
San Jose State University San Jose State University

SJSU ScholarWorks SJSU ScholarWorks

Master's Projects Master's Theses and Graduate Research

Spring 2022

Canvas Autoquiz Canvas Autoquiz

Archit Jain

Follow this and additional works at: https://scholarworks.sjsu.edu/etd_projects

 Part of the Other Computer Sciences Commons, and the Software Engineering Commons

https://scholarworks.sjsu.edu/
https://scholarworks.sjsu.edu/etd_projects
https://scholarworks.sjsu.edu/etd
https://scholarworks.sjsu.edu/etd_projects?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/152?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=scholarworks.sjsu.edu%2Fetd_projects%2F1078&utm_medium=PDF&utm_campaign=PDFCoverPages

CANVAS AUTOQUIZ

Canvas Autoquiz

A Project Report

Presented to

The Department of Computer Science

San José State University

In Partial Fulfillment

Of the Requirements for the Class

Spring-2022: CS 298

By

Archit Jain

May, 2022

CANVAS AUTOQUIZ

© 2022

Archit Jain

ALL RIGHTS RESERVED

CANVAS AUTOQUIZ

The Designated Project Committee Approves the Project Titled

Canvas Autoquiz

by

Archit Jain

APPROVED FOR THE DEPARTMENT OF COMPUTER SCIENCE

SAN JOSE STATE UNIVERSITY

May 2022

Ben Reed Department of Computer Science

Thomas Austin Department of Computer Science

Robert Chun Department of Computer Science

CANVAS AUTOQUIZ

ABSTRACT

Online learning management platforms such as Canvas are thriving and quickly replacing

traditional classrooms, especially during these pandemic-struck times. As more and more quizzes

are administered online, we need tools that make the quiz creation process easier and faster.

Canvas Autoquiz is a command-line tool that allows instructors to automatically create and

upload quizzes of varying difficulty levels. It also allows instructors to export quizzes from one

LMS platform to another. This project explores the need, design, and implementation of the tool,

and prospective future work.

i

CANVAS AUTOQUIZ

ACKNOWLEDGMENT

I would like to express my gratitude to Dr. Ben Reed for his direction, motivation, and

support throughout this project. I feel fortunate as working with him had taught me the

importance of building simple, yet powerful tools that improve user experience. He has

encouraged critical thinking and kept me motivated throughout the project.

Next, I would like to thank the members of the MD2QTI team, Su Kim and Mingyun

Kim for their efforts in the creation of the MD2QTI tool which acted as an inspiration for this

project.

Next, I would also like to express my gratitude to the members of my defense committee,

Prof. Thomas Austin, Prof. Robert Chun, and all the CS faculty for providing support over the

two years of my degree.

Finally, I would like to thank my friends, peers, and family for their support and

motivation.

ii

CANVAS AUTOQUIZ

TABLE OF CONTENTS

List of Tables v..

List of Figures vi...

1. Introduction 1...

2. History and Background 2...

2.1 Canvas 2...

2.1.1 Features of Canvas LMS 2...

2.1.2 Canvas API Interface 6..

2.1.3 Canvas Quiz import 9..

2.2 MD2QTI 10..

2.2.1 MD2QTI Usage 11...

2.2.2 Supported Question Types 13..

2.3 Markdown 17...

2.4 QTI 19..

3. Design Approach/Methodology 22..

3.1 Historical Quiz Fetcher 23...

3.2 Question Analyzer and Matcher 25..

3.2.1 Difficulty Level Analysis 26..

3.2.2 Question Similarity Checker 26...

3.3 Database Folder Creator 28..

3.3.1 Reason for using the file system to store the database 29..

3.3.2 Current database design 30..

3.3.3 Handling Question Variation 32...

3.4 Database Folder Parser 32..

3.5 Quiz Generator 33..

3.5.1 Tagging and filtering 34...

3.5.2 Selecting questions based on difficulty 36...

3.5.3 Converting HTML to MD 36...

iii

CANVAS AUTOQUIZ

3.6 Zip Creator 37...

4. Using Autoquiz 38...

4.1 Download command 38..

4.2 Generate command 38..

5. Setting Development Environment 39...

6. Difficulties and Challenges 40...

6.1 Problem with setting up Canvas 40...

6.1.1 Ruby setup using RVM 40...

6.1.2 Installing Docker and Docker Compose 41..

6.1.3 Installing YARN 41...

7. Future Work and Improvements 42...

7.1 Question Tagging 42...

7.2 Web Application 42..

8. Conclusion 43..

References 44..

iv

CANVAS AUTOQUIZ

LIST OF TABLES

Table 1: Internal data structures of Autoquiz 25...

Table 2: Example of Levenshtein vs Hamming distance 28...

v

CANVAS AUTOQUIZ

LIST OF FIGURES

Fig 1: Example Canvas dashboard 3...

Fig 2: Generating Access Tokens in Canvas 8..

Fig 3: Access token details in Canvas 8..

Fig 4: Import course content in Canvas 9...

Fig 5: Different import options in Canvas 10...

Fig 6: example .md file that is required by MD2QTI 12..

Fig 7: the content of manifest.xml in MD2QTI 13...

Fig 8: Multiple Choice, True/False, and Multiple Answers supported by MD2QTI 14.....................

Fig 9: Fill in the Blank, Multiple Blank/Dropdowns, and Matching questions supported by
MD2QTI 16..

Fig 10: Numerical and Formula questions supported by MD2QTI 17...

Fig 11: File Upload and Essay questions supported by Md2QTI 17..

Fig 12: Markdown example 18...

Fig 13: Example of QTI 2.2 multiple choice questions 20...

Fig 14: Autoquiz and the Ecosystem 22...

Fig 15: Example of the config file of Autoquiz 24..

Fig 16: Autoquiz fetching data from the Canvas 25...

Fig 17: similar questions with the same group id 27..

Fig 18: Example of the database folder for a practice course 31..

Fig 19: Example question.html file for a question 31...

Fig 20: Top k chosen values for a given difficult 36...

Fig 21: converting HTML to markdown. 37...

vi

CANVAS AUTOQUIZ

1. INTRODUCTION

The onset of the global pandemic and various quarantine requirements have accelerated

the transition of the classroom from a traditional in-person learning environment to a virtual

classroom setting. This has led to several changes in the formal schooling system. One of the

most notable changes has been the shift to online quizzes from paper-based quizzes. These online

quizzes with advanced features such as proctoring have made the entire evaluation process

easier, faster, and more efficient [21].

Canvas is one of the most popular virtual classroom tools today. It is a web-based

learning management system that is primarily used by learning institutions, educators, and

students for teaching and class administration [1]. It provides multiple features such as the ability

to provide class materials, submit assignments, participate in discussions, and create/take

quizzes.

Canvas is a great tool that solves a lot of problems; however, there are some limitations.

For instance, although Canvas has support for the creation of quizzes and proctoring, the process

of creating quizzes is manual and quite cumbersome. An instructor cannot create questions using

scripts, find out the difficulty level of each question, and auto-generate questions based on tags

and past quizzes. These limitations limit the overall effectiveness of the tool.

This paper presents Canvas Autoquiz, a command-line tool that aims to bridge this gap

and make the quiz creation process easier, simpler and faster. This python-based tool aims to

completely automate the quiz creation process and allows the instructors to download, analyze

and store historical quizzes. The instructor can then use the tool to automatically create quizzes

based on criteria such as question difficulty and tags. This tool uses the Canvas API interface to

fetch data from Canvas and MD2QTI tool created by Su Kim [19] to upload the quiz to canvas.

1

CANVAS AUTOQUIZ

An additional advantage of this tool is that it can allow Canvas quizzes to be imported to any

other online-learning-based software that uses the QTI standard.

2. HISTORY AND BACKGROUND

2.1 Canvas

Canvas, originally named Instructure, was founded in 2008 and is an open-source web-

based learning management system that is used by universities and other educational institutions

to manage course materials [3]. Canvas allows for the creation of online courses where

instructors can create online learning materials, and students can access these materials and

utilize these to engage in learning. The software also tracks student skill development and

achievements and can be used to improve the overall learning efficacy of a classroom. Canvas

comes with several customizable course development and management tools, course and user

analytics, as well as internal communication capabilities to provide a complete virtual classroom

experience [1].

Canvas became the most popular learning management system (LMS), edging out the

market leader Blackboard Inc. in 2018 in the United States and Canada [2]. Canvas owned 32%

of the market in 2020 as it was further adopted by more American colleges and schools, while

Blackboard Inc. owned 23% followed by Moodle at 22% [4].

2.1.1 Features of Canvas LMS

The features offered by canvas can be divided into three main categories. Each of these

parts is explored in detail:

2

CANVAS AUTOQUIZ

1. Content creation

2. Assessment management

3. Support

Canvas has a great user interface that provides all its users with a dashboard, that contains a

high-level overview of all the top courses, a to-do list, upcoming assignments, and a navigation

menu that allows access to Canvas’s core features [7].

Fig 1: Example Canvas dashboard

Course Creation

Canvas Commons

Canvas adheres to the Common Cartridge requirements and has several features that aid in the

construction and management of courses [6]. Courses can be created by users with administrative

3

CANVAS AUTOQUIZ

and instruction privileges such as admins, designers, and instructors, and they can add

assignments, modules, quizzes, comments, and online pages to a course. Instructors and admins

can also share files, rubrics, and assignments with all the students in the course. Students can

enroll in these courses, submit assignments, take exams/quizzes, and participate in online

discussions with instructors and other students.

Modules

Modules assist in the division of a course into multiple units, with each unit covering a specific

topic of the course. The division of the course into smaller units helps students pace their

learning. Instructors can also set prerequisites for modules such that they have to be taken in a

specific order. Students do not see a course or unit until their prerequisites are completed. For

example, a student must first complete the “understanding bits” unit before moving on to the “bit

manipulation” unit.

Outcomes

The outcome function is intended to assist institutions in determining a student's level of mastery

of a particular subject area. This capability allows instructors and administrators to connect

course content and student assessments to standard outcomes which are defined by the

instructors themselves. This feature is especially useful for administrators who wish to compare

the quality of education with other institutions.

Assessment Management

Quizzes and Assignments

4

CANVAS AUTOQUIZ

Online quizzes allow students to take an exam/quiz or assignment whenever and wherever they

want to take it. Quizzes can be scored immediately or graded at a later stage, can be timed or

self-paced, and can be single or multiple attempts, with extensive descriptive answers or multiple

choice questions with true or false answers, and many other types of questions.

Canvas assignments and quizzes can be used to test students' understanding and measure

competency. The assignments page lists all of the assignments for a student, and instructors can

also add detailed rubrics on the grading for each assignment.

Gradebook

The Gradebook is a user interface that allows instructors, TAs, and administrators to quickly

grade students' assignments. Once graded, the scores can be manually imported or exported in a

CSV file, or be displayed automatically to students via Student Information System integration.

The software remembers educators' preferences and habitual behaviors, allowing them to

complete tasks with fewer clicks rather than picking, dragging, and dropping assignments

repeatedly.

SpeedGrader

SpeedGrader is a tool that allows educators to examine and annotate files. This user interface

ensures that instructors are not required to download files and papers. Canvas supports a wide

range of file types, including Google Docs, Microsoft Office, and PDFs. Educators can also make

in-line annotations in the files, such as highlights, text strikeouts, and freehand drawings.

5

CANVAS AUTOQUIZ

Support

Learning Tools Interoperability

Canvas uses Learning Tools Interoperability (LTI) [6], an IMS standard that helps third-party

tools vendors to integrate their tools with canvas. Any compatible paid or free tools can be

integrated with Canvas via LTI. Instructors can use these tools with any course in the current

installation.

Reliable Connectivity

Given that Canvas is deployed as a cloud-based solution in most institutions, high availability is

paramount to its operation. Currently, Canvas LMS offers 99.99% uptime [6].

Prompt and Reliable Customer Support

Instructure offers support via email and phone, and usually, trains staff dedicated to supporting

each institution’s installation.

2.1.2 Canvas API Interface

Canvas LMS includes a REST API for accessing and modifying data externally from the

main application, using external programs and scripts. All registered students, faculty, graders,

and admins can access the Canvas API simply by having a Canvas account [8]. The restrictions

on the type of data that can be accessed through the API depend on one’s role in Canvas. A

student will have the same permissions when accessing Canvas through the API as when using

the Canvas website; that means they can access their class schedule, due dates, and discussion

posts, as well as look at their grades and assignment submissions.

6

CANVAS AUTOQUIZ

Similarly, an instructor can access more information using the Canvas API such as the

quiz details, the responses, grades of all the students, and many other features available to the

instructor. Overall, while using the Canvas API, one can access all the data that is available on

the user interface of the user.

Canvas Access Tokens

To access the Canvas API, one must generate access tokens to grant access to Canvas

resources. A user must obtain a token for access to the resources such as courses and quizzes

using third-party applications.

The access tokens contain the same corresponding permissions as the user generating the

token. The tokens are revoked if the corresponding Canvas account is deleted. The permissions

of the tokens automatically adjust to the permissions associated with the user account. Any API

requests to Canvas must include this token as a URL query parameter.

An instructor is only able to access the courses that they have access to and their

corresponding quizzes using the access token they have generated. A student is unable to access

any quizzes using an access code generated by them. An Administrator on the other hand can

access all the courses and resources.

Generating Access Tokens

Access tokens can be generated by going to Account -> Settings -> Approved Integrations

7

CANVAS AUTOQUIZ

Fig 2: Generating Access Tokens in Canvas

Click on +New Access Token and generate a new token. This will open a new window with token

details [9].

Fig 3: Access token details in Canvas

8

CANVAS AUTOQUIZ

This token value is required when making a call to the canvas API. Autoquiz uses the canvas API

to access the historical quizzes of an instructor and therefore needs a token generated by the

instructor to access this data. More information on this can be found in the next section.

2.1.3 Canvas Quiz import

Canvas provides users such as instructors, graders, and admins to import course content into

Canvas. The content which can be imported includes QTI quizzes, exported canvas courses, and

Blackboard/Moodle courses. To import course content into a course, users can navigate to the

Settings page of a course and choose the Import Course Content option on the right pane [10].

Fig 4: Import course content in Canvas

Given that Autoquiz needs to upload quizzes to canvas courses, we will focus on the QTI zip file

option to import quizzes.

9

CANVAS AUTOQUIZ

Fig 5: Different import options in Canvas

Upon successfully completion of a QTI zip file import, a quiz with the submitted contents will

automatically be created and available in the quiz tab. A QTI import with invalid contents, such

as unrecognizable XML bindings, will cause an error and no quiz will be generated.

2.2 MD2QTI

MD2QTI [19] is a Python-based software developed by Su Kim with contributions from

Mingyun Kim and Archit Jain (myself). It is based on Text2QTI [20] developed by Geoffrey M.

Poore, which allows text files with questions to be converted into QTI format. It supports the

conversion of a variety of question types such as multiple-choice, short answers, essays, and

many more. It converts Markdown question text files into QTI zip files that can be imported into

multiple LMS platforms, including Canvas. MD2QTI builds upon Text2QTI and offers support

for more question types and programmatically executable scripts [19].

MD2QTI supports some additional question types which were not supported by

Text2QTI including Formula, Fill in Mulitple Blanks, Multiple Dropdown, and Matching type

questions. MD2QTI also adds a layer of consistency and removes ambiguity which was

10

CANVAS AUTOQUIZ

prevalent in Text2QTI by adding special syntaxes such as @question title and @points which

makes it easy for the user to create, understand and read the Markdown document.

The major advantage of using MD2QTI is the fact that it allows both manual and

programmatic creation of questions. One can build a manual set of questions from which a

specific number of questions can be selected at random. This allows the instructors to avoid

repeating questions and enable them to tailor quizzes [19]. Another option is to write code that

generates questions and adds them to the list of questions. The ability to write a script provides a

quick and easy way to generate a large number of questions and ensure that question repetition is

minimized.

M2QTI is simple and aims to minimize clicks in the Canvas interface. The user merely

needs to type the questions in a specific format on an editor that is widely available on most PCs.

2.2.1 MD2QTI Usage

MD2QTI is a command-line tool that needs python 3 and mistletoe to run. To run MD2QTI, we

need a .md file with correct syntax as seen in the figure below.

11

CANVAS AUTOQUIZ

Fig 6: example .md file that is required by MD2QTI

We can then run the md2qti command with the sample file and it will return a zip file

with the following content:

1. An imsmanifest.xml file

2. A md2qti assessment folder with assessment_meta.xml and md2qti_assessment.xml

The manifest is an XML document that describes the contents of the package. The

manifest file provides details regarding metadata, organizations, resources, and any sub-

manifests if needed [19].

12

CANVAS AUTOQUIZ

Fig 7: the content of manifest.xml in MD2QTI

The second part is the actual content of the quiz. Course materials, assessments, media, and other

files can be found in this folder.

2.2.2 Supported Question Types

Currently, users can create eleven types of questions that are supported by Canvas.

Autoquiz takes the questions in the internal database and converts them into the format below

(right side of the images). This format is recognized by MD2QTI, which then converts it into the

format on the left side of the images below.

The first group of questions is Multiple Choice, True/False, and Multiple Answers. These

questions are logical-based questions where the user must select one or multiple answers from a

pre-defined set of choices. These questions can be automatically graded.

13

CANVAS AUTOQUIZ

Fig 8: Multiple Choice, True/False, and Multiple Answers supported by MD2QTI

The next group of questions is Fill in the Blank, Fill in Multiple Blank, Multiple Dropdowns, and

Matching. The idea behind this group is that the user must match the correct answer from

14

CANVAS AUTOQUIZ

multiple choices. In some cases, the correct answer is based on equality or pattern matching.

These questions can be automatically graded.

15

CANVAS AUTOQUIZ

Fig 9: Fill in the Blank, Multiple Blank/Dropdowns, and Matching questions supported by MD2QTI

The third group of questions is Numerical and number-based Formula questions. Students must

calculate and answer with just numbers. These questions are often with calculated precision or

specified decimal places. These questions can be automatically graded.

16

CANVAS AUTOQUIZ

Fig 10: Numerical and Formula questions supported by MD2QTI

The final group of questions is File Upload and Essay. For these questions, the user must

manually upload a file or type out a response. These questions cannot be automatically graded

and the instructor needs to manually grade them.

Fig 11: File Upload and Essay questions supported by Md2QTI

2.3 Markdown

Markdown is a simple markup language that can be used to add formatting to plaintext text

documents. Markdown, which was created by John Gruber in 2004, is currently one of the most

widely used markup languages in the world [11].

17

CANVAS AUTOQUIZ

Using Markdown is not the same as using a text or document editor. In a program like

Microsoft Word, one may format words and sentences by clicking buttons, and the changes are

immediately visible. That isn't the case with Markdown. When creating a Markdown-formatted

document, one must use Markdown syntax to designate which words and phrases should be

formatted differently.

To indicate a heading, for example, place a number sign before it (e.g., # Heading One).

Alternatively, you can make a phrase bold by placing two asterisks before and after it (for

example, **this text is bold**) [12].

Fig 12: Markdown example

Everything can be written in Markdown. Websites, documents, notes, books,

presentations, email messages, and technical documentation are all created with it. Furthermore,

18

CANVAS AUTOQUIZ

Markdown is a platform-agnostic portable text editor and therefore virtually any application may

open files containing Markdown-formatted text.

Markdown is a future-proof language. One will be able to view the Markdown-formatted

material using any text editing application even if the application one is using stops working in

the future. Markdown is all over the place and is supported by several desktop and web-based

apps, including Reddit and GitHub.

2.4 QTI

The IMS Question and Test Interoperability specification (QTI) [13] establishes a

standard format for presenting assessment content and results, facilitating the transfer of this

information between authoring and delivery systems, repositories, and other learning

management systems. It enables assessment materials to be written and delivered on a variety of

platforms. As a result, it's built to make system interoperability easier.

The standard includes an XML data binding that effectively defines a language for

exchanging questions and other assessment material, as well as a data model that describes the

structure of questions, assessments, and results from questions and assessments. The XML

binding is commonly used by publishers for transmitting questions between different publishing

programs. The elements of the standard dealing with assessment and results are less commonly

used.

The IMS Global Learning Partnership (IMS GLC), which is an industrial and academic

consortium that produces compatible learning technology requirements, has developed QTI to

help users avoid losing or having to retype questions as technology changes. It can take a long

19

CANVAS AUTOQUIZ

time to develop and validate appropriate questions, thus it's preferable to be able to do so in a

platform and technology-agnostic style. Currently, Canvas supports QTI versions 1.2 and 2.1.

QTI version 1.0 was initially built on proprietary Questions Markup Vocabulary (QML)

language; however, the language has grown over time and can now describe practically any

acceptable question.

QTI version 2.0 was released in 2005 and solely addressed the item level of the

specification (i.e., each question). In 2005, a draft version of Version 2.1 was released, which

addressed the organization of tests and outcomes [14].

The most recent version is 2.2, which was released in 2015 after two minor changes,

2.2.1 and 2.2.2, the most recent of which occurred in November 2017.

Fig 13: Example of QTI 2.2 multiple choice questions

20

CANVAS AUTOQUIZ

Version 2.2 refined and updated the Version 2.1 core specification's connection with W3C

standards such as HTML5, SSML, PLS, CSS, ARIA, and MathML, and made other minor

adjustments [14].

21

CANVAS AUTOQUIZ

3. DESIGN APPROACH/METHODOLOGY

Autoquiz fits in the spectrum of tools designed to help instructors make quizzes much

faster. It interacts with canvas and MD2QTI as shown in the figure below.

Fig 14: Autoquiz and the Ecosystem

It can be seen that Autoquiz acts as an intermediate to extract the quiz data from Canvas and

stores it in a local filesystem-based database. It then generates a quiz.md file with the relevant

questions which is utilized by MD2QTI to upload the generated quiz to Canvas.

The project follows the Unix design philosophy, which is a set of cultural norms and

philosophical approaches to minimalist, modular software development. The aim is to build

simple, short, clear, modular, and extensible code with a focus on maintainability and easy

enhancements. The idea is to split each part of the program to do one thing well [5]. The output

of each of the parts of one module becomes the input for the next module. This allows each

module to be used separately, easily enhanced, or replaced and makes the tool much easier to

22

CANVAS AUTOQUIZ

understand. We will dive into the reasoning behind the division in each of the individual

modules. The implementation of the project can be divided into multiple modules:

1. Historical Quiz Fetcher

2. Question Analyzer and Matcher

3. Database Folder Creator

4. Database Folder Parser

5. Quiz Generator

6. Zip Creator

3.1 Historical Quiz Fetcher

The project aims to automate the quiz creation process for the instructors. To be able to

create a new quiz, the tool needs to have an existing database of questions from which it can

filter out questions based on the needs of the instructor. Now, the instructor can create the

database from scratch; however, we already have a pool of questions stored in canvas which

makes it very easy for instructors to use an existing pool of questions. These questions are stored

as all the past quizzes that an instructor might have conducted on canvas. Moreover, instructors

can collaborate and share the database and the relevant question statistics with other instructors

to create a very large question bank.

This module focuses on fetching historical quiz data from Canvas by using Canvas API.

The Canvas API can be accessed using the Canvas Access Token (see Canvas under History and

Background section). A historical quiz is classified as all the old quizzes that the instructor might

have taken over the multiple courses in canvas. The course might be active or inactive on canvas.

23

CANVAS AUTOQUIZ

An instructor must generate a new access token which must be fed into the config file of

the tool before it can be used. The instructor must ensure that the access token is not expired,

otherwise, the tool will be unable to connect to Canvas. In case of an expired token, Canvas

Autoquiz will throw an error and request a new token. The config file also needs the API end-

point through which the API will be called. Each instance of canvas deployed by an institution

will have a different API end-point through which we can call the API and access the data stored

by canvas. An example of the config file (named autoquiz.ini) can be seen below.

Fig 15: Example of the config file of Autoquiz

This module uses the “canvasapi” python module [22] by ucfopen which is a Python API

wrapper for Instructure's Canvas LMS. This made the development of the Canvas Autoquiz tool

much easier as the wrapper handled all the API calls.

To be able to download all the historical quizzes, the Canvas Autoquiz tool iterates

through all the courses of the instructor. It then iterates through all the quizzes in the course and

downloads statistics and other metadata for each question in the quiz. All this information is

stored as an object of the corresponding data structure in the memory.

24

CANVAS AUTOQUIZ

Fig 16: Autoquiz fetching data from the Canvas

The internal objects of the canvas data are stored in data structures of three types:

Table 1: Internal data structures of Autoquiz

3.2 Question Analyzer and Matcher

Before we dump all the fetched data into a database, we need to analyze the questions to

find question variations and combine similar questions. This module focuses on analyzing the

fetched quizzes to find out the difficulty level of each question. Furthermore, we try to match

similar questions and combine their statistics to allow the instructor to view the overall statistic

of a particular question type. This functionality is especially useful in the case of script-generated

questions where the only difference between the questions is some numerical digits.

Type Description

Course One course which contains a list of quizzes and
the corresponding course data.

Quiz One quiz which contains a list of questions and
the corresponding course data.

Question One question which contains a list of variations of
the particular questions and question statistics

25

CANVAS AUTOQUIZ

3.2.1 Difficulty Level Analysis

Canvas stores statistics for each question in a quiz. Data stored includes stats such as the

number of students that attempted the question, correct responses, and many others. Another field

that is stored is the difficulty index. The difficulty index is calculated by dividing the total

number of correct responses divided by the total number of responses.

In the case of programmatically generated questions, or question groups with many

questions and fewer picks, there might be questions that were not attempted by students and

therefore might not have any associated statistics. In this case, the difficulty level cannot be

calculated. In this case, it is important to match the questions with similar questions and to

combine their statistics.

3.2.2 Question Similarity Checker

A lot of programmatically generated questions are quite similar on canvas. This means that they

test the same concept but use a different value to do the same. In Autoquiz, we aim to group

these questions together so that we can avoid question repetition in the final generated quiz.

To check the similarity of questions, two concepts are used. These are:

1. Group id

2. Levenshtein distances

Group id

All the questions created using the same group will be treated as similar questions. This is

because similar questions are grouped in the quiz creation process. This can be seen in the figure

26

CANVAS AUTOQUIZ

below where two questions with similar “question_text” have the same group id as they were

created using a script.

Fig 17: similar questions with the same group id

Levenshtein distances

We can make the following assumptions about similar questions from a quiz.

1. The questions will be of similar length

2. The questions will alter for each mostly on numerical values

3. The order of words will not differ too much

This is based on the observation of questions from the past quizzes in Prof. Ben Reed’s CS 149

Operating System courses.

The Levenshtein distance, commonly referred to as edit distance, is a string metric used to

compare two sequences. The Levenshtein distance between two words is the smallest number of

single-character modifications (insertions, deletions, or substitutions) required to transform one

word into the other [15]. For example, the Levenshtein distance between "kitty" and "sitting" is

3, as it would require three modifications to turn “kitty” into “sitting”.

27

CANVAS AUTOQUIZ

Another popular metric for measuring string similarity is the Hamming distance. Hamming

distance is the number of locations at which the matching symbols are different between two

strings of equal length. In other words, it calculates the smallest number of substitutions required

to transform one string into another or the smallest number of errors that may have resulted in

the transformation of one string into the other [16]. The Hamming distance is one of numerous

string metrics for determining the edit distance between two sequences in a more broad sense.

In our case, it seems more appropriate to use the Levenshtein distances over hamming distance

as we expect only some parts of the question to be different, and the overall majority of the

question will be the same.

For Example:

Question 1: Convert 100101011 from binary to hexadecimal.
Question 2: Convert 1011010 from binary to hexadecimal.

Table 2: Example of Levenshtein vs Hamming distance

The calculation of the Levenshtein distance is taken care of by the Levenshtein Python module

[23] which can be downloaded for the pip package manager.

3.3 Database Folder Creator

Once similar questions have been grouped together, we can finally move all the data from

the memory to a database. This module focuses on creating a system that stores the instructor’s

Type Distance Reason Calculation

Levenshtein 3 3 modification (1 substitution, 2
insertions)

1011010 -> 1001010 -> 10010101 ->
100101011

Hamming 29 29 different positions where bits are
different

Convert 100101011 from binary to
hexadecimal.

Convert 1011010 from binary to
hexadecimal.

28

CANVAS AUTOQUIZ

downloaded quizzes on their system in a database folder. This database is a simple folder

structure containing data and metadata for all the courses, quizzes, and questions.

3.3.1 Reason for using the file system to store the database

Initially, it was decided that a SQL or NoSQL database such as MySQL or MongoDB

would be used to store the course, quiz, and question information. However, this idea was

dropped after consultation with the project advisor.

SQL and NoSQL databases would have allowed for much faster and simpler code as most

databases contain python modules that simplify the task of storing and retrieving data. This

module and the Database parser module would not have been required in case this strategy was

adopted. However, there are several downsides to using these databases. Firstly, the user would

have to download and set up a SQL or NoSQL database. This would have limited the tool to

instructors who have development knowledge. Furthermore, it would make the tool quite

restricted for future development as a new developer would have to go through the code or the

documentation to understand the structure of the data. This goes against the Unix design

philosophy and would have resulted in a suboptimal tool.

For the above reasons, a file-based database is a more appropriate design. This is because

it is not expected that the past quizzes would be greater than the available memory on the

instructor’s machine. This means that the tool would only need to write and read the historical

quizzes to the disk once and then can read all the available data from memory. This will be much

faster than using a SQL or NoSQL database. Furthermore, there will be no overhead from an

external server and it would be very easy for any other developer to modify the tool for their use

case.

29

CANVAS AUTOQUIZ

Moreover, the folder can be easily moved from one machine to another without any

specialized tools or skillset. It is also quite easy for a non-technical user to understand the quiz

structure and make changes to the questions without understanding the code. This module

combined with the Historical Quiz Fetcher module can serve as an archival tool that can be used

to backup Canvas Quiz data into a human-understandable format.

3.3.2 Current database design

The design of the current database can be seen below. The main database folder contains

a sub-folder which the name of the folder corresponding to the name of the courses. Each course

will have multiple quiz sub-folders and a metadata.json file with the course metadata. Each quiz

will have multiple question sub-folders and a metadata.json file with the quiz metadata.

Database
\-> Course1

\-> Quiz1
\-> Question1

\-> question0.html
\-> metadata0.json

\-> Question2
\-> question0.html
\-> metadata0.json
\-> question1.html
\-> metadata1.json

\-> Question3
\-> Question4
\-> metadata.json

\-> Quiz2
\-> Quiz3
\-> metadata.json

\-> Course2
\-> Course3

Each question will have a question.html and a metadata.json file. The HTML file is used

so the user can easily view the question including the question images and the question text just

as it would appear in the final canvas quiz.

30

CANVAS AUTOQUIZ

Fig 18: Example of the database folder for a practice course

Fig 19: Example question.html file for a question

Having this structure allows any user to easily look at and modify the content of the quizzes

without knowledge of the working of the tool.

31

CANVAS AUTOQUIZ

3.3.3 Handling Question Variation

In the case of questions that have been grouped together due to their similarity, only one of the

question folders is created. This folder is different from single questions in the way that each

variation of the question has its question.html and metadata.json file. The format of a single

question is given below.

\-> Question1
\-> question0.html
\-> metadata0.json

The format of a question with multiple variations is given below. This ensures that the user can

see all the variations of the question.

\-> Question2
\-> question0.html
\-> metadata0.json
\-> question1.html
\-> metadata1.json

3.4 Database Folder Parser

This module focuses on parsing the database folder created by the previous module and

storing it in the respective data structures in the memory. This module works in almost a similar

manner to the previous module, but in a reverse fashion, so instead of writing the files, we read

the files and store the data back into the respective data structures. This module is called

whenever we need to generate a quiz using Autoquiz.

32

CANVAS AUTOQUIZ

3.5 Quiz Generator

The quiz generator is the module that focuses on the inputs and outputs of the new quiz.

This module generates the new quiz in memory after tagging, filtering, and selecting output

based on difficulty.

The input required for this module is a markdown file that can be read by the MD2QTI

module. This means that it should have a @quiz title and @quiz description tag. The input which

must be a .md file must also contain a “generate token” with the following tag:

@generate {“tags”: list, “count”: int, “difficulty”: int}

The module also supports a list of multiple queries for the @generate arguments.

@generate [{“tags”: list, “count”: int, “difficulty”: int}, {“tags”:
list, “count”: int, “difficulty”: int}]

Example:

Single query

@generate [{"tags": [“bit”,"os"], "count": 5, "difficulty": 0.5}]

Multiple queries

@generate [
 {
 "tags": [
 "bit",
 "os"
],
 "count": 5,
 "difficulty": 0.5
 },
 {
 "tags": [
 "network"
],
 "count": 5,
 "difficulty": 0.3
 }
]

33

CANVAS AUTOQUIZ

This “generate tag” states the following:

1. Generate 5 questions with tags “bit” and “os”. These questions should be of medium to hard

difficulty such that only 50% of the students answered them correctly in the previous

quizzes.

2. Generate 5 questions with the tag “network”. These questions should be of hard to very hard

difficulty such that only 30% of the students have answered them correctly in the previous

quizzes.

The Autoquiz generator will then remove the generate tag from the file and replace it with ten

questions such that these can be read by MD2QTI.

3.5.1 Tagging and filtering

Tagging is one of the most important parts of processing the query. Before we can filter questions

based on tags, we need to tag all the questions such that we can extract the essence of each of the

question’s descriptions. To do so, we use the NLTK library.

NLTK

NLTK is a popular python library for working with language data. It comes with a set of text

processing libraries with help with classification, tokenization, stemming, tagging, parsing, and

semantic reasoning [17]. We can do the following with the NLTK library [18].

Example of tokenization using NLTK:

At eight o'clock on Thursday morning ... Arthur didn't feel very good.

34

CANVAS AUTOQUIZ

['At', 'eight', "o'clock", 'on', 'Thursday', ‘morning', 'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']

Example of Part-of-speech tagging using NLTK:

At eight o'clock on Thursday morning ... Arthur didn't feel very good.

[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'), ('Thursday', 'NNP'), ('morning', 'NN'),

('Arthur', ‘NNP'), ('did', 'VBD'), ("n't", 'RB'), ('feel', 'VB'), ('very', 'RB'), ('good', 'JJ'), ('.', '.')]

Based on this, the tags for the questions are selected based on the following:

1. POS tagged Nouns

2. Quiz Name

3. Course Name

Selecting the quiz name and course along with the nouns ensures that all the required keywords

that can be used to define the essence of the question can be captured.

This approach is not perfect and does seem to leave out the broad topic if it's not part of

the quiz title or course name. A better way to handle this would be by using machine learning

which has been discussed in the future scope section of this report.

Once all the questions in the corpus are tagged, we can filter the questions based on the

tags of the query. Once this is done, we select the question k closest questions to the difficulty

specified by the user in the query.

35

CANVAS AUTOQUIZ

3.5.2 Selecting questions based on difficulty

Once the questions are filtered based on the tags, the filtered list is sorted based on the

difficulty, and the top k closest questions to the difficulty scores are chosen using a variant of

binary search.

For example, the figure below shows all the questions with given difficulties in ascending

order. In case the user specifies that they want questions of difficulty level - 0.8, our algorithm

will select the following questions with the given difficulty level.

Fig 20: Top k chosen values for a given difficult

3.5.3 Converting HTML to MD

All the question description is stored in HTML format. This is the default format supported by

Canvas. However, MD2QTI required all the questions to be in markdown format for them to be

processed. Therefore, once all the questions are selected, we need to convert them into

markdown format. This is done by using the “markdownify” python module which makes it very

simple to convert HTML into markdown.

36

CANVAS AUTOQUIZ

Fig 21: converting HTML to markdown.

3.6 Zip Creator

The quiz uploader essentially uses the python subprocess module to call the MD2QTI program

which is included in the Autoquiz package. The module uses the output file that was generated

by the Quiz generator module and provides its path to the Md2QTI program.

python MD2QTI.py quiz.md

In case this command fails, the submodule throws an error that is produced by the MD2QTI.py

program and quits. If the command is successful, the module will produce a zip file that can then

be uploaded to Canvas using the method as stated in the Background and History Section, Under

Canvas.

37

CANVAS AUTOQUIZ

4. USING AUTOQUIZ

Autoquiz needs to be set up as a python repository before using the tool. To do so, The repository

can be cloned from https://github.com/architjain123/autoquiz. A Python 3 virtual environment

needs to be set up and activated for the local repository. The required libraries can be installed

using the command below:

pip install -r requirements.txt  

Autoquiz supports two commands:

1. Download - to download the courses and create a database.

2. Generate - to autogenerate the quiz and the QTI zip package.

Information about the commands can be accessed using the following command:

python autoquiz.py —-help

4.1 Download command

This command will download courses and create a database folder in the working directory.

python autoquiz.py download [course_name]

It downloads courses based on the regex in the optional “course_name” argument. In case no

“course_name” argument is provided, it will download all the courses in the database.

4.2 Generate command

This command will generate a QTI zip file in the current working directory.

python autoquiz.py generate {file_path} {database_path}

It creates a quiz by modifying the file at the “file_path” by using the questions found in the

“database_path”. It will also create an ExportedQTI.zip file that can be imported into Canvas.

[] - optional {} - required

38

https://github.com/architjain123/autoquiz

CANVAS AUTOQUIZ

5. SETTING DEVELOPMENT ENVIRONMENT

Before the development of the Canvas Autoquiz tool could begin, an alternative canvas

environment was required to be set up. This is because courses in Canvas can only be created by

administrators which also have many other privileges such as adding users, instructors, and other

administrators. Given that SJSU uses a hosted version of canvas that is used by all the

departments, we were unable to get administrator access. We will call this version the production

version.

Moreover, having our instance of Canvas LMS allows for better debugging and control.

For these reasons, it was decided to set up our instance of Canvas for the development of the

Canvas Autoquiz tool, we will call this instance the development instance. The tool was

extensively tested on the development instance before it was used on the production version.

The development version of Canvas was set up based on the instructions found on the

Canvas Github page. It is important to note that this setup was extremely difficult as the

instructions on the page were outdated. The difficulties faced are explained in the Difficulties and

Challenges section of the report. The machine used was hosted on AWS EC2 Ohio availability

zone and was of the following specification:

• t2 large

• 2 vCPUs

• 8 GiB Memory

• 150 GB gp2 SSD

The machine was assigned an Elastic IP address as it was only active during the

development of the tool due to the high rental cost. The development server was added to the

authors’ personal domain.

39

CANVAS AUTOQUIZ

6. DIFFICULTIES AND CHALLENGES

There were many challenges faced during the project. However, the most difficult

challenge to overcome was setting up our instance of Canvas. This was because Canvas is a

complex project requiring a very powerful machine and can be deployed in multiple ways.

6.1 Problem with setting up Canvas

The documentation provided by Instructure to set up our version of canvas for testing was

incomplete and kept on leading to failures. This made it very difficult for the author to start

working on canvas as the installation kept on failing.

Eventually, the problems with the installation were identified and rectified. Please note

that even though we faced these issues, others might face different issues as the documentation

of canvas installation continues to evolve.

The major problem faced was with the way ruby was being installed in the

documentation. Although it is stated in the official documentation to install ruby as a local user, it

was identified that we need to install ruby globally. Moreover, there were issues with the

installation of docker, docker-compose, and yarn when following the official guide. We have

specified the code to rectify the issues we face in the subsections below. These can be fixed by

running the following commands before starting the quick installing guide found on GitHub.

6.1.1 Ruby setup using RVM

sudo apt-add-repository -y ppa:rael-gc/rvm
sudo apt-get update
sudo apt-get install rvm
sudo usermod -a -G rvm $USER  

40

CANVAS AUTOQUIZ

(Exit and login)  

rvm user gemsets
CFLAGS="-Wno-error=implicit-function-declaration" rvm install 2.6.6

6.1.2 Installing Docker and Docker Compose

sudo apt-get update
sudo apt-get install \
 apt-transport-https \
 ca-certificates \
 curl \
 gnupg \
 lsb-release

curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --
dearmor -o /usr/share/keyrings/docker-archive-keyring.gpg

echo \
 "deb [arch=amd64 signed-by=/usr/share/keyrings/docker-archive-
keyring.gpg] https://download.docker.com/linux/ubuntu \
 $(lsb_release -cs) stable" | sudo tee /etc/apt/sources.list.d/
docker.list > /dev/null

sudo apt-get update
sudo apt-get install docker-ce docker-ce-cli containerd.io
sudo usermod -aG docker ${USER}

(Exit and login)

sudo curl -L "https://github.com/docker/compose/releases/download/
1.29.2/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/
docker-compose

sudo chmod +x /usr/local/bin/docker-compose

6.1.3 Installing YARN

curl -sS https://dl.yarnpkg.com/debian/pubkey.gpg | sudo apt-key add -
echo "deb https://dl.yarnpkg.com/debian/ stable main" | sudo tee /etc/
apt/sources.list.d/yarn.list
sudo apt-get update && sudo apt-get install yarn=1.19.1-1

41

CANVAS AUTOQUIZ

7. FUTURE WORK AND IMPROVEMENTS

7.1 Question Tagging

Currently, the question tagging is done based on the question description and the respective

responses to the question. Although this might capture some of the keywords required for

effective tagging, it still leaves a lot of room for improvement in cases where the broad sense of

the topic cannot be captured by the description of the problem.

For example - a question such as “Convert 100101011 from binary to hexadecimal” falls under

the category of bit manipulation; however, the current tagger cannot capture this detail. We need

another tool that can provide this information.

The easiest way to do so would be to use Machine learning to train a classifier that identifies

question types based on the question description. There are already many projects that tag the

programming language of a particular question. We can use similar models and train them on our

models to produce results of our liking.

7.2 Web Application

Another possible improvement that would increase the usability of Autoquiz would be to create a

web interface. This would be a central application where all users using different instances of

canvas can access their specific instance of canvas by entering their token and Canvas API

endpoint. Having a user interface would make it very easy for the instructors to view the quiz

before uploading it to canvas. Having a user interface would also allow instructors to swap

questions on the fly before generating the final version of the quiz.md file to be uploaded to

Canvas.

42

CANVAS AUTOQUIZ

8. CONCLUSION

Canvas Autoquiz reduces the effort of instructors by auto-generating quizzes. The tool

fetches historical quiz data from Canvas. The tool then calculates the difficulty of the questions,

merges similar questions and their statistics, and tags the questions based on question text. It

creates a file system-based database to store these questions. Instructors can use this database to

auto-generate quizzes based on the tags and difficulty. These auto-generated quizzes can then be

imported into Canvas.

The database generated by instructors can be shared to allow easy transfer of quiz data.

Autoquiz can also be used to import Canvas quizzes to any other online-learning-based software

that uses the QTI standard.

43

CANVAS AUTOQUIZ

REFERENCES

[1] Canvas, “What is canvas?,” What is Canvas? - Instructure Community, 16-Mar-2022.
[Online]. Available: https://community.canvaslms.com/t5/Canvas-Basics-Guide/What-is-
Canvas/ta-p/45. [Accessed: 24-Apr-2022].

[2] C. Etherington, “Why colleges and universities are adopting canvas,” eLearningInside,
26-Jun-2019. [Online]. Available: https://news.elearninginside.com/why-colleges-and-
universities-are-adopting-canvas/. [Accessed: 24-Apr-2022].

[3] P. Hill., “North American higher Ed LMS market share by enrollments: A consolidating
market,” eliterate, 03-Oct-2018. [Online]. Available: https://eliterate.us/na-he-lms-
market-share-enrollments-for-2012-2018/. [Accessed: 24-Apr-2022].

[4] P. Hill, “State of higher ed LMS market for US and Canada: Year-end 2020 edition,”
PhilOnEdTech, 04-Feb-2021. [Online]. Available: https://philonedtech.com/state-of-
higher-ed-lms-market-for-us-and-canada-year-end-2020-edition/. [Accessed: 24-
Apr-2022].

[5] University of Rhode Island, “Basics of the Unix Philosophy,” Chapter 1: Philosophy.
[Online]. Available: https://homepage.cs.uri.edu/~thenry/resources/unix_art/
ch01s06.html. [Accessed: 24-Apr-2022].

[6] M. Polakowski, “Canvas LMS - Pros & Cons,” Selleo, 20-Apr-2020. [Online]. Available:
https://selleo.com/blog/canvas-lms-pros-and-cons. [Accessed: 25-Apr-2022].

[7] Valencia College, “Canvas Dashboard: Canvas Essentials Sandbox,” Canvas Dashboard.
[Online]. Available: https://online.valenciacollege.edu/courses/26030/pages/canvas-
dashboard. [Accessed: 24-Apr-2022].

[8] UBC, “Get started with the Canvas API,” The University of British Columbia Learning
Analytics. [Online]. Available: https://learninganalytics.ubc.ca/for-students/canvas-api/.
[Accessed: 24-Apr-2022].

[9] Instructure Community, “How do I manage API access tokens as an admin?,” Instructure
Community, 16-Apr-2022. [Online]. Available: https://community.canvaslms.com/t5/
Admin-Guide/How-do-I-manage-API-access-tokens-as-an-admin/ta-p/89. [Accessed: 24-
Apr-2022].

[10] Instructure Community, “How do I import quizzes from QTI packages?,” Instructure
Community, 16-Apr-2022. [Online]. Available: https://community.canvaslms.com/t5/
Instructor-Guide/How-do-I-import-quizzes-from-QTI-packages/ta-p/1046. [Accessed:
24-Apr-2022].

[11] Markdown Guide, “Getting started: An overview of Markdown,” Markdown Guide.
[Online]. Available: https://www.markdownguide.org/getting-started/. [Accessed: 24-
Apr-2022].

44

CANVAS AUTOQUIZ

[12] Bit Blog Editorial Team, “What is Markdown & How It Can Help You Write Faster,” Bit
Blog, 03-Jun-2021. [Online]. Available: https://blog.bit.ai/what-is-markdown/.
[Accessed: 24-Apr-2022].

[13] Instructure Community, “What is QTI,” Instructure Community, 25-Mar-2020. [Online].
Available: https://community.canvaslms.com/t5/Canvas-Question-Forum/What-is-QTI/
m-p/201389. [Accessed: 24-Apr-2022].

[14] IMS Global Learning Consortium, “IMS Question & Test Interoperability Specification
Overview,” IMS Global Learning Consortium. [Online]. Available: https://
www.imsglobal.org/question/index.html. [Accessed: 24-Apr-2022].

[15] E. Nam, “Understanding the levenshtein distance equation for beginners,” Medium, 27-
Feb-2019. [Online]. Available: https://medium.com/@ethannam/understanding-the-
levenshtein-distance-equation-for-beginners-c4285a5604f0. [Accessed: 24-Apr-2022].

[16] N. Raut, “What is Hamming Distance?,” Tutorials Point, 31-Dec-2018. [Online].
Available: https://www.tutorialspoint.com/what-is-hamming-distance. [Accessed: 24-
Apr-2022].

[17] E. Loper and S. Bird, “5. Categorizing and Tagging Words,” in NLTK: The natural
language toolkit, S.l.: s.n.

[18] E. Loper and S. Bird, “7. Extracting Information from Text,” in NLTK: The natural
language toolkit, S.l.: s.n.

[19] S. Kim, “SJSU-CS-Systems-Group/MD2QTI,” GitHub. [Online]. Available: https://
github.com/SJSU-CS-systems-group/MD2QTI. [Accessed: 24-Apr-2022].

[20] G. Poore, “Gpoore/text2qti: Create quizzes in QTI format for canvas from Markdown-
based plain text,” GitHub. [Online]. Available: https://github.com/gpoore/text2qti.
[Accessed: 24-Apr-2022].

[21] A. Gupta, “Online Quizzes: Uses and Benefits,” Auroscholar. [Online]. Available: https://
auroscholar.com/blog/Online-Quizzes-Uses-and-Benefits. [Accessed: 24-Apr-2022].

[22] University of Central Florida, “UCFOPEN/CANVASAPI: Python API wrapper for
Instructure's canvas LMS,” GitHub. [Online]. Available: https://github.com/ucfopen/
canvasapi. [Accessed: 24-Apr-2022].

[23] A. Haapala, “Ztane/Python-Levenshtein,” GitHub. [Online]. Available: https://
github.com/ztane/python-Levenshtein. [Accessed: 24-Apr-2022].

45

	Canvas Autoquiz
	Abstract
	Acknowledgment
	1. Introduction
	2. History and Background
	3. Design Approach/Methodology
	4. Using Autoquiz
	5. Setting Development Environment
	6. Difficulties and Challenges
	7. Future Work and Improvements
	8. Conclusion
	References

