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Abstract. This work deals with the modeling process of a new three di-
mensional human-like robot for an inverse dynamic analysis. This robot
intends to be utilized by caregivers to assist persons with reduced mo-
bility (such as the elderly). The model under analysis is composed by
24 rigid bodies: 3 to represent the robot’s base and locomotion, 4 for
the lower limbs and torso, 7 for each arm, and 3 for the head. The re-
sulting multibody system has 19 degrees-of-freedom driven by 4 linear
actuators and 15 revolute motors. The proposed approach was imple-
mented using an in-house computational code, and validated against a
commercial software for a general spatial motion. The outcomes achieved
show that the proposed formulation is computationally effective both in
terms of efficiency and accuracy. The general findings of this study are
promising and useful for the mechanical design and construction of a real
human-like robot prototype.

Keywords: Human-inspired robot, Multibody dynamics, Newton-Euler
formulation

1 Introduction

Inverse dynamics refers to the process of determining the forces and torques
applied in a body, or set of bodies, that result in a known motion (kinematics).
There are three main formulations for studying a dynamics problem, all of them
used in the multibody analysis of robots: Newton-Euler equations [1,2], Lagrange
equations [3], and Hamilton equations [4,5]. Due to their simplicity and ease of
implementation, recursive Newton-Euler algorithms are favored in the dynamic
analysis of robotic systems [6].

Dynamic studies in computational environments often use one of two main
methods: implementing the problem in an already developed multibody dynam-
ics simulation software, or using computational tools to solve the equations of
motion defined manually by the researcher. Simulation software are the most
common resource for robotics research [7] due to: their simplicity, their con-
venient tools and interfaces, and their capability to tackle complex problems
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without requiring more in-depth studies. Implementing the equations of motion
on an integrated development environment is a more laborious process, but it
provides its own set of advantages. The resulting models have higher compat-
ibility with other software, they provide more flexible solutions (giving more
freedom to researchers), and they can be more thoroughly optimized for specific
problems.

This study extends the authors’ previous work [8] to include a complete
dynamic analysis of CHARMIE, a colaborative robot for elderly care [9]. The
main novelty of this work is the use of an in-house code to adapt, apply and
validate the recursive algorithm of [6] for obtaining the multibody model of the
considered robot. This model will play a pivotal role in optimizing the mechanical
design and developing the physical prototype of the robot.

2 Description of the multibody model

The multibody model of CHARMIE is composed of 24 rigid bodies connected
by 35 joints — 4 prismatic and 31 revolute — in a configuration that results
in 19 degrees-of-freedom (Figure 1.b). The system is fully actuated, driven by
4 linear actuators and 15 revolute motors. Additionally, tension springs apply
forces to reduce actuator loads: two identical springs are placed between bodies
3 and 4, and one between bodies 4 and 5, with 105.5; 77 mm free lenght (L0),
1380; 1029 N/m spring rate (k), and 27.1; 15.1 N initial force (Fi) respectively.

Figure 1 labels the bodies of the multibody system, showing that 6a-12a
correspond to the left arm, 6b-12b to the right arm, 6c-8c to the head, and 4
and 5 to the torso. Bodies 4sl and 4sr are auxiliary, used for the application of the
tension spring between bodies 3 and 4. Bodies 1 to 3 correspond to the robot’s
base and locomotion. At this stage, the behaviour of the omnidirectional wheels
and suspension system was not considered. Bodies 1 and 2 (not represented in
the CAD model) are massless fictitious links that allow the robot’s base to slide
and rotate while traveling along the floor plane (using 2 linear actuators and 1
revolute motor). The work in [8] details the degrees-of-freedom associated with
each main joint of the robot. From the CAD model, the masses and inertia of
all the robot’s bodies were obtained, listed on Table 1.

The robot’s inverse dynamics were analysed using two methods. The first was
an in-house computational code that applied an altered version of the recursive
Newton-Euler algorithm presented in [10]; the in-house code was programmed in
Python, using the numpy and matplotlib libraries for mathematical operations
and to obtain a visual representation of the robot. The second was a commercial
simulation software. The resulting computational models are shown in Figure 2.

In Figure 2.a the robot is in its starting position (zero position reference). In
this configuration, all revolute actuators on the arms and head have a rotation
of 0, and the robot’s base is aligned with the global reference and placed in its
origin. In this setup, the two linear actuators have a total length of 480 mm
(lower actuator) and 400 mm (upper actuator).
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Fig. 1. The CHARMIE robot: (a) CAD model with its bodies labeled, (b) kinematic
diagram

Table 1. Geometric and inertia properties of the multibody system. The origins are
defined in relation to the local coordinates of the preceding link in the kinematic chain.

Body
Origin Mass Inertia [kg.mm2]
[mm] [kg] Ixx Iyy Izz Ixy Ixz Iyz

1 [d1, 0, 0] 0 0 0 0 0 0 0
2 [0, d2, 0] 0 0 0 0 0 0 0
3 [0, 0, 0] 37.1 1187000 1304000 1610000 11450 3586 −51860

4sr = 4sl [±245, 0, 341] 0 0 0 0 0 0 0
4 [0, 0, 290 + d4] 7.5 118300 167400 94970 19.62 1.907 −7536
5 [0, 0, 434] 4.6 77230 80350 32960 2316 -229.9 4803

6a = 6b [±200, 3, 460] 0.3 32.39 32.39 19.93 0 0 0
7a = 7b [0, 0, 30] 0.3 102.5 102.5 19.61 0 0 0
8a = 8b [0, 0, 61.5] 0.4 710.8 710.8 26.54 0 0 0
9a = 9b [0, 0, 145] 0.4 710.8 710.8 26.54 0 0 0

10a = 10b [0, 0, 145] 0.4 663.9 663.9 26.56 0 0 0
11a = 11b [0, 0, 140] 0.4 663.9 663.9 26.56 0 0 0
12a = 12b [0, 0, 140] 0.3 498.6 498.6 19.94 0 0 0

6c [0, 0, 495] 0.3 145.8 132.1 246.5 0 0 4.732
7c [0, 0, 46.3] 0.4 296.0 268.2 522.0 2.606 −0.822 6.866
8c [14.8, −5.3, 18.3] 0.7 8548 7189 4981 31.79 143.1 −222.0
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Fig. 2. Computational models of the CHARMIE robot’s dynamics: (a) in a commercial
multibody dynamic analysis software (frame t = 0s), (b) in the in-house developed code
(frame t = 1.5s) with bold arrows representing the main directions of motion.

For comparison, the same generic motion was studied in both environments.
All joints started with zero velocity. The motion lasted for 5 seconds, and was
controlled via the accelerations of the 19 actuators. The accelerations were de-
fined as: 0.032 m/s2 for the base x and y linear motions, 2π/9 rad/s2 for the base
rotation around the z axis, 0.0032 m/s2 for the linear actuators on the body, and
2π/9 rad/s2 for the revolute motors on the arms and head. These accelerations
were multiplied with a sign function that has a negative value for the first half
of the simulation, and positive for the second half.

3 Equations of motion

The formulation of multibody system dynamics adopted in this work follows
closely that of [10], in which a recursive Newton-Euler algorithm is used to de-
rive the spatial system’s equations of motion. These equations were implemented
using the outputs from the forward kinematic analysis of [8] (orientations defined
by rotation matrices, point coordinates, joint positions, velocities and accelera-
tions).

The algorithm is divided into two stages. The first stage is preparatory, and
converts the data from the kinematic analysis into the relevant inputs for the
dynamic calculations (body linear acceleration, angular velocity, and angular ac-
celeration). Iterations progress from the global reference (body 0) to the robotic
end-effector, modeling the behaviour of each body using the calculated proper-
ties of the previous kinematic link i− 1, and the relative motion between link i
and link i − 1. The calculation of the linear accelerations includes the Coriolis,
centrifugal, and Euler accelerations for computing the fictitious forces.
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The second stage uses the information from the first stage to determine the
reaction forces and torques applied by each body i−1 on body i, progressing from
the end-effectors to the robot’s base. To allow tackling more complex structures
(not only serial assemblies of links) the original algorithm had to be altered. The
modified formulation can directly tackle any body which has only one unknown
reaction force and moment vector (applied by link i− 1). If this condition is not
met, a manual analysis is required (such is the case for bodies 4 and 5 of the
CHARMIE robot). To simplify the computational implementation, forces and
torques applied by link i on links i+1 are considered positive, while forces applied
by links i− 1 on link i are negative. In the following equations, the superscript
next to each variable represents the reference frame they are expressed in.

The sum of the na unknown f i
ja forces applied by the ja links i− 1 on link

i is determined using Euler’s first law of motion, written as:

na∑
ja=1

f i
ja = mip̈

i
Ci +

nb∑
jb=1

(
Ri

jbf
jb
jb

)
(1)

where mi is the mass of body i and p̈i
Ci the linear acceleration of its center

of mass. The nb forces applied by bodies f jb
jb in body i are determined in the

previous iterations i+ 1, so they are expressed in the local coordinates of their
respective bodies. Before adding these forces, they are rotated to the orientation
of body i using the Ri

jb rotation matrices.

In order to determine the sum of the na reaction torques µi
ja applied by the

ja links i− 1 on link i, Euler’s second law of motion is used:

na∑
ja=1

µi
ja =Ī

i
iω̇

i
i + ωi

i × (Ī
i
iω

i
i) +

na∑
ja=1

(
−f i

ja × rija,Ci

)
+

nb∑
jb=1

(
Ri

jbf
jb
jb × rijb,Ci +Ri

jbµ
jb
jb

) (2)

The change in angular momentum of body i is determined from the inertia

matrix Ī
i
i, its angular velocity ωi

i, and its angular acceleration ω̇i
i. The sum

of torques considers both directly applied torques, as well as the effect from
forces not aligned with the body’s center of mass. This results in three known
groups of torques: the sum of the na cross products between the f i

ja forces and

the respective rija,Ci vectors that define the displacement from the forces’ point
of application to the body’s center of mass; the sum of the nb cross products
between the f jb

jb forces converted to the orientation of i using the Ri
jb rotation

matrices, and the respective rijb,Ci vectors that define the displacement from the

forces’ point of application to the body’s center of mass; and the sum of the µi
jb

torques applied by body i in bodies jb with their orientations converted to that
of body i using the Ri

jb rotation matrices.
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4 Inverse dynamics for closed and overconstrained loops

The equations of motion automatically deduce the applied forces and torques
if a body has only one unknown reaction force and moment vector at its base
when traversing the chain from the tip to the base. However, if this condition
is not met (in closed or overconstrained loops), only the sum of unknown forces
is calculated, and a more detailed study must determine their distribution. This
occurs for bodies 4 and 5 of CHARMIE. For simplification, these reactions were
analysed based on the mechanism formed by these bodies and the tolerances of
their joints.

Since this section tackles specific sections of the robot, not generalizable sys-
tems, a different nomenclature is used to facilitate reading the equations. The
forces and torques are expressed using their x, y and z components, and the ori-
entations between bodies is defined using a single angle (there is only rotation
around a single axis between two consecutive bodies). Euclidean vectors asso-
ciated with distances are highlighted by accenting the corresponding variable
with a right arrow. Most equations used in this sections result from develop-
ing a single line of equations (1) or (2). The notation used in both sections is
interchangeable using the following equations:Fxjb

Fyjb
Fzjb

 = f jb
jbR

i
jb;

µxjb

µyjb
µzjb

 = µjb
jbR

i
jb (3)

for forces and torques applied by link i on the links i+ 1, and:Fxja

Fyja
Fzja

 = f i
ja;

µxja

µyja
µzja

 = µi
ja (4)

for the forces and torques applied by links i− 1 on link i.
Body 5 of CHARMIE (Figure 3) has three unknown forces/torques applied

by: the tension spring s5, the revolute joint j5, and the linear actuator act5.
Their distribution was determined using the following seven steps:

1. The tangential Fts5 component of s5 can be determined directly from the
spring initial force Fi, spring rate k and it’s extension (Ls5 − (L0)s5). This
force’s y and z components are determined from the spring orientation β5.
The spring does not apply any torque directly.

Fts5 = (Fi)s5 + ks5(Ls5 − (L0)s5) (5)

Fys5 = Fts5sin(β5); Fzs5 = Fts5cos(β5) (6)

2. Both j5 and act5 are revolute joints around the x axis, so they do not apply
any torque on it. The force from act5 must nullify the remaining µx torque
around j5; this force’s component on the yz plane must be tangential to the



Dynamic modeling of a human-inspired robot 7

Fig. 3. Kinematic representation of body 5 of the CHARMIE robot (a) and correspond-
ing free body diagram (b). In (b), known forces and torques are colored in red/orange,
unknown forces are colored green, and displacement vectors in blue. The x′

5y
′
5z

′
5 axes

represent the orientations used in all calculations of body 5

actuator’s orientation. The following three equations allow determining the
y and z components of Fact5.

µxaux =Ī
5
5ω̇

5
5[1, 0, 0]

T + ω5
5 × (Ī55ω

5
5)[1, 0, 0]

T

− Fys5(
−→
e5z −

−−→
f5z) + Fzs5(

−→
e5y −

−−→
f5y) + Fy6a(

−→
a5z −

−−→
f5z)

− Fz6a(
−→
a5y −

−−→
f5y) + µx6a + Fy6b(

−→
b5z −

−−→
f5z)− Fz6b(

−→
b5y −

−−→
f5y)

+ µx6b + Fy6c(
−→
c5z −

−−→
f5z)− Fz6c(

−→
c5y −

−−→
f5y) + µx6c

(7)

Ftact5 =
µxaux

sin(α5)(
−→
d5z −

−−→
f5z)− cos(α5)(

−→
d5y −

−−→
f5y)

(8)

Fyact5 = Ftact5sin(α5); Fzact5 = Ftact5cos(α5) (9)

3. The y and z components of j5 can now be determined with the sum of forces.

Fyj5 = m5p̈y
5
C5 + Fy6a + Fy6b + Fy6c − Fyact5 − Fys5 (10)

Fzj5 = m5p̈z
5
C5 + Fz6a + Fz6b + Fz6c − Fzact5 − Fzs5 (11)
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4. Since j5 and act5 are similar in terms of construction and tolerances, it was
assumed that the remaining x reaction force is divided equally among them.

Fxj5 = Fxact5 =
m5p̈x

5
C5 + Fx6a + Fx6b + Fx6c

2
(12)

5. All unknown forces are determined.
6. The sum of unknown µx must be 0 at this stage. Due to the tolerance

similarities between j5 and act5, it was estimated that each will apply half
of the µy and µz torques obtained using equation (2).

2µyj5 = 2µyact5 = Ī
5
5ω̇

5
5[0, 1, 0]

T + ω5
5 × (Ī55ω

5
5)[0, 1, 0]

T

− Fzs5
−→
e5x + Fxs5

−→
e5z − Fzact5

−→
d5x + Fxact5

−→
d5z

− Fzj5
−−→
f5x + Fxj5

−−→
f5z + Fz6a

−→
a5x − Fx6a

−→
a5z + µy6a

+ Fz6b
−→
b5x − Fx6b

−→
b5z + µy6b + Fz6c

−→
c5x − Fx6c

−→
c5z + µy6c

(13)

2µzj5 = 2µzact5 = Ī
5
5ω̇

5
5[0, 0, 1]

T + ω5
5 × (Ī55ω

5
5)[0, 0, 1]

T

− Fxs5
−→
e5y + Fys5

−→
e5x − Fxact5

−→
d5y + Fyact5

−→
d5x

− Fxj5
−−→
f5y + Fyj5

−−→
f5x + Fx6a

−→
a5y − Fy6a

−→
a5x + µz6a

+ Fx6b
−→
b5y − Fy6b

−→
b5x + µz6b + Fx6c

−→
c5y − Fy6c

−→
c5x + µz6c

(14)

7. The distribution of unknown torques is fully determined.

Body 4 of CHARMIE (Figure 4) has four unknown forces/torques: the ones
originating from the tension springs srt4 and slt4, the prismatic joint j4 along
the z axis, and the linear actuator act4. Their distribution was determined using
the following nine steps:

1. The spring forces srt4 and slt4 required an analysis of the auxiliary bodies
4sr and 4sl (Figure 5). The spring force (sr4 or sl4) is determined directly
from the spring position and orientation.

Fts4 = (Fi)s4 + ks4(Ls4 − (L0)s4) (15)

Fxs4 = Fts4sin(γ4); Fzs4 = Fts4cos(γ4) (16)

2. Forces srt4 and slt4 are along the z axis, and can be calculated by using
them to nullify the torque µy reaction on joint jr4 or jl4.

Fzsrt4 = Fzslt4 =
Fzsr4

−−→
h4x − Fxsr4

−→
h4z

−→
j4x

(17)
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Fig. 4. Kinematic representation of body 4 of the CHARMIE robot (a) and correspond-
ing free body diagram (b). In (b), known forces and torques are colored in red/orange,
unknown forces are colored green, and displacement vectors in blue. The x′

4y
′
4z

′
4 axes

represent the orientations used in all calculations of body 4.

Fig. 5. Free body diagram of body 4sr with unknown forces and torques colored in
green, and displacement vectors in blue.

3. For modeling body 3, the joint reactions (jr4 or jl4) are determined with
the sum of forces within these auxiliary bodies.

Fxjr4 = Fxs4; Fzjr4 = Fzs4 + Fzsrt4 (18)

4. Since act4 is the only unknown z reaction on body 4, and its orientation in
the yz plan is known, its y and z components can be determined.

Fzact4 = m4p̈z
4
C4 + Fzact5 + Fzj5 + Fzs5 − Fzsrt4 − Fzslt4 (19)

Fyact4 = Fzact4tan(α4) (20)
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5. Due to the tight tolerance of j4, it was assumed it applies the remaining x
and y reaction forces.

Fxj4 = m4p̈x
4
C4 + Fxact5 + Fxj5 (21)

Fyj4 = m4p̈y
4
C4 + Fyact5 + Fyj5 + Fys5 − Fyact4 (22)

6. All unknown forces are determined.
7. Since joint j4 cannot apply torques in the z axis, and joints srt4 and slt4

are equal with tighter tolerances then act4, it was assumed these two joints
apply half of µz each.

2µzsrt4 = 2µzslt4 = Ī
4
4ω̇

4
4[0, 0, 1]

T + ω4
4 × (Ī44ω

4
4)[0, 0, 1]

T

− Fxj4
−→
g4y + Fyj4

−→
g4x + Fyact4

−→
d4x − Fys5

−→
a4x + Fxj5

−→
b4y

− Fyj5
−→
b4x + µzj5 + Fxact5

−→
c4y − Fyact5

−→
c4x + µzact5

(23)

8. Due to the tight tolerance of j4, it was assumed it applies the remaining
torques µx and µy.

µxj4 = Ī
4
4ω̇

4
4[1, 0, 0]

T + ω4
4 × (Ī44ω

4
4)[1, 0, 0]

T + Fzsrt4
−→
e4y + Fzslt4

−→
e4y

− Fyact4
−→
d4z + Fzact4

−→
d4y − Fyj4

−→
g4z + Fys5

−→
a4z − Fzs5

−→
a4y

+ Fyj5
−→
b4z − Fzj5

−→
b4y + Fyact5

−→
c4z − Fzact5

−→
c4y

(24)

µyj4 = Ī
4
4ω̇

4
4[0, 1, 0]

T + ω4
4 × (Ī44ω

4
4)[0, 1, 0]

T − Fzsrt4
−→
e4x − Fzslt4

−→
e4x

− Fzact4
−→
d4x + Fxact4

−→
d4z + Fxj4

−→
g4z + Fzs5

−→
a5x

+ Fzj5
−→
b4x − Fxj5

−→
b4z + µyj5 + Fzact5

−→
c4x − Fxact5

−→
c4z + µyj5

(25)

9. The distribution of unknown torques is fully determined.

5 Results and discussion

The two methods (in-house code and commercial software) used to analyse the
inverse dynamics of CHARMIE produced similar results. In Figure 6, the reac-
tions applied in body 3 are compared — this body was chosen since its calcula-
tions require data from all iterations of the recursive algorithm. The discontinuity
at the 2.5 s mark represents the inversion of the direction of all accelerations.

Originally, in Figure 6.f, there was a systematic difference in the results.
An in-depth analysis concluded this was due to the commercial software under-
evaluating the inertia of body 3 (this software does not allow a manual definition
of inertia). To produce the near identical results shown, the inertia of body 3 was



Dynamic modeling of a human-inspired robot 11

Fig. 6. Comparison of the reactions forces and torques applied by body 2 on body 3
using both considered methods for the inverse dynamic analysis of CHARMIE.

changed in the in-house code to 0. The only remaining slight variations in Figures
6.d and 6.e are user induced, caused by simplifications made to the model in the
commercial software (Figure 2) to avoid redundancies. These changes slightly
altered the points of application of some forces, altering the torque generated by
them. The obtained results validate the developed in-house code for the multi-
body dynamic model of CHARMIE.

The visual interface of the aforementioned commercial software cannot be
disabled, reducing its computational efficiency. For a simplified verification of
the in-house algorithm’s efficiency, a double pendulum was modeled both in it,
and in a dynamic simulator for robotic applications (CoppeliaSim). Without
graphical interface, both methods presented identical computational speed.

The developed code does not rely on any commercial software, allowing easier
compatibility with other computational tools. This becomes especially useful for
testing robotic control solutions. In the context of the CHARMIE project, this
model will be used to implement and train neural networks for motion control.

One of the main advantages of the obtained model is its modularity and ease
of parametrization. In an ongoing study, the robot’s mechanism design is being
optimized to minimize actuator loads. Six input variables (choice of springs for
the robot, geometric parameters, and a variable selecting the robot’s trajectory)
were defined, and then automatically altered using a programming loop. This
resulted in 47570 possible solutions to be compared, each simulated for 1 minute
of motion with a time step of 0.1 s. The program’s total run time was under 65
hours: an average computation time of 5 seconds of per case. Preliminary results
show a reduction of over 70% in both maximum and average actuator loads.
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Finally, it must emphasized that the outcomes of this study are playing a
pivotal role in the CHARMIE project, a vital step forward for the development
of the physical prototype of the robot.
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