
 

 

UNIVERSITY OF OKLAHOMA 

GRADUATE COLLEGE 

 

 

 

 

 

A Simulation Study Comparing the Use of Supervised Machine Learning Variable Selection 

Methods in the Psychological Sciences 

 

A THESIS  

SUBMITTED TO THE GRADUATE FACULTY 

In partial fulfillment of the requirement for the degree of 

MASTER OF SCIENCE 

 

 

 

 

By 

CATHERINE BAIN 

Norman, Oklahoma 

2022 



 

 

A Simulation Study Comparing the Use of Supervised Machine Learning Variable Selection 

Methods in the Psychological Sciences 

 

A THESIS APPROVED FOR THE  

DEPARTMENT OF PSYCHOLOGY 

 

 

BY THE COMMITTEE CONSISTING OF 

 

 

 

 

 

 

 

 

 

Dr. Jordan Loeffelman 

Dr. Lauren Ethridge 

Dr. Dingjing Shi 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Catherine Bain 2022 

All Rights Reserved.



 

 

iv 

Acknowledgements 

First, I would like to thank Dr. Jordan Loeffelman for her continued support throughout 

this process. I would also like to thank my committee: Dr. Dingjing Shi and Dr. Lauren Ethridge. 

I truly appreciate all the feedback and support I was given throughout this process. In addition, 

thanks to the Ethridge Lab for the use of their data, with special thanks to Jordan Norris for 

walking me through that data so I may better understand it and for her continued support 

throughout this entire process. Another thank you to Dr. Cassie Boness for the use of her data.  

To my family, who pushed me to apply to graduate school in the first place and continue 

to support me during my time here. To Dr. Ankur Gupta for always providing a fresh lens 

through which to view my project. To Dr. Cassidy Krantz for all her continued feedback and 

reminders to take breaks – whether those be in the Wichita Mountains or just playing a quick 

game of Bananagrams. To Margaret Cox and Katie Ellis who continually remind me that I am 

more than my work here in this program.  

Finally, I’d like to thank all my current and former colleagues and professors who have 

encouraged me throughout my entire academic journey so far. Who knows where I would be 

without them.  

 

 

 

 

 

 



 

 

v 

Table of Contents 

Abstract .......................................................................................................................................... vi 

Filter Methods ................................................................................................................................. 5 

Wrapper Methods............................................................................................................................ 6 

Genetic Algorithm ....................................................................................................................... 7 

Embedded Methods ...................................................................................................................... 11 

Regularization Techniques ........................................................................................................ 11 

Ridge ..................................................................................................................................... 12 

LASSO .................................................................................................................................. 13 

Elastic Net ............................................................................................................................. 16 

Support Vector Machines .......................................................................................................... 18 

Random Forest .......................................................................................................................... 23 

The Present Study ......................................................................................................................... 27 

Methods......................................................................................................................................... 27 

Simulation ................................................................................................................................. 28 

Data Generation ................................................................................................................... 28 

Applications .............................................................................................................................. 29 

Alcohol Use Disorder ........................................................................................................... 29 

Misophonia ........................................................................................................................... 30 

Results ........................................................................................................................................... 32 

Simulation Study ....................................................................................................................... 32 

Results Across All Simulated Datasets .............................................................................. 32 

Comparing methods grouped by characteristics of the datasets .................................... 34 

Comparing methods grouped by characteristics of the method ..................................... 38 

Alcohol Use Disorder ................................................................................................................ 39 

Misophonia ................................................................................................................................ 40 

Discussion ..................................................................................................................................... 42 

Limitations ................................................................................................................................ 45 

References ..................................................................................................................................... 48 

Figures........................................................................................................................................... 62 

 

 

  



 

 

vi 

Abstract 

When specifying a predictive model for classification, variable selection (or subset 

selection) is one of the most important steps for researchers to consider. Reducing the necessary 

number of variables in a prediction model is vital for many reasons, including reducing the 

burden of data collection and increasing model efficiency and generalizability. The pool of 

variable selection methods from which to choose is large, and researchers often struggle to 

identify which method they should use given the specific features of their data set. Yet, there is a 

scarcity of literature available to guide researchers in their choice; the literature centers on 

comparing different implementations of a given method rather than comparing different 

methodologies under vary data features. Through the implementation of a large-scale Monte 

Carlo simulation and the application to three psychological datasets, we evaluated the prediction 

error rates, area under the receiver operating curve, number of variables selected, computation 

times, and true positive rates of five different variable selection methods using R under varying 

parameterizations (i.e., default vs. grid tuning): the genetic algorithm (ga), LASSO (glmnet), 

Elastic Net (glmnet), Support Vector Machines (svmfs), and random forest (Boruta). 

Performance measures did not converge upon a single best method; as such, researchers should 

guide their method selection based on what measure of performance they deem most important.  

Results do, however, indicate that the genetic algorithm is the most widely applicable method, 

exhibiting minimum error rates in hold-out samples when compared to other variable selection 

methods. Thus, if little is known of the format of the data by the researcher, choosing to 

implement the genetic algorithm will provide strong results.  

  



 

 

1 

The sheer volume of data available to behavioral scientists has increased exponentially in 

recent years in many parts thanks to the internet. Through websites such as Amanzon’s 

Mechanical Turk, it is now easier and cheaper for researchers to recruit large, diverse samples of 

participants (Buhrmester et al., 2011; Crump et al., 2013; Gosling et al., 2004; Ipeirotis et al., 

2010). Mechanical Turk has even been shown to be useful in the collection of clinical data 

(Arditte et al., 2016; Shapiro et al., 2013). In addition, online data repositories such as the 

University of Michigan’s Inter-university Consortium for Political and Social Research, 

Harvard’s Institute for Quantitative Social Science Dataverse Network, and the National Institute 

of Mental Health’s Data Archive provide researchers with opportunities for secondary data 

analysis on large datasets that may or may not have been able to have been addressed within a 

traditional lab setting (Yarkoni, 2012).  

These large datasets are often referred to as “big data”. The umbrella of big data covers 

not only these big internet-based datasets containing large sample sizes and large numbers of 

variables but also large national studies looking at many psychological factors at once and 

integrated data (i.e., pooled or coordinated analysis across several data sets; Curran & Hussong, 

2009; Hofer & Piccinin, 2009). Big data is often characterized with several big Vs. Originally 

there were only 3 Vs of big data: Volume, Variety, and Velocity (Laney, 2001). Volume refers to 

the amount of data – that is, the number of observations and the number of variables in a dataset. 

Different types or kinds of variables, such as some numeric and some categorical variables, 

determine the variety of a dataset. Velocity indicates the speed at which the data is collected. As 

big data has become more popular, the number of Vs has grown. As of 2016, there were at least 

19 unique Vs used to characterize big data (Cartledge, 2016). This is an indication that “big” 



 

 

2 

may not mean the same thing across all researcher disciplines or even across individual 

researchers.  

Perhaps what is deemed “big” is a matter of perspective. For behavioral scientists, if 

looking at a multi-site or population study, it is likely big data may be comprised of thousands of 

observations of hundreds of variables while big data comprised of a clinical or convenience 

sample of may only contain a few hundred observations of a couple dozen variables. Yet, to 

computer science researchers, samples of these size are nowhere near what they would deem 

“big data”. As such, it makes sense that behavioral scientists have begun to look to those in 

computer science, specifically those within the area of machine learning, for techniques to use to 

analyze these large datasets.  

Machine learning is an area of computer science that aims to detect patterns in data 

(Kodratoff, 2014), firmly established on an underlying foundation of statistical principles 

referred to as statistical learning theory (SLT). As mentioned previously, big data is often 

comprised of a large number of variables; it may even be the case that the number of variables 

outweighs the number of observations. This often poses a problem for researchers when it comes 

to analysis. For one, many common statistical methods do not handle large numbers of 

predictors, but even when considering methodologies that do handle many predictors, in practice, 

researchers should work to minimize the number of predictors required for obtaining outcome 

predictions to improve efficiency. For example, rather than using a lengthy diagnostic tool, one 

may prefer to use only a subset of the most important questions (or predictor variables) as a 

screening tool. To solve this problem, researchers implement dimension reduction, or variable 

selection, techniques.  



 

 

3 

If approaching a dimension reduction problem with the desire to account for a given 

dependent variable, behavioral science researchers will most often employ the use of stepwise 

regression, adding and removing variables one at a time. Assuming the study has reasonable 

power, and the assumptions of the chosen model are met, this can be an effective method to test 

statistical null hypotheses about given predictor variables. However, not all research directly 

translates to null hypothesis testing; some research requires examining a large pool of potential 

predictors, developing a model with generalizable predictive power, or both (Chapman et al., 

2016). In these kinds of research, it is possible that a researcher may be interested in examining 

anything related to a given outcome variable rather than determining the significance of a single 

predictor variable. Typically, this kind of research is driven by a more general hypothesis about 

types of items may be linked to the outcome variable, often in hopes to create what is called a 

criterion-keyed scale (Anastasi & Urbina, 1997). 

Criterion-keyed scales are meant to predict a particular outcome or criterion, for example 

a scale created to screen for depression like the Center for Epidemiological Studies – Depression 

(CES-D) or alcohol use disorder like the Alcohol Use Disorders Identification Test (AUDIT) (de 

Meneses-Gaya, 2011; Radloff, 1977). When trying to form criterion-keyed scales, stepwise 

regression is not the most effective methodology to use because it emphasizes statistical 

significance over predictive power. Simulation studies have revealed that stepwise regression 

tends to perform poorly in terms of recovering the true structure of the model (Derksen & 

Keselman, 1992; Kok et al., 2021; Whittingham et al., 2006; Wiegand, 2010), and does not 

address a common problem researchers face when creating a model: overfitting. Overfitting 

occurs when a model fits the data it is trained on exceptionally well (sometimes exactly), but 

does not generalize well to other, unseen data. To combat this problem of overfitting, researchers 



 

 

4 

have turned to more complex machine learning techniques such as the Least Absolute Shrinkage 

and Selection Operator (LASSO), Elastic Net, Random Forest, Support Vector Machines (SVM), 

and the Genetic Algorithm (GA) in hopes that they will yield more promising and more 

generalizable results.  

These machine learning techniques work to combat overfitting through something called 

the bias-variance tradeoff. Bias refers to the average error between the predicted model value and 

the true value and can be conceptualized as 𝑏𝑖𝑎𝑠 = 𝑎𝑣𝑔(𝑓′(𝑥) − 𝑓(𝑥)) while variance refers to 

the average variability in the model prediction for the given dataset and can be conceptualized as 

𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 =  𝑎𝑣𝑔[(𝑓′(𝑥) − 𝑎𝑣𝑔[𝑓′(𝑥)])2]. The bias of the model tells us the capacity of the 

model to predict the true values while the variance of the model tells us how much the model can 

adjust to a change in the dataset (or an introduction of new data). With these definitions in place, 

we can see that a model which is high in bias is overly simplified, underfit, and high in error on 

both the data it was created on, and new data. In addition, we can see that a model which is high 

in variance is overly complex, overfit, and has low error on the data it was created on but high 

error on new data. As a result, good models need to balance bias and variance to combat both 

under and overfitting. The bias variance tradeoff works to slightly increase bias to reduce 

variance, or slightly increase variance to reduce bias, that is to say, a compromise between bias 

and variance must be made to create a well fit model. More traditional variable selection models 

such as stepwise regression work well fit a model to the a given dataset but will perform poorly 

with the introduction of new data (high variance, low bias). Machine learning techniques are also 

known to overfit data, but applying cross validation techniques like 5-fold or 10-fold cross 

validation can mitigate this issue. Cross validation is a resampling method that uses different 

portions of the data to test and train a model on different iterations. For example, 5-fold cross 



 

 

5 

validation will partition the dataset into 5, and then iteratively test the model on different sets of 

those partitions. On the first iteration, the machine learning technique will use the first four 

partitions as a training set and the last as a test set, on the second iteration, it will use partitions 

one, two, three, and five for the training set and the fourth partition as a testing set. This process 

will then be repeated until all partitions have been used as the test set. The same can be said for 

10-fold cross validation, except the data is partitioned into ten instead of five. The techniques 

work to find the optimum bias and variance that will minimize the average error across all 

iterations. 

Variable selection machine learning techniques can be applied within the context of 

supervised or unsupervised learning. In supervised learning, the dataset is already labeled, 

meaning that the data already contains information about the outcome of interest. For example, a 

labeled dataset containing information about an individual’s drinking habits would include a 

variable diagnosing the individual or not based on the DSM-5. Unsupervised learning works to 

analyze and cluster unlabeled datasets, (i.e., the dataset would not contain a diagnosis for the 

individual). The current paper is looking only at supervised learning techniques. The literature 

classifies all machine learning variable selection techniques into one of three categories: filter 

methods, wrapper methods, or embedded methods.  

Filter Methods 

 

Figure 1. Filter Methods 

 



 

 

6 

Filter methods are often used as a preprocessing step but can be used as a stand-alone 

method. These techniques, when applied to variable selection problems, choose items before 

building a model to measure the given construct (i.e., items are selected based on a certain 

characteristic). For example, the filter could select items based on a calculated feature relevance 

score, the item’s correlation with the construct measured, or its level of variance. In cases where 

significance testing is used to determine item selection (e.g., whether the item has a significant 

correlation with the outcome variable or not), researchers have recommended controlling for 

multiple hypothesis tests to prevent inflation of Type I error (Bourgon et al., 2010).   

Filter methods are advantageous because of their computational simplicity, their ability to 

scale well to many measurement items, and their independence from the given classification 

algorithm (Saeys et al., 2007). There are also disadvantages to filter methods. For one, most 

proposed filter techniques, such as 𝜒2, Euclidean distance, or the i-test are univariate. As a result, 

these techniques may miss an item’s interaction with the classifier, an interaction among items, 

or covariance between items. Some multivariate filter methods have been developed such as the 

correlation-based feature selection (CFS) statistic, which account for joint statistical properties 

within a set of items (Hall, 1999); however, these methods lose the advantage of scalability. The 

biggest disadvantage of filter methods is that they are entirely controlled by the researcher and 

thus, the guidelines by which to select an item are highly subjective. This paper does not 

implement any filter methods, but rather includes them here for completeness 

Wrapper Methods 

Wrapper methods, unlike filter methods, take an item’s ability to measure the construct of 

interest into account when determining whether it should be included in the selection. Each 

wrapper method operates under a specific algorithmic ideology from machine learning. For 



 

 

7 

example, forward and backward stepwise regression, which are commonly used as variable 

selection methods, operate as greedy algorithms, choosing the item that would optimize the 

selected criteria at each step aiming to provide the best subset solution. Greedy algorithms, 

however, are prone to reach locally optimal solutions instead of globally optimal solutions. As a 

result, research has indicated a preference for heuristic-based algorithms (Brusco, 2014; Brusco 

et al., 2009; Cadima et al., 2004).  

In a very simple sense, heuristic methods operate as iterative search procedures. These 

techniques examine a search space of possible subsets to examine which subset reaches a 

predefined property. There are 2𝑘 − 2 possible strict subsets for k items (i.e., a subset differing 

from the parent set by at least one item), excluding the empty set. Complete enumeration of all 

subsets would guarantee the optimal solution, but it is computationally expensive and therefore 

not always feasible. Thus, researchers have turned to the use of wrapper methods which use a 

systematic approach to determine candidate subsets to assess. One wrapper technique that 

searches the solution space for candidate item sets effectively and efficiently is the genetic 

algorithm (GA; Shen et al., 2005; van der Linden, 1998; Yarkoni, 2010).  

Genetic Algorithm  

 

Figure 2. The Genetic Algorithm 

Variable selection problems, at their heart, are combinatorial optimization problems. 

Combinatorial optimization problems work to find the optimal set of items to fulfill a given goal 

while following a specific set of constraints. The genetic algorithm has been used to solve many 

types of combinatorial optimization problems including graph coloring (Hindi & Yampolskiy, 



 

 

8 

2012), multidimensional scaling (Groenen et al., 2000), and clustering (Cowgill et al., 1999) 

suggesting it would perform well on variable selection problems. The genetic algorithm is an 

evolutionary algorithm using principles mimicking natural selection to explore solutions for the 

combinatorial problem (Goldberg, 1989; Holland, 2019). The algorithm begins with a random 

set of two potential solutions to the problem (i.e., chromosomes) and recursively improves the 

solution through crossover and mutation until it reaches a subset that optimizes the selected 

criteria (e.g., a balance between predictive ability and subset size). Within each chromosome, a 

gene of 1 indicates that the item has been chosen for the subset, while a gene of 0 indicates that 

the item has not been chosen. Crossover, or recombination of the two parent solutions, can occur 

at any given point in the selected parent solution set. Figure 2 demonstrates a one-point blocked 

crossover. In blocked crossover, a random number indicates where to split the initial solution sets 

(i.e., “parents”). Two solutions (i.e., “children”) are then created by obtaining the set of variables 

before the split for each parent and passing these on to the children (i.e., parent 1 gives their 

genes before the split to child 1, and parent two gives their genes before the split to child 2). 

Then, the genes of each parent after the split are given to the opposite child (i.e., parent 1 passes 

their genes after the split on to child 2, and parent 2 passes their genes after the split on to child 

1). It is important to note that although Figure 3 illustrates single-point crossover, crossover 

could occur in many forms. For example, a random percentage of genes could be selected instead 

of setting a single point on which to split the genes or genes could be chosen at random instead 

of in a block. After children are produced through crossover, mutation can be performed in a 

small percentage of the solutions so as to obtain new information that could not be obtained from 

the parents. 

 



 

 

9 

 

Figure 3.  Single point crossover in the GA 

The children are then evaluated based on the optimization criteria, and the optimal child 

is chosen as the survivor to continue the next iteration. For this study, the ARI was used as the 

optimization criteria. The ARI is a measure of agreeability between the predicted classifications 

and the true classifications that can be calculated with the following equations: 

𝐴𝑅𝐼 =  
𝑅𝐼 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝐼

max(𝑅𝐼) − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑅𝐼
 

𝑅𝐼 =
# 𝑜𝑓 𝑎𝑔𝑟𝑒𝑒𝑖𝑛𝑔 𝑝𝑎𝑖𝑟𝑠

# 𝑜𝑓 𝑑𝑖𝑠𝑎𝑔𝑟𝑒𝑒𝑖𝑛𝑔 𝑝𝑎𝑖𝑟𝑠
 

 

The genetic algorithm (GA) is a machine learning approach which has been shown to 

perform just as well as, if not better than, traditional methodological approaches such as stepwise 

regression or Principal Component Analysis when constructing a short form (Sahdra et al., 2016; 

Sandy et al., 2014). Unlike traditional methods, GA is entirely automated, highly sophisticated, 

and does not require researchers to manually balance various criteria when implementing it for 

the use of item selection.  

Yarkoni performed three variable selection studies validating the use of the GA on 

personality measures (2010). The first study provided evidence that the GA was a successful 

method for programmatically generating a 10-item Big-Five inventory from a pre-existing 44-

item inventory. Moreover, this study also found its 10-item measure produced results almost as 

reliable as the 44-item measure (Yarkoni, 2010). The second study aimed to produce a shortened 

version of the 240-item NEO-PI-R (a widely used personality measure assessing 30 distinct 

'facets' of personality). This study produced a 56-item measure capturing most of the variance 



 

 

10 

from the original 240-item measure (Yarkoni, 2010). The third study aimed to expand the 

methodology used in the second study to shorten multiple scales at once. This study produced a 

181-item measure which reliably captured most of the variance from the original 2019 items 

(Yarkoni, 2010). These three studies indicated that the GA was a reliable methodology for use on 

variable selection problems within the field of personality measures. The genetic algorithm has 

since been applied to other personality measures to derive short forms. Eisenbarth et al. created a 

short form of the widely used Psychopathic Personality Inventory-Revised (PPI-R) containing 

only 40-items (as compared to the original 154 items; 2015). This shortened form showed highly 

convergent correlations and outperformed an alternative measure generated using more typical 

methods such as Item Response Theory or retaining the top N items for each scale (Eisenbarth et 

al., 2015).  

Schroeders et al. examined the use of the GA in the field of education, developing a short 

form from an 89-item picture-based vocabulary test (2016). Researchers compared the use of the 

GA, ant colony optimization (ACO) – another heuristic based technique, and stepwise 

confirmatory factor analysis (SCOFA), a previously validated method for variable selection, and 

found that both the GA and ACO performed better than SCOFA, indicating that the GA is a 

reliable methodology for variable selection problems within the field of education.  

The genetic algorithm has also been applied to variable selection problems within the 

clinical realm of psychology. For example, Sahdra et. al. applied the GA to abbreviate the 

Multidimensional Experiential Avoidance Questionnaire (MEAQ) which is used within the 

clinical realm of psychology (2016). This implementation reduced the MEAQ by slightly more 

than 50%, reducing the original 62-item measure to a 30-item measure while maintaining inter-

subscale correlations, factor structure, and factor correlations (Sahdra et al., 2016). Rachmani et 



 

 

11 

al., were able to reduce a 47-item health literacy questionnaire (HLS-EU-Q47) to a 10-item 

questionnaire (2019). It is important to note that the HLS-EU-Q47 is multidimensional, and 

Rachmani et al. were able to maintain multidimensionality with the 10-item scale (2019).  

Embedded Methods 

Embedded methods are similar to wrapper methods in that they consider how well the 

candidate item set predicts the given outcome variable. Embedded methods perform item 

selection while simultaneously estimating the prediction model during the training stage (Guyon 

& Elisseeff, 2003). As a result, embedded methods rely highly on their specified optimization 

function. This contrasts wrapper methods where feature selection and model evaluation happen 

relatively independently, making the model easy to estimate but computationally intensive to 

obtain. Some embedded methods, such as decisions trees like CART (Brieman et al., 2017), have 

been used for decades to perform variable selection tasks. Other embedded methods such as 

Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) are newer 

methods to the study of variable selection. The following embedded methods will be evaluated 

by the current paper and have demonstrated success in variable selection problems: LASSO 

(Descloux & Sardy, 2021; Fonti, 2017; Kok et al., 2021; T. T. Wu et al., 2009), Elastic Net 

(Algamal & Lee, 2015b; Liu & Li, 2017; Marafino et al., 2015), Random Forest (Diaz-Uriarte & 

de Andres, 2005; Genuer et al., 2010; Hapfelmeier & Ulm, 2013), and Support Vector Machines 

(SVM; Becker et al., 2009; Neumann et al., 2005; Rakotomamonjy, 2003). 

Regularization Techniques  

Both LASSO and Elastic Net are considered regularization techniques. Regularization is 

a common method used to combat issues of overfitting found in models estimated with 

maximum likelihood estimator (like logistic regression). There are three main regularization 



 

 

12 

techniques: Ridge Regression, LASSO Regression, and Elastic Net Regression. Each of these 

techniques works to combat overfitting by intentionally adding a small amount of bias into the 

optimization function such that a generic regularization function takes the form:  

𝐿𝑅𝑒𝑔(𝛽) = 𝐿𝑚𝑙𝑒(𝛽)  −  𝜆𝑃(𝛽) 

where 𝐿𝑅𝑒𝑔  is the penalized optimization function, 𝐿𝑚𝑙𝑒 is the standard maximum likelihood 

estimate (MLE) optimization function, 𝜆 is a regularization parameter (i.e., a tuning parameter), 

and 𝑃 is a penalty function that varies depending on the type of regularization being applied. The 

example here is given in terms of logistic regression because this paper focuses on applications 

with categorical outcome variables, but it is important to note that regularization techniques also 

work with OLS regression – however, since OLS minimizes the optimization function, the 

penalty would be added instead of subtracted to the overall function. Determining the magnitude 

of the penalty is of vital importance because the function must be penalized enough to reduce 

overfitting but not too much as to render meaningless estimates. Through this controlled 

introduction of bias, the variance of the estimates is reduced so that the estimates are stable, less 

susceptible to small changes in the data, and thus more generalizable to unseen data (McNeish, 

2015).  

Ridge 

Although Ridge Regression cannot act as a variable selection technique, it is a natural 

predecessor for both LASSO and Elastic Net and is thus included for completeness. As 

mentioned above, regularization techniques each apply a unique penalty to the normal regression 

function which introduces a small amount of bias to the model. Ridge regression’s (Hoerl & 

Kennard, 1970; McDonald, 2009) penalty is applied to the sum of the squared coefficients such 

that 𝑃𝑟𝑖𝑑𝑔𝑒(β) = ∑ β𝑖
2𝑃

𝑖=1 . Therefore, the optimization function for ridge regression takes the 

form:  



 

 

13 

𝐿𝑅𝑖𝑑𝑔𝑒(β) = ∑𝑙𝑜𝑔 (𝑃𝛽(𝑌𝑖|𝑋𝑖)  −  λ∑β𝑖
2

𝑃

𝑖=1

 

𝑃

𝑖=1

 

where 𝐿𝑅𝑖𝑑𝑔𝑒(β) is the optimization function (or the loss function), ∑ 𝑙𝑜 𝑔(𝑃(𝑥𝑖|𝜃))
𝑃
𝑖=1  is a 

summation of the MLE for all predictor variables,  λ ≥ 0 is the regularization parameter that 

controls the degree of shrinkage, and 𝛽𝑖 is the given regression coefficient. By using the sum of 

the squared coefficients, the magnitude of the shrinkage is proportional to the magnitude of the 

coefficient estimate, that is to say, the larger the coefficient estimate, the greater the shrinkage 

(Hesterberg et al., 2008; McNeish, 2015). As λ ⟶ 0, ridge estimates approach the original MLE 

coefficient estimate. However, as λ ⟶ ∞, ridge estimates asymptotically approach zero meaning 

that they will never shrink to zero and thus, ridge regression does not perform de facto variable 

selection (McNeish, 2015). There is an advantage to ridge regression not performing model 

selection: the ability to calculate standard errors. Additionally, ridge regression is able to handle 

collinear predictors (McNeish, 2015). Ridge regression is not implemented in this study as a 

result of its inability to perform variable selection, and thus, it is not discussed further.   

LASSO 

 LASSO (Tibshirani, 1996) penalizes the loss function by setting a constraint on the 

absolute value of the sum of the regression coefficients which allows the regression coefficients 

to shrink. The LASSO penalty can be written as 𝑃𝐿𝐴𝑆𝑆𝑂(β) = λ∑ |β𝑖|
𝑃
𝑖=1 , thus the LASSO 

optimization function can be written as a penalized MLE function for a dataset with P predictor 

variables such that:  

𝐿𝐿𝐴𝑆𝑆𝑂(β) = ∑𝑙𝑜𝑔 (𝑃𝛽(𝑌𝑖|𝑋𝑖)

𝑃

𝑖=1

−  λ∑|β𝑖|

𝑃

𝑖=1

 

where 𝐿𝐿𝐴𝑆𝑆𝑂(𝛽)  is the loss function, ∑ 𝑙𝑜𝑔 (𝑃(𝑥𝑖|𝜃)
𝑃
𝑖=1 ) is a summation of the MLE for all 

predictor variables,  λ ≥ 0 is the regularization parameter that controls the degree of shrinkage, 



 

 

14 

and 𝛽𝑖 is given regression coefficient. Because the penalty is applied to the sum of the absolute 

values of the regression coefficients, estimates may shrink to exactly zero, therefore deselecting 

them from the model (Tibshirani, 1996). If multiple coefficients obtain a value of 0, the model is 

deemed sparse (McNeish, 2015). It is important to note that LASSO applies the λ penalty equally 

across all regression coefficients resulting in coefficients with larger magnitudes (i.e., 

coefficients with stronger potential importance) shrinking less (Hesterberg et al., 2008). 

Although the use of the absolute value of the regression coefficients when applying the 

penalty is advantageous in its ability to select (or rather deselect) variables, it also results in a 

LASSO optimization function that is not differentiable, meaning that to find the signs of the 

regression coefficients, the algorithm must search through the entire 2𝑝 possible sign 

combinations to find the correct ones (McNeish, 2015). Therefore, LASSO must employ 

optimization functions to search through these combinations in a computationally efficient 

manner.  

There are many optimization functions that can be applied to LASSO including 

Tibshirani’s (1996b) quadratic programming algorithm which requires 𝑛2𝑝 computations – still a 

computationally intensive strategy – or an implementation of least angle regression (LARS) 

which requires 𝑛𝑝2 computations (Efron et al., 2004). This paper implements a version of 

LASSO from the glmnet R package which uses cyclical coordinate descent (Friedman et al., 

2010a)  

The use of cyclical coordinate descent for LASSO has been proposed numerous times 

(Daubechies et al., 2004; Shevade & Keerthi, 2003; van der Kooij, 2007) but has gained traction 

more recently (Friedman et al., 2007, 2010a; Genkin et al., 2012; Krishnapuram et al., 2005; 

Shevade & Keerthi, 2003; T. T. Wu et al., 2009; T. T. Wu & Lange, 2008). Cyclic coordinate 



 

 

15 

descent works by iterating through the signs one at a time, optimizing the function of interest 

(the LASSO function) with respect to one beta sign at a time and then repeating this process until 

no change is seen in the optimization function. For a more technical understanding, see the above 

papers. Research indicates that this strategy is remarkably efficient. The implementation of 

LASSO in glmnet which uses this technique has been shown to outperform all competitors in 

terms of algorithmic efficiency and speed (Friedman et al., 2010a) and as a result has become the 

most used implementation of LASSO.  

Previous research has indicates that LASSO selects the most relevant variables when 

building a model (Fonti, 2017), removes irrelevant variables without compromising the integrity 

of the hypothesized model (Kok et al., 2021) and provides more parsimonious variable selection 

and more generalizable inferences than stepwise regression, OLS, or MLE estimations 

(McNeish, 2015) when compared directly. Statisticians are also quick to point out that behavioral 

science is lagging in its implementation of LASSO (Johnson & Sinharay, 2011; McNeish, 2015) 

even as software for its implementation, such as the glmnet R package (Friedman et al., 2010a), 

become increasing available in programs familiar to behavioral science researchers.  

Although there is significant evidence that LASSO performs well on variable selection 

problems, there is also evidence of certain drawbacks.  There are three main scenarios where 

limitations of LASSO have been identified. First, if the number of predictors (p) is larger than 

the number of observations (n), LASSO will only select up to n predictor variables. Second, if 

there is a set of predictors that have high pairwise correlations, LASSO will, at random, select 

one to be representative although it may not be the strongest predictor within the set. Third, if 

predictors are highly correlated with each other, LASSO does not seem to perform as well as 

Ridge Regression (Zou & Hastie, 2005). The first two scenarios illustrate that LASSO is not 



 

 

16 

necessarily the best variable selection technique in all situations. A related regularization 

technique, Elastic Net, works to overcome these limitations.   

Elastic Net 

Elastic Net regression (Zou & Hastie, 2005) uses both the ridge penalty and the LASSO 

penalty, allowing it to leverage the strengths of both methodologies. The Elastic Net loss 

function takes the form:  

𝐿𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑁𝑒𝑡(β) =∑𝑙𝑜𝑔 (𝑃𝛽(𝑌𝑖|𝑋𝑖)  − λ1  ∑β𝑖
2

𝑃

𝑖=1

 

𝑃

𝑖=1

−  λ2∑|β𝑖|

𝑃

𝑖=1

 

 

where 𝐿𝐸𝑙𝑎𝑠𝑡𝑖𝑐 𝑁𝑒𝑡(𝛽)  is the loss function, ∑ 𝑙𝑜𝑔 (𝑃(𝑥𝑖|𝜃)
𝑃
𝑖=1  is a summation of the MLE for all 

predictor variables,  λ1 ≥ 0 is the regularization parameter that controls the degree of shrinkage 

implemented by the ridge penalty,  λ2 ≥ 0 is the regularization parameter that controls the 

degree of shrinkage implemented by the LASSO penalty, and 𝛽𝑖 is the given regression 

coefficient. 

Similar to LASSO, Elastic Net performs automated variable selection and continuous 

estimate shrinkage simultaneously, but unlike LASSO, Elastic Net allows for the selection of 

multiple variables from a set with strong pairwise correlations. In addition, the inclusion of the 

Ridge penalty allows for Elastic Net to select all p predictor variables when 𝑝 ≥ 𝑛 and not only 

n as is seen in LASSO. Elastic Net produces a sparse model (meaning a model with few numbers 

of predictors) with good prediction accuracy, while encouraging a grouping effect which allows 

for potential superiority over LASSO in certain situations (Zou & Hastie, 2005). Its creators view 

Elastic Net as a generalization of the LASSO as a valuable tool for model fitting and feature 



 

 

17 

extraction (Zou & Hastie, 2005); it is then fair to deduce that Elastic Net would also perform 

well on these types of tasks.  

Much of the recent work with Elastic Net and variable selection problems has been 

outside the field of psychology. For example, (Algamal & Lee, 2015a) examined the 

performance of Elastic Net on two cancer datasets as it compares to other variable selection 

techniques including LASSO. They found that Elastic Net, on average, selected fewer variables 

than LASSO and had higher classification accuracy (Algamal & Lee, 2015a). The same 

researchers note that in a study examining Elastic Net’s abilities to correctly classify cancer 

patients and select genes, the inclusion of the ridge penalty in the Elastic Net loss function may 

help to select or omit the highly correlated genes together if their coefficients are close together 

but prohibits the estimation of the coefficients of these same highly correlated genes to have 

different magnitudes or different signs (Algamal & Lee, 2015b). Despite this limitation, support 

was found for the use of Elastic Net in classification problems in that it had high classification 

accuracy and consistent gene selection (Algamal & Lee, 2015b).  

Elastic Net has also been used for feature selection problems, such as text classification 

(Marafino et al., 2015). Researchers found that applying Elastic Net regularization to classifiers 

based on clinical notes reduced the number of features selected by more than a thousandfold, 

making these classifiers more easily interpretable and maintaining performance. In addition, the 

research showed that Elastic Net selected clinically relevant features that correlated well with 

current ICU outcomes (Marafino et al., 2015).  

Although there is evidence of success in the use of Elastic Net on variable selection 

problems in fields outside of psychology, very little research within the field has taken advantage 

of Elastic Net when facing variable selection problems. Overwhelmingly, psychologists still 



 

 

18 

prefer outdated methods like stepwise regression. At least one psychological assessment journal 

completely banned studies employing stepwise selection as early as 1995 (Thompson, 1995). 

This paper hopes to illustrate the power of regularization techniques such as LASSO and Elastic 

Net when confronting variable selection problems, specifically applied to binary classification 

problems.  

Support Vector Machines 

Created by Crotes & Vapnik (1995), the Support Vector Machine (SVM) is one of the 

most used machine learning techniques for binary classification in many disciplines, but its 

power has not yet been fully acknowledged in psychological research. In an SVM, the data 

points are plotted in an p-dimensional space (where p is the number of variables in the given 

dataset) with the value of each variable being the value of each coordinate. The classification of 

said data occurs by finding an optimal hyperplane to differentiate the different classes by 

maximizing the margin between the classes’ closest points.  

A hyperplane is a simply a generalization of a plane that takes a different form depending 

on the number of dimensions of the space. In two dimensions, the hyperplane is a line, in three 

dimensions, a plane, and in more than three dimensions, a hyperplane. Hyperplanes can be 

considered decision boundaries which classify data points into their respective classes in a multi-

dimensional space. Data points falling on one side of the hyperplane are attributed to one class, 

while points falling on the other side are attributed to a different class. Given a training dataset 

(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛), 𝑥 ∈ ℜ
𝑝, 𝑦 ∈ −1,1  with 𝑥 = (𝑥1, … 𝑥𝑝)- input data and y-class label. The 

linear SVM separates classes by a linear hyperplane of the form:  

𝑓(𝑥) =∑𝑤𝑖

𝑝

𝑖=1

𝑥𝑖 + 𝑏 



 

 

19 

where 𝑤 = (𝑤1, … ,𝑤𝑝) are coefficients of the hyperplane and 𝑏 denotes the intercept of the 

hyperplane. The class assignment for a test dataset 𝑥𝑡𝑒𝑠𝑡 is thus given as 𝑦𝑡𝑒𝑠𝑡 = 𝑠𝑖𝑔𝑛[𝑓(𝑥𝑡𝑒𝑠𝑡)].  

The SVM is known as a large margin classifier, and as such, works to maximize the 

distance between the hyperplane and the closest datapoints. This distance is referred to as the 

margin. The best or optimal hyperplane that can separate the two classes is thus referred to as the 

large-margin hyperplane. The margin is calculated as the perpendicular distance from the 

hyperplane to the closest points. Since the margin is calculated by accounting for specific data 

points (the closest points), these points are deemed the support vectors since they influence the 

position and orientation of the hyperplane. Using these support vectors, we maximize the margin 

of the classifier. If we delete or change the support vectors, the position of the optimal 

hyperplane will also change. There are two main methodologies for determining which 

hyperplane is optimal: hard margin and soft margin.  

In a hard margin SVM, the algorithm finds the optimal hyperplane without tolerating any 

form of misclassification. Hard margin SVMs are not used in this paper due to their problems 

with overfitting, and therefore are mentioned solely for completion. A soft margin SVM 

however, still finds the optimal hyperplane, but it adds a degree of tolerance for misclassification 

(i.e., a certain number of data points are allowed to be misclassified), allowing for a more 

generalizable model. Classification of linear data is easy, one simply picks a line, or hyperplane, 

that divides the two classes well. Where SVM truly shines, however, is in its ability to classify 

non-linear data.  

The original SVM (Crotes & Vapnik, 1995) constructed a linear classifier. Computing the 

soft-margin SVM classifier minimizes an expression of the form:  

𝑚𝑖𝑛𝑏,𝑤∑[1 − 𝑦𝑖𝑓(𝑥𝑖)] + 𝜆‖𝑤‖2
2 



 

 

20 

The penalty term 𝜆‖𝑤‖2
2 takes the form of the ridge penalty which only shrinks the 

coefficients but does not set the exactly to zero. The 𝜆 parameter here controls for the degree of 

tolerance for misclassification. If a small enough value is chosen for 𝜆, then this equation will 

yield the hard-margin classifier.  

Since the proposal of the linear SVM, a nonlinear classifier has been developed using a 

kernel function to artificially project the input vectors (or variables) into a higher dimensional 

space (often called a feature space), therefore making the data linearly separable (Boser et al., 

1992). They referred to this SVM algorithm as the maximum margin training algorithm which 

has an equation of the form:  

𝐷(𝑥) = ∑β𝑘𝐾(𝑋𝑘 , 𝑋)

𝑝

𝑘=1

+ 𝑏 

where the coefficients 𝛽𝑘 are the parameters to be adjusted, and the 𝑋𝑘 are the training variables. 

The function 𝐾(𝑋𝑘 , 𝑋) is a predefined kernel function discussed below (Boser et al., 1992).  

Kernel functions can take many forms; the svm function in R’s e1071 package allows for 

linear, polynomial, radial basis, and sigmoid kernels. The RBF is one of the most preferred and 

most used kernel functions when working with data that is non-linearly separable. In concept, it 

is similar to K-Nearest Neighbor, another popular classification algorithm. Because much of our 

data in psychology cannot be linearly separated, only the RBF kernel will be discussed further. 

The RBF computes the similarity or distance between two points 𝑋1 and 𝑋2 and takes the form:  

𝐾(𝑋1, 𝑋2) = 𝑒
− 
‖𝑋1−𝑋2‖

2

2𝜎2  

where 𝜎 is the variance of the distribution set by the researcher, ‖𝑋1 − 𝑋2‖ is the Euclidean 

distance between two points 𝑋1 and 𝑋2. The maximum value of the RBF kernel is 1 and occurs 



 

 

21 

when the distance is 0 and the points are the same, i.e.,  𝑋1 = 𝑋2. If the points are separated by a 

very large distance, or are dissimilar, the kernel value is close to 0.  

The penalty term for ordinary SVM uses the ridge penalty (𝐿2):  

𝐿2 = 𝜆∑‖𝑤‖2
2

𝑝

𝑖=1

=  𝜆∑‖𝑤‖2
2

𝑝

𝑖=1

 

The 𝐿2 penalty shrinks the coefficients to control their variance, but it provides no shrinkage of 

the coefficients to zero, and hence no feature selection is performed. To overcome this 

restriction, a number of variable selection methods using other penalties have been proposed. 

The SVM adaptation of the LASSO (𝐿1) penalty takes the form:  

𝐿1 = 𝜆‖w‖1 = 𝜆∑|𝛽𝑖|

𝑃

𝑖=1

 

As a result of the singularity of the LASSO penalty function (L1), the L1 SVM can automatically 

select variables by shrinking small coefficients of the hyperplane to exactly zero. Thus, the L1 

SVM is an effective variable selection tool (Becker et al., 2009). A fast implementation of the L1 

SVM is implemented in the penalizedSVM package (Fung & Mangasarian, 2004). The 𝐿1 

penalty, however, has two limitations, as mentioned previously, in that (1) the number of 

selected features is bounded by the number of samples, and (2) it tends to select only one feature 

from a group of correlated features and drops the others.  

The SCAD penalty is a non-convex penalty function first proposed by Fan and Li (Fan & 

Li, 2011). Later, Zhang et al. combined the SVM technique with the SCAD penalty for feature 

selection (Zhang et al., 2006). The SCAD penalty function for a single coefficient 𝑤𝑖  is defined 

as:  



 

 

22 

𝑝(𝑥) =

{
 
 

 
 

        

𝜆|𝑤𝑖| if  |𝑤𝑖| ≤  λ

−
|𝑤𝑖|

2 − 2𝑎𝜆|𝑤𝑖| + 𝜆
2

2(𝑎 − 1)
if 𝜆 < |𝑤𝑖| ≤ 𝑎𝜆

(𝑎 + 1)𝜆2

2
if  |𝑤𝑖| > 𝑎λ

 

where 𝑤𝑖 ,  𝑖  =  1, … , 𝑝 are the coefficients defining the hyperplane and 𝑎 > 2 and 𝜆 > 0 are 

tuning parameters. Fan and Li (2011) showed that SCAD prediction is not sensitive to the 

selection of the tuning parameter 𝑎. The penalty term for SCAD SVM has the form:  

𝑝𝜆(𝑤) = ∑ 𝑃𝑆𝐶𝐴𝐷(𝜆)(𝑤𝑖)
𝑝
𝑖=1 . 

For small coefficients 𝑤𝑖 , 𝑖 = 1,… , 𝑝, SCAD yields the same behavior as 𝐿1. For larger 

coefficients, however, SCAD applies a constant penalty, reducing estimation bias. In addition, 

the SCAD penalty holds better theoretical properties than the 𝐿1 penalty (Fan & Li, 2011).  

With the success of the L1 SVM, researchers began looking at other regularization 

techniques to combine with SVM to create more SVM feature selection methods. Becker et al. 

(2011) proposed a novel penalty function for SVM classification tasks called Elastic SCAD 

which implemented a combination of SCAD and ridge penalties, in SVM. In addition, this 

algorithm adopts an interval search algorithm which, in comparison to fixed grid search, finds 

rapidly and more precisely a global optimal solution, combatting SVMs sensitivity to tuning 

parameters (Becker et al., 2011).  

Becker et al. (2011) hypothesizes that using the SCAD penalty may be too strict in 

selecting variables for non-sparse data. Thus, they proposed a modification of the SCAD penalty 

analogously to Elastic Net which could leverage the advantages of SCAD while avoiding its 

limitations. Their new combination, termed Elastic SCAD, combined the SCAD and 𝐿2 penalties 

producing a penalty term of the form:  



 

 

23 

𝑝𝜆(𝑤) = ∑𝑝𝑆𝐶𝐴𝐷(𝜆1)(𝑤𝑖)

𝑝

𝑖=1

+ 𝜆2‖𝑤‖2
2, 

where 𝜆1, 𝜆2 ≥ 0 are tuning parameters. Elastic SCAD was found to outperform the L1 SVM and 

SCAD SVM (Becker et al., 2011). Thus, this paper will implement the Elastic SVM in the R 

penalizedSVM package.  

Random Forest 

Random Forest is a popular machine learning approach for predictive model building 

(Brieman et al., 2017). Random forests are an ensemble method, creating a collection of decision 

trees, either classification or regression (Brieman et al., 2017), using binary splits of predictor 

variables to determine outcomes. Decision trees are favorable for two reasons: (1) they are 

relatively easy to create, and (2) they offer an intuitive method for predicting outcomes, making 

them easy to interpret. Despite these benefits, decision trees are low in bias, making them very 

poor predictors of new data (Bengio et al., 2010) or complex datasets, e.g., large datasets or 

datasets with complex variable interactions (Speiser et al., 2019). Random Forest directly 

combats this weakness by creating many classification or regression trees (a forest of trees, if 

you will) using training datasets which are randomly selected and a random subset of predictor 

variables for modeling outcomes. Results from each tree are then aggregated to give a predictive 

model with slightly higher levels bias, allowing the model higher accuracy with new data 

compared to a single tree model (Speiser et al., 2015). Research indicates that random forests 

consistently offer among the highest prediction accuracy compared to other models within the 

realm of classification (Fernández-Delgado et al., 2014).  



 

 

24 

 

Figure 4. A flowchart for random forest algorithm representing a workflow for classification 

problems (Ram et al., 2017) 

Although it is true that there is little need to fine-tune parameters, researchers note that 

the most important parameter is mtry, the number of input variables tried at each split, but 

research indicates that the default value of your chosen function is typically a good choice, even 

though this value may change across functions (Liaw & Wiener, 2002a). The user also needs to 

decide how many trees to grow for the forest (n-tree) as well as the minimum size of the terminal 

nodes (node size). In Figure 4, we see the process of the random forest algorithm representing a 

workflow for classification problems, but we shall also walk through the steps here:  

1) Draw n-tree bootstrap samples from the original data  

2) For each of the bootstrap samples, grow an unpruned classification tree with the 

following modifications:  

a. At each node, rather than choosing the best split among all predictors (as is done 

when building a single classification tree), randomly sample mtry of the 



 

 

25 

predictors and select the best split from that subset, then based on the splitting 

separate this node into two nodes.  

b. Recursively partition the data until the trees reach their largest size (i.e., for each 

observation, a final node) and the node size reaches its smallest value without 

which the tree is pruned. 

3) Repeat steps 1 and 2 to create a random forest of trees.  

4) Predict new data by aggregating the predictions of the n-tree trees (i.e., majority vote for 

classification) 

5) Compute an error rate using new data 

a. this can either be an out-of-bag (OOB) error rate using the data not in the 

bootstrapped sample, or you can use cross-validation as usual.  

In addition, random forest does not require a separate test to calculate an unbiased error 

estimate of the validation set in the random forest, since it performs this calculation during the 

execution. However, there is research indicating that minimizing the curve of the OOB 

prediction error can be misleading, indicating that variable selection should be performed when it 

may not be necessary or suggested (Svetnik et al., 2000). This research indicates positive 

performance of cross-validation instead.  

There are a wide array of benefits for using random forest for classification problems. 

Below we have listed seven of the most notable strengths as discussed in (Ram et al., 2017):  

1) It is suitable for datasets where there are many more variables than there are observations 

(𝑛 ≪  𝑝).  

2) When most of the predictive variables are noisy (i.e., have a lot of randomness), it has 

good predictive performance, therefore not requiring pre-selection of predictors.  



 

 

26 

3) It does not overfit.  

4) It can handle a mixture of categorical and continuous predictors and incorporates 

interactions among predictor variables.  

5) There are high quality and free implementations in various statistical software programs 

such as R and Python.  

6) It returns measures of importance for the predictors.  

7) There is little need to fine-tune parameters to achieve excellent performance 

Although random forest works well with a large number of predictors, in practice, the 

number of predictors may often need to be minimized for efficiency (i.e., variable selection 

needs to be performed). There are several methods available for performing variable selection 

with random forest classification. Many R packages provide random forest variable selection 

procedures such as boruta (Kursa & Rudnicki, 2010), varSelRF (Diaz-Uriarte & de Andres, 

2005), VSURF (Genuer et al., 2010), caret (Kuhn, 2008), party (Hothorn et al., 2015), 

randomForestSRC (Ishwaran & Kogalur, 2021), RRF (Deng & Runger, 2013), vita (Janitza et 

al., 2018), AUCRF (Calle et al., 2011), and fuzzyForest (Conn et al., 2015). With the wide array 

of implementations of random forest available, the literature provides little guidance about which 

methods are preferable in terms of prediction error rate, parsimony, computation time, and area 

under the receiver operating curve (AUC) for different types of datasets. While some researchers 

have investigated which methods to use on simulated data (Cadenas et al., 2013; Degenhardt et 

al., 2019; Hapfelmeier & Ulm, 2013; Sanchez-Pinto et al., 2018), Speiser et al. has performed the 

most comprehensive comparison study to date (2019). This study recommends the use of 

VSURF for datasets with binary outcomes, and datasets with less than fifty predictors, whereas 

they recommend varSelRF or Boruta for datasets with many predictors because they are more 



 

 

27 

computationally efficient compared to other methods (Speiser et al., 2019). Based on these 

recommendations, the current study will implement Boruta because of its computationally 

efficiency.  

The Present Study 

Although a large amount of research has been done comparing various implementations 

of the Genetic Algorithm, LASSO, Elastic Net, SVM, and Random Forest, very little research 

has been done comparing these methods against each other in the context of variable selection 

for classification problems with labeled data (i.e. supervised learning). In addition, most research 

about these methodologies has been performed within the fields of computer science or biology. 

Very little research has been done looking at applications within psychology. As mentioned 

previously, the implementation of machine learning techniques for variable selection is relatively 

new to the field of psychology. In the medical community, researchers believe there is immense 

promise for improving accuracy of medical diagnoses with machine learning, and thus, it is 

important for the psychological community, especially the clinical psychology community, to 

begin to examine these techniques within the world of mental health diagnoses. If accurate 

predictive models can be built, it is possible that diagnoses would be able to be more 

individualized and operate less by the “gold standard” we see today. Given this limitation in the 

research, there is a need for a comprehensive comparison of variable selection procedures for 

classification problems in order to provide recommendations about which procedures are 

appropriate for different types of datasets.  

Methods 

For each of the datasets described below, variable selection was performed using the 

methods listed in Table 1. The models built by the methods in the first three rows will be used 



 

 

28 

solely for comparison, as they do not perform variable selection. All models were built and 

evaluated using cross-validation. A supervised learning classification model was built with each 

method using the default values of the available R package, as well as a model with tuned 

parameters. For each variable selection method and dataset, predictive accuracy was measured in 

two ways: the prediction error rate (defined as the proportion of incorrect predictions for the test 

data) and the area under the ROC curve (AUC). In addition, the number of variables used, the 

computation time, and the true positive rate (defined as the proportion of selected variables that 

were not noise) were recorded for each model. To obtain AUC estimates, we employed the R 

package pROC (Robin et al., 2011). R version 4.1.2 on a computer with a 2.5 GHz Eight-Core 

11th Gen Intel® Core™ i7-11700 processor and 32.0 GB of RAM was used for analysis.  

Simulation 

Data Generation 

Previous simulations examining classification have varied features such as the type of 

predictor (binary vs. continuous), the number of predictors, the sample size, and the correlation 

within blocks of variables (Brusco, 2014; Brusco et al., 2009; Jiang et al., 2021). Data for this 

study will be simulated using similar techniques in R. Altogether, five features will be varied to 

produce a wide variety of data sets for a robust application of these variable selection techniques.  

Distribution of the Predictors.  Predictors were generated either be continuous, with an 

underlying normal distribution (μ =  0, σ =  1) with an added small amount of bias, or binary, 

with an underlying Bernoulli distribution with marginal probability 𝑝𝑖 , 𝑖 = 1,2,3,…𝑛. Research 

indicates that ordinal variables such as likert-type scales can be treated as continuous variables, 

the continuous data generated here can generalize to likert-type data as well as true continuous 

data (Robitzsch, 2020).  



 

 

29 

Prevalence Rates. The probability of a diagnoses seen in the outcome variable was 

simulated 𝑝 = .20, .25, .30, .40. This covers a wide range of prevalence rates seen in the DSM-5. 

The use of different prevalence rates allowed us to assess the performance of the techniques on 

varying differences in group sizes.  

Number of Predictors. Data sets were simulated to be comprised of m = 10, 50, 100 

predictor variables. A predictor variable is a variable measuring our outcome of interest. The use 

of a wide range of number of predictors allowed for comparisons on how the techniques perform 

with increasing dimensions. 

Sample size. The data set was simulated to have n = 50, 200, 500 observations to 

examine the performance of techniques on varying sample sizes. Some previous literature 

indicates that a sample size of 200 is adequate to see strong performance (Marsh et al., 1998) 

while other researchers have indicated a much larger sample size is needed (Dolan, 1994).  

Noise. As mentioned previously, predictor variables are measuring our outcome of 

interest. It is important to include variables that are not measuring this construct (i.e., noise) to 

evaluate the performance of the techniques on their ability to select only predictor variables. The 

data set was simulated to have p = 0, m, or m/2 noise variables.  

After simulating data sets varying features of the data, the columns of the generated raw 

data will be randomly permuted, saving the index of the true variables, to examine the 

performance of variable identification from the techniques.   

Applications 

Alcohol Use Disorder  

We have been given access to a pre-existing dataset concerning alcohol use disorder. The 

techniques studied in this paper were applied to this dataset to evaluate their performance. The 



 

 

30 

dataset consists of 909 undergraduate students (�̅�𝑎𝑔𝑒 = 18.64) enrolled in introduction to 

psychology courses at the University of Missouri. Participants completed the entire survey 

battery online and course credit was awarded upon completion. Most participants were female 

(56%) and White (91%).  

The dataset consists of 87 AUD symptom indicators for the 11 DSM-5 criteria derived or 

adapted by Boness et al. (2019) from 9 well-validated diagnostic interviews and self-report 

scales. Items were rated on a five-point Likert scale (0 = Never/Not in the Past 12 Months, 4 = 

Yes, 4+ Times). Participants reported on age of first drinking experience, age of first heavy 

drinking experience, consumption, hangover, blackout, self- and other-identified problem use, 

treatment use, legal problems, cannabis use frequency, and three composites of functioning: 

general health, mental health, and physical functioning. For more information on the dataset, see 

Boness et al. (2019). In addition, a variable is included containing a diagnosis based on the 

DSM-5 criteria. This variable was used for the pre-determined classification against which to 

check our models’ predicted classifications.  

Misophonia 

We have been given access to use a pre-existing dataset concerning misophonia. The 

techniques studied in this paper was applied to this dataset to evaluate their performance. The 

dataset consists of 343 undergraduate students (�̅�𝑎𝑔𝑒 = 18.96) recruited using a secure online 

research participation system at the University of Oklahoma (OU) in Norman, Oklahoma and all 

data were collected anonymously via Qualtrics™. Those who completed the survey received 1 

hour worth of credit for participation to count towards class credit for research experience. All 

study procedures were approved by the affiliated university’s institutional review board (i.e., OU 



 

 

31 

IRB). Participants were predominately female (69.7%) and white (76.7%) Self-report current 

diagnoses were also collected. 

The dataset contains questions addressing an array of symptoms characteristic of 

misophonia, referred to as the Spectrum Characteristic Survey (SCS). The SCS was comprised of 

a demographics section and 6 clinical measures designed to address various aspects of 

misophonia, related symptoms, and comorbidities. For the purpose of this study, we used the first 

two clinical measures from this dataset. Each clinical measure will be treated as its own dataset.  

Misophonia Questionnaire (MQ). The MQ contains 19 self-report questions indexing 

misophonia symptoms (M. S. Wu et al., 2014). Participants were asked to rate their sensitivity to 

auditory triggers on a scale from 0 (“not at all true”) to 4 (“always true”). Questions assessing 

symptom severity were used to split participants into groups reflecting clinically or non-

clinically relevant levels of misophonia symptoms. These groups were used as our pre-

determined classifications against which to compare our models’ predicted classifications.   

S-Five (2018). This dataset contains a version of the S-Five published in 2018 (Silia & 

Chloe, 2018). The S-Five contains 86 total items assessing two aspects of misophonia: triggers 

and statements regarding behavior associated with misophonic triggers. Participants were asked 

to rate their typical reaction to 36 trigger items on a 5-point likert scale from 0 (“does not bother 

me”) to 4 (“so unbearable that I need to plan beforehand to avoid it”). Participants were asked to 

read each of 50 statements and indicate their level of agreement on a 6-point likert scale 0 (“very 

strongly disagree”) to 5 (“very strongly agree”). We used the same groups developed via the MQ 

as our pre-determined classifications with S-Five predictors against which to compare our 

models’ predicted classifications.  



 

 

32 

Results 

Simulation Study 

The three methods evaluated which do not perform variable selection were LR, RF, and 

SVM. These three methods create models using the full set of items and are only included in the 

analyses for comparison purposes. Specifically, they are included so the predictive power 

(prediction error rates and AUC) of models created with a subset of variables can be compared to 

the predictive power of models creating using all variables. GA, LASSO, Elastic Net, Elastic 

SVM, and Boruta are all methods which do perform variable selection.  

Results Across All Simulated Datasets 

The distributions of the prediction error rate, computation time, AUC, and proportion of 

items included within the reduced models were compared in Table 2 and Figures 4 and 5. The 

mean prediction error rates ranged from 0.080 to 0.357 across the variable selection methods and 

were normally distributed with the exception of GA which is positively skewed. All variable 

selection methods produced models with lower prediction error rates than the model built by LR, 

but the only method with a lower average prediction error rate than RF and SVM was the GA. 

The top three variable selection methods with the lowest prediction error rates were GA, Elastic 

SVM, and Boruta. No models had very large prediction error rates, indicating that all methods 

predicted outcomes fairly well.  

Of the variable selection methods, which all took longer than the methods using the full 

set of variables, LASSO Tuned had the lowest computation time (0.405 s) and Elastic SVM had 

the highest (37.203 s). These methods also had the lowest and highest variability in computation 

time respectively. Note the large margin in computation time between Elastic SVM and the next 

highest computation time from EN Tuned (Table 2).  



 

 

33 

Values of AUC for models created using the full variable set (LR, RF, SVM) ranged 

from 0.588 to 0.623. Both GA and Boruta produced models with higher AUCs, 0.884 and 0.627 

respectively. LASSO Tuned and EN Tuned produced models with AUCs that were higher than 

LR, but lower than RF and SVM. LASSO and Elastic Net created models with AUCs of 0.523 

and 0.522 respectively, which are lower than the models using the full variable set.  

The distributions of the proportions of variables included within the models varied widely 

across method. LASSO Tuned and EN Tuned had negative skewed distributions, GA’s 

distribution was fairly normal, and all other models had positively skewed distributions. Elastic 

SVM and GA selected between 50 and 60% of the variables. EN Tuned selected the most 

variables, with an average proportion of 94%, while its non-tuned partner, Elastic Net, only 

selected an average of 15% of the variables. LASSO selected the least, a mere 8% on average.  

It should be noted that not all methods were able to produce models utilizing at least one 

variable on all datasets. Table 2 contains the number of models (N) created by each of the 

methods. Although most methods provided models for at least 95% of simulated datasets, GA, 

Elastic SVM, and EN Tuned were the only methods to create models for all simulated datasets. 

LASSO and Elastic Net were only able to produce models using at least one variable for about 

50% of simulated datasets.  

The median AUC was plotted by median computation time, proportion of variables 

selected, and prediction error rate (Figure 6). Elastic SVM had significantly higher computation 

times than other methods and yet, did not create models with high AUCs relative to other 

methods. LASSO Tuned and EN Tuned selected a higher proportion of variables than other 

methods but had comparable median AUCs to methods that used far fewer variables. GA 

produced models with high AUC and low prediction error rates using, on average, about 50% of 



 

 

34 

the original number of variables, in a relatively small amount of time. There are clear clusters of 

methods in terms of comparing AUC and computation time and AUC and prediction error rates. 

We see that LASSO, LASSO Tuned, Elastic Net, EN Tuned, Boruta, and Elastic SVM all 

perform very similarly on all these metrics. One should note, however, that these methods do not 

cluster quite as tightly when comparing AUC and proportion of variables selected.  

Given that some of the methods did not create models containing at least one variable for 

all simulated datasets, performance of the methods was also investigated using only simulated 

datasets for which all methods created such models. Table 3 displays the distribution of 

prediction error rates, AUC, proportion of variables selected by each method, proportion of the 

variables selected that are not noise variables (TPR), and computation times of the models 

created on these simulated datasets specifically. Of the total 10,800 simulated datasets, only 

4,927 datasets were used in this analysis.  

Though many datasets were not used in this analysis, we see the same general relative 

performance of the methods regarding prediction error rate, AUC, computation time, and 

proportion of variables selected as we see in Table 2 (i.e., the analysis including all 10,800 

simulated datasets). Given this similarity of results, all other analyses were done using all 10,800 

simulated datasets. 

Comparing methods grouped by characteristics of the datasets 

Comparison of methods with binary vs. continuous predictors. These results can be 

found in Tables 4 and 5 and Figures 7 and 8. Half of our simulated datasets had binary predictors 

while the other half had continuous predictors. Although all methods using the full measure (e.g., 

LR, RF, and SVM) produced slightly higher AUCs for datasets containing binary predictors, this 

pattern did not hold across all variable selection methods. LASSO and Elastic Net produced 



 

 

35 

models with slightly lower average AUCs with datasets using binary predictors as compared to 

continuous predictors. GA also produced models with lower AUCs when binary predictors were 

present, but we see a significant rather than a slight decrease in the AUC. Boruta, LASSO Tuned, 

and EN Tuned followed the pattern set in our full models, creating models with higher AUCs 

with binary predictors than continuous predictors. Prediction error rates of models created by all 

methods except GA seem to be rather unaffected by the predictor type. We do, however, see that 

the average prediction error rate of GA models using binary predictors is significantly higher 

than GA models using continuous predictors.  

In models built with all methods except GA and LASSO, we see that methods selected 

fewer variables from datasets with binary predictors than datasets with continuous predictors. 

The number of variables selected by LASSO does not seem to vary across predictor type, while 

GA selects slightly more predictors when they are binary than when they are continuous. No 

significant differences were seen regarding computation time or TPR.  

Comparison of methods across prevalence rates. Results for these comparisons can be 

found in Tables 6 through 10 as well as Figures 9 and 10. No real differences in AUC were 

found across prevalence in models created by LASSO, LASSO Tuned, Elastic Net, or EN Tuned. 

We do see a large increase in AUC when comparing Elastic SVM models with a prevalence rate 

of 0.4 to other Elastic SVM models. The other differences we see regarding Elastic SVM occur 

purely in the spread of the AUC of the models rather than their average AUC. We see the 

opposite pattern occurring with GA models in that the AUC of the model decreases as the 

prevalence rate increases. It appears that this decrease occurs at about the same rate across all 

conditions. Despite this decrease, it is important to remember that GA outperformed all other 



 

 

36 

methods regarding AUC. We see slight variation in Boruta with small increases in AUC 

occurring as the prevalence rate increases. 

All methods follow the same pattern regarding prediction error rate. As the prevalence 

rate increases, so does the prediction error rate. Computation time does not appear to be affected 

by prevalence rates, except in the case of Elastic SVM where we see a very small direct 

relationship.  

The proportion of variables selected seems to have an indirect relationship with 

prevalence rate in models built with LASSO, Elastic Net and Boruta. LASSO Tuned, and Elastic 

SVM, however, seem to select more variables with higher prevalence rates. Models built using 

the GA and EN Tuned do not seem to differ in the proportion of variables selected across 

prevalence rates. No differences were seen regarding TPR as compared across prevalence rates.  

Comparison of methods across sample sizes. Results from these analyses can be found 

in Tables 11, 12, and 13 and Figures 11 and 12. All methods except for GA, Boruta, and LASSO 

Tuned produced models with comparable results across all sample sizes regarding AUCs. GA, 

however, saw significant decreases in AUCs with increases in sample sizes. We see a slight 

decrease in average AUCs from a sample size of 50 to 200, and then a large decrease in average 

AUC with a sample size of 500. It is important to note that we also see a larger spread in AUCs 

at larger sample sizes, which may account for some of this decrease. With models created using 

Boruta and LASSO Tuned, we see small increases in AUCs as the sample size increases (the 

increases in Boruta models were slightly larger than those in LASSO Tuned models).  

We see slightly more deviation across sample sizes when we look at prediction error 

rates. LASSO and Elastic Net produce models with lower prediction error rates as the sample 

size increases, while their tuned counterparts, LASSO Tuned and EN Tuned (as well as Elastic 



 

 

37 

SVM) have the highest prediction error rates with sample sizes of 200. GA produces models that 

have higher prediction error rates as the sample size increases. Boruta models see significant 

decreases in prediction error rates as the sample size increases. 

We see that all methods select a higher proportion of variables as the sample size of the 

dataset increases. LASSO Tuned sees the largest differences in the proportion of variables across 

sample sizes, followed by Boruta. Models created with GA seem to be fairly consistent in the 

numbers of variables they use across sample size.  

All methods have higher computation times as the sample size increases, as is to be 

expected. The only methods that appear to create models sensitive to sample size when 

examining the TPR are LASSO and Elastic Net.  

Comparison of methods across ratios of predictors to observations. Results for these 

analyses can be found in Tables 14, 15, and 16 and Figures 13 and 14. Analyses were done to 

examine the performance of methods in 𝑝 ≫  𝑛 conditions versus other ratios. Regarding AUC 

values, differences were only seen in models built using GA and Boruta. GA models had a 

significantly lower AUC in models where the data were 𝑝 ≫  𝑛. We see a significantly larger 

range of AUC values for 𝑝 ≫  𝑛 GA models than other GA models which may accout for this 

decrease. Boruta models had slightly higher average AUCs in models where the data were 𝑝 ≫

 𝑛.  

We see the same outliers in terms of prediction error rates. Only GA and Boruta models 

seem to be influenced by the ratio of predictors to observations. GA models had higher 

prediction error rates when the data were 𝑝 ≫  𝑛, while Boruta models had lower prediction 

error rates with 𝑝 ≫  𝑛 datasets.  



 

 

38 

Computation time appears to be affected by the ratio of predictor to observations in all 

models. All methods except GA and Elastic SVM took longer to create their models when the 

data were 𝑝 ≫  𝑛. GA appears to vary more widely in the amount of time it takes to create 

models with 𝑝 ≫  𝑛 data, while Elastic SVM creates its models much faster with data of this 

form.  

All methods selected a higher proportion of variables when the data were 𝑝 ≫  𝑛. We 

see the largest difference in models created by LASSO Tuned, followed by Boruta models. The 

smallest difference occurs in models created by GA. In addition, LASSO Tuned sees significant 

increases in TPR when the data is 𝑝 ≫  𝑛.   

Comparing methods grouped by characteristics of the method 

The methods used in this comparison study can be grouped into three general categories: 

regression-based methods, tree-based methods, and metaheuristics. LASSO, LASSO Tuned, 

Elastic Net, Elastic Net Tuned, and SVM are all regression-based methods. Boruta is a tree-

based method, and GA is a metaheuristic. Analyses were run comparing the performance of 

methods averaging within these categories. Results from these analyses can be found in Table 17 

and Figure 15.  

We see that the metaheuristic algorithm, GA, results in increased average AUCs and 

decreased prediction error rates when comparing to other methods, followed by the tree-based 

method, Boruta, and then all regression-based methods. Note that prediction error rates for tree-

based methods are only slightly lower than those of regression-based methods.  

In accordance with previous literature, metaheuristic and tree-based methods have larger 

computation times than regression-based methods. We also see that tree-based methods select 

the lowest proportion of variables while metaheuristic algorithms select the highest proportion. 



 

 

39 

Regression based methods, however, have the largest range regarding proportion of variable 

selected. No real differences are seen regarding TPR when comparing across method type.  

Alcohol Use Disorder  

Results from the application of each method to the alcohol use disorder dataset can be 

found in Table 18. Prediction error rates ranged from 0 to 27.7% across all the variable selection 

methods. The three methods with the lowest prediction error rates were GA, GA tuned, and 

LASSO tuned with prediction error rates of 0, 2.9%, and 4.7% respectively. The models with the 

largest prediction error rates were Elastic SVM and ESVM tuned. This indicates that these 

models did not predict a diagnosis of alcohol use disorder well.  

It is interesting to note that GA created models with lower prediction error rates than all 

base models using the entire set of predictors. This indicates that there are not only unnecessary 

variables included in the data set, but that these variables are detrimental for prediction.  

 Most methods selected between 50 and 70 of the original 86 variables. LASSO offered 

the lowest number of variables (21), followed by bTuned (51), GA tuned (52), and GA (57). 

Elastic SVM, EN tuned, and ESVM tuned selected the most variables. It is important to note that 

even with a large selection of variables, Elastic SVM and ESVM tuned created models with the 

highest prediction error rates. This is surprising given that, out of the models using all 86 

variables, SVM created the model with the lowest prediction error rate. 

LASSO tuned had the lowest computation time followed by Elastic Net, LASSO, and EN 

tuned. Methods with the greatest computation times (taking over an hour) were ESVM tuned and 

bTuned. Elastic SVM took only 130 seconds. GA tuned also had a high computation time, taking 

around 45 minutes, but GA took only 21 seconds to run. Other methods had comparable 

computation times ranging between 1 and 7 seconds.  



 

 

40 

Values of AUC for most of the models ranged from 1 to 0.86 with two outliers of Elastic 

SVM and ESVM tuned having AUCs of 0.5. This indicates that most of the models offered good 

fit. GA and GA tuned produced the highest AUCs of 1 and 0.968 respectively.  

In terms of which variables were selected by each method, 12 variables were selected by 

all models (Figure 17), and 18 more variables were selected by all but one method. In addition, 

there were two variables that were not selected in any of the models, indicating that they are not 

strong predictors of alcohol use disorder (Figure 17).  

Misophonia 

Misophonia Questionnaire. Results from the application of each method to the 

misophonia questionnaire dataset can be found in Table 19. Prediction error rates ranged from 0 

to 17.2% across all the variable selection methods. The three methods with the lowest prediction 

error rates were GA, GA tuned, and Elastic Net with prediction error rates of 0%, 0%, and 12.5% 

respectively. All other models had a prediction error rate of 14.1%.  

 Two methods, LASSO tuned and EN Tuned selected all 19 variables to create their 

models while LASSO selected 0 variables. Other methods selected between 4 and 14 of the 

original 19 variables. Of the models that contained at least one variable, Elastic SVM selected 

the fewest number of variables (4), with bTuned, ESVM tuned, and Boruta following close 

behind with 5, 6, and 7 selected variables respectively. It is important to remind the reader that 

with a wide range of selected variables, seven of our methods produced models with the same 

prediction error rate of 14.1%.  

LASSO tuned had the lowest computation time followed by Elastic Net, LASSO, and EN 

tuned. Methods with the greatest computation times (taking at least 4 minutes) were ESVM 

tuned and bTuned. GA tuned also had a high computation time, taking just over a minute, but 



 

 

41 

GA took only half a second to run. Other methods had comparable computation times ranging 

between 1 and 4 seconds.  

Values of AUC for most of models ranged from 0.686 to 1 with four outliers of LASSO, 

Elastic Net, Elastic SVM and ESVM tuned having AUCs of, or near in the case of Elastic Net, 

0.500. Note that the model created from LASSO contained zero variables. These AUCs indicates 

that most of the models offered good fit. GA tuned and GA produced the highest AUCs of 1.   

In terms of which variables were selected by each method, one variable was selected by 

all nine of the ten methods that selected at least one variable, two more by eight methods, one 

more by seven, and four more by six methods (Figure 18). All variables were selected by at least 

3 methods. 

S-Five (2018). Results from the application of each method to the S-Five dataset can be 

found in Table 20. Prediction error rates ranged from 0 to 36.6% across all the variable selection 

methods. The four methods with the lowest prediction error rates were GA, GA tuned, LASSO 

and Elastic Net with prediction error rates of 0%, 0%, 11.9%, and 11.9% respectively. The 

models with the largest prediction error rates were LASSO tuned and EN tuned with predictive 

error rates of 36.6% and 35.6% respectively. This indicates that these two models did not predict 

misophonia well.   

 EN tuned selected the most variables (85). One should note that LASSO did not select a 

single variable. Other methods selected between 6 and 68 of the original 86 variables. The lowest 

number of variables in models that selected at least one variable were selected by bTuned (6), 

followed by Boruta (14), Elastic SVM (41), GA (56) and GA tuned (56).  

LASSO tuned had the lowest computation time followed by LASSO and Elastic Net. The 

method with the greatest computation times (taking over an hour) was ESVM tuned. Taking just 



 

 

42 

over 20 minutes was bTuned, and the method with the next highest computation time was GA 

tuned, taking about 11 minutes. GA, however, only took 3 seconds. Elastic SVM took 22 

seconds to run. Other methods had comparable computation times ranging between 1 and 2 

seconds.  

Values of AUC for most models ranged from 0.432 to 0.500 with two outliers of GA and 

GAtuned having AUCs of 1. This indicates that most of the models did not offer a good fit. Only 

GA and GA tuned produced perfect AUCs of 1. It is important to note that all models created 

with all 86 of the original variables had AUCs ranging from 0.456 to 0.5. Thus, in comparison, 

the models created with variable selection methods did not see significant decreases in AUC 

from the base models. In fact, the models created by genetic algorithms saw increases in AUCs. 

 In terms of which variables were selected by each method, three variables were selected 

by all eight of the ten methods that selected at least one variable, four more by seven methods, 

and fifteen more by six methods. One variable was selected by only one method, and an 

additional seven were only selected by two methods (Figure 18).  

Discussion 

Through a large-scale Monte Carlo simulation and application to three real datasets, this 

paper provided a comprehensive comparison of supervised machine learning variable selection 

methods for classification used Gin the psychological sciences. Performance measures did not 

converge upon a single best method; as such, researchers should guide their method selection 

based on what measure of performance they deem most important. When prioritizing predictive 

power over all other considerations, GA should be implemented. When prioritizing both 

predictive power and number of variables used, my recommendation is for Boruta. If a 

researcher’s priority is computation time, LASSO or Elastic Net is recommended with caution. 



 

 

43 

First, models built using LASSO and Elastic Net had significantly lower predictive power (low 

AUC and high prediction error rates) than other methods and second, these methods were able to 

produce models with at least one variable for the least number of datasets, and thus may not 

work for your dataset.  

It is worth discussing possible explanations for why LASSO and Elastic Net eliminated 

all variables for so many simulated datasets. The logical interpretation of these results is the 

assumption that no linear combination of any subset of the regressors may be useful for 

predicting the outcomes. Given the results of our other methods, however, this does not appear to 

be a correct interpretation. Rather, it is possible that the selected 𝜆1 and/or 𝜆2 obtained during the 

cross-validation approach were too high. This explanation is possible, given that LASSO Tuned 

created models for all simulated datasets and EN Tuned created models for all but one simulated 

dataset. Given the strict boundaries implemented in our grid search, 𝜆1 and/or 𝜆2 were not 

allowed to reach sizes large enough to warrant eliminating all variables from the model.  

Researchers who are most interested in strong predictive power (e.g., high AUC and low 

prediction error rates), and can afford to implement a less computationally efficient method 

which selects a higher number of variables, GA is recommended. Researchers most interested in 

a method that selects the fewest number of variables should consider implementing LASSO or 

Elastic Net. No significant improvements were seen in predictive power when implementing a 

grid search to tune LASSO and Elastic Net (LASSO Tuned and EN Tuned, respectively) as 

compared to the methods tuned using the cross-validation method built into the glmnet package 

in R. If a researcher’s priority is predictive power, I recommend use of the built-in cross 

validation approach because it does not rely on the researcher to create a grid of possible 

parameters. However, in some cases, tuning with a grid search was seen to be faster, so for those 



 

 

44 

who are willing to sacrifice an amount of predictive power for more efficient computation times, 

a grid search should be considered. Researchers aiming to maintain high predictive accuracy 

with a lower number of variables selected, Boruta should be considered for it has considerable 

predictive power while significantly decreasing the required number of variables. For these 

strengths, Boruta does, however, still have high computation times. I advise against the use of 

Elastic SVM, for it did not appear to perform significantly better on any performance measure 

than other methods and had the highest average computation time (over 11 times that of Boruta). 

The structure of the data should also be considered when selecting the method. Although 

GA outperforms all methods in terms of predictive power, in data where 𝑝 ≫ 𝑛 , GA did not 

perform as well as with other ratios of predictors to observations. Boruta, however, performed 

slightly better in these conditions. In addition, there were differences seen in performance 

regarding the type of predictor in the dataset. With binary predictors, the possible predictive 

power (i.e., the AUC and prediction error rates of models built using all variables) was better 

with binary predictors than continuous predictors, we saw that LASSO, Elastic Net, EN Tuned 

and GA performed worse on datasets with binary predictors. Boruta, however, seemed to 

perform better with binary predictors. Thus, if one has a dataset using only binary predictors, 

Boruta should be considered.  

 All methods seemed to have higher AUCs and lower prediction error rates when the 

sample size was larger. All methods appeared to have higher prediction error rates when the 

prevalence rate was higher (indicating more even group sizes in the data). Prediction error rates 

appear to be least affected by prevalence rate through use of GA, while Boruta produces models 

where the AUC is least affected by prevalence rates. In fact, the average AUC is almost identical 

in models created with Boruta on datasets with prevalence rates of .25, .30, and .40.   



 

 

45 

Overall, this paper illustrates that metaheuristic approaches perform best on all datasets 

while tree-based methods perform second best and regression-based methods perform the worst. 

One should consider that the use of Elastic SVM did decrease average performance metrics in 

terms of regression-based methods, and without its inclusion, average performance would be 

slightly better, but they would still not outperform metaheuristics. This is a good indication that 

the future of variable selection research lies in the development of new and improvement of 

current metaheuristics. There are a few current obstacles metaheuristics face in terms of their use 

by behavioral scientists. For one they do have significantly higher computation times than other 

methods, and thus it can be hard to convince researchers that what they give up in computation 

time is worth what they gain in model performance – I hope this paper will help to illustrate this 

point. Two, the use of metaheuristics requires a level of understanding of computer science and 

machine learning which are two areas many behavioral researchers do not have experience in. 

With the increased popularity of R, however, this gap in knowledge appears to be decreasing. In 

addition, we are seeing more and more R packages being introduced that use metaheuristics for 

variable selection problems. One popular one is the ShortForm package by Raborn and Leite 

(2020). Metaheuristics are still not available in other popular software like SPSS or SAS which 

are commonly used by behavioral researchers. Thirdly, metaheuristics are often seen as 

somewhat of a “black box” approach which makes them hard for users to understand. However, 

with the continued increase in their use and popularity, I have confidence that these obstacles 

may decrease with time. 

Limitations 

This study had some limitations worth addressing such as the size of the datasets both 

regarding the number of observations and number of predictors. To better understand how the 



 

 

46 

methods assessed in this study perform with data in larger dimensions, subsequent studies should 

consider expanding the dataset size and number of predictors. The simulation was constrained to 

these conditions due to computational expense – larger datasets would have taken several hours 

to complete. Despite these constraints, 108 unique conditions were analyzed, so results can guide 

researcher’s toward implementing the most appropriate variable selection method for their given 

dataset. Another aspect that should be examined in future research is how these methods perform 

with missing data, as the current study did not address this question.  

There are several avenues of future work stemming from this paper. For example, one 

could examine the performance of each of these methods with missing data – especially given 

that Boruta treats missing values as a separate category when splitting its trees. One could also 

vary the amount of missing data and the methods through which missing data is handled (e.g., 

leaving it as is, use of multiple imputation, random forest imputation, k-nearest neighbor 

imputation, etc.). Additionally, one could implement this study using more than two 

classifications. This still has implementations in terms of diagnosis – for example, alcohol use 

disorder can be diagnosed at different levels: mild, moderate, or severe. Another future study 

could repeat analyses of these methods in higher dimensions, perhaps with the inclusion of 

parallel computing to speed up run time. Lastly, another potential expansion of this research 

would be through the inclusion of additional tree-based methods (see Speiser et al., 2019 for a 

list of available random forest variable selection methods in R) and metaheuristic methods such 

as Tabu search, simulated annealing, or particle swarm algorithms.  

The primary contribution of this study is the ability to assess different supervised 

machine learning variable selection methods used in the psychological sciences. Specifically, 

this study provided computation times for models, which addressed an important gap often 



 

 

47 

ignored within the field. In addition, this paper illustrates an area in which machine learning is 

beneficial to behavioral scientists. I hope that this paper encourages researchers to consider the 

use of machine learning methods in variable selection problems and how the field behavioral 

science could benefit from their use.  

  



 

 

48 

References 

Algamal, Z. Y., & Lee, M. H. (2015a). Applying penalized binary logistic regression with 

correlation based elastic net for variables selection. Journal of Modern Applied Statistical 

Methods, 14(1), 168–179. https://doi.org/10.22237/jmasm/1430453640 

Algamal, Z. Y., & Lee, M. H. (2015b). Regularized logistic regression with adjusted adaptive 

elastic net for gene selection in high dimensional cancer classification. Computers in 

Biology and Medicine, 67, 136–145. https://doi.org/10.1016/j.compbiomed.2015.10.008 

Anastasi, A., & Urbina, S. (1997). Psychological Testing (7th ed.). Prentice Hall. 

Arditte, K. A., Çek, D., Shaw, A. M., & Timpano, K. R. (2016). The importance of assessing 

clinical phenomena in Mechanical Turk Research. Psychological Assessment, 28, 684–691. 

https://doi.org/10.1037/pas0000217 

Becker, N., Toedt, G., Lichter, P., & Benner, A. (2011). Elastic SCAD as a novel penalization 

method for SVM classification tasks in high-dimensional data. BMC Bioinformatics, 12. 

https://doi.org/10.1186/1471-2105-12-138 

Becker, N., Werft, W., Toedt, G., Lichter, P., & Benner, A. (2009). Data and text mining 

penalizedSVM: a R-package for feature selection SVM classification. BIOINFORMATICS 

APPLICATIONS NOTE, 25(13), 1711–1712. https://doi.org/10.1093/bioinformatics/btp286 

Bengio, Y., Delalleau, O., & Simard, C. (2010). Decision trees do not generalize to new 

variations. Computational Intelligence, 26(4), 449–467. https://doi.org/10.1111/j.1467-

8640.2010.00366.x 

Boness, C. L., Lane, S. P., & Sher, K. J. (2019). Not all alcohol use disorder criteria are equally 

severe: Toward severity grading of individual criteria in college drinkers. Psychology of 



 

 

49 

Addictive Behaviors : Journal of the Society of Psychologists in Addictive Behaviors, 33(1), 

35–49. https://doi.org/10.1037/ADB0000443 

Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992). A Training Algorithm for Optimal Margin 

Classifiers. COLT ’92 - Proceedings of the Fifth Annual Workshop on Computational 

Learning Theory, 144–152. 

Bourgon, R., Gentleman, R., & Huber, W. (2010). Independent filtering increases detection 

power for high-throughput experiments. Proceedings of the National Academy of Sciences 

of the United States of America, 107(21), 9546–9551. 

https://doi.org/10.1073/pnas.0914005107 

Brieman, L., Friedman, J., Stone, C. J., & Olshen, R. A. (2017). Classification and Regression 

Trees. CRC Press. 

Brusco, M. J. (2014). A comparison of simulated annealing algorithms for variable selection in 

principal component analysis and discriminant analysis. Computational Statistics & Data 

Analysis, 77, 38–53. https://doi.org/10.1016/j.csda.2014.03.001 

Brusco, M. J., Singh, R., & Steinley, D. (2009). Variable neighborhood search heuristics for 

selecting a subset of variables in principal component analysis. Psychometrika, 74(4), 705–

726. https://doi.org/10.1007/s11336-009-9130-3 

Buhrmester, M., Kwang, T., & Gosling, S. D. (2011). Amazon’s Mechanical Turk: A New 

Source of Inexpensive, Yet High-Quality, Data? 

Https://Doi.Org/10.1177/1745691610393980, 6(1), 3–5. 

https://doi.org/10.1177/1745691610393980 



 

 

50 

Cadenas, J. M., Garrido, C. M., & MartíNez, R. (2013). Feature subset selection Filter-Wrapper 

based on low quality data. Expert Systems with Applications: An International Journal, 

40(16), 6241–6252. https://doi.org/10.1016/J.ESWA.2013.05.051 

Cadima, J., Cerdeira, J. O., & Minhoto, M. (2004). Computational aspects of algorithms for 

variable selection in the context of principal components. Computational Statistics and 

Data Analysis, 47(2 SPEC. ISS.), 225–236. https://doi.org/10.1016/j.csda.2003.11.001 

Calle, M. L., Urrea, V., Boulesteix, A. L., & Malats, N. (2011). AUC-RF: A New Strategy for 

Genomic Profiling with Random Forest. Human Heredity, 72, 121–132. 

https://doi.org/10.1159/000330778 

Cartledge, C. (2016). How Many Vs are there in Big Data? 

Chapman, B. P., Weiss, A., & Duberstein, P. (2016). Statistical Learning Theory for High 

Dimensional Prediction: Application to Criterion-Keyed Scale Development. Psychological 

Methods, 21(4), 603–620. https://doi.org/10.1037/met0000088 

Conn, D., Ngun, T., Li, G., & Ramirez, C. (2015). Fuzzy Forests: Extending Random Forests for 

Correlated, High-Dimensional Data. UCLA EScholarship Research Report, 1–6. 

Cowgill, 1vi C, Harvey, R. J., & Watson, L. T. (1999). A Genetic Algorithm Approach to Cluster 

Analysis. In Computers and Mathematics with Applications (Vol. 37). 

Cramer, J. S. (2005). The Origins of Logistic Regression. SSRN Electronic Journal. 

https://doi.org/10.2139/ssrn.360300 

Crotes, C., & Vapnik, V. (1995). Support-Vector Networks. Machine Learning, 20, 273–297. 

https://doi.org/10.1109/64.163674 



 

 

51 

Crump, M. J. C., McDonnell, J. v., & Gureckis, T. M. (2013). Evaluating Amazon’s Mechanical 

Turk as a Tool for Experimental Behavioral Research. PLOS ONE, 8(3), e57410. 

https://doi.org/10.1371/JOURNAL.PONE.0057410 

Curran, P. J., & Hussong, A. M. (2009). Integrative Data Analysis: The Simultaneous Analysis 

of Multiple Data Sets. Psychological Methods, 14(2), 81–100. 

https://doi.org/10.1037/A0015914 

Daubechies, I., Defrise, M., & Mol, C. de. (2004). An iterative thresholding algorithm for linear 

inverse problems with a sparsity constraint. Communications on Pure and Applied 

Mathematics, 57(11), 1413–1457. https://doi.org/10.1002/CPA.20042 

de Meneses-Gaya, C. (2011). Alcohol Use Disorders Identification Test (AUDIT): An updated 

systematic review of psychometric properties. Psychology & Neuroscience, 2(1), 83. 

https://doi.org/10.3922/J.PSNS.2009.1.12 

Degenhardt, F., Seifert, S., & Szymczak, S. (2019). Evaluation of variable selection methods for 

random forests and omics data sets. Briefings in Bioinformatics, 20(2), 492–503. 

https://doi.org/10.1093/bib/bbx124 

Deng, H., & Runger, G. (2013). Gene Selection With Guided Regularized Random Forest. 

Derksen, S., & Keselman, H. J. (1992). Backward, forward and stepwise automated subset 

selection algorithms: Frequency of obtaining authentic and noise variables. British Journal 

of Mathematical and Statistical Psychology, 45(2), 265–282. 

https://doi.org/10.1111/J.2044-8317.1992.TB00992.X 

Descloux, P., & Sardy, S. (2021). Model Selection With Lasso-Zero: Adding Straw to the 

Haystack to Better Find Needles. Https://Doi.Org/10.1080/10618600.2020.1869026. 

https://doi.org/10.1080/10618600.2020.1869026 



 

 

52 

Diaz-Uriarte, R., & de Andres, S. A. (2005). Variable selection from random forests: application 

to gene expression data. 1–11. http://arxiv.org/abs/q-bio/0503025 

Dolan, C. v. (1994). Factor analysis of variables with 2 , 3 , 5 and 7 response categories : A 

comparison of categorical variable estimators using simulated data. British Journal of 

Mathematical and Statistical Psychology, 47, 309–326. 

Efron, B., Hastie, T., Johnstone, I., & Tibshirani, R. (2004). Least angle regression. The Annals 

of Statistics, 32(2), 407–499. https://doi.org/10.1214/009053604000000067 

Eisenbarth, H., Lilienfeld, S. O., & Yarkoni, T. (2015a). Using a genetic algorithm to abbreviate 

the psychopathic personality inventory-revised (PPI-R). Psychological Assessment, 27(1), 

194–202. https://doi.org/10.1037/pas0000032 

Eisenbarth, H., Lilienfeld, S. O., & Yarkoni, T. (2015b). Using a genetic algorithm to abbreviate 

the psychopathic personality inventory-revised (PPI-R). Psychological Assessment, 27(1), 

194–202. https://doi.org/10.1037/pas0000032 

Fan, J., & Li, R. (2011). Variable Selection via Nonconcave Penalized Likelihood and its Oracle 

Properties. Https://Doi.Org/10.1198/016214501753382273, 96(456), 1348–1360. 

https://doi.org/10.1198/016214501753382273 

Fernández-Delgado, M., Cernadas, E., Barro, S., & Amorim, D. (2014). Do we need hundreds of 

classifiers to solve real world classification problems? Journal of Machine Learning 

Research, 15, 3133–3181. https://doi.org/10.1117/1.JRS.11.015020 

Fonti, V. (2017). Feature Selection using LASSO. VU Amsterdam, 1–26. 

Friedman, J., Hastie, T., Höfling, H., & Tibshirani, R. (2007). Pathwise coordinate optimization. 

Https://Doi.Org/10.1214/07-AOAS131, 1(2), 302–332. https://doi.org/10.1214/07-

AOAS131 



 

 

53 

Friedman, J., Hastie, T., & Tibshirani, R. (2010a). Regularization Paths for Generalized Linear 

Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. 

Friedman, J., Hastie, T., & Tibshirani, R. (2010b). Regularization Paths for Generalized Linear 

Models via Coordinate Descent. Journal of Statistical Software, 33(1), 1–22. 

https://www.jstatsoft.org/v33/i01/ 

Fu, W. J. (n.d.). Penalized Regressions: The Bridge Versus the Lasso. 

Fung, G. M., & Mangasarian, O. L. (2004). A feature selection Newton method for support 

vector machine classification. Computational Optimization and Applications, 28(2), 185–

202. https://doi.org/10.1023/B:COAP.0000026884.66338.DF 

Genkin, A., Lewis, D. D., & Madigan, D. (2012). Large-Scale Bayesian Logistic Regression for 

Text Categorization. Http://Dx.Doi.Org/10.1198/004017007000000245, 49(3), 291–304. 

https://doi.org/10.1198/004017007000000245 

Genuer, R., Poggi, J.-M., & Tuleau-Malot, C. (2010). Variable selection using random forests. 

Pattern Recognition Letters, 31(14), 2225–2236. 

https://doi.org/10.1016/j.patrec.2010.03.014 

Goldberg, D. E. (1989). Genetic algorithms in search, optimization, and machine learning. 

Choice Reviews Online, 27(02), 27-0936-27–0936. https://doi.org/10.5860/choice.27-0936 

Gosling, S. D., Vazire, S., Srivastava, S., & John, O. P. (2004). Should We Trust Web-Based 

Studies? A Comparative Analysis of Six Preconceptions About Internet Questionnaires. 

American Psychologist, 59(2), 93–104. https://doi.org/10.1037/0003-066X.59.2.93 

Groenen, P. J. F., Mathar, R., & Trejos, J. (2000). Global Optimization Methods for 

Multidimensional Scaling Applied to Mobile Communications (pp. 459–469). 

https://doi.org/10.1007/978-3-642-58250-9_37 



 

 

54 

Guyon, I., & Elisseeff, A. (2003). An Introduction to Variable and Feature Selection. Journal of 

Machine Learning Research, 3, 1157–1182. 

Hall, M. A. (1999). Correlation-based Feature Selection for Machine Learning (Issue April). 

Hapfelmeier, A., & Ulm, K. (2013). A new variable selection approach using Random Forests. 

Computational Statistics and Data Analysis, 60(1), 50–69. 

https://doi.org/10.1016/j.csda.2012.09.020 

Hesterberg, T., Choi, N. H., Meier, L., & Fraley, C. (2008). Least angle and ℓ 1 penalized 

regression: A review * †. Statistics Surveys, 2, 61–93. https://doi.org/10.1214/08-SS035 

Hindi, M. M., & Yampolskiy, R. v. (2012). Genetic Algorithm Applied to the Graph Coloring 

Problem. Midwest Artificial Intelligence and Cognitive Science Conference, 60–66. 

Hoerl, A. E., & Kennard, R. W. (1970). Ridge Regression: Biased Estimation for Nonorthogonal 

Problems. Technometrics, 12(1), 55–67. 

Hofer, S. M., & Piccinin, A. M. (2009). Integrative data analysis through coordination of 

measurement and analysis protocol across independent longitudinal studies. Psychological 

Methods, 14(2), 150–164. https://doi.org/10.1037/A0015566 

Holland, J. H. (2019). Adaptation in Natural and Artificial Systems. The MIT Press. 

Hothorn, T., Hornik, K., Strobl, C., & Zeileis, A. (2015). party: A Laboratory for Recursive 

Partytioning. R Package Version 0.9-0, URL Http://CRAN. R-Project. Org, 1994, 37. 

Ipeirotis, P. G., Provost, F., & Wang, J. (2010). Quality Management on Amazon Mechanical 

Turk. 

Ishwaran, H., & Kogalur, U. B. (2021). Package ‘ randomForestSRC .’ 



 

 

55 

Janitza, S., Celik, E., & Boulesteix, A. L. (2018). A computationally fast variable importance test 

for random forests for high-dimensional data. Advances in Data Analysis and 

Classification, 12(4), 885–915. https://doi.org/10.1007/s11634-016-0276-4 

Jiang, W., Song, S., Hou, L., & Zhao, H. (2021). A Set of Efficient Methods to Generate High-

Dimensional Binary Data With Specified Correlation Structures. American Statistician, 

75(3), 310–322. https://doi.org/10.1080/00031305.2020.1816213 

Johnson, M., & Sinharay, S. (2011). Remarks from the new editors. Journal of Educational and 

Behavioral Statistics, 36(1), 3–5. https://doi.org/10.3102/1076998610387267 

Kodratoff, Y. (2014). Introduction to machine learning. Morgan Kaufmann. 

Kok, B. C., Choi, J. S., Oh, H., & Choi, J. Y. (2021). Sparse Extended Redundancy Analysis: 

Variable Selection via the Exclusive LASSO. Multivariate Behavioral Research, 56(3), 

426–446. https://doi.org/10.1080/00273171.2019.1694477 

Krishnapuram, B., Carin, L., Figueiredo, M., & Hartemink, A. (2005). Sparse multinomial 

logistic regression: fast algorithms and generalization bounds. IEEE Transactions on 

Pattern Analysis and Machine Intelligence, 27(6), 957–968. 

https://doi.org/10.1109/TPAMI.2005.127 

Kuhn, M. (2008). Building predictive models in R using the caret package. Journal of Statistical 

Software, 28(5), 1–26. https://doi.org/10.18637/jss.v028.i05 

Kursa, M. B., & Rudnicki, W. R. (2010). Feature selection with the boruta package. Journal of 

Statistical Software, 36(11), 1–13. https://doi.org/10.18637/jss.v036.i11 

Laney, D. (2001). 3D Data Management: Controlling Data Volume, Velocity, and Variety. Meta 

Group Research Note, 6. 



 

 

56 

Liaw, A., & Wiener, M. (2002a). Classification and Regression by randomForest. R News, 2(3), 

18–22. 

Liaw, A., & Wiener, M. (2002b). Classification and Regression by randomForest. R News, 2(3), 

18–22. https://CRAN.R-project.org/doc/Rnews/ 

Liu, W., & Li, Q. (2017). An Efficient Elastic Net with Regression Coefficients Method for 

Variable Selection of Spectrum Data. PLOS ONE, 12(2). 

https://doi.org/10.1371/journal.pone.0171122 

Marafino, B. J., John Boscardin, W., & Adams Dudley, R. (2015). Efficient and sparse feature 

selection for biomedical text classification via the elastic net: Application to ICU risk 

stratification from nursing notes. Journal of Biomedical Informatics, 54, 114–120. 

https://doi.org/10.1016/j.jbi.2015.02.003 

Marsh, H. W., Hau, K. T., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The 

number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral 

Research, 33(2), 181–220. https://doi.org/10.1207/s15327906mbr3302_1 

McDonald, G. C. (2009). Ridge regression. Wiley Interdisciplinary Reviews: Computational 

Statistics, 1(1), 93–100. https://doi.org/10.1002/WICS.14 

McNeish, D. M. (2015). Using Lasso for Predictor Selection and to Assuage Overfitting: A 

Method Long Overlooked in Behavioral Sciences. Multivariate Behavioral Research, 50(5), 

471–484. https://doi.org/10.1080/00273171.2015.1036965 

Meyer, D., Dimitriadou, E., Hornik, K., Weingessel, A., & Leisch, F. (2021). e1071: Misc 

Functions of the Department of Statistics, Probability Theory Group (Formerly: E1071), Tu 

Wein. https://CRAN.R-project.org/package=e1071 



 

 

57 

Neumann, J., Schnörr, C., & Steidl, G. (2005). Combined SVM-based feature selection and 

classification. Machine Learning, 61(1–3), 129–150. https://doi.org/10.1007/s10994-005-

1505-9 

Rachmani, E., Hsu, C. Y., Nurjanah, N., Chang, P. W., Shidik, G. F., Noersasongko, E., 

Jumanto, J., Fuad, A., Ningrum, D. N. A., Kurniadi, A., & Lin, M. C. (2019). Developing 

an Indonesia’s health literacy short-form survey questionnaire (HLS-EU-SQ10-IDN) using 

the feature selection and genetic algorithm. Computer Methods and Programs in 

Biomedicine, 182, 105047. https://doi.org/10.1016/j.cmpb.2019.105047 

Rachmani, E., Hsu, C.-Y., & Nurjanah, N. (2019). Developing an Indonesia’s health literacy 

short-form survey questionnaire (HLS-EU-SQ10-IDN) using the feature selection and 

genetic algorithm. Computer Methods and Programs in Biomedicine, 182, 105047. 

https://doi.org/10.1016/j.cmpb.2019.105047 

Radloff, L. S. (1977). The CES-D Scale: A Self-Report Depression Scale for Research in the 

General Population. Applied Psychological Measurement, 1(3), 385–401. 

https://doi.org/10.1177/014662167700100306 

Rakotomamonjy, A. (2003). Variable selection using SVM-based criteria. Journal of Machine 

Learning Research, 3, 1357–1370. 

Ram, M., Najafi, A., & Shakeri, M. T. (2017). Classification and Biomarker Genes Selection for 

Cancer Gene Expression Data Using Random Forest. JOURNAL OF PATHOLOGY Iranian 

Journal of Pathology, 12(4), 339–347. 

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.-C., & Müller, M. (2011). 

pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC 

Bioinformatics, 12, 77. 



 

 

58 

Robitzsch, A. (2020). Why Ordinal Variables Can (Almost) Always Be Treated as Continuous 

Variables: Clarifying Assumptions of Robust Continuous and Ordinal Factor Analysis 

Estimation Methods. Frontiers in Education, 5. https://doi.org/10.3389/feduc.2020.589965 

Saeys, Y., Inza, I., & Larranaga, P. (2007). A review of feature selection techniques in 

bioinformatics. Bioinformatics, 23(19), 2507–2517. 

https://doi.org/10.1093/bioinformatics/btm344 

Sahdra, B. K., Ciarrochi, J., Parker, P., & Scrucca, L. (2016). Using Genetic Algorithms in a 

Large Nationally Representative American Sample to Abbreviate the Multidimensional 

Experiential Avoidance Questionnaire. Frontiers in Psychology, 7(February), 1–14. 

https://doi.org/10.3389/fpsyg.2016.00189 

Sanchez-Pinto, L. N., Venable, L. R., Fahrenbach, J., & Churpek, M. M. (2018). Comparison of 

variable selection methods for clinical predictive modeling. International Journal of 

Medical Informatics, 116(February), 10–17. https://doi.org/10.1016/j.ijmedinf.2018.05.006 

Sandy, C. J., Gosling, S. D., & Koelkebeck, T. (2014). Psychometric comparison of automated 

versus rational methods of scale abbreviation: An illustration using a brief measure of 

values. Journal of Individual Differences, 35(4), 221–235. https://doi.org/10.1027/1614-

0001/a000144 

Schroeders, U., Wilhelm, O., & Olaru, G. (2016). Meta-Heuristics in Short Scale Construction: 

Ant Colony Optimization and Genetic Algorithm. PLOS ONE, 11(11), e0167110. 

https://doi.org/10.1371/journal.pone.0167110 

Scrucca, L. (2013). GA: A package for genetic algorithms in R. Journal of Statistical Software, 

53(4), 1–37. https://doi.org/10.18637/jss.v053.i04 



 

 

59 

Shapiro, D. N., Chandler, J., & Mueller, P. A. (2013). Using Mechanical Turk to Study Clinical 

Populations: Https://Doi.Org/10.1177/2167702612469015, 1(2), 213–220. 

https://doi.org/10.1177/2167702612469015 

Shen, Q., Jiang, J. H., Tao, J. C., Shen, G. L., & Yu, R. Q. (2005). Modified ant colony 

optimization algorithm for variable selection in QSAR modeling: QSAR studies of 

cyclooxygenase inhibitors. Journal of Chemical Information and Modeling, 45(4), 1024–

1029. https://doi.org/10.1021/ci049610z 

Shevade, S. K., & Keerthi, S. S. (2003). A simple and efficient algorithm for gene selection 

using sparse logistic regression. Bioinformatics, 19(17), 2246–2253. 

https://doi.org/10.1093/BIOINFORMATICS/BTG308 

Silia, V., & Chloe, H. (2018). S-Five : a psychometric tool for assessing misophonia. 

Speiser, J. L., Durkalski, V. L., & Lee, W. M. (2015). Random forest classifcation of etiologies 

for an orphan disease. Statistics in Medicine, 34, 887–899. https://doi.org/10.1002/sim.6351 

Speiser, J. L., Miller, M. E., Tooze, J., & Ip, E. (2019). A comparison of random forest variable 

selection methods for classification prediction modeling. Expert Systems with Applications, 

134, 93–101. https://doi.org/10.1016/j.eswa.2019.05.028 

Svetnik, V., Liaw, A., & Tong, C. (2000). Variable Selection in Random Forest with Application 

to Quantitative Structure-Activity Relationship. Proceedings of the 7th Course on Ensemble 

Methods for Learning Machines, January, 1–8. 

Thompson, B. (1995). Stepwise Regression and Stepwise Discriminat Analysis Need Not Apply 

Here: A Guidelines Editorial. Educational and Psychological Measurement, 55(4), 525–

534. 



 

 

60 

Tibshirani, R. (1996). Regression Shrinkage and Selection Via the Lasso. Journal of the Royal 

Statistical Society: Series B (Methodological), 58(1), 267–288. 

https://doi.org/10.1111/J.2517-6161.1996.TB02080.X 

van der Kooij, A. J. (2007). Prediction Accuracy and Stability of Regression with Optimal 

Scaling Transformations. https://openaccess.leidenuniv.nl/dspace/handle/1887/12096 

van der Linden, W. J. (1998). Optimal Assembly of Psychological and Educational Tests. 

Applied Psychological Measurement, 22(3), 195–211. 

https://doi.org/10.1177/01466216980223001 

Whittingham, M. J., Stephens, P. A., Bradbury, R. B., & Freckleton, R. P. (2006). Why do we 

still use stepwise modelling in ecology and behaviour? Journal of Animal Ecology, 75(5), 

1182–1189. https://doi.org/10.1111/J.1365-2656.2006.01141.X 

Wiegand, R. E. (2010). Performance of using multiple stepwise algorithms for variable selection 

‡ Background and review of SVS algorithms. https://doi.org/10.1002/sim.3943 

Wu, M. S., Lewin, A. B., Murphy, T. K., & Storch, E. A. (2014). Misophonia: Incidence, 

phenomenology, and clinical correlates in an undergraduate student sample. Journal of 

Clinical Psychology, 70(10), 994–1007. https://doi.org/10.1002/jclp.22098 

Wu, T. T., Chen, Y. F., Hastie, T., Sobel, E., & Lange, K. (2009). Genome-wide association 

analysis by lasso penalized logistic regression. Bioinformatics, 25(6), 714–721. 

https://doi.org/10.1093/BIOINFORMATICS/BTP041 

Wu, T. T., & Lange, K. (2008). Coordinate descent algorithms for lasso penalized regression. 

Annals of Applied Statistics, 2(1), 224–244. https://doi.org/10.1214/07-aoas147 



 

 

61 

Yarkoni, T. (2010). The abbreviation of personality, or how to measure 200 personality scales 

with 200 items. Journal of Research in Personality, 44(2), 180–198. 

https://doi.org/10.1016/j.jrp.2010.01.002 

Yarkoni, T. (2012). Psychoinformatics: New Horizons at the Interface of the Psychological and 

Computing Sciences. Https://Doi.Org/10.1177/0963721412457362, 21(6), 391–397. 

https://doi.org/10.1177/0963721412457362 

Zhang, H., Ahn, J., Lin, X., & Park, C. (2006). Gene selection using support vector machines 

with non-convex penalty. Bioinformatics (Oxford, England), 22(1), 88–95. 

https://doi.org/10.1093/BIOINFORMATICS/BTI736 

Zou, H., & Hastie, T. (2005). Regularization and Variable Selection via the Elastic Net. Journal 

of the Royal Statistical Society., 67(2), 301–320. https://www.jstor.org/stable/3647580 

  

 

  



 

 

62 

Figures 

 

Table 1  

Summary of variable selection methods 

Abbreviation in paper Publication R package 

LR (Cramer, 2005) stats 

SVM; SVMtuned  (Meyer et al., 2021) e1071 

RF; RFtuned (Liaw & Wiener, 2002b) randomForest 

GA; GA tuned (Scrucca, 2013) GA 

LASSO; LASSO tuned (Friedman et al., 2010b) glmnet 

Elastic Net; EN tuned  (Friedman et al., 2010b) glmnet 

Elastic SVM; ESVM tuned (Becker et al., 2011) penalizedSVM 

Boruta; bTuned (Kursa & Rudnicki, 2010) Boruta 

 

  



 

 

63 

Table 2  

Distribution of prediction error rates, AUC, proportion of variables selected, TPR, and computation times for all methods. Note, the 

methods are not sorted in any way. For comparison, higher AUC and TPR were considered better while lower prediction error rates, 

proportion of variables selected, and computation time were considered better. Note that the last three rows of the table contain 

results from methods that are not variable selection methods and are only included for relative comparison to a model built using all 

possible variables. 

 

 Prediction Error 

Rate 

AUC Proportion of 

Variables Selected 

TPR Computation Time (s) 

Function (N) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Boruta (10314) 0.265 (0.109) 0.627 (0.122) 0.337 (0.272) 0.737 (0.204) 3.893 (3.733) 

cv.glmnetelasticNet 

(5488) 
0.277 (0.102) 

 

0.522 (0.06) 

 

0.152 (0.221) 

 

0.937 (0.156) 

 

1.34 (2.783) 

 

glmnetelasticNet 

(10800) 
0.305 (0.114) 

 

0.597 (0.114) 

 

0.94 (0.1) 

 

0.74 (0.204) 

 

6.16 (10.344) 

 

svmfs (10800) 0.264 (0.104) 0.572 (0.111) 0.522 (0.403) 0.789 (0.229) 37.203 (53.37) 

ga (10800) 0.08 (0.096) 0.884 (0.137) 0.569 (0.1) 0.726 (0.213) 3.548 (4.532) 

cv.glmnetLASSO 

(5462)  
0.278 (0.102) 

 

0.523 (0.064) 

 

0.08 (0.139) 

 

0.93 (0.182) 

 

1.791 (4.576) 

 

glmnetLASSO (10791) 0.311 (0.114) 0.596 (0.114) 0.677 (0.312) 0.669 (0.281) 0.405 (1.024) 

glm (10800) 0.357 (0.128) 0.588 (0.106) 1 (0) 0.722 (0.208) 0.032 (0.055) 

randomForest 

(10800) 
0.258 (0.106) 

 

0.623 (0.121) 

 

1 (0) 

 

0.722 (0.208) 

 

0.225 (0.283) 

 

svm (10800) 0.254 (0.102) 0.603 (0.116) 1 (0) 0.722 (0.208) 0.023 (0.029) 

N: Number of models built with at least one variable (total possible, 10800) 

SD: Standard Deviation 

TPR: Proportion of selected variables that are not noise variables 

 

 

  



 

 

64 

Table 3 

Distribution of prediction error rates, AUC, proportion of variables selected, TPR, and computation times for all methods excluding 

all datasets for which at least one of the methods did not produce a model utilizing at least one variable (4927 datasets used in this 

analysis). Note that the last three rows of the table contain results from methods that are not variable selection methods and are only 

included for relative comparison to a model built using all possible variables. 

 

 Prediction Error 

Rate 

AUC Proportion of 

Variables Selected 

TPR Computation Time 

(s) 

Function Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Boruta 0.243 (0.103) 0.689 (0.103) 0.482 (0.272) 0.753 (0.204) 4.448 (4.209) 

cv.glmnetelasticNet  0.28 (0.101) 0.547 (0.079) 0.306 (0.231) 0.948 (0.141) 1.282 (2.411) 

glmnetelasticNet 0.275 (0.106) 0.648 (0.104) 0.935 (0.106) 0.753 (0.204) 5.744 (9.112) 

svmfs 0.273 (0.1) 0.579 (0.11) 0.569 (0.415) 0.8 (0.219) 39.258 (54.437) 

ga 0.097 (0.097) 0.865 (0.133) 0.572 (0.103) 0.739 (0.215) 3.63 (4.741) 

cv.glmnetLASSO  0.28 (0.101) 0.549 (0.085) 0.16 (0.16) 0.944 (0.161) 1.684 (4.029) 

glmnetLASSO  0.279 (0.107) 0.647 (0.102) 0.729 (0.293) 0.705 (0.26) 0.36 (0.918) 

glm 0.317 (0.121) 0.626 (0.096) 1 (0) 0.734 (0.21) 0.033 (0.057) 

randomForest 0.239 (0.099) 0.691 (0.102) 1 (0) 0.734 (0.21) 0.242 (0.274) 

svm 0.236 (0.095) 0.682 (0.103) 1 (0) 0.734 (0.21) 0.024 (0.027) 

SD: Standard Deviation 

TPR: Proportion of selected variables that are not noise variables 

  



 

 

65 

Table 4 

Distribution of prediction error rates, AUC, and proportion of variables selected for all methods across type of predictor. Note that 

the last three rows of the table contain results from methods that are not variable selection methods and are only included for relative 

comparison to a model built using all possible variables. 

 

   Prediction Error Rate  AUC  Proportion of Variables Selected 

   Mean (SD)  Mean (SD)  Mean (SD) 

Function   Binary Continuous  Binary Continuous  Binary Continuous 

Boruta   0.254 (0.104) 

 

0.276 (0.113) 

 

 0.637 (0.13) 

 

0.618 (0.114) 

 

 0.311 (0.252) 

 

0.363 (0.289) 

 

cv.glmnetelasticNet    0.278 (0.103) 

 

0.277 (0.101) 

 

 0.52 (0.066) 

 

0.525 (0.054) 

 

 0.139 (0.21) 

 

0.165 (0.231) 

 

glmnetelasticNet   0.297 (0.113) 

 

0.313 (0.114) 

 

 0.608 (0.122) 

 

0.586 (0.105) 

 

 0.912 (0.117) 

 

0.968 (0.068) 

 

svmfs   0.259 (0.101) 

 

0.269 (0.106) 

 

 0.586 (0.121) 

 

0.559 (0.099) 

 

 0.471 (0.394) 

 

0.573 (0.406) 

 

ga   0.091 (0.093) 

 

0.069 (0.099) 

 

 0.864 (0.136) 

 

0.903 (0.136) 

 

 0.578 (0.101) 

 

0.56 (0.097) 

 

cv.glmnetLASSO    0.279 (0.104) 

 

0.277 (0.101) 

 

 0.521 (0.07) 

 

0.526 (0.057) 

 

 0.088 (0.154) 

 

0.072 (0.121) 

 

glmnetLASSO    0.301 (0.112) 

 

0.321 (0.115) 

 

 0.607 (0.121) 

 

0.585 (0.104) 

 

 0.66 (0.306) 

 

0.694 (0.317) 

 

glm   0.335 (0.121) 

 

0.378 (0.131) 

 

 0.597 (0.112) 

 

0.579 (0.098) 

 

 1 (0) 

 

1 (0) 

 

randomForest   0.253 (0.106) 

 

0.264 (0.107) 

 

 0.632 (0.128) 

 

0.614 (0.114) 

 

 1 (0) 

 

1 (0) 

 

svm   0.249 (0.102) 

 

0.259 (0.102) 

 

 0.615 (0.126) 

 

0.59 (0.104) 

 

 1 (0) 

 

1 (0) 

 

SD: Standard Deviation 

 

  



 

 

66 

Table 5  

Distribution of TPR, and computation times for all methods across type of predictor. Note that the last three rows of the table contain 

results from methods that are not variable selection methods and are only included for relative comparison to a model built using all 

possible variables. 

   TPR  Computation Time (s) 

   Mean (SD)  Mean (SD) 

Function   Binary Continuous  Binary Continuous 

Boruta   0.76 (0.194) 

 

0.714 (0.211) 

 

 3.528 (3.195) 

 

4.254 (4.168) 

 

cv.glmnetelasticNet    0.947 (0.137) 

 

0.926 (0.173) 

 

 1.243 (2.545) 

 

1.436 (3) 

 

glmnetelasticNet   0.763 (0.194) 

 

0.718 (0.212) 

 

 5.627 (10.664) 

 

6.693 (9.987) 

 

svmfs   0.827 (0.218) 

 

0.754 (0.234) 

 

 44.479 (61.644) 

 

29.928 (42.326) 

 

ga   0.728 (0.212) 

 

0.724 (0.215) 

 

 3.994 (5.447) 

 

3.102 (3.319) 

 

cv.glmnetLASSO    0.945 (0.151) 

 

0.915 (0.208) 

 

 1.751 (4.416) 

 

1.83 (4.731) 

 

glmnetLASSO    0.707 (0.253) 

 

0.631 (0.302) 

 

 0.406 (1.152) 

 

0.404 (0.877) 

 

glm   0.722 (0.208) 

 

0.722 (0.208) 

 

 0.034 (0.055) 

 

0.031 (0.055) 

 

randomForest   0.722 (0.208) 

 

0.722 (0.208) 

 

 0.238 (0.306) 

 

0.212 (0.257) 

 

svm   0.722 (0.208) 

 

0.722 (0.208) 

 

 0.021 (0.026) 

 

0.026 (0.031) 

 

SD: Standard Deviation 

TPR: Proportion of selected variables that are not noise variables 

  



 

 

67 

Table 6 

Distribution of prediction error rates for each method across prevalence rates. Note that the last three rows of the table contain 

results from methods that are not variable selection methods and are only included for relative comparison to a model built using all 

possible variables. 

 Prediction Error Rates 

 Prevalence Rate .20 Prevalence Rate .25 Prevalence Rate .30 Prevalence Rate .40 

Function  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Boruta 0.198 (0.079) 0.239 (0.087) 0.282 (0.098) 0.343 (0.113) 

cv.glmnetelasticNet  0.199 (0.065) 0.243 (0.072) 0.29 (0.077) 0.378 (0.094) 

glmnetelasticNet 0.24 (0.094) 0.284 (0.099) 0.321 (0.102) 0.376 (0.114) 

svmfs 0.199 (0.073) 0.237 (0.081) 0.278 (0.089) 0.342 (0.109) 

ga 0.053 (0.068) 0.069 (0.082) 0.085 (0.097) 0.113 (0.121) 

cv.glmnetLASSO  0.2 (0.065) 0.244 (0.073) 0.29 (0.077) 0.377 (0.096) 

glmnetLASSO  0.249 (0.095) 0.291 (0.102) 0.326 (0.104) 0.38 (0.112) 

glm 0.315 (0.133) 0.34 (0.126) 0.366 (0.122) 0.406 (0.112) 

randomForest 0.19 (0.075) 0.23 (0.081) 0.274 (0.092) 0.339 (0.112) 

svm 0.187 (0.069) 0.226 (0.077) 0.269 (0.087) 0.336 (0.107) 

 

SD: Standard Deviation  



 

 

68 

Table 7 

Distribution of AUC for each method across prevalence rates. Note that the last three rows of the table contain results from methods 

that are not variable selection methods and are only included for relative comparison to a model built using all possible variables. 

 AUC 

 Prevalence Rate .20 Prevalence Rate .25 Prevalence Rate .30 Prevalence Rate .40 

Function  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Boruta 0.627 (0.135) 0.624 (0.123) 0.626 (0.116) 0.633 (0.113) 

cv.glmnetelasticNet  0.518 (0.056) 0.517 (0.051) 0.521 (0.055) 0.532 (0.075) 

glmnetelasticNet 0.602 (0.126) 0.592 (0.113) 0.594 (0.11) 0.599 (0.108) 

svmfs 0.549 (0.104) 0.562 (0.109) 0.575 (0.111) 0.603 (0.113) 

ga 0.896 (0.137) 0.885 (0.138) 0.881 (0.137) 0.872 (0.137) 

cv.glmnetLASSO  0.517 (0.055) 0.518 (0.054) 0.524 (0.063) 0.535 (0.079) 

glmnetLASSO  0.601 (0.124) 0.593 (0.115) 0.593 (0.109) 0.597 (0.106) 

glm 0.593 (0.118) 0.586 (0.106) 0.586 (0.102) 0.586 (0.094) 

randomForest 0.622 (0.132) 0.619 (0.121) 0.621 (0.116) 0.629 (0.115) 

svm 0.59 (0.123) 0.596 (0.115) 0.605 (0.113) 0.621 (0.111) 

 

SD: Standard Deviation 

  



 

 

69 

Table 8 

Distribution of proportion of variables selected for each method across prevalence rates. Note that the last three rows of the table 

contain results from methods that are not variable selection methods and are only included for relative comparison to a model built 

using all possible variables. 

 Proportion of Variables Selected 

 Prevalence Rate .20 Prevalence Rate .25 Prevalence Rate .30 Prevalence Rate .40 

Function  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Boruta 0.355 (0.272) 0.349 (0.272) 0.339 (0.274) 0.305 (0.268) 

cv.glmnetelasticNet  0.147 (0.236) 0.148 (0.227) 0.151 (0.217) 0.163 (0.204) 

glmnetelasticNet 0.939 (0.099) 0.94 (0.097) 0.94 (0.101) 0.941 (0.102) 

svmfs 0.446 (0.366) 0.49 (0.392) 0.521 (0.409) 0.632 (0.42) 

ga 0.566 (0.1) 0.567 (0.1) 0.57 (0.098) 0.573 (0.1) 

cv.glmnetLASSO  0.075 (0.144) 0.076 (0.14) 0.08 (0.137) 0.089 (0.136) 

glmnetLASSO  0.646 (0.319) 0.671 (0.312) 0.687 (0.307) 0.703 (0.307) 

glm 1 (0) 1 (0) 1 (0) 1 (0) 

randomForest 1 (0) 1 (0) 1 (0) 1 (0) 

svm 1 (0) 1 (0) 1 (0) 1 (0) 

 

SD: Standard Deviation 

  



 

 

70 

Table 9 

Distribution of TPR for each method across prevalence rates. Note that the last three rows of the table contain results from methods 

that are not variable selection methods and are only included for relative comparison to a model built using all possible variables. 

 TPR 

 Prevalence Rate .20 Prevalence Rate .25 Prevalence Rate .30 Prevalence Rate .40 

Function  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Boruta 0.74 (0.205) 0.738 (0.204) 0.738 (0.204) 0.731 (0.203) 

cv.glmnetelasticNet  0.952 (0.119) 0.947 (0.14) 0.942 (0.148) 0.916 (0.187) 

glmnetelasticNet 0.741 (0.204) 0.741 (0.204) 0.741 (0.205) 0.739 (0.205) 

svmfs 0.781 (0.24) 0.785 (0.235) 0.795 (0.227) 0.796 (0.214) 

ga 0.726 (0.214) 0.726 (0.214) 0.725 (0.213) 0.727 (0.212) 

cv.glmnetLASSO  0.945 (0.147) 0.941 (0.17) 0.936 (0.173) 0.908 (0.211) 

glmnetLASSO  0.665 (0.285) 0.668 (0.281) 0.672 (0.28) 0.671 (0.278) 

glm 0.722 (0.208) 0.722 (0.208) 0.722 (0.208) 0.722 (0.208) 

randomForest 0.722 (0.208) 0.722 (0.208) 0.722 (0.208) 0.722 (0.208) 

svm 0.722 (0.208) 0.722 (0.208) 0.722 (0.208) 0.722 (0.208) 

 

SD: Standard Deviation 

TPR: Proportion of selected variables that are not noise variables  

 

  



 

 

71 

Table 10 

Distribution of computation times for each method across prevalence rates. Note that the last three rows of the table contain results 

from methods that are not variable selection methods and are only included for relative comparison to a model built using all possible 

variables. 

 Computation Time (s) 

 Prevalence Rate .20 Prevalence Rate .25 Prevalence Rate .30 Prevalence Rate .40 

Function  Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Boruta 3.762 (3.671) 3.912 (3.851) 3.981 (3.792) 3.916 (3.609) 

cv.glmnetelasticNet  1.341 (2.516) 1.322 (2.679) 1.346 (2.862) 1.349 (3.049) 

glmnetelasticNet 6.536 (10.808) 6.043 (9.296) 6.17 (10.958) 5.892 (10.225) 

svmfs 26.348 (40.572) 33.6 (51.212) 41.77 (57.533) 47.095 (59.736) 

ga 3.577 (4.437) 3.588 (4.56) 3.566 (4.922) 3.461 (4.178) 

cv.glmnetLASSO  1.746 (4.065) 1.728 (4.206) 1.766 (4.478) 1.923 (5.43) 

glmnetLASSO  0.424 (0.991) 0.395 (0.944) 0.403 (1.08) 0.398 (1.074) 

glm 0.034 (0.056) 0.033 (0.055) 0.032 (0.055) 0.031 (0.054) 

randomForest 0.211 (0.269) 0.221 (0.279) 0.23 (0.287) 0.237 (0.296) 

svm 0.022 (0.028) 0.023 (0.028) 0.024 (0.029) 0.025 (0.03) 

 

SD: Standard Deviation 

 

 

  



 

 

72 

Table 11 

Distribution of prediction error rates and AUC for all methods across sample size. Note that the last three rows of the table contain 

results from methods that are not variable selection methods and are only included for relative comparison to a model built using all 

possible variables. 

   Prediction Error Rate  AUC 

  Sample Size 

50 

Sample Size 

200 

Sample Size 

500 

 Sample Size 

50 

Sample Size 200 Sample Size 500 

  Mean (SD) Mean (SD) Mean (SD)  Mean (SD) Mean (SD) Mean (SD) 

Boruta  0.283 (0.141) 0.265 (0.094) 0.249 (0.086)  0.622 (0.154) 0.621 (0.109) 0.638 (0.1) 

cv.glmnetelasticNet   0.284 (0.129) 0.276 (0.089) 0.272 (0.081)  0.518 (0.067) 0.522 (0.056) 0.528 (0.056) 

glmnetelasticNet  0.315 (0.142) 0.311 (0.101) 0.289 (0.091)  0.595 (0.147) 0.592 (0.098) 0.603 (0.088) 

svmfs  0.275 (0.133) 0.263 (0.088) 0.254 (0.08)  0.565 (0.123) 0.569 (0.103) 0.584 (0.106) 

ga  0.032 (0.066) 0.079 (0.098) 0.129 (0.096)  0.95 (0.103) 0.885 (0.139) 0.816 (0.132) 

cv.glmnetLASSO   0.285 (0.13) 0.277 (0.089) 0.272 (0.081)  0.52 (0.075) 0.522 (0.058) 0.528 (0.058) 

glmnetLASSO   0.33 (0.14) 0.314 (0.101) 0.29 (0.091)  0.591 (0.147) 0.592 (0.098) 0.603 (0.087) 

glm  0.404 (0.147) 0.365 (0.116) 0.301 (0.093)  0.587 (0.135) 0.577 (0.089) 0.599 (0.084) 

randomForest  0.274 (0.136) 0.257 (0.091) 0.244 (0.083)  0.608 (0.149) 0.621 (0.108) 0.639 (0.1) 

svm  0.271 (0.131) 0.252 (0.087) 0.24 (0.079)  0.574 (0.129) 0.604 (0.108) 0.63 (0.102) 

 

SD: Standard Deviation 

 

  



 

 

73 

Table 12 

Distribution of the proportion of variables selected by each method and TPR for all methods across sample size. Note that the last 

three rows of the table contain results from methods that are not variable selection methods and are only included for relative 

comparison to a model built using all possible variables. 

   Proportion of Variables Selected  TPR 

  Sample Size 

50 

Sample Size 

200 

Sample Size 

500 

 Sample Size 

50 

Sample Size 

200 

Sample Size 

500 

  Mean (SD) Mean (SD) Mean (SD)  Mean (SD) Mean (SD) Mean (SD) 

Boruta  0.182 (0.189) 0.325 (0.256) 0.487 (0.271)  0.182 (0.189) 0.325 (0.256) 0.487 (0.271) 

cv.glmnetelasticNet   0.075 (0.153) 0.147 (0.215) 0.235 (0.254)  0.075 (0.153) 0.147 (0.215) 0.235 (0.254) 

glmnetelasticNet  0.914 (0.112) 0.953 (0.09) 0.953 (0.09)  0.914 (0.112) 0.953 (0.09) 0.953 (0.09) 

svmfs  0.487 (0.408) 0.507 (0.402) 0.573 (0.394)  0.487 (0.408) 0.507 (0.402) 0.573 (0.394) 

ga  0.555 (0.11) 0.574 (0.098) 0.578 (0.088)  0.555 (0.11) 0.574 (0.098) 0.578 (0.088) 

cv.glmnetLASSO   0.038 (0.097) 0.075 (0.134) 0.127 (0.164)  0.038 (0.097) 0.075 (0.134) 0.127 (0.164) 

glmnetLASSO   0.411 (0.312) 0.719 (0.234) 0.9 (0.135)  0.411 (0.312) 0.719 (0.234) 0.9 (0.135) 

glm  1 (0) 1 (0) 1 (0)  1 (0) 1 (0) 1 (0) 

randomForest  1 (0) 1 (0) 1 (0)  1 (0) 1 (0) 1 (0) 

svm  1 (0) 1 (0) 1 (0)  1 (0) 1 (0) 1 (0) 

 

SD: Standard Deviation 

TPR: Proportion of variables selected that are not noise variables  

 

  



 

 

74 

Table 13 

Distribution of the computation times for all methods across sample size. Note that the last three rows of the table contain results from 

methods that are not variable selection methods and are only included for relative comparison to a model built using all possible 

variables. 

   Computation Time (s) 

  Sample Size 50 Sample Size 200 Sample Size 500 

  Mean (SD) Mean (SD) Mean (SD) 

Boruta  1.391 (0.476) 2.674 (1.178) 7.312 (4.445) 

cv.glmnetelasticNet   0.095 (0.037) 0.674 (0.715) 3.249 (4.134) 

glmnetelasticNet  2.011 (2.468) 5.328 (4.733) 11.141 (15.806) 

svmfs  23.677 (28.982) 28.446 (36.112) 59.487 (75.142) 

ga  1.633 (0.994) 3.261 (2.751) 5.75 (6.668) 

cv.glmnetLASSO   0.094 (0.063) 0.773 (1.045) 4.505 (7.103) 

glmnetLASSO   0.103 (0.198) 0.326 (0.425) 0.785 (1.638) 

glm  0.011 (0.014) 0.028 (0.03) 0.059 (0.082) 

randomForest  0.031 (0.023) 0.158 (0.108) 0.485 (0.344) 

svm  0.009 (0.012) 0.016 (0.016) 0.046 (0.036) 

 

SD: Standard Deviation 

 

 

 

  



 

 

75 

Table 14 

Distribution of prediction error rates and AUC for all methods across ratio of observations to number of predictors. Note that the last 

three rows of the table contain results from methods that are not variable selection methods and are only included for relative 

comparison to a model built using all possible variables. 

 

  Prediction Error Rate  AUC 

  𝑝 ≤  𝑛 𝑝 ≫  𝑛  𝑝 ≤  𝑛 𝑝 ≫  𝑛 

  Mean (SD) Mean (SD)  Mean (SD) Mean (SD) 

Boruta  0.261 (0.101) 0.286 (0.14)  0.629 (0.114) 0.622 (0.155) 

cv.glmnetelasticNet   0.275 (0.095) 0.287 (0.129)  0.524 (0.059) 0.517 (0.065) 

glmnetelasticNet  0.306 (0.107) 0.302 (0.14)  0.596 (0.105) 0.599 (0.149) 

svmfs  0.261 (0.095) 0.275 (0.134)  0.572 (0.107) 0.575 (0.13) 

ga  0.095 (0.099) 0.013 (0.036)  0.862 (0.14) 0.978 (0.066) 

cv.glmnetLASSO   0.276 (0.095) 0.288 (0.13)  0.524 (0.061) 0.52 (0.075) 

glmnetLASSO   0.308 (0.107) 0.326 (0.139)  0.596 (0.105) 0.593 (0.147) 

glm  0.341 (0.118) 0.427 (0.145)  0.588 (0.099) 0.588 (0.131) 

randomForest  0.255 (0.099) 0.273 (0.134)  0.626 (0.114) 0.608 (0.149) 

svm  0.251 (0.095) 0.27 (0.129)  0.609 (0.112) 0.574 (0.13) 

 

SD: Standard Deviation 

  



 

 

76 

Table 15 

Distribution of the proportion of variables selected and TPR for all methods across ratio of observations to number of predictors. 

Note that the last three rows of the table contain results from methods that are not variable selection methods and are only included 

for relative comparison to a model built using all possible variables. 

 

  Proportion of Variables Selected  TPR 

  𝑝 ≤  𝑛 𝑝 ≫  𝑛  𝑝 ≤  𝑛 𝑝 ≫  𝑛 

  Mean (SD) Mean (SD)  Mean (SD) Mean (SD) 

Boruta  0.389 (0.27) 0.097 (0.094)  0.747 (0.205) 0.687 (0.189) 

cv.glmnetelasticNet   0.178 (0.236) 0.037 (0.063)  0.951 (0.134) 0.841 (0.243) 

glmnetelasticNet  0.955 (0.09) 0.875 (0.114)  0.751 (0.206) 0.695 (0.192) 

svmfs  0.54 (0.402) 0.443 (0.4)  0.791 (0.226) 0.781 (0.243) 

ga  0.584 (0.102) 0.503 (0.047)  0.739 (0.217) 0.667 (0.186) 

cv.glmnetLASSO   0.095 (0.15) 0.015 (0.03)  0.948 (0.15) 0.807 (0.296) 

glmnetLASSO   0.79 (0.222) 0.18 (0.079)  0.715 (0.245) 0.465 (0.334) 

glm  1 (0) 1 (0)  0.735 (0.211) 0.667 (0.183) 

randomForest  1 (0) 1 (0)  0.735 (0.211) 0.667 (0.183) 

svm  1 (0) 1 (0)  0.735 (0.211) 0.667 (0.183) 

 

SD: Standard Deviation 

TPR: Proportion of variables selected that are not noise variables  

  



 

 

77 

Table 16 

Distribution of computation times for all methods across ratio of observations to number of predictors. Note that the last three rows of 

the table contain results from methods that are not variable selection methods and are only included for relative comparison to a 

model built using all possible variables. 

 

  Computation Time (s) 

  𝑝 ≤  𝑛 𝑝 ≫  𝑛 

  Mean (SD) Mean (SD) 

Boruta  4.403 (3.926) 1.519 (0.487) 

cv.glmnetelasticNet   1.624 (3.011) 0.087 (0.027) 

glmnetelasticNet  6.975 (11.201) 2.573 (3.152) 

svmfs  37.704 (56.83) 35.002 (34.144) 

ga  3.83 (4.962) 2.308 (0.82) 

cv.glmnetLASSO   2.18 (4.988) 0.077 (0.028) 

glmnetLASSO   0.466 (1.118) 0.136 (0.254) 

glm  0.036 (0.06) 0.016 (0.015) 

randomForest  0.266 (0.299) 0.045 (0.021) 

svm  0.026 (0.031) 0.013 (0.012) 

 

SD: Standard Deviation 

 

  



 

 

78 

 

Table 17 

Distribution of prediction error rates, AUC, number of predictors, TPR, and computation time selected across method types.          

Method Type Prediction Error 

Rate 

Computation 

Time (s) 

AUC TPR Proportion of 

Variables 

Selected 

 Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) 

Metaheuristic 0.08 (0.096) 

 

3.377 (4.373) 

 

0.884 (0.137) 

 

0.726 (0.213) 

 

0.567 (0.1) 

 

Regression-

based 

0.285 (0.108) 

 

10.438 (29.784) 

 

0.565 (0.1) 

 

0.763 (0.235) 

 

0.453 (0.357) 

 

Tree-based 0.266 (0.111) 

 

3.794 (3.661) 

 

0.627 (0.122) 

 

0.737 (0.204) 

 

0.336 (0.273) 

 

SD: Standard Deviation  

TPR: Proportion of variables selected that are not noise variables  

 

  



 

 

79 

Table 18 

Prediction error rates, AUC, number of predictors, and computation time selected by each method when applied to the Alcohol Use 

Disorder dataset. 

Function Used Prediction 

Error Rate 

AUC Number of 

Predictors 

Computation 

Time (seconds) 

Parameter settings 

glm 0.058 0.920 86 0.090 default 

svm 0.058 0.932 86 0.060 default 

svm1 0.036 0.955 86 0.860 cost = 1.75 

randomForest 0.076 0.884 86 0.700 default 

randomForest1 0.076 0.884 86 92.420 mtry = 14, ntree = 500 

ga 0 1 57 20.740 default and run = 5 

ga1 0.029 0.968 52 2559.680 run = 5, popSize = 30, pcrossover = 0.6, 

pmutation = 0.001 

cv.glmnet 0.083 0.863 21 1.720 lambda= 0.026, alpha = 1 

 

glmnet1 0.047 0.936 69 0.190 lambda= 0.0001, alpha = 1  

cv.glmnet 0.040 0.945 61 1.510 alpha=.05,  lambda= 0.0295 

glmnet1 0.050 0.929 78 3.060 alpha= 0.053  lambda= .0001 

svmfs 0.277 0.5 83 130.340 lambda1 =  -5.86 , lambda2 = 3.05, 

bounds = (-10,10) 

svmfs1 0.277 0.5 77 6725.570 lambda1 =  1e-04, lambda2 = .0001, 

maxevals = 10, maxIter = 100 

Boruta 0.076 0.884 62 7.970 Default, proximity = T 

Boruta1 0.068 0.893 51 4024.32 maxRuns =  500, mtry = 5, ntree = 100 
1 The parameters for these methods were tuned using a grid search.  



 

 

80 

Table 19 

Prediction error rates, AUC, number of predictors, and computation time selected by each method when applied to the Misophonia 

Questionnaire.  

Method Prediction 

Error Rate 

AUC Number of 

Predictors 

Computation 

Time (seconds) 

Parameter settings 

glm 0.141 0.732 19 0.020 default 

svm 0.141 0.546 19 0.020 default 

svm1 0.203 0.557 19 0.070 cost = 5 

randomForest 0.156 0.677 19 0.040 default 

randomForest1 0.172 0.668 19 1.840 mtry = 5, ntree = 100 

ga 0 1 13 0.700 default and run = 5 

ga1 0 1 14 22.670 run = 5, popSize = 30, pcrossover = 0.5, 

pmutation = 0.001 

cv.glmnet 0.141 0.500 0 0.109 lambda= 0.175 

 

glmnet1 0.141 0.732 19 0.030 lambda= 0.0001 

cv.glmnet 0.125 0.556 11 0.070 alpha=.05,  lambda= 0.175 

glmnet1 0.141 0.732 19 0.720 alpha= 0.579,  lambda= .0001 

svmfs 0.141 0.500 4 4.050 lambda1 =  -1.60 , lambda2 = 7.87, 

bounds = (-10,10) 

svmfs1 0.141 0.500 6 480.520 lambda1 =  0.05, lambda2 = 0.05, 

maxevals = 10, maxIter = 500 

Boruta 0.141 0.686 7 1.270 Default, proximity = T 

Boruta1 0.141 0.686 5 291.260 maxRuns =  500, mtry = 9, ntree = 100 
1 The parameters for these methods were tuned using a grid search.  



 

 

81 

Table 20 

Prediction error rates, AUC, number of predictors, and computation time selected by each method when applied to the S-Five.         

Method Prediction 

Error Rate 

AUC Number of 

Predictors 

Computation 

Time (seconds) 

Parameter settings 

glm 0.386 0.456 86 0.040 default 

svm 0.119 0.500 86 0.030 default 

svm1 0.149 0.483 86 0.280 cost = 5 

randomForest 0.119 0.500 86 0.230 default 

randomForest1 0.119 0.500 86 36.060 mtry = 16, ntree = 100 

ga 0 1 56 3.030 default and run = 5 

ga1 0 1 56 661.940 run = 5, popSize = 30, pcrossover = 0.5, 

pmutation = 0.001 

cv.glmnet 0.119 0.500 0 0.780 lambda= 0.076 

 

glmnet1 0.366 0.432 68 0.110 lambda= 0.0001 

cv.glmnet 0.119 0.500 0 0.750 alpha=.05,  lambda= 0.076 

glmnet1 0.356 0.437 85 1.780 alpha= 0.053  lambda= .0001 

svmfs 0.168 0.500 41 22.030 lambda1 =  -4.36 , lambda2 = 3.72, 

bounds = (-10,10 

svmfs1 0.129 0.494 59 3808.450 lambda1 =  0.01, lambda2 = .3, maxevals 

= 10, maxIter = 50 

Boruta 0.139 0.489 14 2.050 Default, proximity = TRUE 

Boruta1 0.218 0.444 6 1383.970 maxRuns =  500, mtry = 3, ntree = 100, 

proximity = TRUE 
1 The parameters for these methods were tuned using a grid search.  



 

 

82 

Figure 4 

This figure displays boxplots of the prediction error rate and AUC for methods.  

 
  



 

 

83 

Figure 5 

This figure displays boxplots of the computation times, proportion of variables selected and TPR 

for the methods. The TPR refers to the proportion of variables selected that are not noise 

variables. Note that the computation time of svmfs ranged from 1 to 439 seconds but the range 

has been limited to increase legibility of the plot. 

 



 

 

84 

Figure 6 

This figure displays plots of the median prediction error rate by median computation time, 

proportion of variables selected, and AUC.  

 



 

 

85 

Figure 7 

This figure displays boxplots of the prediction error rate and AUC for the methods as compared 

across predictor type (continuous vs. binary).  

 
 



 

 

86 

 

Figure 8 

This figure displays boxplots of the computation times, proportion of variables selected, and TPR 

for the methods as compared across predictor type (continuous vs. binary). Note that TPR refers 

to the proportion of variables selected that are not noise variables and that the range in 

computation time has been restricted to enhance visibility. 

 



 

 

87 

Figure 9 

This figure displays boxplots of the prediction error rates and AUC for the methods for 

classification as compared across prevalence rate.  

 



 

 

88 

Figure 10 

This figure displays boxplots of the computation times, proportion of variables selected, and TPR 

for the methods as compared across prevalence rates. Note that TPR refers to the proportion of 

variables selected that are not noise variables and the range in computation time has been 

restricted to enhance visibility. 

 



 

 

89 

Figure 11 

This figure displays boxplots of the prediction error rates and AUC for the methods as compared 

across sample sizes.  

 



 

 

90 

Figure 12 

This figure displays boxplots of the computation times, proportion of variables selected, and TPR 

for the methods as compared across sample sizes. Note that TPR refers to the proportion of 

variables selected that are not noise variables and the range in computation time has been 

restricted to enhance visibility. 

 



 

 

91 

Figure 13 

This figure displays boxplots of the prediction error rates and AUC for the methods as compared 

across data dimensions.  

 



 

 

92 

Figure 14 

This figure displays boxplots of the computation times, proportion of variables selected, and TPR 

for the methods as compared across data dimensions. Note that TPR refers to the proportion of 

variables selected that are not noise variables and the range in computation time has been 

restricted to enhance visibility. 

 



 

 

93 

Figure 15 

This figure displays boxplots of the prediction error rates and AUC for the methods as compared 

across type of method.  

 

 



 

 

94 

Figure 16 

This figure displays boxplots of the computation times, proportion of variables selected, and TPR 

for the methods as compared across type of method. Note that TPR refers to the proportion of 

variables selected that are not noise variables and the range in computation time has been 

restricted to enhance visibility. 



 

 

95 

Figure 17 

Variables Selected for Alcohol Use Disorder  

 
 



 

 

96 

Figure 18 

Variables Selected for the Misophonia Questionnaire 

 



 

 

97 

Figure 19 

Variables Selected for the S-Five 

 


	Abstract
	Filter Methods
	Wrapper Methods
	Genetic Algorithm

	Embedded Methods
	Regularization Techniques
	Ridge
	LASSO
	Elastic Net

	Support Vector Machines
	Random Forest

	The Present Study
	Methods
	Simulation
	Data Generation

	Applications
	Alcohol Use Disorder
	Misophonia


	Results
	Simulation Study
	Results Across All Simulated Datasets
	Comparing methods grouped by characteristics of the datasets
	Comparing methods grouped by characteristics of the method

	Alcohol Use Disorder
	Misophonia

	Discussion
	Limitations

	References
	Figures

