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Abstract
In this manuscript we generalize Fulton’s bivariate intersection multiplicity algorithm to

a partial intersection multiplicity algorithm in the n-variate setting. We extend this general-
ization of Fulton’s algorithm to work at any point, rational or not, using the theory of regular
chains. We implement these algorithms in Maple and provide experimental testing. The results
indicate the proposed algorithm often outperforms the existing standard basis-free intersec-
tion multiplicity algorithm in Maple, typically by one to two orders of magnitude. Moreover,
we also provide some examples where the proposed algorithm outperforms intersection multi-
plicity algorithms which rely on standard bases, indicating the proposed algorithm is a viable
alternative as a standard basis-free intersection multiplicity algorithm.

Keywords: Algebraic geometry, Computer algebra, Intersection multiplicity, Intersection
number, Fulton’s algorithm, Regular chains, Regular sequence.
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Summary for Lay Audience
In this manuscript we describe a new, partial algorithm for computing intersection multiplici-
ties. Given a system of polynomial equations, the intersection multiplicity of a solution point
is a mathematically meaningful way of assigning a weight to that solution. To compute in-
tersection multiplicities, complete algorithms exist which rely on a tool known as a standard
basis. Standard bases are a powerful tool with many applications but suffer from some prac-
tical drawbacks. Although theoretically, it is always possible to compute a standard basis,
practically this is not true; for some systems, standard bases can take hours, days, or weeks
to compute. Moreover, intersection multiplicity algorithms which use standard bases assume
the solution is the origin. If one wishes to compute the intersection multiplicity at a solution
which is not the origin, they can in some cases apply mathematical techniques to shift their
system in a way that makes the desired solution the origin, but practically this only works for
a subset of “nice” solutions (points with rational coordinates). When the desired solution is
not the origin and does not behave nicely (points with non-rational coordinates), intersection
multiplicity algorithms which use standard bases cannot be used.

In this manuscript, we propose and implement an alternative, partial algorithm to address
both of the above issues. By extending a solution to this problem which works for systems with
two polynomials in two variables to a partial solution for systems with n polynomials in n vari-
ables, we obtain a powerful means of computing intersection multiplicities, which can work
when techniques using standard bases may not. Moreover, we extend this partial algorithm to
work at any point, rational or not, greatly extending the breadth of systems and solutions for
which we can compute intersection multiplicities. Lastly, we implement these algorithmic im-
provements in Maple and show experiments where the proposed algorithm outperforms other
intersection multiplicity algorithms.
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Maza and Jürgen Gerhard, see [23, 13]. In [23], Marc Moreno Maza proposed the problem of
extending Fulton’s algorithm and discovered an optimization in the special case of triangular
regular sequences. In [13], Marc Moreno Maza played an integral role in extending the gener-
alization of Fulton’s algorithm to handle a regular chain as input, particularly in the design of
the valuation algorithm (Algorithm 5) and in the description accompanying the generalization
of Fulton’s algorithm extended to regular chains. In [13], Jürgen Gerhard oversaw the im-
plementation, acting as the primary consultant for efficient Maple programming practices and
design decisions regarding the user interface. The author of this manuscript was responsible
for the discovery and proofs pertaining to the core result of [23], the generalization of Ful-
ton’s algorithm. For [13], the author of this manuscript worked on the theory of extending the
generalization of Fulton’s algorithm to use regular chains, alongside Marc Moreno Maza, and
implemented the resulting algorithm and its related commands. Moreover, the author of this
manuscript proposed many of the implementation features, optional arguments, and performed
all experiments.

iv



Contents

Abstract ii

Summary for Lay Audience iii

Co-Authorship Statement iv

List of Figures viii

List of Tables ix

List of Appendices x

List of Algorithms xi

1 Introduction 1
1.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 The Algorithm of Fulton . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Maple’s IntersectionMultiplicity Algorithm . . . . . . . . . . . 4
1.2.3 Singular’s iMult Algorithm . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.4 Magma’s IntersectionNumber Algorithm . . . . . . . . . . . . . . . 5
1.2.5 Methods in Numerical Polynomial Algebra . . . . . . . . . . . . . . . 5

1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Intersection Multiplicity Preliminaries 8
2.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Notations for Polynomials . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Ideals and Varieties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Extension of an Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.4 Radical of an Ideal . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.5 Affine Changes of Coordinates . . . . . . . . . . . . . . . . . . . . . . 9
2.1.6 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
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Chapter 1

Introduction

The study of singularities in algebraic sets is one of the driving application areas of com-
puter algebra and has motivated the development of numerous algorithms and software, see
the books [8, 16] for an overview. One important question in that area is the computation of
intersection multiplicities. Given a point in the intersection of hypersurfaces, intersection mul-
tiplicity describes the behaviour of the hypersurfaces at the point of intersection. In a sense,
intersection multiplicity is used to describe how hypersurfaces intersect rather than where they
intersect. Support for the computation of intersection multiplicities has been integrated into the
computer algebra systems Maple, Singular, and Magma and continues to be an active area of
research.

Computing intersection multiplicities in the n-variate setting presents its own set of chal-
lenges. The first algorithmic solution to computing intersection multiplicities in the general
setting was proposed by Mora, for which a modern presentation is given in [16]. Mora’s ap-
proach relies on the computation of standard bases (Gröbner bases). Standard bases are a
powerful tool in computational algebraic geometry but often run into practical issues. Namely,
it is not always possible to compute a standard basis with the computing resources available.

In this manuscript we provide a viable alternative to algorithms which rely on standard
bases to compute intersection multiplicities. To do so, we generalize Fulton’s bivariate inter-
section multiplicity algorithm to a partial intersection multiplicity algorithm in the n-variate
setting. We also extend this generalization of Fulton’s algorithm to handle non-rational coordi-
nates using the theory of regular chains. Both of these partial algorithms are implemented and
benchmarked against other intersection multiplicity algorithms.

1.1 Examples

Intersection multiplicity generalizes the familiar notion of the multiplicity of a root of a univari-
ate polynomial to the case of n polynomials in n variables. If p is a root of f a univariate poly-
nomial in K[x], the multiplicity of f is the largest m ∈ N such that we can write f = (x − p)mg
for some g ∈ K[x]. When p is a solution to f1, . . . , fn ∈ K[x1, . . . , xn], a similar notion can
be defined in this more general setting. When studying systems of polynomial equations, it is
intuitive to count the number of times they intersect at a given solution, rather than just study-
ing the solutions themselves. Once tangency is accounted for, we then arrive at the notion of

1



2 Chapter 1. Introduction

intersection multiplicity.
Figure 1.1 gives five systems of planar curves and their corresponding intersection multi-

plicity. Since we have yet to define intersection multiplicity precisely, we will describe each
system in Figure 1.1 intuitively, to give the reader a feeling for how one would arrive at the
correct intersection multiplicity. In Figure 1.1a, a line intersects a parabola transversally at two
points. Since the line crosses the parabola only once at each point of intersection, and since the
curves intersect transversally, the intersection multiplicity is 1 at both points. In Figure 1.1b, a
line intersects a parabola tangentially at the origin. We can think of this system as analogous
to the univariate notion of multiplicity. Here, the parabola would have a multiplicity of 2 at the
origin. Since the line which intersects the parabola is the x-axis, it is natural that the intersec-
tion multiplicity of this system is also 2. In Figure 1.1c, there is no intersection at the origin,
therefore, the intersection multiplicity at the origin is zero. The system in Figure 1.1d consists
of a line and an elliptical curve, which intersect twice at the origin, once transversally and once
tangentially. In this case, we can think of the intersection multiplicity as a weighted sum, with
the transversal intersection contributing 1 to the sum, and the tangential intersection contribut-
ing 2, for a total intersection multiplicity of 3. Lastly, Figure 1.1e consists of fourteen branches
transversally intersecting at the origin. Since the intersections are transversal, computing the
intersection multiplicity amounts to counting the number of branches which pass through the
origin. In this case, the intersection multiplicity is 14.

1.2 Literature Review

1.2.1 The Algorithm of Fulton

The case of two planar curves was solved by William Fulton in [12]. Fulton’s algorithm is
based on 7 properties (see Section 2.3 of the present manuscript) which uniquely define the in-
tersection multiplicity of two plane curves at the origin, and yield a procedure for computing it,
see Algorithm 1. If the input is a pair ( f0, g0) of bivariate polynomials over some algebraically
closed field K, then Fulton’s 7 properties act as a set of rewrite rules replacing ( f0, g0), by
a sequence of pairs ( f1, g1), ( f2, g2), . . . of bivariate polynomials over K, which preserves the
intersection multiplicity at the origin. This process may split the computation and terminates
in each branch once reaching a pair for which the intersection multiplicity at the origin can
be determined. This is an elegant process, using only standard operations on polynomials to
rewrite the input system as a series of simpler input systems, until the intersection multiplicity
can be determined.

In theory, Fulton’s algorithm could be applied to any point p rather than just the origin,
by performing a change of coordinates, which preserves intersection multiplicity as discussed
in 2.3. Points containing non-rational coordinates, and the explicit implementation of these
non-rational numbers, present many challenges to computer algebra systems. This limits the
applicability of changing coordinates to only points whose coordinates which are rational, and
hence, Fulton’s algorithm, as presented in [12], is essentially limited to points with rational
coordinates.
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Figure 1.1: Intersection Multiplicities of Planar Curves
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1.2.2 Maple’s IntersectionMultiplicity Algorithm

An alternative approach to that of Mora was investigated in [22, 1, 27], building off of the algo-
rithm of Fulton. Given n polynomials f1, . . . , fn ∈ K[x1, . . . , xn] generating a zero-dimensional
ideal, and a point p ∈ V( f1, . . . , fn), the authors of [22, 1, 27] propose an algorithmic criterion
for reducing the intersection multiplicity of p in V( f1, . . . , fn), to computing another intersec-
tion multiplicity with n − 1 polynomials in n − 1 variables. For this criterion to be applicable,
a transversality condition must hold. Unfortunately, this assumption does not generally hold.

In 2014, the RegularChains library introduced the AlgebraicGeometryTools sub-
package, which contained commands for such computations. The main command,
IntersectionMultiplicity, based on [22, 1, 27], appeared promising as a viable alter-
native to standard basis methods for computing intersection multiplicities but suffered from
two main issues. The first issue was caused by a buggy implementation which resulted in
many standard examples returning errors. This greatly hindered the practicality of this com-
mand as an alternative to other intersection multiplicity algorithms, see Chapter 7. The second
issue observed was a slow performance on many standard examples, see Chapter 7. This is
due to the underlying algorithm invoking the heavy duty LimitPoints1 command several
times. Although this approach avoids the use of standard bases, the several invocations to the
LimitPoints command has severely hindered IntersectionMultiplicity’s performance
in our experiments. These issues essentially limit Maple’s IntersectionMultiplicity
command to the case of two planar curves and to systems with intersection multiplicity one
(for which the implementation is optimized).

Going forward, we will refer to this algorithm as the algorithm of Vrbik et al. As we
will discuss in Chapter 6, we have reimplemented Maple’s IntersectionMultiplicity
command as a hybrid procedure which applies several partial algorithms for computing the
intersection multiplicity, thus it is necessary to distinguish between the algorithm described
above and other algorithms we will implement under the same command.

At the time of this manuscript, we are actively reimplementing the algorithm of Vrbik et
al. to strengthen the overall hybrid algorithm, discussed in Chapter 6, and to provide a more
reliable comparison between the algorithms developed in this manuscript and other standard
basis-free intersection multiplicity algorithms.

1.2.3 Singular’s iMult Algorithm

Singular’s iMult [10], found in the normal library (normal.lib [15]), is based on the tech-
niques of Mora and is a complete algorithm for computing intersection multiplicities at the
origin. Since iMult can only compute intersection multiplicities at the origin, exploring al-
gorithms which can compute intersection multiplicities at any point, rational or not, is still an
important question. Moreover, the iMult command uses standard bases to compute intersec-
tion multiplicities, and is therefore limited to only those examples for a which a standard basis

1Consider a constructible set C given as the set theoretic difference of a one-dimensional variety V (say, a
space curve) and a hypersurface H. The command LimitPoints applied to V and H computes the limit points, for
Zariski topology, of C that do not belong to C. In lose terms, those are the points obtained when moving on H
towards V. In practice, computing the limit points of such constructible set C is achieved by factoring univariate
polynomials over a field of univariate Puiseux series.
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can be obtained.
The output specifications of iMult should also be noted. Rather than computing the in-

tersection multiplicity of a list of polynomials at the origin iMult computes the intersection
multiplicity of a list of ideals, which is defined in [14]. In order to recover our definition of
intersection multiplicity from the one used in iMult, we will pass to iMult a list I, J where I
and J are ideals defined by f1, . . . , fn−1 and fn respectively. If f1, . . . , fn is the system of poly-
nomial equations and the ring given to Singular has a local ordering, this calling sequence will
compute the intersection multiplicity of f1, . . . , fn consistent with the definition given in this
manuscript.

For the purpose of this manuscript, we will use iMult as a benchmark for our algorithm’s
performance against intersection multiplicity algorithms that utilize standard bases in their
approach.

1.2.4 Magma’s IntersectionNumber Algorithm

The computer algebra system Magma [4] also provides support for computing intersection
multiplicities. Magma’s IntersectionNumber command computes the intersection multi-
plicity of two projective curves at a given point, or in the case of the IntersectionNumbers
command, computes the intersection multiplicity of two projective curves at all points in
their intersection. Points can lie in a finite field, the rationals, or an algebraic field. The
IntersectionNumber and IntersectionNumbers command are based on the algorithm of
[17].

Since the IntersectionNumber command is limited to two projective curves, and since
the Magma is not publicly available, we do not compare the algorithms developed in this
manuscript to IntersectionNumber in any of our experiments.

1.2.5 Methods in Numerical Polynomial Algebra

Multiple Roots of polynomial systems are of great interest in the community of numerical poly-
nomial algebra, see the landmark paper [7] by Corless, Gianni and Trager and the landmark
textbook [25] by Stetter. A Numerical method for computing the multiplicity structure of an
isolated root of a polynomial system is proposed by Dayton and Zeng in [9]. Their method
can work with exact or approximate data; it relies on the notion of a dual space of a poly-
nomial ideal at one of its isolated roots and the authors prove that their notion of multiplicity
matches that of intersection multiplicity considered in this thesis. Another numerical method
for computing the intersection multiplicity of a polynomial system at one of its isolated roots
is presented in [19] by Kobayashi, Suzuki and Sakai. Their method can work with exact or
approximate data: it relies on he notion of algebraic correspondence in algebraic geometry and
an application of Zeuthen’s rule.

1.3 Contributions

Our contributions are as follows:
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We extend Fulton’s bivariate intersection multiplicity algorithm to a partial intersection
multiplicity algorithm in the n-variate setting. We believe this generalization of Fulton’s bi-
variate intersection multiplicity algorithm to a partial, n-variate intersection multiplicity algo-
rithm to be the best generalization possible since one of the steps in Fulton’s algorithm does
not apply generically. To our knowledge, this is the first practical alternative, in the general,
n-variate setting, to intersection multiplicity algorithms which rely on standard bases.

We provide an optimization for the generalization of Fulton’s algorithm for cases when
the input system is both a triangular set and a regular sequence. Although the generalization of
Fulton’s algorithm can successfully compute the intersection multiplicity for any system which
is a triangular set and a regular sequence, the intersection multiplicity can instead be computed
immediately by means of polynomial evaluation. This observation has two important conse-
quences. First, when the input is known to be a triangular regular sequence, this optimization
allows us to avoid long stacks of recursive calls, providing much faster results. Second, it sug-
gests a new way to compute intersection multiplicities without using standard bases, namely,
by exploring intersection multiplicity preserving triangular decomposition techniques.

To extend our generalization of Fulton’s algorithm to work beyond points with rational
coordinates, we provide a modified algorithm which applies techniques from the theory of
regular chains. This modification allows the generalization of Fulton’s algorithm to run on
a collection of points, encoded by a zero-dimensional regular chain. This modification is far
from trivial and requires significant changes to the underlying algorithm and adjustments to the
theory to make the notion of intersection multiplicity coherent for regular chains rather than a
point. The resulting partial algorithm can compute intersection multiplicities in the n-variate
setting at any point, rational or not. This feature is desirable as it greatly extends the breadth of
systems one can compute intersection multiplicities at. Moreover, this feature is important as
all complete, n-variate intersection multiplicity algorithms that we are currently aware of are
limited to only rational points.

Lastly, we implement both of these versions of the generalization of Fulton’s algorithm in
Maple, as well as the optimization for triangular regular sequences. We combine the general-
ization of Fulton’s algorithm with Maple’s existing intersection multiplicity algorithm, to form
a hybrid procedure. These changes are implemented under the IntersectionMultiplicity
command. Commands related to the IntersectionMultiplicity command, such as
TriangularizeWithMultiplicity were also modified to be compatible with the new im-
plementation. Finally, we provide experimental testing for the generalization of Fulton’s al-
gorithm and compare the results to both the algorithm of Vrbik et al. and Singular’s iMult
command.

1.4 Summary
The manuscript has been organized using the following structure:

• Chapter 2 provides an overview of the mathematical background needed to understand
the generalization of Fulton’s algorithm.

• Chapter 3 introduces more advanced concepts such as Cohen-Macaulay Rings, Krull
dimension, and depth, and uses these concepts to prove a key result which justifies the
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input constraints placed on our generalization of Fulton’s algorithm.

• Chapter 4 contains the core results of this manuscript. It begins by extending Fulton’s
properties, and then generalizes Fulton’s algorithm to a partial algorithm in the n-variate
setting. The chapter concludes by discussing an important optimization for triangular
regular sequences.

• Chapter 5 extends the generalization of Fulton’s algorithm to handle points with non-
rational coordinates encoded by a zero-dimensional regular chain. The chapter begins
with an overview of the background and notations used in the theory of regular chains
necessary to develop such an algorithm.

• Chapter 6 describes the details of the implementation of these algorithms in Maple.

• Chapter 7 reports the results of our experiments, contrasting the generalization of Ful-
ton’s algorithm to the algorithm of Vrbik et al. and iMult.



Chapter 2

Intersection Multiplicity Preliminaries

Let K denote a field. With the exception of Section 5.1, K will be used to denote an alge-
braically closed field. Let An denote An(K), the affine space of dimension n over K. We define
the degree of the zero polynomial to be −∞ with respect to any variable. All rings are assumed
to be commutative and 1 , 0.

2.1 Preliminaries

2.1.1 Notations for Polynomials

Let f and g be polynomials in K[x1, . . . , xn] and fix some i such that 1 ≤ i ≤ n. We will use the
notation x1, . . . , x̂i, . . . , xn to denote the omission of xi from the sequence x1, . . . , xn. We will use
quo( f , g; xi) to denote the quotient of f and g as univariate polynomials in xi with coefficients
in K[x1, . . . , x̂i, . . . , xn]. Similarly, we will use lc( f )xi to denote the leading coefficient of f as
a univariate polynomial in K[x1, . . . , x̂i, . . . , xn][xi]. Lastly we will use degxi

( f ) to denote the
degree of f with respect to xi expressed as a univariate polynomial in K[x1, . . . , x̂i, . . . , xn][xi].

2.1.2 Ideals and Varieties

If I is an ideal of K[x1, . . . , xn], we denote by V(I) the algebraic set (aka variety) consisting of
the common zeros to all polynomials in I. An algebraic set V is irreducible, whenever V = V1∪

V2 for some algebraic sets V1,V2, implies V = V1 or V = V2. The ideal of an algebraic set V,
denoted by I(V), is the set of all polynomials which vanish on all points in V. For f1, . . . , fn ∈

K[x1, . . . , xn], we say V( f1) , . . . ,V( fn) have a common component which passes through p ∈
An if when we write V( f1, . . . , fn) as a union of its irreducible components, say V1 ∪ . . . ∪Vm,
there is a Vi which contains p. Similarly, we say f1, . . . , fn have a common component through
p when V( f1) , . . . ,V( fn) have a common component which passes through p. As we will
see, intersection multiplicity is a local notion and hence, throughout this manuscript, we may
assume V( f1, . . . , fn) is equal to an irreducible component containing p.

Definition 2.1.1 (Prime Ideals) If P is a proper ideal of a ring R, then P is prime if for any
a, b ∈ R, if ab ∈ P then either a ∈ P or b ∈ P.

8
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Definition 2.1.2 (Maximal Ideals) If M is a proper ideal of a ring R, then M is maximal if the
only ideal which contains M is R itself.

It should be noted maximal ideals are prime. Moreover, the quotient ideal of a ring with
one of its maximal ideals is a field.

2.1.3 Extension of an Ideal

Definition 2.1.3 Let A, B be rings and I and ideal of A. Let ϕ : A → B be a ring homomor-
phism. Then the extension of I is the ideal in B generated by ϕ(I). That is

〈ϕ(I)〉 =
{∑

yiϕ(xi) | xi ∈ A, yi ∈ B
}
.

When A ⊆ B, I an ideal of A, and ϕ is the inclusion map, we will write IB to denote the
extension of I in B. This notation will be useful to distinguish between ideals in polynomial
rings and ideals in local rings in Sections 3.2 and 4.1.

2.1.4 Radical of an Ideal

Definition 2.1.4 (Radical of an Ideal) Let I be an ideal of a ring R. The radical of I, written√
I is defined as

√
I =

{
r ∈ R | rn ∈ I for some n ∈ Z+} .

The radical of an ideal I is also the intersection of all primes in R containing I. Thus, an
equivalent definition we will use for the radical of an ideal is

√
I =

⋂
R⊃P⊇I,P prime. An ideal I is

said to be radical if I =
√

I.

Theorem 2.1.5 (Hilbert’s Nullstellensatz) Let J be an ideal of K[x1, . . . , xn] where K is an
algebraically closed field. Then I(V(J)) =

√
J.

2.1.5 Affine Changes of Coordinates

The following definitions are needed to state one of Fulton’s properties in Section 2.3 and to
generalize this property in Section 4.1.

Definition 2.1.6 (Polynomial Map) Let V and W be irreducible algebraic sets in An and Am

respectively. A mapping φ : V → W is called a polynomial map if there are polynomials
T1, . . . ,Tm ∈ K[x1, . . . , xn] such that φ(a1, . . . , an) = (T1(a1, . . . , an), . . . ,Tm(a1, . . . , am)).

Definition 2.1.7 (Affine Change of Coordinates) An affine change of coordinates on An is a
polynomial map T = (T1, . . . ,Tn) : An → An such that each Ti is a polynomial map of degree
1 and T is bijective.
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2.1.6 Modules

The definition of a module is needed to state the definitions and theorems of Section 3.2 in full
generality.

Definition 2.1.8 (Module) Let R be a ring, and 1 is its multiplicative identity. A left R-module
M consists of an abelian group (M,+) and an operation · : R × M → M such that for all
r, s ∈ R and x, y ∈ M, we have

• r · (x + y) = r · x + r · y

• (r + s) · x = r · x + s · x

• (rs) · x = r · (s · x)

• 1 · x = x.

For the modules we will encounter, the ring R will take the role of both the ring and the
module. It is easy to check that R is indeed an R-module.

Definition 2.1.9 (Finitely Generated Module) An R-module M is finitely generated if there
exist finitely many elements x1, . . . , xn ∈ M such that every m ∈ M can be written as m =

r1m1 + . . . + rnmn for some r1, . . . , rn ∈ R.

Let R be a ring. Consider the R as an R-module. Clearly R is finitely generated as an
R-module since the multiplicative identity 1 is in R.

Definition 2.1.10 Let I be an ideal of R, and let M be an R-module. Then, IM is the set of all
finite sums

∑
rimi where ri ∈ I and mi ∈ M.

Definition 2.1.11 (Annihilator) The Annihilator of an R-module M, is the set

AnnR(M) = {r ∈ R | rm = 0, for all m ∈ M} .

2.1.7 Gröbner and Standard Bases

Following [16, Section 1.6] we will use the term standard basis to denote a Gröbner basis with
a local variable ordering. It was shown by Daniel Lazard in [20] that through homogenization,
any algorithm which computes a Gröbner basis can be used to compute a standard basis, and
similarly any algorithm for computing a standard basis can be used to compute a Gröbner basis.
Moreover, an algorithm for computing a Gröbner/Standard Basis, for an arbitrary variable
ordering is presented in [16, Section 1.6]. Hence, when we refer to a standard basis-free
algorithm we are referring to an algorithm that does not compute a Gröbner or a standard
basis for the ideal generated by the input polynomials.
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2.2 Local Rings and Intersection Multiplicity
Definition 2.2.1 (Dimension of a Vector Space) Let V be a vector space over base field F,
then the dimension of F is the cardinality of a basis for V over F. We write dimF (V) to denote
the dimension of V.

Definition 2.2.2 (Local Ring) Let V be an irreducible algebraic set with p ∈ V. We define the
local ring of V at p as

OV,p =

{
f
g
| f , g ∈ K[x1, . . . , xn]/I(V) where g(p) , 0

}
.

We will often refer to the local ring of An at p in this manuscript, in which case we will
simply say the local ring at p and write

OAn,p =

{
f
g
| f , g ∈ K[x1, . . . , xn] where g(p) , 0

}
.

Local rings have a unique maximal ideal. In the case of OAn,p all elements which vanish
on p are in the maximal ideal and all of those that do not are units. Hence, given an element
f ∈ K[x1, . . . , xn] we can test whether f is invertible in OAn,p by testing f (p) , 0.

Throughout this manuscript we will use the following conventions for ideals. With the
exception of Sections 3.2 and 4.1, if f1, . . . , fn are polynomials in K[x1, . . . , xn], we will write
〈 f1, . . . , fn〉 to denote the ideal generated by f1, . . . , fn in the local ring. In Sections 3.2 and 4.1
we need to distinguish between the ideals generated by f1, . . . , fn in the polynomial ring and in
the local ring at a given point. To do this we will use 〈 f1, . . . , fn〉 to denote the ideal generated
by f1, . . . , fn in the polynomial ring and 〈 f1, . . . , fn〉OAn,p to denote the extension of this ideal
in the local ring at some point p ∈ An.

Definition 2.2.3 (Intersection Multiplicity) Let f1, . . . , fn ∈ K[x1, . . . , xn]. We define the in-
tersection multiplicity of f1, . . . , fn at p ∈ An as the dimension of the local ring at p modulo the
ideal generated by f1, . . . , fn in the local ring at p, as a vector space over K. That is,

Im(p; f1, . . . , fn) = dimK
(
OAn,p /〈 f1, . . . , fn〉

)
.

The following observation allows us to write the intersection multiplicity of a system of
polynomials as the intersection multiplicity of a smaller system of polynomials, in fewer vari-
ables, when applicable. It follows from an isomorphism between the respective residues of
local rings in the definition of intersection multiplicity.

Remark Let f1, . . . fn ∈ K[x1, . . . , xn] and p = (p1, . . . , pn) ∈ An. If there are some fi such that
fi = xi − pi, say fm, . . . , fn where 1 < m ≤ n, then

Im(p; f1, . . . , fn) = Im((p1, . . . , pm−1); F1, . . . , Fm−1) ,

where F j is the image of f j modulo 〈xm − pm, . . . , xn − pn〉.When p is the origin in
An and p′ is the origin in Am−1 this result becomes: Im(p; f1, . . . , fm−1, xm, . . . , xn) =

Im(p′; f1(x1, . . . , xm−1, 0, . . . , 0), . . . , fm−1(x1, . . . , xm−1, 0, . . . , 0)) .
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In cases where we consider the intersection multiplicity at the origin, we will not distinguish
between p ∈ An and p′ ∈ Am−1. Instead, we will simply write p to represent the origin in both
An and Am−1. We will refer to the result given in the above remark frequently in Chapter 4.

2.3 Bivariate Intersection Multiplicity
It is shown in [12, Section 3-3] that the following seven properties characterize intersection
multiplicity of bivariate curves. Moreover, these seven properties lead to a constructive proce-
dure which computes the intersection multiplicity of bivariate curves, which is given in Algo-
rithm 1.

Proposition 2.3.1 (Fulton’s Properties) Let p = (p1, p2) ∈ A2 and f , g ∈ K[x, y].

(2-1) Im(p; f , g) is a non-negative integer when V( f ) and V(g) have no common component
at p, otherwise Im(p; f , g) = ∞.

(2-2) Im(p; f , g) = 0 if and only if p < V( f ) ∩ V(g).

(2-3) Im(p; f , g) is invariant under affine changes of coordinates on A2.

(2-4) Im(p; f , g) = Im(p; g, f ).

(2-5) Im(p; f , g) ≥ m f mg where m f and mg are the respective tailing degrees of f and g
expressed in K[x − p1, y − p2]. Moreover, Im(p; f , g) = m f mg when V( f ) and V(g)
intersect transversally, i.e. have no tangent lines in common.

(2-6) Im(p; f , gh) = Im(p; f , g) + Im(p; f , h) for any h ∈ K[x, y].

(2-7) Im(p; f , g) = Im(p; f , g + h f ) for any h ∈ K[x, y].

The following proposition was proved by Fulton in [12, Section 3-3]. It is included here
for the readers convenience, as we will use similar arguments in later sections.

Proposition 2.3.2 Algorithm 1 is correct and terminates.

Proof By (2-3) we may assume p is the origin. Let f , g be polynomials in K[x, y] with no com-
mon component through the origin. By (2-1), Im(p; f , g) is finite. We induct on Im(p; f , g)
to prove termination. Suppose Im(p; f , g) = 0, then by (2-2), at least one of f or g does not
vanish at the origin and Algorithm 1 correctly returns zero.

Now suppose Im(p; f , g) = n > 0 for some n ∈ N. Let r, s be the respective degrees of
f , g evaluated at (x, 0). By (2-4) we may reorder f , g to ensure r ≤ s. Notice r, s , 0 since f , g
vanish at the origin.

If r < 0, then f is a univariate polynomial in y which vanishes at the origin, hence f is
divisible by y. By (2-6) we have,

Im(p; f , g) = Im(p; y, g) + Im
(
p; quo( f , y; y), g

)
.
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Algorithm 1: Fulton’s Algorithm
1 Function im(p; f , g)

Input: Let: x � y

1. p ∈ A2 the origin.

2. f , g ∈ K[x, y] such that gcd( f , g)(p) , 0.

Output: Im(p; f , g)
2 if f (p) , 0 or g(p) , 0 then /* Red */

3 return 0

4 r ← degx ( f (x, 0))
5 s← degx (g(x, 0))
6 if r > s then /* Green */

7 return im(p; g, f )

8 if r < 0 then /* y | f, Yellow */
9 write g(x, 0) = xm(am + am+1x + . . .)

10 return m + im(p; quo( f , y; y), g)

11 else /* Blue */

12 g′ ← lc( f (x, 0)) · g − (x)s−rlc(g(x, 0)) · f
13 return im(p; f , g′)

By definition of intersection multiplicity Im(p; y, g) = Im(p; y, g(x, 0)). Since g(x, 0) van-
ishes at the origin and since g has no common component with f at the origin, g(x, 0) is a
non-zero univariate polynomial divisible by x. Write g(x, 0) = xm(am + am+1x + . . .) for some
am, am+1, . . . ∈ K where m is the largest positive integer such that am , 0. Applying (2-6), (2-5),
and (2-2) yields

Im(p; f , g) = m + Im
(
p; quo( f , y; y), g

)
.

Thus, Algorithm 1 returns correctly when r < 0. Moreover, we can compute
Im

(
p; quo( f , y; y), g

)
< n by induction.

Now suppose 0 < r < s. By (2-7), replacing g with g′ preserves the intersection multiplic-
ity. Notice such a substitution strictly decreases the degree in x of g(x, 0). After finitely many
iterations, we will obtain curves F,G such that Im(p; f , g) = Im(p; F,G) and the degree in x
of F(x, 0) < 0.

Below we work through several examples to illustrate Fulton’s algorithm. The first example
is rather short but illustrates both key parts of the algorithm, namely rewriting the system and
splitting computations. The second example explores the intricacies of the rewriting process.
To be concise, both examples were chosen as to terminate after one split, although this is not a
behaviour that occurs generically.

Example We will compute the intersection multiplicity of f = x2y + x and g = x2 + 2xy + y
at p, the origin, using Algorithm 1. First notice f (x, 0) = x and g(x, 0) = x2, so we have r = 1
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and s = 2, thus we must compute g′ as described in line 12,

g′ = g − x f = x2 + 2xy + y − x(x2y + x) = 2xy + y − x3y.

Redefining g as g′ and reordering f and g gives f = 2xy + y − x3y and g = x2y + x.
Since f (x, 0) = 0 and g(x, 0) = x, we have r = −∞ and s = 1. We set m = 1 and compute
quo( f , y; y) = 2x + 1 − x3 and conclude,

im(p; f , g) = im(p; quo( f , y; y), g) + m = im(p; 2x + 1 − x3, g) + 1 = 1,

since im(p; 2x + 1 − x3, g) = 0 as 2x + 1 − x3 does not vanish at the origin.

In the below example, we must perform the computation of line 12 several times before we
can compute the intersection multiplicity. Moreover, it illustrates how the computation of line
12 combines with the reordering described in line 7 to reduce the values of r and s over the
course of several iterations.

Example We will compute the intersection multiplicity of f = x3 + x2 + y and g = x4 + y at p,
the origin, using Algorithm 1. First notice r = 3 and s = 4, so we will replace g with g′ as in
line 12,

g′ = g − x f = x4 + y − x(x3 + x2 + y) = x4 + y − x4 − x3 − xy = y − x3 − xy.

We now have f = x3 + x2 + y and g = y− x3 − xy with r, s = 3. We compute g′ again, which
gives

g′ = g − (− f ) = y − x3 − xy + x3 + x2 + y = x2 − xy + 2y.

Redefining g as g′ and reordering f and g we get f = x2 − xy + 2y and g = x3 + x2 + y with
r = 2 and s = 3. Computing g′ we get,

g′ = g − x f = x3 + x2 + y − x(x2 − xy + 2y) = x3 + x2 + y − x3 + x2y − 2xy = x2 + y + x2y − 2xy.

Again we define g as g′, thus f = x2 − xy + 2y and g = x2 + y + x2y− 2xy and r, s = 2. Once
more, we compute g′ to get,

g′ = g − f = x2 + y + x2y − 2xy − x2 + xy − 2y = x2y − xy − y.

Redefining g as g′ and reordering f and g we get f = x2y − xy − y and g = x2 − xy + 2y
with r = −∞ and s = 2. Notice g(x, 0) = x2, so m = 2. Moreover, quo( f , y; y) = x2 − x − 1. We
conclude

im(p; f , g) = im(p; quo( f , y; y), g) + m = im(p; x2 − x − 1, g) + 2 = 2,

since im(p; x2 − x − 1, g) = 0 as x2 − x − 1 does not vanish at the origin.



Chapter 3

Regular Sequences

This chapter introduces the notion of a regular sequence, an important tool used in our general-
ization of Fulton’s algorithm. We focus first on the dimension of a regular sequence and prove
a key result which we will later use to characterize systems which have finite intersection mul-
tiplicity at a point. Since the proof of termination of Fulton’s algorithm inducts on intersection
multiplicity itself, it is crucial we ensure the intersection multiplicity of our input is finite if
we wish to generalize Fulton’s algorithm. Hence, the result proved in Theorem 3.2.8 lays the
foundation for generalizing Fulton’s algorithm.

3.1 Krull Dimension
We have already introduced the the notion of dimension for a vector space. In this section we
introduce the notion of Krull dimension as well as some related terminology. Throughout this
section let R be a ring.

Definition 3.1.1 (Length of a Chain) Let P0, . . . , Pn ∈ R be prime ideals in R, then we say the
chain
P0 ⊂ P1 ⊂ . . . ⊂ Pn , R has length n.

Definition 3.1.2 (Krull Dimension of a Ring) The Krull dimension of a ring R, written dim(R),
is the supremum of the lengths of all chains of prime ideals.

Definition 3.1.3 (Height of a Prime Ideal) The height of a prime ideal P ⊂ R, written ht(P),
is the supremum of the lengths of all chains of prime ideals such that P0 ⊂ P1 ⊂ . . . ⊂ Pn =

P , R.

Definition 3.1.4 (Height of an Ideal) The height of an ideal I ⊂ R, written ht(I), is the small-
est height of a prime ideal containing I.

Definition 3.1.5 (Krull Dimension of an Ideal) The Krull dimension of an ideal I ⊂ R, writ-
ten dim(I), is the Krull dimension of the ring R/I.

Definition 3.1.6 (Krull Dimension of an Irreducible Algebraic Set) Let I be an ideal in the
polynomial ring R. The Krull dimension of an irreducible algebraic set V = V(I), written
dim(V), is the Krull dimension of R/I(V).

15
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Definition 3.1.7 (Krull Dimension of an Algebraic Set) The Krull dimension of an algebraic
set is the maximal Krull dimension of its irreducible components.

Definition 3.1.8 (Krull Dimension of Module) The Krull dimension of an R-module M, writ-
ten dim(M), is the Krull dimension of the ring R/AnnR(M).

3.2 Regular Sequences in a Local Ring
Definition 3.2.1 (Regular Sequence) Let R be a commutative ring and M an R module. Let
r1, . . . , rd be a sequence of elements in R. Then r1, . . . , rd is an M-regular sequence if ri is not
a zero-divisor on M/〈r1, . . . , ri−1〉M for all i = 1, . . . , d and M , 〈r1, . . . , rd〉M.

For this manuscript, we are only concerned with regular sequences such that R,M = OAn,p.
Thus, when stating propositions in full generality, we will use the term M-sequence and when
referring to the special case of concern for this manuscript, where R,M = OAn,p, we will simply
say f1, . . . , fn is a regular sequence, f1, . . . , fn is a regular sequence in the local ring, or f1, . . . , fn

is a regular sequence in OAn,p.

Definition 3.2.2 (Depth) Let R be a ring, I ⊂ R an ideal and M an R-module. If M , IM, then
the maximal length n of an M-sequence a1, . . . , an ∈ I is called the I-depth of M and denoted
by depth(I,M). If R is a local ring with maximal ideal m, then the m–depth of M is simply
called the depth of M, that is, depth(M) = depth(m,M)

From this definition we see the I–depth of M is 0 if and only if every element of I is a zero-
divisor for M. In particular, for a local ring R with maximal ideal m, we have depth(m,R/m) =

0.
Below is Corollary 7.6.12 of [16]

Proposition 3.2.3 Let R be a Noetherian ring, I = 〈 f1, . . . , fn〉 an ideal of R, and M a finitely
generated R–module. Assume that M , IM. Then

1. f1, . . . , fn is an M–sequence if and only if depth(I,M) = n;

2. let J ⊆ R be an ideal and f1, . . . , fn an M–sequence in J, then depth(J,M/〈 f1, . . . , fn〉M) =

depth(J,M) − n .

Definition 3.2.4 (Cohen-Macaulay) Let R be a local ring with maximal ideal m, M a finitely
generated R- module. M is called a Cohen-Macaulay module if M = 0 or M , 0 and
depth(M) = dim(M). R is called a Cohen-Macaulay ring if it is a Cohen-Macaulay R-module.

Below is Corollary 7.7.10 of [16]

Proposition 3.2.5 Let R be a Noetherian local Cohen–Macaulay ring with maximal ideal m,
and let I ⊆ R be an ideal. Then

1. ht(I) = depth(I,R);
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2. ht(I) + dim(R/I) = dim(R);

Lemma 3.2.6 OAn,p is a Cohen-Macaulay ring for p = (p1, . . . , pn) ∈ An.

Proof Let m be the maximal ideal of OAn,p given by m = 〈x1− p1, . . . , xn− pn〉. By Proposition
3.2.3 we have

depth
(
OAn,p

)
= n + depth

(
m,OAn,p/m

)
= n

since all elements in m are zero or zero-divisors in OAn,p/m. The Krull dimension of OAn,p is
also n and thus, OAn,p is a Cohen-Macaulay ring.

Lemma 3.2.7 Let I be an ideal in K[x1, . . . , xn]. Let V = V(I) and take p ∈ V. Then,

dim(OAn,p/I(V)OAn,p) = dim(OAn,p/IOAn,p).

Proof Recall I(V) =
√

I by the Nullstellensatz and sinceOAn,p is a localization of K[x1, . . . , xn],
we have

√
IOAn,p =

√
IOAn,p by Proposition 3.11 in [2]. Recall the radical of an ideal is

the intersection of all primes containing that ideal. Combining these observations we get√
IOAn,p =

√
IOAn,p =

⋂
OAn ,p⊃Q⊇IOAn ,p,Q prime Q. Let Q′ be the smallest prime in OAn,p which

contains IOAn,p. Since the height of an ideal is the smallest height of a prime containing the
ideal, ht

(
IOAn,p

)
= ht(Q′). By definition, Q′ must also contain

√
IOAn,p, thus ht

( √
IOAn,p

)
=

ht(Q′) = ht
(
IOAn,p

)
. Therefore, ht

(
I(V)OAn,p

)
= ht

(
IOAn,p

)
. By Lemma 3.2.6, OAn,p is a

Noetherian local Cohen–Macaulay ring, so we may apply Proposition 3.2.5 to get
dim(OAn,p/I(V)OAn,p) = dim(OAn,p/IOAn,p).

The algorithms proposed in this manuscript require the input polynomials form a regular
sequence in the local ring at the point we wish to compute the intersection multiplicity at. The
following theorem provides a correspondence between being a regular sequence and having a
zero-dimensional algebraic set. This theorem holds under the assumption the algebraic set in
question is irreducible. Although this is implied by the convention in Section 2.1.2 we state
this explicitly to avoid any confusion.

Theorem 3.2.8 Let I be the ideal generated by f1, . . . , fn ∈ K[x1, . . . , xn] in the polynomial
ring and define V = V(I). Suppose V is non-empty and irreducible, then for any p ∈ V,
dim(V) = 0 if and only if f1, . . . , fn is a regular sequence in OAn,p.

Proof First we will show dim(OAn,p/IOAn,p) = 0 if and only if f1, . . . , fn is a regular sequence
in OAn,p.

By Lemma 3.2.6, OAn,p is a Noetherian local Cohen–Macaulay ring, so we may apply
Proposition 3.2.5. If f1, . . . , fn is a regular sequence in OAn,p then by Proposition 3.2.3,
depth

(
IOAn,p,OAn,p

)
= n. By Proposition 3.2.5, ht

(
IOAn,p

)
= n and

dim(OAn,p/IOAn,p) = dim(OAn,p) − ht
(
IOAn,p

)
= n − n = 0.

Conversely, supppose f1, . . . , fn is not a regular sequence in OAn,p. Let k be the maximal
length of a regular sequence of IOAn,p in OAn,p, that is, let k = depth

(
IOAn,p,OAn,p

)
. By Propo-

sition 3.2.3, we have k < n. By Proposition 3.2.5, ht
(
IOAn,p

)
= k and

dim(OAn,p/IOAn,p) = dim(OAn,p) − ht
(
IOAn,p

)
= n − k > 0.
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To conclude the proof we will show dim(V) = dim(OAn,p/IOAn,p). Observe dim(V) =

dim(K[x1, . . . , xn]/I(V)) = dim(OV,p) = dim(OAn,p/I(V)OAn,p) = dim(OAn,p/IOAn,p), where
the second equality follows from Theorem 11.25 in [2], the third equality follows from OV,p �
OAn,p/I(V)OAn,p, and the last equality follows from Lemma 3.2.7.



Chapter 4

Generalizing Fulton’s Algorithm

In this chapter, we develop the main results of this manuscript. We start by proving the general-
ization of Fulton’s properties and several other results needed to generalize Fulton’s algorithm1.
Next, we generalize Fulton’s algorithm to systems of 3 polynomials in 3 variables. The trivari-
ate version of Fulton’s algorithm looks similar to the bivariate version, and hence, is useful
for building the readers intuition before moving to the n-variate algorithm. We also discuss an
example for which the algorithm of Vrbik et al. fails to compute the intersection multiplicity
where as the trivariate version of Fulton’s algorithm succeeds. Next, we introduce the defi-
nition of the matrix of modular degrees, as we believe all versions of Fulton’s algorithm are
best understood when viewed through this lens. Using this notion, we explore two examples
of Fulton’s algorithm (bivariate and trivariate) and use them to illustrate the pattern we seek to
generalize, expressed in terms of the matrix of modular degrees. With this in mind, we pro-
vide the generalization of Fulton’s algorithm. We don’t provide any examples in full of this
algorithm since for n > 3, explicitly writing all steps is tedious and draws attention away from
the focus of this manuscript. We refer the reader to the previous trivariate examples and the
examples at the end of Chapter 5 if they wish to further explore the generalization of Fulton’s
algorithm. Lastly, we conclude this chapter with an important optimization for when the input
system forms a triangular regular sequence. We will later see that notion of a regular chain,
introduced in Chapter 5, satisfies the conditions of a triangular regular sequence. Hence, when
it is known that the input system is a regular chain, one may apply this optimization to compute
the intersection multiplicity immediately.

4.1 A Generalization of Fulton’s Properties
The following theorem gives a generalization of Fulton’s Properties for n polynomials in n
variables. This generalization of Fulton’s Properties was first discovered by the authors of [22]
and first proved in [27].

We have modified the statement of (n-1) from that given in [27] and provide our own proof
of (n-1) which follows the proof of (2-1) given in [12, Section 3-3] closely. Below are several
propositions used in the proof of Fulton’s Properties.

1A version of this chapter has been published in [23].
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Proposition 4.1.1 Let K be an algebraically closed field and I an ideal in K[x1, . . . , xn]
such that V(I) = {p1, . . . , pm} for some pi ∈ An(K). Then, dimK (K[x1, . . . , xn]/I) =∑m

i=1 dimK
(
OAn,pi/IOAn,pi

)
.

Proposition 4.1.2 Let K be an algebraically closed field and I an ideal in K[x1, . . . , xn] such
that V(I) = {p} for some p ∈ An(K). Then, K[x1, . . . , xn]/I � OAn,p/IOAn,p.

Proposition 4.1.3 Let I be an ideal in K[x1, . . . , xn]. Then V(I) is a finite set if and only if
dimK (K[x1, . . . , xn]/I) is finite.

Both Proposition 4.1.1 and Proposition 4.1.2 follow as corollaries to Proposition 6 in [12,
Section 2-9]. Proposition 4.1.3 follows as a corollary to the Nullstellensatz [12, Section 1-7].

Proposition 4.1.4 Let r1, . . . , rd form a regular sequence in a Noetherian local ring R, and
suppose all ri are in the maximal ideal, then any permutation of r1, . . . , rd is a regular sequence
in R.

Proposition 4.1.4 can be found in [18, Section 3-1]. With Proposition 4.1.4, to show
f1, . . . , fn is not a regular sequence in the local ring at p, it suffices to show there are coef-
ficients Q1, . . . ,Qn in the local ring such that Q1 f1 + . . .Qn fn = 0 and there is some index r
such that Qr < 〈 f1, . . . , f̂r, . . . , fn〉OAn,p.

The below proposition is used to prove a generalization of one of Fulton’s properties as
well as in our generalization of Fulton’s algorithm.

Proposition 4.1.5 Let f1, . . . , fn ∈ K[x1, . . . , xn] where f1, . . . , fn vanish on some p ∈ An.
Suppose for some k we have fk = q1q2 for some q1, q2 ∈ K[x1, . . . , xn] which are not units in
OAn,p. Then f1, . . . , fn is a regular sequence in OAn,p if and only if both f1, . . . , q1, . . . , fn and
f1, . . . , q2, . . . , fn are regular sequences in OAn,p.

Proof We will consider all ideals as ideals to be in OAn,p. Suppose f1, . . . , fn is not a regular
sequence. We may assume neither q1, q2 ∈ 〈 f1, . . . , f̂k, . . . , fn〉 since otherwise the claim clearly
holds. Since f1, . . . , fn is not a regular sequence there exists coefficients Q1, . . . ,Qn in the local
ring and an index r such that

n∑
i=1

Qi fi = 0,

and Qr < 〈 f1, . . . , f̂r, . . . , fn〉. We will consider two cases; where r = k and where r , k.
If r = k write

Q1 f1 + . . . + Qkq1q2 + . . . + Qn fn = 0,

and Qk < 〈 f1, . . . , f̂k, . . . , fn〉. If Qkq1 < 〈 f1, . . . , f̂k, . . . , fn〉 then q2 is a zero-divisor since the
image of q2 is not zero modulo 〈 f1, . . . , f̂k, . . . , fn〉. If Qkq1 ∈ 〈 f1, . . . , f̂k, . . . , fn〉 then q1 is a
zero-divisor since the images of Qk and q1 modulo 〈 f1, . . . , f̂k, . . . , fn〉 are not zero. Hence, one
of f1, . . . , q1, . . . , fn or f1, . . . , q2, . . . , fn is not a regular sequence.
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Suppose r , k. Since Qr < 〈 f1, . . . , fk, . . . , f̂r, . . . , fn〉, Qr can not be in both
〈 f1, . . . , q1, . . . , f̂r, . . . , fn〉 and 〈 f1, . . . , q2, . . . , f̂r, . . . , fn〉. Say Qr < 〈 f1, . . . , q1, . . . , f̂r, . . . , fn〉.
Defining Q′i = Qi for all i , k and Q′k = Qkq2 gives

Q′1 f1 + . . . + Q′kq1 + . . . + Q′n fn = 0,

and Q′r < 〈 f1, . . . , q1, . . . , f̂r, . . . , fn〉, and hence f1, . . . , q1, . . . , fn is not a regular sequence.
Conversely, suppose one of f1, . . . , q1, . . . , fn or f1, . . . , q2, . . . , fn is not a regular sequence,

say f1, . . . , q1, . . . , fn. Then there are Q1, . . . ,Qn ∈ OAn,p such that, Q1 f1 + . . . + Qkq1 + . . . +

Qn fn = 0. We will again consider two cases; where Qk < 〈 f1, . . . , q̂1, . . . , fn〉 and where Qk ∈

〈 f1, . . . , q̂1, . . . , fn〉.
If Qk < 〈 f1, . . . , q̂1, . . . , fn〉, then multiplying by q2 gives us q2Q1 f1 + . . . + Qk(q1q2) + . . . +

q2Qn fn = 0 and hence q2Q1 f1 + . . . + Qk fk + . . . + q2Qn fn = 0. Defining Q′i = Qiq2 for all i , k
and Q′k = Qk gives us

n∑
i=1

Q′i fi = 0,

and Qk < 〈 f1, . . . , f̂k, . . . , fn〉, hence f1, . . . , fn is not a regular sequence.
If Qk ∈ 〈 f1, . . . , q̂1, . . . , fn〉 then we can write Q′1 f1 + . . . + 0q1 + . . . + Q′n fn = 0 for some

Q′1, . . . ,Q
′
n ∈ OAn,p. Since f1, . . . , q1, . . . , fn is not a regular sequence, there must be some

index r such that Q′r < 〈F1, . . . , F̂r, . . . , Fn〉 where Fi = fi for all i , k and Fk = q1. Hence
Q′r < 〈 f1, . . . , f̂r, . . . , fn〉. Moreover, we may replace q1 with fk without affecting the sum, hence
we write Q′1 f1 + . . . + 0 fk + . . . + Q′n fn = 0. Thus, f1, . . . , fn is not a regular sequence.

The following theorem generalizes Fulton’s Properties from Proposition 2.3.1.

Theorem 4.1.6 Let f1, . . . , fn be polynomials in K[x1, . . . , xn] and let p = (p1, . . . , pn) ∈ An.
The Im(p; f1, . . . , fn) satisfies (n-1) to (n-7) where:

(n-1) Im(p; f1, . . . , fn) ∈ N when V( f1, . . . , fn) is zero-dimensional and Im(p; f1, . . . , fn) = ∞

otherwise.

(n-2) Im(p; f1, . . . , fn) = 0 if and only if p < V( f1, . . . , fn).

(n-3) Im(p; f1, . . . , fn) is invariant under affine changes of coordinates on An.

(n-4) Im(p; f1, . . . , fn) = Im
(
p; fσ(1), . . . , fσ(n)

)
where σ is any permutation on {1, . . . , n}.

(n-5) Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) = m1 · · ·mn for any m1, . . . ,mn ∈ N.

(n-6) Im(p; f1, . . . , fn−1, gh) = Im(p; f1, . . . , fn−1, g) + Im(p; f1, . . . , fn−1, h) for any g, h ∈
K[x1, . . . , xn] such that f1, . . . , fn−1, gh is a regular sequence in OAn,p.

(n-7) Im(p; f1, . . . , fn) = Im(p; f1, . . . , fn−1, fn + g) for any g ∈ 〈 f1, . . . , fn−1〉.
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Proof of (n-1)

Suppose V( f1, . . . , fn) is zero-dimensional. We may apply Proposition 4.1.1. to get,

dimK (K[x1, . . . , xn]/〈 f1, . . . , fn〉) ≥ dimK
(
OAn,p/〈 f1, . . . , fn〉OAn,p

)
= Im(p; f1, . . . , fn) .

Proposition 4.1.3 tells us dimK (K[x1, . . . , xn]/〈 f1, . . . , fn〉) must be finite which concludes this
direction.

Suppose V( f1, . . . , fn) has positive dimension and let F = I(V( f1, . . . , fn)). Since
〈 f1, . . . , fn〉 ⊆ F, there is a surjective homomorphism from OAn,p/〈 f1, . . . , fn〉OAn,p onto
OAn,p/FOAn,p. Thus, Im(p; f1, . . . , fn) ≥ dimK

(
OAn,p/FOAn,p

)
.

Since OAn,p/FOAn,p � OV( f1,..., fn),p and OV( f1,..., fn),p ⊇ K[x1, . . . , xn]/F we get,

Im(p; f1, . . . , fn) ≥ dimK (K[x1, . . . , xn]/F) .

Lastly, Proposition 4.1.3 tells us dimK (K[x1, . . . , xn]/F) is finite if and only if V(F) =

V(I(V( f1, . . . , fn))) = V( f1, . . . , fn) is zero-dimensional. Since V( f1, . . . , fn) has positive di-
mension, dimK (K[x1, . . . , xn]/F) must be infinite, which concludes the proof.

Proof of (n-2)

Suppose p < V( f1, . . . , fn). Then there is at least one fi which does not vanish on p, hence
fi is a unit in OAn,p. Thus, OAn,p/〈 f1, . . . , fn〉 = 〈0〉 and Im(p; f1, . . . , fn) = 0.

Conversely, suppose p ∈ V( f1, . . . , fn). Since for any f ∈ 〈 f1, . . . , fn〉 we have f (p) = 0, so
〈 f1, . . . , fn〉 must be contained in 〈x1 − p1, . . . , xn − pn〉. Thus, there is a surjective homomor-
phism from OAn,p/〈 f1, . . . , fn〉OAn,p onto OAn,p/〈x1 − p1, . . . , xn − pn〉OAn,p which implies

dimK
(
OAn,p/〈 f1, . . . , fn〉OAn,p

)
≥ dimK

(
OAn,p/〈x1 − p1, . . . , xn − pn〉OAn,p

)
.

Notice V(x1 − p1, . . . , xn − pn) = {p}, hence, applying Proposition 4.1.2 gives
OAn,p/〈x1, . . . , xn〉OAn,p � K[x1, . . . , xn]/〈x1, . . . , xn〉 � K. Therefore, when p ∈ V( f1, . . . , fn)
the dimension of OAn,p/〈 f1, . . . , fn〉OAn,p as a K vector space is at least 1, and hence non-zero.

Proof of (n-3)

Let T be an affine change of coordinates such that T (p) = q for some q ∈ An and let
φ : OAn,q → OAn,p be such that φ maps f

g 7→
f◦T
g◦T . By [12, Exercise 2.22], φ is an isomorphism,

hence
OAn,q/〈 f1, . . . , fn〉OAn,q � OAn,p/〈 f1 ◦ T, . . . , fn ◦ T 〉OAn,p,

from which the desired statement follows.

Proof of (n-4)

Since 〈 f1, . . . , fn〉OAn,p = 〈 fσ(1), . . . , fσ(n)〉OAn,p we get,

Im(p; f1, . . . , fn) = dimK
(
OAn,p /〈 f1, . . . , fn〉OAn,p

)
= dimK

(
OAn,p /〈 fσ(1), . . . , fσ(n)〉OAn,p

)
= Im

(
p; fσ(1), . . . , fσ(n)

)
.
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Proof of (n-5)

We will show Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) = m1 · · ·mn for any m1, . . . ,mn ∈ N for
any m1, . . . ,mn ∈ N.

Assume (n-6) holds (we will prove (n-6) shortly). Take any m1, . . . ,mn ∈ N. If one such mi

is zero then (xi−pi)mi does not vanish anywhere, and hence Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) =

0 = m1 · · ·mn by (n-2). Thus, we may assume all m1, . . . ,mn are non-zero.
Applying (n-6) repeatedly yields,

Im(p; (x1 − p1)m1 , . . . , (xn − pn)mn) = Im
(
p; (x1 − p1)m1 , . . . , (xn − pn)mn−1

)
+ Im(p; (x1 − p1)m1 , . . . , (xn − pn))
=
...

= Im(p; (x1 − p1)m1 , . . . , 1)
+ (mn)Im(p; (x1 − p1)m1 , . . . , (xn − pn))
= (mn)Im(p; (x1 − p1)m1 , . . . , (xn − pn))
=
...

= (m1 · · ·mn)Im(p; (x1 − p1), . . . , (xn − pn)) .

Let I be the ideal generated by x1 − p1, . . . , xn − pn in K[x1, . . . , xn]. It suffices to show
OAn,p/IOAn,p � K and hence has dimension 1 as a vector space over K. Notice V(I) = {p},
hence applying Proposition 4.1.2 gives OAn,p/IOAn,p � K[x1, . . . , xn]/I. Since I = 〈x1 −

p1, . . . , xn − pn〉, it follows that K[x1, . . . , xn]/I � K, which completes the proof.

Proof of (n-6)

Suppose f1, . . . , fn form a regular sequence. Let,

Ogh = OAn,p /〈 f1, . . . , fn−1, gh〉OAn,p

Og = OAn,p /〈 f1, . . . , fn−1, g〉OAn,p

Oh = OAn,p /〈 f1, . . . , fn−1, h〉OAn,p.

We will show,
dimK

(
Ogh

)
= dimK

(
Og

)
+ dimK (Oh)

by showing there is a short exact sequence,

0→ Oh
ψ
−→ Ogh

φ
−→ Og → 0

such that φ is the natural homomorphism from Ogh to Og and ψ maps Z 7→ Zg where the bar
denotes respective residues and Z ∈ OAn,p.

The map φ is clearly surjective. It remains to show Im(ψ) = Ker(φ) and that ψ is injective.
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Clearly the Im(ψ) ⊆ Ker(φ). Now take Z ∈ Ker(φ). Thus,

Z = A1 f1 + . . . + An−1 fn−1 + Ang,

for some A1, . . . , An ∈ OAn,p and hence Z = Ang. But ψ(An) = Ang = Z and hence Im(ψ) =

Ker(φ).
Lastly, we must show ψ is injective. Suppose Z ∈ Ker(ψ) hence,

Zg = A1 f1 + . . . + An−1 fn−1 + Angh,

for some A1, . . . , An ∈ OAn,p. Observe,

(Z − Anh)g ∈ 〈 f1, . . . , fn−1〉OAn,p.

Since f1, . . . , fn−1, gh is a regular sequence, both f1, . . . , fn−1, g and f1, . . . , fn−1, h are regular
sequences by Proposition 4.1.5. Since f1, . . . , fn−1, g is a regular sequence we must have (Z −
Anh) ∈ 〈 f1, . . . , fn−1〉OAn,p. Therefore, Z ∈ 〈 f1, . . . , fn−1, h〉OAn,p and thus Z = 0. Therefore, ψ is
injective, which concludes the proof.

Proof of (n-7)

Since 〈 f1, . . . , fn〉OAn,p = 〈 f1, . . . , fn−1, fn + g〉OAn,p for any g ∈ 〈 f1, . . . , fn−1〉OAn,p we get,

Im(p; f1, . . . , fn) = dimK
(
OAn,p /〈 f1, . . . , fn〉OAn,p

)
= dimK

(
OAn,p /〈 f1, . . . , fn−1, fn + g〉OAn,p

)
= Im(p; f1, . . . , fn−1, fn + g) .

The following corollaries are essential to our generalization of Fulton’s algorithm. The
first relates the input constraint of our algorithm (the input must either be a regular sequence
or contain a unit) to the generalization of Fulton’s properties. In essence, it tells us those
systems we can apply our algorithm to are exactly those systems which have finite intersection
multiplicity. That is, the constraint that the input polynomials form a regular sequence (or
contain a unit) does not limit the applicability of our algorithm. The next corollary tells us that
the operations we will perform to rewrite our input in the generalization of Fulton’s algorithm
will preserve regular sequences, which, when combined with Proposition 4.1.5, is essential in
order to satisfy the regular sequence constraint with each recursive call.

Corollary 4.1.7 Let f1, . . . , fn be polynomials in K[x1, . . . , xn] and fix p ∈ An. Then
Im(p; f1, . . . , fn) is finite exactly when either f1, . . . , fn is a regular sequence in OAn,p or when
at least one fi does not vanish at p.

Proof By (n-2), at least one fi does not vanish on p exactly when Im(p; f1, . . . , fn) = 0. Now
suppose that Im(p; f1, . . . , fn) > 0. By (n-1), Im(p; f1, . . . , fn) is finite when V( f1, . . . , fn)
is zero-dimensional. Since Im(p; f1, . . . , fn) > 0, no fi vanishes at p, we may apply Theo-
rem 3.2.8 which states V( f1, . . . , fn) is zero-dimensional exactly when f1, . . . , fn is a regular
sequence in OAn,p.
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Corollary 4.1.8 Let f1, . . . , fn be polynomials in K[x1, . . . , xn] and fix p ∈ An. The operations
to the polynomial system f1, . . . , fn which preserve its intersection multiplicity at p as described
in Theorem 4.1.6 also preserve the property of being a regular sequence in OAn,p. Namely the
operations (n-3), (n-4), and (n-7), preserve regular sequences.

Proof Applying any of (n-3), (n-4), or (n-7) amounts to rewriting f1, . . . , fn as a system with
equal intersection multiplicity at p. Applying (n-1), (n-2), and Theorem 3.2.8 shows the new
system is a regular sequence in OAn,p exactly when f1, . . . , fn is a regular sequence in OAn,p.

For property (n-4) in the above proof, it would also suffice to apply Proposition 4.1.4.

4.2 Trivariate Fulton’s Algorithm
In this section we show how the n-variate generalization of Fulton’s properties can be used to
create a procedure to compute intersection multiplicity in the trivariate case. Later we will see
this approach generalizes to the n-variate case, although, it is helpful to first understand the
algorithm’s behaviour in the trivariate case.

This procedure is not complete since the computations of lines 19 and 22, analogous to line
12 of Algorithm 1, do not necessarily preserve intersection multiplicity under (n-7). When this
is the case, the procedure returns Fail to signal an error.

When the procedure succeeds, we obtain a powerful tool for computing intersection multi-
plicities in the trivariate case. This allows us to compute intersection multiplicities that previ-
ously could not be computed by other, standard basis-free approaches, namely that of [1] and
[27].

Throughout this section we assume p ∈ A3 is the origin.

Definition 4.2.1 (Modular Degree) Let f be in K[x, y, z] where x � y � z. We define the
modular degree of f with respect to a variable v ∈ V as degv ( f mod 〈V<v〉), where V = {x, y, z}
is the set of variables and V<v is the set of all variables less than v in the given ordering. If
V<v = ∅, we define the modular degree of f with respect to v to be the degree of f with respect
to v. Write moddeg( f , v) to denote the modular degree of f with respect to v.

Remark The definition of modular degree can be generalized to a point p = (p1, p2, p3) ∈ A3

by replacing V<v with V<v,p = {x − p1, y − p2, z − p3} in Definition 4.2.1.

The modular degree is used to generalize the computation of r, s in Algorithm 1. If we fix
some variable v, the modular degree with respect to v is simply the degree in v of a polynomial
modulo all variables smaller than v in a given ordering.

Below we formally define cases in terms of the colour they are highlighted with in Algo-
rithm 2. Although not necessary, using a name to distinguish between cases rather than a set
of conditions makes the proof far more readable, especially when the set of cases is small, as
is the case for trivariate intersection multiplicity.

In the n-variate case, we will see that some of these cases are not distinct and in fact,
instances of the same case. We will describe this in more detail later. For now, we make this
distinction to illustrate the similarities to Algorithm 1 and to help the reader build intuition for
this procedure in a more general setting.
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Definition 4.2.2 (Colour Cases) Consider f , g, h ∈ K[x, y, z].

1. We say we are in the red case if one of f , g, h does not vanish on p.

2. We say we are in the blue case if:

(a) We are not in the red case.

(b) The modular degrees of f , g, h in x are in ascending order.

(c) At least one of f or g has modular degree in x greater than zero.

3. We say we are in the orange case if:

(a) We are not in the red case.

(b) The modular degrees of f , g, h in x are in ascending order.

(c) Both f and g have modular degrees in x less than zero.

4. We say we are in the yellow case if:

(a) We are in the orange case.

(b) The modular degrees of f , g, h in x and the modular degrees of f , g in y are in
ascending order.

(c) The modular degree of f in y is less than zero.

5. We say we are in the pink case if:

(a) We are in the orange case.

(b) The modular degrees of f , g, h in x and the modular degrees of f , g in y are in
ascending order.

(c) The modular degree of f in y is greater than zero.

Algorithm 2 generalizes Fulton’s approach in the trivariate case. The key to generalizing
Fulton’s bivariate intersection multiplicity algorithm to the case of 3 polynomials in 3 variables
is generalizing the splitting step. When the yellow case holds, we can split the intersection
multiplicity computation into the sum of smaller intersection multiplicity computations. Thus,
the rest of the algorithm is designed to reduce to the yellow case, or return Fail, in finitely many
iterations.

At this time there is no natural way to characterize all cases where Algorithm 2 fails since it
is difficult to determine before runtime which cases will be reached after rewriting and splitting.
Namely, it is difficult to characterize all inputs which will eventually reach a branch which
satisfies the conditions of the pink case. Given an input that does satisfy the conditions of pink
case, it is easy to check whether Algorithm 2 fails in that iteration, as we will see in the proof
of Theorem 4.2.3.

Theorem 4.2.3 Let f , g, h ∈ K[x, y, z] be either a regular sequence in OA3,p or be such that at
least one of f , g, h is a unit inOA3,p. Algorithm 2 correctly computes the intersection multiplicity
of f , g, h at p or returns Fail.
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Algorithm 2: Trivariate Fulton’s Algorithm
1 Function im3(p; f , g, h)

Input: Let: x � y � z

1. p ∈ A3 the origin.

2. f , g, h ∈ K[x, y, z] such that f , g, h form a regular sequence in OA3,p or at least one of
f , g, h is a unit in OA3,p.

Output: Im(p; f , g, h) or Fail
2 if f (p) , 0 or g(p) , 0 or h(p) , 0 then /* Red */

3 return 0

4 ry ← moddeg( f , y), rx ← moddeg( f , x)
5 sy ← moddeg(g, y), sx ← moddeg(g, x)
6 ty ← moddeg(h, y), tx ← moddeg(h, x)
7 Reorder f , g, h so that rx ≤ sx ≤ tx /* Green */

8 if rx < 0 and sx < 0 then /* Orange */

9 Reorder f , g so that ry ≤ sy /* Green */

10 if ry < 0 then /* Yellow */

11 mh ← max(m ∈ N | h mod 〈y, z〉 = xm(a0 + a1x + . . .))
12 q f ← quo( f , z; z)
13 qg ← quo(g(x, y, 0), y; y)
14 return im3(p; q f , g, h) + im(p; qg, h(x, y, 0)) + mh

15 else /* Pink */

16 L f ← lc( f (x, y, 0); y)
17 Lg ← lc(g(x, y, 0); y)
18 if L f (p) , 0 then
19 g′ ← L f g − ysy−ry Lg f
20 return im3(p; f , g′, h)

21 else if L f | Lg then
22 g′ ← g − ysy−ry Lg

L f
f

23 return im3(p; f , g′, h)

24 else
25 return Fail

26 else /* Blue */

27 if rx < 0 then
28 h′ ← lc(g(x, 0, 0); x)h − xtx−sx lc(h(x, 0, 0); x)g
29 return im3(p; f , g, h′)

30 else
31 g′ ← lc( f (x, 0, 0); x)g − xsx−rx lc(g(x, 0, 0); x) f
32 h′ ← lc( f (x, 0, 0); x)h − xtx−rx lc(h(x, 0, 0); x) f
33 return im3(p; f , g′, h′)
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Proof By (n-3) we may assume p is the origin. By Corollary 4.1.7 we have Im(p; f , g, h) ∈ N.

To prove termination we induct on Im(p; f , g, h) and show that when Algorithm 2 does not
fail, we can either compute Im(p; f , g, h) directly or strictly decrease Im(p; f , g, h) through
splitting.

Suppose Im(p; f , g, h) = 0, then by (n-2), one of f , g, h does not vanish on p, hence,
Algorithm 2 correctly returns zero. Assume that Im(p; f , g, h) = N for some positive N ∈ N.

By (n-4) and Corollary 4.1.8, we may reorder f , g, h so that their modular degrees with
respect to x are in ascending order.

Suppose f , g, and h satisfy the conditions of the blue case, that is, at most one polynomial
has modular degree in x less than zero. Depending on how many polynomials have modular
degree in x less than zero, we perform slightly different computations, since there is no need
to reduce a modular degree in x of a polynomial that already has modular degree in x less
than zero. Notice the substitutions in the blue case preserve intersection multiplicity by (n-
7) and regular sequences by Corollary 4.1.8. Since the modular degrees in x of the resulting
polynomials are strictly decreasing, we will reach the orange case in finitely many iterations.

By (n-4) and Corollary 4.1.8, we may reorder f , g so that their modular degrees with respect
to y are in ascending order.

Suppose f , g, and h satisfy the conditions of the pink case. Define,

L f = lc( f (x, y, 0); y)

Lg = lc(g(x, y, 0); y).

If L f is not a unit in OAn,p and does not divide Lg, Algorithm 2 returns Fail since (n-7) cannot
be applied.

Suppose either L f (p) , 0 or L f | Lg. Then the respective substitution of g with g′ preserves
the intersection multiplicity by (n-7) and regular sequences by Corollary 4.1.8. Moreover, if
g′ is the polynomial resulting from either of the respective computations, then moddeg(g′, y) <
moddeg(g, y) and moddeg(g′, x) < 0. The latter statement follows from both f and g having
modular degree in x less than zero as a result of being in the orange case. Since the modular
degree of g′ with respect to y strictly decreases, we will reach the yellow case or return Fail in
finitely many iterations.

Suppose f , g, and h satisfy the conditions of the yellow case. Since moddeg( f , x) < 0,
moddeg( f , y) < 0, f is non-zero, and f vanishes at the origin, we have z | f .

By Proposition 4.1.5, the sequence z, g, h is regular, hence g(x, y, 0) is non-zero and van-
ishes at the origin. Since moddeg(g, x) < 0 holds, we have y | g(x, y, 0).

Let q f = quo( f , z; z), qg = quo(g(x, y, 0), y; y),mh = max(m ∈ Z+ | h(x, 0, 0) ≡ 0
mod 〈xm〉) and write f = zq f , g(x, y, 0) = yqg. By (n-6) and Proposition 4.1.5, it is correct
to compute:
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Im(p; f , g, h) = Im
(
p; q f , g, h

)
+ Im(p; z, g, h)

= Im
(
p; q f , g, h

)
+ Im(p; z, g(x, y, 0), h(x, y, 0))

= Im
(
p; q f , g, h

)
+ Im

(
p; z, qg, h(x, y, 0)

)
+ Im(p; z, y, h(x, y, 0))

= Im
(
p; q f , g, h

)
+ Im

(
p; z, qg, h(x, y, 0)

)
+ Im(p; z, y, h(x, 0, 0))

= Im
(
p; q f , g, h

)
+ Im

(
p; qg, h(x, y, 0)

)
+ mh.

Since mh is a positive integer, we have:

Im
(
p; q f , g, h

)
, Im

(
p; qg, h(x, y, 0)

)
< Im(p; f , g, h) = N.

Thus, when Algorithm 2, called on the input q f , g, h, does not fail, termination follows from
induction.

To illustrate the utility of this approach we will work through an example where the avail-
able standard basis-free techniques (the algorithm of Vrbik et al.) used to compute intersection
multiplicity fail. A full description of these techniques can be found in [1] and [27], although
we give a brief overview below.

Let f1, . . . , fn ∈ K[x1, . . . , xn] such that V( f1, . . . , fn) is a zero-dimensional, that is,
Im(p; f1, . . . , fn) ∈ N, and at least one of f1, . . . , fn, say fn is non-singular at p. Theorem 1
of [1], states that when the above conditions hold, and under an additional transversality con-
straint between V( f1, . . . , fn−1) and V( fn), an n-variate intersection multiplicity can be reduced
to an (n − 1)-variate intersection multiplicity computation.

In [27], the above reduction is combined with an additional reduction procedure referred to
as cylindrification. The idea behind this second reduction procedure is to use pseudo-division
by a polynomial, say fn, to reduce the degree of f1, . . . , fn−1 with respect to some variable, say
xn. The cylindrification procedure assumes that fn has a term containing xn with a non-zero
coefficient invertible in OAn,p.

The following example contains 3 polynomials which are singular at p, hence the above
reduction cannot be applied. Moreover, one can check that applying cylindrification does not
reduce the input in a way that the first reduction criterion holds. Hence, the current standard
basis-free techniques fail. Additionally, this can be verified using the Maple implementation
of the techniques in [27].

Example Compute Im
(
p; zy2, y5 − z2, x5 − y2

)
using Algorithm 2.

Notice, zy2, y5 − z2, x5 − y2 form a regular sequence. We compute the modular degrees with
respect to x: rx < 0, sx < 0, tx = 5, hence, we begin in the orange case. Since additionally,
ry < 0, we are in the yellow case and the computation reduces to:

Im
(
p; zy2, y5 − z2, x5 − y2

)
= Im

(
p; y2, y5 − z2, x5 − y2

)
+ Im

(
p; y4, x5 − y2

)
+ 5.
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Start with Im
(
p; y4, x5 − y2

)
, applying Fulton’s bivariate algorithm we get,

Im
(
p; y4, x5 − y2

)
= Im

(
p; y3, x5 − y2

)
+ 5

= Im
(
p; y2, x5 − y2

)
+ 10

= Im
(
p; y, x5 − y2

)
+ 15

= 20.

Next we compute Im
(
p; y2, y5 − z2, x5 − y2

)
. Here we have modular degrees in x: rx <

0, sx < 0, tx = 5, thus we are in the orange case. Computing the modular degrees in y we get:
ry = 2, sy = 5, hence we enter the pink case. The leading coefficient in y of y2 evaluated at
z = 0 is a unit, hence the pink case computation is valid. Thus, let g′ = (y5 − z2) − y3(y2) = −z2

and compute Im
(
p; y2,−z2, x5 − y2

)
.

Computing the modular degrees with respect to y we get: ry = 2, sz < 0, hence we reorder
y2 and −z2. Again, we enter the yellow case and the computation reduces to

Im
(
p; −z2, y2, x5 − y2

)
= Im

(
p; −z, y2, x5 − y2

)
+ Im

(
p; y, x5 − y2

)
+ 5.

Clearly Im
(
p; y, x5 − y2

)
= 5 by Fulton’s bivariate algorithm. The computation

Im
(
p; −z, y2, x5 − y2

)
immediately satisfies the yellow case, hence we may split,

Im
(
p; −z, y2, x5 − y2

)
= Im

(
p; −1, y2, x5 − y2

)
+ Im

(
p; y, x5 − y2

)
+ 5

= 0 + 5 + 5
= 10

Combining the intermediate computations, we get,

Im
(
p; zy2, y5 − z2, x5 − y2

)
= 45.

4.3 The Matrix of Modular Degrees
Before we extend Fulton’s algorithm to the n-variate setting, it is helpful to view both the bi-
variate and trivariate versions of Fulton’s algorithm through the more familiar lens of matrices.
In this section, we generalize the notion of modular degree and define the matrix of modular
degrees, which we then use it to illustrate the pattern we seek to generalize in the n-variate
version of the algorithm.

Throughout this section we assume p ∈ An is the origin

Definition 4.3.1 (Modular Degree) Let f be in K[x1, . . . , xn] where x1 � . . . � xn. We define
the modular degree of f with respect to a variable v ∈ V as degv ( f mod 〈V<v〉), where V =

{x1, . . . , xn} is the set of variables and V<v is the set of all variables less than v in the given
ordering. If V<v = ∅, we define the modular degree of f with respect to v to be the degree of f
with respect to v. Write moddeg( f , v) to denote the modular degree of f with respect to v.
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Remark The definition of modular degree can be generalized to a point p = (p1, . . . , pn) ∈ An

by replacing V<v with V<v,p = {xi − pi | xi < v, xi ∈ V} in Definition 4.3.1.

Definition 4.3.2 The matrix of modular degrees of f1, . . . , fn ∈ K[x1, . . . , xn] is the matrix
whose i-th, j-th entry is moddeg( fi, x j).

The following examples use the matrix of modular degrees to illustrate how the rewriting
processes of Algorithms 1 and 2 are used to obtain a system of polynomials which satisfy the
respective conditions for splitting.

Example Let f , g ∈ K[x, y] be given by f = x + y, g = x3. Suppose we wish to compute
the intersection multiplicity at p, the origin by calling im( f , g). Let f1 and f2 in the definition
of modular degree be equal to f and g respectively. Moreover, let x1 and x2 in the defini-
tion of modular degree be equal to x, y, z respectively. Then the matrix of modular degrees
corresponding to f , g is:

r =

[
1 1
3 0

]
,

where the i-th row corresponds to the polynomial fi and the j-th column corresponds to the
variable x j. Hence, (i, j)-th entry is the modular degree of fi with respect to x j.

Fulton’s algorithm begins by computing

g′ = g − x2 f = x3 − x2(x + y) = −x2y.

By (2-7) we may redefine g as g′. Hence, we consider the system given by f = x + y, g = −x2y.
After reordering f and g by modular degree in x, the matrix of modular degrees is now:

r =

[
−∞ 1
1 1

]
.

Since the modular degree of f with respect to x is now less than zero, Fulton’s algorithm splits
as follows.

Im(p; f , g)
= Im

(
p; −x2y, x + y

)
= Im

(
p; −x2, x + y

)
+ Im(p; y, x + y)

= Im
(
p; −x2, x + y

)
+ 1.

Proceeding in this way it is easy to see Im
(
p; −x2, x + y

)
= 2 and hence Im(p; f , g) = 3.

Example Let f , g, h ∈ K[x, y, z] be given by f = x2, g = (x + 1)y + x3, h = y2 + z + x3. Suppose
we wish to compute the intersection multiplicity at p, the origin by calling im3( f , g, h). Let
f1, f2, f3 in the definition of modular degree be equal to f , g, h respectively. Moreover, let
x1, x2, x3 in the definition of modular degree be equal to x, y, z respectively. Then the matrix of
modular degrees corresponding to f , g, h is:

r =

2 0 0
3 1 0
3 2 1

 ,



32 Chapter 4. Generalizing Fulton’s Algorithm

where the i-th row corresponds to the polynomial fi and the j-th column corresponds to the
variable x j. Hence, (i, j)-th entry is the modular degree of fi with respect to x j.

We begin in the blue case. Since f has minimal modular degree with respect to x, it is
chosen as a pivot and is used to reduce the modular degrees of g and h with respect to x. Write

g′ = g − x f = (x + 1)y + x3 − x3 = (x + 1)y,

and
h′ = h − x f = y2 + z + x3 − x3 = y2 + z.

By (n-7) we may redefine g as g′ and h as h′. Hence, we consider the system given by
f = x2, g = (x + 1)y, h = y2 + z. The matrix of modular degrees is now:

r =

 2 0 0
−∞ 1 0
−∞ 2 1

 ,
and after reordering f , g, h by modular degree with respect to x, we have f = (x + 1)y, g =

y2 + z, h = x2, with matrix of modular degrees:

r =

−∞ 1 0
−∞ 2 1
2 0 0

 .
We now satisfy all conditions necessary to enter the orange case since both f and g have

modular degree with respect to x less than zero. Since the modular degree of f with respect to
y is greater than zero, we are in the pink case.

Since f has minimal modular degree with respect to y, and moreover the leading coefficient
of f mod 〈z〉 is x + 1 which is invertible in the local ring at the origin, we may choose f as a
pivot and use it to reduce the modular degree of g with respect to y. Write

g′ = (x + 1)g − y f = (x + 1)y2 + (x + 1)z − (x + 1)y2 = (x + 1)z.

Redefining g as g′ and reordering by modular degree in y, we have f = (x+1)z, g = (x+1)y, h =

x2, and the matrix of modular degrees is now:

r =

−∞ −∞ 1
−∞ 1 0
2 0 0

 .
Since the modular degree of f and g with respect to x and the modular degree of f with respect
to y are all less than zero, we enter the yellow case. Thus, we may split computations and
conclude.

Im(p; f , g, h)
= Im(p; x + 1, g, h) + Im(p; z, g, h)

= Im(p; x + 1, g, h) + Im(p; z, x + 1, h) + Im(p; z, y, h)
= 0 + 0 + 2.
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Notice in each of the above examples, we reduce to the splitting case when the matrix of
modular degrees has all entries above the anti-diagonal equal to negative infinity. When this
occurs, we can write the intersection multiplicity as the sum of smaller intersection multiplicity
computations and hence, make progress towards termination. Thus, when we explore the n-
variate case, it is useful to think of the rewriting steps in terms of the matrix of modular degrees.
In order to reduce to the splitting case, we will iterate through the columns of the matrix of
modular degrees, applying the generalization Fulton’s properties to reduce all entries above
the anti-diagonal to negative infinity (when possible). For the trivariate version of Fulton’s
algorithm, the blue case indicates we are working in the first column and the pink case indicates
we are working in the second column. We also note, as shown in the proof of Theorem 4.2.3,
that our modifications to a column may change entries in the columns to its right but will never
modify entries in any column to its left, hence why we iterate left to right. We will describe
this pattern in more detail for the n-variate algorithm, in the following section.

4.4 Generalized Fulton’s Algorithm
In this section, we give a generalization of Algorithm 1 using properties (n-1) to (n-7). Un-
fortunately, the natural generalization using these properties does not characterize intersection
multiplicities as in the bivariate case. This is because the substitutions in lines 18 and 20 of
Algorithm 3 do not necessarily preserve intersection multiplicity in the n-variate case. Namely,
if a particular leading coefficient used in the substitution is not invertible in the local ring, (n-7)
may not be applicable. In the bivariate case, this was not an issue since all leading coefficients
considered in such a computation were units in the local ring. When such a case arises, other
techniques must be used to complete the computation, and hence, our generalization will signal
a failure. Throughout this section we assume p ∈ An is the origin.

Unlike in the trivariate case, it is no longer practical to divide the algorithm into cases.
Moreover, we will see that dividing the algorithm into such cases does not accurately reflect
the structure of the procedure. The main reason for this, as alluded to in Section 4.3, is that
several of the cases we encountered in the past are instances of the same, more general case.

Roughly speaking, Algorithm 3 can be divided into 2 key parts. The first is the main loop
which rewrites the input using (n-4) and (n-7). The second is the splitting part, which occurs
as a result of the main loop successfully terminating.

The purpose of the main loop, in the j-th iteration, is to create n − j polynomials with
modular degrees less than zero in x j and in any variable larger than x j. When we examine
Algorithm 2 in this context, the requirements to enter the orange or yellow case were simply
conditions necessary to move forward an iteration in the main loop. Moreover, the substitutions
used in the blue and pink case were separate instances of the same process, which was used
to reduce modular degrees for different iterations of the main loop. We highlight line 9 of
Algorithm 3 with the colour orange to illustrate the similarities between moving forward an
iteration in the loop and satisfying the orange case in Algorithm 2.

Recall in Algorithm 2 there were several possible substitutions that could be performed in
the blue case, the deciding factor being, how many of the input polynomials had modular degree
in x less than zero. Extending this to the context of the n-variate algorithm, in each iteration
of the main loop, we check how many polynomials already satisfy the condition required to
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move forward an iteration. As in the blue case, this determines how many substitutions to
perform, and which polynomial will be used as a pivot to reduce the modular degrees of the
remaining polynomials. To illustrate these similarities, we highlight line 13 of Algorithm 3
with the colour blue.

When the main loop terminates, assuming the procedure did not fail, our input system will
have a of triangular shape with respect to modular degrees. That is, upon successful termination
of the main loop, any entry in the matrix of modular degrees which lies above the anti-diagonal
will be negative infinity. Since there are no entries above the anti-diagonal in the last column of
the matrix of modular degrees, the procedure need only modify the first n− 1 columns. Hence,
Algorithm 3 computes only an n × (n − 1) matrix of modular degrees, omitting the last column
to avoid unnecessary computations. Lemma 4.4.1 describes the implications of this triangular
shape in terms of splitting intersection multiplicity computations. To illustrate the similarities
between this splitting procedure, and the procedure used in the yellow case of Algorithm 2, we
highlight line 24 of Algorithm 3 with the colour yellow.

As in the trivariate case, we cannot clearly characterize all cases for which Algorithm 3
fails before runtime, due to the difficulty in determining how an input will be rewritten and
split. Nonetheless, it is still easy to determine whether an input will cause Algorithm 3 to fail
in a given iteration of the main loop, as described in the proof of Theorem 4.4.3.

In the following lemma, the map J maps the index of a row to the column index of the
corresponding entry on the anti-diagonal of a n× n matrix. That is, for any n× n matrix M, the
entry Mi,J(i) lies on the anti-diagonal of M where i ∈ {1, . . . , n}.

Lemma 4.4.1 Let f1, . . . , fn be polynomials in K[x1, . . . , xn] which form a regular sequence in
OAn,p where p is the origin. Let V = {x1, . . . , xn} and let V>v = {xi ∈ V | xi > v}. Define the map
J : {1, . . . , n} → {1, . . . , n} such that J(i) = n − i + 1.

Suppose for all i = 1, . . . , n − 1 we have moddeg( fi, v) < 0 for all v ∈

V>xJ(i) . Then, we have xJ(i) | fi(x1, . . . , xJ(i), 0, . . . , 0). Moreover, if we define qi =

quo( fi(x1, . . . , xJ(i), 0, . . . , 0), xJ(i); xJ(i)) then,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn)
+ . . . + Im

(
p; xn, . . . , xJ(i)+1, qi, fi+1, . . . , fn

)
+ . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) + mn

where mn = max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm
1 〉).

Proof First we will show that we can write fi(x1, . . . , xJ(i), 0, . . . , 0) = xJ(i)qi for all i = 1, . . . , n−
1.

Suppose xn, . . . , xJ(i)+1, fi, . . . , fn is a regular sequence for some 1 ≤ i < n. The hypothesis
moddeg( fi, x1), . . . ,moddeg( fi, xJ(i)−1) < 0 and the fact that fi is regular modulo 〈xJ(i)+1, . . . , xn〉

and vanishes at the origin implies xJ(i) divides fi(x1, . . . , xJ(i), 0, . . . , 0).
To show xn, . . . , xJ(i)+1, fi, . . . , fn is a regular sequence for all 1 ≤ i < n, it suffices to show

xn, f2, . . . , fn is a regular sequence, since repeated applications of Proposition 4.1.5, and the
above implication will yield the desired result.
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Algorithm 3: Generalized Fulton’s Algorithm
1 Function imn(p; f1, . . . , fn)

Input: Let: x1 � . . . � xn.

1. p ∈ An the origin.

2. f1, . . . , fn ∈ K[x1, . . . , xn] such that f1, . . . , fn form a regular sequence in OAn,p or at least
one such fi is a unit in OAn,p.

Output: Im(p; f1, . . . , fn) or Fail
2 if fi(p) , 0 for any i = 1, . . . , n then /* Red */

3 return 0

4 if n = 1 then /* Compute multiplicity */

5 return max(m ∈ Z+ | fn ≡ 0 mod 〈xm
1 〉)

6 for i = 1, . . . , n do
7 for j = 1, . . . , n − 1 do
8 r(i)

j ← moddeg( fi, x j)

9 for j = 1, . . . , n − 1 do /* Orange */

10 Reorder f1, . . . , fn− j+1 so that r(1)
j ≤ . . . ≤ r(n− j+1)

j /* Green */

11 m← min(i | r(i)
j > 0) or m← ∞ if no such i exists

12 if m ≤ (n − j) then
13 for i = m + 1, . . . , n − j + 1 do /* Blue */

14 d ← r(i)
j − r(m)

j

15 Lm ← lc( fm(x1, . . . , x j, 0, . . . , 0); x j)
16 Li ← lc( fi(x1, . . . , x j, 0, . . . , 0); x j)
17 if Lm(p) , 0 then
18 f ′i ← Lm fi − xd

j Li fm

19 else if Lm | Li then
20 f ′i ← fi − xd

j
Li
Lm

fm

21 else
22 return Fail

23 return imn(p; f1, . . . , fm, f ′m+1, . . . , f ′n− j+1, . . . , fn)

24 /* Yellow */

25 for i = 1, . . . , n − 1 do
26 qi ← quo( fi(x1, . . . , xn−i+1, 0, . . . , 0), xn−i+1; xn−i+1)

27 return
28 imn(p; q1, f2, . . . , fn)
29 + imn−1(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0))
30 +

31
...

32 +im2(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))
33 +im1(p; fn(x1, 0, . . . , 0))



36 Chapter 4. Generalizing Fulton’s Algorithm

Observe moddeg( f1, x1), . . . ,moddeg( f1, xn−1) < 0 and f1 is a non-zero polynomial which
vanishes at the origin, and hence, must be divisible by xn. By applying Proposition 4.1.5 we
get xn, f2, . . . , fn is a regular sequence.

Since f1, . . . , fn is a regular sequence we may apply (n-6) to get

Im(p; f1, . . . , fn) = Im(p; xn, f2, . . . , fn) + Im(p; q1, f2, . . . , fn) .

By definition of intersection multiplicity,

Im(p; xn, f2, . . . , fn) = Im(p; xn, f2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0)) .

Continuing in this way we get,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn) + Im(p; xn, q2, . . . , fn) + . . .

+ Im(p; xn, xn−1, . . . , qn−1, fn) + Im(p; xn, . . . , x2, fn) .

By definition of intersection multiplicity,

Im(p; xn, . . . , x2, fn) = max(m ∈ Z+ | fn(x1, 0, . . . , 0) ≡ 0 mod 〈xm
1 〉),

which completes the proof.

Corollary 4.4.2 When the conditions of Lemma 4.4.1 hold,

Im(p; f1, . . . , fn) = Im(p; q1, f2, . . . , fn)
+ Im(p; q2(x1, . . . , xn−1, 0), . . . , fn(x1, . . . , xn−1, 0)) +

...

+ Im(p; qn−1(x1, x2, 0, . . . , 0), fn(x1, x2, 0, . . . , 0))
+ mn.

Proof Follows from Lemma 4.4.1 and the definition of intersection multiplicity.

Theorem 4.4.3 Let f1, . . . , fn ∈ K[x1, . . . , xn] be either a regular sequence in OAn,p or be such
that at least one of f1, . . . , fn is a unit in OAn,p. Algorithm 3 correctly computes the intersection
multiplicity of f1, . . . , fn at p or returns Fail.

Proof By (n-3) we may assume p is the origin. By Corollary 4.1.7 we have Im(p; f1, . . . , fn) ∈
N.

To prove termination we induct on Im(p; f1, . . . , fn), and show that when Algorithm 3
does not return Fail, we can either compute Im(p; f1, . . . , fn) directly or strictly decrease
Im(p; f1, . . . , fn) through splitting.

Suppose Im(p; f1, . . . , fn) = 0, then by (n-2), one of f1, . . . , fn does not vanish at p, hence
Algorithm 3 correctly returns zero. Thus, we may assume Im(p; f1, . . . , fn) = N for some
positive N ∈ N, and moreover, we may now assume f1, . . . , fn is a regular sequence in OAn,p.

First, we claim that either Algorithm 3 returns Fail or the input polynomials can be modi-
fied while preserving intersection multiplicity such that they satisfy the conditions of Lemma
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4.4.1. Moreover, we claim such modifications can be performed in finitely many iterations. To
modify the input polynomials such that they satisfy the conditions of Lemma 4.4.1, we proceed
iteratively.

Fix some x j where 1 ≤ j ≤ n − 1, and suppose f1, . . . , fn− j+k all have modular degree in
x j−k less than zero for any 1 ≤ k < j whenever j > 1. Notice f1, . . . , fn− j+1 are the polynomials
which must have modular degree less than zero in all variables greater then x j. By (n-4) and
Corollary 4.1.8 we may rearrange f1, . . . , fn− j+1 so that their modular degrees with respect to x j

are ascending.
To satisfy the conditions of Lemma 4.4.1, in the j-th iteration we must have n − j poly-

nomials in
{
f1, . . . , fn− j+1

}
with modular degree in x j less than zero. It should be noted at this

stage that no polynomial in
{
f1, . . . , fn− j+1

}
has modular degree in x j equal to zero. When j = 1

this follows from f1, . . . , fn being a regular sequence in OAn,p. When j > 1, having some
fi ∈

{
f1, . . . , fn− j+1

}
with modular degree equal to zero would contradict either being a regular

sequence in OAn,p or the hypothesis that moddeg( fi, x j−k) < 0 for all 1 ≤ k < j. Since the
modular degrees are in ascending order we may compute,

m =

min(i | moddeg( fi, x j) > 0) if such an i exists,
∞ otherwise.

If m > n − j then f1, . . . , fn− j satisfy the conditions of lemma 4.4.1 for the variable x j and
hence we are done.

Suppose m ≤ n − j. We will use fm as a pivot to reduce the modular degree with respect to
x j of fi, for all i = m + 1, . . . , n − j + 1. Define,

Lm = lc( fm(x1, . . . , x j, 0, . . . , 0); x j),

Li = lc( fi(x1, . . . , x j, 0, . . . , 0); x j),

and
d = moddeg( fi, x j) −moddeg( fm, x j).

If Lm(p) = 0 and there is an i such that Li - Lm, then (n-7) cannot be applied not preserve
intersection multiplicity since Lm is not a unit in the local ring. When this case occurs, we
return Fail.

Suppose either Lm(p) , 0 or for all i we have Lm | Li. In which case, (n-7) allows us to
replace fi with f ′i = Lm fi − xdLi fm or f ′i = fi − xd Li

Lm
fm respectively. Moreover, Corollary 4.1.8

tells us such a substitution preserves regular sequences.
Notice if j > 1, then moddeg( f ′i , x j−k) < 0 for all 1 ≤ k < j, since, by assumption, both fi

and fm have modular degree in x j−k less than zero. Thus, making such a substitution preserves
the assumptions of our hypothesis. Lastly, since moddeg( f ′i , x j) < moddeg( fi, x j), we will have
n − j polynomials with modular degree in x j less than zero or return Fail, in finitely many
iterations.

Thus we may now assume f1, . . . , fn satisfy the conditions of Lemma 4.4.1, hence the algo-
rithm correctly splits computations by Lemma 4.4.1 and Corollary 4.4.2.

To show termination, we may suppose none of the computations following the split re-
turns Fail, since in such a case, termination is immediate. Since Im(p; fn(x1, 0, . . . , 0)) is a
positive integer, as in Lemma 4.4.1, each term has intersection multiplicity strictly less than
Im(p; f1, . . . , fn) = N and hence termination follows by induction.
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4.5 Triangular Regular Sequences
In this section we consider systems of polynomial equations which form triangular sets in the
sense of Section 5.1.2. We observe that under a mild constraint, such a system is also a regular
sequence. We will refer to such systems as triangular regular sequences.

We will show for triangular regular sequences, the intersection multiplicity can be com-
puted immediately through means of evaluation. Hence, although Algorithm 3 will always
compute the intersection multiplicity for such systems, triangular regular sequences allow us
to take advantage of property (n-5) to avoid excessive recursive calls. Thus, when it is known
that the input system is a triangular regular sequence, the results in this section give an opti-
mization which can be implemented alongside Algorithm 3.

The ability to compute the intersection multiplicity immediately through means of evalu-
ation also suggests the use of triangular decomposition techniques for computing intersection
multiplicities. That is, if a procedure for triangular decomposition was discovered which could
preserve the intersection multiplicity (and the property of being a regular sequence) of a system
of polynomial equations, then the following observation could lead to a complete algorithm for
computing intersection multiplicity. Multiplicity preserving triangular decompositions were
explored but not solved in [21], as the proposed algorithm cannot guarantee the output is trian-
gular, and solved for the bivariate case in [6].

Theorem 4.5.1 (McCoy’s Theorem) Let f be a non-zero polynomial in R[x] where R is a
commutative ring. Then f is a regular element of R[x] if and only if every non-zero s ∈ R is
such that s f , 0.

McCoy’s Theorem is a well-known result proven in [24].

Corollary 4.5.2 Consider a sequence t1, . . . , tn such that for i = 1, . . . , n, each ti is a non-zero
polynomial in K[xi, . . . , xn] with main variable xi.

If at least one non-zero coefficient of ti−1 is invertible modulo 〈ti, . . . , tn〉 for all 1 < i ≤ n,
then t1, . . . , tn is a regular sequence in K[x1, . . . , xn]. If t1, . . . , tn also vanish on p ∈ An then
t1, . . . , tn is a regular sequence in OAn,p.

Proof Follows from Theorem 4.5.1.

Corollary 4.5.2 tells us regular chains, as described in Section 5.1, are triangular regular
sequences, assuming all equations of the regular chain vanish at p.

Proposition 4.5.3 Consider a sequence t1, . . . , tn such that for i = 1, . . . , n, each ti is a non-zero
polynomial in K[xi, . . . , xn] with main variable xi.

Suppose each t1, . . . , tn vanish at the origin, which we denote by p, and suppose at least one
non-zero coefficient of ti−1 is invertible modulo 〈ti, . . . , tn〉 for all 1 < i ≤ n.

Then we may write ti(xi, 0, . . . , 0) as xmi
i fi where mi is the least positive integer such that

fi ∈ K[xi] is a unit in OAn,p. Moreover,

Im(p; t1, . . . , tn) = m1 · . . . · mn.
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Proof The result is trivial for n = 1, so we may assume n > 1. Since ti(xi, 0, . . . , 0) is a non-
zero univariate polynomial in K[xi] which vanishes at the origin, we may write ti(xi, 0, . . . , 0) =

xmi
i fi for a positive integer mi and fi a unit in the local ring at p.

By Corollary 4.5.2, t1, . . . , tn is a regular sequence in OAn,p. Hence, we may apply (n-6) and
Proposition 4.1.5 repeatedly and finally (n-5) to get,

Im(p; t1, . . . , tn) = Im
(
p; t1, . . . , tn−1, xmn

n fn
)

= Im
(
p; t1, . . . , tn−1, xmn

n
)

+ Im(p; t1, . . . , fn)
= mnIm(p; t1, . . . , tn−1, xn) + 0
= mnIm(p; t1(x1, . . . , xn−1, 0), . . . , tn−1(xn−1, 0), xn)
= mnIm

(
p; t1(x1, . . . , xn−1, 0), . . . , xmn−1

n−1 fn−1, xn

)
= mnmn−1Im(p; t1(x1, . . . , 0, 0), . . . , xn−1, xn) + 0
...

= m1 · . . . · mnIm(p; x1, . . . , xn)
= m1 · . . . · mn.



Chapter 5

The Generalization of Fulton’s Algorithm
Using Regular Chains

In this chapter we extend the generalization of Fulton’s algorithm to handle a regular chain as
input rather than a point1. This is desirable as the generalization of Fulton’s algorithm is prac-
tically limited to only those points with rational coordinates. Modifying the generalization of
Fulton’s algorithm to handle regular chains as input therefore relaxes this practical constraint.
We start by reviewing concepts in the theory of regular chains and then define what it means to
compute the intersection multiplicity and modular degree at a regular chain. We then provide
the modified algorithm and explain how each line corresponds to a section of Algorithm 3, as
it’s analogue in the theory of regular chains. Lastly, we discuss failure cases for both Algo-
rithm 3 and Algorithm 4; particularly, what causes a failure and how to handle a failure if one
is encountered.

5.1 Regular Chain Preliminaries
This section is a short review of concepts from the theory of regular chains and triangular
decompositions of polynomial systems. Details can be found in [5].

In order to accurately describe concepts in our review of the theory of regular chains, we
need to distinguish between fields and their algebraic closure. Thus, for this section, we relax
the assumption that K is algebraically closed and instead assume K is a perfect field, that is
every irreducible polynomial over K has distinct roots. Let K be the algebraic closure of K.
Let K[X] be the polynomial ring with over K and with n ordered variables X = X1 � . . . � Xn.
For F ⊆ K[X], we denote by 〈F〉 and V(F) the ideal generated by F in the polynomial ring
K[X] and the algebraic set of An(K) consisting of the common roots of the polynomials of F,
respectively.

5.1.1 Notations for Polynomials
Let a, b ∈ K[X] be polynomials, with b < K. Denote by mvar(b), init(b) and mdeg(b) respec-
tively, the greatest variable appearing in b (called the main variable of b), the leading coefficient

1A version of this chapter has been accepted for publication in [13].
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of b with respect to mvar(b) (called the initial of b) and the degree of b with respect to mvar(b)
(called the main degree of b). We denote by prem(a, b) and pquo(a, b) the pseudo-remainder
and pseudo-quotient in the pseudo-division of a by b; those are, respectively the (uniquely de-
fined) polynomials r and q such that hea = qb + r and r = 0 or deg(r, v) < mdeg(b) where
v = mvar(b), h = init(b) and e = max(0, deg(a, v) −mdeg(b) + 1).

5.1.2 Triangular Sets
Let T ⊆ K[X] be a triangular set, that is, a set of non-constant polynomials with pairwise
distinct main variables. Denote by mvar(T ) the set of main variables of the polynomials in
T . A variable v ∈ X is called algebraic with respect to T if v ∈ mvar(T ), otherwise it is said
to be free with respect to T . For v ∈ mvar(T ), we denote by Tv and T−v (respectively T +

v ) the
polynomial f ∈ T with mvar( f ) = v and the polynomials f ∈ T with mvar( f ) < v (respectively
mvar( f ) > v). Let hT be the product of the initials of the polynomials of T . We denote by
sat(T ) the saturated ideal of T : if T = ∅ holds, then sat(T ) is defined as the trivial ideal 〈0〉,
otherwise it is the ideal 〈T 〉 : h∞T . The quasi-component W(T ) of T is defined as V(T ) \ V(hT ).
The Zariski closure of W(T ) in An(K) , denoted by W(T ), is the intersection of all algebraic
sets V ⊆ An(K) such that W(T ) ⊆ V holds; moreover we have W(T ) = V(sat(T )).

5.1.3 Regular Chain
A triangular set T ⊆ K[X] is a regular chain if either T is empty, or if v is the largest variable
occurring in T , the set T−v is a regular chain, and the initial of Tv is regular (that is, neither zero
nor zero-divisor) modulo sat(T−v ). The dimension of T , denoted by dim(T ), is by definition, the
dimension of its saturated ideal and, as a property, equals n − |T |, where |T | is the number of
elements of T . If T has dimension zero, then T generates sat(T ) and we have V(T ) = W(T ). A
regular chain T is square-free if for all t ∈ T , the polynomial der(t) is regular with respect to
sat(T ), where der(t) = ∂t

∂v and v = mvar(t). When the regular chain T is square-free, then the
ideal sat(T ) is radical.

5.1.4 Normalized Regular Chain
The regular chain T ⊆ K[X] is said normalized if for every v ∈ mvar(T ), none of the variables
occurring in init(Tv) is algebraic with respect to T−v . Denote by d the dimension of T . Let Y and
U = U1, . . . ,Ud stand respectively for mvar(T ) and X \ Y . Then, the fact that T is normalized
means that for every t ∈ T we have init(t) ∈ K[U]. It follows that if T is normalized, then
T is a lexicographical Gröbner basis of the ideal that T generates in (K[U])[Y] (that is, over
the field (K[U]) of rational functions), and we denote NF(p, T ) the normal form a polynomial
p ∈ (K[U])[Y] with respect to T as this Gröbner basis. In particular, if T is normalized and has
dimension zero, then for every t ∈ T we have init(t) ∈ K.

5.1.5 Regular GCD
Let i be an integer with 1 ≤ i ≤ n, let T ⊆ K[X] be a regular chain, let p, t ∈ K[X] \ K
be polynomials with the same main variable Xi, and g ∈ K or g ∈ K[X] with mvar(g) ≤ Xi.
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Assume that

1. Xi > X j holds for all X j ∈ mvar(T ), and

2. both init(p) and init(t) are regular with respect to sat(T ).

Denote by A the total ring of fractions of the residue class ring K[Xi+1, . . . , Xn]/
√

sat(T ). Note
that A is isomorphic to a direct product of fields. We say that g is a regular GCD of p, t with
respect to T whenever the following conditions hold:

(G1) the leading coefficient of g in Xi is a regular element of A;

(G2) g belongs to the ideal generated by p and t in A[Xi]; and

(G3) if deg(g, Xi) > 0, then g divides both p and t in A[Xi], that is, both prem(p, g) and
prem(t, g) belong to

√
sat(T ).

Assume from now on that T has as many polynomials as variables. Assume also that Xi is
the only variable occurring in p or t which is not algebraic in T . Therefore, the three triangular
sets T , T ∪ {p} and T ∪ {t} can be regarded as zero-dimensional regular chains. Then, with this
configuration, Conditions (G1), (G2), (G3) imply the following properties:

1. if deg(g, Xi) = 0 holds then p is regular (actually invertible) modulo 〈T ∪ t〉,

2. if deg(g, Xi) > 0 and mdeg(g) = mdeg(t) both hold, then
√
〈T ∪ t〉 =

√
〈T ∪ g〉 holds

and thus we have V(T ∪ t) = V(T ∪ g),

3. if deg(g, Xi) > 0 and mdeg(g) < mdeg(t) both hold, let q = pquo(t, g), then T ∪ q is a
regular chain and the following two relations hold:

(a)
√
〈T ∪ t〉 =

√
〈T ∪ g〉 ∩

√
〈T ∪ q〉,

(b) V(T ∪ t) = V(T ∪ g) ∪ V(T ∪ q).

5.1.6 The Algorithm RegularGCD

Let T, p, t be as in the previous section. In particular, we assume that T , T ∪ {p} and T ∪ {t} are
zero-dimensional regular chains. Then, the function call RegularGcd(p, t,T ) returns a a set of
pairs (g1,T1), . . . , (ge,Te) where

1. T1, . . . ,Te ⊆ K[X] are regular chains such that V(T ) = V(T1) ∪ · · · ∪ V(Te),

2. g1, . . . , ge ∈ K[X] are polynomials such that for every i = 1 · · · e, the polynomial gi is a
regular GCD of p, t with respect to Ti, and

3. if T is square-free (respectively normalized) then all regular chains T1, . . . ,Te are square-
free (respectively normalized).

For convenience, we extend the specifcations of RegularGcd(p, t,T ). With T, t as above, we
allow p to be any non-zero polynomial in K[X], with either p ∈ K or mvar(p) < Xi, as long as
p is regular w.r.t. sat(T ), in which case, RegularGcd(p, t,T ) simply returns the pair (p,T ).
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5.1.7 The Algorithm Regularize

Let T, p be as in the previous section. The function call Regularize(p,T ) computes a set of
regular chains T1, . . . ,Te ⊆ K[X] such that:

1. for each i = 1, . . . , e, either p ∈ 〈Ti〉 holds or p is regular with respect to 〈Ti〉,

2. we have V(T ) = V(T1) ∪ · · · ∪ V(Te),

3. moreover, if T is square-free (respectively normalized) then all regular chains T1, . . . ,Te

are square-free (respectively normalized).

For F ⊆ K[X], the function call RegularizeList(F,T ) computes a pair of sets of regular
chains T1, . . . ,Te ⊆ K[X] such that:

1. for each i = 1, . . . , e, for each p ∈ F either p ∈ 〈Ti〉 holds or p is regular with respect to
〈Ti〉,

2. we have V(T ) = V(T1) ∪ · · · ∪ V(Te),

3. moreover, if T is square-free (respectively normalized) then all regular chains T1, . . . ,Te

are square-free (respectively normalized).

In practice RegularizeList(F,T ) will separate the regular chains for which p is regular from
those which generate an ideal containing p, for each p ∈ F. That is, if RegularizeList(F,T )
returns a pair U,V , we will let U denote the set of regular chains for which all p ∈ F are regular
and V the set of regular chains for which p ∈ 〈Ti〉 for all Ti ∈ V and p ∈ 〈F〉.

5.1.8 Triangular Decomposition
Let F ⊆ K[X]. Regular chains T1, . . . ,Te of K[X] form a triangular decomposition of V(F)
in the sense of Kalkbrener (respectively Wu and Lazard) whenever we have V(F) = ∪e

i=1W(Ti)
(respectively V(F) = ∪e

i=1W(Ti)). Hence, a triangular decomposition of V(F) in the sense of
Wu and Lazard is necessarily a triangular decomposition of V(F) in the sense of Kalkbrener,
while the converse is not true. Triangular decompositions, both Kalkbrener and Wu-Lazard,
can be computed efficiently using the Triangularize command in the RegularChains Li-
brary.

It should be noted that Triangularize does not preserve the intersection multiplicity of
the system it decomposes, and hence, cannot be used with the observation of Section 4.5 to
build a complete intersection multiplicity algorithm. However, Triangularize can be used
to find the solutions to a given polynomial system, for which the intersection multiplicity of
the system at each solution could then be computed, see Section 6.8.

5.2 Extending the Generalization of Fulton’s Algorithm
Both Fulton’s algorithm and its generalization assume the point p is the origin. When p is
rational, both algorithms can easily be adapted to handle this case directly rather than apply-
ing property (n-3) and performing an affine change of coordinates. When p is not rational,
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encoding p symbolically presents practical challenges that should be addressed in our imple-
mentation of the generalization of Fulton’s algorithm.

One natural way of encoding these non-rational points, is as a solution to a system of
polynomial equations. This can be done using a zero-dimensional regular chain to encode the
point of interest. Since intersection multiplicity is defined for a point p, we must explain what
it means to compute the intersection multiplicity at a zero-dimensional regular chain. Namely,
since a zero-dimensional regular chain can be thought of as encoding a finite group of points
in its vanishing set, we are in a sense, defining what it means to compute the intersection
multiplicity at a group of points.

Definition 5.2.1 (Intersection Multiplicity at a Regular Chain) Let f1, . . . , fn ∈

K[x1, . . . , xN] and T ⊂ K[x1, . . . , xN] a zero-dimensional regular chain where N ≥ n.
If N = n we say Im(T ; f1, . . . , fn) = m, if Im(p; f1, . . . , fn) = m for every p ∈ V(T ), where
m ∈ N ∪ {∞}. If N > n we say Im(T ; f1, . . . , fn) = m, if Im

(
p; TxN , . . . ,Txn+1 , f1, . . . , fn

)
= m

for every p ∈ V(T ), where m ∈ N ∪ {∞}.

It is worth noting that Definition 5.2.1 only pertains to a regular chain encoding points
with the same intersection multiplicity. If a regular chain T encodes points with different
intersection multiplicities Definition 5.2.1 would not be applicable to T . This is a natural
definition as intersection multiplicity is a local notion, and hence, it is only meaningful to
talk about the intersection multiplicity of a group of points if the local behaviour of the given
polynomial system is similar at each point. In general, a system of polynomial equations
will not have the same intersection multiplicity at each of its solutions, in such a case we
can use operations defined on regular chains to decompose the solution set. Since we will
only consider zero-dimensional regular chains, after finitely many decompositions, we will
eventually reach a case where each regular chain in the decomposition contains only points
with the same intersection multiplicity. For this reason, Algorithm 4 returns a collection of
regular chains and their corresponding intersection multiplicities in the sense of Definition
5.2.1.

In order to extend the generalization of Fulton’s algorithm to handle a zero-dimensional
regular chain as input, rather than a point, we must also redefine the notion of modular degree
with respect to a regular chain.

Definition 5.2.2 (Modular Degree at a Regular Chain) Let f be a polynomial in
K[x1, . . . , xn] and T ⊆ K[x1, . . . , xn] a strongly normalized, square-free, zero-dimensional
regular chain with variable ordering x1 � . . . � xn. Suppose lc(NF

(
f , T−xi

)
; xi) is regular

modulo T for some xi. Then the modular degree of f at T with respect to xi is the degree in xi

of NF
(

f , T−xi

)
.

We shall explain why Algorithm 4 together with Algorithm 5 form a generalization of
Algorithm 3 from intersection multiplicity at a point to intersection multiplicity at a (zero-
dimensional) regular chain. One short explanation would be invoking the celebrated D5 Prin-
ciple [11]. But, since Algorithm 3 may already split computations, more details are needed to
convince the reader.

We first observe that the specifications of Algorithm 4 generalize that of Algorithm 3,
thanks to Definition 5.2.1. For the pseudo-code, we will explain below how each key sequence
of lines of Algorithm 3 is adapted to Algorithm 4.
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Lines 2-3: In the regular-chain adaptation, Lines 2-5 of Algorithm 4, one must separate the
points of V(T ) at which all polynomials f1, . . . , fn vanish from those at which one of
f1, . . . , fn does not vanish; this task is achieved with RegularizeList(W,T ), see Sec-
tion 5.1.7; the construction of the set W can be seen as an optimization: indeed if all
f1, . . . , fn have a null normal form with respect to T then all f1, . . . , fn vanish at every
point of V(T ) and the call RegularizeList(W,T ) is not needed.

Lines 4-5: these two lines in Algorithm 3 determine the trailing degree of f1, that is, the num-
ber of times that x1 divides f1; in the regular-chain adaptation, Lines 6-9 of Algorithm 4,
the role of x1 is taken by Tx1 and the “divisibility test” is replaced by a Regular GCD
computation. Because each call to RegularGCD may split the computations (thus de-
composing V(T )) we have dedicated an algorithm to that task, namely Algorithm 5. A
complete proof of that latter algorithm follows from the properties of RegularGCD given
in Section 5.1.5. We note that ensuring that all regular chains involved in the computa-
tions are square-free is essential: indeed, at Line 13 of Algorithm 5, we need to make
sure that the division of p by g removes once and only once every root common to p and
Tx1 , which allows us at Line 14 to increment by 1 the current value of m.

Lines 6-8: In the regular-chain adaptation, Lines 10-17 of Algorithm 4, one needs to compute
modular degrees in the sense of Definition 5.2.2. Indeed, the leading (or trailing) degree
of a polynomial with respect to some variable at a regular chain must be the same at
every point solution of that regular chain. This explains the call RegularizeList(C,T )
together with the test |U | + |V | > 1; indeed, if |U | + |V | > 1 holds then there exists a
polynomial in the list C which vanishes at some points of V(T ) while not vanishing at
the others, that is, one modular degree is not well-defined, an issue which is resolved by
splitting the computations at Line 17 of Algorithm 4.

Lines 9-23: the regular-chain adaptation, Lines 18-32 of Algorithm 4, is essentially isomor-
phic to its counterpart in Algorithm 3; indeed, because of the work done in Lines 10-17
of Algorithm 4, no splitting (of the zero set V(T )) is needed. However, it is worth not-
ing the switch from regular division to pseudo-division, since all divisions must now
occur modulo a regular chain. Consequently, we must now multiply fi by init(Lm)e on
line 29 in order to cancel the desired terms, and moreover, we must ensure init(Lm)
is invertible in the local ring at every point in T in order to apply (n-7), where e =

max(0, deg(Li,mvar(Lm)) −mdeg(Lm) + 1).

Lines 24-33: In the regular-chain adaptation, Lines 33-48 of Algorithm 4, one must perform
all required calls to im1, . . . , imn at the same regular chains in order to calculate the sums
of values returned by those calls. Furthermore, it is worth noting that the exact quotients
used in the splitting step of Algorithm 3 have been replaced with pseudo-quotients. Since
each regular chain H is strongly normalized and zero-dimensional, the initials of its
defining polynomials are in K. Thus, the initial of the pseudo-divisor NF

(
Hxi , H−xi

)
will

also be in K for any i. As such, replacing quotients with pseudo-quotients will not affect
the correctness ofAlgorithm 4.
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Algorithm 4: Generalized Fulton’s Algorithm for Regular Chains
1 Function imn(T ; f1, . . . , fn)

Input:
1. T ⊂ K[x1, . . . , xN] is a zero-dimensional, square-free, strongly normalized regular chain

in variables x1 � . . . � xN where N ≥ n.

2. f1, . . . , fn ∈ K[x1, . . . , xN] such that for each p ∈ V(T ) either f1, . . . , fn form a regular
sequence in OAn,p, or at least one fi is a unit in OAn,p.

Output: A set of pairs [mi,Ti] such that: (i) V(T ) =
⋃

V(Ti), and (ii) mi is either
Im(Ti; f1, . . . , fn) or Fail

2 W ← { fi |NF( fi, T ) , 0}
3 if W , ∅ then
4 U,V ← RegularizeList(W,T )
5 return {[0,H] |H ∈ U} ∪

⋃
H∈V imn(H; f1, . . . , fn) /* Red */

6 if n = 1 then /* Compute multiplicity */

7 U ← Regularize( f1,T−x1
)

8 U′ ←
⋃

H∈U {Tx1} ∪ H
9 return

⋃
H∈U′ valuation( f1,H)

10 for i = 1, . . . , n do
11 for j = 1, . . . , n − 1 do /* Compute modular degrees */

12 F[i][ j]← NF
(

fi, T−x j

)
13 C[(i − 1)(n − 1) + j]← lc(F[i][ j], x j)
14 R[i][ j]← degx j

(F[i][ j])

15 U,V ← RegularizeList(C,T )
16 if |U | + |V | > 1 then
17 return

⋃
H∈U∪V imn(H; f1, . . . , fn)

18 for j = 1, . . . , n − 1 do /* Orange */

19 Reorder f1, . . . , fn− j+1 so that R[1][ j] ≤ . . . ≤ R[n − j + 1][ j] /* Green */

20 m← min(i | R[i][ j] > 0) or m← ∞ if no such i exists
21 if m ≤ (n − j) then
22 for i = m + 1, . . . , n − j + 1 do /* Blue */

23 d ← R[i][ j] − R[m][ j]
24 Lm ← C[(m − 1)(n − 1) + j]
25 Li ← C[(i − 1)(n − 1) + j]
26 if NF(Lm, T ) , 0 then
27 f ′i ← Lm fi − xd

j Li fm

28 else if NF
(
prem(Li, Lm), T−n

)
= 0 and NF(init(Lm), T ) , 0 then

/* Where e = max(0, deg(Li,mvar(Lm)) −mdeg(Lm) + 1) */
29 f ′i ← init(Lm)e fi − xd

j pquo(Li, Lm) fm

30 else
31 return {[Fail,T ]}

32 return imn(T ; f1, . . . , fm, f ′m+1, . . . , f ′n− j+1, . . . , fn)
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33

34 /* Yellow */

35 tasks← im1(T ; F[n][1])
36 for i = 2, . . . , n − 1 do
37 newTasks← ∅
38 for task in tasks do /* each task is of the form [m,H], where H is

a regular chain */

39 m,H ← task
40 q← pquo(NF

(
fn−i+1, H−xi

)
,NF

(
Hxi , H−xi

)
)

41 newTasks←
newTasks∪{[m + m′,H′] | [m′,H′] ∈ imi(H; q, F[n − i + 2][i], . . . , F[n][i])}

42 tasks← newTasks

43 results← ∅
44 for task in tasks do
45 m,H ← task
46 q← pquo(NF

(
f1, H−xn

)
,NF

(
Hxn , H−xn

)
)

47 results← results ∪ {[m + m′,H′] | [m′,H′] ∈ imn(H; q, f2, . . . , fn)}

48 return results

5.3 Failure Cases

Since the algorithms developed are only partial algorithms, this section will discuss cases where
the algorithms presented do not succeed in computing the intersection multiplicity. We will fo-
cus mainly on Algorithm 4 but will occasionally make comparisons to its analogue, Algorithm
3, which computes the intersection multiplicity at a point.

Fix some n > 2 and j such that 1 < j < n. Suppose we are in the j-th iteration of the loop
on line 18 of Algorithm 4 and we are computing the intersection multiplicity of polynomials
f1, . . . , fn at a regular chain T . Let Lm be as in Algorithm 4, that is let Lm = lc(NF

(
fm, T−x j

)
, x j)

for some m. The first condition we check is whether NF(Lm, T ) , 0. If this condition holds
then Lm is a unit in the local ring at any point in T , hence we may apply property (n-7) to rewrite
the system without increasing the intersection multiplicity. When this condition does not hold,
we check whether NF(init(Lm), T ) = 0 and whether there is no pseudo-remainder modulo the
regular chain T−xn

, after a pseudo-division between Lm and Li, for all i = m + 1, . . . , n − j + 1,
where Li = lc(NF

(
fi, T−x j

)
, x j) and e = max(0, deg(Li,mvar(Lm)) −mdeg(Lm) + 1). In this case

we can make a similar substitution and apply (n-7) to preserve the intersection multiplicity.
When neither of these conditions hold, we return Fail, as we cannot further simplify our input
system to compute the intersection multiplicity. In fact, when NF(Lm, T ) = 0, substituting as
in line 27, will increase the intersection multiplicity at any point p ∈ V(T ) for which Lm is not
a unit in OAn,p. Moreover, such a p will exist whenever NF(Lm, T ) = 0.

The following example illustrates an input system which successfully computes the inter-
section multiplicity at one regular chain in the decomposition but fails to compute the intersec-
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Algorithm 5: Valuation
1 Function valuation( f ,T )

Input:
1. T a zero-dimensional, square-free, strongly normalized regular chain in variables

x1 � . . . � xN where N ≥ n.

2. f ∈ K[x1, . . . , xN] with main variable x1. Moreover, NF
(

f , T−x1

)
, 0.

Output: A set of pairs [mi,Ti] such that: (i) V(T ) =
⋃

V(Ti), and (ii)
mi = Im

(
Ti; NF

(
f , T−i,x1

))
.

2 tasks← {[ f ,T, 0]}
3 results← ∅
4 while tasks , ∅ do
5 p,T,m← removeElem(tasks)
6 L← RegularGcd(p,Tx1 ,T

−
x1

)
7 for g,C ∈ L do
8 d ← degx1

(g)
9 H ←

{
Tx1

}
∪C

10 if d = 0 then
11 results← results ∪ {[m,H]}

12 else
13 q← NF

(
pquo(p, g), C

)
14 tasks← tasks ∪ {[q,H,m + 1]}

15 return results
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tion multiplicity for another.

Example Consider the regular chain in variables x � y � z given by T = x(x + 1), y, z. The
regular chain T encodes the two points (0, 0, 0) and (−1, 0, 0). Calling imn(T ; f1, f2, f3) where
f1 = xy + z, f2 = y2 + z2, f3 = x(x + 1) + y + z splits T into two regular chains t1 = x + 1, y, z
and t2 = x, y, z. Since both t1 and t2 encode only a point, the procedure of computing the
intersection multiplicity at all points in t1 or t2 is almost identically to Algorithm 3.

Consider what happens when we compute the intersection multiplicity at t2, or analogously,
call Algorithm 3 with arguments p = (0, 0, 0) and f1, f2, f3. We can begin at j = 2 since f1

and f2 have modular degree in x less than zero. Since f1 has smaller modular degree in y than
f2, the pivot index m is set to 1. We compute Lm = x and Li = 1. Since NF(Lm, t2) = 0
the conditional statement on line 26 of Algorithm 4 is not satisfied. Analogously, Lm does not
vanish at p = (0, 0, 0) so the conditional statement of line 17 in Algorithm 3 is not satisfied.
Next see NF

(
prem(Li, Lm), t2

)
, 0 or analogously 1 is not divisible by x in the polynomial ring.

We have exhausted all ways of rewriting the input system provided in the algorithm and hence
we must now add the pair [FAIL, t2] to the output set.

This issue is avoided when we compute the intersection multiplicity at t1 since the leading
polynomial of t1 is simply x + 1. Thus, when j = 2, NF(Lm, t1) = NF(x, {x + 1, y, z}) = x
and hence we may apply (n-7) to preserve intersection multiplicity upon substitution. Con-
tinuing the algorithm leads to an output of [2, t1], and hence the final output returned is
{[2, t1], [FAIL, t2]}.

As we will discuss in Section 6.5, the success of failure on the generalization of Fulton’s
algorithm can often come down to the choice of variable ordering. In the above example we
used the ordering x � y � z and could compute the intersection multiplicity at one of the two
regular chains returned. If we instead consider the same system under the ordering y � z � x,
we can compute the intersection multiplicity at both regular chains. This presents an interesting
question as to what constitutes an optimal variable ordering for a given system of polynomials.
We hope to address this question in a future paper.



Chapter 6

Implementing the Generalization of
Fulton’s Algorithm

In this chapter we provide details on the Maple implementation of the generalization of Ful-
ton’s algorithm, for both a point and a regular chain as input1. Moreover, we describe the
integration of this implementation with the implementation of the algorithm of Vrbik’s PhD
thesis, in the form of a hybrid procedure.

6.1 Overloading the IntersectionMultiplicityCommand
In our implementation, we overload the IntersectionMultiplicity command to handle
several different calling sequences. The first calling sequence occurs when one wishes to com-
pute the intersection multiplicity at a point p but knows the system of polynomial equations
forms a regular chain. In which case, the observation made in Section 4.5 allows us to compute
the intersection multiplicity immediately by means of evaluation. The second calling sequence
applies the generalization of Fulton’s algorithm at a point p. The third calling sequence seeks
to apply the algorithm of Vrbik et al. along side the adaptation of the generalization of Ful-
ton’s algorithm to regular chains. That is, the third calling sequence takes a regular chain and
a system of polynomial equations and applies first, the generalization of Fulton’s algorithm
and then, upon detecting a failure, applies the algorithm of Vrbik et al. Lastly, the final call-
ing sequence is used to return meaningful error messages when none of the previous calling
sequences are satisfied.

6.2 IntersectionMultiplicity at a Point
The second calling sequence computes the intersection multiplicity at a point p. This calling
sequence takes advantage of the cache option in its helper functions to compute the image of
polynomials and modular degrees efficiently. Moreover, this calling sequence provides some
support for coordinates and coefficients which are not rational given by RootOf. Although
algebraic coordinates can be handled by encoding them in a regular chain, allowing algebraic

1A version of this chapter has been accepted for publication in [13].
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coordinates specified by RootOf can simplify the calling sequence in some cases. When the
system of polynomial equations, or the point of interest contain non-rational coordinates, the
normalizer environment variable is set to evala and the algorithm proceeds as expected. Re-
ducible RootOf errors are caught, in which case it is recommended the user uses the calling
sequence which handles regular chains.

6.3 IntersectionMultiplicity at a Regular Chain
The third calling sequence invokes a hybrid algorithm which calls first the generalization of
Fulton’s algorithm, and then if necessary, the algorithm of Vrbik et al. We apply the general-
ization of Fulton’s algorithm first in this hybrid algorithm as it is often faster and can compute
more examples than the current implementation of the algorithm of Vrbik et al. as suggested
by the results in the next chapter. It is possible however, that the algorithm of Vrbik et al. can
succeed in some cases where the generalization of Fulton’s algorithm fails, as we will see in
the next chapter; hence, a hybrid algorithm which combines the two approaches is desirable.
Both the generalization of Fulton’s algorithm and the algorithm of Vrbik et al. can be accessed
individually in the IntersectionMultiplicity command by setting the optional method
keyword equal to fulton or tangentcone respectively.

6.4 Non-Regular Sequences
The input constraints for the generalization of Fulton’s algorithm require that the system of
polynomials, f1, . . . , fn, is a regular sequence at the point p, or in the case of a zero-dimensional
regular chain T , that f1, . . . , fn is a regular sequence at all points in V(T ) (of course, this
assumption is only required when no fi is a unit in any of the respective local rings). Testing
for this constraint is not practical for a standard basis-free algorithm as it requires the use of
standard bases, see the description of is reg and is regs in [16, Section 7.6]. Moreover, this
constraint is essential to the proof of termination, hence we provide several heuristics for testing
for non-regular sequences in our implementation. The key observation behind the heuristics
is that by applying Proposition 4.1.5 and Corollary 4.1.8, it suffices to test for a non-regular
sequence in any branch of computation. As the size of the branch decreases, which occurs
during the splitting stage, testing for non-regular sequences becomes easier. For example,
branches of size n = 1 will be a non-regular sequence only when fn = 0. When n = 2 it suffices
to check gcd( f1, f2)(p) , 0, as we did in Fulton’s algorithm. Applying similar heuristics during
the start of each recursive call allows our implementation of the generalization of Fulton’s
algorithm to catch many non-regular sequences and return an error indicating the input was
invalid.

6.5 Changes of Coordinates
The generalization of Fulton’s algorithm requires a variable ordering to be specified before
runtime. Although this ordering is needed for the algorithm, it is independent of the geometry
of the input system. Hence, the choice of a good or bad ordering can cause the algorithm to
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succeed or fail. Since it is impractical to try all possible variable orderings, we leave the choice
of variable ordering up to the user. In our implementation, the variable ordering can be changed
manually by the user by modifying one or more of the required parameters. Additionally,
setting the maxshift option equal to k ∈ N will apply a circular left shift to the variable
ordering upon detecting a failure, for up to k failures.

6.6 Pivot Selection

The implementation of the generalization of Fulton’s algorithm, at both a point and regular
chain, also improves upon the pivot selection process of Algorithm 3 and Algorithm 4. In
line 11 of Algorithm 3 and line 20 of Algorithm 4, the index m is defined as the index of the
polynomial with minimal modular degree with respect to some variable. Such an m can be
thought of as the index to a pivot element, as fm may be used to reduce the modular degrees
of some polynomials within the current iteration of the algorithm. It is possible however, for
multiple polynomials to share the same minimal modular degree with respect to some vari-
able. Since the success of this procedure is often dependent on the invertibility of a particular
leading coefficient in the local ring, namely that given on line 15 of Algorithm 3 and line 24
of Algorithm 4, having multiple viable choices for a pivot element increases the algorithm’s
chance of succeeding.

Consider the system xy − z, (x + 1)y, x ∈ K[x, y, z] at the origin. Both xy − z and (x + 1)y
have modular degree 1 with respect to y. The leading coefficients of xy− z and (x + 1)y modulo
〈z〉 with respect to y are x and x + 1 respectively. The generalization of Fulton’s algorithm,
as presented in Algorithm 3, would only consider the first polynomial as a pivot, and hence,
would return Fail as x is not invertible in the local ring at the origin. But clearly this need not
be the case as x + 1 is invertible in the local ring and (x + 1)y has minimal modular degree with
respect to y. Hence, extending the pivot selection process as to consider all polynomials with
minimal modular degree can further strengthen the generalization of Fulton’s algorithm and is
therefore, included in our implementation.

6.7 Expression Swell

The rewriting process used in the generalization of Fulton’s algorithm decreases the modular
degrees with respect to a given variable in each successful iteration. In doing so, it is possible
that it increases the degrees of the polynomials being rewritten with respect to some other vari-
ables. Similarly, the rewriting process may also cause the size of a polynomial’s coefficients to
grow. In some cases, this process causes severe expression swell which can act as a bottleneck
for the performance of this procedure.

In our implementation we try to mitigate the effects of expression swell by considering
only primitive polynomials. Namely, in each iteration we divide each polynomial by the great-
est common divisor of its coefficients, therefore replacing each polynomial with its primitive
part. This does not affect the intersection multiplicity since the greatest common divisor of
coefficients in K is also in K, hence we are dividing by an invertible element.
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6.8 TriangularizeWithMultiplicity

In order to compute a non-zero intersection multiplicity, one first needs a solution to a given
polynomial system. Throughout this manuscript we have assumed the user already has a so-
lution or regular chain encoding solutions, to the given polynomial system. In practice one
may not always know the solutions of a polynomial system. When this is the case, it would
be desirable to have an algorithm which can first solve a system of polynomial equations and
second compute the intersection multiplicity at each solution.

The AlgebraicGeometryTools sub-package of the RegularChains library’s
TriangularizeWithMultiplicity command addresses this problem by combining the
Triangularize algorithm, recall Section 5.1.8, with Maple’s IntersectionMultiplicity
command. The TriangularizeWithMultiplicity solves the system of polynomial equa-
tions using Triangularize and then maps the IntersectionMultiplicity command to
each regular chain in the output. Thus, we extend TriangularizeWithMultiplicity to
support our modifications to the IntersectionMultiplicity command. Namely,
TriangularizeWithMultiplicity now supports the calling sequence of
IntersectionMultiplicity which takes a regular chain as input and supports all optional
arguments this calling sequence of IntersectionMultiplicity supports.



Chapter 7

Experiments

In this chapter we provide experimental results for the generalization of Fulton’s algorithm1.
We first use the IntersectionMultiplicity command and
TriangularizeWithMultiplicity command to compare the generalization of Fulton’s al-
gorithm to the algorithm of Vrbik et al. (recall both commands can access either algorithm
individually using the method option). Next, we compare the generalization of Fulton’s algo-
rithm to Singular’s iMult command, although, the breadth of systems we can compare are
greatly limited as iMult is restricted to only those systems which have a solution at the origin.
Lastly, we summarize the results and discuss several ways one may be able to improve on our
implementation by taking advantage of different variable orderings.

7.1 Benchmarking Against The Algorithm of Vrbik et al.

In this section, we benchmark the implementation of the generalization of Fulton’s algorithm
relative to the implementation of the algorithm of Vrbik et al. in Maple. All tests were
run on an Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz machine with two processors us-
ing Maple 2021.2. For these experiments, kernelopts(numcpus) was set to one in order
to run computations in serial. Additionally, we set kernelopts(cpulimit) to 2000, termi-
nating experiments that take over 2000 seconds of CPU time. We will use NR, denoting “No
Result”, when experiments exceed the given time limit. Timings were performed using the
Usage command of Maple’s CodeTools library. For experiments that produced errors, the
IntersectionMultiplicity command was wrapped in the traperror command to time
how long the algorithm took to throw an error.

Since the algorithm of Vrbik et al. can only handle points encoded in a regular chain
as input, we will use the calling sequence for the generalization of Fulton’s algorithm which
handles regular chains as input. That is, we will run experiments using our implementation of
Algorithm 4. Doing so ensures that both algorithms will experience any overhead inherent in
using regular chains, which we believe will lead to more accurate comparisons.

All systems of polynomials are described in Appendix A. The format of the below tables is
as follows:

1A version of this chapter has been accepted for publication in [13].
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1. The column n denotes the size of the square system, that is the number of variables and
number of polynomials in the system.

2. The point column represents the point encoded by the zero-dimensional regular chain
passed as input2.

3. The ordering column denotes the variable ordering given to the regular chain. This vari-
able ordering is the same ordering used by the generalization of Fulton’s algorithm in
our implementation.

4. Columns under the heading Fulton denote results obtained from calling the generaliza-
tion of Fulton’s algorithm and columns under the heading Vrbik denote results obtained
from calling the algorithm of Vrbik et al.

5. The Im column denotes the intersection multiplicity computed using the given algorithm
and CPU time denotes the CPU time elapsed during the respective computation.

Table 7.1 compares the two algorithms on systems chosen by the author, at a regular chain
encoding the origin. Tests 1-8 consider a simple family of systems that demonstrate how each
algorithm scales as the number of variables increases. In particular, we see the generalization
of Fulton’s algorithm often runs 1-2 orders of magnitude faster than the algorithm of Vrbik
et al. yielding a speed up of almost 17 minutes when n = 25. In tests 9-11, we see the
algorithm of Vrbik et al. either returns an error or does not return before timeout occurs.
Conversely, the generalization of Fulton’s algorithm can compute all of these examples. Also,
worth noting, the system in test 11 contains polynomials which are all singular at the origin.
Since the algorithm of Vrbik et al. requires at least one polynomial to be singular in order
to apply the reduction criterion, it will always fail in such cases. Hence, the generalization
of Fulton’s algorithm becomes particularly attractive when all polynomials are singular at the
point of interest, as it relies on a different set of conditions to succeed, unrelated to the geometry
of the input. Test 12 illustrates that this difference becomes even more pronounced when the
polynomials themselves become more complex. Here, we observe that the generalization of
Fulton’s algorithm runs in roughly the same time as test 3, the test with 7 variables, whereas
the algorithm of Vrbik et al. takes approximately 50 seconds longer than it did in test 3.
This suggests that both the size of the polynomial system and complexity of the polynomials
themself, will cause a significant discrepancy in the performance of the two algorithms, making
the generalization of Fulton’s algorithm an attractive option for large or complex systems.

In Table 7.2 we consider the systems described in [9, 3, 26] at regular chains encoding just
a point. In the cases where both algorithms succeed, we observe a speedup of 1-4 seconds.
Moreover, in both mth191 and DZ2 we see the generalization of Fulton’s algorithm is able to
compute the intersection multiplicity whereas the algorithm of Vrbik et al. cannot. In Ojika4,
we see an example where the algorithm of Vrbik et al. succeeds and the generalization of Ful-
ton’s algorithm does not, which justifies the implementation of a hybrid algorithm, combining
the two approaches. Although, it is worth noting that upon selecting a better variable ordering,

2All regular chains, with the exception of the regular chain used in Carpasse, encode just a point. For the
Carpasse system, the regular chain must encode an additional point since the desired point contains algebraic
coordinates.
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Table 7.1: IntersectionMultiplicity Using the Author’s Tests

System Specifications Fulton Vrbik
System n Ordering Point Im CPU Time Im CPU Time
test 1 3 x1 � . . . � x3 origin 2 15.00ms 2 329.00ms
test 2 5 x1 � . . . � x5 origin 2 31.00ms 2 2.95s
test 3 7 x1 � . . . � x7 origin 2 94.00ms 2 8.84s
test 4 9 x1 � . . . � x9 origin 2 188.00ms 2 20.69s
test 5 11 x1 � . . . � x11 origin 2 359.00ms 2 40.39s
test 6 13 x1 � . . . � x13 origin 2 610.00ms 2 71.58s
test 7 15 x1 � . . . � x15 origin 2 1.17s 2 118.52s
test 8 25 x1 � . . . � x25 origin 2 7.81s 2 17.32m
test 9 3 x � y � z origin 5 47.00ms NR NR

test 10 3 x � y � z origin 24 109.00ms ERROR 16.00ms
test 11 3 x � y � z origin 45 93.00ms ERROR 15.00ms
test 12 6 x1 � . . . � x6 origin 2 125.00ms 2 18.09s

the generalization of Fulton’s algorithm can compute the intersection multiplicity of all points
in Ojika4. We alo include two bivariate systems, namely decker1 and decker2, to show our
implementation in the bivariate case is also slightly faster.

As mentioned earlier our implementation of the generalization of Fulton’s algorithm can
compute the intersection multiplicity of a group of points encoded by a zero-dimensional reg-
ular chain. So far, we have only benchmarked examples where the regular chain encodes a
single point (with the exception of the Caprasse system). This is because the implementation
of the algorithm of Vrbik et al. does not provide sufficient support for regular chains encod-
ing a group of points and may throw an error or return an incorrect intersection multiplicity
when this is the case. Instead, it is suggested to use the TriangularizeWithMultiplicity
command to compute the intersection multiplicity of a group of points.

Since TriangularizeWithMultiplicity may return several regular chains and their
corresponding intersection multiplicities, Table 7.3 replaces the column Im with a new column,
Success Ratio. The Success Ratio column denotes the number of intersection multiplicities
successfully computed over the number of regular chains returned, using the generalization of
Fulton’s algorithm and the algorithm of Vrbik et al. respectively. That is, the Success Ratio
column tells us how many solutions we were able to compute the intersection multiplicity at.
We also note that the implementation of the algorithm of Vrbik et al. returns an error any time
it cannot compute all intersection multiplicities, hence the Success Ratio column computed
using the algorithm of Vrbik et al. will contain only full fractions, errors, and NR.

The polynomial systems and points used in Table 7.2 all had intersection multiplicity
greater than one. Moreover, all systems used in Table 7.3 all had at least one solution with
intersection multiplicity greater than one. The reason we selected systems which have solu-
tions with intersection multiplicity greater than 1 is due to an optimization implemented with
the algorithm of Vrbik et al. This optimization uses Jacobians to quickly compute the intersec-
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Table 7.2: IntersectionMultiplicity Using Examples from the Literature

System Specifications Fulton Vrbik
System n Ordering Point Im CPU Time Im CPU Time
cbms1 3 x � y � z (0, 0, 0) FAIL 32.00ms ERROR 16.00ms
cbms2 3 x � y � z (0, 0, 0) FAIL 31.00ms ERROR 31.00ms
mth191 3 x � y � z (0, 1, 0) 4 31.00ms ERROR 1.47s
decker1 2 x � y (0, 0) 3 15.00ms 3 171.00ms
decker2 2 x � y (0, 0) 4 14.00ms 4 187.00ms
Ojika2 3 x � y � z (0, 0, 1) 2 63.00ms 2 1.53s
Ojika2 3 x � y � z (1, 0, 0) 2 62.00ms 2 1.48s
Ojika3 3 x � y � z (0, 0, 1) 4 31.00ms 4 1.62s
Ojika3 3 x � y � z (−5

2 ,
5
2 , 1) 2 31.00ms 2 1.02s

Ojika4 3 x � y � z (0, 0, 1) FAIL 16.00ms ERROR 657.00ms
Ojika4 3 x � y � z (0, 0, 10) FAIL 16.00ms 3 2.00s
Ojika4 3 x � z � y (0, 1, 0) 3 46.00ms ERROR 2.50s
Ojika4 3 x � z � y (0, 10, 0) 3 63.00ms 3 4.02s

Caprasse 4 x1 � . . . � x4 (2,−i
√

3, 2, i
√

3) FAIL 94.00ms NR >2000s
KSS 5 x1 � . . . � x5 (1, 1, 1, 1, 1) FAIL 43.00ms ERROR 56.94s
DZ1 4 x1 � . . . � x4 (0, 0, 0, 0) FAIL 31.00ms ERROR 16.00ms
DZ2 3 x � z � y (0, 0,−1) 16 78.00ms ERROR 16.00ms

Solotarev 4 x1 � . . . � x4 ( 5
3 ,−1, 5,−47

27 ) 2 110.00ms 2 1.36s
Solotarev 4 x1 � . . . � x4 (−1,−1, 5, 3) 2 93.00ms 2 1.36s

Table 7.3: TriangularizeWithMultiplicity Using Examples from the Literature

System Specifications Fulton Vrbik
System n Ordering Success Ratio CPU Time Success Ratio CPU Time
cbms1 3 x � y � z 10/11 641.00ms ERROR 218.00ms
cbms2 3 x � y � z 1/2 11.55s ERROR 422.00ms
mth191 3 x � y � z 8/8 609.00ms ERROR 2.45s
decker1 2 x � y 3/3 47.00ms 3/3 140.00ms
decker2 2 x � y 3/3 63.00ms 3/3 250.00ms
Ojika2 3 x � y � z 4/4 219.00ms 4/4 5.38s
Ojika3 3 x � y � z 2/2 62.00ms 2/2 5.02s
Ojika4 3 x � y � z 3/5 438.00ms ERROR 906.00ms
Ojika4 3 x � z � y 5/5 500.00ms ERROR 3.41s

Caprasse 4 x1 � x2 � . . . 4/15 1.58s NR >2000s
Caprasse 4 x4 � x2 � x1 � x3 12/15 4.48s ERROR 14.09s

KSS 5 x1 � x2 � . . . 16/17 3.34s ERROR 71.16s
DZ1 4 x1 � x2 � . . . NR >2000s ERROR 313.00ms
DZ2 3 x � z � y 2/2 172.00ms ERROR 47.00ms

Solotarev 4 x1 � x2 � . . . 4/4 453.00ms 4/4 3.47s
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Table 7.4: TriangularizeWithMultiplicity Using Examples from the Literature with Multiplicity 1

System Specifications Fulton
System n Success Ratio CPU Time

eco5 5 4/4 609.00ms
eco6 6 5/5 2.52s
eco7 7 6/6 97.17s
trinks 6 2/2 516.00ms

Czapor Geddes 1 3 1/1 281.00ms
A Bifurcation Problem 3 3/3 2.95m

quadfor2 4 1/1 109.00ms
Lorentz 4 6/6 485.00ms

S9 1 8 2/2 1.80s
cyclic3 3 2/2 110.00ms

tion multiplicity when systems have an intersection multiplicity of one, see [27].
In Table 7.4, we show several experiments for the TriangularizeWithMultiplicity

command using other examples from the literature3. All solutions to these systems have an
intersection multiplicity of one, and hence, we only provide results for
TriangularizeWithMultiplicity using the method=fulton. The ordering of the vari-
ables for systems in this table is included in Appendix A. Systems such as eco7 and A Bifurca-
tion Problem illustrate the utility of this optimization, and hence, we consider this optimization
desirable and wish to integrate it into our implementation of the generalization of Fulton’s
algorithm in the future.

7.2 Benchmarking Against iMult
In this section we provide experimental results comparing the generalization of Fulton’s algo-
rithm to Singular’s iMult algorithm. All tests were run on an Intel(R) Core(TM) i5-7200U
CPU @ 2.50GHz machine with two processors. Since iMult works only at points with ratio-
nal coordinates, we will use the calling sequence for our implementation of the generalization
of Fulton’s algorithm that takes a point as input, rather than a regular chain. All other testing
parameters (for tests run using Maple) remain unchanged from Section 7.1.

For tests run using Singular, we used the following settings for all experiments. Tests
were run on Singular version 4.2.1 and timings were calculated using Singular’s timer com-
mand. Before running any tests, the commands system("--ticks-per-sec",1000); and
system("--min-time","0.001"); were called, to set the unit of measurement to millisec-
onds and minimal return time as 1 millisecond. Additionally, the commands

3The implementation of the RegularChains library restricts polynomials to those of integer coefficients.
Hence, to compute the intersection multiplicity we multiply the systems A Bifurcation Problem and quadfor2 by
a factor of 64 and 3 respectively to eliminate any fractions. This does not change the intersection multiplicity
since 64 and 3 are units.
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system("--cpus","1"); and setcores(1); were called to ensure experiments run in se-
rial. Lastly, as was the convention in the last section, we stop experiments after 2000 seconds,
unfortunately, due to difficulties with Singular’s abort system option, we were unable to stop
computations at 2000 seconds of CPU time. To work past this, we approximated this time-
out by measuring 2000 seconds of real time instead. All rings used in these experiments had
characteristic zero and used the negative degree reverse lexicographical local ordering.

This section focuses on two main families of polynomial systems, the nql-n-d family and
the simple-nql-n-d family. Although we keep the name the same, we have modified these
systems from their traditional presentation, which we describe in Appendix A. The reason for
this modification, and the reason we focus on only two families of systems, rather than a diverse
test pool, is that iMult is limited to only systems which have a solution at the origin (or systems
which can be made to have a solution at the origin after an affine change of coordinates).
This resulted in difficulty finding large, zero-dimensional systems, which had a solution at
the origin, and which did not have a trivial standard basis (in order to provide meaningful
comparisons). Indeed, we only focus on large examples since the purpose of a standard basis-
free intersection multiplicity algorithm is to provide an alternative for when methods which
use standard bases fail to terminate in a reasonable amount of time. Hence, although most
of the systems used in Section 7.1 can be made to have a solution at the origin, and hence
can be used in comparisons between iMult and the generalization of Fulton’s algorithm, these
comparisons are less meaningful as both techniques succeed relatively quickly.

The constraint imposed by iMult, limiting intersection multiplicity computations to only
systems which have a solution at the origin, further justifies our goal of designing an inter-
section multiplicity algorithm that works at any point, not just the origin. As a result of this
limitation, we are unable to provide meaningful comparisons on many large examples in the
literature, hence, relaxing this constraint in our implementation with the use of regular chains
is indeed desirable.

Of course, the downside of using only these two families of systems for testing is that the
intersection multiplicity can be computed by hand. So, although the tables included in this
section can be used to contrast the performance of the two algorithms, these are not examples
in which one would need a computer algebra system to compute the intersection multiplicity.
Nonetheless, they do serve as a proof of concept, illustrating that the generalization of Fulton’s
algorithm can be a viable alternative to intersection multiplicity algorithms which use standard
bases.

All systems of polynomials are described in Appendix A. The format of the below tables is
as follows:

1. Columns under the heading iMult denote results obtained from calling the iMult com-
mand and columns under the heading IntersectionMultiplicity denote results ob-
tained from calling the generalization of Fulton’s algorithm. The algorithm of Vrbik et
al. was excluded from these tests as it returns an error on every system studied.

2. The ordering column denotes the variable ordering given to either the generalization of
Fulton’s algorithm in the case of IntersectionMultiplicity, or the variable ordering
given to the polynomial ring in the case of iMult.

3. The Im column denotes the intersection multiplicity computed using the given algorithm
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and CPU time denotes the CPU time elapsed during the respective computation.

4. Timings from Singular were converted from milliseconds to the expected units corre-
sponding to that of Maple’s CodeTools:-Usage command for consistency with Maple’s
results.

5. For tests run using either Maple or Singular, if we experience a timeout or error, we
populate all larger systems in the same family of experiments with that result. That is, all
cells in the given column with the same parameter d and larger n, will be automatically
populated with the notation for either a timeout or error, respectively. For example, if
the system simple-nql-7-8 exceeds the 2000 second time limit, then the larger system,
simple-nql-8-8 will automatically be assigned a result which indicates it too experienced
a timeout.

In Table 7.5 and Table 7.6, the choice of variable ordering dramatically affects the perfor-
mance of both algorithms. For this discussion, we will refer to the variable ordering x1 � . . . �
xn as the descending variable ordering and we will refer to the ordering x1 ≺ . . . ≺ xn as the
ascending variable ordering. It is clear in both tables that both algorithms perform far better
under the ascending variable ordering.

In Table 7.5, iMult outperforms the generalization of Fulton’s algorithm for small values of
n. As n increases, the performance of iMult is quickly hindered. Moreover, as the parameter
d increases, the change in n required for iMult to experience significant delays decreases.
This is best illustrated by comparing iMult’s performance on nql-3-8 and nql-4-8 for either
the ascending or descending variable ordering. By increasing n from 3 to 4 the algorithm,
iMult goes from terminating in a matter of milliseconds to exceeding the timeout limit. With
the exception of the nql-n-4 family under the ascending ordering, iMult exceeds the timeout
limit on most families studied in this table. It should also be noted, the error which occurs in
nql-10-4 is a memory error thrown by Singular which we were unable to work around.

For both variable orderings, the generalization of Fulton’s algorithm experiences many of
the same issues as iMult to a lesser degree. For the descending variable ordering, the gener-
alization of Fulton’s algorithm resists exceeding the timeout limit longer than iMult as n and
d increase. For the systems nql-6-4, nql-5-6, and nql-4-8, the generalization of Fulton’s algo-
rithm is able to terminate in a matter of seconds while iMult under the same variable ordering
experiences a timeout. For the generalization of Fulton’s algorithm, the ascending ordering far
outperforms the descending ordering. Under the ascending ordering, the generalization of Ful-
ton’s algorithm does not experience any timeout and can compute most examples in a matter
of seconds. For an algorithm which seeks to serve as an alternative for when standard basis
computations are not feasible, this is extremely promising. Under a bad variable ordering, the
generalization of Fulton’s algorithm is more resistant to timeout and long computations than
iMult. Under a good variable ordering, the generalization far outperforms iMult, even as
n and d increase. The reason for this is the elagent method of the generalization of Fulton’s
algorithm, rewriting the input system using only standard operations on polynomials, which
can, in some cases, avoid long, tedious computations.

The simple-nql-n-d system, described in Table 7.6 is not as clear cut. Overall, iMult
performs far better on the simple-nql-n-d systems than it did on the nql-n-d systems. Under
the descending ordering, iMult also outperforms the generalization of Fulton’s algorithm.
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Table 7.5: iMult on nql-n-d

iMult IntersectionMultiplicity
Order x1 � . . . � xn x1 ≺ . . . ≺ xn x1 � . . . � xn x1 ≺ . . . ≺ xn

System Im CPU Time Im CPU Time Im CPU Time Im CPU Time
nql-3-4 16 <1.00ms 16 <1.00ms 16 109.00ms 16 16.00ms
nql-4-4 32 <1.00ms 32 <1.00ms 32 625.00ms 32 16.00ms
nql-5-4 64 48.16s 64 20.00ms 64 4.55s 64 47.00ms
nql-6-4 NR >2000s 128 50.00ms 128 37.75s 128 63.00ms
nql-7-4 NR >2000s 256 310.00ms 256 5.51m 256 109.00ms
nql-8-4 NR >2000s 512 3.2s NR >2000s 512 203.00ms
nql-9-4 NR >2000s 1024 79.5s NR >2000s 1024 422.00ms
nql-10-4 NR >2000s NR ERROR NR >2000s 2048 828.00ms
nql-3-6 54 <1.00ms 54 <1.00ms 54 469.00ms 54 31.00ms
nql-4-6 162 19.21s 162 3.71m 162 5.38s 162 62.00ms
nql-5-6 NR >2000s NR >2000s 486 86.11s 486 125.00ms
nql-6-6 NR >2000s NR >2000s NR >2000s 1458 313.00ms
nql-7-6 NR >2000s NR >2000s NR >2000s 4374 1.66s
nql-8-6 NR >2000s NR >2000s NR >2000s 13122 3.11s
nql-9-6 NR >2000s NR >2000s NR >2000s 39366 9.11s
nql-10-6 NR >2000s NR >2000s NR >2000s 118098 27.86s
nql-3-8 128 30.00ms 128 70.00ms 128 1.09s 128 31.00ms
nql-4-8 NR >2000s NR >2000s 512 33.28s 512 78.00ms
nql-5-8 NR > 2000s NR >2000s NR >2000s 2048 281.00ms
nql-6-8 NR > 2000s NR >2000s NR >2000s 8192 1.11s
nql-7-8 NR >2000s NR >2000s NR >2000s 32768 4.33s
nql-8-8 NR >2000s NR >2000s NR >2000s 131072 20.39s
nql-9-8 NR > 2000s NR >2000s NR >2000s 524288 92.62s
nql-10-8 NR > 2000s NR >2000s NR >2000s 2097152 5.87m
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Table 7.6: iMult on simple-nql-n-d

iMult IntersectionMultiplicity
Order x1 � . . . � xn x1 ≺ . . . ≺ xn x1 � . . . � xn x1 ≺ . . . ≺ xn

System Im CPU Time Im CPU Time Im CPU Time Im CPU Time
simple-nql-4-4 256 <1.00ms 256 <1.00ms 256 547.00ms 256 63.00ms
simple-nql-5-4 1024 <1.00ms 1024 <1.00ms 1024 3.09s 1024 250.00ms
simple-nql-6-4 4096 10.00ms 4096 10.00ms 4096 16.62s 4096 437.00ms
simple-nql-7-4 16384 250.00ms 16384 200.ms 16384 79.55s 16384 2.05s
simple-nql-8-4 NR >2000s NR >2000s NR ERROR 65536 7.50s
simple-nql-4-8 4096 <1.00ms 4096 <1.00ms 4096 8.16s 4096 219.00ms
simple-nql-5-8 32768 180ms 32768 160.00ms 32768 93.30s 32768 1.56s
simple-nql-6-8 262144 13.78s 262144 13.65s NR ERROR 262144 12.69s
simple-nql-7-8 NR >2000s NR >2000s NR ERROR 12097152 99.95s
simple-nql-8-8 NR >2000s NR >2000s NR ERROR 16777216 12.18m

Part of the reason for this is that the simple-nql-8-4 and simple-nql-6-8 systems return errors.
The errors are thrown by the generalization of Fulton’s algorithm after performing too many
levels of recursion, exceeding the hard limit allowed by Maple. Because of this, it is difficult
to predict how the generalization of Fulton’s algorithm would perform against iMult, with
both algorithms using the descending variable ordering, as n increases. It is possible, without
this error, that the generalization of Fulton’s algorithm could be faster than iMult under this
ordering for sufficiently large n, but in practice, since there is no work around for this error,
iMult is clearly the better choice.

Under the ascending variable ordering, the “too many levels of recursion” error is avoided,
and we obtain a more accurate comparison. As expected, for small n, iMult outperforms the
generalization of Fulton’s algorithm, even more so than with the nql-n-d system. It also takes
longer than with the nql-n-d system, to increase n to the point where iMult experiences time-
outs. For sufficiently large n, the generalization of Fulton’s algorithm once again outperforms
iMult, similar to Table 7.5. This is best illustrated by the simple-nql-8-4 and simple-nql-7-
8 systems, where iMult experiences a timeout but the generalization of Fulton’s algorithm
terminates in 7.5 and 99.95 seconds respectively.

7.3 Concluding Remarks for Experimental Results
In both tables, the generalization of Fulton’s algorithm performs best under the ascending vari-
able ordering. For large n, the generalization of Fulton’s algorithm outperforms iMult under
the ascending variable ordering, and in the case of the nql-n-d systems, under the descending
variable ordering as well. This behaviour is indeed desirable for a standard basis-free intersec-
tion multiplicity algorithm. Unfortunately, the performance of the generalization of Fulton’s
algorithm is conditional upon the variable order chosen. So, although the generalization of
Fulton’s algorithm outperformed iMult for large n in our experiments, this performance was
dependent on the selection of a good variable ordering. This again leads us back to the dis-
cussion of Section 6.5, and the question “ what constitutes an ideal variable ordering?”. Since,
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the performance of the generalization varies so greatly by the choice of variable ordering, it is
important to know what constitutes a good variable ordering before running the generalization
of Fulton’s algorithm. Moreover, as discussed in Section 5.3, the success of the generalization
of Fulton’s algorithm may also depend on the variable ordering. Although we do not have an
answer to these questions at this time, we have two ideas of how to approach this problem,
which may be of interest to the curious reader.

First, since the generalization uses operations on polynomials to rewrite the system, we
speculate that any ordering for a given system, which improves the performance of polynomial
system solvers, would be a strong candidate to improve the performance of the generalization
of Fulton’s algorithm on that system. This of course assumes the generalization of Fulton’s
algorithm succeeds on the given ordering. If one wishes to choose a variable ordering with
instead the goal of obtaining an ordering for which the generalization of Fulton’s algorithm
succeeds, we speculate an ordering which minimizes modular degrees may be helpful. Ad-
ditionally, consider an ordering which, for each variable and each polynomial, reduces the
number of terms which are not units in the local ring, for the image of that polynomial modulo
all variables below the given variable. Or, put bluntly, consider an ordering which reduces the
number of terms which would fail to satisfy the condition in line 18 of Algorithm 3. Since
these are the terms which could cause the generalization of Fulton’s algorithm to fail, we spec-
ulate reducing the number of such terms with the choice of a variable ordering could cause the
generalization of Fulton’s algorithm to succeed. At this point, this is only speculation as more
work is needed to make these ideas concrete, although, the intuition behind these observations
is indeed quite natural and hence, we believe there is merit in these techniques for finding an
ideal variable ordering.
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Conclusion

The generalization of Fulton’s algorithm provides a powerful means of computing intersection
multiplicities without the use of standard bases. In its simplest form, as presented in Algo-
rithm 3, the generalization of Fulton’s algorithm uses only standard polynomial operations to
rewrite and split the input system. Aside from the benefits gained by avoiding standard bases,
the generalization of Fulton’s algorithm has the added benefit of being easily implementable.
Since, the generalization of Fulton’s algorithm only requires support for standard polynomial
operations, it can be easily supported in most computer algebra systems. Indeed, no special-
ized libraries or engines are needed to run the generalization of Fulton’s algorithm, making it
highly portable between computer algebra systems.

On the other hand, the more complex presentation of the generalization of Fulton’s algo-
rithm (Algorithm 4), requires support for regular chains. This more powerful version can be
applied to compute the intersection multiplicity at any point, rational or not. To our knowledge,
the generalization of Fulton’s algorithm and the algorithm of Vrbik et al. are the only algo-
rithms which support n-variate intersection multiplicity computations at any point. Since, we
have combined both of these algorithms under the IntersectionMultiplicity command
as a hybrid algorithm, the resulting procedure constitutes the only procedure which supports
n-variate intersection multiplicity computations at any point, greatly increasing the breadth of
systems that can be handled from other intersection multiplicity algorithms in the literature.

Our experimental testing indicates that the proposed algorithms can indeed be used as an
alternative to intersection multiplicity algorithms which use standard bases. Under a good
variable ordering, the generalization of Fulton’s algorithm can compute in seconds what com-
peting intersection multiplicity algorithms take over half an hour to compute. Although this
behaviour, nor the success of the partial algorithm, is guaranteed, the generalization of Ful-
ton’s algorithm nonetheless provides a viable alternative to intersection multiplicity algorithms
which use standard bases, which was previously not possible.

8.1 Future Work

In this section we briefly discuss possible research directions and improvements pertaining to
this manuscript.

64
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8.1.1 Triangular Regular Sequences
As mentioned in Section 4.5, the optimization provided for triangular regular sequences could
lead to a complete, standard basis-free, intersection multiplicity algorithm if a triangular de-
composition algorithm, which preserves intersection multiplicity and regular sequences, were
to be discovered. By applying such an algorithm, one could decompose a given system and
apply the optimization discussed in Section 4.5 to compute the intersection multiplicity at each
point in its solution set. Although finding such an algorithm would be far from trivial, we
believe this direction could be promising.

8.1.2 Jacobian Optimization
The implementation of the algorithm of Vrbik et al. is optimized for systems which have inter-
section multiplicity one. Given a system and a point p, it suffices to test whether the Jacobian
Matrix of the system is invertible at p. This optimization is implemented with the algorithm
of Vrbik et al. and amounts to great speedups when applicable. The results of Table 7.4,
which show the performance of TriangularizeWithMultiplicity using the generalization
of Fulton’s algorithm on systems with intersection multiplicity one, indicate this optimization
is worth implementing. Indeed, Table 7.4 contains several systems for which it takes minutes
to compute their intersection multiplicities using the generalization of Fulton’s algorithm, even
though all systems have intersection multiplicity one at all points in their intersection. By
implementing this optimization for systems with intersection multiplicity one, we can reduce
these times to fractions of a second.

8.1.3 Reimplementing the Algorithm of Vrbik et al.
In Chapter 7, we saw the algorithm of Vrbik et al. throw an error for many of the tests.
Although the implementation throws an error whenever the criterion it seeks to apply does not
hold, many of the errors we received were not due to this. In fact, most errors were due to an
issue with the implementation. Hence, reimplementing the algorithm of Vrbik et al. would not
only lead to a more accurate comparison, but also, a stronger overall hybrid algorithm. We also
note, that in this implementation, it would be desirable to return Fail rather than throwing an
error when the algorithm does not succeed, as the user may still want to know the intersection
multiplicity at branches which did succeed.

8.1.4 Optimal Variable Ordering
One of the most important conclusions which follows from our experiments is the importance
of the variable ordering. In Chapter 7 we observed the generalization of Fulton’s algorithm suc-
ceed and fail on the same system under different variable orderings. Moreover, we observed
the generalization of Fulton’s algorithm perform extremely well under some orderings while
performing slower under others. These observations motivate the study of different variable or-
derings as they pertain to the generalization of Fulton’s algorithm. Some properties of variable
orderings which we believe will help improve the generalization of Fulton’s algorithm were
discussed in Section 7.3.
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8.2 Summary
To conclude, we summarize the main benefits from the developments described in this manuscript.

1. The generalization of Fulton’s algorithm provides a viable alternative to intersection mul-
tiplicity algorithms which rely on standard bases. Experimentally, the generalization of
Fulton’s algorithm outperforms intersection multiplicity algorithms which use standard
bases on large polynomial systems as well as other standard basis-free intersection mul-
tiplicity algorithms.

2. By allowing points encoded by zero-dimensional regular chains as input, our modified
version of the IntersectionMultiplicity command can compute the intersection
multiplicity at any point, rational or not.

3. The optimization provided for triangular regular sequences allows one to avoid long
stacks of recursive calls, computing the intersection multiplicity immediately when ap-
plicable.

4. The simplicity of the generalization of Fulton’s algorithm (at a point) makes it easily
implementable in almost any computer algebra system.
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Appendix A

Polynomial Systems

A.1 The Author’s Examples

test 1-8:

• Variables: x1, . . . , xn for n = 3, 5, 7, 9, 11, 13, 15, 25 respectively.

• Equations: x1, x2
2, x3, . . . , xn

test 9:

• Variables: x, y, z

• Equations: xy − z, x2y3 − z, x4 − y

test 10:

• Variables: x, y, z

• Equations: x3,−x6 + y2, z4

test 11:

• Variables: x, y, z

• Equations: zy2, y5 − z2, x5 − y2

test 12:

• Variables: x1, . . . , x6

• Equations: x2
1 + x2, x2

2 + x3, x2
3 + x2

1, x
2
4 + x5, x2

5 + x6, x2
6 + x4
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A.2 Systems From The Literature
This section contains a collection of polynomial systems from [9],[3], and [26].

cbms1:

• Variables: x, y, z

• Equations: x3 − yz, y3 − xz, z3 − xy

cbms2:

• Variables: x, y, z

• Equations: x3 − 3x2y + 3xy2 − y3 − z2, z3 − 3z2x + 3zx2 − x3 − y2, y3 − 3y2z + 3yz2 − z3 − x2

mth191:

• Variables: x, y, z

• Equations: x3 + y2 + z2 − 1, x2 + y3 + z2 − 1, x2 + y2 + z3 − 1

decker1:

• Variables: x, y

• Equations: x3 + xy, y2 + y

decker2:

• Variables: x, y

• Equations: x + y3, x2y − y4

Ojika2:

• Variables: x, y, z

• Equations: x2 + y + z − 1, x + y2 + z − 1, x + y + z2 − 1

Ojika3:

• Variables: x, y, z

• Equations: x + y + z − 1, 2x3 + 5y2 − 10z + 5z3 + 5, 2x + 2y + z2 − 1

Ojika4:

• Variables: x, y, z

• Equations:
6x4z2 − 3x2y2z2 − x2z2 + 28x2z − 3y4z3 + 2y2z2 + 7y2z + z2 − 11z + 10,
x + x3z + xy2z − xz,
10y − 2x2yz − y3z − yz
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Carpasse:

• Variables: x1, x2, x3, x4

• Equations:
x2

2x3 + 2x1x2x4 − 2x1 − x3,
−x3

1x3 + 4x1x2
2x3 + 4x2

1x2x4 + 2x3
2x4 + 4x2

1 − 10x2
2 + 4x1x3 − 10y2x4 + 2,

2x2x3x4 + x1x2
4 − x1 − 2x3,

−x1x3
3 + 4x2x2

3x4 + 4x1x3x2
4 + 2x2x3

4 + 4x1x3 + 4x2
3 − 10x2x4 − 10x2

4 + 2

KSS:

• Variables: x1, x2, x3, x4, x5

• Equations: fσ(x1, . . . , x5) = x2
σ +

∑5
v=1 xv − 2xσ − 4 for σ = 1, . . . , 5.

DZ1:

• Variables: x1, x2, x3, x4

• Equations: x4
1 − x2x3x4, x4

2 − x1x3x4, x4
3 − x1x2x4, x4

4 − x1x2x3

DZ2:

• Variables: x, y, z

• Equations: x4, x2y + y4, z + z2 − 7x3 − 8x2

Solotarev:

• Variables: x1, x2, x3, x4

• Equations: 3x2
1−2x1− x3, x3

1− x2
1− x1x3 + x3−2x4−2, 3x2

2−2x2− x3, x3
2− x2

2− x2x3− x3 +2

For systems which appear in Table 7.4 we also include the variable ordering used in the
TriangularizeWithMultiplicity computations.

eco5:

• Variables: x1, x2, x3, x4, x5

• Ordering: x1 � x2 � x3 � x4 � x5

• Equations:
(x1 + x1x2 + x2x3 + x3x4)x5 − 1,
(x2 + x1x3 + x2x4)x5 − 2,
(x3 + x1x4)x5 − 3,
x4x5 − 4,
x1 + x2 + x3 + x4 + 1
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eco6:

• Variables: x1, x2, x3, x4, x5, x6

• Ordering: x1 � x2 � x3 � x4 � x5 � x6

• Equations:
(x1 + x1x2 + x2x3 + x3x4 + x4x5)x6 − 1,
(x2 + x1x3 + x2x4 + x3x5)x6 − 2,
(x3 + x1x4 + x2x5)x6 − 3,
(x4 + x1x5)x6 − 4,
x5x6 − 5,
x1 + x2 + x3 + x4 + x5 + 1

eco7:

• Variables: x1, x2, x3, x4, x5, x6, x7

• Ordering: x1 � x2 � x3 � x4 � x5 � x6 � x7

• Equations:
(x1 + x1x2 + x2x3 + x3x4 + x4x5 + x5x6)x7 − 1,
(x2 + x1x3 + x2x4 + x3x5 + x4x6)x7 − 2,
(x3 + x1x4 + x2x5 + x3x6)x7 − 3,
(x4 + x1x5 + x2x6)x7 − 4,
(x5 + x1x6)x7 − 5,
x6x7 − 6,
x1 + x2 + x3 + x4 + x5 + x6 + 1

trinks:

• Variables: x, y, z, t, u, v

• Ordering: x � y � z � t � u � v

• Equations: 45y + 35u − 165v − 36,
35y + 25z + 40t − 27u,
25yu − 165v2 + 15x − 18z + 30t,
15yz + 20tu − 9x,
−11v3 + xy + 2zt,
−11uv + 3v2 + 99x

Czapor Geddes 1:

• Variables: x1, x2, x3, x4, x5

• Ordering: x � y � z
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• Equations: 8x2 − 2xy − 6xz + 3x + 3y2 − 7yz + 10y + 10z2 − 8z − 4,
10x2 − 2xy + 6xz − 6x + 9y2 − yz − 4y − 2z2 + 5z − 9,
5x2 + 8xy + 4xz + 8x + 9y2 − 6yz + 2y − z2 − 7z + 5

A Bifurcation Problem:

• Variables: x1, x2, x3

• Ordering: x1 � x2 � x3

• Equations: 5x9
1 − 6x5

1x2 + x1x4
2 + 2x1x3,−2x6

1x2 + 2x2
1x3

2 + 2x2x3, x2
1 + x2

2 −
17
64

quadfor2:

• Variables: x1, x2,w1,w2

• Ordering: x1 � x2 � w1 � w2

• Equations: w1 + w2 − 1,w1x1 + w2x2,w1x2
1 + w2x2

2 −
2
3 ,w1x3

1 + w2x3
2

Lorentz:

• Variables: x1, x2, x3, x4

• Ordering: x1 � x2 � x3 � x4

• Equations: x1x2−x1x3−x4 +1, x2x3−x2x4−x1 +1,−x1x3 +x3x4−x2 +1, x1x4−x2x4−x3 +1

S9 1:

• Variables: a, b, c, d, e, f , g, h

• Ordering: a � b � c � d � e � f � g � h

• Equations:
−eg − 2dh,
9e + 4b,
−4ch − 2e f − 3dg,
−7c + 9a − 8 f ,
−4d f − 5cg − 6h − 3e,
−5d − 6c f − 7g + 9b,
9d + 6a − 5b,
9c − 7a + 8

cyclic3:

• Variables: x1, x2, x3

• Ordering: x1 � x2 � x3

• Equations: x1 + x2 + x3, x1x2 + x1x3 + x2x3, x1x2x3 − 1
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nql-n-d:

• Variables: x1, . . . , xn

• Equations: xd
1, x

d
i + x

d
2
i − xi−1 for i = 2, . . . , n.

simple-nql-n-d:

• Variables: x1, . . . , xn

• Equations: xd
1, x

d
i − xi−1 for i = 2, . . . , n.

Since the iMult command only computes the intersection multiplicity at the origin, the
nql-n-d and simple-nql-n-d systems have been modified from their traditional presentation.
Traditionally, the first equation in both systems would be xd

1−2 rather than xd
1. This modification

is not negligible since it does change the intersection multiplicity of the traditional systems have
intersection multiplicity 1 at all points for all positive values n, d.
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