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RESUMO 

Este trabalho, aqui apresentado, tem como objetivo o estudo do comportamento do sistema de 

suspensão de um veículo ao atravessar estradas com obstáculos, como lombas ou buracos. 

Para atingir este objetivo, uma vasta revisão literária foi feita. Sendo este um tópico extenso, três tipos 

de revisão foram feitos. Primeiro, a um estudo global à tecnologia usava hoje em dia em pneus e nos 

sistemas de suspensão de veículos foi compilado. Uma breve menção à cinemática de veículos é 

empreendida. De seguida, a dinâmica do contacto pneu/solo é sistematicamente explanada, para 

compreender os diversos modelos de pneu (força) existentes. Adicionalmente, os conceitos fundamentais 

da análise da dinâmica multicorpo são expostos para justificar a modelação do veículo como um sistema 

multicorpo.  

Com toda a teoria apresentada, os conceitos previamente explicados são aplicados na prática para a 

formulação de um método que visa estimar a trajetória de um veículo atravessando uma qualquer 

estrada. O primeiro passo a executar é a escolha do modelo de pneu a utilizar. Percebe-se que se deve 

usar modelos matemáticos, culminando na escolha da Magic Formula. Os passos seguintes consistem 

na introdução de uma metodologia, que estima o contacto entre um pneu e o solo, para simular as 

dinâmicas pneu/solo de um veículo. Dois métodos diferentes são expostos: o primeiro para estradas 

completamente planas, sem obstáculos; o segundo, para estradas com obstáculos, como lombas ou 

buracos. Este modelo é posteriormente inserido num programa de análise das dinâmicas multicorpo, 

MUBODYNA3D, e diversas simulações são realizadas.  

Estas simulações começam pela definição do veículo como um sistema multicorpo, com corpos 

conectados por juntas cinemáticas. As primeiras simulações são realizadas numa estrada plana para 

validar os modelos e metodologias previamente criadas. O integrador, que integra os resultados das 

equações do movimento para prever a trajetória, é refinado. Finalmente, simulações com estradas com 

obstáculos são geradas.  

Por fim, os resultados dessas simulações são discutidos, percebendo-se que apresentam um valor 

inesperado. Ao atravessar um obstáculo, as rodas perdem o contacto com a superfície, provocando a 

descolagem do carro. No entanto, é concluído que a análise de sistemas multicorpo é de extrema 

relevância para a simulação de realidades complexas, produzindo resultados precisos. 

Palavras-chave 

Dinâmica de veículos; Estimativa do contacto; Modelo de pneu; Simulações; Sistemas multicorpo 
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ABSTRACT 

This work, hereby presented, has a primary target of studying the behaviour of a road vehicle’s 

suspension system, while it is traversing roads with big obstacles, such as potholes or speed 

bumps/humps. 

To accomplish this task, a broad literature review was made. Since this is an extensive topic, three 

types of review were made. Firstly, an overview of the state-of-the-art technology used in tires and 

suspension systems nowadays is compiled. A brief mention to vehicle kinematics is also made. Then, the 

dynamics of the contact tire/road are systematically explained, in order to understand the diverse tire 

force models that exist. Lastly, a rundown of the fundamental concepts of multibody dynamics analysis 

is exposed to substantiate the modelling of a vehicle as a multibody system later on.  

With the theory behind, all concepts previously abridged are put to practice, into the formulation of a 

method to estimate the trajectory of a vehicle crossing a certain road. The first step to execute this is to 

choose the tire force model to use. It is seen that, in this case, the mathematical models are the best 

choice, which culminates in the selection of the Magic Formula model. The following steps consist of 

introducing the contact estimation methodology created to simulate the tire/road dynamics of a vehicle. 

Two different methods are exposed: the first for fully flat roads, with no obstacles; the second, for road 

that possess obstacles, like bumps for example. This model is then inserted into a multibody dynamics 

analysis program, MUBODYNA3D, and some forward dynamic simulations are performed. 

These simulations start with the definition of the vehicle as a multibody system, with bodies connected 

by kinematic joints. The first simulations are performed in flat roads to validate the models and 

methodologies created. The solver, that integrates the results of the equations of motion to predict the 

trajectory, are then refined. Finally, simulations using roads with obstacles are conducted and the results 

analysed. 

In the end, the simulations result in some unexpected behaviour from the vehicle. While crossing an 

obstacle, it tends to lose contact with the surface and, thus, lift off the road, which is unrealistic. 

Nonetheless, it is concluded that multibody systems analysis is extremely important to simulate and 

analyse complex realities, with precise results.  

Keywords 

Contact estimation; Multibody systems; Simulations; Tire force model; Vehicle dynamics 
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𝐪 - Vector of generalized coordinates  

𝐪(𝑐) - Corrected vector of generalized coordinates  

𝐫 - Global position vector  

𝐬 - Global position vector on local coordinate system 
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𝐬′ - Local position vector  

𝑡 s Time  

𝐮 - Dependent coordinates vector 

𝐮𝜉 , 𝐮𝜂 , 𝐮𝜁 - Unit vectors to define the transformation matrix  

𝐯 m/s, rad/s Vector of generalized velocities  

�̇� m/s2, rad/s2 Vector of generalized accelerations  

𝐯(𝑐) m/s, rad/s Corrected vector of generalized velocities  

𝑥𝑦𝑧 - Global coordinate system  

𝑦𝑡 - Auxiliary vector  

 

Greek symbols  

Symbol Unit (SI) Description 

𝛼, 𝜇, 𝜔 - Coefficients for the Penalty and Augmented methods  

𝜸 - Right-hand side vector of the accelerations constraint  

𝛿𝐪 - Vector to correct the initial positions  

∆𝑡 s Timestep  

𝛌 - Lagrange multipliers vector  

휀 - Tolerance to solve the equations of motion  

𝚽 - Vector of kinematic constraints  

𝛷 rad Angle to get the Euler parameters  

𝜉휂휁 - Body-fixed (local) coordinate system 

𝜔 rad/s Angular velocities vector  

 

 

 



 xx 

Chapter 5 

Latin symbols  

Symbol Unit (SI) Description 

𝐀 - Transformation matrix  

𝑎1, 𝑎2  N/m TMeasy vertical model coefficients 

𝐶1  N/m Tire radial stiffness at the nominal load 

𝐶2 N/m Tire radial stiffness at double the nominal load  

𝑐 Ns/m Damping coefficient  

𝐶𝑠𝑝𝑥1,2,3,4 - One-dimensional longitudinal spline coefficients 

𝐶𝑠𝑝𝑦1,2,3,4 - One-dimensional lateral spline coefficients 

𝐶𝑥1,2,3,4 - Longitudinal road spline coefficients 

𝐶y1,2,3,4 - Lateral road spline coefficients 

𝐝 m Distance vector  

𝑑 m/s2 Deceleration  

𝐝𝑥, 𝐝𝑦, 𝐝𝑧 - Global direction vectors at a certain timestep  

𝐹 N Point-to-point force  

𝐹𝐵 N Braking force  

𝐹𝑥 N Tire/road longitudinal force  

𝐹𝑦 N Tire/road lateral force  

𝐹𝑍 N Tire/road contact vertical force  

𝐹𝑍0 N Nominal tire load  

𝑓 m Tire profile vertical coordinate  

𝐟𝑖 N Force vector  

𝐻 m Height of the obstacle  

𝑘 N/m Spring stiffness  
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𝐿 m Road length  

𝐿𝑏 m Length of the obstacle  

𝑀𝑥 N∙m Overturning couple torque  

𝑀𝑦 N∙m Rolling resistance torque  

𝑀𝑧 N∙m Self-aligning torque  

𝑚𝑐 kg Mass of the vehicle  

𝐦𝑖 , 𝐓 N∙m Torque vector  

𝐧 - Normal vector to the road  

𝐩 - Iterated vector by fsolve  

𝑝𝑥, 𝑝𝑦 - Road profile gradients  

𝐫 - Global position of the wheel’s centre of mass 

�̇� - Global velocity vector  

𝐫𝐴1,2,3 - Global location of the approximation points  

𝐫𝐶𝑃 - Global position of the projected contact point  

𝐫𝑃 - Global position of the effective contact point  

𝐫𝑦𝑄 - Global location of the point of application of forces  

𝑟0 m Tire nominal radius 

𝑟𝑑𝑦𝑛 m Tire dynamic radius 

𝑟𝑠 m Tire static radius 

𝑠 - Longitudinal slip  

𝐬 - Global rotation axis vector  

𝐬𝑝 - Local rotation axis vector  

𝑆𝑃𝑥 - One-dimensional longitudinal spline 

𝑆𝑃𝑦 - One-dimensional lateral spline  

𝐬𝐩𝐥𝑥 - Longitudinal spline for the road profile  
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𝐬𝐩𝐥𝒚 - Lateral spline for the road profile  

𝑡 s Time  

𝐭𝐺 - Tolerance vector  

𝐭𝑥, 𝐭𝑦 - Tangential vectors to the road  

𝑢 m Tire profile longitudinal coordinates  

𝐮𝑙𝐬𝐮𝑣 - Fixed local coordinate system  

𝐕 m/s Velocity vector  

𝑉𝑖 m/s Initial velocity  

𝑉𝑓 m/s Final velocity  

𝐕𝑇 m/s Wheel’s real velocity vector  

𝐕𝑥 m/s Longitudinal velocity  

𝐕𝑦 m/s Lateral velocity  

𝑊 m Road width  

𝑥𝑦𝑧 - Global coordinate system  

𝑥bin, 𝑦bin - Spline’s endpoints coordinates given by histc 

𝑥𝑖 , 𝑦𝑖 m fsolve initial approximations  

𝑥𝑝, 𝑦𝑝 m fsolve iterated coordinates  

𝑥pf, 𝑦pf m Final calculated coordinates of the contact point  

𝐱𝑝𝑡𝑠 - Local longitudinal coordinates of the road profile  

𝐲𝑝𝑡𝑠 - Local lateral coordinates of the road profile  

𝑧𝑝 m Contact point iterated vertical coordinate 

𝑧pf m Contact point vertical calculated coordinate  

𝑧𝑝𝑥, 𝑧𝑝𝑦 m Interpolated vertical coordinates  

𝐳𝑠𝑥   - Vertical matrix for the longitudinal splines  
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𝐳𝑠𝑦 - Vertical matrix for the lateral splines 

 

Greek symbols  

Symbol Unit (SI) Description 

𝛼 rad slip angle 

∆𝑡 s Timestep  

𝛿 m Spring deformation  

𝛿𝑖 m Spring undeformed length   

𝛿𝑥 m Approximation tolerance  

𝛿𝑍 m Tire deflection 

𝛿𝑍0 m Tire static deflection (at nominal load) 

휃 rad Angle between the velocity vector and the rotation axis  

휃𝑥, 휃𝑦 rad Gradient of the road  

𝜇 - Coefficient of friction between tire and the road  

𝜉휂휁 - Local coordinate system  

𝜏𝐴 N∙m Acceleration torque  

𝜏𝐴𝑊 N∙m Acceleration torque for one wheel  

𝜏𝑊 N∙m Braking torque  

𝛚 rad/s Wheel’s angular velocity vector  

𝜔 rad/s Angular velocity  

𝜔𝑟 m/s Angular velocity represented as a linear velocity  

𝜔𝑠 rad/s Angular velocity around the global axis of rotation 
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Chapter 6 

Latin symbols  

Symbol Unit (SI) Description 

𝑒0, 𝑒1, 𝑒2, 𝑒3 - Euler parameters  

𝐸𝑚 J Mechanical energy of the vehicle  

𝐹𝑥 N Longitudinal tire force  

𝐹𝑦 N Lateral tire force  

𝐹𝑍 N Vertical tire force  

𝑔 m/s2 Gravitational acceleration  

𝐿𝑟𝑜𝑎𝑑 m Road length  

𝑟0 m Tire nominal radius  

𝐫𝑖𝑛
𝑘  - New global position of any point within the vehicle  

𝐫𝑖𝑜
𝑘  - Original global position of any point within the vehicle 

𝑡 s Time  

𝑡𝑓 s Time of simulation  

𝑉2.5𝑠 m/s Velocity at 𝑡 =  2.5s 

𝑉𝑓 m/s Velocity at the end of the simulation  

𝑉0 m/s Initial velocity  

𝑊 m Road width  

𝑥𝑦𝑧 - Global coordinate system 

𝑥𝑓 m Final longitudinal position of the front-left wheel 

𝑥𝑖 m Initial longitudinal position of the front-left wheel 

𝑧𝑐 m Vertical translation 

𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠 m Vertical coordinate of the chassis  
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Greek symbols  

Symbol Unit (SI) Description 

𝛿𝑍 m Tire deflection  

𝛿𝑍0 m Initial tire deflection  

𝛿𝑍𝑓 m Tire deflection at the end of the simulation  

𝜇 - Coefficient of friction between tire and road   

𝜉휂휁 - Local coordinate system  

𝜏𝑎 N∙m Acceleration torque   

𝜏𝑏 N∙m Braking torque   

𝜔0 rad/s Initial angular velocity  
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GLOSSARY 

C  

Camber angle  Angle between the wheel vertical plane and the vertical plane of the vehicle, which 

is perpendicular to the road. 

Caster angle Angle between the steering axis and the vertical axis of the wheel, when looking 

from the side of the car. A positive caster keeps the tire straight, by creating a 

torque that opposes the steering input when the steering wheel is let go of.  

Contact patch  Area of a tire that is in contact with the road at a certain point in time. 

 

H  

Holonomic 

constraint   

Geometric constraint that is integrable into a form that only involves coordinates.  

 

N  

Nonholonomic 

constraint 

Constraint that is not integrable. 

 

O  

Oversteer    When the rear tires slip angle is greater than the front tires slip angle. Happens 

when the rear tires are overloaded, causing the rear tires to slide out. The turning 

travelling path would become much sharper than the intended one                                                                                                                                                                                                                                                                                                                                                                                                                             
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R  

Rheonomic 

constraint  

Constraint that is an explicit function of time. 

Rolling 

resistance   

On a tire, it can be defined as the energy loss per distance travelled.   

 

S  

Self-aligning 

torque  

Torque generated by the tire as it rolls. It tends to restore the alignment of a tire 

back to a zero-slip angle situation. 

Scleronomic 

constraint   

Constraint that is not an explicit function of time. Its equation is described by 

generalized coordinates. 

Slip  Relative motion between the tire and the surface it is traversing. 

Slip angle   Angle between the direction of the wheel’s centre velocity and the longitudinal axis 

of the tire.  

 

T  

Toe angle    Angle between the wheel’s longitudinal axis and the vehicle’s longitudinal direction. 

 

U  

Understeer    When the front tires slip angle is greater than the rear tires slip angle. Happens 

when the front tires are overloaded (when accelerating and turning at the same 

time), causing the travelling path to be much wider than the one desired. On a limit 

case, the turning radius of the car would become infinite.  
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1. INTRODUCTION 

In the first chapter of this work, the dissertation done across several months will be introduced. This 

chapter begins with an overview and the scope of this thesis, while specifying the objectives and methods 

used across this work.  

1.1 Motivation and Scope 

An automobile’s suspension system determines the comfort level and, also, the safety level that a 

vehicle provides to the passengers (Schramm et al., 2014). Over the years, automobiles in general have 

evolved like no other technology. From the first cars with wooden wheels and no suspension whatsoever 

to the modern state-of-the-art performance cars, the automobile industry is always adapting to new 

technologies and necessities. Look at the Anti-lock Braking System (ABS) design in the 1970’s to stop 

the blocking of the wheels during braking and avoid sliding (Burton et al., 2004). Once a novelty not 

available to all, now a guaranteed system in every single modern car. The automotive industry is 

constantly changing.  

To ensure a safe and comfortable drive, it is essential to quantify the driving safety, stability, and 

comfort by studying the dynamics of road vehicles. Other kinds of vehicles, such as off-road and 

competition vehicles, usually discard most of the comfort to obtain maximum performance. Nevertheless, 

the dynamics of road vehicles must be studied in order to evaluate their performance when subject to 

dynamic solicitations. These can be external, like the shape of the road, sometimes flat, sometimes with 

obstacles like bumps or potholes; or internal, usually promoted by the driver’s actions, such as steering 

inputs.  

To study the effect of dynamic solicitations on a vehicle’s performance, big and expensive test rigs 

must be used. This type of equipment is extremely expensive, which makes testing a very financially 

demanding exercise. Hence, new solutions needed to be implemented. To study and project the 

subsystems that compose a vehicle, computational methodologies have been used for some time. These 

are getting better as computational advancements are being made, which makes them able to give 

precise and reliable results. One of those computational techniques is known as multibody dynamics, 

that have been growing substantially (Blundell & Harty, 2004). These consist of characterizing a 

mechanism, comprised of multiple bodies, as a system with multiple bodies connected by kinematic 

joints, that restrain the movement (Flores P. , 2015). To simulate a certain multibody system, all bodies 
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must be defined, as well as the elements that connect them and all the external and internal forces acting. 

With a good computational simulation, a vehicle under dynamic solicitations is easily studied, and the 

results obtained can be transcribed and compared to reality.  

In this work, it is intended to study the influence of the suspension parameters on a vehicle’s 

behaviour, when it is crossing a road with obstacles, like bumps or potholes. For that purpose, it is 

necessary model the vehicle as a multibody system, discretising several types of suspension and 

representing forces always acting on a tire, obtaining in the end a sensibility study of the parameters that 

mostly influence the results. 

1.2 State of the Art 

Vehicle modelling and simulation has been around for quite a few years now, and the literature and 

methods available are extensive. From Chapter 2 to Chapter 4 of this work, the state of the art for vehicle 

dynamics, multibody dynamics and simulation will be thoroughly clarified, so there is no need to introduce 

it here. Nevertheless, it is necessary to highlight some of the most important literature used in this work.  

Vehicle dynamics have been studied ever since the inception of the very first vehicle, which makes 

them integral to this specific work. General topics about vehicles, its components and kinematics have 

been derived from works such as (Guiggiani, 2014; Schramm et al., 2014; Reimpell et al., 2001). These 

are particularly relevant to understand the composition of a vehicle, how it is made and how the 

components act together. (Schramm et al., 2014; Guiggiani, 2014) are extremely insightful into the 

constructive principles and types of tires, usually stating that a tire is a cluster of radial layers covered by 

an elastic tread of rubber, which allows the contact with the road. As for the various types of suspensions, 

its historical evolution, and some constructive principles, (Reimpell et al., 2001; Schramm et al., 2014) 

are cited. In short, there are multiple types of suspensions systems, but only some of them are relevant 

these days, such as the Macpherson (Dehbari & Marzbanrad, 2018) strut or the multilink axle (Schramm 

et al., 2014). Following this, some vehicle kinematics are presented, mainly based on (Schramm et al, 

2014; Guiggiani, 2014). The last two sources provide an excellent overview of two-dimensional models 

used to characterize vehicle kinematics, such as the bicycle model. Other authors, such as (Zhou & Liu, 

2010; Hu et al., 2019) extend these concepts and present more complex kinematic configurations, like 

the 7 DoF model, that considers all four wheels of the car. These models are relevant to the study of yaw 

motions (Schramm et al., 2014).  

As for general comprehension of the tire/road dynamics, (Schramm et al., 2014) is a relevant 

reference. It provides all the information necessary to understand the steady-state generation of frictional 
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forces in the contact patch between the rubber and the road. Briefly, the contact between tire and road 

generates a normal force that consequently creates two other forces in the lateral and longitudinal 

direction, dependent on quantities of slip. This is seen by using the Brush model, that physical explains 

why these forces exist (Schramm et al., 2014; Mavros et al., 2005). However, the Brush model paved 

the way to the creation of several other models, utilized in computational scenarios that can predict 

faithfully the behaviour of the contact in certain conditions. One of the first models to be used in the 

industry was the Dugoff Model (Dugoff et al., 1969). Several changes have been made to it over the years, 

culminating in a modified model, by (Bian, 2014; Bhoraskar & Sakthivel, 2017). Nevertheless, the staple 

of all models is the Magic Formula, by Hans B. Pacejka (Bakker et al., 1987; Bakker et al., 1989; Pacejka, 

2002). This is a semi-empirical model that faithfully recreates the steady-state behaviour of a tire, under 

normal loads. Other works have been created over the years, creating more diverse and complex models 

that can predict a dynamic/transient behaviour of the tire. Refer to (A.J.C. Schmeitz; Besselink, 2004; 

Canudas-de-Wit T. V., 2002; Hoogh, 2005; Korunovic et al., 2008; Svendenius, 2007; Rill & Castro, 

2020). 

Since the car must be studied as a multibody system, considerations about the multibody formulation 

were derived mainly from (Flores P. , 2015; Nikravesh P. E., 1988; Nikravesh, 2007). The methods to 

resolve the equations of motion, such as the augmented Lagrangian method are thoroughly explained in 

(Marques et al., 2017; Flores P. , 2015). Still, about the car as a multibody dynamic system several 

works have been done over the years, especially considering (Ambrósio & Verissimo, 2009), where the 

behaviour of joints under different car manoeuvres was analysed. Blundel & Harty (2004) presented a 

multibody approach to the dynamics of vehicles, which is an extensive collection of data for such type of 

simulations. Other works, such as (Hegazy et al. , 2000; Schramm et al., 2014), must also be considered 

to study the vehicle as a multibody system.  

To create a simulation, based on concepts present in the previous references, (Flores P. , 2012) was 

used. Some mathematical and numerical concepts, innate to software used to simulate the multibody 

system can be found in (A. Keller, 2018; Kahaner, 1988). To clarify some expectable results and 

conclusions (Filipozzi et al., 2021; Garcia-Pozuelo et al., 2015) were used. In these articles similar cases 

of study were analysed, when it comes to the generation of vertical force and bump modelling. 

1.3 Objectives 

In this work, it is expected to study complex multibody models of road vehicles, mainly cars through 

the development of advance techniques of automotive modelling.  
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Firstly, it is necessary to get a good familiarization with the spatial multibody dynamics methodology. 

This is of extreme relevance to understand and develop dynamic models of vehicles. Also, to fully 

understand how a vehicle behaves dynamically, it is imperative to study the different types of tire/road 

contact models. The forces generated in the contact patch can heavily influence the dynamic behaviour 

of a car’s suspension system and, therefore, the right contact model must be chosen. It is also expected 

to see the connection between the contact forces and the suspension behaviour.  

To study the dynamics between tire and road, a dynamic model must be created, using programming 

tools such as MATLAB. A program for MATLAB known as MUBODYNA3D (Flores P. , 2012) will be used 

to perform three-dimensional multibody simulations. The simulation model must be comprised of the 

multibody model of the vehicle, the contact forces model, and some miscellaneous codes, like the road 

and the tire profile. The roads should start as fully flat and gradually move on to ones with obstacles, like 

potholes and bumps.  

Finally, in the end of this work, it is expected to analyse the dynamics the vehicle in the face of imposed 

solicitations to its suspensions system, having always in mind the different models and the obstacles that 

can be found in a road.  

1.4 Structure of the Dissertation 

This dissertation is divided into 7 chapters. Each chapter is divided into sections and subsections as 

will be seen below.  

Chapter 1 is the introductory stage of this work. It highlights its purposes and objectives, while 

presenting a general overview of the dissertation.  

In Chapter 2, a literature review on the modern vehicle is presented. This chapter focusses on the tire 

and the suspension system of vehicles, the two most crucial components for this work. Additionally, some 

a brief overview of vehicle kinematics is made.   

Chapter 3 is also a literature review. It describes the fundamental dynamics between a tire and the 

road. It gives a brief physical explanation to the phenomena that acts on a tire, while also presenting 

several ways to model these dynamics.  

In Chapter 4, a brief discussion about multibody dynamics is made. The fundamental concepts about 

the modelling of multibody systems and how to predict their behaviour across time are introduced. This 

chapter is particularly important to understand the simulations made in this work.  

In Chapter 5, the computational work starts. Here, the methods used to simulate a car going over a 

road are fully explained. Firstly, the choice of tire model is justified. Then, the simulator used is presented 
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and its method explained. Finally, a model to estimate the contact between the tire and the road is created 

for both flat and uneven roads. 

In Chapter 6, the methodologies and algorithms created before are tested, in a number of different 

numerical simulations. Some computational experiments are done to validate the concepts introduced 

before and the behaviour of the suspension system across different roads is examined. 

Chapter 7 presents the outcomes and conclusions of this work, as well as the limitations found and 

suggestions for future works.  

1.5 Contributions 

This work succinctly describes and gives a general overview of the tire/road dynamics and how those 

could be connected to the simulation and analysis of multibody systems. A vehicle is just that: a number 

of components connected via kinematic joints that imposed restrictions on the movement of the bodies.  

This work firstly provides an overview of some of the most important literature about vehicle dynamics 

with focus on the frictional contact dynamics. The tire/road contact is thoroughly overviewed, and some 

of the most relevant models to describe it are presented. Also, a general overview of multibody dynamics 

is presented, while explaining some methods to solve the equations of motion and predict the trajectory 

of multibody systems.  

Furthermore, the concepts studied before are applied and a contact model is created, its algorithm 

dissected. In short, a tire/road contact model is implemented and through an “in-house” 3D multibody 

dynamics code, the contact between tire and road is detected. This is used to calculate the forces and 

contact point of a vehicle’s tires, to be used on multibody simulations. These simulations are done to 

validate the models created and to study the influence of suspension parameters on the vehicle’s 

behaviour over roads with obstacles.  
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2. THE VEHICLE 

Modern vehicles have come a long way since their inception. In less than a century, the main means 

of transportation evolved from animal pulled carriages to cars. Even cars mutated across time, being 

simple mechanisms with wooden wheels to state-of-the-art super-cars that can travel at 300 km/h. 

Components such as the engine, the wheels and the suspension system have also come a long way, 

although their function fundamentally remained the same. For example, the engine has always been the 

main power source of the car, where fuel is transformed in mechanical energy that can imprint movement 

to the vehicle. The tires, once simple wheels of wood and now extremely complex components made of 

rubber, have always been responsible for the creation of a platform for that power to be transmitted to 

the road. In short, the fundamental functions of these components and systems that make a car has 

never really changed. 

In this chapter, the state of the art of modern vehicles will be presented. Since this work relies heavily 

on tires and the suspensions system, only those two components will be discussed. To know more about 

all the other systems that compose a road vehicle, consult (Schramm et al., 2014). 

2.1 The Tire 

Since the early days of vehicle mobility, the tire has always been a crucial component to the good 

functioning of wheeled vehicles. Although not always made of rubber, one can affirm that the tire has 

always had this one specific function: to create a connection between a vehicle and a surface.  

The development of the automotive industry has undoubtedly promoted the evolution of the tire: from 

the iron that was placed on wooden wheels built into carriages, to the bands of leather used on the first 

automobiles to protect wooden rims, converging at the creation of the pneumatic tire, made of rubber, 

by Robert William Johnson in 1845. Of course, as history repeats itself, the first attempt at the creation 

of the rubberized inflatable tire was unsuccessful, being that the tire created by Johnson was too 

expensive. Another attempt was made, this time by John Dunlop, and even though it turned out quite 

successful, Dunlop’s pneumatic tire patent was intended for bicycle use. The first people to implement a 

pneumatic tire on an automobile were the Michelin brothers, but theirs turned out to be flimsy. The broad 

use of the pneumatic tire on automobiles was only possible by 1911, when Philip Strauss created the 

combination of tire and air inner-filled tube (Bellis, 2014). 
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Nowadays, almost all road vehicles have pneumatic tires covering a system that is called “wheel”. In 

fact, the development of the tire throughout the years, has promoted the conception of fast and 

comfortable road vehicles (Schramm et al., 2014).  

Before studying the specific details of the pneumatic tire, one should first establish the wheel as an 

apparatus of its own. The wheel is defined as the system that encompasses the rotating components of 

the vehicle undercarriage that spin around the wheel axis (Schramm et al., 2014). The so-called system 

encloses components like the wheel carrier, the rim, rotating parts of the braking system, parts of the 

driveshaft and drivetrain and the tires.  

Even though an isolated system of its own, the wheel can be considered as an integral part of two 

different subsystems: the suspension and the drivetrain, being that both subsystems convey severely 

different functions. Anyhow, in each case, it represents the vehicle’s interface with the road (Schramm et 

al., 2014). Each vehicle has a set of wheels, usually four for cars (trucks might possess more than four 

wheels), with a set of properties, such as absorption of loads, protection of some components, protection 

of the passengers from impacts, transmission of acceleration and braking forces and forces generated 

during cornering (Schramm et al., 2014) 

Now that the concept of wheel has been introduced, it is important to focus on the tire. The tire can 

be defined as a “ring-shaped component that surrounds a wheel’s rim to transfer a vehicle’s load from 

the axle through the wheel to the ground and to provide traction on the surface over which the wheel 

travels” (Tire, 2021). 

Tires, nowadays with pneumatic characteristics and made of rubber, are fundamental elements that 

ensure the vehicle’s contact with the road, making the transmission of multidirectional forces possible. 

Some of its main features are the flexibility and the low mass, that allow for the contact with the road the 

be maintained, even on uneven surfaces. The rubberized layers ensure high grip. It is then possible to 

assume that the tires significantly affect the handling properties of vehicles, making them complex 

viscoelastic components with nonlinear behaviour and dynamic characteristics.  

Nowadays, there is a variety of types of tires, specifically constructed for different purposes. Each 

type of vehicle is dependent on a specific set of tires. However, some characteristics, or constructive 

requirements, are widely shared throughout the big catalogue of these rubberized components (Schramm 

et al., 2014):  

• Driving safety 

• Handling  

• Comfort 
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• Service life  

Obviously, even these requirements differ from one tire to another. A truck’s tire should have a much 

bigger service life that a passenger car’s tire, but this only happens because the vehicle, in a way, has a 

different task to fulfil. The principle behind a truck and a car is fundamentally the same, so one can 

consider some of these requirements to be similar, while they ultimately end up performing the exact 

same task: providing a contact surface with the road.  

This contact surface is of extreme importance (it will be mentioned throughout this work) and is often 

called the tire “contact patch”. To fully understand this concept, one can regard the contact patch as the 

footprint of the tire, which is merely the area of the tread that is contact with the road. It is where all the 

forces and torques, created between the tire and the road, are transmitted via pressure and friction 

(Guiggiani, 2014).  

A tire should be able to provide several properties, so that a vehicle’s handling is safely executed. 

Firstly, a tire must yield a high coefficient of friction in each operating condition, as well as a good 

cornering stability, which is achieved by securing a steady build-up of lateral forces without any sudden 

changes (Guiggiani, 2014). Also, a tire, together with the drivetrain and steering system, must have a 

direct and immediate response to steering inputs. Finally, a tire must keep its properties at a sustained 

maximum speed, while only exhibiting small fluctuations in wheel load. Additionally, a tire must provide, 

on its own, good suspension and damping properties and a long-term durability, guaranteeing a high-level 

of riding comfort (Schramm et al., 2014). The aforementioned characteristics can be modified to any 

specific case, which may vary from vehicle to vehicle. Nevertheless, they represent the starting point, 

from where a tire should be designed.  

To study, both physically and mathematically a tire, it is of most relevance to understand its basic 

construction principles. A tire, depicted in Figure 2.1, is built from several different layers which can be 

stacked up in different ways, such as radially or diagonally. Nowadays most tires are built upon the radial 

layers’ basis. Nonetheless, both constructive principles share some similarities as the basic tire 

constitution.  
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Figure 2.1 - Different layers that compose a radial-ply tire. 

A tire is primarily a highly composite structure and can be considered as a carcass of flexible cords 

encased in a matrix of soft rubber, inflated with air. It can change along the bead relevant actions with 

the rim, which is always said to be rigid. This results in actions such as traction, braking, steering and 

load support. Also, air pressure is used to increase the structural stiffness of the tire, so that the highest 

the air pressure, the lower the sidewall bending (Guiggiani, 2014). A tire is made of 4 primary layers 

(Schramm et al., 2014):  

• Tread: made of rubber. Contains the tread profile, which is the pattern that can be seen on the 

exterior lateral side of the tire.  

• Carcass: assembled of tensile surfaces covered in rubber. Alongside with the tire’s pressure, it 

provides the necessary strength.  

• Belt: layer of steel that rests on the surface of the carcass. Encloses the tire from the outside 

and gives the tread its strength. 

• Bead rings: ensure a tight fit of the tire on the wheel and guarantee a seal between the tire and 

the rim.  

The tire’s design includes two different types: diagonal layers, also known as cross-ply tires, and the 

radial-ply tires, both being depicted in Figure 2.2. 

 

Figure 2.2 - Types of tire designs. Adapted from (ProTyre's website, s.d.). 
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As for the cross-ply tires, the layers of the tire are placed diagonally across each other at a certain 

angle to the centre plane of the tire. The carcass has two layers of rubberized cord fibres, made of rayon, 

nylon or even steel cord. At the feet of the tire, the ends of these layers are wrapped around the core of 

the tire bead on both sides, and two wide rings, along the folded ends of the layers form the bead, that 

is the frictional connection, or seat, to the rim (Reimpell et al., 2001). The tread is then applied to the 

outer diameter of the structure. On the tire’s side, the tread blends into the shoulder, which is connected 

to the sidewall that protects the tread itself. Both shoulder and sidewall, in this case, are made of rubber 

blend since these layers are barely subjected to wear.  

It should be noted that cross-ply tires are no longer used on passenger cars, though they can still be 

found in some different cases, such as spare tires, racing cars, due to the lower moment of inertia, or 

agricultural vehicle, which do not need to reach great travelling speeds.  

On the other end of the spectrum, radial-ply tires are the most commonly found in modern vehicles. 

As the name implies, all layers are constructed radially, making them independent features that grant 

more flexibility to absorb shocks generated by the contact with the road.  

In radial tires, two bead cores are joined together via the carcass, which is usually made of rayon or 

nylon. The interior side of the tire consists of a belt of steel cords, which provides the necessary stiffness 

to handle all road obstacles. The external part is comprised of both the tread and sidewall and, also, the 

inner lining, which ensures that the tire is always hermetically sealed. The sidewall is extremely flexible, 

due to the positioning of steel cords on top of each other (Schramm et al., 2014). This enhances the 

vehicle’s stability and leads to a maximum contact with the road. It allows for a more comfortable ride 

and higher durability, and, in the case of heavy machinery, like tractors, for an operation at higher loads. 

Radial-ply tires have a better braking behaviour, especially when aquaplaning. At the same tire pressure, 

greater, transferable lateral forces are generated, while having a lower rolling resistance (Guiggiani, 

2014).  

2.2 The Suspension System 

The suspension system has a clear and straightforward function: to connect a vehicle’s body with the 

wheels, so it is possible to carry the body along the driving way and to transmit the contact forces. This 

way, the generation of accurate and reproductible wheel movements becomes feasible.  

Another purpose of this system is to give the wheel the potential to follow a vertically aligned 

movement, along the horizontal motion given through the drivetrain. This creates the opportunity for a 

wheel to travel through paths with uneven surfaces. Additionally, the use of spring and damping elements 
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results in the reduction of body movement, which helps achieving a great amount of driving comfort and 

a safe driving behaviour (Schramm et al., 2014).  

The front suspension of a vehicle helps transmit the steering movements to the wheels, usually over 

a special connecting rod, known as tie rod or, in some cases, steering knuckle. These rods are usually 

mounted on rubbery-elastic manufactured bearings, which play a major role in accomplishing a good 

driving behaviour and high comfort (Reimpell et al., 2001). Besides, the suspension system’s geometry 

and spring and damping influence the position of the wheel relative to the road, so that there happens to 

exist a systematic impact on the dynamic driving characteristics of the vehicle. Lastly, the suspension 

system plays an active role in guiding the forces and torques, created during the wheel/road contact, 

onto the vehicle’s body (Guiggiani, 2014).  

Nowadays, there is a great variety of suspension systems, which can be used in a wide range of 

applications. However, all of them share the three basic components: joints, dampers, and springs. These 

components, working together, can set up a basic suspension system.  

Springs, depicted as the red component in Figure 2.3, actuate by storing energy, in a compression 

state, that is released when they return to the normal state. There are different types of springs to be 

used, although the coil type is the most common and found in most vehicles. They are compact, easily 

assembled, and are extremely long-lasting.  

 

Figure 2.3 - Example of a spring-damper actuator. Adapted from (What is a damper, 2019). 

Dampers, also illustrated in Figure 2.3, on the other hand, moderate the spring’s oscillations and 

vibrations, returning the wheel to its initial vertical position after a load cycle. Usually, dampers use a 

piston/cylinder system, with control valves to determine and apply a damping force. To dampen 

oscillations, the damper dissipates energy to stabilize any components, such as springs. 

A modern vehicle’s suspension system must satisfy several conflicting requirements, due to the 

different conditions in which a vehicle operates, such as follows (Schramm et al., 2014): 
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• Load or without load  

• Acceleration or braking 

• Flat or uneven road  

• Driving in a straight line or cornering  

The suspensions’ requirements can be divided into two categories to create a comfortable driving, and 

to achieve the best handling and driving safety. To achieve driving comfort, a suspension must (Schramm 

et al., 2014):  

• Oppose the oscillations promoted on the wheel by the unevenness of the road 

• Be compliant and flexible to reduce the rolling stiffness of the tire and the motions created by 

small longitudinal blows, due to the tire’s contact with the surface 

• Not upset the development of lateral forces and therefore the turning precision 

As for optimal handling characteristics:  

• Establish the suspension’s geometry and kinematics makes to prevent diving or lifting during 

braking or acceleration, assuring the non-existence of oversteer 

While the previous requirements give a general guideline to design a suspension system, one must 

divide suspensions into three general categories: 

• Rigid Axles (dependent): two wheels are connected rigidly to an axle, that controls both wheels 

at the same time. 

• Independent Suspension: each wheel is allowed to move vertically, without the influence from 

the other wheel on the same axle 

• Semi-rigid axle: Combines some characteristics from both previous types 

2.2.1 Rigid Axles 

This type of suspension, illustrated in Figure 2.4, is the oldest of the three and is also known as beam-

axle. It can be found in some commercial vehicles, as a power-driven rear axle (rear axle with drive shaft). 

Even if it is not ideal for modern standards, it can be used, rarely, as a front axle in all-terrain vehicles, 

since it provides good off-road characteristics (Reimpell et al., 2001).  
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Figure 2.4 - Example of a rigid axle suspension system. Adapted from (Schramm et al., 2014). 

A beam axle can be defined as a solid connection of two opposing wheels via a lateral axle. Those two 

wheels can influence each other. The axle is usually constructed of 4 bodies, connected by 6 spherical 

joints, making it a simple, but heavy structure to build (Schramm et al., 2014). The kinematic coupling 

of both sides of the car, through the solid connection of both wheels, arouses a large camber variation, 

which is not ideal.  

2.2.2 Semi-rigid axle  

Semi-rigid suspensions, also known as twisted-beam axles (represented in Figure 2.5), substitute the 

rigid connection between two wheels for a compliant and flexible link. The semi-rigid axle allows relative 

motion between both wheel carriers because of the torsion of the axle beam, to which are given elastic 

properties.  

 

Figure 2.5 - Example of a semi-rigid axle suspension. Adapted from (Schramm et al., 2014). 

In this case, both wheel carriers are attached to torsional stiff and deflection-resistant trailing arms, 

which are transversally connect via a profile with low torsional stiffness. Movement, force, and positional 

control are supplied to the wheels through the beam’s elastic deformation (Reimpell et al., 2001). This 

type of suspension is composed of 4 bodies, usually connected by 1 revolute joint with torsion spring, 2 
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spherical joints, 1 prismatic joint and 1 cylindrical joint (Schramm et al., 2014). As for advantages of this 

design, one can list the following: 

• Little need of mounting space  

• Establishment of a stabilizing effect through a cross member  

• Low weight  

• Good roll compensation  

Nevertheless, the semi-rigid axles are difficult to implement and have limited potential for optimizing 

the driving and steering dynamics.  

2.2.3 Independent suspensions  

Independent suspensions are the most found in modern cars, due to some benefits like the little 

amount of space needed to assemble the system, the low weight, the better turning capabilities, and, 

especially, the non-influence between wheels on the same axle. Unlike the previous types, it is necessary 

to divide the independent suspensions into two categories: the ones with one rotation axis and the systems 

with more than one rotation axis. As can be seen Table 2.1, each different type branches itself into several 

different technologies of independent suspension systems. 

Table 2.1 - The different types of independent suspension systems. 

 

One rotation axis 

Trailing Arm 

Semi-Trailing Arm 

Wishbone  

 

More than one rotation axis 

MacPherson Strut 

Double-Wishbone 

Multilink 

 

Before talking specifically about the different types of independent suspension systems, it is important 

to mention one big downside of using this system. Since each wheel has its own independent system, 

the wheels will tilt with or against the body of the vehicle. With this, when travelling along a curve, the 

exterior wheels will absorb most lateral forces, attaining a positive camber angle. The interior wheels will 

then possess a negative camber angle, which reduces the tire’s lateral grip (Schramm et al., 2014). 

Albeit, these effects are, in fact, avoidable. For this, the kinematic camber’s changes need to be 

considered, being adjusted as the car rolls, and the body roll, in a curve, must be kept as small as possible 
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(lateral forces generate a torque that reinforces a vehicle’s body roll while travelling). These effects are 

obtained by using stiffer springs, or anti-roll bars, or even by transferring the body roll centre to a higher 

location in the vehicle (Schramm et al., 2014).  

The trailing-arm axles, portrayed in Figure 2.6, are a type of independent suspension with a single 

joint between the wheel carrier and the body. Each wheel has its own trailing arm, which, in turn, absorbs 

the longitudinal and lateral forces created on the contact between wheel and road. This allows a swing 

motion of the wheel around a sole rotational axis, which is perpendicular to the longitudinal axis of the 

vehicle. 

 

Figure 2.6 - Representation of a rear axle trailing arm suspension. Adapted from (Rear Axle Trailing Arm 

Suspension, 2012). 

The single link is rigidly connected to the wheel carrier and to the chassis via a revolute joint. 

Furthermore, the links can be elastically mounted to the body, so that they move longitudinally, for 

improved performance and comfort (Schramm et al., 2014). This system requires little to no space, as it 

is easily constructed and assemble onto the body. Unilateral suspension allows for variables like track 

width, toe-in and camber angles to be kept constant. Its small size and compactness promoted the almost 

non-existence of unsprang masses (Reimpell et al., 2001). Despite the number of advantages brough by 

this system, it has a design restriction for axle kinematics and has no roll compensation, as it keeps the 

centre of rotation low. It creates a strong rolling tendency.  

The double-wishbone suspensions, represented in Figure 2.7, are commonly found in modern 

vehicles, especially as the rear-axle in passenger cars, albeit they can be mounted at the front. These are 

characterized by having two transverse links, known as control arms or wishbones, in each side of the 

vehicle, which are mounted to rotate. 
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Figure 2.7 - Representation of a double-wishbone suspension system. Adapted from (Robinson, 2018). 

One wishbone is located above the centre of wheel and the other one can be found below it. The 

bigger the distance between links, the smaller the reaction forces on both suspension’s arms, which leads 

to less deformation and therefore a more precise control of the wheels (Schramm et al., 2014). If mounted 

as the front axle, it is needed to connect both rods to the steering rod, or tie rod, which prohibits or defines 

the steering. The tie rod is attached to the double links via spherical joints, and it undertakes the 

transmission of the steering forces towards the wheel carrier (Schramm et al., 2014).  

The position of one wishbone in relation to the other ends up determining the body roll centre’s height 

and pitch pole. Different wishbone’s lengths can have an influence on the wheel’s angular motions, either 

in compression or in rebound. With a smaller upper wishbone, wheels being compressed acquire a 

negative camber, while rebounding wheels stay with a positive angle. This, in fact, cancels (opposes) the 

camber’s sudden change, prompted by the vehicle’s body roll, increasing comfort, and driving stability. 

The position of the body roll centre is particularly important, since, if it is not located at the wheel’s centre, 

it produces an anti-dive (car’s nose, or front, dive - Figure 2.8) mechanism and, also, reduces the 

squatting of pulled rear axles (Reimpell et al., 2001). As well as allowing a largely free designability for 

characteristics like the toe and camber angles and track width, the double-wishbone suspension is very 

well suited for powering. Still, it requires large spaces to fit in, due to its complex structure and hard 

elasto-kinematic setup.  
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Figure 2.8 - Illustration of a car's nosedive. 

Although the double-wishbone suspension can be easily found in modern vehicles, the MacPherson 

Suspension (outlined in Figure 2.9), or strut, is also commonly used in modern passenger vehicles. 

 

Figure 2.9 - Example of a Macpherson spring strut. Adapted from (Czop, 2011). 

Comparatively with the double-wishbone suspensions, the MacPherson principle exchanges the top 

transverse wishbone for a shock absorber/spring combination (pivot point), known as strut, which 

connects to the wheel hub at the bottom, and, at the top, directly to the body. Still, the lower control arm 

is kept. A steering link also connects to the hub, where the strut is coming in (Schramm et al., 2014).  

The MacPherson struts are divided into two designs:  

• Spring Struts: the damper uses the clearance in the helical slip and at the same time supports 

both ends of the spring. The spring is mounted on the damper.  

• Damper Struts: the spring is mounted separately from the damper  

Despite the difference in struts, a standing damper is always tightly connected to the wheel carrier 

and the piston rod of the damper is mounted to the chassis. This leads to the creation of a cylindrical 

joint that enables both steering and spring displacement for the wheel carrier. There are also two rods: 

one functions as the steering rod, which is connected to the steering; and the other, works at the lower 
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tier, as a triangular wishbone, for the guidance of the wheel. Every single part of this assembly provides 

suspension and control. Schramm et al. (2014) state that MacPherson struts are usually comprised of 5 

bodies, connected by 6 joints: 1 revolute joint, 2 prismatic joints and 4 spherical joints.  

This design is usually cheaper, simpler, and lighter than a double-wishbone, having benefits in weight 

and cost savings. Since there is available space in the centre area of the suspension (in the wheel hub, 

between the wishbone and the strut), it allows space to install a driveshaft. This is especially great for 

front wheel drive vehicles. Finally, the strut is narrower than a double wishbone, which is perfect for fitting 

in tighter areas. Nonetheless, forces from all directions are concentrated at the pivot point, causing a 

bending torque in the piston rod, which impairs responding qualities (Schramm et al., 2014). The 

MacPherson strut is taller than a double wishbone, which can be bad in some cases. Also, there is no 

camber gain, which means that, while cornering, it will not promote a better contact with the road, as the 

body roll increases. This does not happen with the double-wishbone, which allows for a vertical movement 

of the tire.  

The last type of independent suspension, with more than one rotation axis, is the multi-link suspension, 

represented in Figure 2.10.  

 

Figure 2.10 - Example of a multi-link suspension system. Adapted from (Toyota's website, s.d.). 

The multilink axles are usually made of 4 or more independent link. None of those links can be rigidly 

connected to the wheel carrier. This means that every rod needs to be fixed by virtue of a movable joint. 

The installation of a trapezoidal link leads to a fully integral link-suspension. The absorption of torques 

can be realized through a perpendicular additional link. This design, although expensive, provides a 

precise suspension, both laterally and longitudinally. The elasto-kinematics are also well adjustable. 
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2.3 Vehicle Kinematics 

To fully understand the behaviour of road vehicles, it is of major importance to study their kinematics, 

which influence the behaviour of a vehicle during manoeuvres like cornering. In this chapter, a brief 

introduction to some concepts and definitions behind a car’s kinematic response is provided.  

A vehicle is usually free to rotate in three dimensions, as seen in Figure 2.11, and for that reason a 

car has three major motions: roll, pitch, and yaw. Each one of these represents a rotation around one of 

three axes: 

• Roll: rotation around the longitudinal axis (𝑥) 

• Pitch: rotation around the lateral axis (𝑦) 

• Yaw: rotation around the vertical axis (𝑧) 

 

Figure 2.11 - Vehicle axis system, as represented in ISO 8855-2011. Adapted from (Kissai et al., 2019). 

Each motion always exists in a car, although both roll and pitch can be neglected, since each amount 

is relatively small and most of the time are a result of the suspension’s reactions. However, the yaw 

motion should not be neglected when studying car kinematics.  

Schramm et al. (2014) define handling as the control of the path and speed of the vehicle. As is the 

norm, a car can turn, changing its path from a straight line to a curve. While making a turn, the motion 

of the wheels changes the direction in which the car is actively pointing at, and thus rotating the body 

around the vertical axis. The yaw plays a major role in vehicle kinematics, especially because it is seen 

at a macro level and has direct effects on the body’s behaviour. Both roll and pitch are also seen at the 

macro level but are mere reactions to the state of the road, which is not studied by the kinematics. There 

are many ways to represent a car, either on a 2- or 3-dimension plane. Figure 2.12 shows a simple two-

dimension plane representation, considering all four wheels.  
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Figure 2.12 - 2-dimensional representation of vehicle. All wheels are highlighted but comprised into a bicycle 

model. Adapted from (Schramm, Hiller, & Bardini, 2014). 

Figure 2.12 depicts several relevant variables. The forward velocity, 𝑣, is the component of the velocity 

vector in the longitudinal direction and can be assumed as constant. On the other hand, the lateral velocity 

is the velocity component in the lateral direction. The heading angle is the angle between the trace of the 

𝑥𝑦 plane of the vehicle’s 𝑥-axis and the 𝑥-axis of the global fixed reference system. When a car is turning, 

the heading angle is due to some changes over time, so that the vehicle can follow a desired direction. 

This angular variation leads to a concept known as yaw rate, which can be defined as the time rate of 

change of the heading angle (Schramm et al., 2014; Li, 2009). 

Furthermore, it is possible to specify the action of making a turn on a vehicle. Making a turn can be 

divided into three different stages:  

• Entry 

• Steady State Cornering  

• Exit 

In the first stage, also known as transient turn entry, the yaw rate and the lateral velocity build up from 

zero to a new value. In the middle stage, the values of the yaw rate and lateral velocity are kept constant 

(alongside the slip angles of the tires, which will be studied in a later stage), and the vehicle is moving 

along a path with unvarying radius. Finally, in the turn exit, both yaw rate and lateral velocity start to 

change again, but this time returning to zero (Guiggiani, 2014).  

To further understand the kinematics of a vehicle, it is necessary to study its equations of motion 

recurring to a dynamic model. There are several of them, but for the sake of simplicity, it will be used the 

Linear Single-Track model, or, as is commonly known, the Bicycle Model, depicted in Figure 2.13.  
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Figure 2.13 - Discretization of the bicycle model. 

A car is composed of two pairs of wheels, one at the front and one at the rear. Within each pair, both 

wheels have almost the exact same behaviour, which is not true when comparing a rear and a front 

wheel. So, the bicycle model streamlines the representation of a 4-wheel car, by dividing it along the 

longitudinal axis. The result is a model that possesses only two wheels, one at the front and one at the 

rear. The front and rear tires are represented as a single tire on each axle. This massively helps the 

simplification of the number of variables, which, in turn, creates easier and less extensive equations. The 

equations are always the same, for any given author, but let us take (Schramm et al., 2014) as an 

example, and present the finals state space equations for the Bicycle model  
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where 𝛽 is the side slip angle and 𝛿 the steering angle, while 𝜓𝑣 is the heading angle and 𝜓�̇� the yaw 

rate. All these variables are only defined for the front wheel because it is the only one with an ability to 

turn. 𝑐𝛼,𝑖 represent the lateral stiffness of the wheels. Schramm et al. (2014) and Guiggiani (2014) clearly 

show how to get to these final equations and, even, extend them to stationary steering behaviour and 

cornering. This model has some important considerations:  

• The velocity of the vehicle’s centre of gravity is considered as constant along the longitude of its 

trajectory 
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• The vehicle’s mass is assumed to be concentrated at the centre of gravity  

• The wheel-load distribution between front and rear axle is assumed to be constant 

Although this is a possible model, there are other, such as the twin track model and the 7 DoF model. 

The former is thoroughly explained in (Guiggiani, 2014; Schramm et al., 2014), while the latter seen in 

(Zhou & Liu, 2010), where a stability control is designed.  

 

Figure 2.14 - Graphical representation of the Ackermann steering principle. 

The final consideration about car kinematics has to do with the action of turning. As seen in Figure 

2.13 and Figure 2.14, the tires are connected to a thread, that represents the way the tires turn around 

a corner, which is known as Ackermann Steering (Schramm et al., 2014).  

The Ackermann Steering is a principle that was implemented to prevent the slipping of the tires, while 

they are turning (Guiggiani, 2014). It consists in an imaginary centre point, which all tires are rotating 

around to travel through a bend. Each tire is distinctly spaced from that centre point, meaning that all 

four tires will have a different radius to advance around. This, in turn, means that each tire is rotating at 

a different rate. The outside tires, for example the right-hand side on a left turn, will have more distance 

to travel, so they need to rotate more quickly than the inside tires (the left-hand side). Likewise, the front 

tires will always move faster that the rear tires, thus preventing the tires from slipping. Nevertheless, this 

can be problematic for 4 wheel-drive vehicles, as they would need the installation of several differentials, 

so it would be possible to split the speed of the front and rear tires (Schramm, Hiller, & Bardini, 2014). 
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3. TIRE-ROAD DYNAMICS 

In this chapter the basis for this work will be introduced. To properly study a vehicle, it is necessary 

to know about its dynamics. The contact between vehicle and road is made by the wheels, which provide 

a platform for the generation and transmission of forces in all directions. These forces, known as contact 

forces, allow the car to move along a road. The study of these phenomena is of extreme relevance to this 

work and will be done in this chapter. 

3.1 Background 

The dynamics of vehicles will be of extreme importance to study and analyse the behaviour of a car 

going over obstacles. These dynamics can be evaluated by studying the interaction between the tires and 

the road. Apart from aerodynamics, which are not addressed in this work, the contact road-tire is the only 

interaction between the vehicle and the surrounding environment, which influences its motion. A vehicle 

is only able to traverse a said path because of the contact between road and tire. The friction between 

road and rubber is the main responsible of generating forces that will influence the tire locally, which, in 

turn, makes the motion of the vehicle possible (Schramm et al., 2014) 

The contact road-tire actively influences the motion of a vehicle, such as a car, since it creates a patch, 

or point, where all forces and torques will be transmitted. These forces come from all directions, be it the 

lateral forces generated during cornering, or the tangential longitudinal ones created during transmission 

of acceleration or braking torques. This means that the forces need to be studied in all three spatial 

directions. Each force generates a torque that will actively influence the tire (Schramm et al., 2014). 

Across several years, experts in this area studied this phenomenon and in (Schramm, Hiller, & Bardini, 

2014) is presented a comprehensive and general explanation for it. The same work will be used as a 

reference to all formula and calculations needed to study the contact tire-road. Several other works 

analyse this thematic, such as (Guiggiani, 2014; Rill & Castro, 2020; Blundell & Harty, 2004; Pacejka, 

2002). The formulation discussed in the next section presents a general formulation for the contact 

between tire and road. Not all authors use the same methods to model this contact. Pacejka (2002) 

introduces this topic and presents several models. Also, sources such as (Canudas-de-Wit et al., 2002; 

Rill G. , 2019) explain other ways of formulating this problem.  
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3.2 Tire Dynamics 

As stated before, all forces and torques originated due to the contact between tire and road are 

transmitted on a patch, called the contact patch, represented in Figure 3.1. This singular definition is 

probably the most important to understand the dynamic being studied.  

 

 

Figure 3.1 - Graphical representation of the tire contact patch. Adapted from (Contact Patch, s.d.). 

The transmission of force between a tire and a road takes place on a contact patch. This patch is 

nothing more than the area on the tire’s surface that is in contact with the road. It was seen in chapter 

2.2 that a modern tire is made of several radial layers, the outer layer being known as the tread. In 

practice, the only layer in contact with the road is the exterior one, the tread.  

Being this an elastic layer, the vertical loads generated will induce a deformation, known as tire 

deflection, on the tread. Theoretically, this deflection flattens the surface of the tread as demonstrated in 

Figure 3.1, which, in fact, is just a physical manifestation of the contact patch.  

The forces between the road and the tire are described as contact forces and are represented in Figure 

3.2. The primary contact force is the normal reaction with the road, the vertical force, 𝐹𝑍. Nevertheless, 

the contact force can be decomposed into three components, one acting in each direction. Both 

longitudinal, 𝐹𝑥, and lateral forces, 𝐹𝑦, are described as functions of the kinematic properties of the 

contact patch, also known as slip, 𝑠 and slip angle, 𝛼. The decomposition of the forces is possible by 

splitting the current velocity of the wheel centre into lateral and longitudinal components. These 

components are associated through the slip angle.  

Contact Patch
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(a) (b) 

Figure 3.2 – (a) Three-dimensional discretization of the tire/road dynamics; (b) Representation of the camber 

angle. 

The vertical direction, 𝑧, must be associated with a unidirectional force transmission mechanism, 

since only compressive forces will be transmitted (Schramm et al., 2014). The longitudinal and lateral 

forces are parallel to the road, in other words, tangential. These are transmitted by friction mechanism, 

which makes dependent on the friction material pairing between tire and road. 

3.2.1 Vertical Loads 

A tire possesses stiffness in the radial direction. Thus, the tire is commonly represented as a spring 

in the radial direction (Schramm et al., 2014), as depicted in Figure 3.3. 

 

Figure 3.3 - Vertical force acting on the contact patch. Adapted from (Schramm et al., 2014). 

Wheel
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The vertical load, 𝐹𝑍, creates the so-called contact patch at the contact region with the road surface, 

generating a deformation, known as tire deflection.  

 𝛿𝑧 = 𝑟0 − 𝑟𝑠𝑡𝑎𝑡 (3.1)  

This means that the vertical load induces a deflection on the construction tire radius, 𝑟0, causing a 

compressing deformation. In a static position, the surface pressure will be symmetrically distributed 

across the length of the contact patch, given by (Schramm, Hiller, & Bardini, 2014) 

 𝐿 ≈ √2𝑟0𝛿𝑧 (3.2)  

This equation gives an estimation of the length of the contact patch, although does not possess an 

extreme precision. This value is usually calculated through experimentation and testing on a real test rig. 

The wheel load, or vertical force, depends primarily on the tire deflection. In (Schramm, Hiller, & Bardini, 

2014), this force is given by a nonlinear spring as  

 
𝐹𝑧 = {

𝑐𝑧𝛿𝑧 + 𝑐𝑧,3𝛿𝑧
3 if 𝛿𝑧  > 0  

0 if  𝛿𝑧  ≤ 0
 

(3.3)  

A vertical load equal to zero represents the lifting of the wheel off the ground, which can occur and, 

hence, should always be considered in any computation. The previous formulation is just an example of 

how to calculate the normal load acting on a wheel, while stationary (a rolling wheel, however, utilizes the 

same formulation). Many others have been designed (e.g., (Pacejka, 2002; Rill & Castro, 2020)) but all 

of them state that the vertical load is a function of the deflection and the tire’s radial stiffness. Some 

formulations, such as Rill’s, (Rill & Castro, 2020; Rill G. , 2019), consider two different members: a static, 

present in Eq. (3.3), dependent on the stiffness, and a dynamic, that is created by the tire’s damping 

(which is dependent on the wheel’s deformation velocity, thus only used for rolling wheels). Figure 3.3 

shows that a tire includes stiffness and damping, much like several spring-damper actuators. However, 

the damping of a normal tire is usually extremely low, especially when compared with the suspension’s 

damping. Thus, that value has almost no expression in the final value, and, hence, many authors, such 

as Pacejka (2002) or Rill (2020), consider unnecessary to add that contribution to the equation. 

3.2.2 Rolling Resistance 

In the previous subsection, it was considered that the wheel was in a static position. While it helped 

formulate some concepts, a vehicle’s wheel must be studied when it is rolling. Thus, let us apply a rolling 

torque, with no acceleration, to the wheel, like that represented in Figure 3.4. 
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Figure 3.4 - The effect of the rolling resistance on the force application point. Adapted from (Schramm et al., 

2014). 

The rotation of the wheel over a surface changes the deflection over time. On a perfect surface, without 

any roughness, the deflection is mostly constant. Nonetheless, there are no perfect surfaces, so the 

rotation of the wheel will change the deformation continuously, while energy is being dissipated due to 

the viscoelastic properties of the carcass of the tire (Schramm et al., 2014). 

It is known that a tire possesses damping and stiffness in the radial direction, represented by the 

dampers and springs in Figure 3.4. The dampers account for the damping provided by the tire’s rubber, 

hence it is never a big damping. Nevertheless, the rolling will provoke an increase in normal pressure in 

the direction of rolling, which is velocity dependant, at the front part of the contact patch along the 

direction rolling. This increase is due to the generation of a longitudinal tangential force, 𝐹𝑥, at the contact 

patch, which is opposite to the direction of rolling. That said, there will also be a decrease in pressure at 

the rear side of the stated area. Across literature, it is said that the value of the vertical force does not 

change due to the rolling of the wheel. Also, the definition of the wheel’s static radius will hold for dynamic 

cases. As seen, the surface pressure will be displaced to a forward position, which causes the point at 

which the normal load, 𝐹𝑧, is acting to be displaced in the direction of rolling. A torque balance must then 

be made. Let 𝑒 be the displaced length (Schramm et al., 2014) 

 𝐹𝑥𝑟𝑠𝑡𝑎𝑡 − 𝐹𝑍𝑒 = Constant (3.4)  

The rolling resistance, which is a torque opposite to the rolling direction and gives the energy 

dissipation of a rolling wheel, is given by  

 𝑀𝑦 = 𝐹𝑥𝑟𝑠𝑡𝑎𝑡 (3.5)  
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3.2.3 Longitudinal Forces 

Longitudinal forces are generated through accelerating or braking a vehicle. Both actions are directly 

associated with the tire. The first is transmitted by the driving shaft to the driven wheels and the second 

is directly applied to the wheel by the mechanical brakes. The transmission of longitudinal forces happens 

through friction, more specifically by adhesion, depicted in Figure 3.5, or hysteresis between the tire and 

the road. These concepts are nothing more than types of friction mechanisms. 

 

Figure 3.5 - Graphical representation of the adhesion friction mechanism. 

Adhesion is created by intermolecular bonding forces between the rubber and the road’s surface. For 

movement to happen, these chemical bonds need to be broken through shear forces. It is the dominant 

mechanism on dry asphalt roads, but it is significantly reduced on wet roads. This model usually 

represents smooth surfaces (Guiggiani, 2014).  

Assuming the vertical force is the total force of contact, a ratio between it and the longitudinal force 

can be defined as  

 
𝜇 =  

𝐹𝑥

𝐹𝑍
 

(3.6)  

The longitudinal forces are created due to the shear deformation of the tread in conjunction with the 

friction between the rubber and the road. This shear deformation is described by the longitudinal slip, or 

just slip. This variable represents the state of motion of a wheel, whether it is being driven, braked or non-

driven. Let us define slip as 𝑠. 

 

Figure 3.6 - Types of motions derived from slip for a wheel. Adapted from (Schramm et al., 2014). 
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A wheel has two states of motion: pure rolling, when the velocity at the centre of the wheel, 𝑉, is equal 

to the rotational velocity, 𝜔 × 𝑟; rolling and sliding, when both velocities are different. As seen in Figure 

3.6, a fictional contact point must be defined, 𝑃. Instead of representing the full contact patch, one can 

say that the contact forces are acting upon this singular point. The velocity of this point may be known as 

𝑉𝑝, and it correlates the rotational velocity and the centre point velocity of a wheel. So, if a wheel is in a 

pure rolling state, then (Schramm, Hiller, & Bardini, 2014) 

 𝑉𝑝 = 0 (3.7)  

The slip is given as the relation between 𝑉𝑝 and the larger of the two values, 𝑉 and 𝜔 × 𝑟, and it is 

written as a relative value, given in the interval [0, 1] or in percentage. For a driven wheel, one knows 

that the angular velocity of the wheel will be bigger than the linear velocity, 𝑉. The acceleration longitudinal 

slip is then calculated by  

 
𝑠𝐴 = 

𝑉𝑝

𝜔𝑟
=  

𝜔𝑟 −  𝑉

𝜔𝑟
 

(3.8)  

An extreme case for this value would be if 𝑠𝐴 = 1. This means that 

 𝜔𝑟 ≠ 0 and 𝑉 = 0 (3.9)  

Eq. (3.9) physically means that the wheel would be spinning while staying at the same place. 

A braking slip means that a braking torque is acting on the wheel, and so the angular velocity 

decreases more than the actual linear velocity. In this case 

 
𝑆𝐵 = 

𝑉𝑝

𝑉
=  

𝑉 − 𝜔𝑟 

𝑉
 

(3.10)  

If 𝑆𝐵 = 1, the wheel will be blocked, which means it would be moving linearly without any rotation. 

Although a variable 𝑟 was used to calculate the rotational velocity of the wheel, it has not been explained 

what it in fact means. This variable on a normal situation would be the nominal radius of the tire, 𝑟0. Due 

to the tire deflection, it rotates around with a smaller radius than the construction one. This is known as 

dynamic radius (Schramm et al., 2014; Guiggiani, 2014), given by 

 
𝑟𝑑𝑦𝑛 =

2

3
𝑟0 +

1

3
𝑟𝑠 

(3.11)  

The rotational velocity would now become 𝜔𝑟𝑑𝑦𝑛, instead of 𝜔𝑟. 

To formalize the surge of tangential forces, on driving or braking situations, a model has been created. 

The Brush model depicted in Figure 3.7 indicates that the tread of a tire is represented through elastic 

beam elements, known as profile elements, that will suffer shear or sliding motions. This model helps to 

understand the behaviour of a tire under longitudinal forces, since its own friction with the road changes 

from purely adhesion to only sliding, if some conditions are met (Schramm et al., 2014). The Brush 
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model is the basis for all tire dynamics and, especially, for the tire force models that will be discussed 

later. 

 

Figure 3.7 - Representation of the tire brush model as in (Schramm et al., 2014). 

A profile element enters the contact point at E and exits it at A, like in Figure 3.8, with a velocity equal 

to 𝜔𝑟𝑑𝑦𝑛. Again, 𝑉𝑝 represents the velocity of the contact patch. If there is no slip, then the patch is said 

to be at rest, meaning no shear or sliding motions will be applied on the elements. For a driven wheel, 

the profile elements will be sheared towards the front, while if a wheel is being braked, the profile elements 

will be sheared to the back. Looking at Figure 3.8, it is possible to state that at the entry point, the profile 

will be totally adhered to the surface (remember the wheel is travelling to the left, so the contact patch 

will evolve from the left to the right with the rotation of the wheel). The horizontal deformation of the 

element is given by û(𝑡) or 𝑢(𝑥), if 𝑥 = 𝜔𝑟𝑑𝑦𝑛𝑡. As the element moves along the patch, there will be 

an increase in deformation in the direction of E and the maximum deformation will happen at the exit 

point, 𝑢𝑚𝑎𝑥 (Schramm et al., 2014). 

 

Figure 3.8 - Behaviour of a profile element at the contact patch by (Schramm, Hiller, & Bardini, 2014). 
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Assuming a profile element is in adhesion across the total length, the shear stress on each element 

is (Schramm et al., 2014) 

 𝜏𝑥(𝑥) = 𝑘𝑢(𝑥) (3.12)  

The constant, 𝑘, depends on some tread characteristics, such as the height and the shear modulus 

of the rubber. With the shear stress is possible to compute the longitudinal force transferred by all the 

profile elements over the contact surface, 𝐶, with a breadth of 𝑏 (Schramm et al., 2014) 

 
𝐹𝑥 = ∫𝜏𝑥(𝑥)𝑑(𝐶) = ∫𝜏𝑥(𝑥)𝑏𝑑𝑥

𝐿

0

=
1

2
𝑘𝑏𝐿2𝑠 

(3.13)  

The vertical force can also be calculated using the brush model. Assuming a Coulomb friction for the 

adhesion between the profile elements and the road surface, and a constant pressure distribution over 

the patch (Schramm, Hiller, & Bardini, 2014) 

 
𝐹𝑍 = ∫𝑝𝑧(𝑥)𝑑(𝐶) = ∫𝑝𝑧(𝑥)𝑏𝑑𝑥

𝐿

0

 
(3.14)  

If the tangential stress surpasses the adhesion boundary at any given point, the profile elements will 

begin to slide. The adhesion condition is given by (Schramm et al., 2014) 

 𝜏𝑥(𝑥)  ≤ 𝜏𝑥𝐻(𝑥) with 𝜏𝑥𝐻(𝑥) =  𝜇𝐻𝑝𝑍(𝑥) (3.15)  

The sliding condition yields 

 𝜏𝑥𝐺(𝑥) =  𝜇𝐺𝑝𝑍(𝑥) (3.16)  

The adhesion friction coefficient must always be bigger than the sliding friction coefficient. A rule of 

thumb is  

 𝜇𝐺 < 𝜇𝐻  →  𝜏𝑥𝐺(𝑥) <  𝜏𝑥𝐻(𝑥) (3.17)  

The contact area, outlined in Figure 3.9, can then be divided into two different regions: the adhesion 

region and the sliding region. Being G the adhesion boundary (EG – Adhesion zone; GA – Sliding zone), 

it is possible to conclude that as the slip increases, so does the sliding area. The tire would then lose its 

adherence with the road and start sliding across it, which causes the wheel to either block or spin 

(Schramm et al., 2014; Guiggiani, 2014). The longitudinal force can only be described in relation with 

the longitudinal slip, 𝑠. This results in a curve dependent on the tire’s behaviour.  
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Figure 3.9 - Division of the contact length in terms of adhesion and sliding areas. Adapted from (Schramm et 

al., 2014). 

Figure 3.10 is a typical representation of a force-slip curve for the longitudinal force. For small slip 

values, below 𝑠𝑚𝑎𝑥, the adhesion region extends over the entire contact patch length. In this region, the 

longitudinal force, 𝐹𝑥, increases linearly and is proportional to the triangular surface under the tangential 

stress distribution (left case in Figure 3.9). In fact, that distribution is only valid for adhesion scenarios 

over the entire patch. The longitudinal force is of the type (Schramm et al., 2014) 

 𝐹𝑥 = 𝑐𝑠𝑠 (3.18)  

where 𝑐𝑠 is the longitudinal stiffness of the tire.  

 

Figure 3.10 - Typical longitudinal force-slip curve. 

If the slip increases further past 𝑠𝑚𝑎𝑥 value, the sliding region starts to increase disproportionately 

(Figure 3.9 – middle). The longitudinal force between the road and the tire reaches the maximum 

possible, where the coefficient of friction is given by  

Transition

Adhesion Sliding 

Pure sliding
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𝜇𝑚𝑎𝑥 = 

𝐹𝑥,𝑚𝑎𝑥

𝐹𝑍
 

(3.19)  

It must be said that the maximum value of the adhesion friction in the patch can be achieved only in 

the transition zone between adhesion and sliding regions. For very high slip values, the longitudinal force 

starts to decrease, with the increase of slip, until it reaches a final value, 𝐹𝑥,𝐺, during pure sliding. At this 

point the wheel is either blocked (during braking) or just spinning (during acceleration). The sliding friction 

coefficient corresponds to  

 
𝜇𝐺 = 

𝐹𝑥,𝐺

𝐹𝑍
 

(3.20)  

Considering no lateral forces are being transmitted (this is just a case where only longitudinal forces 

exist), the curve represented in Figure 3.10 is influenced by: 

• Constructive Parameters: Increasing the longitudinal stiffness of the tread dislocates 𝑠𝑚𝑎𝑥 

towards smaller values of slip.  

• Vertical Load, 𝐹𝑍: Only the longitudinal force changes, the maximum value of slip remains the 

same. Increasing the vertical load leads to bigger longitudinal stiffness and therefore a bigger 

initial slope. The linear zone enlarges, while the friction coefficient stays the same.  

• The limits of the longitudinal forces increase proportionally with the vertical load up to a “statistical 

point”. From there the increase starts to be degressive, due to deformation of the tire structure.  

• 𝜇𝑚𝑎𝑥 and 𝜇𝐺: if these values are modified, a stretch on the ordinates and abscissas with respect 

to the origin is generated. The initial slope remains the same because it is only affected by the 

shear stiffness. The maximum value of the longitudinal force will move for bigger values of slip. 

The combination of increment in both vertical load (increases the slope) and maximum adhesion 

coefficient moves the transition point to greater slip values. This produces a later entrance into 

the sliding zone. For dry surfaces and bigger values of vertical load, the maximum longitudinal 

force, which also increases, is due to higher values of slip, 𝑠, as seen in Figure 3.11. 
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Figure 3.11 - Changes to curve with variable vertical load. Adapted from (Schramm et al., 2014). 

3.2.4 Lateral Forces 

To study lateral forces, no longitudinal forces will be considered. A rolling wheel that is subject to a 

lateral force, 𝐹𝑦, generates a velocity component lateral to the rolling direction (Schramm et al., 2014). 

Lateral forces are generated primarily during cornering when the slip angle, sketched in Figure 3.12 is 

different from zero. 

 

Figure 3.12 - Graphical representation of the slip angle. 

The lateral slip, or slip angle, is simply calculated as  

 
𝛼 = atan (

𝑉𝑦

𝑉𝑥
) 

(3.21)  

One can assume that the tread exhibits similar deformation characteristics in the longitudinal and 

lateral directions, so it is also possible to use the brush model to investigate the lateral case. Let us 

consider that a profile element adheres to the surface of the road. This beam element will be deformed 
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laterally until it reaches the exit point of the patch, as represented in Figure 3.13. It is known that for 

small slip angles, the element adheres from one the patch’s end to the other. Here the lateral tangential 

stress will increase linearly. The lateral force will be given by (Schramm, Hiller, & Bardini, 2014) 

 𝐹𝑦 = ∫𝜏𝑦(𝑥)𝑑(𝐴) = 𝑐𝛼sin (𝛼)cos (𝛼) (3.22)  

𝑐𝛼 is nothing more than the cornering stiffness of the tire. 

 

Figure 3.13 - Brush model for the lateral side of the tire. Adapted from (Schramm, Hiller, & Bardini, 2014). 

Much like for the longitudinal force, a curve relating the lateral force with the slip angle can be created 

as seen in Figure 3.14. The lateral force increases proportionally with the slip angle. At larger angles, the 

deflection of the patch elements and the tangential stress will increase towards the posterior patch 

boundary. The adhesion friction limit will be exceeded, and the sliding will begin. In the adhesion region, 

the force increases linearly. In the sliding region, the lateral force will no longer increase linearly, but will 

do it so digressively with respect to the slip angle. With an increasing slip angle, the sliding region will 

move towards the front of the patch, till it encompasses the entire surface, at maximum slip angle 

(Schramm et al., 2014). 
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Figure 3.14 - Typical lateral force-slip angle curve. 

The increase in lateral stress in the direction of the patch exit will cause the resultant lateral force to 

act slightly behind the middle of the patch as in Figure 3.15. This creates a torque that tries to reduce 

the slip, called the self-aligning torque. It opposes the slip angle in such a way that it is trying to return it 

to zero. It is given by  

 𝑀𝑧 = 𝑛𝑅𝐹𝑦 (3.23)  

𝑛𝑅 describes the tire caster angle (see the Glossary). 

 

Figure 3.15 - Changes in the contact patch due to the slip angle and lateral tangential stress. Adapted from 

(Schramm et al., 2014). 

3.2.5 The slip angle and Influence of Tire Load on the Patch Surface 

The slip angle is the angle between the rolling velocity and the speed of travel of the tire. In other 

words, it is the angle formed between the direction of motion of the tire centre point and the longitudinal 

direction of the wheel (Guiggiani, 2014), much like the one represented in Figure 3.16. 

Adhesion Sliding
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Figure 3.16 - Representation of the contact patch deformation and its relationship with the slip angle. 

When the wheel is cornering, the friction between the tire and the road creates a lateral force that acts 

upon the tire, thus generating a deformation, amplified by the viscoelastic properties of the rubber. The 

wheel is then deformed in the direction the wheel is heading, like in Figure 3.16. The slip angle of a 

vehicle may not be the same for every wheel. Each pair of wheels (front or back) will have the same slip 

angle, but rear tires might have a different slip angle than the front tires. These events lead to different 

situations: 

• Understeer: 𝛼 Front >  𝛼 Rear 

• Oversteer: 𝛼 Front <  𝛼 Rear 

• Neutral Steering: 𝛼 Front =  𝛼 Rear 

In normal working conditions, both longitudinal and lateral forces have a linear relationship with the 

normal load, 𝐹𝑍. However, if the vertical load increases and surpasses the constructive operating load 

(that one the tire was built for), the friction in the contact decreases with the increase of the contact force 

and, consequently, the longitudinal force increases degressively with respect to the tire load.  

3.2.6 Superposition of Longitudinal and Lateral Forces 

Pure longitudinal forces or pure lateral forces are hardly found. The former only happen if the car is 

following a purely straight line, while the latter only occurs during a steady state cornering, with constant 

velocity. Although these situations can happen, in real driving situations both forces are overlapped. Most 

of the time, longitudinal forces and lateral forces are transmitted at the same time. According to 

Coulomb’s friction law (Schramm et al., 2014) 

Contact Patch
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√𝐹𝑥

2 + 𝐹𝑦
2 ≤ 𝜇𝑚𝑎𝑥𝐹𝑧 

(3.24)  

which represents the rule that must be followed by any tire: the sum of lateral and longitudinal forces 

cannot be higher than the maximum amount of friction force due to the vertical load. It arises a new 

concept: the friction circle.  

Figure 3.17 represents the friction circle, in which the inner circle is known as sliding region, while 

the outer circle is called adhesion region. In normal working conditions, a tire should work inside the 

outer circle. This concept creates some limitations to the forces. The maximum lateral force, when a 

simultaneous longitudinal force occurs, is reduced, it needs to follow the rule of Eq. (3.24). For real driving 

situations, accelerations or braking torques, that increase in modulus the longitudinal force, reduce the 

maximal possible lateral forces generated on a bend. The opposite is also true.  

 

Figure 3.17 - Graphical representation of the friction circle for the contact forces. 

Although the usual representation of this concept uses a circle, another theoretical hypothesis is being 

used nowadays. The limit of the transmissible tangential forces is, in fact, an ellipse, where the adhesion 

limit in the longitudinal direction is larger than in the lateral direction. This means that the slip-force curves 

for acceleration and braking will not be symmetrical.  

3.2.7 The Deformation of the Tire 

One of the main purposes of a tire is to reduce vibrations caused by the road, which makes its elastic 

and damping properties extremely valuable. For an effective damping, big vertical deformations are 

required, although it causes worse handling. Handling is also dependent on horizontal deformation, which 

is provided by softer tires (Schramm et al., 2014). 

The vertical flexibility of the carcass gives the dynamic behaviour and is the main source of rolling 

resistance. Longitudinally, the minimum deflection of the exterior rubber bands determines the 
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characteristics of the longitudinal force-slip conditions. In the lateral direction, the same characteristics 

are provided by the exterior bands and the deflection on the carcass.  

3.3 Tire Force Models 

3.3.1 Background 

The contact between road and tire has been a highly debated theme ever since vehicle dynamics 

started to be studied. In fact, the contact dynamics play a very important role in the design of both tires 

and vehicles. There are several ways to study these dynamics, known as tire models.  

These so-called tire models represent forces and torques that are generated on a tire during the 

contact with the road. Tire models are particularly helpful to either design tires or to fully understand the 

behaviour of a vehicle on the road. Every tire model is different, in that it represents the same physical 

phenomena in a different manner, leading to results with different precision. There are two types of 

models, i.e., the mathematical and the physical. It is possible to consider a third type, which is the 

combination of both mathematical and physical models.  

Mathematical models represent physical characteristics of tires through purely mathematical 

description (Schramm et al., 2014). Being totally made from mathematical functions, these are not the 

most precise and correct models, since they cannot truly characterize a tire’s behaviour over time, 

especially in the non-linear regions.  

Nevertheless, it is not theoretically possible to get perfect results for these occurrences, like 

longitudinal forces or rolling resistances, from the get-go with purely mathematical models. Thus, it can 

be necessary to derive these mathematical models into what is called the Semi-Empirical Models. Before 

generating functions of the behaviour of a tire, some of its parameters are empirically measured in 

different conditions, usually on a test rig. After the measurements are made, the results are stored as 

mathematical curves. It is important to note that the measurements do not need to be extremely 

extensive, as posterior processing can be done by interpolation using the mathematical functions that 

represent the curves. Mathematical, and semi-empirical models are usually the simplest and easiest to 

use, despite needing a great quantity of parameters to generate precise curves. As a matter of fact, 

changing individual parameters begets a change in curves, since each represents a single assessed 

variable.  

The mathematical models are usually represented in quasi-static states, meaning that a tire is 

considered as a single unit with mass and inertia. The different layers that compose a tire are not dealt 
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with. The Physical Models can be of three types: finite elements, stationary models, and transient models. 

These models are adequate for some important effects happening on a tire, such as heating or inflation 

pressure. Also, they can present a visual representation of the tire and simulate transient conditions, 

important for a more accurate representation of the tire (Schramm et al., 2014). 

3.3.2 Dugoff Model 

One of the first purely mathematical models to be introduced into the automotive industry was the 

Dugoff Model (Dugoff et al., 1969), that can compute both longitudinal and lateral forces under pure or 

combined slip conditions.  

This model is characterized by its simplicity and low computation time, only requiring a couple of 

mathematical functions to work. However, it cannot describe the dynamic characteristics of tire forces. 

Nevertheless, it can be especially useful when a high degree of complexity is not needed (Dugoff et al., 

1969). The Dugoff Model is made of a set of equations, one for the longitudinal force and the other for 

the lateral dynamics (Dugoff et al., 1969) 

 𝐹𝑥 = 𝑐𝑠

𝑠

1 + 𝑠
 ∙ 𝑓(𝜆) (3.25)  

 
𝐹𝑦 = 𝑐∝

tan (∝)

1 + 𝑠
 ∙ 𝑓(𝜆) 

(3.26)  

These equations a non-linear relationship between the slip quantities, the directional stiffness, and a 

function of the Dugoff factor, 𝜆. This factor combines the values of the vertical load, the stiffnesses and 

the slip quantities, and, finally, the maximum friction coefficient into one value (Dugoff et al., 1969) 

 
𝜆 =  

𝜇𝑚𝑎𝑥𝐹𝑍(1 + 𝑠)

2√(𝑐𝑠𝑠)2 + (𝑐∝tan (∝))2
 

(3.27)  

 𝑓(𝜆) =  {
(2 − 𝜆) 𝑖𝑓 𝜆 < 1
1            𝑖𝑓 𝜆 ≥ 1

) (3.28)  
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Figure 3.18 (left) shows the variation of the longitudinal force with the slip ratio. The Dugoff model 

can clearly represent the initial linear change of the force (Bhoraskar & Sakthivel, 2017). However, instead 

of reaching a maximum value (the value that separates the region of adhesion from the sliding one) and 

then entering a non-linear state of decay, the longitudinal force keeps increasing its value with the 

increment of the slip ratio. But this is a bad representation of reality. The linear state of change of the 

longitudinal force, represented by an almost-fully linear increase, ends at a maximum value. After that, 

the longitudinal force starts to decrease non-linearly, reaching a final value, when the slip ratio equals 

one, lower than the peak value. The same happens for the lateral force. The Dugoff Model does not 

possess the ability to showcase these dynamics (Bian, 2014; Bhoraskar & Sakthivel, 2017). 

 

Figure 3.18 – Longitudinal and lateral forces using the Dugoff model. From (Shekhar, 2017). 

Furthermore, the Dugoff model is fit for expressing the change trend of friction forces. Nonetheless, 

its precision decreases for large slip ratios or slip angles. Also, it does not reflect the truth about the 

friction coefficient decreasing when the value of the slip ratio is large (Bian, 2014). 

3.3.3 Modified Dugoff 

Although being an easy model to implement, the Dugoff model lacks some of the precision and quality 

when compared with other models, such as the Magic Formula, especially when calculating forces for 

larger values of slip. The Dugoff Model shows a continuously increasing trend with the increment of the 

slip ratio, or the slip angle, and its curves have no peak point. It does not reflect some principles. 

Therefore, a solution was created, in order to create a more robust Dugoff model and is presented at 

(Bian, 2014). 

Overall, a magnifying factor, 𝐺𝑠 or 𝐺𝛼, is multiplied into the original tire forces equations, so that the 

decrease in force with the increment of slip/slip angle in the nonlinear region could be respected (Bian, 



 42 

2014). This simple factor adds a peak point to the curves, which represents the dynamic characteristics 

that were missing in the original model. This model is represented as (Bian, 2014)  

 𝐹𝑥 = 𝑐𝑠

𝑠

1 + 𝑠
 𝑓(𝜆)𝐺𝑠 (3.29)  

 𝐺𝑠 = (1.15 − 0.75𝜇𝑚𝑎𝑥)𝑠
2 − (1,63 − 075𝜇𝑚𝑎𝑥)𝑠 + 1.27 (3.30)  

These equations represent the longitudinal force and the respective magnifying factor, 𝐺𝑠. For the 

lateral dynamics, the exact same thing happens (Bian, 2014) 

 
𝐹𝑦 = 𝑐∝

tan (∝)

1 + 𝑠
 𝑓(𝜆) 𝐺∝ 

(3.31)  

 𝐺𝛼 = (𝜇𝑚𝑎𝑥 − 1.6) tan(∝) + 1.155 (3.32)  

Finally, it must be said that 𝜆 and 𝑓(𝜆) are given by Eqs. (3.27; 3.28), respectively. 

This model becomes closer to the MF model and has a peak point near the one obtained from the MF 

as seen in Figure 3.19. Nevertheless, the values obtained are consistent for the linear region, but the 

peak is reached later than expected and the nonlinear region showcases values that are larger than those 

expected. Still, the dynamic behaviour is not fully compromised (only by the slightly larger values after 

the peak). This model continues the premise of being simple, easy to implement and resolve, requiring 

less computation time than more complex models.  

 

Figure 3.19 - Longitudinal Force computed with the Modified Dugoff model as function of the slip for a vertical 

load of 8kN. 

3.3.4 Magic Formula 

The Magic Formula is probably the most important tire model and was developed in the mid 1980’s 

as a partnership between Delft University of Technology and Volvo. This model was presented in (Bakker 

et al., 1987; Bakker et al., 1989), and has suffered some evolutions found in (Pacejka, 2002) 
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The Magic Formula is a mathematical model, with a physical viewpoint (semi-empirical model) 

(Schramm et al., 2014). It describes the contact between tire and road trough mathematical formulae in 

quasi-static conditions (Pacejka, 2002). Unlike the Dugoff and Modified Dugoff models (Bhoraskar & 

Sakthivel, 2017), it requires the experimental measurement of some model parameters to build the 

mathematical curves that represent characteristics like the lateral and longitudinal forces (Pacejka, 2002). 

The measurements are stored as parameters that make up a mathematical function, known as Magic 

Formula. The tests are made in specific conditions with a vehicle cruising at a constant speed. This 

disables, from the get-go, the ability to predict the change of friction and the lag of the generation of 

frictional forces. It must be said that in reality these forces do not instantaneously reach a steady-state, 

but rather they exhibit a transient behaviour (Uil, 2007).  

The relationships between forces and torques, and slip quantities, like the slip ratio and the slip angle, 

are determined in a quasi-static state of rolling or during handling situations, like cornering. This opens 

the possibility to represent those relations as curves of trigonometric functions, like the sine or the 

arctangent. Thus, the Magic Formula can describe force and torque variations at the contact patch as a 

function of pure or combined slip with high precision. The formula has a generic form that can describe 

each characteristic, only needing to change some of its parameters. However, as time went on, Pacejka 

developed new and more robust formulae, directly from the general statement, that can depict more 

detailed occurrences (Pacejka, 2002). 

The general form of the Magic Formula is given by (Pacejka, 2002) 

 𝑦(𝑥) = 𝐷 sin(𝐶arctan (𝐵𝑥 − 𝐸(𝐵𝑥 − arctan (𝐵𝑥)) )) (3.33)  

Table 3.1, presents the meaning of each variable represented in Eq. (3.33). These “big” parameters 

are built by several other parameters, that must be obtained experimentally, like stiffness coefficients or 

the friction between tire and the road. 

Table 3.1 - Meaning of each parameter of the general Magic Formula. 

Parameter  Meaning  

𝐵 Stiffness factor 

𝐶 Shape factor 

𝐷 Peak value of the curve 

𝐸 Curvature factor 

𝐵𝐶𝐷 Slope at the origin 

𝑆𝐻 Horizontal shift  

𝑆𝑉 Vertical shift 
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𝑥 Variable (slip or slip angle) 

 

The general function can describe several characteristics from the steady-state behaviour with high 

fidelity and precision. It facilitates a physical interpretation and evaluation of the different relations, while 

maintaining an easy access to important data. Also, the Magic Formula, unlike the Dugoff Model, can 

capture a tire’s non-linear behaviour, in extreme slip conditions.  

The general Magic Formula always gives a curve that passes through the origin, depicted in Figure 

3.20, representing either the longitudinal force, the lateral force, or the different torques, as functions of 

the slip quantities, with the vertical load and camber angle included as parameters (Pacejka, 2002).  

  

Figure 3.20 - General curves given by the Magic Formula. Adapted from (Schramm, Hiller, & Bardini, 2014) 

and (Pacejka, 2002). 

Therefore, the general function, given by Eq. (3.33), always creates a curve that passes through the 

origin. This means that, when the slip, or slip angle, are equal to zero, there are no forces being created 

between the tire and the road. Well, sometimes this is not entirely true. Some of the tire’s construction 

principles, such as ply-steer (pseudo-side slip) and conicity (pseudo-camber) effects, may cause the forces 

not to pass through the origin (these relate to a non-symmetrical construction of the tire). This implies 

the creation of a new function, where two different shifts may be added (Pacejka, 2002)  

 𝑌(𝑋) = 𝑦(𝑥) + 𝑆𝑉 (3.34)  

 𝑥 = 𝑋 + 𝑆𝐻  (3.35)  

Sometimes, the original function is not sharp enough, which gives rise to a new term. For extreme 

cases, one might use (Pacejka, 2002) 

 𝑦 = 𝐷 sin(𝐶 arctan[𝐵𝑥 − 𝐸(𝐵𝑥 − arctan(𝐵𝑥) + 𝐻 arctan(𝐵𝑥)7]) (3.36)  

Lastly, the parameters, presented in Table 3.1, are calculated through the experimentally measured 

parameters. These can range from friction coefficients to damping and stiffness of the tire and are always 
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measured experimentally on a test rig at constant speed (steady-state), for a specific tire. Further into this 

work, these parameters will be discussed. A procedure to estimate them is presented in (A. Ortiz, 2006).  

3.3.5 Physical Stationary Model: HSRI 

The Highway Safety Research Institute (HSRI) developed its own model, which was directly derived from 

the Dugoff Model. It is presented extensively in (Schramm et al., 2014), and has been extended in 

(Uffelmann, 1980) for variable tire load and in (Wiegner, 1974), where the aligning torque was introduced. 

This stationary physical model requires, as a first step, the equations of motion of the contact patch 

to be determined relative to the camber angle and the composite velocity (angular and translational) of 

the wheel centre point. This, then, allows the calculation of important variables, such as the slip angle 

and the longitudinal slip (Schramm et al., 2014). 

With both the slip angle and longitudinal slip, the HSRI model is able to determine the dynamic tire 

forces. The longitudinal and lateral forces are evaluated by approximating the deformations taking place 

in the contact patch into a simple geometrical problem. 

The deformations can be represented as a geometrical form, as provided by Figure 3.21, which 

encapsules two different regions: the adhesion region, at the front end of the contact patch, and the 

sliding region at the back end, created when the adhesion limit is reached. Both regions, although different 

in shape, can be depicted by a singular geometrical form, a trapezoid. 

 

Figure 3.21 - Geometrical representation of the HSRI model at the contact patch. From (Schramm, Hiller, & 

Bardini, 2014). 

The trapezoidal surface, representation of the contact patch, stems from the parallel shift of the tire’s 

belt from the wheel centre line in the contact patch and through the partitioning into the sliding and 

adhesion regions (Schramm et al., 2014). The deflection of the tire gives way to the adhesion region, due 

to the slip angle, and to the sliding region, due to the parallel shift. If a constant pressure is assumed to 
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be over the entire patch, then the dynamic forces (longitudinal and lateral) can be considered as acting 

on the centre of gravity of the trapezoidal surface.  

The first step to determine the equations of motion is to compute the sliding velocity, given by 

(Schramm et al., 2014) 

 𝑉𝐺 = 𝑉𝑃√𝑠2 + tan2 (𝛼)  (3.37)  

where 𝑉𝑃 is the velocity at the contact point, as seen in section 3.2. Also, an adhesion coefficient can be 

calculated considering an adhesion factor, 𝑘𝑟, (Schramm et al., 2014) 

 
𝜇 =  𝜇0 (1 − 𝑘𝑟tanh (

𝐹𝑦

𝐶𝛼
𝑉𝐺)

2

) 
(3.38)  

Much like the Dugoff model, a dimensionless value is used to know whether there is only adhesion at 

the contact patch or adhesion paired with sliding. Each case then presents a unique way to determine 

the dynamic tire forces. One presents that value as  

 
𝑆𝑅 = 

√(𝑐𝑠𝑠)2 + (𝑐𝛼tan (𝛼))2

𝜇𝐹𝑍(1 − 𝑠)
 

(3.39)  

If 𝑆𝑅  ≤ 0.5, then there is no sliding, but only adhesion in the contact patch. The dynamic forces are 

then given by (Schramm et al., 2014) 

 
𝐹𝑥 = 𝑐𝑠𝑠 (

1

1 − 𝑠
) 

(3.40)  

 𝐹𝑦 = 𝑐𝛼tan (𝛼) (3.41)  

If 𝑆𝑅 > 0.5, sliding and adhesion are present in the contact patch. The dynamic forces must be 

computed as (Schramm et al., 2014) 

 
𝐹𝑥 =

𝑐𝑠𝑠(𝑆𝑅 − 0.25)

𝑆𝑅
2(1 − 𝑠)

 
(3.42)  

 
𝐹𝑦 = −

𝑐𝛼tan (𝛼)(𝑆𝑅 − 0.25)

𝑆𝑅
2(1 − 𝑠)

 
(3.43)  

3.3.6 Transient Models  

The previous models are considered to be stationary models, hence they can simply describe steady-

state manoeuvres, such as pure cornering or steady-state braking. In reality, during braking or turning, 

tire forces do not develop instantaneously, but require a certain rolling distance to be generated, due to 

the flexible structure of the tire (Guiggiani, 2014; Blundell & Harty, 2004; Schramm et al., 2014). This is 

usually called “lag” and can affect tremendously the performance of car, which is of particular interest 

for certain applications, such as security systems that control braking and slip (e.g., ABS). A transient 
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model is a physical model, usually complex, that tries to represent the previous characteristics, but 

especially the transient behaviour of friction forces.  

The first of the transient models is known as SWIFT. This model was created as an extension to the 

Magic Formula. It uses the Magic Formula, while also using a rigid ring model that represents the tire. 

The tire belt is assumed to act like a rigid body, with inertia. (Pacejka, 2002; MF-TYRE & MF-SWIFT 6.1: 

USER MANUAL 2008, 2008). While the Magic Formula can be used for uneven roads, it only supports 

surfaces with low frequencies. The SWIFT model changes that and can simulate a tire rolling on highly 

uneven roads (up to 120 Hz).  

This model, rendered in Figure 3.22, uses a single point contact to compute the slip, which is the 

same as the Magic Formula. The belt is a rigid ring connect flexibly to the rim, which possesses stiffness 

in all directions. The contact patch stiffness is modelled with a differential function with a time constant 

that corresponds to the adhesion area. The vibration modes of the tire are described by the sidewalls, 

which are elastically suspended rings. To simulate the tire moving over uneven roads, a three-dimensional 

obstacle enveloping model is used (Besselink, 2004; MF-TYRE & MF-SWIFT 6.1: USER MANUAL 2008, 

2008; Schramm et al., 2014). Some work was also done to adapt this model to cope with variable inflation 

pressures, in (Schmeitz, Besselink, Hoogh, & Nijmeijer, 2005).  

 

Figure 3.22 - Representation of the tire as in the SWIFT model. Adapted from (MF-TYRE & MF-SWIFT 6.1: USER 

MANUAL 2008, 2008). 

A second transient model is the LuGre model (Canudas-de-Wit et al., 1995; Canudas-de-Wit et al., 

2002), which derives from the Dahl friction model (Dahl, 1968). This model describes a dynamic force 

phenomenon created by two surfaces sliding on each other. The frictional surfaces are assumed to consist 

of bristles, which have motions described by differential equations (Uil, 2007; Tan et al., 2007). This 

model is somewhat friction based. Friction can be described by Coulomb or the viscous effect. However, 
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these models create a “static map” between velocity of the surfaces and the frictional force, which makes 

it impossible to describe Dahl effect (Dahl, 1968), the hysteretic behaviour for nonstationary vehicles. 

The bristles, depicted in (Figure 3.23), represent the microscopic asperities of both surfaces and are 

said to be elastic. When a tangential force is applied to them, the bristles will deflect much like springs 

(Tan, Wang, & Zhang , 2007).  

 

Figure 3.23 - The bristles between surfaces. 

This deflection creates a friction force and, if it is too big, then some of bristles will slip. The average 

behaviour of those bristles paves the way to the LuGre dynamic model. This model assumes that the 

road-tire contact is realised through bristles attached to the belt, which are massless and elastic elements. 

In short, Canudas-de-Wit et al. (2002) represent the deflection of the bristles as  

 𝑑𝑧

𝑑𝑡
= 𝑣𝑟 −

|𝑣𝑟|

𝑔(𝑣𝑟)
𝑧 

(3.44)  

where 𝑣𝑟 is the relative velocity between the two surfaces. The Stribeck curve is described by 𝑔(𝑣𝑟), 

which relates the relative velocity with the friction force as (Canudas-de-Wit et al., 2002) 

 𝑔(𝑣𝑟) =  𝐹𝐶 + (𝐹𝑆 − 𝐹𝐶)𝑒−(𝑣𝑟/𝑣𝑠)
𝛿
 (3.45)  

in which 𝐹𝐶 represents the Coulomb friction force, while 𝐹𝑆 is the striction force and 𝑣𝑠 the Stribeck 

velocity. 𝛿 is the Stribeck exponent. The friction force from the deflection of the bristles can be written as 

 
𝐹 = 𝜎0𝑧 + 𝜎1

𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣𝑟 

(3.46)  

where 𝜎0 is rubber longitudinal stiffness and 𝜎1 the damping. 𝜎2𝑣𝑟 is accounting for the viscous effect. 

The tangential forces can be obtained by multiplying the friction force with a normal force (Canudas-de-

Wit et al., 2002; Tan et al., 2007) 

 
𝐹 = (𝜎0𝑧 + 𝜎1

𝑑𝑧

𝑑𝑡
+ 𝜎2𝑣𝑟) 𝐹𝑍 

(3.47)  

It must be said that Tan et al. (2007) investigated a method to estimate this model’s parameters, 

such as the friction coefficients. 
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4. MULTIBODY DYNAMICS 

Any vehicle can be considered a multibody system. Thus, the vehicle can be studied as a multibody 

system, which creates the necessity of fully understanding the dynamics behind any multibody system. 

This chapter will serve as an introduction to the multibody dynamics analysis, which will integral to the 

definition and study of the vehicle. 

4.1 Basic Concepts and Fundamentals 

A multibody system can be described has a collection of mechanical components that describe 

rotational or translational motions. These components, which can be rigid or flexible, are connected via 

kinematic joints and, sometimes, force elements, such as spring-damper actuators. The joints impose 

restrictions on the relative movement of the bodies. The bodies can be of two different types: 

• Rigid: The deformations do not affect the motion of the body. Its movement is described by 6 

coordinates associated with 6 degrees of freedom. In most applications, the bodies are usually 

rigid. 

• Flexible: These have an elastic structure, which 6 rigid degrees of freedom plus the number of 

generalized coordinates needed to describe the deformations. 

Degrees of freedom (DoF) are the minimum number of generalized coordinates necessary to describe 

a system’s configuration. A singular body can have 6 DoF in a 3-dimensional space: 3 translational plus 

3 rotational around each axis, as seen in Figure 4.1.  

 

Figure 4.1 - Three-dimensional coordinate system. 

If a kinematic joint were to be introduced, the number of DoF would necessarily decrease according 

to the number of restrictions imposed by the joint. DoF can be calculated as  

roll

pitch

yaw
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 𝑛𝐷𝑜𝐹 = 6𝑛𝑏 − 𝑚 (4.1)  

where 𝑛𝑏 represents the number of mobile bodies and 𝑚 denotes the number of restrictions imposed 

by all joints. A multibody mechanism can have a multitude of DoF. If the number of DoF is positive, then 

that system is solvable. If it was zero, that system would not possess any motion. Lastly, if Eq. (4.1) 

returns a negative number, it means that the system is over-restricted. Each restriction creates restriction 

equations, which will be talked about later. Table 4.1 presents several types of kinematic joints used in 

this work and their characteristics. 

Table 4.1 - Some kinematic joints and their characteristics (Flores P. , 2015). 

Types of Joints 

Spherical 

 

3 DoF: rotation around each axis 
3 Constraints: translation of each axis (3 forces) 

Revolute 

 

1 DoF: rotation around one axis 
5 Constraints: Translation of each axis (3 forces); 
rotation around the other 2 axles (2 torques) 

Translational 

 

1 DoF: translation of one axis 
5 Constraints: 2 forces and 3 torques 

Cylindrical 

 

2 DoF: translation and rotation around one axis 
4 Constraints: 2 forces and 2 torques 

  

To solve a dynamic multibody system, it is necessary to generate its equations of motion that reveal, 

when solved, the behaviour of said system. The procedure should always start with the development of 

mathematical models that characterize the system. Afterwards, computational methods are used to 

simulate and analyse the motions of the system. Two types of formulations are used to represent a 

system: Point-coordinate, Joint-coordinate and Body-coordinate (Flores P. , 2015; Nikravesh P. E., 1988).  

In the scope of this work, the body coordinates formulation is used. To obtain the equations of motion, 

a systematic approach is made to get equations based on the Newton-Euler equations (Flores P. , 2015; 

Marques et al., 2017). The bodies are represented by positions and velocities. This results in a big number 

of coordinates, which makes it inconvenient to solve by “hand”. Nevertheless, the resultant equations are 

simple and versatile enough to be easily solved by computational methods. 

Finally, the dynamics of a multibody mechanism can be analysed through two different approaches. 

In a forward dynamic analysis, the external forces acting on the bodies are always known, and the 
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resultant motions are obtained as a solution of the equations of motion. Conversely, in an inverse dynamic 

analysis, the motion of the body is already known, and the objective is to determine the necessary forces 

to produce that specific motion (Flores P. , 2015).  

4.2 Global and Local Coordinates 

To characterize the configuration and motion of a system, a coordinate system must be adopted. The 

global system of coordinates is represented as 𝑥𝑦𝑧. This is usually the reference frame, also known as 

absolute, from where all components will be defined. Additionally, a local system of coordinates, 𝜉휂휁,  is 

used to define local properties of points that belong to a body and has its origin on the centre of mass of 

a certain body. This system moves according to the motion of the body, its location and rotation being 

variable over time.  

A body, 𝑖, moving in a 3-dimensional space, can be located by three independent variables, described 

by (Flores P. , 2015) 

 𝐫𝑖 = {𝑥𝑖 𝑦𝑖  𝑧𝑖}
𝑇 (4.2)  

A free rigid body, 𝑖, can be described by the definition of an arbitrary point located on the body and 

by the rotation of the body around that point. This creates endless ways of defining the spatial position of 

a body. The generalized coordinates (𝑥𝑦𝑧), that describe the positions of all the elements of a multibody 

system, can be describe relative to themselves or a common referential. As Figure 4.2 suggests, vector 

𝐫 defines the location of the origin of the local reference frame, 𝜉휂휁, in relation to the global frame, 𝑥𝑦𝑧. 

This vector represents the translational coordinates of the body. To fully represent the body, it is necessary 

another set of coordinates that express said body’s orientation relative to the global frame (Flores P. , 

2015). 

 

Figure 4.2 - Location of a body in a 3-dimensional space. Adapted from (Flores P. , 2015). 

A point, 𝑃𝑖, located on body 𝑖, can be defined from the origin of the local frame of reference by a 

vector 𝐬𝑖
𝑃. Its direct location relative to the global frame is expressed as (Flores P. , 2015) 

 𝐫𝑖
𝑃 = 𝐫𝑖 + 𝐬𝑖

𝑃 (4.3)  
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The same point can be described by 𝐬𝑖
′𝑃 relative to the local coordinate system. This vector gives the 

location of the point in the local frame of reference, 𝜉휂휁, written in local coordinates, which is constant 

for rigid bodies. To apply Eq. (4.3), this vector needs to be transformed from local to global coordinates 

with the following expression 

 𝐬𝑖
𝑃 = 𝐀𝑖𝐬𝑖

′𝑃 (4.4)  

in which, 𝐀𝑖 is the transformation matrix, which describes the orientation of the local coordinates frame 

relative to the global system. This is a 3x3 matrix, express in terms of cosines, that yields 

 
𝐀𝑖 = [

𝑎11 𝑎12 𝑎13

𝑎21 𝑎22 𝑎23

𝑎31 𝑎32 𝑎34

] 
(4.5)  

Each column of the previous matrix represents a unit vector, projected onto 𝑥𝑦𝑧, that represent the 

local coordinate system, 𝜉휂휁. So  

 
𝐮𝜉 = {

𝑎11

𝑎21

𝑎31

} , 𝐮𝜂 = {

𝑎12

𝑎22

𝑎32

} , 𝐮𝜁 = {

𝑎13

𝑎23

𝑎33

}    
(4.6)  

4.3 Rotational Coordinates and Angular Velocity  

The orientation of a rigid body is defined by three rotational coordinates, which results in the previously 

presented transformation matrix, given by Eq. (4.6). The elements inside the matrix are expressed by 

several coordinates, namely the Bryant Angles, the Euler Angles or, even, the Euler Parameters. Also, as 

seen before, those nine elements are directional cosines that define the orientation of 𝜉휂휁. Euler angles 

are three angles used to describe the orientation of a rigid body. Each represents a rotation that displaces 

a singular axis towards another axis of reference. Any rotation is obtainable by using three elementary 

rotations. Similarly, the Bryant angles are purely the 𝑥𝑦𝑧 convention of the Euler angles (Flores P. , 

2015). The two previous methods can represent the orientation of a system. However, this work will 

mainly focus on the Euler parameters, which will be presented next. To better understand Euler angles 

and Bryant angles refer to (Flores P. , 2015). 

A problem that arises from the use of three different angles is the existence of singularities, that make 

the first and third rotation coincide (Flores P. , 2015). By using 4 rotational coordinates, this singularity 

is avoided. These are known as Euler parameters. Euler’s theorem states that a rotation on a three-

dimensional space can be always described by the rotation of a certain axis around a certain angle, as 

depicted by Figure 4.3. 
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Figure 4.3 - Graphical representation of the Euler parameters. Adapted from (Flores P. , 2015). 

The orientation of a fixed body’s axes, at any given point in time, can be obtained through an imaginary 

rotation of those axes from an orientation coincident with the global axes (Flores P. , 2015). Therefore, 

there is only one axis, 𝐮, that makes 𝑥𝑦𝑧, through a rotation of an angle 𝛷, parallel to 𝜉휂휁. This axis is 

called orientational axis of rotation. The rotational coordinates are given by (Flores P. , 2015; Nikravesh 

P. E., 1988)  

 
𝑒0 = cos (

𝛷

2
) 

(4.7)  

 
𝑒 = {𝑒1 𝑒2 𝑒3}

𝑇 = 𝐮sin (
𝛷

2
) 

(4.8)  

The previous variables 𝑒0, 𝑒1, 𝑒2, 𝑒3 are called the Euler parameters and in (Flores P. , 2015) is 

stated that 

 𝑒0
2 + 𝑒1

2 + 𝑒2
2 + 𝑒3

2 = 1 (4.9)  

The Euler parameters are usually expressed as  

 

𝐩 =  {

𝑒0

𝑒1
𝑒2

𝑒3

} 

 

(4.10)  

 

The transformation matrix in terms of the Euler parameters can be written as  

 

𝐀 = 2

[
 
 
 
 
 𝑒0

2 + 𝑒1
2 −

1

2
𝑒1𝑒2 − 𝑒0𝑒3 𝑒1𝑒3 − 𝑒0𝑒2

𝑒1𝑒2 − 𝑒0𝑒3 𝑒0
2 + 𝑒2

2 −
1

2
𝑒2𝑒3 − 𝑒0𝑒1

𝑒1𝑒3 − 𝑒0𝑒2 𝑒2𝑒3 − 𝑒0𝑒1 𝑒0
2 + 𝑒3

2 −
1

2]
 
 
 
 
 

 

 

(4.11)  

 

To know more about this topic, check the Appendix A. 

Let us now imagine a body with only rotational motions. Its local coordinate system, 𝜉휂휁, is rotating 

and its origin coincides with global system’s origin as in Figure 4.4.  
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Figure 4.4 - Rotating 𝜉휂휁 coordinate system. 

A vector 𝛚, known as angular velocity, describes the rotational axis and the rotation magnitude of the 

local frame. The angular velocity can be projected onto the local frame as 𝛚′. (Flores P. , 2015) states 

that the transformation matrix and the angular velocity have the following relation  

 �̇� = �̃�𝐀 (4.12)  

The global position of a point, 𝑃, fixed in the local system is given by Eq. (4.4). Its derivative with 

respect to time is 

 �̇�𝑃 = �̇�𝐬′𝑃 (4.13)  

Applying Eq. (4.12) into Eq. (4.13) yields  

 �̇�𝑃 = �̃�𝐀𝐬′𝑃 = �̃�𝐬𝑃 (4.14)  

It is possible to obtain the velocity of any point, 𝑃, by finding the derivative of equation Eq. (4.3). The 

velocity of point 𝑃 yields  

 �̇�𝑃 = �̇� + �̇�𝑃 = �̇� + �̃�𝐬𝑃 (4.15)  

4.4 Equations of Motion for Constrained Multibody Systems 

The dynamic response of a constrained multibody system can only be analysed by formulating the 

equations of motion that govern the behaviour of that system (Marques et al., 2017). The equations of 

motion of a system determine the acceleration of its components, so it is possible to calculate the 

positions and velocities in the next timestep trough an integration process. 

As it has been seen, a constrained multibody system can be described by several generalized 

coordinates, which create a set of algebraic kinematic scleronomic constraints (Marques et al., 2017) 

 𝚽 ≡ 𝚽(𝐪) = 0 (4.16)  
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Eq. (4.16) encompasses the set of holonomic and non-holonomic restrictions, where 𝐪 is the position 

vector. With this, the velocity and acceleration of the components are evaluated by using the velocity and 

acceleration constraint equation, that read as follows (Flores P. , 2015; Marques et al., 2017)  

 �̇� ≡ 𝐃𝐯 = 0  (4.17)  

 �̈� ≡ 𝐃�̇� + �̇�𝐯 = 0 (4.18)  

It can be also said that 

 𝐃�̇� = 𝜸 (4.19)  

The Newton-Euler equations of motion for a multibody system of constrained bodies are, then, given 

by (Marques, Flores, & P. Souto, 2017) 

 𝐌�̇� = 𝐠 + 𝐠(𝑐) (4.20)  

where 𝐠(𝑐) is the vector of reaction forces, while 𝐠 represents the vector of generalized forces. It is known 

that the Lagrangian multipliers are related to the joints’ reaction forces (Flores P. , 2015). The vector of 

reaction forces can be expressed in terms of the constraints Jacobian matrix, 𝐃, and the Lagrangian 

multipliers, 𝛌 (Flores P. , 2015) 

 𝐌�̇� − 𝐃𝑇𝛌 = 𝐠 (4.21)  

A unique solution is obtained when considering the constraint equations at acceleration level and the 

differential equations of motion together with a set of initial conditions (Flores P. , 2015) 

 [𝐌 −𝐃𝑇

𝐃 0
] {

�̇�
𝛌
} = {

𝐠
𝜸} (4.22)  

Eq. (4.22) poses a linear system of equations that can be solved using any suitable method. If solved 

analytically with respect to the accelerations vector, the dynamic equations of motion become  

 �̇� = 𝐌−1(𝐠 + 𝐃𝑇𝛌) (4.23)  

To solve Eq. (4.22), it is necessary to assume that inverse of the mass matrix, 𝐌, exists. Also, a 

unique solution to the equation is guaranteed when the mass matrix is positive definite, and the Jacobian 

has maximum rank (Marques et al., 2017). By introducing Eq. (4.23) into Eq. (4.21) 

 𝛌 = [𝐃𝐌−1𝐃𝑇]−1(𝜸 − 𝐃𝐌−1𝐠) (4.24)  

Substituting Eq. (4.24) into Eq. (4.23) 

 �̇� = 𝐌−1𝐠 + 𝐌−1𝐃𝑇[𝐃𝐌−1𝐃𝑇]−1(𝜸 − 𝐃𝐌−1𝐠) (4.25)  

This last equation can be solved for �̇�. The velocities and positions may be obtained through numerical 

integration, with the Lagrange multipliers method. This procedure must be done until the end of the 

analysis (Marques et al., 2017) 
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The equations of motion for constrained bodies can be solved using the algorithm presented in Figure 

4.5, which represents the computation procedure for a kinematic multibody dynamics analysis (Flores P. 

, 2015) 

• The initial positions and velocities are given, at 𝑡 = 0.  

• The mass matrix, 𝐌, the Jacobian matrix, 𝐃, and the constraint equations, 𝚽 are constructed. 

Also, vector 𝜸 and the generalized forces 𝐠 are calculated 

• Eq. (4.22) is solved relative to �̇� and the Lagrange multipliers, 𝛌, are also attained 

• An auxiliary vector, 𝐲�̇�, for the generalized velocities and accelerations at 𝑡 = 𝑡 is built 

• The auxiliary vector is then integrated at 𝑡 + ∆𝑡 to obtain the positions and velocities at that 

timestep 

• If the final time is reached, then the analysis stops. If not, simulate for the new timestep until the 

end is reached 

 

Figure 4.5 - Algorithm to solve the constrained equations of motion. Adapted from (Flores P. , 2015). 

Although the standard Lagrange multipliers method may seem simple enough, one can find several 

numerical difficulties when using this method to solve the dynamic equations of motion (Marques et al., 

2017):  

• The mass matrix can be singular, instead of invertible, as is assumed most of the time. This 

happens when more than six coordinates are necessary to define the pose of a rigid body. 

• A body, within the system, may present an extremely small inertia 

• Redundant constraints may have been imposed on the system  

• Changing topologies and units 



 57 

Nevertheless, it is important to note that the system of the equations of motion does not use the 

position and velocity equations associated with the kinematics constraints (Marques et al., 2017). After 

the numerical solution of the system, both constraints at the position and velocity levels are not satisfied, 

so that the original constraint equations start to be violated due to the long integration process and 

inaccurate initial conditions. Thus, these errors in the position and velocity equations must be kept under 

control or, if possible, eliminated. This is possible through some methods, such as the Baumgarte 

Stabilization Method, the Coordinate Partitioning Method, the Penalty Methods and, finally, the Direct 

Correct Formulations, which have physical meaning. More about these methods can be found in (Marques 

et al., 2017).  

Regarding this work, the formulation used to solve the equations of motion and to handle the 

constraints problem was the augmented Lagrangian method, which is an evolution of the penalty method 

(Marques et al., 2017). It was chosen because of the way it penalizes the constraints violations and 

handles singular configurations. 

As for the penalty method, it can be stated that it is an alternative way to solve the dynamic equations 

of motion. These equations are modelled as a linear second-order differential equation, that reads as 

follows (Marques et al., 2017) 

 𝑚𝑐�̈� + 𝑑𝑐�̇� + 𝑘𝑐𝚽 = 0 (4.26)  

Introducing the acceleration constraint Eq. (4.18) into Eq. (4.26), yields 

 𝑚𝑐(𝐃�̇� + �̇�𝐯) + 𝑑𝑐�̇� + 𝑘𝑐𝚽 = 0 (4.27)  

Pre-multiplying by the transpose of the Jacobian matrix, 𝐃, results in 

 𝑚𝑐𝐃
𝐓𝐃�̇� = −𝐃𝐓(𝑚𝑐Dv̇ + 𝑑𝑐�̇� + 𝑘𝑐𝚽) (4.28)  

Now, considering the Newton-Euler equations of motion for an unconstrained system (Marques et al., 

2017) 

 𝐌�̇� = 𝐠 (4.29)  

And adding it to Eq. (4.28), one obtains 

 𝐌�̇� + 𝑚𝑐𝐃
𝐓𝐃�̇� = 𝐠 − 𝐃𝐓(−𝑚𝑐𝜸 + 𝑑𝑐�̇� + 𝑘𝑐𝚽) (4.30)  

where 

 𝛼 = 𝑚𝑐;  𝑑𝑐 = 2𝜇𝜔𝑚𝑐;  𝑘𝑐 = 𝜔2𝑚𝑐  (4.31)  

Typical values for 𝛼, 𝜔, and 𝜇 are 107, 10 and 1, respectively (Marques et al., 2017). 

Eq. (4.30) can be solved for �̇�. With this method, multibody systems with redundant constraints or 

kinematic singular configurations can be solved. However, it cannot handle the problem of indeterminate 

Lagrange multipliers (Marques et al., 2017). 
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This work uses the augmented Lagrangian formulation, which penalizes the constraint violation much 

like the Baumgarte stabilization method. This ends up being an iterative procedure, involving the solution 

of a smaller set of equations, which can handle redundant constraints and singular configurations. 

The evaluation of the systems’ accelerations is given by (Marques et al., 2017) 

 𝐌�̇�𝑖 = 𝐠 (𝑖 = 0) (4.32)  

with 𝑖 being the ith iteration. Thus, the iterative process continues with 

 (𝐌 + 𝛼𝐃𝐓𝐃)�̇�𝑖+1 = 𝐌�̇�𝑖 − 𝛼𝐃𝐓(−𝛄 + 2𝜇𝜔𝑚𝑐�̇� + 𝜔2𝑚𝑐𝚽) (4.33)  

Until  

 ‖�̇�𝑖+1 − �̇�𝑖‖ ≤ 휀 (4.34)  

where 휀 is a specified tolerance. 

This method involves the solution of a system of equations with a dimension equal to the number of 

coordinates of the multibody system. The penalty terms associated with the velocity constraints are the 

same as the ones used in the penalty method. The augmented Lagrangian method presents itself as an 

effective, efficient, and robust method, especially when performing forward dynamic simulations, such as 

the one created for this work.  
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5. VEHICLE MODELLING  

In this chapter, all theory presented previously will be put to the test to satisfy the primary objective of 

this dissertation, create a vehicle dynamics analysis method for multibody systems. Firstly, a tire force 

model will be chosen and validated. This will be the kernel of the dynamics analysis since the contact 

forces between tire and road will be identified and analysed. Then, the multibody dynamics methodology 

used will be explained. This was done through a MATLAB program developed by Flores P. (2012), that 

will be briefly described.  

Finally, the contact estimation model created as part of this work will be presented and thoroughly 

clarified, culminating in two different methods: one for flat roads and the other for roads with obstacles. 

The tire force model will, in fact, be integrated into the aforementioned algorithm to create a cohesive 

and extensive contact model. 

5.1 Tire Model Validation 

As previously discussed, there are several different models to simulate the contact between a vehicle’s 

tire and the road, which can be categorized as mathematical or physical.  

It is known that without the mathematical there would be no physical models. Physical models also 

derive from mathematical formulations, making them quite more powerful and precise. These models 

can precisely simulate conditions like the temperature of a tire throughout the time it is rolling, the 

resulting inflation, and subsequent deformation. Additionally, they are capable of scrutinizing individually 

the different layers that make up a tire, while also evaluating the response to short road asperities or non-

rigid roads, much like mud. Most importantly, they can predict the transient behaviour of friction forces. 

An example of this, would be a finite elements model or the known SWIFT model. 

However, in the end, they always require more processing power and are related to higher acquisition 

costs, which makes them harder to implement in such works as this one. Also, in this work, it is not 

necessary to go that deeply into the study of a tire since the main focus is to gather information about 

the behaviour of the suspension system when facing different roads with obstacles. Also, the transient 

generation of friction forces can be neglected, and the forces will be generated as if the car was cruising 

at a constant velocity. This can be considered as a minimal effect that will not significantly affect the study 

of the multibody system, since the behaviour of the suspension system will not be significantly altered 

due to the existence or not of dynamic forces. It is expected that parameters such as slip or slip angle 
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will fluctuate, around small values, very slowly over time, therefore there is no need to use a transient slip 

(they can change, but the change will be uniform, not sudden).  

It is then comprehensible that one should opt to choose a much simpler mathematical model, or, at 

the very least, a semi-empirical one. Nevertheless, it is important to state that in no way a test rig is 

available, which is necessary to measure a few variables for some semi-empirical models. For example, 

the TMeasy model (Rill G. , 2019) requires the input of some experimentally measured variables to create 

the definitive curves, such as the longitudinal force for a specific vertical load.  

Two other models that satisfy the requisites previously imposed are the Dugoff model (or the Modified 

Dugoff model) and Pacejka’s Magic Formula. As it is known, the Magic Formula is a semi-empirical tire 

model, that needs the input of several experimentally measured parameters, acquired through testing a 

tire on a test rig. Nonetheless, the so-called Magic Formula Parameters are widely available (across a 

number of studies, papers and research) for an extensive list of tires, and are also easily adapted to any 

real circumstance, making this model one to take into account. As for the Dugoff, and subsequently its 

modified version, albeit with its frailties, it presents itself as an easy-to-use, purely mathematical model, 

that does not need experimental values to work. The choice, then, lies in the differences between both 

models.  

As mentioned above, the Dugoff model is substantially improved when applied a modifying factor 

(Bian, 2014; Bhoraskar & Sakthivel, 2017). Opposite to the original, the modified Dugoff model 

prescribes, for example, the location of a peak value for the longitudinal force, immediately before the 

beginning of the sliding zone. Additionally, the modified version represents quite well the gradual reduction 

of longitudinal force in the same area until the total loss of adhesion is attained, when the value of slip 

reaches its peak at 1.  

The Magic Formula (MF) is a staple in the world of tire models. Not only it is easy to implement but 

also it provides highly reliable results. For both pure slip and combined slip situations, this model 

captures, almost perfectly, the non-linear behaviour of the tire. Moreover, it can describe in detail the 

forces and torques generated in the contact patch. In addition, it is possible to introduce some tire 

manufacture aspects that significantly alter the shape and look of the curves that represent the forces.  

For a correct choice, both models were tested for their ability to compute both longitudinal and lateral 

forces with a variable vertical load. The results of the calculus of the longitudinal force are shown in Figure 

5.1. 
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(a) (b) 

  

(c) (d) 

Figure 5.1 - Comparison between the MF (left) and the Modified Dugoff Model (right).  

Although the obtained curves are similar, a closer look will show that in the Dugoff model the 

longitudinal force’s peak is attained later, with a much smaller magnitude (the MF provides almost 1 kN 

more for the largest vertical force 6 kN). Also, for bigger vertical forces, the gradient of the linear zone of 

the longitudinal force increases, moving the force’s peak to smaller slip values, which corresponds to 

what was given by the brush model. It can be said that Magic Formula provides a more adequate and 

closer-to-reality representation of the contact forces.  

In addition, the Magic Formula provides several equations and formulae to estimate the different 

torques generated by the tire’s contact forces in the contact patch. These formulae can be extremely 

explicit to the point of, if desired, considering residual effects, such as the camber effect on the lateral 

force (that makes it not be, in any given point, zero). Oppositely, the modified Dugoff model does not 

confer such alternatives. 

Finally, the Dugoff uses the same relationship for both pure and combined slip situations. This could 

potentially create unreliable results since the Dugoff factor can be perceived as nothing more than a 
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simple ratio between the longitudinal slip and the slip angle (lateral slip). On the other hand, Pacejka’s 

Magic Formula separates both cases, creating a different cluster of equations to represent the combined 

slip scenario. In fact, this set of formulae are always dependent on the results obtained in pure slip 

situations. One can state that the Magic Formula approaches this scenario in the same way as the Dugoff 

model, by creating a ratio (of factor) between slip quantities and multiplying it by the pure slip values, 

that is.  

It is then comprehensible that choice of model to use falls on the Magic Formula. In addition to all 

aforementioned reasons, this model is also extremely easy to use and implement and does not require a 

lot of computation and processing power. Its complexity, in comparison with the Dugoff models, relies 

solely on its set of equations. 

The Magic Formula’s basic model has already been presented and discussed in section 3.3. It is, 

nevertheless, necessary to clarify the fact that the mentioned model is the Formula’s simplest form. Hans 

B. Pacejka, in his book (Pacejka, 2002), presents an extensive collection of equations, which allow a 

thorough calculation of the forces and torques actuating on a tire. Since this is a dynamic study, when it 

comes to the simultaneous occurrence of both longitudinal and lateral forces, the formulae for combined 

slip situations were used in conjunction with the ones for pure slip conditions. These equations can be 

found in Appendix B. All Magic Formula parameters used, represented as different letters, are also 

represented in Annex A. 

The next table shows the different friction coefficients considered for this study.  

Table 5.1 - Coefficient of friction values. 

Terrain 𝝁𝒙 

Dry asphalt 0.7 - 0.9 

Wet asphalt 0.6 

Snow 0.3 

Ice 0.1 

 

5.1.1 Vertical Force 

The vertical load is uniformly calculated by most authors. A most prominent example would be 

Pacejka’s equation (Pacejka, 2002) 

 
𝐹𝑍 = (𝛿𝑍0

𝐹𝑍0

𝑟0
) ∙ 𝛿𝑍 

(5.1)  
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This formula multiplies a tire’s deflection with a stiffness value, defined by 𝛿𝑍0 ∙
𝐹𝑍0

𝑟0
, giving a value for 

the normal load. It should be noted that this computation only considers the static aspect of the vertical 

force, only dependent on the stiffness of the tire. However, a tire does not solely possess stiffness, but 

also damping properties, which creates a dynamic member on the equation.  

In the TMeasy model (Rill G. , 2019), the authors present a vertical force model, such as follows 

 𝐹𝑍 = 𝑎1𝛿𝑍 + 𝑎2𝛿𝑍
2 + 𝑐�̇�𝑍 (5.2)  

 
𝑎1 = √2𝐶1

2 − 𝐶2 
(5.3)  

 
𝑎2 =

𝐶2
2 − 𝐶1

2

4𝐹𝑍0
 

(5.4)  

This model contemplates two effects: the static, described by a nonlinear function of the tire deflection, 

and the dynamic, created by the wheel’s damping. Both these terms allow for a detailed characterization 

of the vertical force at any given point. Nevertheless, it is important to state that the value for a tire’s 

damping is usually very low, at least for passenger cars, having no significant expression when compared 

with the damping offered by a car’s suspension. In fact, the damping provided by the suspension is 104 

times bigger than the one yielded by the tire (Rill & Castro, 2020). Nevertheless, Rill’s model, Eq. (5.2), 

was chosen to evaluate the vertical force in this work, always taking into consideration the tire’s own 

damping value.  

5.2 Multibody Dynamics Methodology 

The scope of this work is defined by the study of a multibody dynamic simulation of a car to examine 

its suspension system. In chapter 4, some concepts and formulations were present to better understand 

the dynamics of generalized multibody systems. Herewith, in this subchapter, the methodology used in 

this project to study multibody systems, more specifically vehicles, will be explained.  

First and foremost, it is necessary to state that a MATLAB program, named MUBODYNA3D (Flores P. 

, 2012), was used. To put it briefly, this program performs forward dynamic analysis of general spatial 

mechanical systems, closely following the formulation presented in the textbook by P.E. Nikravesh 

(Nikravesh P. E., 1988). 

In this section, the methodology used by MUBODYNA3D will be presented in a concise manner. Briefly, 

MUBODYNA3D is a MATLAB program, which consists of several scripts. These scripts are used to define 

several different aspects of the simulation and the multibody system. Finally, a case study will be 

demonstrated in chapter 6. 
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5.2.1 Defining a multibody system 

The first thing necessary to a multibody simulation is arguably the definition of the multibody system. 

As is known, a mechanical multibody system is constructed by mechanical components and kinematic 

joints (Flores P., 2015; Marques et al., 2017). Also, one can consider the existence of a third one, which 

would be the force elements. These are responsible for the application of forces over the system.  

With the above information in mind, one can easily create a multibody system. Within the spectrum 

of the methodology in study, the user must create a model that establishes a multibody system. This 

model will be made of several scripts, each one presenting the following characteristics: 

• Bodies 

• Points 

• Type 1 Vectors 

• Type 2 Vectors 

• Joints 

• Forces 

• Solver 

• Properties  

With all the scripts created, a multibody system is defined and, so, its behaviour can be, accordingly, 

simulated. Each point listed before will be thoroughly explained in Table 5.2. 

Table 5.2 - Components that define a multibody system in MUBODYNA3D (Flores P. , 2012). 

Element Purpose 

Bodies This is where all bodies within a multibody system will be defined. Each body is specified by: 
• Mass 
• Inertia matrix 
• Initial position  
• Initial velocity 

Points Points, in each body, can be defined. Especially useful to interconnect bodies. 

Type 1 Vectors Vectors within each body can be created. A known example would be the rotation axis of a wheel.  

Type 2 Vectors Type 2 vectors are vectors created between points in different bodies. Especially important in 
order to designate some types of joints’ axis of rotation. These specific vectors are calculated 
throughout the running duration of the simulation since its points may change position. 

Joints Where several types of joints between bodies can be created, such as cylindrical, or spherical. 
This script requires all the previous scripts to work.  

Forces In here, all force elements actuating on the bodies can be defined. Also, forces such as the weight 
and external forces, such as the tire/road contact, can be designated to each body.  

Solver  Contains all the necessary computational element, such as the simulation duration and the 
method used to solve the equations of motion. 

Properties This file contains some general properties of the system in study, most likely physical parameters. 
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As was stated before, the definition of a multibody system’s joints requires the use of several other 

characteristics, such as points, type 1, and type 2 vectors. Table 5.3 presents the necessary elements to 

establish some types of joints analysed in this project.  

Table 5.3 - Necessary attributes to define some types of joints. 

Joint Points Type 1 Vectors Type 2 Vectors DoF 

Cylindrical  2  2 1 2 

Spherical  2 - - 3 

Revolute  2 2 - 1 

 

5.2.2 Pre-Processing Stage 

The next step in the chain would be the pre-processing of general information, also known as 

initialization (it is separate script from the main MUBODYNA3D file). In a broad sense, in this stage some 

matrices, arrays and such are established. In other words, important information that would be used later 

in the process is processed and saved. Nevertheless, this is an especially relevant stage since it loads 

the model into the simulation by reading and processing its information and establishes the several 

components and associations between them.  

Information such as the number of bodies, their characteristics, forces to be applied is all stored in 

the model that the user first created. In this stage, with the initialization script, all that information will be 

read, processed, and saved, in a specific order: 

1. Bodies: All bodies are established. Their characteristics, such as Jacobian matrix, mass, 

transformation matrix and so on, are set up as matrices. 

2. Points: All points are associated with their bodies.  

3. Vectors (Type 1 and 2): Vectors of both types are built and associated with the specific bodies. 

4. Joints: All the joints are established. All points and vectors (if necessary) are attributed to each 

existing joint. Then, the bodies are assigned to each created joint. Finally, the number of 

constraints posed by each joint is computed. For example, a spherical joint imposes 3 constraints 

on the body.  

After the aforementioned steps have been concluded, the total number of kinematic constraints 

prevailing in the system is computed and the pre-processing stage for generic models is complete.  
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Nevertheless, for non-generic models (models that require, for example, external force models, created 

solely by the user), such as the tire/road contact, some more pre-processing steps were created 

specifically for this dissertation. As will be seen later, a road profile, as well as a tire profile, were created 

externally, within a different script, to represent the real tire and road that the vehicle will need to 

negotiate. So, in the pre-processing stage, a few more steps will be needed: 

5. Definition of the tire’s profile, for both left and right wheels. Both profiles are transformed into 

cubic splines, so that is possible to interpolate points that are in between the sample points that 

define the profile  

6. The various types of road profiles are loaded and saved into the system. The road profile also 

receives a spline-like treatment.  

While the tire profile is simply merged into a cubic spline, the road profile needs a deeper treatment. 

There are two types of roads: one with a fully flat surface and another with obstacles, like bumps or 

potholes. For a fully flat road, the treatment is completely straightforward: the only necessary thing is to 

compute its height and save as a constant value. For a road with obstacles the scenario is completely 

different.  

Firstly, the uneven road will be rearranged as two different cubic splines: the first one correlating the 

length of the road with its height (𝑥 and 𝑧); the second one interpolating the width and the height of the 

road (𝑦 and 𝑧).  

It is important to note that the coefficients of both splines are saved to be used later but are not 

computed through the MATLAB function known as spline (spline Documentation, s.d.). As the name 

indicates this function returns a vector of interpolated values, through a simple piecewise cubic Hermite 

interpolation. However, the function used to interpolate the mentioned profile is known as pchip (pchip 

Documentation, s.d.). Like the first function, this also performs a piecewise cubic Hermite interpolation. 

Although they perform the same type of interpolation, both these functions differ severely in the method 

employed to compute the slopes of the interpolant. This does result in distinctly different behaviours for 

the data with flat or undulating areas. Therefore, the values interpolated through the pchip function are 

determined by a shape-preserving piecewise cubic interpolation (pchip Documentation, s.d.). Figure 5.2 

shows a bump modelled with both functions. Macroscopically they seem exactly the same, the differences 

are only noticeable when zoomed in.  
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Figure 5.2 - Example of a road profile using both MATLAB functions. 

Unlike the function spline, the function pchip avoids overshoots and can correctly connect plane 

regions withing the function Figure 5.3. This is especially important for the definition of a road. A totally 

flat road must be completely flat. The existence of unrealistic oscillatory overshoots makes the 

performance of the car to be entirely differently, particularly considering that instead of traversing a flat 

area, the car could be crossing an uneven ground, created by oscillations. The function pchip eliminates 

those unwanted overshoots and is, hence, used in this work.  

 

Figure 5.3 - Comparison between the road profile using a normal spline function and the pchip function. 

5.2.3 Choosing the Integrator 

The next step in the multibody dynamics’ methodology is the choice of what integrator to use.  

An integrator is an algorithm that approximates a trajectory in a system based on initial conditions and 

knowledge of its equations of motion. A system’s trajectory can be constructed through the integration of 

its derivatives, such as the acceleration given by the equations of motion (Flores P. , 2015). 
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There are several types of integrators, most commonly using a Taylor expansion to get the dynamics 

of a system. These can range from the simplest, yet poorly accurate, Euler’s Method integrators, that 

invoke 1st order expansions, to the Runge-Kutta integrators, either being of the 2nd or 4th. The largest the 

order expansion, the most accurate the integrator is, but at the same time the longer it takes to operate. 

There is always a trade-off between an integrator’s performance and how long it takes to obtain results 

(A. Keller, 2018).  

Although all the above-mentioned integrators are plausible choices, and can be used in the 

MUBODYNA3D program, MATLAB offers ODE solvers with variable timestep (Choose an ODE Solver, 

s.d.). ODE, also known as ordinary differential equation, contains one or several derivatives of a time 

dependent variable, so that its order is equal to the highest-order derivative of said dependent variable 

that appears in the equation.  

The ODE solvers are particularly appealing for initial value problems, such as the one studied in this 

work (see chapter 6). Starting at an initial state, a solution for the ODE is attained iteratively, by using 

initial conditions and knowing the period over which the answer is required. In the end, the solver returns 

the solution at each timestep, as well as a vector of timesteps (Choose an ODE Solver, s.d.). 

MATLAB provides several different types of ODE solvers, with different requirements and accuracy. It 

is, firstly, important to state that from now on, the integrators used in this work will be of the ODE type. 

Table 5.4 presents three relevant types of solvers provided by MATLAB. Other types can be found in 

(Choose an ODE Solver, s.d.). 

Table 5.4 - Some types of nonstiff Ode solvers (Choose an ODE Solver, s.d.). 

Solver Problem type Accuracy When to use 

Ode45  

Nonstiff 

Medium Standard. Always the first to try 

Ode23  Low For problems with crude tolerances 

Ode113  Low to High For tight tolerances 

 

One final concept arises from the analysis of Table 5.4. A stiff problem is a problem difficult to evaluate. 

It is a differential equation in which several numerical methods are unstable, unless the step size is 

extremely small (Choose an ODE Solver, s.d.). A nonstiff problem is the polar opposite. These are easily 

identifiable by checking the performance of each solver. So, if a nonstiff solver is extremely slow, or unable 

to solve the problem, then the problem might show stiffness. Generally, contact problems require stiff 

problems. However, since the tires are made of rubber, a soft material, and, in this case, will not suffer 

major impacts, the nonstiff algorithms are more appropriate to this study. 
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Another characteristic of this type of integrator is the variable timestep. This is showcased in Figure 

5.4, where a 2 s simulation was performed and around 12000 timesteps obtained. The evolution of time 

with the timesteps is not always linear and uniform. At around 𝑡 = 1.10 s, the time which had been 

evolving linearly hits a plateau and stays there for 2000 timesteps. Before this, for a second of simulation, 

only 3000 steps were needed. Now, for 0.10 s, almost the same amount of timesteps was needed to 

move forward. This guarantees that the best solution is always found. When a demanding situation 

happens, the solver utilizes smaller timesteps to deliver good results. Sometimes, if the solution is found 

not to be the best, then the solver traces back to a previous timestep and restarts the integration from 

there. 

  

(a) (b) 

Figure 5.4 – (a) Example of the variable timestep for a 2s simulation, using the ode45; (b) Zoom in on (a). 

5.2.4 Correction of Initial Positions and Velocities 

After the integrator has been chosen, the program initializes a correction step. In this stage, the initial 

conditions will be corrected and there will be a check for redundant constraints, in order to accommodate 

all joints within the bodies and create a viable solution. This stage is processed in two steps: 

• Coordinates (position) correction 

• Velocities correction 

The coordinate correction follows a simple algorithm. Firstly, the violation of constraints and Jacobian 

of the body are obtained and put into a matrix. If that matrix’s determinant is smaller than a tolerance, 

then there is no need for a correction. If it is not, then, iteratively, the formulation presented in Appendix 

C is applied until the requirement is met. The velocity correction follows the exact same method.  

A function to update the position of the bodies is called, during the resolution of the first algorithm. 

This function computes the rotational transformation matrix, 𝐀, based on the knowledge of the Euler’s 
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parameters. With the matrix, the position of the body, locally and globally, are obtained, with the 

corrections already made. This will be called for each iteration of the process. So, in summation, the 

corrections are made, the position is update, and the new coordinates are verified. If that verification 

checks the requirement, then the corrections are complete. If not, the cycle continues until a solution is 

found or until a flag is met, meaning the impossibility of correction of the initial conditions 

5.2.5 Solving the equations of motion 

After establishing the multibody model, defining the settings for the dynamic simulation and pre-

processing data, the dynamic equations of motion must be solved for each timestep of the simulation 

using methods described in section 4.4 and, then, the obtained acceleration integrated through time with 

the algorithms previously discussed in section 5.2.3.  

In this work, the augmented Lagrangian method was always used, because of the way it penalizes the 

constraints violations and, especially, handles singular matrix configurations.  

A function with this method is employed to compute and solve the constrained equations of motion at 

each timestep. The positions and velocities are the input variables, which allows to evaluate all position 

and velocity constraints, assess the forces acting on the bodies of the system and, the, compute the 

accelerations at that instant. Since this is a penalty method and iterative process, the accelerations are 

calculated until a threshold value (tolerance) is met. With the accelerations, the solver can then integrate 

them and get the position of the bodies for the next time step. This happens for each time step until the 

final time is met. 

In the end, a number of evaluations is computed, and the time of simulation obtain, finishing the 

simulation process.  

5.2.6 Assessment of Forces 

In this intermediate stage, all forces and torques affecting the bodies are calculated. Some forces can 

be defined through the user interface, such as the weight or spring-damper forces.  

This last example would be formulated as 

 𝐹 = 𝑘(𝛿 − 𝛿𝑖) + 𝑐�̇� (5.5)  

where 𝑘 is the spring stiffness, 𝛿𝑖 represents its undeformed length and 𝑐 denotes the damping 

coefficient. 



 71 

The spring’s deformation, 𝛿, as well as its derivative, �̇�, are easily obtained through a vector that joins 

two different bodies (type 2 vector). Associated torques can also be calculated through the location of the 

application point in each body.  

Additionally, other types of forces can be defined, this time needing to be solely implemented by the 

user. In the case of this work, this would correspond to the contact road/tires force model, which 

formulation will be presented in the next section. 

5.3 Tire/Road Contact Formulation 

To properly study the influence of the tire-road forces on a vehicle’s suspension system, it is necessary 

to compute them. As has been seen before, it is possible to calculate the values by modelling the contact 

between the tires and the road the vehicle.  

In that regard, it was necessary to formulate and create a methodology to estimate the contact 

between vehicle and the road. For instance, this methodology is mainly responsible to calculate the 

vertical force that is acting on a vehicle’s tires. That value is then inserted into a tire model, previously 

chosen as the Magic Formula, which makes possible the obtention of all the forces and torques that act 

on the tire, during the contact with the surface, as previously seen in Figure 3.1.  

In short, the algorithm, which will be presented next, was built to detect the contact between a single 

tire and the road, hence the name Tire/Road Contact formulation. The algorithm illustrated in Figure 5.5 

represents the logical steps to estimate the location of the contact point and, accordingly, the forces, on 

all three axes (vertical, longitudinal, and lateral). It should be emphasized that this formulation is only for 

a singular wheel, thus, the algorithm must be applied four times at each time step. 

 

Figure 5.5 - Algorithm for solving the tire/road contact estimation at a given timestep. 

5.3.1 Contact Estimation 

The first step consists of the estimation of the location of the contact point, between the tire and the 

road. This is especially important to evaluate the amount of deflection a tire is undergoing, which, in turn, 

grants the calculation of the vertical load. Also, it allows the approximation of a point where all forces are 

being applied, so that all torques are then calculated correctly and the tire under an accurate vertical 

pressure distribution. Note that in this work, all forces will be applied at a contact point, not at the full 

area of the contact patch. 

Contact
Estimation

Tire Force  
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It is important to note that the multibody system, which is defined previously and loaded into the 

system during the pre-processing stage, is already available to be used during the contact estimation. 

Constructive parameters, such as the tire’s radius or the Magic Formula parameters, can also be used 

in this stage.  

 

Figure 5.6 - Free-body diagram of the wheel, top-down view. 

After the general variables are defined, it is necessary evaluate the tire’s behaviour, as in the location 

of its centre of gravity, its linear and angular velocities and, finally, its axis of rotation. Almost all this 

information is given by the MUBODYNA3D program, after the model/body is created. The sole exception 

is the tire’s rotation axis, which needs to be created in each wheel local coordinate system 

 
𝐬𝑝 = [

0
1
0
] 

(5.6)  

Since, in the beginning of the simulation, the wheel is aligned with the global reference frame, this 

vector represents the body’s rotation around the 𝑦 axis. Thus, the initial angular velocity of the wheel can 

be defined as  

 
𝛚 = [

0
𝑉0

𝑟0⁄

0

] 
(5.7)  

where 𝑉0 is the wheel’s initial velocity, and 𝑟0 its nominal radius. Additionally, its initial forward 

(longitudinal) velocity in the global frame would simply be 

 
�̇� = [

𝑉0

0
0

] 
(5.8)  

These vectors change during the simulation to accommodate of the equations of motion. Although 

both angular velocity of the wheel and rotation axis are already known, it is imperative to compute the 

component of angular velocity, around the axis of rotation represented in the global frame of reference, 𝐬. 



 73 

This vector derives from 𝐬𝒑 and is given automatically by the program. This is done by calculating the 

scalar, or dot, product of both those variables, which yields 

 𝜔𝑠 = 𝐬𝛚 (5.9)  

where 𝐬 can be obtained through the rotation of the local vector 

 𝐬 = 𝐀𝑖𝐬𝑝 (5.10)  

Knowing the position and velocity of the wheel, the next step is to determine the location of the contact 

point and compute the deflection of the tire at a certain moment in time. In this work, two types of roads 

were considered, i.e., fully flat and with obstacles (bumps or potholes). Each type of road must be 

analysed separately, since two different methods to find the contact point were developed, one for each 

type of road.  

Fully flat road  

This is the simplest case since the height of the road is uniform across its length and width. A simple 

algorithm created for this type of road is represented in Figure 5.7.The first step to solve this case is the 

establishment of a fixed local reference frame, with immutable 𝜉 and 휁 directions. Since the local frame 

of the body follows its orientation, the rotation of the tire would change the direction in which 𝜉 and 휁 

were pointing, as shown in Figure 5.8. 

 

Figure 5.7 - Algorithm for the estimation of the contact point on a fully flat road. 

   

Figure 5.8 - Rotation of the wheel's local reference frame. 

Let us suppose that the longitudinal axis was needed to define the direction of the longitudinal force. 

If the axis were always changing direction, then, at some stage, instead of being a longitudinal force, that 

force would become vertical or lateral. This issue creates unwanted problems, when performing several 

Create fixed
reference frame

Solve optimization 
problem

Calculate the
contact point
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calculations. Therefore, before setting the local reference frame, let us define the global normal direction 

with respect to the road 

 
𝐧 = [

0
0
1
] 

(5.11)  

This vector is uniform throughout the length and width of the flat road as represented in Figure 5.9, 

since there are no changes in the gradient of the road surface (the surface is fully flat, with no inclines). 

 

Figure 5.9 - Representation of the flat road with the normal vector, 𝐧. 

With the global normal vector and the rotation axis of the wheel, 𝐬, one gets the other directions by  

 𝐮𝑙 =
𝐬 × 𝐧

‖𝐬 × 𝐧‖
 (5.12)  

 𝐮𝑣 =
𝐮𝑙 × 𝐬

‖𝐮𝑙 × 𝐬‖
 (5.13)  

where 𝐮𝑙 is the longitudinal direction, 𝐬 the lateral direction and 𝐮𝑣 the vertical direction of the tire. The 

vector product between two directions was divided by its norm, so that the result is presented as a unit 

vector. This is nothing more than anchoring the local frame of reference of the tire, 𝜉휂휁, which has its 

origin at the centre of gravity.  

Finally, the transformation matrix associated to this reference frame yields 

 𝐀 = [𝐮𝑙 𝐬 𝐮𝑣] (5.14)  

Without the existence of any gradients, the variation of the tire’s deflection will be very small. Thus, 

the identification of the contact point can be done by directly intersecting the tire’s profile with the road’s 

profile. Have in mind that the tire needs to start with a deflection close to its real static value and, since 

the position of the bodies is defined by the user, adjustments may have to be done to accommodate for 

that fact (see section 6.1). The static deflection can be gathered by using the static member of the vertical 

force model, so that 

 0 = −𝐹𝑍 + 𝑎1𝛿𝑧 + 𝑎2𝛿𝑧
2 (5.15)  

The value for the static vertical force, for a singular wheel, equals to the weight of the vehicle divided 

by four wheels.  

As mentioned in the pre-processing stage of the multibody dynamics methodology chapter, the profile 

designed for a specific tire (given as a cluster of points) was interpolated into a spline. Since the flat road 
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can be simply characterized by its constant height the position of the tire profile will define the location 

of the contact point. Thus, an optimization procedure is sued to find the point of the wheel profile with 

the lowest height. Bearing that in mind, a MATLAB function called fmincon is employed, which uses a 

gradient-based method to find the minimum value of an objective function inside a prescribed domain 

(fmincon Documentation, s.d.). 

As observed in Figure 5.10, one local coordinate frame needs to be established (𝑢, 𝑓(𝑢)), in which 

the two-dimension wheel profile is given. The profile is given as a set of points defined by their lateral 

wheel coordinate, 𝑢, and the corresponding ordinate, 𝑓(𝑢), which are then interpolated using piecewise 

polynomials, i.e., splines. Recurring to the optimization function, one can find the 𝑢 coordinate that 

corresponds to the minimum vertical coordinate within the tire’s profile represented in the global 

reference frame (𝑥𝑦𝑧), 𝑧min, as depicted in Figure 5.10. 

 

Figure 5.10 - Establishment of the local coordinates within the tire profile. 

To get fmincon to work, a function to minimize, also known as objective function, needs to be declared. 

The problem can be put as: which is the value of 𝑢 that corresponds to minimum value of the wheel’s 

vertical coordinate in the global frame? That function will serve as the base in which fmincon will work. 

To run the algorithm, an initial approximation of the wheel’s lateral parameter is given and, then, the 

following steps are repeated: 

• Compute 𝑓(𝑢), evaluate the spline 

• Calculate the contact point in the global reference frame, 𝑥𝑦𝑧  

• Get the vertical coordinate out of that point 

• fmincon iterates and finds 𝑧𝑚𝑖𝑛 within the spline 

The function fmincon iterates the value of 𝑢 and runs the function, until a feasible solution is reached. 

A point on the wheel’s profile in the global frame of reference is computed as (Flores P. , 2015) 

Road

Wheel
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 𝐫𝑃 = 𝐫 + 𝐬𝑃 (5.16)  

or, in expanded form as  

 
𝐫𝑃 = 𝐫 + 𝐀[

0
𝑢
𝑓
] 

(5.17)  

in which, 𝐫 represents the centre of mass of the tire at that instance. The second member of the right-

hand side of Eq. (5.17), also referred as 𝐬𝑃 (see Chapter 4), represents the location of the point (0; 𝑢; 𝑓) 

in global coordinates with respect to the local frame of reference (𝐮𝒍𝐬𝐮𝒗). The value of 𝑓(𝑢) is obtained 

through the evaluation of the created spline using a MATLAB function called ppval (spline Documentation, 

s.d.). 

The objective function ends with the computation of the vertical coordinate of the evaluated point 

 𝑟𝑧 = 𝐫𝑃(3) (5.18)  

The objective of this stage is to find the 𝑢 that corresponds to minimum value of 𝑟𝑧. The function 

fmincon will iterate the values of 𝑢, according to a previously defined interval, which is the domain of the 

spline’s independent coordinate points. If the spline is defined with 𝑛 points 

 𝑢 ∈ [𝑥𝑠𝑝𝑙𝑖𝑛𝑒(1), … , 𝑥𝑠𝑝𝑙𝑖𝑛𝑒(𝑛)] (5.19)  

The iteration will go on until a solution is found. The fmincon function will then return the 𝑢 that solves 

the problem, 𝑢min, and the value of 𝑧min. To get the effective contact point in the global system it is 

necessary to run, just one more time, Eq. (5.17) and Eq. (5.18), with the value of 𝑢 attained after the 

optimization procedure.  

At last, the deflection of the tire is calculated as  

 𝛿𝑧 = 𝑧road − 𝑧min (5.20)  

where 𝑧road = 0 and 𝑧min < 0. 

To obtain the tire tangential velocity, the velocity vector of the tire is projected onto the horizontal 

plane, so that  

 
𝐕𝑇 = [

𝐕(1)
𝐕(2)

0

] 
(5.21)  

Road with obstacles 

If the road possesses inclines or gradient variations, created by “large” obstacles, such as potholes, 

represented in Figure 5.11, or speed bumps/humps, another method to find the contact point needs to 

be employed. In this case, the method previously present does not work since the height of the round 

varies. 
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Figure 5.11 - Example of a road obstacle. In this case a bump. 

Whilst in the first method, the contact point was always the one with the lowest vertical coordinate in 

the tire’s profile, in the case of uneven roads, this formulation does not fully work. The tangent directions 

of the fully flat road, 𝑥 and 𝑦, will be permanently constant, always perpendicular to the normal direction, 

which points upwards.  

However, as depicted in Figure 5.12, that does not apply to a road with variable gradient. In fact, the 

changes in inclination promote a change in the direction in which the directional vectors of the road are 

pointing. Both tangential vectors, 𝐭𝑥 and 𝐭𝑦, define the longitudinal and lateral directions, respectively, 

in which the road is unfolding. These vectors are always perpendicular to the road’s normal vector, 𝐧.  

 

Figure 5.12 - Representation of the changes in gradient over a bump. 

Figure 5.13 represents a wheel crossing an uphill road in the 𝑥𝑧 plane. To investigate the contact 

point, 𝑃 in the 𝑥𝑦𝑧 system, in such a case where the road has a variable gradient, an assumption must 

be made: The contact point, between the tire and the road, is a point which guarantees that a vector 𝐝 
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is perpendicular to both tangential vectors, 𝐭𝑥 and 𝐭𝑦 (Rill G. , 2019). This formulation grants that, if 

calculated correctly, the contact point will correspond to the point where the tire deflection is maximum. 

This is always true for cases where there is only one contact point that meets the requirement. Later, it 

will be seen that this assumption will have to be slightly modified when multiple points meet the initial 

requirement.  

 

Figure 5.13 - Discretization of a wheel crossing an uphill road. 

Let us define vector 𝐝 as  

 𝐝 = 𝐫 − 𝐫𝐶𝑃 (5.22)  

where 𝐫 is the global location of the wheel’s centre of gravity, and 𝐫𝐶𝑃 represents the global location of 

the projection of the effective contact point, 𝑃, on the road.  

It is known that the dot, or scalar, product is zero for perpendicular vectors. Therefore, the objective 

of this methodology is then finding the 𝐫𝑪𝑷, that makes  

 𝐝 ⊥  𝐭𝑥  ∧  𝐝 ⊥  𝐭𝑦 (5.23)  

or, alternatively 

 
{
𝐝 ∙ 𝐭𝑥 = 0
𝐝 ∙ 𝐭𝑦 = 0

 
(5.24)  

which is a system of nonlinear equations of the type 𝑓(𝑥) = 0. MATLAB has an internal function called 

fsolve that is a nonlinear system solver (fsolve Documentation, s.d.). If 𝐫𝐶𝑃 is the independent variable 

and the problem defined as 𝑓(𝐫𝐶𝑃) = 0, with the system of Eqs. (5.25) being the stop condition, then 

the fsolve function can find a solution iteratively, by manipulating the values of 𝐫𝐶𝑃 and finding the one 

that meets the requirements. Remember Eq. (5.22), where 𝐝 is said to be defined by 𝐫𝐶𝑃, meaning this 

formulation holds. Figure 5.14 depicts the algorithm implemented for the second contact method. 

Road

Wheel
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Figure 5.14 - Simple algorithm for the second contact method. 

For fsolve to work, a function that computes the system of equations needs to be created. A suitable 

initial approximation of 𝐫𝑪𝑷 must be provided to the function to stat the iteration procedure. That initial 

approximation would simply be the projection of the wheel’s centre of gravity on the 𝑥𝑦 plane. In short: 

• Initial approximation  

• Iterate the value through a function  

• Meet the requirement 

This problem does not need to be solved in a three-dimensional space, because through interpolation 

the vertical coordinate of any point can be found. So, the initial approximation would be  

 𝑥𝑖 = 𝐫(1) (5.25)  

 𝑦𝑖 = 𝐫(2) (5.26)  

A vector with both coordinates is created.  

 𝐩 = [
𝑥𝑖

𝑦𝑖
] (5.27)  

fsolve needs a function to work with, that establishes the stopping condition. This condition needs to 

have some sort of connection with the variable in analysis. The function used is of the type  

 𝑓(𝐩, 𝐫, 𝐱𝑝𝑡𝑠, 𝐲𝑝𝑡𝑠, 𝐬𝐩𝐥𝑥 , 𝐬𝐩𝐥𝑦) (5.28)  

The last four variables, 𝐱𝑝𝑡𝑠, 𝐲𝑝𝑡𝑠, 𝐬𝐩𝐥𝑥 , 𝐬𝐩𝐥𝑦, are the longitudinal and lateral coordinates of the road 

profile, and the splines created for each one during pre-processing. The first variable, 𝐩, will be iterated 

by the MATLAB function until the final requirement is met. Nonetheless,  

 𝑥𝑝 = 𝐩(1) (5.29)  

 𝑦𝑝 = 𝐩(2) (5.30)  

With both coordinates stored, there will be a search for them within the range of coordinates that 

define the road’s profile, 𝐱𝑝𝑡𝑠 or 𝐲𝑝𝑡𝑠. The function histc counts the number of 𝑥𝑝 or 𝑦𝑝 values that are 
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within the specified range, which divided into bins, created between two different points (histc 

Documentation, s.d.).  

As depicted in Figure 5.15, this function finds the bin, which contains 𝑥𝑝 in the range of all points, or 

𝑦𝑝 if that were the case. By getting the endpoint, 𝑥bin/ 𝑦bin, of the bin where 𝑥𝑝, or 𝑦𝑝, is located, it is 

possible to create a spline between those two points.  

 

Figure 5.15 - Sample points connected by a spline. A bin is created between two blue points. 

The road is divided into longitudinal, 𝐬𝐩𝐥𝑥, and lateral, 𝐬𝐩𝐥𝑦, splines that correlate the respective 

direction with the vertical coordinate of the road (section 5.2). Before finding the vertical coordinate that 

corresponds to the iterated point, 𝐩, smaller splines for each direction will first be created. Across the 

length and width of the road ‘s section, designated by histc, several one-dimensional splines will be 

defined. This allows to divide the interpolations into two different stages, one for 𝑥𝑝 and another for 𝑦𝑝, 

saving computational time, instead of doing a two-dimensional interpolation. This provides a detailed and 

complex interpolation since the query point will be analysed across thousands of one-dimensional splines, 

on both lateral and longitudinal directions, such as depicted in Figure 5.16. 

 

Figure 5.16 - Road profile divided into smaller splines. 

For the longitudinal section provided by the application of 𝑥𝑝 into the function histc, splines that run 

across the entire width of the road will be created 

 𝐳𝑠𝑦 = 𝐶𝑥1(𝑥𝑝 − 𝑥bin)
3 + 𝐶𝑥2(𝑥𝑝 − 𝑥bin)

2 + 𝐶𝑥3(𝑥𝑝 − 𝑥bin) + 𝐶𝑥4 (5.31)  
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Eq. (5.31) provides the matrix with vertical values necessary to create the lateral splines. This is the 

inclination gradients along the longitudinal section in analysis, hence the use of 𝑥𝑝 and 𝑥𝑏𝑖𝑛. 

The variables 𝐶𝑥1, 𝐶𝑥2, 𝐶𝑥3, 𝐶𝑥4 are the road profile splines coefficients obtained during the pre-

processing stage. This is done with a for loop, with the number of iterations equal to the size of the matrix 

that defines the road laterally, 𝐲𝑝𝑡𝑠. With 𝐳𝑠𝑦 and 𝐲𝑝𝑡𝑠, the MATLAB function pchip is used to create the 

one-dimensional lateral splines 

 𝑆𝑃𝑦 = pchip(𝐲𝑝𝑡𝑠, 𝒛𝑠𝑦) (5.32)  

After the lateral splines are created, it is time to interpolate the vertical coordinate of 𝑦𝑝. So,  

𝑧𝑝𝑦 = 𝐶𝑠𝑝𝑦1(𝑦𝑝 − 𝑦bin)
3 + 𝐶𝑠𝑝𝑦2(𝑦𝑝 − 𝑦bin)

2 + 𝐶𝑠𝑝𝑦3(𝑦𝑝 − 𝑦bin) + 𝐶𝑠𝑝𝑦4 (5.33)  

Conversely, for the lateral section provided by the application of 𝑦𝑝 into histc, splines that extend 

across entire length of the road will be created, as illustrated in Figure 5.16. Like in the lateral splines, 

the first step is to check the variation of the gradient across said lateral section. It is also done on a loop, 

with as many iterations as the size of the matrix that represents the road longitudinally, 𝐱𝑝𝑡𝑠 

 𝐳𝑠𝑥 = 𝐶𝑦1(𝑦𝑝 − 𝑦bin)
3 + 𝐶𝑦2(𝑦𝑝 − 𝑦bin)

2 + 𝐶𝑦3(𝑦𝑝 − 𝑦bin) + 𝐶𝑦4 (5.34)  

Then, the group of longitudinal splines can be created 

 𝑆𝑃𝑥 = pchip(𝒙𝑝𝑡𝑠, 𝒛𝑠𝑥) (5.35)  

and thus, the vertical coordinate of 𝑥𝑝 yields 

𝑧𝑝𝑥 = 𝐶𝑠𝑝𝑥1(𝑥𝑝 − 𝑥bin)
3 + 𝐶𝑠𝑝𝑥2(𝑥𝑝 − 𝑥bin)

2 + 𝐶𝑠𝑝𝑥3(𝑥𝑝 − 𝑥bin) + 𝐶𝑠𝑝𝑥4 (5.36)  

Usually, both interpolated vertical coordinates, given by Eq. (5.33) and Eq. (5.36), will be similar. To 

get the real value of 𝐩’s vertical coordinate, a mean ponderation needs to be done, such that  

 𝑧𝑝 =
𝑧𝑝𝑥 + 𝑧𝑝𝑦

2
 (5.37)  

Thus, the to-be-analysed contact point is given by 

 
𝐫𝐶𝑃 = [

𝑥𝑝

𝑦𝑝

𝑧𝑝

] 
(5.38)  

Also, 𝐝, from now on known as distance vector, can be computed by Eq. (5.22). Hence, the tangential 

vectors to the road, exemplified in Figure 5.17, at the point in study need to be calculated.  
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Figure 5.17 - Angle between the longitudinal tangential vector and the road. 

The tangential vectors to the road, on both directions 𝑥 and 𝑦, are the vectorial representation of the 

gradient of the road or, in other words, the graph’s derivative. Obtaining the derivative of the point that is 

being study makes possible the computation of the tangential vectors at that specific location. The 

derivatives of the road’s profile are of the type 

 𝑧�̇� = 𝑝𝑥 = 𝑓(𝑥)  (5.39)  

 𝑧�̇� = 𝑝𝑦 = 𝑓(𝑦)  (5.40)  

Since the road’s height (or variation) is now defined as two splines, or polynomials, its first derivatives, 

in each direction, can be obtained through derivation of the polynomials that define each spline. So, in 

the 𝑥 direction, by derivation of Eq. (5.36) one gets  

 𝑝𝑥 = 3𝐶𝑠𝑝𝑥1(𝑥𝑝 − 𝑥bin)
2 + 2𝐶𝑠𝑝𝑥2(𝑥𝑝 − 𝑥bin)

1 + 𝐶𝑠𝑝𝑥3 (5.41)  

Similarly, by derivation of Eq. (5.33), in the 𝑦 direction the gradient is 

 𝑝𝑦 = 3𝐶𝑠𝑝𝑦1(𝑦𝑝 − 𝑦bin)
2 + 2𝐶𝑠𝑝𝑦2(𝑦𝑝 − 𝑦bin)

1 + 𝐶𝑠𝑝𝑦3 (5.42)  

With the derivative calculated at the query point, the gradient as an angle can also be computed as  

 휃𝑥 = arctan (𝑝𝑥) (5.43)  

 휃𝑦 = arctan (𝑝𝑦) (5.44)  

With these angles, the tangential vectors are presented as follows  

 
𝐭𝑥 = [

cos (휃𝑥)
0

sin (휃𝑥)
] 

(5.45)  

 
𝐭𝑦 = [

0
cos (휃𝑦)

sin (휃𝑦)
] 

(5.46)  
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The tangential vectors are ready to be introduced into the stop condition given by Eq. (5.24). The 

function fsolve iterates the values of the point, until the final requirement is met. However, the output will 

only be such that  

 𝐫𝐶𝑃𝑖 = [
𝑥pf

𝑦pf
] (5.47)  

where 𝑥pf and 𝑦pf are the final iterated values that meet the requirement.  

To attain the vertical coordinate of the point given by the function, another step of interpolation will be 

necessary. In short, the same procedure, presented from Eq. (5.31) to Eq. (5.37), will be applied to 𝐫𝐶𝑃𝑖 , 

resulting in a final vertical coordinate, and so 

 
𝐫𝐶𝑃 = [

𝑥pf

𝑦pf

𝑧pf

] 
(5.48)  

Figure 5.13 shows that 𝐶𝑃 is not the actual contact point on the tire, but rather a representation of 

that on the road’s profile. It is an intersection with the surface. Therefore, the real contact point, in the 

𝑥𝑦𝑧 system (mind that 𝐶𝑃 is also represented in global coordinates), needs to be computed. But firstly, 

the tire deflection on that point must be known 

 𝛿𝑧 = 𝑟0 − ‖𝐝‖ (5.49)  

The real contact point is then given by  

 
𝐫𝑃 = 𝐫𝐶𝑃 − (

𝐫 − 𝐫𝐶𝑃

‖𝐝‖
𝛿𝑧) 

(5.50)  

This method is always valid for a when a singular point meets the requirement imposed. However, as 

stated before, that is not always the case. In transition areas, where flat ground turns into an obstacle 

and vice-versa, another point can meet the requirement, as is observed in Figure 5.18: the vector 

distance, created by it, can be perpendicular to both road’s tangential vectors.   

 

Figure 5.18 - Representation of a case where multiple contact points exist. 
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Also, in areas where the initial approximation is distant to the actual contact point, the function fsolve 

cannot calculate properly the wanted variables. This function solves the problem through derivation, with 

the direction in which the derivative is extending. With that it is possible to find the zeros of a function.  

 

Figure 5.19 - Dubious case, where fsolve may not be able to find a valid solution. 

Nevertheless, when a minimum peak, close but different than zero, is reached and there is sudden 

change in direction as seen in Figure 5.19, the function might consider that as the final solution, which 

in all cases is not true. Although these problematics seem nothing alike, and in fact they are, the solution 

to both problems is the same.  

The first step to ensure the validity of the final point and to find new valid points is to change the initial 

approximation given to the function. The solution given by fsolve might be close to zero, but never with 

the accuracy and precision needed to solve this problem (its order of magnitude may be too high). If we 

consider the final requirement a vector, then  

 
𝐭𝐺 = [

𝐝 ∙ 𝐭𝑥

𝐝 ∙ 𝐭𝑦
] 

(5.51)  

The solution of this problem is then achieved when the norm of vector 𝐭𝐺 equals zero. Since a 

numerical approach is used, the cumulative errors do not allow to achieve the exact value of zero as a 

solution, there is always a slight deviation. Thus, a tolerance value might be considered to indicate 

whether the solution obtained is acceptable. After some numerical tests, it is suitable to define that a 

contact point is found when the following condition is verified   

 ‖𝒕𝐺‖ ≤ 1 × 10−5 (5.52)  

If a point does not meet this condition, another approximation will have to be checked. This clashes 

right out with the first problematic, the multiple contact points. To find multiple contact points, several 

initial approximations will have to be made, like those delineated in Figure 5.20. 
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Figure 5.20 - Location of the different approximations in relation to centre of mass of the wheel, 𝒓. 

The first approximation will always consider the centre of gravity of the wheel. After several trials, it 

was found that the correct points were always located within 

 𝛿𝑥 = ± 0.12 m (5.53)  

from the centre of gravity. With that settled, three initial approximations are now considered. 

 𝐫𝐴1 = 𝐫 (5.54)  

 𝐫𝐴2 = 𝐫𝐴1 + 𝛿𝑥 (5.55)  

 𝐫𝐴3 = 𝐫𝐴1 − 𝛿𝑥 (5.56)  

These three approximations will be evaluated by fsolve, which in turn creates three solutions. These 

solutions will be valid if Eq. (5.52) is met. In the end, one may end up with zero, one, two, or three 

different solutions.  

Many times, solutions from different initial approximations are exactly the same. Other times, these 

solutions might be so close to each other that they can be considered as the same point. An algorithm to 

sort which points can be considered the same and which points are different was also created. This can 

be easily analysed by subtracting one point’s coordinates to another’s, and calculating the norm of the 

resulting vector. In that way, if the points are close enough, it might be considered the same point, a 

tolerance of 10-5 m is utilized to verify this issue. 

After this process, one gets the points of contact in the 𝑥𝑦 plane, the same as before. If only one point 

meets all requirements, then the previous procedure to find its vertical coordinate and to calculate the 

deflection and real contact point is simply applied. If several contact points exist, then a slightly different 

process will be used. Note it was said that three points could exist. In fact, this never happens in simulated 

scenarios, either one gets eliminated or merged with another into a singular point, which makes the next 

formulation only necessary for the maximum of two coexisting points. Each one of the two points will 
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receive the same treatment to find its vertical coordinate and deflection. If both points possess a positive 

value of tire deflection, then both points can be considered as a contact point, like in Figure 5.21. 

 

Figure 5.21 - The new contact point will be located between the other two. 

However, only one contact point should be studied, the forces will only be applied at a specific point. 

So, one singular point must be extrapolated from both of those points, with the help of a simple 

ponderation. In this case  

 
𝐫𝐶𝑃 =

𝐫𝐶𝑃1𝛿𝑧1 + 𝐫𝐶𝑃2𝛿𝑧2

2
 

(5.57)  

 𝛿𝑧 = max (𝛿𝑧1, 𝛿𝑧2) (5.58)  

The previous equations create a new contact point in between the two valid solutions, represented in 

Figure 5.21, although it will be closer to the one with the biggest deflection. Also, the deflection of the tire 

at that specific point will always be considered as the largest value. This way a uniform evolution of the 

contact point across the surface will be guaranteed, with no big jumps from a previous location to the 

present location. This creates a much better representation of the real contact point.  

Abrupt changes in the location, for example at the end of an obstacle, will be avoided, as depicted in 

Figure 5.22. Sudden large deviations of the location of the contact point can cause large spikes of force 

to act far away from the previous contact point. In turn, this would create instability, through the extremely 

fast rise of vertical force in the tire, causing lift off the ground. Apart from the unrealistic evolution of the 

contact force, its sudden variation may also cause numerical problems, which slow down the integration 

algorithm. This is due to abrupt variations of the computed accelerations, which largely affects the 

efficiency of the simulation. In this way, the vertical force is ensured to evolve smoothly, to whichever 

values it needs to reach. On the other hand, if it is verified that one contact point is not in fact in contact 
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with the road, by having the deflection equal to zero or negative, the normal procedure, for a single point, 

is applied. In the end, Eq. (5.50) is again used to calculate the real location of the contact point, 𝑃.  

 

Figure 5.22 - Representation of the position of the wheel in two consecutive timesteps. 

The next step would be the computation of the velocity vector, much like in the first method. However, 

this time the normal vector to the road will be need. This is easily obtained by using the tangential vectors 

at the contact point. By applying Eq. (5.41) through Eq. (5.46) to point 𝑃, it yields 

 𝐧 = 𝐭𝑥 × 𝐭𝑦 (5.59)  

The real velocity vector of the wheel will then be given by  

 
𝐕𝑇 = 𝐕 − [(𝐕𝑇 (

𝐧

‖𝐧‖
)) (

𝐧

‖𝐧‖
)] 

(5.60)  

This marks the endpoint of the contact estimation. From now on, every method will be the same for 

the two contact estimation methods. 

5.3.2 Vertical Force 

In the previous section, it was shown how to calculate the tire deflection for each contact case, which 

can be used to calculate the value of the vertical force, at that specific contact point. The vertical force 

model chosen, given by Eq. (5.2) in section 5.1, will be used. The variables 𝑎1 and 𝑎2 are characteristics 

of the tire, and therefore already calculated. The last variable �̇�𝑍 is the variation of the deflection, also 

known as the deformation velocity. The computation of the deflection’s derivate must then be done 

through the methods presented in the multibody dynamics formulation (chapter 4). Hence, the deflection 

will be considered as  

 𝛿𝑧 = 𝑧𝑟𝑜𝑎𝑑 − 𝑧𝑚𝑖𝑛 (5.61)  
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which is the formulation used to calculate that value for flat roads, and it was said that it does not hold 

for non-flat roads. While this is completely truth, if one applies the first contact method to the second 

case, what ends up happening is the creation of a contact point at the lowest vertical coordinate of the 

tire’s profile. Of course, with a changing gradient that lowest point will also change.  

The contact point found would always be the projection of the centre of gravity on to the road. In fact, 

that sometimes is true and is the exact result given by the second method. In other cases that does not 

occur, and the second method is used. Nevertheless, if one considers that the point calculated by the 

first method does not have a big deviation from the one gotten by the second, then equation Eq. (5.61) 

can be used to get the deflection’s derivative. Also, it is much easier to derivate that expression since it 

can be done through the tire’s profile (represented through transformations and local systems). The 

second method only uses road’s points, represented in the 𝑥𝑦𝑧 system, which would be a greater 

challenge to derivate. Finally, it must be said that the dynamic side of the vertical force is practically 

negligible. As was stated before, the damping value of a tire is so low (especially in comparison with the 

suspension’s damping) that is does not have any expression in the normal force that is acting at a specific 

point in time. In the end, this is just used as a mere example on how to calculate this value. The derivative 

is  

 𝛿�̇� = �̇�𝑟𝑜𝑎𝑑 − �̇�𝑚𝑖𝑛 (5.62)  

In the flat road method, it was stated that 

 𝑧𝑚𝑖𝑛 = 𝐫𝑃(3) (5.63)  

and so 

 �̇�𝑃(3) = �̇�(3) + �̇�𝑃(3) (5.64)  

 
�̇�𝑃 = [

0 −𝜔𝑧 𝜔𝑦

𝜔𝑧 0 −𝜔𝑥

−𝜔𝑦 𝜔𝑥 0
]𝐀𝑚 [

𝑢𝑚𝑖𝑛

0
𝑓

] 
 

(5.65)  

 

n which the first matrix represents the skew-symmetric matrix of the angular velocity of the body at a 

specific time step. The plane that is being analysed is different though, in here one is studying the case 

in the 𝑥𝑧 plane (𝑧 needs to be represented as perpendicular to the length of the contact patch), so that 

the deformation velocity can in fact be obtained. Then,  

 �̇�(3) = 𝐕(3) (5.66)  

Since �̇�𝑟𝑜𝑎𝑑 will be zero (the first method will always be used no matter what),  

 𝛿�̇� = −𝐕(3) − �̇�𝑃(3) (5.67)  

In the end, with Eq. (5.2), the normal force will finally be computed.  
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5.3.3 Slip Quantities 

The next phase in the procedure is the calculation of slip related variables, such as the slip ratio, the 

slip angle, and the velocities in each different direction. 

As is known the wheel does not spin in respect to its original radius. The rotation of the wheel, or the 

amount of linear distance that one rotation covers, is given by a dynamic radius. Let us recur to Eq. (3.1) 

and Eq. (3.11). Those will be used to calculate the dynamic radius of the wheel, 𝑟𝑑𝑦𝑛. The angular velocity 

of the wheel in respect to the dynamic radius is 

 𝜔𝑟 = 𝜔𝑠 × 𝑟𝑑𝑦𝑛 (5.68)  

Knowing the linear velocity vector, 𝐕𝑇, it is possible to assess the slip angle of a certain wheel. If the 

norm of such vector is zero, the slip angle is automatically assumed as zero. If in fact it exists, then the 

slip angle, 𝛼, represented in Figure 5.23, needs to be computed.  

 

Figure 5.23 - Geometrical definition of the slip angle. 

With simple geometry is possible to compute the slip angle at a certain point in time. The dot product 

between 𝐕𝑇 and 𝐬 is given by  

 𝐕𝑇𝐬 = ‖𝐕𝑇‖‖𝐬‖cos (휃) (5.69)  

and solving with respect to 휃, it yields 

 
휃 = arccos (

𝐕𝑇𝒔

‖𝐕𝑇‖
) 

(5.70)  

The slip angle is simply calculated as  

 𝛼 = 휃 − 90° (5.71)  

The linear lateral and longitudinal velocities can now be calculated as 

 𝑉𝑥 = ‖𝐕𝑇‖ cos(𝛼) (5.72)  

 𝑉𝑦 = ‖𝐕𝑇‖ sin(𝛼) (5.73)  
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Finally, the longitudinal slip, 𝑠, will be determined. The longitudinal slip is only dependent on the 

longitudinal velocity, 𝑉𝑥, and the angular velocity of the wheel, 𝜔𝑟. If 𝑉𝑥 = 0 and 𝜔𝑟 = 0 

 𝑠 = 0 (5.74)  

In this case there is no slip because the wheel is not moving. Assuming that 𝑉𝑥 is different from zero, 

two different cases arise.  

If |𝑉𝑥| > |𝜔𝑟|,  

 
𝑠 =

𝑉𝑥 − 𝜔𝑟

𝑉𝑥
 

(5.75)  

Here the wheel’s longitudinal velocity is higher than the rotation velocity of the wheel, which means 

that this specific wheel is braking, and so the longitudinal force will be opposite to direction of movement.  

Oppositely, if |𝑉𝑥| < |𝜔𝑟| 

 
𝑠 =

𝜔𝑟 − 𝑉𝑥

𝜔𝑟
 

(5.76)  

The wheel’s longitudinal velocity is smaller than the rotation velocity, meaning that the wheel is being 

“driven”, or in other words, an acceleration or positive torque is being applied to the wheel. The 

longitudinal force will have the same direction as the movement. 

5.3.4 Tire Forces 

With all the previous quantities at the algorithm’s disposal, it is time to compute the remaining forces 

and torques acting at the contact point: 

• Forces: 𝐹𝑥,  𝐹𝑦 

• Torques: 𝑀𝑥, 𝑀𝑦, 𝑀𝑧 

These values will be obtained through the direct application of the previously chosen tire model, which 

in this case is the Magic Formula (section 5.1). The forces for the pure slip conditions are always 

calculated. Then the slip quantities are assessed, and the pure conditions verified. If there is in fact a 

combined slip situation, only then the combined slip formulas are applied. All formulae can be consulted 

in Appendix B.  

5.3.5 Addition of Forces and Torques 

The second to last step of this formulation focusses on adding the calculated forces to the wheel (at 

the contact point), in order to get the equations of motion for this specific body. The equations of motion 
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will be solved through a previously chosen method (the augmented Lagrangian), resulting in the 

accelerations of the body. The solver will then integrate these to obtain the position at the next timestep.  

 

Figure 5.24 - Representation of the point of application of forces on the tire. 

Firstly, the point of application of all these forces and torques needs to be calculated. The point known 

as 𝑷, which was thoroughly explained in section 5.3.1, is the representation of the contact point in the 

𝑥𝑦𝑧 system. The real point of application needs to be located at the tire’s local coordinate system, 𝜉휂휁 

or the fixed 𝐮𝑙𝐬𝒖𝑣. The real point of application, depicted in Figure 5.24 is  

 𝐫𝑦𝑄 = 𝐫𝑃 − 𝐫 (5.77)  

To add the forces to the body, each force needs to be attributed to the direction in which is acting. Let 

us create matrices 𝐟𝑖 and 𝐦𝑖 

 𝐟𝑖 = 𝐹𝑥𝐝𝑥 + 𝐹𝑦𝐝𝑦 + 𝐹𝑧𝐝𝑧 (5.78)  

 𝐦𝒊 = 𝑀𝑥𝐝𝑥 + 𝑀𝑦𝐝𝑦 + 𝑀𝑧𝐝𝑧 (5.79)  

where each 𝐝 vector represents a direction, e.g., 𝐝𝑥 is the vector that gives the longitudinal direction at 

a certain timestep and so on. For a completely flat surface, these vectors are given by  

 
𝐝𝑧 = [

0
0
1
] 

(5.80)  

 𝐝𝑦 = 𝐬 (5.81)  

 𝐝𝑥 = 𝐝𝑦 × 𝐝𝑧 (5.82)  

Conversely, for a road with obstacles 

 𝐝𝑧 = 𝐧 (5.83)  

 

𝐝𝑦 =

𝐬 − [(𝐬𝑇 (
𝐧

‖𝐧‖
)) (

𝐧
‖𝐧‖

)]

‖𝐬 − [(𝐬𝑇 (
𝐧

‖𝐧‖
)) (

𝐧
‖𝐧‖

)]‖

 

(5.84)  
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𝐝𝑥 =

𝐝𝑦 × 𝐝𝑧

‖𝐝𝑦 × 𝐝𝑧‖
 

(5.85)  

The torques generated by the forces at the contact point can also be given by 

 𝐓 = 𝐫𝒚𝑸 × 𝐟𝒊 (5.86)  

And so, the end is reached, and all the tire/road contact forces and torques are evaluated and added 

to the wheel. 

5.3.6 Torque Applied Over Time  

A normal vehicle is always being affected by the action of the driver. Be it braking or accelerating, it is 

very unusual to find a car in a zero-slip situation. Of course, it is possible to happen and further in this 

work some simulations will be done where this situation occurs. However, it is necessary to introduce a 

“mechanism” that can simulate the actions of both accelerating and braking pedals. Both actions can be 

viewed as torques working around a wheel’s axis.  

The acceleration is given to the driven wheels by the driveshaft and differential, which carry the power 

from the engine. In this work, the vehicle studied will be considered as front wheel drive, which means 

that only the front wheels receive an acceleration torque. No accelerating torque will be applied to the 

back wheels. This torque will always have the direction the car is following at a specific moment in time. 

So, let us define 𝜏𝐴. This variable represents the acceleration torque given by the engine. This value must 

be withdrawn from the nominal curves of the engine in study, which can be found in (Zal, s.d.). 

Nonetheless, this always represents the total value that the engine is giving to two wheels. For each wheel, 

it yields 

 𝜏𝐴𝑊 =
𝜏𝐴

2
 (5.87)  

In this work, the accelerating torque will always be the same for each wheel, meaning it needs to be 

divided by two.  

As for the braking torque, a braking bias of 50/50 % was considered. This suggests that the braking 

in the front is the same as in the back wheels or, in other words, all wheels will be under the same braking 

torque. To define this torque, it is necessary to know the initial and final velocities and the time interval 

in which the brakes will be acting. A deceleration is given by 

 
𝑑 =

𝑉𝑓 − 𝑉𝑖

∆𝑡
 

(5.88)  

The braking force is calculated as  

 𝐹𝐵 = 𝑚𝑐𝑑 (5.89)  
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Remember that 𝑚𝑐 represents the total mass of the car. For each wheel,  

 
𝜏𝑊 =

𝐹𝐵

4
𝑟0 

(5.90)  

Both torques are then applied for a certain time frame (the braking torque obviously for ∆𝑡 seconds). 

This works as a simple simulation of the actuation of a pedal for a certain amount of time. 

5.3.7 Road Profile 

In this work, to simulate a car negotiating a certain road, it is necessary to design that road’s profile 

in all 3 directions, 𝑥𝑦𝑧. As has been stated, two types of surfaces were considered: the flat road and the 

one with obstacles, both demonstrated in Figure 5.25.  

 

 

Figure 5.25 - The two types of roads. On top, the flat road. Below, an example of a road with a bump. 

For a totally flat road, it is known that its height is invariable, at 𝑧 = 0, and so length, width and height 

are defined as 
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𝑥 = [−

𝐿

2
,
𝐿

2
] (length) 

(5.91)  

 
𝑦 = [−

𝑊

2
,
𝑊

2
]  (width) 

(5.92)  

Conversely, for a road with obstacles, while the flat area can also be defined by having the vertical 

coordinate equal to zero, the obstacle needs another approach. The obstacles can be of two types: 

• Bumps: a protuberance on a level surface, represented in Figure 5.26 

• Potholes: a hollow or depression in the ground, portrayed in Figure 5.27 

 

Figure 5.26 - Example of road with a bump. 

The obstacles are defined by a mathematical expression, valid for both potholes and bumps. This 

formula was adapted from (Rill & Castro, 2020). For a bump 

 
𝑧bump =

1

2
𝐻 [1 + cos (2𝜋 (

𝑥 + 𝑑/2

𝐿𝑏
))] 

(5.93)  

For 𝑥 that ranges from −
𝐿𝑏

2
 to  

𝐿𝑏

2
, where 𝐿𝑏 is the total length of the bump, the previous expression, 

Eq. (5.93), can be used to create a speed bump. 𝐻 is the desired height of the bump and 𝑑 the length 

of that flat area on the bump’s top. This gives an accurate representation of a real speed bump.  
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Figure 5.27 - Example of a road with a pothole. 

For a pothole, the expression yields  

 
𝑧pothole = −

1

2
𝐻 [1 + cos (2𝜋 (

𝑥 + 𝑑/2

𝐿𝑏
))] 

(5.94)  

Eq. (5.94) is the symmetric of Eq. (5.93). 
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6. CASE STUDY 

In this chapter, the methodologies presented are tested, to simulate a car negotiating a small road. 

Firstly, a proof of concept is done using an entirely flat road, with no obstacles. This is of extreme 

importance, especially to identify errors and bugs in the general code. Also, it helps the analysation of 

the tire model, also known as force model.  

Secondly, roads with obstacles are simulated. These are particularly preponderant for the refinement 

of some of the solver’s properties, such as its type and tolerances it uses to find the best solutions. This 

will permit the creation of a fast simulation, capable of delivering good results. Lastly, some simulations 

with different obstacles will be performed and their results evaluated.  

6.1 Vehicle Model 

This work is created within the scope of studying and analysing the performance of suspension 

systems for vehicles travelling roads with different surface conditions. It was necessary to define a vehicle 

model, with its important components, to study and compare results. An important work of reference to 

this study was (Ambrósio & Verissimo, 2009).  

 

Figure 6.1 - Example of a small family car. Adapted from (Volante website, s.d.). 

In (Ambrósio & Verissimo, 2009), a “small family car”, such as the one in Figure 6.1, undergoes a 

multibody dynamic analysis. The exact same model will be used in this study, so all properties and 

components were withdrawn from that article. The car’s properties, such as its mass important 

dimensions are discussed in Table 6.1.  

Table 6.1 - Some properties of the vehicle studied (Ambrósio & Verissimo, 2009; Zal, s.d.). 

Vehicle Properties 

Mass 1238.4 kg 

Wheelbase 2.47 m 

Width 1.41 m 

Drive Front Wheel Drive 

Front Suspension Independent – Macpherson strut 

Rear Suspension Semi-independent – Torsion bar 
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The multibody model of this vehicle, represented in Figure 6.2, considers mainly the suspension 

system of front and rear wheels, depicted in Figure 6.3. In fact, it is a quite simple model made of a 

chassis, four wheels and both suspension systems. No other components were modelled, as they are 

deemed unnecessary to study the behaviour of a car’s suspensions. Systems like the engine or the 

drivetrain are purely unevaluated.  

 

Figure 6.2 - Generic model used. Adapted from (Ambrósio & Verissimo, 2009). 

 

Figure 6.3 - Model of both suspensions systems. On top, the front suspension. Below, the rear suspension. 

Adapted from  (Ambrósio & Verissimo, 2009). 

The front suspension is also known as a Macpherson strut, which is a type of independent suspension 

(see section 2.2). Since it is independent, then a strut exists in each one of the front wheels. This type of 

suspension is characterized by the telescopic arm suspension arm, that is responsible for the control of 

the wheel’s position. This arm allows a connection between the knuckle, or steering rod, and the vehicle’s 
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chassis. The Macpherson suspension is compact, and very popular in small vehicle. The rear suspension 

is also known as a torsion bar, which is of the semi-independent kind of suspension. Nowadays, this 

system is not that common in modern cars, especially with the use of multi-link suspensions, but since 

this model possesses it, it will be studied.  

Table 6.2 and Table 6.3 are used to define the vehicle as a multibody system. The reference systems, 

𝑥𝑦𝑧 and 𝜉휂휁, have their origin placed in the same spot, the chassis’ centre of mass. Each centre of 

mass is the origin for a component’s local reference system, 𝜉휂휁. Note that only components of the left-

hand side of the vehicle are exemplified in the tables. All right-hand side components are symmetrically 

defined, in relation to the 𝑦 axis. This is directly applied to the centre of mass, but for the Euler parameters 

the method does not rely on simple symmetric transformations. To obtain the Euler parameters of the 

right-hand side components, a formulation was used and is presented in Appendix A. 

Table 6.2 - Description of the right-hand side of the model and some inertial properties (Ambrósio & Verissimo, 

2009). 

 Body Description Mass (kg) 
Inertia (kg/m2)  

𝝃𝝃/𝜼𝜼/𝜻𝜻 

Front 

1 Chassis 1090 1000/2130/2200 

2 Left Suspension arm 1.976 0.0022/0.0100/0.029 

3 Left Knuckle 8.897 0.158/0.155/0.048 

4 Left Top Spring-Damper 3.382 0.030/0.030/0.008 

5 Left Wheel 19.229 0.301/0.496/0.301 

Rear 

10 Left Suspension arm 10.286 0.277/0.155/0.429 

11 Left Bottom Damper 2.640 0.001/0.011/0.011 

12 Left Top Damper 2.174 0.001/0.016/0.016 

13 Left Wheel 25.638 0.324/0.522/0.324 

 

As it is possible to conclude through the observation of Table 6.3 and Figure 6.2, the centre of mass 

of the chassis coincides with the origin of the vertical axis, 𝑧. In previous chapters, it was stated that the 

height of a certain road’s profile starts at 𝑧 = 0, for all simulations the road that vertical coordinate will 

always represent the flat area of the road. Thus, if both the previous coordinates coincide, that would 

mean that the chassis is intertwined with the flat surface, and the wheels for example would not be 

crossing the road, but something underneath it. This needs to be corrected, so that the wheels’ lowest 

point can touch the road at 𝑧 = 0. Additionally, the static deflection of the tires needs to be 

accommodated and guaranteed by positioning the vehicle at the correct location, so that in the beginning 
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of the simulation the deflection is somewhat stable. A correction to the centre of mass of each component 

was, hence, made and is depicted in Figure 6.4 and Figure 6.5. 

Table 6.3 - Centre of mass and Euler parameters of the right-hand side bodies. 

 Body 
Centre of mass 
(𝒙/𝒚/𝒛)𝟎 

Euler parameters 
(𝒆𝟎, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑) 

Front 

1 0.0000/0.0000/0.0000 1/0.0000/0.0000/0.0000 

2 0.9815/-0.4791/-0.2538  1/0.0000/0.0000/0.0000 

3 1.0092/-0.6138/-0.1071 0.9981/-0.0443/-0.0436/-0.0019 

4 0.9470/-0.5080/0.2757 0.9981/-0.0443/-0.0436/-0.0019 

5 0.9879/-0.7042/-0.1974 1/0.0000/0.0000/0.0000 

Rear 

10 -1.2587/-0.4906/-0.1161 0.9848/0.0000/-0.1736/0.0000 

11 -1.3907/-0.5141/-0.1070 0.8829/0.0000/-0.4695/0.0000 

12 -1.2765/-0.5141/0.0624 0.8829/0.0000/-0.4695/0.0000 

13 -1.4821/-0.6937/-0.1974 1/0.0000/0.0000/0.0000 

 

 

Figure 6.4 - Representation of the correction to the centre of mass. 

The transformation needed is simply a vertical shift of the origin of the 𝑥𝑦𝑧 system Figure 6.4. For 

any given point, 𝑘, in this multibody system  

 
𝐫𝒊𝒏

𝑘 = 𝐫𝒊𝟎
𝑘 + [

0
0
𝑧𝑐

] 
(6.1)  

where  

 𝑧𝑐 = 0.1974 + 𝑟0 − 𝛿𝑧0 (6.2)  

The first member of Eq. (6.2) is simply the vertical coordinate of the wheel’s centre of mass, which is 

the same for all four wheels.  
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Figure 6.5 - Sequence of changes to the position of the wheel. 

Figure 6.5 represents the sequence used to create the vertical shift. Instead of coinciding with the 

chassis, the origin of the 𝑥𝑦𝑧 system now clashes with the road’s base vertical coordinate, 𝑧 = 0. This 

way the vehicle will stabilize towards the proper values of deflection when starting the simulation. 

  

Figure 6.6 - Kinematic joints for the front suspension (left) and the rear suspension (right). Adapted from 

(Ambrósio & Verissimo, 2009). 

Table 6.4 gives the location of all kinematic joints that connect the vehicle’s left-hand side components. 

The right-hand side is symmetric relative to the 휂 axis. Referring to Table 4.1, the total number of 

constraints can be calculated. For the left-hand side the total number of constraints is 44. Since the right-

hand side is exactly equal to the left one, then the total number of constraints acting on the multibody 

system is 88. To this final number, another two constraints must be added, that are respectful to a fictious 

joint created to simulate the steering axle. This joint restrains the front wheels to the point where both 
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axles must always be parallel. The only constraint is the rotation around the vertical axis. So, in fact, the 

total number of constraints is 88. 

Table 6.4 - Definition of the kinematic joints for the left-hand side of the vehicle (Ambrósio & Verissimo, 2009). 

 
ID 

Joint 
type Body 𝒊 Body 𝒋 

𝝃𝒊
𝑷 

𝐬𝝃𝒊 

𝜼𝒊
𝑷 

𝐬𝜼𝒊 
𝜻𝒊

𝑷 
𝐬𝜻𝒊 

𝝃𝒋
𝑷 

𝐬𝝃𝒋 

𝜼𝒋
𝑷 

𝐬𝜼𝒋 
𝜻𝒋

𝑷 

𝐬𝜻𝒋 

1 Sph 1 4 
0.9363 

-- 
--0.4870 

-- 
0.3980 

-- 
0.0000 

-- 
0.0000 

-- 
0.1233 

-- 

3 Sph 2 3 
0.0140 

-- 
--0.1589 

-- 
--0.0307 

-- 
--0.0291 

-- 
--0.0086 

-- 
--0.1770 

-- 

5 Rev 1 2 
0.8628 
0.2310 

--0.3423 
0.0000 

--0.2200 
0.0000 

--0.1187 
--0.2310 

0.1368 
0.0000 

0.0000 
0.0000 

7 Rev 3 5 
--0.0291 
0.0000 

--0.0323 
--0.0348 

--0.0913 
0.0031 

0.0000 
0.0000 

0.0502 
0.0350 

0.0000 
0.0000 

9 Rev 10 11 
--0.1949 
0.0000 

0.0065 
0.0600 

0.0000 
0.0000 

--0.0913 
0.0000 

0.0300 
0.0600 

0.0000 
0.0000 

11 Rev 1 12 
--1.2181 
0.0000 

--0.5441 
--0.0600 

0.1489 
0.0000 

0.1043 
0.0000 

--0.0300 
--0.0600 

0.0000 
0.0000 

13 Rev 1 10 
--1.1466 
0.0000 

--0.5291 
0.1065 

--0.0753 
0.0000 

0.1193 
0.0000 

--0.0385 
0.1065 

0.0000 
0.0000 

15 Rev 10 13 
--0.2377 
0.0000 

--0.2095 
--0.0590 

0.0000 
0.0000 

0.0000 
0.0000 

--0.0064 
--0.0590 

0.0000 
0.0000 

17 Cyl 3 4 
--0.0286 
0.0000 

0.0711 
0.0000 

0.2799 
--0.0780 

0.0000 
0.0000 

0.0000 
0.0000 

--0.1147 
--0.0780 

19 Cyl 11 12 
0.0412 
--0.0675 

0.0000 
0.0000 

0.0000 
0.0000 

--0.1632 
--0.0675 

0.0000 
0.0000 

0.0000 
0.0000 

 

With all the kinematic joints defined, by a point, 𝑃, and a vector 𝐬, it is time to add the point-to-point 

forces, or the spring-damper actuators, as seen in Table 6.5. The front suspension, being a Macpherson 

strut, has a spring-damper as its main suspension provider. The back suspension relies more on the 

stiffness of its arm and damping of the pair bottom/top damper.  

Table 6.5 - Force-elements data for the right-hand side of the vehicle (Ambrósio & Verissimo, 2009). 

Bodies (𝒊, 𝒋) Coordinates on bodies (𝒊/𝒋) Spring stiffness 
(N/m) 

Damping 

(Ns/m) 

Undeformed length 
𝑳𝟎(m) 

(3, 4) 
(--0.029, 0.071, 0.213) 

(0.000, 0.000, 0.094) 
59190 7919 0.33 

(11, 12) 
(--0.091, 0.000, 0.000) 

(0.104, 0.000, 0.000) 
-- 15000 -- 

(1, 10) 
(--0.275, --0.562, 0.455) 

(1.119, -0.071, 0) 
14530 -- 0.115 
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6.2 The Tire 

According to (Ambrósio & Verissimo, 2009) and (Pacejka, 2002) it was possible to reconstitute a tire 

that respects both the Magic Formula parameters and the characteristics of the one used in (Ambrósio 

& Verissimo, 2009).  The tire constructive characteristics can be found in Table 6.6, while its profile is 

depicted in Figure 6.7. 

Table 6.6 - Constructive characteristics of the tire used. 

Tire Characteristics 

Nominal Radius (m) 0.313 

Width (m) 0.209 

Radial Stiffness (kN/m) 200 

Longitudinal Stiffness (kN/m) 500 

Lateral Stiffness (kN/m) 150 

Cornering Stiffness (kN/m) 30 

Rolling Friction Coefficient 0.01 

Radial Damping (Ns/m) 0.078 

Camber (°) -2.5 

 

Finally, the static deflection for the tire must be calculated. Applying a vertical force equal to the weight 

of the vehicle to Eq. (5.16), the static, or initial, deflection of the tires can be computed. The value obtained 

was 0.0157 m for all wheels.  

  

(a) (b) 

Figure 6.7 – (a) Cross-section of the left-hand side tire. (b) Cross section of the right-hand side tire 

6.3 Flat Road Simulations 

The validity of a model should always be proven by testing simpler cases. These cases help to verify 

the existence of problems within the simulator, without spending too much processing power and time. 
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The objective of this work is to study the suspension’s parameter, especially how they react when going 

over an obstacle. But first, the model and the methodology created before must be tested in order to 

prove that the simulator generally works. This means that in this group of tests, the general multibody 

simulation algorithm will be tested alongside the assessment of the basic performance of the integrator 

and, finally, the elements regarding the tire force model.  

The first batch of simulations were done with a purely flat road, like that depicted in Figure 6.8. 

Regarding this, only the first method of contact estimation was used, so that these are fast and not very 

demanding simulations. The position of the car across time will be verified, as well as the variation of the 

deflection of the wheels and the response of the longitudinal force to braking and accelerating torques.  

 

Figure 6.8 - Example of a flat road, with 100 m of length and 10 m of width. 

All simulations, that will be presented next, used the solver ode45, with both relative and absolute 

tolerances equal to 10-5. The solver will in fact be refined afterwards, with the help of roads with obstacles. 

To evaluate the previously mentioned variables, only one wheel will be used, the front left wheel. Since 

the car will have no steering input, it will only move forward, along the longitudinal axis, 𝑥, which creates 

a uniform response across all wheels, hence not needing to evaluate all wheels. In Table 6.7, some 

general simulation conditions will be presented.  
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Table 6.7 - Initial conditions for the simulation. 

Initial Conditions 

Road Material Dry asphalt  

𝜇 0.9 

𝑉0 16.667 m/s 

𝜔0 𝑉0/𝑟0 rad/s 

𝐿𝑟𝑜𝑎𝑑  100 m 

𝑊𝑟𝑜𝑎𝑑 10 m 

𝑡𝑓 5 s 

𝑥𝑖 -44.021 m 

𝛿𝑧0 0.0157 m 

Solver Ode45 

6.3.1 Simulation 1 

The first simulations consisted in applying the initial conditions referenced in Table 6.7 and check the 

final result. This is particularly important to evaluate all the algorithms and check whether there are 

meaningful constraints violations happening.  

The car starts with the initial velocity of 60 km/h. Each wheel is given the same rotation, that is the 

initial velocity divided by the wheel’s radius. The wheels are in a free-rolling state, where the slip is close 

to null. Also, no steering inputs are added, which means that the car strictly follows a straight line. No 

external torques will be added, and in the initial state the car acts as if dropped to the ground, which 

makes it not start immediately with the expected deflection. It must be said that the car is kept “running” 

for 5 seconds, which indicates the end of the simulation. All posterior results of this particular simulation 

are given for a single wheel, precisely the front-left wheel. The following table shows some of the obtained 

results.  

Table 6.8 - Some considerations at the end of the simulation. 

Final state 

𝑉𝑓 16.287 m/s 

𝑥𝑓 38.347 m 

𝛿𝑧𝑓 0.0185 m 

Duration ≈ 17 min 

Number of evaluations 13993 

 

The first thing to check is whether the wheel is moving or not. This is mainly made by analysing the 

variation of its centre of mass, more specifically the longitudinal coordinate, 𝑥. As can be seen in Figure 

6.9, the 𝑥 coordinate of the wheel’s centre of mass is evolving linearly against time, which means that 
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the wheel is moving. The right-hand side of that figure shows the evaluate of the wheel’s forward velocity 

trough time. It is diminishing so gradually to the point it can be considered constant over time, which was 

expected, since it is rolling freely on a surface. Nevertheless, the slight decrease is due to the loss of 

energy caused by dissipative effects.  

  

(a) (b) 

Figure 6.9 – (a) Variation of the position of the wheel with time; (b) Variation of the forward velocity. 

Figure 6.10 shows the time history of both tire deflection and vertical for the front left wheel. The results 

for the rest of the wheels are similar. As can be seen, the wheel, after the initial state (where 𝑡 =  0 s), 

suffers a big shift in vertical displacement. This is because wheel is being dropped, so there will always 

be a sort of rebounding behaviour, especially in the beginning where it is bigger. This creates an 

oscillatory, although small, evolution of these parameters. The wheel is in fact in a transient state, and, 

as time goes on, starts to tend to a steady state, where the two variables reach a uniform and constant 

value. However, for the deflection, its value does not correspond to that given by the static results, shown 

in Table 6.7. This is simply due to the car’s centre of mass, represented by the chassis, being closer to 

the front wheels than to the rear ones (refer to Figure 6.2 and Table 6.3). The weight of the car is 

distributed more towards the front (the car has its engine at the front), so the force being applied to the 

front wheels is, consequently, higher and, therefore, they should present a bigger deflection. The rear of 

the car has the opposite behaviour, by which a smaller deflection is reached (𝛿𝑧𝑓 = 0.0130 m). 

m
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(a) (b) 

Figure 6.10 – (a) Variation of the tire deflection. (b) Vertical force for the left-hand side front wheel. 

The final checkpoint is to see whether there are constraints at the position level being violated in the 

multibody system. Figure 6.11 represents exactly that and as is seen there are no meaningful violations 

of constraints acting on the system. That initial drop is due to the initial correction of positions made by 

the simulator, after that this value becomes zero, meaning that all joints and bodies are well positioned 

and connected, and that the simulator does not need to change the bodies’ positions to obtain good 

results. 

 

Figure 6.11 - Graphic of the constraints violation for the multibody system. 

6.3.2 Simulation 2 

Knowing that the simulation is working accordingly, the second flat ground simulation was made to 

see whether the “drivetrain” and braking system algorithms work. The same basis of simulation, as the 

previous one, was kept, but two different external torques were added. Some results are represented in 

Table 6.9. 
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Table 6.9 - Some measured variables for flat simulation 2. 

Flat Simulation 2 

𝑉2.5𝑠 18.000 m/s 

𝑉𝑓 11.600 m/s 

𝑥𝑓 32.69 m 

𝛿𝑧𝑓 0.0185 m 

Duration ≈ 17 min 

Number of evaluations 14281 

 

In this simulation two different torques were added. Firstly, an acceleration torque and then a braking 

torque. The acceleration torque was added for 2 s, while the other one lasted 2.5 s. So,  

 0.5 ≤ 𝑡 ≤ 2.5 (s) → 𝜏𝑎 = 0.5 × 150 (Nm) (6.3)  

 𝑡 > 2.5 𝑠 → 𝜏𝑏 = −270 Nm (6.4)  

The acceleration torque was applied to the front wheels only, with a total magnitude of 150 Nm that 

is evenly distributed on both wheels. This value is purely theoretical. By analysing (Zal, s.d.) (the 

torque/speed curves), the engine cannot provide this kind of torque, it is too big. However, since this is 

just a test to check the algorithm, it can be considered, especially because the raise in velocity is much 

faster than if a lower value was applied. The braking torque is the same for every wheel. 

Figure 6.12 is the representation of the variation of the longitudinal force against time. It can be 

concluded that the algorithm used is indeed working, the longitudinal force is increasing or decreasing 

depending on which torque is applied. But several points arise from this graph.  

 

Figure 6.12 - Variation of the front-left wheel's longitudinal force. 

First, the longitudinal force does not start at zero, when 𝑡 = 0 s, but at around 𝐹𝑥 = −1050 N. This 

happens because to calculate this force, the dynamic radius is used, 𝑟𝑑𝑦𝑛, that is different from the 

nominal radius. The initial rotation of wheel is given by its nominal radius, but the real velocity is given by 
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the dynamic radius. So, using the latter one, the velocity of rotation of the wheel will be different from the 

one given initially. The linear velocity and rotation velocity will then be different, creating a slip in the initial 

state of simulation. The new rotation velocity will be smaller than the one introduced as the body velocity. 

The last one uses the nominal radius, which is always bigger than the dynamic radius, and, in the end, 

will always be bigger than the new rotation velocity. The slip created will then form a negative longitudinal 

force, acting as a sort of brake for the wheels in the initial state. However, this lasts only a moment, since 

the simulation corrects itself almost instantaneously, converging when the rotation velocity and forward 

velocity of the wheel are almost identical (the slip becoming zero). 

The second point would be located at 𝑡 =  0.5 s, which marks the beginning of the application of the 

acceleration torque. From this point until 𝑡 = 2.5 s, the longitudinal force is positive, and has a 

magnitude of around 200 N. This assures that the acceleration torque increases the rotation velocity of 

the car, as depicted in Figure 6.13, creating a positive slip, and therefore guaranteeing that the algorithm 

for this pedal is working.  

As seen by Figure 6.13, while the rotation velocity increases, the linear velocity also increases almost 

proportionally. This, in fact, steadies the difference between the two, thus not creating a big slip value. It 

stays around 0.2%.  

  

(a) (b) 

Figure 6.13 - Variation of both angular velocity (a) and linear velocity (b) of the studied wheel. 

The third point is located at 𝑡 = 2.5 s and represents the actuation of the braking pedal. Figure 6.12 

and Figure 6.14 shows that everything is running smoothly, since the longitudinal force decreases 

substantial to negative values, which shows that a braking slip is happening on the tire. Finally, it can be 

concluded that a tire model used, the Magic Formula, is, indeed, a steady-state model. The variations in 

longitudinal force happen instantaneously at the exact time the torque is applied; no lag is verified.  
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(a) (b) 

Figure 6.14 - Variation of the slip (a) and slip angle (b) for the front-left wheel. 

Additionally, it was possible to evaluate the slip angle of the front-left wheel over time. As can be seen 

in Figure 6.14, there is always the slightest of slip angles. Much like the deflection, it first starts at a 

transient state that evolves into a final value, of 0.02º. The car is supposed to be moving on a completely 

straight line, so it was expectable that this value would be zero. Nonetheless, the values obtained for this 

variable are extremely small, especially being an angle. An angle of 0.15º does not pose a significant 

expression to alter the straight-line motion of the wheel. Therefore, it is concluded that this value is purely 

a numerical error made by MATLAB. Figure 6.15 corroborates this, showing that the evolution of the 

lateral force, generated by the slip angle, is insignificant, possessing magnitudes of around 15 N in steady 

state.  

 

Figure 6.15 - Variation of the lateral force with time. 

Finally, it is possible to conclude that the multibody system created is functional and that the behaviour 

is what was expected. 
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6.4 Refinement of the Solver 

The previous simulations were done to prove some concepts innate to the algorithms created for this 

work. All of them were done using the same solver, the ode45, with a tolerance of 10-5. The final time of 

computer processing was around 17 minutes, which is acceptable for a 5 s simulation. However, using 

the second method of contact estimation, created specifically for roads with obstacles, the simulation 

time for a flat road increased massively to 50 minutes, on a 2 s simulation. It is then possible to state 

that with an obstacle this processing time would increase even more. To guarantee a good processing 

time, while the accuracy of results, a refinement to the solver must be done.  

In section 5.2, it was seen that there are several types of integrators, provided by MATLAB. These 

integrators can be used in detriment of the others, if any do not provide efficient results. Also, their 

tolerances, used to check and accept final results, can be changed, which can improve the efficiency of 

the simulation. Considering what was said before, a refinement to the solver was made, which consisted 

of always running the same simulation for a different integrator, using the same tolerances, and checking 

whether the results provided deviated from the mean values of all the simulations. In the end, with the 

optimal integrator chosen, the tolerances for that specific solver were evaluated and the one which 

guaranteed the most optimal results was chosen. The solver chosen for these tests where the nonstiff 

ones: ode45, ode23, and ode113. The stiff ones were also tested, but the results took too much time to 

be acquired (over 24 hours). This showed that this is not a stiff problem (Choose an ODE Solver, s.d.), 

not needing a very fine timestep to be evaluated. 

 

Figure 6.16 - Dimensions of the bump used for this simulation. 

The surface chosen to test the solvers was a 50 m asphalt road, with a small speed bump in the 

middle, illustrated in Figure 6.16. The speed bump has the same width as the road. The car is supposed 

to be dropped off in a free-rolling state, such as in the flat ground simulations, without adding any 
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acceleration or braking torques. No steering input was made. The conditions for these tests can be seen 

on Table 6.10. 

Table 6.10 - Initial conditions for the solver refinement simulations. 

Initial conditions 

Road Material Dry asphalt  

𝜇 0.9 

𝑉0 16.667 m/s 

𝜔0 
𝑉0

𝑟0
 rad/s 

𝐿𝑟𝑜𝑎𝑑  50 m 

𝑊𝑟𝑜𝑎𝑑 5 m 

𝑡𝑓 2 s 

𝑥𝑖 -21.012 m 

𝛿𝑧0 0.0157 m 

 

To evaluate the performance of each solver, some variables were chosen: 

• Chassis’ vertical coordinate over time, 𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠 

• Deflection of the front-left wheel (Maximum, Minimum and Mean), 𝛿𝑧 

• Vertical force on the front-left wheel 

• Mechanical energy of the system, 𝐸𝑚 

• Time of the simulation, Time 

Table 6.11 shows the results obtained. As can be easily seen, ode113 is the faster, while ode45 the 

slower of the solvers. In fact, for this specific case, ode113 finishes the simulation around 30 minutes 

before the other two. Nevertheless, the results are consistent across the board. For variables such as the 

vertical coordinate of the chassis and the mechanical energy of the entire system, there is no variation in 

values, all solvers give the same results. The biggest differences are found in the tire deflection.  
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Table 6.11 - Results obtained for 3 solvers: ode45, ode23 and ode113. 

Variable Ode45 Ode23 Ode113 

max(𝛿𝑧) (m) 0.0676 0.0676 0.0676 

min(𝛿𝑧) (m) 6.9772 × 10-6 1.1470 × 10-5 6.0651 × 10-6 

avg(𝛿𝑧) (m) 0.0253 0.0246 0.0244 

max(𝐹𝑧) (N) 14362 14362 14362 

min(𝐹𝑧) (N) 1.3409 2.1827 1.2141 

avg(𝐹𝑧) (N) 5109.4 4965.3 4905.9 

max(𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠) (m) 0.5167 0.5167 0.5167 

min(𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠) (m) 0.4841 0.4841 0.4841 

avg(𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠) (m) 0.5002 0.5002 0.5002 

max(𝐸𝑚) (J) 1.8069 × 105 1.8069 × 105 1.8069 × 105 

min(𝐸𝑚) (J) 1.7703 × 105 1.7703 × 105 1.7703 × 105 

Time (h) 3.41 3.34 2.95 

 

Before discussing the detailed results, one must focus on why these simulations took much processing 

time than the flat ground ones. Since there is an obstacle on the course, the second contact method is 

used (see section 5.3), which is a more detailed and complex algorithm. It is then expectable to see an 

increase in time, especially because of the several interpolations made by the algorithm. Figure 6.17 

shows the variation of time with each timestep for the three solvers. The solvers used, of the ode type, 

provide a variable timestep, which is adaptable to guarantee the best results. Every time there is a 

transition zone on the road, be it ascending or descending the bump, the gradient of the variation of time 

becomes almost flat, as showed in Figure 6.17. The transition zones take a significant toll on the 

simulator’s performance. 

   

(a) (b) (c) 

Figure 6.17 - Variation of simulated time with timestep. (a) Ode113. (b) Ode23. (c) Ode45. 

The maximum tire deflection, obtained during the crossing of the bump, is the same for all three 

solvers, 0.0676 m. But the average and minimum values are slightly different. The minimum value 

presents an extreme case. Since it is so small across the board, it means that the wheel was lifted off the 

ground, as depicted in Figure 6.18. Any of the values obtained, are small enough to represent a wheel 
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lifting off. If the values given by ode45 are considered as the default values (this solver is known as the 

more accurate out of the three), then it is possible to conclude that the other solvers do not present big 

deviations in any category. The minimum value of deflection can be in fact be excluded because all of 

them represent a lift off.  

 

Figure 6.18 – Unrealistic behaviour found. The wheel loses contact with the road. 

The average deflection value, however, is where the biggest differences can be found. Nevertheless, 

these values are only separated by 0.001 m, or to better comprehend, 1 mm. This difference is never 

big enough to create big disparities in the computation of the vertical force. Accordingly, the deviation 

between the average vertical force across solvers is about 200 N, which is just 4% of the vertical force 

average value. This does not have a big expression in any results and, so, the solver to be chosen must 

be the one with the best efficiency and processing time. The solver chosen to carry out the next 

simulations was the ode113, because it not only provides similar results, but is also 15% faster than any 

of the other two solvers, as seen in Figure 6.19.  

 

Figure 6.19 - Relative processing time of each solver. 
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The next step in this process is the refinement of the ode113 tolerances. Tolerances used by the 

solver can be the difference between a fast simulation or an extremely time-consuming one. The 

tolerances are based on the relative and absolute errors (Choose an ODE Solver, s.d.). In order to know 

what the best tolerance is to use a cluster of values was chosen to be tested, that being: 

10-2,10-3,10-4,10-5,10-6, 10-7. The output evaluated was exactly the same as the one used before in Table 

6.11. Also, the road characteristics were kept. The next table shows the results for each simulation. 

Table 6.12 - Results obtained for the different tolerances. 

Variable 10-2 10-3 10-4 10-5 10-6 10-7 

max(𝛿𝑧) (m) 0.0676 0.0676 0.0676 0.0676 0.0676 0.0676 

min(𝛿𝑧) (m) 3.1159 × 10-5 4.2547 × 10-5 1.6345 × 10-6 6.0651 × 10-6 4.6865 × 10-6 4.5012 × 10-8 

avg(𝛿𝑧) (m) 0.0237 0.0241 0.0240 0.0244 0.0234 0.0233 

max(𝐹𝑧) (N) 14361 14362 14362 14362 14362 14362 

min(𝐹𝑧) (N) 5.9233 8.1175 0.3287 1.2141 0.9567 0.0181 

avg(𝐹𝑧) (N) 4734.9 4835.6 4819.5 4905.9 4720.9 4700.9 

max(𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠) (m) 0.5167 0.5167 0.5167 0.5167 0.5167 0.5167 

min(𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠) (m) 0.4841 0.4841 0.4841 0.4841 0.4841 0.4841 

avg(𝑧𝑐ℎ𝑎𝑠𝑠𝑖𝑠) (m) 0.5002 0.5002 0.5002 0.5002 0.5002 0.5002 

max(𝐸𝑚) (J) 1.8069 × 105 1.8069 × 105 1.8069 × 105 1.8069 × 105 1.8069 × 105 1.8069 × 105 

min(𝐸𝑚) (J) 1.7703 × 105 1.7703 × 105 1.7703 × 105 1.7703 × 105 1.7703 × 105 1.7703 × 105 

Time (h) 0.93 1.64 2.00 2.97 4.44 7.06 

 

Like in the previous refinement, there is no variance in both mechanical energy and chassis’ vertical 

coordinate. All in all, one can conclude that these are more dependent on the contact estimation methods, 

which is invariable across the board. That said, those two variables mainly depend on the position of the 

car, which is always the same for each simulation, and the velocity gains and losses, which is also the 

same for each simulation.  

Nevertheless, the other variables must be evaluated in order to choose the appropriate tolerance to 

use. Table 6.12 shows that for smaller tolerances, the less the error and, consequently, values closer to 

zero will be more precise, but the bigger the processing time. This is shown by the minimum value of the 

tire’s deflection, apart from the cases 10-6 and 10-5, which is probably due to some numerical errors 

made by the simulator. However, each value is small enough, like in the previous example, to well 

represent the lift of the wheel. One’s attention must now turn to the average deflection along the road. 

Taking the 10-7 as the default result, there is in fact a decrease in deflection, with the decrease in 

tolerance. However, the difference between values is never more than 0.0011m, or 1.1 mm. Although 

this difference seems minimal, the biggest change is shown in the computation of the vertical force. The 
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maximum value is always the same across all tolerances, but the average value gets smaller, with the 

tightening of the tolerance. Also, the minimum values seem to get closer to zero, which is the ideal value, 

without touching the ground, there can be no vertical force acting upon the tire.  

With everything said, one can consider the 10-2 as a good tolerance to use, because of its average 

deflection, which is close to the 10-7 case, and its diminutive processing time. However, its minimum 

vertical force is not low enough, especially in comparison with the value obtained by 10-4. 10-7 should in 

fact be the tolerance to use, because it provides the best results out of the bunch. Nevertheless, it also 

takes much more time than any of the others to finish the simulation, at about 7 hours, which makes it 

totally inviable. Considering all of this, the choice must fall under the 10-4 category. First, this tolerance 

has better results than the next one, 10-5. The deviation of the average deflection with the extreme case, 

10-7, stands at 0.0007 m, only 3% of the total value. Also, 10-4 is the second best when it comes to the 

minimum value of normal force, only behind the 10-7. The difference in average normal force is of 119 

N, or 2.5% of the most precise value (4700.9 N), which is acceptable. Finally, it can be said that the 10-4 

case offers the best precision/processing time relation. While it has minimal deviation from the best 

values, this tolerance is 50% faster than 10-5, and 3.5 times less time-consuming than the 10-7 case, 

sitting at around 2 hours, as can be seen in Figure 6.20. 

 

Figure 6.20 - Relative processing time across simulations with different tolerances. 

In summation, the tolerance chosen to carry the simulation of the next scenarios is 10-4. A case could 

be made for 10-3 or even 10-2. The results do not differ that much. However, since these tolerances are 

relatively small, the solver could be prone to bigger numerical errors that could affect other parts of the 
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simulation, such as the calculation of the slip angle. A tolerance of 10-4 grants good computational time, 

precise results and, at last, the minimization of random numerical errors. 

6.5 Simulation 

With the refinement made in the previous section, it is necessary to simulate and analyse a car going 

over a road with obstacles. As previously explained, the car cannot traverse an obstacle without lifting its 

wheels off the ground. This unrealistic behaviour and its implications will be further explained in this 

section. 

Some simulations will be presented, using the multibody system defined previously. The first 

simulation will use the bump represented in Figure 6.16 and the road used for the refinement as shown 

in Table 6.10. The results will be presented and explained, with a focus on the abnormal behaviour of 

the vehicle. Then, another road will be tested, this time with a bigger but flatter bump. Some suspensions 

parameters will be changed to evaluated whether this response is directly tied to the suspension system. 

6.5.1 Simulation 1 

The first simulation to study the suspension parameters uses the exact same characteristics used 

when refining the simulation. The only difference is that it already considers the refined solver: ode113, 

using a 10-4 tolerance. The variance of time with each timestep is represented in Figure 6.17.  

The objective of this simulation is to analyse the behaviour of the vehicle, especially when it passes a 

small speed bump. The vehicle is let go at free-rolling state, like in Figure 6.21, and it reaches the bump 

in the middle of the road. Until it reaches the bump, the vehicle performs as expected. 

 

 

Figure 6.21 - Top: Initial position of the car. Bottom: Final position of the vehicle. 

As the wheel ascends the bump, the longitudinal force’s module starts to increase. This is caused by 

the generation of a slip. This slip is due to the decrease of the wheel’s angular velocity. Since a positive 

gradient exists, the ground will have a reaction on the wheel in all three directions. The lateral direction 

is uniform, making this reaction zero. But the longitudinal direction, 𝑥, is not. This creates a negative 

longitudinal reaction on the wheel that causes its rotation to diminish. In other words, the wheel loses 

rotation, as if it were braking. The angular velocity decreases more than the linear velocity, which in turn 
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increases the slip value, correspondent to a braking situation. The longitudinal contact force will then be 

negative, as shown in Figure 6.22. As for the descending part of the bump, the exact opposite happens. 

At 𝑡 =  1.30 s, it is possible to observe the inception of a positive longitudinal force, which is caused 

again by the reaction of the soil, that is facing forward. In this case, since the car is descending a negative 

gradient, the wheel gains rotation, therefore creating a “driving” longitudinal force. It must be said that 

before the longitudinal hits its peaks, there are symmetrical peaks happening. This is mainly due to 

numerical errors of the integrator and the multibody dynamics algorithm.  

  

(a) (b) 

Figure 6.22 – (a) The variation of the front-left wheel's longitudinal force; (b) The variation of mechanical 

system of the vehicle. 

Also, the mechanical energy of the system suffers a sudden drop, as seen on the right side of Figure 

6.22, when entering the bump. If the velocity decreases, the kinetic energy will also decrease, but since 

the wheel is ascending the potential energy increases, making up for the loss in kinetic energy. In fact, 

this drop in mechanical energy is primarily due to the action of the suspension system. The spring at the 

front suspension will be compressed, while the wheel hits the bump. While this causes the wheel to brake, 

the spring is in fact storing that energy, so it is seen as a loss of mechanical energy. After the wheel 

surpasses the bump, the spring leaves the compression state and releases back the energy it had stored, 

causing a sudden increase in mechanical energy to its normal state. All in all, no mechanical energy is 

lost in the bump, other than due to the free rolling state of the car and some small damping effects of 

the suspension. It must be said that later, at 𝑡 = 1.40 s, the same drop is seen. This is simply the effect 

of the rear suspension because the rear wheels start to ascend the bump.  

At around 𝑡 = 1.20 s, when the front wheels start to touch the bump, the behaviour, in terms of 

deflection, changes slightly. As can be seen in Figure 6.23, when entering the bump, the deflection of 

any tire starts to increase, which is expectable. This increase in deflection causes an enlargement of the 
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vertical force, since the two are directly proportional. As the wheel faces the bump, the deflection 

continues to increase, reaching a maximum. This maximum value is reached when the wheel is on top 

of the bump. After that, the bump descends, and so does the wheel. This causes the deflection to 

decrease the same amount it had increased before.  

  

(a) (b) 

Figure 6.23 – (a) The variation of the vertical load for the front-left wheel; (b) The deflection for that wheel is 

represented across time. 

The abnormality to notice is the maximum value of the normal force, which stands at 14362 N. As 

seen in (Garcia-Pozuelo et al., 2015), where similar simulations are performed, for a bump such as the 

one found in Figure 6.16, the vertical force is expected to reach a maximum of 10000 N. The value 

attained in this work is almost 50% bigger than that one. This may be caused by bad contact estimation. 

The second thing to notice is that the decrease keeps happening as the car moves forward, causing 

the deflection to reach the value of the zero, right after it leaves the bump, which means that the wheel 

lost its contact with the road, as depicted ever-so-slightly in Figure 6.24.  

 

Figure 6.24 - After the bump, the front wheels (blue) start to lift off the ground. 

As can be seen in Figure 6.25, where the reaction forces of the suspension system on the tire are 

represented, at the same timestep, the reaction is non-existent. Until then the suspension system was 

working smoothly and correctly, balancing the contact vertical force by applying a symmetric force on the 

tire, with a symmetric direction. At 𝑡 =  1.25 s, a maximum (in module) is reached. After this, the 
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reaction force reaches the value of zero, due to the loss of contact, and starts acting again when the 

contact with the road is regained.  

 

Figure 6.25 - Vertical reaction force of the suspension system on the wheel. 

However, this regain of contact represents the wheel landing on the ground again, causing some 

serious instabilities, in the form of rebounds. These, on an initial state, cause the deflection to go up, 

followed by losses of contact. The suspension seems to be able to compensate the increases in vertical 

force, as seen in Figure 6.25, but does not avoid the losses of contact. Looking at the mechanical energy, 

it starts to suffer large decreases. In fact, this is where the damper starts to truly act. Since the wheel 

reaches an instability point, the damper will dissipate energy to try to stabilize the wheel and eliminate 

the big oscillations. Nonetheless, the suspension system cannot contradict the oscillations and, therefore, 

the behaviour persists, and the wheel is rebounding across the road. This effect can be characterized by 

a transient state. After a while, the wheel reaches an equilibrium point and its initial state. This unrealistic 

situation, which happens at and after the bump, does not allow the results to be precise and so something 

needs to be corrected. 

6.5.2 Simulation 2 

As seen in the previous simulation attempt, the wheel loses contact with the road sometime after the 

bump. This ends up happening for every single wheel of the car. For such a small bump and going at a 

speed of 60 km/h, this is an unexpected behaviour, which should not be happening. To try correcting 

this, another simulation was made, this time with a different bump. The road is the same as in Table 

6.10 and initial conditions of problem stand as well. The bump, reproduced in Figure 6.26, is also 

positioned in the middle of the road.  
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Figure 6.26 - Dimensions of the new bump modeled for simulation 2. 

This bump, although larger in length and with a slightly bigger height, represents a much more gradual 

gain of vertical coordinate, which means that ascent will be smoother and more uniform. This is way it is 

expected that wheels will not show a sudden, almost instantaneous, increase in vertical force. As seen in 

Figure 6.27, the car performs as before, although this time the loss of contact happens on top of the 

bump, right after the ascending phase. Before, the wheel lifted off the ground just a small amount, as in 

Figure 6.24, because only two wheels could be at the bump at the same time. This type, as the front-left 

wheel, studied in this case (all others behave similarly), starts to lose contact, the rear wheels hit the 

bump, and so the entirety the car naturally ascends. This causes the front wheels to “jump” even higher 

than before. 

 

 

Figure 6.27 - Representation of the front tires (blue/red) losing contact with the road and performing a 

"wheelie". 

Figure 6.28 shows the variation of both tire deflection and position of the front left wheel with time. 

The first peak, from around 1.10 s to 1.15 s, represents, again, the normal behaviour of the tire as it hits 

the bump and starts to ascend. While on the first simulation, the raise in the value of deflection was 

almost instantaneous, here it builds up more slowly. This is simply due to the geometry and length of the 
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new bump. As it reaches the flat zone of the bump’s top, the deflection is maximum. However, instead 

of decreasing and stabilizing, the deflection, from 1.15 s to 1.25 s, decreases all the way to zero. This 

proves, as seen in Figure 6.27, that in this case the front wheels lose contact in the flat area, right after 

the initial ascent. Additionally, unlike the first simulation, it is shown that the wheel stays with no contact 

for a much higher period. Instead of moving up only 0.075 m (the height of the bump), the centre of 

mass climbs all the way up to a vertical coordinate of 𝑧 = 0.48 m, an increase of almost 0.20 m from 

the initial position, and almost three times as high as the bump’s height.  

  

(a) (b) 

Figure 6.28 – (a) Variation of the front-left tire deflection. (b) Position of the wheel’s centre of mass over time. 

The bigger period of time while on air, and the larger height, explains what happens after. At 𝑡 =

1.55 s, the wheel lands again and so the deflection starts to increase, this time massively, reaching a 

worrying value of 𝛿𝑧 = 0.10 m. This maximum peak can only be explained by the instability created by 

the impact of the wheel on the ground. Since it reaches unusual heights while on air, the impact will be 

much stronger and so the wheel will deform massively. As seen in Figure 6.29, the mechanical energy 

of the system, after the landing of the wheel, drops massively and continues to do so until the end. This 

is, again, caused by the dissipation of energy promoted by the suspension’s dampers to stabilize the car. 

The wheel cannot be stabilized and continues to oscillate and lose contact until the end of the simulation. 

The rear wheels also promote this effect, but the front wheels never reach those heights again, although 

they continue to lose contact. The suspension can always contradict the vertical contact force and it is 

possible to conclude that the lift off is not caused by the implementation of the multibody system. 
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(a) (b) 

Figure 6.29 – (a) Variation of the mechanical energy of the system. (b) Vertical reaction force on the wheel (b). 

6.5.3 Simulation 3 

A third and last simulation was made. This simulation shares all the characteristics of the previous 

one, using the same road with the same bump. The initial conditions are also the same. Nevertheless, 

this last simulation was made to analyse the behaviour of the car if the suspension’s parameters were 

changed to the ones represented in Table 6.13. This was mainly made to correct the wheel’s lifting off 

the ground.  

The parameters used to define the vehicle’s suspension were directly taken from (Ambrósio & 

Verissimo, 2009). An inspection to other works, such as (Jugulkar, 2016) and (Dehbari & Marzbanrad, 

2018) where similar suspension systems are studied, showed that these values are in accordance with 

what is used, so they should not pose any problems to the simulation. Nevertheless, a limit-test was 

made, and these parameters were changed, to overexaggerated values of damping and spring stiffness. 

The values used in the current simulation, present in Table 6.13, correspond to 10 times as much as the 

ones previously defined. The undeformed length of the springs was left untouched.  

Table 6.13 - New suspension parameters used. 

Suspension 
Spring stiffness  
(N/m) 

Damping 

(Ns/m) 

Undeformed length  
𝑳𝟎(m) 

Macpherson Strut 591900 79190 0.33 

Rear Damper -- 150000 -- 

Torsion Bar 145300 -- 0.115 
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Looking at Figure 6.30, it is immediately noticeable that the deflection of the tire is not in a stationary 

state before it hits the bump. Contrary to the previous simulation, the deflection has great variations even 

when the tire is crossing the flat area of the road, posterior to the bump. Also, the mechanical energy 

does not vary the same way it does in the previous simulation, there is much more non-linearity that 

creates an ondulation of values.  

  

(a) (b) 

Figure 6.30 – (a) Variation of the mechanical energy of the vehicle; (b) Variation of the deflection. 

The non-linear, transient state could be explained by the increase in some parameters. The stiffer a 

spring is, the larger the amount of energy stored in it is. However, the faster the release of energy is. 

Theoretically, that is what is causing those oscillations in deflection. The spring is being compressed and, 

thus, is storing energy, that is being release too fast, creating oscillations in the car. The damping, 

however, seems not to be able to dampen those oscillations properly, since the spring stiffness is 

extremely high, which causes the initial oscillation of deflection to raise in magnitude. Nonetheless, it is 

known that at 𝑡 = 1.10 s, the wheel hits the bump, and the deflection increases naturally, reaching its 

first peak at the top of the bump. That first peak corresponds to 𝛿𝑧 = 0.05 m, which is slightly smaller 

than the value encountered in the previous simulation (𝛿𝑧 = 0.06 m). The change in parameters showed 

to have a positive effect on the “real” peak of tire deflection. 

Nevertheless, at 𝑡 = 1.25 s, the wheel loses contact with the soil. Figure 6.31 shows the variation of 

the wheel’s centre of mass with time. It is possible to conclude that it still lunges up into the air a 

considerable amount (0.016 m). The change of parameters did not prevent that from happening. The 

maximum value of deflection after the wheel hits the ground is never as high as it was before, which is 

also shown by the maximum vertical position of the wheel being lower than in the previous simulation. 

However, the second oscillation, which is right after the wheel hits the ground, seems to take it further 
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up than in the simulation 2. The centre of gravity of the wheel reaches a higher vertical coordinate that it 

did right after the first loss of contact. This new suspension seems to be damping the deflection but not 

the losses of contact. This could be caused by the exaggerated stiffness of the springs. They are required 

to store a lot of energy in order to compensate the exaggerated vertical force caused by the deflection. 

That energy is being returned too fast, as represented in Figure 6.30, hence, creating bigger oscillations, 

which means that the springs are, in fact, under-dampened. The mechanical energy graph shows just 

that there is always more energy in play in this simulation, and that energy is being stored and released 

by the springs, without any notorious losses. Those losses would be relevant, meaning that the dampers 

were dissipating energy to stabilize the springs and, therefore, the wheels.  

 

Figure 6.31 - Evolution of the vertical position of the wheel. 

All in all, the limit-test showed that the algorithm created is overestimating the value of the vertical 

force when calculated over an obstacle, such as a bump, which can be causing the loss of contact. 

Nevertheless, it was shown that the spring’s stiffness and the damper’s damping are not directly 

proportional, so to say. The increase in stiffness requires a bigger increase in damping, to compensate 

for the fast releases of more energy that directly translate in more oscillations from the spring. 
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7. CONCLUDING REMARKS 

In this chapter some conclusions will be withdrawn from all the work done within the scope of this 

dissertation. Firstly, a small overview about the compiled state of the art will be done. Some conclusions 

about the simulation work will be discussed, from the definition of the multibody system to the creation 

of the contact estimation method. Then, some results obtained will also be analysed. The second part of 

this chapter comprises the future works to be done to sharpen this one. 

7.1 Conclusions 

This work started with a thorough review of the literature about vehicles. Firstly, some general 

components were studied, such as the tire and the suspension system. It was seen that tires underwent 

some major changes over the years, culminating in a radial-layered structure, covered by a rubber tread, 

that acts as a surface between the vehicle and the road. Secondly, the different types of suspension 

systems were analysed and, although different, these, most of the time, must provide safety and driving 

comfort to the passengers. It was seen that the Macpherson strut, the double-wishbone, and the multilink 

axles are some of the most used in passenger cars these days. Lastly, the tire-road dynamics were 

introduced. As is known, the contact between the tire and the road provides a platform for the 

transmission of frictional forces in all directions, that enable the motion of the car. The physical principles 

behind this contact were studied and several tire force models, which depict these phenomena in different 

ways, were presented, with an emphasis on the mathematical ones. 

The purpose of this work was to study the performance of a vehicle’s suspension system when going 

over roads with different obstacles, such as bumps and potholes. As a vehicle can be considered a 

multibody system, a code, known as MUBODYNA3D (Flores P. , 2012), needed to be used to perform 

multibody forward dynamic analysis. The first step was, then, to create a module, inside MUDODYNA3D, 

capable of simulating vehicle dynamics, which was not available before the inception of this work. For 

this module to work properly, two algorithms were created from scratch: one for flat roads and the other 

for roads with obstacles.  

Both algorithms work under the same basis, while achieving it in different ways. Both identify the 

contact point of a wheel touching a road, which can be used to predict the contact forces at a certain 

timestep. For flat roads, the contact identification was made by using the tire’s profile and finding its 

lowest vertical coordinate, that would correspond to the contact point. It was possible due to the invariable 

normal direction of the road. This was defined as an optimization problem, which could be solved by the 
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simulator, MATLAB. For roads with obstacles, the approach needed to be different. Instead of formulating 

an optimization problem, this scenario was defined as a geometrical one, which neglected the tire’s 

profile, by stating that the contact point is the one that creates a vector, with the wheel’s centre of mass, 

perpendicular to the tangential directions of the road. For such, a non-linear system of equations, solvable 

by MATLAB iteratively, was established. Additionally, this algorithm can also predict the existence of 

several possible points of contact, which fundamentally change the position of the effective one. In the 

end, both algorithms are used to attain the tire deflection and effective velocity of the wheel at a certain 

timestep, which makes the computation of the slip and slip angle possible. Finally, the vertical force, due 

to the deflection, is obtained, and all the other contact forces and torques are estimated, using the 

extended Magic Formula (Pacejka, 2002; Bakker et al., 1987; Bakker et al., 1989), which was chosen 

over other models, due to its simplicity, reliability and fidelity when representing the contact forces. 

To test the aforementioned principles and get results, a small family car based on (Ambrósio & 

Verissimo, 2009), was created. All the bodies/components were defined along the joints that connect 

them. The multibody system was simulated, with initial conditions such as the components’ velocity and 

centre of mass. The car’s trajectory was then predicted, along different road profiles.  

The first simulations were relative to a flat road situation. This road had a constant height, which made 

the tire’s deflection almost invariable. It was seen that, since the centre of mass of the car is pushed 

further to the front, the vertical load would be higher on the front wheels. The distribution of mass caused 

the front wheels to have bigger deflections and, therefore, support more normal force. The car always 

performed as expected, starting at an initial position, and ending further up the road, while being in a free 

rolling state, with almost no slip.  

These first simulations were particularly useful to verify the forward analysis, which always culminated 

on a correct trajectory of the multibody system previously defined. It was seen that correction of initial 

conditions was possible and that there were no violations to the constraints imposed by the joints on the 

bodies. It was also possible to observe that car starts with a transient behaviour, when it comes to the 

deflection, that is dampened as the simulation evolves, resulting in an almost steady-state by the end. 

Lastly, the tire model was verified as well. The contact forces were shown to be well computed, but mostly 

the steady-state behaviour of the Magic Formula was confirmed, by the way the longitudinal force evolved 

instantaneously, like a square input, after the application of a braking or acceleration torque. There was 

no lag nor dynamic behaviour.  

The second batch of simulations were done to refine the solver to integrate the accelerations given by 

the solution of the equations of motion. This time a road with a bump in the middle was used, and the 
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second contact method was studied. No problems arose and it was seen that this contact method takes 

a lot more time to simulate a case than the first one, due to the changing road gradients. With these 

simulations it was possible to conclude that all solvers gave almost the same results, so the choice ended 

up falling on the one with the best efficiency, the ode113.  

The last group of simulations were done using a road with obstacles. These could be considered the 

kernel of this work since they were the ones to be thoroughly analysed to obtain the suspension system 

performance.  

The first simulation, within this group, used a relatively small bump, with a height of 0.05 m. The car 

was rolling at an acceptable velocity of 60 km/h. The first thing to note was the action of the bump on 

the longitudinal force of the tire. Since there was no variation along the lateral axis, the bump would 

create a longitudinal reaction force on the tire. As the tire moved up the obstacle, that reaction would 

cause a negative longitudinal force, acting as a sort of brake. As the tire reached the flat part of the bump, 

this reaction would drop all the way down to zero. Then, as the tire started to descend the last part of the 

bump, another longitudinal reaction force was created, this time causing the tire’s rotational velocity to 

increase, inducing a slip that caused a positive longitudinal force. The suspension system’s performance 

was also analysed, and it was possible to conclude that the springs were storing mechanical energy, since 

they were being compressed, as the tire rolled over the bump. This caused a dip in the mechanical energy 

that would finally be restored, when the springs released that energy back, after leaving the compressed 

state. This meant that car was also being braked by the force of the spring. The dampers were responsible 

for the dissipation of energy that occurs after the bump. This is the effect of the dampers trying to stabilize 

the car.  

Some notes about the deflection were taken. As the car ascends the bump, the deflection rises in 

value, which was expected as seen in (Filipozzi et al., 2021; Garcia-Pozuelo et al., 2015). As the car 

descends the bump, the deflection goes back to its normal state, which is the value that it possesses 

along the flat area of the road. However, it was seen that the maximum value was too high. The previously 

referred literature states that it should have been around 10000 N, while in fact it was 50% bigger, which 

is unrealistic. After the wheel had gone over the bump, it was noted that that valued diminished into zero. 

This created a lift off effect and the wheel had some airtime. When it hit the ground, the impact created 

some instabilities and the suspension system tried to stabilize the car, seen by the massive loss of 

mechanical energy provoked by the dampers that needed to stabilize the oscillations of the springs, with 

no effect, since the wheel lifted off again.  
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To dig deeper into this “lift off” effect, another simulation was performed, this time with a bigger but 

flatter bump. Although the suspension system was in fact working, since it was contradicting the vertical 

contact force when it existed, this new bump did not prevent the lift off effect. Here the tire deflection was 

never as big as it was in the first simulation, but the wheel still lifted off, this time to a higher vertical 

coordinate. This was caused by a sort of “wheelie” effect done by the car. The rear wheels ascended the 

bump as the front wheels were lifting, causing them to go higher. The rear wheels also lost contact and 

the full car stayed much longer in the air. The impact was much bigger when hitting the road, causing 

massive losses of energy, an increase in tire deflection and an oscillatory behaviour from the wheel.  

A third and final simulation was done, where all suspension parameters were increased. This still 

caused the loss of contact. Nonetheless, the increase in suspension stiffness created faster releases of 

energy, and the oscillatory behaviour could not be dampened by the dampers. In fact, this behaviour was 

so violent that the car, after hitting the ground for the first time, lifted off to bigger heights than right after 

the first loss of contact. This shown that the increase in stiffness, and the faster releases of much more 

energy, could not be dealt by the same increase in damping, that could not dissipate energy to stop the 

oscillations. It can be concluded that these two variables, damping and stiffness, are not directly 

proportional. An increase in stiffness should be accompanied by a bigger increase in damping.  

After all, it can be concluded that the contact estimation method is overestimating the value of the 

vertical force, when a tire is traveling across an obstacle, to the point where it gets somewhat unrealistic. 

This overestimation is, most likely, causing the loss of contact, which is creating a lift off effect on all 

wheels. Thus, a sensibility study on suspension parameters could not be carried out. Nonetheless, the 

work carried out, which lead up to the writing of this dissertation, culminated in the creation of a new 

module in the simulation code. This module, that can be thoroughly enhanced, is capable of simulating 

complex vehicle dynamics, which was not possible before within MUBODYNA3D. 

Finally, this work showed that the definition of a multibody system is particularly important when 

carrying out simulations such as the ones presented. Complex situations, that otherwise would only be 

possible to be tested with the real, expensive models, can be easily described by computational methods, 

converging, most of the time, in precise results.  

7.2 Future Works 

As for future works, some must be carried out to truly augment this work. It is known that the tire-road 

dynamics algorithm, that comprises the contact estimation and the computation of forces, is 

overestimating the value of the vertical, when the car is crossing an obstacle.  This, although not certain, 
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is mainly caused by the contact estimation method. The first work should be to hone that algorithm. The 

contact estimation method for roads with obstacles must be reviewed, tested, and sharpened, so that it 

becomes more accurate and precise. Also, an algorithm for the turning of the front wheels should be 

implemented. This could easily extend the practical cases that the algorithm could simulate.  

The Magic Formula is an effective and precise semi-empirical tire model. However, it is a steady-state 

one and the dynamic physical models are more robust and can better represent what really happens in 

the contact between tire and road. Also, they enable the analysis of other characteristics, such as dynamic 

friction, tire geometry, variable inflation pressure and heating. These models can also simulate cases 

where the road is extremely rough, with the presence of asperities.  

Ultimately, a sensibility study of the suspension parameters must be carried out, when the previous 

solutions have been implemented. This will make for a better understanding of the real implications of 

obstacles and contact forces on the suspension system of the car. Additionally, this study could prove 

useful for the analysis of the effect that the road has on driving conditions, such as handling, and the 

comfort of the driver and the passengers inside the car cabin. Finally, with a study done with ideal joints, 

a new one with elastic joints could be implemented, along with flexible bodies, instead of fully rigid ones.  
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APPENDIX A – APPROACH TO FIND THE EULER PARAMETERS 

The simulations made in this work were based on (Ambrósio & Verissimo, 2009). This article only 

gave access to the left-hand side elements of the car, stating that all the others, relative to the right-hand 

side, were symmetrical. This meant that Euler parameters for the right-hand side need to be computed. 

Unlike the centre of mass and relative position of the bodies and joints, the Euler parameters do not obey 

linearly a symmetrical transformation, so some computations need to be done. These computations were 

done with the help of (Nikravesh, 1988). Eq. (4.11) gives the transformation matrix expressed in terms 

of the Euler parameters. It is known that matrix, 𝐀, can also be expressed in terms of cosines. These two 

formulations can be combined to find the actual Euler parameters, and vice-versa. So, (Nikravesh, 1988) 

 𝑡𝑟𝐀 = 2(3𝑒0
2 + 𝑒1

2 + 𝑒2
2 + 𝑒3

2) (A.1)  

With numerical computation and Eq. (4.9), (Nikravesh, 1988) 

 𝑡𝑟𝐀 = 4𝑒0
2 − 1 (A.2)  

Solving to 𝑒0 

 
𝑒0

2 =
𝑡𝑟𝐀 + 1

4
 

(A.3)  

Also, combining both transformation matrices,  

 𝑎11 = 2(𝑒0
2 + 𝑒1

2) − 1 (A.4)  

Substituting with Eq. (A.3) 

 
𝑎11 = 2 (

𝑡𝑟𝐀 + 1

4
+ 𝑒1

2) − 1 
(A.5)  

The rest of the Euler parameters are given by (Nikravesh, 1988) 

 
𝑒1

2 =
1 + 2𝑎11 − 𝑡𝑟𝐀

4
 

(A.6)  

 
𝑒2

2 =
1 + 2𝑎22 − 𝑡𝑟𝐀

4
 

(A.7)  

 
𝑒3

2 =
1 + 2𝑎33 − 𝑡𝑟𝐀

4
 

(A.8)  

The Euler parameters can be re-written as  

 𝑒1 =
𝑎32 − 𝑎23

4𝑒0
 (A.9)  

 𝑒2 =
𝑎13 − 𝑎31

4𝑒0
 (A.10)  

 𝑒3 =
𝑎21 − 𝑎12

𝑒0
 (A.11)  
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The previous equations correlate different ways of writing the same transformation matrix. The 

transformation matrix for the right-hand side components is not the same as for the left-hand side 

components. It is known that those components are symmetrical in relation to the 𝑦 axis. Nevertheless, 

the new transformation matrix is not found by multiplying its middle column with -1. That would only 

represent a transformation in relation to the 𝑦 axis, that would change the direction of 𝑧, which needs to 

be the same for both sides. That way, the right-hand side transformation matrix must be given by 

(Nikravesh, 1988) 

 
𝐀𝑟 = [

𝑎11 −𝑎12 𝑎13

−𝑎21 𝑎22 −𝑎23

𝑎31 −𝑎32 𝑎34

] 
(A.12)  

By applying the previous methods to the new transformation matrix, the right-hand side Euler 

parameters can be calculated, as in Eq. (A.12). 
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APPENDIX B – EXTENDED EQUATIONS FOR THE MAGIC FORMULA  

As was seen in the main body of this work, the tire model chosen to analyse the behaviour of the 

vehicle’s tires was the Magic Formula, which is a semi-empirical model (Bakker et al., 1989; Bakker et 

al., 1987; Pacejka, 2002). The general formula of this model is only suited for pure longitudinal or lateral 

slip situations. A car usually drives with both types of slip at the same time, which creates a combined 

slip situation. To accommodate this, in (Pacejka, 2002), the equations for a combined slip situations are 

presented. In the current appendix, a survey of all equations used will be done.  

Longitudinal Force for pure longitudinal slip (Pacejka, 2002), 

 𝐹𝑥0 = 𝐷𝑥 sin[𝐶𝑥 arctan(𝐵𝑥 ∙ 𝑠 − 𝐸𝑥(𝐵𝑥 ∙ 𝑠 − arctan(𝐵𝑥 ∙ 𝑠)))] + 𝑆𝑉𝑥  (B.1)  

 𝐶𝑥 = 𝑝𝐶𝑥1  (B.2)  

 𝐷𝑥 = 𝜇𝑥𝐹𝑍  (B.3)  

 𝜇𝑥 = (𝑝𝐷𝑥1 + 𝑝𝐷𝑥2𝑑𝑓𝑍)  (B.4)  

 𝐸𝑥 = (𝑝𝐸𝑥1 + 𝑝𝐸𝑥2 ∙ 𝑑𝑓𝑍 + 𝑝𝐸𝑥3 ∙ 𝑑𝑓𝑍
2)(1 − 𝑝𝐸𝑥4 ∙ sgn(s) )  (B.5)  

 𝐵𝑥 = 𝑘𝑥𝑘/(𝐶𝑥𝐷𝑥 + ε𝑥)  (B.6)  

 𝑆𝑉𝑥 = 𝐹𝑍(𝑝𝑉𝑥1 + 𝑝𝑉𝑥2 ∙ 𝑑𝑓𝑍)  ∙ |𝑉𝐶𝑥|/(ε𝑉𝑥 + |𝑉𝐶𝑥|) (B.7)  

Lateral Force for pure lateral slip (Pacejka, 2002) 

 𝐹𝑦0 = 𝐷𝑦 sin [𝐶𝑦 arctan (𝐵𝑦 ∙ 𝛼 − 𝐸𝑦(𝐵𝑦 ∙ 𝛼 − arctan(𝐵𝑦 ∙ 𝛼)))] + 𝑆𝑉𝑦   (B.8)  

 𝐶𝑦 = 𝑝𝐶𝑦1 (B.9)  

 𝐷𝑦 = 𝜇𝑦𝐹𝑍  (B.10)  

 𝜇𝑦 = (𝑝𝐷𝑦1 + 𝑝𝐷𝑦2𝑑𝑓𝑍)/(1 + 𝑝𝐷𝑦3𝛾
2) (B.11)  

 𝐸𝑦 = (𝑝𝐸𝑦1 + 𝑝𝐸𝑥2 ∙ 𝑑𝑓𝑍)[1 + 𝑝𝐸𝑦5𝛾
2 − (𝑝𝐸𝑦3 + 𝑝𝐸𝑦4𝛾)sgn(𝛼)]  (B.12)  

 

𝐾𝑦𝛼 =

𝑝𝐾𝑦1𝐹𝑍0 sin (𝑝𝐾𝑦4 arctan (
𝐹𝑍

(𝑝𝐾𝑦2 + 𝑝𝐾𝑦5𝛾2)𝐹𝑍0

))

(1 + 𝑝𝐾𝑦3𝛾2)
 

(B.13)  

 𝐵𝑦 = 𝐾𝑦𝛼/(𝐶𝑦𝐷𝑦 + ε𝑦)  (B.14)  

 𝑆𝐻𝑦 = (𝑝𝐻𝑦1 + 𝑝𝐻𝑦2 ∙ 𝑑𝑓𝑍) + (𝐾𝑦𝛼𝑜𝛾 − 𝑆𝑉𝑦𝛾)/𝐾𝑦𝛼  (B.15)  

 𝑆𝑉𝑦𝛾 = 𝐹𝑍(𝑝𝑉𝑦3 + 𝑝𝑉𝑦4𝑑𝑓𝑍)𝛾 (B.16)  

 𝑆𝑉𝑦 = 𝐹𝑍(𝑝𝑉𝑦1 + 𝑝𝑉𝑦2𝑑𝑓𝑍) + 𝑆𝑉𝑦𝛾 (B.17)  

 𝐾𝑦𝛾𝑜 = 𝐹𝑍(𝑝𝐾𝑦6 + 𝑝𝑘𝑦7𝑑𝑓𝑍) (B.18)  

Aligning Torque (pure lateral slip) (Pacejka, 2002) 
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 𝑀𝑧0 = 𝑀𝑧0
′ + 𝑀𝑧𝑟0 (B.19)  

 𝑀𝑧0
′ = −𝑡0𝐹𝑦0 (B.20)  

 𝑡0 = 𝐷𝑡 cos[𝐶𝑡 arctan(𝐵𝑡 ∙ 𝛼 − 𝐸𝑡(𝐵𝑡 ∙ 𝛼 − arctan(𝐵𝑡 ∙ 𝛼)))] cos (𝛼) (B.21)  

 𝐵𝑡 = (𝑞𝐵𝑧1 + 𝑞𝐵𝑧2𝑑𝑓𝑍 + 𝑞𝐵𝑧3𝑑𝑓𝑍
2)(1 + 𝑞𝐵𝑧5|𝛾

2|) (B.22)  

 𝐶𝑡 = 𝑞𝐶𝑧1 (B.23)  

 𝐷𝑡0 = 𝐹𝑍 (
𝑟0
𝐹𝑍0

) (𝑞𝐷𝑧1 + 𝑞𝐷𝑧2𝑑𝑓𝑍)sgn(𝑉𝑥) (B.24)  

 𝐷𝑡 = 𝐷𝑡0(1 + 𝑞𝐷𝑧3|𝛾| + 𝑞𝐷𝑧4𝛾
2) (B.25)  

 𝐸𝑡 = (𝑞𝐸𝑧1 + 𝑞𝐸𝑧2𝑑𝑓𝑍 + 𝑞𝐸𝑧3𝑑𝑓𝑍
2) [1 + (𝑞𝐸𝑧4 + 𝑞𝐸𝑧5𝛾)

2

𝜋 
arctan (𝐵𝑡𝐶𝑡𝛼)] ) (B.26)  

 𝐵𝑟 = (𝑞
𝐵𝑧9

+ 𝑞
𝐵𝑧10

𝐵𝑦𝐶𝑦) (B.27)  

 𝐶𝑟 = 1 (B.28)  

 𝐷𝑟 = 𝐹𝑍𝑟0[𝑞𝐷𝑧6 + 𝑞𝐷𝑧7𝑑𝑓𝑍 + (𝑞𝐷𝑧8 + 𝑞𝐷𝑧9𝑑𝑓𝑍)𝛾 + (𝑞𝐷𝑧10 + 𝑞𝐷𝑧11𝑑𝑓𝑍)𝛾|𝛾|]cos (𝛼)sgn(𝑉𝑥) (B.29)  

 𝐾𝑦𝛼𝑜 = 𝐷𝑡0𝐾𝑦𝛼  (B.30)  

 𝐾𝑦𝛾𝑜 = 𝐹𝑍𝑟0(𝑞𝐵𝑧8 + 𝑞𝐵𝑧9𝑑𝑓𝑍) − 𝐷𝑡0𝐾𝑦𝛾𝑜 (B.31)  

Longitudinal Force (combined slip) (Pacejka, 2002) 

 𝐹𝑥 = 𝐺𝑥𝛼𝐹𝑥0 (B.32)  

 𝐺𝑥𝛼 = cos [𝐺𝑥𝛼 arctan(𝐵𝑥𝛼𝛼 − 𝐸𝑥𝛼(𝐵𝑥𝛼𝛼 − arctan(𝐵𝑥𝛼𝛼)))] (B.33)  

 𝐺𝑥𝛼0 = cos [𝐺𝑥𝛼 arctan(𝐵𝑥𝛼𝑆𝐻𝑥𝛼 − 𝐸𝑥𝛼(𝐵𝑥𝛼𝑆𝐻𝑥𝛼 − arctan(𝐵𝑥𝛼𝑆𝐻𝑥𝛼)))] (B.34)  

 𝐵𝑥𝛼 = (𝑟𝐵𝑥1 + 𝑟𝐵𝑥3𝛾
2)cos [arctan(𝑟𝐵𝑥2𝑠)] (B.35)  

 𝐶𝑥𝛼 = 𝑟𝐶𝑥1 (B.36)  

 𝐸𝑥𝛼 = 𝑟𝐸𝑥1 + 𝑟𝐸𝑥2𝑑𝑓𝑍 (B.37)  

 𝑆𝐻𝑥𝛼 = 𝑟𝐻𝑥1 (B.38)  

Lateral Force (combined slip) (Pacejka, 2002) 

 𝐹𝑦 = 𝐺𝑦𝑠𝐹𝑦0 (B.39)  

 𝐺𝑦𝑠 = cos [𝐺𝑦𝑠 arctan (𝐵𝑦𝑠𝑠 − 𝐸𝑦𝑠(𝐵𝑦𝑠𝑠 − arctan(𝐵𝑦𝑠𝑠)))] /𝐺𝑦𝑠0 (B.40)  

 𝐺𝑦𝑠0 = cos [𝐺𝑦𝑠 arctan(𝐵𝑦𝑠𝑆𝐻𝑦𝑠 − 𝐸𝑦𝑠(𝐵𝑦𝑠𝑆𝐻𝑦𝑠 − arctan(𝐵𝑦𝑠𝑆𝐻𝑦𝑠)))] (B.41)  

 𝐵𝑦𝑠 = (𝑟𝐵𝑦1 + 𝑟𝐵𝑦4𝛾
2)cos [arctan(𝑟𝐵𝑦2(𝛼 − 𝑟𝐵𝑦3))] (B.42)  

 𝐶𝑦𝑠 = 𝑟𝐶𝑦1 (B.43)  

 𝐸𝑦𝑠 = 𝑟𝐸𝑦1 + 𝑟𝐸𝑦2𝑑𝑓𝑍 (B.44)  

 𝑆𝐻𝑦𝑠 = 𝑟𝐻𝑥1 + 𝑟𝐻𝑦2𝑑𝑓𝑍 (B.45)  
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 𝐷𝑉𝑦𝑠 = 𝜇𝑦𝐹𝑍(𝑟𝑉𝑦1 + 𝑟𝑉𝑦2𝑑𝑓𝑍 + 𝑟𝑉𝑦3𝛾)cos [arctan (𝑟𝑉𝑦4𝛼)] (B.46)  

Overturning Couple (Pacejka, 2002) 

 𝑀𝑥 = 𝐹𝑍𝑟0(𝑞𝑠𝑥1 − 𝑞𝑠𝑥2𝛾 + 𝑞𝑠𝑥3𝐹𝑦/𝐹𝑍0) (B.47)  

Rolling Resistance (Pacejka, 2002) 

 𝑀𝑦 = −𝐹𝑍𝑟0 (𝑞𝑠𝑦1arctan (
𝑟𝑑𝑦𝑛𝑤𝑠

‖𝐕𝑇‖
) + 𝑞𝑠𝑦2𝐹𝑥/𝐹𝑍0) (B.48)  

Aligning Torque (combined slip) (Pacejka, 2002) 

 𝑀𝑧 = 𝑀𝑧
′ + 𝑀𝑧𝑟 + 𝑠𝐹𝑥 (B.49)  

 𝑀𝑧
′ = −𝑡0𝐹𝑦 (B.50)  

 𝑀𝑧𝑟 = 𝐷𝑟cos [𝐶𝑟arctan (𝐵𝑟𝛼)] (B.51)  

 𝑠𝑦 = 𝑟0(𝑠𝑠𝑧1 + 𝑠𝑠𝑧1(𝐹𝑦/𝐹𝑍0) + (𝑠𝑠𝑧3 + 𝑠𝑠𝑧4𝑑𝑓𝑍)𝛾) (B.52)  
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APPENDIX C – CORRECTION OF INITIAL CONDITIONS  

Multibody systems are usually defined by a set of initial conditions, that indicate the position and 

velocity of the bodies in the first instant of simulation. In fact, a set of initial conditions is necessary to 

solve the equations of motion of a system (Flores P. , 2015). Many times, the initial conditions of a 

particular system are inaccurate and make up a bad representation of that system’s initial state. 

Constraints violations appear during long simulations, due to inaccurate initial conditions and bad 

integration (Marques et al., 2017). To avoid this problem several methods were created, although in this 

work the method proposed in (Flores P. , 2015; Nikravesh, 2007) will be used.  

Let us start to cite Eq. (4.16), also known as constraint equation. The initial conditions for the position 

level are given as 𝐪0. If it does not satisfy Eq. (4.16), then corrections need to be made (Flores P. , 

2015). The corrected positions are given as (Flores P. , 2015) 

 𝐪𝑐 = 𝐪0 + 𝛿𝐪 (C.1)  

So  

 𝚽(𝐪𝑐) = 𝚽(𝐪0) + 𝛿𝚽 = 0 (C.2)  

Through mathematical manipulation Flores (2015) states that  

 𝛿𝐪 = −𝐃𝑇(𝐃𝐃𝑇)−1𝚽(𝐪0) (C.3)  

Eq. (C.3) must be solved iteratively. (Flores P. , 2015; Nikravesh, 2007) use a Newton-Raphson 

algorithm (Kahaner, 1988) to solve it. With such kind of algorithm, only a few numbers of iterations are 

necessary for a result to converge. For 𝐪 = 𝐪𝑖  

 𝚽(𝐪𝑖) = 0  (C.4)  

is evaluated. 

If 𝐪𝑖 does not satisfy the previous condition, then (Flores P. , 2015) 

 𝛿𝐪𝑖 = −𝐃𝑇(𝐃𝐃𝑇)−1𝚽(𝐪𝑖) (C.5)  

is computed. The correction is made as  

 𝐪𝑖+1 = 𝐪𝑖 + 𝛿𝐪𝑖. (C.6)  

If there is no convergence, the process needs to be repeated. 

With the positions level initial conditions corrected, the velocity level is corrected using the same 

method. The corrected velocities are given by  

 𝐯𝑐 = 𝐯0 + 𝛿𝐯 (C.7)  

Flores (2015) states that  
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 𝐯𝑐 = 𝐯0 − −𝐃𝑇(𝐃𝐃𝑇)−1�̇�(𝐪𝑐, 𝐯0) (C.8)  
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ANNEX A – MAGIC FORMULA PARAMETERS 

 

This table was directly adapted from (Pacejka, 2002).  
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ANNEX B – POWER/TORQUE CURVES FOR A SMALL FAMILY CAR 

 

These curves were directly adapted from (Zal, s.d.). 


