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Colorectal cancer presents one of the most elevated incidences of cancer worldwide. Colonoscopy relies on histopa-
thology analysis of hematoxylin-eosin (H&E) images of the removed tissue. Novel techniques such asmulti-photonmi-
croscopy (MPM) show promising results for performing real-time optical biopsies. However, clinicians are not used to
this imagingmodality and correlation betweenMPMandH&E information is not clear. The objective of this paper is to
describe and make publicly available an extensive dataset of fully co-registered H&E andMPM images that allows the
research community to analyze the relationship betweenMPM andH&E histopathological images and the effect of the
semantic gap that prevents clinicians from correctly diagnosingMPM images. The dataset provides a fully scanned tis-
sue images at 10x optical resolution (0.5 µm/px) from 50 samples of lesions obtained by colonoscopies and
colectomies. Diagnostics capabilities of TPF and H&E images were compared. Additionally, TPF tiles were virtually
stained into H&E images by means of a deep-learning model. A panel of 5 expert pathologists evaluated the different
modalities into three classes (healthy, adenoma/hyperplastic, and adenocarcinoma). Results showed that the perfor-
mance of the pathologists over MPM images was 65% of the H&E performance while the virtual staining method
achieved 90%. MPM imaging can provide appropriate information for diagnosing colorectal cancer without the
need for H&E staining. However, the existing semantic gap among modalities needs to be corrected.
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Introduction

Colorectal cancer ranks as one of the predominant cancers, being the
third most commonly occurring cancer in men and the second most com-
monly occurring cancer in women.1 Fortunately, its early detection signifi-
cantly increases the survival rate, reaching a cure rate of 90% when
diagnosed at a localized stage.2,3 Moreover, colorectal cancer can be
prevented by the early detection of polyps thatmight progress towards can-
cer. 20–40% of patients present polyps and traditional colonoscopies pres-
ent average adenomamissing rates that can range from12.5% to 68.1% but
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that can be reduced by using new technologies.4 Furthermore, despite 29–
42% of the detected polyps being hyperplastic with no malignant risk, the
rest corresponds to neoplastic tissue that can progress to colorectal cancer
if not removed.5–7 Common practice involves removal of the identified
polyps, followed by histopathological analysis. Besides this, during a con-
ventional colon polypectomy using endoscopic mucosal resection (EMR),
residual adenomatous tissue rates of 46% and postprocedure recurrence
rates of 12–21.9% have been reported.8–10 This implies that follow-up
and reinterventions are necessary. This affects the prognosis of the patient
while increasing the risk of complications such as bleeding or perforation.
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Therefore, optical biopsy based on imaging technologies that generates im-
ages of the cellular structure of polyps aids real-time clinical decision-
making.10

Already in 2017, Byrne et al.11 identified that computer-aided detec-
tion (CAD) systems have great potential in colonoscopy on three key
areas: adequacy of mucosal inspection, polyp detection, and optical biopsy.
These CAD systems have recently been boosted with the great success of ar-
tificial intelligence and deep learning, giving place to an exponential
growth of works related to detection, localization, and optical biopsy of
polyps,12 mainly based on traditional image modalities, namely white
light imaging, narrow band imaging, or hematoxylin–eosin (H&E).13,14

To this end, extensive research is being done on the different key aspects
of deep learning models to improve performance: architectures,15,16 loss
functions,17,18 augmentation techniques19,20, or dataset generation.21,22

Because of all these aspects, deep learning models based on novel tech-
nologies such as reflectance confocal microscopy, multiphoton microscopy
(MPM), or optical coherence tomography (OCT) among others are being
analyzed to allow performing new in-situ and in-vivo diagnostic bymeasur-
ing the presence and degree of malignancy for the identified tissue.23 This
will allow safer resection with clean margins, as the polyp margins could
be analyzed prior and after resection.

In the last couple of decades, two-photon fluorescence (TPF) and sec-
ond-harmonic generation (SHG) microscopy have been largely used in bio-
medical field. They intrinsically offer several advantages with respect to
other optical techniques, like wide-field and confocal microscopy, such as
reduced photo-damage/photo-toxicity, optical sectioning capability, re-
duced scattering, and high-resolution deep-tissue imaging.

In this sense, recent studies24,25 conclude that images of human colon
tissue obtained with MPM at high resolution (40× objective with 1.3 NA
and 195 nm/pxl, 25x objective with 1.1 NA, respectively) contain morpho-
logical and functional information for discriminating between cancer, ade-
noma, and normal tissue. A more recent work1 has validated that the
information contained on MPM images can be used to successfully build
machine learning models that can accurately distinguish among malignant
neoplastic and non-malignant tissue. However, it presents mainly two lim-
itations:

(1.) These novel techniques are unfamiliar for clinicians and face barriers
for being incorporated into clinical practice.

(2.) There is a lack of abundant labeled images that are required for mod-
ern machine learning models to appropriately learn the discriminative
features for novel modalities.26,27

To overcome this, it is necessary to develop machine learning methods
for converting images from the novel domain (e.g., MPM) into the known
gold-standard domain (H&E). To this end, we proposed28 an algorithm to
virtually transform an MPM image into its corresponding H&E counterpart
by using simulated images and demonstrating the transformation was af-
fordable by current algorithms.

In the current work, we describe and make publicly available a real
MPM and H&E colon tissue dataset with pixel correspondence among
both modalities. This dataset should serve the research community to
deepen its knowledge on these techniques both from the clinical point of
view and the algorithmic point of view.

Additionally, to give an insight on the capabilities for clinicians to diag-
nose over MPM images, we analyze the relative capability of clinicians to
diagnose image parts of MPM images compared to H&E image parts. Fi-
nally, we also measure the relative capability of clinicians to diagnose
image parts of MPM images that have been virtually converted into H&E
image parts by means of the method we proposed in 28.

Materials and Methods

Dataset Definition

The dataset consists of an extension of the dataset we presented in 1. A
set of 50 samples obtained during colonoscopies and colectomies carried
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out between the years 2012 and 2017 at the Basurto University Hospital
(Spain). These are 24 malignant neoplasms (adenocarcinomas), 19
preneoplastic lesions (adenomas), 2 hyperplasia samples, and 5 healthy tis-
sues, obtained from 24 men and 19 women. The samples were diagnosed
by the Pathological Anatomy Department and the FFPE (formalin-fixed
paraffin-embedded) blocks were stored in the Basque Biobank (structure
accredited by the Health Department and inscribed in the register of the
Instituto de Salud Carlos III). All the samples were processed and sliced
after signing informed consent without altering the standard clinical proce-
dures. The sliced samples were scanned at the joint-lab between National
Institute of Optics and European Laboratory for Non-linear Spectroscopy
in Florence, Italy, using a custom-made multiphoton microscope for co-
registered two-photon fluorescence (TPF) and second harmonic generation
(SHG) microscopy,29,30 and later stained with H&E (hematoxylin& eosin).

The different image modalities were reconstructed and co-registered by
performing non-rigid deformation allowing pixel correspondence among
the different modalities. Pathologists manually labeled the regions where
lesions were present. The dataset provides fully scanned tissue images at
10× optical resolution (0.5 μM/px).

The results are shown in Table 1 accordingly to the nomenclature spec-
ified in 31. In the case of adenocarcinomas, the terms "low grade" and "high
grade" refer to the tumor grading. Low includes the well and moderately
differentiated grades, whereas high refers to the poorly differentiated
grade. This table might slightly differ from 1 as new sections were cut
from the FFPE blocks with 10 μM thickness to allow simultaneous MPM
and H&E scanning of the same block.

The dataset is openly available at https://www.biobancovasco.org/en/
Sample-and-data-e-catalog/Databases/PD181-PICCOLO-EN3.html and can
be downloaded after filling in a request form.

Acquisition Procedure

Biological tissues can be imaged by TPF microscopy because cells and
extracellular matrix intrinsically contain a variety of fluorescent molecules
without the needs of exogenous labels.33 The light emitted by the sample
can be collected by a photomultiplier to produce a fast imaging of the
specimen under analysis. In this setup, using the same NIR laser source,
SHG microscopy can be also performed, in order to obtain additional
morphological information concerning non-centrosymmetric molecular
structures, such as collagen fibers.34 Both TPF and SHG signals can be
collected at the same time by separating them using an optical filter.

The experimental setup used for the acquisition is similar to the one de-
scribed in 1. It consists of a custom-made multimodal multiphoton micro-
scope, whose optical scheme is shown in Fig. 1. The excitation source for
multiphoton imaging is a Chameleon Discovery (Coherent, Santa Clara,
CA), an Yb-based femtosecond pulsed laser at 80 MHz rate with two syn-
chronous outputs: the beam used in the experiments here described is tun-
able in the 680–1300 nm range and pulses of about 100 fs, the other beam
with afixed 1040 nmwavelengthwas not used in this experiment. The laser
beam passes through amechanical shutter, whichminimizes the sample ex-
posure to the laser light while acquiring images, through a telescope
mounted for collimation and beam sizing. A motorized half-waveplate to-
gether with a Glan-Taylor polarizer are used for power dimming. After
these optical elements, the laser light is then directed to the scanning sys-
tem, consisting of a vertically mounted stainless-steel optical breadboard,
placed onto an antivibration optical table (Thorlabs Inc., Newton, NJ).
Two galvanometric mirrors (Cambridge Technology, Bedford, MA) provide
fast beam scanning and tube and scan lenses optically relays the beam
to the objective lens, mounted on an optomechanical support equipped
with both mechanical and piezoelectric (P-725KHDS PIFOC, Physik
Instrumente, Karlsruhe, Germany) translators for gross and fine move-
ments, respectively. Spatial motions are performed bymeans of an xy trans-
lator (M-687 PIline, Physik Instrumente, Karlsruhe, Germany), inwhich the
sample is placed, allowing mapping of large areas throughmovements over
a broad range with submicrometric resolution. Backward emitted fluores-
cence and SHG signal from the sample is then collected by the same
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Table 1
Dataset histopathological description

Sample
Id.

Slide content description Histological analysis Scanned
tissue
sections

Co-registered image
resolution (px)

56 2.2 cm part of a 7 cm size polyp obtained from the descending colon Villous adenoma with high grade dysplasia 1 43397×44426
56_SA Healthy tissue adjacent to id 56 sample Healthy 1 29950×19867

57 1 cm part of a 3.7 cm size polyp obtained from the ascending colon
Tubulovillous adenoma with high grade
dysplasia

1 31531×30663

57_SA Healthy tissue adjacent to id 57 sample Healthy 1 26308×16938

58 2.3 cm part of a 4 cm size polyp obtained from the descending colon Villous adenoma with high grade dysplasia 1
66293×31593* Due to
size, it is saved as png

58_SA Healthy tissue adjacent to id 58 sample Healthy 1 15914×9927
59 0.4 cm size polyp obtained from the ascending colon Tubular adenoma 2 5054×8994

60 3.3 cm size polyp obtained from the ascending colon
Tubulovillous adenoma with high grade
dysplasia

2 52721×42094

61 2.1 cm part of a 9 cm size polyp obtained from the descending colon Villous adenoma with high grade dysplasia 1 51197×42469
62 0.5 cm size polyp obtained from the ascending colon Tubular adenoma 1 28032×25116
63-1 1.1 cm part of a 2.8 cm size polyp obtained from the descending colon Tubular adenoma with low grade dysplasia 1 55092×43338

63-2 1.65 cm part of a 2.8 cm size polyp obtained from the descending colon
Adenocarcinoma over tubulovillous
adenoma with high grade dysplasia

1 51503×41160

64 0.9 cm part of a 1.2 cm size polyp obtained from the ascending colon Tubular adenoma with low grade dysplasia 1 31370×32749

65
6 polyps with sizes between 0.32 and 0.54 cm, belonging to a case of 118 polyps with
sizes between 0.6 and 6 cm, obtained from the ascending colon

Tubular adenoma with low grade dysplasia 1 40623×38695

66 3.1 cm part of a 9 cm size polyp obtained from the ascending colon
Tubulovillous adenoma with high grade
dysplasia

1 61086×40007

67 1.4 cm size polyp obtained from the ascending colon Sessile tubular adenoma, low grade 1 59641×43416
68 0.2 cm part of a 0.3 cm size polyp obtained from the descending colon Tubular adenoma with low grade dysplasia 1 43804×28848

69-1
2 polyps with sizes of 0.2 and 0.3 cm, belonging to a case of 5 polyps, obtained from the
descending colon

Hyperplastic polyp 1 9849×9149

69-2 0.36 cm part of a 0.4 cm size polyp obtained from the descending colon Tubular adenoma with low grade dysplasia 1 42197×37311
70 0.8 cm part of a 1 cm size polyp obtained from the ascending colon Tubular adenoma with low grade dysplasia 1 32229×35769

71 2.2 cm part of a 2.5 cm size polyp obtained from the ascending colon
Tubulovillous adenoma with high grade
dysplasia

1 40979×39476

72 3.2 cm part of a 4 cm size polyp obtained from the ascending colon Tubular adenoma with low grade dysplasia 1 64851×39618
73 0.2 cm size polyp obtained from the descending colon Hyperplastic polyp 1 45722×42651
74 1.2 cm part of a 1.8 cm size polyp obtained from the descending colon Tubulovillous adenoma 1 25634×31466
75 no polyp from a case with a 3 cm size polyp obtained from the descending colon Invasive colloid adenocarcinoma 1 34434×33708
76 0.4 cm part of a 0.6 cm size polyp obtained from the transverse colon Tubular adenoma 6 14074×13439

77 No polyp obtained from the ascending colon
Low grade adenocarcinoma,Not Otherwise
Specified ( NOS)

1 41459×41225

77_SA Healthy tissue adjacent to id 77 sample Healthy 1 35964×28569

78 2.2 cm part of a 3 cm size polyp obtained from the transverse colon
Low grade adenocarcinoma, NOS over
high grade tubulovillous adenoma

1 55961×40668

79 No polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1 65085×37985
80 No polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 57283×30663
80_SA Healthy tissue adjacent to id 80 sample Healthy 1 23315×23950
81 0.6 cm size polyp obtained from the transverse colon Low grade adenocarcinoma, NOS 1 49701×18623
82 1.4 cm part of a 4 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 28693×29872
83 2 cm part of a 2.3 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 44997×39411
84 2.6 cm part of a 4 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 54380×40279
85 1.5 cm part of a 2.5 cm size polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1 59914×43532
86 1.2 cm part of a 1.5 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 39877×32698
87 1.6 cm part of a 2.6 cm size polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1 51396×43066
88 1.9 cm part of a 4.5 cm size polyp obtained from the ascending colon Low grade adenocarcinoma, NOS 1 60367×39566
89 1.9 cm part of an 8.7 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 50807×25518
90 1.6 cm part of a 3.5 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 46513×39411
91 1.8 cm part of a 6.5 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 60212×38076
92 2.7 cm part of an 8 cm size polyp obtained from the transverse colon High grade adenocarcinoma NOS 1 58877×37752
93 1 cm part of an 8 cm size polyp obtained from the descending colon High grade adenocarcinoma, NOS 1 34318×37558
94 2.4 cm part of a 6 cm size polyp obtained from the ascending colon High grade adenocarcinoma, NOS 1 48885×44478
95 1.3 cm part of a 4 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 42884×26645
96 1.7 cm part of a 5 cm size polyp obtained from the descending colon Low grade adenocarcinoma, NOS 1 49014×40253
97 1.3 cm part of a 5 cm size polyp obtained from the descending colon High grade adenocarcinoma, NOS 1 46811×40020
98 2 cm part of a 5 cm size polyp obtained from the descending colon High grade adenocarcinoma, NOS 1 42268×41031
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objective lens used for excitation after the separation from the excitation ra-
diation through a dichroic mirror (FF665-Di02 – 25 × 36, Semrock Inc.
New York, NY) placed into the first cube of the kinematic support. Another
dichroic beam splitter (FF452-Di01, Semrock Inc. New York, NY) is located
into the second kinematic mount and it is useful to split SHG and TPF sig-
nals, sending them to a two different photomultiplier tubes H7422-40 (Ha-
mamatsu, Hamamatsu City, Japan) through their relative lenses. A large
band-pass filter (FF01-505/119-25, Semrock Inc. New York, NY) is used
for the detection of TPF signal, whereas a narrow band pass filter, spectrally
centred at 386 ± 12 nm (FF01-386/23-25, Semrock Inc. New York, NY) is
3

used to detect only the SHG signal. The photocurrent is integrated using
custom electronics and acquired on a PC through an acquisition board
PCI-MIO (National Instruments, Austin, TX) that allows synchronous signal
sampling and scanner driving. System control and data acquisition are con-
trolled using a custom software developed using LabVIEW 2015 (National
Instruments, Austin, TX) development module. Amore detailed description
of the experimental setup can be found in literature.29,36

Multiphoton fluorescence and SHG images were acquired using an
excitation wavelength of 785 nm, focused on the sample by means of a
Plan-Apochromat 10× objective lens (NA 0.45, WD 2.1 mm, Carl Zeiss



Fig. 1. Schematic of the custom-made multimodal multiphoton microscope: tuneable source; shutter; mirrors (M); telescope lenses; half wave plate (1/2WP); quarter wave
plate (1/4WP); Glan-Taylor polarizer (GT); galvanometric mirrors (x, y); scan lens and tube lens (telescope); objective translator (Z translator); XY-translation stage ; dichroic
mirror (D), SHG and TPF photomultipliers.
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Microscopy, Jena, Germany). Image tiles were acquired using a field of
view of 511 × 511 μM, a resolution of 1024 × 1024 pixels, a pixel dwell
time of 5 μsec, and an average laser power of about 20 mW on the sample.
As an example of captured images, Fig. 2 shows several 511 × 511 μM
image tiles acquired with the multiphoton microscope using TPF and the
corresponding SHG images in different positions of the same tissue slide.

Fig. 3 shows an example of a whole 10 μM thick paraffin-embedded tis-
sue slide scanned with the multiphoton microscope. The image has been
generated by concatenating all the individual TPF (red) and SHG (green)
image tiles. TPF and SHG images were merged together with different col-
ours in order to overlap the two images and underline the different contri-
butions supplied by the two techniques.

Samples analyzed for this study were cut with a rotary microtome
(RM2255, Leica Biosystems, Wetzlar, Germany) at 10 μM from Formalin-
Fixed Paraffin-Embedded (FFPE) blocks of human tissue. 10 μM was se-
lected as optimal thickness to allow simultaneous scanning of the samples
to have enough depth for the MPM microscopy scanning as well as to
avoid sticking and tissue damage on the slide scanner. Then, superfrost
slides (LineaLAB, Badalona (Barcelona), Spain) were H&E stained in an au-
tomated slide stainer (SIMPHONY system, Roche Diagnostics, Basel,
Switzerland). The histopathologists analyzed the stained slides under a mi-
croscope and annotated them as detailed on Section 2.3. Finally, all the
slides were scanned with a fully motorized microscope (BX61, Olympus
Corporation, Tokyo, Japan) equipped with Ariol software platform, where
all the images had 20× magnification.

Dataset Processing and Labeling

The tiles obtained by the H&E acquisition were aggregated in order to
create a high-resolution image of the whole tissue. In a similar way, MPM
acquired tiles, both for TPF and SHG, were also aggregated into single
high-resolution images. Fig. 4 shows a reconstructed image for H&E, TPF,
and SHG contrast mechanisms.

From each of these images, a rectangle showing the region of interest
(ROI) covering the tissue was manually selected for all modalities. For the
4

co-registration process, H&E image was selected as the fixed image and
the TPF and SHG images were co-registered among them. To this end,
Elastix python library was used.37 Deformable co-registration of multi-
source images is an ill-posed problem that is hard to be solved appropri-
ately. Additionally, co-registration of images with sizes greater than
50,000 × 50,000 pixels deals to multiple complications. First, the scale of
both modalities was homogenized by mapping the manually selected
ROIs from SHG and TPF images into the H&E ROI. A second stage com-
prised a rigid co-registration to align the different image modalities. In
order to allow for better computation, the registration map was calculated
over a decimated version of the images and then transferred to the original
scale images. Finally, a b-spline based deformation map was calculated.
Spatial samples were set to 32,000, iterations to 2048 and histogram bins
were set to 64. An important hyperparameter is the grid spacing that de-
fines the number of splines used to estimate the deformation that was set
to 200. Grid spacing controls the regularization strength to avoid reregistra-
tion collapsing into local minima overfitting that deals to unrealistic strong
deformations. Functional to measure the difference among both modalities
was set to Mattes–Mutual information30 as it performs better for co-
registration of images from different modalities. Results for this registration
are depicted in Fig. 5.

Annotation of the dataset was performed by trained pathologists. They
manually segmented parts of the microscopy slides as healthy or lesion. Le-
sion parts refer to the lesion described in Table 1. Ground-truth files were
created over 1/10 sized images by manually segmenting with green colour
(healthy parts) and red colour (lesion parts), as illustrated in Fig. 6.

Pilot Analysis of the Clinical Semantic Gap Among H&E and MPM Image
Modalities

In previous work,1 we qualitatively analyzed the clinical capabilities of
MPM images where the main conclusion was that, although cellular struc-
ture is apparent, the level of detail appreciated on MPM images was felt
to be less than that found in traditional H&E slides. Part of the reason for
this was the reduced visual contrast, as the MPM images are greyscale as



Fig. 2. Individual image tiles acquired using TPFmicroscopy in different positions of a 10 μM thick paraffin-embedded tissue slidewith sample 98 and the correspondent SHG
image diagnosed as high-grade adenocarcinoma. The images show cells with different shape and morphology acquired in different regions of the sample, demonstrating the
capability of TPF microscopy for the label-free morphological assessment of tissues. Each image is 511 × 511 μM2 with a resolution of 1024 × 1024 pixel2.

Fig. 3.Merged image of TPF (red) and SHG (green) of a whole 10 μM thick paraffin-
embedded tissue slide with sample 98 diagnosed as high-grade adenocarcinoma.
The signal originates mainly from mitochondrial NADH in the cell cytoplasm and
from elastic fibers and other fluorescent molecules in the extracellular matrix.
This image has been obtained by concatenating 48 by 39 image tiles, resulting in
an overall field of view of 24.528 × 19.929 mm.
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opposed to the coloured H&E staining, as well as the reduced resolution, as
the MPM images were acquired with low resolution in order to scan cm2-
sized samples in a reasonable amount of time. It was also felt that the intra-
cellular features such as cell nuclei were less apparent on the MPM images.
Overall, theMPM images do show tissue architecture, but not at the level of
detail shown in traditionalH&E imageswhichmade difficult tomake a con-
fident diagnosis.

In order to preliminarily quantify the diagnostics capabilities ratio be-
tween H&E and MPM we have defined a pilot panel composed by five pa-
thologists. To this end, a set of 50 tiles (240 × 240 μM) containing 12
healthy samples, 4 hyperplastic samples, 18 adenoma samples, and 16 ad-
enocarcinoma samples were selected for this study. Selected tiles included
representative parts of the tissue. It is noteworthy that we restricted the
field of view for the diagnostics on purpose to challenge pathologists to a
subtle and complex task. This allows evaluating more efficiently the diag-
nostic capabilities among image modalities. Selected tissue samples are
depicted in Figs 7 and 8.

Additionally, we evaluated whether the use of machine learning algo-
rithms that can transform MPM images into virtually stained H&E ones
can facilitate diagnosing the images. For that, we have adapted a semantic
segmentation network based on a fully convolutional densenet38 as
depicted in Fig. 9. These networks are comprised by a encoder module
that maps the input image × (448 × 448 × 3) through a subsequent set
of (learnt) convolutional operations and decimation parts that reduces the
spatial dimension of the signal while gradually increasing the descriptive



Fig. 4. Acquired full tissue reconstruction from a 10 μM thick paraffin-embedded tissue slide from sample 90 diagnosed as low-grade adenocarcinoma. Left) H&E image,
middle) TPF image, right) SHG image.

A. Picon et al. Journal of Pathology Informatics 13 (2022) 100012
information. After this process, the high-level representation f (7 × 7 ×
2048) of the image is obtained. A second decoder module aims to recon-
struct the spatial resolution of the original image from the image represen-
tation f. To this end, this module is composed by a set of convolutional
filters and upsampling layers that recover the spatial resolution of the
input image obtaining an output image Y (448 × 448 × 3) that present
same dimensions as the input image X. To be able to recover the input
Fig. 5. Effect of the co-registration process. Both TPF and H&E images are overimpos
co-registration method. Right) Overimposed images after the deformable co-registration

6

image high level details, the network makes use of skip connections39

that transfer the low-level features and spatial information from the en-
coder into the decoder. Final layer of the decoder has been substituted by
a sigmoid activation function so that the network can reconstruct the
image Y. For the training process, pairs of × (autofluorescence image),
Y* (H&E stained image) images are presented to the network. The network
is optimized by calculating the network parameters thatminimize themean
ed to appreciate the deformation error. Left) Overimposed images after the rigid
method. Details can be appreciated on the bottom.



Fig. 6. Ground-truth generation. Left) Picture of the microscopy slide. Right) generated ground-truth image.
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squared error between the chemically H&E stained image Y* and the virtu-
ally H&E stained image predicted by the network Y. Fully technical descrip-
tion of the virtual staining algorithm is provided in 20 where we used the
baseline Densenet method without embedding regularization. Selected
MPM images (Fig. 8) were virtually stained. These virtually stained images
are depicted on Fig. 10.
Fig. 7. 240 × 240 μM tissue parts from differ
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A panel of five pathologists performed the evaluation of the different
tiles into four classes (healthy, adenoma/hyperplastic tissue, adenocarci-
noma, or unconclusive). F1-score, which is a geometric average among sen-
sitivity and positive-predictive value is used to measure the evaluation. It is
noteworthy to highlight that the poor performance even for H&E images is
caused by the restriction to a small field of view that precludes pathologists
ent tissue samples. Original H&E images.



Fig. 8. 240 × 240 μM tissue parts from different tissue samples. Original TPF images.

A. Picon et al. Journal of Pathology Informatics 13 (2022) 100012
to see contextual information and different scales information. The aim of
this pilot is only to preliminarily evaluate the diagnostics performance
ratio among modalities.

Table 2 presents the F1 metrics that measure the diagnostics capabilities
wherewe can see that F1 score forH&E images is higher than inMPMmodal-
ities (0.33 vs 0.21). This means that MPM performance is 65% of the H&E
Fig. 9. Illustration for the virtual staining architecture. The encoder part receives the inpu
part recovers the input image spatial size to extract the virtually H&E stained estimat
minimize the distance between the estimated H&E image Y and the chemically stained
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performance (100%). However, if we employ virtual staining methods, the
F1 score for pathologists raises up to 0.30, which is 90% of the H&E perfor-
mance.

In addition to the diagnostic accuracy testing performed by the pathol-
ogists, a free-form discussion of representative images was conducted to try
to further understand the clinical utility and the capabilities of virtually
t autofluorescence image×and extracts its high-level representation f. The decoder
ion Y of the input image X. Training process optimizes the network parameters to
H&E image Y*.



Fig. 10. 240 × 240 μM tissue parts from different tissue samples. Virtually stained H&E images.

Table 3
Virtually H&E stained images findings

Microscopic feature Virtual stained images

Tissue architecture The overall tissue structure and architecture was notably
similar to the original tissue H+E slides. This could give a
reasonable assessment of the tissue at a first glance, for
superficial analysis.

Neutrophils Highly stained cells, such as neutrophils, in the H+E images
were far less apparent in the virtual stained images.

Intracellular features The images were of insufficient magnification to determine
intracellular features, but appeared to lack adequate definition
to identify intracellular features.

Colonic crypts Colonic crypt architecture was not visible on the reconstructed
autofluorescence images, but reappeared after the virtual
staining algorithm. Some slides showed preserved crypt
architecture from the original H+E, whereas others showed
gross artefact.

Overall degree of
image fidelity

The colour and nature of the images broadly resembles the
original H+E slides. Many images showed preserved tissue
structure, although three were identified as having significant
artefact on the virtual staining reconstruction.

Diagnostic
confidence

The overall degree of diagnostic confidence was low, due in
part to absence of clarity of intracellular features, and partly
due to inconsistencies in tissue structure.
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stained images. In particular, feedbackwas requested regarding the level of
detail and features visible in the virtual H+E images. We also enquired re-
garding the degree of fidelity to original tissue features, and the overall di-
agnostic confidence the pathologists felt when evaluating the virtual
images.

The findings are collated and presented in Table 3. Colonoscopy is the
current gold-standard technique for colorectal lesions detection and man-
agement. However, this technology cannot assure clear margins and com-
plete resection as histopathology analysis is performed at laboratory.
Because of that, novel techniques that can allow in vivo and in situ optical
biopsies are being analyzed.

MPM has shown potential for gastrointestinal tissue characterization.
However, clinicians cannot perform confident diagnosis with this novel
modality when using low magnification objective lenses, as in this study,
because of a limited spatial resolution. Scanning the samples with higher
spatial resolution by means of a high-NA objective could represent a solu-
tion to provide the required high spatial resolution for an efficient diagnos-
tic, as demonstrated in 14. On the other hand, the acquisition of very large
fields of view in the cm2 range risks to be impractical because of the ex-
tremely long acquisition time required for scanning. Increasing the spatial
resolution in specific areas that are crucial for diagnostics or fastening the
scanning speed by means of faster scanners or through a multibeam ap-
proach could make the difference for the widespread use of MPM technol-
ogy among pathologists. Anyway, this is beyond the aim of this paper, that
is to present and make publicly available a pixelwise co-registered large
dataset with H&E, TPF, and SHG imaging modalities that can be employed
by the research community to work both on the clinical examination of this
Table 2
Dataset histopathological description

Imaging modality F1 healthy F1 adenoma/hyperplastic F1 aden

MPM 0.24 0.29 0.11
Virtual H&E 0.26 0.36 0.27
H&E 0.36 0.38 0.25

9

technology or the development and comparative analysis of machine learn-
ing models among the different modalities.

Additionally, we have validated that diagnostics performance of MPM
images under small field of view restrictions is 65% than the performance
ocarcinoma F1 (average) % unconclusive Performance ratio

0.21 67% 65%
0.30 54% 90%
0.33 45% 100%
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obtainedwhen looking at the H&E images. Whenwe employ a baseline vir-
tual staining model to transformMPM images into virtual H&E images this
performance raises up to 90%. However, virtual staining methods are far
for providing confident diagnostics to clinicians and further work might
be done.

Future work will include both optical development to get appropri-
ate image quality that could be integrated into functional colonoscopes.
Presented dataset is stored by Basque Biobank and request form can be
found at: https://www.biobancovasco.org/en/Sample-and-data-e-
catalog/Databases/PD181-PICCOLO-EN3.html
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