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ABSTRACT 

In this master’s thesis, a simulation environment that can be used to execute 

embedded software’s unit tests is implemented. The purpose of the simulation is 

to make the development of the embedded firmware easier, cheaper, and faster. 

Also, the purpose is to make remote work easier by enabling unit test and 

integration test execution on a laptop. 

This topic has been researched a lot before and many different solutions and 

tools exist for embedded system simulation. Some of these solutions are 

introduced in this paper. After the introduction, two of the solutions are 

implemented for one embedded system that uses monolithic firmware.  

The solutions implemented are emulation based on the Unicorn emulator and 

a simulation with native execution on a PC. Each solution has advantages and 

disadvantages. But in this case, the native execution on a PC was better, as the 

test execution was two times faster than in Unicorn emulator and three times 

faster than in an embedded device. Native execution was also easier to 

implement than Unicorn emulator and could use free compilers like GCC and 

Clang. The biggest disadvantage with native execution was the low fidelity. 
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Kurikka J. (2022) Sulautetun ohjelmiston testaaminen simuloidussa 

ympäristössä. Oulun yliopisto, tietotekniikan tutkinto-ohjelma. Diplomityö, 50 s. 

TIIVISTELMÄ 

Tässä diplomityössä tehdään simulointiympäristö, jolla voidaan ajaa sulautetun 

järjestelmän yksikkö- ja integraatiotestejä. Simulaation tarkoitus on tehdä 

sulautetun järjestelmän ohjelmistokehitys helpommaksi, halvemmaksi ja 

nopeammaksi. Lisäksi simulaatiolla saadaan tehtyä etätyöskentely 

helpommaksi, kun yksikkö- ja integraatiotestit voidaan ajaa kannettavalla 

tietokoneella. 

Sulautetun järjestelmän simulointia on tutkittu paljon ja simulointiin on 

kehitetty monia eri ratkaisuja ja työkaluja. Osa näistä työkaluista esitellään 

tässä diplomityössä. Esittelyn jälkeen toteutetaan kaksi eri simulointi 

ympäristöä yhdelle sulautetulle järjestelmälle.  

Toteutetut simulaatiot ovat: emulaatio joka tehdään Unicorn emulaattorilla 

ja simulaatio joka toteutetaan natiiviajona PC:llä. Molemmilla ratkaisuilla on 

hyvät ja huonot puolet. Mutta kokonaisuutena natiiviajo oli parempi tälle 

sulautetulle järjestelmälle, koska natiiviajo oli kaksi kertaa nopeampi kuin 

Unicorn emulaattori ja kolme kertaa nopeampi kuin sulautettu järjestelmä. 

Lisäksi natiiviajo oli helpompi toteuttaa kuin Unicorn emulaattori ja 

natiiviajossa voitiin käytettään ilmaisia kääntäjiä kuten GCC ja Clang. 

Huonoin puoli natiiviajossa oli se, että natiiviajon tarkkuus ei ollut kovin hyvä, 

eikä sillä näin ollen pystynyt testaamaan kaikkia asioita koodista. 

 

Avainsanat: Sulautettu ohjelmisto, simulaatio, QEMU, emulaatio, testaus 

 



 

  

TABLE OF CONTENTS 

ABSTRACT ................................................................................................................. 2 
TIIVISTELMÄ ............................................................................................................. 3 
TABLE OF CONTENTS ............................................................................................. 4 

FOREWORD ................................................................................................................ 6 
ABBREVIATIONS ...................................................................................................... 7 
1 INTRODUCTION ................................................................................................ 8 
2 CROSS-PLATFORM CODE EXECUTION ....................................................... 9 

2.1 Terminology ............................................................................................. 9 

2.1.1 Simulation ................................................................................... 9 

2.1.2 Emulation vs Virtualization ...................................................... 10 

2.1.3 Full Virtualization and Full Emulation ..................................... 10 
2.1.4 Operating-system-level Virtualization ...................................... 10 
2.1.5 Emulation vs Simulation ........................................................... 11 
2.1.6 High-level vs Low-level Languages ......................................... 11 
2.1.7 Compilation vs Translation ....................................................... 12 

2.1.8 Binary Files and Source Files .................................................... 12 

2.1.9 Dynamic Translation and Static Translation ............................. 13 
2.1.10 Compiler vs Interpreter ............................................................. 13 

2.2 Introduction to Cross-platform Software ............................................... 14 

2.2.1 Ahead-of-time Translated Cross-platform Software ................. 14 
2.2.2 Just-in-time Translated Cross-platform Software ..................... 15 

2.2.3 Intermediate Representations .................................................... 16 
2.3 Instruction set architectures .................................................................... 17 

2.3.1 x86 Architectures ...................................................................... 18 
2.3.2 ARM Architectures ................................................................... 18 
2.3.3 ARM Instruction Sets ................................................................ 20 

3 CHALLENGES IN EMBEDDED PLATFORM SIMULATION ..................... 21 
3.1 Embedded Device Classification ............................................................ 21 

3.2 Differences Between Computer Platforms ............................................. 21 
3.2.1 Computer Architecture (Instruction Set Architecture) .............. 21 
3.2.2 Hardware Accelerators .............................................................. 22 
3.2.3 Endianness ................................................................................. 22 

3.2.4 Interrupts ................................................................................... 23 

3.2.5 Operating Systems ..................................................................... 23 

3.2.6 Memory and Memory Maps ...................................................... 23 
4 EMBEDDED PLATFORM SIMULATION TECHNIQUES ........................... 26 

4.1 Fidelity.................................................................................................... 26 
4.2 Emulation ............................................................................................... 27 

4.2.1 Translation Techniques of Emulators........................................ 28 

4.3 Existing Emulators ................................................................................. 29 
4.3.1 QEMU ....................................................................................... 29 
4.3.2 QEMU and SystemC ................................................................. 30 
4.3.3 QEMU Forks ............................................................................. 30 
4.3.4 Unicorn ...................................................................................... 30 

4.3.5 OVPsim ..................................................................................... 31 

4.3.6 Simics ........................................................................................ 31 



 

4.3.7 Avatar2 ...................................................................................... 31 
4.3.8 VPSim ....................................................................................... 32 

4.3.9 Other Emulators ........................................................................ 32 
4.4 Partial Emulation .................................................................................... 33 
4.5 Native Execution .................................................................................... 34 

5 IMPLEMENTATION ........................................................................................ 37 
5.1 Simulated Embedded System ................................................................. 37 

5.1.1 HSM .......................................................................................... 38 
5.1.2 HSM’s Firmware ....................................................................... 39 
5.1.3 Test Framework ......................................................................... 39 

5.2 Emulation ............................................................................................... 39 
5.3 Native PC Execution .............................................................................. 41 

6 EVALUATION .................................................................................................. 43 
6.1 Execution Speed ..................................................................................... 43 
6.2 Advantages and Disadvantages of the Unicorn Emulation .................... 44 

6.3 Advantages and Disadvantages of the Native PC Execution ................. 44 
7 DISCUSSION .................................................................................................... 46 
8 CONCLUSION .................................................................................................. 47 

8.1 Future Work ........................................................................................... 47 

9 REFERENCES ................................................................................................... 48 
 



 

FOREWORD 

Writing this master’s thesis has been a big challenge for me. I have learned a lot of 

new things when doing this thesis. This thesis was done while I was working for 

Elektrobit, so I want to thank Elektrobit for giving me the opportunity to do this 

thesis. From Elektrobit I want to thank my technical supervisor Gabriel Byman and 

Juha Mäki-Asiala for good ideas. From the University of Oulu, I want to thank my 

second supervisor Miguel Bordallo Lopez and I especially want to thank my main 

supervisor professor Olli Silven for great advice and feedback.  

 

 

Oulu, 18.2.2022 

 

 

Jussi Kurikka 



 

ABBREVIATIONS 

ISA instruction set architecture 

CPU central processing unit 

JIT just-in-time 

AOT ahead-of-time 

SoC system-on-chip 

ISS  instruction set simulator 

RISC reduced instruction set computer 

CISC complex instruction set computer 

VLIW  very long instruction word 

MMU  memory management unit 

MPU  memory protection unit 

OS  operating system 

HDL  hardware description language 

AES  advanced encryption standard 

GPU  graphics processing unit 

ASLR  address space layout randomization 

I/O  input/output 

ROM  read-only memory 

RAM  random-access memory 

OTP  one-time programmable 

ECC  error correction code 

BSP  board support package 

HAL  hardware abstraction layer 

API  application programming interface 

HSM hardware security module 

TRNG  true random number generator 

ECDSA  elliptic curve digital signature algorithm 

NVIC  nested vector interrupt control 

GDB  GNU Debugger 

IR intermediate representation 

LLVM low level virtual machine 

IPC Inter-process communication 

 

 

 

 



 

1 INTRODUCTION 
 

Testing an embedded device’s firmware on a physical board can be slow and 

difficult. What makes it slow is that the firmware binary must be written to the 

embedded device’s chip and thus the device must be connected to a PC and a 

debugger must write the binary to the chip and this can take a lot of time. Also, the 

number of embedded devices can be limited. On top of this, the price of the 

debugger, compiler license, and hardware can be thousands or tens of thousands of 

euros, so it would be useful to have other ways to test the embedded software. One 

way of doing this is running the tests in a simulated environment on a PC. 

Having the ability to test embedded software on the same machine as the code is 

developed, would be beneficial when working in an office, but when doing remote 

work, it is even more important. And as remote work has become more common, has 

other software development fields like web development become more compelling 

because they are easier to do remotely (as there isn’t a need for a debugger nor a 

physical embedded board). So, it would be useful to improve embedded firmware 

development by making remote work easier, and a simulation environment is one 

way of doing so.  

Many different test types can be used to test the validity of software. Examples of 

these include unit testing, integration testing, acceptance testing, performance testing, 

stress testing, and fuzz testing. Some testing must be done on a real embedded 

system e.g., acceptance testing, performance testing, and stress testing should be 

done on a real embedded system, but other testing like unit testing, integration 

testing, and fuzz testing can also be done in a simulated environment. This master’s 

thesis concentrates on how firmware’s unit tests and integration tests can be executed 

on a PC. 

Embedded devices are many times developed as hardware/software co-design. In 

hardware/software co-design both hardware and software can naturally be tested in a 

simulated environment. But if the hardware is already finished or it is developed by a 

different company then only the software needs to be tested. For the implementation 

part of this master’s thesis, the hardware has already been developed by another 

company so only the testing of the software is investigated. 

In this master’s thesis, two environments that simulate embedded device’s 

hardware and can execute the embedded system’s software are developed. The first 

solution is based on an emulator and the second is based on native execution on a 

PC. The main goal of the simulation environment is that it would be possible to 

develop and partly test the firmware on the same PC environment and thus make the 

developing process easier. 

This master’s thesis has the following structure: Chapter 2 explains how software 

can be executed on different platforms on a general level. Chapter 3 explains what 

challenges there are in cross-platform execution for embedded devices. And after 

that Chapter 4 explains different techniques of how firmware can be executed on a 

PC. Chapter 5 explains how the two simulation environments for this master’s thesis 

were implemented. Chapter 6 covers the evaluation of the implementations. Finally, 

Chapters 7 and 8 discuss the whole topic and conclude this master’s thesis. 
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2 CROSS-PLATFORM CODE EXECUTION 
 

When software is executed in a simulated environment it means that the software is 

executed on a different platform than that originally intended. Software that can be 

executed on multiple platforms is called cross-platform software. There are many 

techniques for how cross-platform software can be implemented. To get an 

understanding of these techniques, the general ways of executing the same software 

on multiple platforms are explained in this chapter. While also the terminology 

related to the topic is introduced. 

2.1 Terminology 

This part introduces the basic concepts and terminology that are related to 

simulation, cross-platform software, and other concepts that are important for this 

master’s thesis. Note that some sources can use different meanings of these terms, 

but in this section commonly used definitions that also make sense logically are 

introduced. 

2.1.1 Simulation 

Simulation means the imitation of some real-world system in an artificial 

environment that replicates the behavior of the real-world system. This definition is 

general; thus, the term simulation can mean many different things depending on the 

context. In the context of this paper, simulation means the imitation of a computer 

system’s hardware on another computer system. The word simulation is used to 

mean all possible techniques that can be used to imitate the computer system.  The 

system that is simulated is called a target system and the system that does the 

simulation is called a host system. Figure 1 shows the definition of simulation in the 

context of this master’s thesis. 

 
Figure 1. Meaning of simulation in the context of this master’s thesis. 
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2.1.2 Emulation vs Virtualization 

Emulation and virtualization have similar meanings i.e., simulation of a computer 

system that is separate from the host system that is executing it. The difference 

between the terms is the purpose of the simulation. 

For emulation the purpose is to accurately reproduce the behavior of another 

computer system e.g., the same binaries that were compiled for the target hardware 

should work directly on an emulator. Most of the time an emulator simulates a 

different platform than the host system, however it can also be the same platform as 

the host system as long as the host system is not used directly. The emulator’s 

internal behavior doesn’t have to be similar to the target system, it is enough that the 

behavior of the emulator is similar to the target system.  

The purpose of virtualization is to make separate environments (instances) of the 

host system. The instances are isolated from other instances and the host system. 

Software/hardware that does virtualization is called “hypervisor”. In virtualization, 

the target software can use the host system’s resources directly (e.g., there isn’t a 

translation of the machine code instructions) and this means that the target system 

and host system must be the same platform. Note that the hypervisor can still control 

how the target software can use the host system’s resources, to make the isolation of 

the instances possible, but the resource that the target system uses are not simulated 

with software. 

The term virtual machine means virtualization and/or emulation of a computer 

system. A virtual machine can be made with a hypervisor, an emulator, or with a 

combination of the two e.g., some parts of the virtual machine are virtualized, and 

some parts are emulated with software.  

2.1.3 Full Virtualization and Full Emulation 

The terms virtualization and emulation can mean imitation of the whole computer 

system or just some parts of it. The terms full virtualization and full emulation are 

subsets of virtualization and emulation. Full virtualization and full emulation mean 

that everything from the computer system is imitated. For example, for full 

virtualization, this means that it is possible to run OS on the hypervisor, and for full 

emulation, this means that the same binaries that were compiled for the target 

hardware should work directly on the emulator. For this to work, all peripherals of 

the target hardware have to be simulated. In this thesis, the purpose of the simulation 

is to execute embedded system’s tests on a PC environment and not to make a new 

instance of a PC, so the needed technique is full emulation. To make it clear that 

emulation is the technique used, the term virtual machine is not used in this paper 

and only terms emulation/emulator are used. 

2.1.4 Operating-system-level Virtualization 

Operating systems have different ways of creating isolated environments that are 

somewhat similar to virtual machines. A container is an OS-level virtualization 

technique that can be used to make an isolated instance of the OS that seems like a 

real computer system from the point of view of a program. Containers are different 

from virtual machines because virtual machines can use any OS whereas a container 
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always has the same hardware and OS as the host system. A process can also be 

thought of as very basic OS-level virtualization that makes it seem that the program 

uses the whole system (the program can use the whole address space). A process and 

a container are similar concepts from the point of view of the OS, but the difference 

between them is that a process has less isolation than a container and a container is a 

group of processes. 

2.1.5 Emulation vs Simulation 

Simulation is a general term, that means the imitation of a system. Hence, simulation 

can be used to mean emulation, virtualization, or something else. In this paper, 

simulation is used to mean any imitation/modeling of a computer system. Figure 2 

shows how simulation terms are related to each other. Note that in some contexts the 

term simulation has a more specific meaning i.e., an imitation of the computer 

system but with fewer details than an emulator has. An example of this is the iPhone 

simulator and the Android emulator. The Android emulator simulates the whole 

system including the memories and the CPU instruction set. The iPhone simulator, 

on the other hand, does not simulate iPhone’s processor, disk drive, nor memory 

constraints. 

 

 
Figure 2. Diagram of simulation terminology. 

2.1.6 High-level vs Low-level Languages 

A high-level programming language means a programming language that has strong 

abstraction from the details of the computer. High-level languages don’t use 

platform-specific information within the code. Instead, they use high-level 

abstractions to instruct a computer. For this reason, it is easy to use high-level level 

languages to write code for many different platforms. Most of the commonly used 

languages are high-level languages e.g., C language, Python, Java, JavaScript, etc. 

High-level languages always need to be translated before they can be executed. 
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In contrast to high-level languages, there are low-level languages. These low-level 

languages use ISA (instruction set architecture) directly and thus are machine-

dependent i.e., the code only works in the target computer architecture. For example, 

machine language is a low-level language that only consists of instructions that 

control the CPU directly and thus is the lowest possible language. Machine language 

is a numerical language i.e., the instructions are only binary or hexadecimal numbers 

and therefore it is difficult for a human to read.  Assembly language is one level 

higher than machine language and it consists of commands that are close to machine 

code instructions; for this reason, assembly language is more human-readable than 

machine language. Low-level languages generally do not need compilation as they 

are written directly for the target architecture. 

2.1.7 Compilation vs Translation 

The general term for changing code to some other language is called translation. The 

term “translation” can be used regardless of whether the translation is happening 

from a high-level language to a low-level language, from a low-level language to a 

high-level language, or between similar levels. If the translation is done with a 

compiler from a high-level language to a low-level language the word “compilation” 

can also be used. Decompilation means translation from a low-level language to a 

high-level language. Examples of translations are presented in Figure 3.  

Some sources use the term “recompilation” in the context of run-time translation 

between the same-level languages, but this usage is not compatible with the 

definition of compilation (translation from a high-level language to a low-level 

language) so in this paper, only the term “translation” is used instead of 

recompilation. 

 
Figure 3. Examples of language translations. 

2.1.8 Binary Files and Source Files 

In general, a binary file means any file that is not a text file. In other words, a binary 

file is meant to be read by a computer. In this thesis, a stricter definition of the term 

“a binary file” is used i.e., any file that only consists of machine code that can be 

executed by a processor. 
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Source file means any file that only has code in high-level language so it cannot 

be executed directly. This also means that the source file must be translated before it 

can be run on a processor. 

2.1.9 Dynamic Translation and Static Translation 

Programming language translations can be divided into dynamic and static 

translation. Dynamic translation can also be called JIT (just-in-time) and it means 

that translation happens during the run time, examples of this are JIT compilation 

and an interpreter. Static translation can also be called AOT (Ahead-of-time), and it 

means that translation happens before the execution, for example, AOT compilation 

is a static translation method. 

2.1.10 Compiler vs Interpreter 

A compiler and an interpreter both do the same thing i.e., translate high-level 

language commands to machine code commands that can be executed on a CPU. As 

fundamentally a compiler and interpreter do the same thing, the difference between 

the two can be difficult to define. But in general, the difference between the two is 

that the interpreter reads one code line at a time and then executes the command with 

machine language commands that are already part of the interpreter itself, in other 

words the source code is not changed to another language, whereas a compiler first 

translates code to machine language and the resulting machine language is then 

saved to memory. After compilation, the code is then executed directly from the 

memory. Note that the execution can happen later (ahead-of-time compilation) or at 

the same time as the compilation is done (just-in-time compilation). Another 

difference is that a compiler in general translates code in larger parts. Also, a 

compiler may do optimizations, whereas an interpreter doesn’t.  

The basic implementation of an interpreter is very simple i.e., it reads one line and 

then executes the command thus there is no need to cache anything. Implementation 

of a compiler can be more complicated. Note that the difference between the two is 

somewhat arbitrary as an interpreter can be thought of as doing compilation one line 

at a time without doing optimization and then running the “translated” machine code 

directly without saving the resulting machine code to memory. Figure 4 illustrates 

the difference between a compiler and an interpreter. 
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Figure 4. Difference between an interpreter and a compiler. 

2.2 Introduction to Cross-platform Software 

Every computer architecture can only execute code in its native machine language. 

This means that every architecture must have its own code and the code cannot be 

executed on another platform. To get around this limitation, usually the code is 

written in some high-level language that is later translated to the native machine 

language. 

Methods for translating code to multiple platforms can be divided into two main 

categories. The first category is compiling the code to the target platform’s machine 

code ahead of time. The second category is having the code in some other language 

(high or low-level language) than the target platform’s machine code and translating 

it to machine code during run time. 

2.2.1 Ahead-of-time Translated Cross-platform Software 

The most straightforward method for cross-platform software is compiling code 

directly to a native machine language. With this method, every architecture will have 

a different binary. For this method to work the code must be structured in a way that 

allows it to be easily compiled for different target platforms. In general, this is 

achieved by conditional compilation i.e., dividing codebase into a platform-

independent part and a platform-dependent part [1]. Most of the time the platform-

dependent part is relatively small, and this method is easy to do, but if the platform-

dependent part is big then every platform might need separate code that provides 

similar functionality (although this would not really be “cross-platform software”). 

Also, if a codebase doesn’t have a platform-independent part, then it is possible to 
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use different compilers to directly compile binaries from the same common code. 

Figure 5 illustrates these three possibilities. 

 
Figure 5. Different structures of a codebase. 

2.2.2 Just-in-time Translated Cross-platform Software 

The second method for implementing cross-platform software is to leave the code in 

some other language than the target platform’s machine language and then translate 

it during run time. Emulation uses just-in-time translation to execute binaries that 

were made for a different platform. Also, many programming languages use just-in-

time translation. For example, Java has bytecode that is just-in-time compiled or 

interpreted to target machine language just before the code is executed. All scripting 

languages use this method for example, JavaScript and Python are translated during 

run time. These examples are translations from a high-level language to machine 

code, but the same method works also between different machine languages. For 

example, an emulator or an ISS (instruction set simulator) translates code from 

machine code to other machine code. Figure 6 shows examples of how code can be 

translated starting from high-level languages. Note that all cross-platform software 

methods rely on some form of translation that will produce machine code for the 

target platform. The only differences between cross-platform software 

implementations are the time of translation (dynamic vs static), number of 

translations, translation methods, optimizations, and abstractions. 
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Figure 6. Examples of how high-level languages are translated to machine code 

instructions. 

2.2.3 Intermediate Representations 

One way of doing cross-platform software easier is to use an intermediate 

representation (IR) when compiling software. An intermediate representation is a 

low-level language that can be used when translating from a high-level language 

(front-end) to machine code (back-end). When doing compilation with an IR, first a 

high-level language is translated to an intermediate representation and after that, the 

intermediate representation is translated to machine code. An IR makes it easier to 

add support for new front-end languages and back-end languages because only 

translation between the IR and the new language is needed. Also, an IR makes 

optimization easier, as optimization can be done on the IR and the same optimization 

can be done regardless of what front-end or back-end language is used.  

An IR can be used in emulators or compilers. An example of an IR compiler is the 

LLVM (low level virtual machine). It can translate from many front-end languages 

(e.g., C, C++, Rust, Fortran, etc.) to the LLVM IR and from the IR it can translate to 

many back-end languages (e.g., X86, X86-64, PowerPC, ARM, Thumb, RISC-V, 

etc.). Figure 7 shows how the LLVM’s front-end, IR, and back-end are related to 

each other. 
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Figure 7. Illustration of LLVM toolchain’s compilation process. 

2.3 Instruction set architectures 

An ISA (instruction set architecture) is an abstract model of the CPU (central 

processing unit). An ISA can also be called “computer architecture”. An ISA defines 

what instructions, registers data types, addressing modes, memory consistency, etc. a 

CPU must support, and thus it defines what kind of machine code the computer 

platform uses. With an ISA abstraction, it is possible to have different 

implementations of the computer architecture from different manufacturers in a way 

where the same software binaries can be executed on the different manufacturers’ 

machines. Implementations of ISAs are called microarchitectures. For example, 

AMD and Intel have different microarchitectures but it is possible to execute the 

same binaries on them because they both provide the same ISA abstraction.  

An ISA layer can also be thought of as an interface between software (machine 

code) and hardware (microarchitecture). An ISA is needed to make sure that software 

and hardware are compatible with each other. Today there are many different ISAs in 

use, examples of these include x86, MIPS, PowerPC, ARM, RISC-V, TriCore, etc. 

Note that the term “instruction set” means almost the same as ISA, but the difference 

is that instruction set only means instructions whereas ISA means instructions and 

other things in computer architecture. 

ISAs can be classified into sub-categories. The most common categories are CISC 

(complex instruction set computer) and RISC (reduced instruction set computer) 

architectures. And then there are some rarer categories, for example, VLIW (very 

long instruction word). In CISC architecture instructions are more complex and one 

instruction can do many operations. In contrast, RISC architecture’s instructions are 

simpler and can only do one operation per instruction. RISC architecture also 

typically has more registers and is load-store architecture i.e., memory accesses must 

use their own instructions and most of the other instructions only use registers. 



 

 

18 

Because RISC architecture is simpler, it usually uses less energy and therefore it is 

commonly used in embedded and mobile devices. 

Note that execution of the commands defined by an ISA is a complex process. The 

CPU’s microarchitecture does many different things when executing the instructions. 

For example, a CPU might use microcode to “interpret” ISA commands before 

executing them to make the implementation of complex instruction sets easier. If 

microcode is used it can be thought that there is an interpreter implemented in the 

hardware that interprets ISA instructions into a simpler form. 

2.3.1 x86 Architectures 

The x86 is a backward compatible family of CISC ISAs that are used in modern PCs. 

The first version of x86 was introduced in 1978 for Intel’s 8086 microprocessors. 

The first x86 ISA was only 16-bit architecture. Then in 1985 a 32-bit extension of 

the x86 ISA was introduced with the 80386 microprocessors. The 32-bit architecture 

can be called IA-32, i386, or x86-32. In 1999 AMD introduced a 64-bit extension of 

the x86 architecture that is called x86-64 and later Intel also started using the same 

x86-64 architecture.  

Over the years x86 has had many new extensions like MMX, SSE1, SSE2, SSE3, 

SSSE3, SSE4a, SSE4.1, SSE4.2, AES, CLMUL, and SHA; these extensions are 

instruction sets that add new instructions but don’t change existing instructions, so 

backward compatibility has always been preserved. X86 is the common term for all 

these architectures regardless of if they are 16-bit, 32-bit, 64-bit, or regardless of 

what combination of the extensions they support. 

The long history of x86 with preserved backward compatibility makes x86 

unnecessarily complicated. For example, in x86-64 the same accumulator register is 

mapped as 5 different registers: 8-bit AL (accumulator low), AH (accumulator high), 

16-bit AX (accumulator extended), 32-bit EAX (extended accumulator extended), 

and 64-bit RAX (register accumulator extended). The lower bit versions of the 

register are mostly needed for backward compatibility. Figure 8 shows an example of 

an x86 register. The complexity of the x86 can be easily seen. 

 
Figure 8. Example of x86-64 accumulator register mapping 

2.3.2 ARM Architectures 

ARM has a family of RISC ISAs that has low power usage and low price; therefore, 

ARM processors have become popular in smartphones, embedded devices and as 

part of SoC (system-on-chip) designs. As of 2021, more than 180 billion ARM chips 
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have been produced, thus making ARM architecture the most common architecture 

by a wide margin [2]. 

The ARM architecture has many different ISAs that are for different use cases and 

in general ARM ISAs are backward compatible inside the same profiles. Even 

though the ARM ISAs are backward compatible the other parts of embedded devices 

(e.g., peripherals) are usually not backward compatible, so usually low-level 

embedded devices need binaries that cannot be used in other target machines. More 

general devices like smartphones can have better backward compatibility especially 

if they use a HAL (hardware abstraction layer). 

The categorization and naming convention of the ARM ISAs is somewhat 

complicated. Examples of ARM ISAs are ARMv1, ARMv6-M, ARMv7-M, 

ARMv7-A, ARMv7-R, ARMv8-R, and ARMv8.2-A. The architectures are divided 

into different profiles that tell the designed use case of the ISA. The last letter of the 

ISA’s name tells the profile of the ISA. For example, -A (application profile) is for 

powerful general-purpose systems with an MMU (memory management unit). The A 

profile is used in many devices, for example, smartphones use the A profile. -R (real-

time profile) is for high-performing processors that contain an MPU (memory 

protection unit) and are used in safety-critical environments. While finally -M 

(microcontroller profile) is for microcontrollers, and it has good support for 

interrupts, good integration possibility into an FPGA, and it is designed for very low 

power usage. 

Microarchitectural implementations of the ARM ISAs are called cores. For 

example, core names starting with Cortex-A (e.g., Cortex-A57) are either ARMv7-A 

or ARMv8-A architectures, and cores starting with Cortex-M (e.g., Cortex-M3) are 

either ARMv7-M or ARMv8-M architectures. Older legacy cores don’t have a 

profile and don’t use the name “Cortex” e.g., ARM60 core uses ARMv3 architecture. 

Table 1 shows examples of ARM cores. 

 

Table 1. Examples of ARM cores 

Architecture Core bit 

width 

Core Profile 

ARMv1 32 bits ARM1 Classic 

ARMv3 32 bits ARM6 

ARM7 

Classic 

ARMv6-M 32 bits ARM Cortex-M0 

ARM Cortex-M0+ 

ARM Cortex-M1 

Microcontroller 

ARMv7-M 32 bits ARM Cortex-M3 Microcontroller 

ARMv7-A 32 bits ARM Cortex-A5 

ARM Cortex-A7 

ARM Cortex-A8 

Application 

ARMv7-R 32 bits ARM Cortex-R4 

ARM Cortex-R5 

ARM Cortex-R7 

Real-time 

ARMv8-R 32 bits ARM Cortex-R52 Real-time 

ARMv8.2-A 64/32 bits ARM Cortex-A55 

ARM Cortex-A75 

ARM Cortex-A76 

Application 
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2.3.3 ARM Instruction Sets 

ARM architectures use different combinations of instruction sets and extensions 

depending on the architecture version and implementation. The most important 

instruction sets are regular 32-bit ARM instruction set, 64-bit AArch64 instruction 

set, and thumb instruction set.  

The 32-bit ARM is a basic ARM instruction set that is used in ARMv7 and older 

architectures. ARMv8 architectures also has a mode for 32-bit instruction set called 

AArch32 that is almost the same as the ARMv7’s 32-bit instruction set but has some 

extra instructions. Also, in ARMv8 the AArch32 profile is optional, so an ARMv8 

device might not support 32-bit code at all, depending on the implementation. 

The 64-bit ARM instruction set, AArch64 was introduced for ARMv8 

architecture. The AArch64 is optional for the ARMv8, so it is also possible to have 

ARMv8 with only 32-bit support. AArch64 architecture is not backward compatible 

with the 32-bit architecture (although like mentioned earlier there is an optional 

mode for AArch32 that is compatible with older 32-bit instructions). 

On top of the basic 32-bit ARM instructions set, the 32-bit ARM architecture has 

a second instruction set called Thumb. RISC architectures requires a lot of 

instruction to do tasks (CISC would need fewer instructions to do the same tasks) 

which leads to high memory usage. Thus, to combat this high memory usage the 

Thumb instruction set was developed. The Thumb instructions are only 16 bits long 

and therefore need less memory. Each Thumb instruction has a corresponding 32-bit 

ARM instruction that does the same action, so it is possible to do the same things 

with regular ARM instructions as with Thumb instructions. The first version of the 

Thumb only had 16-bit instructions which was later extended with some 32-bit 

instructions. The extension is called Thumb-2. 

Machine code is interpreted differently in regular ARM and Thumb e.g., machine 

code 0x020091E0 is interpreted as “adds r0, r1, r2” in normal ARM, but it is 

interpreted as “movs r2, r0 and b #0x128” in Thumb (“adds r0, r1, r2” in Thumb is 

0x8818). The processor knows which one to use by a mode that tells is ARM or 

Thumb used currently. The mode can be changed with the least significant bit of 

addresses e.g., the BX instruction changes the mode depending on is the least 

significant bit of the address 0 or 1. Some cores like Cortex-M only uses the Thumb 

instruction set and cannot execute normal ARM instructions at all. 
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3 CHALLENGES IN EMBEDDED PLATFORM SIMULATION 
 

Executing code made for an embedded device on another platform is a complicated 

problem that does not have one solution that works for all use cases. Many 

techniques to solve the problem have been developed, but all have some 

shortcomings. This chapter explains why executing embedded software on a pc is 

such a challenging problem and what differences there are between a PC platform 

and an embedded platform. 

3.1 Embedded Device Classification 

Embedded devices are an extremely diverse class of computers and usually a binary 

made for one target can only be run on the target hardware. There are many ways 

how embedded devices can be classified, but from the point of cross-platform code 

execution, it makes sense to divide the devices based on the complexity of the OS 

(operating system). The paper “What You Corrupt Is Not What You Crash: 

Challenges in Fuzzing Embedded Devices” introduces a good classification based on 

the OS complexity [3]. This thesis uses the same classification. In this classification, 

the devices are divided into three classes: type-I general-purpose OS-based devices, 

type-II embedded OS-based devices, and type-III devices without an OS-abstraction. 

Type-I devices are the most powerful and thus they have a proper OS. For 

example, devices in this class may have a full Linux kernel and OS. This means that 

the OS and the application have separate code and binaries. 

Type-II devices are mid-level devices that use a simpler OS. The OS is made for 

embedded devices, but the application and the OS are still separated. 

Type-III devices are the least powerful devices which don’t have a separate OS. In 

a type-III device, the OS and the application are compiled into the same binary. 

Software for type-III devices is also called monolithic firmware. The OS used in a 

type-III device is usually as simple as possible providing only a minimal amount of 

functionality. For example, the OS can be a simple task switcher that changes tasks 

periodically.  

Note that in this master’s thesis only a type-III embedded device is considered 

during the implementation. Hence, most of this master’s thesis is written from the 

point of view of type-III device simulation. 

3.2 Differences Between Computer Platforms 

Computer platforms have many different designs that make it impossible to make 

binaries that would work on all the individual platforms directly. This section 

introduces some of the issues that can cause problems when running the same 

software on different platforms. This section is mainly written from the point of view 

of trying to run embedded software on a PC platform.  

3.2.1 Computer Architecture (Instruction Set Architecture) 

The most important difference between computer platforms is the instruction set 

architecture. A PC uses an x86 ISA, whereas embedded devices usually use RISC 
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ISAs like ARM, PowerPC, MIPS, or SPARC. This means that the binary files for 

different platforms use completely different instructions thus it is mandatory to 

translate them at some point if the same binary is executed on multiple platforms. 

3.2.2 Hardware Accelerators 

Embedded devices usually aren’t powerful, so sometimes they have hardware 

accelerators to speed up certain tasks. The hardware accelerators are specialized 

electronic circuits designed using HDL (hardware description language) and many 

times they cannot be changed after the chip has been produced. They are designed to 

only do one thing. For example, an embedded device can have an AES (advanced 

encryption standard) accelerator that can perform AES encryptions and decryptions 

faster than AES implemented with software. PCs can also have some task-specific 

accelerator components like GPU (graphics processing unit), but GPUs are different 

from an embedded system’s accelerators because a GPU has a lot more complexity, 

and it can be programmed to do different things. For a simulation environment, 

hardware accelerators can be difficult to simulate, but it must be done somehow if 

the code uses hardware accelerators. 

3.2.3 Endianness 

Another difference in computer platforms is endianness. Endianness means the order 

of bytes in a word. Or in other words, it tells in what order bytes will be read/written 

in word-sized accesses to memory. Endianness can be little-endian or big-endian. A 

little-endian system stores the least-significant byte at the smallest address, and a big-

endian system stores the most significant byte at the smallest address. Figure 9 shows 

the difference between little-endian and big-endian systems. A PC uses little-endian 

byte ordering, whereas an embedded device can use little-endian or big-endian byte 

ordering. 

 

 
Figure 9. Example how a 32-bit integer is stored in little-endian and big-endian 

systems. 
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3.2.4 Interrupts 

Interrupts are events that tell a processor that it needs to temporarily stop the current 

execution of the code and change code execution to a handler that will handle the 

triggered interrupt. Interrupts can come from three places i.e., from the hardware, the 

software, or the processor itself. Interrupts from hardware are asynchronous (they 

can arrive at any time regardless of what the processor is doing). For example, a 

timer, a keyboard, or a mouse can send asynchronous interrupts to a processor. 

Interrupts from software and processor are synchronous interrupts i.e., they come 

from the processor, and they happen at the same interval with the processor’s clock 

cycle. Interrupts from a processor are called exceptions and they happen if something 

is wrong in the execution of the instruction e.g., division by zero or illegal opcode. 

The last interrupt type is software interrupts where the interrupt is invoked by an 

instruction. These interrupts are mainly used for system calls. For example, in x86 

INT and syscall instructions invoke interrupts. Different platforms use different 

instructions and have different peripherals so naturally they will have different 

interrupts and interrupts must be handled somehow in cross-platform code execution. 

3.2.5 Operating Systems 

Different operating systems provide many kinds of services such as system calls, 

virtual memory, context switching, etc., and in general, binaries only work in one 

operating system. PCs usually use Windows or Linux as the OS. Whereas embedded 

systems can be type-I (e.g., Linux), type-II, or type-III (monolithic firmware with a 

simple OS) Type-I embedded devices are more similar to a PC environment so 

software for a Type-I device can be easier to run on a PC, as it might be enough to 

compile the application directly for a PC’s OS or use emulator’s user-mode 

emulation. But for a type-III embedded device, the whole monolithic firmware 

binary that includes an OS and an application must be run on a PC, or the behavior of 

the embedded device’s OS must be replicated somehow in the PC. 

3.2.6 Memory and Memory Maps 

There are two ways how CPUs can access peripherals. They are memory-mapped I/O 

(input/output) and port-mapped I/O. Port-mapped devices have a separate address 

space for the peripherals and the peripheral addresses cannot be accessed directly 

from the code. Instead, port-mapped devices access peripherals with special 

instructions e.g., IN and OUT instructions in the x86 architecture are used for I/O 

operations. Memory-mapped devices expose all the resources on the same memory 

map so that they can be used directly from the code. Or in other words, peripheral’s 

registers have addresses that can be read or written directly with C language (or other 

languages) the same way as RAM. PC’s x86 architecture uses port-mapped I/O and 

most embedded devices use memory-mapped I/O. 

Resources on a memory map can be different kinds of memories, registers, I/O, 

etc. As platforms have different peripherals, naturally memory maps between 

systems will also be different. Different memory maps can make platforms 

incompatible with each other even if the platforms use the same ISA. This is because 
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memory addresses are used directly from instructions and thus binaries won’t work 

on other platforms that have different memory maps. 

 

 

A PC’s Memory Map 

 

A PC uses port-mapped peripherals which means that user address space is reserved 

for the application and most peripherals are accessed through kernel space with 

system calls. A PC has many processes running at the same time. To separate them 

every process has its own address space, and the kernel has its own address space. 

This separation is done with virtual memory. Virtual memory can be thought of as an 

abstraction that makes it seem that the process is the only one using the system. 

Virtual memory is implemented with the OS and MMU and virtual memory 

addresses don’t directly map physical resources (e.g., register, flash memory, etc.). 

Many modern systems also use ASLR (address space layout randomization) that 

randomly arranges addresses for the stack, the heap, etc. every time the program is 

executed thus making the virtual memory map random. This means that hardcoded 

addresses are not really used on a PC, whereas on an embedded system hardcoded 

addresses are common. 

 

 

Embedded Systems’ Memory Maps 

 

Embedded systems have complicated memory maps. Many embedded systems don’t 

have virtual memory, and this means that system uses physical memory addresses 

directly from the code. The memory map in an embedded system is divided into 

different address ranges that correspond to different resources. Most of the addresses 

are empty and accesses to them will cause a bus error. Other addresses can have 

accesses to registers, Flash memory, ROM (read-only memory), RAM (random-

access memory), OTP (one-time programmable) memory, hardware accelerators, 

I/O, etc. Memory addresses can be read-only, write-only, or allow both.  

Most embedded systems have a lot of registers that can be used to configure the 

chip or to read information about the system. Registers are also used in I/O 

operations, and they can also be used to control different tasks like writing to Flash 

memory. Most embedded system chips have different memory maps thus making 

them a diverse group of devices that cannot execute the same binaries. 

On some embedded devices the code is run directly from flash whereas some 

devices may be similar to a PC i.e., code is first copied to RAM and then executed 

from RAM. These different memory types e.g., Flash, ROM, RAM, OTP memory, 

and registers can be challenging to simulate when running embedded software on a 

PC, but in many cases, it may be sufficient to simulate all memory types as RAM. 

However, this simplification would not give the same behavior as when running on a 

real embedded system e.g., writes to read-only memory would behave differently in 

the simulation compared to the embedded system.  

Another challenge for a simulation is that in a real embedded system writes to 

Flash memory use their own complicated logic circuits. Typically, these writes are 

controlled by registers and the methods of writing to Flash memory can be 
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completely different between devices. Embedded devices might also use ECC (error 

correction code) memory that is not typically used in a PC meaning that the real 

target hardware can have ECC errors that can be difficult to replicate on a PC. Figure 

10 shows examples of PC’s virtual memory and a memory map of an embedded 

device that doesn’t use virtual memory. Note that on a real embedded device there 

would be a lot more memory areas than in the figure; especially there would be a lot 

of registers that could be in any location of the memory map. 

 

 
Figure 10. Examples of user-space memory maps on a PC and an embedded 

system. 
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4 EMBEDDED PLATFORM SIMULATION TECHNIQUES 
 

There are countless ways to run embedded software on a PC environment. In this 

chapter different techniques of how an embedded system can be simulated on a PC 

are introduced. In this master’s thesis, it is assumed that hardware has been designed 

beforehand and that it functions correctly. Therefore, only testing of embedded 

system’s software is discussed. Especially, the ways of executing unit and integration 

tests on a PC are introduced, although the same simulation techniques can also be 

used for other types of testing like fuzz testing. 

4.1 Fidelity 

When deciding how to simulate an embedded system it is important to decide how 

accurate the simulation must be. This degree of accuracy is called fidelity. High 

fidelity means that the simulation simulates accurately the low-level details of the 

real hardware while low fidelity means that only the high-level behavior of the 

simulator is similar to the real hardware, but low-level details are not the same.  

Different parts of the simulated system may have different levels of fidelity. That 

means that the instructions (CPU), the memory, and other parts of the system can be 

simulated with different levels of detail. For example, in a game console emulator the 

instructions might be emulated with high fidelity, but the sound card might only be 

emulated on very low fidelity e.g., externally the simulated sound card behaves the 

same as the real target system while internally the implementation is completely 

different. 

In this paper, the same categorization of instruction fidelity is used as in the paper 

“Challenges in Firmware Re-Hosting, Emulation, and Analysis” [4]. In the paper’s 

categorization, there are seven levels. The levels are black box, module, function, 

basic block, instruction, cycle, and perfect instruction fidelity.  

Black box fidelity means that the system behaves similarly to the real system, but 

the internal implementation is completely different from the real target system. 

Module fidelity means that internal implementations of the modules are made 

differently than in the real target system e.g., the OS could be implemented 

differently. Function level fidelity means that functions will be accurately simulated, 

but functions’ internal implementations may be different in the simulation than in the 

real target system. Basic block fidelity means that every basic block will be 

simulated, but internally they may execute different instructions than in the real 

target system. Instruction fidelity means that all instructions are executed in the 

simulator without skipping or combining instructions. Cycle level fidelity means that 

CPU’s instruction cycles are simulated meaning that timings will be similar to the 

real target system. Perfect fidelity means that a simulator behaves the same way as 

the real target system would and all details are simulated. Table 2 shows all levels of 

fidelity. 
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Table 2. Different fidelity levels of a CPU simulation 

Fidelity level Description 

Black box Low-level details are not simulated, only 

high-level behavior is similar to the real 

system 

Module All modules are simulated, but internal 

details of the modules are not simulated 

Function Functions work the same way as in the 

real system, but internal implementation 

can be different 

Basic block All basic blocks will be simulated, but 

they can be executed differently than in 

the real system 

Instruction All instructions are simulated on the 

simulator, but they can have different 

timings 

Cycle CPU’s cycles are simulated and thus 

timings will be correct 

Perfect Simulator behaves exactly the same way 

as the real system 

 

 

When testing embedded software in a simulator, most details of the code should be 

preserved, so the fidelity should be at least basic block level or instruction level for 

the majority of the simulation. But for some parts of the simulation, it can be enough 

to only have module or function level of fidelity. For example, an embedded 

system’s OS could be replaced with another OS module for a PC and some functions 

could be replaced with some other functions to make simulation easier on the PC. 

Even if some modules/functions are replaced other parts of the code should be 

simulated at the basic block/instruction level fidelity. If hardware is also tested at the 

same time as software i.e., hardware/software co-design, then simulation’s fidelity 

might need to be on the cycle level. 

4.2 Emulation 

Emulation is a common way to run binaries that are compiled for another target 

system than the host system. An emulator must be able to replicate every hardware 

component of the target system to be able to execute the binaries completely. 

Emulators are used often to emulate old game consoles and they are also used to run 

application binaries that were compiled for different systems e.g., an emulator can 

execute embedded system’s binaries on a PC.  

There are many things that emulators have to simulate. The two most important 

are the simulation of the CPU and the memory map. An emulator could even be 

described as a program that does translations on top of a memory map. In addition to 

translation and a memory map, an emulator should simulate an MMU, timers, 

interrupts, etc. Hardware accelerators and registers are part of a memory map and the 

behavior of these should be imitated with software when the registers’ addresses are 
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accessed, although in some situations (e.g., in fuzz testing) it is not necessary to 

simulate all behavior because many registers don’t affect the test results in a 

meaningful way and the registers only have use in real hardware. In other words, the 

needed fidelity of the emulation depends completely on what is the goal of the 

testing. 

4.2.1 Translation Techniques of Emulators 

There are many ways how translation can be done on an emulator. In this subsection, 

common ways of implementing translation are discussed.  

The easiest way of implementing a CPU emulator is with an interpreter. An 

interpreter can have a very basic structure (e.g., a switch statement that has cases for 

every instruction that the target architecture supports), and every case implements the 

target instructions with host instructions so that the behavior will be similar. In 

practice, this means that the emulator needs to execute multiple host instructions to 

emulate one target instruction. The emulator must also keep track of the emulated 

CPU’s state in software because the instructions’ results depend on the CPU’s 

internal state (e.g., state of the registers). [5] 

Another common way of emulating a CPU is with dynamic binary translation. 

Dynamic binary translation is a similar concept to JIT compilation, however as the 

translation happens between binaries the term “JIT compilation” should not be used. 

In “dynamic binary translation” the translation is done on a basic block level and 

some optimization can also be used. So, the resulting host code will need fewer 

instructions to execute a basic block than an interpreter would require. The drawback 

of this method is that the translation process might need more clock cycles than an 

interpreter would, however the translated blocks can be cached. Caching allows that 

a basic block only needs to be translated when the basic block is executed for the 

first time. And because the majority of programs spend most of the execution time to 

execute the same basic blocks in loops, therefore dynamic binary translation is faster 

than interpreters in most cases. Although an interpreter might be faster in parts of the 

code that are executed only once. [5] 

The third method for CPU emulation is threaded code. Threaded code is 

somewhere between an interpreter and dynamic binary translation. Threaded code is 

not that common nowadays [5] so details about this concept are skipped in this 

thesis. 

Some emulators may use a combination of the techniques e.g., an emulator might 

first use an interpreter when a basic block is executed for the first time, but if the 

basic block is executed multiple times the emulator will utilize dynamic binary 

translation and cache the results. In this way the emulator gets the best sides from 

both techniques i.e., fast speed when executing code that is rarely needed and fast 

speed for code that is executed many times in loops. 

It's good to note that all these emulation methods are fundamentally doing the 

same thing i.e., translation. Only the implementation of the translation varies 

between the different methods. 
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Static Binary Translation 

 

Static binary translation is another way of doing CPU “emulation” [5]. The idea 

behind static binary translation is similar to dynamic binary translation. The 

difference is that the whole target’s binary is translated before execution and saved as 

a new host binary. Because static binary translation can use the same binaries and 

compilers as target hardware, and there is no need to install an emulator or a virtual 

machine, static binary translation could be considered the best method for cross-

platform CPU “emulation”. However, because of a variety of problems (e.g., 

recognition of data and code areas, self-modifying code, etc.), static binary 

translation is difficult to implement. Therefore, it is not a practical method for 

embedded software simulation. There are only some cases where static binary 

translation has been done successfully e.g., StarCraft port to the ARM architecture 

and Super Mario Bros port for the x86 architecture [6]. 

4.3 Existing Emulators 

There are many emulators which can be used to execute embedded software. Some 

of these emulators are open source while others are commercial emulators. In this 

section emulators QEMU, Unicorn, OVPsim, Avatar2, VPSim, and Simics are 

introduced. Countless other emulators and instruction set simulators could also be 

used in the emulation, but most of them have drawbacks e.g., no support for 

peripheral emulation. 

4.3.1 QEMU 

QEMU (Quick EMUlator) is free and open-source software that can emulate 

computer systems and do virtualizations. QEMU offers many different modes of 

operation. They are user-mode emulation, full-system emulation, and virtualization 

[7]. The user-mode emulation can emulate individual Linux programs that were 

compiled for a different ISA e.g., ARM Linux binary can be run on an x86 Linux. In 

the virtualization mode, QEMU can run KVM and Xen virtual machines. With the 

full-system emulation mode, QEMU can emulate the whole target system including 

peripherals, a memory map, timers, etc. In the full-system emulation mode, QEMU 

can run whole operating systems or bare-metal applications. For example, with the 

full-system emulation mode, it is possible to run a binary that is compiled for an 

ARM embedded device. 

The benefit of QEMU is that it uses dynamic binary translation for CPU 

emulation and thus it achieves good performance. As QEMU uses dynamic binary 

translation, the QEMU’s instruction fidelity is on the basic block level. 

The problem using QEMU for embedded software emulation is that embedded 

devices are a very diverse class of devices and QEMU only supports a really small 

set of embedded devices. However, as QEMU is open source it can be modified to 

support new devices. Unfortunately, QEMU’s codebase is complex making it 

difficult to add custom peripherals. For example, adding a small ROM area to the 

memory map might need changes to 9 files of which around 90 lines of code have to 

be modified [8]. 
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QEMU uses tiny code generator (TCG) to do the translations between different 

languages. The tiny code generator has a front-end and a back-end. The front-end 

translates the target language (e.g., ARM) to a TCG microcode that is an 

intermediate representation language. Then the back-end translates the microcode to 

a host language (e.g., x86). The intermediate language increases portability and thus 

it is easier to add new front-end and back-end languages to QEMU. [9] 

4.3.2 QEMU and SystemC 

SystemC is a set of C++ classes and macros which can be used to make an event-

driven simulation of the target system. SystemC can be used alone, or it can be used 

together with an emulator like QEMU to simulate the whole embedded system. If 

used with QEMU, SystemC can simulate peripherals and possibly some 

communication busses. While QEMU can simulate the CPU and possibly some of 

the peripherals. There are multiple ways how this can be done e.g., QEMU can be a 

SystemC module that emulates CPU and SystemC does other hardware simulations, 

or SystemC modules can be directly connected into QEMU as the peripherals [10]. 

The implementation of a SystemC and QEMU simulation can be difficult and time-

consuming especially if the developers don’t have previous experience with 

SystemC. If the purpose is to only test software, SystemC might make an 

unnecessarily detailed simulation of the hardware. Nevertheless, dual QEMU and 

SystemC simulations have been implemented in countless papers and they can be 

useful simulation methods [9, 10, 11, 12, 13, 14, 15]. 

4.3.3 QEMU Forks 

QEMU has readily available only a limited number of embedded boards that it can 

emulate. But as QEMU is open source many developers have done their own forks 

from QEMU, adding new embedded device emulation models. So, if QEMU doesn’t 

have a specific embedded device model, support for it may exist in some fork. For 

example, “The xPack QEMU Arm” [16] is a QEMU fork that has better support for 

bare metal Cortex-M boards than the normal QEMU. It also has readily available 

debugging support with Eclipse, which is important if the simulation is used in 

software development. Often real-world ARM designs have custom parts like 

specific hardware accelerators, thus in these cases even “The xPack QEMU Arm” 

doesn’t support everything that is used in an ARM chip, and as it is based on QEMU 

it would be difficult and time-consuming to add custom peripherals. 

4.3.4 Unicorn 

Unicorn [17] is a CPU emulator framework that is based on QEMU. It uses the same 

“tiny code generator” to do dynamic binary translation as QEMU, but almost 

everything else is removed. This means that the Unicorn emulator only emulates the 

CPU and the memory map. Unicorn can run any raw binary code without any context 

i.e., it doesn’t need a whole system image as QEMU would need.  

Unicorn is written in C-language, but it has bindings to many other languages e.g., 

Python, so it can be used from many languages directly. The support for good 
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languages like Python makes Unicorn easy to use. Unicorn supports instrumentation 

and hooks for different memory accesses like execution, read, and write accesses, 

which makes it easy to add custom peripherals to the memory map. For example, it is 

possible to add an AES accelerator to some address by adding a hook to it and then 

implementing the functionality of the AES accelerator with a Python function.  

With Unicorn, it is possible to dynamically change a firmware’s function with a 

function that is implemented on Unicorn. This can be done by intercepting the 

firmware’s function when it is executed and then executing a replacement function 

on the Unicorn and after the replacement function is finished the execution continues 

without executing the firmware’s function. This feature can be useful when 

emulating complex hardware behavior like a Flash memory write module. For 

example, a function that controls the Flash controller can be intercepted, so that the 

logic for Flash memory writes doesn’t have to be implemented on the memory map. 

There are two versions of Unicorn. Unicorn 1 was released in 2015 and it was 

based on the 2015’s version of QEMU. Unicorn 1 got new updates throughout the 

years, but it was never updated with the new changes that were introduced to the 

QEMU mainline. Unicorn 2 was released in October 2021. Unicorn 2 is written from 

scratch based on the new QEMU version (QEMU 5) and Unicorn 2 is also backward 

compatible with Unicorn 1. 

4.3.5 OVPsim 

OVPsim (Open Virtual Platform) [18] is a multiprocessor emulator that can run 

production binaries that were compiled for the target embedded system. OVPsim is 

free for non-commercial usage but requires a license for commercial usage. OVPsim 

has free models for different processors, platforms, and peripherals. For example, 

there are processor models for ARM, MIPS, PowerPC, RISC-V, etc. It is also 

possible to create one’s own models for processors and peripherals with OVPsim’s 

APIs. As OVPsim is a multiprocessor emulator, OVPsim can be used to emulate 

multiprocessor systems. For example, it has been used to simulate parallel computing 

platforms [19] and hardware/software co-designs [20]. 

4.3.6 Simics 

Simics [21, 22] is a full-system simulator that can be used to run embedded software 

in a simulation environment. Simics can emulate a wide range of ISAs like Alpha, 

x86-64, ARM, MIPS, PowerPC, etc. It can also simulate other parts of the system 

with models. Simics can run code in forward and backward directions and thus it is 

possible to do reverse debugging. Simics has been used to simulate a multitude of 

different embedded systems, for example, a system used in a satellite [23] and many 

other use cases [24]. 

4.3.7 Avatar2 

Avatar2 [25] is a multi-target dynamic analysis framework for embedded system’s 

firmware that can be used to execute and analyze embedded system’s binaries. 

Avatar2 isn’t an emulator on its own rather it uses other emulators like QEMU and 
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Unicorn as the modules that do the actual emulation. Avatar2 can also connect the 

emulators to dynamic analysis tools and provide external memory representation 

with the possibility to add custom peripherals. Additionally, Avatar2 can 

dynamically change the target during code execution i.e., an emulator might run most 

of the code but when peripherals are accessed, the state of the execution is 

transferred to the real embedded device and after that, the emulator can continue the 

execution. With this capability, it is easier to execute and analyze complex embedded 

systems, because there isn’t a need to emulate all peripherals. The bad side of this 

transfer between the emulator and target hardware is that it slows down the code 

execution significantly. Better execution speed can be achieved if Avatar2 is 

configured to not use the real embedded device but instead to use Avatar2’s 

peripheral models that may be written with Python. 

4.3.8 VPSim 

VPSim [14] is an emulation framework that uses QEMU and SystemC. VPSim can 

be used to make fast prototypes of the hardware. VPSim executes all CPUs 

(emulated with QEMU) and peripherals in a SystemC context. This means that all 

accesses to peripherals are visible to the SystemC which makes debugging and 

profiling easier. The difference between VPSim and other QEMU/SystemC 

frameworks is that VPSim is only compiled once and after which it can be 

configured with a dynamic front-end. The Front-end uses Python and it can be used 

to easily define the system that will be emulated. Also, the front-end uses XML to 

communicate the configured platform to the back-end VPSim, so it is possible to 

change the Python front-end to some other front-end language/application. VPSim 

has good debugging support with GDB and “VPSim Monitor” that can be used to 

inspect the executed code. 

4.3.9 Other Emulators 

There are also countless other emulation methods. In this subsection, some of those 

are introduced. Many of these emulation techniques do not emulate the peripherals 

precisely. Instead, they stub them such that the emulation doesn’t stop thus these 

methods don’t give the same behavior as the real embedded device. An example of 

this kind of emulation is P2IM [26]. P2IM automatically models the I/O behavior of 

the peripherals. P2IM only models the behavior of the registers and considers the 

actual peripheral as a black box (the actual peripheral behavior is not modeled at all). 

This means that the behavior of the peripheral is not the same as in the real 

embedded device, this however allows that the code execution will not stall or crash. 

With this kind of emulation, you can get most (around 80%) of the target system’s 

test cases passing. This kind of emulation is not sufficient for this thesis, as the 

purpose of this thesis is to get all unit tests to pass. But P2IM may be enough for 

other testing e.g., fuzz testing. 

Another example of an embedded system emulation is FIRMADYNE [27] it can 

emulate a type-I embedded firmware by extracting a file system from the firmware 

and then using a pre-built Linux kernel to execute the application on QEMU. 
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4.4 Partial Emulation 

Another way of simulating embedded systems is partial emulation. Partial emulation 

is almost the same as normal emulation, but the difference is that in full system 

emulation binaries compiled for the target hardware can be used directly, whereas in 

partial emulation the software is changed in a way that makes it easier to run on an 

emulator. The easiest way of changing software is to do it before compilation. But if 

it is not possible to edit the code before compilation e.g., only binary is available. It 

is still possible to replace functions dynamically as long as the emulator supports it. 

In this case the emulator needs to know the start address of the function to know 

when the function is called and needs to be replaced. 

An example of partial emulation is an emulator that doesn’t have a specific 

hardware accelerator and therefore the hardware accelerator is then replaced with a 

software implementation that provides the same operation as the hardware 

accelerator. This kind of simulation has a module or a function level fidelity for the 

replaced part and higher fidelity (e.g., basic block or instruction level) for the other 

modules. Figure 11 shows an example of how an AES accelerator can be simulated 

with partial emulation and full system emulation. In the example, full system 

emulation can use the same binary as target hardware while partial emulation 

requires a binary that has a software implementation for the AES. 

 
Figure 11. Difference between full system emulation and partial emulation that 

uses software stubs. 

 

Another example of partial emulation that can use the same binaries that are used 

for a real target embedded device is HALucinator [28]. It does partial emulation by 

dynamically changing the HAL (hardware abstraction layer) during the emulation to 

replacement functions. 

The downside of partial emulation is that all code is not executed. For example, in 

the Figure 11 the function that controls the AES accelerator is not executed at all and 

new code is introduced with the software replacement function. However, if the 

replaced function is an insignificant part of the whole software, then this isn’t a big 

problem. 
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The upside of partial emulation is that an emulator doesn’t need to be modified 

even if the emulator doesn’t support all custom parts of the hardware. 

4.5 Native Execution 

One way of executing embedded software on a PC is to compile the code directly for 

a PC and use a normal PC’s process to run it. This works because an emulator just 

translates the instructions on run time, so it is somewhat similar to the situation 

where the source code is translated directly to the host machine language. Figure 12 

illustrates how native execution is similar to emulation. In the figure ARM 

compiler’s compilation and emulator’s translation are replaced with direct 

compilation from source code to x86 instructions. 

 
Figure 12. Example how emulator can be skipped with direct compilation to x86. 

The ARM ISA abstraction layer is completely skipped. 

 

This direct translation can be enough for some high-level software for type-I 

embedded devices that use Linux. However, if the memory map is accessed directly 

from the code, then the translation of the instructions is not enough. For that kind of 

situation also the memory map has to be handled somehow. This can be done the 

same way as is done for partial emulation i.e., replacing and/or removing all accesses 

to the specific memory addresses. But as an embedded device’s code can have many 

direct accesses to the memory map, the code has to be written in a way that makes it 

possible to replace the memory accesses easily. 

To make it easy to replace direct memory accesses, the code should have 

platform-dependent code that can be easily replaced with code for other platforms. 

This can be easily achieved with a BSP (board support package) and/or a HAL. 

These two terms can have somewhat different definitions based on the source and 

sometimes they are used interchangeably. But in general, a BSP means hardware 

abstraction for the OS, and it also includes other stuff that makes it possible to 

execute code with specific hardware. While a HAL on the other hand means an API 
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(application programming interface) for hardware abstraction e.g., an API for 

registers and hardware accelerators. A HAL can be part of the OS, or it can be part of 

the application. Figure 13 shows a simple HAL function for memory access in a bare 

metal system (type-III). Software that has a BSP and a HAL and can be compiled for 

two platforms is called dual-target software [1], and if the software supports more 

than two targets it can also be called multi-target software. 

 
Figure 13. Example of simple C language HAL function that reads a register. 

 

A downside of native execution is that compiler will be different than for a real 

target. This means that if intrinsic functions (built-in functions) are used, the x86 

compiler might not have them or they might have different names. To overcome this, 

all intrinsic functions must be replaced with some other implementations. Also, the 

embedded system’s assembly code has the same problem that it will not work for 

x86 and thus it has to be replaced with x86 assembly code or some other 

implementation written in a high-level language. Another problem with different 

compilers is that the compilers might have bugs and/or different behavior for 

undefined parts of the language thus the compiled machine codes might behave 

differently depending on which compiler was used. 

An upside of native execution is that most compilers for x86 are free, and 

developers know how to use them. Whereas an embedded system’s compilers might 

need a license that can only be used by one developer at a time and the license might 

cost thousands or tens of thousands of euros. Also, for native execution, there isn’t a 

need for emulators or hardware thus it is easy and fast to run native code on a 

development machine without a need to study new tools.   

Another positive thing about native execution is that many software 

development/analysis tools only work on an x86 PC and most of the tools are free. 

Examples of the tools include AddressSanitizer, LeakSanitizer, ThreadSanitizer, and 

MemorySanitizer which are used to instrument the code to find bugs. Also, with 

native execution, it is possible to use many dynamic analysis techniques like 

Valgrind, fuzz testing, symbolic execution, and taint propagation that can be 

impossible or difficult to do on a real embedded device. 

Another advantage of native execution is that test execution will be fast. When 

running tests on a real embedded device, a lot of time is wasted on programming the 

Flash memory, booting hardware, etc. Therefore, test runs can take hours. But on a 

PC, tests can be executed a lot faster, and this makes it possible to use better 

development techniques like test-driven development [1, 29]. 

Figure 14 shows an example of how embedded software can be run on a PC. The 

behavior of the OS should stay the same, but the OS itself might require 

modifications, and the BSP layer must be changed for the PC. On an embedded 

system the BSP can have a lot of hardware-specific things like assembly code. So, 

for a PC they must be replaced with new code. The new BSP/OS can for example use 

Linux system calls to make sure that the OS will have the same behavior as the OS in 

the embedded device. The HAL must also be changed with software stubs that 

imitate the original functions. Note that not all code is similar between the real binary 
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and the binary for native execution, but this isn’t necessarily a problem. Because the 

application part of the software can be tested with native PC execution and afterward 

the whole firmware can be tested with a real embedded device.  

 

 

 
Figure 14. Example of an embedded system’s software stack when run on a PC. 
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5 IMPLEMENTATION 
 

For this master thesis’s two simulations of an embedded system were implemented. 

In this chapter, the simulated embedded system is described, and the two simulations 

are explained. The first simulation was done with Unicorn emulator and the second 

simulation was done with native PC execution. 

There were many good options for the simulation. But in the scope of this thesis, 

it was not possible to try all methods. So, it was decided to do two implementations 

of the simulation. The customization of the QEMU would have been an interesting 

solution, but it would have been a challenging task because QEMU is not designed, 

to be edited to include custom peripherals. Other emulators e.g., Avatar 2, OVPsim, 

and Simics could also have worked, but all had some problems like the need for a 

license or lack of sufficient information on how to use them. The Unicorn emulator 

was free and could be used with Python and the Unicorn’s API was also easy to use, 

so it was decided to use the Unicorn emulator as the first simulation method. 

As the first method was emulation, it was decided that native execution would be 

the second simulation method because it would be a good comparison for an 

emulator. The downside of the native execution was that it cannot execute platform-

dependent code. But as most unit tests only test common application code, the native 

execution method would be acceptable. Also, the native execution is fast at code 

execution, so it was likely that native execution would be useful in the development 

by allowing more frequent test execution. 

5.1 Simulated Embedded System 

In this section, details of the embedded system that was simulated are introduced. 

Both implementations i.e., emulation and native PC execution simulated the same 

embedded system. The system has an asymmetric multi-core CPU, that consists of 

many symmetric (identical) cores that use TriCore ISA. The symmetric TriCore 

cores are called “host”. The CPU also has one asymmetric core that uses ARM ISA. 

The ARM ISA core is used to implement an HSM (hardware security module) and is 

therefore called “HSM”.  

The firmware application is mostly executed on the HSM’s core, but it also 

includes a simple API layer on the host side that is used to call functions on the HSM 

side. A communication between the host and the HSM is also included in the 

firmware application. 

The HSM has access to all memories and registers, but the host side can only 

access host side memories and it cannot access HSM’s memories. Communication 

between HSM and host is done with special registers that both can access. The 

communication registers are called the “bridge”. 

The HSM codebase can be compiled for different targets and the targets have 

different features. The differences include different memory sizes and different 

amounts of hardware accelerators. 

To limit the scope of this master’s thesis, it was decided that only the simplest 

version of the hardware is simulated i.e., the one with the smallest amount of 

memory and only one hardware accelerator. Also, only the HSM side of the firmware 

is simulated to make the scope more suitable for a master’s thesis. This means that 

the host-side API and the communication between the host and the HSM are not 
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simulated in this master’s thesis. However, because the simulation of the full system 

might be required in the future only solutions that could simulate the whole system 

including the communication, are considered. Figure 15 shows the whole HSM 

system, and it also shows what part is simulated in this master’s thesis. 

 

 
Figure 15. HSM on the embedded SoC that is simulated in this paper. 

5.1.1 HSM 

The embedded system that is simulated has a core that is used to implement a 

hardware security module (HSM) and the core is part of an SoC embedded device. 

The hardware security module is a physical module that is designed to store and 

manage cryptographical keys and do cryptographical operations. All operations i.e., 

key storage and cryptographical operations could also be done on a normal CPU. But 

embedded system’s security is a lot better with the HSM because it limits physical 

access to the keys i.e., keys cannot be read/edited directly. Also, as the HSM has its 

own core, performance will be better because cryptographical operations can be done 

at the same time as other operations. 

The HSM’s core is based on an ARM’s Cortex-M3 core thus the HSM uses 

ARMv7-M architecture and only supports Thumb instructions. Normal ARM 

instructions cannot be executed at all on the HSM (all Cortex-M cores only support 

Thumb instructions). An HSM has a different amount of hardware accelerators 

depending on the version of the hardware. All HSM versions have at minimum an 

AES accelerator, a TRNG (true random number generator), and a Flash memory 

controller that can write and erase Flash memory. Some HSM versions also have 

hash accelerators and ECDSA (elliptic curve digital signature algorithm) 

accelerators. To reduce complexity of this thesis, hash and ECDSA accelerators will 

not be simulated in this master’s thesis. 
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5.1.2 HSM’s Firmware 

The firmware that is run on the HSM has an OS that uses a simple kernel and can 

only do basic task switching. The system is a type-III embedded system where the 

firmware application and the OS are compiled to the same monolithic binary. 

The hardware accesses are separated to own files and functions, and they form a 

HAL that can be changed easily for different target hardware. The firmware 

application has different modules/drivers that control different parts of the system. 

For example, the firmware has modules for Flash memory, AES accelerator, and key 

storage. 

5.1.3 Test Framework 

The unit and integration tests for the embedded system are cross-compiled on a PC. 

The tests are compiled to a monolithic binary that includes the OS, the software 

modules needed for the tests, and many sub-test cases. The sub-test cases can be unit 

or integration tests. Due to memory constraints, all sub-test cases can’t be compiled 

to the same binary, so the tests are divided into modules. In total there are 108 

separate test modules. After a test module is compiled, it is written to the embedded 

system’s Flash memory with a debugger after which the tests are executed. Once the 

tests are finished, the results are read with the debugger. In this master’s thesis, these 

test modules are called “unit tests”.  

The normal firmware binary and test module binary are similar to each other. The 

only difference is that for the test module binary the unit and integration tests are 

included in the application part of the software. Therefore, when the word 

“firmware” is used in this master’s thesis it can mean either the normal firmware or it 

can mean a test module. 

5.2 Emulation 

The first simulation done for this master thesis was emulation with the Unicorn 

emulator. The emulation is somewhat similar to what was done on the paper 

“Cortex-M Simulator” [30], but there are some differences. The Unicorn emulator’s 

version was version 1.0.2. Unicorn 2 was not used because it was not yet released 

when the implementation part of this thesis work was done. The Unicorn emulator 

was used with Python because it was easy to use, and Python makes it easy to write 

custom peripherals for the emulator. In general, Python is a slow language, but 

because the underlying Unicorn emulator is written in C, and Python only acts as the 

binding on top of the C implementation, it follows that the execution speed is almost 

the same regardless is Python or C used. 

It was relatively easy to emulate registers because most of the accesses to registers 

were not important for the emulation and it was enough to add the registers to the 

memory map. By default, the added areas were either RAM or ROM and had 

initialized value of 0 in each address location. This was enough to get the code to 

execute without errors, but a couple of the registers had to be initialized with some 

other values than 0 to get the correct behavior. All memory types of the real system 

i.e., Flash, RAM, ROM, and registers were emulated as either RAM or ROM in the 

emulator. 
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The AES accelerator was emulated by adding a hook to specific addresses on the 

memory map. The hook works in a way that if the defined memory address is 

accessed the code execution jumps to a substitute Python function. For example, in 

the case of the AES accelerator, the AES accelerator’s address was hooked to a 

Python function, that implemented the AES algorithm with Python’s cryptography 

libraries and wrote the results into the memory map. After the hook, the execution 

returned to the emulation of the firmware where now there was the correct AES 

output in the memory map and code execution could continue correctly. 

Hooks were also needed to emulate TRNG, timer register, and for a module that 

can be used to write memory without using cache. All these implementations were 

straightforward to do just like the AES accelerator hook. 

The Flash memory controller could have been added the same way as the AES 

was i.e., when the Flash memory controller’s memory address is accessed, the 

execution jumps to a Python function with a hook. However, the logic of the Flash 

memory controller was complex in the target embedded device, therefore it was 

difficult to implement with a Python function. Thus, to simplify things, the Flash 

memory controller was emulated from one abstriction level higher i.e., the HAL 

functions that erase, read, and write the Flash memory was replaced with new 

functions implemented with Python code. This was done by adding a hook to the 

start address of the functions e.g., if the “write Flash function” would start at address 

0x8000A000 then the hook would activate if the code was executed at the address 

0x8000A000. After the hook was activated, the Python replacement function would 

write into the Flash memory (into the memory map). And after that, the execution 

was returned to the place before the write function was called by writing the program 

counter with the return address that was stored in the link register. Figure 16 shows 

examples of the hooks for “write Flash function” and for AES hardware accelerator. 

 
Figure 16.  Examples of hooks in Unicorn emulation. 
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The biggest challenge with the Unicorn emulator was that the emulator doesn’t 

support the emulation of interrupts. Unicorn isn’t a full system emulator, so it doesn’t 

have support for ARM’s NVIC (nested vector interrupt control) that implements 

interrupts. The usage of interrupts was needed for the firmware’s OS to do context 

switching. This problem was solved by two methods. The first method was running 

the emulator in a loop that executed only 7000 instructions, and then checking 

manually had an interrupt been triggered. The second method was adding a new 

global variable that indicated if interrupts were enabled or disabled in the code. The 

new global variable was the only mechanism that had to be added to the code for the 

emulation to work. So, in the end, the emulation wasn’t 100% full system emulation. 

It could have been possible to do the emulation without the global variable; however, 

it would have needed editing of the Unicorn’s source code, thus it was decided to do 

the emulation with this workaround. 

5.3 Native PC Execution 

The second simulation of the firmware was done by native PC execution i.e., 

compiling the code directly for an x86 PC and running it in a process. The existing 

codebase was used for many different target embedded devices, so it already was 

multi-target software and had a BSP and a HAL. This made it easy to add support for 

a PC by adding a new BSP and HAL for Linux. This multi-target software concept is 

similar to dual-target software that is described in the book “Test-Driven 

Development for Embedded C” [1]. The combination of the new BSP, the new HAL, 

and Linux’s process can be thought of as a simulator that makes a simulated 

environment for the common application code. 

The HAL and the BSP of the firmware were made by having different HAL and 

BSP files for every hardware. And when the software was compiled, the correct 

target system’s files were used for the compilation.  

The firmware’s OS/BSP used a lot of assembly code, so some of it had to be 

replaced with new functions. The new functions mostly used the POSIX library’s 

functions to handle signals and change context. It was surprisingly difficult to get the 

same behavior from the OS as the target embedded system’s OS had. This was 

because Linux doesn’t have good support for asymmetric preemptive user-level 

context switching and it is difficult to pause threads with one command and resume 

them later. This was a significant difference from the target embedded firmware 

where the OS scheduling could be done relatively easily with a combination of 

assembly language and C. In the end, it was possible to get almost the same OS 

behavior with the standard and the POSIX library functions. 

The simulation of the interrupts was done with signals. For PC’s process, signals 

are logically similar to what interrupts are for hardware i.e., they stop the execution 

from the outside and then they execute some function to handle the interrupt/signal. 

As signals are logically similar to interrupts, they were an almost perfect way of 

simulating interrupts. The embedded system’s timers were simulated with POSIX 

timers using functions timer_create() and timer_settime().  

The AES hardware accelerator was replaced with OpenSSL’s AES functions. 

OpenSSL is part of the C compiler, so OpenSSL was easy to use directly without the 

need to install anything additional. 

The flash memory that stored AES keys could be simulated with a big C array and 

new HAL functions that wrote, read, and erased from the array. 
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Most of the registers didn’t need to be simulated, as they didn’t affect how the 

code would execute. In the case of registers that affected code execution they were 

replaced directly with new HAL functions using basic C language commands. 

Native execution needed different compilers and linker options, as the compiler 

for native execution was different than for the ARM target system. This could be 

done easily by adding new configuration files for the Linux target. 

The embedded system used the same endianness as a PC i.e., little-endian byte 

ordering, so endianness didn’t affect the simulation. 
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6 EVALUATION 
 

In this chapter, the implemented simulations are evaluated. The execution times 

between the real embedded device, Unicorn emulator, and native execution are 

compared. Also, the advantages and the disadvantages of all three execution methods 

are discussed. The comparison between the platforms is mostly done from the point 

of view of unit test execution.  

6.1 Execution Speed 

In this section, the execution speed of the unit tests is compared between the 

platforms. Due to differences between the implementations, some of the unit tests 

could not be executed on both Unicorn and native execution. 

In the speed test, 12 unit tests were executed. The execution time includes 

compilation, time to open the debugger (only needed for the real embedded device), 

time used to write the unit tests to the Flash memory of the embedded device (only 

needed for the real embedded device), and the time needed for the execution of the 

test. For the real embedded device time needed to connect hardware and the time 

needed to cycle the power of the hardware was not counted to the total time. For all 

three methods, tests were compiled on a PC that used Linux. For the real embedded 

device and the emulator, tests were cross-compiled with ARM’s embedded compiler 

(arm-none-eabi-gcc). Whereas Clang was used for the native PC execution to 

compile tests directly for the x86 architecture. 

The fastest platform was a PC with a total time of 44 seconds. The second fastest 

platform was emulation with a total time of 88 seconds. The slowest was the real 

target embedded device with a total run time of 129 seconds. Table 3 shows the time 

needed to execute the 12 unit tests on the platforms. 

 

Table 3. Execution times of the 12 unit tests on all three platforms 

Platform Total execution 

time [s] 

Average time for 

1 unit test [s] 

How many tests 

can be run in 1 

minute [tests/min] 

Native execution on 

an x86 PC 

44 seconds 3.7 seconds 16.4 tests/min 

Unicorn emulator 88 seconds 7.3 seconds 8.2 tests/min 

Real embedded 

device (ARM) 

129 seconds 10.8 seconds 5.6 tests/min 

 

Another thing to notice is that there were some differences in the results between 

the platforms depending on the test type. For example, stress tests (tests that do the 

same thing many times in a row to test the system under load) were really slow on 

the emulator when compared to the native PC execution or the real embedded device. 

This means that the run time of the tests might change depending on the test’s type 

e.g., stress tests can be slow on an emulator. But in general, the order of unit test 

execution speed should be the same i.e., native execution on a PC is the fastest, a real 

embedded device is the slowest, and a good emulator without too high fidelity will 

be somewhere in between. Note that this order only holds if the time needed to open 
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the debugger and writing unit tests to the Flash memory is counted for the real 

embedded device as they can be time consuming operations. 

6.2 Advantages and Disadvantages of the Unicorn Emulation 

The advantages of Unicorn emulation were that it was easy to use, free, and the code 

was open source. Because of the easy-to-use API and the Python bindings, it was 

easy to add custom peripherals and add hooks to the code. Also, the execution speed 

was quite good because the dynamic binary translation made the translation process 

fast. 

The disadvantage of the Unicorn emulation was that the Unicorn emulator had 

some bugs that made the implementation difficult to do. Also, the lack of support of 

interrupts, made it difficult to replicate the hardware. With small improvements, 

Unicorn would be a powerful emulator for embedded device emulation, so it would 

be nice to see that the Unicorn emulator would be developed with full system 

emulation in mind. 

Another problem with the Unicorn emulator was the lack of debugging possibility 

for the emulated code. This was the biggest problem of the Unicorn emulator 

because the purpose of the simulation was to enable the development and testing of 

the embedded software on a PC. In comparison, normal QEMU and “The xPack 

QEMU Arm” have good support for debugging. It would have been possible to add 

support for GDB (GNU Debugger) to the Unicorn, but this wasn’t possible in the 

scope of this master’s thesis. 

6.3 Advantages and Disadvantages of the Native PC Execution 

An advantage of the PC target was that it was easy to develop support for a PC. This 

was because Linux has good libraries for the C language e.g., standard C library, 

POSIX library, and OpenSSL. Also, most developers have experience with basic C 

language development on Linux, so every developer understands how to edit and use 

the code. Another good thing about the PC support was the ability to debug code 

with normal debuggers like GDB. Debugging was also made easier by the possibility 

of writing to standard output which is not possible when using a real target 

embedded device. Another advantage was the speed of the unit test execution. 

Executing unit tests on a PC was the fastest and the easiest of all three methods. With 

fast execution speed, it is possible for a developer to run tests more frequently and 

this makes better software development methods like test-driven development 

possible. Additionally, there wasn’t a need to use and install emulators that can be 

difficult and time-consuming to use. 

A significant disadvantage of the PC target was that it could not run 100% of the 

firmware’s code. The real firmware’s BSP and HAL were not executed at all on a PC 

and thus those parts of the code were not tested when unit tests were run. Also, the 

replacement of these code parts added a lot of new code that otherwise would not 

have been needed. Another disadvantage was that the firmware update feature had to 

be disabled from the builds. This was because the feature wrote new firmware 

directly to specific memory addresses and this would have been difficult (but not 

impossible) to implement for the native execution. Then an additional disadvantage 

was that a different compiler was used for the PC’s binaries and thus it was possible 
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to get different warnings/errors. And this meant that development might be a little bit 

slower, although this was more than compensated by the faster test execution. 

In general, it can be said that the native execution is a good way of testing the 

logic and the algorithms of the embedded system’s platform-independent code, 

although native PC execution cannot test the HAL/BSP layers at all. 
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7 DISCUSSION 
 

The results of this master’s thesis are discussed from the point of view of how the 

implementations would work in software development. It is also discussed that 

would there have been better solutions than the implemented solutions. 

Both solutions that were implemented in this paper i.e., native PC execution and 

emulation can be used to make the development of embedded firmware easier by 

making test execution easier and faster. Both solutions have their advantages and 

disadvantages from the point of view of test execution.  

The native execution is quite easy to implement, and it is the fastest option when 

considering test execution. However, the low fidelity of the native PC execution can 

cause problems. For example, all code is not run from the original firmware and thus 

bugs in those parts of the code cannot be found with native execution testing. This 

means that the usefulness of the native PC execution completely depends on what 

kind of firmware is being tested. If the firmware uses a lot of custom hardware 

peripherals and/or has a lot of intrinsic functions and assembly code, then the native 

execution isn’t that beneficial. However, if most of the software is common 

application code then the native execution might be the best solution. 

Unicorn emulator has higher fidelity than the native PC execution, so it would 

have been a good addition to testing. However, the poor support for debugging led to 

the decision to not use it after this thesis. So, for this master’s thesis native execution 

was the better solution. It is good to note that it is not generally true that native 

execution is better than emulation because in some situations an emulator would be 

better. 

Unicorn emulator and native execution both have some disadvantages so possibly 

there could have been better solutions for this master’s thesis simulation 

environment. Especially Simics would seem like a good way of doing the emulation 

as it supports emulation of custom peripherals. Also, the xPack QEMU Arm could 

have been used with partial emulation or it could have been edited to support the 

custom peripherals directly from the memory map. Unfortunately, there wasn’t 

enough time to test any other solutions in the scope of this master’s thesis. 

In general, the best simulation method depends completely on what kind of 

firmware is being developed and on what kind of test needs to be executed. So, there 

isn’t one simulation solution that is best for every situation. Instead, there are many 

different solutions. This is because embedded devices are a very diverse group of 

devices, thus it is only natural that there will be many different solutions to the 

simulation problem. 

From the point of view of testing, it would be beneficial to use all three methods 

to run tests i.e., at first tests could be run on a PC then after that, tests could be 

executed in an emulator, and finally if both pass, tests could be run in a real 

embedded device. With this kind of testing strategy, tests could be run more 

frequently, and remote work would be easier, as native execution and emulator 

testing could be done on a laptop without a debugger or target embedded system 

hardware. And only when tests are run in a real embedded device would the tester 

need to be at the office or use a remote connection to the office. The downside of 

using all three methods is that it takes time to develop the PC and emulation 

environments, and the maintenance of the environments also needs resources. 
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8 CONCLUSION 
 

In this master’s thesis, techniques for running embedded software in a simulated 

environment were introduced. The main purpose of this was to make embedded 

firmware development easier, faster, and cheaper by being able to execute 

unit/integration tests on the same computer as the firmware is developed. 

Many different simulation methods and programs that could be used for 

simulation were introduced in this master’s thesis. And two of the simulation 

methods were implemented for one SoC embedded system. The implemented 

methods were Unicorn emulator and native execution on a PC. Based on this 

master’s thesis’ results both methods could be used in real testing, and both make 

remote work easier for embedded system developers. But the native execution on a 

PC was a better solution because it was 2 times faster than the Unicorn emulator, and 

it also had better support for debugging and it was easier to implement. There might 

have been some other emulator that could have been better than the Unicorn 

emulator but there wasn’t enough time to implement them. Even though the direct 

PC execution was better in this case, it is good to note that for other embedded 

systems other solutions could have been better. This is because embedded devices 

have different peripherals and different kinds of firmware and therefore there isn’t 

one solution that is the best in every situation. 

In this master’s thesis, it was also found out that emulation and native PC 

execution don’t rule each other out, as they have different simulation fidelity, and 

both could be used in different stages of testing. However, neither method can 

completely replace testing on a real embedded system. 

8.1 Future Work 

After this thesis, the simulation environment can be extended to include more 

complicated HSM variants that have more hardware accelerators. Additionally, the 

simulation environment can be extended to include the whole HSM system i.e., host 

side API and communication between the host and the HSM. This could be done 

with an emulator or with the native PC execution environment. The emulator 

implementation would be more difficult as the host side uses TriCore, and it is not 

usually supported with emulators although QEMU has support for it. Implementation 

for the PC execution environment would be easier as the host side code could just be 

executed in a process or a thread and then the communication could be simulated 

with IPC (Inter-process communication) or in the case of threads the communication 

could be simulated with a basic C array. 

 



 

 

48 

9 REFERENCES 
 

[1] Grenning, J. W. (2011). Test Driven Development for Embedded C. 

Pragmatic bookshelf.  

[2] https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-

record-6-billion-arm-based-chips-in-a-single-quarter. 

[3] Muench, M., Stijohann, J., Kargl, F., Francillon, A., & Balzarotti, D. 

(2018, February). What You Corrupt Is Not What You Crash: Challenges 

in Fuzzing Embedded Devices. In NDSS. 

[4] Wright, C., Moeglein, W. A., Bagchi, S., Kulkarni, M., & Clements, A. A. 

(2021). Challenges in firmware re-hosting, emulation, and analysis. ACM 

Computing Surveys (CSUR), 54(1), 1-36. 

[5] Moya, V. (2001). Study of the techniques for emulation programming. 

Proyecto fin de carrera. Universidad Politécnica de Cataluña. España, 21. 

[6] https://andrewkelley.me/post/jamulator.html  

[7] https://www.qemu.org/ 

[8] https://embeddedinn.xyz/articles/tutorial/Adding-a-custom-peripheral-to-

QEMU 

[9] Koppelmann, B., Messidat, B., Becker, M., Kuznik, C., Mueller, W., & 

Scheytt, C. An Open and Fast Virtual Platform for TriCore™-based SoCs 

Using QEMU. 

[10] Monton, M., Portero, A., Moreno, M., Martinez, B., & Carrabina, J. (2007, 

June). Mixed sw/systemc soc emulation framework. In 2007 IEEE 

International Symposium on Industrial Electronics (pp. 2338-2341). IEEE. 

[11] Yeh, T. C., Tseng, G. F., & Chiang, M. C. (2010, April). A fast cycle-

accurate instruction set simulator based on QEMU and SystemC for SoC 

development. In MELECON 2010-2010 15th IEEE Mediterranean 

Electrotechnical Conference (pp. 1033-1038). IEEE. 

[12] Nakajima, K., Hieda, T., Taniguchi, I., Tomiyama, H., & Takada, H. 

(2012, December). A fast network-on-chip simulator with qemu and 

systemc. In 2012 Third International Conference on Networking and 

Computing (pp. 298-301). IEEE. 

[13] Delbergue, G., Burton, M., Konrad, F., Le Gal, B., & Jego, C. (2016, 

January). QBox: an industrial solution for virtual platform simulation using 

QEMU and SystemC TLM-2.0. In 8th European Congress on Embedded 

Real Time Software and Systems (ERTS 2016). 

[14] Charif, A., Busnot, G., Mameesh, R., Sassolas, T., & Ventroux, N. (2019). 

Fast virtual prototyping for embedded computing systems design and 

https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://www.arm.com/company/news/2021/02/arm-ecosystem-ships-record-6-billion-arm-based-chips-in-a-single-quarter
https://andrewkelley.me/post/jamulator.html
https://www.qemu.org/
https://embeddedinn.xyz/articles/tutorial/Adding-a-custom-peripheral-to-QEMU
https://embeddedinn.xyz/articles/tutorial/Adding-a-custom-peripheral-to-QEMU


 

 

49 

exploration. In Proceedings of the Rapid Simulation and Performance 

Evaluation: Methods and Tools (pp. 1-8). 

[15] Montón, M., Carrabina, J., & Burton, M. (2009, September). Mixed 

simulation kernels for high performance virtual platforms. In 2009 Forum 

on Specification & Design Languages (FDL) (pp. 1-6). IEEE. 

[16] https://xpack.github.io/qemu-arm/  

[17] https://www.unicorn-engine.org/  

[18] https://www.ovpworld.org/  

[19] Agrawal, P. (2009). Hybrid Simulation Framework for Virtual Prototyping 

Using OVP, SystemC & SCML A Feasibility Study (Doctoral dissertation, 

Thesis, Indian Institute of Technology, 2009, 49p).  

[20] Nita, I., Lazarescu, V., & Constantinescu, R. (2009, July). A new Hw/Sw 

co-design method for multiprocessor system on chip applications. In 2009 

International Symposium on Signals, Circuits and Systems (pp. 1-4). IEEE. 

[21] Magnusson, P. S., Christensson, M., Eskilson, J., Forsgren, D., Hallberg, 

G., Hogberg, J., ... & Werner, B. (2002). Simics: A full system simulation 

platform. Computer, 35(2), 50-58. 

[22] https://www.windriver.com/products/simics 

[23] Engblom, J., & Holm, M. (2006). A fully virtual multi-node 1553 bus 

computer system. Data Systems in Aerospace. 

[24] Aarno, D., & Engblom, J. (2014). Software and system development using 

virtual platforms: full-system simulation with wind river simics. Morgan 

Kaufmann. 

[25] Muench, M., Nisi, D., Francillon, A., & Balzarotti, D. (2018, February). 

Avatar 2: A multi-target orchestration platform. In Workshop on Binary 

Analysis Research (colocated with NDSS Symposium)(February 2018), 

BAR (Vol. 18). 

[26] Feng, B., Mera, A., & Lu, L. (2020). P2im: Scalable and hardware-

independent firmware testing via automatic peripheral interface modeling. 

In 29th {USENIX} Security Symposium ({USENIX} Security 20) (pp. 1237-

1254). 

[27] Chen, D. D., Woo, M., Brumley, D., & Egele, M. (2016, February). 

Towards Automated Dynamic Analysis for Linux-based Embedded 

Firmware. In NDSS (Vol. 1, pp. 1-1). 

[28] Clements, A. A., Gustafson, E., Scharnowski, T., Grosen, P., Fritz, D., 

Kruegel, C., ... & Payer, M. (2020). HALucinator: Firmware re-hosting 

https://xpack.github.io/qemu-arm/
https://www.unicorn-engine.org/
https://www.ovpworld.org/
https://www.windriver.com/products/simics


 

 

50 

through abstraction layer emulation. In 29th {USENIX} Security 

Symposium ({USENIX} Security 20) (pp. 1201-1218). 

[29] Grenning, J. (2007). Applying test driven development to embedded 

software. IEEE instrumentation & measurement magazine, 10(6), 20-25 

[30] Jakubík, T. (2020, September). Cortex-M Simulator. In 2020 International 

Conference on Applied Electronics (AE) (pp. 1-4). IEEE. 

 

 

 

 

 

 

 

 

 


