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Abstract 

Breast cancer is the second most diagnosed cancer in women, estimated to affect 1 in 8 women 

during their lifetime. About 10% to 20% of new breast cancer cases are diagnosed with locally 

advanced breast cancer (LABC). LABC tumors are usually larger than 5 cm and/or attached to 

the skin or chest wall. It has been reported that when such cases are treated with surgery alone, 

metastasis and mortality rates are high, especially where skin involvement or attachment to the 

chest wall is extensive. As such, efficient treatment for this kind of breast cancer includes 

neoadjuvant chemotherapy (NAC) to shrink the tumor and detach it from the chest wall 

followed by surgery. Several studies have shown that there is a strong correlation between 

response to NAC and improved treatment outcomes, including survival rate. Unfortunately, 

30% to 40% of patients do not respond to chemotherapy, hence losing critical treatment time 

and resources. Predicting a patient’s response at the early stages of treatment can help 

physicians make informed decisions about whether to continue the treatment or use an 

alternative treatment if a poor response is predicted. Such early and accurate response 

prediction can shorten the wasted time and reduce resources dedicated to patients while they 

endure significant side effects. Therefore, it is important to identify this group of non-responder 

patients as early as possible so that they can be prescribed alternative treatments. Current 

methods for evaluating LABC response to NAC are based on changes in tumor dimensions 

using physical examinations or standard anatomical imaging. Such changes may take several 

months to be detectable. Studies have shown that there is a correlation between LABC response 

to NAC and tumor softening. In other words, in contrast to responder patients where tumor 

stiffness generally decreases in response to NAC, in non-responder patients the stiffness of the 

tumor increases or does not change significantly. As such, a reliable and widely available breast 

elastography technique can have a major impact on the effective treatment of LABC patients. 

In this study, we first develop a tissue-mechanics-based method for improving the accuracy of 

ultrasound elastography. This method consists of 3 steps that are applied to the displacement 

fields generated from conventional motion-tracking methods. These three steps include: 

smoothing the displacement fields using Laplacian filtering, enforcing tissue incompressibility 

equation to refine the displacement fields, and finally enforcing tissue compatibility equation 

to refine the strain fields. The method was promising through validation using in silico, 
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phantom, and in vivo studies. A huge improvement of this method compared to other motion-

tracking methods is its ability in generating lateral displacement with high accuracy. This 

becomes especially important when the displacement and strain fields are used as inputs to an 

inverse-problem framework for calculating the stiffness characteristics of tissue, for example, 

Young’s modulus. We then use this enhanced ultrasound elastography technique to assess the 

response of LABC patients to NAC based on monitoring the stiffness of their tumors 

throughout the chemotherapy course. Our results show that this method is effective in 

predicting patients’ responses accurately as early as 1 week after NAC initiation.  

Keywords 

Biomechanics, Breast Cancer, Chemotherapy, Diagnosis, Early Detection, Elastography, 

Finite Element Modeling, Full Inversion, Iterative Method, Locally Advanced Breast Cancer, 

Motion-tracking Method, Neoadjuvant Chemotherapy, Optimization, Regularization, Tumor 

Response Evaluation, Ultrasound Imaging, Ultrasound Elastography 
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Summary for Lay Audience 

Breast cancer is the most diagnosed type of cancer and the second leading cause of cancer-

related deaths in women. In 2020, it was estimated that more than 27,000 new invasive breast 

cancer cases to be diagnosed in women while 5100 women were predicted to die from this 

disease in Canada. Breast cancer tumor development is associated with considerable 

interaction with stromal cells, extracellular matrix, and connective tissue. As such, breast 

cancer is associated with significant changes in tissue biomechanical properties.  

Out of patients struck with breast cancer, 10% to 20% are diagnosed with locally advanced 

breast cancer (LABC). Current treatments for LABC include neoadjuvant chemotherapy 

(NAC), followed by mastectomy or lumpectomy. The NAC is administrated to shrink the 

tumor and detach it from the chest wall so that it becomes operable. While the response to 

chemotherapy has demonstrated a strong correlation with overall treatment outcomes and 

patients’ survival, unfortunately, 30% to 40% of patients do not respond to chemotherapy. 

Therefore, it is important to identify this group of non-responder patients as early as possible 

so that they can be prescribed alternative treatments. The current methods for evaluating LABC 

response to NAC is based on changes in tumor dimensions using physical examinations or 

standard anatomical imaging. However, changes in tumor size after NAC may take several 

months to be detectable, and in some cases, they do not become apparent despite a positive 

histological outcome. Studies have shown that, generally, there is a correlation between LABC 

response to NAC and tumor softening. In other words, in contrast to responder patients where 

tumor stiffness generally decreases in response to NAC, in non-responder patients the stiffness 

of tumor increases or does not change significantly.  

Ultrasound (US) Elastography is a non-invasive imaging modality developed for tissue 

stiffness mapping. This imaging modality can potentially be used as a clinically viable 

diagnostic tool to detect and characterize mechanical properties of breast cancer tumors 

including stiffness changes over time. The primary purpose of our long-term study is to 

develop novel methods for US elastography to improve its accuracy and reliability in the 

clinical setting. Once developed, we applied the methods using clinical data acquired through 

an observational study on LABC patients who underwent NAC. Results obtained from this 

study are used to assess the efficacy of our enhanced US elastography technique in evaluating 
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LABC patient response soon after the start of NAC. According to these results, our method is 

successful in assessing this response as soon as 1 week after the start of NAC. 
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Chapter 1  

1 Introduction 

1.1 Background and Motivation 

1.1.1 Breast Cancer 

The most common cancer diagnosed in Canadian women is breast cancer (excluding non-

melanoma skin cancers) [1]. This type of cancer has the second-highest mortality rate 

among cancer-affected women, after lung and bronchus [2]. While it can also occur in men, 

its incidence rate in the male sex is low [1]. 27,700 Canadian women were estimated to be 

diagnosed with breast cancer in 2021, representing 25% of all women’s cancer cases. 

Furthermore, in the same year, it was estimated that breast cancer would claim the lives of 

5,400 Canadian women, 13% of all cancer deaths among women [1]. The daily estimation 

of new breast cancer cases and deaths from breast cancer are 76 and 15 Canadian women, 

respectively. Additionally, Canadian men were estimated to develop breast cancer at a rate 

of 260 per year with 55 of them dying from the disease in 2021 [1]. 

The female breast contains three different types of tissue: fibrous (or connective) tissue, 

glandular tissue, and fatty tissue [3]. The proportion of each of these tissue types differs 

from person to person. If a person has dense breasts, it implies that she has more fibrous 

and glandular tissue and less fatty tissue. The fibroglandular tissue in the breast includes 

15 to 20 lobes, each including several lobules, where milk is made. Lobules are connected 

to the ducts that lead out to the nipple.  

Breast cancers are mostly originated from the cells that make up the lobules and terminal 

ducts. This happens when the cells proliferate and divide uncontrollably, resulting in a 

mass of tissue known as a tumor. Cancerous cells can be either in situ or invasive based on 

whether they penetrate through the basement membrane. Lobular carcinoma in situ (LCIS), 

a type of cancer that only develops in the female breast, originates from the terminal duct 

lobular units, whereas, in ductal carcinoma in situ (DCIS) the cancerous cells start 

developing inside a milk duct in the breast [4]. In both of these cancer types, the cancer 

cells are confined to the area where they initially formed. On the other hand, in invasive 
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ductal and lobular carcinoma (IDC and ILC), the cancerous cells can spread into the breast 

tissue and nearby lymph nodes and beyond. Invasive breast cancers can have different 

features and develop in different ways. While less common than other forms of breast 

cancer, these cancers can be more serious.  

Receptors are a special class of proteins that are attached to specific substances in the blood. 

All normal breast cells, as well as some breast cancer cells, have estrogen and progesterone 

receptors which are needed for the cells to grow. One type of categorizing breast cancer is 

based on the protein receptors that the breast cancer cells have. They may have estrogen 

receptors (ER-positive or ER+), progesterone receptors (PR-positive or PR+), human 

epidermal growth factor receptor (HER2-positive or HER2+), or a combination of them. 

HER2 protein has a great role in growing cancer cells. If the breast cancer cells have any 

of the above-mentioned receptors, hormone therapy can be prescribed. Inflammatory breast 

cancer is another aggressive type of invasive breast cancer where cancer cells block the 

lymph vessels in the skin, making the breast appear red and swollen. This rare condition 

accounts for only 1% to 5% of all breast cancer cases.  

When a breast cancer has advanced locally but has not yet spread beyond the breast and 

local lymph nodes, it is called locally advanced breast cancer (LABC). LABC is 

characterized by large breast tumors (i.e., more than 5 centimeters in diameter), cancers 

that include the skin of the breast or the underlying muscles of the chest, or any size of 

tumor with multiple local lymph nodes involvement. Inflammatory breast cancer is also 

considered as LABC [5]. LABC does not include breast cancers that have distant metastatic 

spread [6]. Overall, this type of cancer includes a heterogeneous group of tumors with 

different characteristics and behaviors. This makes the management and treatment of 

LABC very challenging. Despite surgeons’ best efforts to remove locoregional 

dissemination of the tumor, a high rate of locoregional and systemic failure has been seen 

[7], [8]. Therefore, other different treatment strategies have been used for LABC over the 

past several decades. The results of these treatments showed that multi-modality treatment 

approaches (surgery, chemotherapy, radiotherapy, hormonal and targeted therapy) can 

increase 5-year survival rate [9]–[11]. This type of cancer constitutes 10% to 20% of all 

diagnosed breast cancer cases [12].  
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1.1.2 Breast Cancer Screening, Detection, and Diagnosis  

Early detection of breast cancer offers more treatment options and a higher chance of 

survival. Breast cancer patients who are diagnosed early have a survival rate higher than 

97 percent in the first five years following diagnosis [13], [14]. Therefore, detecting breast 

abnormalities as early as possible is crucial for improvement of treatment outcome and 

increasing survival rate.  

Breast cancer screening is usually done via physical examinations and screening 

mammography. In case of dense breasts, ultrasound (US) or magnetic resonance imaging 

(MRI) may be used for screening. Breast cancer screening is suggested to be done on 

people who are at risk of getting cancer but have no symptoms. Ontario Breast Screening 

Program (OBSP) recommends that most women in age 50 to 74 be screened every 2 years 

with mammography. For women in age 30 to 69, those who are known to have gene 

mutation, are a first-degree relative of someone with a gene mutation, have a personal or 

family history of breast or ovarian cancer, have had radiation therapy to the chest before 

age 30 and at least 8 years ago are also recommended to be referred to the high risk OBSP 

for further screening. Signs and symptoms of breast cancer include but are not limited to 

discovering a lump in the breast, swelling or asymmetry of the breast, changes in the nipple, 

erythema or ulceration in the skin, and axillary mass [15]. Up to 50% of women with breast 

complaints, however, do not present with any physical signs of breast pathology [16]. In 

case a suspicious lump is observed in screening, other imaging modalities may be used to 

characterize it for detecting breast cancer . The most common modalities used for breast 

cancer detection are diagnostic mammography if the breast is not too dense, US, and MRI. 

Although these modalities can potentially indicate whether a lesion is highly suspicious for 

malignancy, the gold standard approach to diagnose a malignant tumor is biopsy. Biopsy 

is also done to characterize the breast cancer in terms of grade, molecular features/subtypes, 

etc. for treatment planning. The result of all these diagnostic methods is described using a 

standard approach known as BI-RADS (Breast Imaging Reporting and Data System), 

which divides the results into six categories that are summarized in Table 1-1 [17], [18]. 
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Table 1-1: BI-RADS categories description [17], [18] 

BI-RADS 

Category 

Assessment Management/recommendation 

0 Incomplete evaluation Further imaging required 

1 Negative examination  

2 Benign  

3 Probably benign (non-palpable 

and circumscribed mass on a 

baseline mammogram) 

Short-interval follow-up 

4 Suspicious abnormality: 

4A: low probability of 

malignancy (2%-10%)  

4B: intermediate probability of 

malignancy (10% to 50%) 

4C: high probability of 

malignancy (50% to 95%) 

Biopsy 

5 High probability of malignancy 

(>95%) 

Biopsy 

6 Pathology proven malignancy Treatment ongoing 

 

 

1.1.2.1 Physical and Clinical Breast Exam 

Breast examination includes inspection, palpation, and lymph node exam. During 

inspection, shape, size, and symmetry characteristics of the breasts are recorded. The 
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clinician also records any evidence of edema, erythema or ulceration of skin or the nipple. 

The breast is then carefully and gently palpated. During palpation, the type of the tumor 

(malignant or benign) can sometimes be determined based on some features of the 

identified lesions. For example, most of benign lesions have very regular borders, whereas 

cancerous lesions tend to be irregular in shape [19]. Also, a very stiff lesion is most likely 

malignant, while benign lesions show more deformability and rubbery behavior [20]–[23]. 

Although these characteristics can better be identified through more advanced detection 

methods such as mammography or ultrasound, they can be beneficial for early detection or 

self-examination. 

1.1.2.2 Mammography 

Mammography involves acquiring X-ray images of the breast with low radiation doses. 

This imaging modality can potentially detect both cancerous (malignant) and non-

cancerous (benign) tumors in the breast. Mammograms, which are images obtained using 

this modality, can be helpful in finding small lumps in the breast that cannot be sensed by 

hand during physical examination. However, they are known to be insufficient for early 

diagnosis of breast cancer in women who have a higher risk of cancer in their family or 

have a Breast Cancer (BRCA) gene mutation. Breast cancer can be detected at an early 

stage by  annual screening mammography, which monitors changes in the breast over time 

[14]. Subsequently, diagnostic mammography is used as a complementary modality for 

more accurate diagnosis. While effective for screening, mammogram interpretation is one 

of the most technically challenging areas of radiology, especially in dense breasts. This 

stems from that the X-ray attenuation coefficient of breast cancers and fibroglandular 

tissues are similar. For this reason,  clinicians look for regions with microcalcification and 

shape irregularity that are usually signs of malignancy [24]. This makes it complex for the 

radiologist to identify the cancerous areas. It has been observed that women with dense 

breasts are more likely to develop breast cancer [25]–[27] while about half of breast cancers 

in women with dense breasts are missed by mammograms [28], [29]. Therefore, it is 

important for women with dense breasts to be screened by supplemental imaging 

techniques such as ultrasound or MRI which are better at distinguishing fibroglandular 

tissue and cancerous tissue.  
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1.1.2.3 Breast Ultrasound  

Ultrasound imaging of the breast was first described in 1951 [30]. For the diagnosis and 

management of breast abnormalities, ultrasound can be a useful adjuvant to mammography 

[31]. A brightness mode (B-mode) ultrasound image is a cross-sectional image that depicts 

the body’s tissues and organ borders. It is made up of echoes created by ultrasonic waves 

reflecting at tissue boundaries and scattering from other small structures within tissues. The 

term B-mode refers to the relationship between the brightness of the image at each place 

and the strength or amplitude of the echo. B-mode images can provide information on the 

shape and internal structure of lesions from various planes with great resolution in both 

fatty and dense breasts. Furthermore, other novel technologies associated with ultrasound 

has distinguished it from other imaging techniques. These technologies include ultrasound 

elastography, contrast-enhanced ultrasound, three-dimensional ultrasound, and automatic 

breast ultrasound. Among these technologies, ultrasound elastography is the focus of this 

thesis and will be further discussed in Section 1.2.2 of this chapter. 

1.1.2.4 Breast Magnetic Resonance Imaging (MRI) 

MRI scans the distribution and magnetic properties of hydrogen atoms within human tissue 

by using repetitive radiofrequency pulses in conjunction with precise spatial modulation of 

a high magnetic field. With sensitivity ranging between 81% and 100% and specificity of 

around 97%, it is known to have the highest accuracy for breast cancer detection compared 

to other imaging modalities [32], [33]. Although ultrasound does not have any 

supplemental value and information when MRI is used, it still outperforms MRI in being 

cost-effectiveness and accessible, especially for women at lower risk.  

1.1.2.5 Biopsy 

If an area is identified as suspicious, a breast biopsy may be recommended. This is when 

the assessment of breast cancer is assigned to BI-RADS 4 or 5. During breast biopsy, a 

sample of breast tissue is removed for histopathology to confirm a malignancy and 

determine the receptor status, molecular features, grade, and extent of the cancer. 

Specifically, sentinel node biopsy can be used to see if cancer has progressed beyond the 
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primary tumor location and into the lymphatic system. Fine-needle aspiration biopsy 

(FNAB), which involved aspirating a small amount of tissue with a very thin needle, is 

frequently used to confirm the diagnosis before a treatment is planned. Core needle biopsy 

(CNB) is another type of biopsy which uses a larger needle for sampling the suspicious 

areas. To accurately localize the suspicious area, the radiologist often utilizes other imaging 

techniques such as ultrasound, MRI, or positron emission tomography (PET) as a guidance 

for biopsy [34]–[38]. In some rare cases a surgical biopsy is required in which the breast 

mass is surgically removed [39]. Although both FNAB and CNB have shown high 

sensitivity (87% and 74%, respectively) and specificity (98% and 96%, respectively) in 

cancer diagnosis [40], it is an invasive method and carries potential risks and side effects. 

Nevertheless, it is the gold standard method to confirm that a lesion is malignant and is 

required for treatment planning. 

1.1.3 Breast Cancer Treatment 

The treatment of breast cancer mostly depends on the subtype and stage of the cancer [41]. 

It also depends on age, general health, menopausal status, and genetic factors. TNM staging 

system is used for most types of cancer. This system uses letters and numbers to describe 

the tumor (T), lymph nodes (N), and whether or not the cancer has spread or metastasized 

(M) [42]. Additionally, for some cancer types, other factors such as grade, biomarker, and 

tumor genetics can be included in the staging of the cancer. Generally, for most of the 

cancers, severity is characterized through a number (stage 0 to IV), with 0 being cancer in 

situ, and IV being advanced or metastatic cancer.  

Stage of the breast cancer as well as the tumor’s type are important for planning out its 

treatment and management. Surgery, radiation therapy, chemotherapy, hormonal therapy, 

targeted therapy, and immunotherapy are among treatment options for breast cancer. For 

example, for early-stage invasive breast cancer or DCIS, surgery is recommended to 

remove the tumor before it grows further, while for LABC which is characterized by larger 

tumors, chemotherapy, radiotherapy, or hormonal therapy is recommended before the 

surgery. This is called neoadjuvant therapy. This method of treatment makes the surgery 

feasible because the tumor shrinks as a result of preoperative therapy. Another advantage 
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of neoadjuvant therapy is potentially paving the way to a less invasive of lumpectomy 

instead of mastectomy. Furthermore, in case there is any microscopic distant disease, it 

will be treated early on, hence potentially preventing cancer recurrence.  

The effectiveness of therapy on cancer cells is measured in terms of “response”. There 

were various efforts in defining standardized response assessment criteria. World Health 

Organization (WHO) criteria was the first large scale published criteria [43]. This criterion 

described how to measure the lesion in detail. The size of the lesion was calculated as two-

dimensional measure with multiplication of longest diameter by its perpendicular one [43]. 

Response Evaluation Criteria in Solid Tumors (RECIST) was later introduced [44]. In this 

criterion, the response rate was measured using unidimensional measurement of the tumor 

as opposed to the bidimensional measurement in WHO criteria [44]. In addition, one of the 

most important indicators of response  is tumor histopathological change (based on residual 

tumor cellularity) after neoadjuvant chemotherapy (NAC) [45], [46]. In some cases, tumor 

shrinkage is not evident on standard imaging despite a histopathological response. Hence, 

some studies [47], [48] have applied a modified response grading system that is based on 

RECIST [44] and histopathological criteria [45]. It has been shown that there is a 

significant correlation between the patient’s response to NAC and treatment outcome, 

which leads to improved survival rate [49]–[52]. However, less than 30% of patients show 

complete response to standard chemotherapy while about 30% to 40% of the patients are 

complete non-responders [53]–[58]. Techniques used for breast cancer diagnosis can 

potentially be used to monitor and assess the patient’s response with variable degrees of 

effectiveness. Predicting patients’ response accurately and as early as possible after NAC 

initiation may allow clinicians to make treatment adjustments. More details about different 

techniques in this context will be provided in Section 1.2.1 of this chapter and Chapter 3.     

1.2 Theory 

This thesis is founded on several background topics. In this section, an overview of these 

topics is provided. 
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1.2.1 Elastography 

Elastography is a novel non-invasive imaging technique that involves generating images 

of tissue mechanical properties (elastograms). This technique involves measurement of 

tissue deformation using specialized imaging modalities while an external mechanical 

force is applied to the tissue. While other imaging modalities such as MRI have been used 

for measuring tissue deformation, ultrasound elastography (USE) has emerged in clinic 

because of its wide availability and relatively low cost. USE was first introduced and 

described in the 1990s [59] but has been further developed in recent years. Currently 

available UE techniques in the clinic can generally be classified into two groups of quasi-

static and shear wave imaging. Other elastography techniques such as linear elastography 

and non-linear elastography (hyper elastography) have been also investigated to obtain 

more accurate elastograms that can potentially be used in more sensitive diagnostic 

applications.  

To generate elastograms, tissue elasticity needs to be measured. In an entirely elastic 

material, elasticity can be described by Hooke’s law as shown in Equation (1-1) [60]. In 

this equation, 𝜎 and 𝜀 are the stress and strain tensors, respectively and 𝐶 is the Christoffel 

rank-four tensor consisting of 21 independent elastic constants [61]–[63]. 

𝜎 = 𝐶𝜀     (1-1) 

Depending on the method of deformation, three main types of elastic moduli: Young’s 

modulus (E), shear modulus (G), and bulk modulus (K) can be considered. The magnitude 

of elastic modulus directly relates to the stiffness. The greater the elastic modulus the lower 

the material’s tendency to deform, hence, the stiffer the material. In the following, different 

types of elastography methods in which different elastic moduli are measured will be 

further discussed in detail. 

1.2.1.1 Ultrasound Shear Wave Elastography 

In Shear Wave Elastography (SWE), a quantitative measurement of tissue stiffness is 

estimated using the propagation velocity of shear waves inside the tissue. This is done by 

generating shear waves using high-intensity pulses from the ultrasound transducer and 
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propagating them into the tissue perpendicular to the ultrasound beam. The shear wave 

speed (𝐶𝑠) can then be related to the shear modulus (G) using Equation (1-2) in which 𝜌 is 

the material’s density.  

𝐶𝑠 = √
𝐺

𝜌
          (1-2) 

Young’s modulus (E) can also be measured in this technique using the relationship between 

E and G which is as follows [64]:  

𝐸 = 2(𝜈 + 1)𝐺     (1-3) 

In the equation above, 𝜈 is the Poisson’s ratio which is usually approximated as 0.5 in soft 

tissues. The reason for this approximation will be discussed in section 1.2.3.1. To 

summarize, in SWE, an acoustic radiation force is induced into the tissue, leading to a shear 

wave traveling through the tissue. Ultrasound imaging can then be used to see how fast this 

wave travels through breast tissue, leading to an estimation for the stiffness of the tissue  

and creating elasticity images [65]. 

1.2.1.2 Ultrasound Strain Elastography 

In strain imaging, the normal strain as a result of an applied normal stress to the tissue is 

measured. The measured strain can be imaged and used for assessment of tissue stiffness. 

The normal stress is applied to the tissue via quasi-static stimulation of the tissue with an 

ultrasound transducer while the RF data is being acquired. Using two RF data frames 

corresponding to two compression states, the tissue displacement can be estimated [66]–

[69]. The tissue strain image is then calculated by spatially differentiating the displacement 

fields. Assuming all tissue experiences uniform stress distribution, a region with higher 

stiffness experiences less strain (deformation) than softer surrounding regions. This 

information can be used for detecting a hard lesion within the tissue. While strain imaging 

mostly relies on the derivative of the displacement which is in the same direction as the 

external load, i.e., axial displacement, the displacement perpendicular to the direction of 

external load or the lateral displacement field can also be useful in reconstructing more 
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accurate elastograms for the purpose of linear elastography. More on this type of 

elastography will be discussed in Section 1.2.1.3.  

Several methods exist to estimate axial and lateral displacements using US radiofrequency 

(RF) data, however, the influence of noise on displacement estimation remains a problem, 

hence encouraging the development of noise reduction techniques necessary for image 

reconstruction. Current efforts for noise reduction are based on US signal processing or 

dedicated offline algorithms. On the US side, [70] and [71] introduced non-axial 

oscillations/modulations in their respective imaging point spread functions, and [72] where 

angular compounding is used to improve lateral displacements. Offline, algorithms focus 

on time delay estimation (TDE) [67], [73]–[80]. TDE methods can be categorized into 

regularized optimization-based, and window-based approaches. More details on these 

methods will be discussed in Chapter 2. While the current motion tracking methods can 

produce reasonably accurate axial displacement maps, the accuracy of their lateral 

displacements are generally low. The reason is that lateral resolution is usually not as good 

as axial resolution; because while axial resolution is limited by the ultrasound system and 

transducer frequency, the limiting factor for lateral resolution is the beam width. At their 

core, the motion-tracking techniques rely on regularization through imposing tissue 

continuity and various field smoothness criteria. Utilizing tissue mechanics constraints 

such as incompressibility, compatibility and tissue 3D deformation models have not been 

rigorously investigated for formulating more effective regularization to find more accurate 

2D displacement fields. In Chapter 2 of this thesis, a tissue mechanics-based algorithm will 

be introduced that uses an initial estimation of axial and lateral displacements generated 

from any motion-tracking method before using tissue mechanics principles as constraints 

to further refine the axial and lateral displacement fields. The initial estimation of 

displacement field in this work is obtained from a previously developed technique called 

Global Ultrasound Elastography (GLUE) [74]. Furthermore, the results of this method will 

be compared to one of the current state-of-the-art motion tracking methods called Second-

order Ultrasound Elastography (SOUL) [81]. Below, an overview of each of these 

techniques will be given. 
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1.2.1.2.1  Global Ultrasound Elastography (GLUE) 

Global Ultrasound Elastography (GLUE) [74] is a regularized optimization-based 

approach that utilizes two consecutive frames of RF data, one before the deformation of 

the tissue, and one after that, to calculate the corresponding axial and lateral displacement 

fields. In this method, the cost function incorporates similarity of echo amplitudes and 

displacement continuity. In the first step of this method, dynamic programming (DP) is 

used to calculate an initial integer displacement estimate. After that, DP estimates are 

refined by minimizing a cost function that incorporates first-order displacement continuity 

of the whole field. The novelty of this method is that it globally calculates TDE of all the 

RF data simultaneously. Although, this simultaneous estimation allows a significant 

improvement in the quality of both axial and lateral displacement, it only uses first-order 

continuity in the cost function, thus strain continuity is not considered. Furthermore, there 

is no evidence that the displacements generated using this technique follow tissue 

mechanics principles reasonably accurately. Therefore, further investigation is needed to 

develop techniques capable of generating more accurate displacement fields. 

1.2.1.2.2 Second-order Ultrasound Elastography (SOUL) 

Second-order Ultrasound Elastography (SOUL) [81] is another regularized optimization-

based technique that, similar to GLUE, starts with obtaining an initial estimate of 

displacements using DP. However, the cost function for SOUL incorporates both first-

order and second-order regularization terms. With this change in the cost function, the 

applied constraint represents the mechanics of tissue deformation more accurately. This 

method can potentially result in more accurate displacement and strain fields, however, the 

focus of that is the deformation data in the axial direction while estimation of the lateral 

displacement field still has room for improvements. 

1.2.1.3 Linear Elastography 

While strain imaging has been shown to be useful for some clinical applications [68], [69], 

[82], uniform stress distribution is an unrealistic assumption as tissue heterogeneity and 

irregular loading on the organ’s surface lead to a non-uniform stress distribution. 

Therefore, its accuracy in mapping tissue stiffness is limited. As such, more advanced 
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techniques have been developed to image more reliable measures of tissue stiffness (e.g., 

Young’s modulus) using the measured displacement field. Several studies have 

investigated different methods for estimating non-uniform distribution of stress which 

allow the mechanical properties (stiffness) of the tissue to be measured [83]–[86]. 

Commonly, this is done via tissue mechanical simulation formulated from well-established 

physical laws and provide equations that relate the biomechanical properties (shear 

modulus, Poisson’s ratio, anisotropy, viscosity, non-linearity, and poroelasticity) to the 

measured mechanical response. Having infinitesimal deformations, linear elastic behavior 

for soft tissues is a valid assumption. In this case, the strain and stress tensor can be related 

as shown in Equation (1-1). It is difficult to solve these equations on irregular and complex 

geometries; therefore, numerical methods such as finite-element method (FEM) are used 

to solve for elastic constants and determine the distribution of stiffness throughout the 

tissue. As mentioned in the previous section, accurate reconstruction of a tissue’s relative 

Young’s modulus (YM) image requires accurate tissue displacement, and strain data in 

both axial and lateral direction. Therefore, improving the accuracy of these fields can have 

a significant impact on the quality of the reconstructed elastograms. 

1.2.1.4 Non-linear Elastography 

The stress-strain relationship in soft tissues can only be assumed as linear within a small 

range of deformation. For higher range of deformation or strain, soft tissue exhibits 

intrinsic or geometric non-linearity. Intrinsic non-linearity is related to the physiological 

components of the tissue while geometric non-linearity is defined as the change in stiffness 

due to load redistribution corresponding to significant change in geometry [87]. As such, 

most investigations and available data in the literature is based on applying small 

deformation (strain less than 10%) to the soft tissue to be able to use the linear assumption 

for strain imaging and modulus reconstruction. However, tissue non-linear behavior is 

known to be useful for representing the tissue mechanical properties more accurately [88], 

[89]. Nonlinear elastography aims at reconstruction of tissue hyperelastic parameters. This 

can be done using iterative data inversion techniques.  
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1.2.2 Mechanics Principles 

1.2.2.1 Incompressibility Condition 

An incompressible material is a material that preserves its volume when it undergoes 

deformation. Since for a mechanical body, the divergence of the displacement vector 

relates to the change in the volume, an equivalent condition for a material to be 

incompressible is that the divergence of the displacement field is zero. This can be written 

as Equation (1-4) in cartesian coordinates. 

𝛻 ∙ 𝑈(𝑥, 𝑦, 𝑧) = 𝜕𝑢𝑥/𝜕𝑥 + 𝜕𝑢𝑦/𝜕𝑦 + 𝜕𝑢𝑧/𝜕𝑧 = 0   (1-4) 

For such material, the Poisson’s ratio which is a measure of Poisson effect is usually 

approximated at ~0.5. Poisson effect is the tendency of a material to expand in directions 

that are perpendicular to its compression direction. Fluids such as water are known to be 

incompressible, thus, soft tissue which mostly consists of water can be approximated as a 

nearly-incompressible material. 

1.2.2.2 Compatibility Condition 

A compatible material is a body that deforms without creating any gaps or overlaps. 

Consequently, compatibility conditions are mathematical conditions that indicate whether 

or not a certain deformation will result in a compatible state for the material. Such 

deformation (or strain) is called a compatible strain tensor field which ascertains that the 

material stays together after the deformation and the material’s displacement field is single-

valued and continuous. The 2-D compatibility equation (Equation (1-5)) shows the 

relationship between the strains in a two-dimensional case for a compatible material.  

𝜕2𝜀𝑥𝑥

𝜕𝑦2 +
𝜕2𝜀𝑦𝑦

𝜕𝑥2 = 2
𝜕2𝜀𝑥𝑦

𝜕𝑥𝜕𝑦
    (1-5) 

1.2.2.3 Boussinesq Stress Distribution 

In 1885, Boussinesq introduced a solution for determining the distribution of the stress in 

a homogeneous and isotropic solid that can be modeled as semi-infinite mediun [90]. A 

homogeneous solid is the one that consists of only one material, or the mechanical 
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properties remain the same throughout the solid. The solid is considered to be isotropic if 

its mechanical properties do not depend on the direction of loading. Finally, a semi-infinite 

model has a single plane surface and extends to infinity in all directions. The Boussinesq 

stress equations are calculated as a result of a point load applied to the surface. Stresses in 

x, y, and z directions can be calculated using Equations (1-6), (1-7), and (1-8). In these 

equations, (𝑥0, 𝑦0, 𝑧0)  and (𝑥, 𝑦, 𝑧) are the coordinates of points T and P shown in Figure 

Figure 1-1, respectively, while r is the Euclidean distance between them.  

 

Figure 1-1. A schematic of a semi-infinite medium under a point load 

 

𝜎𝑥𝑥 =
𝑃

2𝜋
{
3(𝑧0 − 𝑧)(𝑥0 − 𝑥)2

𝑟5

− (1 − 2𝜈) [
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𝑟(𝑟2 − (𝑧0 − 𝑧)2)(𝑟 + (𝑧0 − 𝑧))

−
(𝑦0 − 𝑦)2(𝑧0 − 𝑧)
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]} 

          (1-6) 

𝜎𝑦𝑦 =
𝑃

2𝜋
{
3(𝑧0 − 𝑧)(𝑦0 − 𝑦)2

𝑟5

− (1 − 2𝜈) [
(𝑦0 − 𝑦)2 − (𝑥0 − 𝑥)2

𝑟(𝑟2 − (𝑧0 − 𝑧)2)(𝑟 + (𝑧0 − 𝑧))

−
(𝑥0 − 𝑥)2(𝑧0 − 𝑧)

𝑟3(𝑟2 − (𝑧0 − 𝑧)2)
]} 

          (1-7) 

𝜎𝑧𝑧 =
3𝑃

2𝜋

(𝑧0 − 𝑧)3

𝑟5
 

          (1-8) 
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Furthermore, it is noteworthy that in these equations it is assumed that the solid is 

weightless, unstressed, and obeys Hooke’s law. The solution developed by Boussinesq 

takes advantage of zero displacement, strain, and stress boundary conditions at the 

boundaries of the semi-infinite medium. 

1.3 Literature Review 

As mentioned earlier in this chapter, evaluating patient’s response is important specially 

for LABC patients who are prescribed with multi-modality treatments. Current methods 

for this evaluation involve either conventional (standard) methods such as monitoring 

tumor size changes, and other novel investigational methods such as functional, metabolic, 

or molecular changes. Monitoring tumor size changes can be done using physical 

examination or standard anatomical imaging such as mammography, B-mode ultrasound 

imaging, or MRI. The major problem with these conventional methods is that such changes 

may take several months to become detectable. Therefore, they cannot be efficiently used 

for early detection of patients’ response. In contrast, functional and molecular changes 

occur long before morphological changes. Functional imaging modalities that have been 

investigated for evaluating patients’ response include Dynamic Contrast Enhanced (DCE) 

MRI, PET imaging, molecular breast imaging, and elastography. In this section, we will 

review these imaging techniques and their performance in response evaluation.  

1.3.1 Dynamic Contrast Enhanced (DCE) MRI 

DCE-MRI can be used to assess multiple and quantifiable parameters related to tissue 

perfusion and microvascular status. It is done by first acquiring images without contrast 

enhancement, and then acquiring images over time during and after injection of a 

paramagnetic contrast agent (CA) into the vascular system [91]. Consequently, DCE-MRI 

examines the vascular environment over various timepoints, and the fluctuating signal can 

be described using quantitative enhanced kinetic characteristics. Semi-quantitative 

enhancement kinetic features, such as initial peak enhancement and the presence of delayed 

phase washout are used to improve specificity for identifying malignancy [92].  

In the evaluation of response to NAC, DCE-MRI tends to be more effective than 

mammography or ultrasound. In a study of 24 patients, DCE-MRI was performed before 
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and on average 19 days after the first NAC treatment cycle [93]. The parameters used in 

this study were relative signal intensity (RSI) and area under the curve (AUC) which were 

calculated from the DCE-curves. RSI was calculated by dividing the mean signal intensity 

of images after CA injection to the mean signal intensity in the pre-contrast images. AUC 

was calculated by numerally integrating the signal enhancement curves in each image 

voxel [93]. This study concluded that DCE-MRI has the potential to predict 5-year survival 

in patients with LABC with an area under the receiver operating characteristic (ROC) curve 

(AUC) of 0.77 [93]. Furthermore, changes in tumor vascularization can be assessed after 

one cycle of NAC [94]. In a study conducted in 2013, 21 patients with LABC underwent 

high temporal resolution 3T DCE-MRI before and after one cycle of NAC to determine if 

semi-quantitative analysis of high temporal resolution DCE-MRI can predict the response 

to NAC in patients with LABC [94]. The assessed parameters for this purpose included 

lesion size, radiologist’s subjective assessment of lesion enhancement, and percentages of 

voxels within the lesion demonstrating progressive, plateau, or washout kinetics. If the 

signal intensity of a voxel increases gradually and in a linear way this is called 

‘progressive’; if it stays around the same value over time, this is commonly called as a 

‘plateau’, and in case the signal fades gradually, it is referred to as a ‘washout’. The results 

were promising and demonstrated that while parameters such as lesion size cannot predict 

patients’ response after one cycle of NAC, change in percentage of voxels demonstrating 

washout kinetics could discriminate responder and non-responder patients [94].  

A more recent paper, studied 38 LABC patients who received NAC for 1-3 months while 

their ultrasound, mammography and MRI data were compared to histopathology results 

[95]. Type of response was determined with respect to the “Response Evaluation Criteria 

in Solid Tumors (RECIST) 1.1” [96]. The correlation between the response type of all three 

imaging modalities and histopathology response were assessed and compared. It was 

shown that this correlation was very weak in mammography or ultrasound, whereas with 

DCE-MR, it was possible to evaluate the treatment response accurately in 84.2% of the 

patients 1-3 months after NAC [95]. In the same year, another study in the same area was 

conducted to assess the potential of texture analysis applied to DCE-MRI for predicting 

clinical and pathological response to NAC in patients with LABC. With a dataset including 

58 LABC patients undergoing NAC, they presented promising results in the use of texture 
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analysis of DCR-MR images for the use of NAC response prediction in LABC patients 

[97]. Studying 35 patients diagnosed with stage II/III of breast cancer, quantitative, 

multiregional analysis of DCE-MRI was used to predict pathological response of breast 

cancer to NAC. The parameter for predicting pathological response was the change in 

texture features in different subregions of tumor. According to their results, they concluded 

that the heterogeneity of the tumor subregions on DCE-MRI can predict pathological 

response to NAC in breast cancer [98]. In another similar study, DCE-MRI was acquired 

in 14 patients at baseline, after two cycles, and after the end of chemotherapy sessions. 

Several dynamic contrast parameters such as transfer constant (diffusion of contrast media 

from the vascular space to the tumor interstitium which is a measure of vascular 

permeability), rate constant (the period that takes for the contrast agent to diffuse back into 

the vasculature), the extracellular extravascular space, initial area under the time signal 

curve (IAUC), apparent diffusion coefficient (ADC), and enhancement curve were 

generated for the purpose of comparison between responders and non-responders. In this 

study, IAUC and ADC were found to be useful in distinguishing responders from non-

responders after two or three cycles of chemotherapy [99].  

It is noteworthy that although it has shown promise for evaluating breast cancer response 

to NAC, DCE-MRI is relatively expensive, not widely accessible, and involves injection 

of exogenous contrast agents for each assessment during treatment.  

1.3.2 Positron Emission Tomography (PET) 

Several studies have shown that nuclear medicine imaging, such as positron emission 

tomography (PET), can be used to assess tumor response to treatment by detecting early 

changes in tumor metabolism. 18F-flurodeoxyglucose (FDG), a glucose analogue, can be a 

measure of tissue glucose metabolism which is often high in high-grade cancers and low 

in low-grade tumors. To evaluate its efficacy in response detection, FDG-PET/CT was 

performed on 40 patients with invasive ductal carcinoma at baseline and after two cycles 

of NAC [100]. Pathologic response of these patients was evaluated after surgery using 

Residual Cancer Burden (RCB) index [101]. Their results suggest that FDG-PET/CT can 

discriminate NAC responder and non-responder patients after two courses of NAC with 

68% sensitivity and 75% specificity [100]. An older study with 14 patients has also proved 
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the usefulness of 3'-[F-18]Fluoro-3'-deoxythymidine (FLT)-PET in monitoring breast 

cancer response to chemotherapy after two weeks from the first course of chemotherapy 

where a significantly reduced FLT uptake was observed compared to pretreatment scans 

[102]. Similar to DCE-MRI, this imaging modality is very costly,  has limited accessibility 

and need the injection of radionuclide contrast agents. This limits the frequency of scanning 

patients for response evaluation throughout the chemotherapy course.  

1.3.3 Quantitative Ultrasound (QUS) 

QUS procedures, unlike medical ultrasonography, are used to measure quantitative 

variables in order to characterize tissue properties rather than to acquire anatomical images 

from internal organs [103]. QUS assessment of breast tumor response to chemotherapy was 

conducted in a study involving 58 LABC patients prior to NAC treatment and at weeks 1, 

4, and 8 of their treatment, and before surgery. The parameters assessed in this study 

include midband fit (MBF), spectral slope (SS), spectral intercept (SI), spacing among 

scatterers (SAS), attenuation coefficient estimate (ACE), average scatterer diameter 

(ASD), and average acoustic concentration (AAC) of the tumor region. The results 

indicated that a hybrid QUS biomarker (MBF, SS, and SAS) was able to detect the response 

of LABC patients to NAC after 4 weeks of therapy with relatively high sensitivity and 

specificity (around 80%) [104]. An older study from the same group also suggested that 

QUS can be used for detecting tumors from normal breast tissue and also differentiating 

tumor grades [105]. Later, this finding was consolidated by a larger dataset (116 patients) 

in  which surrounding tissue and tumor lesions were classified using a combination of 

Nakagami distribution1 shape parameter, entropy, and texture parameters with sensitivity 

of 93% and specificity of 88% [106]. Using a dataset of 100 patients with breast cancer, 

QUS biomarkers that quantify spatial heterogeneities in size, concentration and spacing of 

acoustic scatterers were used and showed success in predicting treatment responses of 

patients [107]. In a recent study, different computational algorithms were tested on QUS 

and textural analysis data of 100 LABC patients to best determine tumor responses after 

 

1
 A probability distribution related to the gamma distribution. 
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the start of NAC. Among linear discriminant, k-nearest-neighbor, and a nonlinear support 

vector machine classifier, the latter performed the best in differentiating responders from 

non-responders with accuracies of 78%, 90%, and 92% at weeks 1, 4, and 8 after NAC 

initiation [108]. The same classifier with another dataset of 59 LABC patients showed the 

highest accuracy of 81% at weeks 1 and 4 with area under curve (AUC) values of 0.87 each 

in classifying patients based on their response [109]. The underlying principle of these 

studies is that QUS biomarkers which are related to the linear regression of the tissue power 

spectrum are directly related to the tissue microstructure, thus, can characterize the 

abnormalities of different tissues e.g. breast [110]. Moreover, QUS has shown to be 

effective in detecting and quantifying tumor cell death in vivo, in response to various 

treatments such as photodynamic therapy, radiation therapy, chemotherapy, and anti-

vascular therapy [111]–[114]. To conclude, QUS shows highly accurate results, and its 

hardware system is inexpensive, smaller than that of other similar imaging systems, and do 

not require the use of ionizing radiation or contrast agent injection.  

1.3.4 Breast Ultrasound Elastography 

Several studies have shown that there is a significant correlation between chemotherapy 

response and tumor softening [115], [116]. In other words, given that chemotherapy causes 

apoptosis and other forms of cell death in tumors, ECM composition is expected to be 

considerably altered during effective treatment [117]–[121]. Tissue stiffness reduction 

could be one signature of such changes. A study involving 15 patients with LABC showed 

that relative tumor stiffness can be a differentiating factor between NAC responders and 

non-responders after 4 weeks of treatment initiation [115]. The feasibility of strain imaging 

and real time shear wave elastography (RT-SWE) to evaluate early tumor response to 

chemotherapy was demonstrated in [122] using an animal model. Although most studies 

reported tumor softening as a result of chemotherapy, this investigation showed that the 

stiffness of tumor determined by UE increases in response to chemotherapy at a very early 

stage i.e., at the day after the last dosing [122]. In another study, mass characteristic 

frequency, shear wave elastography, and mass size were used for assessing early prediction 

of tumor response to NAC in a dataset of 62 patients with biopsy-proven invasive breast 

cancer. The SWE was acquired at three time points: before, mid-course, and after NAC. 
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An SWE parameter which can be explained as the inverse of the maximum shear wave 

propagation time in a breast mass showed a significant difference between responders and 

non-responders in the mid-course of NAC treatment [116]. Ultrasound strain elastography 

has also shown to be useful with high sensitivity (84%) and specificity (85%) in another 

study for predicting response to NAC as early as two weeks after the start of treatment 

[123]. With low cost and readily availability, ultrasound elastography is known to be highly 

efficient in the clinical setting. Further improving the accuracy of response prediction using 

this imaging modality, by addressing its issues and enhancement of its underlying 

algorithms of displacement data estimation and image reconstruction, can potentially make 

this modality highly competitive compared to other methods in predicting NAC response 

in LABC patients.  

1.4 Objectives 

The overarching objective of this study is to develop novel methods for ultrasound 

elastography to improve its accuracy and reliability in clinical settings. Once developed, 

the methods were applied to a clinical dataset acquired through an observational study on 

LABC patients who underwent NAC. Results from this study was used to assess the 

efficacy of our enhanced ultrasound elastography technique in evaluating LABC patient 

response soon after the start of NAC.  

The focus of our work is on quasi-static ultrasound elastography where the tissue is 

externally excited by pressing the ultrasound probe against the breast. The first specific 

aim of research included in this thesis is to develop a novel technique which uses 

mathematical constraints derived from fundamental tissue mechanics principles to 

regularize displacement and strain fields obtained using existing methods. The second 

specific aim focuses on evaluating this development for early determination of LABC 

patients’ response to NAC. In this aim the technique developed in the previous specific 

aim is used within a full inversion elastography framework to obtain Young’s modulus 

images of a clinical dataset of a group of LABC patients undergoing NAC. The Young’s 

modulus ratio of tumor to the healthy tissue was then calculated to assess the correlation 
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between change in the tumor Young’s modulus throughout the NAC and the final response 

of the patients.  

1.5 Thesis Outline 

The thesis objectives defined above has been pursued in the following chapters followed 

by a final chapter where the thesis summary and future work are discussed. The outline of 

each chapter is explained below. 

1.5.1 Chapter 2 

In ultrasound elastography, tissue displacements are mainly measured based on RF data 

correlation while the physics governing tissue deformation is hardly considered. Previous 

studies have shown that soft tissue can be modelled as incompressible material. 

Furthermore, like other continua, soft tissue deforms without developing any 

gaps/overlaps, hence mathematically constraining the relationship between different 

components of the displacement field. Furthermore, to account for 3D tissue 

incompressibility, a novel method was developed and used for estimating out-of-plane 

strain data based on axial and lateral strain data which can be derived from 2D US RF data. 

In this chapter, we present a novel technique developed based on the above mentioned 

principles for refining displacement and strain fields which were previously measured 

using conventional methods. The technique was validated using an in silico breast 

ultrasound model, four tissue-mimicking phantoms, and clinical breast ultrasound 

elastography. The results show significant improvement in accuracy, SNR and CNR of 

both displacement and strain fields. 

1.5.2 Chapter 3 

In this chapter, first, a technique was developed for the purpose of reconstructing Young’s 

modulus as a measure of tissue stiffness. The technique follows a full-inversion finite 

element framework to which the enhanced displacements are fed as input data while the 

boundary conditions of the US FOV was also derived from these displacements. Next, this 

more accurate full-inversion-based ultrasound elastography was adapted to evaluate its 
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performance in predicting the response of a group of 25 LABC patients to NAC. The 

technique was utilized using data acquired before and at weeks 1, 2, and 4 after the start of 

NAC. The Young’s modulus ratio of tumor to the surrounding tissue was calculated at 

different scans and compared to the baseline for each patient. Patients' response to NAC 

was determined many months later using standard clinical and histopathological criteria. 

Results of the enhanced elastography technique proposed in this study demonstrate a high 

potential for chemotherapy response monitoring in LABC patients.  

1.5.3 Chapter 4 

The information presented in previous chapters is summarized in this chapter. The 

dissertation was closed by proposing possible directions for this study in the future.  
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Chapter 2  

2 A Novel Tissue Mechanics-based Method for Improving 
Tissue Displacement and Strain Estimation in Breast 
Ultrasound Elastography 

A version of this chapter has been submitted as a journal paper for publication in 

Medical Physics.  

2.1 Introduction 

Breast cancer is the second most diagnosed cancer in women, estimated to affect 1 in 8 

Canadian women during their lifetime. It was estimated that in 2021, 27,700 women will 

die from breast cancer in the United States [1]. Vital to successful treatment of the patient, 

early detection achieved through regular breast cancer screening has shown to reduce 

mortality by 25% in the first 10 years where treating stage 1 cancer has the highest survival 

rate [2], [3]. The most common medical imaging technique used for breast cancer screening 

is X-ray mammography. However, due to ionizing radiation, the frequency of testing using 

this method is constrained, potentially delaying critically needed early diagnosis. Another 

concern of this screening method is that it is influenced by breast density and hormone 

replacement therapy, hence impacting its sensitivity for breast cancer detection, especially 

with young women with dense breasts where reported sensitivities are as low as ~60% [4], 

[5]. 

When X-ray mammograms are inconclusive, B-mode ultrasound (US) imaging and 

magnetic resonance imaging (MRI) are used. While the B-mode US is widely available 

and inexpensive, image quality is a limiting factor that impacts its sensitivity and 

specificity. Being highly sensitive, MRI is very effective for abnormality detection. 

However, its high cost and limited availability have ruled out its routine utility for early 

detection. As such, different investigations have been actively conducted to develop 

affordable imaging techniques with high sensitivity and specificity. One promising option 

towards this goal is elastography [6]–[8] where maps of tissue stiffness are generated and 

visualized. In the context of breast cancer, this is motivated by the fact that many types of 

cancer, including ductal carcinoma which is the most common type of breast cancer, are 
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associated with biological changes that lead to tissue stiffening [9]–[12]. As such, breast 

tissue stiffening may be evaluated for breast cancer detection. Among elastography 

techniques, quasi-static ultrasound elastography (USE) has been shown to be effective in 

stiffness imaging for a wide range of oncology applications, including breast, prostate and 

liver cancers [13]–[18]. Benefits of USE include involvement of the non-invasive low-cost 

ultrasound (US) imaging, being free of harmful radiation, fast data acquisition and image 

reconstruction. 

In quasi-static elastography, a low-frequency external loading is applied for tissue 

mechanical stimulation by pressing the US probe against the breast. US radiofrequency 

(RF) data is then acquired during tissue compression whereby an RF data frame is collected 

at each time instant of compression. Using two RF data frames corresponding to two 

compression states, the tissue displacement data can be estimated [6], [19]–[21]. The tissue 

strain image calculated by differentiating the displacement field is considered the simplest 

form of elastography which is often integrated into US systems for real-time imaging [6]. 

Assuming tissue stress uniformity, strain images generated through this method can be 

regarded as an approximation to tissue stiffness maps (e.g., hard lesions appear as low 

strain areas).  

While strain imaging has been shown to be useful for some clinical applications [22], due 

to the weakness of the stress uniformity assumption, its accuracy is limited. As such, more 

advanced techniques have been developed to image more reliable measures of tissue 

stiffness (e.g. Young’s modulus) using the measured displacement field [22].  

In both strain imaging and Young’s modulus imaging, the primary determining factor of 

accuracy is the accuracy of the tissue displacement data consisting of axial and lateral 

displacement fields. Young’s modulus image reconstruction involves an ill-posed inverse 

problem. This ill-posedness issue can be mitigated if reliable estimates of both axial and 

lateral displacement components are available. Several methods exist to estimate axial and 

lateral displacements using US RF data; however, the low signal-to-noise (SNR) ratio and 

the 2D nature of conventional US imaging have limited the accuracy of estimated 

displacements, especially the lateral displacement component. This has encouraged efforts 
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toward the development of more robust methods for displacement estimation. Estimation 

of tissue displacement and strain distribution in USE can be considered as an optical flow 

(OF) problem which involves minimization of an energy equation imposing both echo 

amplitude conservation and displacement smoothness constraints [23]–[27]. More 

recently, deep learning methods were proposed for displacement and strain estimation 

which proved promising while further improvement is necessary [28]–[30]. Other 

algorithms mostly focus on time delay estimation (TDE) methods [19], [30]–[37] where 

the TDE can be obtained for small windows of RF data. TDE involves a search which can 

be performed in either 1D or 2D corresponding to search in the axial direction only or in 

both lateral and axial directions, respectively [36], [37]. While they generally provide 

accurate estimate in the axial direction, these approaches are too sensitive to signal 

decorrelation which often occurs in clinical breast imaging. Another effective approach 

followed to develop a robust method against signal decorrelation involves optimization 

constrained by regularization which imposes smoothness of tissue deformation [31], [32]. 

In this approach, the displacement is estimated along a single RF-line, leading to 

displacement discontinuity between adjacent RF-lines and low accuracy of the lateral 

displacement field [31]. To avoid this, the displacement estimation can be performed 

simultaneously for all RF lines [32]. This method leads to excessively smooth displacement 

field, hence blurry strain images. To address this issue, a window-based term in 

conjunction with first or second order derivative-based regularization were employed in 

other relevant works considered the state-of-the-art methods in this field [33], [38]. A 

number of other studies have investigated utilizing more than two RF frames to estimate 

the displacement fields [34], [39]–[42]. A downside of these methods is lack of systematic 

way to determine the weighting coefficients. In another category of displacement 

estimation methods, known as quality-guided motion tracking [43]–[47],  the displacement 

is first estimated for the points in high correlation local region. Subsequently, a 

displacement continuity constraint is used to estimate the displacements of the points in 

low correlation local regions based on the previously estimated displacements of points in 

high correlation regions. In addition to being computationally more efficient, this quality-

guided motion tracking method has shown to operate well in regions with poorly correlated 

RF data and also geometrically irregular regions [45].  
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While existing tissue motion tracking methods can produce reasonably accurate axial 

displacement maps, the accuracy of their lateral displacements are generally low. At their 

core, these techniques rely on regularization through imposing tissue continuity and 

various field smoothness criteria. Utilizing tissue mechanics constraints such as 

incompressibility, compatibility and tissue 3D deformation models have not been as 

rigorously investigated for formulating more effective regularization to find more accurate 

2D displacement fields. As an attempt to incorporate such constraints towards improved 

displacement estimation, approximate tissue mechanics-based relations founded on the 

stress uniformity assumption were derived and incorporated in an algorithm that uses three 

US RF frames [39]. Efforts have been also made to utilize the partial differential equations 

governing the linear elastic deformation in soft tissue. This includes a method proposed to 

estimate tissue lateral displacement field using measured axial displacement field based on 

tissue incompressibility condition [48]. The method assumes plane strain conditions and it 

was shown that the estimated lateral displacement field was more accurate and had higher 

SNR compared with a field estimated using traditional speckle tracking. The method was 

then extended to account for large deformation conditions under plane strain assumption 

[49]. Also, through assuming plane strain conditions, a nearly incompressible constraint 

was used as a regularization term in a pixel-wise model-based algorithm to estimate all 

components of vascular strain (axial, lateral and shear) with a high spatial resolution [50]. 

Incompressibility constraint has also been used in other methods by incorporating 

confidence weights for different tissue regions, momentum conservation equation in 

conjunction with a robust H_∞  filter [51], [52]. More recently, a mathematical framework 

was developed to improve an estimate of tissue axial and lateral displacement fields while 

the shear modulus was also reconstructed simultaneously [53]. The framework assumes 

plane stress conditions and tissue incompressibility while it does not require traction or 

displacement boundary conditions.  

In this chapter, we introduce a novel algorithm that uses an estimation of out-of-plane strain 

to improve the in-plane tissue displacement and strain fields, especially their lateral 

component. Unlike previous studies, the proposed method neither assumes plane strain nor 

plane stress conditions and instead is founded on tissue mechanics principles of 

incompressibility and compatibility. To enforce tissue incompressibility, in contrast to 
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using the plane strain or plane stress assumptions, we use Boussinesq’s equation to 

analytically estimate the out-of-plane strain. 

2.2 Materials and Methods 

2.2.1 Overview of Strain Refinement Algorithm (STREAL) 

The proposed algorithm requires an initial estimate of the displacements to be processed 

before an improved estimate is generated. To obtain an initial estimate of the tissue axial 

and lateral displacement fields, we process a suitable pair of acquired RF data frames using 

publicly available computer programs developed based on the Global Ultrasound 

Elastography (GLUE) method [31], [32]. These fields are then refined step-by-step by first 

smoothing and then enforcing the fundamental tissue mechanics conditions of 

incompressibility and compatibility. Smoothing and incompressibility condition 

enforcement leads to improved displacement fields estimate while the compatibility 

condition enforcement applies further improvement, leading to the final strain fields. A 

flowchart of STREAL is illustrated in Figure 2-1. 

 

Figure 2-1. Strain Refinement Algorithm (STREAL) flowchart 

1) Step 1: Second Order Derivative Based Regularization 

To further regularize the initial displacement data where first order derivative-based 

regularization is already applied, we use regularization which seeks a new estimate of the 
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displacement field where the 2D Laplacian of the displacement components throughout the 

field of view (FOV) is minimized. The 2D-Laplacian of the displacement field U is 

expressed mathematically by: 

𝛻𝑈(𝑥, 𝑦) =   𝜕2𝑈(𝑥, 𝑦)/𝜕𝑥2 + 𝜕2𝑈(𝑥, 𝑦)/𝜕𝑦2   (2-1) 

This operator can be expressed in a matrix form by applying the finite difference 

approximation of this operator to each point in the FOV, leading to the following matrix 

form: 

𝛻𝑈(𝑥, 𝑦) =  𝐿𝑈     (2-2) 

where L is a matrix with entries of the finite difference coefficients and U is a 1D vector 

containing both axial and lateral displacement fields. The entries of L are arranged such 

that each row of Equation (2-2) yields the finite difference approximation of the Laplacian 

operator at each point. The solution sought in this step is one that minimizes the Laplacian 

while it matches the input displacements obtained from the previous step (𝑈𝑚) as much as 

possible. This leads to the following minimization equation of Tikhonov regularization: 

𝑀𝑖𝑛.  (‖𝑈 − 𝑈𝑚‖2 + 𝜆2‖𝐿𝑈‖2)    (2-3) 

where ‖. ‖ represents the Eulerian norm and 𝜆2 represents a positive weight coefficient. 

This minimization leads to the following least squares solution: 

𝑈𝑛𝑒𝑤 = (𝐼 + 𝜆2𝐿𝑇𝐿) 𝑈𝑚    (2-4) 

The regularization weight coefficient, 𝜆, determines the level of smoothness. This 

coefficient is found automatically using the L-curve technique [54] where a solution U is 

found for various 𝜆 values before ‖𝐿𝑈‖ is plotted against ‖𝑈 − 𝑈𝑚‖. Typically, this plot 

resembles an L-curve, and the knee point of this curve corresponds to a 𝜆 value that is 

considered optimal as it corresponds to the best trade-off between smoothness and original 

data matching (Figure 2-2). 
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Figure 2-2. The L-curve plot and its knee point which corresponds to an optimal 𝝀 value. 

2) Step 2: Tissue Incompressibility Enforcement 

Tissue incompressibility is expressed mathematically by setting the divergence of the 

displacement field in 3D to zero as follows: 

𝛻 ∙ 𝑈(𝑥, 𝑦, 𝑧) = 𝜕𝑢𝑥/𝜕𝑥 + 𝜕𝑢𝑦/𝜕𝑦 + 𝜕𝑢𝑧/𝜕𝑧 = 0   (2-5) 

where in the context of US image coordinate system, 𝑥, 𝑦, and 𝑧 correspond to lateral, 

axial, and out-of-plane directions, respectively as shown in Figure 2-2. Since conventional 

US data does not provide information on out-of-plane displacements, assumptions such as 

plane-strain and plane-stress have been used as discussed in the introduction. Assuming 

plane-strain conditions, in which the out-of-plane strain is zero, the incompressibility 

condition leads to the following equation: 

𝜕𝑢𝑥/𝜕𝑥 + 𝜕𝑢𝑦/𝜕𝑦 = 0    (2-6) 

The plane strain assumption considered in previous works, however, is not valid in breast 

USE as it requires constant section geometry and loading of tissue along the z direction 

[53]. As an alternative, other works assumed plane stress condition which requires very 

thin tissue geometry undergoing in-plane loading only [48]. Neither of these requirements 

are met in the context of breast USE. To assess the deviation of the plane strain and plane 

stress assumptions from actual 3D situations, we conducted an in silico experiment of 
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breast USE using ABAQUS FE solver (ABAQUS 2019, Dassault Systèmes Simulia Corp., 

Johnston, RI, USA). In this experiment a typical breast geometry derived from a breast MR 

image was converted into a homogeneous hyperelastic breast FE model with hyperelastic 

parameters assigned based on values reported in the literature [55]. This model was 

virtually compressed by an US probe to simulate a typical USE procedure. The simulation 

was conducted using 3D geometry and loading as the ground truth model while 2D plane 

strain and plane stress conditions were also simulated to evaluate their deviation from the 

“true” 3D model. For this evaluation, the ratio of the mean difference between the “true” 

and 2D displacement fields to the mean value of the “true” field was calculated for both 

axial and lateral displacement components. For the plane strain case, this led to values of 

0.84 and 4.73 for the axial and lateral components, respectively. For the plane stress case, 

the ratio values were 0.79 and 2.87, respectively. While this experiment, which involves a 

single breast, is not rigorous, the obtained large values, especially the ones pertaining to 

the plane strain assumption are sufficient to motivate developing a modified 

incompressibility equation that can be used more reliably in breast USE.     

In this study, we estimate the out-of-plane strain considering the breast undergoing a US 

probe loading as a semi-infinite medium. A semi-infinite solid is an idealized body with a 

single planar surface that extends in all directions to infinity. In 1885, Boussinesq 

developed equations for determining stresses at any point (T) in an elastic, semi-infinite, 

homogeneous, and isotropic solid medium as a result of a surface concentrated point load 

(P) [56]. Considering the dimensions of ultrasound probe with respect to the dimensions 

of breast in supine position, breast can be considered as a semi-infinite medium, thus, axial 

and out-of-plane stresses can be calculated using Equations (2-7), (2-8), and (2-9) which 

represent Boussinesq stress equations. As shown in Figure 2-3, in these equations, 

(𝑥0, 𝑦0, 𝑧0) and (𝑥, 𝑦, 𝑧) are the coordinates of points T and P, respectively, while r is the 

Euclidean distance between them. It is noteworthy that while the calculated stresses using 

Boussinesq stress equations are local due to the assumption of concentrated point load, in 

our case, the stresses are calculated based on an integration over the surface of ultrasound 

probe, hence they do not remain local. 
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Figure 2-3: Boussinesq’s model - a schematic of a semi-infinite medium under a point 

load 

𝜎𝑥𝑥 =
𝑃

2𝜋
{
3(𝑦0−𝑦)(𝑥0−𝑥)2

𝑟5
− (1 − 2𝜈) [

(𝑥0−𝑥)2−(𝑧0−𝑧)2

𝑟(𝑟2−(𝑦0−𝑦)2)(𝑟+(𝑦0−𝑦))
−

(𝑧0−𝑧)2(𝑦0−𝑦)

𝑟3(𝑟2−(𝑦0−𝑦)2)
]}   (2-7) 

𝜎𝑦𝑦 =
3𝑃

2𝜋

(𝑦0−𝑦)3

𝑟5          (2-8) 

𝜎𝑧𝑧 =
𝑃

2𝜋
{
3(𝑦0−𝑦)(𝑧0−𝑧)2

𝑟5 − (1 − 2𝜈) [
(𝑧0−𝑧)2−(𝑥0−𝑥)2

𝑟(𝑟2−(𝑦0−𝑦)2)(𝑟+(𝑦0−𝑦))
−

(𝑥0−𝑥)2(𝑦0−𝑦)

𝑟3(𝑟2−(𝑦0−𝑦)2)
]}    (2-9) 

Assuming a uniformly distributed loading applied by the US probe on the surface of the 

breast, axial and out-of-plane stresses at every point in the US FOV (Figure 2-4a) can be 

calculated by integration of Equations (2-7), (2-8), and (2-9) on the surface of the applied 

load. Thus, using Hooke’s law, the axial and out-of-plane strains can be calculated as given 

in Equation (2-10). 

[
𝜀𝑦𝑦

𝜀𝑧𝑧
] = [

𝜆

2𝜇(3𝜆+2𝜇)

𝜆+𝜇

𝜇(3𝜆+2𝜇)

−𝜆

2𝜇(3𝜆+2𝜇)

𝜆

2𝜇(3𝜆+2𝜇)

𝜆

2𝜇(3𝜆+2𝜇)

𝜆+𝜇

𝜇(3𝜆+2𝜇)

] [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑧𝑧

]   (2-10) 

Where 𝜇 and 𝜆 are Lame’ parameters. 

In this work, we assume that the breast is linear elastic with a Young’s modulus, E, value 

of 3kPa [57] and Poisson’s ratio of 0.495. The Poisson’s ratio value is consistent with the 

high-water content composition of most soft tissue, including breast tissue. While some 

intra- and inter-patient variability is expected, our simulation indicates that modest 

variability does not impact estimated displacement fields significantly. The Lame’ 

parameters can be calculated using the following equation. 
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𝜆 =
𝐸𝜈

(1+𝜈)(1−2𝜈)
, 𝜇 =

𝐸

2(1+𝜈)
    (2-11) 

Thereafter, the ratio (𝑘 =
𝜕𝑢𝑧

𝜕𝑧
/

𝜕𝑢𝑦

𝜕𝑦
 = 

𝜀𝑧𝑧

𝜀𝑦𝑦
) of the out-of-plane to axial strain can be 

calculated, leading to the following modified incompressibility equation. 

𝜕𝑢𝑥/𝜕𝑥 + (𝑘 + 1)𝜕𝑢𝑦/𝜕𝑦 = 0   (2-12) 

The finite difference form of Boussinesq’s equations can be rewritten in a matrix form as 

follows: 

𝐶𝑈 = 0     (2-13) 

Here, 𝑈 contains the lateral and axial displacements only, and C is a matrix containing 

coefficients of the finite difference approximation of Equation (2-12) which depends on 𝑘 

values calculated for each point within the FOV. 𝐶 is dependent on the dimensions of the 

FOV only and can be calculated once and stored for use in efficient estimation of improved 

displacements. Having this equation in addition to the displacement fields obtained from 

the previous step (𝑈𝑚), i.e., 𝐼𝑈 = 𝑈𝑚, we can form the following linear system of equations 

and solve it to obtain an improved estimate of 𝑈. 

[
𝐶
𝐼
] 𝑈 = [

0
𝑈𝑚

]  → 𝐴𝑈 = 𝑏    (2-14) 

In this work, we seek 𝑈 ∈ ℝ which minimizes 
1

2
𝑈𝑇𝐴𝑇𝐴𝑈 − (𝐴𝑇𝑏)𝑇𝑈. As such, Equation 

(2-14) can be solved efficiently using the Polak-Ribiere conjugate gradient method [57]. 

Since the initial estimate of axial displacements are known to be more accurate than their 

lateral counterparts, we also employed weighted least-squares optimization [58] when 

solving Equation (2-14). For this purpose, 𝑊 was considered as the weight diagonal matrix 

where 𝑤𝑖,𝑖 represents the importance of 𝑖𝑡ℎ row in Equation (2-14). This equation is an 

augmented system consisting of three different sets of equations. With 𝑚 × 𝑛 data grid, the 

first part has 𝑁1 = (𝑚 − 1) × (𝑛 − 1) rows which is related to incompressibility, the 

second and third parts each have 𝑁2 = 𝑚 × 𝑛 rows pertaining to the measured axial and 

lateral displacements, respectively.  For each part, we assign a single weight denoted by 
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𝑤𝑖𝑛𝑐, 𝑤𝑙𝑎𝑡 and 𝑤𝑎𝑥 corresponding to the incompressibility, axial displacements, and lateral 

displacements, respectively, leading to the weight matrix given in Equation (2-15). With 

this alternative, we form 𝑊𝐴𝑈 = 𝑊𝑏 and use the Polak-Ribiere conjugate gradient method 

to solve it, leading to a further refined displacement field. 

𝑊 =

[
 
 
 
 
 
 
 
 
 
𝑤𝑖𝑛𝑐

⋱
𝑤𝑖𝑛𝑐 0

𝑤𝑙𝑎𝑡

⋱
𝑤𝑙𝑎𝑡

0 𝑤𝑎𝑥

⋱
𝑤𝑎𝑥]

 
 
 
 
 
 
 
 
 

  (2-15) 

In this work, we used the three different weight sets presented in Table 2-1. The rationale 

for choosing these weight factors is based on the reliability of each set of data. In these 

sets, the ratio of 𝑤𝑎𝑥 to 𝑤𝑙𝑎𝑡 was set to 10 based on a typical SNR ratio of 10 between axial 

and lateral displacement data [59]. The 𝑤𝑖𝑛𝑐 was assigned three different values of 1, 5 and 

10. These weight sets were evaluated using an in silico phantom study as discussed in 

section 2.2.2.1. 

Table 2-1: Different weight sets used for enforcing tissue incompressibility 

Data\Weight Sets WS1 WS2 WS3 

Incompressibility Equation 1 5 10 

Lateral Displacement 1 1 1 

Axial Displacement 10 10 10 

 

3) Step 3: Strain Compatibility Enforcement 
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The final step in the proposed method is enforcing the tissue strain compatibility [60]. The 

equation governing strain compatibility is given below in terms of the strain tensor 

components: 

𝜕2𝜀𝑥𝑥

𝜕𝑦2
+

𝜕2𝜀𝑦𝑦

𝜕𝑥2
− 2

𝜕2𝜀𝑥𝑦

𝜕𝑥𝜕𝑦
= 0         (2-16) 

A numerical approximation was derived for this equation using the finite difference 

method, which was then applied to all grid points in the FOV, leading to the following 

matrix equation: 

𝑃𝜀 = 0      (2-17) 

Here, 𝜀 is a vector containing lateral, axial and shear strains, and P is a coefficient matrix 

containing parameters of the finite difference approximation of the compatibility equation. 

Combined with the strains calculated based on the refined displacements obtained in the 

previous step, the following system of equations can be obtained. 

[
𝑃
𝐼
] 𝜀 = [

0
𝜀𝑚

]  → 𝐵𝜀 = 𝑒    (2-18) 

This equation can be solved using the Polak-Ribiere method to obtain a further refined 

estimate of the strain. 

2.2.2 Method Validation 

2.2.2.1 In-silico Breast Phantom Study 

The proposed method was first validated using an in silico breast biomechanical model. To 

generate the breast in silico model, a typical breast geometry was segmented from a 3D US 

image which captured the entire breast volume, using 3D Slicer (www.slicer.org). To 

generate the breast FE mesh, the segmented geometry was processed using IA-FEMESH 

(MIMX, Iowa city, IA, USA). A spherical inclusion was defined within the breast mesh to 

mimic the breast tumor.  For better realism, the breast tissue, including the background and 

tumor regions was modeled as hyperelastic material using the polynomial model. The 
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hyperelastic parameters of the normal and tumor tissues in the breast were assigned based 

on values reported in the literature [55], [61]. 

For simulating breast compression using an US probe mimicking a typical USE procedure, 

ABAQUS FE solver (ABAQUS 2019, Dassault Systèmes Simulia Corp., Johnston, RI, 

USA) was used. The probe’s loading was applied using a contact mechanics model 

following the master-slave approach. To improve the simulation realism, the contact 

problem was carried out in two steps. In the first step, the probe was lowered onto the breast 

model until it was in full contact with the surface of the breast. The second step involved 

further quasi-static compression to achieve the breast’s desired deformation. After 

deforming the breast model, we obtained the displacement field within the mid-plane 

beneath the probe. As shown in Figure 2-4b, this mid-plane represents the US FOV. 

Consistent with USE, only the displacements pertaining to the second compression step 

was considered to mimic the displacement data. To add more realism to the displacement 

data obtained from this simulation, white Gaussian noise was added such that the ratio of 

noise amplitude of the lateral to the axial directions was 10. The SNR of the noisy axial 

and lateral displacement fields were 40 and 13.5, respectively. For validation, we input this 

simulated noisy displacement field to the developed algorithm and compared the output 

displacement field with the noise free version using the normalized mutual information 

(NMI) as similarity criterion. Equation (2-19) shows the formula for calculating this 

measurement for two fields of A and B. In this equation, H(A) and H(B) show the entropy 

of  field and H(A, B) shows the joint entropy of A and B. Utilizing the displacement field 

generated in this part, we evaluated and compared the validity of the incompressibility 

Equation (2-12) developed based on Boussinesq’s model against the plane strain model-

based incompressibility Equation (2-6).  

𝑁𝑀𝐼(𝐴, 𝐵) =  
2 ×(𝐻(𝐴)+𝐻(𝐵))

𝐻(𝐴,𝐵)
    (2-19) 
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Figure 2-4: (a) Part of the breast surface under a rectangular contact pressure of the US 

probe and image’s rectangular FOV where at each point of this FOV, the stress values are 

calculated by integration of Equations (2-7), (2-8) and (2-9) over the probe’s contact 

surface. (b) Part of the breast FE model cut at the spherical tumor region with a rigid US 

probe pushing against the breast. The rectangular surface mimics the US FOV. As shown 

in the figure, x, y, and z directions are corresponding to lateral, out-of-plane, and axial, 

respectively. 

To determine a proper weight set of equations among the three candidates given in Table 

2-1, we used an ad hoc method whereby the NMI value between the “true” and refined 

displacement fields and the number of elements that satisfy the compatibility equation 

accurately were evaluated. The best selected weight set candidate was the one that led to 

the highest NMI value and largest number of compatible elements. 

2.2.2.2 Tissue Mimicking Breast Phantom Study 

To evaluate the displacement enhancement, the proposed method was applied to three 

separate tissue-mimicking breast phantoms consisting of soft background and stiff tumor 

tissues. The first phantom is Breast Elastography Phantom Model 059 (Computerized 

Imaging Reference Systems (CIRS, Norfolk, VA, USA). The size, shape, and ultrasonic 

characteristics of this phantom mimic that of an average human breast in supine position 

accurately while it contains several lesions ranging in size from 3 to 10 mm in diameter. 

Two different regions of the phantom, henceforth called Phantom A and B, were tested. 

The second phantom, referred to as Phantom C, is a block-shaped phantom with a single 

inclusion (CIRS, Norfolk, VA, USA). For data acquisition of the first and second 

phantoms, the US probe was controlled with a mechanical device to compress the phantom 
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with 0.1 inches steps and the US RF data was acquired using an Antares Siemens system 

(Issaquah, WA, USA) and a VF10-5 linear array transducer at center frequency of 6.67 

MHz and a sampling frequency of 40 MHz. The last phantom, D, was a breast-shaped 

phantom constructed in our laboratory using gelatin and agar dissolved in water [62]. The 

RF data for this phantom was acquired using an Ultrasonix RP system (Ultrasonix Medical 

Corporation, Richmond, BC, Canada) and a L14-5/38 linear array transducer with a 

nominal frequency of 10 MHz at a sampling frequency of 20 MHz. The displacement and 

strain fields were initially estimated using GLUE method [31], [32]. We then refined the 

displacement and strain fields using the proposed technique, STREAL. To quantify 

improvements in the strain images, the following unitless metrics of signal to noise ratio 

(SNR) and contrast to noise ratio (CNR) were used: 

𝑆𝑁𝑅 = 
𝑠̅

𝜎
       (2-20) 

𝐶𝑁𝑅 =  √
2(𝑠𝑏̅̅ ̅−𝑠𝑡̅)2

𝜎𝑏
2+𝜎𝑡

2       (2-21) 

Here, 𝑠̅ and 𝜎 are the spatial average and variance of a window in the strain image, 

respectively. Similarly, 𝑠̅𝑏, 𝑠̅𝑡, 𝜎𝑏, and 𝜎𝑡 are the spatial average and variance of strains of 

a window in the target and background areas, respectively. To further evaluate the 

performance of the STREAL method, three breast tissue mimicking phantoms were 

simulated using ABAQUS FE solver (ABAQUS 2019, Dassault Systèmes Simulia Corp., 

Johnston, RI, USA). The geometries of these phantoms were chosen to be hemisphere 

followed by a cylinder, rectangular cuboid, and sole hemisphere with appropriate sizes to 

mimic phantoms A/B, C, and D, respectively. Spherical inclusions were placed inside the 

generated in silico phantoms consistent with the actual phantoms’ inclusions. The models 

were all linear elastic with the same Young’s moduli as the actual phantoms. Quasi-static 

stimulations were then applied to the surfaces of the phantoms before the displacement 

fields of the mid-plane of the phantoms were computed. Normalized cross correlation 

(NCC) was used to compare these fields to the estimated ones using other popular tissue 

motion tracking methods of Global Ultrasound Elastography (GLUE) [74] and Second-

order Ultrasound Elastography (SOUL) [81]. 
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2.2.2.3 Clinical Breast Ultrasound Elastography Case 

Further evaluation of the proposed method was carried out using USE data acquired from 

two breast cancer patients in accordance with institutional research ethics board (REB) 

approval from Sunnybrook Health Sciences Centre, Toronto, Canada (REB PIN: 1994). A 

Sonix RP System (Ultrasonix, Vancouver, Canada) and a L14-5/60 transducer with a 

nominal frequency of 10 MHz was used to acquire ultrasound B-mode images and RF data 

at a rate of 12 frames per second. The RF data were collected at pre- and post- compression 

states of a quasi-static stimulation of the breast using the US probe by a trained 

sonographer. Similar to the phantom study, initial displacements and strain fields were 

estimated using the GLUE method before they were refined using the STREAL algorithm. 

SNR and CNR of the strain images before and after using the STREAL algorithm were 

calculated for quantitative comparison. 

2.3 Results 

2.3.1 In silico Breast Phantom Study 

The simulated axial and lateral displacement fields in the FOV plane of the in silico breast 

phantom, including their noisy counterparts, are shown in Figure 2-5. This figure also 

illustrates the refined displacement fields using steps 1 and 2 of the proposed STREAL 

method. To show the progressive improvement achieved through each step of the 

algorithm, NMI values of images obtained with the noisy images and each of their refined 

counterpart is reported in Table 2-2. 



51 

 

 

Figure 2-5: Original displacement fields generated from the in silico breast model, their 

noisy counterparts, and refined displacement fields after steps 1 and 2 of STREAL 

Incompressibility equation was calculated at each point within the FOV using the 

displacement data acquired from simulation and based on plane-strain assumption and the 

Boussinesq’s derived model. This led to the images shown in Figure 2-6 where visual 

inspection shows that the resultant of Figure 2-6 is closer to the ideal uniformly black 

region compared to the image in Figure 2-6 which shows large values of incompressibility 

equation at the top. Compared to theoretical value of 0 for this equation, the norms of these 

images are 32.83 and 14.75 for the plane-strain and Boussinesq’s derived models, 

respectively. This indicates that the tissue incompressibility distribution obtained based on 

the proposed Boussinesq’s derived model is superior to its plane-strain derived counterpart. 

Figure 2-7 also shows the plot of NMI between the “true” and refined axial and lateral 

displacement fields against the weight set candidates given in Table 2-1 and the plot of 

percentage of compatible FE elements based on a threshold value of 0.02. The plots 

indicate that the weight set WS1 leads to the best outcome. Figure 2-7 also shows that the 

WS1 set leads to ~20% compatible elements which may seem low; however, it should be 

noted that this percentage increases significantly by relaxing the threshold value such that 

near compatible elements are included. For example, choosing a threshold value of 0.05 

leads to ~60% compatible elements for WS1. However, this choice makes comparing the 

different weight sets more difficult as the percentage of compatible elements in different 
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weight sets are closer in this case. Finally, Figure 2-8 illustrates the true (generated from 

Abaqus), noisy, and refined strain fields using steps 1, 2 and 3 of the proposed method. 

 

Figure 2-6: Incompressibility equation calculated using the simulated displacement data 

based on (a) plane strain assumption and (b) semi-infinite medium model. The latter is 

closer to uniformly black image (zero field) that represents an ideal incompressible tissue. 

 

Figure 2-7: Evaluation of the weight sets used for enforcing tissue incompressibility in the 

in silico phantom study; c) the NMI similarity measure between true and refined 

displacements, d) percentage of compatible FE elements. 
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Figure 2-8: True and refined strain fields at different stages of applying STREAL 

Table 2-2: NMI values of displacement and strain fields generated using the algorithm 

steps with corresponding “true” fields in the in silico phantom study 

NMI with ground truth (in silico) 

Axial Displacement 

Noisy 1.5173 

Refined by STREAL 1.7795 

Lateral Displacement 

Noisy 1.2026 

Refined by STREAL 1.7615 

Axial Strain 

Noisy 1.0023 

Refined by STREAL 1.3600 

Lateral Strain 

Noisy 1.0025 

Refined by STREAL 1.2121 

 

2.3.2 Tissue Mimicking Breast Phantom Study 

Figure 2-9 illustrates the results generated for four tissue mimicking phantom cases, A, B, 

C and D. It includes the axial and lateral displacement results generated by the GLUE, 
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SOUL, and the proposed STREAL technique. Generally, Figure 2-9 indicates that in 

contrast to the axial displacement fields that show some improvement, the lateral 

displacement fields are improved substantially as these fields show clear evidence of the 

inclusions. Figure 2-10 illustrates the phantom strain images obtained using the GLUE, 

SOUL, and proposed STREAL techniques. This figure shows that the proposed method is 

capable of generating substantially better-quality axial strain and superior quality lateral 

strain compared to both the GLUE and SOUL methods. The calculated SNR and CNRs as 

well as the local mean strain values for both background and inclusion areas are presented 

in Table 2-3. Overall, the STREAL technique is successful in improving the SNR and CNR 

of axial strain images of the phantoms by 59% and 51% compared to the GLUE technique, 

respectively. Moreover, compared to the GLUE method, the STREAL technique is even 

more effective with lateral strain images of the phantoms with about 127% and 554% 

improvement in the SNR and CNR, respectively. Table 2-4 shows the similarity between 

displacement and strain fields generated through the in silico simulation of the phantoms 

and their counterparts computed using the GLUE, SOUL, and STREAL methods. Once 

again, these results indicate that while compared to the GLUE and SOUL methods, the 

STREAL method leads to some improvement in the accuracy of axial displacements, it 

leads to superior quality lateral displacements. An exception is with Phantom D which is 

anticipated as the thickness of the breast phantom was very limited, hence the semi-infinite 

medium model was not effective. 
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Table 2-3: Similarity between displacement and strain fields generated by the in silico 

simulation and counterpart fields computed by the GLUE, SOUL, and STREAL methods 

  
NCC with the generated counterpart using in silico 

simulation 

  GLUE SOUL STREAL 

Phantom A 

Axial Displacement 0.9917 0.9919 0.9925 

Lateral Displacement 0.5907 0.3695 0.8881 

Phantom B 

Axial Displacement 0.9210 0.9200 0.9213 

Lateral Displacement 0.4302 0.5183 0.7909 

Phantom C 

Axial Displacement 0.8887 0.8384 0.8894 

Lateral Displacement 0.4944 0.3795 0.6601 

Phantom D 

Axial Displacement 0.9531 0.8919 0.9643 

Lateral Displacement 0.4909 0.4138 0.5234 
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Figure 2-9: Axial (I) and lateral (II) displacement fields obtained from GLUE, SOUL, and 

the proposed STREAL methods for phantom cases A-D. Note that these results were 

obtained after performing the first two steps of the STREAL algorithm since the third step 

only applies to strain fields. 
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Figure 2-10: Axial (I) and lateral (II) strain images obtained from GLUE, SOUL, and the 

proposed STREAL method for phantom cases A-D. Note that the figures show the real 

values of axial and lateral strains, and the positive values represent compression. Due to 

inconsistency between the lateral strain values of different methods, different color bars 

are adjusted for each method to have the best visualization. 

2.3.3 Clinical Breast Ultrasound Elastography Case 

Figure 2-11 shows a breast B-mode image of the clinical case. The lateral and axial strain 

images generated by the GLUE method and the STREAL technique for this clinical case 

are shown in Figure 2-12. This figure also includes the results generated by the SOUL 

method. As the figure illustrates, improvement of both axial and lateral strains was 

achieved by applying the proposed STREAL technique.  
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Figure 2-11: B-mode images of clinical case where the read outline shows the tumor area 

 

Figure 2-12: Axial and lateral strain images of the clinical case generated using GLUE, 

SOUL, and STREAL techniques. The red outline shows the tumor area based on the B-

mode image. 

Quantitative assessment based on the bottom rows of Table 2-4 shows that the method 

significantly improves the SNR and CNR values of both axial and lateral strain images 

compared to GLUE and SOUL methods.  
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Table 2-4: Calculated SNR and CNR metrics for axial and lateral strain images of the 4 

phantoms 

Strain Image 

SNR CNR 

GLUE SOUL STREAL GLUE SOUL STREAL 

Phantom A 

Axial Strain 8.7 15.9 18.8 5.0 5.2 10.4 

Lateral Strain 2.7 2.5 13.2 0.8 0.8 12.3 

Phantom B 

Axial Strain 3.9 4.2 7.1 1.1 1.0 2.1 

Lateral Strain 1.7 2.1 3.2 1.4 1.2 1.9 

Phantom C 

Axial Strain 9.1 8.9 9.1 4.5 3.2 4.6 

Lateral Strain 2.2 1.6 2.6 1.0 0.8 3.3 

Phantom D 

Axial Strain 8.5 9.3 11.6 3.6 2.4 3.6 

Lateral Strain 3.3 4.2 3.7 0.8 1.2 0.8 

Clinical 

Case 

Axial Strain 1.98 2.05 2.76 2.35 1.61 3.26 

Lateral Strain 1.41 2.18 2.21 0.12 0.09 0.19 
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2.4 Discussion 

In this work, we presented a novel method for computing tissue displacement and strain 

fields generated in typical ultrasound imaging. The method was designed for applications 

in quasi-static USE, including breast, prostate, and liver elastography. In addition to 

enhancement of axial displacement images where the field has already made significant 

progress, a major feature of the proposed method is its ability to obtain accurate lateral 

displacement and strain images. The proposed method attempts to take full advantage of 

available constraints governing the tissue mechanics. In addition to enforcing displacement 

field continuity conditions, this technique utilizes tissue biomechanics principles for 

further improvement of strain image accuracy. The principles include tissue 

incompressibility and displacement compatibility which are incorporated in the model to 

generate accurate estimation of both axial and lateral displacement and strain images.  

To enforce tissue incompressibility, we developed a method which utilizes the Boussinesq 

semi-infinite analytical model to estimate the out-of-plane strain component before its 

incorporation in the general tissue incompressibility equation. To our knowledge, we are 

the first group to consider an estimate of the out-of-plane strain in tissue 2D motion 

tracking pertaining to USE. The method developed using the Boussinesq model assumes 

Young’s modulus and Poisson ratio values of 3kPa and 0.495, respectively. The 3kPa is a 

widely accepted average value [63], while the 0.495 is also a broadly accepted value which 

is consistent with the very high water or lipid content of the breast tissue. Moreover, 

sensitivity analysis indicated low sensitivity of generated displacement and strain fields 

w.r.t these values. The proposed technique enforces the fundamental displacement 

compatibility equation to further enhance the strain field. While other investigators have 

utilized this equation to assess the quality of estimated displacement fields [52], to our 

knowledge, the STREAL algorithm is the first to incorporate the compatibility equation 

for strain field refinement. Unlike other methods where continuity based regularization is 

imposed at the RF data processing stage [33], [34], [40], [41], [44], the proposed technique 

is formulated to improve previously estimated displacement and strain images irrespective 

of their source and imaging modality.   
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In breast USE, the breast can be idealized as a semi-infinite medium and out-of-plane strain 

can be analytically calculated using the Boussinesq model. We first used this idealization 

with synthetic displacement data obtained from a simulated breast after it was 

contaminated with realistic noise. The results showed that the method is successful in 

almost entirely eliminating the noise. The in silico breast model represents a good breast 

model in terms of geometry and material behavior. Hence, the semi-infinite model used to 

develop the incompressibility equation in this work is anticipated to be effective with 

clinical data as supported by the reported clinical case. The presented formulation involves 

weight factors pertaining to axial and lateral data in addition to tissue incompressibility. In 

this investigation we attempted to find the optimal set of these factors, however, further 

investigation and more rigorous method is required to find a robust set that can be reliably 

used in the clinic.  

The proposed method was further validated using tissue-mimicking phantoms, including 

breast-shaped and block-shaped with one or several inclusions. Figure 2-9 and Figure 2-10 

and Table 2-4 indicate that, in all phantom cases, the proposed method produces 

substantially better and superior strain images compared to the GLUE technique for the 

axial and lateral directions, respectively. Results of the clinical case show that the STREAL 

technique can improve axial and lateral strains qualitatively as, compared to the images 

produced using the GLUE technique, the tumor area is more distinguishable. The results 

also indicate that the proposed method is superior compared to the GLUE technique as it 

shows 127% and 554% improvement in the SNR and CNR of the lateral strain images. It 

is noteworthy that although the lateral strain images generated using the STREAL 

technique are significantly dissimilar to the ones generated using the GLUE and SOUL 

methods, the in silico results show that the STREAL technique is more successful in 

generating realistic and accurate lateral strain images. By excluding Phantom D that led to 

only 14% improvement in the lateral displacement estimation, this conclusion is supported 

by the obtained higher accuracy of the displacement images, including average lateral 

displacement accuracy improvement over competitor methods of 34% to 46% measured 

by image similarity with corresponding ground truth images. Therefore, while the GLUE 

and SOUL methods are capable of producing reasonably accurate axial strain images that 

can be used for clinical applications, the quality of their lateral strain images are generally 
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low. In contrast, the proposed method is very promising in producing accurate lateral strain 

images. This can have a significant impact in improving Young’s modulus images 

generated using inversion techniques as the image reconstruction is generally known to 

involve an ill-posed inverse problem, hence it can benefit substantially from availability of 

additional high quality data [86]. Such measured data enrichment can potentially facilitate 

the development of more complex elastography techniques targeting reconstruction of 

more realistic model (e.g., anisotropic tissue model) parameters. 

It is notable that while the results demonstrated very significant improvement in 

displacement and strain estimation, higher level of accuracy may be achieved by 

considering more realistic breast geometry and improved models to estimate the out-of-

plane strain distribution before incorporating in the fundamental incompressibility 

constraint. A notable limitation of the proposed method is its foundation on linear elasticity 

which assumes small tissue deformation. This implies that it cannot be used for 

elastography techniques aimed at reconstructing tissue hyperelastic parameters. 
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Chapter 3  

3 Enhanced Full-Inversion-Based Ultrasound 
Elastography for Evaluating Tumor Response to 
Neoadjuvant Chemotherapy in Patients with Locally 
Advanced Breast Cancer 

A version of this chapter has been submitted as a journal paper for publication in 

Physica Medica.  

3.1 Introduction 

Breast cancer is the second most diagnosed cancer in women, estimated to affect 1 in 8 

women during their lifetime [1]. About 10% to 20% of new breast cancer cases are present 

with locally advanced breast cancer (LABC) [4]. LABC tumors are usually larger than 5 

cm and may include varying extent of skin and/or chest wall involvement [2]. The current 

standard treatment for LABC includes neoadjuvant chemotherapy (NAC) to shrink the 

tumor and make it operable before removing it surgically using procedures such as 

mastectomy [3]. Several studies have reported a significant correlation between patient 

response to NAC and improved treatment outcomes including survival metrics [4]–[7]. 

However, about 30% to 40% of patients do not even partially respond to standard 

chemotherapy, while complete response is limited to less than 30% of patients [8]–[13]. 

Predicting patient’s response early after NAC initiation may enable physicians to offer 

treatment adjustments (e.g., modifying regimen, dose and/or sequence of treatment 

options) or even switch to salvage therapy for non-responding patients, before it is too late 

[14]. Such patient-specific treatment modifications can spare breast cancer patients from 

unnecessary side effects and improve their overall treatment outcomes and quality of life.  

Current approaches for evaluation of response to NAC aim at detecting changes in tumor 

size in response to treatment [15]. They include physical examination or standard 

anatomical imaging such as computed tomography (CT), conventional ultrasound imaging, 

and magnetic resonance imaging (MRI). Tumor size changes, however, may take several 

months to become detectable, and sometimes may not be evident on imaging despite a 
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favorable histopathological response to therapy [16]–[18]. As such, none of these 

anatomical imaging modalities are routinely used in clinical settings to monitor response 

to NAC within the first few weeks after treatment initiation. 

To develop more effective monitoring techniques, a number of studies have investigated 

different functional imaging modalities for evaluating cancer response to treatment [18], 

[19]. Such modalities evaluate physiological, metabolic, and/or molecular changes in the 

tumor, potentially enabling assessment of therapy response before a change in tumor size 

is detectable on anatomical images. In this context, dynamic contrast enhanced (DCE) MRI 

has been investigated to detect early changes in tumor physiology as associated with 

angiogenesis and microcirculation in response to chemotherapy [20]–[25].  While it 

showed promise for evaluation of breast cancer response to NAC, DCE-MRI is relatively 

expensive and requires injection of exogenous contrast agents for each assessment during 

the course of treatment. A number of studies have demonstrated the potential of nuclear 

medicine imaging including positron emission tomography (PET) for evaluating tumor 

response to chemotherapy by detecting early changes in tumor metabolism [26], [27]. It 

has been demonstrated that early mean reduction of 2-deoxy-2-[F-18] fluoro-D-glucose 

(FDG) uptake measured using FDG-PET/CT is significantly higher in responding tumors 

compared to non-responding lesions [26], [27]. PET has also shown potential for early 

response assessment in breast cancer patients through tumor cell proliferation assessment 

via quantifying 3’-[F-18] fluoro-3’-deoxythymidine (FLT) uptake [28]. These imaging 

modalities are, however, not always accessible, often limited in resolution while they need 

injection of radionuclide contrast agents, limiting the frequency of scanning patients for 

response evaluation during the course of treatment. Quantitative ultrasound (QUS) is 

another functional imaging modality that can examine response-related tumor micro-

structure characteristics [29]–[36]. QUS parameters have shown high sensitivity in 

characterizing tumor cell death in response to cancer therapy in preclinical studies [37], 

[38]. Clinical studies on LABC patients undergoing NAC also demonstrated that early 

changes in QUS parameters after treatment initiation can differentiate patients in terms of 

clinical and pathological response and long-term survival [39], [40]. Diffuse optical 

spectroscopic imaging (DOSI) is another possible alternative to other breast imaging 

modalities. This modality has shown good potential in clinical applications pertinent to 
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breast cancer assessment and diagnosis [41]–[43]. This method has been used for 

monitoring NAC response in patients with breast cancer by probing changes in tumor 

composition, perfusion, and oxygenation [44]–[49]. However, the diagnostic performance 

of DOSI was found to be inferior to that of early metabolic response as monitored by FDG 

PET/CT in [46]. While DOSI does not require any exogenous contrast agents for imaging, 

it is associated with long scan time for reconstructing images with acceptable resolution, 

hence it has not been adapted in the clinic as a standard modality. 

Several studies have demonstrated considerable correlation between tumor formation and 

alteration in tissue biomechanical properties [50]–[52]. Generally, the dynamic nature of 

the tissue extracellular matrix (ECM) plays a crucial role in cancer progression [53]. It has 

been demonstrated that increasing ECM stiffness as a result of excessive collagen 

generation during tumor formation can directly activates biological processes that result in 

tumor invasion and metastasis [54].  Moreover, increased collagen content in ECM can 

promote tumor progression and invasiveness [55]–[59]. Given that chemotherapy leads to 

apoptosis and other forms of cell death in tumor, it is anticipated that ECM composition is 

impacted significantly during effective therapy. A manifestation of such alterations is 

potentially tissue stiffness reduction. In other words, there is a potential correlation 

between chemotherapy response and tumor softening. In a study conducted by Falou et al., 

a commercial ultrasound machine was used for clinical strain imaging of breast tumors in 

15 LABC patients before and after the start of NAC [60]. Their results demonstrated that 

changes in relative tumor stiffness can differentiate patients in terms of clinical and 

pathologic response to treatment as early as 4 weeks after the start of chemotherapy. 

However, ultrasound strain elastography lacks accuracy in quantifying tissue stiffness as it 

relies on a poor tissue stress uniformity assumption. Recently developed techniques for 

ultrasound elastography that are capable of quantifying tissue biomechanical properties 

with precise measures such as Young’s modulus can potentially be adapted to monitor the 

biomechanical alterations in tumor in response to treatment [61], [62]. Such methods are 

anticipated to be capable of more reliable and earlier differentiation between responding 

and non-respondent patients after therapy initiation. 
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The present study proposes an enhanced full-inversion-based ultrasound elastography 

technique to quantify changes in the Young’s modulus of LABC tumors as a measure of 

the response to NAC. This technique applies ultrasound radiofrequency (RF) data acquired 

via a quasi-static stimulation of breast tissue induced by ultrasound probe to generates 

enhanced strain images by enforcing fundamental principles of continuum mechanics. The 

enhanced strain images are then input to an iterative inverse finite element (FE) algorithm 

to reconstruct the relative Young’s modulus image of the breast tissue. The method was 

applied to ultrasound RF data acquired from 25 LABC patients undergoing full course of 

NAC before (baseline) and at weeks 1, 2, and 4 after the treatment initiation. The Young’s 

modulus ratio of tumor to the surrounding tissue was calculated at different scans and 

compared to the baseline for each patient. Patient responses to NAC were determined many 

months later using standard clinical and histopathological criteria and applied to evaluate 

the efficacy of the enhanced elastography method for early evaluation of therapy response. 

The results show a very good potential of the proposed technique in predicting the tumor 

response to NAC at week 1 after the start of treatment. 

3.2 Materials and Methods 

3.2.1 Study Protocol and Data Acquisition 

This study was conducted in accordance with the institutional research ethics board 

approval from Sunnybrook Health Sciences Centre, Toronto, Canada (REB PIN: 1994). 

The study was open to all woman aged 18-85 years, diagnosed with LABC, and scheduled 

for NAC followed by surgery. Twenty-five eligible patients were included in the study 

after obtaining written informed consent. A core needle biopsy was performed for each 

patient to confirm cancer diagnosis. Information pertaining to tumor grade, histology, and 

receptor status was also acquired from respective biopsy specimens. For NAC, 14 patients 

(56%) received doxorubicin, cyclophosphamide followed by paclitaxel or docetaxel (AC-

T/D), 2 patients (8%) received paclitaxel and cyclophosphamide (TC), and 9 patients 

(36%) received 5-fluorouracil, epirubicin, cyclophosphamide followed by docetaxel (FEC-

D). Furthermore, all patients with HER2+ tumors received tratuzumab. The duration of 

chemotherapy for each patient was between three to five months. Pre- and post-treatment 

MRI were acquired for each patient before the start of NAC and prior to surgery, which is 
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typically done within a month after the completion of NAC, to determine the initial and 

residual tumor size. 

Using a Sonix RP System (Ultrasonix, Vancouver, Canada), ultrasound B-mode images 

and radiofrequency (RF) data were acquired from the patients’ affected breast before 

treatment as well as at week 1, week 2, and week 4 after the NAC initiation. A 6-cm-wide 

L14-5/60 transducer operating at a nominal frequency of 10 MHz and a frame rate of 12 

frame/s was used in this study. Following standardized protocols for data acquisition, all 

the ultrasound data were acquired by a trained sonographer while the patients were lying 

supine with their arms above their head. The transducer focus for each patient was 

determined based on tumor center depth before treatment and it was kept consistent through 

the rest of the study. On average, 4 scan planes of the tumor were acquired for each patient 

in ~1-cm increments under the guidance of a physician. Raw RF data were acquired at each 

scan plane before and after a quasi-static stimulation of the breast by the probe and saved 

digitally with 16-bit resolution for use in the enhanced elastography method described later. 

The patients underwent surgery after completing the course of NAC and the surgical 

specimens were stained with hematoxylin and eosin (H&E) for histopathology. The 

histopathology samples were assessed by a board-certified pathologist who kept blinded to 

the study results. Patients were categorized into two cohorts of responders and non-

responders using the modified response (MR) grading system described in [63], [64] that 

is based on response evaluation criteria in solid tumors (RECIST) [15] and 

histopathological criteria [17], [35]. Patients with a MR score of 1-2 (less than 30% 

reduction in tumor size) and 3-5 (more than 30% reduction in tumor size or with very low 

residual tumor cellularity) were determined as non-responders and responders, 

respectively. In keeping with this, 17 and 8 patients in this study were identified as 

responders and non-responders, respectively. Table 3-1 summarizes the clinical 

characteristics of the patients participated in this study.  
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Table 3-1: Participating patients’ characteristics 

Characteristics Mean ± SD / Percentage 

Age 51 ± 12 years 

Tumor Size (Maximum Diameter) 

   Initial Tumor Size 5.42 ± 2.25 cm 

   Residual Tumor Size 2.25 ± 2.87 cm 

Histology 

   Invasive Ductal Carcinoma 88% 

   Invasive Lobular Carcinoma 4% 

   Invasive Metaplastic Carcinoma 8% 

Molecular Features 

   ER+ 48% 

   PR+ 32% 

   HER2+ 28% 

   Triple Negative 40% 

   ER/PR+ & HER2+ 16% 

   ER/PR+ & HER2- 32% 

   ER&PR- & HER2+ 12% 

Response  

   Responders 68% 

   Non-Responders 32% 
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3.2.2 Enhanced Strain Imaging 

Axial and lateral displacement fields for each scan plane were estimated using two frames 

of ultrasound RF data acquired at two states of tissue pre- and post-mechanical stimulation 

with the ultrasound probe. In the first step, an initial estimation of the axial and lateral 

displacement fields was obtained using the method proposed in [65] followed by the Global 

Ultrasound Elastography (GLUE) method [66]. The resulting fields were then input to the 

STrain REfinement ALgorithm (STREAL) [67]–[69]. This algorithm improves the 

accuracy of the displacement fields and strain images by imposing continuum mechanics 

principles of tissue incompressibility and compatibility through the following steps:  

1. Applying Laplacian filtering to smooth the initial displacement fields estimated by 

GLUE method. 

2. Estimating the ratio of out-of-plane strain to axial strain at each point within the 

tissue computational field of view. This estimate is derived from modeling the 

breast as semi-infinite medium following the Boussinesq model [68].  

3. Enforcing tissue incompressibility equation in 3D using the estimates obtained in 

step 2 to refine the axial and lateral displacement fields. 

4. Applying finite difference spatial derivative on the refined displacement fields to 

generate enhanced images of the tissue axial and lateral strain. 

5. Enforcing strain compatibility equation to further enhance the axial and lateral 

strain images. 

3.2.3 Full Inversion-Based Elastic Modulus Reconstruction 

A full-inversion-based quasi-static elastography technique was adapted to reconstruct 

relative Young’s modulus image of the breast tissue, using the enhanced strain images 

obtained through the methods presented in the previous section as input [61]. The technique 

applies iterative algorithm of FE analysis for computing tissue stress distribution resulting 

from the quasi-static mechanical stimulation followed by Young’s modulus (E) calculation 

using 2D Hooke’s law (Equation (3-1)).  

 1

𝐸
=

𝜀𝑦𝑦

𝜎𝑦𝑦 − 𝜈𝜎𝑥𝑥
 (3-1) 
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In this equation, ν is the tissue Poisson’s ratio which is set to 0.495 according to breast 

tissue incompressibility, and ε and σ represent the strain and stress where the subscripts yy 

and xx correspond to the axial and lateral directions, respectively. The iterative process of 

E reconstruction is stopped when E values of the finite elements stop changing appreciably.  

For the stress calculation part of the reconstruction technique, FE analysis was used 

through ABAQUS FE solver (ABAQUS/Standard, Dassault Systèmes Simulia Corp., 

Providence, RI, USA). For this analysis, the rectangular field of view of the ultrasound 

scan plane was meshed using linear quadrilateral elements developed for plane stress cases. 

This assumption was based on the experiment conducted and described in 2.2.1. In the FE 

analysis, unlike other techniques that assume ideal unconstrained boundary conditions 

along the outline of the field of view, we used experimentally measured prescribed 

displacement boundary conditions along the outline. These displacement boundary 

conditions were obtained from a subset of the refined displacement data obtained as 

described earlier, while the high-quality strain data was used in Equation (3-1) for updating 

E in each iteration. Two different methods were used for updating E in each iteration:  

1. In the first method, similar to [61], we used Equation (3-1) throughout the 

iterations. The Young’s modulus images obtained from this approach are labelled 

“axial-strain-based E image”. 

2. To take advantage of the enhanced lateral strain, we also used Hooke’s law in 

conjunction with the lateral displacements as given in Equation (3-2). In this 

method, we used both Equations (3-1) and (3-2) with weight factors of 10 and 1, 

respectively, to update E. The Youngs’ modulus images obtained following this 

method are labelled “axial/lateral-strain-based E image”. The weight factors were 

selected based on previous reports that estimate the signal-to-noise ratio of 

ultrasound axial strain images to be typically 10 times higher compared to lateral 

strain images [70]. 

 1

𝐸
=

𝜀𝑥𝑥

𝜎𝑥𝑥 − 𝜈𝜎𝑦𝑦
 (3-2) 
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3.2.4 Data Analysis 

Using the B-mode images, the region of each tumor was outlined in each scan plane with 

a physician’s guidance. A representative surrounding area of normal tissue was then 

selected in each scan for calculating the strain or E ratio of the tumor to surrounding normal 

tissue. At each patient’s assessment time, the strain or E ratio was first calculated for each 

scan plane and then averaged across all scan planes of the tumor to obtain the average ratio 

for the entire tumor volume. For obtaining the average E value within the tumor area in 

each scan plane, a Gaussian distribution was fitted to the E values within the tumor region, 

and the values associated with the lower 30% of the distribution were removed. This pre-

processing step was performed to discard small E values pertaining to tumor heterogeneity 

and to obtain a better estimate of the stiff areas within the tumor region. For calculating the 

average E value of the surrounding normal tissue in each scan plane, any E value smaller 

than 50% or larger than 150% of the average E value of the normal tissue region was also 

discarded following the same argument and the findings of [71] on the mechanical 

properties of breast tissue samples. The final E ratio of tumor to normal tissue in each scan 

plane was then calculated by taking the ratio of the average of the remaining values in each 

region. A similar method was used to calculate average strain ratios.  

Relative changes in the strain and E ratios from the baseline (pre-treatment scan) were 

calculated for each patient at weeks 1, 2, and 4 after the initiation of NAC. Statistical 

analysis was conducted using mixed analysis of variance (ANOVA) to assess significance 

of the difference in strain or E ratio change after NAC between responding and non-

responding patients. Normality violations in each group of the combination of the two 

factors (response, scan time) were checked using the Shapiro-Wilk test. A t-test (two-sided, 

95% confidence) was performed to assess if the two cohorts of patients show any 

significant difference in the strain or E ratio changes at each scan time (weeks 1, 2, and 4) 

compared to the baseline. Receiver operating characteristics (ROC) analyses were 

performed to assess the ability of these parameters at different scan times to differentiate 

between the response of the two cohorts in terms of the area under the curve (AUC).  

Similar analyses were performed on tumor size changes from the baseline measured at each 

scan time using the ultrasound images acquired for each patient. The tumor size was 
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determined based on the maximum tumor diameter among all the available scan planes to 

be consistent with the RECIST criteria.  

3.3 Results 

Figure 3-1 and Figure 3-2 show representative B-mode, strain and E images acquired 

before and at weeks 1, 2 and 4 after the NAC initiation for a responding and a non-

responding patient, respectively. In the responding patient, a continuous reduction in tumor 

stiffness compared to the baseline is detectable starting from week 1. The reduction is more 

evident at weeks 2 and 4 after the NAC initiation. For the non-responding patient, minimal 

changes are observed in tumor stiffness in response to NAC, even at weeks 2 and 4 after 

the NAC onset. While possible changes in tumor stiffness after NAC can be detected on 

the strain images, such changes are more evident on the E images. Generally, the axial-

strain-based and axial/lateral-strain-based E images have similar quality. However, for 

some cases the latter show better contrast in identifying tumor and healthy regions. Figure 

3-3 demonstrate hematoxylin and eosin (H&E) stained histopathology images of the 

surgical specimens acquired for the representative patients. A large residual tumor is 

observed in the mastectomy specimen of the non-responding patient. The histopathology 

image of the responding patient demonstrates the tumor bed area with chemotherapy effect 

and no residual carcinoma. Both images indicate notable heterogeneity within the tumor 

region. 
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Figure 3-1: B-mode (A), axial strain (B), lateral strain (C) and relative Young’s modulus 

images obtained based on the axial strain (D) and based on axial and lateral strains (E) 

obtained for a representative responder before and at different times after the NAC 

initiation. The axial and lateral strain images were generated using the STREAL technique. 
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Figure 3-2: B-mode (A), axial strain (B), lateral strain (C) and relative Young’s modulus 

images obtained based on the axial strain (D) and based on axial and lateral strains (E) 

obtained for a representative non-responder before and at different times after the start of 

NAC. The axial and lateral strain images were generated using the STREAL technique. 
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Figure 3-3: Histopathology images of surgical specimens obtained from representative 

responding and non-responding patients. 

Figure 3-4 demonstrates average changes in the strain and E ratios compared to the baseline 

at different times after NAC initiation for the two patient cohorts. According to these plots, 

the axial strain ratio decreases over time after week 1 for the responder cohort while it 

shows an increase for the non-responder cohort at week 1 with little average changes 

afterwards. However, the lateral strain ratio demonstrates minimal changes throughout the 

chemotherapy for the responder cohort while showing elevations for the non-responder 

cohort. In the plots associated with both versions of the E image, the responder cohort 

demonstrates a consistent reduction in the average E ratio, starting with 15-20% decrease 

on average at week 1, followed by 25-30% at week 2 and 40-45% at week 4 following the 

treatment onset. In contrast, the non-responder cohort shows minimal change in the average 

E ratio after the start of the chemotherapy with less than 10% change on average even at 

week 4 following the treatment initiation. In summary, the change in E ratio for both 

versions of the E images can completely differentiate responders from non-responders as 

early as one week after the start of treatment, whereas a clear differentiation cannot be done 

based on changes in strain ratio until 4 weeks after the NAC initiation. Figure 3-5 shows 

average changes in tumor size from the baseline at weeks 1, 2 and 4 after the treatment 

onset. No substantial changes are visible in tumor size to separate the patient cohorts, with 

~10% and ~5% average decrease for the responding and non-responding patients at week 

4, respectively. 
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Figure 3-4: Relative changes in tumor stiffness compared to baseline after the start of NAC 

for responding and non-responding patient cohorts, estimated based on axial strain ratio 

(A), lateral strain ratio (B), E ratio obtained from the axial-strain-based relative Young’s 

modulus image (C), E ratio obtained from the axial/lateral-strain-based relative Young’s 

modulus image (D). 

 

Figure 3-5: Relative changes in tumor size compared to baseline after the NAC initiation 

for responding and non-responding patient cohorts. 
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Table 3-2 shows the results of statistical analysis among the responding and non-

responding patients at different scan times.  The results obtained from the mixed ANOVA 

test demonstrate a statistically significant difference in changes in the E ratio between the 

responding and non-responding patients after the onset of NAC. Such difference is 

statistically extremely significant in the E ratio changes estimated using both approaches 

(p-value < 0.001). A similar test conducted for the changes in strain ratios and tumor size 

demonstrate no significant difference for the lateral strain and tumor size, but an 

approaching significant difference (p-value = 0.08) for the axial strain. Conducted t-test 

demonstrates a statistically significant difference in the E ratio changes from the baseline 

as early as one week after the treatment onset that is maintained at weeks 2 and 4, with 

high statistical power. In contrast, no significant difference is observed for changes in the 

tumor size or lateral strain ratio at weeks 1 to 4. For the axial strain ratio, a significant 

difference is only seen at week 4 after the treatment initiation. Moreover, results of the 

ROC analysis demonstrate promising AUCs obtained for changes in the E ratios at weeks 

1 to 4 after the start of chemotherapy, and for the axial strain at week 4.   
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Table 3-2: Results of statistical analysis obtained for different elastography parameters 

acquired from the responding and non-responding patient cohorts at different times after 

the NAC initiation. *, †, and ‡ demonstrate statistically significant (p-value < 0.05), highly 

significant, (p-value < 0.01), and extremely significant (p-value < 0.001), respectively. 

Parameter Week 
Mixed ANOVA 

(p-value) 

T-Test 

(p-value) 
AUC 

%∆Tumor-Size 

1 

0.90 

0.93 0.47 

2 0.63 0.61 

4 0.52 0.60 

%∆Axial-Strain-Ratio 

1 

0.08 

0.49 0.64 

2 0.17 0.74 

4 0.01* 0.85 

%∆Lateral-Strain-Ratio 

1 

0.31 

0.16 0.67 

2 0.82 0.51 

4 0.21 0.61 

%∆E-Ratio 

(axial-strain-based E image) 

1 

<0.001‡ 

0.02* 0.79 

2 <0.001‡ 0.85 

4 <0.001‡ 0.99 

%∆E-Ratio 

(axial/lateral-strain-based E image) 

1 

<0.001‡ 

<0.001‡ 0.82 

2 0.02* 0.77 

4 <0.001‡ 1.0 
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3.4 Discussion and Conclusion 

This study investigated, for the first time, the application of a novel full inversion-based 

ultrasound elastography technique for monitoring tumor response to NAC in LABC 

patients. The technique adapted the STREAL method [67]–[69] for enhanced strain 

imaging coupled with a novel methodology for reconstruction of elasticity images that 

permits accurate quantification of breast tissue relative Young’s modulus. The method was 

applied on ultrasound data acquired from 25 LABC patients before and at weeks 1, 2 and 

4 after the NAC initiation. Changes in tumor stiffness in response to NAC was quantified 

using average E and strain ratios of tumor to surrounding normal tissue obtained at 1, 2 and 

4 weeks after the start of NAC initiation. Response of patients to NAC was determined 

after completing the course of NAC and surgery using the standard clinical and 

histopathological criteria. The criteria were used for evaluating the performance of the 

elastography parameters in assessing patients’ response to NAC early after the therapy 

initiation. Trend of changes in tumor Young’s modulus among the responding and non-

responding patients indicated a very good correlation with the NAC response. In particular, 

while the tumor E ratio demonstrated a considerable and continuous decrease for 

responding patients starting at week 1, minimal changes were observed for non-responding 

patients even at week 4 after the NAC onset.  

Statistical analysis confirmed that the method is successful in differentiating responding 

and non-responding patients as early as one week after the NAC initiation. Specifically, 

statistically significant differences were observed in E ratio changes between the 

responding and non-responding patients at all scans after the therapy onset (Table 3-2). 

The results of this statistical analysis are indicative of a substantial improvement compared 

to the previous study in which a significant difference (p-value = 0.002) in tumor stiffness 

changes was only observed after 4 weeks following the start of treatment when such 

changes were estimated using clinical ultrasound strain imaging [60]. The results obtained 

in this study with strain images supports the findings of the1212 previous study. Here, a 

significant difference (p-value = 0.01) in changes of the axial strain ratios was observed 

only at week 4 after the chemotherapy onset. The inferior performance of the strain 

compared to the E images in early differentiation of the patients’ response to NAC can be 
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attributed to the poor stiffness measure of the strain compared to the tissue Young’s 

modulus. Strain image is a true representative of the tissue stiffness only if the stress is 

uniformity distributed within the breast tissue while being stimulated mechanically with 

the ultrasound probe for strain-based elastography. Due to the breast tissue inhomogeneity 

and irregular geometry, and local loading, it is well established that considerable stress 

non-uniformity exists within the field of view, hindering the sensitivity of strain images in 

estimating tumor stiffness. The full-inversion-based E reconstruction algorithm applied in 

this study takes tissue stress non-uniformity into account via iterative finite element 

analysis, leading to higher signal-to-noise ratio (SNR) in generated E images, hence higher 

sensitivity in quantifying small changes in tumor stiffness compared to strain images. The 

statistical analysis on tumor size changes measured using the ultrasound images 

demonstrated no significant difference between the responding and non-responding 

patients at weeks 1 to 4 following the treatment initiation. This observation is in agreement 

with findings of the previous studies in which no statistically significant difference was 

evident in tumor size changes measured using MRI [72] or ultrasound [73] 3-4 weeks after 

the start of chemotherapy. 

The enhanced axial and lateral strain images obtained using STREAL were utilized to 

generate two versions of E images. The first version of E images was reconstructed using 

the enhanced axial images only, while the second version also took advantage of the 

enhanced lateral strain images for generating E images with higher quantitative accuracy. 

The quality of these images was generally comparable, but in some cases the E images 

reconstructed based on both the axial and lateral strain images led to better visualization of 

the tumor region compared to those generated based on the axial strain only. Similarly, the 

trends of changes in the tumor E ratio measured based on these elasticity images were 

similar over the course of treatment in each response cohort. However, the E ratios 

associated with the E images generated based on both the axial and lateral strain images 

provided a relatively better separation between the two cohorts at weeks 1 and 4 after the 

NAC initiation. In particular, a statistically extremely significant (p-value < 0.001; 

statistical power = 98%) versus significant (p-value = 0.02; statistical power = 83%) 

difference was observed in the E ratio changes measured at week 1 using the E images 

reconstructed based on the axial and lateral strain images, and axial strain images, 
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respectively. The results of ROC analysis for both these methods demonstrated a relatively 

high AUC for NAC response prediction at week 1 after the treatment onset. These 

observations support the findings of a very recent study in which ultrasound shear wave 

elastography was applied to measure changes in tumor Young’s modulus in breast cancer 

patients undergoing NAC [73]. In that study, changes in tumor Young’s modulus were 

quantified at weeks 3 and 6 after the NAC initiation, where statistically (highly) significant 

differences (p-value = 0.02 and 0.001) were observed between the patient cohorts with 

pathological complete versus non-complete response. The findings of this study encourage 

future studies to investigate the efficacy of the ultrasound shear wave elastography in 

differentiating the response cohorts at weeks 1 and 2 after the NAC initiation, based on the 

measured changes in tumor stiffness. 

In conclusion, this study demonstrated a very good potential for the proposed full 

inversion-based ultrasound elastography technique in assessing and predicating tumor 

response to NAC in LABC patients as early as one week after the NAC initiation. Early 

prediction of neoadjuvant therapy response for these patients potentially facilitates 

treatment adjustments by clinicians on an individual patient basis. A personalized paradigm 

for breast cancer therapeutics is anticipated to improve the overall therapy outcome, 

survival, and quality of life for the patients. This study, therefore, is a step forward towards 

precision oncology and tailoring chemotherapies for breast cancer patients. Studies 

involving larger patient populations are, however, required to further evaluate the efficacy 

and robustness of the technique. 
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Chapter 4  

4 Conclusions and Future Work 

4.1 Conclusions 

In this study, first, an enhanced ultrasound elastography technique was proposed and 

rigorously validated using in silico and tissue-mimicking phantom, and clinical studies. 

This technique utilizes two tissue mechanics-based principles of tissue incompressibility 

and strain compatibility. The more accurate displacement and strain fields can then be fed 

into any ultrasound elastography framework to estimate tissue mechanical properties. 

These techniques can be employed for early detection and identification of soft tissue 

cancer based on the notion that tissue mechanical properties change as a result of cancer. 

These tissue mechanical properties can provide useful information for cancer detection and 

assessing its progression while a more accurate estimate of these properties obtained 

through our enhanced technique can be used in conjunction with other clinical data and 

detection methods for example other medical imaging techniques, histopathology results, 

etc. to improve clinical outcome and results. Displacement fields obtained using the 

aforementioned displacement enhancement technique was used in an unconstrained 

inverse finite element framework to estimate tissue Young’s modulus for LABC patients 

who were prescribed chemotherapy before a mastectomy. Using this method, the stiffness 

ratio of the patients’ tumors was monitored throughout chemotherapy. The purpose of this 

study was to find a correlation between the change in the tumor’s Young’s modulus and 

patients’ response to chemotherapy. These investigations were presented in two chapters 

of this dissertation. The primary research contributions and details of the results for each 

chapter are summarized below. 

4.1.1 Chapter 2: A Novel Tissue Mechanics-based Method for 

Improving Tissue Displacement and Strain Estimation in 

Breast Ultrasound Elastography 

In this chapter, a novel method for refining tissue displacement and strain fields generated 

in conventional quasi-static ultrasound imaging was presented. This method involves three 
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main steps of smoothing displacement field using second order derivative-based 

regularization, further refining them using tissue incompressibility equation, and finally, 

refining the acquired strain fields using strain compatibility equation. Additionally, a 

Boussinesq semi-infinite analytical model was used for estimating the out-of-plane strain 

which is needed for the tissue incompressibility equation. To our knowledge, this has never 

been done before in the literature. Validation of this method was done using a set of in 

silico and tissue-mimicking phantom, and clinical studies. All these studies showed that 

this method is capable of improving displacement and strain fields specially in the lateral 

direction. Based on these validations, the proposed method appears to be very effective in 

producing improved estimate of tissue displacement and strain images. Once again, 

compared to improvement of the axial displacement and strain components, the 

improvement is highly remarkable for the lateral component which had not yet been 

ameliorated in the literature. 

4.1.2 Chapter 3: Enhanced Full-Inversion-Based Ultrasound 

Elastography for Evaluating Tumor Response to 

Neoadjuvant Chemotherapy in Patients with Locally 

Advanced Breast Cancer 

In this chapter the application of a novel full inversion-based ultrasound elastography 

technique for monitoring tumor response to neoadjuvant chemotherapy (NAC) in locally 

advanced breast cancer (LABC) patients was investigated. The novelty of technique mostly 

relates to adapting the STREAL method, described in Chapter 2, for refining displacement 

and strain data before generating Young’s modulus (E) images through an inverse finite 

element (FE) based reconstruction framework. These images were generated for 25 LABC 

patients who underwent full course of chemotherapy at weeks 1, 2, and 4 as well as before 

the start of treatment. The stiffness of tumor was then assessed and monitored based on 

these Young’s modulus images and the boundaries of tumor which were determined by the 

B-mode images counterpart. Based on the response of each patient which had already been 

determined after completement of NAC and surgery using the standard clinical and 

histopathological criteria, a very good correlation between the change in tumor stiffness 
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and final response to NAC was observed. Specifically, statistical analysis confirmed that 

using the trend of change in tumor stiffness based on generated E images, the responder 

and non-responder patients could be differentiated as early as 1 week after the start of 

treatment. This is while such early differentiation could not be found through neither  

monitoring tumor diameter nor tumor stiffness based on strain images. In conclusion, this 

study demonstrated a very good potential for the proposed full inversion-based ultrasound 

elastography technique in assessing and predicting tumor response to NAC in LABC 

patients as early as one week after the NAC initiation. Early predication of NAC response 

for these patients potentially facilitates treatment adjustment by clinicians on an individual 

patient basis. A personalized paradigm for breast cancer therapeutics is anticipated to 

improve the overall therapy outcome, survival, and quality of life for the patients. This 

study, therefore, is a step forward towards precision oncology and tailoring chemotherapies 

for breast cancer patients.  

4.2 Future Directions 

While the proposed investigations demonstrated very promising results in assessing and 

validating the developed technique namely STREAL, further investigation with several 

clinical cases is necessary for more rigorous assessment of the method’s performance in 

the clinic. Furthermore, there proposed methods involve some  limitations which provide 

opportunities for further enhancement. 

Using an analytical model based on Boussinesq semi-infinite equations for estimating out-

of-plane strain is a novel and effective method for improving the accuracy of enforced 

incompressibility equation for refining axial and lateral displacement fields. However, this 

analytical model does not consider specific geometries of different breasts. An ongoing 

project in our research lab has been dedicated to address this issue with the aim of 

considering patient specific breast geometry. 

STREAL method can be applied on any previously generated displacement field from 

quasi-static ultrasound elastography of soft tissues, including breast, prostate, and liver 

elastography. While we showed efficacy of this method in breast elastography application, 
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assessing its performance in elastography of other organs is encouraged. It is noteworthy 

that since this method is based on particular assumptions regarding the geometry and tissue 

mechanics, the applicability of these assumptions in the organ of interest should be 

examined first.  

One other potential investigation on STREAL would be applying STREAL on less 

regularized displacement fields to assess the level of sensitivity of STREAL to its input. 

This investigation has already been started in our labs. The results have been promising so 

far, indicating that STREAL can improve even low-quality displacement fields. 

In Chapter 2, two variants of E images based on different weights for two different 

equations derived from Hooke’s law were generated and assessed for monitoring patients’ 

response to NAC based on their tumors’ stiffness. While the performance of both these 

variants were perceived to be similar, further investigation on the optimum weights for 

these variants is recommended. Moreover, studies involving larger patient populations are 

required to further evaluate the efficacy and robustness of the technique. 

In quasi-static ultrasound elastography, the ultrasound RF data which are collected 

throughout the stimulation of tissue consist of several number of frames. The quality of 

displacement fields, strain images, and Young’s modulus images depend highly on how 

the tissue is being deformed. An important aspect in generating an accurate elastogram is 

to find the best pair of RF frames that corresponds to a suitable tissue deformation. One 

major bottleneck of quasi-static ultrasound elastography is to find this optimum frame pair. 

In this work, this has been done through an ad-hoc procedure in which the fields were 

assessed visually by an expert researcher. As a future work, a systematic and automatic 

method potentially based on principles of tissue mechanics can be developed for efficiently 

finding the proper frame pairs for ultrasound elastography in any ultrasound RF data.  

4.3 Closing Remarks 

Ultrasound elastography has emerged to be a potential tool for tumor localization and 

classification, assessment of cancer progression, and diagnosis of cancer in soft tissues, 

including breast, prostate, and liver. While this technique is clinically acceptable, 
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inexpensive, and easily accessible throughout the world, it still can be considered to be 

nascent while it has a lot of potential for further improvement. Acquiring accurate 

displacement fields specially in lateral direction in quasi-static ultrasound elastography has 

always been a challenge. This challenge was exquisitely addressed in this research by 

incorporating tissue-mechanics based principles. As an application, developing such 

technique further has helped us to assess the potential of ultrasound elastography in 

evaluating breast cancer progression. Our developed technique and primary results show 

great potential in clinical settings. However, further clinical studies are required to assess 

the accuracy and reliability of the proposed technique.  
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