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ABSTRACT It is widely recognised that collaboration can help fast-track the development of countries
in Africa. Leveraging on the fourth industrial revolution, Africa can achieve accelerated development in
health care services, educational systems and socio-economic infrastructures. While a number of conceptual
frameworks have been proposed for the African continent, many have discounted the Cloud infrastructure
used for data storage and processing as well as the underlying network infrastructure upon which such
frameworks would be built. This work therefore presents a continental network model for interconnecting
nations in Africa through its data centres. The proposed model is based on a multilayer network engineering
approach, which first groups African countries into clusters of data centers using a hybrid combination
of clustering techniques; then utilizes Ant Colony Optimisation with Stench Pheromone, that is modified
to support variable evaporation rates, to find ideal network path(s) across the clusters and the continent
as a whole. The proposed model takes into consideration the geo-spatial location, population sizes, data
centre counts and intercontinental submarine cable landings of each African country, when clustering and
routing. For bench-marking purposes, the path selection algorithm was tested on both the obtained clusters
and African Union’s regional clusters.

INDEX TERMS Africa, ant colony optimization, clustering algorithms, communication networks, computer
networks.

I. INTRODUCTION
Despite the progress made toward actualizing the Sustain-
able Development Goals (SDGs), Africa still lags behind
most of the world when it comes to socio-economic and
industrial development. According to the United Nations’
report on global human development index, as of today, only
seven (7) of Africa’s 55 countries have a Human Develop-
ment Index (HDI) score greater than 0.75 [38]. The HDI is a
metric used to measure the state of development of countries
around the world. It takes into consideration factors such
as level of healthcare, education, average life expectancy,
among other things. It can clearly be inferred from this
report that 75% of African countries are still developing,
with poor infrastructure for health, education, transporta-
tion, electricity etc. Collaboration has been identified as a
potential medium for accelerating development in many of
these countries. A number of such collaborative efforts for
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development of various aspects of Africa include: regional
economic communities, such as the Economic Community
of West African States (ECOWAS) and Southern African
Development Community (SADC), for economic and politi-
cal developments [7]; research and education networks such
as the West and Central African Research and Educational
Network (WACREN) and UbuntuNet, for education [39]
and communication networks such as the Eastern Africa
Submarine Cable System (ESSAy) and Melting Pot Indian-
oceanic Submarine System (METISS) [19]. Besides these
efforts, researchers have also proposed numerous frameworks
for collaboration and resource sharing in Africa, such as
those in the works of [1], [40], [41], [46]. Despite these
proposals, only a few have focused on the underlying network
architecture required to support such inter-continental collab-
orations. In [42], the authors considered an optical network
to link Africa, while in [3], a dual ring network topology
was proposed for interconnecting African countries. In [44],
the role of the Internet on the evolution of communication
infrastructure in 8 west African countries was considered.
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In [45], the author presented a holistic view of community
networks in African countries, including the current state and
various implementation barriers.

With respect to Clustering Algorithms (CAs), the authors
in [13] surveyed the state of the art, discussed common
distance metrics, as well as the similarities and evaluation
functions of a number of CAs. They also presented different
classes of traditional CAs, including: partition, hierarchical,
fuzzy, distribution, density and graph; as well as modern
CAs, such as kernel based, swarm intelligence, affinity and
various hybrids. In [14], Cheng, et al. proposed a CA that is
robust to noise. The algorithm was built upon a hierarchical
model, with neighour density used to filter out noise, while
modified graph algorithms were used for clustering. In [15],
an improvement on classic density-based CA was proposed
to tackle the well-known issue of determining ideal scanning
radius. The proposed model called DHeat incorporated an
adaptive scanning radius mechanism. A number of other
contemporary CAs exists but most are built upon the classic
CAs, such as those in [16], [17]. In this work, we would stick
with the classic CAs and apply them to clustering the African
continent.

It is widely recognised that collaboration and digitisation
can help achieve the SDGs by building upon the technologies
of the fourth industrial revolution (4IR) to get a connected
continent with potential for collaboration in health care ser-
vices, industry and education. It can also deliver an Africa
where infrastructure are shares in a federated way to bridge
the gap between the poorest and the richest countries on
the continent. A Federated Cloud model for health care in
Africa was proposed in [1] as an attempt to achieve such
goal. The work in [1] investigated both cooperative and
competitive Cloud models and tested five different workload
allocation schemes. Obtained results showed that coopera-
tion could lower allocation delays and improve resources
utilisation, while completion times and quality of service
were better provided using the competitive model. Despite
proposing a potential model, no discussion was made on
the implementation of such a model, especially from a net-
work architecture perspective. Prior to the work done in [1],
Huang, et al. had investigated the viability of a network,
referred to as ‘‘Africa 2’’, that covers the entire African con-
tinent [3]. They proposed a dual-ring network architecture
to service the 55 countries (54 plus Western Sahara*) of
Africa [7]. In their work, they selected some countries as
‘‘bridge-nodes’’ with links between these nodes serving as
connection points between the two rings. The work also
compared a greedy algorithm and simulated annealing algo-
rithm for selecting the optimal placement of the bridge node.
Furthermore, they considered various models for achieving
inter-connectivity among African countries, while factoring
in growth potentials.

This article revisits the issue of African connectivity and
proposes a continental network model called ‘‘Africa 3’’, that
can enable the African fourth industrial revolution through
digitisation. In this work, we seek to address similar routing

objectives as ‘‘Africa 2’’; however, by applying a completely
different hierarchical approach. In our model, neighbouring
countries are grouped into clusters forming digital islands.
These clusters are then interconnected by a network engi-
neered model based on a modified ant-colony optimisation
algorithm. Africa 3, also borrows the federated approach
from [1], which enables efficient connection of Cloud infras-
tructures within the continent.

The specific contributions of this work are:
1) Development of a continental network model for inter-

communication across Africa. This model takes into
consideration the technological capabilities (in terms
of Cloud data centres), the population and geo-political
importance of each African country.

2) Division of African countries into functional clusters
using a number of clustering algorithms. This enables
easy ‘‘visualisation’’ of each feature’s potential influ-
ence on the continent.

3) The proposal of a modified Ant Colony Routing algo-
rithm for the identification of the best network routes
within and between clusters of countries across Africa.
The algorithm is based a combination of dynamic
stench pheromones and weighted cost function.

With respect to the organization of this article, following
this section is section II, with a review of related literature and
the introduction of our proposed continental network model
for Africa. In section III, we consider various clustering algo-
rithms for the lower layer of Africa 3, while network routing
at the upper layer is presented in section IV. Simulations and
discussions of experimental results are done in section V,
while open implementation challenges are highlighted in
section VI. We then conclude the paper and give insights into
future research directions in section VII.

II. THE AFRICAN NETWORK MODEL
As suggested earlier, ‘‘Africa 3’’ is an continental network
that combines the routing objectives of ‘‘Africa 2’’ [3] with
the Cloud federation approach proposed in [1]. Africa 3 con-
sists of a hierarchical network, wherein at the lower level,
neighbouring countries are grouped into clusters and the
cluster heads or regional hubs are selected as the ‘‘bridge-
node’’. These bridge-nodes are then linked together, forming
a continent-wide network at the higher level. The choice of
which country is selected as a cluster head is based on popu-
lation size, number of data centres, geographical location and
regional importance. Table 1 puts these in perspective and
shows the number of data centres in African countries [2],
as well as the approximate population size and centroids
of each country [4]. On Table 1, data centres values of
zero implies that the country either does not have any data
centre or the ones present therein are below the standard
stipulated in [6].

Finding the optimal or ‘‘best’’ path in a network environ-
ment has been found to be an NP-hard problem in many cases
and one which cannot be solved in intrinsic computing time.
A number of meta-heuristic approaches have been developed
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TABLE 1. Geo-demography of African countries.

to solve the optimal path finding problem, prominent among
which is the Ant Colony Optimization (ACO). Ant Colony
Optimization (ACO) is a meta-heuristic algorithm that draws
inspiration from the self-organizing behaviour of ants [20].
Like in real ants which randomly search for food and lay
pheromones to guide other ants to food sources, ‘ants’ in
ACO also update pheromone levels along traversed path-
ways. These artificial ants have memories, where they keep
information about previously visited paths and local solution.
Upon returning to the ‘nest’ from food foraging, each ant
updates the pheromone level on the trail it traversed. These
pheromone levels are used to guide other ants in subsequent

iterations. ACO has been modified to solve a diverse class of
NP-hard problems, such as finding shortest paths in packet
switched networks [32]–[34] and finding best routes in vehi-
cle routing problems, as done in [35] and [37].

The relatively limited number of research works directly
focusing on network routing across Africa is an indication of
a research gap and serves as motivation for this article. In this
work, we propose a continental network for intercommuni-
cation across African nations and use ACO for optimal path
selection across these nations. Such a network can serve as a
backbone for numerous collaborative health and educational
frameworks being proposed for Africa. Our proposed model,
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FIGURE 1. Two-Ring Network showing sample routing paths [3].

called Africa 3, groups African countries into clusters, similar
to that of the African Union (Fig. 2) and then applies ACO
to identify the most efficient network path within and across
clusters. In comparing our model to the dual-ring model
proposed in [3], rather than connecting individual countries
directly to the dual-ring, our model connects clusters of coun-
tries together. The benefits of this approach are as follows:
• Avoidance of single point of failure: with the ring
topology, every node is potentially a point of failure.
This is of particular concern in many African countries,
where stable and uninterrupted electricity supply is still
a challenge. This exponentially increases the probabil-
ity of nodal failures. Though network traffic can flow
in both directions in such dual-ring topology, it is not
uncommon for multiple countries in Africa to experi-
ence total power failure.

• Reduced routing distance: in [3], the Little-Arc-First
(LAF), shown in Fig. 1, was the primary routing path as
it represented the shortest network distance. This might
not always be the best option, as is the case of transmis-
sion between Dakar (node #25) and Abuja (node #4),
where the LAF is the path: #25, #3, #4 and costs 6 +
11 = 17. The Big-Arc on the other hand goes through
the path: #25, #26, #27. . . #32, #4 and has a cost of
only 13. Similarly, when routing from Luanda (#37) to
Nouakchott (#24), the LAF is the path through #38, #39
. . . #48, #24 at a cost of 43, while the Big-Arc through
path #36, #35 . . . #25, #24 only costs 17. Using the
ACO, our model ensures that the path selected between
countries is always the best (lowest route cost).

A. THE AFRICAN CONTINENTAL
NETWORK MODEL (AFRICA 3)
In this subsection we present our model for interconnecting
Africa. As stated earlier. it is a two level model with levels
described as follows:

Lower Level We begin by grouping countries in
Africa into clusters, using a combination of geographical
coordinates (latitude and longitude), population size, number

FIGURE 2. African countries grouped into regions [8].

of data centres and number of independent intercontinental
submarine cable landings present in each country. These
features were chosen because: i. geographical coordinates are
one of the natural ways of clustering countries; ii. population
size and socio-economic power influence the demand for
network traffic; iii. data centre count gives a quick insight
to the level of technological development, with the world
rapidly adopting numerous technologies that are dependent
on Cloud computing [43]; iv. submarine cable landings are
connection points that link Africa to the rest of the world.
These points therefore serve a vital role of gateways in our
model.

Upper Level At this level, our model focuses on intercon-
necting the islands of clusters formed at the lower level. Upon
successfully clustering the continent, we apply a variant of
ACO called Ant-Colony Routing with Stench Pheromones
(ACO-SP) to find optimal network paths within clusters and
to gateways. Of particular importance is the fact that, while
searching for optimal routes, our model strives to avoid paths
that directly cross the Sahara desert.

B. ARCHITECTURAL FRAMEWORK
Fig. 3 gives an illustrative overview of our proposed conti-
nental network model for Africa. At the first phase, infor-
mation about the 55 African countries are obtained. These
information include: coordinates of each country’s centroid
(geographical mid-point), population size and number of data
centres present. They were obtained by web scraping and/or
API calls on [2], [4], [5]. These information are then fed into
different clustering models as features. Here the countries
are grouped into clusters, with the Africa Union’s clustering
used as a benchmark. This clustering phase is discussed in
section III.

Upon successfully clustering the continent, the various
clusters are fed into a routing model, where optimal paths
interconnecting countries within each clusters (intra-cluster)
and across clusters (inter-cluster) are obtained. The routing
model is based on ACO meta-heuristic, and is discussed
in section IV. The final output is the African Continental
Network.
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FIGURE 3. The African Continental Network Framework.

III. AFRICA IN CLUSTERS
In this section, we focus on the lower level of our Africa
3 model and consider various algorithms for effectively split-
ting African countries into clusters. The African Union has
grouped the continent into 5 regions, namely – Central,
Eastern, Northern, Southern andWestern, withmember coun-
tries listed on Table 1 and shown in Fig. 2. In grouping coun-
tries into clusters, we considered a number of unsupervised
machine learning algorithms and use the AU’s clustering
layout as a comparative reference.

Table 1 lists our input data and consists of two types
of data, viz.: geo-spatial data (latitude and longitude) and
temporal data (population size and data centre count). The
final feature of inter-continental submarine landings would
be discussed later. In clustering these data, we considered two
types of K-means clustering algorithms, a hierarchical clus-
tering algorithm and a density-based clustering algorithm.
These algorithms are described as follows:
• Classic K-means (Lloyd-K-Means): The classic
K-Means is a centroid based clustering algorithm,
which, in essence, implies that it determines clusters
members by how close data points are to a centre
point [22]. For k-means, we initially set the value of k
to 5, in line with the AU’s regional distribution of the
continent into five regions. Rather than solely relying
on the AU’s clustering for the value of k, we also
used two elbow methods - the Distortion score and
Calinski-Harabasz score [31] to determine the optimal
value of k. We then repeated the clustering using this
new optimal value of k. Euclidean distance [23] was
used as proximity metric for selecting cluster mem-
bers. Our decision to use the Euclidean distance was
because Africa is uniquely located almost symmetrically
around the equator (latitude 0◦) and the prime meridian
(longitude 0◦), at 30◦W , 60◦E, 40◦N , 40◦S; the use of
the Euclidean distance is therefore justifiable as there are
no longitudinal wrap around (0◦ and 180◦). Despite this

justification and a similar other [9], for thoroughness and
avoidance of doubt, we also clustered using the Great
Circle Distance (Haversine) [24]. We implemented this
with the k-Medoids algorithm described next.

• K-Medoids: K-Medoids or Partitioning Around
Medoids (PAM) algorithm, like K-means is also a parti-
tioning algorithm which attempts to group similar data
together based on distance. However, unlike k-means the
cluster centre in K-Medoids is one of the data points
rather than an average of the points in the cluster as is
the case with k-means. K-Medoids also allows the use
of arbitrary distance metric [21]. With the earth being
spherical, it has been argued that the Euclidean distance
might be less than ideal for clustering geo-spatial data.
To this end, we implemented the K-Medoids algorithm
with the Haversine distancemetric [24], described in (1).

distance=R ∗ c

c= 2 ∗ atan2(
√
a,
√
1− a)

a= sin2(
(lat2 − lat1)

2
)

+ cos (lat1) ∗ cos (lat2) ∗ sin2(
(lon2−lon1)

2
)

(1)

where lati and loni are the latitude and longitude of the
respective countries ı in Radians and R is the radius of
the earth.

• Hierarchical Agglomerative Clustering (HAC): This
is a hierarchical ‘‘bottom-up’’ clustering technique that
treats each data point (country) as a unit cluster and
pairs up similar clusters. This process is repeated until
all nodes are grouped into the minimum number of clus-
ters [11]. We used two pairing metrics – the Euclidean
distance and Complete Affinity. We chose the Complete
Affinity because we sought to maximize the distance
between data points. The advantage of this becomes
more apparent when we cluster based on the geo-spatial,
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population and data centre sizes; as having multiple
countries with large population sizes within the same
cluster is undesirable. Similarly, for data centres, it is
also desirable to have widely (and evenly) dispersed data
centres across the continent, in order to improve the
overall technological capabilities of the continent as a
whole.

• OPTICS-Xi Clustering: The Ordering Points To
Identify the Clustering Structure-Xi (OPTICS-Xi)
algorithm [25] is based on the Density-Based Spa-
tial Clustering of Applications with Noise (DBSCAN)
clustering algorithm, which has been reported to be
better for clustering geo-spatial data. OPTICS-Xi is
a variant that relaxes the need to set correct values
of epsilon (ε), which is often difficult to determine
for most data sets [25], [26]. For our implementation,
we considered a country as a point P and then used the
OPTICS-Xi clustering to find the set of countries that
were within a ‘‘circular radius’’ (ε) of P. Unlike the
DBSCAN, OPTICS-Xi relaxes the need to set a value
for epsilon. However, we set minPts (neighbourhood
density) to 3, thereby ensuring that each cluster had at
least 3 countries.

• Multi-Feature Clustering: We combined all features
from our dataset and cluster based on this. Two cluster-
ing techniques were used here: i. a hybrid of K-Medoids
and HAC; ii. OPTICS-Xi. For this combined feature
clustering we replace both Euclidean and Haversine dis-
tances with the weighted distance defined in (2).

weightedDistance = α ∗ hdistance+ β ∗ population

+ γ ∗ dcsize (2)

where hdistance is the haversine distance between two
countries, population is the population size and dcsize is
the number of data centres present. α, β, γ are weight
factors, which respectively determine the influence of
hdistance, population and dcsize. Since the 3 features
were of different scales, we normalized them using the
min-max normalization [27], [28] defined in (3). Result-
ing values were scaled between 0 (relative min. value)
and 1 (relative max. value).

X ′ =
x − min(x)

(max(x)− min(x))
(3)

Once the clusters have been obtained, we then used
ACO-SP for path finding. The processes involved are
described in the next section.

IV. CONTINENTAL NETWORK GRID
One of the primary objectives of this work is to propose a net-
work to interlink countries in Africa for the purpose of collab-
orating and sharing network infrastructure. Recent evidence
has shown an imbalance in the level of development of Africa
countries. Some countries are comparatively at the forefront
of innovation and technological advancements, while others
are stuck in the middle age. By leveraging on collaborative

technologies, growth and advancements in many developing
countries of Africa can be accelerated. Such collaboration
could enhance growth in various areas including but not
limited to health care, trans-boundary water management
and general socio-economic activities. However, in order to
achieve this, an underlining and robust network needs to be
put in place.

A. SELECTING CONTINENTAL GATEWAYS
We define continental gateways as landing points for trans-
continental submarine fibre optics cables, which provide
Internet connectivity to the continents. There are a number
of continental gateways across Africa, most of which are
located in coastal cities. Table 2 gives a concise summary of
these continental gateways in Africa [19]. The table shows
that there are about 13 cities with trans-continental submarine
fibre optics cables terminals in Africa. Note that, though
EASSy has been included, it is not a trans-continental fibre
optic line as it does not link Africa to any other continent.
These continental gateways would serve as end-point for
our continental network grid. There are a number of them
across Africa, among which we choose a few, which we
call Prime Continental Gateways (PCGs). For this work,
a PCG is defined as any African country having multiple
independent submarine cables landing within her shores.
Using Table 2 as a guide, we chose countries with 5 or
more trans-continental submarine fibre optics cables land-
ings. These include: Algeria (5), Nigeria (8), Cameroon (6),
South Africa (8), Kenya (6), Djibouti (9), Egypt (15),
and Libya (5). Though Cameroon and Nigeria are in close
proximity, the large population (and by extension network
demand) of Nigeria justifies the selection of Cameroon as a
PCG.

B. TRAFFIC ROUTING
We apply a modified ACO to find optimal network paths
across the continent. This ACO is applied twice in our con-
tinental model; first at the cluster level and then at the con-
tinental level. At the lower hierarchy (cluster level), ACO is
used to find paths from cluster members to the cluster head
within a cluster. At the continental level, it is used to find ideal
paths between the various cluster heads and the PCGs. For
comparative purposes, we also considered an ‘unclustered’
approach, wherein ACO is applied directly at the continental
level. In this model, all 55 member countries of Africa (54 +
Western Sahara), are taken as nodes and ACO is applied to
obtain an optimal network paths across the entire continent
and to the PCGs.

In developing this continent-wide network for Africa,
we considered a variant of ACO called Ant Colony Opti-
mization with Stench Pheromone (ACO-SP) [36]. ACO-SP
has been used in network packet routing with the primary
objective of preventing congestion. In a typical ACO algo-
rithm, the ants obtain the best route (often the shortest route)
across a network. The problem with this, in a packet routing
network, is that all traffic would flow through this ‘‘best
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TABLE 2. Major trans-continental submarine fibre optics landings in
Africa.

route’’, thereby: i. under-utilizing other routes, ii. resulting in
network congestion on the optimal route. ACO-SP, therefore,
introduces a second pheromone called ‘‘stench pheromone’’
used to discourage selection of a given path, thus pushing

TABLE 3. Parameters and settings.

some ants away from the best path and forcing them to create
alternate best path(s).

Applying this concept, we created a list of undesirable
paths, which includes paths that directly traverse the Sahara
desert. Conversely, we also created a list of desired paths,
which are paths we encourage the ants to traverse and consists
of the PCGs. In implementing this, we created a multiplica-
tive index, which either increases the rate of pheromone
evaporation for undesired paths or reduces it for desired paths.

Our implementation process is as shown in Algorithm 1
with parameters detailed on Table 3. On the table, f is used
by the ACO-SP algorithm to introduce a level of randomness
into the system. s and V are variables which indicate the
location of ants; their values ranges between 1 and 55, with
each location representing anAfrican country. 1000 ants were
used in the experiment and this is indicated with variable k.1
is a variable representing the weighted distance between two
countries and is defined by 2. ρ is a factor which determines
how fast the pheromones evaporate. It is a unique feature that
distinguishes our work from [36] and is defined in step 5,
equation 8 of Algorithm 1. Finally, S and U are sets of coun-
tries with PCGs and within the Sahara desert respectively.

V. SIMULATIONS
Simulation were carried out on a system configured with Intel
core i7 processor, 8GBRAMandWindows 10Operating Sys-
tem. Python (Jupyter notebook with Scikit Learn library [30])
and Java (ELKI Data mining framework for Java [29] with
Eclipse IDE) were used, as both offered complementary
libraries and visualization tools.

Geo-spatial data of each country were scrapped from [5],
while data on population were obtained from [4] and DC
size from [2]. After normalizing (3), the data were passed
into the respective clustering module. K-Means, HAC and
Optic-Xi clustering were done in Python, while K-Medoids
and the combined clustering were done using ELKI. This
was because ELKI supports K-Medoids and also enables the
use of custom distance function (such as 2), which was vital
for this work. However, a major disadvantage of ELKI was
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Algorithm 1 Modified Ant Colony Routing With Stench
Pheromones
1. Each ant starts from a randomly selected country.
2. Generate a random number f, f = [0, 1] and a threshold
value (0.8).
3. From any given country (s), the ants choose the next
country (d) to traverse to using (4) adapted from [37]. This
strives to find themaximum ratio between pheromone level
and distance as follows: If f ≤ threshold

dk = max(
8sd

1sd
), dk 6∈ V k (4)

In calculating our route cost 1, we used a weighted dis-
tance metric based on (5), where α + β + γ = 1.

1sd = α ∗ Hsd + β ∗ Qd + γ ∗ Cd (5)

If f > threshold the next country is calculated based on a
probabilistic function which favours the shortest path with
the highest pheromone level. This probability is given in
(6) described as follows:

Psd =
8sd

1sd ∗
∑

su
8su
1su

, u, d 6∈ V k (6)

4. Update Pheromone level based on (7) described as:

8sd = (1− ρsd ) ∗8sd +
ρsd

1
(7)

5. Adjust evaporation rate: in our case evaporation rate
is not constant across the entire system but rather varies
for specific trails to encourage or discourage the use of
certain trails. Evaporation rate is thus adjusted based on
the conditions given in (8).

ρsd =


ρ, d 6∈ G,U
ρ ∗ 0.25, d ∈ G
ρ ∗ 0.75, d ∈ U )

(8)

G and U are respectively sets of encouraged trails (such as
PCGs) and set of discouraged trails (trails through deserts).

that its maps were in gray scale and it only gave cluster
points. We therefore had to manually colour code each of the
resulting clusters, and superimpose the outline of the map of
Africa.

A. CLUSTERING
As described above, our Africa 3 model groups African
countries into clusters. For clustering, we compared four
different clustering algorithms namely K-Means, KMedoids,
OPTICS-Xi andHAC; using two distancemetrics - Euclidean
distance and great circle distance (Haversine). We carried
out our clustering in multiple phases. At the first phase,
we clustered using only geometric values (i.e. Latitude and
Longitude). Results of this phase are shown in Fig. 5 to 8.
We then clustered based on DC size and populations. Being

FIGURE 4. Selecting ideal value of K.

FIGURE 5. K-means clustering using Euclidean distance.

1 dimensional, the results were simple histograms of country
versus frequency (count). These are not shown for purpose of
space savings. Afterwards, the three features were combined
for clustering and obtained results are shown in Fig. 9(a), 9(b)
and 9(c). The AU clustering map, has been included in each
result for reference purposes.

1) CLUSTERING USING K-MEANS
Fig. 5(a) shows clustering results whenK-Means is used, with
the value of k set to 5 and the Euclidean distance used. The
choice of k = 5was done purely for the purpose of comparing
our results with AU’s which also has 5 clusters. In Fig. 5(b),
rather than fully relying on the AU’s classification and setting
k to 5, we instead chose the value for k by running two
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FIGURE 6. K-Medoids clustering using Haversine distance.

elbow methods - the Distortion score and Calinski-Harabasz
score [31]. Both of them gave a value of 6 for k , as shown
in Fig. 4(a) and 4(b). For both values of k (5 and 6), the result-
ing cluster maps differ from that of the AU’s. This is most
prominent in the Northern and Western clusters.

2) CLUSTERING USING K-MEDOIDS
We then proceeded to cluster based on the great circle dis-
tance, a metric which takes the shape of the earth into
consideration, when measuring the distance between points.
However, it has been reported that K-Means is not well suited
for use with distance metric other than Euclidean, for this
purpose we also clustered using K-Medoids. Obtained results
are depicted in Fig. 6(a) and 6(b), for values of k = 5 and 6
respectively.

For both values of k , obtained results were similar to
the AU’s clustering. When k was set to 5, Fig. 6(a) shows
Madagascar, Comoros and Mauritius being grouped in
Southern Africa. The DRC was classified as part of Eastern
Africa, while Niger was removed from Western Africa and
included in Central Africa. Finally Mauritania was classified
as a West African country.

With k set to 6, similar results were obtained for Northern
and Eastern Africa, with the only exception being Seychelles
which was put in a separate cluster, alongside Madagascar,
Comoros, Mauritius, Mozambique and Malawi. To the West,
Nigeria was classified as a Central African country, while
Niger took its place in West Africa. These are as shown
in Fig. 6(b).

3) CLUSTERING USING HAC
We then considered a third clustering algorithm - the HAC,
which is an Agglomerative clustering technique. The advan-
tages of this algorithm are its efficiency with small datasets
and its implicit ability to determine the ideal number of
clusters. Fig. 7 shows the Dendrogram, from which we chose
distances of 35 and 50. This translated to 5 and 6 clus-
ters, with the resulting cluster diagrams shown in Fig. 8.
Results obtained in both cases were highly skewed towards
Central Africa, with Northern and Eastern Africa having only
4 countries each.

4) MULTI-FEATURE CLUSTERING
From the above results, only the K-Medoids algorithm gave
results closest to the AU’s clusters; for this purpose we

FIGURE 7. HAC Dendrogram (Distance = 35, 50).

decided to stick with it. Though we also clustered based
on population and data centre size, the obtained histograms
are not shown. We instead show the result of combining all
three features (geographical coordinates, population and data
centre size).

We compared the K-Medoids algorithm (for k values of 5
and 6) based on the combined featured and Haversine dis-
tance metric. Figs. 9(a), 9(b), 9(c) show the obtained clus-
tering results. For comparative purposes, we also ran the
OPTICSXi algorithm (which is a density based clustering
technique) using these combined features. In Fig. 9(a), coun-
tries from the original AU’s clustering were remapped into
entirely new clusters. The West was made up of countries
drawn from both Northern and Western African countries of
AU’s clustering. Similar reconfiguration were observed in
the Central African cluster. These can be attributed to the
influence of the geo-spatial features of the data set. To the
South, clustering similar to that of the AU was observed;
however, South Africa was singled out as a unit cluster.
This is certainly due to the influence of data centre size
feature, as South Africa has a significantly higher num-
ber of data centres than any other country in the Southern
Africa region and the entire continent as a whole. Finally,
the effect of population is obvious at the Eastern Cluster,
as Ethiopia (with a significantly higher population) skews
the clustering in its favour, resulting in the formation of
a new cluster. The influences of the individual features on
the overall clustering are also visible in the other results
shown in Fig. 9(b) and 9(c). A comparative distribution
of countries into clusters by K-Medoids and AU is shown
in Fig. 10.

Fig. 10 shows the distribution of countries across the three
clustering layouts, viz.: multi-feature clustering with k set
to 5 (Fig. 9(a)), combined feature clustering with k set to 6
(Fig. 9(b)) and African Union clustering layout (Fig. 5(c)).
In all three models, West Africa had the highest number of
countries. Both K-Medoids models (k = 5 and 6), allo-
cated 6 countries to East Africa, which is less than half
of the AU’s (at 13). With the k = 5 K-Medoids model,
the North African cluster was completely removed, while
k = 6 classified 5 countries as Northern countries versus
AU’s 8. K-Medoids grouped more countries into Central and
Southern Africa than the AU did. A summary of the clus-
tering algorithms and corresponding parameters is given on
Table 4.
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FIGURE 8. Hierarchical Agglomerative Clustering (HAC) – 35 and 50).

FIGURE 9. Combined feature clustering.

FIGURE 10. Comparison of country count per cluster.

B. ROUTING
Having put the countries into respective clusters, we now
proceed with creating network(s) to interconnect countries
across the continent. Our proposed model first creates an
inner-network to link countries within clusters (intra-cluster
routing); then creates a second high level network between
clusters and to PCGs (inter-cluster routing). For comparison
purposes, we also created a third network that treats each
country as a cluster in itself and interconnects all unit coun-
tries to themselves. The Total Route Cost (TRC) is used as
a metric to measure how good the selected route is. It is
a composite metric derived from combining the population
size, data centre count and geographical distance. Lower
TRCs are desirable.

TABLE 4. Summary of clustering results.

C. INTRA-CLUSTER ROUTING
In this section, we present intra-cluster routing result for the
various clustering layout obtained in section V-A. Obtained
results give insights into the best network route from each
African country to its closest continental gateway and how
Africa as a continent can be interconnected. For each exper-
iment 1000 ants were used. The cost metric used is a value
representing the shortest path cost for a network which inter-
connects a country to its closest continental gateway (PCG)
within each cluster. Less Desirable Trails (LDTs) are net-
work paths which cut across the Sahara desert. Our model
sought to discourage the use of these paths. For each country,
unique network paths were obtained and are summarized on
Tables 6–8.

1) NETWORK PATHS FOR k = 5 CLUSTERS
The combined feature clustering with k = 5, resulted in five
clusters depicted in Fig. 9(a). Our proposed modified ACO-
SP algorithm was used to obtain optimal paths between each
country and the respective PCG for each of the clusters. The
obtained simulation results are summarized on Table 6.

On the table, four clusters are presented instead of five,
because we included South Africa in the Southern African
cluster, rather than having it as a unit cluster. Since none of
the PCGs, fell within theWestern cluster, we set Ghana as the
gateway. This was because Ghana (3) had the highest number
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TABLE 5. Summary of routing costs.

of independent submarine landings of all the countries in the
cluster (see Table 4). By doing this, we encouraged more
traffic to flow through Ghana.

For the Central, Southern and Eastern African clusters,
we set their PCGs to Cameroon, Djibouti, Nigeria; Kenya,
South Africa; and Mauritius respectively. Similarly, we set
Tunisia, Mali, Western Sahara and Mauritania as LDTs for
theWestern African cluster; Niger and Sudan as LDTs for the
Central African cluster. No LDTs were set for the Southern
and Eastern African cluster as there are no major deserts
along the network path.

2) NETWORK PATHS FOR k = 6 CLUSTERS
The experiment was repeated for the second clustering lay-
out shown in Fig. 9(b), where k was set to 6. Obtained
results are summarized on Table 7. Similar to the previous
results, South Africa was included in the Southern clus-
ter, hence five clusters are shown instead of six. These are
Western, Northern, Central, Southern and Eastern Africa
clusters.

For the Western cluster, Ghana was again set as the gate-
way; while Mali, Western Sahara and Mauritania were set as
LDTs. For the Northern African cluster, Algeria and Tunisia
were set as the PCG and LDT respectively. For the Central
African cluster, the PCGs were Cameroon, Djibouti, Kenya,
Nigeria; while the Chad and Sudan were set as LDTs. For the
Southern African cluster, South Africa was set as the PCG;
while Mauritius was set as the PCG for the Eastern African
cluster. For both the Southern and Eastern African clusters,
no LDTs were set. The Table shows the optimal network path
for each African country when k = 6 model was used.

3) NETWORK PATHS FOR AU CLUSTERS
For purpose of comparison, we also repeated the experiment
to obtain the routing path for each country using the AU’s
clustering layout. Obtained results are as summarized on

Table 8. Five clusters namely Western, Northern, Central,
Southern and Eastern Africa Clusters were presented.

Nigeria was set as the PCG for the Western cluster, while
Mali and Niger were the LDTs. For the Northern African
cluster, Algeria was the PCG used, while the LDTs consisted
of Mauritania, Sudan, Tunisia, Western Sahara, being coun-
tries in/around the Sahara Desert. For the Central African
cluster, Cameroon and Chad were set as the PCG and LDT
respectively. For the Southern African cluster, South Africa
was set as the PCG, while Kenya and Djibouti were the PCGs
for the Eastern African cluster. For both the Southern and
Eastern African Clusters, no LDTs were set. The Table shows
the optimal network path for each country whenAfrica is split
into clusters based on the AU’s regional model.

D. COMPARING OPTIMAL PATHS
For each cluster, we also performed experiments to determine
the ‘‘optimal path’’. For this work, an optimal path refers to
a unique route, that traverses through all the countries within
the cluster only once. This metric is useful in determining the
best way to interconnect all countries within a cluster, while
utilising the least amount of resources (e.g. Fibre optic or Eth-
ernet cable). The result for each of the clusters within the three
clustering scheme considered (k = 5, k = 6 and AU) are as
follows:
• k = 5:Western Africa Cluster. We used the fol-
lowing experimental parameters: PCG: [Ghana]. LDTs:
[Tunisia, Mali, Western Sahara and Mauritania]. Opti-
mal network route: [Morocco, Algeria, Mauritania,
Tunisia, Western Sahara, Cabo Verde, Senegal, Mali,
Burkina Faso, Benin, Togo, Ghana, Gambia, Guinea
Bissau, Liberia, Sierra Leone, Guinea, Cote d’Ivoire].
Total Route Cost (TRC): 43.

• k = 5: Central Africa Cluster. PCGs: [Cameroon,
Djibouti, Nigeria]. LDTs: [Niger and Sudan]. Though
Egypt and Libya are also located in the Sahara, they are
not included in the LDT nor are they included as PCGs.
This is because the influence of the stenchmultiplier (for
undesired paths) and boost multiplier (for desired paths)
cancel each other out, hence no point including them in
any of the lists.
Optimal network route: [Republic of the Congo,
Gabonese Republic, Equatorial Guinea, Sao Tome
and Principe, Cameroon, Nigeria, Chad, Niger, Sudan,
Libya, Egypt, Eritrea, Djibouti, South Sudan, Central
African Republic]. Total Route Cost: 43.

• k = 5: Southern Africa Cluster.
PCG: [Kenya, South Africa]. LDTs: [None]. We decide
to include South Africa in this cluster and set it as
one of the PCG, rather than have it as a unit clus-
ter as shown in Fig. 9(a). Optimal Route: [Zimbabwe,
Mozambique, Zambia, Malawi, Democratic Republic of
Congo, Burundi, Rwanda, Uganda, Kenya, Tanzania,
Comoros, South Africa, Eswatini, Botswana, Angola,
Namibia]. Total Route Cost: 37.
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• k = 5: Eastern Africa Cluster. PCG: [Mauritius].
LDT: [None]. In the absence of a PCG for this cluster,
we choseMauritius as it has a submarine landing and the
highest number of data centres of all the other countries
in the cluster. Optimal Route: [Lesotho, Madagascar,
Mauritius, Seychelles, Somalia, Ethiopia]. Total Route
Cost: 30.

• k = 6: Western Africa Cluster. PCG: [Ghana].
As before no country within the cluster met the
requirement for PCG, hence we chose Ghana. LDTs:
[Mali, Western Sahara and Mauritania]. Optimal Route:
[Burkina Faso, Benin, Togo, Ghana, Cote d’Ivoire,
Liberia, Sierra Leone, Guinea, Guinea Bissau, Gambia,
Senegal, Cabo Verde,Western Sahara, Mauritania, Mali,
Niger]. Total Route Cost = 27.33.

• k = 6: Northern Africa Cluster. PCG: [Algeria].
LDT: [Tunisia]. Egypt and Libya were not included for
similar reasons as k = 5. Optimal Route: [Egypt, Libya,
Algeria, Morocco, Tunisia]. Total Route Cost = 22.9.

• k = 6: Central Africa Cluster. PCGs: [Cameroon,
Djibouti, Kenya, Nigeria]. LDTs: [Chad, Sudan]. Opti-
mal Route: [Equatorial Guinea, Gabonese Republic,
Republic of the Congo, Democratic Republic of Congo,
Rwanda, Uganda, Kenya, South Sudan, Djibouti,
Eritrea, Sudan, Chad, Central African Republic,
Cameroon, Nigeria, Sao Tome and Principe]. Total
Route Cost: 36.

• k = 6: Southern Africa Cluster. PCG: [South Africa].
As done earlier, South Africa in included in this cluster,
to avoid having a unit cluster. LDT: [None]. Optimal
Route: [Malawi, Mozambique, Zimbabwe, Eswatini,
South Africa, Botswana, Namibia, Angola, Zambia,
Burundi, Tanzania, Comoros]. Total Route Cost: 30.72.

• k = 6:EasternAfricaCluster. PCG: [Mauritius]. LDT:
[None]. Optimal Route: [Seychelles, Somalia, Ethiopia,
Lesotho, Madagascar, Mauritius]. Total Route Cost: 36.

• AU Western Africa Cluster. PCG: [Nigeria]. LDTs:
[Mali, Niger]. Optimal Route: [Senegal, Gambia,
Guinea Bissau, Guinea, Sierra Leone, Liberia, Cote
d’Ivoire, Ghana, Togo, Benin, Nigeria, Niger, Burkina
Faso, Mali, Cabo Verde]. Total Route Cost: 26.7.

• AU Northern Africa Cluster. PCGs: [Algeria]. LDTs:
[Mauritania, Sudan, Tunisia, Western Sahara]. Opti-
mal Route: [Sudan, Egypt, Libya, Tunisia, Algeria,
Morocco, Western Sahara, Mauritania]. Total Route
Cost: 32.45.

• AUCentral Africa Cluster. PCGs: [Cameroon]. LDTs:
[Chad]. Optimal Route: [Central African Republic,
Chad, Cameroon, Equatorial Guinea, Sao Tome and
Principe, Gabonese Republic, Republic of the Congo,
Democratic Republic of Congo, Burundi]. Total Route
Cost: 21.

• AU Southern Africa Cluster. PCGs: [South Africa].
LDTs: [None]. Optimal Route: [Angola, Zambia,
Malawi, Mozambique, Zimbabwe, Eswatini, Lesotho,

FIGURE 11. Intra-Cluster Route Cost.

South Africa, Botswana, Namibia]. Total Route
Cost: 21.5.

• AU Eastern Africa Cluster. PCGs: [Kenya, Dji-
bouti]. LDTs: [None]. Optimal Route: [South Sudan,
Kenya, Uganda, Rwanda, Tanzania, Comoros,Madagas-
car, Mauritius, Seychelles, Somalia, Ethiopia, Djibouti,
Eritrea]. Total Route Cost: 37.

Fig. 11 shows the total cost of traversing all countries
within each of the clusters for the Multi-feature clustering
(both k = 5 and k = 6) and the AU’s clustering layout. The
Northern cluster for k = 5 is zero because k = 5 did not cre-
ate a Northern cluster – see Fig. 9(a). Comparatively, Fig. 11,
shows that of all the three layouts, the AU’s clustering layout
resulted in the least traversal cost per cluster. Also routing
across the k = 5 clusters generally cost more compared to
k = 6, except in the East cluster where at 30, it was lower
than k = 6’s 36 and AU’s 37.

E. INTER-CLUSTER ROUTING
Having established a path between each cluster and its PCGs,
there is the need to create a path across multiple clusters.
This is the second (upper) level of our hierarchical clustering
model. We again applied the modified ACO-SP algorithm to
obtain the optimal route across the various clusters. Though
this level represents routing across PCGs and all routes should
ideally be desirable, we still included LDTs (which are paths
that traverse the Sahara desert). Due to the small number of
nodes, we reduced the number iteration to 50 and number of
ants to 100. Obtained results are as follows:
• Multi Feature Clustering with k = 5 PCGs:
[Cameroon, Djibouti, Ghana, Kenya, Nigeria, Mau-
ritius, South Africa] LDTs: [Egypt, Libya] Optimal
Route: [Mauritius, South Africa, Cameroon, Nigeria,
Ghana, Libya, Egypt, Djibouti, Kenya] Total Route
Cost: 60.7

• Multi Feature Clustering with k = 6
PCGs: [Cameroon, Djibouti, Ghana, Kenya, Nigeria,
Mauritius, South Africa] LDTs: [Algeria, Egypt, Libya]
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FIGURE 12. Inter-Cluster Traversal.

Optimal Route: [Kenya, Djibouti, Egypt, Libya, Algeria,
Ghana, Nigeria, Cameroon, South Africa, Mauritius]
Total Route Cost: 63.7

• AU Clustering PCGs: [Cameroon, Djibouti, Kenya,
Nigeria, South Africa,] LDTs: [Algeria, Egypt, Libya]
Optimal Route: [Kenya, Djibouti, Egypt, Libya,
Algeria, Nigeria, Cameroon, South Africa] Total Route
Cost: 52.6

Fig. 12 shows the Total Routing Cost (TRC) for traversals
across clusters. Of the three models, the AU’s clustering
layout resulted in the lowest inter-cluster TRC at 52.6. This
was followed by the multi feature clustering with k set to
5, while the option with k set to 6 cost the most to traverse
the continent. Similar trends were observed for the average
and maximum TRC. The minimum TRC for k = 6 was
however lower than that of clustering with k = 5. This can be
attributed to the fact that k = 6, created an additional cluster
thereby, reducing the number of countries per cluster and by
extension the traversal cost of some of its clusters.

F. CONTINENTAL ROUTING WITHOUT CLUSTERING
In this simulation we set each country as a unit entity rather
a member of a cluster. Cameroon, Djibouti, Kenya, Nigeria
and South Africa were set as PCGs; while least desired trail
destinations included: Chad, Mali, Mauritania, Niger, Sudan,
Tunisia and Western Sahara, as these are countries within
the Sahara desert. Though Algeria, Egypt and Libya are also
located in the Sahara, they are not included in the list of
undesired nor are they included in the desired list. This is
because the influence of the stench multiplier (for undesired
paths) and boost multiplier (for desired paths) cancel each
other out, hence no point including them in any of the lists.
The simulation was run using 100 ants and obtained results
are shown with the line graph in Fig. 12.

The line graph on Fig. 12 shows that the optimal
route to traverse the entire continent would cost a TRC
of 133. This was obtained by traversing the continent as
follows: Nigeria, Cameroon, Equatorial Guinea, Gabonese
Republic, Republic of the Congo, Sao Tome and Principe,
Togo, Benin, Ghana, Cote d’Ivoire, Liberia, Sierra Leone,
Guinea, Guinea Bissau, Gambia, Senegal, Cabo Verde,
Mauritania, Western Sahara, Morocco, Algeria, Tunisia,
Libya, Egypt, Sudan, Eritrea, Djibouti, Ethiopia, Somalia,

FIGURE 13. The African Continental Network Layout.

Kenya, Uganda, Rwanda, Burundi, Democratic Republic
of Congo, Tanzania, Malawi, Mozambique, Zimbabwe,
Zambia, Angola, Namibia, Botswana, South Africa, Lesotho,
Eswatini, Madagascar, Mauritius, Comoros, Seychelles,
South Sudan, Central African Republic, Chad, Niger, Mali,
Burkina Faso.

When compared with the continental traversal obtained
using the clustering based approaches, this unclustered
approach resulted in the lowest TRC at 133. It was followed
by the AU-based hierarchical clustering layout at 191.25,
while the combined feature clustering with k set to 6 was the
least effective approach requiring the highest TRC at 216.62.
A summary of the routing costs is shown on Table 5 and
depicted in Fig. 13.

VI. IMPLEMENTATION CONSIDERATIONS
In this section, we briefly discuss a potential use case of the
model developed in this work; as well as some challenges that
might hinder its implementation.

A. POTENTIAL USE CASE
The relevance or potential use case of this work, is in meet-
ing the African Sustainable Development Goals (SDG) as
defined in [50]. Of particular concern are those of: i.) good
health and well being (through collaborative healthcare [1],
[40]); ii.) industry, innovation and infrastructure (through
scientific research and high performance computing such as
Cloud computing); and iii.) sustainable cities and communi-
ties (smart and eco-cities [51]). These three goals are hinged
on technologies of the fourth industrial revolution. An under-
lying network capable of supporting high bandwidth and
data throughput is paramount to achieving them. Our Africa
3model thus proposes ameans of efficiently architecting such
a network.

B. OPEN CHALLENGES
Thus far, deploying a pan African network for collaboration
has remained elusive. A number of challenges are associated
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TABLE 6. Routing path per country using K=5.

with implementing such a network, some of which are as
follows:

• Policies: The policies (or lack of) are a major deterrent
to collective growth of Africa. A number of policies on
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TABLE 7. Routing path per country using K=6.

Agriculture and food security, health and education are
in place but have remained dormant or ill-implemented.
From a data and ICT standpoint, the Protection of Per-
sonal Information Act and data sovereignty [47]–[49]
are fundamental issues that need to be addressed. They
are concerned with data legislation on where, who and
how data should be stored or accessed across national
boundaries. These need to be clearly agreed upon before
a truly collaborative data network, such as Africa 3 can
be implemented.

• Technical Expertise: Beyond policies, technical
experts would be needed to design, deploy and operate
a continental network such as Africa 3. Unfortunately,
as of today, there is still a wide gap in technical know-
how between Africa and the developed world. This
is especially true for ICT and related fields. In order
to achieve a sustainable continental network, Africans
need to be up-skilled in emerging fields such areas
next generation networks, Cloud computing and data
engineering. There is also the need to focus on Cyber
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TABLE 8. Routing path per country using AU’s model.

security and threats, as attacks on a continental network
could have far reaching consequences.

• Electricity: Without a doubt, electricity is a funda-
mental requirement for any data network. Though at
a continental level, one would assume that electric-
ity would be available to power Africa 3; the actual
problem lies at the edges or peripherals of this net-
work. Here, the term edges refer to the individual
countries connected to Africa 3, and which serve as
‘‘data prosumers’’. As of today, electricity remains
one of the biggest bottlenecks to sustainable develop-
ment in many edges. Hence, for a continental network

such as Africa 3 to be truly useful, African coun-
tries would require widespread energy reforms. This
includes exploring alternate, renewable and sustainable
sources of electricity such as wind, solar, wave and
hydro.

• Poverty: Though Africa 3 is being proposed to help
accelerate development across Africa, the model in itself
has to be viable / self-sustainable. Users therefore have
to pay to use it. Sadly, over 60% of the sub-Saharan
populace still live in poverty [52]. Many families are
unable to afford good food, healthcare or education
for their children. Poverty translates to little purchasing
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power, weak economies and ultimately little or no funds
to sustain the continental network. If deployed as a non-
commercial entity and left unfunded, such continental
network would collapse / die-off at its infancy.

VII. CONCLUSION
Reports of the United Nations on global human development
index, shows that more than 75% of countries in Africa are
underdeveloped. These countries lack vital infrastructure for
health care, education, transportation, electricity etc. This
situation is further exacerbated by the high level of poverty
in many of these countries. Collaboration enabled by Infor-
mation and communication Technology (ICT) could prove
to be a vital tool in fast-tracking development across Africa.
In achieving this, an underlying robust intra-continental net-
work structure must first be put in place; upon which con-
cepts such as tele-medicine, remote learning, e-governance,
smart cities and federated Cloud processing and storage
can be built. The intricacies of such a network are often
enormous as factors such as geo-location, population size,
socio-economic and politics need to be considered. These
therefore complicate the process. In this work, we pro-
posed a network model for inter-connecting African coun-
tries. This two-layered hierarchical model takes into con-
sideration the population size, the geographical locations,
the number of independent sub-marine cable landings and
the number of high performance computing infrastructure
available in each African country into consideration. At the
first layer, African countries are grouped into functional
clusters. Four clustering algorithms were considered, viz.
K-Means, K-Medoids, Hierarchical clustering and OPTICS-
Xi. These were bench-marked against the Africa Union’s
clustering (AU) and obtained results show that theK-Medoids
gave results closest to the AU. Upon successfully clustering
the countries, a modified variant of the Ant Colony Opti-
mization algorithm called Ant Colony Optimization with
Stench Pheromone was used to obtain least cost network
paths within and between the clustered. Stench Pheromones
were used to dissuade paths that traversed the Sahara desert.
Simulation results show that indeed an optimal network
path can be obtained that traversed all African nations, and
that such a network would be most efficiently designed
using the Africa Union’s clustering layout. Implementa-
tion challenges of this network model in Africa were then
discussed.

Though a robust network model for Africa was proposed
in this work; the authors have assumed that perfect line
of sight exists when linking countries. Furthermore, ground
elevation, weather conditions and geo-political constraints
such as language diversity and trans-border rifts were not
considered. Finally, though a network has been proposed,
the exact technology in terms of transmission media and
redundancy were also not considered. These are potential
areas that might be considered for future works.
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