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Abbreviations and Symbols

ABA Aminobenzoic Acid

m-ABA meta-Aminobenzoic Acid or 3-Aminobenzoic Acid

1 m-ABA Rotamer 1 meta-Aminobenzoic Acid or Rotamer 1 3-Aminobenzoic
Acid

2 m-ABA Rotamer 2 meta-Aminobenzoic Acid or Rotamer 2 3-Aminobenzoic
Acid

p-ABA para-Aminobenzoic Acid or 4-Aminobenzoic Acid

HF Hartree-Fock

MP2 Møller and Plesset perturbation theory truncated at 2nd order

CCSD Coupled-Cluster Singles and Doubles

H Hamiltonian

PES Potential Energy Surface

MO Molecular orbital

AO Atomic orbital

LCAO Linear Combination of Atomic Orbitals

STO Slater Type Orbital

GTO Gaussian Type Orbital

STO-nG Slater Type Orbital approximated by n primitive Gaussians

cc-pCVnZ correlation-consistent polarized Core and Valence (Double/Triple/ect.)
Zeta

cc-pwCVnZ correlation-consistent polarized weighted Core and Valence (Dou-
ble/Triple/ect.) Zeta

cc-pVnZ correlation-consistent polarized Valence (Double/Triple/ect.) Zeta

SCF Self-Consistent Field

RHF Restricted Hartree-Fock
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ROHF Restricted Open-shell Hartree-Fock

UHF Unrestricted Hartree-Fock

MCSCF Multicon�guration Self-Consistent Field

CSF Con�guration State Function or Con�guration

CAS Complete Active Space

RAS Restricted Active Space

MP Møller and Plesset perturbation theory

MPn Møller and Plesset perturbation theory truncated at nth order

CI Con�guration interaction

CIS Con�guration Interaction Singles

CID Con�guration Interaction Doubles

CISD Con�guration Interaction Singles and Doubles

CC Coupled-Cluster

CCS Coupled-Cluster Singles

CCSDT Con�guration Interaction Singles, Doubles and Triples

CCSD(T) Coupled-Cluster Singles, Doubles and an estimation of Triples
based on perturbation theory

CISDT Con�guration Interaction Singles, Doubles and Triples

CISDTQ Con�guration Interaction Singles, Doubles, Triples and Quadru-
ples

CCSDTQ Coupled-Cluster Singles, Doubles, Triples and Quadruples

4



Abstract

Ab initio methods such as the Hartree-Fock method, the Møller and Ples-
set perturbation method and the Coupled-Cluster method can be used to
solve the electronic Schrödinger equation and calculate the total and orbital
energies of the system. The total energy can then be used for optimizing
the geometry of the system. The binding energies of the molecule can then
be approximated from the orbital energies at the optimized geometry with
Koopmans' theorem, which states that the one-electron orbital energy can be
taken to be roughly the negative of the ionization energy of the electron from
that orbital. The approximations of binding energies can then be displayed
as a density of states spectra and compared to experimental binding energy
spectra.

By optimizing the geometries of the two rotamers of meta-aminobenzoic
acid and the para-aminobenzoic acid molecules with ab initio methods and
comparing the results with the experimental binding energy spectra of meta-
aminobenzoic acid it is easy to identify most of the peaks from the experimen-
tal spectra and analyze the di�erences between experimental and calculated
binding energies.

By comparing the approximated binding energies of the two rotamers of
meta-aminobenzoic acid molecules to each other and the experimental meta-
aminobenzoic acid molecule binding energy spectra it can be seen that it is
di�cult to di�erentiate between rotamers based on the experimental spectra,
as most of the di�erences are small and the larger ones are in binding energy
regions where they would be di�cult to notice.

The di�erences between experimental and calculated approximations of
binding energies for meta-aminobenzoic acid molecules and the calculated
approximations of para-aminobenzoic acid's binding energies can be used to
form a decent approximation of what para-aminobenzoic acid's true binding
energy spectra would look like.
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1 Introduction

In this thesis I optimize the geometry and study the binding energies of
aminobenzoic acid (ABA) molecules. First, I go through the theory needed
for geometry optimization and analysis of the results. Then I present the
experimental binding energy spectra of meta-aminobenzoic acid (m-ABA). I
also brie�y introduce the experimental setup and explain how the data was
processed to form the spectra.

The geometries of rotamer 1 meta-aminobenzoic acid (1 m-ABA), rotamer
2 meta-aminobenzoic acid (2 m-ABA) and para-aminobenzoic acid (p-ABA)
are optimized using ab initio methods. The geometry is �rst optimized us-
ing Hartree-Fock (HF) method going through di�erent basis sets, then the
geometry is optimized further �rst with the Møller and Plesset perturbation
method truncated at 2nd order (MP2) and then the Coupled-Cluster Sin-
gles and Doubles (CCSD) method going through the same basis sets as with
HF method and always using the result gained with the previous basis set
or method as the starting point for the next one. These calculations also
provide the orbital energies for the optimized geometries and from the or-
bital energies the corresponding binding energies can be approximated using
Koopmans' theorem.

The approximated binding energies for the �nal optimization level of 1
m-ABA, 2 m-ABA are compared to each other and the measured m-ABA
binding energy spectra. Based on the results of the comparison and the ap-
proximated binding energies of p-ABA an approximation of the true p-ABA
binding energy spectra is then formed.
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2 Theory

2.1 Quantum Mechanics

In quantum mechanics any chemical system can be described by a wave
function Ψ. A wave function returns the system's properties when acted upon
by appropriate operators. The Hamiltonian operator H returns the system's
total energy E as an eigenvalue, as seen from the Schrödinger equation:

HΨ = EΨ. (1)

For a molecule there are many valid eigenfunctions Ψ each with their own
eigenvalue E. This means that there is a complete set of orthonormal wave
functions Ψi with eigenvalues Ei. This leads to the equation:∫

ΨjHΨidr = Eiδij, (2)

where δij is the Kronecker delta: [1]

δij =

{
1, i = j

0, i ̸= j.
(3)

The Hamiltonian H can be written as

H =−
∑
i

ℏ2

2me

∇2
i −

∑
k

ℏ2

2mk

∇2
k

−
∑
i

∑
k

e2Zk

rik
+
∑
i<j

e2

rij
+
∑
k<l

e2ZkZl

rkl
,

(4)

where i and j run over electrons, k and l run over nuclei, me is the mass
of an electron, mk is the mass of nucleus k, Z is the atomic number of the
indicated nucleus, r is the distance between the indicated particles and e is
the charge of an electron. Eq.(4) can be simpli�ed into the form

H =−
∑
i

1

2
∇2

i −
∑
k

1

2mk

∇2
k

−
∑
i

∑
k

Zk

rik
+
∑
i<j

1

rij
+
∑
k<l

ZkZl

rkl

(5)

by using atomic units. [1]
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The �rst two terms of the Hamiltonian represent kinetic energy and the
last three potential energy. Thus, Eq.(4) can also be written in the form

H = Te + Tn + Vne + Vee + Vnn, (6)

where the terms Te and Tn are kinetic energies and the terms Vne, Vee and Vnn
are potential energies, with e indicating electrons and n indicating nuclei. [1,2]

2.1.1 Variational principle

If an arbitrary function Φ is of the correct form to be operated by the Hamil-
tonian, it must be a linear combination of Ψi:

Φ =
∑
i

ciΨi, (7)

where the individual Ψi or the individual coe�cients ci are not necessarily
known. Due to the normalization of Φ we can write∫

Φ2dr = 1 =
∑
i

c2i (8)

and using Eq. (3) we can also write∫
ΦHΦdr =

∑
i

c2iEi. (9)

Combining equations (8) and (9) leads to∫
ΦHΦdr− E0

∫
Φ2dr =

∑
i

c2i (Ei − E0), (10)

where E0 is the lowest energy value in the set of all Ei. Thus, Ei − E0 is
always greater than or equal to zero and if the ci is assumed to be a real
number then c2i must also always be greater than or equal to zero. This leads
to the equation: ∫

ΦHΦdr∫
Φ2dr

= E ≥ E0, (11)

where E is the Rayleigh ratio. The Rayleigh ratio can be used to optimize trial
wave functions, with a lower energy indicating a better wave function and the
E = E0 case applying only when the trial wave function is the ground-state
wave function of the system. As the Rayleigh ratio is never lower than the
ground-state energy, variational methods always give an upper bound to the
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system's true energy. However, there is no guarantee that a wave function
optimized using the Rayleigh ratio will give good values for properties other
than energy. [1, 3]

Eq.(11) can also be written in the form

E =

∫ (∑
i ciΨi

)
H

(∑
j cjΨj

)
dr

∫ (∑
i ciΨi

)(∑
j cjΨj

)
dr

=

∫ ∑
ij cicjΨiHΨjdr∫ ∑
ij cicjΨiΨjdr

=

∑
ij cicjHij∑
ij cicjSij

,

(12)

where the Sij is the overlap integral. This version of the variation theory is
known as Rayleigh-Ritz method. Optimizing the energy in Eq.(12) leads to
the equation:

N∑
i=1

ci(Hki − ESki) = 0 ∀k, (13)

where N is the number of functions Ψ that make up the wave function Φ.
Eq.(12) can be used to optimize the coe�cients ci of the functions Ψi, by
solving the N values of energy Ej from∣∣∣∣∣∣∣∣∣

H11 − ES11 H12 − ES12 · · · H1N − ES1N

H21 − ES21 H22 − ES22 · · · H2N − ES2N
...

... . . . ...
HN1 − ESN1 HN2 − ESN2 · · · HNN − ESNN

∣∣∣∣∣∣∣∣∣ = 0 (14)

and applying them to Eq.(13). [1, 3]
Eq.(11) also shows that the trial wave function Φ does not need to be

constructed as a linear combination of Ψi. Instead, the trial wave function can
be constructed in any manner desired and then its quality can be evaluated
by using Eq.(11). [1]

2.1.2 Born-Oppenheimer approximation

In order to simplify the required calculations, the Born-Oppenheimer approx-
imation is used. In the Born-Oppenheimer approximation the movements of
the electrons and the nuclei of the system are decoupled and then the elec-
tronic energies are computed for �xed nuclear positions. This is based on the
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fact that the nuclei are moving much slower than the electrons and thus elec-
tronic movement can be taken to be instantaneous compared to the motion of
the nuclei. Thus, the Schrödinger equation can be separated into two parts:
the electronic Schrödinger equation and the nuclear Schrödinger equation.
The electronic Schrödinger equation can be written as

(H + V )Ψ = EΨ, (15)

where H contains the terms Te, Vne and Vee of the Hamiltonian in Eq.(6) and
V is the nuclear-nuclear repulsion energy Vnn. As the electronic wave function
Ψ is considered to be in a �xed nuclear position, the term Vnn is a constant for
that position and the electron-nuclear correlation in the term Vne has been
negated. The nuclear Schrödinger equation contains the remaining Tn term of
Eq.(6). The di�erent solutions of the electronic Schrödinger equation Eq.(15)
for di�erent �xed nuclear geometries form the potential energy surface (PES)
of the molecule. [1, 2]

Without the use of Born-Oppenheimer approximation it is impossible to
analytically solve the Schrödinger equation for even the simplest of molecules.
The Born-Oppenheimer approximation does not cause much error in ground
state calculations, but it is less accurate for excited states. [3]

With the use of Born-Oppenheimer approximation electron-nuclear corre-
lation has been removed, but the electron-electron correlation still remains.
The simplest way to handle it is to ignore it by only considering systems
with a single electron. The eigenfunctions of Eq. (15) are then one-electron
wave functions and they can be considered molecular orbitals (MO) of the
molecule. Thus, the eigenvalue associated with a MO is the energy of the
electron in that orbital. [1]

Ignoring the electron correlation simpli�es the calculations, but it does so
at the cost of accuracy. Because of this multiple ways of taking the electron
correlation at least partially into account have been developed. The Chapters
2.3.2 -2.3.5 introduce some of them.

2.1.3 Molecular orbital theory

Atomic orbitals (AO) are one-electron wave functions of atoms. They can
be classi�ed into 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, 4d, 4f, etc. orbitals based on
their principal quantum number, which is represented by the number part
and angular momentum quantum number, which is represented by the letter
part. Electrons also have a spin of 1/2 which is taken into account separately
as can be seen from the methods introduced in Chapter 2.3 [3]

If the system only has one nucleus and one electron it can be solved
exactly by using hydrogenic AOs. Based on this, atomic orbitals can be used
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to model more complex MOs. So, the trial wave function can be constructed
as a linear combination of atomic wave functions. This method is called linear
combination of atomic orbitals (LCAO). [1]

As the orbital approximation is quite primitive, there are no good ana-
lytical forms for AOs of many electron atoms. However, the AOs can be ap-
proximated with Slater-type orbitals (STO) [4]. In 1950 S.F. Boys proposed
the idea of using the computationally more e�cient Gaussian-type orbitals
(GTO) [5] instead of STOs. But because GTOs are worse than STOs at rep-
resenting the orbitals at the nuclei, more of them are required to match the
accuracy of using STOs. The relative shapes of STOs and GTOs can be seen
from the Figure 1.

Figure 1: The di�erence between STO and GTO shapes

This di�erence in shapes is caused by the fact that radial decay of STOs is
proportional to e−r, while the radial decay of GTOs is proportional to e−r2 ,
where r is the distance from the nuclei. [1, 3]

To counter the extra computational e�ort caused by using more GTOs,
they are often grouped together as contracted Gaussian functions. A con-
tracted Gaussian function Go is a linear combination of Gaussian functions
gi of the same atom:

Go =
∑
i

doigi, (16)

where the coe�cients doi and the parameters of gi are held �xed during
calculations, thus reducing the number of unknown variables. The Gaussian
functions gi are called primitive Gaussian functions. [1, 3]

11



There are also other ways to approximate the orbitals such as using plane
waves, but they are not focused on in this thesis.

2.1.4 Basis sets

The group of functions used to form a wave function is called a basis set. A
molecule could be represented perfectly by using an in�nite number of basis
functions with each MO expressed as a linear combination of basis functions
to form the wave function, but it is impossible to practically implement an
in�nite basis set. The error in MO representation caused by using a �nite
basis set is called the basis-set truncation error. To minimize the basis-set
truncation error, much work has been done to look for mathematical func-
tions that allow wave functions to approach in�nite basis as e�ciently as
possible. [1, 3]

There are three important factors in creating a good basis set. Keeping
the total amount of basis functions relatively low is useful as it reduces the
computational load. The functional forms of the basis set should be chosen
so that their mathematical evaluation is easy. Sometimes this can lead to
larger basis sets being faster to evaluate than smaller ones. The forms of the
basis functions should be useful in a chemical sense. This means having large
amplitudes in regions where electron density is high and small amplitudes
where it is low. [1]

Basis sets can be divided into single-ζ, multiple-ζ and split-valence basis
sets. Single-ζ or minimal basis sets have one basis function for each type of
orbital. The STO-nG basis sets developed by Hehre, Stewart and Pople in
1969 [6] are single-ζ basis sets. The name STO-nG means STO approximated
by n primitive GTOs and as can be seen from the name they are based on
using a contracted Gaussian to approximate a STO. Of the STO-nG basis
sets the STO-3G is the most used as it provides a good balance of speed and
accuracy. [1, 2]

Multiple-ζ basis sets have multiple basis functions for each orbital, and
they are further classi�ed as double-ζ basis, triple-ζ basis and so on based on
the number of basis functions they have for each orbital. The point of this is
to increase the size of the basis set and thus approach in�nite basis. The cc-
pCVnZ basis sets developed by Woon and Dunning in 1995 [7] are multiple-ζ
basis sets. The name cc-pCVnZ means correlation-consistent polarized Core
and Valence n Zeta, where the n is D(Double)/T(Triple)/etc. based on the
number of functions the set has per orbital. The correlation-consistent part
of the name indicated that the basis sets are optimized for methods that take
electron correlation into account. [1, 2]

The cc-pwCVnZ basis sets developed by Peterson and Dunning in 2002
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are an improved version of the cc-pCVnZ basis sets. The added w in the name
cc-pwCVnZ means weighted and it indicates that the basis set weights the
core-valence correlation over the core-core correlation. [8]

Split-valence or valence-multiple-ζ basis sets have one basis function for
each of the core orbitals, but the valence orbitals have multiple functions. This
is done because core orbitals are only weakly a�ected by chemical bonding
and thus are similar for the same atom in di�erent molecules. Valence orbitals
instead can vary widely as a function of chemical bonding and thus bene�t
more from the extra �exibility given by multiple functions per orbital. They
are also further classi�ed as valence-double-ζ basis, valence-triple-ζ basis and
so on. The k-nlmG basis sets developed by Pople and co-workers are split-
valence basis sets. In k-nlmG the k indicates the number of primitive GTOs
used for core orbitals and the nlm part describes how the valence orbitals are
handled. The number of parameters in nlm part tells how many functions
the valence orbitals are split into, and the values of the parameters tell how
many primitive GTOs are used for each of those parts. So, 3-21G is a valence-
double-ζ basis, while 6-311G is a valence-triple-ζ basis. The k-nlmG basis sets
are known as Pople basis sets. The cc-pVnZ basis sets developed by Woon
and Dunning [9, 10] are also split-valence basis sets. They are split-valence
versions of the cc-pCVnZ basis sets as can be seen from the name. [1, 2]

While implementing in�nite basis is impossible, it is possible to extrapo-
late to the in�nite basis limit with decent accuracy. But even for basis sets
that were designed for it like the cc-pVnZ and the cc-pCVnZ, the computa-
tional cost of the extrapolation procedure becomes increasingly high as the
number of functions per orbital grows. This is especially true for systems
that have more than �ve atoms. [1]

2.2 Geometry optimization

In computational chemistry geometry optimization means looking for a mole-
cule's lowest energy con�guration starting from a given position. To optimize
the geometry of a molecule the minimum required starting information is the
atoms of which it is made of and their relative positions. The positions can
be given in Cartesian coordinates or bond lengths and angles between the
bonds. [1]

All the possible structures of a molecule can be taken into account by
describing the molecule's PES. The PES is a hypersurface de�ned by the po-
tential energy of a collection of atoms over all possible atomic arrangements.
It is often nearly impossible to construct a complete PES for molecules that
have more than 3 atoms. Because of this often only the chemically interesting
parts of the PES such as the areas around minima are fully formed. The PES
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has 3N − 6 dimensions, where N is the number of atoms and N ≥ 3. The
local minima of the PES represent optimal geometries of the molecule, and
the saddle points indicate paths between minima. [1, 2]

At its basis, geometry optimization is a math problem of �nding the mini-
mum of an arbitrary function of many variables. The simplest way to optimize
geometry is to go through and optimize all the parameters (bond lengths and
angles between bonds) one at a time. But because the minimization of to-
tal energy in polyatomic molecules often forces the individual parameters to
deviate from their minimum energy con�gurations, this optimization process
must be repeated multiple times until the overall energy �nally converges.
This can be a very lengthy process even for a relatively small molecule. Thus,
it is better to use methods like locating the greatest downward slope in en-
ergy with respect to all coordinates instead of optimizing one parameter at a
time. The geometry optimization of a complex molecule can require hundreds
or thousands of energy evaluations for intermediate structures. Thus, small
time savings on the calculation can multiply so that they have a signi�cant
e�ect on the overall calculation time. [1]

A problem with geometry optimization is that most optimization meth-
ods are good at �nding the nearest minimum instead of the global minimum.
Some methods also end in the nearest stationary point with no guarantee
of it being a minimum. Also, in reality a molecule's geometry is �uctuat-
ing around the minimum even at 0 K due to zero-point vibrational e�ects.
Small molecules are usually fairly close to the minimum energy structure,
but larger molecules with a looser structure can be quite far from the opti-
mized structure. At temperatures above 0 K these �uctuations can be even
greater. [1]

Symmetry can be used to help in geometry optimization by removing
some of the 3N − 6 degrees of molecular freedom. This also has some draw-
backs, but the positives mostly overshadow them. Using symmetry to limit
the degrees of freedom might lead to the end result being a transition state
instead of a minimum. This happens when the symmetry constraints prevent
reaching the true minimum. This problem can be solved by relaxing some or
all of the symmetry constraints in a later part of the geometry optimization
process. [1]

2.3 Ab initio methods

Ab initio calculations and semiempirical methods are the two main ways of
solving the Schrödinger equation Eq.(1). In ab initio calculations a trial wave
function is formed, and the Schrödinger equation is solved by using only the
trial wave function, fundamental constants and atomic numbers of the nuclei.
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The accuracy of an ab initio calculation depends mainly on the quality of
the trial wave function and the available computational power. Semiempir-
ical methods are a computationally less expensive alternative. They use a
simpli�ed Hamiltonian and parameters based on experimental data to lessen
the computational load. [3]

2.3.1 Hartree-Fock theory

By ignoring the electron-electron correlation the Hamiltonian becomes sepa-
rable, which means it can be separated into one-electron Hamiltonian oper-
ators giving it the form

H =
N∑
i=1

hi, (17)

where N is the number of electrons and the one-electron Hamiltonian h is
de�ned as

hi = −1

2
∇2

i −
M∑
k=1

Zk

rik
+
∑
j ̸=i

∫
ρj
rij
dr, (18)

whereM is the total number of nuclei, Zk is the atomic number of the nucleus
k, ρj is the charge density of the electron j and rik and rij are the distances
between the indicated particles. The �nal term of Eq.(18) represents the
interaction potential of an electron with all the other electrons of the system.
The many electron eigenfunctions of a separable Hamiltonian can then be
constructed as a product of one-electron eigenfunctions:

ΨHP = ψ1ψ2 · · ·ψN . (19)

This is called a Hartree-product wave function. [1, 3]
In 1928 Hartree developed the self-consistent �eld (SCF) method [11]. In

the SCF method the wave functions for all the occupied MOs are guessed
and then they are used to construct the necessary one-electron Hamiltonian
operators h, which are then used to solve the one-electron Schrödinger equa-
tions:

hiψi = εiψi. (20)

The resulting eigenvalues εi represent the energies of di�erent MOs. With
the help of the variational principle Eq.(13) these energies can then be used
to optimize the coe�cients of the basis functions that make up the wave
functions ψ. This leads to a new set of ψ, which can then be used to generate
a new set of h and this process is repeated until the set of ψ converges. The
resulting set of ψ is called converged SCF orbitals. [1]
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The one-electron orbital energy εi can be taken to be roughly equal to the
negative of the ionization energy of the electron from the orbital represented
by ψi:

Ii ≈ −εi. (21)

This approximation is known as the Koopmans' theorem. [3]
Wave functions that are just products of one-electron wave functions can-

not satisfy the Pauli principle, which states that when the coordinates of two
electrons are exchanged the electronic wave function changes sign. To sat-
isfy the Pauli principle the ground-state Hartree-product wave function of a
system with two electrons of the same spin α can be written as

ΨSD =
1√
2

∣∣∣∣ψa(1)α(1) ψb(1)α(1)
ψa(2)α(2) ψb(2)α(2)

∣∣∣∣ . (22)

This is called a Slater determinant and due to the properties of determinants
it changes signs when any two rows are exchanged. As the rows correspond
to di�erent electrons, this electron exchange allows Slater determinants to
satisfy the Pauli principle. A more general form of the Slater determinant is

ΨSD =
1√
N !

∣∣∣∣∣∣∣∣∣
χ1(1) χ2(1) · · · χN(1)
χ1(2) χ2(2) · · · χN(2)
...

... . . . ...
χ1(N) χ2(N) · · · χN(N)

∣∣∣∣∣∣∣∣∣ , (23)

where N is the number of electrons and χ is a spin-orbital. Spin orbital is a
product of a spatial orbital and an electron spin eigenfunction. [1, 3]

Fock used Slater determinants to expand Hartree's SCF method to in-
clude the e�ects of electron exchange, creating the HF SCF method. Later in
1951 Roothaan [12] and Hall [13] provided the necessary mathematical tools
for doing the HF calculations using basis set representations for the MOs. In
a closed-shell system HF equations can be presented using

fi = −1

2
∇2

i −
nuclei∑

k

Zi

rik
+
∑
j ̸=i

(2Jij −Kij), (24)

where fi is the one-electron Fock operator for the electron i, J is the Coulomb
operator

Jab =

∫∫
|ψa(1)|2

1

r12
|ψb(2)|2dr(1)dr(2) (25)

and K is the exchange operator

Kab =

∫∫
ψa(1)ψb(1)

1

r12
ψa(2)ψb(2)dr(1)dr(2). (26)
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The resulting MO energies can then be calculated from a variation of the
Eq.(14), where the Hamiltonian operator H has been replaced by the Fock
operator F giving it the form∣∣∣∣∣∣∣∣∣

F11 − ES11 F12 − ES12 · · · F1N − ES1N

F21 − ES21 F22 − ES22 · · · F2N − ES2N
...

... . . . ...
FN1 − ESN1 FN2 − ESN2 · · · FNN − ESNN

∣∣∣∣∣∣∣∣∣ = 0, (27)

where N is now the number of basis functions, the overlap matrix S is now:

Sij =

∫
ϕiϕjdr, (28)

where ϕi and ϕj are basis functions and the elements of F are

Fµν =

〈
µ

∣∣∣∣−1

2
∇2

∣∣∣∣ ν〉−
nuclei∑

k

Zk

〈
µ

∣∣∣∣ 1rk
∣∣∣∣ ν〉

+
∑
λσ

Pλσ

[
(µν|λσ)− 1

2
(µν|λσ)

]
,

(29)

where k represents MOs and Pλσ is the designated element of the density
matrix P. Pλσ can be written as

Pλσ = 2
occ.∑
i

aλiaσi, (30)

where the coe�cients a represent the e�ect of the basis functions λ and σ on
the molecular orbital i. The notation ⟨µ|g|ν⟩ means one-electron integral of
the form

⟨µ|g|ν⟩ =
∫
ϕµ(gϕν)dr, (31)

where g is some operator and ϕµ and ϕν are basis functions. The notation
(µν|λσ) means the integration:

(µν|λσ) =
∫∫

ϕµ(1)ϕν(1)
1

r12
ϕλ(2)ϕσ(2)dr(1)dr(2), (32)

where ϕµ and ϕν represent the probability density of electron 1 and ϕλ and
ϕσ the probability density of electron 2. This form of HF theory is known as
restricted Hartree-Fock (RHF). [1, 3]

For an open-shell system HF theory has two forms: the restricted open-
shell HF (ROHF) theory and unrestricted HF (UHF) theory. In ROHF all
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the paired electrons are restricted to doubly occupied orbitals so they can be
handled in the same way as in RHF. For the unpaired electrons the factor
of two is removed from their density matrix elements Eq.(30) as they do not
have a pair. This leads to the form

Pλσ =
occ.∑
i

aλiaσi. (33)

In UHF the paired electrons are not restricted to the same spatial orbital.
This leads to di�erent forms for Eq.(29)

F ξ
µν =

〈
µ

∣∣∣∣−1

2
∇2

∣∣∣∣ ν〉−
nuclei∑

k

Zk

〈
µ

∣∣∣∣ 1rk
∣∣∣∣ ν〉

+
∑
λσ

[(
Pα
λσ + P β

λσ

)
(µν|λσ)− P ξ

λσ(µν|λσ)
] (34)

and Eq.(30)

P ξ
λσ =

ξ−occ.∑
i

aξλia
ξ
σi, (35)

where α and β are the spins of the electrons and ξ is either α or β. [1]
UHF can also be used for closed shell systems and the UHF energy is

always equal to or lower than the corresponding ROHF or RHF energy. How-
ever, the UHF wave functions sometimes contain contributions from higher
spin states, which skews the results obtained with them. The case of equal
energies mostly happens with closed shells states that are near their equilib-
rium geometry. [1, 2]

There is an important di�erence between the Hamiltonian operator and
the Fock operator. The Hamiltonian operator is used to �nd the electronic
energy of a many-electron system. The Fock operator instead is the set of
all the interdependent one-electron operators that are used to �nd the one-
electron MOs which are used to construct the HF wave function as a Slater
determinant. [1]

HF provides a well-de�ned energy, which can be converged in an in�nite
basis set. This is called the HF limit. The di�erence between the converged
HF energy and reality is called the electron correlation energy:

Ecorr = E − EHF . (36)

HF theory makes the approximation that each electron moves in the static
electron �eld created by all the other electrons and optimizes orbitals for all
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electrons in a self-consisted fashion. This ignoring of the electron correlation
simpli�es the calculations, but it is also the cause of the main error in HF
theory. In HF limit this error is the electron correlation energy Ecorr. [1, 3]

There is no guarantee that any SCF process will converge to a stable
solution. A common problem is a SCF oscillation where SCF computation
gets stuck in a loop and never converges. Sometimes the energies associated
with each step vary wildly and randomly, but this usually evens out as the
process continues. These problems are most commonly caused by problems
with the initial trial wave function. One solution for a badly behaving SCF
process is to try using di�erent convergence schemes and hope that one of
them works. A better solution is to use a smaller basis set as it is usually
easier to converge a small basis set HF calculation and then use the results as
an initial guess for a larger basis set and repeat this process until the desired
basis set is reached. Due to the exponential scaling of HF calculations the
early steps of this process are comparatively fast and can even end up saving
time, if they save steps from calculations with larger basis sets by providing
a better initial guess. [1]

The number of required calculations in HF scales as N4 where N is the
number of basis functions, but linear scaling HF implementations have also
been developed. These implementations are not fast, but they are more e�-
cient than the normal N4 scaling version for large enough systems. [1]

HF is the base of most ab initio and semi-empirical methods. HF itself is
an ab initio method and further ab initio methods can be formed by improv-
ing its accuracy. Semi-empirical methods can be formed from HF by adding
more approximations into it. [2, 3]

2.3.2 Multicon�guration self-consistent �eld theory

To improve upon HF theory, a wave function can be constructed as a linear
combination of determinants.

Ψ = c0ΨHF + c1Ψ1 + c2Ψ2 + · · · , (37)

where ΨHF is the HF determinant. This way the electron correlation energy
ignored by HF can be taken at least partially into account. It is not neces-
sary to have ΨHF as a part of the linear combination, but it provides a good
reference point for creating other determinants and it usually dominates the
linear combination as the largest individual term. In a system with degen-
erate frontier orbitals additional determinants can be obtained by changing
which frontier orbital is populated. Frontier orbitals are the highest energy
occupied orbitals and the lowest energy unoccupied orbitals. Another way
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to obtain additional determinants is to consider other possible excitations of
the electrons. [1, 3]

As the normal SCF process does not optimize the shapes of virtual or-
bitals (orbitals which are not occupied in the ground state), a multicon�gura-
tion self-consistent �eld (MCSCF) process must be used. MCSCF optimizes
both the coe�cients of the determinants in Eq.(37) and the MOs that those
determinants are made from. A con�guration or con�guration state func-
tion (CSF) refers to the molecular spin state and the occupation numbers
of the orbitals. For closed shell singlets CSFs can be presented as single de-
terminants, but in many open shell systems they can only be presented as a
combination of determinants. [1, 2]

The selection of orbitals for MCSCF requires a careful consideration of
the molecule's chemistry. This selection is called active space and it is usually
marked as (m,n) where m is the number of electrons and n is the number
of orbitals. In complete active space (CAS) calculations all possible arrange-
ments of the electrons are taken into account, leading to N possible CSFs
singlets:

N =
n! (n+ 1)!(

m
2

)
!
(
m
2
+ 1

)
!
(
n− m

2

)
!
(
n− m

2
+ 1

)
!
, (38)

where m is the number of electrons and n is the number of orbitals. CAS
calculations become very demanding quickly as the number of electrons and
orbitals rises. Symmetry can be used to limit the number of required CSFs
for a CAS calculation. [1]

CAS calculations can be simpli�ed by reducing the size of the CAS while
including a restricted active space (RAS). While all possible electron con�g-
urations in CAS are allowed only a limited number of excitations, usually
only one or two electrons, are allowed to or from the RAS orbitals, thus, lim-
iting the number of possible RAS con�gurations considerably. The orbitals
remaining outside of CAS and RAS are inactive orbitals. They are limited
to the occupation numbers of two or zero and their occupation numbers do
not change between the di�erent CSFs. The CAS and RAS calculations can
be further simpli�ed by freezing the core orbitals to the shapes calculated
at the HF level. Thus, MCSCF orbitals can be divided into four categories:
Frozen orbitals, Inactive orbitals, RAS orbitals and CAS orbitals. [1]

Methods that use multi determinant wave functions as their reference
point are known as multi-reference methods. Most of them are based on
using a MCSCF wave function instead of an HF wave function as the starting
point. [2]
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2.3.3 Møller-Plesset perturbation theory

Using Rayleigh-Schrödinger perturbation theory, it is possible to use the
exact eigenfunctions and eigenvalues of a simpli�ed operator to estimate the
eigenfunctions and eigenvalues of a more complete operator. An operator A
can be written as

A = A(0) + λV. (39)

Where A(0) is an operator with known eigenfunctions, V is a perturbing
operator and λ is a dimensionless parameter the value of which varies between
0 and 1. The eigenfunctions and eigenvalues can then be expanded as Taylor
series in λ. These series are usually written as

Ψ0 = Ψ
(0)
0 + λΨ

(1)
0 + λ2Ψ

(2)
0 + λ3Ψ

(3)
0 + · · · (40)

and
a0 = a

(0)
0 + λa

(1)
0 + λ2a

(2)
0 + λ3a

(3)
0 + · · · , (41)

where the terms with superscripts (n) are called nth-order corrections to the
zeroth order term. By using Eq.(40) and Eq.(41) the equation

(A(0) + λV)|Ψ0⟩ = a|Ψ0⟩ (42)

can be written as

(A(0) + λV)|Ψ(0)
0 + λΨ

(1)
0 + λ2Ψ

(2)
0 + · · · ⟩ =

(a
(0)
0 + λa

(1)
0 + λ2a

(2)
0 + · · · )|Ψ(0)

0 + λΨ
(1)
0 + λ2Ψ

(2)
0 + · · · ⟩.

(43)

As Eq.(43) is true for all values of λ, the terms with equal powers of λ can
be collected to form the equations

λ0 : A(0)|Ψ(0)
0 ⟩ = a(0)|Ψ(0)

0 ⟩
λ1 : A(0)|Ψ(1)

0 ⟩+V|Ψ(0)
0 ⟩ = a(0)|Ψ(1)

0 ⟩+ a(1)|Ψ(0)
0 ⟩

λ2 : A(0)|Ψ(2)
0 ⟩+V|Ψ(1)

0 ⟩ = a(0)|Ψ(2)
0 ⟩+ a(1)|Ψ(1)

0 ⟩+ a(2)|Ψ(0)
0 ⟩

...

λn : A(0)|Ψ(n)
0 ⟩+V|Ψ(n−1)

0 ⟩ =
n∑

i=0

a(i)|Ψ(n−i)
0 ⟩,

(44)

which can be used to solve the various nth-order corrections.

a
(1)
0 = ⟨Ψ(0)

0 |V|Ψ(0)
0 ⟩ (45)
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is the �rst-order correction and

a
(2)
0 =

∑
j>0

|⟨Ψ(0)
j |V|Ψ(0)

0 ⟩|2

a
(0)
0 − a

(0)
j

(46)

the second-order correction. [1, 2]
Based on the Rayleigh-Schrödinger perturbation theory Møller and Ples-

set developed the Møller and Plesset perturbation theory (MP) in 1934 [14].
It is often referred as the MPn where n is the order at which the perturbation
theory is truncated at. In MP the operator A is the Hamiltonian H, Ψ0 is
the HF wave function and the H(0) is a sum of one-electron Fock operators:

H(0) =
n∑

i=1

fi, (47)

where n is the number of basis functions and f is a Fock operator as de�ned
by Eq.(24). The perturbation V can be written as

V = H−H(0) =
occ.∑
i

occ.∑
j>i

1

rij
−

occ.∑
i

occ.∑
j

(
Jij −

1

2
Kij

)
, (48)

where occ. refers to occupied orbitals. [1, 3]
MP1 is equivalent to HF in determining the energy, as can be seen from:

a(0) + a(1) = ⟨Ψ(0)
0 |H(0)|Ψ(0)

0 ⟩+ ⟨Ψ(0)
0 |V|Ψ(0)

0 ⟩
= ⟨Ψ(0)

0 |H(0) +V|Ψ(0)
0 ⟩

= ⟨Ψ(0)
0 |H|Ψ(0)

0 ⟩
= EHF .

(49)

The second-order energy correction in MP is

a
(2)
0 =

occ.∑
i

occ.∑
j>i

vir.∑
a

vir.∑
b>a

[(ij|ab)− (ia|jb)]2

εi + εj − εa − εb
(50)

and the MP2 energy is the sum of a(0), a(1) and a(2). The vir. in Eq.(50)
refers to virtual orbitals. [1]

The MP2 method scales roughly as N5. All orders of the MPn theory are
size-consistent, meaning that doubled MPn energy of a molecule is the same
as the energy of two of the same molecules with a long distance between
them. [1]
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MPn theory does have some problems as perturbation theory works best
when the perturbation is small, but in MPn the perturbation is the full
electron-electron repulsion energy, which is a large part of the total energy.
Because of this MPn does not give good correlation energy values. Also, as
the MPn method is not variational it can sometimes give correlation energies
that are too large instead of too small. [1]

Higher orders of the perturbation theory can be used to improve the accu-
racy and convergence behavior of the MPn theory, but there is no guarantee
of convergence even at in�nite order when using a �nite basis set. MP3 level
is not much more expensive than MP2, but it does not o�er much improve-
ment over MP2 either. MP4 level is very costly as it scales as N7, but it
is also very accurate, usually accounting for >95% of the correlation energy
with a good basis set. [1]

The results of the di�erent MPn levels tend to oscillate as a function of
n. MP2 o�ers improvement over HF, but the energy correction it gives over
HF tends to be a little too big. MP3 corrects the results back towards HF
by a variable amount and MP4 corrects them away from the HF energy,
but only by little in favorable situations. For a medium sized basis set the
results of MP2 level are often closer to the true value than the results of MP3
level. [1, 2]

2.3.4 Con�guration interaction theory

Con�guration interaction (CI) is similar to MCSCF, but in it only the coef-
�cients of the determinants in Eq.(37) are optimized. The MOs that those
determinants are made of are kept �xed after the initial HF calculation. Be-
cause of this CI is not as accurate as MCSCF, but it is also computationally
less demanding than MCSCF. [2, 3]

Full con�guration interaction (CI) is a CAS calculation that takes into
account all electrons and includes all orbitals in the complete active space.
The number of CSFs required for a full CI is extremely large even for a
relatively small basis set. Thus, full CI calculations with large basis sets are
done only for very small molecules. [1]

Full CI is the best possible calculation that can be done for a given basis
set. The di�erence between Full CI energy and HF energy is the basis-set
correlation energy and as the basis gets bigger the basis-set correlation energy
approaches the electron correlation energy. With an in�nite basis set full
CI gives the exact solution of the non-relativistic, Born-Oppenheimer, time
independent Schrödinger equation. [1, 3]

As full CI is usually quite impractical, a more practical option is to limit
the number of allowed excitations in the CI. For this purpose, it is useful to
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write Eq.(37) in the form

Ψ = a0ΨHF +
occ.∑
i

vir.∑
r

ariΨ
r
i +

occ.∑
i<j

vir.∑
r<s

arsijΨ
rs
ij r + · · · , (51)

where i and j are occupied MOs in the ΨHF , r and s are virtual MOs in
the ΨHF and additional CSFs are generated by exciting an electron from the
indicated occupied orbital to the indicated virtual orbital. So, the �rst term
is the HF wave function, the second term includes all possible single electron
excitations, the third term includes all possible two-electron excitations and
so on. The N di�erent energies E of the CI wave functions can then be solved
from ∣∣∣∣∣∣∣∣∣

H11 − E H12 − E · · · H1N − E
H21 − E H22 − E · · · H2N − E

...
... . . . ...

HN1 − E HN2 − E · · · HNN − E

∣∣∣∣∣∣∣∣∣ = 0, (52)

where
Hmn = ⟨Ψm|H|Ψn⟩, (53)

H is the electronic Hamiltonian and Ψi is ΨHF when i = 1 and then Ψi goes
through �rst all the one-electron excitations and then all the two-electron
excitations and so on as i→ N . [1]

As the electronic Hamiltonian contains only one-electron and two-electron
operators, two determinants that di�er by more than two MOs will always
result in an overlap integral between two orthogonal MOs, which is zero.
Thus, the CI matrix elements Hij can have a value other than zero only
when the two determinants di�er by 0, 1 or 2 MOs. The resulting MOs can
then be written as one- and two-electron integrals over MOs. These are known
as Slater-Condon rules. [2]

Based on the Slater-Condon rules all matrix elements between the ground-
state wave functions ΨHF and one-electron excitation wave functions Ψr

i are
zero:

H1n = ⟨ΨHF |H|Ψr
i ⟩

= ⟨ϕr|F |ϕi⟩
= ε⟨ϕr|ϕi⟩
= εiδir

= 0,

(54)

where F is the Fock operator, i and r represent the occupied and the virtual
MOs of the one-electron excitation wave function and εi is the eigenvalue of
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the MO. The third line is based on the fact that the MOs are eigenfunctions
of the Fock operator and the last line on the fact that for a one-electron
excitation wave function r cannot be equal to i. This result is known as the
Brillouin's theorem. [1]

The case where only single excitations are included in the CI is called
CI singles (CIS). It is not useful for ground-state calculations as based on
the Brillouin's theorem the ground-state HF root is una�ected by the single
excitations. Double excitations do a�ect the ground-state energy, so CI dou-
bles (CID) is a more useful method. Triple excitations have no interaction
with the ground state, but they mix with the double excitations and can af-
fect the lowest energy eigenvalue that way. There are however a lot of triple
excitations and because of that their inclusion is di�cult to handle. Thus,
triples and higher-level excitations are rarely used. Single excitations also mix
with the double excitations and as there are comparatively few singles their
inclusion is not too di�cult. This is called CI singles and doubles (CISD). [1]

The CISD scales as N6 with respect to the size of the used basis set. As
with other methods, symmetry and the freezing of some orbitals can be used
to reduce the required computational e�ort. [1]

The CISD method is variational and thus the CISD energy is an upper
bound of the exact energy. But CISD is not size consistent, which means that
the doubled CISD energy of a molecule can be smaller than the energy of
two of the same molecules with a long distance between them. [1, 2]

2.3.5 Coupled-cluster theory

The coupled cluster (CC) theory developed by �íºek in 1966 [15] is a tech-
nique for estimating electron correlations. It is based on describing the full
CI wave function in the form

Ψ = eTΨHF , (55)

where the exponential operator eT is expanded as a series

eT = 1 +T+
1

2!
T2 +

1

3!
T3 + · · · (56)

and the cluster operator T is

T = T1 +T2 +T3 + · · ·+Tn, (57)

where n is the number of electrons and the Ti operator describes all possible
determinants with i excitations. The CC energy is given by the equation:

ECC = ⟨ΨHF |H|eTΨHF ⟩. (58)

25



The advantage CC o�ers over CI is that it takes into account products of
excitation operators and is thus size consistent. However, it is not variational.
[1, 3]

CC doubles (CCD) is equivalent to CID with the products of the excita-
tion operators added to it. Adding singles into CCD to form CCSD is worth
the increased cost to gain better accuracy. CCSD scales as N6. Adding the
triples termT3 into CCSD forms the CC singles doubles and triples (CCSDT)
method, but it is impractical for all but the smallest systems as it scales as
N8. There are various methods for estimating the e�ect of the triples term
through perturbation theory. The most successful of these methods is known
as CCSD(T). The CCSD(T) tends to slightly overestimate the triples correc-
tion, but it does so by an amount equal to the ignored quadruples. Thanks
to this favorable cancellation CCSD(T) is extremely e�cient in most cases
and it is considered one of the best single reference calculation methods. [1]

2.4 Comparison of methods

HF, MCSCF, MPn, CI and CC are all ab initio methods. MCSCF is a multi-
reference method, while HF, MPn, CI and CC are single-reference methods,
though MPn, CI and CC do have multi-reference variants based on the MC-
SCF wave function. [1]

The HF theory tends to overemphasize the occupation of bonding or-
bitals leading to too short bonds between atoms, while methods that take
the electron correlation into account tend to have longer bond lengths in
order to lower the energy. Electron correlation methods also have a greater
dependency on the basis set quality than HF methods. This has led to de-
velopment of basis sets that are optimized for correlated methods. [1]

Generally, MP2 is an excellent level for geometry optimization of minima
that include correlation energy. Bond angles are already quite accurate at HF
level so MP2 o�ers little improvement for them. The geometric improvements
o�ered by methods beyond MP2 level tend to be so small for equilibrium
structures that they are not worth the added cost. MP2 is also very e�cient
for energy di�erences between minima, though this is because most minima
are already well described by HF wave functions. [1]

A rough accuracy order of the di�erent single-reference ab initio methods
is

HF ≪MP2 ∼MP3 ∼ CCD < CISD

< CCSD < MP4 < CCSD(T ).
(59)

The accuracy of multi-reference methods is more di�cult to evaluate as it
depends heavily on the size of the used reference wave function. The scaling
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behavior of the di�erent single-reference ab initio methods as a function of
the number basis functions N is given by the following table.

Scaling Methods
N4 HF
N5 MP2
N6 MP3, CISD, CCSD
N7 MP4, CCSD(T)
N8 MP5, CISDT, CCSDT
N9 MP6
N10 MP7, CISDTQ, CCSDTQ

Table 1: Scaling behavior of di�erent ab initio methods

As seen from the Table 1 and Eq.(59), there is usually little point in doing
MP3 or CISD calculations when the superior CCSD calculations have roughly
the same cost. Though similar scaling behavior is not the same as similar
overall time, but for small and medium sized systems they tend to be similar.
[1, 2]

For ground state calculations MPn and CC are usually the preferred meth-
ods. But for excited states CI and MCSCF based methods are used more,
as MPn and CC have some troubles with them. There are, however, some
variants of the CC method that are good at handling excited states. [2]
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3 Experiment

The experimental spectra used in this thesis is from an experiment done at
the FinEstBeAMS beamline [16, 17] at the MAX IV synchrotron in Sweden
in March 2020. In the experiment the valence, oxygen 1s, nitrogen 1s and
carbon 1s spectra m-ABA were measured using vaporized powder samples.
The powder was placed in a stainless steel crucible, which was placed inside
a resistively heated oven, which was then used for vaporizing the samples
inside the spectrometry equipment. To ensure proper pressure for the mea-
surements the m-ABA sample was heated to ∼ 120 ◦C (393.15 K). The mol-
ecules were then ionized with linearly polarized synchrotron radiation and
the kinetic energies of the resulting electrons were analyzed with a Scienta
R4000 hemispherical analyzer. [18]

The valence orbital spectra were measured using a photon energy of 100
eV and using water evaporated from the sample for calibration. The oxygen
1s spectra were measured using a photon energy of 600 eV, a resolution of 490
meV and using O2 gas for calibration. The nitrogen 1s spectra were measured
using a photon energy of 450 eV, a resolution of 350 meV and using N2 gas
for calibration. The carbon 1s spectra were measured using a photon energy
of 350 eV, a resolution of 140 meV and using CO2 gas for calibration. [18]

The measured kinetic energies of electrons were translated into binding
energies using Einstein's Photoelectric Law:

Ej = hν − Ij

Ij = −(Ej − hν),
(60)

where Ej is the kinetic energy of the emitted electron, hν is the energy of the
ionizing photons and Ij is the binding energy of the emitted electron. The
resulting binding energy spectra are shown by the following Figures 2-5.
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Figure 2: C 1s Spectrum of m-ABA

Figure 3: N 1s Spectrum of m-ABA
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Figure 4: O 1s Spectrum of m-ABA

Figure 5: Valence Spectrum of m-ABA
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The binding energy spectra were then calibrated by shifting them so that
the peak caused by the calibration material matches its binding energy's
reference value. The binding energy reference values used for calibration are
as follows. Water's 1b1 orbital has a binding energy of 12.62± 0.005 eV [19].
The accuracy of water's 1b1 orbitals binding energy was given as the accuracy
of its associated frequency in the form ±40 cm−1, which was translated into
energy with

E = hνc, (61)

where h is the Planck's constant, ν the frequency and c the speed of light.
For the O2 gas the O 1s ionization's 4Σ−state orbital has a binding energy of
543.39±0.05 eV and the 2Σ−state orbital has a binding energy of 544.43±0.05
eV [20]. As there is some water present in the samples, its O 1s orbital also
causes a peak in the oxygen 1s spectra and the O 1s orbital of water has a
binding energy of 539.9± 0.02 eV [21]. The N 1s orbital of N2 has a binding
energy of 409.9± 0.1 eV [22]. The C 1s orbital of CO2 has a binding energy
of 297.699± 0.03 eV [23].

The peaks of the 1s spectra were then identi�ed with the help of the
calculated orbital energies of 1 m-ABA and 2 m-ABA and the Koopmans'
theorem Eq.(21). The valence peaks are the results of heavy mixing of AOs
so they cannot be identi�ed to originate from any single atom. The calibrated
m-ABA spectra with the 1s peaks named are shown by the following Figures
6-9.

Figure 6: Calibrated C 1s Spectrum of m-ABA with the peaks named
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Figure 7: Calibrated N 1s Spectrum of m-ABA with the peaks named

Figure 8: Calibrated O 1s Spectrum of m-ABA with the peaks named
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Figure 9: Calibrated Valence Spectrum of m-ABA
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4 Calculations

The calculations were done on the Puhti supercomputer at CSC [24] using the
MOLPRO program [25�35]. The starting guesses for geometries were done by
constructing rough guesses of the 1 m-ABA, 2 m-ABA and p-ABA molecules
geometries with the Macmolplt program [36] and then using Macmolplt to
print out the coordinates of the atoms. The starting geometries can be read
from the Tables 2, 3 and 4 in Appendix A and Figure 10 shows a graphical
representation of them.

(a) 1 m-ABA (b) 2 m-ABA (c) p-ABA

Figure 10: Starting geometries

Originally the plan was to optimize the geometries of 1 m-ABA, 2 m-ABA
and p-ABA molecules �rst with the HF method, then the MP2 method and
�nally with the CCSD(T) method. Following basis sets were to be used for
each method: cc-pVDZ, cc-pVTZ, cc-pVQZ, cc-pwCVDZ, cc-pwCVTZ and
cc-pwCVQZ. Always using the results of previous calculations as the starting
geometry for the next basis set or method. Due to memory limitations the
CCSD(T) calculations could not be done, so the CCSD method had to be
used instead of CCSD(T). The CCSD calculations using cc-pwCVQZ basis
set also turned out to be impossible because of calculation time, memory
and disk space limitations. Because of this the CCSD calculations using cc-
pwCVnZ basis sets were not done for the molecules besides 1 m-ABA for
which the cc-pwCVDZ and cc-pwCVTZ calculations were already done at
this point and I decided to use the CCSD calculations using cc-pVQZ basis
set as the �nal level of optimization. The total energies of 1 m-ABA, 2 m-
ABA and p-ABA can be seen from the Table 5 in Appendix B and Figure
11 shows a graphical comparison of the total energies.
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Figure 11: Total energy at di�erent optimization levels for 1 m-ABA, 2 m-
ABA and p-ABA

The Gabedit program [37] was used display the �nal geometries, the
shapes of the orbitals and to form density of states spectra using calcu-
lated orbital energies convoluted with a Gaussian line shape for 1 m-ABA, 2
m-ABA and p-ABA.

The geometries at the end of HF calculations can be read from the the
Tables 6, 7 and 8 in Appendix C and the geometries at the end of MP2
calculations can be read from the the Tables 9, 10 and 11 in Appendix D.
The �nal geometries can be read from the Tables 12, 13 and 14 in Appendix
E and Figure 12 shows a graphical representation of them.

(a) 1 m-ABA (b) 2 m-ABA (c) p-ABA

Figure 12: Final geometries

The calculated CCSD cc-pVQZ spectra can be seen from the following
Figures 13-24.
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Figure 13: Calculated C 1s Spectrum of 1 m-ABA

Figure 14: Calculated C 1s Spectrum of 2 m-ABA

Figure 15: Calculated N 1s Spectrum of 1 m-ABA
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Figure 16: Calculated N 1s Spectrum of 2 m-ABA

Figure 17: Calculated O 1s Spectrum of 1 m-ABA

Figure 18: Calculated O 1s Spectrum of 2 m-ABA
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Figure 19: Calculated Valence Spectrum of 1 m-ABA

Figure 20: Calculated Valence Spectrum of 2 m-ABA

Figure 21: Calculated C 1s Spectrum of p-ABA

38



Figure 22: Calculated N 1s Spectrum of p-ABA

Figure 23: Calculated O 1s Spectrum of p-ABA

Figure 24: Calculated Valence Spectrum of p-ABA
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The x-axes of these spectra have been mirrored in order to make comparison
with the binding energy spectra easier. The calculated CCSD cc-pVQZ values
of the orbital energies for 1 m-ABA, 2 m-ABA and p-ABA that were used
to form those spectra can be seen from the table in Appendix F. The �rst
ten energies in the table are mostly from the di�erent O, N and C atoms'
1s orbitals. The rest marked as valence are the results of heavy mixing of
the AOs and as such cannot be said to originate from any single atom. The
shapes of the orbitals can be seen from Figures 25-27 in Appendices G-I.

The 1 m-ABA calculations were done �rst and because of this they re-
quired multiple restarts as I adjusted the memory and time allocations for
them. The HF calculations took ∼ 15 h 36 min and required ∼ 880.9 GB
of disk space for 1 m-ABA, ∼ 14 h 56 min and required ∼ 813.53 GB of
disk space for 2 m-ABA and ∼ 19 h 7 min and required ∼ 790.77 GB of
disk space for p-ABA. The time and disk space estimations for 1 m-ABA
calculations are a�ected by the fact that they had to be restarted between
the cc-pwCVTZ and cc-pwCVQZ basis set calculations because I had under-
estimated the time they required.

The MP2 calculations took ∼ 2 d 3 h 19 min and required ∼ 1078.46 GB
of disk space for 1 m-ABA, ∼ 22 h 52 min and required ∼ 1077.64 GB of
disk space for 2 m-ABA and ∼ 1 d 9 h 29 min and required ∼ 1041.62 GB of
disk space for p-ABA. The time and disk space estimations for 1 m-ABA and
p-ABA calculations are a�ected by the fact that they had to be restarted to
allocate more memory and time for them, the 1 m-ABA calculation had to
be restarted four times between the di�erent basis set calculations and the
p-ABA calculations had to restarted once during the cc-pwCVQZ basis set
calculations.

The CCSD cc-pVnZ calculations took ∼ 4 d 15 h 54 min and required
∼ 1134.37 GB of disk space for 1 m-ABA, ∼ 5 d 8 h 14 min and required
∼ 1137.23 GB of disk space for 2 m-ABA and ∼ 6 d 22 h 47 min and required
∼ 1127.97 GB of disk space for p-ABA. The time and disk space estimations
for 1 m-ABA, 2 m-ABA and p-ABA calculations are a�ected by the fact that
they had to be restarted to allocate more memory and time for them or as
they hit the maximum time allocation of three days, all of the CCSD cc-
pVnZ calculations had to be restarted at least once as they hit the maximum
time limit of three days. In addition to this the 1 m-ABA calculations had to
be restarted two additional times before that to allocate more memory and
time for them and the p-ABA calculations had to be restarted one additional
time as they hit the maximum time limit of three days again. The CCSD cc-
pwCVDZ and cc-pwCVTZ calculations for 1 m-ABA took ∼ 1 d 15 h 13 min
and required ∼ 1134.37 GB of disk space. Most of the time for the CCSD
calculations was spent on the cc-pVQZ basis set calculations. For 1 m-ABA
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they took ∼ 3 d 8 h 48 min, for 2 m-ABA they took ∼ 4 d 16 h 44 min and
for p-ABA took ∼ 6 d 9 h 24 min.

All of the calculations used ∼ 1 TB of disk space, because they were
optimized to do so as ∼ 1 TB was the maximum allowed disk space us-
age. Besides the worse scaling behavior of the CCSD method compared to
the other methods the CCSD calculations were also slowed down by the fact
that they required much more memory per calculation process, which limited
the number of parallel processes that could be used. The number of parallel
processes for CCSD calculation was also limited by the fact that each used
parallel process also increased the amount of disk space required by the cal-
culations and each calculation process of the CCSD method required more
disk space than the other methods calculation processes.
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5 Analysis

5.1 Computational results

As can be seen from the Figure 11 shown earlier, the total energies of 1 m-
ABA, 2 m-ABA and p-ABA are very close to each other at every optimization
level. 1 m-ABA has a slightly lower total energy than 2 m-ABA and p-ABA
has a lower total energy than 1 m-ABA. At the �nal optimization level, the
1 m-ABA total energy is ∼ 0.35 meV lower than the 2 m-ABA total energy
and the p-ABA total energy is ∼ 3 meV lower than the m-ABA variants total
energies.

There is a clear di�erence of over 1 eV in energy when moving from the
HF level calculations to MP2 level, but the MP2 level and CCSD level results
are very close to each other. The di�erence between total energies for MP2
level and CCSD level using the same basis set is ∼ 42.9 meV for cc-pVDZ,
∼ 17.5 meV for cc-pVTZ and ∼ 1.3 meV for cc-pVQZ. The used basis set has
more e�ect in energy on the MP2 and CCSD levels than on the HF level.

The di�erence between cc-pVnZ and cc-pwCVnZ basis sets of the same
n for the same method is quite small and it gets smaller as the basis sets
get bigger: for the cc-pVDZ and cc-pwCVDZ the average di�erence is ∼ 26.0
meV, for the cc-pVTZ and cc-pwCVTZ the average di�erence is ∼ 20.9 meV
and for the cc-pVQZ and cc-pwCVQZ the average di�erence is ∼ 7.4 meV.
Based on this using CCSD cc-pVQZ as the �nal optimization level is justi�ed
as it should give total energies that are quite close to the ones that using
CCSD cc-pwCVQZ would have given.

From the coordinates of the atoms at di�erent optimization levels shown
by the Tables 2-4, 6-14 in Appendices A, C-E the distance an atom moved
between optimization levels can be calculated, as the length of a vector be-
tween an atom's locations at di�erent geometries. The average distance the
atoms moved between the starting guess and the end of the HF level was
∼ 0.1359 Å. The average distance the atoms moved between the end of the
HF level and the end of the MP2 level was ∼ 0.0155 Å. The average distance
the atoms moved between the end of the MP2 level and the end of the CCSD
level was ∼ 0.0056 Å. As could be expected the largest change in the atoms
locations was between the starting guess and the end of the HF level and
from there on the changes got signi�cantly smaller at each step.

The multiple restarts that had to be done during calculations make com-
paring the calculation times di�cult, because whenever the calculations hit
a memory or time limit, part of the progress was lost so after a restart part
of the calculations had to be redone. This can be seen most clearly from the
MP2 calculations of 1 m-ABA that had four restarts and took over twice as
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much time as the 2 m-ABA MP2 calculations that had no restarts. From
the calculation times it can be said that on the Puhti supercomputer with
optimized memory and time allocations the HF calculations can be done in
under one day, the MP2 calculations can be done in under one and a half
days and the CCSD cc-pVnZ calculations can be done in under a week. It
is clear that the CCSD cc-pVQZ calculations were the most time-consuming
part of the calculations.

5.2 Comparison between the experiment and the calcu-

lations

The calculated orbital energy values can be transformed into binding energies
with the Koopmans' theorem Eq.(21). Compared to these calculated approx-
imations of the binding energies the measured m-ABA C 1s binding energies
are ∼ 15 eV lower in energy, the measured m-ABA N 1s binding energy is
∼ 18 eV lower in energy and the measured m-ABA O 1s binding energies
are ∼ 21 eV lower in energy. For the measured valence spectrum, the two
left most peaks match the two outermost valence orbitals energies quite well
with a di�erence in energies around 0.2 eV, but the rest of the peaks do not
really match up to the remaining calculated binding energies.

The large energy di�erences between measured and calculated 1s binding
energies are caused by the fact that Koopman's theorem does not take into
account the electronic relaxation (the changes that happen to a molecules
electron density distribution after ionization) in the ionized molecule. The
electronic relaxation can be taken into account by calculating the binding
energy as the di�erence between the energies of the ground state and the
ionized state, but it would have to be done separately for each ionization.
Due to the removal of one electron at least one of the two states is always
an open-shell state, because of this these calculations have to use methods
based on ROHF or UHF theory. The error caused by ignoring the electronic
relaxation is mostly seen in the 1s binding energies as the e�ect of electronic
relaxation is smaller for the outer orbitals and it is often hidden by a favorable
cancellation with electron correlation e�ects. [1]

The di�erences in calculated and measured inner valence region binding
energies are caused by multiple factors. One big factor is that the potential
rotational and vibrational excitations during ionization have not been taken
into account and they can distort the peaks of the measured spectra greatly.
Electron correlation has a large e�ect in the valence region, but the CCSD
method does take it partially into account and electronic relaxation, which
has a favorable cancellation with electron correlation also has a small e�ect
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in the valence region, so it is di�cult to say what their combined e�ect is.
Due to the electron correlation e�ects the ionization of one electron can cause
the excitation or ionization of another electron. These are known as shake-
up (excitation) and shake-o� (ionization) processes and they can be seen as
additional peaks in the spectra. [1, 38]

As can be seen from Figures 25-27 in Appendices G-I the outer most
orbital marked as orbital 36. is located mainly on the benzene ring and
around the nitrogen atom for 1 m-ABA, 2 m-ABA and p-ABA. For p-ABA
it also has a small presence around the doubly-bound oxygen atom and for 2
m-ABA an even smaller presence at the same location. The second outermost
orbital marked as orbital 35. is located mainly on two opposite edges of the
benzene ring for 1 m-ABA, 2m-ABA and p-ABA. For 1 m-ABA and 2 m-
ABA it also has a small presence around the doubly-bound oxygen atom.

For 1 m-ABA and 2 m-ABA the di�erence in approximated binding en-
ergies is small, on average it is ∼ 0.05 eV. There are a couple of binding
energies where the di�erence reaches ∼ 0.1 eV or higher and one where the
di�erence is ∼ 0.26 eV. Most of these larger di�erences are in the middle
of valence spectra where the measured and calculated spectra do not really
match so they would be di�cult to spot from a spectrum and the one ∼ 0.1
eV di�erence that is not in the valence region belongs to one of the �ve car-
bon atoms which form a combined peak, so it is also di�cult to spot from a
spectrum as it gets lost within the other carbon atoms' energies.

Based on the calculated approximations of binding energies and the mea-
sured binding energy spectra an approximation of what the true p-ABA
binding energy spectra would look like can be made. First the di�erence be-
tween calculated and measured binding energies is assumed to be similar for
m-ABA and p-ABA. So the O 1s binding energies are ∼ 21 eV lower in en-
ergy, the N 1s binding energies are ∼ 18 eV lower in energy, the C 1s binding
energies are ∼ 15 eV lower in energy and the two outermost valence orbitals
are ∼ 0.2 eV lower in energy compared to the calculated values. The O 1s
spectrum would be similar to the m-ABA spectrum having two peaks with
energies ∼ 539.6 eV for the -OH peak and ∼ 537.7 eV for the =O peak. The
two peaks would be slightly lower in energy for p-ABA, but the di�erence
in energy between them would be around the same for m-ABA and p-ABA.
The N 1s peak would have an energy of ∼ 405.9 eV, which would be slightly
higher than the energy of the m-ABA N 1s peak. The C 1s spectrum would
have peaks with energies of ∼ 294.6 eV for the -COOH peak, ∼ 292.4 eV for
the -C-NH2 peak and ∼ 290.9 eV for the combined peak from the remaining
�ve carbon atoms. Thus, the energies of the combined peak from the �ve car-
bon atoms and the -C-NH2 peak would be higher for p-ABA than m-ABA,
but the energy di�erence would be bigger between the -C-NH2 peaks. The
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-COOH peaks energy would be slightly lower for p-ABA than m-ABA. This
would lead to the combined peak from the �ve carbon atoms and the -C-NH2

peak being further from each other and the -C-NH2 peak and -COOH peak
being closer to each other for p-ABA than m-ABA. The two lowest energy
valence peaks would have energies of ∼ 8.3 eV and ∼ 9.4 eV. These peaks
would be closer together than for m-ABA, as the lowest energy peak's energy
would be slightly higher, and the second lowest energy peak's energy would
be slightly lower for p-ABA than m-ABA. It is di�cult to say anything for
the rest of the valence spectrum as the m-ABA valence peaks' energies do not
really match up to the calculated valence binding energies and the situation
is probably similar for p-ABA.
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6 Summary

In this thesis I used the HF, MP2 and CCSD ab initio methods to optimize
the geometries of 1 m-ABA, 2 m-ABA and p-ABA molecules and then esti-
mated the binding energies of the molecules based on their orbital energies
at the optimized geometries. I then compared the calculated 1 m-ABA and
2 m-ABA binding energies to each other and the experimental m-ABA bind-
ing energy spectra and analyzed their di�erences. I also used the calculated
binding energies to identify most of the peaks from the experimental spectra.

The total energies of MP2 and CCSD levels were very close to each other
at the cc-pVQZ level, while the CCSD calculation took considerably longer
to complete. As there was not much di�erence in the total energies between
MP2 and CCSD, the MP2 results were probably already quite accurate.
The results might di�er if CCSD(T) calculations could have been done, but
they probably would have taken even longer to complete than the CCSD
calculations. The MP2 level provided decently accurate results much faster
than CCSD so it would probably have been good enough for ABA molecules'
geometry optimization.

The 1 m-ABA and 2 m-ABA total energies were very close to each other
and the di�erences in their approximated binding energies were also mostly
small enough that they would be di�cult to notice from a spectrum. The
largest di�erences were in the middle of the valence binding energies and as
the approximations of valence spectrum binding energies did not match well
with the measured valence spectrum it would be di�cult to say how they
shows up in a measured valence spectrum. The largest di�erences in the 1s
spectra were in the C 1s spectra, but as they were in the binding energies of
the �ve carbon atoms which energies are so close to each other that they form
a combined peak the di�erences are also very di�cult to notice. Thus, it is
di�cult to di�erentiate between 1 m-ABA and 2 m-ABA based on measured
spectra.

Based on the results of the ab initio calculations for m-ABA and p-ABA
and the measured spectra of m-ABA a decently accurate estimations of the
di�erent p-ABA 1s binding energy spectra could be constructed and an ap-
proximation for the lowest energy part of the p-ABA valence binding energy
spectrum could also be made.
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A Starting geometries

Atom X Y Z
O 2.18721294 1.88313794 -0.00000000
O 3.31737399 -0.26936299 -0.00000000
N -0.35456800 -3.94935989 0.00000300
C -0.35456800 0.31064001 -0.00000000
C 0.85353202 -0.38686001 -0.00000000
C 0.85353202 -1.78185999 -0.00000000
C -0.35456800 -2.47936010 -0.00000000
C -1.56266797 -1.78185999 -0.00000000
C -1.56266797 -0.38686001 -0.00000000
C 2.18721199 0.38313800 -0.00000000
H -0.35456800 1.41033995 -0.00000000
H 1.80593204 -2.33175993 -0.00000000
H -2.51506901 -2.33175993 -0.00000000
H -2.51506901 0.16304000 -0.00000000
H 3.22430301 2.24980497 -0.00000000
H 0.35736799 -4.30602694 0.71471697
H -1.31822097 -3.88110995 0.46000600

Table 2: 1 m-ABA starting geometry in angstroms
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Atom X Y Z
O 3.48593211 -0.36631599 0.04050000
O 2.18748999 1.68766296 -0.03523600
N -0.35456800 -3.94935989 0.00000300
C -0.35456800 0.31064001 -0.00000000
C 0.85353202 -0.38686001 -0.00000000
C 0.85353202 -1.78185999 -0.00000000
C -0.35456800 -2.47936010 -0.00000000
C -1.56266797 -1.78185999 -0.00000000
C -1.56266797 -0.38686001 -0.00000000
C 2.18721199 0.38313800 0.00000000
H -0.35456800 1.41033995 -0.00000000
H 1.80593204 -2.33175993 -0.00000000
H -2.51506901 -2.33175993 -0.00000000
H -2.51506901 0.16304000 -0.00000000
H 4.32207489 0.34840900 0.03423300
H 0.35736799 -4.30602694 0.71471697
H -1.31822097 -3.88110995 0.46000600

Table 3: 2 m-ABA starting geometry in angstroms

Atom X Y Z
O 2.18721294 1.88313794 -0.00000000
O 3.31737399 -0.26936299 -0.00000000
N -2.90254998 -2.47092605 0.05666900
C -0.35456800 0.31064001 -0.00000000
C 0.85353202 -0.38686001 -0.00000000
C 0.85353202 -1.78185999 -0.00000000
C -0.35456800 -2.47936010 -0.00000000
C -1.56266797 -1.78185999 -0.00000000
C -1.56266797 -0.38686001 -0.00000000
C 2.18721199 0.38313800 -0.00000000
H -0.35456800 1.41033995 -0.00000000
H 1.80593204 -2.33175993 -0.00000000
H -2.51506901 0.16304000 -0.00000000
H 3.22430301 2.24980497 -0.00000000
H -3.71849298 -1.90613794 0.45683801
H -2.87091589 -3.43257594 0.52476001
H -0.35456800 -3.57810593 0.00000000

Table 4: p-ABA starting geometry in angstroms
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B Total energies

Method Basis set 1 m-ABA (eV) 2 m-ABA (eV) p-ABA (eV)
HF cc-pVDZ -473.39986021 -473.39947992 -473.40410956
HF cc-pVTZ -473.52891265 -473.52849295 -473.53334372
HF cc-pVQZ -473.56155390 -473.56112588 -473.56599046
HF cc-pwCVDZ -473.40347435 -473.40309548 -473.40771542
HF cc-pwCVTZ -473.53204586 -473.53162495 -473.53646208
HF cc-pwCVQZ -473.56268760 -473.56225943 -473.56712369
MP2 cc-pVDZ -474.83670701 -474.83638181 -474.83721146
MP2 cc-pVTZ -475.29783203 -475.29748535 -475.29870378
MP2 cc-pVQZ -475.45079757 -475.45044244 -475.45176324
MP2 cc-pwCVDZ -474.87683895 -474.87651589 -474.87734126
MP2 cc-pwCVTZ -475.33007519 -475.32971838 -475.33095181
MP2 cc-pwCVQZ -475.46451137 -475.46415496 -475.46548274
CCSD cc-pVDZ -474.87913521 -474.87882925 -474.88112422
CCSD cc-pVTZ -475.31484589 -475.31450993 -475.31727986
CCSD cc-pVQZ -475.44898234 -475.44863457 -475.45152500
CCSD cc-pwCVDZ -474.91344328
CCSD cc-pwCVTZ -475.34205511
CCSD cc-pwCVQZ

Table 5: Total energies of 1 m-ABA, 2 m-ABA and p-ABA for di�erent
methods and basis sets
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C Geometries at HF cc-pwCVQZ optimization

level

Atom X Y Z
O 2.1099841752 1.6499185941 -0.0479225914
O 3.224454906 -0.2362328243 0.0663273727
N -0.3742033285 -3.8118420334 0.0788467751
C -0.3233865752 0.3719043492 -0.0208676525
C 0.8573233564 -0.3468576926 0.0206594493
C 0.8441331073 -1.7289822175 0.0707026636
C -0.3549309362 -2.4204277464 0.0804648945
C -1.5397093506 -1.6954208049 0.0371953698
C -1.5193264246 -0.3188436884 -0.0112271382
C 2.1864054088 0.328392554 0.0167495306
H -0.3095560272 1.440250471 -0.059019882
H 1.7764140372 -2.2565672435 0.0985161937
H -2.4789920327 -2.2160099304 0.0368708882
H -2.4462140338 0.2200851259 -0.0430149094
H 2.988256243 1.9954554305 -0.0458551572
H 0.4475547549 -4.2409317309 0.4338640068
H -1.1937082098 -4.2199694722 0.4624361563

Table 6: 1 m-ABA geometry at HF cc-pwCVQZ optimization level in
angstroms

54



Atom X Y Z
O 3.2318535454 -0.3762913833 0.0475809418
O 2.2318269358 1.5738060607 -0.0492512527
N -0.3610715935 -3.8291904431 0.0872603989
C -0.3104186625 0.3530549023 -0.0292138844
C 0.8714523592 -0.3648097581 0.0136993534
C 0.8587515778 -1.7464596744 0.0686424122
C -0.3437888903 -2.4366743327 0.0830497229
C -1.526445805 -1.7127004136 0.0379394949
C -1.5053740145 -0.3342964693 -0.0165136803
C 2.1537958523 0.3953751514 -0.0005461796
H -0.2819624767 1.4215355991 -0.0711632853
H 1.7825754253 -2.2874323295 0.0961500913
H -2.4659989955 -2.2328071761 0.0412561153
H -2.432116648 0.2047255055 -0.04975237
H 3.9925979489 0.1821116967 0.0323131506
H 0.4527942795 -4.255036147 0.4638067623
H -1.1873647182 -4.2348135986 0.4589651788

Table 7: 2 m-ABA geometry at HF cc-pwCVQZ optimization level in
angstroms
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Atom X Y Z
O 2.0776365425 1.6516472365 -0.0303200743
O 3.2211976097 -0.2216321112 -0.025394928
N -2.7596188882 -2.4181936345 0.0481474019
C -0.3408758453 0.3291092315 0.0238295954
C 0.8628189626 -0.3592810574 0.0118212205
C 0.8359870038 -1.7471565455 0.0265458454
C -0.3534310266 -2.4304590803 0.0533910151
C -1.5621158837 -1.7365211293 0.0666365792
C -1.5386445631 -0.345044711 0.0511626163
C 2.1700018963 0.3256442702 -0.015992565
H -0.34058682 1.3997076649 0.0126948961
H 1.7635285169 -2.2829516062 0.0166177959
H -2.4617373577 0.202404998 0.0549277514
H 2.9531141156 2.0030575382 -0.0487053485
H -3.5552628394 -1.9173215986 0.3629991165
H -2.7366133052 -3.3549116805 0.3724057703
H -0.3569359082 -3.5036657951 0.0575003319

Table 8: p-ABA geometry at HF cc-pwCVQZ optimization level in angstroms
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D Geometries at MP2 cc-pwCVQZ optimiza-

tion level

Atom X Y Z
O 2.091344032 1.6717125804 -0.0488813964
O 3.250276929 -0.2465004253 0.0653054996
N -0.3736880018 -3.8184809169 0.0715288107
C -0.3277553371 0.3831171089 -0.0231132094
C 0.8630351679 -0.3411273665 0.0202513133
C 0.8518599232 -1.7321262977 0.0730616351
C -0.3553884831 -2.4277988562 0.0842868041
C -1.5487421878 -1.6992586878 0.0398449434
C -1.5302160845 -0.3119294855 -0.0117171588
C 2.1847055667 0.3244073324 0.0161780643
H -0.3058157666 1.4603726275 -0.063230075
H 1.7972900529 -2.2572661714 0.1024400422
H -2.4934366991 -2.2276077813 0.0412604414
H -2.4653321162 0.2287962374 -0.0434170306
H 3.0049160335 1.9887263625 -0.0451477344
H 0.4577341335 -4.250099138 0.438846841
H -1.2062880919 -4.2310159823 0.4572281791

Table 9: 1 m-ABA geometry at MP2 cc-pwCVQZ optimization level in
angstroms
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Atom X Y Z
O 3.2395919366 -0.4040153724 0.050863366
O 2.2381746856 1.6015522021 -0.0533388277
N -0.3635893223 -3.8363864412 0.0793727688
C -0.3118850662 0.3617932903 -0.0314543743
C 0.8788384108 -0.3614875051 0.0132286118
C 0.8675307101 -1.7530175527 0.0709818323
C -0.3436534503 -2.4447198714 0.0865921631
C -1.535606145 -1.7156885991 0.0401539434
C -1.515574575 -0.3279538028 -0.0169615123
C 2.1492555256 0.396814879 -0.0013323698
H -0.2718327192 1.4394292241 -0.0753236277
H 1.8021479806 -2.2947844176 0.1006571202
H -2.4804982119 -2.2436438264 0.0450230858
H -2.4496610531 0.2143300794 -0.0500751928
H 3.9955637325 0.1986896416 0.033360652
H 0.4623689207 -4.2666912007 0.4603926056
H -1.2000652394 -4.244123537 0.4620827256

Table 10: 2 m-ABA geometry at MP2 cc-pwCVQZ optimization level in
angstroms
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Atom X Y Z
O 2.0587235295 1.6733017867 -0.029262511
O 3.2468508566 -0.2310360156 -0.0226252463
N -2.7752800733 -2.4264103795 0.0279057769
C -0.3411908942 0.3425120645 0.0216518713
C 0.8643714965 -0.3579573398 0.0104288055
C 0.8466346157 -1.7516752 0.0245761073
C -0.3553237948 -2.4348468464 0.0502951262
C -1.5692236762 -1.7407464635 0.0646244017
C -1.5435006145 -0.3435899197 0.0476880166
C 2.1714849577 0.3230396444 -0.014954716
H -0.3341636486 1.4217269894 0.0117421475
H 1.7864406168 -2.284476971 0.016723436
H -2.4763580895 0.2048120565 0.051266947
H 2.968524588 1.9998885695 -0.0456822632
H -3.5662374015 -1.9168112074 0.3835117308
H -2.7415910109 -3.3663814422 0.3844534174
H -0.3616992473 -3.5169173362 0.0559239727

Table 11: p-ABA geometry at MP2 cc-pwCVQZ optimization level in
angstroms
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E Final geometries (CCSD cc-pVQZ optimiza-

tion level)

Atom X Y Z
O 2.0993693127 1.6685009706 -0.0447092559
O 3.2441657880 -0.2415616497 0.0625475164
N -0.3751646268 -3.8231058888 0.0659578338
C -0.3265566193 0.3797528389 -0.0217160938
C 0.8607072887 -0.3436425729 0.0190507232
C 0.8496391641 -1.7326952769 0.0680523486
C -0.3561482730 -2.4262499255 0.0784241858
C -1.5480307609 -1.6995604305 0.0355970275
C -1.5291774686 -0.3143015553 -0.0120649972
C 2.1874167642 0.3278856567 0.0158868062
H -0.3066335164 1.4563369988 -0.0588007870
H 1.7921671497 -2.2602580309 0.0958470245
H -2.4921867261 -2.2273818732 0.0354839269
H -2.4630186239 0.2276994636 -0.0427751935
H 3.0046387837 1.9929094121 -0.0411966299
H 0.4542169613 -4.2452879067 0.4453217167
H -1.2009055270 -4.2251190903 0.4738198173

Table 12: 1 m-ABA �nal geometry (CCSD cc-pVQZ optimization level) in
angstroms
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Atom X Y Z
O 3.2413029920 -0.3952579531 0.0488668223
O 2.2388593646 1.5937785519 -0.0487915942
N -0.3634009687 -3.8404939340 0.0739024696
C -0.3120276170 0.3598384156 -0.0295467553
C 0.8757673533 -0.3627345474 0.0128206803
C 0.8648097655 -1.7518127960 0.0667196746
C -0.3448454886 -2.4427346431 0.0811205255
C -1.5349314915 -1.7161702453 0.0365042283
C -1.5148191553 -0.3297246770 -0.0169746024
C 2.1537718828 0.3971727435 -0.0003152193
H -0.2754235880 1.4366652445 -0.0705623493
H 1.7975248562 -2.2947177961 0.0943491076
H -2.4794061896 -2.2434277843 0.0398197806
H -2.4480498078 0.2131556228 -0.0491148915
H 3.9988589291 0.1968897421 0.0328618895
H 0.4586730960 -4.2608104728 0.4708621522
H -1.1955578129 -4.2395182810 0.4717010514

Table 13: 2 m-ABA �nal geometry (CCSD cc-pVQZ optimization level) in
angstroms
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Atom X Y Z
O 2.0670188887 1.6698866642 -0.0276765128
O 3.2410486919 -0.2262173224 -0.0210315797
N -2.7744082688 -2.4262286815 0.0288372664
C -0.3420548663 0.3386319301 0.0207101726
C 0.8641182448 -0.3581685633 0.0101969537
C 0.8431750124 -1.7515129797 0.0238092025
C -0.3554371535 -2.4368932345 0.0481694395
C -1.5678059997 -1.7398337801 0.0611812363
C -1.5453754558 -0.3430505339 0.0454404518
C 2.1726602139 0.3258554203 -0.0139631063
H -0.3358420332 1.4172975013 0.0106882025
H 1.7815664826 -2.2851959612 0.0160235909
H -2.4773597700 0.2050643449 0.0485113867
H 2.9691462477 2.0019996848 -0.0433003132
H -3.5614857604 -1.9165002248 0.3878044182
H -2.7383240353 -3.3626282267 0.3894809178
H -0.3621782290 -3.5180740476 0.0533852936

Table 14: p-ABA �nal geometry (CCSD cc-pVQZ optimization level) in
angstroms
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F Orbital energies for CCSD cc-pVQZ level

Orbital type 1 m-ABA (eV) 2 m-ABA (eV) p-ABA (eV)
1. O1s(-OH) -560.773744 -560.785636 -560.598639
2. O1s(=O) -558.974147 -558.976133 -558.704781
3. N1s -423.633528 -423.674835 -423.895546
4. C1s(COOH) -309.774557 -309.775836 -309.563478
5. C1s(C-NH2) -307.076330 -307.097310 -307.412772
6. C1s -306.183226 -306.194709 -306.187171
7. C1s -305.947384 -305.933017 -306.107932
8. C1s -305.845451 -305.851519 -305.706618
9. C1s -305.753721 -305.846838 -305.646971
10. C1s -305.740170 -305.671815 -305.636032
11. Valence -39.984683 -39.984901 -39.766366
12. Valence -37.067704 -37.073391 -36.827237
13. Valence -33.620457 -33.645219 -33.862937
14. Valence -31.257066 -31.260522 -31.302210
15. Valence -28.387000 -28.418619 -28.024571
16. Valence -27.359062 -27.341484 -27.845412
17. Valence -24.519064 -24.516262 -24.090213
18. Valence -22.723684 -22.918627 -23.187312
19. Valence -21.979181 -21.717679 -21.762361
20. Valence -19.860285 -19.897428 -19.851414
21. Valence -19.314397 -19.427488 -19.419923
22. Valence -18.767720 -18.779285 -18.803530
23. Valence -18.341209 -18.291630 -18.712726
24. Valence -17.738531 -17.701061 -17.218930
25. Valence -17.320102 -17.323503 -17.143391
26. Valence -16.553720 -16.666593 -16.521692
27. Valence -16.337009 -16.458263 -16.323213
28. Valence -16.021574 -15.872646 -16.072405
29. Valence -14.902942 -14.907404 -15.107109
30. Valence -14.416865 -14.339666 -14.720925
31. Valence -13.894569 -13.987551 -13.667354
32. Valence -13.325280 -13.364192 -13.250394
33. Valence -12.523578 -12.499496 -12.477754
34. Valence -12.381344 -12.373943 -12.194946
35. Valence -9.600123 -9.645838 -9.58679
36. Valence -8.407502 -8.411420 -8.53374
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G 1 m-ABA orbital shapes for CCSD cc-pVQZ

level

Orbital 1 Orbital2 Orbitall 3

Orbital 4 Orbital 5 Orbital 6

Orbital 7 Orbital 8 Orbital 9

Orbital 10 Orbital 11 Orbital 12
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Orbital 13 Orbital 14 Orbital 15

Orbital 16 Orbital 17 Orbital 18

Orbital 19 Orbital 20 Orbital 21

Orbital 22 Orbital 23 Orbital 24
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Orbital 25 Orbital 26 Orbital 27

Orbital 28 Orbital 29 Orbital 30

Orbital 31 Orbital 32 Orbital 33

Orbital 34 Orbital 35 Orbital 36

Figure 25: 1 m-ABA orbitals
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H 2 m-ABA orbital shapes for CCSD cc-pVQZ

level

Orbital 1 Orbital2 Orbitall 3

Orbital 4 Orbital 5 Orbital 6

Orbital 7 Orbital 8 Orbital 9

Orbital 10 Orbital 11 Orbital 12
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Orbital 13 Orbital 14 Orbital 15

Orbital 16 Orbital 17 Orbital 18

Orbital 19 Orbital 20 Orbital 21

Orbital 22 Orbital 23 Orbital 24
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Orbital 25 Orbital 26 Orbital 27

Orbital 28 Orbital 29 Orbital 30

Orbital 31 Orbital 32 Orbital 33

Orbital 34 Orbital 35 Orbital 36

Figure 26: 2 m-ABA orbitals
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I p-ABA orbital shapes for CCSD cc-pVQZ level

Orbital 1 Orbital2 Orbitall 3

Orbital 4 Orbital 5 Orbital 6

Orbital 7 Orbital 8 Orbital 9

Orbital 10 Orbital 11 Orbital 12
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Orbital 13 Orbital 14 Orbital 15

Orbital 16 Orbital 17 Orbital 18

Orbital 19 Orbital 20 Orbital 21

Orbital 22 Orbital 23 Orbital 24
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Orbital 25 Orbital 26 Orbital 27

Orbital 28 Orbital 29 Orbital 30

Orbital 31 Orbital 32 Orbital 33

Orbital 34 Orbital 35 Orbital 36

Figure 27: p-ABA orbitals
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