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R E S U M O

A resistência aos antibióticos é um sério problema de saúde pública. Novos mecanismos

de resistência estão a aparecer e a espalhar-se por todo o mundo, ameaçando a nossa

capacidade de tratar infeções. Os bacteriófagos (fagos) surgem como uma solução

pela sua capacidade de infeção e lise de bactérias. Os fagos são predadores naturais

de bactérias: codificam um arsenal de proteı́nas especializadas para infeção dos seus

hospedeiros. Uma proteı́na emergente é a depolimerase de polissacarı́deos (DPOs)

dos fagos, responsável pelo reconhecimento seletivo e degradação dos polissacarı́deos

presentes na superfı́cie das bactérias, tornando-a suscetı́vel a agentes externos. Devido

à sua difı́cil localização no genoma do fago, foi desenvolvida a ferramenta PhageDPO,

para previsão de DPOs, através de métodos de aprendizagem máquina.

Vários modelos foram desenvolvidos, com diferentes conjuntos de dados, e testados

através de validação cruzada. Os conjuntos de dados são constituı́dos por sequências

protéicas retiradas da base de dados NCBI protein e por números diferentes de casos

negativos. Dois modelos foram incorporados na ferramenta: o modelo SVM treinado com

dados de 4311 sequências e o modelo ANN treinado com dados de 7185 sequências.

Num conjunto independente de dados de validação, o modelo SVM apresentou 95% de

exatidão, 98% de precisão e 91% de sensibilidade e o modelo ANN apresentou 98% de

exatidão, 99% de precisão e 96% de sensibilidade. Enquanto que a elevada exatidão e

precisão do modelo SVM se foca na previsão de sequências corretamente classificadas,

o modelo ANN assegura que todas as DPOs são identificadas devido a sua elevada

sensibilidade. A PhageDPO foi testada com sucesso na previsão de DPOs de fagos

previamente caracterizados.

PhageDPO foi integrado no Galaxy (https://bit.ly/3dOam2u), uma framework com

interface gráfica para investigadores sem conhecimento de programação.

Palavras-Chave: Aprendizagem máquina, Bacteriófagos, Depolimerase, Galaxy
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A B S T R A C T

Antibiotic resistance is a severe public health problem. New resistance mechanisms

are rapidly emerging and spreading globally, threatening our ability to treat infections.

The bacteriophages (phages) arise as a possible solution through their capability of

infecting and killing bacteria. Phages are natural bacterial predators: they encode an

arsenal of specialized proteins to target their bacterial hosts. One emerging protein is

Phages Depolymerases (DPOs), responsible for selective recognition and degradation

of bacterial cell surface decorating polysaccharides, turning the bacteria susceptible to

external agents. Due to the difficulty in locating these enzymes in the phage genome, we

developed PhageDPO, a DPO prediction tool, through machine learning methods.

Several classifiers were created, using different datasets and algorithms and tested

through cross-validation. The datasets were composed of protein sequences retrieved

from the NCBI protein database and by a different number of negative cases. Two

models were selected for integration in the tool: the Support Vector Machine (SVM)

model created with a dataset containing data of 4311 sequences and the Artificial Neural

Network (ANN) model created with a dataset containing data of 7185 sequences. On an

independent validation dataset, the SVM model presented 95% accuracy, 98% precision

and 91% recall and the ANN model presented 98% accuracy, 99% precision and 96%

recall. While the high precision and PECC of the SVM focus on predicting true DPO

sequences and avoiding false positives, the ANN ensures that all DPOs are identified due

to its high recall. PhageDPO was successfully tested in predicting DPOs of, previously

characterized, phages.

PhageDPO was integrated into the Galaxy framework (https://bit.ly/3dOam2u), pro-

viding a user-friendly graphical interface for wet-lab researchers without computational

skills.

Keywords: Bacteriophages, Depolymerase, Galaxy, Machine Learning
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1

I N T R O D U C T I O N

1.1 MOTIVATION

Over the past decades, genome sequencing technologies have taken a giant leap

forward, which led to a decreased operational cost and increased number and diversity of

sequenced genomes. The extraordinary complexity of the revealed genome architecture

led sequencing technologies to even more significant advancements. Producing millions

of sequences while processing multiple DNA sequences in parallel, these high-throughput

technologies, known as Next Generation Sequencing (NGS), are now a routine part of

biological research [1].

Discovered more than one hundred years ago by William Twort and Félix d’Herelle,

bacteriophages, or phages, are viruses that exclusively infect and replicate within bacteria

[2]. However, more than a century later, the number of sequenced phages genomes

has increased exponentially due to their therapeutic potential against antibiotic-resistant

bacteria. Phages and phage derivatives, such as Depolymerase (DPO), have great

potential as antibacterial or antivirulence agents for bacterial infections, thus representing

an alternative therapy to fight these multidrug-resistant bacterial infections [3]. For the

isolation of DPOs, the lab procedure is laborious and a time-consuming. This procedure

requires: a) Isolation of novel phages from the environment able to form phage plaques

with hazy rings phenotypes in the drop tests (the hallmark for the detection of phages

carrying DPO); b) Extraction and sequencing of their genomic DNA; c) Amplification and

1



1.2. Objectives 2

cloning of the putative gene encoding DPO that is difficult to detect within all phage-

encoded proteins; d) Confirmation of the DPO activity by spotting tests.

Therefore, a sequence-based computational method is required to hasten these labori-

ous tasks. However, there are many phage proteins of unknown function, ”hypothetical

proteins”, in databases due to the increasing gap between predicted phage gene se-

quences and their functions. Thus, sequence similarity seems insufficient for identifying

DPOs [4]. Therefore, the solution for this problem may rely upon Artificial Intelligence (AI).

Despite challenging, identifying these proteins may lead to a superior comprehension

of the interaction between phage-bacteria and the development of novel antibacterial

applications [5].

This dissertation presents the development of a bioinformatics tool (PhageDPO),

which predicts the existence of DPOs in a given phage relying on Machine Learning (ML)

methods. This tool will also be capable of returning the corresponding Open Reading

Frame (ORF) and the predicted probability of that ORF being a DPO.

1.2 OBJECTIVES

This project’s main goal is to create an online tool that allows scientists from phage

community to identify and locate DPOs. In detail, the objectives are to:

• review ML approaches and identify algorithms used to predict proteins in phages

and other organisms;

• develop a software program using Python™ that will identify DPOs in a phage

genome;

• deploy the tool on a web-based platform, making it user-friendly for scientists. The

long-term objective is to create a suite of online bioinformatics tools.

Since the number of sequenced phage genomes is exponentially growing, the develop-

ment of this framework is of the utmost importance. Ideally, and considering the large
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genomic information available, which has been increasing exponentially, DPO can be

in theory identified in phage genomes already deposited in the public databases, which

could then be directly synthesized and used, shortening significantly the time needed to

find and explore these proteins.



2

S TAT E O F T H E A R T

2.1 BACTERIOPHAGES

Bacteriophages, or phages, are viruses that exclusively infect and replicate within bacteria.

Being the most abundant and diverse biological entities on earth, phages exist as part

of a complex microbial ecosystem distributed in locations populated by bacterial hosts,

such as aquatic environments, deserts, polar regions and even intestines of animals [6].

Many phages are known to infect or lyse bacteria of different taxa, as well as, directly

influencing the evolution of their hosts genomes by carrying genes from one host to

another in a process of transduction [7]. Unlike the broad spectrum of the antibiotics,

most phages possess a narrow host range, sometimes restricted to a particular strain.

Thus, an effective application of phage therapy requires prior knowledge of the infecting

strain [8].

Phages genetic material may be single-stranded or double-stranded DNA or RNA

(ssDNA, dsDNA, ssRNA, dsRNA), and varies widely from thousands to hundreds of

thousands of basepairs (bp) [9]. Phages are classified according to the virion’s morpho-

logical and its genomic content. According the International Committee on Taxonomy

of Viruses (ICTV), phage morphology can be divided in tailed, polyhedral, filamentous

or pleomorphic [10]. Phage classification is based on the follow three criteria: Type of

nucleic acid (ssDNA, dsDNA, ssRNA, dsRNA); Shape of the capsid (tubular or icosahe-

dral); Presence or absence of envelope. Tailed phages, representing 96% of all phages,

belong to the order Caudovirales. With linear dsDNA and non-enveloped, this order

4
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include fourteen families, from which three families are common and characterised by

long straight contractile, long flexible noncontractile, and short non-contractile tails and

named Myoviridae, Siphoviridae, and Podoviridae, respectively [11, 12].

Phages can also be categorised in terms of their infection strategies. They can either

have lytic or lysogenic life cycles [2]. Lytic phages (virulent phages) infect their hosts

and very quickly begin replication. When sufficient numbers of progeny are produced,

the host cells lyse, killing it in the process, as depicted in Figure 1, adapted from [13].

Lysogenic phages (temperate phages) undergo very little replication in their host. During

infection, they incorporate their genome, called ”prophage”, into that of their bacterial

host. Phage’s genome is maintained as a plasmid-like form, designated ”episome”,

where it remains and is passively replicated along with the host.

Figure 1: Lytic and lysogenic life cycles of phages.

This life cycle occurs when a host encounters unfavourable growth conditions, preserv-

ing the phage genome until an appropriate environment appears. However, lysogenic

phages are able to become lytic with exposure to certain environmental stimuli such as an-
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tibiotics and host inflammation [2, 14, 15]. While temperate phages can transfer virulence

and resistance genes, virulent phages are preferably chosen for phage therapy since

they destroy the host [16]. The conformational triggering that leads to phage infection is

influenced by the interaction between proteins of the phages’ adsorption apparatus and

the conservative receptor structures of the bacterial cell surface. The adsorption kinetics

of this highly specific interaction is one of phages’s key aspects, determining whether the

host strain will be sensitive to the respective phage and how efficiently the phage can

control the strain population [17, 18]. Phage Receptor Binding Proteins (RBPs), are the

key factors that determine specificity. The hosts are recognised through the binding of

RBP to a specific receptor on the cell surface [19]. During adsorption, the phage initially

binds reversibly to the bacterial cell surface. Such initial or reversible binding occurs

through the interaction between phage Tail Spike Proteins (TSPs) or tail fibres and cell

primary receptors. Following reversible binding, phages are committed upon irreversible

binding with a secondary receptor, signaling the virion to release its genetic material

into the bacterial cell [20]. RBP-encoding genes recognition based solely on sequence

homology is often hopeless even when comparing with RBPs already characterised. This

is due to the high diversity of phage-host interactions, where RBP was evolved to be

structurally similar but with distinct primary sequences [19, 21]. Phages are able to target

specific surface-accessible receptors distributed in a genus-specific, species-specific

or even strain-specific manner. Thus, phages and phage-derived enzymes constitute

an important and promising alternative to control bacterial pathogens. Moreover, these

enzymes are also be suitable against intracellular pathogens, where phages have diffi-

culties to reach due to the lack of receptors for eukaryotic cells. Phage-derived enzymes

can be easily delivered into specific infection sites, acting locally in the infection and

reducing side effects [22, 23].



2.2. Polysaccharide barriers between phages-bacteria interactions 7

2.2 POLYSACCHARIDE BARRIERS BETWEEN PHAGES-BACTERIA INTER-

ACTIONS

Bacterial polysaccharides present in the cell wall are important structures that block the

entry of antimicrobials (Figure 2, adapted from [24]), but also function to avoid phage

predation [25]. In Gram-negative bacteria cell wall is composed of thin Peptidoglycan

(PG) layers surrounded by an outer membrane containing a Lipopolysaccharide (LPS)

and several proteins. As for Gram-positive bacteria, cells lack outer membranes, having

instead a much thicker PG layer framed with diverse proteins and cell wall teichoic

acids. Often, Gram-negative and positive cells also display an outermost Capsular

Polysaccharide (CPS) [26]. The capsule is considered a virulence factor because it

increases the ability of bacteria to cause disease and is involved in biofilm production.

While in these communities, cells are protected from external factors, being halted

together in close proximity by Extracellular Polymeric Substances (EPSs). EPS allow

cell-cell communication and horizontal gene transfer events [18, 27]. In Gram-negative

bacteria, CPS are connected to the outer membrane via a lipid anchor. CPS have different

designations according to the bacterial species in which they are present. In Escherichia

coli, Klebsiella pneumoniae and Acinetobacter spp. they are termed K-antigens, while in

Salmonella spp. and Citrobacter spp. CPS are named Vi antigens [28]. CPS are usually

larger than other polysaccharides with variations in monosaccharide units, glycosidic

bonds and non-carbohydrates substitutions to lead to a wide range of chemical types of

CPS. For example, P. aeruginosa only have one capsular type described, while E. coli

and K. pneumoniae have 80 or more different antigens described so far [29]. Besides

Gram-negative bacteria, Gram-positive species also have a huge diversity of CPS. While

Bacillus anthracis only has one capsular type, Streptococcus pneumoniae has a total

of 98 different capsule serotypes [30]. The molecules composing the capsules are

also different, while, for example, in S. aureus CPS are mainly composed by poly-N-

acetylglucosamine, Streptococcus pyogenes produces a hyaluronic acid capsule [28].
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The LPS is vital to the majority of Gram-negative bacteria providing stability and

protection to the cell. Three structural domains can be identified in the LPS molecule:

lipid A, core oligosaccharide, and the O antigen [31]. Lipid A is an acylated β-1’-6-linked

glucosamine disaccharide that forms the outer side of the Outer Membrane (OM). The

core is a non-repeating oligosaccharide that is linked to the glucosamines of lipid A. The

hypervariable O-antigen is attached to the core oligosaccharide and is composed of a

repeating oligosaccharide of two to eight sugars. The structure of the O antigen varies

at the strain level of a species and is sometimes absence in Gram-negative bacteria.

For the latter, molecules composed of only lipid A and the core oligosaccharide, are

denominated Lipooligosaccharide (LOS). LOS may be ”rough” LPS, or ”smooth” LPS, if

they don’t include or include the O antigen, respectively [32, 33].

Figure 2: Depiction of the structure and composition of the bacterial cell envelope in Gram-
positive bacteria (a), Gram-negative bacteria (b) and mycobacteria (c). CM, cytoplasmic
membrane; CW, cell wall; OM, outer membrane; IMP, inner membrane proteins; PLs,
phospholipids; AG, arabinogalactan; PG, peptidoglycan; LP, lipoprotein; LTA, lipotei-
choic acids; CAP, covalently attached protein; SCWP, secondary cell wall polymers;
WTA, wall teichoic acids; OMP, outer membrane protein; LPS, lipopolysaccharide; MA,
mycolic acids; GL, glycolipids; FL, free lipids. The S-layer and capsule are extracellular
structures. Branched lipoaraninomannan is not represented in the mycobacterial cell
envelope (probably anchored to both the CM and OM).

All these referred layers pose a barrier against phage predation. Consequently, phages

have developed many mechanisms to overcome them. Focus will be given to the
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phage structural enzyme, DPO, capable of degrading these important above-mentioned

carbohydrate barriers.

2.3 POLYSACCHARIDE DEPOLYMERASES

Tailed phages adsorb onto the host polysaccharide based-receptors, inject their DNA,

replicate and lyse the cells to release their progeny. As mentioned before, bacterial cell

surface decorating polysaccharides, CPS, EPS or LPS, also exhibit important functions

in biofilm production, virulence, and with phage interaction. Therefore, tailed phages

evolved to encode enzymes, such as DPOs, to recognise and degrade these external

polymers. Phage-encoded DPOs, are located at the phage RBPs. This interaction

between RBPs and polysaccharide-based receptors grants an irreversible bind to the

bacterial host cell, allowing phage to initiate the infection [28, 34]. The role of these

capsule polymers, as primary receptor, is vital for phage infection. Interestingly, in the

continuous phage-host arms race, bacteria evolved to display a multitude of different

LPS and CPS structures to shield themselves from phage predation. But phages have

co-evolved to recognize these polymers as host receptors. Moreover, phages that

bind to LPS/CPS also ultimately dependent on them. Experiments have shown that

LPS/CPS-dependent phages drastically reduce adsorption onto cells previously treated

with cognate recombinant LPS or CPS depolymerases, i.e. stripped from these phage

receptor carbohydrate polymers [35, 36].

The presence of phage plaques surrounded by hazy rings that usually grow over time,

has been the hallmark for the detection of phages carrying DPOs indicating the LPS/CPS

degrading activity [37]. DPOs are known to strip off the cell’s protective polysaccharides

layer, often decreasing bacterial virulence and exposing it to environmental factors such

as the immune system or antibiotics [38]. Therefore, DPO have a huge potential to be

used as a novel anti-virulence to control bacterial pathogens, repeatedly demonstrated

in several invertebrate and vertebrate in vivo models [28]. Moreover, the diversity of DPO
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is vast. Several experiments demonstrated that recombinantly produced depolymerases

are capable of degrading, for instance, the CPS of E. coli [39], K. pneumoniae [40] and

A. baumannii [35, 36] hosts, and LPS O antigens of P. aeruginosa [41] and Salmonella

enterica [42].

2.3.1 LOCATION AND STRUCTURE

Despite several reports indicating the presence of DPO at the phage tail fibers, the

current data available suggests that they are predominantly found at the phage tail spikes

(e.g. Acinetobacter phage vB ApiP P1, Pseudomonas phage LKA1, Escherichia phage

K1F ) [35, 39, 43]. Tail Spike Protein (TSP) are shorter and carry domains that are

assumed to have enzymatic activity, unlike tail fibers [44]. However, some DPOs from

Gram-Positive phages have been identified at the baseplate (Lactobacillus phage Ld17 )

[45], and at the pre-neck proteins (Bacillus phage phi29 and Staphylococcus phage

vB SepiS-IPLA7 ) [46, 47]. While most phages encode one single DPO, others encode

more, to increase their host range. The Escherichia phage K1-5, for instance, encode

both a K1 and a K5 depolymerase allowing the phage to infect K1 and K5 E.coli strains,

respectively [48]. The Klebsiella phage K64-1 is an extreme example encoding nine

experimental validated DPOs to target specific Klebsiella CPS antigens (K1, K11, K21,

K25, K30/K69, K35, K64, KN4, and KN5) [49].

Phage DPOs typically fold as trimers [50], with only one case reported as a tetramer

[51]. A typical architecture of a phage RBP with DPO activity often consists of three

domains, as can be seen in figure 3(b) adapted from [52]: an N-terminal dome-like

structure domain, a central β-helical domain for host recognition and enzymatic activity

(i.e depolymerase), and a C-terminal domain responsible for protein trimerisation [50,

53]. Possible DPO action is depicted in Figure 3(a), adapted from [24].
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(a) (b)

Figure 3: (a) - Possible DPO action during recognition and penetration of the bacterial cell enve-
lope (Gram-negative bacteria used as example). Depolymerase activity is generically
depicted as a pacman symbol. CM, cytoplasmic membrane; PG, cell wall peptidoglycan;
OM, outer membrane; LPS, lipopolysaccharide; CA, capsule.
(b) - Tail spike of Salmonella phage P22, illustrating a typical modular structure of RBPs.
A) N-terminal domain. B) β-helical domain. C) C-terminal domain.

While the N-terminal and C-terminal domains of the TSP are conserved among phages

belonging to the same group, the central domain is highly variable and can be changed

to modulate the host range [50]. These three elongated and right-handed monomers

with β-helical side-by-side topology seems to favor stability, enzymatic degrading activity

and resistance to high temperatures and denaturing salts [36]. All this contributes to the

robustness of these proteins, which evolved to endure demanding external conditions to

maintain the phage infectivity.
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2.3.2 ENZYMATIC ACTIVITY

Phage DPOs can be generally classified according to their mechanism of action, as

hydrolases or lyases. Both result in the cleavage of polysaccharides resulting in the

breakdown of the carbohydrate barrier.

Hydrolases cleave glycosidic bonds by consuming a water molecule and include siali-

dases, levanases, xylanase, dextranases, rhamnosidases, glycanases and peptidases

[54]. Sialidases, or endo-N-acetylneuraminidases, are primarily found in phages that

degrade the α-linkage of polysialic acid. Some Gram-negative bacteria, including Es-

cherichia coli K1, have α-2,8-linked polysialic acid as a CPS. Phages known to have

this DPO domain include the Escherichia phage K1E and K1F [55], phage 63D [51]

and phage ϕ92 [56]. Rhamnosidases, frequently found in phages infecting Salmonella,

cleave the α-1,3 O-glycosidic bond between L-rhamnose and D-galactose present in

Gram-negative LPS O-antigens [57]. Levanase, present in Bacillus phage SP10, cleaves

the β-2,6-bond in levan. Levan is an important component in Bacillus biofilm and has

been suggested to be part of Pseudomonas capsule, protecting it against phages [58].

Xylanase, responsible for the hydrolysis of the β-1,4 bonds within xylan, identified in the

Caulobacter phage Cr30, while dextranase cleaving the α-1,6-linkages between glucose

units in dextran is predicted in Lactobacillus phage ϕPYB5 [50]. There are, among

hydrolases, enzymes that cleave peptide bonds known as peptidases. B. subtilis phage

ϕNIT1 that produces a γ-PGA hydrolase PghP, is known to have a DPO with peptidase

domain [59].

Lyases are a class of enzymes that cleave (1,4) glycosidic bonds by β-elimination

mechanism. In this class of enzymes, we can find three groups of depolymerases:

hyaluronate, alginate, and pectin/pectate lyases. Pectin/pectate lyases degrade CPS of

Klebsiella [49] and Acinetobacter [35, 36], as well as enzymes that degrade the LPS

O-antigen from Pseudomonas [43]. Finally, hyaluronate and alginate lyases are a less

explored class of enzymes. Hyaluronidases, cleaving the β-1,4 bonds of the subunits of
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hyaluronic acid, were found in prophages invading Streptococcus pyogenes and S. equi,

which are both encapsulated by hyaluronic acid [60]. Alginate lyases are characteristic

of Pseudomonas and Azobacter phages. Able to degrade the α-1,4 bond of alginate, a

linear polysaccharide of β-D-mannuronate, and its C5 epimer α-L-guluronate common

for mucoid strains infecting cystic fibrosis patients [61].

Enzymatic activity shows us that phage-encoded DPOs are diverse proteins not yet

fully studied.

2.4 PREDICTING DPO BASED ON GENOMIC DATA

De novo assembly allows reconstructing a genome from many (short or long) DNA

fragments (reads), with no previous knowledge of those fragments’ correct sequence or

order. Raw reads generated by sequencers are generally stored in FastQ files. A set

of overlapping oriented reads is called contig. A single contig is constructed from two

or more overlapping and oriented reads. The construction of two or more joined and

oriented contigs is called a scaffold. The contigs may be overlapping or non-overlapping

[62].

There are several tools developed with the purpose of genome assembly, such as

SPAdes [63], Velvet [64] and CLC genomics workbench [65]. After the assembly of

the genome, the next step is gene identification that can be performed with available

bioinformatics programs, such as GeneMark [66], GLIMMER [67] and Prodigal [68].

Predicted gene products are further functional annotated by similarity searches against

different protein databases, using several tools such as Blastp [69], HHpred [70] and

InterProScan [71]. The Rapid Annotations using Subsystems Technology (RAST) is an

automated service for identifying of protein-encoding genes, assessing gene functions,

and for metabolic reconstruction [72]. By default, the RAST’s pipeline uses GLIMMER to

identify the ORFs, but other algorithms such as GeneMark [66] and Prodigal [68] can be

used. RAST uses a combination of homology, chromosomal clustering, and subsystems
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to assess proteins’ functions. First, proteins are annotated based on homology to known

proteins. If this initial search yields matches to proteins that are a component of a

subsystem, RAST seeks other subsystem members that should be present in the same

genome based on information from the previously annotated genomes [73].

Phage proteins can be classified into two classes: phage virion (structural) proteins

and phage non-virion (non-structural) proteins. Phage Virion Proteins (PVPs) are mostly

involved in determining the bacterial host receptors, such as DPOs. Phage non-virion

proteins (non-PVPs) are not wrapped in phage virions but encoded by the viral genome.

These proteins execute crucial functions in biological processes like transcription, viral

genome replication and cell lysis. Identification of PVP may be an essential step for the

identification of DPOs. The ML approach for identifying PVPs comprises:

• data collection;

• applying sequence-based feature descriptors;

• combining features and selecting the optimal using feature selection algorithms;

• feeding the optimal feature to a classifying model to generate final identifiers.

Performance comparison of PVP identifiers demonstrated that the g-gap Dipeptide

composition (DPC) feature is a relevant biomarker for PVP classification. G-gap DPC

calculates the frequency of two residues with g intervals [74].

According to Latka et al. (2019) [52] phage genomes encoding RBPs with putative DPO

activity are identified through the analysis of their annotated tail fibers or TSPs with tools,

such as BlastP [69], Phyre2 [75], SWISS-MODEL [76], HMMER [77] and HHPred [70].

The absence of tail fiber and tail spike genes lead to the analysis of all genes located in

the proximity of structural annotated genes. Despite being longer than 200 residues and

annotated as tail fiber/tail spike/hypothetical protein, the proteins must show homology to

previously described domains, already known to be associated with DPO activity with a

confidence higher than 40% in Phyre2 or the enzymatic domain recognized by at least

SWISS-MODEL, HMMER, or BlastP. Homologies with DPO domains should hold at least
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a 100 residues interval, and Phyre2 should predict a typical β-helical structure. Proteins

with experimentally conformed DPO activity and proteins that partially fulfilled the above

criteria were marked differently [52].

2.5 SUPERVISED MACHINE LEARNING

2.5.1 CONCEPTS AND DEFINITIONS

Machine Learning (ML) is a field of AI aimed at interpreting data and creating models for

data prediction and classification.The success of a learning algorithm depends on the

data; thus, ML is related to data analysis and statistics [78].

A Classification problem is a process in which the algorithm groups data based on

predetermined characteristics. The data is organised in a tabular schema called a dataset,

where each row represents an instance, and each column represents an attribute. The

last column represents the output attribute, while the others represent the input attributes.

An instance, or object, is an observation of the data described by features from which a

model will learn. An attribute is a feature describing an instance. It can be continuous

or categorical. A continuous attribute is a numeric attribute with infinite values between

any two given values, such as distance or weight. Categorical attributes contain a

finite number of categories or distinct groups and can also be divided into nominal and

ordinal. In general approach, the instances are split into two sets: a) training set, with

the data used to build the model; and b) test-set, to test the models’s effectiveness. The

model built by the algorithm is a predictive function representing what an ML system

has learned from the training data’s input. In supervised learning, the output is already

known; thus, the data used to build the model already possess the output value for each

instance. The objective is to use this function to map new instances, and, therefore, the

learning algorithm must be capable of generalising from the training data to new cases.

Supervised learning problems are mainly used for classification tasks when the output
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variable is discrete, such as ”Positive” or ”Negative”, and regression tasks, when the

output variable is continuous, such as ”time” [79, 80].

Besides supervised, ML algorithms encompass unsupervised and reinforced learning.

In unsupervised learning, training data does not contain the output variable, and the goal

is to model the data distribution. This type of problem can be the cluster analysis, where

the algorithm manages to find a structure or pattern in a collection of uncategorised data,

and association analysis, where the algorithm tries to discover relationships between

variables. In reinforced learning, the ML algorithm performs suitable actions to maximise

the reward in a particular situation. With no output data, the algorithm is bound to learn

from its own experience [80].

2.5.2 METRICS AND MODEL EVALUATION

A Confusion Matrix (CM) can be generated for classification problems, consisting of a 2

X 2 matrix, representing a problem with two classes: Negative and Positive (Table 1), to

evaluate a model’s quality. For more than two classes, a CM is calculated for each class.

In this matrix, rows represent the actual values, while columns represent the predicted

values. The model’s negative and positive instances correctly predicted are designated

True Negative (TN) and True Positive (TP), respectively. On the other hand, if the model

misclassifies a Negative instance for a Positive, it is considered an FP, and inversely if

the model misclassifies a Positive instance for a Negative, it is considered an FN [81].

Based on the CM, several metrics can be calculated. For instance, the accuracy of

the model, also known as PECC (equation 1), is the number of correct predictions to

the total number of input samples. The Positive Predictive Value (PPV), also known

as Precision, determines how many correctly predicted cases actually turned out to be

positive (equation 2). Negative Predictive Value (NPV) is the proportion of true negatives

(equation 3). Whereas sensitivity, or Recall, indicates the actual positive cases correctly

predicted with our model (equation 4). Specificity, or True Negative Rate (TNR), measures
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Table 1: Example of a Confusion Matrix of a 2-class problem and how the metric relates with
each classification case

Real

Predict
Negative Positive

Negative True Negative (TN)
False Positive (FP)

Type I Error

Specificity

TN
FP+TN

Positive
False Negative (FN)

Type II Error
True Positive (TP)

Sensitivity

TP
TP+FN

Negative Predictive Value

TN
TN+FN

Precision

TP
TP+FP

Accuracy

TP+TF
TP+TF+FP+FN

the proportion of correctly identified negative cases (equation 5). Finally, the F1 Score

measures a model’s accuracy that considers both Recall and Precision (equation 6) [82].

Accuracy =
TP + TF

TP + TF + FP + FN
(1)

PPV = Precision =
TP

TP + FP
(2)

NPV =
TN

TN + FN
(3)

Sensitivity = Recall =
TP

TP + FN
(4)

TNR = Speci f icity =
TN

FP + TN
(5)

F1Score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(6)
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Metrics are selected based on the problem being assessed. Imbalanced datasets are

prevalent in a multitude of fields, and biology is no exception. In a binary classification

with an imbalanced dataset, even a weak model that predicts majority class for all data

instances may provide 95%+ accuracy, but that does not mean the model is working well.

Accuracy should always go together with other metrics such as Precision and Recall.

However, having a model with very high Precision means an FP value near zero. If the

model is tweaked to get an FP count of zero, it may return a high FN count. The recall is

essential in medical cases, but not only. For example, in the binary classification problem

of COVID-19 Prediction, FN (Person has COVID-19 but model predicted Not having

COVID-19) is more critical than FP (Person Not having COVID-19 but model predicted

having COVID-19). So, in this case, Recall becomes crucial. Increasing Precision may

reduce Recall, and increasing Recall may reduce Precision. This PR trade-off can be an

essential tool when precision is more important than Recall or vice versa [83].

Figure 4: Representation of the ROC curves of 3 models. The red curve represents a model
with perfect separation between 2 classes (AUC = 1). The blue curve represents a
reasonably accurate model (AUC = 0.8). The green curve represents a model predicting
randomly (AUC = 0.5)
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The ROC is another important evaluation tool of the performance of Binary Classifica-

tion. This tool relates sensitivity (y-axis) with the false positive rate (1-Specificity) (x-axis),

demonstrating how well the model performs in separating two classes (Figure 4).

Figure 5: Precision-recall curves representing the performance of models A and B. In this example
the performance of model A is superior to the performance of model B.

The model’s accuracy can be measured by the Area Under the Curve (AUC). Curves

closer to the upper left corner comprise a larger area, therefore higher accuracy, while

diagonal curves with an area of 0.5 represent arbitrary predictions. However, when

classes are imbalanced, generally with more instances for the negative class, PR curves

are more suitable than ROC curves to evaluate the model’s performance. Often zigzag

frequently going up and down, PR curves plot the trade-off between precision (y-axis)

and Recall (x-axis), discussed previously, for different thresholds (Figure 5).

Models with excellent performance are represented by a curve towards the coordinate

of (1,1), top right corner. Average Precision (AP) is calculated as the area under a curve

that measures the trade off between precision and recall at different thresholds. As

for the ROC curves, a high area under the curve represents a model that returns high

Precision and High recall [84].

A Density Plot visualises the distribution of data over a continuous interval or time

period and is a useful way to visualize the distribution of the scores produced by a ML
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model predictions. It uses the kernel density estimation (KDE) to estimate the probability

density function (PDF) of a variable. The peaks of a Density Plot over an interval

represent high concentration (high density) of values in that interval. The x-axis is the

value of the variable and the y-axis is the probability density which is the probability per

unit on the x-axis [85, 86]. For a model predicting the percentage of a certain condition

to occur (ex: the probability of a protein being a DPO, ranging from 0% to 100%), the

density of the predictions, for a dataset composed exclusively by positive cases, should

be located near the left area of the plot with a rapid decrease towards zero (Figure 6).

Figure 6: Density plot for the distribution of DPO predictions in a positive validation dataset, for
models A and B. Model A outperforms model B since all its predicted values are located
in the area of high percentage (100%) and with a rapid decrease towards zero. Model
B predicted more values in a wider range of percentages indicating more false negative
predictions.

For regression problems, the difference between the predicted value (ŷ) and the real

value (y) is calculated by error metrics. Sum of the Square error (SSE) (equation 7),

measures the variance of the predicted value from the real value of the data. Generally,

a lower SSE value indicates that the regression model can better explain the data, while

a higher SSE value indicates that the model poorly explains the data. Mostly used as

a measure of variation within a cluster; Root Mean Square Error (RMSE) (equation 8),

consists of the square root of SSE divided by the number of instances; and Mean of

Absolute Deviation (MAD) (equation 9). The model with the lowest value is considered

the most accurate [82].
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SSE =
n

∑
i=1

(yi − ŷi)
2 (7)

RMSE =

√
(

1
n
)

n

∑
i=1

(yi − ŷi)2 (8)

MAD = (
1
n
)

n

∑
i=1

|yi − ŷi| (9)

As mentioned before, the dataset is initially divided into two sets, training and validation

with the training set larger than the validation set. The resampling method of Cross-

Validation (CV) uses all available data and is primarily used to measure the models’s

skill on unseen data. The method is repeated k times. Each time, one of the k subsets

is used as test/validation set while the other k-1 subsets form the training set. The

metrics used are averaged over all k trials to get the total performance of our model. The

usage of all the data means significantly reduced bias. For imbalanced data, the method

Stratified K Fold may return better results. This method aims to ensure that each class is

equally represented across each test fold. Leave-one-out cross-validation (LOOCV) is a

configuration of k-fold cross-validation where k is equal to the number of examples in the

dataset [82, 87].

An important consideration in ML is how well the model generalises to new data.

Generalisation is important because the collected data is a sample only. A good ML

model must generalise well from the training data to any data from the problem domain.

When a model learns the data too well, either by picking up noise or random fluctuations

characteristic of the training data, it becomes unable to generalise to new data and

overfitting occurs. Larger training sets and preventing the creation of overcomplex

models are the best ways to reduce overfitting. Conversely, underfitting refers to a

model that neither models the training data nor generalises new data. Underfitting

is mostly associated with poor data quality, where the model is unable to detect any
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trends. Overfitting and underfitting are the two leading causes for poor performance of

ML algorithms [88].

2.5.3 MACHINE LEARNING ALGORITHMS

The suitable ML algorithm depends on several factors, including but not limited to data

size, quality and diversity, and which conclusions we want to derive from that data. ML

algorithms such as Support Vector Machine (SVM), Artificial Neural Network (ANN),

k-Nearest Neighbors (kNN), Naı̈ve Bayes (NB), Decision Trees (DT), Random Forest

(RF) and Linear and logistic regression will be discussed next [89].

SVMs are mainly used for classification and regression problems, though more often

for binary classification. SVMs separate the dataset into two classes by a hyperplane,

maximising the margins between both, as depicted in Figure 7 [90]. Support vectors

are data points closer to the hyperplane, influencing its position and orientation. Using

these support vectors, the margin of the classifier is maximised. The Gaussian kernel is

generally used when there is no prior knowledge about the data. SVM algorithms are

advantageous when dealing with large amounts of disparate information and when the

discriminant function uses only a small subset of the training set, making the computations

significantly faster. However, SVMs have a slow training process [91].

Figure 7: Example of the separation of two classes by the SVM hyperplane. The dashed lines
are the support vectors.
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ANNs are biologically inspired computational networks. ANNs possess an input layer

and output layer, and in between, other hidden layers that perform the mathematical

computations that help determine the decision or action. The basic unit of ANN is the

artificial neuron, depicted in Figure 8. Each input is associated with some weight that will

be added to the sum. ”Bias” is used to adjust the output along with the weighted sum

of the inputs to the neuron. The sum is then filtered by an activation function, resulting

in the output signal. The appropriate number of hidden layers and their sizes vary with

the problem. The advantages of ANNs are their flexibility and robustness in capturing

imprecise and incomplete data patterns. However, ANN’ outputs are influenced by factors

like number of cases and the number of training cycles [92, 93].

Figure 8: Structure of an artificial neuron.

kNNs is a learning method based on the assumption that similar things exist nearby.

In classification problems, the algorithm calculates the k training examples most similar

to the example to be classified, using the input features, and the predicted output will

correspond to the most common output class in those k examples. The algorithm uses a

similarity function that is usually the standard Euclidean distance [94].

NB is based on Bayes’ theorem for conditional probabilities, assuming that all input

attributes have the same importance and occur independently. The algorithm calculates

the frequency table for each attribute against the target. This table is used as a template
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for the likelihood table, where the Naive Bayesian equation calculates the probability for

each class. The predicted outcome belongs to the class with the highest probability [95].

DTs, also used for classification problems, generate models in a tree structure. Each

node represents an input feature, and each branch that comes out from that node

corresponds to a possible value of that feature. Several splits are made in the upcoming

nodes and increasing numbers of branches are generated to partition the original data.

This process stops on a node where all or almost all of the data belong to the same class

and further splits or branches are no longer possible. Nodes with outgoing edges are the

internal nodes, and all others are terminal nodes or leaves of the DT. Because the DTs

algorithm is sensitive to variance, minor variations within the training set must be low;

otherwise, the algorithm may generate a different tree.

RFs is an ensemble of decision tree algorithms and produces, even without hyper-

parameter tuning, most times a good result. The training algorithm for RF applies the

technique of bagging to tree learners which is an algorithm combines the predictions

from many decision trees (Figure 9). Bagging is an effective ensemble algorithm because

each DT is fit on a slightly different training dataset, resulting in a slightly different

performance. In a classification problem, the prediction is the majority vote predicted

across the decision trees [96, 97].
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Figure 9: RF structure in a classification problem where the average prediction of the DTs is the
prediction of the RF model.

Regression consists of modelling the relationship between iteratively refined variables

through the error in the model’s predictions. Logistic Regression (LR) models the

linear relationship between a dependent variable (target) and an independent variable

(predictors), through a linear function with parameters originated from the data. LR

calculates a sigmoid function for estimating the probability of a binary output based on

one or several independent variables. The main difference from linear regression is that

the modelled output value is binary rather than numeric [98].

2.6 DEVELOPMENT ENVIRONMENTS AND TOOLS

2.6.1 SCIKIT-LEARN PYTHON LIBRARY

Scikit-learn (sklearn) is an open-source machine learning library. It is built upon NumPy,

SciPy and Matplotib and contains several efficient ML and statistical modelling tools,

including classification, regression, clustering, and dimensionality reduction. More addi-

tional information on sklearn is available in the documentation [99].
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2.6.2 BIOPYTHON LIBRARY

Biopython is a Python™ library containing several modules and classes to treat and

access biological data. This library allows the reading and writing of many file formats

used in bioinformatics, such as FASTA and GenBank, and access to online services and

databases, such as NCBI or UniProt. Biopython functionalities go from the automation

of collecting biological information to tools such as BLAST and AlignIO. A complete

description of all functionalities is available in Biopython Tutorial and Cookbook [100].

2.6.3 GALAXY

Galaxy is an open-source, web-based platform design not only for data-intensive biomed-

ical research but also for biologists to analyse their own data. A researcher interacts

with Galaxy through the web by uploading and analysing the data. Galaxy interacts with

underlying computational infrastructure (servers that run the analyses and disks that

store the data) without exposing it to the user [101]. It allows users with no programming

experience to easily set parameters and run individual tools as well as larger workflows.

Galaxy ensures reproducibility by capturing the information of each run so that any user

can repeat and understand the complete computational analysis. Regarding Galaxy

interface, users can upload their own data, choose tools, define inputs and specify

parameters. Also, this platform enables researchers to share and publish their Galaxy

objects such as: histories, which are computational analyses with specified input datasets

and parameters as well as the output datasets; workflows, computational analyses that

specify all the steps and parameters used, but none of the data, in order to run the same

analysis on different sets of input data; datasets, which includes any input, intermediate,

or output dataset, used or produced in an analysis; and pages, interactive, web-based

documentation describing a complete analysis [102].
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Galaxy consists of several components: Public Galaxy Server, an instance of the

Galaxy software combined with many tools, visualizations and data sources; Galaxy

software framework, an open source application; Galaxy Tool Shed, where developers

tools are uploaded and available, as well as their configurations and guides for installation

of required dependencies; and Galaxy Community, consisting in broad community of

users, developers and administrators who maintain Galaxy instances [103].

2.6.4 DATABASES

The NCBI’s Protein database is a collection of protein sequences from several sources,

including translations from annotated coding regions in GenBank, Reference Sequence

(RefSeq) and Third Party Annotation (TPA), as well as records from Swiss-Prot, Protein

Information Resource (PIR), Protein Research Foundation (PRF), and Protein Data Bank

(PDB).

Genbank is the National Institute of Health (NIH) genetic sequence database. This

database comprises an annotated collection of all publicly available DNA sequences their

protein translations. It is part of the International Nucleotide Sequence Database Col-

laboration, along with the DNA DataBank of Japan (DDBJ) and the European Molecular

Biology Laboratory (EMBL). Nucleotide sequences are primarily obtained through sub-

mission from individual laboratories and batch submissions from large-scale sequencing

projects, such as whole genome shotgun (WGS). GenBank consists of several divisions,

most of which can be accessed through the Nucleotide database [104].

RefSeq is a collection of curated, non-redundant genomic DNA, RNA, and protein

sequences. Providing stable reference for genome annotation, gene identification and

characterization, mutation and polymorphism analysis and expression studies, this

database is a synthesis of information integrated across multiple sources at a given time.

All RefSeqs can be found in the Entrez Nucleotide or Protein databases and can be
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accessed by adding ”AND srcdb refseq[property]” to the query. Alternatively, an option is

also provided in the results page to allow display only the RefSeq accessions [105].

TPA records are sequence annotations published by someone other than the original

submitter of the primary sequence record in DDBJ/EMBL/GenBank. These records can

be divided in three categories: experimental, data is supported by peer-reviewed wet-lab

experimental evidence; inferential, data by inference and not been the subjected of direct

experimentation; and reassembly, the objective is on providing a better assembly of the

raw reads. TPA sequences are not released to the public until their accession numbers

or sequence data and annotation appear in a peer-reviewed biological journal [104].

Universal Protein (UniProt) is a Consortium between the European Bioinformatics

Institute (EMBL-EBI), the Protein Information Resource (PIR) and the Swiss Institute

of Bioinformatics (SIB). This database is a repository of protein sequence and data

annotation and is comprised of four major sectors optimized for different tasks: the

UniProt Knowledgebase (UniProtKB), the UniProt Reference Clusters (UniRef) and the

UniProt Archive (UniParc). The UniProtKB is a database partially curated and consists

of two sections: UniProtKB/Swiss-Prot, containing manually annotated and reviewed

entries; and UniProtKB/TrEMBL, containing automatically annotated unreviewed entries.

UniRef comprises three databases of clustered sets, achieved with CD-HIT, of protein

sequences from UniProtKB and UniParc records: the UniRef100 database, which groups

identical sequences and sub-fragments into a single UniRef entry; UniRef90, built from

UniRef100 by clustering its sequences at the 90% identity level; and UniRef50, built from

UniRef90 by clustering its sequences at the 50% identity level. Clustering sequences

reduces database size and increases the speed of similarity searches and detection

of distant relationships [106, 107]. UniParc is the most comprehensive, non-redundant

protein sequences database available, and contains only protein sequences, sequence

versions and database cross-references. A protein sequence may exist in several different

databases and with multiple copies in the same database. To overcome this, UniParc

stores each unique protein sequence only once and assign an identifier, beginning in

”UPI” followed by 10 hexadecimal numbers, that is never removed or subject to reassign.
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Proteins extracted from source databases are linked to their origins by using database

cross-references, which links one protein in UniParc to an accession number in a source

database. If a sequence is modified or removed, the cross-reference retires and the

history of all changes is archived [106, 108].

PDB is a database of experimentally determined three-dimensional structure data of

biological macromolecules. PDB structure submissions are restricted to atomic-level

structures that have been determined by one or more of the supported experimental

techniques: Macromolecular Crystallography (MX), Nuclear Magnetic Resonance spec-

troscopy (NMR), 3D Electron Microscopy (3DEM), powder diffraction and fiber diffraction.

Each structure in PDB is identified with a four-character alphanumeric identifier [109].

NCBI’s Conserved Domains Database (CDD) comprises a collection of sequence

alignments and profiles representing protein conserved domains. Domains are distinct

functional and/or structural units in a protein and may exist in multiple biological contexts.

As a unit of molecular evolution used to establish evolutionary classifications, domains are

usually associated to a particular protein function such as enzymatic activity, membrane

transport, or nucleic-acid binding [110]. Proteins with different functions can have similar

domains. The CDD in-house curated domain collection use the 3D structure to guide

multiple sequence alignment (MSA) models, and are manually annotated with functional

sites using the evidence from the 3D structure and published literature. CDD is integrated

with several resources at the NCBI, including BLAST, Protein, and Gene, and can be

accessed by using: CD-Search, for a single nucleotide or protein sequence query via

sequence identifier or by pasting in the sequence in FASTA format; Batch CD-Search,

for up to 4000 queries at a time; Standalone RPS-BLAST and rpsbproc, to compute

and retrieve domain annotation programmatically [111]. For a specific domain entry,

in the information block titled ”Links”, several options are available (Source, Taxonomy,

Protein, and Superfamily) forwarding to the that domain associated proteins in the Protein

database.
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M AT E R I A L S A N D M E T H O D S

3.1 PHAGEDPO WORKFLOW

For DPO prediction, one critical step is in the dataset compilation. The dataset contains

true positive and true negative data. The true positive data contains phage genomes with

DPOs and true negative data contains phage genomes lacking DPOs. Feature assembly

and pre-processing prepare the data to be fed to the models. After feature selection,

performance evaluation and model optimization, the best models are selected. The final

task is to deploy the tool on Galaxy.

3.2 DATA COLLECTION

High-quality data is a fundamental factor when building a model that distinguishes be-

tween DPOs and non DPOs sequences. All the data obtained for this work was gathered

in Aug-2021. To construct the positive dataset, 6 DPO associated domains within NCBI’s

CDD and their related proteins were obtained. These domains are described in Table 2.

30
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Table 2: Domains associated with DPOs activity and number of related protein sequences ob-
tained from the Conserved Domains Database. Domains Bibliography included.

Domain Sequences obtained Associated domain and protein

Pfam12708 517 Domain present in DPO YP 003347555 [112]

cd20481 287 Domain present in DPO ASN73504 [35]

Pfam12219 111 Domain present in DPO YP 338127 [39, 113]

cl22684 68 Domain present in DPO CBY99579 [114]

Pfam12217 75 Domain present in DPO YP 338127 [39, 113]

Pfam13472 693 Domain present in DPO ARB10970.1 [34]

DPO comprise a wide variety of proteins so, to depict that variety in the positive data.

Thus, entries containing DPO and tail related words not present in the CDD were sought

in the NCBI’s protein database. The constraints for this query are the following:

viruses[porgn: txid28883]

AND tail*

AND (*glycanase*[Text Word]

OR *alginate*[Text Word]

OR *rhamnosidase*[Text Word]

OR *hyaluronidase*[Text Word]

OR *hyaluronate*[Text Word]

OR *eps-degrading*[Text Word]

OR *levanase*[Text Word]

OR *dextranase*[Text Word]

OR *xylanase*[Text Word])

The query produced 677 more sequences, for a total of 2428 positive sequences. CD-

HIT[115] was used to remove 100% identical sequences (redundant data), resulting in
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1437 positive DPO sequences. The negative cases were obtained with the query on

NCBI protein database:

(viruses[porgn: txid28883]

AND srcdb refseq[Properties])

NOT lyase*[Text Word]

NOT pectate*[Text Word]

NOT pectin*[Text Word]

NOT depolymerase*[Text Word]

NOT glycanase*[Text Word]

NOT endoglycosidase*[Text Word]

NOT alginate*[Text Word]

NOT rhamnosidase*[Text Word]

NOT hyaluronidase*[Text Word]

NOT hyaluronate*[Text Word]

NOT eps-degrading*[Text Word]

NOT levanase*[Text Word]

NOT dextranase*[Text Word]

NOT xylanase*[Text Word]

NOT pfam12708*[Text Word]

NOT cd20481*[Text Word]

NOT pfam12219*[Text Word]

NOT cl22684*[Text Word]

NOT sgnh hydrolase*[Text Word]

NOT gdsl hydrolase*[Text Word]

NOT pfam12217*[Text Word]

NOT pfam13472*[Text Word]
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The negative case query was limited to the first 30.000 entries, whose Genbank records

were obtained and curated through keyword check and the duplicated sequences re-

moved with CD-HIT, resulting in 22.976 negative sequences.

3.3 FEATURES

Based on the sequence properties of both protein and DNA, for each sequence, 578

input features were created. Formulations of both sequences are indicated below by

equations 10 and 11:

P = A1A2A3 ... Al (10)

where Ai represents the i th amino acid in the protein P of length l.

DNA = N1N2N3 ... Nl (11)

where Ni represents the i th nucleotide in the DNA sequence of length l.

The features are as follows:

• (24 features) Amino Acid Composition (AAC) and Nucleotide Composition (NC).

The AAC and NC are composed, respectively, of 20 and 4 vectors and calculated

as:

Compj =
l

∑
i=1

σi (12)

where Compj corresponds to the composition in j and:

σi = 1 if the i occurrence is j-type.

σi = 0 if the i occurrence is not j-type.

For the length l of the sequence, j ranges from 1 to 20 in proteins and 1 to 4 in

DNA sequences.

• (1 feature) Length of the amino acid sequence.

The length l of P, composed of one vector.
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• (5 features) Aromaticity, Isoelectric point and Secondary structure fraction.

Depicted in equation 13, Aromaticity is the relative frequency of aromatic amino

acids.

Aromaticity =
20

∑
i=1

γifi (13)

where fi is the relative frequency of i type amino acid in the protein and γi = 1 if

the amino acid is Phe, Tyr or Trp, otherwise γi = 0. The Isoelectric point is the

pH at which the net charge of the protein is zero. Both aromaticity and isoelectric

point, are composed of one vector each. Secondary structure fraction calculates

the fraction of amino acids that tend to be found in three secondary structures:

α-helixes (equation 14), β-turns (equation 15) and sheets (equation 16).

helix =
20

∑
i=1

αifi (14)

turn =
20

∑
i=1

θifi (15)

sheet =
20

∑
i=1

βifi (16)

Being fi the relative frequency of i type amino acid in the protein:

αi = 1 if the amino acid is Val, Ile, Tyr, Phe, Trp or Leu in equation 14, otherwise αi

= 0.

θi = 1 if the amino acid is Asn, Pro, Gly or Ser in equation 15, otherwise θi = 0.

βi = 1 if the amino acid is Glu, Met, Ala or Leu in equation 16, otherwise βi = 0.

Secondary structure fraction comprises, this way, 3 vectors.

• (147 features) Composition Transition Distribution (CTD).

CTD consists in grouping the amino acids into three classes encoded by the

indices 1, 2 and 3 according to which group they belong. Amino acid attributes
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such as Hydrophobicity, Normalized van der Waals volume, Polarity, Polarizability,

Charge, Secondary structure and Solvent Accessibility were used as properties.

Composition (C) is the number of amino acids of a given property divided by the

total amino acid number. Transition (T) characterizes the percent frequency with

which amino acids of a particular property is followed by amino acids of a different

property. Distribution (D) measures the chain length within which the first, 25, 50,

75 and 100% of the amino acids of a particular property is located respectively

[116]. For a given property, the composition C is calculated through:

compositionj =
1
l

l

∑
i=1

σi (17)

where j = 1,2,3 and compositionj corresponds to the composition in j for the length

l of the sequence, also:

σi = 1 if ith occurrence is equal to j.

σi = 0 if ith occurrence is not equal to j.

Transition from group 1 to 2 is the percentage frequency in which 1 is followed by 2

or 2 is followed by 1 in the encoded sequence:

transitionmn =
Dmn + Dnm

l − 1
(18)

where mn = ”12”, ”13”, ”23” and Dmn, Dnm are the numbers of dipeptide encoded

as ”mn” and ”nm”, respectively in the sequence.

Distribution of properties along the protein chain can be described with the help of

equation 19.

Rj,p =
P

100

l

∑
i=1

σi (19)

Rj,p represents the number of residues for group j within a given percentage P for

a protein of length l where:

P = 1, 25, 50, 75, 100 and j = 1, 2, 3.
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σi = 1 if ith occurrence is equal to j.

σi = 0 if ith occurrence is not equal to j.

For example, 25% of all residues belonging to group 1 (R1,25 = 4) are contained

within the first 5 residues of the protein chain of length 25, distribution for that group

is calculated (5/25)*100%, giving D1025 = 20%.

Each amino acid attribute produces 3, 3 and 15 vectors, since all 7 attributes are

used, CTD produces 147 features.

• (400 features) Dipeptide composition (DPC)

DPC is calculated according to equation 20. For any dipeptide Dj:

DPCj =
Dj

l − 1
(20)

where j = 1, 2,..., 400 and l is the length of the sequence. For each protein

sequence, 400 features are produced.

The previous features were calculated through the modules SeqUtils.ProtParam from

Biopython (version 1.78)[100] and Propy3 (version 1.0.0a2)[117]. The output feature in

the training data, ”PDPO Exists”, is binary and differentiates between a DPO (”1”) and a

non-DPO (”0”) case.
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3.4 DATASETS

The datasets created for this work are described in table 3.

Table 3: Created dataset dimensions, number of features, positive cases and negative cases.

Dataset Name Features Positives Negatives Total

d2874 579 1437 1437 2874

d4311 579 1437 2874 4311

d5748 579 1437 4311 5748

d5748R 579 1437 4311 5748

d7185 579 1437 5748 7185

Despite sharing the same positive cases and number of features (578 and 1 output

feature), datasets d2874, d4311, d5748 and d7185 comprise different numbers of

negative cases to test their influence on model performance. Despite having the same

size, datasets d5748 and d5748R diverge in selected negative cases. Negative cases

were chosen randomly from the total set of negative sequences; thus, d5748R was

created to evaluate whether the selected negative cases impact on model performance.

3.5 PRE-PROCESSING

The most common data transformation is the center scaling of feature variables. ML

algorithms that exploit distances or similarities in training data, such as kNN and SVM,

tend to be sensitive to data scaling. The data standardisation was implemented using

the function ”StandardScaler” from sklearn. This function centers a feature variable by

subtracting the average feature value from all the values. In addition, to scale the data,

each value of the feature variable is divided by its standard deviation. It was applied to

all features of all datasets as all features are numerical with a wide range of values.
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3.6 MODELS

Based on the previous datasets, several ML models were created, each one based on

different ML algorithms:

• SVM using the ”SVC” function;

• ANN using the ”MLPClassifier” function;

• NB using the ”GaussianNB” function;

• DT using the ”DecisionTreeClassifier” function;

• kNN using the ”KNeighborsClassifier” function;

• RF using the ”RandomForestClassifier” function.

3.7 FEATURE SELECTION AND PERFORMANCE EVALUATION

Feature selection is the process of reducing the number of features. A reduced number

of features reduces the computational cost of modelling and, in some cases, may help

to improve the performance of the model. Recursive Feature Elimination (RFE) is a

popular feature selection algorithm that follows the fit/transform pattern of sklearn. It

works by removing features one at a time based on the weights given by a model,

such as RF, in each iteration. The implementation of an RFE algorithm was achieved

through the sklearn function ”RFECV” and the RF estimator. Cross-Validation (CV) is a

resampling method that evaluates ML models on a limited data sample. CV with 5-fold

was implemented together with metrics such as PECC, recall and precision to evaluate

model performance. ROC and PR curves were also created along with AUROC values

and AP values. Confusion Matrix (CM) were created to give an overall view on how well

models are performing and what kind of errors their making.
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3.8 MODEL OPTIMIZATION

ML models have hyperparameters, an external model configuration with a value that

cannot be estimated from the training data. The approach used was objectively search

different values for model hyperparameters and choose a subset that produces a model

with the best performance. Table 4 describes the hyperparameters optimized and the

range of their values. This selection was performed with sklearn’s ”GridSearchCV”

function.

Table 4: Hyperparameters of each model and range of values tested.

Model Parameter Values GridSearch

ANN

’solver’ ’adam’, ’sgd’

’activation’ ’relu’, ’tanh’

’alpha’ 0.0001, 0.001, 0.01

’hidden layer sizes’ (10,), (15,), (25,), (50,), (100,)

SVM

’C’ 0.1, 1, 10, 15, 20, 100

’gamma’ ’auto’, 0.01, 0.001, 0.1, 1

’kernel’ ’linear’, ’rbf’, ’poly’, ’sigmoid’

RF

’n estimators’ 100, 200

’max depth’ None

’max features’ ’auto’, ’sqrt’

’min samples split’ 2, 3, 6

’min samples leaf’ 2, 3, 6

’bootstrap’ True, False

’criterion’ ’gini’, ’entropy’
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3.9 GALAXY DEPLOYMENT

PhageDPO was deployed on Galaxy, with a provided a user-friendly interface. Using

Planemo [118], an Extensible Markup Language (XML) file was generated, containing all

the details for deploying the tool in Galaxy framework, namely: tool inputs, outputs and

their formats, the Linux command line to run the script, an example of possible inputs

and outputs and the dependencies, which corresponds to the python modules used by

the model.
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D E V E L O P M E N T

The code for this work was developed in Python 3.8, using PyCharm and constituted by

9 scripts, as depicted in Figure 10.

Figure 10: Flowchart of the development steps.

The positive data was collected from NBCI’s CDD and NCBI’s protein databases,

as mentioned in section 3.1. The fasta aminoacids and fasta coding sequences files

belonging to the domains related proteins and associated with the positive data query

41
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were downloaded. The class PDPOdata, from script ”pdpo1 GETDATA.py”, is responsible

for gathering and selecting information retrieved from NCBI. This class starts by importing

a JavaScript Object Notation (JSON) file containing the following information:

1. Twenty four keywords associated with DPO presence;

2. NCBI query for positive data;

3. NCBI query for negative data;

4. Query for positive cases to complement the domains information.

This script only performed the CD-HIT clustering for positive cases, as these might

contains duplicates. For negative cases, the script retrieved the fasta aminoacids and

fasta coding sequences of all entries from the negative query, and their records in

GenBank format, using Biopython function ”Entrez.efetch”. Because of the large number

of hits produced by the negative case query (463228), the script limits the download

to 30.000 entries. Data selection of negative cases was performed by keyword check.

If one of the 24 keywords were present within the records features, the record would

be deleted. The remaining records were submitted to CD-HIT with a 1.0 threshold to

remove duplicated sequences. These steps were performed automatically by the class

PDPOdata resulting in the files POSITIVE DATA.json and NEGATIVE DATA.json, having

1437 and 22976 sequences, respectively.

The assembly of the datasets was performed through random selection of negative

cases for the total number of positive cases., with class PDPOAssembler from the

script ”pdpo2 DATA ASSEMBLER.py” that imports functions from ”pdpo AUX.py”. After

selecting negative cases for each sequence, the class created the features described in

section 3.2 using BioPython and Propy.

Datasets were scaled in ”pdpo3 PREPROCESSING.py” using class PDPOpreprocess-

ing and the metrics compared to evaluate the influence of data scaling. The influence

of the selected negative cases was also tested with class PDPONEGATIVES from

”pdpo4 RAND
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NEGATIVES.py”. Class PDPOMETRICS from ”pdpo5 RAND NEGATIVES.py” was used

to determine the most adequate number of negatives. Then, the most important features

were selected with the RFE method in class FeatureSelection from ”pdpo6 FEAT SELECTION.py”.

The reduced datasets and the scalers were saved with the pickle module. The opti-

mization of hyperparameters was performed using class ModelOptimization from script

”pdpo7 MODEL

OPTM.py”, and later the models were saved.

Finally, the best models were applied to new data to predict DPOs, using class

PDPOPrediction from script ”pdpo8 PDPO PREDICTION.py” that inputs a list of ORFs

from a sequenced phage genome in the fasta nucleotide format. This script uses

BioPython to translate the ORF to amino acid sequence and, using each ORF and

translated sequence, calculates the features and applies the scaler and the model. The

output consists of an HTML table with the predicted ORF, including the probability of

each ORF being a DPO. File ”PhageDPO.xml” was generated using Planemo to include

the script in the Galaxy platform.
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R E S U LT S A N D D I S C U S S I O N

The impact of the number and random selection of negative cases was evaluated, as

well as data standardization and feature selection. Datasets d2874, d4311, d5748 and

d7185 were considered to measure the impact of data pre-processing and the optimal

number of negative cases best suited for DPO prediction. The influence of the negative

cases was determined by comparing the performance of models obtained with d5748

and d5748R, as these datasets encompass more negative cases. The models were then

optimized, and the best-performing ones selected to integrate Galaxy and tested with

novel data.

5.1 DATASET PRE-PROCESSING

After creating the datasets, the influence of data standardization in model performance

was assessed by assessing the models’ accuracy before and after applying the “Standard-

Scaler” function to all features. The ANN and SVM models exhibited the most significant

increase in PECC, whereas the kNN models showed a decrease in PECC. The other

models (DT, RF and NB) did not show significant changes. ANN, SVM and RF exhibit

the best PECC values for all datasets. These results are described in supplementary

tables S1, S2, S3 and S4 and in Table 5 for the ANN and SVM models.

44
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Table 5: Mean of PECC scores of models ANN, SVM after 5-fold CV for all the datasets

Models Dataset
PECC

(W/OUT SCALER)

PECC

(W/ SCALER)

ANN

d2874 0,88 0,93

d4311 0,89 0,94

d5748 0,94 0,95

d7185 0,92 0,96

SVM

d2874 0,81 0,93

d4311 0,84 0,94

d5748 0,86 0,95

d7185 0,89 0,96

Pre-processed datasets created models with higher PECCs, even higher than non-

scaled kNN whose PECC decreased with ”StandarScaler”. This way, data scaling proved

to be an essential step of model development.

5.2 INFLUENCE OF THE NEGATIVE CASES

As previously mentioned, dataset d5748R was created to assess the impact of the

random negative case selection. Datasets d5748 and d5748R were pre-processed using

the same approach, and the means of PECC, precision and recall for each model are

shown in in Table 6.
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Table 6: Mean PECC, Precision and Recall of the models after 5-fold CV for the datasets d5748
and d5748R. The highest values of each metric are shaded in gray.

KNN DT ANN SVM RF NB

PECC 0,88 0,90 0,95 0,95 0,95 0,79

Precision 0,70 0,80 0,91 0,91 0,93 0,55d5748

Recall 0,93 0,82 0,90 0,89 0,84 0,90

PECC 0,87 0,91 0,95 0,95 0,95 0,79

Precision 0,68 0,82 0,91 0,90 0,94 0,55d5748R

Recall 0,93 0,81 0,90 0,90 0,85 0,90

There were no significant differences in the PECC, precision and recall values of both

datasets, indicating that the selected negative cases do not influence model performance.

5.3 NUMBER OF NEGATIVE CASES

The impact of the number of negative cases was assessed with the datasets created

in section 3.3. The models were created with a fixed number of positive cases and a

varying number of negative cases, and their performance evaluated. Table 7 shows

that the PECC increases with the number of negative cases, with both precision and

recall changing slightly. The NB and kNN models performed worse and were rejected.

Although the RF has lower recall, its values of PECC and precision were high. The DT,

ANN and SVM models have the best balance between precision and recall. CM were

created to assess the number of FP and FN, as shown in Tables 8 to 11.
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Table 7: Mean PECC, Precision and Recall after 5-fold CV of KNN, DT, ANN, SVM, RF and NB
for datasets d2874, d4311, d5748 and d7185. Models with highest, overall, metrics are
shaded in gray.

KNN DT ANN SVM RF NB
PECC 0,76 0,86 0,93 0,93 0,92 0,83
Precision 0,69 0,85 0,92 0,94 0,93 0,79d2874
Recall 0,96 0,88 0,93 0,93 0,90 0,90

PECC 0,83 0,89 0,94 0,94 0,94 0,81
Precision 0,68 0,82 0,91 0,92 0,93 0,65d4311
Recall 0,94 0,85 0,91 0,91 0,87 0,90

PECC 0,88 0,90 0,95 0,95 0,95 0,79
Precision 0,70 0,80 0,91 0,91 0,93 0,55d5748
Recall 0,93 0,83 0,90 0,89 0,84 0,90

PECC 0,90 0,91 0,96 0,96 0,95 0,78
Precision 0,69 0,78 0,90 0,90 0,92 0,48d7185
Recall 0,92 0,79 0,90 0,88 0,83 0,90

Table 8: Confusion Matrix for DT, ANN, SVM and RF models created from d2874 after 5-fold CV.

d2874
DT ANN SVM RF

Real

Pred
Neg Pos Neg Pos Neg Pos Neg Pos Total

Neg 1218 219 1328 109 1348 89 1344 93 1437
Pos 179 1258 104 1333 107 1333 137 1300 1437
Total 1397 1477 1432 1442 1455 1422 1481 1393 2874
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Table 9: Confusion Matrix for DT, ANN, SVM and RF models created from d4311 after 5-fold CV.

d4311
DT ANN SVM RF

Real

Pred
Neg Pos Neg Pos Neg Pos Neg Pos Total

Neg 2604 270 2739 135 2758 116 2782 92 2874
Pos 212 1225 129 1308 132 1305 180 1257 1437
Total 2816 1495 2868 1443 2890 1421 2962 1349 4311

Table 10: Confusion Matrix for DT, ANN, SVM and RF models created from d5748 after 5-fold CV.

d5748
DT ANN SVM RF

Real

Pred
Neg Pos Neg Pos Neg Pos Neg Pos Total

Neg 4008 303 4184 127 4186 125 4219 92 4311
Pos 249 1188 141 1296 157 1280 223 1214 1437
Total 4257 1491 4325 1423 4343 1405 4442 1306 5748

Table 11: Confusion Matrix for DT, ANN, SVM and RF models created from d7185 after 5-fold CV.

d7185
DT ANN SVM RF

Real

Pred
Neg Pos Neg Pos Neg Pos Neg Pos Total

Neg 5428 320 5611 137 5608 140 5650 98 5748
Pos 298 1139 145 1295 170 1267 246 1191 1437
Total 5726 1459 5756 1432 5778 1407 5896 1289 7185
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Figure 11: Variation of FP from dataset d2874 to d7185, for models DT, ANN, SVM and RF.

As shown in figure 11, DT was the model with the highest number and the most
significant increase in FP. On the other hand, the RF model kept the same number of FP
for all datasets. Both ANN and SVM demonstrated similar behaviour from dataset d2874
to d4311 but, from d4311 to d5748, the ANN model decreased the number of FP and the
SVM model increased slightly.

From figure 11, DT was the model with the highest number of FP across all datasets
and, from dataset d2874 to dataset d4311, the slope with the highest value of all models,
indicated a big increased in FP. On the other hand, the RF model, kept practically the
same number of FP for all datasets. Both ANN and SVM demonstrated similar behaviour
from dataset d2874 to d4311, but from d4311 to d5748 ANN decreased the number
of FP and SVM increased slightly. From d5748 to d7185, both ANN and SVM the FP
number increased on a small scale.
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Figure 12: Variation of FN from dataset d2874 to d7185, for models DT, ANN, SVM and RF.

As shown in Figure 12, increasing the number of negative cases also increased FN

for all models. DT was the model with the highest number of FN and, together with RF,

a steep increase from dataset d4311 to d5748, and from d5748 to d7185. Both ANN

and SVM models had similar behaviour from datasets d2874 to d4311. From d4311 to

d5748, both models increased the number of FN, and from d5748 to d7185 the ANN

model maintained the number of FN while the SVM increased.

Therefore we can conclude that the RF model had the lowest number of FP, specially

form d4311 to d7185, while the ANN and SVM models have fewer FN. These results also

confirmed that dataset d2874 produced the models with the lowest number of FP and FN

and the highest precision and recall metrics (Table 7). From a biological standpoint, as

negative data is composed of a wide variety of phage proteins and the DPO proportion

towards those proteins is very low, a dataset with a higher number of negative cases

seems more appropriate to solve this problem. ROC and PR curves were created to
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assess the models’ positive class (minority class) classification performance. These

curves are an effective diagnostic tool for imbalanced binary classification models, such

as the models obtained from datasets d4311, d5748 and d7185. The curves for the ANN

model are illustrated in Figures 13 and 14. Also, SVM and RF models’ curves behaviour

were similar to the ANN model, while the DT model exhibited the poorest performance of

all models. Curves for these models are available in supplementary Figures S1 to S6.

Figure 13: ROC curves representing the ANN model performance for the datasets d4311, d5748
and d7185 with corresponding AUROC values.

ROC curves near the upper left corner indicate a high capacity in separating both

classes and have higher AUROC values. For datasets d4311, d5748 and d7185, both

curves overlap, indicating similar separation capability, with high AUROC values (0,968,

0,971 and 0,973). As the number of TN is different from dataset d4311 to d7185, models

were represented by PR curves.



5.4. Feature selection 52

Figure 14: PR curves representing the ANN model performance for the datasets d4311, d5748
and d7185 with corresponding PR value.

As precision is not affected by a large number of negative cases (it measures the

number of TP out of the samples predicted as positives TP+FP), its focus is on the positive

class rather than the negative class, calculating the probability of correct detection of

positive cases. The PR curve’s AP value allows inferring if the model identifies positives

cases correctly and thoroughly. As shown in Figure 14, both model curves overlap, with

similar AP values, indicating a good trade-off between precision and recall. In general,

the ANN, SVM and RF models demonstrated high AP values.

5.4 FEATURE SELECTION

The method used to select the most relevant features of the dataset was the Recursive

Feature Elimination (RFE). The RF model was used as an estimator, and RFE with a

5-fold CV, was executed to find the optimal number of features. In this method, features

are given a rank number according to their importance; the higher the rank, the less

important is the feature for the model. The top rank features (ranking 1) were selected for
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both datasets, resulting in 45 features for dataset d4311, 54 features for dataset d5748

and 166 features for dataset d7185, as shown in supplementary table S5. Models were

created using the algorithms ANN, SVM and RF, whose metrics are represented in Table

12.

Table 12: PECC, Precision and Recall after 5-fold CV for models ANN, SVM and RF using the
reduced datasets.

ANN SVM RF

d4311
PECC 0,93 0,93 0,94
Precision 0,91 0,90 0,93
Recall 0,90 0,90 0,89

d5748
PECC 0,95 0,94 0,95
Precision 0,91 0,87 0,93
Recall 0,89 0,88 0,86

d7185
PECC 0,96 0,96 0,95
Precision 0,92 0,91 0,93
Recall 0,89 0,87 0,84

When comparing the model’s metrics obtained from the reduced datasets with the

models from Table 7 for dataset d4311, these decreased slightly, except for the RF model,

whose recall increased.

For dataset d5748, the SVM model’s precision decreased (from 0,91 to 0,87) along

with PECC and recall, whereas the RF model’s recall increased. Feature reduction was

not very significant for ANN models, whose metrics remained similar. However, the RF

models recall increased, while all SVM models metrics decreased, mostly precision. For

dataset d7185, PECC values remained the same, the precision slightly increased for as

models and recall decrease slightly.

Overall, dataset d7185 produced the models with the highest values of PECC and

precision, while the ANN, SVM and RF models (d4311) exhibit the highest recall values.

As the metrics were not significantly affected, the models obtained from the reduced

datasets were further optimized.
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5.5 MODEL OPTIMIZATION

The hyperparameters (values described in table 4) for the ANN, SVM and RF models,

from the reduced datasets d4311 and d5748, were optimized through GridSearch. The

parameters that produced the best results are described from Tables 13 to 15, along with

the corresponding PECC, precision and recall for each optimized model.

Table 13: Hyperparameter values from GridSearch output with PECC, Precision and Recall after
5-fold CV for models ANN, SVM, and RF obtained from dataset d4311.

Model Hyperparameter PECC Precision Recall

ANN
’activation’: ’tanh’, ’alpha’: 0.001, ’hidden layer sizes’: (50,),
’solver’: ’adam’

0,94 0,92 0,91

SVM
’C’: 10, ’gamma’: 0.1,
’kernel’: ’rbf’

0,95 0,96 0,89

RF
’bootstrap’: False, ’criterion’: ’entropy’, ’max depth’: None,
’max features’: ’auto’, ’min samples leaf’: 2,
’min samples split’: 6, ’n estimators’: 100

0,94 0,93 0,90

Table 14: Hyperparameter values from GridSearch output with PECC, Precision and Recall after
5-fold CV for models ANN, SVM, and RF obtained from dataset d5748.

Model Hyperparameter PECC Precision Recall

ANN
’activation’: ’tanh’, ’alpha’: 0.01, ’hidden layer sizes’: (100,),
’solver’: ’adam’

0,95 0,91 0,89

SVM
’C’: 10, ’gamma’: 0.1,
’kernel’: ’rbf’

0,96 0,95 0,87

RF
’bootstrap’: False, ’criterion’: ’entropy’, ’max depth’: None,
’max features’: ’auto’, ’min samples leaf’: 2,
’min samples split’: 2, ’n estimators’: 200

0,95 0,93 0,88
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Table 15: Hyperparameter values from GridSearch output with PECC, Precision and Recall after
5-fold CV for models ANN, SVM, and RF obtained from dataset d7185.

Model Hyperparameter PECC Precision Recall

ANN
’activation’: ’relu’, ’alpha’: 0.0001, ’hidden layer sizes’: (100,),
’solver’: ’adam’

0,96 0,92 0,89

SVM
’C’: 10, ’gamma’: 0.01,
’kernel’: ’rbf’

0,97 0,94 0,89

RF
’bootstrap’: False, ’criterion’: ’entropy’, ’max depth’: None,
’max features’: ’auto’, ’min samples leaf’: 2,
’min samples split’: 6, ’n estimators’: 200

0,96 0,92 0,86

After optimization, and comparing with Table 7, the accuracy remained practically

the same for all models. The SVM model showed a significant increase in precision

for all datasets, while the recall decreased slightly. The ANN models metrics remained

practically the same for all datasets. The RF model increased it’s recall in all datasets,

while the other metrics remained the same. The ANN and SVM models from dataset

d4311 exhibited respectively, the highest recall (0,91%) and precision (0,96%). The ANN

model maintained the best balance between precision and recall in all datasets. CMs

(Tables from 16 to 18) and ROC and PR curves (Figures from 16 to 18) were created, for

each dataset, to assess the models’ performance.

Table 16: Confusion matrix for the optimized models ANN, SVM and RF originated from dataset
d4311 with 5-fold CV

d4311
ANN SVM RF

Real

Pred
Neg Pos Neg Pos Neg Pos Total

Neg 2753 121 2816 58 2779 95 2874
Pos 132 1305 164 1273 147 1290 1437
Total 2885 1426 2980 1331 2926 1385 4311



5.5. Model optimization 56

For dataset d4311, the SVM model had the lowest FP (58) and the highest number of

FN (164), whereas ANN model exhibited the highest FP (121) and the lowest number of

FN (132). These values are shaded in gray in Table 16.

Table 17: Confusion matrix for the optimized models ANN, SVM and RF originated from dataset
d5748 with 5-fold CV

d5748
ANN SVM RF

Real

Pred
Neg Pos Neg Pos Neg Pos Total

Neg 4186 125 4244 67 4218 93 4311
Pos 160 1277 181 1256 170 1267 1437
Total 4346 1402 4425 1323 4388 1360 5748

For dataset d5748, the SVM model showed the lowest FP (67) and the highest number

of FN (181), while the ANN model exhibited the highest FP (125) and the lowest number

of FN (160). These values are shaded in gray in Table 17.

For dataset d7185, the SVM model showed the lowest number of FP (89) and FN (155).

The RF model exhibited the higher number of FN (202) and ANN the higher number of

FP (110). These values are shaded in gray in Table 18.

Table 18: Confusion matrix for the optimized models ANN, SVM and RF originated from dataset
d7185 with 5-fold CV

d7185
ANN SVM RF

Real

Pred
Neg Pos Neg Pos Neg Pos Total

Neg 5638 110 5669 89 5642 106 5748
Pos 156 1281 155 1282 202 1235 1437
Total 5794 1391 5824 1371 5844 1341 7185
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(a) (b)

Figure 15: Variation of FP (a) and FN (b) from dataset d4311 to d7185, for models ANN, SVM
and RF.

Figure 15 (a) shows that, from d4311 to d5748, the increment of negative cases

increased FP in both the SVM and ANN models . The rate of increase of FP on the SVM

models was higher for the ANN models, whereas the RF models decreased the number

of FP with the increment of negative cases. From d5748 to d7185, while both SVM and

RF models increased the number of FP, the ANN model decreased FP number.

Figure 15 (b), from d4311 to d5748, demonstrates an increase of FN with the increment

of negative cases, with ANN and RF models holding the highest increase rate. From

d5748 to d7185, the SVM and the ANN models decreased the number of FN while the

RF model increased significantly.
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Overall, and after model optimization, the number of FN was higher than the number

of FP. A possible explanation might be associated with type II errors while querying the

negative sequences. The negative sequences were retrieved from a set of NCBI entries,

whose only criteria for selection was not having keywords related to DPO; thus, part of

such entries may be unidentified or poorly annotated DPOs entries.

The ROC and PR curves of the models for each dataset (Figures from 16 to 18)

showed overlapping curves, indicating a similar performance for all models.

For dataset d4311, the RF model had the highest value of AUROC and, along with the

SVM model, the highest AP’s values. The latter value is the metric employed when the

model’s focus is correctly identifying positive samples in an unbalanced dataset.

For dataset d5748, both RF and SVM models show the highest values of AUROC and

AP, with the SVM model curve marginally above the others. For dataset d7185, the RF

and SVM show the highest values of AUROC and the SVM the highest AP value.

The SVM model from dataset d4311 and the ANN model from dataset d7185 were

selected for further testing and integration on the Galaxy platform. The SVM model

from d4311 showed a good AP and AUROC values and the lowest number of FP. The

ANN model from d7185 was the only model that reduced the number of FP from dataset

d5748 to d7185 which means an improved training for negative cases.

The high precision, PECC and AP of the SVM (d4311) focus on TP detection while

avoiding FP. The ANN (d7185) ensures that all DPOs are correctly identified due to it’s

high recall. The output of both models will be the probability of each protein being a

DPO.
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(a)

(b)

Figure 16: ROC and PR curves, (a) and (b) respectively, representing the ANN, SVM and RF
models created from dataset d4311. Correspondent AUROC and AP values were
calculated.
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(a)

(b)

Figure 17: ROC and PR curves, (a) and (b) respectively, representing the ANN, SVM and RF
models created from dataset d5748. Correspondent AUROC and AP values were
calculated.
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(a)

(b)

Figure 18: ROC and PR curves, (a) and (b) respectively, representing the ANN, SVM and RF
models created from dataset d7185. Correspondent AUROC and AP values were
calculated.
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5.6 PUBLISHING TO GALAXY

PhageDPO was integrated into Galaxy to provide a user-friendly interface, as illustrated

in Figure 19. In this interface is possible to see all tool’s required inputs and advanced

options. PhageDPO has a single input, in the form of a fasta file format, containing the

DNA coding sequences with unique identifiers. As advanced option, users select the

model to run, the SVM model (default) or the ANN model. The SVM model return fewer

sequences with a higher probability of being real DPOs avoiding FP. On the other hand,

the ANN model ensures that all DPOs are correctly identified due to it’s high recall.

PhageDPO outputs an HTML table (Figure 20) with the sequence’s identification and

percentage of positive prediction for DPO, ranked from high probability to low probability.

An explanation of how to use PhageDPO, including a description of its inputs and outputs,

is available in the tool interface.

Figure 19: PhageDPO Galaxy interface.
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Figure 20: HTML table returned by PhageDPO for the coding sequences extracted from NCBI of
Acinetobacter phage vB Api 3043-K38, with accession number MZ593174.1.

5.7 MODEL TESTING

The SVM and ANN models were tested to assess their predictive capabilities. Two phage

proteins validation sets were created, available in supplementary material Table S6 and

S7. The positive set consisted of 157 DPO positive proteins, and the negative set was

composed of 157 DPO negative proteins. The two models were assessed with both

validation sets, and the distribution of the variable DPO prediction was visualized through

density plots (Figures 21 and 22).
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Figure 21: Density distribution for the output of the models ANN and SVM for DPO positive
proteins.

Figure 22: Density distribution for the output of the models ANN and SVM for DPO negative
proteins.

As expected, for positive DPO proteins (Figure 21), the high-density prediction zone

is near 100%. While for negative DPO proteins (Figure 22), the prediction zone moves

towards 0% for all models. The models’ predictions for both positive and negative cases

of the independent validation dataset are shown in Supplementary Tables S8 and S9,

respectively. FP and FN cases were obtained considering a threshold of 10.0% and

90.0%, respectively. Predictions below 90.0% in the positive validation dataset were

considered FN, and predictions above 10.0% in the negative validation dataset were
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considered FP. PECC, precision and recall of the three models were calculated as shown

in Table 19.

Table 19: PECC, Precision and Recall for models ANN and SVM obtained from the validation
dataset composed of 157 positive cases and 157 negative cases.

Model PECC Precision Recall
SVM4311 0.95 0.98 0.91
ANN7185 0.98 0.99 0.96

Furthermore, the phageDPO predictive models were applied to four phage genomes,

known to encode distinct DPOs to assess the robustness of our models, namely:

Acinetobacter phage vB Api 3043-K38, Klebsiella phage RAD2, Pseudomonas phage

LUZ19 and Escherichia phage vB EcoP G7C with Accession Numbers MZ593174.1,

NC 055956.1, NC 010326 and NC 015933, respectively. Their CDSs were obtained

from their respective records in NCBI.

Acinetobacter phage vB Api 3043-K38 is a well known phage that encodes a single

DPO (QYC50642) degrading capsule [119]. The models predictions for all its CDSs

are shown in Supplementary Table S10. For this phage, as depicted in Table 20, both

the SVM and ANN models predicted the expected protein (QYC50642.1) with 99% and

100% probability respectively, of being a DPO.

Table 20: DPO top prediction percentages of the SVM and ANN models for Acinetobacter phage
vB Api 3043-K38 (MZ593174.1). The corresponding proteins’ identifiers are also
shown.

Organism Model Protein identifier DPO Prediction (%)

Acinetobacter phage

vB Api 3043-K38

SVM4311 QYC50642.1 99.0

ANN7185 QYC50642.1 100.0

Klebsiella phage RAD2 encodes a single DPO (YP 010115729.1) that targets the

capsular polysaccharides of the Klebsiella pneumoniae [120]. The models predictions for
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all its CDSs are shown in Supplementary Table S11. For this phage, as depicted in table

21, the SVM model predicted the correct protein with 99% probability, while the ANN

model predicted the same protein with 100% probability. Both models also predicted, with

lower percentage, a false positive protein (YP 010115728.1), annotated as a putative tail

spike.

Table 21: DPO top prediction percentages of the SVM and ANN models for Klebsiella phage
RAD2 (NC 055956.1). The corresponding proteins’ identifiers are also shown.

Organism Model Protein identifier DPO Prediction (%)

Klebsiella phage RAD2

SVM4311
YP 010115729.1 99.0

YP 010115728.1 81.0

ANN7185
YP 010115729.1 100.0

YP 010115728.1 78.0

During spot tests at the Center of Biological Engineering, Pseudomonas phage LUZ19

exhibited an halo formation; however, an analysis of its genome did not reveal any

gene responsible for encoding DPO. The predictions of both models are shown in

Supplementary Table S12 and depicted in Table 22. For this phage the SVM model

predicted a single protein (YP 001671985.1) with 96% probability of being a DPO, while

the the ANN model predicted other protein (YP 001671979.1) with a maximum probability

of 28%. Protein YP 001671985.1, predicted by the SVM model, is annotated as a tail fibre.

This protein-encoding gene is associated with a phage tail, which is a good indicative

that it may carry the predicted depolymerase activity. Whereas protein YP 001671979.1,

predicted by the ANN model, is annotated as a tail tubular protein, which may indicate

this as false positive result. Further lab test should be conducted to access the true

DPO location. Nevertheless, these results may be used to guide the wet-lab analysis

procedure.
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Table 22: DPO top prediction percentages of the SVM and ANN models for Pseudomonas phage
LUZ19 (NC 010326). The corresponding proteins’ identifiers are also shown.

Organism Model Protein identifier DPO Prediction (%)

Pseudomonas phage LUZ19
SVM4311 YP 001671985.1 96.0

ANN7185 YP 001671979.1 28.0

The Escherichia phage vB EcoP G7C has a new kind of DPO (YP 004782195.1), that

modifies instead of degrading the LPS [34]. The predictions for this phage are shown in

Supplementary Table S13 and depicted in Table 23. The SVM model predicted the correct

protein (YP 004782195.1) with 94% probability and a second one (YP 004782196.1)

with 100% probability. The ANN model predicted the same proteins (YP 004782195.1,

YP 004782196.1) with 100% and 92% respectively, and third (YP 004782143.1) with

90% probability. The protein YP 004782195.1, predicted by both models, is annotated as

a tail fibre. Further lab tests should be performed in order to find if this phage encodes

two DPOs, as suggested by the predictive model. Protein YP 004782143.1, predicted by

the ANN model, is annotated as RNA polymerase, and therefore, a false positive.

Table 23: DPO top prediction percentages of the SVM and ANN models for Escherichia phage
vB EcoP G7C (NC 015933). The corresponding proteins’ identifiers are also shown.

Organism Model Protein identifier DPO Prediction (%)

Escherichia phage vB EcoP G7C

SVM4311
YP 004782196.1 100.0

YP 004782195.1 94.0

ANN7185

YP 004782196.1 100.0

YP 004782195.1 92.0

YP 004782143.1 90.0

Next, we also applied our models to search DPO in prophages. One of the great

advances in using DPO as an anti-virulence weapon against pathogenic bacteria is to
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harness these proteins in prophages inserted in bacterial genomes. Many bacterial

genomes deposited in public databases can contain phage DNAs integrated (prophages)

in the bacterial chromosome. Moreover, bacteria may contain multiple prophages in their

chromosomes. The Escherichia coli O157:H7 strain Sakai is the most extreme case,

as it contains 18 prophage genome elements, which amount to 16% of its total genome

content [121], demonstrating the vast diversity of prophage sequences in the bacterial

population and possible DPO encoding proteins that could be used.

In our tests, we used prophages extracted from the Acinetobacter baumannii strain A85

and Acinetobacter baumannii ATCC 19606 genomes using Phage Search Tool Enhanced

Release (Phaster), which is a widely used web servers for identifying putative prophages

in bacterial genomes [122]. Results from Table 24 demonstrated that A baumannii strain

A85 contained one prophage (location 3477508-3510350) with one protein (tail function)

identified as a possible DPO with high probability (SVM 99% and ANN 97%), which are

shown in Supplementary Table S14.

Table 24: DPO top prediction percentages of the SVM and ANN models for Acinetobacter bau-
mannii strain A85 prophage located in (3477508-3510350). The corresponding proteins’
identifiers are also shown.

Organism Model Protein identifier DPO Prediction (%)

Acinetobacter baumannii

strain A85 (3477508-3510350)

SVM4311 ASF78667.1 99.0

ANN7185
ASF78667.1 97.0

ASF78673.1 85.0
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Table 25: DPO top prediction percentages of the SVM and ANN models for Acinetobacter bau-
mannii ATCC 19606 prophage located in (78042-120394). The corresponding proteins’
identifiers are also shown.

Organism Model Protein identifier DPO Prediction (%)

Acinetobacter baumannii

ATCC 19606 (78042-120394)

SVM4311 ENW74131.1 62.0

ANN7185

ENW74149.1 100.0

ENW74133.1 99.0

ENW74134.1 99.0

ENW74148.1 85.0

ENW74131.1 76.0

Table 26: DPO top prediction percentages of the SVM and ANN models for Acinetobacter bau-
mannii ATCC 19606 prophage located in (274341-319584). The corresponding proteins’
identifiers are also shown.

Organism Model Protein identifier DPO Prediction (%)

Acinetobacter baumannii

ATCC 19606 (274341-319584)

SVM4311 ENW74324.1 91.0

ANN7185 ENW74387.1 94.0

Similarly, A baumannii ATCC 19606 contained two prophages (located in 78042-

120394 and 274341-319584), Tables 25 and 26, respectively. For the first prophage, the

SVM and ANN models identified a tail protein with 62% and 76% probability, although

four more proteins were predicted with high probability by the ANN model. In the second

prophage, Table 26, the SVM model predicted with 91% probability that a tail protein

would be a DPO, while the ANN model predicted a different protein with 91% probability.

The full prediction for both prophages from A baumannii ATCC 19606 are shown in

Supplementary Tables S15 and S16. As so far, all DPO have been found in phage tails,

such results show that these models, although not trained with prophage sequences

data, are likely correctly predicting DPO proteins.
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C O N C L U S I O N A N D F U T U R E W O R K

Depolymerases (DPOs) are emerging phage-derived proteins with enormous potential to

be used to control pathogenic bacteria. This thesis aimed to develop the first bioinformat-

ics tool based on ML algorithms to predict these genes in phage genomes, to hasten the

isolation and exploration of DPOs in the biotechnology field.

The data pre-processing with StandardScaler generated better results for ANN and

SVM models, whereas other models’ performance did not show significant changes.

Random selection of negative cases did not affect model performance as model metrics

between datasets d5748 and d5748R remained the same. However, the influence of the

number of negative cases affected model performance. A higher number of negatives

led to higher PECC, with Precision and Recall both changing slightly. Models SVM and

RF exhibited a low number of FP, while ANN and SVM revealed a low number of FN,

as shown in the models’ CMs. Results also confirmed that dataset d2874 produced the

models with the lowest number of FP and FN, and the highest Precision and Recall;

however, from a biological standpoint, this result would be unexpected, as the DPOs

proportion towards the phage genome proteins is very low.

Feature selection and optimization were applied to datasets d4311, d5748 and d7185,

identifying 45, 54 and 166 relevant features, respectively.

After optimization, SVM and ANN models’ precision improved, with the SVM model’s

recall to slightly decrease. The RF model increased its recall in all datasets. Overall, the

accuracy remained the same. The SVM model created with dataset d4311 presented

0,95% accuracy, 0,96% precision and 0,89% recall and the ANN model created with

70
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dataset d7185 presented 0,96% accuracy, 0,92% precision and 0,89% recall. Both

models were selected to be included in the PhageDPO tool implemented in the Galaxy

platform. In an independent validation dataset, the SVM model presented 95% accuracy,

98% precision and 91% recall, the ANN model presented 98% accuracy, 99% precision

and 96% recall. Both models displayed high average Precision values in the PR curves,

and a good balance between metrics thus being assigned to be integrated in PhageDPO.

Although untrained with such data, PhageDPO’s analysis of phage genomes known

to encode distinct DPOs within prophages revealed encouraging results. Whereas the

ANN model can produce more FP, the SVM model predicts less DPOs but with a higher

probability of being DPO.

The goal proposed for this work was accomplished: a new online tool with a user-

friendly interface for predicting DPO was developed. However, for future work, some

aspects can be improved:

• Collect more true positive DPO sequences, to increase the datasets with improved

curation for both positive and negative cases. DPOs data-mining over scientific

publications should also be considered;

• Other features that can improve the models should be explored;

• Different hyperparameter values for model optimization should be tested;

• Employ ensemble methods to improve predictions. Multiple learning algorithms can

be used to achieve better predictive performance than that that could be obtained

from any of the learning algorithms alone.

All the code developed for this work is available in the platform GitLab in the following

link: https://gitlab.bio.di.uminho.pt/josegduarte/PDPO
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Table S1: Mean PECC scores of the models after 5-fold CV for dataset d2874

Models
PECC

(W/OUT SCALER)
PECC

(W/ SCALER)
KNN 0,87 0,76
DT 0,86 0,86
ANN 0,88 0,93
SVM 0,81 0,93
RF 0,92 0,92
NB 0,82 0,83

Table S2: Mean PECC scores of the models after 5-fold CV for dataset d4311

Models
PECC

(W/OUT SCALER)
PECC

(W/ SCALER)
KNN 0,90 0,83
DT 0,89 0,90
ANN 0,89 0,94
SVM 0,84 0,94
RF 0,94 0,94
NB 0,80 0,81
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Table S3: Mean PECC scores of the models after 5-fold CV for dataset d5748

Models
PECC

(W/OUT SCALER)
PECC

(W/ SCALER)
KNN 0,91 0,88
DT 0,90 0,91
ANN 0,94 0,95
SVM 0,86 0,95
RF 0,94 0,95
NB 0,78 0,79

Table S4: Mean PECC scores of the models after 5-fold CV for dataset d7185

Models
PECC

(W/OUT SCALER)
PECC

(W/ SCALER)
KNN 0,92 0,90
DT 0,92 0,91
ANN 0,92 0,96
SVM 0,89 0,96
RF 0,95 0,95
NB 0,78 0,78
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Table S5: List of rank 1 features obtained from RFE using RF estimator.
Datasets Rank 1 Features

d4311

”DNA-A”, ”DNA-T”, ”DNA-G”, ”DNA-GC”, ”AA Len”, ”G”, ”A”, ”S”, ”T”, ”N”,
”Turn”, ”Sheet”, ” PolarizabilityC1”, ” PolarizabilityC3”, ” SolventAccessibilityC1”,
” SecondaryStrC1”, ” SecondaryStrC2”, ” SecondaryStrC3”, ” ChargeC2”,
” ChargeC3”, ” PolarityC1”, ” NormalizedVDWVC1”, ” NormalizedVDWVC3”,
” HydrophobicityC2”, ” HydrophobicityC3”, ” SecondaryStrT23”,
” NormalizedVDWVT13”, ” PolarizabilityD1001”, ” SolventAccessibilityD1001”,
” SolventAccessibilityD2001”, ” SolventAccessibilityD3001”, ” SecondaryStrD1025”,
” ChargeD1075”, ” ChargeD2001”, ” ChargeD2025”, ” ChargeD3025”,
” ChargeD3050”, ” PolarityD1075”, ” PolarityD3025”, ” NormalizedVDWVD1001”,
” NormalizedVDWVD3050”, ” HydrophobicityD2001”, ”DG”, ”DT”, ”GD”

d5748

”DNA-A”, ”DNA-T”, ”DNA-G”, ”DNA-GC”, ”AA Len”, ”G”, ”A”, ”S”, ”T”, ”N”,
”Turn”, ”Sheet”, ” PolarizabilityC1”, ” PolarizabilityC3”, ” SecondaryStrC1”,
” SecondaryStrC2”, ” SecondaryStrC3”, ” ChargeC1”, ” ChargeC2”, ” ChargeC3”,
” NormalizedVDWVC1”, ” NormalizedVDWVC3”, ” HydrophobicityC2”,
” HydrophobicityC3”, ” SolventAccessibilityT12”, ” SolventAccessibilityT13”,
” SecondaryStrT23”, ” NormalizedVDWVT23”, ” HydrophobicityT12”,
” PolarizabilityD1001”, ” SolventAccessibilityD1001”, ” SolventAccessibilityD2001”,
” SolventAccessibilityD3001”, ” SecondaryStrD1001”, ” SecondaryStrD1025”,
” ChargeD1025”, ” ChargeD1075”, ” ChargeD2001”, ” ChargeD2025”,
” ChargeD3025”, ” ChargeD3050”, ” PolarityD1001”, ” PolarityD1050”,
” PolarityD1075”, ” PolarityD3025”, ” NormalizedVDWVD1001”,
” NormalizedVDWVD3001”, ” HydrophobicityD1001”, ” HydrophobicityD2001”,
”NG”, ”DG”, ”DT”, ”GD”, ”GT”

d7185

”DNA-GC”, ”AA Len”, ”Aromaticity”, ”IsoelectricPoint”, ”G”, ”A”, ”L”, ”V”, ”I”, ”P”,
”F”, ”S”, ”T”, ”C”, ”Y”, ”N”, ”Q”, ”D”, ”E”, ”R”, ”K”, ”H”, ”W”, ”M”, ”Turn”, ”Sheet”,
” PolarizabilityC1”, ” PolarizabilityC2”, ” PolarizabilityC3”, ” SolventAccessibilityC1”,
” SolventAccessibilityC2”, ” SecondaryStrC1”, ” SecondaryStrC3”, ” ChargeC1”,
” ChargeC2”, ” ChargeC3”, ” PolarityC2”, ” NormalizedVDWVC2”,
” NormalizedVDWVC3”, ” HydrophobicityC1”, ” HydrophobicityC2”,
” SecondaryStrT13”, ” SecondaryStrT23”, ” ChargeT12”, ” ChargeT13”,
” HydrophobicityT12”, ” PolarizabilityD1001”, ” PolarizabilityD1025”,
” PolarizabilityD1050”, ” PolarizabilityD2001”, ” PolarizabilityD3025”,
” PolarizabilityD3050”, ” PolarizabilityD3075”, ” SolventAccessibilityD1050”,
” SolventAccessibilityD2001”, ” SolventAccessibilityD2025”, ” SolventAccessibilityD2050”,
” SolventAccessibilityD3025”, ” SolventAccessibilityD3050”, ” SolventAccessibilityD3100”,
” SecondaryStrD1025”, ” SecondaryStrD1050”, ” SecondaryStrD1075”,
” SecondaryStrD2001”, ” SecondaryStrD2050”, ” SecondaryStrD2075”, ” ChargeD1050”,
” ChargeD1075”, ” ChargeD1100”, ” ChargeD2025”, ” ChargeD3025”, ” ChargeD3050”,
” PolarityD2050”, ” PolarityD3050”, ” NormalizedVDWVD1001”,
” NormalizedVDWVD1050”, ” NormalizedVDWVD2001”, ” NormalizedVDWVD2025”,
” HydrophobicityD3001”, ” HydrophobicityD3075”, ”AD”, ”AW”, ”AY”, ”RC”, ”RT”, ”NA”,
”NE”, ”NG”, ”NP”, ”DE”, ”DQ”, ”DG”, ”DT”, ”DY”, ”CG”, ”CL”, ”CY”, ”CV”, ”EN”, ”QA”,
”QR”, ”QE”, ”QI”, ”GA”, ”GR”, ”GD”, ”GQ”, ”GG”, ”GH”, ”GL”, ”GF”, ”GP”, ”GT”, ”GY”,
”HA”, ”HC”, ”HI”, ”HK”, ”HP”, ”IC”, ”IG”, ”IS”, ”IT”, ”IW”, ”LA”, ”LR”, ”LH”, ”LI”, ”LK”,
”LP”, ”KQ”, ”KH”, ”KS”, ”KT”, ”MQ”, ”MG”, ”MI”, ”FA”, ”FR”, ”FS”, ”FY”, ”PC”, ”PE”,
”PG”, ”PH”, ”PM”, ”PF”, ”PT”, ”SA”, ”SD”, ”SC”, ”SQ”, ”SW”, ”TA”, ”TC”, ”TM”, ”WL”,
”WV”, ”YE”, ”YG”, ”YH”, ”YI”, ”YL”, ”YK”, ”YM”, ”YS”
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Table S6: DPO positive proteins with accession number and the corresponding phage name

Protein Accession number Phage name
YP 008060136.1 Acinetobacter phage AB3
QMP19165.1 Acinetobacter phage Ab124
QOV07748.1 Acinetobacter phage vB AbaA fBenAci001
QOV07848.1 Acinetobacter phage vB AbaA fBenAci003
YP 009288671.1 Acinetobacter phage phiAB6
YP 009006536.1 Acinetobacter phage Petty
YP 009289769.1 Acinetobacter phage vB AbaS TRS1
YP 009189830.1 Acinetobacter phage vB AbaP PD-AB9
QQO97001.1 Acinetobacter phage vB AbaP APK26
QFG06960.1 Acinetobacter phage vB AbaP APK48
AZU99395.1 Acinetobacter phage vB AbaP APK32
QGH71569.1 Acinetobacter phage vB AbaP APK48-3
QGK90394.1 Acinetobacter phage vB AbaP APK89
QIW86364.1 Acinetobacter virus vB AbaP AGC01
QQM15083.1 Acinetobacter phage Paty
AZU99292.1 Acinetobacter phage vB AbaP APK2-2
QGK90444.1 Acinetobacter phage vB AbaP APK44
ALJ99087.1 Acinetobacter phage Ab105-1phi
YP 009610536.1 Acinetobacter phage vB ApiP P2
YP 009189380.1 Acinetobacter phage phiAB1
YP 009190472.1 Acinetobacter phage vB AbaP PD-6A3
YP 009949058.1 Acinetobacter phage SWH-Ab-1
YP 009599281.1 Acinetobacter phage vB AbaP AS11
QHS01530.1 Acinetobacter phage vB AbaP APK116
AYR04394.1 Acinetobacter phage vB AbaP APK14
YP 009203055.1 Acinetobacter phage Fri1
QGF20174.1 Acinetobacter phage vB AbaP PMK34
QOV07800.1 Acinetobacter phage vB AbaA fBenAci002
QQO92973.1 Acinetobacter phage Pipo
YP 009814060.1 Acinetobacter phage vB AbaP B09 Aci08
QNO11418.1 Acinetobacter phage vB AbaP APK81
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Table S6 continued from previous page
Protein Accession number Phage name
YP 009813438.1 Acinetobacter phage vB AbaP 46-62 Aci07
QGK90498.1 Acinetobacter phage vB AbaP APK87
YP 009103257.1 Acinetobacter phage vB AbaP Acibel007
QAU04146.1 Acinetobacter phage AbTJ
YP 009216837.1 Acinetobacter phage phiAC-1
AUG85465.1 Acinetobacter phage SH-Ab 15497
QOI69765.1 Acinetobacter phage DMU1
QNO11465.1 Acinetobacter phage Aristophanes
AYP68982.1 Acinetobacter phage vB AbaM IME284
QGH74055.1 Acinetobacter phage Bphi-R2919
QGH74134.1 Acinetobacter phage Bphi-R1888
QEA11050.1 Acinetobacter phage Abp9
YP 009291902.1 Acinetobacter phage LZ35
YP 009613841.1 Acinetobacter phage AB1
YP 009609870.1 Acinetobacter phage AbP2
YP 009604496.1 Acinetobacter phage WCHABP1
YP 006383804.1 Acinetobacter phage AP22
AYP69084.1 Acinetobacter phage vB AbaM IME512
YP 009146765.1 Acinetobacter phage YMC13/03/R2096
YP 003347555.1 Klebsiella phage KP32
YP 003347556.1 Klebsiella phage KP32
AWN07125.1 Klebsiella phage KP32 isolate 194
AWN07126.1 Klebsiella phage KP32 isolate 194
AOT28172.1 Klebsiella phage vB KpnP KpV763
AOT28173.1 Klebsiella phage vB KpnP KpV763
AWN07083.1 Klebsiella phage KP32 isolate 192
AWN07084.1 Klebsiella phage KP32 isolate 192
APZ82804.1 Klebsiella phage K5-2
APZ82805.1 Klebsiella phage K5-2
AWN07213.1 Klebsiella phage KP32 isolate 196
AWN07214.1 Klebsiella phage KP32 isolate 196
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Table S6 continued from previous page
Protein Accession number Phage name
AOZ65569.1 Klebsiella phage vB KpnP KpV766
YP 009215499.1 Klebsiella phage vB KpnP KpV289
YP 009215498.1 Klebsiella phage vB KpnP KpV289
ALT58498.1 Klebsiella phage vB KpnP IME205
APZ82847.1 Klebsiella phage K5-4
APZ82848.1 Klebsiella phage K5-4
YP 009280720.1 Klebsiella phage KpV475
YP 009302756.1 Klebsiella phage KpV71
YP 009098385.1 Klebsiella phage NTUH-K2044-K1-1
YP 009188797.1 Klebsiella phage KpV41
BBF66844.1 Klebsiella phage KN1-1
BBF66888.1 Klebsiella phage KN4-1
AZS06408.1 Klebsiella phage Henu1
QAU05545.1 Klebsiella phage Kund-ULIP47
QAU05505.1 Klebsiella phage K1-ULIP33
QBG78385.1 Klebsiella phage Kund-ULIP54
QGZ00758.1 Klebsiella phage VLC1
QGZ00819.1 Klebsiella phage VLC2
QGZ00875.1 Klebsiella phage VLC3
QGZ00936.1 Klebsiella phage VLC4
QIW86419.1 Klebsiella phage VLC5
QIW86428.1 Klebsiella phage VLC5
QJI52623.1 Klebsiella phage VLC6
QJI52632.1 Klebsiella phage VLC6
QMP82097.1 Klebsiella virus KpV2883
QMP82089.1 Klebsiella virus KpV2883
QOI68577.1 Klebsiella phage vB KpnP Dlv622
QOI68629.1 Klebsiella phage vB KpnM Seu621
AOZ65386.1 Klebsiella phage vB KpnM KpV52
YP 009153196.1 Klebsiella phage K64-1
YP 009153203.1 Klebsiella phage K64-1
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Table S6 continued from previous page
Protein Accession number Phage name
QIW88225.1 Klebsiella phage KpS8
YP 002003831.1 Klebsiella phage K11
YP 009198668.1 Klebsiella phage K5
YP 009198669.1 Klebsiella phage K5
AUV61507.1 Klebsiella phage SH-Kp 152410
ARB12452.1 Klebsiella phage vB KpnP IL33
ARB12406.1 Klebsiella phage vB KpnP PRA33
ARB12500.1 Klebsiella phage vB KpnP BIS33
AXE28435.1 Klebsiella phage vB KpnP IME321
ASZ78307.1 Klebsiella phage 2044-307w
YP 003347651.1 Klebsiella phage KP34
YP 009199937.1 Klebsiella phage vB KpnP SU503
ASV44946.1 Klebsiella phage AltoGao
YP 009204835.1 Klebsiella phage vB KpnP SU552A
AWK24039.1 Klebsiella phage phiKpS2
ARM70347.1 Klebsiella phage KOX1
AVI03134.1 Klebsiella phage JY917
ASV44964.1 Klebsiella phage MezzoGao
AXF39389.1 Klebsiella phage NJS1
AUE22051.1 Klebsiella phage GML-KpCol1
ASW27458.1 Klebsiella phage KPN N141
YP 009197879.1 Klebsiella phage 1513
AUV59228.1 Klebsiella phage vB KpnM KpS110
AUV59229.1 Klebsiella phage vB KpnM KpS110
AUV59230.1 Klebsiella phage vB KpnM KpS110
AUV59234.1 Klebsiella phage vB KpnM KpS110
YP 009796379.1 Klebsiella phage Menlow
AUG87748.1 Klebsiella phage Menlow
AUG87751.1 Klebsiella phage Menlow
AUG87753.1 Klebsiella phage Menlow
AUG87958.1 Klebsiella phage May
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Table S6 continued from previous page
Protein Accession number Phage name
AUG87959.1 Klebsiella phage May
AUG87960.1 Klebsiella phage May
AUG87962.1 Klebsiella phage May
YP 007007253.1 Klebsiella phage vB KleM RaK2
YP 007007685.1 Klebsiella phage vB KleM RaK2
YP 007007686.1 Klebsiella phage vB KleM RaK2
YP 007007687.1 Klebsiella phage vB KleM RaK2
AWN07172.1 Klebsiella phage KP32 isolate 195
YP 008532046.1 Klebsiella virus 0507KN21
YP 008532047.1 Klebsiella virus 0507KN21
YP 008532048.1 Klebsiella virus 0507KN21
YP 008532049.1 Klebsiella virus 0507KN21
YP 008532051.1 Klebsiella virus 0507KN21
YP 008532050.1 Klebsiella virus 0507KN21
AZF89844.1 Klebsiella phage 13
QEQ50396.1 Klebsiella phage vB KpnP IME337
QKY78353.1 Klebsiella phage P509
YP 654147.1 Escherichia virus K1-5
YP 004678762.1 Escherichia phage K30
BAW85696.1 Klebsiella phage K64-1
BAW85697.1 Klebsiella phage K64-1
BAQ02780.1 Klebsiella phage K64-1
BAW85692.1 Klebsiella phage K64-1
BAW85695.1 Klebsiella phage K64-1
APW79830.1 Acinetobacter phage vB AbaP AS12
NP 112090.1 Enterobacteria phage HK620
NP 059644.1 Salmonella virus P22
NP 853609.1 Salmonella virus SP6
NP 853610.1 Salmonella virus SP6
AIB07058.1 Salmonella phage 9NA
YP 009140380.1 Salmonella phage Det7
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Table S6 continued from previous page
Protein Accession number Phage name
NP 848228.1 Salmonella phage epsilon15
YP 008126828.1 Vibrio phage JA-1

Table S7: DPO negative proteins with accession number and the corresponding phage name. All
proteins were obtained from Escherichia virus T4.

Protein accession number Phage name
NP 049616.1 Escherichia virus T4
NP 049617.1 Escherichia virus T4
NP 049618.1 Escherichia virus T4
NP 049619.1 Escherichia virus T4
NP 049620.1 Escherichia virus T4
NP 049621.1 Escherichia virus T4
NP 049622.1 Escherichia virus T4
NP 049623.1 Escherichia virus T4
NP 049624.1 Escherichia virus T4
NP 049625.1 Escherichia virus T4
NP 049626.1 Escherichia virus T4
NP 049627.1 Escherichia virus T4
NP 049628.1 Escherichia virus T4
NP 049629.1 Escherichia virus T4
NP 049630.1 Escherichia virus T4
NP 049631.1 Escherichia virus T4
NP 049632.1 Escherichia virus T4
NP 049633.1 Escherichia virus T4
NP 049634.1 Escherichia virus T4
NP 049635.1 Escherichia virus T4
NP 049636.1 Escherichia virus T4
NP 049638.1 Escherichia virus T4
NP 049639.1 Escherichia virus T4
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Table S7 continued from previous page
Accession number Phage name
NP 049640.1 Escherichia virus T4
NP 049641.1 Escherichia virus T4
NP 049642.1 Escherichia virus T4
NP 049643.1 Escherichia virus T4
NP 049644.1 Escherichia virus T4
NP 049645.1 Escherichia virus T4
NP 049646.1 Escherichia virus T4
NP 049647.1 Escherichia virus T4
NP 049648.1 Escherichia virus T4
NP 049649.1 Escherichia virus T4
NP 049650.1 Escherichia virus T4
NP 049651.1 Escherichia virus T4
NP 049652.1 Escherichia virus T4
NP 049653.1 Escherichia virus T4
NP 049654.1 Escherichia virus T4
NP 049655.1 Escherichia virus T4
NP 049656.2 Escherichia virus T4
NP 049657.1 Escherichia virus T4
NP 049658.1 Escherichia virus T4
NP 049659.1 Escherichia virus T4
NP 049660.1 Escherichia virus T4
NP 049661.1 Escherichia virus T4
NP 049662.1 Escherichia virus T4
NP 049663.1 Escherichia virus T4
NP 049664.1 Escherichia virus T4
NP 049665.1 Escherichia virus T4
NP 049666.1 Escherichia virus T4
NP 049667.1 Escherichia virus T4
NP 049668.1 Escherichia virus T4
NP 049669.1 Escherichia virus T4
NP 049670.1 Escherichia virus T4
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Table S7 continued from previous page
Accession number Phage name
NP 049671.1 Escherichia virus T4
NP 049672.1 Escherichia virus T4
NP 813808.1 Escherichia virus T4
NP 049673.1 Escherichia virus T4
NP 049674.1 Escherichia virus T4
NP 049675.1 Escherichia virus T4
NP 049676.1 Escherichia virus T4
NP 049677.1 Escherichia virus T4
NP 049678.1 Escherichia virus T4
NP 049679.1 Escherichia virus T4
NP 049680.1 Escherichia virus T4
NP 049681.1 Escherichia virus T4
NP 049682.1 Escherichia virus T4
NP 049683.1 Escherichia virus T4
NP 049684.1 Escherichia virus T4
NP 049685.1 Escherichia virus T4
NP 049686.1 Escherichia virus T4
NP 049687.1 Escherichia virus T4
NP 049688.1 Escherichia virus T4
NP 049689.1 Escherichia virus T4
NP 049691.2 Escherichia virus T4
NP 049690.1 Escherichia virus T4
NP 049692.1 Escherichia virus T4
NP 049693.2 Escherichia virus T4
NP 049694.1 Escherichia virus T4
NP 049695.1 Escherichia virus T4
NP 049696.1 Escherichia virus T4
NP 049697.1 Escherichia virus T4
NP 049698.1 Escherichia virus T4
NP 049699.1 Escherichia virus T4
NP 049700.1 Escherichia virus T4
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NP 049701.1 Escherichia virus T4
NP 049702.1 Escherichia virus T4
NP 049703.1 Escherichia virus T4
NP 049704.1 Escherichia virus T4
NP 049705.1 Escherichia virus T4
NP 049706.1 Escherichia virus T4
NP 049707.1 Escherichia virus T4
NP 049710.1 Escherichia virus T4
NP 049711.1 Escherichia virus T4
NP 049712.1 Escherichia virus T4
NP 813809.1 Escherichia virus T4
NP 049713.1 Escherichia virus T4
NP 049714.1 Escherichia virus T4
NP 049715.1 Escherichia virus T4
NP 049716.1 Escherichia virus T4
NP 049717.1 Escherichia virus T4
NP 049718.1 Escherichia virus T4
NP 049719.1 Escherichia virus T4
NP 049721.1 Escherichia virus T4
NP 049722.1 Escherichia virus T4
NP 049723.1 Escherichia virus T4
NP 049724.1 Escherichia virus T4
NP 049725.1 Escherichia virus T4
NP 049726.1 Escherichia virus T4
NP 049727.1 Escherichia virus T4
NP 049728.1 Escherichia virus T4
NP 049729.1 Escherichia virus T4
NP 049730.1 Escherichia virus T4
NP 049731.1 Escherichia virus T4
NP 049732.1 Escherichia virus T4
NP 049733.1 Escherichia virus T4
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NP 049734.1 Escherichia virus T4
NP 049735.1 Escherichia virus T4
NP 049736.1 Escherichia virus T4
NP 049737.1 Escherichia virus T4
NP 049738.1 Escherichia virus T4
NP 049739.1 Escherichia virus T4
NP 049740.1 Escherichia virus T4
NP 049741.1 Escherichia virus T4
NP 049742.1 Escherichia virus T4
NP 049743.1 Escherichia virus T4
NP 049744.1 Escherichia virus T4
NP 049745.2 Escherichia virus T4
NP 049746.1 Escherichia virus T4
NP 049747.1 Escherichia virus T4
NP 049748.1 Escherichia virus T4
NP 049749.1 Escherichia virus T4
NP 049750.1 Escherichia virus T4
NP 049751.1 Escherichia virus T4
NP 049752.1 Escherichia virus T4
NP 049753.1 Escherichia virus T4
NP 049754.1 Escherichia virus T4
NP 049755.1 Escherichia virus T4
NP 049756.1 Escherichia virus T4
NP 049757.1 Escherichia virus T4
NP 049758.1 Escherichia virus T4
NP 049759.1 Escherichia virus T4
NP 049760.1 Escherichia virus T4
NP 049761.1 Escherichia virus T4
NP 049762.1 Escherichia virus T4
NP 049763.1 Escherichia virus T4
NP 049764.1 Escherichia virus T4
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NP 049765.1 Escherichia virus T4
NP 049766.1 Escherichia virus T4
NP 049767.1 Escherichia virus T4
NP 049771.1 Escherichia virus T4
NP 049775.1 Escherichia virus T4
NP 049783.1 Escherichia virus T4
NP 049860.1 Escherichia virus T4
NP 049861.1 Escherichia virus T4
NP 049862.1 Escherichia virus T4
NP 049863.1 Escherichia virus T4

Table S8: DPO positive proteins with accession number and the corresponding DPO percentage
for the models SVM and ANN.

Protein Accession number SVM ANN
YP 008060136.1 99.0 100.0
QMP19165.1 99.0 100.0
QOV07748.1 98.0 100.0
QOV07848.1 100.0 100.0
YP 009288671.1 100.0 100.0
YP 009006536.1 98.0 100.0
YP 009289769.1 100.0 100.0
YP 009189830.1 98.0 100.0
QQO97001.1 100.0 100.0
QFG06960.1 100.0 100.0
AZU99395.1 99.0 100.0
QGH71569.1 97.0 100.0
QGK90394.1 98.0 100.0
QIW86364.1 100.0 100.0
QQM15083.1 99.0 100.0
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AZU99292.1 99.0 100.0
QGK90444.1 98.0 100.0
ALJ99087.1 99.0 100.0
YP 009610536.1 100.0 100.0
YP 009189380.1 99.0 100.0
YP 009190472.1 69.0 100.0
YP 009949058.1 58.0 100.0
YP 009599281.1 98.0 100.0
QHS01530.1 99.0 100.0
AYR04394.1 90.0 98.0
YP 009203055.1 96.0 100.0
QGF20174.1 100.0 100.0
QOV07800.1 100.0 100.0
QQO92973.1 99.0 100.0
YP 009814060.1 94.0 100.0
QNO11418.1 98.0 100.0
YP 009813438.1 98.0 88.0
QGK90498.1 100.0 100.0
YP 009103257.1 100.0 100.0
QAU04146.1 100.0 99.0
YP 009216837.1 99.0 97.0
AUG85465.1 99.0 100.0
QOI69765.1 99.0 100.0
QNO11465.1 82.0 100.0
AYP68982.1 100.0 95.0
QGH74055.1 99.0 100.0
QGH74134.1 99.0 100.0
QEA11050.1 100.0 99.0
YP 009291902.1 100.0 100.0
YP 009613841.1 100.0 100.0
YP 009609870.1 100.0 100.0
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YP 009604496.1 100.0 99.0
YP 006383804.1 100.0 100.0
AYP69084.1 100.0 100.0
YP 009146765.1 100.0 100.0
YP 003347555.1 99.0 100.0
YP 003347556.1 100.0 100.0
AWN07125.1 100.0 100.0
AWN07126.1 100.0 100.0
AOT28172.1 100.0 100.0
AOT28173.1 100.0 100.0
AWN07083.1 100.0 100.0
AWN07084.1 99.0 100.0
APZ82804.1 100.0 100.0
APZ82805.1 100.0 100.0
AWN07213.1 99.0 100.0
AWN07214.1 100.0 100.0
AOZ65569.1 99.0 100.0
YP 009215499.1 97.0 100.0
YP 009215498.1 100.0 100.0
ALT58498.1 99.0 100.0
APZ82847.1 98.0 100.0
APZ82848.1 100.0 100.0
YP 009280720.1 100.0 98.0
YP 009302756.1 99.0 74.0
YP 009098385.1 99.0 98.0
YP 009188797.1 99.0 91.0
BBF66844.1 100.0 100.0
BBF66888.1 95.0 100.0
AZS06408.1 99.0 99.0
QAU05545.1 100.0 100.0
QAU05505.1 100.0 100.0
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QBG78385.1 100.0 100.0
QGZ00758.1 99.0 100.0
QGZ00819.1 98.0 100.0
QGZ00875.1 98.0 100.0
QGZ00936.1 99.0 100.0
QIW86419.1 99.0 100.0
QIW86428.1 100.0 100.0
QJI52623.1 99.0 100.0
QJI52632.1 99.0 100.0
QMP82097.1 99.0 90.0
QMP82089.1 100.0 100.0
QOI68577.1 100.0 100.0
QOI68629.1 100.0 100.0
AOZ65386.1 100.0 100.0
YP 009153196.1 100.0 100.0
YP 009153203.1 100.0 100.0
QIW88225.1 100.0 100.0
YP 002003831.1 100.0 100.0
YP 009198668.1 99.0 100.0
YP 009198669.1 100.0 100.0
AUV61507.1 100.0 100.0
ARB12452.1 99.0 100.0
ARB12406.1 99.0 100.0
ARB12500.1 99.0 100.0
AXE28435.1 100.0 100.0
ASZ78307.1 36.0 0.0
YP 003347651.1 100.0 100.0
YP 009199937.1 100.0 100.0
ASV44946.1 100.0 100.0
YP 009204835.1 100.0 100.0
AWK24039.1 100.0 100.0
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ARM70347.1 100.0 100.0
AVI03134.1 100.0 100.0
ASV44964.1 68.0 100.0
AXF39389.1 73.0 100.0
AUE22051.1 60.0 100.0
ASW27458.1 49.0 100.0
YP 009197879.1 100.0 100.0
AUV59228.1 80.0 78.0
AUV59229.1 100.0 100.0
AUV59230.1 100.0 100.0
AUV59234.1 100.0 100.0
YP 009796379.1 100.0 100.0
AUG87748.1 98.0 100.0
AUG87751.1 99.0 100.0
AUG87753.1 96.0 100.0
AUG87958.1 97.0 100.0
AUG87959.1 99.0 100.0
AUG87960.1 99.0 99.0
AUG87962.1 99.0 100.0
YP 007007253.1 82.0 96.0
YP 007007685.1 98.0 100.0
YP 007007686.1 96.0 93.0
YP 007007687.1 100.0 100.0
AWN07172.1 100.0 100.0
YP 008532046.1 94.0 100.0
YP 008532047.1 99.0 100.0
YP 008532048.1 100.0 100.0
YP 008532049.1 99.0 99.0
YP 008532051.1 99.0 37.0
YP 008532050.1 100.0 100.0
AZF89844.1 100.0 100.0
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QEQ50396.1 98.0 100.0
QKY78353.1 100.0 100.0
YP 654147.1 39.0 100.0
YP 004678762.1 100.0 100.0
BAW85696.1 99.0 100.0
BAW85697.1 99.0 100.0
BAQ02780.1 39.0 100.0
BAW85692.1 100.0 100.0
BAW85695.1 3.0 92.0
APW79830.1 98.0 100.0
NP 112090.1 100.0 100.0
NP 059644.1 100.0 100.0
NP 853609.1 99.0 97.0
NP 853610.1 99.0 100.0
AIB07058.1 100.0 100.0
YP 009140380.1 100.0 100.0
NP 848228.1 98.0 100.0
YP 008126828.1 99.0 100.0

Table S9: DPO negative proteins with accession number and the corresponding DPO percentage
for the models SVM and ANN.

Protein Accession number SVM ANN
NP 049616.1 1.0 0.0
NP 049617.1 4.0 0.0
NP 049618.1 1.0 0.0
NP 049619.1 0.0 0.0
NP 049620.1 6.0 0.0
NP 049621.1 5.0 0.0
NP 049622.1 5.0 0.0
NP 049623.1 5.0 0.0
NP 049624.1 3.0 0.0
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NP 049625.1 3.0 0.0
NP 049626.1 1.0 0.0
NP 049627.1 1.0 0.0
NP 049628.1 0.0 0.0
NP 049629.1 0.0 0.0
NP 049630.1 1.0 0.0
NP 049631.1 6.0 0.0
NP 049632.1 1.0 0.0
NP 049633.1 2.0 0.0
NP 049634.1 1.0 0.0
NP 049635.1 0.0 0.0
NP 049636.1 1.0 0.0
NP 049638.1 1.0 0.0
NP 049639.1 6.0 0.0
NP 049640.1 5.0 0.0
NP 049641.1 0.0 0.0
NP 049642.1 6.0 0.0
NP 049643.1 3.0 0.0
NP 049644.1 1.0 0.0
NP 049645.1 1.0 0.0
NP 049646.1 1.0 0.0
NP 049647.1 1.0 0.0
NP 049648.1 3.0 0.0
NP 049649.1 6.0 0.0
NP 049650.1 1.0 0.0
NP 049651.1 1.0 0.0
NP 049652.1 3.0 0.0
NP 049653.1 5.0 0.0
NP 049654.1 2.0 0.0
NP 049655.1 4.0 0.0
NP 049656.2 0.0 0.0
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NP 049657.1 1.0 0.0
NP 049658.1 1.0 0.0
NP 049659.1 1.0 0.0
NP 049660.1 5.0 0.0
NP 049661.1 2.0 0.0
NP 049662.1 0.0 0.0
NP 049663.1 1.0 0.0
NP 049664.1 0.0 0.0
NP 049665.1 0.0 0.0
NP 049666.1 1.0 0.0
NP 049667.1 1.0 0.0
NP 049668.1 2.0 0.0
NP 049669.1 4.0 0.0
NP 049670.1 6.0 0.0
NP 049671.1 3.0 0.0
NP 049672.1 2.0 0.0
NP 813808.1 3.0 0.0
NP 049673.1 0.0 0.0
NP 049674.1 1.0 0.0
NP 049675.1 2.0 0.0
NP 049676.1 3.0 0.0
NP 049677.1 2.0 0.0
NP 049678.1 3.0 0.0
NP 049679.1 0.0 0.0
NP 049680.1 6.0 0.0
NP 049681.1 4.0 0.0
NP 049682.1 3.0 0.0
NP 049683.1 3.0 0.0
NP 049684.1 5.0 0.0
NP 049685.1 4.0 0.0
NP 049686.1 6.0 0.0



A.1. Supplementary tables 105

Table S9 continued from previous page
Protein Accession number SVM ANN
NP 049687.1 4.0 0.0
NP 049688.1 2.0 0.0
NP 049689.1 2.0 0.0
NP 049691.2 1.0 0.0
NP 049690.1 0.0 0.0
NP 049692.1 1.0 0.0
NP 049693.2 6.0 0.0
NP 049694.1 1.0 0.0
NP 049695.1 6.0 0.0
NP 049696.1 2.0 0.0
NP 049697.1 4.0 0.0
NP 049698.1 1.0 0.0
NP 049699.1 4.0 0.0
NP 049700.1 2.0 0.0
NP 049701.1 1.0 0.0
NP 049702.1 3.0 0.0
NP 049703.1 0.0 0.0
NP 049704.1 0.0 0.0
NP 049705.1 3.0 0.0
NP 049706.1 2.0 0.0
NP 049707.1 2.0 0.0
NP 049710.1 0.0 0.0
NP 049711.1 3.0 0.0
NP 049712.1 6.0 0.0
NP 813809.1 6.0 0.0
NP 049713.1 3.0 0.0
NP 049714.1 3.0 0.0
NP 049715.1 3.0 0.0
NP 049716.1 0.0 0.0
NP 049717.1 2.0 0.0
NP 049718.1 6.0 0.0
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NP 049719.1 2.0 0.0
NP 049721.1 5.0 0.0
NP 049722.1 4.0 0.0
NP 049723.1 3.0 0.0
NP 049724.1 4.0 0.0
NP 049725.1 3.0 0.0
NP 049726.1 1.0 0.0
NP 049727.1 3.0 0.0
NP 049728.1 2.0 0.0
NP 049729.1 6.0 0.0
NP 049730.1 1.0 0.0
NP 049731.1 1.0 0.0
NP 049732.1 1.0 0.0
NP 049733.1 1.0 0.0
NP 049734.1 5.0 0.0
NP 049735.1 5.0 0.0
NP 049736.1 1.0 0.0
NP 049737.1 0.0 0.0
NP 049738.1 3.0 0.0
NP 049739.1 4.0 0.0
NP 049740.1 3.0 0.0
NP 049741.1 0.0 0.0
NP 049742.1 2.0 0.0
NP 049743.1 2.0 0.0
NP 049744.1 0.0 0.0
NP 049745.2 1.0 0.0
NP 049746.1 0.0 0.0
NP 049747.1 3.0 0.0
NP 049748.1 3.0 0.0
NP 049749.1 3.0 0.0
NP 049750.1 0.0 0.0
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NP 049751.1 4.0 0.0
NP 049752.1 0.0 0.0
NP 049753.1 47.0 0.0
NP 049754.1 2.0 0.0
NP 049755.1 1.0 0.0
NP 049756.1 1.0 0.0
NP 049757.1 5.0 0.0
NP 049758.1 6.0 0.0
NP 049759.1 6.0 0.0
NP 049760.1 20.0 0.0
NP 049761.1 1.0 0.0
NP 049762.1 6.0 0.0
NP 049763.1 3.0 0.0
NP 049764.1 3.0 0.0
NP 049765.1 2.0 0.0
NP 049766.1 0.0 0.0
NP 049767.1 4.0 0.0
NP 049771.1 5.0 6.0
NP 049775.1 0.0 0.0
NP 049783.1 4.0 0.0
NP 049860.1 7.0 1.0
NP 049861.1 6.0 0.0
NP 049862.1 6.0 1.0
NP 049863.1 16.0 97.0

Table S10: CDS list from Acinetobacter phage vB Api 3043-K38, as obtained from NCBI, and the
predicted probability of each CDS being a DPO. Includes the predictions of the SVM
model and ANN model.

Protein Accession number SVM ANN
QYC50686.1 6.0 0.0
QYC50685.1 5.0 0.0
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QYC50678.1 5.0 0.0
QYC50677.1 4.0 0.0
QYC50660.1 5.0 0.0
QYC50671.1 7.0 0.0
QYC50665.1 2.0 0.0
QYC50668.1 5.0 0.0
QYC50657.1 2.0 0.0
QYC50687.1 6.0 0.0
QYC50664.1 8.0 0.0
QYC50661.1 4.0 0.0
QYC50663.1 1.0 0.0
QYC50688.1 6.0 47.0
QYC50682.1 6.0 0.0
QYC50675.1 6.0 0.0
QYC50676.1 6.0 0.0
QYC50652.1 0.0 0.0
QYC50669.1 10.0 0.0
QYC50673.1 5.0 0.0
QYC50645.1 0.0 0.0
QYC50653.1 9.0 53.0
QYC50647.1 1.0 0.0
QYC50640.1 6.0 0.0
QYC50674.1 4.0 0.0
QYC50650.1 2.0 0.0
QYC50666.1 1.0 0.0
QYC50649.1 0.0 0.0
QYC50658.1 1.0 0.0
QYC50662.1 4.0 0.0
QYC50648.1 0.0 0.0
QYC50654.1 0.0 0.0
QYC50639.1 0.0 0.0
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QYC50681.1 3.0 0.0
QYC50672.1 6.0 0.0
QYC50644.1 3.0 0.0
QYC50651.1 25.0 0.0
QYC50646.1 45.0 10.0
QYC50684.1 6.0 0.0
QYC50679.1 6.0 0.0
QYC50656.1 0.0 0.0
QYC50641.1 10.0 2.0
QYC50655.1 67.0 0.0
QYC50638.1 17.0 1.0
QYC50637.1 8.0 1.0
QYC50642.1 99.0 100.0
QYC50667.1 4.0 0.0
QYC50659.1 4.0 6.0
QYC50670.1 12.0 0.0
QYC50643.1 2.0 16.0
QYC50689.1 6.0 0.0
QYC50680.1 3.0 0.0
QYC50683.1 6.0 0.0

Table S11: CDS list from Klebsiella phage RAD2, as obtained from NCBI, and the predicted
probability of each CDS being a DPO. Includes the predictions of the SVM model and
ANN model.

Protein Accession number SVM ANN
YP 010115728.1 81.0 78.0
YP 010115729.1 99.0 100.0
YP 010115730.1 4.0 0.0
YP 010115731.1 1.0 0.0
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YP 010115732.1 6.0 0.0
YP 010115733.1 2.0 0.0
YP 010115734.1 5.0 0.0
YP 010115735.1 1.0 12.0
YP 010115736.1 6.0 0.0
YP 010115737.1 1.0 0.0
YP 010115738.1 2.0 0.0
YP 010115739.1 3.0 0.0
YP 010115740.1 7.0 0.0
YP 010115741.1 2.0 0.0
YP 010115742.1 5.0 0.0
YP 010115743.1 2.0 33.0
YP 010115744.1 1.0 0.0
YP 010115745.1 5.0 20.0
YP 010115746.1 18.0 0.0
YP 010115747.1 8.0 0.0
YP 010115748.1 3.0 0.0
YP 010115749.1 2.0 0.0
YP 010115750.1 8.0 0.0
YP 010115751.1 3.0 0.0
YP 010115752.1 6.0 0.0
YP 010115753.1 0.0 0.0
YP 010115754.1 6.0 0.0
YP 010115755.1 1.0 0.0
YP 010115756.1 5.0 0.0
YP 010115757.1 4.0 0.0
YP 010115758.1 2.0 0.0
YP 010115759.1 6.0 0.0
YP 010115760.1 4.0 0.0
YP 010115761.1 5.0 0.0
YP 010115762.1 7.0 0.0
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YP 010115763.1 6.0 0.0
YP 010115764.1 3.0 0.0
YP 010115765.1 3.0 0.0
YP 010115766.1 6.0 0.0
YP 010115767.1 2.0 0.0
YP 010115768.1 3.0 0.0
YP 010115769.1 5.0 0.0
YP 010115770.1 7.0 0.0
YP 010115771.1 5.0 0.0
YP 010115772.1 1.0 0.0
YP 010115773.1 6.0 0.0
YP 010115774.1 5.0 0.0
YP 010115775.1 3.0 0.0
YP 010115776.1 4.0 0.0
YP 010115777.1 6.0 0.0
YP 010115778.1 6.0 0.0
YP 010115779.1 6.0 7.0
YP 010115780.1 19.0 0.0
YP 010115781.1 1.0 0.0
YP 010115782.1 5.0 0.0
YP 010115783.1 6.0 0.0
YP 010115784.1 6.0 0.0
YP 010115785.1 2.0 0.0
YP 010115786.1 2.0 0.0
YP 010115787.1 7.0 0.0
YP 010115788.1 3.0 0.0
YP 010115789.1 1.0 0.0
YP 010115790.1 59.0 8.0
YP 010115791.1 6.0 0.0
YP 010115792.1 2.0 0.0
YP 010115793.1 13.0 0.0
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YP 010115794.1 5.0 0.0
YP 010115795.1 47.0 0.0
YP 010115796.1 1.0 0.0
YP 010115797.1 25.0 49.0
YP 010115798.1 7.0 0.0
YP 010115799.1 7.0 1.0
YP 010115800.1 12.0 0.0
YP 010115801.1 78.0 4.0
YP 010115802.1 2.0 0.0
YP 010115803.1 5.0 0.0

Table S12: CDS list from Pseudomonas Phage LUZ19, as obtained from NCBI, and the predicted
probability of each CDS being a DPO. Includes both predictions of the SVM model
and ANN model.

Protein Accession number SVM ANN
YP 001671942.1 6.0 0.0
YP 001671943.1 4.0 0.0
YP 001671944.1 5.0 0.0
YP 001671945.1 2.0 3.0
YP 001671946.1 18.0 0.0
YP 001671947.1 3.0 0.0
YP 001671948.1 6.0 0.0
YP 001671949.1 9.0 0.0
YP 001671950.1 6.0 0.0
YP 001671951.1 4.0 0.0
YP 001671952.1 3.0 1.0
YP 001671953.1 9.0 0.0
YP 001671954.1 3.0 0.0
YP 001671955.1 2.0 0.0
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YP 001671956.1 6.0 0.0
YP 001671957.1 6.0 0.0
YP 001671958.1 4.0 0.0
YP 001671959.1 9.0 0.0
YP 001671960.1 3.0 0.0
YP 001671961.1 0.0 0.0
YP 001671962.1 4.0 0.0
YP 001671963.1 2.0 0.0
YP 001671964.1 6.0 0.0
YP 001671965.1 50.0 2.0
YP 001671966.1 6.0 0.0
YP 001671967.1 11.0 0.0
YP 001671968.1 1.0 0.0
YP 001671969.1 11.0 0.0
YP 001671970.1 6.0 0.0
YP 001671971.1 14.0 0.0
YP 001671972.1 4.0 0.0
YP 001671973.1 2.0 0.0
YP 001671974.1 6.0 0.0
YP 001671975.1 10.0 0.0
YP 001671976.1 12.0 0.0
YP 001671977.1 17.0 0.0
YP 001671978.1 17.0 0.0
YP 001671979.1 1.0 28.0
YP 001671980.1 7.0 0.0
YP 001671981.1 4.0 0.0
YP 001671982.1 6.0 0.0
YP 001671983.1 10.0 0.0
YP 001671984.1 6.0 0.0
YP 001671985.1 96.0 16.0
YP 001671986.1 2.0 0.0



A.1. Supplementary tables 114

Table S12 continued from previous page
Protein Accession number SVM ANN
YP 001671987.1 4.0 0.0
YP 001671988.1 33.0 2.0
YP 001671989.1 6.0 0.0
YP 001671990.1 9.0 3.0
YP 001671991.1 2.0 0.0
YP 001671992.1 6.0 0.0
YP 001671993.1 34.0 0.0
YP 001671994.1 6.0 0.0
YP 001671995.1 3.0 0.0

Table S13: CDS list from Escherichia phage vB EcoP G7C, as obtained from NCBI, and the
predicted probability of each CDS being a DPO. Includes both predictions of the SVM
model and ANN model.

Protein Accession number SVM ANN
YP 004782125.1 4.0 0.0
YP 004782126.1 6.0 0.0
YP 004782127.1 1.0 0.0
YP 004782128.1 1.0 17.0
YP 004782129.1 0.0 0.0
YP 004782130.1 5.0 0.0
YP 004782131.1 6.0 0.0
YP 004782132.1 6.0 0.0
YP 004782133.1 6.0 0.0
YP 004782134.1 6.0 0.0
YP 004782135.1 6.0 0.0
YP 004782136.1 6.0 0.0
YP 004782137.1 6.0 0.0
YP 004782138.1 4.0 0.0
YP 004782139.1 7.0 0.0
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Protein Accession number SVM ANN
YP 004782140.1 6.0 0.0
YP 004782141.1 0.0 0.0
YP 004782142.1 1.0 0.0
YP 004782143.1 2.0 90.0
YP 004782144.1 6.0 0.0
YP 004782145.1 62.0 11.0
YP 004782146.1 5.0 0.0
YP 004782147.1 6.0 0.0
YP 004782148.1 16.0 0.0
YP 004782149.1 2.0 0.0
YP 004782150.1 1.0 0.0
YP 004782151.1 0.0 0.0
YP 004782152.1 1.0 0.0
YP 004782153.1 7.0 0.0
YP 004782154.1 6.0 0.0
YP 004782155.1 2.0 0.0
YP 004782156.1 2.0 0.0
YP 004782157.1 6.0 0.0
YP 004782158.1 6.0 0.0
YP 004782159.1 7.0 0.0
YP 004782160.1 6.0 0.0
YP 004782161.1 6.0 0.0
YP 004782162.1 0.0 0.0
YP 004782163.1 3.0 0.0
YP 004782164.1 2.0 0.0
YP 004782165.1 7.0 0.0
YP 004782166.1 14.0 18.0
YP 004782167.1 1.0 0.0
YP 004782168.1 1.0 0.0
YP 004782169.1 5.0 0.0
YP 004782170.1 2.0 0.0
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Protein Accession number SVM ANN
YP 004782171.1 1.0 0.0
YP 004782172.1 2.0 0.0
YP 004782173.1 0.0 1.0
YP 004782174.1 0.0 0.0
YP 004782175.1 1.0 3.0
YP 004782176.1 5.0 0.0
YP 004782177.1 6.0 0.0
YP 004782178.1 6.0 0.0
YP 004782179.1 4.0 0.0
YP 004782180.1 5.0 0.0
YP 004782181.1 31.0 17.0
YP 004782182.1 6.0 0.0
YP 004782183.1 67.0 0.0
YP 004782184.1 13.0 0.0
YP 004782185.1 0.0 0.0
YP 004782186.1 28.0 1.0
YP 004782187.1 8.0 0.0
YP 004782188.1 12.0 0.0
YP 004782189.1 15.0 0.0
YP 004782190.1 4.0 0.0
YP 004782191.1 8.0 0.0
YP 004782192.1 2.0 0.0
YP 004782193.1 5.0 0.0
YP 004782194.1 1.0 0.0
YP 004782195.1 94.0 92.0
YP 004782196.1 100.0 100.0
YP 004782197.1 3.0 0.0
YP 004782198.1 0.0 0.0
YP 004782199.1 12.0 0.0
YP 004782200.1 2.0 0.0
YP 004782201.1 1.0 0.0
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Protein Accession number SVM ANN
YP 004782202.1 5.0 0.0
YP 004782203.1 5.0 0.0

Table S14: Prophage protein list from Acinetobacter baumannii strain A85, within region 3477508-
3510350, as obtained from PHASTER, and the predicted probability of each protein
being a DPO. Includes the predictions of the SVM model and ANN model.

Protein identifier and Description SVM ANN
ASF78650.1 VirulencesensorproteinBvgSprecursor 0.0 0.0
ASF78651.1 Phageportalprotein 0.0 0.0
ASF78652.1 Terminase-likefamilyprotein 8.0 0.0
ASF78653.1 Phagecapsidscaffoldingprotein(GPO)serinepeptidase 1.0 0.0
ASF78654.1 Phagemajorcapsidprotein,P2family 18.0 12.0
ASF78655.1 Phagesmallterminasesubunit 1.0 0.0
ASF78656.1 Phageheadcompletionprotein(GPL) 10.0 0.0
ASF78657.1 PhageTailProteinX 4.0 0.0
ASF78658.1 hypotheticalprotein 7.0 0.0
ASF78659.1 hypotheticalprotein 6.0 0.0
ASF78660.1 Putativepeptidoglycanbindingdomainprotein 1.0 0.0
ASF78661.1 P2phagetailcompletionproteinR(GpR) 0.0 0.0
ASF78662.1 Phagevirionmorphogenesisfamilyprotein 3.0 0.0
ASF78663.1 Phage-relatedbaseplateassemblyprotein 23.0 67.0
ASF78664.1 Gene25-likelysozyme 5.0 0.0
ASF78665.1 BaseplateJ-likeprotein 23.0 0.0
ASF78666.1 Phagetailprotein(Tail P2 I) 2.0 0.0
ASF78667.1 hypotheticalprotein 99.0 97.0
ASF78668.1 Phagetailsheathprotein 0.0 0.0
ASF78669.1 PhagetailtubeproteinFII 11.0 0.0
ASF78670.1 PhagetailproteinE 4.0 0.0
ASF78671.1 Phage-relatedminortailprotein 5.0 0.0
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Protein identifier and Description SVM ANN

ASF78672.1 PhageP2GpU 3.0 0.0
ASF78673.1 PhagelatecontrolgeneDprotein(GPD) 42.0 85.0
ASF78674.1 Ogr/Delta-likezincfinger 7.0 0.0
ASF78675.1 hypotheticalprotein 3.0 0.0
ASF78676.1 hypotheticalprotein 4.0 0.0
ASF78677.1 DNApolymeraseIIIsubunitepsilon 0.0 0.0
ASF78678.1 hypotheticalprotein 3.0 0.0
ASF78679.1 PhageregulatoryproteinRha(Phage pRha) 19.0 0.0
ASF78680.1 hypotheticalprotein 3.0 0.0
ASF78681.1 Helix-turn-helixdomainprotein 1.0 0.0
ASF78682.1 hypotheticalprotein 6.0 0.0
ASF78683.1 hypotheticalprotein 7.0 1.0
ASF78684.1 hypotheticalprotein 1.0 1.0
ASF78685.1 hypotheticalprotein 0.0 1.0
ASF78686.1 hypotheticalprotein 5.0 0.0
ASF78687.1 hypotheticalprotein 8.0 0.0
ASF78688.1 Single-strandedDNA-bindingprotein 2.0 0.0
ASF78689.1 Exodeoxyribonuclease10 16.0 0.0
ASF78690.1 hypotheticalprotein 2.0 0.0
ASF78691.1 hypotheticalprotein 2.0 0.0

Table S15: Prophage protein list from Acinetobacter baumannii ATCC 19606, within region 78042-
120394, as obtained from PHASTER, and the predicted probability of each protein
being a DPO. Includes the predictions of the SVM model and ANN model.

Protein identifier and Description SVM ANN
ENW74124.1 hypotheticalprotein 1.0 0.0
ENW74125.1 hypotheticalprotein 1.0 0.0
ENW74126.1 hypotheticalprotein 0.0 0.0
ENW74127.1 hypotheticalprotein 2.0 0.0
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Protein identifier and Description SVM ANN

ENW74128.1 hypotheticalprotein 5.0 0.0
ENW74129.1 hypotheticalprotein 6.0 0.0
ENW74130.1 hypotheticalprotein 5.0 0.0
ENW74131.1 hypotheticalprotein 62.0 76.0
ENW74132.1 hypotheticalprotein 5.0 0.0
ENW74133.1 hypotheticalprotein 24.0 99.0
ENW74134.1 hypotheticalprotein 49.0 99.0
ENW74135.1 hypotheticalprotein 16.0 1.0
ENW74136.1 hypotheticalprotein 17.0 0.0
ENW74137.1 hypotheticalprotein 3.0 0.0
ENW74138.1 hypotheticalprotein 15.0 0.0
ENW74139.1 hypotheticalprotein 5.0 0.0
ENW74140.1 hypotheticalprotein 3.0 0.0
ENW74141.1 hypotheticalprotein 53.0 0.0
ENW74142.1 hypotheticalprotein 4.0 0.0
ENW74143.1 hypotheticalprotein 7.0 0.0
ENW74144.1 hypotheticalprotein 2.0 0.0
ENW74145.1 hypotheticalprotein 1.0 0.0
ENW74146.1 hypotheticalprotein 4.0 0.0
ENW74147.1 hypotheticalprotein 4.0 2.0
ENW74148.1 hypotheticalprotein 14.0 85.0
ENW74149.1 hypotheticalprotein 4.0 100.0
ENW74150.1 hypotheticalprotein 2.0 0.0
ENW74151.1 hypotheticalprotein 6.0 0.0
ENW74152.1 hypotheticalprotein 2.0 0.0
ENW74153.1 hypotheticalprotein 5.0 0.0
ENW74154.1 HI1409familyphage-associatedprotein 0.0 0.0
ENW74155.1 hypotheticalprotein 0.0 0.0
ENW74156.1 hypotheticalprotein 1.0 0.0
ENW74157.1 hypotheticalprotein 1.0 0.0
ENW74158.1 hypotheticalprotein 1.0 0.0
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Protein identifier and Description SVM ANN

ENW74159.1 hypotheticalprotein 2.0 0.0
ENW74160.1 hypotheticalprotein 6.0 2.0
ENW74161.1 hypotheticalprotein 5.0 0.0
ENW74162.1 hypotheticalprotein 1.0 0.0
ENW74163.1 hypotheticalprotein 1.0 0.0
ENW74164.1 hypotheticalprotein 5.0 0.0
ENW74165.1 hypotheticalprotein 3.0 0.0
ENW74166.1 hypotheticalprotein 2.0 0.0
ENW74167.1 hypotheticalprotein 2.0 0.0
ENW74168.1 hypotheticalprotein 6.0 0.0
ENW74169.1 hypotheticalprotein 21.0 2.0
ENW74170.1 hypotheticalprotein 1.0 0.0
ENW74171.1 hypotheticalprotein 3.0 4.0
ENW74172.1 hypotheticalprotein 3.0 0.0
ENW74173.1 hypotheticalprotein 1.0 0.0
ENW74174.1 hypotheticalprotein 5.0 0.0
ENW74175.1 hypotheticalprotein 6.0 0.0
ENW74176.1 hypotheticalprotein 3.0 0.0
ENW74177.1 hypotheticalprotein 1.0 0.0
ENW74178.1 hypotheticalprotein 5.0 0.0
ENW74179.1 hypotheticalprotein 4.0 0.0
ENW74180.1 hypotheticalprotein 6.0 0.0
ENW74181.1 hypotheticalprotein 3.0 0.0
ENW74182.1 hypotheticalprotein 1.0 0.0
ENW74183.1 hypotheticalprotein 6.0 0.0



A.1. Supplementary tables 121

Table S16: Prophage protein list from Acinetobacter baumannii ATCC 19606, within region
274341-319584, as obtained from PHASTER, and the predicted probability of each
protein being a DPO. Includes the predictions of the SVM model and ANN model.

Protein identifier and Description SVM ANN
ENW74322.1 hypotheticalprotein 6.0 0.0
ENW74323.1 hypotheticalprotein 5.0 0.0
ENW74324.1 hypotheticalprotein 91.0 1.0
ENW74325.1 hypotheticalprotein 2.0 0.0
ENW74326.1 hypotheticalprotein 1.0 0.0
ENW74327.1 hypotheticalprotein 5.0 0.0
ENW74328.1 hypotheticalprotein 2.0 0.0
ENW74329.1 hypotheticalprotein 4.0 0.0
ENW74330.1 hypotheticalprotein 8.0 0.0
ENW74331.1 hypotheticalprotein 19.0 5.0
ENW74332.1 hypotheticalprotein 2.0 0.0
ENW74333.1 hypotheticalprotein 5.0 0.0
ENW74334.1 hypotheticalprotein 4.0 0.0
ENW74335.1 hypotheticalprotein 57.0 83.0
ENW74336.1 hypotheticalprotein 88.0 8.0
ENW74337.1 hypotheticalprotein 67.0 62.0
ENW74338.1 hypotheticalprotein 2.0 0.0
ENW74339.1 hypotheticalprotein 4.0 0.0
ENW74340.1 hypotheticalprotein 18.0 1.0
ENW74341.1 hypotheticalprotein 20.0 0.0
ENW74342.1 hypotheticalprotein 2.0 0.0
ENW74343.1 hypotheticalprotein 2.0 0.0
ENW74344.1 hypotheticalprotein 4.0 0.0
ENW74345.1 hypotheticalprotein 7.0 0.0
ENW74346.1 hypotheticalprotein 3.0 0.0
ENW74347.1 hypotheticalprotein 3.0 0.0
ENW74348.1 hypotheticalprotein 10.0 10.0
ENW74349.1 hypotheticalprotein 2.0 0.0
ENW74350.1 hypotheticalprotein 3.0 0.0
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Protein identifier and Description SVM ANN
ENW74351.1 hypotheticalprotein 6.0 0.0
ENW74352.1 hypotheticalprotein 4.0 0.0
ENW74353.1 hypotheticalprotein 1.0 0.0
ENW74354.1 hypotheticalprotein 1.0 0.0
ENW74355.1 hypotheticalprotein 6.0 0.0
ENW74356.1 hypotheticalprotein 3.0 0.0
ENW74357.1 hypotheticalprotein 0.0 0.0
ENW74358.1 hypotheticalprotein 2.0 0.0
ENW74359.1 hypotheticalprotein 0.0 0.0
ENW74360.1 hypotheticalprotein 3.0 0.0
ENW74361.1 hypotheticalprotein 6.0 0.0
ENW74362.1 hypotheticalprotein 3.0 0.0
ENW74363.1 hypotheticalprotein 4.0 5.0
ENW74364.1 hypotheticalprotein 3.0 0.0
ENW74365.1 hypotheticalprotein 4.0 0.0
ENW74366.1 hypotheticalprotein 1.0 0.0
ENW74367.1 hypotheticalprotein 6.0 0.0
ENW74368.1 hypotheticalprotein 2.0 0.0
ENW74369.1 hypotheticalprotein 1.0 0.0
ENW74370.1 hypotheticalprotein 1.0 0.0
ENW74371.1 hypotheticalprotein 22.0 11.0
ENW74372.1 hypotheticalprotein 6.0 0.0
ENW74373.1 hypotheticalprotein 3.0 0.0
ENW74374.1 hypotheticalprotein 1.0 0.0
ENW74375.1 hypotheticalprotein 9.0 23.0
ENW74376.1 hypotheticalprotein 5.0 0.0
ENW74377.1 hypotheticalprotein 10.0 0.0
ENW74378.1 hypotheticalprotein 4.0 0.0
ENW74379.1 hypotheticalprotein 5.0 0.0
ENW74380.1 hypotheticalprotein 3.0 0.0
ENW74381.1 hypotheticalprotein 25.0 0.0
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Protein identifier and Description SVM ANN
ENW74382.1 hypotheticalprotein 3.0 0.0
ENW74383.1 hypotheticalprotein 5.0 0.0
ENW74384.1 hypotheticalprotein 1.0 0.0
ENW74385.1 hypotheticalprotein 1.0 0.0
ENW74386.1 hypotheticalprotein 6.0 0.0
ENW74387.1 hypotheticalprotein 39.0 94.0
ENW74388.1 hypotheticalprotein 1.0 0.0
ENW74389.1 hypotheticalprotein 3.0 0.0

A.2 SUPPLEMENTARY FIGURES

Figure S1: ROC curves representing the DT model performance for all three datasets with
corresponding AUROC value.
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Figure S2: PR curves representing the DT model performance for all three datasets with corre-
sponding AP value.

Figure S3: ROC curves representing the SVM model performance for all three datasets with
corresponding AUROC value.
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Figure S4: PR curves representing the SVM model performance for all three datasets with
corresponding AP value.

Figure S5: ROC curves representing the RF model performance for all three datasets with
corresponding AUROC value.
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Figure S6: PR curves representing the RF model performance for all three datasets with corre-
sponding AP value.


