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ABSTRACT

In this work, we present a data-gathering tool for virtual reality human-
robot interaction focusing on the trajectories of the participants. Unity, Robot
Operating System, Photon PUN, and Oculus were utilized to create a lightweight
multiplayer environment for various studies. The system supports various
amounts of humans and autonomous as well as teleoperated robots. The data
from these interactions can be collected and further analysed to find possible
differences in human behaviour. Positional and orientational data proved to be
accurate. Measured latency of 200ms was found to be sufficient for the trajectory
collection.

Human-robot interaction studies are often restricted because of the challenges
regarding large datasets, time, and financial matters. With the implementation of
virtual reality, many of these challenges can be addressed. Virtual reality offers
safe and easier ways to research situations that could be dangerous or impossible
to produce in real life.

Keywords: virtual reality, VR, HRI, human-robot interaction, VR headset, data-
gathering, teleoperation, autonomous, robotics
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ihmisten ja robottien vilisen vuorovaikutuksen tutkimiseen. Oulun yliopisto,
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TIIVISTELMA

Tassd tyossa esittelemme tiedonkeruutyokalun ihmisten ja robottien vilisen
vuorovaikutuksen tutkimiseen virtuaalisessa todellisuudessa. Tyokalu on kevyt
moninpeli alusta, joka hyodyntid Unity-, Robot Operating System-, Photon
PUN-, sekid Oculus-teknologioita. Jirjestelméd tukee yhtid aikaisesti useita
osallistujia, ihmisii sekii teleoperoituja tai autonomisia robotteja. Thmisten
ja robottien vilisisti kanssakidymisisti saatua dataa voidaan analysoida ja
pyrkii selvittimidian mahdollisia muutoksia ihmisen kiyttiytymisessi erilaisissa
tilanteissa. Sijainti- ja orientaatiodata osoittautui tarkaksi. Mitattu 200ms viive
on riittiva liikeratojen seuraamiseen.

Ihmisten ja robottien vuorovaikutusta tutkivia tutkimuksia kuitenkin usein
rajoittaa useat tekijit, kuten suuret tietoaineistot, pitkit tutkimusten kestot ja
suuret kulut. Virtuaalisen todellisuuden hyodyntiminen tutkimuksissa voi auttaa
niiden ongelmien ratkaisemisessa. Se tarjoaa myos turvallisempia ja helpompia
vaihtoehtoja mahdollisesti vaarallisten tai muuten mahdottomien oikean elamén
tilanteiden toistamiseen.

Avainsanat: virtuaalitodellisuus, VR, ihmisten ja robottien vilinen
vuorovaikutus, tiedonkeruu, autonominen, robotiikka
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LIST OF ABBREVIATIONS AND SYMBOLS

6DOF Six degrees of freedom

API Application programming interface
CAD Computer aided design

DDS Data distribution service

DLL Dynamic link library

HMD Head mounted display

HRI Human robot interaction

ORCA Optimal reciprocal collision avoidance
PC Personal computer

PUN Photon Unity networking

ROS Robot operating system

RoSAS Robotic social attributes scale

SM Social momentum

SUS Slater-Usoh-Steed

TCP Transmission control protocol

TE Teleoperation

UBICOMP Center for Ubiquitous Computing at University of Oulu
USB Universal serial bus

VR Virtual reality



1. INTRODUCTION

Human-Robot Interaction (HRI) is often mistakenly seen as a new and emerging eld,
but the concept has been around as long as there has been the concept of robots
themselves. The man who came up with the term robotics in the 1940s, Isaac Asimov,
was already asking questions such as “What kind of relationship can a person have
with a robot?” which is a question at the very core of all HRI research to date [1].
Although these questions were more science ction than reality back then, it indicates
that there already was a difference between robotics and HRL

Even though HRI as a eld is not new and emerging, it is evolving rapidly.
Hundreds of papers are published each year by thousands of contributors and by many
different professional societies. Within a span of 80 years, applications have evolved
from master-slave remote item handling devices to gesture-operated mobile robots
performing an interactive clean-up task in changing light conditions [2]. First robot
applications were actually designed to handle relatively simple tasks such as handling
radioactive objects to avoid exposing humans to radiation. Today, scientists are looking
to solve global issues like aging societies with the usage of robots, for example, elderly
and health care. Such tasks are dif cult to be automated perfectly, however, they could
be executed in cooperation with humans and robots.

There are multiple challenges regarding traditional HRI research. For example, the
collection of the datasets for later use in machine learning has proven to be a signi cant
limitation itself which can take up to two months [3]. Other challenges regarding HRI
research are the signi cant amount of time to practice the subject experiment and the
substantial consideration of an ex perimental design itself [4]. The eld has now started
to seek solutions from Virtual Reality (VR) applications and simulations to reduce the
cost of the projects. One de nition for VR could be: Inducing targeted behavior in
an organism by using arti cial sensory stimulation, while the organism has little or
no awareness of the interference [5]. And in terms of this project, the immersion is
the main component of that de nition. Immersion is achieved with a virtual reality
headset. Headsets replace all of the real world in the eld of view with visuals from
virtual reality. VR provides the effects of a concrete existence without actually having
a concrete existence. On a computer, virtual reality is primarily experienced through
two of the ve senses: sight and sound.

The introduction of VR to HRI research has many advantages. Firstly, it can help
to reduce the cost of the research, as experimental facilities are not required in a real
environment. Secondly, the visualization of arbitrary information and situations that
are not possible in reality or are otherwise hazardous or dangerous to reproduce, such
as the playback of past experiences can be achieved, and thirdly, it provides access to
multiple immersive and natural interfaces for robot/avatar teleoperation systems [4].
The virtual reality system presented in this work provides, for example, a solution to
study the interactions between humans and multiple robots without the need to invest
in multiple actual robots.

The motivation of this project is to create a virtual multiplayer environment to test
the interactions between humans and mobile robots in shared environments. The
system is required to utilize Robot Operating System 2 (ROS) and Unity to provide
an environment for multiple humans and robots to interact. It is required to support
teleoperated and autonomous robots that are connected to Unity via ROS as well as



users with Oculus VR headsets. Humans and robots need to be able to move around
in the environment freely. The system is also required to be capable of collecting
data of the human and robot trajectories. The data collected from these interactions
can be used in further research regarding the possible differences in human behaviour
when interacting with teleoperated and autonomous robots; for instance, proxemics
(the study of spatial distances between individuals), activity, speed, and movement
patterns.

In this project report, we rst discuss related work and technologies in Chapter 2.
In Chapter 3 and Chapter 4 we explain the design and implementation respectively.
Evaluation and discussion are in Chapter 5, and the conclusion of the project will be in
Chapter 7.



2. RELATED WORK

This section presents a brief overview of previous HRI studies. We review the research
environments and technologies related to the system created in this work. This section
also introduces technologies required in the implementation.

2.1. YR in HRI Research

Virtual reality has been utilized in various HRI studies. It allows easier data collection
and access to environments that can be hard to access otherwise. Liet al. [6] as well as
Yang et al. [7] studied proxemics and social distances in virtual environments. Both
of these studies also included a robot approaching a human or a group of humans.
Besides human-robot interaction, VR is used in other sub elds of robotics for data
gathering. In the research done by Koller et al. [8] data was gathered from a human
movement in a virtual reality kitchen to then train the robot later on. Even though the
usage of virtual reality can bring some real bene ts to the studies, some researchers
still prefer doing things the old way. For example, Mavrogiannis et al. [9] focused on
how humans would react to different behaviour patterns of a robot and what effect that
would have on overall performance for both humans and the robot, in a traditional lab
environment. Had this study been executed in a virtual reality environment, instead of
post-it notes and markers, the environment could have been more immersive and the
tasks more authentic.

The research was limited to the complexity of the real-world pedestrian environment
because the study was done in lab conditions. Different to our study, this research did
not include virtual reality. The participants had to imagine being in a factory even
though they were inside a classroom. An easel was representing a machine with sticky
notes and a marker pen represented the maintenance tasks. The measurements were
done both objectively and subjectively. Objective measures are in this case all the
tracked human and robot trajectories recorded through an overhead motion capture
system. Subjective measures are questionnaires about ratings of participants, and
impressions of the robot s intelligence, safety, and personality. Mavrogiannis et al. [9]
found evidence that human acceleration is lower and their movement is not as irregular
when they are navigating around an autonomous robot, compared to a teleoperated
one. They also found out, against their predictions, that there was a lack of support
to con rm that the teleoperation strategy on the robot would be humans preferred
choice. The movements of the participants and the robot were captured with an
overhead motion capture system and a videotape if the participants had given consent.
Six high-accuracy and high- delity cameras tracked the re ective markers attached to
the construction helmets worn by the participants. With the implementation of virtual
reality, there would have not been a need to imagine the factory as a realistic virtual
reality factory could have been created. Also, the data collection could have been done
with the data from the VR headset, and consent of a participant would not have been
needed, since a video of a real human being would not be needed. Possible dangerous
real-world situations can be avoided as well.

Lietal. [6] discovered that people tend to prefer a longer distance and personal space
between the robot in virtual reality than in the real world. The difference in proxemics
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could be caused by the ego-centric distances that are perceived as compressed in virtual
reality [10, 11]. Participants also perceived the virtual robot to be remarkably more
discomforting and have a lower feeling of presence in virtual reality. The reason for
this might be the quality of the 3D model robot was not good enough or as good
as in the real world. The results also showed that the addition of spatial sound did
not increase the sense of presence in VR and the reason for that could be the social
presence of the researcher who gave instructions now and then to participants outside
of virtual reality.

The research done by Liet al. [6] had three different manipulations: the presentation
methods meaning of comparing real-world and virtual reality proxemics, the visual
familiarity of the physical environment in VR, and spatial sound. Their nal sample
included 60 participants and they were exposed to two trials, one real-world trial,
and one VR trial. In VR ftrials they were altered to explore the in uence of visual
familiarity and spatial sound. In the experiment, participants were holding an HTC
Vive controller to enable the robot to move forward toward the user when pressing the
trigger button. After the users minimum comfort distance was exceeded, meaning that
the user was feeling uncomfortable, the trigger button would be released and robot s
approach would stop and the proxemics could be measured. HTC Vive controllers
and HTC Vive Tracker were also used to gather the data from the proxemics of HRL
HTC Vive Tracker was placed in the back of the robot and the controller was in the
user s hand. Unlike our study, the environment is not as immersive because there is
only one robot and one human participant who could only see the robot. There was
also no movement included in the environment except only for the robot which moved
towards the user when pressing the button indicating teleoperation. Compared to our
work, there are no tests with autonomous robots which could have made a difference
in this study affecting the proxemics, because a robot moving autonomously towards
the user might create more uncomfortable feelings.

Similar to the study done by Mavrogiannis et al. [9] the study done by Li et
al. [6] also included subjective measures such as the Robotics Social Attributes Scale
(RoSAS) and Slater-Usoh-Steed (SUS) questionnaire [12, 13]. RoSAS was used to
evaluate the perception of the robot. It is an empirically validated method of measuring
the perception of the robot. In this study, they used two out of three factors that are
competence and discomfort because the warmth factor is not related to the task. The
other questionnaire SUS comprises six questions that were used to measure the feeling
of presence in this study.

Koller et al. [8] created an open-source virtual reality simulator called Virtual
Annotated Cooking Environment (VACE) for object interaction tasks in a richly
furnished, interactable virtual kitchen environment. This project was done using Unity.
The VR simulator creates thoroughly annotated video sequences of a virtual human
avatar. These human avatars are controlled by real humans with a HTC VIVE headset,
chest tracker, and controllers. The body of the avatar is animated through an inverse
kinematic system to generate realistic arm, leg, and torso behavior. With this hardware,
users movement is tracked and the trajectory data is made into datasets. In addition
to real live recordings, Koller et al. [8] say datasets generated in virtual environments
are valuable for activity and plan recognition, reinforcement learning, learning from
demonstration, and semantic segmentation research. With this simulator and data
gathered from the simulation, machine learning can be utilized and agents can be made
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to create future service robots in human homes which can perform daily tasks in the
kitchen and cooperate with their human partners.

Similar to our study, this research uses Unity to create the virtual environment.
In addition, this project collects data from the VR hardware for future HRI studies.
Different to our study, this project does not include teleoperated or autonomous
robots interacting with humans or any kind of human-robot interaction in the virtual
environment. Similar to our project, Yang et al. [7] used a virtual reality environment
and virtual reality headset to gather the data which people in real life were using.
They used humanoid characters to represent humans in a virtual world. In the
research procedure, a group was formed, which was then approached by a teleoperated
character. From these interactions, they attempted to gure out which was the most
socially acceptable manner to make individuals in the group feel comfortable using
attention- and graph-based neural networks from the gathered trajectory data.

2.2. Research Environments

Various types of virtual research platforms have been utilized in the past, from
ones built on game engines to realistic VR models of real-world environments. For
example, the Malmo Project uses Minecraft world to generate complex and intuitive
3D worlds for Arti cial Intelligence (AI) and robotics research [14]. These kinds of
worlds focus more on the development and the studying of the agents. Then again,
Project Malmo represents a more unusual approach to exposing agents to a range of
environments. Worlds built-in virtual reality offers many possibilities for gathering
data from versatile and arbitrary situations and environments. They especially offer
new ways to observe realistic inferactions between humans and robots. SIGVERSE
is an example of this kind of platform that specializes in data collection from various
interactions [4].

SIGVERSE shares a lot of the same technologies with our platform. Both use Unity
as a game engine, with Photon PUN networking to provide multiplayer functionalities.
Both also use ROS , introduced in chapter 2.3, as a bridge between the robots
and Unity. In our platform ROS2 is implemented rather than the older ROS 1 in
SIGVERSE. The main differences between these two versions are that ROS uses
Python 2 whereas ROS2 uses Python 3, ROS only supports Ubuntu whereas ROS2
is supposed to support Windows 10 as well, and in ROS2 other than CMake projects
can also be used. These changes make ROS2 a more compatible and sustainable
choice[15]. The main difference between our platform and SIGVERSE is that
SIGVERSE supports a wider range of actions and collects a multitude of data from
them such as motion gestures, pictures, spatial information, and audio. Our platform
is more lightweight and focuses solely on collecting spatial data of objects [4].

Another interesting environment was used by Li et al. [6] in a study focused on
proxemics between virtual reality and the real world. Although Unity was also used,
the system in question has some major differences. Unlike previously mentioned
systems this one does not support multiplayer activities at all. There is only one robot
and one human in the scene at once. The robot does not have the possibility to move
freely or autonomously as it is controlled by the participant in the virtual environment
who can move the robot only towards themselves by pulling a trigger on their VR
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controller. Even though the setting is quite different, the purpose is quite similar; to
collect proximity data of robots and humans. In addition, our system also collects the
direction and speed of the objects. Our platform and SIGVERSE have support only
for Oculus VR headsets, while the system in this study supports only HTC Vive VR
headsets. This allows the system to sync the location of the robot with the HTC Vive
tracker, that was placed on the physical robot for more accurate results.

2.3. ROS (Robot Operating System)

ROS is a free, open-source collection of hardware drivers, algorithms, networking
models, and other tools used in robotics. The core idea of ROS is to make the
existing software technology available and easily accessible for robotics study and
development. Even though the name suggests so, ROS is not a traditional operating
system. It is a middleware that runs inside a host operating system offering functions
that are suchlike a traditional operating system provides [135, 16].

This work implements ROS 2. Original ROS | system creates a network maintained
by ROS master, that keeps track of all activities in the network. Newer ROS 2 uses
Data Distribution Service (DDS) technology [17]. Data Distribution Service integrates
nodes in the network into a single system, lowering latency and enhancing reliability
and scalability. Essentially it is a middleware protocol and API-standard [18]. ROS
2 DDS network is formed from several ROS 2 nodes processing data jointly and
concurrently and it does not include a master [15, 17].

A node in a ROS 2 network is a piece of software that has its own modular function
to take care of. This function can be rotating a wheel or sensing temperature through a
sensor, forexample. Data is transmitted between the nodes in the network using topics,
services, actions, and parameters. These communication frameworks offer a versatile
playbook of techniques for sharing dataef ciently within the network. Event-triggered
data sharing (topics), request-based call-and-response communication (services), and
continuous communication through actions, which are constructed by combining topic
and service communication logic. Parameters are a set of unique settings for each node
and are used to con gure the network [15].

2.4. Unity

Unity is a 3D real-time simulation platform that consists of multiple renderers, physics
engines, and Unity Editor which is a graphical user interface. It was developed by
Unity Technologies in 2005 and is commonly known engine for the development and
creation of games [19]. Besides games, Unity can also be used to create virtual reality
applications. A project in Unity consists of multiple windows including scene, game,
hierarchy, project, and inspector. In scenes, you can structure and debug the projectin a
logical and modular manner. In the hierarchy and scenes, you can add various types of
game objects, which themselves contain different types of components. Components
included in a game object will determine the object s function and behaviour. For
example, components can be mesh lters, renderers, colliders, or joints. Using
components will make the game object either static or dynamic. The designer can
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change the scene window to see the progress of the project from different perspectives
and see how different game objects behave [20].

Unity uses an object-oriented framework for runtime and design-time scripting in
three languages: Boo (By Unity), JavaScript, and C#. In addition to those three
programming languages, other .Net languages can be used with Unity under certain
prerequisites [20]. Runtime and Editor are the two types of object classes used in
Unity. Runtime classes contain user-written scripts that are used in-game objects. One
or multiple of the scripts can be attached to one or multiple game objects and change
the behaviour of the object. Users can use scripts in Editor classes to add menu items
to the default Unity menu system [21].

Any item that can be used within a project, no matter if it is a scene, a game object,
or a component, can be turned into an asset. An asset is a representation of that item.
It can be either imported from outside of Unity or made inside of Unity. Files from
common Computer-Aided Design (CAD) software can be imported into Unity and be
made an asset. Assets can also be purchased or downloaded for free from Unity Asset
Store. Assets can be reused within one project and be copied into other projects [20].

2.5. Oculus

Oculus VR Inc. was founded in 2012 by Palmer Luckey, Brendan Iribe, Michael
Antonov, and Nate Mitchell to develop a VR headset for video gaming known as
Oculus Rift. In 2014, Facebook Inc., nowadays known as Meta Platforms, bought
Oculus for 2,3 billion dollars in cash and stock [22]. Oculus produces virtual reality
headsets including head-mounted displays (HMD) and Oculus Touch controllers. Its
bestselling products include the Oculus Rift and Oculus Quest lines [23].

The Oculus Quest comes up with two different models: Oculus Quest and Oculus
Quest 2. They can run games and software also wirelessly because they have integrated
computers inside the HMD. The HMDs are powered by Qualcomm Snapdragon mobile
processor platform and the operating system is Oculus Quest system software, based
on Android source code [23].

The Oculus Quest supports both orientation and position tracking with two six
degrees of freedom (6DOF) controllers and a headset, using internal sensors and an
array of cameras in the front of the headset rather than external sensors. Therefore, the
pose (of a user s head and hands) in 3D can be tracked, that is the coordinates along the
x (horizontal), y (vertical), and z (depth) axes, which determine the position, in addition
to the pitch, yaw, and roll, which determine the orientation. The 6DOF movement
allow user to integrate virtual hands to interact with VR environments [24, 23]. The
Quest lines are also capable of running with Oculus-compatible VR software running
on a desktop computer when connected over USB [23].
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3. DESIGN

The purpose of the project is to create a comparably lightweight data gathering tool
for HRI research focusing on the trajectories of humans and robots within interaction
situations. The system needs to ful 1the given requirements to gather data in a wanted
format in a controlled setting. Multiplayer functionalities must be supported. Multiple
participants need to be able to join a room and interact with each other as players
playing the game. Rooms are separate instances of a certain level or map inside a
game or application within a server. Multiple instances of a single map can exist
simultaneously and each of these instances is a separate room. A participant joining
the room has to have a choice to join in as a human or as a robot. Human inputs
are given through Oculus headset and handheld controllers. Robot inputs are sent as
Transmission Control Protocol (TCP) messages from ROS. The controller giving the
instructions through ROS can be a participant using a keyboard (teleoperation mode) or
an autonomous script (autonomous mode). All useful data from the interactions must
be recorded. In our case, this corresponds to recording the positions and orientations of
the game objects and the directions that they are looking at, at discrete time instances.

The requirements set for this project set some constraints for the design and
architecture of this project. This chapter gives insight into the architectural and
design features implemented that are a direct or indirect result of the requirements
and speci cations given.

3.1. Use Case

This platform is created to observe the behaviour of participants in a controlled
environment. Multitude variants of experiments can be created to research the effects
of changing certain variables and/or variable combinations on the behaviour of the
subject. Creating a virtual reality tool for this purpose cuts costs and saves time for the
researchers.

By changing the method the robots are controlled (autonomous/teleoperated), the
interaction behaviour can be analysed from the collected data. Human avatars are
always controlled by a human so they can be used as a reference point. There is no
way to tell in-game if a robot is autonomous or teleoperated. This uncertainty can be
leveraged and used to observe if there are any differences or patterns in the interactions
of the objects who are the same or different in-game. Also, the setting can be switched
on its head by telling or lying to the subject about the status of the robot(s) and seeing
if it has any effects. These aspects can be replicated with many different combinations
or number of subjects, characters, and settings which makes this platform useful for
many purposes. Other features can also be changed within the scene editor without
breaking the game, for example, the map or relational sizes of the characters can be
changed if needed to test an even larger amount of variables and different parameters.
Possible use cases are discussed more speci cally in Future Work in Chapter 6.2.



15

3.2. Models

There are two types of character models in our environment, the robot model in Figure
1 and the human prefabs in Figure 3. The model of the robot is made by the UBICOMP
team at the University of Oulu and the human prefabs, made by IRONHEAD Games,
were acquired while attending a VR multiplayer course!. The robot is a differential
drive system with the driving wheels hidden under the chassis. The wheels are
controlled with an AGV Controller.cs script which calculates the torque input for each
wheel to track the control commands (linear and angular velocities of the robot). The
wheels then move the robot using game engine physics which take into account aspects
such as friction. This script allows the robot to move forwards and backward, turn left
and right, and adjust the speed of the robot. The robot also has a LaserScanSensor.cs
script which is used for navigation and collision avoidance of the autonomous robot.
Scanning is visualised by the pink markers on the ground, seen in Figure 2.

Figure 1. Robot prefab asset

The robot is an accurate replica of the physical robot at the UBICOMP of ce. The
only differences are that in the Unity version, the script AGVController.cs is simulating
the actuator that drives the wheels, and the model of the robot was missing the rod
which is holding the camera, but we added it. The camera of the robot is placed
approximately at the eye level of an average person to make the interactions feel more
real. Teleoperated and autonomous robots are identical, Oculus users or even Unity
cannot distinguish the difference between teleoperated and autonomous robots based
on their inputs or appearances. Only the movement patterns may differ.

To easily separate robots from human participants human avatars needed to be
added. For this project, we attended a VR multiplayer course, which gave us access
to [IRONHEAD Games multiplayer VR assets. These assets included human prefabs
in Figure 3. Although they are very simplistic they have many good attributes which
made us choose them. Prefabs do not have arms or legs. They have the same body parts
as Oculus VR headset tracks: position and orientation for both hands from controllers

'"Multiplayer Virtual Reality (VR) Development With Unity by Tev k Ufuk DEMIRBAS
and IRONHEAD Games, URL: https:/fwww.ndemy.com/course/multiplayer-virtual-reality-vr-
development-with-unity/
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Figure 2. Robots scanning markers.
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Figure 3. IRONHEAD Games human avatar prefabs in idle poses.

and the same information for the head from HMD. Head rotation is applied to the body
as there is no separate sensor to read body orientation. Hands can move freely. This
allows uent movements and easy gesture expressions. We believe this encourages
participants to act more naturally around each other as there are no stiff statue-like
characters or unnatural clunky animations.

3.3. Versatile Environment

One of the major bene ts of the system is its modularity. Different modules and
functionalities of the system are kept apart from each other. This means that
modifying or entirely altering one functionality does not always affect or break the
other functionalities of the system. This allows easy access to diverse environments
and research settings.

The whole building and all of its components can be found under one single
GameObject. It does not contain any scripts or other connected functionalities, only
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mesh to avoid objects moving through the structures. This means that changing the
room or the building in practice can be done by simply deleting the old object and
importing a new one to the project. Changing the avatar requires a bit more work
compared to the room. It requires the corresponding GameObjects such as the body,
hands, and the head to be reconnected to the scripts that handle the movement and
synchronization of the human.

Figure 4. Tellus environment used in development phase.

In the development phase of the project, we used a model of the Tellus, found in the
Linnanmaa campus of the University of Oulu. It is a precise 3D model of the Tellus,
made with Blender, by the UBICOMP team. A picture of the environment can be seen
in Figure 4.

3.4. Risks

Risk Description Likelihood Impact Preventive actions Corrective
. Proactive scheduling and
Project does not stay . . . f
Schedule unlikely major project management, Try to pick up the pace
on schedule : .
avoid procrastrination
Third party software
. party i Switch to some other
Unity support come to an | extremely rare | catastrophic - i
game engine
end
Third party software
party . Switch to some other
Photon PUN support come to an rare major - . X
Unity extension
end
Third party software
party . Switch to some other VR
Oculus support come to an | extremely rare | catastrophic -
headset manufacturer
end
As ROS is an Open-source
Third party software P
software, development
ROS support come to an rare moderate - ) i i
ond can still continue without
active support

Figure 5. Risk assessment.
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There are a few factors that could possibly threaten the nalization of our project.
Firstly, a factor that is involved with every project, is the schedule. As we dont
really have previous experience with the involved technologies, there is a reasonable
probability that we encounter some issues that take a lot of time to overcome and it
could possibly put the schedule at risk. Then there are risks involved every time a
third-party software is involved. For our project, it means that we are more or less
dependent on Unity, Photon PUN, Oculus, and ROS. Risks and their attributes can be
found in the Figure 5. The risk likelihoods and impacts are assessed based on if events
occur during the project development phase.
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4. IMPLEMENTATION

Even though the design is quite predetermined in terms of the direct and indirect
requirements of the system, they do not cover all the functionalities. For example, the
implementation of multiplayer functionality and data collection are not speci ed by
the requirements or the subject. The con guration regarding whether to use a virtual
machine or two computers is also just a preference. In this section, we explain the
choices we made regarding those functionalities and the implementation of them.

4.1. Multiplayer

Multiplayer functionality is implemented in this project to allow multiple players to
interact and collaborate in the same virtual space simultaneously. This is done using
Photon PUN. PUN (Photon Unity Networking) is an extension asset for Unity created
by Photon. It offers cross-platform backend functionalities for room-based Unity
multiplayer games. It utilizes client to server architecture Figure 6. Users can connect
to Photon Cloud through applications and games to interact with each other in real-
time. Photon Cloud is a globally compartmentalized collection of servers running
Photon Server -application maintained by Exit Games. As a service Photon Cloud
takes care of server operations, hosting, and scaling so the developers can concentrate
on their application [25].

Master Client Client Client

PUN PUN PUN

:

Photon Cloud

Figure 6. Communication between clients and Photon Cloud.

PUN package forms from API of three layers. The rst level contains the code,
handling of network objects and method calls with remote clients, etc. The second
layer handles server level: connections, matchmaking, callbacks, and so on. The
lowest level implements dynamic link libraries (DLLs) [20]. DLLs contain program
code and information that are meant to be used by multiple programs concurrently, for
example, serialization and deserialization logic and protocols [23, 26].

We chose PUN because of the high level of service it offers. It extends the
built-in networking of Unity and therefore, the APIs are very similar  Photon
PUN documentation [25] includes a lot of pre-built methods and information about
their functionality to make developing a multiplayer game easier and faster. A
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lot of documentation and instructional material are available online. Also, the
course we bought, Multiplayer Virtual Reality (VR) Development With Unity,
utilized Photon PUN services. This allowed us to save time by utilizing the script
MultiplayerSynchronization.cs and the prebuilt characters that were presented in
Chapter 3.

The game reads inputs, either from the VR headset and controllers or commands
from ROS (in case the character is a robot). According to the input, the game locally
updates the rotation and position of the character. PUN collects this information and
sends it from all participants to all participants. This information is used to move and
rotate the corresponding characters equivalently on all players screens in the room.
Actions are synced only between players within the same room. This creates the
illusion of shared space.

4.2, Input Methods

When connected to a room as a human avatar, users have two ways of moving around.
The primary method of control is just to move around physically in the real world with
the headset. The movements are then reproduced in the virtual environment by the
human avatar. As a secondary method of control, users can walk around as an avatar
by using the Oculus Touch controller joystick. This method is not ideal in terms of
research analysis as it is not as natural way of moving for human beings, and it can
cause motion sickness, but it can be useful for example in certain situations where there
are external constraints such as insuf cient amount of space to move around in.

Oculus user User

l

Teleoperated robot Autonomous robot

Qculus Link | /

J

Unity

Figure 7. Three options for movement inputs.

As for the robots, there are also two ways to move around, which both appear
identical from Unity s point of view: teleoperation and autonomous navigation. The
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inputs that ROS sends can be from an autonomous navigation system or from the
user s keystrokes and they are indistinguishable for Unity. Teleoperated robots are
controlled with a keyboard and autonomous robots navigate using a predetermined map
or separate runtime waypoints along with collision avoidance. Both control methods
also support looking around freely with an Oculus VR headset which simulates a 360°
camera.

PLAY AS

HUMAN ROBOT

*Requires ROS satup

DATA COLLECTION on

Figure 8. Screenshot of the main menu

When a user starts the program, they are rst brought to the main menu, Figure 8.
In the menu, the user has the option to choose whether to join the session as a human
or a robot avatar and whether to collect the data locally or not. The main menu is
only visible on the computer monitor, not on the VR headset and it is operated with a
mouse. Users can click the data collection button to set it ON or OFF and then click
the HUMAN or ROBOT button to spawn in as one. It is necessary to ask the user s
choice for these options and the main menu is a simple and effective way to do so.

4.3. Data Collection

As stated before, the data collected by the system consists of position and the
orientation of the players. More precisely, the system tracks the coordinates along the
x and z axes, and the rotation about the y-axis for human avatars. Different to many
other systems, the y-axis is the vertical axis in Unity Figure 9. If necessary, missing
data elds can easily be collected as well, but to keep the system as lightweight as
possible and to avoid collecting irrelevant data, those elds are not included originally.
For example, the y-coordinate is excluded from the data because, in the current map,
all movement happens at the same level vertically. A data sample can be seen in the
Figure 10. There it can be seen that the system collects data from six data elds.
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E
Columnl Bl column2 B colwmn2 B columna B Columns B columne BB

|8} posk posZ roty robotCamy
olayer_3_human -10 -5 318,1

olayer_2? robot -7.9 -1.8 26,1 32,55253
olayer 1 robot -11,8 -4,5 71 -
olayer_3_human -10 -5 311,59 -
olayer_2 robot  -7,7 -1,3 26,1 32,54705
olayer 1 robot -11,7 -4,3 8BS -
olayer_3_human -10 -5 3079 -
olayer ? robot -3,5 -0,9 26 32,53302
olayer_1_robot -11,7 -4,2 24,3 -
olayer_3_human -10 -5 2784 =
olayer_? robot -74 -0,5 354,6 0,577631
olayer_1_robot -11,6 -4 31,9
olayer_3_human -10 -5,1 265,3 -
olayer ? robot -74 -0,3 293 6 295 24594
olayer_1_robot -11,4 -3,8 35,3

olayer_3 human -10 = 324.6 =
olayer 2 robot -74 -0,3 265,9 263,817
olayer_1_robot -11.3 -3,6 37,5
olayer_3_human -3,9 -5 11,6 -
olayer 2 robot 7.4 0.2 55,2 220, 7578
olayer_1_robot -11,3 -3,6 61

Figure 10. Data sample.

Metadata consists of the two rst columns. The timestamp is Photon network time
which is synchronized with the server. The time can vary between servers, but inside
a room, all clients have the same value. The timer starts from a random positive value
between 0 and 4294967.295 seconds and wraps around when the maximum value is
reached. The maximum value equals almost 50 days so the likelihood of duplicate
timestamps is negligible. The system collects data once every half a second by default.
If needed, this value can be changed from the TrajectoryCollector.cs script. The ID

eld consists of three components separated by underscores: the rst part is a static
text “player”, the second part is the ActorlD of the Photon session, and the third part
is a robot or human keyword accordingly. The ActorlD provides a unique identi er
for each player that has connected to the session. Note, if a player who last joined
disconnects, then joins again, their ActorlD is incremented by 1. The posX and posZ
data elds contain values of the x and z coordinates for both human and robot game
objects. The rotY value represents the direction of the body. Human orientation is
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tracked from the VR headset so it is also the direction the object is watching. The
robot’s 360° camera can watch in a different direction than the body is heading and
therefore robotCamY value is collected separately to save the direction the robot user
is looking for the local robot. Robot camera orientation is not synced over the network
as it does not affect the appearance of the robot. This is why robot camera rotation
can only be saved from the local object. The script iterates through all the players and
writes their data at the moment of the execution.

When the data collection is enabled, the path where the trajectory_data.ssv
file is located is printed to the debug log. It is in the persistent
path of Unity, which usually is C:\Users\<userprofile>\RppData'
Locallow\<companyname>\<productname>. In the development stage, the
companyname was DefaultCompany and productname ACP1.

4.4. Unity-ROS Connection

In the development stage of this system, a virtual machine was utilized to run the
Linux distribution. Practically speaking, this means that ROS was running on the
virtual machine Linux, and the Unity project was running on native Windows 10. As
for the Linux distribution, Ubuntu was used while developing the system. This way the
communication between the two operating systems was done with TCP (transmission
control protocol) connection through the loopback connection. Figure 11 visualizes
this connection.

WVirtual Netwerk Adapter

|m” v s n s

Virtual Network Switch (Vidnata)

Host Netwerk Adapler

Virtual Bridge
Virtual Machine

Figure 11. Bridged connection between host machine and virtual machine

2

There are a few reasons why we opted for this virtual machine configuration. The
main reason is that this way the whole system can be run on a single device instead of
two. ROS can be run either on a native Linux operating system or a virtual machine,
whichever way is preferred. The reason there even is a need for two operating system
configuration comes down to the technology choices that have been made previously:
Oculus and ROS. Oculus can not be reliably used with Linux since it is not fully
supported, and the same thing goes for ROS with Windows. This essentially meant
that we were forced to use two separate operating systems to join the session with a
robot.

Picture: Sarthak Varshney, 2020, NVC_4.1-1, PNG, accessed 19.2.2022, URL: htips:/www.c-
sharpcorner.com/article/what-is-virtual-networking2/
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5. EVALUATION

Since our project did not include designing and conducting an actual HRI study, the
evaluation of this project will focus on software testing, the tool and its features, and
its development process. In this section we will explain the evaluation plan along with
the methods and results of the tests.

5.1. Evaluation Plan

This project does not carry out any data gathering or research itself, but creates a tool
and means for it to be done in the future in other research projects. The evaluation
for this implementation will be mainly done through the means of software quality
and testing. Iterative peer testing has been done since the start of the project for
each implemented feature. At this stage, the plan is to carry out thorough testing to
test multiple functionalities simultaneously to ensure the wanted functionalities of the
project work as indented together on a larger scale.

Testing will include two black-box testing scenarios and one latency measurement.
Black-box testing means evaluating a system based on inputs and outputs, rather
than focusing on the internal structures. In the rst test, the goal is to con rm the
functionality of the movement system and the data gathering system. The test involves
one robot avatar and one human avatar. The robot starts from position 1 and the human
from position 2. Goal is to switch places between participants by moving the character.
Data is collected from this operation and the data points of start and end positions along
with the route taken are checked so that the path is logical and the start/endpoints match
each other respectively. The second scenario aims to further ensure the data validity
with a planned path test. A participant is shown a picture of a path through the Tellus.
Their task is to follow this path. Afterward, the path taken by the participant is plotted
and compared to the original. If the user makes no mistakes, the plotted path should
resemble the planned path. The third test focuses on latency. Latency measurement
is done by writing a separate test function to compare timestamp values between local
and remote characters.

5.2. Data Validity

The validity of the gathered data was determined with two tests. The rst test was a
position exchange test shown in Figure 13. The goal was to create an empirical test
to evaluate synchronous movement and the feasibility of the data from the interaction
manually. In the test, robot and human avatars started by facing each other in front
of the poles seen in Figure 13a. The task was to change the positions to match the
situation in Figure 13b. This action shall be interpretable from the dataset. In the
gathered data in Figure 13c, the test subjects are highlighted in blue at starting positions
and in orange at nal positions. The human avatar highlighted in white is an observer
who is not part of the test. As seen from the data, the human start position and the
robot end position are nearly the same as in the picture, and vice versa. Paths are also
plotted with Excel using the gathered data in Figure 12. The human s path is plotted
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in blue and the robot s path is in orange. The robot s start position and human end
position differ by a small margin due to the fact that the robot s movement is clunkier
and therefore it cannot get as close to the pole as a human avatar.

ul.

Figure 12. Position swap test. Robot s path plotted in orange, human in blue.



Time
3629136,039
3629136,039
3629136,039
3629136,541
3629136,541
3629136,541
3629137,043
3629137,043
3629137,043

3629347,037
3629347,037
3629347,037
3629347,539
3629347,539
3629347,539
3629348,054
3629348054
3629348,054

D posX
player_3_human -8,8
player_2_human -8,2
player_1_robot -8,3
player_3_human -8,3
player_2_human -8,2
player_1_robot -8,3
player_3_human -7,9
player_2_human -8,2
player_1_robot -8,3

Exchange positions...

player_3_human -16,4
player_2_human -8,5
player_1 robot -8,1
player_3_human -16,4
player 2 _human -8,5
player_1 robot -8,1
player_3_human -16,4
player_2_human -8,5
player_1 robot -8,1

(b) Ending positions.
posZ roty
4,6 51,4
-5,7 341,1
a7 212,9
-4,4 43,2
5,7 351,3
a7 212,9
4,2 50,1
5,7 354,9
a7 212,9
1,6 87,3
5.2 202,3
5,4 312,9
1,6 335,5
5.2 202,3
5,4 311,9
1,6 335,5
5.2 202,6
5,4 311,9

(c) Data snippets from start and end of the test.
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Figure 13. Simple position swap -test scheme for testing the movement and data

collection system.
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In the second test, the planned path test, a participant was presented with a map
containing a path. The participant s task was then to walk along this path in the
virtual reality environment. The path taken by the participant was then plotted in
Excel using the gathered data to compare the path to the plan. The plotted path should
resemble the original if there are no user errors. All this is demonstrated in the Figure
14. As seen from the picture, the plotted path resembles the original greatly, which
further implicates that the data gathering functionalities are working as intended. The
differences between the plotted and the planned paths are minimal and the outcome of
natural user errors. This is a reasonable indicator that the data collection functionalities
are valid in terms of tracking the participants movements in the virtual environment.

Figure 14. Planned test route drawn in red. Actual travelled route visualized with blue
dots. Path plotted from the collected data using Excel.

5.3. Latency

The Round-Trip-Time (RTT) outputted by the Photon PUNs European servers outside
the game in Unity Editor is between 34ms and 54ms on development machines.
As there is no direct communication between the clients due to the client-to-server
architecture, the actual latencies in-game are affected by processing delays between
sender, server, and receivers. The in-game latencies were determined by adding a short
supporting test functionality to the TrajectoryCollector.cs -script. The test condition
was set to be triggered when the threshold coordinate value is exceeded by a player.
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When this happens, the test writes the exact timestamp of this action from each client s
point of view to their respective local destination le. By comparing these timestamp
values, the latencies between local and remote clients can be determined in Table 1.

The test was implemented using three participants and three iterations, each
participant being in one role once. The tester-column refers to the character triggering
the test condition. This is a local action for the tester and therefore the timestamp,
referred to as ts in the chart, is the lowest in the tester column. The timestamp value is
further explained in Chapter 4.3 Data Collection. The viewer and reference columns
represent remote clients within the same session. Both columns contain the same data:
the time the information arrived at the receiving end. From this, the latency between
local and remote actions can be calculated. The latency is calculated in the Atester-
viewer column. The difference between the two remote clients is given in the Aviewer-
reference -column.

Table 1. Latencies

tester ts(s) viewer ts(s) | reference Aviewer- | Aviewer-
ts(s) tester(ms) | reference(ms)
1 || 1403742,965 | 1403743,163 | 1403743,166 | 198,0 -3,0
2 || 22690,769 22690,945 22690,937 176,0 8.0
3 | 3563012,022 | 3563012,199 | 3563012,195 | 177,0 4,0

According to the results in Table 1, the in-game latencies settle between 175ms
and 200ms. This is nearly one-third of the default sample time of 500ms. In a study
completed by Baker et al. [27], a delay of one second as a variable was used to account
for communication delays. They chose one second as the delay because delays longer
than that can make the control performance signi cantly degraded [28], and it is also
in alignment with the delay duration that was used in a study by Luck et al. [29]. From
the perspective of positional tracking, the latency of this system is suf cient. The
distance in-game a character can travel in 200ms is so short that it does not have a
noticeable effect. 200ms is also signi cantly less than the xed delay of 1000ms used
by Baker et al. [27]. Orientational tracking is more time-sensitive. A person can rotate
their head and hands at a greater pace than they can move around. Virtual reality gear
makes the movement and rotations slower and more inconvenient. For this tool, the
latency between clients is up to date with the required refresh rates and the latency
is not noticeable for the average participant. The Aviewer-reference -column gives
insight into how much variation there is between the remote client timestamps. They
should be about the same, the data travels through the same components to reach each
one. Differences may be caused by the network environment and the performance of
the machine itself. The absolute values vary between 3ms and 8ms, values are small
and within normal limits.
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6. DISCUSSION

Multiple different kinds of tools have been created for HRI research in the past. Many
of those tools are speci ¢ to a certain task such as cooking or nding the optimal
distance between human and robot interaction. The data gathering system created in
this work focuses on the movements and interactions of humans and robots.

Usage of VR offers nearly unlimited possibilities in terms of research environments.
It allows the creation of situations and environments that are inaccessible in the real
world. It also provides an easy and low-cost solution for data gathering. On the other
hand, virtual reality applications can never be as immersive and authentic as real-life
experiences. In VR the experience is often lower quality, distorted, and suppressed
which can result in a lower feeling of presence and complicate human perception. The
characters are also responsible for a great portion of the reality of the environment. The
human characters have a cartoon-like appearance to allow realistic movements without
heavy animations. The robot is an accurate replica of the real-life version, excluding
the stand. One drawback related to the robot is that the rotational Y data of the camera
is only visible locally. If the rotation of the camera needs to be collected, the data
collection must be enabled on all robot clients to collect the data separately from each
user and then combined afterward. These factors are to be considered when analysing
the proxemics and trajectories gathered with the system.

The multiplayer functionalities implemented in this system allow a lot of variety
and different con gurations with humans and robots. The system is so-called many-
to-many, which means that the number of robots and humans is not restricted except
for the maximum participant count of the free version of Photon PUN which is 20. This
means that the number of robots in an experiment for example can range from 0 to 20
and the same goes for humans. The uncertainty of whether the robot is autonomous or
teleoperated allows researchers to create multiple different types of research situations
and research different aspects of human behaviour.

The usage of third-party software and hardware has both advantages and
disadvantages. If the support for a third-party software is terminated, it can be drastic
for the usability of our system and it might require major rebuilding. Then again, the
third-party ownership provides outsourced maintenance for it. Oculus compatibility
was a requirement for this project and to keep the system as lightweight as possible we
only build support for Oculus headsets. At the time of writing this report, Oculus Link
requires a wired USB-C connection for a certi ed connection. This essentially means
that the wired connection restricts the movement quite a lot, which is why movement
with a joystick was also enabled for human avatars. This weakens the feeling of
authentic movement but is necessary to allow freedom of movement. Oculus Air Link
seems promising to solve the issues involved with a wired connection, but it is still in
development.

Oculus is not fully supported with Linux and ROS 2 requires a Linux-based
operating system which means that when using Oculus the system requires two
operating systems. To avoid using two computers, a virtual machine con guration was
used to run the ROS from a native Windows 10. This way we were able to minimize
the need for hardware. Regardless of all the challenges, the system can be considered
lightweight compared to some other tools used in HRI research.
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6.1. Reflection

In relation to the initial target setting, the system meets all the requirements and no
compromises had to be made during the design or the implementation. The system
supports virtual reality, multiplayer, ROS, and data gathering. It is lightweight and
modular to a certain extent. Latencies and data accuracy are at a level at which actual
HRI research can be conducted. One of the major decisions made in the design was the
introduction of Photon PUN as the service provider for the multiplayer functionalities.
Other important decisions included the gathering of the data to a local le and the
utilization of a virtual machine to run the ROS on. Any of these decisions could have
been a deal-breaker in terms of the usability or functionality of the system, but even
after the evaluation and testing, they can still all be justi ed given the requirements.

In relation to the state-of-the-art projects, our system has a lot in common with
SIGVERSE, which is a state-of-the-art platform closely related to ours, as stated in
2.2. They both share many of the main technologies such as Unity and ROS, only the
versions may differ. The main difference between the two platforms is that SIGVERSE
has a lot more features and more diverse data, whereas our system is focused on the
trajectories and orientations of humans and robots, which makes it more lightweight as
well. This essentially means that the systems have quite different use cases in terms of
the studies that can or are reasonable to be conducted. The studies that are conducted
on SIGVERSE are more complex and diverse, compared to the ones conducted on our
system.

6.2. Future Work

The next step for this tool is to start doing HRI experiments. Studies can be done to
research the interactions of humans and robots in multiplayer situations. As changing
the experiment environment or deploying multiple autonomous robots does not require
a great workload, there are multiple possibilities when it comes to different experiment
con gurations. For example, one interesting study could be where multiple robots and
humans perform some tasks that require moving across a room and the subject was to
make their way from one side of the room to another whilst the robots and humans are
moving as well. In this situation, some of the robots could be autonomous and some
teleoperated and that information can be used to analyse if the subject s behaviour
changes depending on who is controlling the robots. Another possible study that could
be organized could be as described: An egg hunt with robots and humans, the rst one
to nd all X, wins. In this situation, both teleoperated and autonomous robots could
be used to nd differences in human behaviour when competing against humans and
teleoperated and autonomous robots.

Some improvements for the system that could be considered are a remote database
to collect the data, the addition of spatial sound, sending the orientational information
about the teleoperated robot s VR headset over the network, and the addition of more
realistic human avatars. The addition of the database would make the data to be more
uniform as all the data would be from remote clients and the latencies would all be
similar. The spatial sound, in terms of objects making sounds when they are dropped,
for example, would make the environment more immersive but it can be a laborious
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task to implement. The addition of the talking functionalities would also allow a
directional sound to each participant which could enhance the experience in group
discussions, but it does not solve all practical issues regarding communications. If the
participants are joining the experiment remotely, a third-party communication software
is still required to give the participant instructions, etc. And if all the participants
are in the same room, then there is no need for communication functionalities in the

rst place. Making the avatars to be more realistic, meaning that they would have
legs and arms and be generally more life-like, has its drawbacks as well. Making the
more realistic avatars look natural while moving requires a lot of animating and those
animations can reduce the performance of the system. Different kinds of robots could
also be added to the system if needed. In terms of multiplayer scalability, another
service provider or a paid version of Photon PUN is needed if experiments of over 20
participants on the server simultaneously are to be organized.

From a technical and third-party software point of view, the future of the tool looks
promising. Oculus Air Link and ROS 2 for Windows are both long in development
and both could bring great quality-of-life as well as actual performance improvements.
Wireless high-speed connection to a PC from the VR headset is especially something
that has an effect on what studies can be organized. ROS 2 for Windows just means
that there is no need for two operating systems anymore which improves performance
by making the tool even more lightweight.
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7. CONCLUSION

In this work, a human-robot interaction research data-gathering tool was presented.
The platform is implemented as a virtual reality multiplayer game. The platform
includes human and robot characters. Human avatars are controlled using Oculus
virtual reality gear  The robot avatar is a digital version of a real-life robot
and is controlled similarly to its counterpart using ROS-middleware. The goal is
to create a tool for studying the differences in the participants behaviour when
exposed to scenarios where various amounts of humans, human-controlled robots, and
autonomously controlled robots navigate around each other. The behavioural analysis
focuses on the trajectories chosen by the participants and how the statuses, human or
robot and teleoperated or autonomous, affect the behaviour. The main characteristic
that sets this tool apart from the other platforms is its lightweightness in addition to the
possibility of having multiple robots within the same session. There are no limitations
for the combinations of the statuses of the participants as long as the total amount is
under the maximum amount supported by the free plan of Photon PUN, 20.

7.1. Contributions

As Juho had a bit more experience with working with Unity than the rest of
the group members he was responsible for the initial steps of the Unity project
including setting up the environment and working with VR equipment. During the
design and implementation stages, Jeremias was main responsible for the multiplayer
functionalities and Kalle was main responsible for ROS functionalities. All the group
members had equal responsibilities in writing the thesis. Total hours and percentages
can be seen in Figure 15 below.

STUDENT SUMMARY

Flrat name Last name Hours % of project total % of nominal total (8 ep a° 27 hours ~ 216 hours per student)
Jaremiss Kirkkad 236 34.04% 118.52%

Kalle ellalaimen 50 33.24% 115.74%

Juho Hurula 246 32T1% 113.88%

Figure 15. Total hours.
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