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Abstract

Neurological disorders and trauma often lead to impaired lower-limb motor coordination. Understand-

ing how muscles combine to produce movement can directly benefit assistive solutions to those afflicted

with these impairments. A theory in neuromusculoskeletal research, known as muscle synergies, has

shown promising results in applications for this field. This hypothesis postulates that the Central Nervous

System controls motor tasks through the time-variant combinations of modules (or synergies), each repre-

senting the co-activation of a group of muscles. There is, however, no unifying, evidence-based framework

to ascertain muscle synergies, as synergy extraction methods vary greatly in the literature. Publications

also focus on gait analysis, leaving a knowledge gap when concerning motor tasks important to daily life

such as sitting and standing.

The purpose of this dissertation is the development of a robust, evidence-based, task-generic synergy

extraction framework unifying the divergent methodologies of this field of study, and to use this framework

to study healthy muscle synergies on several activities of daily living: walking, sit-to-stand, stand-to-sit

and knee flexion and extension. This was achieved by designing and implementing a cross-validated

Non-Negative Matrix Factorization process and applying it to muscle electrical activity data. A preliminary

study was undertaken to tune this configuration regarding cross-validating proportions, data structuring

prior to factorization and evaluating criteria quantifying accuracy in modularity findings. Muscle synergies

results were then investigated for different performing speeds to determine if their structure differed, and

for consistency across subjects, to ascertain if a common set of muscle synergies underlay control on all

subjects equally. Results revealed that the implemented framework was consistent in its ability to capture

modularity (p < 0.05). The movements’ synergies also did not differ across the studied range of speeds

(except one module in Knee Flexion) (p < 0.05). Additionally, a common set of muscle synergies was

present across several subjects (p < 0.05), but shared commonality across every participant was only

observed for the walking trials, for which much larger amounts of data were collected.

Overall, the established framework is versatile and applicable for different lower-limb movements;

muscle synergies findings for the examined movements may also be used as control references in assistive

devices.

Keywords: Lower-Limb Movement Analysis, Muscle Synergies, Neural Control, Non-

Negative Matrix Factorization
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Resumo

As perturbações e traumas neurológicos afetam frequentemente a coordenação motora dos membros inferi-

ores. Uma teoria recente em investigação neuromusculo-esquelética, denominada de sinergias musculares,

tem demonstrado resultados promissores em soluções de assistência à população afetada por estes distúrbios.

Esta teoria propõe que o Sistema Nervoso Central controla as tarefas motoras através de combinações variantes

no tempo de módulos (ou sinergias), sendo que cada um representa a co-ativação de um grupo de músculos. No

entanto, não existe nenhum processo uniformizante, empiricamente justificado para determinar sinergias mus-

culares, porque os métodos de extração de sinergias variam muito na literatura. Para além disso, as publicações

normalmente focam-se em análise da marcha, deixando uma lacuna de conhecimento em tarefas motoras do

dia-a-dia, tais como sentar e levantar.

O objetivo desta dissertação é o desenvolvimento de um processo robusto, genérico e empiricamente jus-

tificado de extração de sinergias em várias tarefas motoras, unindo as metodologias divergentes neste campo

de estudo, e subsequentemente utilizar este processo para estudar sinergias musculares de sujeitos saudáveis

em várias atividades do dia-a-dia: marcha, erguer-se de pé partir de uma posição sentada, sentar-se a partir de

uma posição de pé e extensão e flexão do joelho. Isto foi alcançado através da implementação de um processo

de cross-validated Non-Negative Matrix Factorization e subsequente aplicação em dados de atividade

elétrica muscular. Um estudo preliminar foi realizado para configurar este processo relativamente às proporções

de cross-validation, estruturação de dados antes da fatorização e seleção de critério que quantifique o sucesso

da representação modular dos dados. Os resultados da extração de sinergias de diferentes velocidades de ex-

ecução foram depois examinados no sentido de descobrir se este fator influenciava a estrutura dos módulos

motores, assim como se semelhanças entre as sinergias de diferentes sujeitos apontavam para um conjunto

comum de sinergias musculares subjacente ao controlo do movimento. Os resultados revelaram que o processo

implementado foi consistente na sua capacidade de capturar a modularidade nos dados recolhidos (p < 0.05).

As sinergias de todos os movimentos também não diferiram para toda a gama de velocidades estudada (exceto

um módulo na flexão do joelho) (p < 0.05). Por fim, um conjunto comum de sinergias musculares esteve

presente em vários sujeitos (p < 0.05), mas só esteve presente em todos os sujeitos de igual forma para a

marcha, para a qual a quantidade de dados recolhida foi muito maior.

Globalmente, o processo implementado é versátil e aplicável a diferentes movimentos dos membros infe-

riores; os resultados das sinergias musculares para os movimentos examinados podem também ser utilizado

como referências de controlo para dispositivos de assistência.

Palavras-chave: Análise de Movimentos de Membros Inferiores, Controlo Neuronal, Non-

Negative Matrix Factorization, Sinergias Musculares
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Chapter 1

Introduction

This dissertation presents the work developed since March of 2020 in the scope of the fifth year of

Integrated Masters in Biomedical Engineering. It has been developed in BiRD LAB (Biomedical Robotic De-

vices Laboratory) of the Center for MicroElectroMechanical Systems (CMEMs) at the University of Minho.

The work presented herein diverges from the one developed during the first semester in the CAMIN team

(Control of Artificial Movement & Intuitive Neuroprosthesis), part of the INRIA Sophia Antipolis-Méditerraine

Research Group. Work performed at the CAMIN team focused on the development of a classifying frame-

work of shoulder movements as based on inertial measurements with the aim of driving a functional

electrical stimulation assistive device for hand-grasping in paraplegic patients.

The work proposed in this dissertation relates to the field of lower-limb movement control analysis and

its goal is the development of a framework capable of studying modularity underlying muscles recruitment

during lower-limb movements of daily activity. Information gathered through this framework may be used

to tune control models of lower limb assistive robotic devices, giving way to quality of life improvements

to those affected my motor impairments.

The remainder of this chapter will outline the motivation and problem statement of this dissertation,

as well as its goals and contributions.

1.1 Motivation & Problem Statement

One of the major consequences of damage to the nervous system is the development of motor im-

pairments limiting mobility, which in turn are correlated with a reduction in quality of life, propensity for

depression and higher likelihood of secondary conditions [1]. Children born with cerebral palsy account

4



Chapter 1. Introduction

for 1-4 out of 1000 births [2], and one of its main consequences is crouched gait which is a lifelong loco-

motion impedance. Additionally, around one in four adults globally will have a stroke in their lifetime, with

more than 13 million new strokes each year [3]. Of these, more than a third of its survivors will experience

significant physical disability hindering their locomotion [4]. Moreover, spinal cord injuries, occurring with

an incidence rate of 1 out of 1000 [5], are also responsible for a large share of motor disabilities.

Understanding neural control strategies during muscle recruitment for daily life movements in healthy

and pathological subjects may provide useful insights into the development of assistive devices that aim

to restore some function following a neurological disability. One such model suggesting a modular nature

in neural control has recently been gaining traction in lower limb movement analysis [6]. These recent

studies postulate that complex muscle activity for a motor task may be executed through a reduced neural

control strategy, involving muscle synergies, or the timed co-recruitment of multiple muscles [7]. This

hypothesis puts muscle synergies at the center of low-dimensional control as a building block of a modular

organization of multiple muscles for movement production.

This understanding of muscle-synergy based control has revealed promising results when applied

to rehabilitation engineering. Namely, recent studies have used Functional Electrical Stimulation (FES)

with stimulating patterns based on healthy muscle synergies to successfully reduce operating fatigue [8]

and to improve long-term rehabilitative outcomes when used therapeutically [9]. Neuromusculoskeletal

simulations have also had success making use of these healthy muscle synergies as control inputs in

walking [10–12].

This trend reveals a need in studying muscle synergies in diverse movements, specially those associ-

ated with daily life activities, in order to gather insights that may accelerate the development of solutions

alleviating the impact of motor impairments. However, muscle synergy extraction processes and validat-

ing frameworks lack in methodological consistency. The field is divided in choice of extraction algorithm,

pre-processing parameters, cross-validating procedure, data structuring decisions and post-extraction val-

idating methods [6, 7, 13]. There is no unifying, evidence-based synergy extraction framework connecting

diverging methodologies and applicable to multiple movements and conditions.

Parallel to this challenge, synergy extraction literature for the lower limbs appears to congregate around

the same movements such as walking and posture stabilization [6]. Though essential, other movements

should be given more attention, specially if they represent important tasks which may be used to develop

simpler but still useful task-oriented solutions (e.g. sitting and standing [14]) or to serve as a straightforward

basis on which a control framework may be more easily validated (e.g. extending the knee), acting as an

understanding stepping stone for more complex movements.
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A work tackling both of these major shortcomings in the current muscle synergy extracting paradigm

would be useful not only by contributing immediate knowledge to inform decisions in the development

of control strategies of assistive devices for the aforementioned tasks, but also by unifying state-of-the-art

methodologies on an evidence-based platform that would facilitate the comparison of reported results.

1.2 Goals and Research Questions

The ultimate goal of this dissertation is the design and development of a robust and generic framework

capable of extracting synergies from muscle electrical activity data on lower limb movements of daily

life (Knee Extension, Knee Flexion, Sit-to-Stand, Stand-to-Sit and Walking) and to validate the findings

using statistical inferences, providing a unifying methodology to counter the scattered processes in muscle

synergy analysis. This would allow (1) the fast and systematic study of lower-limb muscle synergies,

including the minimum number of modules required to explain a given movement and (2) the analysis of

significant differences in synergy structure changes across conditions and subjects, providing insights into

its usage as a control signal for future work in simulations and assistive devices.

In order to achieve this goal, the following specific objectives were set:

• Objective 1: To review relevant literature in order to understand the current paradigm in muscle

synergy analysis, the prevailing techniques and their shortcomings and gather the latest under-

standing in neural modularity of lower-limb movements. This will be addressed in Chapter 2;

• Objective 2: To collect electromyographic and kinematic data of healthy subjects during lower

limb movements of daily living: sitting, standing, walking and knee extension and flexion; and to

organize the collected data into a comprehensive dataset that would facilitate further analysis into

these movements. This task is detailed in Chapter 3.

• Objective 3: To design and implement a multi-task, generic muscle synergy extraction framework

based on robust methods scoured from the literature and to select the minimal number of synergies

underlying each movement. The pursuit of this objective is described in Chapter 4;

• Objective 4: To validate the framework’s robustness and generality through cross-validation meth-

ods and statistical analysis of its outputs. Chapter 5 addresses this objective.

• Objective 5: To study changes in muscle synergies’ structure between subjects and performing

speeds for the studied movements. This challenge is approached in chapter 5.

6



Chapter 1. Introduction

• Objective 6: To benchmark the extracted muscle synergy weights and activations by comparison

with the literature, when available, and/or to the kinematic variables. This is tackled in Chapter 5.

During the pursuit of these goals, this dissertation aims to answer for the following research questions:

• RQ 1: Is there a unifying synergy extraction framework able to capture modularity underlying

muscle electrical activity in several lower limb tasks?

• RQ 2: What is the minimal number of synergies that can accurately express each of the studied

movements’ muscle electrical activity at slow speeds?

• RQ 3: Are muscle synergies subject and speed dependent for the studied movements?

All of these RQ’s will be answered in Chapter 6.

1.3 Main Contributions

With the work done during this dissertation, three main contributions can be mentioned:

• Creation of a comprehensive dataset, gathering lower-limb electromyographic and kinematic data

during multiple tasks of daily life to enable further analysis;

• Development of a robust, generic synergy extraction framework and a statistics-based muscle syn-

ergy analysis across its runs, performing conditions and participants;

• Reporting of motor modules for the Knee Extension, Knee Flexion, Sit-to-Stand and Stand-to-Sit

lower-limb movements, which are poorly studied in the literature.

1.4 Dissertation Structure

This dissertation attempts to bridge gaps in muscle synergy results and methodologies by the devel-

opment of an independent extraction and validation framework and the recording and reporting of motor

module results for a set of lower-limb movements.

Chapter 2 presents a Literature Review for muscle synergy analysis in lower-limb movements. It con-

cludes with a critical analysis of the reviewed literature. Conclusions from this review are then used to

support the development of a muscle synergy extraction framework in Chapter 3. Additional input from

a small independent study was made to clarify some parameters not explicit in the body of literature in
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Chapter 4. Therein, the number of synergies to be extracted in each movement is also determined. Chap-

ter 5 then proceeds to devise, implement and execute null hypothesis tests relating to structural similarity

between the gathered results in a hierarchical approach: first examining synergy results across repeated

runs of the framework (Section 5.2), then across results from different performing speeds (Section 5.3)

and finally between results of each subject (Section 5.4). The dissertation ends in Chapter 6 with a sum-

mary of the findings made, and delineates challenges that may be tackled in the future in order to further

validate and expand upon the insights described herein.
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Chapter 2

Literature Review on Muscle Synergies

In this chapter, the research on muscle synergy extraction and validation will be reviewed. Firstly, an

overview of the concept of muscle synergies will be given, its assumptions and evaluation criteria, followed

by a more in-depth look at common extraction methodologies and validation frameworks. Subsequently, a

review of the current panorama in lower-limb synergies will be performed. The chapter will conclude with

a critical analysis of all the examined literature’s results, with conclusions drawn in order to best achieve

the research goals of this dissertation.

2.1 Muscle Synergy Concept and Principles

A muscle synergy, also known as a muscle motor module, refers to the basic unit of the theorized

modular organization of the Central Nervous System (CNS) efferent input during different motor tasks

[7, 15]. First proposed by Sherrington in 1910 [16], and supported by evidence gathered by several other

studies [17–26]. These researchers hypothesize that the CNS, by recruiting a reduced set of coordinated

patterns, controls a small number of muscles rather than coordinating the many thousands of motor units

in order to produce movement [15, 27]. In other words, motor behavior results from the linear combination

of these synergies.

Different studies point to different motivations and interpretations for the existence of muscle syner-

gies. One preeminent point-of-view states that synergies are a solution to the Degrees of Freedom (DOFs)

problem in motor control [28]. The many DOFs afforded by the joints and muscles allows for multiple (i.e.,

redundant) solutions, conceding flexibility to the nervous system in performing a number of motor tasks

(e.g. running, walking, postural stabilization in response to perturbations, etc.). This redundancy poses
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a problem to the nervous system: it must choose from a large set of possible solutions because the task

requirements are not sufficient to uniquely specify how each muscle and joint must be controlled.

Another interpretation of muscle synergies is that they provide a translation between task level goals

(e.g. stabilizing the center of mass) and execution level commands (e.g. activation of individual muscles)

[19]. According to this hypothesis, synergies are responsible for selecting muscle groups that when co-

activated enable a simplified control of a certain biomechanical feature of the limb (e.g orientation or global

limb angle). This understanding makes muscle synergies an integral part of a hierarchical control strategy

by structuring complex motor control variables and sensory feedback in a way that allows task-oriented

control [29–31].

Additionally, an often-provided explanation for muscle synergies frames it as a primitive solution to

motor coordination implemented by phylogenetically ”older” neural systems, such as those in the spinal

cord [25, 26, 32]. These methods might be re-expressed when the connection between CNS and the

spinal cord is damaged (e.g. following a stroke [33, 34]). On the other hand, the CNS may suppress

these primitive motor modules by bypassing them in order to express more precisely adaptive behaviors

[25, 32, 35].

2.1.1 Synergy Extraction Overview

The process of studying muscle synergies during motor tasks has converged in recent years into a

rough common approach: sEMG is measured from a large number of muscles during a complex motor

task (or several tasks); secondly, a factorization algorithm is run in order to identify a set of synergies

from the resulting dataset; thirdly, a statistical analysis is made to determine whether the recorded sEMG

signals can be adequately described as a combination of these synergies; fourthly, a parallel is drawn

between the identified synergies and task relevant variables. With this approach, a large set of motor

tasks has been suggested to be produced using muscle synergies [6, 7, 36].

Even though these steps are relatively agreed upon, there is no unifying methodology to extract muscle

synergies [7]. Many sources of variability are introduced by the choice of factorization algorithm, criteria for

dimensionality reduction and data pre-processing, cross-validation and evaluation of quality of reconstruc-

tion. These factors present a major obstacle to the successful comparison of results obtained by different

methodological paths [37]. Therefore, within the following subsections, an overview of the current tech-

niques and criteria typically used among these studies will be given for each step, with particular focus on

the systematic reviews comparing results from the distinct state-of-art methodological approaches.
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2.1.2 sEMG Data Acquisition

To study muscle coordination, both muscle electrical activity and force patterns of individual muscles

during a motor task may be used as a quantitative metric [38]. However, due to the lack of an accurate ex-

perimental methodology to estimate muscle force, muscle force modeling approaches are not commonly

applied [39]. As such, most modern muscle synergy analysis use common features extracted from elec-

trical muscle activity data to infer this neural modularity. This muscle activity is typically measured using

Surface Electromyography (sEMG) data, due to its non-invasive nature and acquisition sensors’ increasing

availability and affordability [40–42].

Electromyography (EMG) is the extracellular recording of bioelectrical activity generated by muscle

fibers [43]. A sEMG electrode typically consists of a pair of poles aligned with the muscle fiber direction.

The sEMG electrode is usually made of silver and its area of contact with the skin may be wet (using a silver-

chloride gel), or dry in the absence of a conducting medium [44]. Pre-treatment of the instrumented area

of skin may be performed to reduce impedance and improve the signal-to-noise ratio. Typical treatments

include rubbing with an abrasive paste, cleaning with an alcohol wipe and shaving the hair on the skin [45].

A common issue with sEMG sensors is their sensibility to location, as slight shifts in electrode placement

drastically affect the recorded signals, and also to sweat which may naturally occur during a long recording

session for demanding motor tasks. Thus, donning and doffing of electrodes should be minimized and

carefully performed to be similar to previous configurations [45].

In the muscle synergy analysis literature, most authors settle on commercial bipolar Ag/AgCl electrode

configuration [37, 46–52], and choose placement and skin preparation based on guidelines set by the

Surface Electromyography for Non-Invasive Assessment of Muscles (Surface Electromyography for Non-

Invasive Assessment of Muscles (SENIAM)) project [53]. SENIAM is a concerted action in the Biomedical

Health and Research Program of the European Union whose stated goal is to integrate research on sEMG to

facilitate exchange of data [53] by standardizing sEMG data collection and processing among researchers.

Themost common commercial sEMG acquisition systems in synergy research are the Ambu Neuroline 720

01-K/12 [13, 48, 49, 54] (Fig. 2.1b), the Konigsberg Instruments Myopac Wireless/T50 [10, 46, 55, 56],

and Delsys Trigno [57–62] (Fig. 2.1a).

Prolonged recording of bioelectrical activity of a muscle allows for a quantitative description of its

activity over time. For synergy analysis, an EMG signal should ideally provide a selective recording, uncon-

taminated by neighboring muscles while faithfully detecting any activity in the target muscle. In practice,

this is difficult to achieve simultaneously. Overall detection of the bulk of the muscle can only be achieved

with nonselective electrodes, while selective recordings from small muscles can only be achieved with
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(a) Wireless Delsys Trigno [63]. (b) Wired Ambu Neuroline 720 [64].

Figure 2.1: sEMG recording systems examples

selective electrodes [43].

2.1.3 Pre-processing of sEMG data

After sEMG acquisition on a dynamic movement, the first step in the synergy extraction process con-

sists in pre-processing the sEMG signal in order to generate linear envelopes describing the activation

of each muscle during the motor task. This is typically achieved by performing the following sub-steps

[37, 65]:

Band-pass (BP) filtering removes movement artifacts, high-frequency noise, drifts, aliasing effects.

Full wave rectification computes the sEMG envelope. It is additionally useful because it shifts the

peak of the spectrum of the Motor Unit Action Potential (MUAP) toward the firing rate frequency,

while leaving the firing spectrum unchanged [66].

Low-pass (LP) filtering ensures that no high frequency bursts of activity alters the envelope shape.

The lower the cut-off frequency, the smoother the envelope.

Normalization in amplitude assigns equal initial importance to each muscle, allowing non-biased syn-

ergy extraction. Normalization in time to a common period allows the direct comparison between

movements of different duration.

The choice of parameters for each of these sub-steps affects the validity of the results, as pre-

processing directly alters the data available to the factorization algorithm and, consequentially, the number

of extracted synergies and the structure of the weighting and activation coefficients themselves [37, 61].

Parameters for the BP filter are relatively common across the synergy extraction literature. For this

step, the usual chosen configuration is a 4th order [11, 46, 67] (sometimes 3rd [8, 9]) zero-lag Butterworth
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filter. Regarding the bandwidth, several articles point to a LP cut-off frequency from 400 Hz [9, 62] up

to 1000 Hz [68] with in-between frequencies of 450 Hz [62]. The High-pass (HP) cut-off frequencies

ranges from 10 Hz [68] up to 40 Hz [9], with intermediate values of 20 Hz [8]. On review verified that

two bandwidth ranges ([50-500] Hz and [20-500] Hz, 6th order Butterworth) had no significant effect on

neither the number of extracted synergies nor on the resulting weighting and activation coefficients on

most subjects [37].

Full-wave rectification is the process by which negative values in a given signal are transformed into

positive, symmetrical values. For sEMG data analysis, this is universally achieved by computing the abso-

lute values of the input data [133].

Prior research has used a wide range of LP filter configurations to smooth the rectified envelope.

These range from 1 [70] to 40 [41], including 4 [46], 10 [71–73], 15 [74], 20 [75, 76], 30 [77], and

35 [78] Hz. Systematic studies analyzing a range of cut-off frequencies [37, 65, 79] have reported that

reconstruction accuracy of the original signal for a given number of synergies decreased with increasing

LP cut-off frequency.

It has been proven than normalization strategies greatly impact the explained variance of the recon-

structed sEMG signals [36, 37, 65]; despite this, techniques vary greatly in the literature [48, 80, 81].

Normalization processes can be roughly divided into two categories: normalization by Maximum Volun-

tary Contraction (MVC), measured before the trial, and by maximum amplitude of the signal during the

trial itself. In MVC normalization, subjects are asked to perform a muscle-specific isometric contraction

against resistance provided by a researcher. This is typically repeated several times, with a break be-

tween each contraction to prevent muscle fatigue. Then, the maximum value obtained from the recorded

signal is used to normalize the data for that subject and muscle. Maximum amplitude methods, on the

other hand, use the maximum contraction achieved during task performance as the normalization con-

stant. MVC normalization has been found to be best in comparing muscle activity levels and activation

patterns between muscles, tasks and individuals in non-synergy related studies [82]. On the other hand,

maximum-amplitude during task normalization is reportedly adequate to compare activations between in-

dividuals over time, it does not allow comparison between tasks or individuals. In the synergy context,

the normalization method modifies the cumulative variance explained by a set of synergies, with MVC

normalization leading to higher values of reconstruction accuracy [37].
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2.1.4 Muscle Synergy Extraction Methods

Factorization is the most commonly used muscle synergies analysis tool [83]. The goal of this type

of algorithms is decomposing acquired sEMG activity patterns into a smaller dimension of time-varying

signals, often denoted by H and referred to as muscle activations [80], plus a matrix of weighting coeffi-

cients (W ) [80], that can be linearly combined to reconstruct the original sEMG signals. Activations are

sets of basis functions that represent the time-varying component of the signal. Weights correspond to

scalar values that represent activity patterns across all sEMG signals. Collectively, one weight vector and

its corresponding activation make up a muscle synergy/motor module [84]. A schematic illustration of

the factorization output is represented in Figure 2.2.

Figure 2.2: Schematic representations for synergies. Two time-varying synergies (W1 and W2) are shown in

(a). Each synergy specifies a weighting coefficient for one of the three muscles (A-C), indicated by the color of the

bar, and a temporal profile for these weightings. An observed pattern of muscle activations is created by scaling

each synergy, temporally shifting them (t), then adding them together linearly (b). The purple and green waveforms

indicate the contribution from each of the original synergies to the observed response. Adapted from [7].

Commonly used numerical methods to perform decomposition include:Principal Component Analysis

(PCA) [57, 85–87], Independent Component Analysis (ICA) [32], Factor Analysis (FA) [37, 88, 89] and

NNMF [7, 41, 51, 90–92].
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PCA [93] is a linear eigenvalue decomposition technique that consists in transforming the original data

vector set into a new mutually uncorrelated set that represents the covariance of the input data. These

new vectors are called principal components, and they are arranged according to their variance, effectively

remapping the original data into a lower dimensional space. ICA is non-linear blind-source separation

technique that identifies the statistically independent sources that can be re-combined to generate a mixed

set of signals [32]. FA, similarly to PCA, uses eigenvalue decomposition to produce eigenvectors of the

covariance matrix; those with eigenvalues > 1 are considered significant and represent the weighting

coefficients, otherwise they’re considered noise and are discarded [86]. NNMF creates a parts-based

representation of the final signal using only positive, additive components through iterative updates on

a set of initial random matrices [94]. This last method stands out from the others for having recently

become the most commonly used factorization method for muscle synergy analysis [7, 11, 27, 41, 49,

51, 55, 78, 90–92, 95–97].

A recent study [42], comparing the similarity between the probability distribution of the activations

computed by these 4 factorization methods with that of the raw sEMG data during running and walking

at different speeds, concluded that NNMF outperformed all other techniques in this metric. Moreover,

in the same review, the authors claimed that 62.68% of the reviewed literature between 1999 and 2018

used NNMF, further strengthening the case for universal adoption of this technique as it allows more

reliable comparison between results from different authors. Some authors note that NNMF’s non-negativity

condition is a useful attribute in identifying meaningful synergies, because it prevents the outputs from

containing negative activation of the muscles [61], which obeys to the common understanding of muscle

contraction. An important observation arising from the variety of factorization algorithms used in muscle

synergy literature is that all appear to perform similarly regardless of technique [98], which suggests that

the extracted modules are likely not an artifact resulting from the choice of method but rather reflect basic

aspects of muscle activations [99].

An important step in an NNMF problem for synergy extraction is the structure of the data that is given

as input to the algorithm. The relevant literature appears to usually analyze sEMG signals for a given

motor task in the form of single trials, average across trials or concatenated trials, seldom providing a

justification for their choice [13]. Early research using NNMF for synergy extraction in lower limbs during

walking reported a reconstruction quality of over 90% investigating single step cycles [85, 100], whereas

analysis which concatenated trials showed worse results [50, 54, 72, 101]. However, the observed lower

reconstruction quality might not be due to intrinsic better performance of single trial analysis, but rather

its inability to capture natural step-to-step variability in the sEMG signals [13], and its results may not
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translate accurate motor modules underlying a movement.

A recent study explored differences in extracted synergies during treadmill walking when single, av-

eraged or concatenated step-cycle sEMG data were given to the NNMF algorithm [13]; while additionally

studying the effect of the number of step-cycles used for concatenation and averaging. They found that,

despite the slightly greater observed reconstruction quality in averaging the sEMG signals compared to

concatenating, if the resulting synergy weights from the averaged approach were used to reconstruct the

concatenated activations, the results were very poor. In addition to this, they observed that the higher

the number of concatenated step cycles fed to the NNMF algorithm, the more accurately its weights

reconstructed the activations computed by concatenating all available trials. This suggests that a high

variance-explained metric might disguise true reconstructing ability in averaging results and that when

concatenating trial data prior to factorization, a large amount of data is preferable, though no claims are

made regarding the best overall technique [13]. This agrees with the conclusions of the authors of an-

other recent study [62], that concatenating sEMG trials is a more repeatable and robust technique than

traditional single-trial or averaging approaches when multiple subjects’ data are factorized together. They

justify this by noting that when using a concatenated strategy, the NNMF algorithm is forced to find one

concatenated matrix of activations, avoiding sparse factorizations from different local minima among the

same subjects or among a series of similar trials for the same subject by effectively reducing the dimension

of the search space. They show that this leads to a more robust solution as evidenced by their observation

that Intra-Class Correlation (ICC) coefficients were generally greater for a concatenated approach (0.72-

0.90 for four synergies) versus a single-trial technique (0.63-0.8 for the same number synergies) when

comparing synergies across subjects during a weight bearing, force matching task [62].

In order to evaluate the accuracy of the parts-based representation on the original sEMG data, a

metric quantifying the performance of the factorization algorithm is needed. This is typically inferred

by the reconstruction accuracy of the factorized approximation (i.e. how accurately the product of the

factorization represents the original signal), which in turn is usually assessed through Variance Accounted

For (VAF), whereby the differences between original muscle contraction patterns and those reconstructed

by linearly combining synergy weights and activations are summed and normalized to the amplitude of

the original signal. This is typically formulated by V AF = 1−SSE/TSS, where SSE is the sum of the

squared residuals and TSS the total sum of squares of each sEMG data point. The similar Coefficient of

Determination (r2) is also used for the same effects but yields high values when the shapes of the signals

are well-matched regardless of amplitude [92].
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2.1.5 Muscle Synergy Validation

Computed synergies suffer the same problems as supervised learning challenges [102]: a set of

motor modules might accurately reconstruct a sEMG signal but may yield low VAF when its weights or

activations are multiplied with corresponding factorized parts from another sEMG signal, even if a priori

the signals seem similar. The cause of this phenomenon is two fold: firstly, the local minima issue may

cause two separate factorizations to result in two very different sets of motor modules, even if both are

capable of reconstructing the signal; secondly, if the dataset used for decomposition happens to include

more variability due to natural inter-subject or inter-trial differences or issues with electrode placement,

its factorization result may misrepresent actual neural modularity and generalize poorly for other trials

and/or subjects.

Therefore, a validation step is needed, where synergies extracted from a sEMG dataset are correlated to

the muscle synergies extracted from an independent data pool [27, 68, 75, 92]. However, a large number

of studies do not apply this step. Inspired by the solutions provided by the fields of supervised learning and

regression analysis, Cheung et al. [68] implemented a cross-validation process in their study of synergies

in frogs’ hindlimb muscles before and after deafferentation. To estimate the optimal number of synergies

during jumping and swimming tasks, they divided the sEMG signals into four equal partitions. Three of

the four segments were pooled together and synergies extracted from this dataset. These synergies were

then validated by fitting them to the remaining unused partitions (using NNMF with weights held fixed and

activations updated across iterations) and the quality of the fit was quantified using the r2. This procedure

was repeated 20 times at each number of synergies, each time with different random initial weights

and activations and with different randomly selected data partitions for cross-validation. In addition, they

repeated the process on the same partitioned data segments, but randomly and independently shuffling

samples for each muscle, yielding a baseline cross-validation r2. A r2 greater than this value should

indicate that systematic variation in the database is captured by the synergies.

Torres-Oviedo and Ting [41] proposed a similar approach in their study of human responses to postural

perturbations but used a 60/40 split across 10 re-runs of the synergy extraction framework. Further

authors have applied this simplified form of cross-validation for their studies, re-running the factorization

framework, [50] or a combination of both [51], repeated runs and determining weights and activations

from independent datasets. Some unilaterally formulate their own approach to validation: Lambert-Shirzad

and Van der Loos [61] used k-fold cross validation (k = 20) where each fold was validated itself with an

80/20 split.
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2.1.6 Similarity

In the muscle motor modules problem space, similarity refers to the degree of agreement between

weights and activations from one factorization output and another. Quantifying the similarity between

weights means understanding common information between which muscles and to what degree they are

recruited; computing inter-activation similarity informs us about the timing and shape of this recruitment.

Studying similarity between sets of synergies may be relevant to compare conditions among the same

tasks (e.g. different velocities during walking [51], postural balancing with and without stepping [27],

squatting before and after induced fatigue [52], etc.), but it may also be useful in inter-trial and inter-

subject comparison. In order to properly quantify similarity, a reliable and easily-interpretable choice of

metrics is necessary. These metrics may be applied to the weights, activations or both.

One of the first studies attempting to compute similarities between synergy weights made use of

Cosine Similarity (cosSim) [68]. This measure evaluates similarity by calculating the cosine of the angle

between two vectors (i.e. two weighting or activation vectors) normalized to have the same magnitude.

Its simplicity and readability has led to it being widely adopted as a similarity measure in the synergy

extraction literature [36, 51, 91].

Other researchers have used the Pearson Correlation Coefficient (r) to compute similarities between

pairs of both weights and activations [41, 103]. The squared form of this expression is also used for the

same effects [92].

Santuz et al. [48] measured both weight and activations’ similarity using r2 and cosSim to evalu-

ate inter-day repeatability of a synergy extraction method. Analyzing performance of both metrics, they

found that (1) both were correlated for weights and activations, albeit with different co-domains; (2) r2

demonstrated a larger evidence-based output for activation analysis. This suggests that cosSim may be

adequate to measure agreement between weight’s similarity but not for quantifying activations’ degree of

agreement.

A drawback in using the same characteristic to measure similarity in both weighting and activations

coefficients is the fact that information about differences in the timing of curves representing activations

is not captured. Furthermore, although r2 and cosSim inform about the matching of curves in shape and

amplitude, they offer no insights into the root cause of a mismatch (i.e. if it is due purely to differences

in shape and amplitude, or if one signal is only phase-shifted in relation to the other). A variety of metrics

have been used to quantify this characteristic [47, 85], but most recent publications have turned to the

measurement of cross-correlation [38, 47, 49, 91, 104].

Frère et al. [91] calculated the cross-correlation and used the maximum of the output as a measure of
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matching between curves and further defined the timing of activation as the index on which this maximum

occurred.

A common goal in similarity studies is to find a subset of motor modules within the extracted pool

that are similar to a given reference. Immediately, an issue arises: which value should be defined as the

threshold? Here, the relevant literature may be divided into one of two approaches: some arbitrarily choose

a value, such as r2 > 0.55 [41], cosSim > 0.60 [105], cosSim ≥ 0.75 [106], cosSim ≥ 0.80 [13],

cosSim ≥ 0.90 [68], providing no further information of the determination process; others set the value

through statistical methods. For instance, some authors set a Pearson Correlation threshold by exploiting

the fact that if r is larger than a tabled value, the null hypothesis that the groups are uncorrelated can be

rejected, for a given significance level. To provide additional statistical support for this choice, usually a

bootstrapping study is performed to validate that threshold, by generating a large number of random

permutations of the muscle synergies, computing the corresponding r-values and building a distribution

with the expected mean and standard deviation. If the pre-selected r is found to belong to a high percentile

of the distribution, the correlation is thus empirically proven to represent a higher-than-chance similarity.

This statistical approach has the added benefit of allowing the assignment of a confidence value to the

similarity findings [91, 92].

2.1.7 Muscle Synergies Sorting

A common problem in studying the similarity between synergies of independent factorizations is that its

outputs often require a functional sorting in order to align muscle synergies by role in movement control.

An illustration of this challenge may be observed in Fig. 2.3: run 8 has its synergy indices switched

compared to the remaining runs and if left unsorted, an analysis of similarity would output misleadingly

low values despite the functional role of the synergies being consistent across runs.

A solution developed by Torres-Oviedo and Ting [41] for comparing synergies across different subjects

proposed reorganizing the indices by finding the maximum r2 between repeated subjects. It begins by

averaging synergy weights activations across trials for each subject. Then, an initial sorting is performed

by grouping muscle synergies based on whether the r2 between weights and/or activations of an arbitrary

reference subject and another participant is greater or lower than a predetermined value. Afterwards,

an averaged set of weights and activations is determined from the set which passed this similarity test.

Then, with these matrices set as reference and through an iterative process, new r-values are calculated,

a new round of grouping is performed and the averaged set updated. The end result is a set of synergies

common to all subjects and r values that may serve both as a sorting parameter but also as a measure
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Figure 2.3: Representation of 10 runs of the NNMF algorithm, averaged across trials. Each column represents a

different run; each pair of rows a synergy. Activations and weights from run 1 (thick border) were set as a reference

to evaluate similarity among the remaining runs. A grey background indicates that the r for the activation of that

run is below an arbitrary threshold; possibly signaling a dissimilarity.

to evaluate this generalizability of the computed synergies across subjects. Other studies [51, 107] which

implemented the same sorting strategy, used the cosine similarity between synergy weights as a sorting

parameter, forgoing a comparison of activations altogether.

2.2 Lower Limb Muscle Synergy Analysis

Over the last two decades, there has been a push for examining EMG signals under a wide range of

behavioral conditions in an effort to provide evidence supporting the muscle synergy hypothesis, to deepen

understanding on motor impairments, to optimize training in sports rehabilitation and performance and to

discover low-dimensional solutions to a motor task in order to model control frameworks [6]. This last field

of study is of particular interest to this work as it focuses on task-specific goals and on whether specific

complex behaviors can be produced effectively using combinations of motor modules, though conclusions

may also be drawn from the other fields.

Throughout this section, a review of recent literature regarding lower limb muscle synergies during

motor tasks will be given, with particular focus given to movements relevant for daily life, namely walking

and Discrete Motor Tasks. Discrete Motor Tasks, such as sit-to-stand and stand-to-sit are motions impor-

tant for daily life activity, requiring whole-body coordination and thus commonly impaired by neurological

disorders [108, 109]. The most energetically demanding sub-task of these two movements, associated

with body ascent and descent, is knee extension and knee flexion, respectively [110]. Despite the fact
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that they are indispensable for sitting and standing, among other activities, no studies were found which

examined muscle synergies during knee extension and flexion.

2.2.1 Gait

Most lower limb synergy literature focuses on gait analysis as it consists of an highly complex move-

ment involving various sets of muscles being recruited at precise moments in time, while being cyclical

and thus easily repeatable and divisible [10, 27, 36, 42, 46, 48, 51, 57, 65, 67, 72, 78, 85, 101, 107,

111–114]. Furthermore, walking and running biomechanics have been extensively studied, with an es-

tablished general consensus on the composition of gait sub-tasks and how each one influences a stride

[115].

The consensus among these early studies is a five-synergy model of human locomotion for walking

speed for both level-ground and treadmill walking [10, 57, 85, 87]. The first synergy (composed of acti-

vations by the Gluteus Medius, Gluteus Maximus, Vastus Medialis and Rectus Femoris (RF)) corresponds

to the biomechanical sub-task of body support, where the body is decelerated in early stance. Synergy

2 (Soleus and Gastrocnemius Medialis (GM)) also provides body support plus forward propulsion in late

stance. Motor module 3 (RF and Tibialis Anterior (TA)) acts to decelerate the leg in early and late swing

while generating energy to the trunk throughout swing. The fourth synergy (Hamstrings) works by ab-

sorbing leg energy (decelerating it) in preparation for foot contact while increasing the leg energy in early

stance. Finally, synergy 5 (Iliacus) serves to accelerate the leg forward in pre and early swing by generating

energy directly to the leg while simultaneously shifting energy from the trunk to the leg [10, 85–87]. Some

studies opt to not record activity of the Iliacus muscles, and therefore only report four synergies, omitting

module 5 [10, 46]. Others choose not to record the Iliacus, but attribute Module 5 to a general activation,

with no clear bursts, of RF and Gluteus Maximus [13], justifying its relevance as encoding systematic

information because they are robust across subjects and especially at higher cadences [74]. One such

model is represented in Fig. 2.4.

Ivanenko and colleagues [80] became the first to observe a consistent phase shift in synergy activations

with increasing speed, coincident with a kinematic shift in the end of the stance phase. They demonstrated

that both the activation peak of all components and the lift-off of the step occurred progressively earlier as

treadmill speed was increased. Thus with increasing speed, the duration of stance as a percentage of gait

cycle decreases, and the foot is brought through faster during swing to place the heel for the subsequent

stance earlier. This phenomenon was observed by several others since [46, 51, 57]. Even though several

studies have reported synergy findings for a range of performing speeds (see Table 2.1), none reported
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Figure 2.4: Muscle synergies extracted during treadmill walking from twelve healthy subjects. (A) Averaged weights

across subjects. (B) Activations for individuals subjects, with each represented by a color. Synergy 5’s (M5) existence

is controversial; some authors drop it in favor of a reduced number of synergies, others who record a larger set of

muscles use its index to represent other motor modules, such as the contribution by Iliacus. Taken from [13]. TA:

Tibialis Anterior; SO: Soleus; GL: Gastrocnemius Lateralis; GM: Gastrocnemius Medialis; VL: Vastus Lateralis; VM:

Vastus Medialis; RF: Rectus Femoris; BF: Biceps Femoris; ST: Semitendinosus; GX: Gluteus Maximus.

a changing number of motor modules with varying speed, at least for the performed range and for each

author’s own criteria for determining the minimum number of synergies. The exception was Kibushi et al.

[51], who claimed a minimum number of synergies of four for the 2.0-4.0 km/h range and five modules

for 4.5-8.0 km/h. Additionally, authors who recorded muscle electrical activity from level-ground walking

rather than treadmill gait did not report a different number of synergies [86, 87].

Capellini et al. [57] also found five muscle synergies in the distinct gaits of walking and running, and

further observed that the major differences were concentrated during stance, while walking and running

timing was basically the same during the swing phase. In running, the activation peak of the component

expressing the posterior calf muscles (such as the GM, Gatrocnemius Latealis, Peroneus Longus and

Soleus) occured earlier than the corresponding motor module in walking, whereas other activation timings

remained unchanged across gaits. One hypothesis attempts to explain this phenomenon by noting that at

higher walking speeds, the ankle extensors are loaded toward the end of stance in an unfavorable portion

22



Chapter 2. Literature Review on Muscle Synergies

of their force-velocity curve, so their force production is limited even as levels of activation increase. By

shifting the activation to an earlier phase of stance, the activation is shifted to a more favorable force

production range [116].

A modular organization has also been consistently found in impaired walking, though with a lower

number of motor modules. This trend has been observed in individuals following neurological injury [60],

stroke [46], incomplete spinal cord injury [113] and cerebral palsy [71]. Often, in post-stroke subjects,

these impaired synergies resemble merging of specific unimpaired synergies [46].

An important finding following the establishment of a consensus in a four-to-six synergy model of

human gait was the successful use of such a strategy (with a few minor modifications regarding the timing

of activations) to drive a complex musculoskeletal simulation of the human leg during locomotion. This was

firstly proven for a 2D sagittal-plane biomechanical model [10] and later for a 3D model [11, 12] after the

inclusion of an additional synergy accounting for mediolateral balance control and contralateral leg swing.

These studies theoretically demonstrate that a synergy based control allows for effective locomotion and

that in practice a set of motor modules can serve as a basic neural control elements in order to generate

the task-specific biomechanical function of walking. Furthermore, it has been recently shown through

similar computer simulations that the walking dynamics of unimpaired gait can be reproduced using the

lower dimensional control spaces of impaired motor modules such as those present in post-stroke subjects

[112].

2.2.2 Sit-to-stand and stand-to-sit movements

Standing from a seated position is essential for human activity as standing upright is a crucial pre-

requisite for bipedal walking and a precursor for numerous daily life activities [110]. Understanding the

neural control organization of this motor task along with the reciprocal stand-to-sit may provide valuable

insights into low-dimensional control of these movement which, in future work, may serve as a basis for

targeted strength training or rehabilitative devices such as electrical stimulation.

Muscle synergy research into these motor tasks, however, is scarce. Table 2.2 presents a summary

of all the found muscle synergy literature for the sit-to-stand motion. One study examined sit-to-stand from

a knee-height stool in four young (22.5 ± 1.2 mean age) and three older (72.0 ± 2.0) subjects in two

conditions: rising at one’s natural speed and rising ”as fast as possible” [14]. sEMG data, collected from

seven lower-limb muscles ipsilaterally (TA, Soleus, GM, Vastus Lateralis, RF, Semitendinosus and Gluteus

Maximus), was correlated with each biomechanical subtask by comparing with kinematic variables. They

found three synergies sufficiently explained the variance in the sEMG data (Fig. 2.5): the first, composed
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Table 2.1: Reported numbers of synergies for walking in healthy subjects. LW - Level Ground Walking; TW -

Treadmill walking; B - Bilateral placement of electrodes; I - Ipsilateral plcement

Study
No.

Subjects

No.

Synergies

No. Measured

Muscles

Speed

Range

Gait

Condition

Factorization

Algorithm

[87] 10 5 16 (B) ”brisk walk” LW FA

[117] 6 4 7 (I)
0.5*”Normal Speed”-

2.0*”Normal Speed”
TW PCA

[85] 6 5 12-16 (I) 1.00 - 5.00 km/h TW PCA

[10] 14 5 8 (I) 4.32 km/h TW NNMF

[86] 18 4 16 (I) 106 steps/min LW PCA

[46] 20 4 8 (I) 1.08 - 6.48 km/h TW NNMF

[57] 8 5 32 (I) 3.00 - 12.00 km/h TW PCA

[51] 10 4-5 12 (I) 2.00 - 8.00 km/h TW NNMF

[48] 20 4 24 (I)
Preferred speed

(5.04 ± 0.72 km/h)
TW NNMF

[12] 2 5 16 (I)
Preferred speed

(4.60 ± 0.9 km/h)
TW NNMF

[67] 17 4 8 (I)
Preferred speed

(4.32 ± 0.68)
TW NNMF

[13] 12 5 10 (I)
Preferred speed

(not reported)
TW NNMF

mostly of TA activity with additional lighter recruitment of RF and Vastus Lateralis was associated with mo-

mentum transfer (by dorsiflexion of the ankle joint) and peaked earliest among the activations at around

50% of the movement time. The peak of this activation also marked the beginning of the activation of

the second synergy (encompassing thigh and buttock muscles (RF, Vastus Lateralis, GM, and Semitendi-

nosus), which produced a constant steady activation up until shortly before the end of the movement. This

component was correlated with knee extension and hip flexion responsible for the upward movement. Fi-

nally, a third synergy, accounting for postural stability, began on the second half of the movement and

slowly increased up until the very end of the standing task. This module was mostly composed of Soleus

and Gluteus Maximus activity, hinting at a production of knee flexion and ankle plantarflexion acting to

decelerate the trunk and stabilize the body.

The timing for the synergy responsible for momentum transfer during forward propulsion occurred

noticeably later in the fast condition, while the other two remained relatively synchronous (Fig. 2.5), in-

dicating that in a fast standing scenario, the upward forward movement happened simultaneously with

momentum transfer. No differences were found between the older and younger group in both synergy

structure and kinematic variables. Similar results were found by other authors [118], recording sEMG

activity in six muscles. Another study successfully simulated the forward dynamics of a sit-to-stand move-

ment using a neuro-musculoskeletal model [95], albeit using four synergies because the authors recorded
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Figure 2.5: Synergy (A) weights and (B) activations during sit-to-stand. In (A), each muscle indicates the average

value of activation across subjects with the error bars denoting the standard deviation. Muscles whose average

contributions were lower than its standard deviations are represented by empty bars with dashed borders. (B) Solid

lines represent average activation across subjects for the comfortable speed condition; dashed lines indicate the

”rise as fast as possible condition”. Surrounding shaded areas are the standard deviations at each time point.

Taken from [14]

Rectus Abdominis activity in order to simulate the flexion of the upper trunk prior to ankle dorsiflexion.

The remaining three synergies were consistent with the aforementioned results.

Synergistic relationships for the stand-to-sit movement are hardly studied, with the sparse literature

focusing on squatting (weighted or not) rather than natural sitting. In [52], the authors used muscle

synergies to understand the task of squatting with an Olympic bar. They concluded that three synergies

explained the variance in the movement, as illustrated in Fig. 2.6. The first was marked by Vastus Me-

dialis, RF and TA and dominated during the descending phase, reaching a maximum at approximately

the movement’s lowest point. The second synergy was composed mostly of Vastus Medialis and Lateralis

activity, peaking at the beginning of ascension. A third synergy was attributed to stability and was charac-

terized by plantarflexors (Gastrocnemius Lateralis and Medialis, Soleus) and Gluteus muscles with roughly

the same activation throughout the movement.

It is important to note that only half of the squatting movement is similar to a sitting task. This portion

of the movement is high in Vastus, RF and TA activity with an activation peak right before sitting, as is

illustrated in Fig. 2.6 (Synergies S1 and S2). This may differ from natural sitting if it is assumed that

during this movement, muscle activity might abruptly stop long before the corresponding kinematic phase

in squatting, as an individual lets their weight descend freely onto the seat.
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Table 2.2: Reported numbers of synergies for the sit-to-stand movement in healthy subjects. B - Bilateral

Placement of electrodes; I - Ipsilateral placement

Study
No.

Subjects

No.

Synergies

No. Measured

Muscles

Seat

Height

Factorization

Algorithm

[14] 7 3 7 (I)
Equal to

Knee Height
NNMF

[118] 3 3 6 (I)
Half of shank height

& equal to shank height
NNMF

[97] 11 4 10 (I) Shank height NNMF

[119] 12 4 15 (I) Shank height NNMF

Figure 2.6: Synergy (A) activations and (B) weights during squatting with a weighted bar. In (A), each muscle

indicates the value of activation of a concatenated NNMF approach across subjects. S1-S3 correspond to weights

of synergy 1 to 3. (B) Activations for Synergies 1, 2 and 3 in a top-down structure. Solid lines represent activations

across subjects for the non-fatigued condition (with light gray shaded areas indicating the corresponding standard

deviation); dashed lines indicate the activations after fatigue (with dark gray shades denoting standard deviation).

Surrounding shaded areas are the standard deviations at each time point. Adapted from [52]

2.3 Critical Analysis

This section aims to critically analyze the collected literature results gathered for the previous sub-

chapters. Firstly, critiques of the validity of the motor modularity theory and doubts about its inference

from sEMG data will be discussed. Secondly, current methodological choices used for extracting synergies

will be examined. Finally, contemporaneous gaps in synergy extraction knowledge will be examined, with
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particular attention given to the sparsely studied movements. The chapter ends by summing up the

modern synergy extraction paradigm’s flaws and how this dissertation plans to address each of them.

Conflicting evidence exists regarding the existence of motor modules as conventionally postulated.

Some authors argue that muscle synergies are not encoded in the CNS but rather activated because of

task constraints. The recent trend, however, with advances in EMG recording technology and functional

resonance imaging data analysis seems to be that synergies are spatiotemporally organized as compo-

nents in the brain and spinal cord, supporting their neural origin [6]. A recent study, leveraging advances

in neural imaging and transcranial stimulation technology, has established a causal relationship between

activation of the cerebral cortex region responsible for motor planning and execution (as detected by Func-

tional Magnetic Resonance Imaging (fMRI)) and synergistic voluntary contraction of the Gluteus and pelvic

floor muscle as inferred by sEMG recordings [120]. Furthermore, experiments stimulating the spinal cord

in animals, including monkeys, frogs, dogs, rabbits and cats result in highly coordinated functional syner-

gies in their musculature [16]. More recent, better designed stimulation studies also support the neural

origin hypothesis; for instance, in frogs where the brain was severed from the spine, the simultaneous

electrical stimulation of two sites in the spinal cord resulted in endpoint forces being equivalent to the

vector summation of each site after individual stimulation [121]. Its controversial origin, however, may be

ultimately unimportant for the goals of task-oriented control, such as computational simulation of specific

movements, therapeutical insights and functional electrical stimulation pattern generation. This is best

evidenced by the fact that neuro-biomechanical models were successful in using synergy based control

to simulate walking motion [10–12]. Because this dissertation aims to provide results for future control

modeling, muscle synergy theory served our purposes adequately.

The most obvious case open for scrutiny in the conventional synergy extraction pipeline is the usage

of sEMG data to ascertain neural control strategies. sEMG data are prone to unreliability due to crosstalk

and spatial variability of electrode location both across subjects and trials. Furthermore, previous studies

reported a high inter-individual variability of EMG patterns in the TA, during gait [81, 122] and concluded

that the control of this muscle is variable across subjects. Nevertheless, despite these drawbacks and

barring an invasive method such as intramuscular EMG, it is the best, most readily-available method to

study CNS control modularity in motor tasks. Finally, the wide pool of published research using this

technique facilitates inter-synergy comparison.

Despite themany reviews and research papers onmuscle synergies, the field is limited bymethodologi-

cal inconsistency. Every decision, from choice of pre-processing parameters, of factorization algorithm and

of its hyperparameters, of structuring method for data fed to the factorization algorithm, of cross-validating
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technique or of evaluating metric for reconstruction quality is often made haphazardly, rarely providing a

background in the decision process. Recently, there have been some systematic reviews [6] and studies

comparing implications of these choices on final synergy determination [48] that have attempted to unite

competing methodological schools on to the same, repeatable, reproducible framework.

Evidence points to NNMF being not only the most reported factorization algorithm to extract synergies,

but also the one in which the temporal activation’s cumulative distribution function best resembled the

input sEMG data; hinting at a more accurate portrayal of neural information present in the raw data [42].

Complementing this, its non-negative nature eases interpretability - a muscle is either positively recruited,

implying contraction, or not, and all linearly combine to form the original input waveforms. This justified

its selection for this dissertation. However, NNMF is not without its shortfalls. Most notably, being an

optimization-based data decomposition technique, it may converge in local minima [123]. Despite this

drawback, even local minima can produce results revealing the general ”trend of modularity” for a sEMG

dataset [124]. This is specially true if it is coupled with a cross-validating method, where several runs’

outputs are examined so that the resulting synergies can be investigated for similarity and ranked by

structural consistency, the local minima issue can be entirely obviated.

The choice of cross-validating system is particularly divergent in muscle synergy analysis. There

exists controversy even regarding what cross-validation should entail in synergy extraction, with some

authors making a repeated run analysis with random trial assignment before each run and comparing

reconstruction-quality measures [46], and others simply extracting synergies independently and using fac-

tors from one synergy output to reconstruct data in the other synergy set [13, 107]. The two techniques

have validating ability, and previous studies have leveraged the advantages of both [41, 51, 68], which

is what this dissertation will attempt to do as well. However, the existing research is still unclear regard-

ing the parameters this cross-validation system should be configured to, such as data split ratios and

reconstruction quality calculation methods; therefore, this dissertation will study these parameters.

The NNMF algorithm in itself may be tweaked, most notoriously by using different iterative update

rules, but also by tailoring the NNMF’s update rules to model different EMG noise distributions and by

configuring the number of maximum iterations, error change tolerance and other convergence criteria.

All of these parameters are adequately studied or justified in the body of literature owing to its ubiquity

of usage [124], and there are fewer downsides to using the perceived consensus present on published

research.

The same can be said for pre-processing decisions such as linear envelope extraction from raw sEMG

data and normalization methods. All have been extensively studied and reviews have explored their final
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impact specifically on muscle synergies, so the dissertation will lean into these empirical findings [36, 48].

The single upside of the sparsity in methodologies used for muscle synergy extraction is that there is

less opposition in trying new techniques and experimenting with different validating models. For exam-

ple, few studies use statistics to truly leverage multi-participant tests’ results to muscle synergy analysis

[37, 41, 48, 49]. Analysis of Variance (ANOVA) is particularly useful in drawing parallels between syner-

gies, like comparing modularity between different speed conditions or between healthy and subjects with

motor pathologies. If such a statistical framework could be devised, a case could be made for or against

muscle synergies using a new perspective employing all variability present in inter-participant data while

simultaneously controlling for the population size. Furthermore, assuming similar pre-processing and fac-

torization conditions, multiple studies’ results could be aggregated onto the same validating framework

in systematic reviews, increasing the statistical power of the inferences. This dissertation will attempt to

outline one such framework.

Finally, the lack of human muscle synergy analysis into different movements presents the largest gap

in the literature. Published research seems to congregate onto the same few set of movements, most

notably: walking and running [13, 41, 51, 85, 107], postural stabilization [24, 37, 67, 92] and grasping

[121, 125]. Though these are important movements, additional research is needed into more human

daily activities, specially if the goal is to understand neural control to improve solutions given to motor

impaired patients. For example, research into standing modularity is repeatable, easily measurable and

part of the set of daily activities, but still is very poorly studied in the synergy context. Even simpler sets of

movements, that could serve as stepping stones to understanding more complex standing, stabilizing and

locomotion synergies, also hardly investigated. This dissertation will also attempt to fill this gap between

higher-level complex movements and lower-level simpler motions.
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Chapter 3

Synergy Extraction Framework & Dataset

Creation

This chapter is divided into two sections; the first presents a high level overview of the muscle synergy

analysis process implemented in this dissertation. The second details the experimental protocol used for

each studied movement, the data collection system and the data treatment leading to the creation of the

dataset for lower-limb sEMG and kinematic variables during multiple tasks of daily life to enable further

analysis.

3.1 Synergy Extraction Framework

The methodological framework put in place to reliably and repeatedly obtain the synergies encoding

modular CNS information is schematized in Fig. 3.1. This diagram attempts to offer the reader a general

overview of the entire process, from the collection of data to the final estimation of common motor modules

for a given movement. Each step will be expanded upon in the following chapters. A short description of

each block follows:

During Data Collection, sEMG and kinematic data are simultaneously recorded during a given move-

ment and wirelessly transmitted to a computer where they are stored. The next step, Data Processing, has

a dual purpose: first, it uses the kinematic data to segment sEMG recordings corresponding to actual con-

traction; secondly, it extracts from the muscle activity data the time and amplitude normalized envelopes.

From this point on, kinematic data is no longer needed for the purposes of muscle synergy analysis;

therefore it is stored in a dataset for future reference, along with the sEMG envelopes represented by the
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Figure 3.1: Schematic overview of the muscle synergy extraction framework

Dataset Creation block in the diagram. Subsequently, the sEMG envelopes are factorized into muscle

synergies in the Synergy Extraction block. Several rounds of extractions are performed, each with random

initial conditions in order to minimize the chances of picking a set of synergies from a local minima as

evaluated by the cost function. The next block, Statistical Analysis, is tasked with sifting through these
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several runs and extracting the most recurrent set across iterations, as well as evaluating the similarity

of these motor modules both across movement speeds and subjects. Finally, the information gathered

during this statistical process is used to find a common set of synergies through grouping and averaging

across subjects.

3.2 Data Collection and Dataset Creation

In order to collect data for synergy analysis in healthy subjects, an experimental protocol was devised.

All participants signed a consent form to be part of the study. Subjects’ rights were preserved and personal

information provided was remained confidential. Data was collected at the University of Minho according

to the ethical comission.

3.2.1 Participants

Ten healthy subjects (8 males and 2 females with mean age of 25.2 ± 2.52 years, mean height of

172.2± 10.6 cm and mean weight of 73.82± 11.09 kg) participated on the experiment trials. None had

clinical history or evidence of motor disorders. Fig. 3.2 shows sensor placement on two of the subjects.

3.2.2 Equipment

Each subject was first fitted with an array of sEMG electrodes and Inertial Measurement Units (IMU)

sensors (Fig. 3.2). The sEMG electrodes used for data collection were from the Delsys Trigno™ Avanti

system (Delsys, Massachussets, USA). After shaving and cleaning the skin on the points of contact with

alcohol wipes (according to the recommendations gathered from the literature and presented in section

2.1.2, eight sensors were placed bilaterally (four in each leg) on theRectus Femoris (RF), Biceps Femoris

(BF), Gastrocnemius Medialis (GM) and Tibialis Anterior (TA), following SENIAM recommendations

[53]. sEMG data was collected at 2148 Hz.

The four muscles were chosen because their sEMG activity during motor tasks is widely reported in the

literature [10, 13, 14, 42, 46, 47, 85, 87, 111, 114, 118, 126, 127] and each may be paired with another

in an agonist/antagonist relationship [128], thus maximizing potential modularity findings by minimizing

the muscles that are activated simultaneously during a movement.

To measure the joints’ angular position, the subjects were instrumented with the Xsens Mtw Awinda™

motion tracking system (Xsens Technologies B.V., Enschede, The Netherlands). This system consists of

an array of IMU sensors, each fitted with a tri-axial accelerometer, gyroscope and magnetometer which,
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in conjunction with a host device, handle the sampling, buffering, calibration and wireless transmission

protocol. These features, combined with a biomechanical model tailored to a subjects anthropometric

measurements allows for reliable collection of 3D orientation data. The IMU sensors were placed on the

feet, shanks, thighs and lower back of each subject according to the systems’ guidelines, allowing the

tracking of the ankle, knee and hip joint angles. The sampling frequency was 100 Hz.

Figure 3.2: (A) sEMG and IMU sensor placement on one of the participants. In order to secure the IMU sensors,

straps had to be fixed to the subjects’ limbs. Approximate locations of the sEMG sensors are highlighted by dashed

green rectangles, while orange represents the IMU sensors’ positions. (B) shows the sensor locations of only the

sEMG acquisition system, unobstructed by the straps.

3.2.3 Experimental Protocol

Before any movement was performed, a series of tests was done in order to later determine each

subjects’ Maximum Voluntary Contraction (MVC) for each of the recorded muscles, according to SENIAM

recommendations [53]. To this effect, subjects were asked to perform their strongest isometric contrac-

tion against a researchers’ opposing resistance three times for three seconds, with a five second interval

between contractions to prevent muscle fatigue. This was repeated for each muscle with different config-

urations of subjects’ positions depending on the muscle being recorded.

Subsequently, participants started performing the studied motor tasks, by order of execution: Knee

Extension, Knee Flexion, Sit-to-Stand, Stand-to-Sit and walking. The performing speed of each motor task

was controlled through the use of a metronome, plus the researcher’s own verbal guidance.

33



Chapter 3. Synergy Extraction Framework & Dataset Creation

For Knee Extension, subjects were seated on the edge of a chair and the seat height was adjusted

so that the subjects’ thighs were parallel to the floor when the feet were flat and resting (Fig. 3.3 (A)).

Afterwards, subjects were asked to extend their knee while taking five, three and one seconds to reach

full extension in order to simulate a low, medium and high movement speed, respectively. After holding

this fully extended position for three seconds, they were allowed to relax. Each speed condition trial was

repeated three times and all trials were performed on both the right and left legs, resulting in a total

number of trials of 18 (3 trials × 3 speed conditions × 2 leg sides).

Figure 3.3: Snapshots of a Knee Extension movement as portrayed by a right-side view of a biomechanical model

of the lower limbs of an arbitrary subject. (A) starting position; (B) mid-movement; (C) final position

For Knee Flexion, 18 trials were also recorded with the same timings. The subjects started the move-

ment in a standing position (Fig. 3.4 (A)) and were asked to raise one foot off the ground until the shank

was parallel with the floor. To maintain balance, subjects were instructed to clasp their hands together

and stretch them out. After holding a fully flexed position for three seconds, they were allowed to relax.

Figure 3.4: Snapshots of a Knee Flexion movement as portrayed by a right-side view of a biomechanical model of

the lower limbs of an arbitrary subject. (A) starting position; (B) mid-movement; (C) final position

The sit-to-stand and stand-to-sit movements were included in the same recording session. The starting

position consisted of the subject sitting on the edge of a height-adjusted seat with both feet planted on the

ground (Fig. 3.5 (A)). On cue, they were asked to stand up in five, three and one seconds for the high,

medium and low velocity conditions, respectively. They then held this upright position for five seconds
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(Fig. 3.5 (C)). After the five seconds, they sat (Fig. 3.5 (F)), using the same pace they took to rise. This

was repeated three times for each speed condition, yielding a total of 9 experimental trials of combined

sit-to-stand and stand-to-sit movements for each subject.

Figure 3.5: Snapshots of a Sit-to-Stand (A-C) and Stand-to-Sit (D-F) movement as portrayed by a right-side view of a

biomechanical model of the lower limbs of an arbitrary subject. (A) Sit-to-Stand starting position; (B) Sit-to-Stand mid-

movement; (C) and (D) Sit-to-Stand final position and Stand-to-Sit starting position; (E) Stand-to-Sit mid-movement;

(F) Stand-to-Sit final position

For acquiring data during walking, subjects were asked to walk into a treadmill operating at 1 km/h,

1.5 km/h and 2 km/h for the fast, medium speed and slow conditions, respectively, and walk as naturally

as possible for 1 minute (Fig. 3.6 illustrates a full gait cycle). This was repeated three times for each

speed condition, resulting in 9 total gait trials per subject. This range of walking speeds was selected from

the low-mid end of ranges reported in the published literature [46, 85]. This was done with future work in

control modeling in mind, where data from a finer span of slower velocities is more useful for validating

purposes than sparser speeds from a wider range of low to high walking velocities.
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Figure 3.6: Snapshots of the walking movement as portrayed by a left-side view of a biomechanical model of the

lower limbs of an arbitrary subject. (A) Initial Contact marking the beginning of stance phase; (B) Mid Stance; (C)

Pre-Swing marking the end of Stance phase and beginning of the Swing phase (D) Terminal Swing, marking the end

of both the swing phase and the current gait cycle

3.3 Data Pre-processing

After obtaining sensor data, a pre-processing phase was required in order to obtain the sEMG en-

velopes pertaining to muscle activation during movement. Fig. 3.7 shows the flow of data for this step,

divided into the two main subsequent phases: envelope extraction (Fig. 3.7 (A)) and Normalization ((B)).

Figure 3.7: Block diagram of the sEMG pre-processing. Data pre-processing may be divided into two sequential

phases: (A) Envelope Extraction and (B) Normalization.

Envelope Extraction is responsible for converting high-frequency raw sEMG data into the smooth-curved

linear envelope. This is achieved in accordance with the established process in muscle synergy extraction

literature: firstly, raw muscle activity data was filtered with a fourth order zero lag BP Butterworth filter with
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a lower and upper cut-off frequency of 20 and 400 Hz, respectively [9, 42, 116, 129]. Next, the Direct

Current (DC) offset was removed from the filtered data by subtracting its mean [10, 11, 27, 36, 46, 67,

90, 107, 130]. This step may be redundant as the DC offset should have been already removed due to

the HP filtering, but it was implemented to be consistent with the literature where it probably plays a role in

compensating for incomplete attenuation of the digital filter at 0 Hz. Subsequently, full wave rectification

was performed by taking the absolute value of the resulting signal [37]. Finally, the final sEMG envelope

was extracted by way of filtering with a zero-lag third order low-pass Butterworth filter, set for a cut-off

frequency of 2 Hz. This value was selected based on the conclusions of multiple reviews [48, 65, 79].

The second major phase of pre-processing is the Normalization (Fig. 3.7 (B)), wherein each envelope

is normalized in amplitude with respect to the MVC, and in time to a common length of 101 samples. To

extract one single MVC for the recordings of multiple contractions, MVC data was first subject to the same

processing as shown on Fig. 3.7 (B). The peak of the resulting signal (subject to manual analysis to check

for the presence of outlying bursts of amplitude) was defined as full activation of that muscle, and trial

data was normalized with respect to this value.

To accomplish time-normalization, sEMG data needs to be segmented. Because sEMG and IMU

sensor acquisition were started simultaneously, joint angle data was used to identify the sample range

corresponding to knee flexion and extension, and Sit-to-Stand and Stand-to-Sit movements. This process

is exemplified in Figure 3.8. The shaded areas, corresponding to periods were knee angle variation was

observed, were extracted through a semi-automatic process, were the derivative of the knee angle was

calculated, and marked as encoding movement whenever it deviated for more than a few samples from 0.

The collected intervals were then subject to manual inspection and ad-hoc resegmentation if the periods

were found to be improperly segmented.

For the treadmill walking trials, the segmentation was made regarding the gait cycle using the acquisi-

tion systems’ own markers for heel strike events, and kinematic data spanning from this point up until the

next heel strike was classified as belonging to one full gait cycle. The resulting segments may be observed

in Fig. 3.9. The first and last three measured gait cycles were excluded from further analysis to allow for

natural gait patterns, as the subjects were asked to step into and out of a working treadmill and therefore

required time to adjust.

Lastly, the normalized sEMG and kinematic data were adjusted to a common time-basis of 101 points,

enabling direct data comparison. Final sEMG envelopes averaged across trials for every movement and

speed condition of an arbitrary subject are illustrated in Fig. 3.11. Both resulting signals were then stored

in a structured dataset, as explained in section 3.4.
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Figure 3.8: Segments classified as sit-to-stand (red shaded area) and stand-to-sit (blue) movement, according

to sagittal knee angle (black line) of of an arbitrary trial. Frames of a biomechanical model captured at different

timestamps of the same trial are shown for reference. Timestamps on the x-axis were stored for later reference

when segmenting sEMG data
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Figure 3.9: Gait cycle segments highlighted as alternating red and white shaded areas of the sagittal angle of the

knee (black line), ankle (dark blue line) and hip (dashed light blue line). Note how the first three gait cycles were

not segmented to allow the subject to adapt to treadmill walking. Timestamps on the x-axis were stored for later

reference when segmenting sEMG data.
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3.4 Dataset creation

Raw and processed data was stored in a dataset following the layout illustrated on Fig. 3.10. The

dataset is divided into two major subdivisions: ”Raw Data”, which includes the raw sensor data in the

respective acquisition systems’ proprietary data format, and ”Processed Data” which consists of data

in ASCII format stored as *.txt files. The ”Processed Data” field may be further subdivided into three

subfolders: ”EMG_raw”, storing the raw data in ASCII, ”EMG_envelope”, encompassing the normalized

sEMG envelopes extracted using the methods described in section 3.3 (a visualization of these envelopes

is present in Fig. 3.11); and ”Joint Angles”, consisting of the angles of the hip, knee, ankle, and ball of

foot joint on the sagittal plane.

Figure 3.10: Dataset layout

Data was organized on a participant-by-participant basis by assigning each of the ten subjects a

corresponding ParticipantID folder with all data collected for that specific subject. Each participant

had data for each trial saved onto a separate file. For the processed data subdivision, these files were

named following a labeling convention intended to make future processing work easier; for example,

01_s3_rightKneeExtensionSlow_1.txt contains data for the first experiment overall (01), for the par-
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ticipant with ID 3 (s3) during the extension of the right knee in the slow speed condition, (rightKneeEx-

tensionSlow) during the first (_1) out of a total of three trials where right knee extension was performed.

On the Processed Data branch of the dataset, both the raw sEMG data and envelopes are organized

into 9 columns, the first of which encoding the timestamps (in seconds) and the other 8 consisting of

sEMG activity (in Volts). Each file is preceded by an 8 line header, describing which muscle was assigned

to which data column, as well as other information, namely sampling frequency, measuring unit and total

number of data points. The sensor index was consistent across all subjects, with columns 2-5 storing

sEMG for right RF, BF, TA and GM respectively and columns 6-9 the analogous muscles on the left leg.

This order was also preserved for the MVC trials: files 1-8 inside the MVC subfolders corresponded to

columns 2-9 of the actual trial data files.

Joint angle data was organized with the same one-trial-per-file structure, same file extension and same

naming convention as the sEMG trials. Data was organized into 9 columns, the first of which encoding

the timestamps (in seconds) and the remaining consisting of the sagittal angle of a set of 8 joints. Each

file is preceded by an 8 line header, describing which joint was assigned to which data column, as well as

other information: sampling frequency, data units and total number of data points. The joint index was

consistent across all subjects, with columns 2-5 storing angle data for the right Hip, Knee, Ankle and Ball

of Foot (joint between the foot and toe) and columns 6-9 the analogous joints of the left leg.
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Figure 3.11: Muscle activities expressed as sEMG envelopes in a representative subject (participant 2) for the (A)

Discrete Motor Tasks and (B) Walking trials. Each sEMG envelope was normalized by the participant’s MVC.
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Chapter 4

Multi-task Muscle Synergy Extraction

In this chapter, the methodological framework implemented in this dissertation to allow robust muscle

synergy analysis will be explained. To accomplish this logically while justifying the methodological deci-

sions, this chapter will be further subdivided intro three sections. In the first, ”Introduction”, a brief outline

of the selected NNMF and cross-validating framework will be demonstrated, pointing out the areas where

there’s either a knowledge gap in published literature or a lack of consensus. The ”Methods” section de-

lineates the preliminary study taken to address issues raised in the previous section, as well as the criteria

used to determine the number of synergies to be extracted for each movement. Finally, the chapter ends

with ”Results and Discussion” where the final framework is presented with input from the ascertained

results, as well as the selected number of synergies to extract from each movement.

4.1 Introduction

Most factorization algorithms used for muscle synergy extraction work by minimizing the mean square

error (Mean Square Error (MSE)) between the input matrix and a parts-based approximation reached by

the technique [42, 94]. Given a matrix V , each column containing n observations of m, variables,

decomposition techniques construct approximate factorizations, as described in Eq. 4.1.

V ≈ WH =
k∑

i=1

WiHi (4.1)

The k columns of W can be regarded as containing a basis that is optimized for the linear approx-

imation of the data in V (that is, W contains some component that crops up again and again in the

original n data points). Each column ofH is called an encoding and is in one-to-one correspondence with

43



Chapter 4. Multi-task Muscle Synergy Extraction

a data point inW . An enconding consists of the coefficients by which a matrix is represented with a linear

combination of basis vectors. The dimensions of the matrix factors W and H are n × k and k × m,

respectively. The rank k of the factorization is generally chosen so that (n+m)k < nm and the product

WH can be regarded as a compressed form of the data in V .

In the synergies context, weighting coefficients (W ) symbolize the relative importance of a muscle for

a given task and activation profiles (H) specify their temporal relevance during the movement [94, 124].

k can be thought of as the number of muscle synergies. Thus, Eq. 4.1 may be rewritten in the problem

space of synergy extraction as expressed in Eq. 4.2.

M =
N∑
i=1

WiHi + ε (4.2)

Where M is the matrix N × t of N muscle activation patterns recorded during t time points, Wi is

theN ×k matrix of the weighting coefficients,Hi is the k× tmatrix of time varying activation profiles for

the ith synergy and ε is theN×tmatrix representing the reconstruction error of each muscle’s activation

pattern at each time point.

In practical terms, each componentWi represents the contribution of one muscle to synergy i with the

implied notion that any one muscle may contribute to multiple synergies by being present in severalW ’s.

These so-called weights are multiplied by the scalar recruitment coefficient denominated activations

(H), encoding the time-varying expression of W at each time point.

This, is usually assessed through Variance Accounted For (VAF) [27, 38, 47, 51, 51, 57, 62, 67, 85,

107, 131], whereby muscle contraction patterns are reconstructed by linearly combining synergy weights

and activations. Mathematically, this can be expressed as

V AF = (1−
∑t

j=1

∑N
i=1(WiHi −M)2∑t

j=1

∑N
i=1(M)2

))× 100% (4.3)

Where a value of VAF = 100% means the original data and the reconstructed approximation are

perfectly matched and 0% signifies that the two signals are completely different.

A few studies claim that because VAF uses a statistical approach to quantify reconstruction accuracy, it

does not measure actual information on the magnitude on neural information inferred by the sEMG signal.

To address this, investigators have recently attempted to compare the shapes of the probability distribution

functions between that of the recorded signals and the factorized activations, which reportedly do include

sEMG spectral information [42, 132, 133]. Nevertheless, most studies still use VAF as a quantifiable

metric of reconstruction accuracy [6, 42, 98], making it the best candidate for drawing parallels with the
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literature.

The factorization technique chosen to linearly decompose the sEMG data into muscle synergies was

the NNMF MATLAB routine with multiplicative update rules, as described by Lee and Seung [94]. This

decision was based on three reasons: firstly, NNMF’s widespread adoption in synergy extraction literature

may allow direct parallels to be drawn between the results of this dissertation and the published literature;

secondly, probabilistic analysis shows that, among the probability distribution of activations (H) derived

from different factorization techniques for a given movement, NNMF’s is the most similar to the original

sEMG signal, suggesting better capturing of neural information present on the muscle activation recordings

and hence potentiating more accurate modularity findings [42]; thirdly, the non-negativity constraints of

this algorithm facilitates interpretability by serving the intuitive notion of combining parts to form a whole,

yielding weights and activations that may only range from 0 (complete non-activation) to 1 (full recruitment)

and which may be linearly added to re-obtain the original sEMG signal.

A basic implementation of a synergy extraction framework using NNMF may be comprised of the

following steps, schematized in Fig. 4.1. To find the optimalH andW that best represent the modularity

on the sEMG data, NNMF starts with two random initial matrices H and W , plus the sEMG envelopes

M . It then attempts to search for better approximations by minimizing the Frobenius norm of the mean

squared error between the original (M ) and the current WH approximation (1
2
||M − WH||2F ). This

is done by multiplying, at each iterative step, the activations and weights by a scalar proportional to the

quality of the approximation (see equations in blocks ”Update W” and ”Update H” in Fig. 4.1). The

process repeats until convergence criteria is met: either a set number of iterations have been performed

or the MSE is considered low enough as to accurately represent the original data. Though not part of the

factorization, the VAF between the resulting output of the NNMF and the original sEMG data is usually

then calculated. If it is found to be high, this may mean that the algorithm successfully converged on a

modular representation of the original data.

The convergence settings for the NNMF procedure used for this dissertation were: 500 maximum

number iterations for each run, the same as used in the paper introducing the algorithm [94] and a 10−9

termination tolerance for change in the size of the residual and equal relative change tolerance in the

elements of the reconstructed data. These values for tolerance are more conservative than what is usually

reported (e.g. 10−7 in [112], 10−4 in [62]). This was done so that the NNMFmostly reached convergence

by attaining the maximum number of iterations in order to maximize the chances of ”sampling” synergy

results from the steepest point of different local minima of the objective function.

An issue arises with the previous implementation: it may be misleading to calculate variance-based
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Figure 4.1: Flowchart of a simple NNMF implementation. MSE: Mean Squared Error; SSE: Sum of Squared

Errors; TSS: Total Sum of Squares

metrics such as VAF to evaluate the quality of reconstruction on the same data that was used to form the

factors, because these results may not be applicable to other slightly different trials.

To address this issue, a cross-validation framework (schematized on Fig. 4.2 (B)) was devised by ran-

domly splitting the sEMG data into two groups (Group 1 and 2) and initially running the NNMF algorithm

on data from Group 1. Subsequently, the computed weights were fed to a modified version of the NNMF

algorithm where only the activations were allowed to update, with the weights being held fixed. The results

were then ”crossed” by multiplying the weights derived from the extraction performed on Group 1 by the
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activations computed on data from Group 2, when calculating VAF according to original sEMG data in

Group 2. The cross-validation process was repeated 10 times, with random partitioning of the data before

each of the runs, and different random W and H where applicable. This value of VAF is more accurate

in portraying the quality of reconstruction because variability is split between both factors, W and H ,

acquired on independent datasets and therefore less biased towards trial-specific idiosyncrasies. Further-

more, if conditions in one groups’ processing lead to the algorithms’ convergence on a local minimum,

this will most likely be indicated by a low value of VAF because the chances of the endpoint of NNMF

on the parallel dataset being a local minimum with complimenting weights/activations that would lead to

an accurate reconstruction are minimal. This approach has been widely reported in synergy extraction

literature [6, 68, 91, 92, 107]. This procedure is henceforth referred to as cvNNMF (Cross-Validated

Non-Negative Matrix Factorization) to distinguish it from the concept of NNMF as a factorization algorithm

indiscriminate in its inputs and outputs, as illustrated in Fig. 4.2 (A).

However, an issue remains relating to how the sEMG data should be split during cross-validation,

namely what is the ideal proportion of Group 1 data to Group 2. Some authors use a 60%/40% ratio

for data assigned to Group 1 (from which weights are extracted) and Group 2 (with which activations are

computed), respectively [41, 51]; others use a 75/25 [68] split, others yet choose 50/50 [107], though

none indicates a reason for their choice. This question is represented in Fig. 4.2 (B) as Q1.

Furthermore, as this dissertation aims to yield a generic framework, the goal is to include all the

variability across all trials. For this purpose, it is needed to verify which of the following options is more

accurate: (i) to average, or (ii) to concatenate the trials. This is illustrated by Q2 in Fig. 4.2 (B). Again,

authors differ in their approach, some averaging [41] and others concatenating analogous trials [54, 72]

while seldom justifying their choice. Fig. 4.3 illustrates the differences between a concatenating and

averaging technique on data from 4 trials of the same muscle.

Finally, should the final VAF for a given cvNNMF run be computed according to original data from Group

1 or Group 2? This corresponds to Q3 in Fig. 4.2 (B). Because these concerns are rarely addressed in

the literature, a short preliminary analysis was performed to evaluate the influence of these parameters

on final VAF. The formulation of this study will be examined in section 4.2.

Another step that was made at this point of the analysis was the selection of criteria that defined the

Minimum Number of Synergies (Nsyn) that explained the sEMG data in each of the movements. Previous

works have used arbitrary thresholds from 75% to 95% of VAF as criteria [10, 12, 49, 77], and a threshold-

based system seems to be the most common among the entirety of research. Other studies have defined

the minimum number of synergies by plotting the r2 as a function ofNsyn, then fitting decreasing portions
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Figure 4.2: Schematic representation of (A) a simple NNMF implementation with no cross-validation and (B) a

cross-validated NNMF procedure (cvNNMF) used in this dissertation. Yellow circles highlight points of the process

where the relevant literature is unclear on the best configuration.

of the actual r2 curve to straight lines and choosingNsyn as the first point in the curve for which the portion

approximates a straight line, as measured by mean squared error to the linear fit [13, 68]. Additional
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Figure 4.3: Illustration of differences between averaging and concatenating trial data. (A) shows four trials from

one muscle (RF), time interpolated to have the same length, intended to be included in a cvNNMF framework. (B)

shows the results of both averaging - indicated by the thick black line with dashed colored lines illustrating the

contributing trials - and concatenating, where the dashed vertical lines indicate the sample where one trial’s data

transitions into another

studies have combined threshold-based criteria with cross-validating inference power by constructing a

confidence interval with repeated iterations of a cvNNMF, and setting the threshold to the lower bound

of that interval for a given significance level - usually α = 0.05. This approach is the most robust by

capturing results from different local minima of the objective function and from different sets of trial data

[14, 46, 51, 75, 78].

4.2 Methods

To explore solutions to questions raised in section 4.1 regarding cross-validation parameters, the

framework shown on Fig. 4.2 was ran with all possible permutations of configurations detailed in Table

4.1. That is, each individual parameter in column ”Explored Configurations” was held fixed while the rest

were tested for a cvNNMF extraction on all available data, and VAF results were recorded. Additionally,

all configuration permutations on the cvNNMF framework were ran multiple times for each number of

synergies. This span was chosen with the assumption that the number of synergies underlying the sEMG

data can not be larger than the number of recorded muscles. Therefore, the final number of configuration

tests were 12 for each movement/speed pair of trial data and number of synergies (2 data division ratios
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× 3 VAF calculation possibilities × 2 data structuring methods).

Table 4.1: Study’s questions about cvNNMF parameterization and studied configurations

Question No.

(Fig. 4.2 (B))
Description

Explored

Configurations

Q1 % data assigned to Group 1/2 50/50 and 60/40

Q2 Data structuring of trial data prior to NNMF Concatenating and Averaging

Q3 VAF calculation configuration

WG1 ∗HG1 vs. EMGG2

WG2 ∗HG1 vs. EMGG1

WG1 ∗HG2 vs. EMGG2

This study used data from all subjects for each dataset comprising one motor task and performing

speed. It was assumed that having larger amounts of data would lead to more representative results, and

that the need for accurate findings in this parameter determination step outweighed the importance of

the preservation of subject heterogeneity for statistical analysis, at least regarding this preliminary study.

Notably, using data from different subjects for the same synergy extraction iteration has been done in

previous studies to find common inter-subject modularity directly [52, 62, 134].

One configuration was impossible to evaluate due to the nature of the VAF parameter. VAF requires

equal-length vectors (because it is based on the Pearson Correlation which for any point in the independent

variable demands an observation of the dependent variable). This was not the case for the concatenated-

60/40 split-WG1 ∗HG1 vs. EMGG2 configuration, which yielded one vector spanning 60% of the length

of the trials on Group 2 and another spanning only 40% of the same length. This is the reason why, on

Fig. 4.4 and subsequent colormaps, the cells corresponding to this configuration are blank.

After gathering insights from the study described in the previous section and configuring the final syn-

ergy extraction framework to incorporate these changes, the next step involved the determination of the

optimal number of synergies (Nsyn) to represent data from each movement. To select the number of syn-

ergies that could best reconstruct the sEMG data, the whole process was ran varying theNsyn parameter

between 1 and 4 (for the Knee Extension, Knee Flexion, Sit-to-Stand and Stand-to-Sit movements) and 1-8

for the walking trials. The reasoning behind this decision was that the number of motor modules should

not be larger than the number of recording electrodes for a given movement, which were 4 for the Discrete

Motor Tasks (even though 8 sensors were recorded but the movements either involved only the right or left

side (Knee Extension and Flexion) or were bilaterally symmetrical (Sit-to-Stand and Stand-to-Sit) and 8 for

the gait analysis (which is bilaterally asymmetrical and therefore data from all 8 sensors are relevant). A

number of synergies was considered sufficient in reconstructing the original data if the lower bound of the

95% Confidence Interval of the VAF constructed from the collective VAF values results of the 10 runs across
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the 10 subjects was superior to 90%, following suggestions from several publications [14, 46, 51, 75, 78].

If Nsyn is shown to differ across speeds, the number of synergies for that movement will be selected as

being the largest number across speeds.

4.3 Results & Discussion

This section contains results gathered for both preliminary studies and its discussion. In section 4.3.1,

findings from the parameter study will be presented and conclusions drawn. Based on these conclusions,

the final synergy extraction framework that will be used throughout the dissertation is described. With

the framework established, it is possible to proceed onto section 4.3.2 where the number of synergies to

represent the data is chosen.

4.3.1 Evaluation of Framework Parameters

Results for the preliminary study of framework parameters (summarized in Table 4.1) spanned too

many movement-speed combinations to be represented in its entirety in this section. Therefore, a selection

of a couple of movement-speed pairs was made. Results for the Knee Extension trials at slow speed are

represented on Fig. 4.4 and those of the walking trials at slow speed may be observed on Fig. 4.5.

By analyzing Fig. 4.4, the first impression that may be taken is that all values are relatively high

and similar among each other, except the ones yielded by the concatenated data structuring method on a

50/50 division when the product of the factors derived from one group are used to evaluate reconstruction

accuracy on the other groups (i.e., the 4 light blue cells on the lower left corner). This is because,

effectively, two different sEMG signals are being compared, one reconstructed from a factorization on a

set of trials and the other being raw data from a completely different set of trials, which cannot be expected

to be similar, even if the movement being performed is the same and the trials are time normalized. This

phenomenon is portrayed in Fig. 4.6. The reason why this happens only for this set of concatenation

configurations is because in the other approaches, the activations originate in the same dataset they’re

being compared against, and therefore the timings of both vectors are aligned (WG2 ∗HG1 vs. EMGG1

andWG1 ∗HG2 vs. EMGG2). VAF penalizes much more slightly mistimed or dissimilar activations than

slightly different weighting vectors, because the former when reconstructed produces entirely different

shaped curves while the latter produces similar curves with slightly mismatched amplitudes. This is the

intended effect because in a motor task, the timing of onset of the muscles’ activations is much more

important for the production of joint torque and task-specific movement than the slight under or over-
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Figure 4.4: Lower bounds for the 95% Confidence Interval of the VAF of 10 runs of cvNNMF on sEMG envelope data

from 10 subjects during Knee Extension at slow speed and across two data structuring methods (Y-axis: averaging

trials, concatenating trials) and two extraction/validation ratios (X-axis: 60%/40%, 50%/50%). Each data structuring

method is further subdivided into rows representing the number of synergies (Syn1-Syn4) the cvNNMF algorithm

was configured to extract. Each of the two main divisions of the X-axis is further subdivided into three methods

of validation (WG1 ∗ HG1 vs. EMGG2: using weights from the first group (50% or 60% parcel) combined with

activations of the second group (50% or 40% parcel, respectively) to measure the reconstruction quality against the

original sEMG data from the second group. Results from Concatenated/60-40 split/WG1 ∗HG1 vs. EMGG2 are

missing because the lengths of the reconstructed and original sEMG signals are different and therefore impossible

to evaluate according to the VAF criteria.

recruitment of intervening muscles, but has the side effect of restricting the possible VAF benchmarks

when using a concatenated approach.

The second inference that may be extracted from both Figures 4.4 and 4.5 is that the values of VAF for

averaged structuring are generally higher than those of the concatenated structuring: this may be taken to

mean that the averaged approach results in better reconstructions. However, upon closer inspection, one

can observe that as the number of synergies increases, the VAF using the concatenated approach rises
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Figure 4.5: Lower bounds for the 95% Confidence Interval of the VAF of 10 runs of cvNNMF on sEMG envelope

data from 10 subjects during walking at slow speed and across two data structuring methods (Y-axis: averaging

trials, concatenating trials) and two extraction/validation ratios (X-axis: 60%/40%, 50%/50%).

from Syn1 to Syn2, maintains the same value for Syn3, then decreases for Synergy 4, regardless of data

splitting proportion; while results from the averaging approach are consistently high (>0.9) independent

of number of synergies. This may mean one of two things: either the averaging technique is simply better

at reconstructing the sEMG envelopes and 1 synergy is already the optimal number of motor modules,

or the concatenating technique is accounting for variability not present in the averaging approach and

therefore portraying reconstruction quality more accurately when yielding the highest values of VAF for 2

and 3 synergies. Results from the walking trials at slow speed (Fig. 4.5), with many more trials (350 trials

vs. 30), may lead to more robust conclusions regarding the most appropriate structuring method. The

findings of averaging structuring state that VAF is only large (>0.9) for one synergy using the averaging

technique, and that for synergies 2-8 it is considerably lower than 0.9. This finding is in contrast to results

acquired from the concatenating technique, where VAF rises steadily up until three synergies, attaining

values higher than 0.9. This finding supports the hypothesis that the concatenated approach portrays
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Figure 4.6: Illustration of two different VAF evaluation methods. The dark thick lines represent the original data

fed to the synergy extraction framework (EMG0), while blue dashed lines show the sEMG reconstructed from the

resulting synergies using (A) an averaged approach and (B) a concatenated technique, for three normalized trials of

the BF during Knee Flexion. For the figures on the left side, the benchmark data was taken from Group 1, and the

right’s, from Group 2. The clear mismatch in shape in the bottom right figure explains the poor VAF results from

evaluating reconstruction accuracy with activations derived from a different group’s data.
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variability on the input data better than by averaging, because averaging tends to ”smooth” individual

trials’ idiosyncrasies to the point that important information may be lost. Concatenating, on the other

hand, forces the cvNNMF algorithm to incorporate this sporadic-but-important variability, yielding motor

modules more reliable across trials, subjects and performing conditions and better representative of the

modularity theoretically present in sEMG signals of a task-oriented movement.

Therefore, the chosen methodology for structuring the data was to concatenate it prior to factorization.

Among the results portrayed in Fig. 4.4 and Fig. 4.5, the differences between data division ratios seem

negligible, with no method outperforming the other consistently. The same may be observed for the group

of data chosen as reference (W1 ∗H2 vs. EMG2 or vice-versa). Therefore, if no method appears to be

empirically preferable, the decision made was to split the variability equally between the two factors (W1

and H1) by using 50% of the data to form Group 1 and an equal percentage to create Group 2, thereby

maximizing the trials available for each of the two sequential NNMF runs in a cvNNMF framework. This

made the choice of VAF benchmark even more irrelevant as both groups have equal number of randomly-

assigned trials. Therefore, the dataset to act as the VAF benchmark was arbitrarily set to Group 1 (W1∗H2

vs. EMG2). Conclusions drawn from the previous study were used to build the final synergy extraction

framework, schematized in Fig. 4.7.

Q1 (Table 4.1) posed the question of what was the ideal data partition proportion for Cross-Validation.

The preliminary study revealed that no method consistently reported higher VAF’s, therefore the ratio was

set at 50%/50% for Group 1 and Group 2 data, in order to split the variability equally among both groups;

hence ”Randomized 50/50 data partition” in the Data Structuring block of Fig. 4.7. Addressing Q2,

dealing with the best method of structuring trials data prior to NNMF, it was decided to follow a concate-

nated approach. This conditioned the answer to Q3 (”What is the best VAF calculation configuration?”),

as activations had to be timed to the benchmarking sEMG signal (i.e. W1 ∗ H1 vs. EMG2 could not

convey reconstructing ability accurately). Of the remaining two options for computing of VAF, both were

indifferent considering the data split proportion was set to 50/50; therefore, the final VAF benchmark was

set to W1 ∗H2 vs. EMG2, hence the origin of inputs that result in EMGR on Fig. 4.7.

4.3.2 Minimum Number of Synergies

Fig. 4.8 shows the results of the evolution of VAF with a varying number of synergies. Table 4.2

demonstrates the minimum number of motor modules that fulfilled the criteria and final number of syner-

gies that was taken from this analysis. For the Knee Extension movement, one synergy was sufficient to

achieve a Lower Bound of the Confidence Interval (LBCI) superior to 90 across all speed conditions. This
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Figure 4.7: Schematic of the Final Multi-Task Synergy Extraction Framework

was expected since extending the knee is a somewhat simple movement requiring the recruitment of only

the quadriceps. The same would have been expected of Knee Flexion, requiring the contraction of the

Hamstrings to elevate the shank; however, empirical tests revealed that the number of synergies was 2 for

all velocities. This finding was observed across almost all subjects. We hypothesize that this may be due

to the experimental procedure: subjects were not instructed on how to move their foot during flexion of

the knee, in order to allow the natural performance of the movement. Consequently, the second synergy

might correspond to activation of the dorsiflexors (of which we measured the TA) or of the plantarflexors

(of which we measured the GM), recruited in order to maintain the ankle static throughout the movement

by responding to inertial changes on the foot. This hypothesis will be examined when correlating the syn-

ergies with the kinematic variables in section 5.4.3. For the previous two movements, literature in the

synergy extraction space is lacking and therefore cannot be used to support or refute any hypothesis.

Regarding Sit-to-Stand task, this dissertation found 2 synergies explaining 90% of the variance of the

data across 10 subjects each with 95% confidence. In the literature, authors have repeatedly found 3

motor modules underlying standing while measuring 6-7 muscles [14, 95, 118]. This does not directly
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corroborate the results found for this study but does support the possibility that several motor modules

are needed to encode sitting-to-standing.

Figure 4.8: Values of the Lower Bound of the 95% Confidence Interval (LBCI) of the VAF of 10 runs of cvNNMF as a

function of the number of synergies across five lower-limb movements (columns) and three speed conditions (rows).

For each movement-speed pair, the Lower Bounds of the 95% CI across the 10 participants (thin colored lines)

were averaged (thick black line) and the minimum number of synergies that equaled or surpassed 90 (indicated by

horizontal dashes) was highlighted (black filled circle). This number was consistent across speeds, except for the

Stand-to-Sit movement

Findings from Stand-to-Sit were the only ones that were not consistent across speeds. The slow and

medium speed data yielded one motor module explaining the vast majority of the variance across subjects,

but in the fast condition, this number was two. There is no research into synergy extraction for unweighted

sitting to look for hints of the cause of this phenomenon. There is, however, one work that has studied the

motor modules in weighted squatting from which rough parallels may be drawn [52]. In this study, three
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Table 4.2: Minimum number of synergies fulfilling the VAF threshold criteria and final number of synergies chosen

for each movement

Movement Speed Condition
Minimum number of synergies

with average LBCI>90

Final number

of synergies

Knee Extension

Slow 1

1Medium 1

High 1

Knee Flexion

Slow 2

2Medium 2

High 2

Sit-to-Stand

Slow 2

2Medium 2

High 2

Stand-To-Sit

Slow 1

2Medium 1

High 2

Gait

Slow 2

2Medium 2

High 2

synergies were found in the combined sit-to-stand and stand-to-sit movement, of which the activation of

two seemed to be more prevalent in the period corresponding to the descending portion of a squat (Fig.

2.6 (A) up until 60% of normalized squat period). These were modules involving a heavy TA recruitment

during the descent, peaking just before the lowest point of the participants’ center of mass (i.e. when the

thighs were parallel to the floor). The second synergy, on the other hand, was characterized by Vastus

and RF expression, rising steadily from the beginning and peaking at the lowest point of the subjects’

center of mass. These findings are hardly applicable to our analysis, but are useful in that they reject

an unidimensional synergy model. Furthermore, as the faster sitting motion requires more energy, more

torque being produced at the joints and greater postural stabilization effort [110], this may be taken to

explain why the results differed for the fast condition: a concentrated recruitment of TA during the descent

may not be as necessary to stabilize the center of mass in slow and unweighted sitting than during fast

and weighted motion. It may not warrant another motor module, or its expression may be absorbed into

other synergies without significantly affecting the task. Regardless, to allow for later inter-velocity analysis,

it was decided to keep the number of synergies constant across speeds and hence a number of synergies

equal to two was chosen for all Stand-to-Sit trials. This fulfilled the criteria of the LBCI being larger than

90 on all speeds simultaneously.

Finally, for the walking experiment, two synergies were found underlying movement in all speed condi-

tions. This is at odds with insights from published research which point to 4-5 synergies. However, these
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studies measure anywhere from 8 to 16 ipsilateral muscles [13, 46, 51, 85, 87, 100] whereas only four

were recorded during our data acquisition protocol.
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Chapter 5

Statistical Analysis of Extracted Synergies

In this chapter, the synergies extracted using the previously established framework will be examined

and validated through statistical methods.

Section 5.1 explains the methodological assumptions and gives an overview of the statistical tools

used on the rest of this chapter. To allow the drawing of statistical conclusions through ANOVA, synergies

will be examined on an intra-subject basis (i.e. subjects’ motor modules will be examined independently

of one another). This will be done hierarchically from a ground-up approach, first investigating similarities

and differences across the 10 runs for each subject (section 5.2 - Inter-Run Analysis), then relationships

between results from distinct speed conditions (section 5.3 - Inter-Speed Analysis) and finally similarities

across results from different subjects (section 5.4 - Inter-Subject Analysis) in an attempt to find a set of

motor modules common to all subjects.

5.1 Methods for Statistical Analysis

Based on the literature findings, similarity between a pair of synergies was measured with three

metrics, given their versatility and interpretability. These three metrics and their role in the problem

context are illustrated in Fig. 5.1. The first data characteristic, Cosine Similarity (cosSim) was used to

investigate agreement between weights (W ). For two weighting vectors ~W1 and ~W2 this can be expressed

as described in Eq. 5.1:

cos(θ) =
~W1 · ~W2∥∥∥ ~W1

∥∥∥∥∥∥ ~W2

∥∥∥ (5.1)

Thus, two vector are maximally similar if they’re parallel (cos(θ) = 1) and maximally dissimilar if
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they’re orthogonal (cos(θ) = 0).

The second metric, the Pearson Correlation (r), measured the likeness of the waveforms of the activa-

tions (H). For a data pointH1i in an activation curveH1, and pointH2i in curveH2, with corresponding

means H̄1 and H̄2, r may be stated as in Eq. 5.2.

r =

∑n
i=1(H1i − H̄1)(H1i − H̄2)√∑n
i=1(H1i − H̄1)2(H2i − H̄2)2

(5.2)

Therefore r = 1 if the curves are completely matched in shape and timing.

Finally, the third consisted of the lag time at the maximum of the cross-correlation output between

two activation vectors (lag), normalized by the length of the curves, and quantified the difference in the

timing of two activations (i.e. the magnitude of the phase shift between two waveforms plus the direction

of the shift indicated by the sign - negative meaning the reference curve is delayed in relation the other

and positive the inverse; that the reference curve is anticipated). Following the same nomenclature used

for the previous equation, cross correlation function may be expressed by Eq. 5.3

Rk =

∑n−k
i=1 (H1i −H1)(H2i+k −H2)√∑n
i=1(H1i −H1)

∑n
i=1(H2i −H2)

(5.3)

where k is an integer encoding the lag index. The lag metric is simply the k for which Rk is maximized,

normalized to the length of the curves n.

With synergy similarity quantified in type and magnitude, it was possible to assess if the synergies

were different across conditions through one-way ANOVA which attempts to find significant differences

across group means (groups being the synergy extraction runs or synergies in different speed conditions).

A Shapiro-Wilk test of normality was applied and revealed that the computed similarities were not normally

distributed, regardless of movement or speed condition (p < 0.05). Therefore, the Friedman test was

chosen as this is the non-parametric option for ANOVA across groupmeans. However, this test only informs

about the existence of different means between groups, but not the groups responsible for these means.

Therefore, a post-hoc paired test, namely the Wilcoxon signed rank test with Bonferroni adjustment was

selected [37, 67]. Finally, the significance level was set to α = 0.05. All statistical tests were ran on

SPSS version 26.0 (IBM Corp.; Armonk, NY, USA).

The use of information conveyed by the results of these statistical analysis was structured in a hi-

erarchical manner. Firstly, if statistical tests operating on cosSim of weights to a reference revealed

these weights to be dissimilar, the synergy was marked as outright dissimilar, regardless of results on the

remaining metrics. This followed the reasoning that if the weighting vectors were found to be different,
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Figure 5.1: Illustration of the extraction of similarity metrics between two synergy weighting vectors (W1 and W2)

and their corresponding activations (H1 and H2).
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the muscles being recruited were different and the corresponding activation curves were also different,

or if found to be similar would be so by coincidence as they would be encoding temporal activation of a

different set of muscles. This decision process is represented in Fig. 5.3 (B) in the block labeled ”Weight

Structure Analysis”. On the other hand, if there were no differences among means of cosSim across sub-

jects, the next step would be to investigate activations: first in morphology, then in magnitude of phase

shift. This was done by running the statistical framework on computed r’s and in the case of rejection of

the null hypothesis, marking the entire synergy as ”similar with dissimilar activation curve” (Fig. 5.3 (B):

”Activation Shape Analysis”). Subsequently, if both weight structure and activation shapes were deemed

not significantly dissimilar, the same protocol would be ran again, this time on the lag metric and the

synergy would be considered as ”Similar with lagged activations” (Fig. 5.3 (B): ”Phase Shift Analysis”).

Finally, failing to reject any of the null hypothesis would result in a ”Similar Synergy” classification.

Figure 5.2: Illustration of the criteria used to classify muscle synergies’ similarity for the inter-subject study.

Two sets of 1000 random muscle synergies were extracted from the available synergies and their pairwise cosine

similarities computed to generate a distribution of cosine similarities expected by chance. A pair of synergies were

considered ”similar” if cosSim>threshold, corresponding to the Upper Bound of the 95% bootstrapped Confidence

Interval (dashed vertical line)

The statistical analysis illustrated in Fig. 5.3 (B) was used for the inter-run and inter-speed study.

However, for the inter-subject study, this statistical analysis framework is not applicable since the inde-
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Table 5.1: Upper Bounds of the 95% Confidence Intervals (Upper Bound of the Confidence Interval (UBCI)) of the

bootstrapped distributions for each movement

Movement Knee Extension Knee Flexion Sit-to-Stand Stand-to-Sit Gait

(UBCI) 0.9814 0.9812 0.9764 0.9802 0.9084

pendent variable is not consistent across observations (i.e. each subjects synergies’ similarity to all other

participants). Therefore, for the inter-subject study, bootstrapping was used to apply statistical confi-

dence to synergy similarity analysis. Bootstrapping is a non-parametric approach to statistical inference

that substitutes computation for distributional assumptions and asymptotic results. It works by imitating

sampling from the population by treating the available samples as if they were the population; that is, by

randomly selecting a set of observations repeatedly, computing the desired metric on the resulting dataset

and building a confidence interval with the results [135].

Hence, this technique was used in order to empirically determine a cosSim threshold that would

ascertain if a pair of synergy weights were similar or dissimilar, for a significance level of α = 0.05.

In practical terms, this was achieved by pooling all extracted synergies for a given movement, spanning

all NNMF runs over all subjects across all speed conditions, and randomly sampling n weights (n being

the number of muscles) k times (k being the number of replications), generating k random synergies.

This process is repeated on the same dataset. Then, the Cosine Similarity is computed between all

possible pairs of random synergies from the two sets (k × k pairs in total). These values are then

sorted, yielding a distribution of Cosine Similarities expected by chance. Finally, the 95% Confidence

Interval is estimated by selecting the 2.5 and 97.5 percentiles of the resulting distribution, and the upper

bound is set as the threshold cosine similarity (each movements’ distribution and corresponding upper

percentile is demonstrated on Fig. 5.2). Therefore, weight pairs with a cosine similarity above this value

were considered more similar than expected by chance, and those on or below were categorized as

dissimilar (p < 0.05). Results for each movement are summed up in Table 5.1. This distribution-based

thresholding approach and the number of replications k was set to 1000 following previously published

literature [91, 131].

Fig. 5.3 (A) shows a schematic representation of this three-step statistical analysis.
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Figure 5.3: Schematic representation of the Statistical Analysis framework used to validate synergy extraction

outputs. (A) shows the flow of data for the entire process from output of the synergy extraction framework up until

the determination of common synergies across subjects. (B) represents a flow chart of the ”Repeated Measure

Statistical Tests” block on (A), demonstrating the hierarchical architecture of classifying synergies based on different

measures of similarity between their weights or activations.
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5.2 Inter-Run Analysis

For the first phase of the study, the 10 runs of the cvNNMF for the 10 subjects were subject to an

ANOVA, aiming to determine if the output synergies from these runs were significantly different from each

other. After the statistical tests, synergies dissimilar to the reference, as determined by the distribution-

derived similarity threshold, were discarded from future analysis in order to determine a set of motor

modules that would represent the structural consensus of the synergy extraction runs.

5.2.1 Methods

The first step consisted of computing similarity metrics for each of the 10 synergy extraction runs.

To accomplish this, an arbitrary reference had to be set to act as a common baseline to which other

runs could be compared to. Run 1 was chosen for all the studied datasets. As explained in Chapter 2, a

functional sorting of the synergies is required if weight and activation comparison results are to represent

functional differences rather than quantifying agreement between synergies responsible for other muscle

contractions. Therefore, a sorting step was implemented, where synergies were sorted by their weights’

similarity to the reference run, as measured by cosSim. If reordering occurred for a given run, new

metrics were computed to reflect it.

By this point, each of the 10 subjects had 9 variables encoding similarity of run 2-10 to the reference

run 1. This could be stored in a 10 x 9 matrix which could be examined for differences across means of

each run through the framework established in the previous section (Fig. 5.3 (B)). These resulted in three

matrices for each movement, speed and synergy index combination.

5.2.2 Results

The resulting test statistics for the Friedman test (Chi-square distribution - χ̃2) and p-values are

summed up in Table 5.2. No significant differences were recorded for cosine similarity to run 1 on any

movement, speed or synergy (p < 0.05). For the study of the waveforms similarity (r to Run 1), three sets

of synergy activations revealed significant differences: two from synergies extracted from the sit-to-stand

movement (slow, synergy index 1, p = 0.007; and fast, synergy index 2, p = 0.026) and another set

from synergies computed on data from the stand-to-sit movement (fast, synergy index 1, p = 0.041).

After performing the Wilcoxon signed rank test with a Bonferroni adjusted significance level on all pairs of

Run similarities, no significant differences were reported for any of the pairs on the examined similarity

matrices.
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Table 5.2: Inter-Run Friedman tests results. Chi-square (χ̃2) distributions and corresponding p-values are reported

for each movement-speed-synergy combination. Bold values indicate Friedman tests where the null hypothesis - that

synergy extraction runs’ mean similarity to a reference run were the same for every subject - was rejected (p < 0.05).

cosSim: Cosine Similarity; r: Pearson’s correlation coefficient; W: Synergy weighting vector; H:

Synergy temporal activation.

cosSim of W’s r of H’s lag of H’s

Movement (Speed)
Synergy

Index
χ̃2 p χ̃2 p χ̃2 p

Knee Extension (Slow)

1

7.280 0.507 9.001 0.342 0.000 1.000

Knee Extension (Medium) 7.980 0.435 8.849 0.355 8.000 0.433

Knee Extension (Fast) 4.514 0.808 8.668 0.371 8.000 0.433

Knee Flexion (Slow)

1

6.533 0.588 6.187 0.626 10.314 0.244

Knee Flexion (Medium) 13.920 0.084 13.813 0.087 5.730 0.677

Knee Flexion (Fast) 6.827 0.555 11.333 0.184 11.767 0.162

Knee Flexion (Slow)

2

10.027 0.263 7.387 0.496 4.235 0.835

Knee Flexion (Medium) 3.973 0.860 2.453 0.964 9.112 0.333

Knee Flexion (Fast) 6.107 0.635 12.293 0.139 4.780 0.781

Sit-to-Stand (Slow)

1

6.533 0.588 20.987 0.007 8.798 0.360

Sit-to-Stand (Medium) 10.373 0.240 3.413 0.906 7.427 0.491

Sit-to-Stand (Fast) 8.373 0.398 15.147 0.056 4.920 0.766

Sit-to-Stand (Slow)

2

8.267 0.408 4.987 0.759 5.916 0.657

Sit-to-Stand (Medium) 5.093 0.748 4.373 0.822 6.980 0.539

Sit-to-Stand (Fast) 8.693 0.369 17.387 0.026 8.212 0.413

Stand-to-Sit (Slow)

1

5.360 0.718 3.627 0.889 13.616 0.092

Stand-to-Sit (Medium) 7.093 0.527 8.747 0.364 7.349 0.499

Stand-to-Sit (Fast) 11.547 0.173 16.107 0.041 5.971 0.650

Stand-to-Sit (Slow)

2

5.360 0.718 5.147 0.742 6.331 0.610

Stand-to-Sit (Medium) 10.720 0.218 8.267 0.408 5.328 0.722

Stand-to-Sit (Fast) 6.693 0.570 1.680 0.989 5.454 0.708

Gait (Slow)

1

4.480 0.811 5.040 0.753 9.963 0.268

Gait (Medium) 7.760 0.457 5.893 0.659 6.174 0.628

Gait (Fast) 11.067 0.198 6.347 0.608 7.111 0.525

Gait (Slow)

2

10.800 0.213 6.480 0.594 11.307 0.185

Gait (Medium) 9.360 0.313 7.947 0.439 8.000 0.433

Gait (Fast) 13.973 0.082 12.880 0.116 9.989 0.266

5.2.3 Discussion of results

The absence of significant differences across runs for the weight structure analysis (columns labeled

as ”cosSim of W’s” in Table 5.2) indicates that similarity to the reference run was consistent regardless

of cross-validated iteration. This can be interpreted as meaning that muscle recruitment was consistent

regardless of synergy extraction run for every subject. Regarding the activation curve shape as measured
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by r (”r of H’s” in Table 5.2), three synergies revealed significant differences across runs. Post-hoc

analysis, however, indicated that the activation’s waveform was not different across synergy extraction

runs.

It is nonetheless important to examine the three runs that yielded differences in the r ofH ’s. Firstly,

the activations for the 10 runs of Sit-to-Stand performed on a slow pace are shown in Fig. 5.4, along with

the corresponding r-values to Run 1. By analyzing Fig. 5.4 (A) it is evident that waveforms in these runs

do not seem to be different from the remaining iterations. Upon closer inspection of the same runs in Fig.

5.4 (B), the potential source of sparse r’s becomes clearer: the shape of the activation of the reference

run in subject 3 and 10 is different from most of the remaining runs’. As observed in Fig. 5.4 (A), both of

these subjects scored low on Run 2, and represent the lowest average similarity from all the participants

(0.80± 0.15 and 0.85± 0.09 for participants 3 and 10, respectively). This dual source of inconsistency

plus natural variability present in other subjects’ iterations (like subject 1 which scored an r of 0.69 on

Run 2) may have led to the rejection of the null hypothesis of equality in run similarity means.

A similar phenomenon resulted in rejection of the null hypothesis for synergy 1 of the fast sit-to-stand,

as is demonstrated by Fig. 5.5. Activation of run 1 on several subjects’ results were structurally different

from the remaining runs. Visually, this is most obvious for subjects 3, 9 and 10 (Fig. 5.5 (B)), supported by

the low collective average similarity (0.66± 0.35, 0.38± 0.62, 0.73± 0.41, respectively, shown in (A)).

The choice of reference run contributed to incorrect signaling by the analysis of variance of a dissimilar

synergy across runs. In fact, most runs were similar among each other as can be seen in Fig.5.5 (B).

Fig. 5.6 illustrates the results for the last synergy in which the null hypothesis was rejected (fast stand-

to-sit). Results for this synergy were notorious because the p-value was the largest (p = 0.041) of the three

examined modules. Significant differences reported in Table 5.2 may be attributed partly to reference

selection bias, and to the Friedman’s ANOVA tendency to find nonexistent significant differences with

increasing number of groups. There exists literature supporting our conclusions regarding the shortfalls

of ANOVA followed by a pair-wise post-hoc test: omnibus tests such as the Friedman’s are designed to

preserve type I errors (signaling differences between groups where there were none) in order to avoid

unnecessary post-hoc testing, but also to minimize the occurrence of not signaling paired differences

where they existed significantly, a much more damaging finding to oversee [136].

Lastly, the statistical analysis revealed the activation timing was consistent across runs, as evidenced

by the failure to reject the null hypothesis in all synergies for the lag similarity metric analysis (lag of H’s

pair of columns in Table 5.2) (p < 0.05). It is therefore demonstrated that synergies were similar in

muscle recruitment, temporal activation and temporal timing (p < 0.05).
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Figure 5.4: Activations of synergy 2 for runs on data from slow sit-to-stand movement. Run 1 (red line) was set as a

benchmark with which other runs’ similarity was evaluated with, as assessed by the Pearson Correlation coefficient

(r) (inset value in (A)). Mean similarity ± standard deviations are also indicated for each subject across runs and

for each run across subjects to aid understanding of the source of significant differences. (A) shows activations of

each run separately and corresponding r; (B) shows the same waveforms grouped by subject and overlaid on top

of each other.
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Figure 5.5: Activations of synergy 1 for runs on data from fast Sit-to-Stand movement.
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Figure 5.6: Activations of synergy 1 for runs on data from fast Stand-to-Sit movement.
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5.3 Inter-Speed Analysis

For the second phase of similarity analysis, subjects’ synergy outputs were studied across speed

conditions in order to determine if there were significant differences in motor modules composition when

varying performing speed.

5.3.1 Methods

The first methodological challenge that arose was how to best represent each subjects’ synergies for

each speed condition from the 10 run output that characterized each movement’s dataset. Averaging all

10 runs indiscriminately would result in a synergy set that included synergies from different points of the

objective function, which would fail to represent the most-commonly derived motor modules of the

cvNNMF across the 10 runs. It was thus decided to only include runs of the structural consensus, by

eliminating any synergy run whose weights’ similarity to the reference were lower than the pre-computed

threshold for α = 0.05 (Table 5.1) before averaging.

The next step was to compute the similarity metrics on each speeds’ synergy results. It was decided to

determine similarity metrics from all variable combinations (i.e. Speed 1 vs Speed 2, Speed 1 vs Speed 3

and Speed 1 vs Speed 3 - a total of 3 similarity tests). Therefore, by this point, each of the 10 subjects had

3 variables representing similarity for all paired combinations of speeds. This could be stored in a 10× 3

matrix, each cell encoding similarity for a pair of synergies, where the statistical tests were performed.

Because there were three similarity metrics (cosSim, r and lag), there were three such matrices for

each movement and synergy index combination.

Similarly to the Inter-Run Analysis, a functional sorting step was necessary to ”align” synergy indexes

so as to allow comparison between weights and activations responsible for similar functions, and to avoid

low similarity results due to mismatched synergies rather than actual structural or timing differences. The

arbitrary reference motor modules were set to each subjects’ slow speed condition synergies, and both

remaining synergy sets (medium and high speed) were sorted by maximum cosSim to this benchmark.

After sorting, the computed metrics were ready to be evaluated through Repeated Measures Statistical

tests as laid out on Fig. (5.3 (B)).

5.3.2 Results

Test statistics (χ̃2 distributions) and p-values (p) for the Friedman tests’ analysis of variance are shown

in Table 5.3 for all three metrics. Three synergy weights across two movements were revealed to contain
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Table 5.3: Inter-Speed Friedman tests results. Chi-square (χ̃2) distributions and corresponding p-values are re-

ported for each movement-synergy pair. Bold values indicate Friedman tests where the null hypothesis was rejected

(p < 0.05)

cosSim of W’s r of H’s lag of H’s

Movement
Synergy

Index
χ̃2 p χ̃2 p χ̃2 p

Knee Extension 1 1.4 0.497 4.2 0.122 2 0.368

Knee Flexion
1 1.8 0.407 5 0.082 5.636 0.06

2 7.4 0.025 2.4 0.301 2 0.368

Sit-to-Stand
1 1.4 0.497 1.8 0.407 0.359 0.836

2 2.6 0.273 2.4 0.301 0 1

Stand-to-sit
1 1.4 0.497 2.6 0.273 2.526 0.283

2 2.4 0.301 1.4 0.497 3.677 0.159

Gait
1 12.8 0.002 2.4 0.301 5.733 0.057

2 10.4 0.006 3.2 0.202 1.714 0.424

Table 5.4: Wilcoxon Paired Signed-Ranks test results for all speed combinations of weights’ cosSim from selected

synergies where similarity across speeds was statistically different (p < 0.05). Test-statistic Z and corresponding

Bonferroni-adjusted p-values are reported for each speed combination. The Bonferroni adjustment was applied

by multiplying the unadjusted p-value by the number of comparisons. Bold values indicate tests where the null

hypothesis was rejected (p < 0.05). Speed 1: Slow Speed; Speed 2: Medium Speed; Speed 3: Fast Speed

Speed1/Speed2

vs.

Speed1/Speed3

Speed1/Speed3

vs.

Speed2/Speed3

Speed1/Speed2

vs.

Speed2/Speed3

Movement
Synergy

Index
Z p Z p Z p

Knee Flexion 2 -2.293 0.059 -2.497 0.029 -0.663 1.000

Gait 1 -1.784 0.252 -2.395 0.042 -2.09 0.111

Gait 2 -1.274 0.696 -2.09 0.111 -2.191 0.081

significant differences between speeds (p < 0.05). These were the second synergies of the Knee Flexion

movement and both synergies of the walking trials. All three were therefore selected for post-hoc study

to investigate which speeds were responsible for these differences. Results of this analysis are summed

up in Table 5.4. The second synergy of the walking motor modules had no significant pairwise differences

(p < 0.05) despite being flagged by the Friedman test. For the remaining two (synergy 2 of Knee Flexion

and synergy 1 of the Gait set), significant differences were reported on both for the pair Slow Speed/Fast

Speed vs. Medium Speed/Fast Speed (p < 0.05), indicating that the motor modules corresponding to

the fast movement were dissimilar to the ones from the remaining speeds. Spatial and temporal structure

for these two synergy sets, along with synergies from the other speeds may be consulted in Fig. 5.7 (for
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the Knee Flexion trials) and in Fig. 5.8 (walking trials). The remaining synergy sets are present in Fig. 5.9

(Knee Extension), 5.10 (Sit-to-Stand), 5.11 (Stand-to-Sit).

5.3.3 Discussion of results

Most movements had no significant differences across speeds in all three measured metrics of weight

similarity, activation shape and phase shift, indicating that the same set of synergies could represent

muscle activations for all of the tested velocities.

The pairs that did reject the Wilcoxon test’s null hypothesis (highlighted in bold in Table 5.4) were

the same for both synergies: Speed 1/Speed 3 vs. Speed 2/Speed 3 (p = 0.029 for synergy 2 of Knee

Flexion, p = 0.042 for synergy 1 of walking synergies). These findings suggest that the set of synergies

for speed 3 (fast movement) were ”dissimilar” set, because the common element for the pair of pairwise

similarities (Speed 1/Speed 3 vs. Speed2/Speed3) was speed 3; in other words, it was speed 3 the one

where mean similarity was significantly different to both speed 1 and speed 2.

Focusing on the Knee Flexion synergies, it is clear that the dissimilarity for the fast speed condition

lies with the recruitment of GM during the flexion of the knee (as evidenced by the red-blue bar plots

in Fig. 5.7). Since the participants were not instructed to minimize their foot movement during knee

flexion, some subjects not only used their TA to dorsiflex the ankle, but also unilaterally activated their GM

to plantarflex the ankle and maintain the foot perpendicular to the shank. Although this requires lower

contraction for the slower 5-second (slow condition) and 3-second (medium speed condition) movements,

a rapid and intense contraction of the GM is required to maintain an immobile foot when fully flexing

the knee in just one second, as was the case for the fast condition. This results in an increment in that

muscle’s relative activation for a synergy’s weights in order to account for the increased sEMG amplitudes,

maximizing its dissimilarity to the other ”softer” speed condition trials. This hypothesis is supported by the

muscle activations shown in Fig. 3.11 (A): GM sEMG envelope activity is notoriously higher for the ”Fast”

speed condition in Knee Flexion. Therefore, it was determined that, for the present dataset, synergies

extracted on Knee Flexion performed rapidly were significantly different that those extracted in slower

speed conditions (p < 0.05).

Regarding synergy 1 of the walking modules for the fast condition (highlighted with a gray background

in Fig. 5.8), a more in depth analysis at the dissimilar synergy reveals that the lowest cosSim to the slow

speed outputs was 0.95, recorded for subject 3. In fact, mean similarity of ”fast” to ”slow” synergies was

0.991 ± 0.016, compared to 0.995 ± 0.010 for ”medium” to ”slow” modules. In other words, despite

the signaling of significant differences, the similarity across speeds is consistent. The disagreement for
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this particular synergy arises from the fact that synergy structure is so consistently similar across speeds

for all participants that subject 3’s subtly different synergy structure leads to a small change in mean

cosSim across subjects that is sufficient to trigger the rejection the null hypothesis that synergy weights

are equal regardless of speed. To circumvent this ”false positive” in the problem context, the subject’s

results should have been removed from the statistical analysis through an outlier detection mechanism.

Previously reported literature examining synergy composition for different walking speeds in healthy

participants claimed that the synergies responsible for foot clearance in the mid-swing phase were tem-

porally shifted, with swing initiation occurring later and leg deceleration earlier with decreasing treadmill

speed, from 1.0 up to 8.0 km/h. However, that was not the synergy that was found in our analysis. For the

dorsiflexor-heavy synergy found in those studies, analogous to the module represented in Fig. 5.8 of this

dissertation and thought to correspond to forward propulsion, the activation was invariant both in spatial

composition and timing regardless of speed condition [46, 51, 85]. This would indicate that there should

be no differences between weights and/or activations across speeds, supporting the hypothesis that the

significant differences reported in Table 5.4 for the walking trials were due to very high homogeneity in

similarity across speeds, possibly due to the short range of walking speeds tested (1.0-2.0 km/h), not

sufficiently different to elicit a different neural control strategy.

In sum, the literature suggests that the statistical framework’s findings of significant differences across

speeds for synergy 2 of the gait movement are not expected, specially for the small range of low speeds

and for the structure of the extracted motor modules. It is then hypothesized that the differences were

due to subject 3’s outlying weight similarity results originating in an unknown factor, possibly electrode

displacement.

5.4 Inter-Subject Analysis

In this section, synergy extraction outputs between subjects will be examined in an attempt to find

common synergies between subjects, which would hint that efferent modularity of the CNS exists and is

consistent across healthy participants for the studied movements. Repeated measures statistical tests

used for the inter-run and inter-speed study are not applicable for this analysis, and hence a different

approach will be used to find common motor modules among subjects through statistical inferences.
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Figure 5.12: Flowchart for the process of determination of most common synergies across subjects.
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5.4.1 Methods

The first step made to allow inter-subject comparison was to analyze the weights across subjects so

as to investigate if the motor modules’ structure were similar across participants. Fig. 5.12 summarizes

the structure of this process. This analysis was performed on synergies extracted from medium speed

data, with the notion that results for this speed would generalize best for the ”neighboring” fast and slow

movement speeds.

A functional sorting step was implemented to align motor modules across subjects. Subject 6 was cho-

sen as an arbitrary reference to which the remaining subjects synergies were sorted by maximum cosine

similarity. If reordering occurred, the cosSim would be recalculated to reflect the correct correspondence.

Because the goal of this analysis was to determine which synergies were most similar across subjects,

a pairwise similarity analysis of all available subjects was required. Following the previous assumptions

made for the Inter-Run and Inter-Speed study, that structurally different synergies as measured by the

cosSim of their weights were outright dissimilar because they encoded the recruitment of a different set

of muscles, inter-subject study was made exclusively using cosSim on subjects’ weights. To accomplish

this, in each synergy index, the cosSim between weights from every subject and every other subject (i.e.

Subject 1 vs Subject 2, Subject 1 vs. Subject 3, ..., Subject 2 vs. Subject 3, Subject 2 vs. Subject 4, ...,

Subject 9 vs Subject 10) was calculated, resulting in 45 pairwise similarities. The mean value of cosSim

of each subject with all other participants was also calculated and stored for later reference.

Using the cosSim threshold criteria, it was possible to determine participant pairs that had similar

weighting vectors with 95% confidence (p < 0.05). For each synergy index on each movement, the subject

who had the most similarity matches with other subjects (i.e. cosSim higher than the thresholds outlined

in Table 5.1) was chosen as the reference for that synergy. In case of a tie with another participant, the

one with highest mean cosSim with all other subjects’ weights was selected. This process is illustrated

in the blue block of Fig. 5.12 - ”Reference Subject Calculation”.

The need for a ”reference participant” arises from the fact that there were no motor modules similar

across all subjects, and therefore it was necessary to determine the synergies most similar across

subjects. The choice of reference, therefore, was based on a priori knowledge of which participant

would yield the largest set of modules from among the available ones.

Subsequently, using this participants’ synergy for a given index as ”reference”, a group of synergies

was assembled following the criteria ”weight similarity higher than that expected by chance” (p < 0.05).

This process resulted in groups composed of weighting vectors sourced from a number of participants

ranging from 2 to 10. Afterwards, these groups were averaged in order to obtain one weighting vector
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representing the ”most similar weights” across subjects -WAV G. This step corresponds to the green box

in Fig. 5.12 - ”WAV G Calculation”.

This analysis is similar to the inter-subject analysis methodology observed in synergy extraction litera-

ture [41, 107, 131]; however, this procedure deviates in two ways: first, by not including all participants

in the WAV G calculation. This was done because, as has been shown in previous sections, synergy

structure differed among subjects. Therefore, it was decided to select a group from within all participants

that were already similar among themselves in order to proceed with the inter-subject study. This was the

cause of the second alteration to the common inter-subject analysis: the reference subject, rather than

being chosen arbitrarily, was selected by examining the similarities between all combinations of partici-

pants synergies, with criteria derived from confidence intervals extracted from a distribution of similarity

observations.

To confirm the supposition that this process of determining WAV G resulted in synergy weights rep-

resentative of muscle recruitment of a common inter-subject modular control strategy, a final validation

step was implemented, highlighted in yellow in Fig. 5.12. Here, using the original data acquired for each

participant, the synergy extraction framework (as depicted in Fig. 4.7 of section 4.3) was ran, but with

weights in the NNMF being held fixed to WAV G. As such, only H was allowed to vary: it was initialized

with random values and iteratively updated until convergence. The resulting VAF indicates to what de-

gree WAV G was accurate in portraying modular underlying control for that particular subject. In order

to quantify overall generalizability of the computedWAV G across participants, a 95% Confidence Interval

was built with VAF’s calculated from the 10 cvNNMF runs for each subject. By comparing the LBCI for

the participants who contributed to the formation ofWAV G (in other words, those whose subject-specific

weights were classified as ”most similar” between themselves) with the LBCI of those who did not, it was

possible to ascertain to what extent a neural control strategy was common across subjects.

Additionally, activations from those subjects who met the LBCI>90 criteria following this validation

step were used to examine synergy temporal activation for comparison with the kinematic variables. This

set of activations in conjunction with the participant-invariant WAV G was considered as the set of final

”most common synergies across subjects”.

5.4.2 Results

Fig. 5.13 shows the pairwise cosine similarities between every combination of subjects’ synergy

weights, after sorting. Pairs which demonstrated a higher similarity than that expected by chance (p <

0.05) are marked in red. For each synergy index, the reference participant is highlighted in bold. Grouping
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Figure 5.13: Cosine similarities of medium speed synergy weights for all pairwise combinations of participants.

Red cells highlight pairs more similar than what’s expected by chance (p < 0.05). The ”most matched” subject,

per the criteria explained in section 5.4.1, is highlighted in bold.
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by similarity to the reference subject yielded a different number of subjects contributing their weights to

WAV G determination, depending on the reference participant’s ”number of matching subjects”. This

value is equal to the number of red cells in the highlighted rows/columns of Fig. 5.13 and is also indicated

by ”n” in Fig. 5.14 (A). This figure also illustrates the correspondingWAV G - the synergy weights averaged

across the group of most similar subjects - as bar plots and respective standard deviations as error bars.

Fig. 5.14 (B) is a visualization of the reconstruction accuracy on each participant’s original data when using

these weights. Subjects that were part of the group that resulted in that movement’s WAV G are marked

by an asterisk. In order to determine if reconstruction quality was higher for this category of participants,

average 10-run LBCI was computed for two sets of subjects: those contributing to theWAV G computation

(”In” bar in Fig. 5.15) and those not contributing (”Out” bar in Fig. 5.15). For reference, the LBCI for the

original cvNNMF framework allowing both factors to freely vary is also denoted in the red bar (”Original”).

Finally, 5.16 illustrates the average activations H1 and H2 produced by the cvNNMF by fixing weights to

WAV G when reconstruction accuracy for a participant across 10 runs was adequate according to the initial

criteria (LBCI >90). Synchronized sagittal joint angles for the relevant lower limbs are also plotted to allow

comparison with kinematic variables. The remainder of this section summarizes the results for the inter-

subject study in a synergy-by-synergy basis, outlining the structure of the common motor modules found

for each synergy for all five movements, the number of participants who contributed to its determination

and the ability of these synergies to extend to all subjects, as measured by the reconstruction accuracy

found during the validation step.

Knee Extension’s single averaged synergy was sourced from 5 participants out of a total of 10, meaning

that half of the subjects had different motor modules (p < 0.05) from the common modular structure as

determined by the present analysis. The five contributing subjects were averaged into the vector depicted

in Fig. 5.14 (A), encoding a dominating recruitment of the RF (0.96 ± 0.03 relative activation) with

additional lighter selection of the TA (0.23 ± 0.10). The validation step (for which subject-by-subject

results are shown in Fig. 5.14 (B)) revealed a low reconstruction accuracy in data of subjects present for

the WAV G calculation and those absent. Only subject 6 of the non-contributing group showed a LBCI >

80%. Averaging results for both groups separately (depicted by bar plots in Fig. 5.15) showed thatWAV G

contributors had a 25% superior LBCI compared to non-contributors.

The first synergy of the Knee Flexion (WAV G1 plot in 5.14 (A)) originated from a set of four subjects,

and appeared to be composed almost exclusively of TA recruitment (0.96± 0.02). WAV G2, on the other

hand, originated in a consensus formed by five participants and was virtually unanimous in its expression

of BF (0.98 ± 0.02). Therefore, both weighting vectors WAV G1 and WAV G2 encoded the activation
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of one muscle each: TA and BF, respectively. Their combined reconstructing ability (Fig. 5.14 (B)) on

the original sEMG data was superior to 90 in 6 subjects, including two that had not contributed their

factorization outputs to WAV G determination. As denoted in the respective bar plots of 5.15, LBCI was

91.8 ± 5.6 % for contributing participants vs. 71.5 ± 16.2 % for the remainder, a discrepancy of 20.3.

The high standard deviation for the ”Out” group suggests that results for this analysis was very sparse; that

is, the set ofWAV G generalized well for muscle recruitment on some of the non-contributing participants

and very poorly for others.

Sit-to-Stand’s synergy of index 1 (WAV G1 in Fig. 5.14 (A)), sourced from four participants, consisted

mostly of TA recruitment (0.74± 0.10) with appreciable contribution from the RF muscle (0.39± 0.04).

The second synergy, WAV G2, originated from outputs of two participants, and corresponded to RF ex-

pression (0.79 ± 0.01) followed by the GM and BF, both roughly equal in mean magnitude at half that of

the RF’s (0.40 ± 0.01 and 0.38 ± 0.08, respectively). The reconstructing accuracy of this pair of syn-

ergies yielded three subjects with LBCI >90, of which two were absent from the computing ofWAV G, as

illustrated by the three orange cells in Fig. 5.14 (B). Averaging LBCI’s across the six contributing subjects

revealed a value of 85.2± 7.9 %, 14.5 higher than the analogous characteristic on the set of subjects not

involved in WAV G (70.7 ± 22.9). These discrepancy may be visually inspected in Fig. 5.15.

Like Sit-to-Stand, results for Stand-to-Sit also showed high agreement between subjects of the first

synergy, but not of the second. As evidenced by Fig. 5.14 (A), Stand-to-Sit’s WAV G1, averaged from

six participants, showed a heavy recruitment of TA (0.98 ± 0.04), with the next most prominent muscle

being the RF with 0.15 ± 0.09 relative expression. On the other hand, WAV G2’s spatial composition

was derived from 2 participants and consisted in dominating GM expression (0.93± 0.02) with additional

recruitment of the BF (0.28 ± 0.09). Reconstructing on original data while fixing the weights to this set,

showed that four participants met the criteria of having LBCI > 90. One of these (Subject 9) did not cede its

weights toWAV G computation (Fig. 5.14). Mean LBCI’s for the two group of participants, contributing and

non-contributing, yielded a value of 85.4 ± 14.66 and 43.8 ± 45.0, respectively, showing a discrepancy

of 41.6 between the means. The ”Out” group in Fig. 5.15 was notorious for having its standard deviation

higher than the mean. This can be pinpointed to the fact that subject 10 had its lower bound of the

confidence interval built from the 10-run VAF results equal to -8, indicating very low and very sparse VAF’s

across runs.

Lastly, inter-subject analysis on walking synergies found all ten subjects sourcing WAV G1, and nine

involved in the computing of WAV G2. Spatial structure was symmetrical, as demonstrated in Fig. 5.14

(A): WAV G1 corresponded to right side GM recruitment (0.90 ± 0.06) and WAV G2 to the left GM (0.93
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± 0.07), both sharing additional expression of the TA on the opposite side in the order of 0.15 relative

activation. Validating on the original walking dataset revealed that six subjects had a LBCI > 90. This was

the only movement for which all subjects contributed to the process of determiningWAV G, meaning that

all the extracted muscle synergies, except one, were similar regardless of participant (p < 0.05). This is

why, unlike the remaining movements, it was impossible to divide the participants into two groups by their

presence in the group from whichWAV G was calculated, as all met the criteria to be included inWAV G;

hence the absence of a bar plot in ”Out” in Fig. 5.15. This marks a contrast that reappeared regularly for

the inter-subject study, between high similarity results for walking synergies and lower measurements for

the Discrete Motor Tasks.

Figure 5.14: Illustration of WAV G and variance results for the re-running of cvNNMF on the original data fixing

weights to WAV G. (A) depicts WAV G - the averaged weighting vectors across similar weights - as bar plots and

each muscle’s respective standard deviation as a black error bar. These were the weights fed on each of the 10 runs

to the cvNNMF algorithm, yielding VAF values with which a 95% Confidence Interval was built. The Lower Bounds

of these intervals are shown in (B). Values larger than 90 (our original criteria to determine synergy adequateness

in reconstructing sEMG data) are highlighted in orange. If a subject’s own weights were used for the determination

of that movement’s WAV G, it is denoted with an asterisk next to its LBCI.
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Figure 5.15: Validation Results. Blue bar plots denote average Lower Bounds of the 95% Confidence Interval

built from 10 runs of the synergy extraction framework, but constraining weights to be equalWAV G. Results were

divided by category of participants: those that contributed to the calculation of WAV G (i.e. those whose weights

were more common across subjects) are indicated by the bar ”In”; the remaining participants are included in ”Out”.

”n” encodes the number of subjects in each category. The red bar plot ”Original” is the LBCI for the original synergy

extraction framework and is calculated for all subjects. The black error bars at each bar plot illustrate the standard

deviation.

5.4.3 Discussion of Results

For the inter-subject analysis, it was attempted to find common modularity underlying sEMG data

for five lower limb movements across subjects. Results from pairwise cosSim between all subject per-

mutations (shown in confusion matrix from in Fig. 5.13) appeared to indicate that motor modules were

different across subjects for most movements, with the notable exception of the reported results for the

walking synergies. This may be explained by the difference in the amounts of data fed to the synergy ex-

traction framework. For instance, the number of concatenated trials used to compute the motor modules

for subject 5 in walking at medium speed was 74, while in sit-to-stand the total available trials were only
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3. This phenomenon was consistent for all other participants. A previous study examining different gait

sEMG envelopes structuring methods concluded that for a concatenated approach, like the one we used

for this dissertation, the lower the number of concatenated gait cycles, the poorer the quality of recon-

struction [13]. It is therefore reasonable to assume that the smaller data pool from which the Discrete

Motor Tasks’ synergies were extracted is responsible for overall lower inter-subject similarity and higher

variability between synergy extraction outputs.

Figure 5.16: Final sets of synergies most common across similar subjects. The first three rows illustrate the mean

sagittal hip, knee and ankle joint angles, with gray shaded areas denoting standard deviations at each normalized

time point. The last two rows illustrate mean synergy activation with standard deviation represented by the colored

shaded area. The corresponding weights WAV G are represented by the inset bar plot.

By examining Fig. 5.14 (A), it is observable that the Knee Extension single synergy consisted in the

dominating recruitment of the RF (0.96 ± 0.03 relative activation) with additional lighter activation of the

TA (0.23 ± 0.10). This might be taken to mean that the participants mostly recruited their quadriceps to

produce sufficient torque at the knee joint to elevate the shank, and used their dorsiflexors to maintain the

ankle flexed when approaching full extension. This is supported by the Activation of H1 of the validated

synergies in Fig. 5.16: it rises steadily from near non-expression at the very beginning of the movement

to 0.3 relative activation, with a short burst in activity in the last 10%. Up until this burst, activation rises in
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a proportionally inverse relation to sagittal knee joint angle, corroborating the hypothesis that the synergy

encodes quadriceps contraction responsible for shank elevation. Raw sEMG activations (Fig. 3.11 (A)

of section 3.3) demonstrates clearly a very similar burst in RF expression for the analogous period in

medium speed trials. It is therefore inferrable that this burst is responsible for the ”locking” of the knee

joint immediately after attainment of full extension and may be responsible for continuing static extension

of the shank after the studied period. The fact that the 5 subjects sourced to compute Knee Extension’s

WAV G all obtained high LBCI (> 87) seems to indicate neural control as ascertained by sEMG factorization

did not extend to other subjects for this movement. However, one subject (participant 6) showed a VAF

LBCI of 81%; though short of the pre-determined criteria of 90, it is still relatively high value.

Knee Flexion was structurally dominated by the activation of two muscles, one responsible for knee

joint torque production and shank displacement, and the other actuating on the ankle joint to maintain

it static throughout the movement. As is illustrated in Fig. 5.14 (A), each muscle’s activity was clearly

divided into two synergies. Analyzing the sagittal ankle angle in Fig. 5.16 provides a possible explanation:

the standard deviation for this joint’s angle was higher compared to the other movements’, and it increased

with movement time, which indicates that the participants had varying ankle poses which mostly differed

towards the end of the movement. This was due the fact that some subjects chose to dorsiflex the ankle

while others avoided it. This introduced large variability in the VAF results: participants who did not

dorsiflex the ankle angle would not have needed two synergies to capture the variability of the sEMG data,

while does that did, required a second synergy to explain TA expression. This is the reason why Knee

Flexion results divided sEMG data in two synergies: one ”principal” responsible for shank movement and

another ”secondary” causing ankle immobility.

Parallels to the kinematic data support the theorized functional roles of each motor module: the

first synergy was composed almost exclusively of TA recruitment and was temporally constant across

movement time (Fig. 5.16 ”ActivationH1”), with a very subtle peak at around 20% of execution, potentially

responsible for raising the foot off the ground when initiating movement. The remaining synergy was

temporally expressed in a much higher proportion and consisted overwhelmingly of BF activation, rising

proportionally to knee angle and thus most likely responsible for joint actuation and shank movement.

Validation LBCIs of VAF values (Fig. 5.14 (B)) for these movements demonstrated a phenomenon

that was consistent for the results of the remaining movements: they showed that (i) not every subject

who contributed toWAV G attained the highest LBCIs and (ii) some non-contributing participants achieved

very high LBCI’s. The former observation indicates that in some participants the cvNNMF converged on

a set of factors that poorly represented variance on the original sEMG dataset despite the same weights
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resulting in good reconstruction on a cross-validated synergy extraction framework on the exact same data.

A methodological quirk may be at the root of this phenomenon: a subject ”contributing to WAV G” could

have contributed by lending at least one of its weight vectors (W1 orW2) toWAV G determination, but

not necessarily both, and thus a subject could have had the weighting vectorW1 similar across subjects,

but have W2 be completely different from the WAV G2 and thus the pair of synergies that reconstructed

well on its data was not the same tested for validation, yielding poor results.

The latter observation, that non-contributing subjects nevertheless achieved a high reconstruction

metric, may indicate that common modularity underlying neural commands may exist and may be inferred

by the sEMG data. Specifically, for Knee Flexion, 6 subjects attained >90 LBCI with the same weighting

vectors.

For the Sit-to-Stand task,WAV G1, sourced from four participants, consisted mostly of TA recruitment

with appreciable contribution from the RFmuscle as evidenced by the bar plots in Fig. 5.14. This weighting

vector acts mostly during momentum transfer from sitting to standing (hinted by the presence of TA activity,

dorsiflexing the ankle and propelling the body forward) and subsequent rising of the center of mass (caused

by the quadriceps of which RF is a member), as has already been discussed in Chapter 4. This hypothesis

is corroborated upon inspection of mean activation across participants after validation (”ActivationH1” on

Fig. 5.16): there is a clear and noticeable dominance ofW1 expression for the first half of the movement.

This early peak is to be expected if it is considered that the TA’s relative recruitment in WAV G1 is twice

that of RF, which means that, on average, at the time of H1 peak, the dorsiflexors were contracted at

double the recruitment potential of the quadriceps as measured by the MVC. From this observation, it

may be inferred that the most likely scenario is that the TA is acting on the ankle, dorsiflexing it, propelling

the body forward and upward from a rest state and ultimately inducing momentum transfer from sitting

to a standing position, while the simultaneously contracting RF is acting to extend the knee providing the

upward movement. There is no obvious relationship with the kinematic variables in Fig. 5.16, but the

sagittal hip angle peaking right after the peak in H1 may support these findings because, in a natural

standing movement, the hip joint attains its lowest angle to the thighs at the moment of separation from

the seat, as the trunk generates upper-body momentum during lift-off [110].

For WAV G2 of sit-to-stand, the muscle most relatively activated was RF, followed by GM and BF,

both roughly equal in magnitude at half that of the RF’s. It may seem counter-intuitive that the agonist-

antagonist pair of RF/BF are recruited simultaneously in this synergy, but in fact this phenomenon has

been previously documented in human biomechanics where it is known as Lombard’s paradox: the fact

that, when rising to stand from a sitting position, both the hamstrings and quadriceps are contracted,
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despite them being antagonists to each other [137]. This is justified as being caused by the bi-articular

nature of the RF and BF: the RF acting over the hip joint has a smaller hip moment arm than the BF;

however, the RF moment arm is greater over the knee than the hamstrings’ knee moment, meaning that

simultaneous contraction of both will result in hip and knee extension, allowing standing [138]. Therefore,

if sEMG activity is recorded, both muscles will appear to be contracting simultaneously.

Sit-to-stand also marks the first movement thus far for which synergy extraction results have been

reported in the literature. WAV G1 found in this dissertation is very similar to the ”Momentum Transfer”

synergy extracted in [14, 118] (Fig. 2.6 in section 2.2.2), both dominated by TA and RF activity. Likewise,

WAV G2 seems to be a merger of the remaining two ”Extension” and ”Posture Stabilization” motor mod-

ules, incorporating both quadriceps (of the ”Extension” synergy) and GM activity (”Posture Stabilization”)

plus some expression of the BF, a muscle of the hamstrings which the authors did not measure [14, 118].

Temporal activation inH1, as illustrated in Fig. 5.16, is also analogous, though the same can not be said

of H2.

Results for the synergy extraction framework on stand-to-sit revealed that WAV G1, averaged across

6 similar subjects, was composed almost exclusively of TA activation. Here it is expected that the TA

acts as a stabilizer during the late stages of sitting, acting on the ankle joint to balance the body during

descent. WAV G2’s spatial composition, on the other hand, was derived from 2 participants and consisted

in dominating GM expression with additional recruitment of the BF. It is presumed that, much like the TA in

standing, the GM acts on the ankle joint to initiate movement in sitting, this time by plantarflexing the ankle

to begin descent, at which point the thigh muscles, including the BF, ”take over” by allowing controlled

whole-body descent up until seat contact.

The corresponding validated synergy activations, illustrated in Fig. 5.16, confirm this hypothesis:

H2 peaks at the beginning of the movement, before dropping quickly to a near-zero baseline at around

40% trial time. This peak is coincident with initiation of descent as evidenced by the sagittal knee angle,

supporting the assignment of the role of sitting propulsor to W2. Kinematic analysis also confirms the

theorized function of synergy 1, becauseH1’s peak at 60% movement time coincides with both a decrease

in slope of the knee angle, suggesting a reduction in movement speed, and with peak hip flexion, indicating

the alignment of the upper limbs with the vertical axis, orthogonal to the seat, marking a phase transition

between rapid sitting and a more controlled, ”seat-approaching” controlled descent, typical of natural

unassisted sitting motion.

There were fewer benchmark studies to evaluate the validity of final WAV G of the stand-to-sit move-

ment. As was discussed in section 4.3.2, the only synergy extraction results reported are for weighted
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squatting [52] - i.e. combined sit-to-stand and stand-to-sit while holding a weightlifting bar on the shoul-

ders. Nevertheless, there are some parallels that may be drawn: from the three synergies found underlying

sEMG data acquired from 12 muscles in that study, two of them were temporally dominant in the descend-

ing portion of the squatting movement (Fig. 2.5 (A) up until 60% normalized squat period). Of these, one

was similar toWAV G1 both in weighting vectors and activation curve, by encoding high TA activity coupled

with weak quadriceps recruitment peaking at the movements’ lowest point. The remaining reported syn-

ergy was dominated by heavier quadriceps expression and finds no correspondence with our GM-heavy

WAV G2, possibly because the GM’s role in weighted squatting is absorbed into the other synergies owing

to its diminished relative contraction compared with those muscles responsible for knee flexion (i.e., RF,

VMED and VLAT in Fig. 2.5).

Findings from the determination of LBCI’s of VAF results for the previous two movements of Sit-to-

Stand and Stand-to-Sit seem to indicate that some contributing subjects exhibited low reconstruction ability

and some that were not present in the set with which WAV G was computed showed high VAF’s, hinting

at common inter-subject underlying modularity for these movements.

Lastly, the bilateral study of walking sEMG data found 2 symmetrical synergy weights: WAV G1 en-

coded right GM recruitment andWAV G2 left GM, and both shared additional expression of the TA on the

opposite side in the order of 0.15 relative activation. There is direct evidence for the existence of this

motor module in the synergy extraction literature [13, 46, 85] at a similar speed, where GM presence is

usually accompanied by other plantarflexors’, such as the Soleus [46], and the Gastrocnemius Lateralis

[13]. The validated activations (H1 and H2 in Fig. 5.16) also match both in shape and phase to the

reported results. Because it is mostly active in late stance, at around 40-60% of movement time, it is typi-

cally associated with the biomechanical task of forward propulsion, where plantarflexion of the ankle joint

produces a ground reaction force which acts to accelerate the body center of mass, propelling the body

forward. This is simultaneous with contralateral weight acceptance, because as one side propels the body

forward and swings the leg, the other foot rotates over the heel until flat so as to stabilize in anticipation

of the swinging leg. Few recent studies, however, examine walking muscle synergies bilaterally, so the

role played by the contralateral TA during swing initiation, weighted at about 15% of maximum expres-

sion, can only be explained by correspondence with temporal activation spikes of the TA-heavy module

reported in the literature’s synergies. Though the TA is notorious for being recruited by several synergies

during walking [85], there exists a category of synergies where TA heavy expression is omnipresent (one

of which is illustrated in Fig. 2.4, M3, of section 2.2.1 of the Literature Review on Muscle Synergies)

where it is usually paired with RF and whose temporal activation peaks just before ipsilateral heel strike
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[13, 46, 85]. The researchers point out, during heel strike of the foot of the opposing leg, the TA is likely

responsible for ankle dorsiflexion in anticipation of upcoming leg loading/weight acceptance during early

stance. It is simultaneous with forward propulsion - as one ankle plantarflexes (GM), the other dorsiflexes

almost symmetrically (TA) - which is why the activation is uniphasic for both synergies in our results. Fur-

thermore, the kinematic properties support this, as evidenced by a small peak in plantarflexion (the local

maximum attained for ankle angle in Fig. 5.16 at around 85% gait cycle time) being simultaneous with

the midpoint of temporal activation of synergy 2, which encodes ipsilateral TA recruitment. This clearly

correlates contralateral swing initiation with ipsilateral preparation for leg loading. Finally, a 1995 study

that did examine bilateral sEMG signals, found a positive correlation between GM and contralateral TA in

both factors responsible for left and right forward propulsion [87].

For the walking trials, the gap between the Lower Bounds the Confidence Intervals for the ”In” and

”Out” groups of participants in Fig. 5.15 could not be calculated, because all subjects met the criteria

to be included in WAV G (either through W1, W2 or both), hence why there is an absence of a bar plot

in ”Out” in Fig. 5.15. This demonstrates the high similarity between weights across subjects and helps

explain the homogeneous and high LBCI’s of VAF values shown in Fig. 5.14 (B). Specifically, LBCI for

all was larger than 87%, except for subject 5, who had a very different spatial recruitment of muscles

characterized by activation of the TA in addition to the GM in W2, as is illustrated in Fig. 5.8. This

dissertation therefore postulates that the high values of reconstructing ability for the gait results resulted

from the large amounts of data available for each factorization run. Moreover, these findings support the

hypothesis that a common neural control strategy underlies motor patterns in treadmill walking of healthy

subjects, since the same set of muscle weightings was capable of reconstructing the sEMG signal with

demonstrable, repeatable, accuracy in all but one of the participants.
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Conclusions

In this dissertation, muscle synergies from five lower-limb movements were extracted and examined

using a methodological framework leveraging multi-participant data to make statistical inferences with

the ultimate goal of finding common modularity underlying neuromuscular control in healthy subjects.

Findings from this work may be used in the future to (i) aid the development of task-oriented control

models for the studied movements using the determined muscle synergies; (ii) use the developed synergy

extraction framework uniting the scattered methods from the state of the art techniques and (iii) assign

statistical confidence to muscle synergy comparisons.

A review performed on the relevant literature in chapter 2 revealed that a modular neural control strat-

egy might underly muscle recruitment during motor tasks and may be ascertained from sEMG data. These

muscle synergies have had promising results in several applications, namely control modeling for assis-

tive devices. However, the field was shown to be inconsistent in its methodologies of extracting synergies

and lacking in reporting of muscle synergies for lower limb movements of daily life, such as standing and

sitting and knee extension and flexion. Additionally, the same review revealed some consensual steps in

muscle synergy extraction process, namely that NNMF is the most accurate and widespread factorization

algorithm for the purposes of extracting synergies, that a cross-validation step is important in order to

circumvent the local minima issue, and that sEMG data should be pre-processed using specific configura-

tions of techniques in order to maximize its potential in extracting useful motor modularity data (Objective

1).

To address the gap in variety of lower-limb movements in the muscle synergy literature, in Chapter

3, a data acquisition protocol was devised aiming to record muscle activities during these seldom studied

lower-limb tasks, while also recording data for walking movements (Objective 2). Moreover, all movements
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were performed at three different speed conditions, with the expectation that studying data from different

speeds would provide further insights into the modular organization of of the CNS input.

Aiming to accomplish Objective 3, in Chapter 4, a synergy extraction framework equipped with a cross-

validating system was designed and implemented according to the perceived methodological consensus in

the State-of-the-Art. To fine-tune this framework, three parameters left unclear by the literature were studied

to investigate the impact on final reconstructing ability: data structuring method prior to factorization,

data partitioning ratio for cross-validation and benchmark choice for computing VAF when quantifying

reconstructing ability. Results from this study indicated that concatenating trials, partitioning data into two

equal-sized groups prior to factorization and using weights from one group coupled with activations from

the second to measure reconstruction accuracy against the original signal of the second group were the

most accurate configurations to infer neural control strategies from muscle electrical activity data.

Still within the scope of Objective 3, the configured synergy extraction framework was used to deter-

mine the minimum number of muscle synergies that adequately explained variance in the participant’s

sEMG data and therefore underlied each movement’s control. The final number of motor modules was

one for the Knee Extension movement, and two for the remaining movements, regardless of performing

speed.

Chapter 5 examined muscle synergies from a hierarchical approach. It may be concluded with 95%

confidence that the synergies did not differ across repeated factorization runs (Objective 4). Furthermore,

it may be stated that most of the extracted muscle synergies for the five movements do not differ across

speed conditions (p < 0.05). Only one module for the Knee Flexion performed in one second (fast

condition) showed significant differences from slower movement executions, addressing Objective 5.

Moreover, the inter-subject analysis was designed to reveal the most common synergies across

subjects despite not all participants reporting similar modules (Objective 5). It determined that for the

walking data, almost all of the studied participants converged onto the same similar set of synergies, and

though this was not true for the Discrete Motor Tasks, themost common inter-subject set was successful

in reconstructing the sEMG signals in participants that did not have their synergies determined to be part

of that set. Both of these observations point to an inherent modularity in muscle activity data indicating

a common control strategy underlying these tasks. The fact that the Discrete Motor Tasks required this

extra validation step to study this hypothesis was born of necessity by (i) the small number of sEMG trials

available for each subject on each movement (excluding walking) which made results less repeatable by

being more sensible to individual trial’s variability and (ii) the small number of recorded muscles, making

the low-dimensional nature of the input data more likely to produce similar results by chance, elevating
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the similarity threshold and cutting off many similar synergies from being classified as such.

From the criteria available for evaluation, such as parallels to kinematic data and to the sparse liter-

ature’s results, this method was successful in representing common neuromuscular organization despite

dataset hindrances. Only one of the determined synergies across subjects (synergy 2 of the Stand-to-

Sit movement) was not explained either by available research or through relationship with the kinematic

variables (Objective 6).

As far as the literature review appears to indicate, this is the first time a unifying, evidence-based

muscle synergy extraction framework and hierarchical study of its outputs leveraging statistical methods

is devised and implemented. The processes described in this dissertation could be particularly useful for

future research examining movements where there is little available data because sEMG data collection

is difficult, tedious and/or tiring.

The research questions posed at the beginning of this dissertation were answered as follows:

RQ 1: Is there a unifying synergy extraction framework able to capture modularity un-

derlying muscle electrical activity in several lower limb tasks?

The literature review indicated that there exists some methodological consensus regarding the se-

quence of steps to follow in muscle synergy extraction, but methods entailing each of those steps and its

parameters are very divergent across publications. In Chapter 4, an evidence-based framework uniting

these techniques was implemented and tested on lower-limb sEMG data. In short, this process consists

of randomly splitting the available data into equal amounts, concatenating it prior to input into a cross-

validated Non-Negative Matrix Factorization procedure, where weights are computed on one group and

activations on the other, and where factorization is repeated ten times, including the random partitioning

of the data. The outputs from these ten iterations should accurately convey the modularity present in the

dataset, inferring the control strategy underlying the movement.

RQ 2: What is the minimal number of synergies that can accurately express each of the

studied movements’ muscle electrical activity at slow speeds?

This RQ was tackled in Chapter 4. The ascertained number of motor modules, defined as the minimum

number of synergies for which the mean Lower Bounds of a 95% Confidence Interval built with VAF values

from 10 cross-validated synergy extraction runs across subjects, was one synergy for Knee Extension and

two for Knee Flexion, Sit-to-Stand, Stand-to-Sit and Gait data.

RQ 3: Are muscle synergies’ structure subject and speed dependent for the studied

movements?

This RQ was answered in Chapter 5. Statistical analysis revealed that the extracted muscle syner-
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gies for all of the five studied movements did not differ significantly across runs (p < 0.05), indicating

that a modular representation of the sEMG data existed and was repeatedly and reliably inferred by this

framework. Furthermore, the muscle synergies’ morphology was invariant across executing velocities for

all movements except Knee Flexion, which when performed at a fast speed, (i.e. in 1 second from immo-

bilization up until full flexion) revealed significant differences in its recruiting muscles (p < 0.05). Some

participants exhibited a personalized controlling strategy for a given lower-limb movement, but the most

common synergies across subjects were successful in determining a set of motor modules extendable

to multiple participants, whose number increased when amount of available data for extracting synergies

was larger; hinting at a set of latent underlying muscle synergies controlling each movement.

6.1 Future Work

Future work may include the experimental protocol’s optimization by increasing sample size and ex-

tending the recording to more trials for Discrete Motor tasks, additional muscles and a broader range of

performing speeds. The measuring of a larger set of muscles would be particularly useful because it would

confirm whether or not the reporting of only two synergies for the walking data in this dissertation was

due to the fact that only four ipsilateral muscles were measured, when the body of literature claims four

to six motor modules underlies gait control. If a number of synergies within this range were to be found, it

would also help to corroborate results on the Discrete Motor Tasks, for which the literature is scarcer; this

is in addition to the direct benefit the recording of additional muscles has on muscle synergy extraction

findings. A larger number of trials recorded for each subject would contribute to validate and expand the

findings of this dissertation, as the small pool of data available for each subject is thought to have been at

the root of the significant dissimilarity among some of the tests’ results and poor generalizability for the

Discrete Motor Tasks. Additionally, if Knee Flexion trials are replicated, the instructions given to the partic-

ipants should specify foot positioning in order to avoid the inconsistency in synergy structure found in this

work. Greater care in general should be taken to avoid unforeseen activations of muscles not specifically

associated with a given movement.

The repeated measures statistical tests developed herein could be particularly interesting in validating

synergies extracted from participants with motor impairments. This would allow a very useful assignment

of statistical confidence to findings of an healthy vs. pathological muscle synergy structure. Moreover, due

to the statistical nature of the framework, it benefits directly from the aggregation of data from additional

participants, because the larger the number of subjects and/or trials, the larger the statistical power of
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the null hypothesis tests and the more the distribution from which the similarity thresholds are derived

approach the reality of the population. Future work could therefore contribute to the findings of this

dissertation by simply recording additional subjects performing the same movements. Different additional

lower-limb movements, however, would also be very useful for clinical insights and future control models,

specially considering the lack of daily life activities’ results in the muscle synergy literature.

Lastly, the present findings in muscle synergies could serve many applications. In the domain of

control modeling, for instance, it may provide muscle activation patterns for the driving of musculoskeletal

models or as a reference for the generation of stimulating patterns for FES assistive devices. In a more

clinical domain, these results could also have useful applications, such as complementing a biomechanical

analysis or drawing parallels with muscle synergies in subjects with impaired motor coordination, in order

to study specific pathologies’ characteristics.
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