
2009 Mushtaq et al. [23] x Energy balance Rice cultivation
2010 Sogut [24] x Energy/exergy Tomato paste
2011 Cellura et al. [25] x LCA General
2012 Bogdanski [26] x Review General

Tuomisto et al. [27] x LCA General
2013 Evans et al. [28] x Energy audits General
2014 Sarauskis et al. [29] x Energy/cost/CO2 Maize

Pairotti et al. [30] x LCA General
Blanke and
Burdich [31] x Energy balance Apple fruit

Popp et al. [32] x Meta-analysis General
Daccache et al. [33] x Water/CO2 Mediterranean crops

2015 Taner and
Sivrioglu [34] x Energy/exergy Sugar

2016 De Nicola et al. [35] x Time series 8 food commodities
2017 Eriksson and

Spångberg [36] x Energy use/CO2
Fresh fruit and

vegetables
2019 Nabavi–Pelesaraei

et al. [37] x LCA Rice milling

In 2010, Sogut et al. [24] presented an energetic and exergetic performance evaluation
of a tomato paste production. They concluded by explaining that the brix ratio increased in
each effect as a result of the evaporation of water, from 8.6% to 29%, the brix ratio being
one of the most important parameters for the determining the thermodynamic properties
of tomato paste. In 2011, Cellura et al. [25] developed a paper concerning the energy
and environmental impacts of Italian households’ consumption, with an input–output
approach. It was suggested the importance of including emissions arising both from energy
and non-energy sources, in the assessment of environmental impacts to obtain reliable
simulations. Bogdanski [26] highlighted in 2012 that increasing evidence shows that diverse
and integrated farming systems and landscapes that are based on agroecological farming
practices are sustainable paths towards climate-smart agriculture. This is a fact of high
importance, especially in the currently times, which are characterized by a steadily growing
world population and increasing resource competition. In the same year, Toumisto et al. [27]
carried out a comparison of energy and greenhouse gas (GHG) balances and biodiversity
impacts of different farming systems by using LCA accompanied by an assessment of
alternative land uses. In 2014, Evans et al. [28] presented a paper focused on an assessment
of the methods to reduce the energy consumption of food cold stores. Moreover, Sarauskis
et al. [29] studied the energy balance, costs, and CO2 emissions of tillage technologies
in maize cultivation. Pairotti et al. [30] assessed the energy consumption and the GHG
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emission of the Mediterranean diet, developing a systematic assessment using a hybrid
LCA-IO method. Blanke and Burdich [31] carried out an energy balance for locally grown
versus imported apples. They found that the primary energy requirement of regional
produced and stored several months on-site, partially compensated for the larger energy
required for importing fresh fruit from overseas. Popp et al. [32] assessed the effects
of bioenergy expansion related to food, energy, and environment. Daccache et al. [33]
developed an assessment of the water and energy footprint of irrigated agriculture in
the Mediterranean region. In 2015, Taner and Sivrioglu [34] assessed and optimized the
energy and exergy of a model sugar factory in Turkey. After it, De Nicola et al. [35] carried
out a work where, by using monthly data between 1970 and 2013, an assessment of the
extent co-movement among the nominal price returns of 11 major energy, agricultural,
and food commodities was provided. In 2017, Eriksson and Spångberg [36] assessed the
carbon footprint and energy use of different FLW management options for fresh fruit and
vegetables from supermarkets. Finally, in 2019, Nabavi–Pelesaraei et al. [37] carried out a
study aiming to provide an overview of the energy use, economic costs and environmental
impacts in the production of white rice in milling factories of Guilan province, in Iran.

4.2. Energy Recovery from Food Loss and Waste

As presented in Table 2, the majority of the publications concerning the Group 2
have a national approach (13), followed by international (12) approaches. Concerning the
methodology, LCA is present in the majority of the publications (17). Regarding the food
assessment, the majority are related to food in general (27) considering food in general (8).

The first highly cited study in Group 2 was found in 2009, when Gerbens–Leenes
et al. [38] presented a quantitative assessment and consequences of an increasing share
of bioenergy in energy supply. The objective was to determine the water footprint of
the energy from biomass. Since 2011, the level of publications in the field of Group 2
clearly increased. In that year, Cooper and Leifert [39] presented an LCA of GHG from
organic and conventional food production systems, with and without bioenergy options.
Banks et al. [40] presented an assessment of the energetic and environmental benefits of
co-digestion of FLW and cattle slurry. Ramzan et al. [41] simulated a hybrid biomass
gasification using Aspen plus, developing a comparative performance analysis for food,
municipal solid, and poultry waste. Shie et al. [42] presented an energy LCA of rice straw
bioenergy derived from potential gasification technologies. The main motivation for the
research was the fact that rice straw is being considered as a source for potential biofuel in
Taiwan. Kimming et al. [43] presented a comparative LCA concerning the use of small-scale
heat and power plants with biomass from agriculture. They highlighted the potential of
using biomass from farmland as a renewable fuel for rural areas, through the investment
in those small-scale plants. However, it was also questioned if biomass-based energy
generation is a good environmental choice regarding the GHG emissions impacts, as well
as wondering on the negative consequences of using of agricultural land for other objectives
than food production. Moreover, Banks et al. [44] presented a mass and energy balance on
AD of source-segregated domestic food waste. In 2012, Hall and Howe [45] assessed the
energy from the food processing industry, which is a major energy user. It identified AD
as an opportunity to go some way to achieving energy security in a sustainable manner.
Bernstad and la Cour Jansen [46] assessed the separate collection of household food waste
for AD, developing a comparison of different techniques from a systems perspective.
Zubarayeva et al. [47] developed a spatially explicit assessment of local biomass availability
for distributed biogas production via AD, using the Mediterranean case study. The study
focused on the development of the approach on the assessment of biogas potentials to
provide a support for decision-makers and bioenergy industry at a local scale. In 2013,
Rajagopal et al. [48] presented a sustainable agri-food industrial wastewater treatment
using a high-rate AD process. This review article compiled the various advances made
since 2008 in sustainable high-rate AD technologies with emphasis on their performance
enhancement when treating agri-food industrial wastewater. Kim et al. [49] developed
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in 2013 an evaluation of different FLW disposal options in terms of global warming and
energy recovery concerning South Korea. AD was highlighted as the best option, following
by co-digestion and fryer incineration (per 1 tonne of FLW).

Table 2. The 30 selected works, concerning the so-called Group 2 and relating the different scopes,
methodologies and food assessments.

Publication
Year

Paper Reference
Scope

Methodology Food Assessment
Global International National Regional Local

2009 Gerbens–Leenes
et al. [38] x Water footprint General

2011 Cooper and
Leifert [39] x LCA General

Banks et al. [40] x Data/modelling Dairy cattle slurry
Ramzan et al. [41] x ASPEN Plus General

Shie et al. [42] x LCA
Kimming et al. [43] x LCA General

Banks et al. [44] x Experimental plant General
2012 Hall and Howe [45] x LCA General

Bernstad and la
Cour Jansen [46] x LCA General

Zubaryeva
et al. [47] x Multicriteria

Analysis General

2013 Rajagopal et al. [48] x Review General
Kim et al. [49] x LCA General

Ebner et al. [50] x LCA General
Vandermeersch

et al. [51] x LCA General
Hamelin et al. [52] x LCA Six co-substrates

2015 Angelondi and
Smith [53] x Data/Interviews General

Styles et al. [54] x LCA General
Xu et al. [55] x LCA General

Bacenetti et al. [56] x LCA Tomato purée products
Jin et al. [57] x LCA General

Tonini et al. [58] x LCA General
2016 Voelklein et al. [59] x Experimental lab General
2017 Lijó et al. [60] x LCA General
2018 Wapas et al. [61] x Experimental setup General

Ingrao et al. [62] x Review General
Xiao et al. [63] x Experimental setup General

Chinnici et al. [64] x Estimations General
2019 Slorach et al. [65] x LCA General

Ali Rajaeifar
et al. [66] x LCA Beet sugar industry

Zabaniotou and
Kamaterou [67] x Review Coffee grounds

In 2014, Ebner et al. [50] presented an assessment on GHG impacts of a novel pro-
cess for converting FLW to ethanol and co-products. Waste-to-ethanol conversion was
highlighted as a promising technology to provide renewable transportation fuel while
mitigating feedstock risks and land use conflicts. Moreover, Vandermeersch et al. [51] car-
ried out an environmental sustainability assessment of different FLW valorization options,
analyzing the study case of a company of the retail sector in Belgium through exergy analy-
sis, exergetic LCA, and a traditional LCA. Additionally, Hamelin et al. [52] assessed the
environmental consequences of different carbon alternatives for increased manure-based
biogas. In 2015, Angelonidi and Smith [53] presented a comparison of wet and dry AD
processes for the treatment of municipal solid waste and FLW. Styles et al. [54] carried
out a consequential LCA of biogas, biofuel and biomass energy options within an arable
crop rotation. Xu et al. [55] presented an LCA of FLW-based biogas generation. Bacenetti
et al. [56] focused a study on mitigation strategies in the agri-food sector, concerning the
AD of tomato puree by-products, using an Italian case study. Jin et al. [57] developed an
LCA of energy consumption and environmental impact of an integrated FLW-based biogas
plant. Tonini et al. [58] assessed the environmental implications of the use of agri-industrial
residues for biorefineries, aiming to implement a deterministic model for indirect land-use
changes. In 2016, Voelklein et al. [59] presented an assessment of increasing loading ratio in
two-stage digestion of FLW, which involved a first stage hydrolysis reactor followed by a
second stage methanogenic reactor. In 2017, Lijó et al. [60] assessed the environmental effect
of substituting energy crops for FLW as feedstock for biogas production. Thereby, two real
biogas plants were assessed and compared from a life cycle perspective. In 2018, Waqas
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et al. [61] focused a study on the optimization of FLW compost with the use of biochar.
In 2018 Ingrao et al. [62] analyzed the FLW recovery into energy in a circular economy
perspective. The goal was to develop a comprehensive review of aspects related to plant
operation and environmental assessment. They highlighted that FLW has great potentials
to be recovered, through a set of technologies such as AD, into high-value energy, fuel, and
natural nutrients. Xiao et al. [63] analyzed the energy balance of a temperature-phased AD
of FLW. Moreover, Chinnici et al. [64] presented an assessment of the potential energy sup-
ply and biomethane from the AD of agri-food feedstocks in Sicily. In 2019, Slorach et al. [65]
developed a study focused on the environmental sustainability of AD of household food
waste in the UK. Ali Rajaeifar et al. [66] presented a review on beet sugar industry with a
focus on implementation of waste-to-energy strategy for power supply. Finally, Zabaniotou
and Makaterou [67] developed a critical review of the potentialities and perspectives of
using coffee grounds for biorefinery. An approach of FLW valorization, advocating circular
bioeconomy, was included.

4.3. The Water–Energy–Food Nexus in Food Supply Chain

In this section, all those works that directly or indirectly relate the WEF nexus with
food systems have been considered. In this case, the works related to bioenergy with food
or potential food, including a nexus approach, have been included. As presented in Table 3,
the majority of the publications related to Group 3 have a global approach (10). Concerning
the methodology, LCA is present in only eight of the publications. Regarding the food
assessment, the majority are related to food in general (20), being only two publications
found focusing on specific fractions.

The WEF nexus concept applied to the food sector, began to be exponentially present
in highly cited works since 2012, when Hermann et al. [68] developed a study focused on
climate, land, energy, and water (CLEW) interactions in Burkina Faso. In 2013, Ringler
et al. [69] assessed the nexus across water, energy, land, and food (WELF). All it in the
context of water, land, and energy as resources which are all crucial contributors to food
security, and the sustainable development goals (SDG), representing a globally significant
test for the implementation of the nexus thinking. In 2015 Jeswani et al. [70] carried out
a work focused on the environmental sustainability issues in the WEF nexus concerning
breakfast cereals and snacks, considering different impact categories and stages of the FSC.
By using the water footprint and LCA methods, Pacetti et al. [71] presented a study case of
biogas production from energy crops with a water-energy nexus approach, considering
the importance of the water, energy and food elements. In 2016, Keairns et al. [72] claimed
the need to consider new frameworks and tools when developing nexus analyses, such as
those integrating societal and technical dimensions. Yang et al. [73] analyzed the future
nexus of the Brahmaputra River Basin, considering the climate, energy, water, and food
trajectories. De Laurentiis et al. [74] presented a review with the focus on overcoming food
security challenges within an energy-water-food nexus (EWFN) approach. It suggested
that most of the publications were focused on the assessment of the resource efficiency and
environmental impact regarding food production, whilst fewer assessed the environmental
performance of diets and the potential environmental savings of the reduction of FLW
generation. Moreover, Al-Saidi and Elagib [75] developed a review towards understanding
the integrative approach of the water–energy–food nexus. In 2017, Miller–Robbie et al. [76]
presented an assessment regarding wastewater treatment and its potential for being reused
in urban agriculture, assessing thereby, the food–energy–water–health nexus in Hyderabad,
India. Giupponi and Gain [77] integrated a spatial assessment of the WEF dimensions of
the SDG. Al-Ansari [78] integrated GHG control technologies within the energy, water, and
food nexus to achieve sustainability in food production systems. Moreover, Ramaswami
et al. [79] focused on an urban systems framework to assess the trans-boundary FEW
nexus, implemented in Delhi, India. In 2018, Karabulut et al. [80] presented a proposal for
integration of the ecosystem–water–food–land–energy (EWFLE) nexus concept into LCA.
Salmoral and Yan [81] developed an LCA on virtual water and embodied energy in food
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consumption in the Tamar catchment, in the UK, with a WEF nexus approach. Moreover,
a systematic review of the methods for assessing the WEF nexus was presented [82]. De
Amorim et al. [83] assessed the interactions between food, water, and energy security with
a nexus approach and in the context of global risks. Different state-of-the art reviews were
provided in 2018: on the one hand focusing of the climate risks and opportunities of imple-
menting a WEF nexus approach [84]. On the other hand, concerning the concepts, research
questions and methodologies in the field of water–energy–food [85]. Additionally, Nie
et al. [86] combined data analytics and mixed-integer nonlinear modeling and optimization
methods establishing the interdependencies and potentially competing interests among the
FEW elements in the system. Finally, in 2019 Simpson and Jewitt focused a review on the
development of the WEF nexus as a framework for achieving resource security. Moreover,
Pastor et al. [87] assessed the global nexus of food–trade–water sustaining environmental
flows by 2050. The publication was linked to the aim of meeting the SDG.

Table 3. The 21 selected works, concerning the so-called Group 3 and relating the different scopes,
methodologies, and food assessments.

Publication
Year

Paper Reference
Scope

Methodology Food Assessment
Global International National Regional Local

2012 Hermann et al. [68] x Review General
2013 Ringler et al. [69] x Review General
2015 Jeswani et al. [70] x LCA Cereals/snacks

Pacetti et al. [71] x LCA Maize/sorghum/wheat
2016 Keairns et al. [72] x LCA General

Yang et al. [73] x Water system
model General

De Laurentiis
et al. [74] x LCA General

2017 Al-Saidi and
Elagib [75] x Review General

Miller–Robbie
et al. [76] x LCA General

Giupponi and
Gain [77] x Indicator-based

approach General

Al-Ansari et al. [78] x LCA General
Ramaswami

et al. [79] x Environmental
footprint General

2018 Karabulut
et al. [80] x LCA General

Salmoral and
Yan [81] x LCA General

De Amorim
et al. [82] x WEF Global Risks

Report General
Albrecht et al. [83] x Review General
Nhamo et al. [84] x Review General
Zhang et al. [85] x Review General

2019 Nie et al. [86] x Multi-objective
optimization General

Pastor et al. [87] x GBM Model General
Simpson and

Jewitt [9] x Review General

4.4. Life Cycle Assessment as a Methodological Approach

Given its wide presence in the literature in this field as a methodology, in this work
LCA was specifically analyzed compared to other types of methodologies, and it is note-
worthy it is widely used in all publications related to energy assessments in food systems,
especially highlighting those related to FLW valorization options. More concretely, related
the publications included in Group 1, 6 of 22 of them used LCA, at global (2), international
(1), national (1), regional (1) and local (1) levels. Moreover, 4 of 6 publications had a general
approach in terms of food or FLW categories considered. On the other hand, concerning
the studies included in Group 2, it was accounted that 17 of the 30 selected publications
followed the LCA methodology, with a global (3), regional (9), or local (5) approach. Of all
them, 14 of 17 accounted for all food items, for national, regional, and local approaches.
Finally, Group 3 included 8 of 20 publications using LCA with a global (3), national (1),
regional (3), or local (1) approach. Regarding the fractions of food assessed, 6 o 8 publica-
tions presented a general approach. However, despite the wide use of LCA in the field of
research, there was no clear trend of evolution over time in terms of an increase in its use
towards standardize it as a reference methodology compared to other methodologies.
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5. Findings of the Study and Conclusions

As main conclusions of the conduced review, it has been confirmed that the field
of “energy assessment in food systems” is a growing trend, especially in relation to FLW
valorization systems and the WEF Nexus. The number of publications in this field has been
accelerated considerably since 2014, and became especially clear since 2018. Likewise, the
countries that are developing more scientific papers are the USA, China, Italy, and the UK.
Nevertheless, it is noteworthy that in the case of China, as well as in other Asian countries
on a smaller scale, these publications are popping up in recent years. If the complete
continents are assessed, Europe represents 45.5% of total publications, Asia 30.4%, North
America 15.8%, South America 5.1%, Africa 1.7%, and Oceania 1.5%.

Concerning the 74 high-cited papers selected for the assessment, energy in food
systems represented 21 (32.8%) publications, energy recovery from FLW 34 publications
(53.1%), and WEF nexus only 9 (14.1%) publications. Similar trends were found if the
preselected 411 papers are compared. It should be noted that of the three groups of
publications detected, the WEF nexus analysis is a very recent trend (2014) with exponential
growth in recent years, although some previous publications with similar approaches could
potentially have been included in Groups 1 and 2, by not using the nexus concept. Those
related to FLW valorization systems, although they have increased a lot in recent years, have
a longer trend. In this line, a study without citations was found in 1979 that already raised
the use of AD systems for agricultural systems and raised the influence of the incorporation
of FLW to these systems. Different publications assessing FLW management highlighted
that biomass produced on farmland is a renewable fuel that can prove suitable for small-
scale combined heat and power plants in rural areas. On the other hand, publications
related to energy assessments in the food system have remained present over the years.
Finally, LCA was specifically analyzed, highlighting as the most important methodology
used in the field, but without a clear trend of evolution towards a standardization as a
reference method compared to other ones.

One of the main contributions of this study is that an extensive historical review
has been carried out, focusing on the publications with the greatest impact in terms of
citations, but also including a previous analysis of all the literature found in general (almost
19,000 publications). As a general conclusion, on the one hand, a clear general interest in the
scientific community in recent years in these fields of study has been highlighted, in which
new concepts such as the Nexus emerge, and new fields of study such as the recovery of
energy with unavoidable FLW. In a context of increasingly evident limitation of natural
resources, and rise in environmental, social, and economic costs of energy production,
interrelated with a highly globalized food supply chain, research in this field of study
will most likely continue to grow in the coming years at rates as great or more than in
recent years. On the other hand, sometimes it is important to look back in order to realize
that there are questions and fields of study that began much earlier than is thought. It
has been seen in the case of the analysis of energy systems and also of FLW management
alternatives such as AD. This point must be taken into account, as sometimes emerging
fields of study can be nurtured by lines of research from the past. The results obtained
through this systematic review aim to be useful as a reference guide when it comes to
visualizing the state of the art in this field of research, as a tool for progress towards more
sustainable energy food systems.
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