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Abstract

Requirements Engineering and Systems Architecting are often considered the 

most important phases of the software development lifecycle. Because of their close 

proximity in the software development lifecycle, there is a high degree of interaction 

between these two processes. While such interaction has been recognized and 

researched in terms of new technology (particularly methods and tools), there is a 

distinct lack of empirical understanding regarding the scientific properties of this 

interaction. Furthermore, in Requirements Engineering and Systems Architecting, not 

only technical but human aspects are considered critical for the success of these 

processes due to these processes lying at the front-end of the development cycle and 

therefore being more aligned with real-world issues. Thus, the scientific properties of 

the interactions between Requirements Engineering and Systems Architecting can be 

broken down into these two key aspects. For instance, the following example 

research questions relate to such scientific properties: What is the impact of an 

existing system’s architecture on requirements decision-making? What kinds of 

requirements-oriented problems are encountered during architecting? What is the 

impact of an existing systems architecture on new requirements being elicited? What 

is the impact of requirements engineering knowledge on systems architecting? There 

is little in the literature addressing such questions.

This thesis explores such issues through a suite of six exploratory empirical 

studies that were conducted over the last five years. Based on the observations from 

these studies, an emerging theory is proposed that describes the impact of human and 

process factors in the interaction between Requirements Engineering and Systems 

Architecting. The impact of this emerging body of knowledge is deemed to be on the 

following: technology development for Requirements Engineering and Software 

Architecting (methods, tools, processes, etc.); hiring and training personnel for 

Requirements Engineering and Systems Architecture processes in industry; 

Requirements Engineering and Systems Architecture project planning; curriculum 

improvement in academia; and future empirical research in Requirements 

Engineering and Systems Architecting.
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Chapter 1 

Introduction
Requirements Engineering (RE) and Systems Architecting (SA) are often 

considered the most important phases of the software development lifecycle (IEEE 

SWEBOK, 2004, Booch 2007). RE encompasses the set of tasks and activities that 

go into determining the needs or conditions for a software system (Kotonya and 

Sommerville, 1998). Likewise, SA encompasses those tasks and activities that aid in 

determining “the fundamental organization of a system embodied in its components, 

their relationships to each other and to the environment, and the principles guiding its 

design and evolution” (IEEE Standard 1471, 2000).

Because of their close proximity in the software development lifecycle, there 

is a high degree of interaction between these two processes (Nuseibeh, 2001). For 

example, when eliciting and analyzing requirements, it is important to assess the 

impact of certain requirements on the backbone of the system (Kotonya and 

Sommerville, 1998); likewise, when architecting the system (or part thereof), it may 

be necessary to elicit new, or refine certain, existing requirements (Nuseibeh, 2001).

While such interaction has been recognized and researched in terms of new 

technology (methods [Bass et al., 2003][Wang et al., 2005], development 

methodologies [Castro et al., 2002], tools [Bachmann et al., 2003], processes 

[Schwanke, 2005][Brandozzi and Perry, 2003], etc.), there is a distinct lack of 

empirical understanding regarding the scientific properties of this interaction. For 

example, we do not know the impact of an existing SA on newly elicited 

requirements, the kinds of requirements-oriented problems experienced while 

architecting a software system, and the impact of RE knowledge and experience on 

SA. Such an understanding would (a) add substantially to the body of knowledge in 

Software Engineering (SE) (IEEE SWEBOK, 2004) and (b) could be used in the 

design, assessment and improvement of methods, tools and processes (Wieringa and 

Heerkens, 2006).
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Furthermore, in SE, both technical and human aspects are considered critical 

for the success of software development (John et al., 2005; Bass and Berenbach, 

2008; Clements et al., 2007). In particular, for RE and SA, human factors are even 

more important due to these processes lying at the front-end of the development 

cycle and therefore being more aligned with real-world issues. Unlike, for example, 

the testing or coding phases where much of the work can be aided by (semi-) 

automated technology, RE and SA, due to their inherent activities and tasks, cannot 

be driven predominantly by technology but are instead heavily dependant on the 

actual human agents conducting these processes (Nuseibeh and Easterbrook, 2000). 

Thus, the scientific properties of the interactions between RE and SA can be broken 

down into two key categories: technical and human based. Technical properties deal 

with such example issues as: concrete models in RE and SA, traceability between SA 

elements and requirements, and the choice of architecting tactics and their impact on 

requirements satisfaction (Bass et al., 2003). Whereas, orthogonal to technical 

properties, human-based properties deal with example issues such as: the RE 

competency of software architects and its impact on SA quality, how personal 

interests and motivation effect RE and SA products, and the importance of non

technical skills (communication, leadership, etc.) in RE and SA activities.

Thus, this thesis explores such issues through a suite of six empirical studies 

in the RE and SA domains that were conducted over the last six years. The studies 

were conducted in a variety of contexts, such as academic “lab” experiments, and 

case study on real large-scale project. The studies also employed a mix of empirical 

methodological designs, from quantitative based data collection and analysis, to more 

Social Sciences oriented qualitative techniques (Creswell, 2003). This empirical 

exploration is ultimately meant to enhance the overall body of empirical knowledge 

pertaining to the interaction of RE and SA, from both a technical and human-based 

viewpoint.

1.1 Research Contribution
Based on the observations from these six studies, an emerging grounded 

theory is proposed that describes the impact of human and technical factors in the 

interaction between RE and SA. In short, the theory states that:
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The effectiveness o f RE and SA processes is increased if  technological 

support ensures:

(1) tighter coupling between the artefacts and activities across RE 

and SA

(2) the variety o f the project’s development context (such as new 

development vs. enhancements, agile vs. traditional development 

models, centralized vs. distributed organization, etc.), and

(3) compatibility with the varying degrees o f knowledge, skill-sets 

and personal motivation possessed.

The emerging theory is subsequently evaluated for its “goodness” based on SE 

theory-construction guidelines from (Boehm, 2006) and (Sjoberg, 2008). This 

emerging theory is novel in the RE and SA fields, and provides practitioners with 

scientific principles regarding key issues in RE and SA, and researchers with an 

explicit framework for discussing and conducting further RE and SA research.

The impact of this emerging body of knowledge (both the empirical studies 

findings and emerging theory) is deemed to be on the following: technology 

development for Requirements Engineering and Software Architecting (methods, 

tools, processes, etc.); hiring and training personnel for Requirements Engineering 

and Systems Architecture processes in industry; Requirements Engineering and 

Software Architecture project planning; curriculum improvement in academia; and 

future empirical research in Requirements Engineering and Software Architecting. 

Each of the six conducted studies has their own detailed implications in the above 

areas.

1.2 The Thesis Core: Six Studies
The thesis core is characterized by the mentioned six studies, one per chapter.

Table l-l provides a concise overview of all the studies in chronological order,

' Technology ensuring tighter coupling between RE and SA process activities does not imply that the 
processes must be conducted in a more tightly integrated manner; it simply means that this capability 
should be present in the emplyoyed technology to use as appropriate in the RE and SA processes.
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containing the following information: the title of the study, the chapter where the 

study is described in detail, study date, and any refereed publications resultant from 

the study.

C h ap ter

#

Study T itle Study

D ate

Publications

2 Im pact o f  R E know ledge and  experience 

on  Softw are A rchitecting

2004-2005 (Ferrari and M adhavji, 

2008a), (Ferrari and 

M adhavji, 2007)

3 R equirem ents-o rien ted  problem s w hile 

A rchitecting

2005 (Ferrari and M adhavji, 

2008b), (Ferrari and 

M adhavji, 2006)

4 R equirem ents characteristics in  the 

presence/absence o f  an  ex isting  SA

2005-2006 (Ferrari et ah, 2010c), 

(M iller et al., 2009),

5 Im pact o f  ex isting  SA on requirem ents 

decisions

2006-2007 (M iller et ah, 2010), 

(M iller et ah, 2008)

6 Im pact o f  existing  SA  on requirem ents 

decisions in a large-scale, p ro to typical 

context

2008-2009 (Ferrari et ah, 2010a), 

(Ferrari et ah, 2010b)

7 Im pact o f  non-technical facto rs’ on SA 2009 (Ferrari et ah, 2009)

Table 1-1. Overview of studies

We now provide an overview of each study.

1.2.1 Impact of RE Knowledge and Experience on Software Architecting
This study investigated the impact of requirements knowledge and experience

(RKE) possessed by the human agents conducting a systems architecting project. 

Specifically, it describes an exploratory, controlled study involving 15 architecting 

teams, approximately evenly split between those teams with RKE and those without. 

Each team developed its own system architecture from the same given set of 

requirements in the banking domain. The subjects were all final year undergraduate 

or graduate students enrolled in a university-level course on systems architectures. 

The overall results of this study suggest that architects with RKE develop higher-
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quality software architectures than those without, and that they have fewer 

architecture-development problems than did the architects without RKE.

We also identified specific areas of both architecture design as well as the 

architecture-development process where the differences manifest between the RKE 

and non-RKE architects. Implications of the findings are discussed, and the focus on 

the areas of hiring and training, pedagogy, and technology. The empirical study was 

carried out using the “ mixed methods” approach, involving both quantitative and 

qualitative aspects of the investigation. A bi-product of this study is an architectural 

assessment instrument (included in Appendix A) for quantitative analysis of the 

quality of a systems architecture.

1.2.2 Requirements-oriented problems while Architecting
Requirements permeate many parts of the software development process

outside the RE process. It is thus important to determine whether software developers 

in these other areas of software development face any requirements-oriented 

problems in carrying out their tasks. Feedback so obtained can be invaluable for 

improving both requirements and RE technologies. This study was an exploratory 

case study of requirements-oriented problems experienced by sixteen architecting 

teams designing the same banking application. The study found that there were 

several different types of requirements-oriented problems, of varying severity, which 

the architects faced in using the given requirements; those architects with RE 

background also faced requirements-oriented problems; and about a third of all 

problems were requirements-oriented problems.

Furthermore, there was much concurrence of our findings with software

expert opinion from a large insurance company. We also discuss implications of the 

findings for the RE field, particularly in the areas of: expression of quality 

requirements for different stakeholders; empirical studies on quality scenarios; tighter 

integration of RE and software architecting processes; and requirements to 

architecture mapping. There are opportunities for further research based on two 

emergent hypotheses that are also described.
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1.2.3 Requirements characteristics in the presence/absence of an existing SA
While much research attention has been paid to transitioning from

requirements to systems architectures, relatively little attention has been paid to how 

new requirements are affected by an existing system architecture. Specifically, no 

scientific studies have been conducted on the “ characteristic” differences between 

the newly elicited requirements gathered in the presence or absence of an existing 

systems architecture. This study was an exploratory controlled study investigating 

such requirements characteristics. We identify a multitude of characteristics (e.g., 

end-user focus, technological focus, and importance) that were affected by the 

presence or absence of an SA, together with the extent of this effect. Furthermore, 

we identify the specific aspects of the architecture that had an impact on the 

characteristics. The study results have implications for RE process engineering, post

requirements analysis, requirements engineering tools, traceability management, and 

future empirical work in RE based on several emergent hypotheses resultant from 

this study.

1.2.4 Impact of existing SA on requirements decisions
The question of the “manner in which an existing systems architecture affects

requirements decision-making” is considered important in the research community; 

however, to our knowledge, this issue has not been scientifically explored. We do 

not know, for example, the characteristics of such architectural effects. We conducted 

an exploratory study on this question. Specific types of architectural effects on 

requirements decisions are identified, as are different aspects of the architecture 

together with the extent of their effects. This study reported quantitative measures 

and qualitative interpretation of the findings. The understanding gained from this 

study has several implications in the areas of: project planning and risk management, 

RE and SA technology, architecture evolution, tighter integration of RE and SA 

processes, and middleware in architectures. Furthermore, we describe several new 

hypotheses that have emerged from this study, that provide grounds for future 

empirical work. This study involved six RE teams (of university students), whose 

task was to elicit new requirements for upgrading a pre-existing banking software
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infrastructure. The data collected was based on a new meta-model for requirements 

decisions, which is a bi-product of this study.

1.2.5 Impact of existing SA on requirements decisions in a large-scale, 
prototypical context

This study continues the investigation of the study described in the previous 

subsection (Section 1.2.4) on the impact of an existing SA on requirements decisions. 

While the findings from that initial study were promising, much work still remains to 

solidify the results. Therefore, we conducted a replication of the study, and its 

significant extension, on a large-scale prototypical rail project being developed in 

Germany. Specifically, we identify (i) the effects of SA on RE decisions, (ii) the 

characteristics of the RE decisions and (iii), the impact of such decisions on 

development activities and the rail system. The findings of this study have 

implications on tighter RE and SA integration across subsystems, impact analysis of 

requirements on SA, and planning and risk management. We also propose three 

emergent hypotheses from this case study as a driver for future empirical work in RE. 

This case study involved examining the 10-year history of requirements and 

architecting decisions in several major components of the rail project. The data 

collected was from numerous project documents and extensive interviews with the 

developers and planners.

1.2.6 Impact of non-technical factors on SA
As discussed in the introduction, most of the research and pedagogical

literature in RE and SA are on technical issues. Recently, however, there has been 

increasing interest on the importance of non-technical factors such as leadership, 

communication, inter-personal skills, work habits etc. in RE and SA. Despite this, to 

our knowledge, no empirical studies have been conducted to examine the impact of 

non-technical factors in Systems Architecture from the viewpoint of academia. In 

this study, we conducted a multiple-case study where we analysed non-technical 

problems encountered from 15 student architecting teams to determine the types of 

problems students have, and also their impact on the quality of the architecture. We 

found that there were 156 non-technically oriented problems distributed among the 

teams, and spread among numerous categories of problems. We also found that there
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was a moderate correlation between a team’s number of non-technical problems 

encountered and the final architecture quality.

Furthermore, we analyzed the IEEE/ACM Software Engineering and 

Computer Science curriculums to determine any correspondence between these 

curriculums and the student’s architecting performance. Our general finding is that 

non-technical issues are under-represented in the current curriculums. For example, 

only 7% of the total hours in a recommended curriculum are allocated to non

technical factors. Based on this analysis we make recommendations for the 

improved education of student software architects.

1.3 The Thesis Structure
This thesis is documented in the “integrated-article” format ; under this 

format, each discrete study is reported in its own chapter (Chapters 2 to 7) and 

following these chapters is a chapter describing the emerging theory (Chapter 8), 

effectively abstracting and relating the various studies under a set of theoretical 

propositions. Lastly, Chapter 9 concludes the thesis and describes future work .
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Chapter 2

Impact of Requirements Engineering 
Knowledge on Systems Architecting4

1 Introduction

The relationship between Requirements Engineering (RE) and Systems 

Architecture (SA)5 has been of significant interest in the past five or so years in terms 

of methods for designing, transitioning, recovery and analysis; notations and 

representations; design and analysis tools; development paradigms; and project 

experiences that aim to facilitate a smoother transition from RE to SA. See, for 

example, focused workshops on RE and SA transitioning (STRAW 01, STRAW 03) 

and some individual research works, such as: (Damian and Chisan, 2006; Wang et 

al., 2005; Schwanke, 2005; Poort et al., 2004; Rapanotti et al., 2004).

However, the relationship between RE and SA in terms of the human agents 

conducting these processes has not been explored scientifically. It is important to 

examine the RE and SA relationship in this manner because, not least the fact that, 

RE and SA processes are typically adjacent to each other in a development project 

causing substantial interaction between these two processes and that a scientific 

understanding of the RE and SA relationship would add substantially to the body of 

knowledge in software engineering (IEEE SWEBOK, 2004).

For example, when eliciting and analysing requirements, it is important to 

assess the impact of certain requirements on the backbone of the system (Kotonya 

and Sommerville, 1998); likewise, when architecting the system (or part thereof), it 

may be necessary to elicit new, or refine certain, existing requirements (Nuseibeh,

2001). Thus, being knowledgeable in these cross-functional areas is an asset when 

conducting the RE and SA processes. Still, beyond such intuition, no previous studies

4 A version of this chapter has been published in (Ferrari, R., and Madhavji, N. H., 2008).
5 For the rest of the paper, the acronym SA will refer to: Systems Architecture as a discipline, an
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exist to our knowledge that critically examines the RE and SA relationship in terms 

of the knowledge and experience of the agents. In this paper, we examine this issue, 

with a particular focus on the impact o f requirements knowledge and experience 

(RKE) on SA tasks.

RKE encompasses knowing about, and having experience with, the various 

technical areas in engineering requirements such as: elicitation, modelling, analysis 

of requirements, negotiation, prioritisation, quality drivers, viewpoints, specification, 

validation, traceability, process, management, etc. (Kotonya and Sommerville, 1998). 

SA, on the other hand, encompasses such tasks as: quality drivers determination, 

tactics and pattern determination, module decomposition, interface specification, 

behaviour modelling, documentation of different system views, etc. (Bass et al., 

2001).

Some critical questions in the RE and SA relationship include: What is the 

impact of RKE on (i) the determination of architecting-tactics to satisfy quality 

requirements, or (ii) the determination of architectural patterns to integrate the 

architectural tactics and quality drivers, or (iii) formation of architectural 

abstractions? There are many other such questions and, clearly, knowing the 

dependency of SA on RE has important implications for such purposes as hiring, 

training, education and technology in the SA field. In this paper, we describe an 

empirical study on such issues.

In our study, for example, we found that architects with RKE significantly 

performed better, in terms of architectural quality, than those without. Specific 

technical areas where the RKE group seemed to excel were in tactics, quality 

satisfaction, pattern determination, module decomposition and interface 

specification. These findings are not only new but are also surprising because both 

types of architects, with and without RKE, were trained in the same way on SA tasks 

and, as one would expect, the SA training inevitably had to address the relevant 

requirements and architecting issues.

The findings of the study have implications for development practice, 

education and training. For example, in industry, such findings could feed into

artefact, or the architecting process. The context in which the acronym appears dictates its meaning.
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development of new, or improvement of, tools and paradigms that could better help 

architects without RKE. Also, problem areas that were encountered by both, RKE 

and non-RKE, architects could be identified and focused upon in the development 

and tuning of RE and SA methods, tools, procedures and processes. Likewise, in 

academia, analysis of numerous SA courses offered by various post-secondary 

institutions suggests that the extent of the RE knowledge required as a pre-requisite 

to taking SA courses is quite variable. Out of ten respected institutions that offered 

SA, only one SA course had a dedicated RE course as a prerequisite; three had only a 

general software engineering (SE) course as a prerequisite; and the rest had no (SE or 

RE) prerequisites. Also, the recent IEEE/ACM curriculum for SE (Software 

Engineering, 2004) recommends general SE or software construction as prerequisites 

for SA courses, depending on the core package selected. Thus, our findings could be 

a trigger for possible streamlining of the prerequisites or for highlighting action that 

could possibly be taken either prior to, or during, the SA courses. Also, in the area 

of hiring and training, we have often seen in the software industry (in Canada at 

least) that architects’ roles are not consciously assigned to agents with RKE. More 

often, the case is that these agents have more technical-oriented background 

(databases, networking, platforms, etc.). While this is important for architecting, it 

can leave a gap in the front-end and more conceptual areas of architecting, some of 

which have closer interaction with requirements. Also, for those architects without 

RKE, the findings from this study could indicate areas of improvement that can be 

used to structure training sessions for these agents.

Regardless, our study was conducted using the “mixed methods” approach 

(Creswell, 2003), i.e., there were both quantitative and qualitative aspects to this 

study. For example, the quantitative aspects included assessment of the quality of the 

software architectures developed by the participating groups; whereas, qualitative 

aspects included analysing interview transcripts for the kinds of feedback given to the 

participating groups. Architectural assessment instrument (included in the Appendix) 

and data-gathering templates were used to assess the impact of RKE on architectural 

quality. Also, semi-structured interviews (on architecting issues) were conducted and
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direct observations were made to subjectively assess the progress of the project 

during the process.

In total, there were fifteen projects, all of which used the Attribute Driven 

Design (ADD) method (Bass et al., 2003). Also, there were 60 participants, all final- 

year or graduate students. The domain to be architected was the banking domain, 

and there were some 85 high-level requirements to contend with. The primary task 

was to develop and document an architecture as per the guidelines and templates in 

(Bass et al., 2003). Additionally, there were many templates developed to capture 

the in-process rationale and partial work.

Another point to note is that our study was controlled while being 

exploratory. It was controlled in that there were two types of participants: with RKE 

and without RKE, as determined by background checks. It was exploratory in that, 

due to the lack of prior concrete knowledge on this topic, there was no tangible 

hypothesis on how the architects with RKE would compare -  in technical terms — 

against those without. Rather, hypotheses are expected to be an outcome of an 

exploratory study (Mason, 1996); this paper describes such a resultant hypothesis. 

Thus, an exploratory study is a foundational study for future studies on the subject 

matter.

Though the importance of conducting empirical studies in software 

engineering (SE) has been recognised (Tichy et al., 1995; Wieringa and Heerkens,

2006), Shaw’s analysis (Shaw, 2003) of research papers submitted at a prominent 

2002 SE conference suggests that only 12% were submitted in the category of 

“Design, evaluation, or analysis of a particular instance" and 0% in the category of 

“Feasibility study or exploration". Our own analysis of published papers, since the 

year 2000, in the fields6 of RE and SA suggest that only 15% were in the above 

mentioned categories combined. This status of research suggests that studies such as

6 We examined 552 papers from the Requirements Engineering Journal (years 2000 to 2007), IEEE 
Int. Requirements Engineering Conference (RE) (years 2000 to 2006), IEEE/IFIP Working 
International Conference on Software Architecture (WICSA) (years 2000 to 2007), the Software 
Requirements to Architectures Workshop (STRAW) (years 2001 and 2003), and the International 
Working Conference on Requirements Engineering: Foundation for Software Quality (REFSQ) (only 
year 2007, due to unavailability of online access,).
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the one described in this paper are currently rather rare. Such sentiments were also 

voiced by many participants of the WICSA 2007 conference (WICSA 2007).

After describing related work in the next section, Section 3 describes the 

empirical study conducted; Section 4 describes the results and their interpretations; 

Section 5 discusses the implications of the findings; Section 6 describes possible 

future work; and Section 7 concludes this paper. Following the references, the 

Appendix contains the software architecture assessment instrument that was 

developed for this study.

2 Related Work

Historically, research work in the RE and SA fields have focused upon new 

technologies “within” these respective fields, e.g., requirements elicitation, analysis, 

prioritisation, methods and tools, or architecture design and evaluation methods. 

However, there is a growing body of work, albeit slowly, that is aimed at bridging 

these two areas. In this section, we examine such work and put it in the context of our 

research described in this paper.

Brandozzi and Perry’s “Preskriptor” process (Brandozzi and Perry, 2003) is 

centred on an architectural “description” language and its associated process to 

systematically ensure that requirements are being satisfied. Egyed et al. in their 

CBSP (Component-Bus-System and Properties) method (Egyed et al., 2001) also use 

an intermediate language for expressing requirements in a form that more closely 

relates to architecture, where requirements are identified and categorized based on 

various properties such as whether they should be implemented as components, bus, 

system properties, and so on. Liu, W. and Easterbrook (Liu, W., and Easterbrook,

2003) extend this method by introducing a rule-based framework that allows for 

requirements-architecture mappings to be automated where possible. Liu, D. and 

Mei (Liu, D. and Mei, 2003), view the mapping from requirements to architecture in 

terms of features, essentially a higher-level abstraction of a set of relevant 

requirements as perceived by users (or customers).

Whereas these methods are primarily focused on formalizing the technical 

aspects of architecting, other researchers have proposed methods that are concerned
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more with human issues such as negotiation, real-world scenario forming, 

organisational culture, and risk assessment. In particular, In et al. (In et al., 2001) 

propose an eight-step framework that is based on existing RE and SA methods 

(WinWin and CBAM, respectively) to help stakeholders to elicit, negotiate, and 

evaluate requirements-architecture properties while concurrently executing these 

processes. Nord and Soni’s work (Nord and Soni, 2003) deals with the identification 

and analysis of global factors - those that take into account more holistic issues such 

as the environment in which the system is built, developing organization, external 

technological solutions, flexibility or rigidity of requirements, and more. Their two- 

phase method is a means to analyse and resolve architectural issues introduced by 

global factors. Another method is Bass et al.’s stakeholder-centred Attribute-driven 

Design (ADD) (Bass et al., 2003), which focuses on iteratively building architectures 

based on the key architectural drivers of the system. These drivers are composed of 

key requirements and quality scenarios that shape the architecture. The drivers are 

input into the process where architectural patterns are created/selected to realize the 

tactics (i.e., the architectural design choices made), which in turn are aimed at 

satisfying the quality scenarios. Tradeoffs emerge in the patterns between various 

quality attributes, and the architects and other stakeholders must negotiate a 

resolution to these tradeoffs (similar in principle to the Architecture Tradeoff 

Analysis Method (ATAM) (Kazman et al., 2000) to finalize patterns that would 

represent an architecture that is most suited to meet the system’s goals. Recently, a 

prototype tool, called ArchE (Bachmann et al., 2003b), has been developed to 

provide support to the ADD method. This support is in the form of modelling the 

functional responsibilities of the architecture, storing the quality scenarios, and 

through analysis of the architecture and quality scenarios, the tool suggests tactics 

that can be used to satisfy the quality requirements. To date, the tool supports 

modifiability and performance quality attributes.

A method that traces architectural concerns back to the requirements is the 

Architecture-centric Concern Analysis Method (ACCAM) (Wang et al., 2005). The 

method uses a Concern Traceability map (CT-map) that captures and presents 

architectural design decisions starting from software requirements through to the
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software architecture and these are then linked to architectural concerns that are 

identified in the architecture evaluation phase. Through a visual model, this method 

aids in identifying potentially problematic, or sensitive, requirements or decisions 

that resulted in the concerned architectural parts.

In (Schwanke 2005), Schwanke discusses the “Good Enough Architectural 

Requirements Process” (GEAR). This process is meant to further refine an initial set 

of requirements through architectural means. The process is based on three 

architectural requirements engineering approaches: model-driven requirements 

engineering (where elicited candidate-requirements are modelled as use cases, 

activity diagrams, state charts, etc.), quality attribute scenarios (used to elicit, 

document and prioritize stakeholder concerns), and global analysis (a general way of 

organizing information about the problem context that surrounds the architecture). 

The main purpose of the process is to show where the above approaches overlap and 

where they complement each other, providing insight into the identification of 

architectural requirements.
Poort et al. (Poort et al., 2004) propose a framework for mapping non

functional requirements onto functional requirements for architectural design. Their 

framework is based on a model of the relationship between requirements and 

architecture, and a repeatable method that can transform requirements into system 

design, and generates a “risk-list” based on conflicting requirements. Their 

framework is not meant to provide a means for achieving specific quality attributes; 

it is used to highlight the relationships between the requirements, their conflicts and 

architectural means of resolving them.

Other work is that by Rapanotti et al. (Rapanotti et al., 2004) where the concept 

of problem frames is extended into “architecture frames” which capture information 

about architectural styles and their interaction with the problem space. The benefit of 

this mechanism is that in introducing solution-oriented approaches early in 

development, one can refine problem analysis.

In (Damian and Chisan, 2006), Damian and Chisan report on a large-scale case 

study on the effectiveness of requirements engineering processes on other 

development processes such as architecting, lower-level design and implementation.
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Also, they link many problems that occur later in development back to problems that 

originated during the requirements phase. However, the sorts of problems they have 

investigated are quite complementary to the ones we have investigated in our study, 

For example, whereas, we have investigated issues such as impact of RKE on 

architecting tasks such as: quality drivers determination, selection or determination of 

tactics, integration of tactics into architectural patterns, they have investigated issues 

such as requirements not being properly documented and shared, relying on word-of- 

mouth, incompleteness and inconsistencies in requirements, etc.

In (Ferrari and Madhavji, 2006), Ferrari and Madhavji report on a multiple- 

case study that investigated requirements-oriented problems that are encountered 

while architecting. Overall, they found that approximately 35% of the problems 

encountered during architecting were requirements-oriented. Also, specific problem 

areas together with their severity were identified (such as, quality satisfaction, 

requirements understanding and quality drivers) as well as the relative frequency of 

problems occurring in these areas. Implications of this work are on improving 

methods, tools, and techniques to transition from requirements to architecture.

In another study (Miller and Madhavji, 2007), Miller and Madhavji 

investigate the interaction between requirements and systems architectures. 

Specifically, they explore the effect of systems architecture has on the decisions that 

are made during requirements elicitation of an evolving system. They identify nine 

architectural aspects (e.g., existing hardware, reusability of modules, and 

architectural patterns) that can have an effect on new requirements decisions, as well 

as three principal ways in which a previous architecture can affect evolving 

requirements work, i.e., as an enabler, as a constraint and as an influence, apart from 

the null case.

Progress in the area of empirical studies on requirements-architecture 

interplay, however, is still rather slow. In part, opportunities to conduct industrial

scale case studies are quite rare, and almost negligible, if not impossible, when 

multiple teams are considered. Empirical studies conducted in a learning 

environment are a next possibility. Previous studies in the areas of software 

inspections (Thelin, 2004), RE (Easterbrook et al., 2005; Berander, 2004), and Lead-
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time impact assessment (Hoest et al., 2000), and critical analysis of using students as 

subjects (Carver et al., 2003) to name a few, have shown the benefits of conducting 

empirical studies in a learning environment. The study described in this paper is 

another of such studies but in the area of transitioning from RE to SA.

3 The Empirical Study

We describe here the study that was conducted to explore the impact of 

requirements knowledge and experience (RKE) on software architecting. The sub

sections deal with: the research questions, study variables, study design, participants 

involved, research procedures, the requirements document, the architecting project, 

and threats to validity. The sub-section on threats to validity concludes this section 

since it discusses the threats that may exist in the content of the sub-sections that 

precede it.

3.1 Research Questions

Our overarching research question is:

R Q 1: W hile arch itec tin g  a  so ftw a re  system , how  do  the arch itects w ith so ftw are  

requ irem en ts kn ow ledge a n d  experience com pare aga in st those w ithout such  

know ledge  a n d  experience?

This question deals with the relative performance of two different groups 

(RKE and non-RKE) when creating a systems architecture. In particular, we are 

interested in the difference in the overall architectural product quality between the 

two different types of groups. The definition of architectural quality, and how it is 

operationalized in this study is described in Section 3.2.

There are two noteworthy points concerning the research question. One is the 

participants’ background. We had analysed the background knowledge and skills of 

the participants and, as described later, the most critical aspect was their separation in 

terms of RKE vs. non-RKE background. Another point is the research hypothesis. 

While it is obvious that requirements and architecture are inter-related, the lack of 

previous human-centred studies on this topic meant that we had no tangible
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hypothesis on how the architects with RKE would compare -  in technical terms -

against those without. This is why our study was an exp lora tory  one, which, as it 

turns out, gave rise to a hypothesis (described later) during the conduct of the study.

This quantitatively-driven question above is complemented by the following 

qualitative question, RQ2, which seeks the underlying reasons for the findings of 

RQ1.

RQ 2: What co u ld  be the underlying reason s f o r  the p erform an ce  o f  the respective  

grou ps?

We define the performance of the respective groups to be their relative abilities to 

produce a better overall architecture. In the investigation of this question, we will be 

examining in-process artefacts, partial products, and the final architecture produced.

The above listed questions deal with several dimensions of interest: (a) the 

process of architecting, (b) the product architecture, and (c) the requirements 

background. Detailed findings centered on these issues should throw some light on 

the relative difference between those architects with RKE and those without.

3.2 Study Variables

In this subsection, the variables of interest are introduced and discussed, 

along with their associated metrics (see Table 2-1).

Variable Type of Variable Metric
RKE Independent A categorical variable, either the participant 

has RKE or not.
Architecture
Quality

Dependent Evaluation of final architectural quality based 
on a set o f criteria (measured through an 
instrument discussed in section 3.7.1.2, and 
included in the Appendix). Examples of 
areas that are evaluated include module 
decomposition of the system, behaviour 
models, and interface specification.

Effort Extraneous Time in hours expended on the project
Feedback Extraneous Number o f feedback interactions between 

researchers and participants
Academic
Background

Extraneous Average o f all marks from courses 
participants have taken at the University level

Table 2-1. Summary of study variables
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The dependent variable of the study is A rch itec tu re  Q u ality , defined by the final 

architectural quality based on a set of evaluation criteria (as defined in Section 3.8.1, 

some examples include assessing the quality of the module decomposition structure, 

component and connector view, and interface specification).

The treatment, or independent, variable is R E  know ledge o r  experience  

(RKE), which is defined as the subjects having previously taken a RE course. In this 

course, students were taught generic Requirements knowledge, where they leamt 

such topics as elicitation, modelling, analysis of requirements, negotiation, 

prioritisation, quality drivers, viewpoints, specification, validation, traceability, 

process, management, etc. Further details can be found in (Kotonya and 

Sommerville, 1998). The treatment of RKE was not administered in this study but is 

innate to the subjects based on their previous experience. The treatment variable is 

co n tro lled  in that it dictates the type of study group (RKE vs. non-RKE) a subject 

belongs to.

In addition, there are three extraneous (or factor) variables that must be 

accounted for in the study. As discussed in later sub-sections, we needed to measure 

and statistically eliminate any possible extraneous variables because they may have 

an impact on Architecture Quality (the dependent variable). These extraneous 

variables are: A cadem ic  B ackground , defined by the average marks (out of 100) 

obtained by the subjects in previously taken courses; E ffort expended by the subjects 

as measured in hours spent architecting the system; and F eedback , defined by the 

type and amount of external assistance (called feedback) sought by the subjects to 

complete the projects.

3.3 Experiment Design

The type of this study was a quasi-experim en ta l design , where the researcher 

uses control and experimental groups, and randomly assigns the participants within  

the d ifferen t g ro u p s  (Creswell, 2003). A quasi-experim en ta l d e s ig n 7 is used when

7 We emphasize this point because we feel that in Software Engineering this type of studies are not 
prevalent as yet.
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the main property of interest (in our case, RKE vs. non-RKE) is innate to the 

participants before  the study is conducted .

In this category of design, our study fits the P osttest-O n ly  C on trol-G roup  

D esign  (Campbell and Stanley, 1963; Sheskin 2004). This type of experiment 

investigates and compares the effects of a treatment on two or more groups; in our 

case two: Group A being the “treatment” (RKE) group (meaning that Group A got 

the RKE training as described in the previous section), and Group B being the 

“control” (non-RKE) group, as depicted below:

Group A: X R............... ....... O

Group B: R----------------- O

where: O represents observation during architecting (along with the results from the 

other independent variables — Academic Background, Effort and Feedback); X 

represents the treatment (RKE); R represents random assignment within  group; and 

the left-to-right dimension indicates the temporal order of the procedures in the 

experiment.

3.4 Participants

We used availability (or conven ience) sampling (Creswell 2003), where the 

participants were drawn from the final year Softw are A rch itectu re  course at the 

University of Western Ontario. There were fifteen architecting teams, each 

comprised of four members. It turned out that approximately 40% of the subjects had 

RKE background; whereas, the rest did not -  based on a background survey and 

academic records, so there were seven RKE teams and eight non-RKE teams. 

Membership of each team was determined through random selection by an 

independent person. 8

8 We realize that, in addition to the background questionnaire, we could have assessed the subjects’ 
knowledge on RE. The results of this assessment could have been used to validate the results from the 
background questionnaire. However, due to pedagogical factors (the subjects were enrolled in an 
architecting course), we could not issue an assessment only on requirements. However, we did not 
have any doubts in the categorisation of the subjects based on their background data.
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3.5 The Requirements Document

The system to be architected was in the “banking” domain. The application 

included three different modes of banking for the clients: ATM, internet banking and 

telephone banking services; access and reporting features for the banking staff; client 

and financial database; various quality drivers, such as security, availability, 

performance, usability, maintainability, and others. In all, there were some eighty- 

five high-level requirements to contend with, which is quite sizeable for a term 

project.
A project in the banking domain was used since the banking domain is 

sophisticated enough to provide the basis for a substantial architecture. Conversely, 

typically people are familiar with banking (although not necessarily with its design) 

which would minimize the possibility of domain-complexity interfering with system 

architecting.

The requirements document for the system was obtained from an external 

source. The requirements process followed (i.e., elicitation, analysis, validation, 

prioritization, and documentation) is described in (Kotonya and Sommerville, 1998). 

Prior to conducting the study, these requirements were re-validated by a team of five 

experts for acceptability in general, “and for any serious or obvious flaws”; the 

semantic-content of the document was otherwise not altered. We did this in order to 

reduce researcher bias in the study. We also did not want to “fix” the document to 

the point where it was considered “perfect”. In a real world setting, the requirements 

documents given for architecting or system development are not always “perfect”, 

and we wanted to emulate this by delivering an acceptable document to the 

participants. Also, none of the participants of this study (i.e., the architecting teams) 

had any involvement in the requirements forming process.

3.6 The Architecting Project

Given these requirements, each of the fifteen teams independently developed 

an architecture using the ADD method (Bass et al., 2003). The key steps of this 

method include: iteratively decomposing a selected module, choosing architectural 

drivers from the scenarios and functional requirements, choosing or creating an



25

architectural pattern (using appropriate tactics) that satisfies the architectural drivers, 

identifying child modules to implement the tactics, instantiating the modules with 

functionality, defining interfaces, verifying and refining use cases and quality 

scenarios and making them constraints for the child modules.

Each team had to develop and document the system architecture and, in the 

process, capture in the defined templates such items as: design decisions, rationale, 

underlying assumptions, issues arising, resolution of items, etc. In addition, each 

team had the freedom to seek help (called “feedback” below) on any difficulties they 

faced during their project.

3.7 Research Procedures

In this section, we describe the research procedures used to conduct the study. 

First, we discuss methods for data collection from the architecting projects (both for 

gathering project data from the subjects as well as for gathering architectural quality 

data through the use of an instrument), followed by procedures for analysing 

feedback data.

3.7.1. Data Collection and Instrument Design

3.7.1.1. Project Data Collection:
There were several key sources of qualitative and quantitative project 

information for any given team: intra-team email communications, data templates, 

partial products, feedback sessions, and the final architecture. The data templates 

documented such items as: the decisions made while architecting the system, 

alternatives, underlying assumptions, rationale, issues, resolution, work breakdown 

structure, meeting minutes, and time-logs.

The qualitative data was dominated by emails as well as feedback sessions 

that constituted approximately 50 hours of recorded interactive sessions, which were 

subsequently transcribed by three domain experts and verified for accuracy. Each 

session was at least an hour long, involving one team and the project staff. The data 

templates and partial products were among the fodder for raising issues during the 

feedback sessions (see Table 2-2 for more details).
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Template
Name

User Purpose and Summary of Instrument

Time Log 
Template (TLT)

Participants The participants filled the time spent on any project related 
activity in this form on an ongoing basis. The effort metric 
is directly related to this template.

Decisions,
Issues,
Rationale
Template
(DIRT)

Participants Each team had a team DIRT and each individual member 
o f the team had their own DIRT. The DIRT was used so 
that participants could enter more qualitative data: all their 
design decisions, project issues and rationale relating to the 
project. They filled this document on an ongoing basis 
during the project.

Architectural
Assessment
Instrument

Assessors This instrument is used by the assessors to measure the 
final quality o f the participants’ architectures. This 
instrument is discussed more in detail below and is 
included in the Appendix.

Table 2-2. Data collection templates

The feedback session data was gathered using qualitative techniques that are 

more commonly associated with Social Sciences (Creswell 2003). For example, 

ethnographic methods (Hall 2004) were used such as participant observation and 

semi-structured interviews, and textual document analysis. The lead researcher 

attended all these sessions but, to ensure high quality of the feedback, a second 

researcher also attended every meeting.

The variety of information sources and numerous feedback sessions helped to 

obtain rich data concerning any topic or theme that arose within the research domain 

investigated. They also allowed the staff to monitor and inspect data for consistency 

and completeness and deal with problems efficiently and effectively.

3.7.1.2. Architecture Quality Assessment:
Besides the described qualitative data, quantitative data was also gathered

from the assessment of the final architectures. For this purpose, we developed and 

validated an architectural assessment instrument (see the Appendix). This was used 

by five experienced software engineers (with experience ranging from 5 to 27 years 

in SE and research) to assess the resultant architectures from the study projects.

In short, the instrument uses a mix of scale types; mostly continuous 7-point 

Likert-scale, but also categorical scales. The Likert-scale is used to rate specific
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aspects of architectural quality. This scale is typically used in surveys or instruments 

that are used by external assessors of a program or artefact. They ask for a level of 

agreement about a specific construct, and although the scales are ordinal, they can 

generally be used as interval data in statistical tests. The 7-point scale is typically 

used when the data requires a fine level of granularity but still manageable for the 

users of the scale (De Vaus, 2002).

The quality-criteria for the instrument items are derived from the project 

documentation guide, SA literature, and the standard templates from (Bass et al., 

2003). The central components measured by the instrument include: Modelling the 

environment; Use Cases; Quality Scenarios; Module Decomposition structure; 

Component and Connector structure; Deployment structure; Interface specification; 

Modelling the dynamic behaviour of the system; Overall Architectural properties; 

Architectural reasoning; View descriptions; and Overall documentation quality. 

More details can be found in the Appendix.

Also, to ensure content and face validity (Carmines and Zeller, 1991) of the 

instrument, there were numerous iterations and stages in the design and 

implementation of the instrument. This included reviews and establishing relative 

weights for different items corresponding to the project requirements, and had 

intimately involved six knowledgeable software engineers with RE and SA 

experience. The instrument was subsequently piloted by two raters on several 

documented architectures prior to its use for quality assessment of all the 

architectures.

3.7.2. Feedback Data Procedures
To assess the issues that arose in the feedback sessions (where subjects could 

freely interact with staff), we analyzed the transcribed data and emails. In essence, 

we counted the frequency of the various types of feedback (i.e., severity of feedback, 

and kind of technical activity). The technical activities were identified a priori from 

the ADD method (Bass et al., 2003) and relevant research literature and were 

validated by six knowledgeable software engineers over several iterations. This 

resulted in over 20 categories, to name a few: Requirements Understanding, Context



28

Modelling, Quality Drivers Determination, Interface Specification, Behaviour 

Modeling, and Architectural Reasoning.

To determine the severity of feedback items, thematic codingv was conducted 

on the transcribed data set, using the identified categories and discovering any new 

inductive categories while coding (Mason 1996). QSR’s NUD*IST9 10 4.0 was used 

for thematic coding; it manages and stores all the emerging codes, and allows easy 

retrieval of text units that have been coded.

This analysis resulted in the identification of three severity levels of feedback 

given to the various teams: “Hint” (Light), “Explanation” (Medium) and “Give 

Aways” (Heavy). Below, we give examples of this where: P represents a participant 

and S  the teaching staff:

• “Hint” -  Participants only needed a “hint” to proceed with their architectural 

design. Example: P: Do our concrete scenarios help us in shaping our 

architectural patterns? S: Yes, but not directly so. Concrete scenarios are there to 

identify things that will happen often in the system, and with those identified, you 

can prioritize what is important in the system.

• “Explanation” -  Participants needed a detailed explanation in order to proceed 

further in their solution design. Example: P: We weren’t sure how specific we 

should be getting with the quality scenarios. Here’s a few that deal with 

availability, but some seem to be specific, like this one about a power failure, which 

will not happen often. We 're just confused with these scenarios. S: So this is 

something that would happen a lot, or could be a scenario that has a particular 

high impact on the system, so that's the purpose o f the quality scenarios, you're 

just thinking o f ... obviously there's hundreds o f scenarios you can think o f in any 

given system, but, you're trying to think o f those that are most important in the 

system, e.g., the ones that will be encountered the most often.

9 Them atic cod in g  is a qualitative data analysis procedure where the researcher develops categories of 
concepts and themes that emerge from the data source. It is an ‘open’ process in that the researcher 
makes no prior assumptions about what the findings may be.
10 QSR NUD*IST 4.0. QSR International Pty Ltd., 1999. Available at 
http://www.qsrinternational.com.

http://www.qsrinternational.com
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• “Give Away" -  Participants needed a full solution to a particular problem for them 

to move forward in their design. Example: P: we kind o f just did the drivers as the 

requirements dictated, the ones that seemed the most important. Is that the way it's 

supposed to happen? I was a little worried about that, so do you want say 

performance, and then just say why you do based on the requirements? S: ummm, 

yeah, you could use the requirements as an example o f why you consider 

performance a key driver. I  mean that's where quality scenarios are critical. 

Scenarios deal with quality issues, nonfunctional, and so really the scenarios, I 

mean you could come up with hundreds o f them ... but you're trying to come up 

with the ones that seem the most important based on the requirements and your 

own banking knowledge. And then, you can use these scenarios and say ok, so this 

will happen a lot, or a failure o f this scenario would be devastating in our context, 

so it is high priority. Once this is done, you come up with tactics to resolve those 

scenarios. But I  mean a scenario is attached to a quality attribute. So really, it's 

just a way o f prioritizing, your key quality attributes.

This analysis procedure was then validated through piloting, independent review and 

re-coding when error rate exceeded 20%.

3.8 Threats to Validity

We classify threats into those internal and those external to the project, 

conclusion and construct validity, as well as qualitative study threats. We focus here 

only on those threats we identified as applying to our study. Description of other 

types of threats can be found in (Wohlin 2000).

3.8.1 Internal Validity
Internal validity is the degree to in which the independent variable was 

responsible for the change in the dependent variable, and not because of other 

confounding variables (Carmines and Zeller 1991). There are numerous types of 

internal validity threats that are identified in the literature (Campbell and Stanley, 

1963) which are discussed below:
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M atu ra tion  -  This is present when a physical or mental change occurs during the 

study and it affects the participants’ performance on the dependant variable (e.g., 

Architecting). With weekly motivation and feedback meetings, and random 

assessments of the various templates, we did not notice m aturation  within or across 

the study groups.

Instrum entation  -  This refers to any change that occurs in the way that a dependant 

variable is measured in the study. There was no change in the definition of the 

dependent variable during the study. Also, the evaluators were quite familiar with the 

assessment instrument. Moreover, the assessments were reviewed by others to 

identify anomalies.

S election  -  This refers to selecting participants for the two groups that have different 

characteristics. In our study, we were most concerned with the possibility of one 

group having “brighter” students than the other. However, the past academic data 

shows that the two groups were almost identical in this respect. Other issues that 

here are whether one group simply has more experience than the other (e.g., through 

industry or other experience). Based on our background investigation and interviews 

there were no such cases.

The other se lec tio n  threat that could have existed is the discrepancy in the 

number of courses and types of courses that were taken by the students (e.g., the 

RKE group taking more SE-oriented courses than the non-RKE group, thereby giving 

the former possible advantage in the Architecting area over the latter group). This 

threat is mitigated by the current course curriculum at UWO where by the time the 

students reach the 4lh year the SE courses taken are roughly the same for all the 

students. This is supported by the background academic records (which we obtained 

from the University office) and background data that we collected from all the 

subjects.

R esea rch er B ias -  This occurs when the researcher, knowingly or unknowingly, 

influences the outcome of the study. To mitigate this threat, multiple researchers and 

domain experts were used in the study processes (e.g., research design, research 

objective validation, data collection and gathering, validation of data, instrument and 

template design, data analysis, and interpretation of the results). These people had no
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conflict of interest in the study and therefore we consider them not to have any bias 

toward the study results.

H aw th orn e Effect -  This threat is when the mere presence of researchers watching 

the participants causes a change in their performance. This threat does not typically 

exist in studies involving two or more group studies, as the observation of the groups 

could lead to increased performance by all study groups, but the difference is more or 

less equal.

3.8,2. External Validity
External validity is the degree to which any findings from the study can be 

“generalized to and across populations of persons, settings, and time.” (Creswell 

2003) There are three types of validity that apply to external va lid ity . P opulation , 

eco lo g ica l and tem poral. Each of these and how they possibly could apply to our 

study are now discussed.

P opu la tion  va lid ity  -  This refers to the g en era liza tion  of the sample to the 

population, and the sample results to the different types of people within the 

population. This is a risk in our study and it arises from using students as the study 

participants. This threat is directly imposed on the g en era liza b ility  of any findings 

for application in in du stria l contexts. However, these results would likely be 

generalizable to relatively new workers in industry, as their experience level is 

comparable to that of the participants in this study. Also note that there are strong 

implications of the findings on systems architecture tra in ing , and pedagogy. It is 

important here to separate “development” from “training” because they are 

complementary activities in industry. That said, recent research in Software 

Engineering (Hoest et al, 2000; Runeson 2000; Thelin 2004; Easterbrook et al.; 2005; 

Berander, 2004; Carver et al., 2003), has shown positive experiences when 

conducting empirical studies involving students in a learning environment.

E co lo g ica l va lid ity  -  This threat refers to the generalizibility of the study 

results across all settings. As with popu la tion  validity, the academic setting can be 

quite different from an industrial context so the threat is present. However, the 

project was loosely structured (as opposed to a strict “laboratory” setting) so that the 

setting could more mirror real-world work.
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T em poral va lid ity  - This is present when the results of a study can be 

g e n e ra lized  across time. In our study it is difficult to discern whether this holds, 

since there are no results to compare to, as this is the first study of its kind. From an 

intuitive perspective, there is no reason to believe that our study does not maintain 

tem pora l validity.

3.8.3. Qualitative Validity
Since our study was a mixed-method approach (Creswell 2003) involving 

both quantitative and qualitative study techniques, we discuss here possible threats to 

the qualitative aspects of our study.

In qualitative studies, a validation technique, called triangulation  (Berg,

2007), is used to ensure validity in the study. Triangulation  is a method of 

establishing the accuracy of a study’s findings by comparing three or more types of 

independent points of view on a given aspect of the research process (methodology, 

data, etc.) (Berg, 2007) There are different types of triangulation  that can be used 

together to form a strong basis of validity. In this section, we will discuss how we 

used three different types of triangu la tion  to ensure validity in our study. The 

triangu la tions used were: da ta  triangulation , m eth odolog ica l triangulation, and 

in ves tig a to r  triangulation .

3.8.3.1 Data T riangulation

Data triangulation is the use of different sources of data/information on which 

the study results are based. If there is consistency in the data/information provided 

across the various data sources that are used, then this suggests that the data is valid. 

In our study, as mentioned in section 3.7.1 (Data Collection and Instrument Design), 

our data-set came from numerous sources including the feedback sessions, intra-team 

e-mail communications, and various data collection templates that the participants 

had to complete.

3.8.3.2 Methodological Triangulation
Methodological triangulation is the use of different methodological

techniques (that could be either quantitative or qualitative) in the study and, if the
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conclusions from each method are consistent, then validity is increased. In our study, 

we used various qualitative and quantitative methods such as participant observation, 

semi-structured interviews, document analysis, quantitative content analysis and 

statistical analysis on the final architecture quality. The resultant data from these 

various methods and its subsequent analysis (see Section 4) showed similar 

conclusions. This consistency establishes methodological validity in our study.

3.8.3.3 Investigator T riangulation
Investigator triangulation is the use of different researchers in the various

study processes, and then if there is concurrence between the outputs of these 

methods used by the researchers, then investigator triangulation is established. In 

this study, multiple researchers were used for the feedback sessions, assessing the 

final architectures, and the analysis and interpretation of the feedback data. In each 

of these processes, there was agreement among the different researchers. For 

example, during the feedback sessions, there were open discussions with the subjects 

involving different researchers and on each occasion there was consensus. Likewise, 

the coding of the transcribed data (see Section 3.7.2) was analysed by several raters 

and when there was a divergence of 20% or more, the coding was redone to a 

satisfactory conclusion. Similarly, two raters conducted architecture assessments, and 

if there was substantial divergence, a third researcher was brought in to assess the 

situation and establish an agreement on the rating.

3.8.4 Construct and Conclusion Validity
Construct validity is the degree to which inferences can be made from the

measures in the study to the theoretical constructs on which those measures were 

based. In our study, the dependent variable architecture quality was measured 

through the use of an architectural assessment instrument. In section 3.7.1 we 

discuss the construct validity threats (more specifically, content and face validity) 

and how we mitigated these threats with respect to the instrument that was created to 

measure the dependent variable. Also, the three levels of feedback (Hint, 

Explanation and Give Away) were defined inductively and concurred upon by 

several experts prior to the use of these categories across the transcribed data.
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Conclusion validity is the degree to which conclusions we make based on our 

data are reasonable. We discuss the results in the next section where we also 

demonstrate that our study did not violate conclusion validity.

4 Results and Interpretations

Now, we describe the results and their interpretations concerning the two 

main research questions (RQ1 and RQ2 -  see section 3.1).

4.1 Architects with RE knowledge and experience vs. those without 
(RQ1)

Here, we are interested in determining the relative performances between 

those architects with RE knowledge and those without. In order to do this, we will 

quantitatively analyze using statistical techniques the relative difference between the 

two types of groups with respect to the final architectures they submitted. Prior to 

delving into the details of the analysis, we discuss the emergence of a hypothesis on 

which the statistical testing is based.

Typically, in exploratory studies, research hypotheses are not stated from the 

outset. Rather, they are generated from the results of the study or during the 

execution of the study (Mason, 1996). In our study, as we attended the work sessions 

of the architecting teams (feedback sessions) and reviewed early architectural 

artifacts emerging from the process, it seemed that the RE knowledgeable teams were 

performing better in terms of the quality. Thus, the following hypothesis emerged:

H I: A rch itects w ith R K E  d evelop  b e tte r  qu a lity  system s arch itectures than do  

arch itects w ithout RKE.

Before conducting a statistical test, we set the alpha level (or level of sign ificance)

to be .05.
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This hypothesis was analyzed and tested using analysis of covariance 

(ANCOVA11 12) with three extraneous variables (the covariates, as identified and 

discussed in section 3.2):

(a) the tim e spen t on the p ro je c t,

(b) the freq u en cy  o f  the a g g reg a te  o f  the three d ifferent lev e ls '2 o f  feed b a ck  (see 

section 3.4.2), and

(c) the a ca dem ic  background,

and a dependent variable: arch itectu re  quality . This was done to statistically factor 

out these extraneous variables and their impact on architecture quality to determine 

the value of the dependent variable without any “interference” from other variables. 

As discussed in section 3.3, our study was a quasi-experim en t (where subjects with 

RKE and non-RKE were naturally divided prior to the start of this study) and 

therefore random sampling was not possible to negate the impact of these other 

factors. Table 2-3 presents the m eans (as w e ll a s o ther descrip tive  sta tis tic s) of the 

architecture quality of the two groups (RKE and non-RKE).

In Table 2-3, we see that the RKE groups received a mean of 78.5 on the 

architecture quality variable, against 62.4 for the non-RKE groups. We conducted a 

one-way tail t-test on the means and it resulted in p= .076 or a 92.4% confidence 

rating which is not significant. Based on the actual averages, it would intuitively 

seem that the difference is substantial, however, the standard deviation reports widely 

distributed values within groups (16.5 for RKE, 15.7 for non-RKE) which suggests 

that other factors had an influence on the architecture quality values. Therefore, the 

ANCOVA test had to be used to statistically test the data from Table 3, in order to 

eliminate the effect of the confounding factors: academic background, feedback and

11 ANCOVA (Wildt and Ahtola, 1978) is an extension to ANOVA and is used to statistically control 
extraneous variables when experimental control cannot be used. It is used to reduce experimental 
error or to remove the effects of extraneous variables. ANCOVA is based on linear prediction or 
regression of the covariates; using prediction equations to predict the values of the dependent variable 
on the basis of the values of the covariates, after which these predicted scores and means are 
subtracted from the corresponding values of the dependent variable.
12 We performed the analysis on the three separate levels of feedback (see section 3.7.2) but they did 
not show any significant impact on the dependent variable. For simplicity of the model, we discuss 
the feedback variable in this sub-section as a single aggregate variable.
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effort. Without such further analysis, a statistically significant result cannot be 

determined.

Descriptive
Statistics

Arch.
Quality

Academic
Background

Feedback Effort

No
n-

RK
E Mean 62.4 72.9 65.4 139.0

Std. Dev. 16.5 4.0 44.0 34.5

RK
E

Mean 78.5 73.9 51.3 139.8

Std. Dev. 15.7 4.4 30.1 41.0

To
ta

l Mean 69.9 73.4 58.8 139.4

Std. Dev. 17.6 4.1 37.5 36.3

Table 2-3. Descriptive statistics for study variables
Looking at the other variables of interest, in their respective academic 

backgrounds there was a one-point difference between them (72.9 for non-RKE, 73.9 

for RKE), this, which is not a significant difference so the only possible difference in 

the two types of groups with respect to Architectural Quality could be due to the 

extraneous variables Feedback and Effort. In looking at their descriptive statistics, 

the distribution seems to be quite varied (for Feedback, the standard deviation was 

44.0 for non-RKE and 30.1 for RKE), suggesting that the amount of feedback sought 

was quite different among the different teams between both types of groups. The 

effort expended by both types of groups was almost identical (RKE: 139.8, non- 

RKE: 139.0), suggesting that the higher mean for the RKE groups was not due to any 

increased effort they expended on the project. We now discuss the statistical test 

used to determine the statistically significant values of the various variables and their 

impact on the architecture quality variable.

The ANCOVA test was performed using SPSS on the architectural quality 

variable as the dependent variable (see Table 2-1), the results of which are shown in 

Table 2-4.
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Source of 
Variation

DF Sum of 
Squares

Mean
Square

F Sig.

Academic
Background

1 1848.238 1848.238 15.431 .003

Feedback 1 118.667 118.667 .991 .343

Effort 1 35.095 35.095 .293 .600

RKE 1 713.902 713.902 5.96 .035

Error 10 1197.727 119.773

Total 15 7 7 5 9 0 . S 1 5

Table 2-4. ANCOVA table for architecture quality
In Table 2-4, we see that there is a statistically significant difference between the two 

groups (RKE and non-RKE -  see the variable “RKE”) at p=0.035 or a 96.5% 

confidence interval. The strongest predictor of high architecture quality, however, 

was the participants’ Academic Background (significant at p=0.003 or a 99.7% 

confidence interval). The findings that academic background was the strongest 

predictor is not entirely surprising; it is commonly known that highly knowledgeable 

software developers will more likely produce high-quality software artefacts (Boehm,

2002). However, what is surprising is the extent of the impact of RKE on 

architecting (approximately 16% difference between the two types of groups), 

especially considering the academic background of both types of groups was 

approximately equal. We intuitively expected that there could be some impact, 

especially early in the process where requirements are intensely dealt with, but as we 

will see in the next sub-section, the difference permeated throughout the entire 

architecting process.

The Feedback and Effort variables, despite initially thinking that they would 

have some impact on the quality of the architectures produced, did not have a 

significant impact on the resultant architecture quality.'3 It is not that the Feedback 13

13 In fact, the feedback and effort variables did not make “good” covariates, in that the relationship to 
the dependent variable was not strictly linear in our case, which is one of the underlying assumptions 
about the data that ANCOVA requires. Note that having more variables in an ANCOVA model can 
reduce the statistical power of the test, however, because the two variables and the statistical model
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and Effort had no impact for every group; for some groups that had relatively low 

academic background scores and non-RKE but still produced an average quality 

architecture, it is mostly attributable to the fact that they put in more effort and 

received more feedback than other groups. However, amount of Effort and Feedback 

was substantially less for teams that had reasonable academic background scores and 

RKE, again showing that the type of experience (RICE) and Academic Background 

were the prominent indicators of higher architectural product quality.

Our results from the ANCOVA test show substantial support for HI (see 

above). Though we recommend that these results should be interpreted with caution 

because ours was an exploratory study, these results can be a strong motivator for 

future more tightly controlled true experiments.

4.2 Possible underlying reasons for the relative performance of the 
respective groups (RQ2)

In order to determine the possible underlying reasons for the performance of 

the RKE and non-RKE groups, we can perform two primary analyses: (i) of the 

findings from the feedback severity levels (see section 3.7.2) and (ii) of the final 

architectures developed by the teams in the two types of groups. Frequency counts 

and bar charts will be used to highlight the feedback and architectural product data in 

the fine-grained categories (see section 3.7.2 for feedback and section 3.7.1.2 for 

final architecture quality). The feedback and final architecture data sources are used 

because they provide complementary views on in-process and end product work by 

the various groups. It is important to note that statistical analysis is not done on the 

fine-grained categories because they were inductive and emerged within the context 

of our study14. Also, the feedback variance was high (see section 4.1) among the 

groups because this aspect of the study was not meant to be controlled. The groups 

themselves could seek as much feedback as they required. These next sub-sections

still showed significant values they did not diminish the model in any way.
14 Analysing the feedback transcripts discovered the fine-grained categories; they were not apriori 
identified. Because of this, it is difficult to statistically test this data since the analysis procedure was 
explora tory  and there could be other data types that could possibly have been in the transcript but 
might not have been discovered.
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are meant to su p p o rt and reason  about the overall difference in the two groups’ 

performance.

4.2.1 Analysis of Feedback
Recall that in section 3.7.2 we categorised feedback into: Hints (i.e., light), 

Explanations (i.e., medium) and Give Away’s (i.e., heavy). Table 2-5 shows that the 

average amount of feedback given per team was quite similar for both RKE and non- 

RKE groups in the categories of Hints and Give Aways, but there is clearly a 

difference in the average number of Explanations given where the non-RKE teams 

received on average almost seven more explanations.

Group Average
#of

“Hints”

Average # of Average
#of

“Give
Aways”

RKE 23 20.7 7.6
Non-
RKE

25.9 28 7.7

Table 2-5. Average feedback per team
The three bar charts (Figures 2-1-3) that follow show, respectively, the 

difference in the three levels of feedback for the RKE and non-RKE groups against 

the technical activities of the entire architecting process that were derived from the a 

p r io r i  categories established in section 3.8.2. Note that for the technical areas not 

listed in the charts, there was not much of a difference between the RKE and non- 

RKE groups.

4.2.1.1 Hints
Figure 2-1 highlights a few striking differences between the two groups: 

Q u ality  scenarios, Tactics, Q u ality  sa tisfac tion  a n d  P attern  determ ination  are all 1-2 

hints higher per team in the non-RKE group, suggesting that they needed more help 

in these areas.
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Figure 2-1. Difference of “hints”

This finding gives substance to Bachmann et al.’s intuition (Bachmann et al., 2003a) 

that the link between RE and SA is in the area of quality and tactics.

An area that we see that the non-RKE group did marginally better than the 

RKE group was in docum entation. We identify this minor difference here so as to 

assess whether this forms a trend in Explanations and Give Aways.

4.2.1.2 Explanations
Figure 2-2 shows that in most tasks the non-RKE group received slightly 

more “Explanation” feedback than the RKE group. P attern  D eterm ination , Tactics, 

and Q u ality  sa tisfac tion  continue to be the categories with the biggest differences, 

but here, the major difference is with ta c tic s , where the non-RKE teams received 

approximately two more explanations than the RKE group. Tactics are design 

decisions concerning the satisfaction of quality issues. These quality issues are 

introduced in the requirements phase, and are therefore quite requirements oriented.

A few other categories also seem to favour the RKE group (in terms of less 

feedback): a llo ca tin g  fu n c tio n a lity  and abstraction . A lloca tin g  fu n ction a lity  occurs 

after a pattern has been determined, and is where the functionality, as depicted in use 

cases or functional requirements, is allocated to the appropriate components.
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Figure 2-2. Difference of "explanations"

This activity clearly requires an understanding of: (i) the requirements, (specifically 

in knowing how the functional requirements are constrained and supported by the 

various quality drivers), and (ii) how these requirements are associated with their 

accompanying component arrangement (pattern).

The category abstraction represents the degree to which the architecture is 

too detailed or too abstract. This does not provide any explicit links to RE, but 

instead could possibly involve a “frame of mind” (i.e., an implicit link) as seems to 

be suggested by the following interaction:

RE (PI and P2 are participants, S is staff)

PI: I  can't even imagine how the groups are doing that don't have 

requirements knowledge.

S: Do you find that having done requirements is actually useful?

PI: oh yeah 

S: in which way?

PI: Because 1 just don't have to think about things as much, I can look at the 

requirements and immediately get sense o f how things will work, I  don't 

know, I'm just used to working with them, so...

P2: I  know that at the end o f this course just like with requirements, I ’m 

going to be always looking and thinking about the architecture. Like now 

when I look at any projects, requirements are key on my mind. Before I  

didn’t even think about them, like for programming and, well now I  feel they 

are extremely important, and that this architecture is going to be in my mind
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as w e ll... /  know  it w ou ld  h ave h e lp ed  m e a  lo t to be a b le  to think abou t o ther  

p ro je c ts  before like I  can n ow ...

The marginal hint difference in the category of docum entation  fas described in 

4.2.1.1) in favour of the non-RKE group is not repeated for Explanations. This 

suggests that there is no substantial difference between the two groups in this 

category.

4.2.1.3 Give Aways

Figure 2-3. Difference of “give aways”

Figure 2-3 shows mostly the same trends continuing, although, it is difficult 

to assess since the number of data points is much lower than in the hints and 

explanations. The RKE group again required less feedback in qu a lity  satisfaction  

and tactics. A new category that emerged as one that required more relative 

feedback for both groups was the com pon en t a n d  con n ector view. The difference 

between the two groups, however, is marginal.

In the Explanations section (see 4.2.1.2 above), we discussed abstraction  and 

gave an interaction-example that demonstrates why the RKE group possibly does 

better in this area. However, in the Give Aways, there is clearly a difference in the 

two groups in the opposite direction; the RKE group sought in excess of half a “give 

away” more than the non-RKE group. When examining the details of the feedback 

given, the entire contribution of abstrac tion  feedback came from only one team in the
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RKE group, suggesting that the two groups were more or less equal in this area at the 

Give Aways level.

Interface specifica tion  is shown to be slightly better for the non-RKE group, 

but it is difficult to assess since the difference is only 0.3 between the two groups.

The A D D  P rocess area denotes that the teams sought feedback about the 

ADD process itself at an abstract, conceptual level. Here we see an almost 0.7 

difference between the groups in favour of the non-RKE teams. Upon examining the 

data more closely however, it does not support any conclusive interpretations.

4.2.2 Analysis of Architecture Quality
We now analyse the architectures to assess their quality differences between

the RKE and non-RKE groups and how these relate to the findings from RQ1. It 

should be noted that this assessment is carried out prior to the system’s 

implementation (i.e., coding, testing and installation). Thus, all judgements on the 

quality of the architectures are based on the information available as of the time the 

architectures were deemed to be completed.15

Table 2-6 shows the various critical project topics pertaining to architecture 

development and the averages for the two groups out of a possible score of 100. The 

overall quality score was 78.4 for the RKE groups, and 62.4 for the non-RKE groups. 

This result was analyzed through statistical testing and was found to be statistically 

significant (p = .035, see Section 4.1 for more detail). We now analyse below the 

results from the detailed assessment of each topic16.

The category m odule decom position  includes: functional separation of 

concerns; p a tte rn  determ ination  based on the quality drivers for the system; and 

consistency of relationships among the modules. Examining the details of the 

architectures, we found that one sub-area that the RKE group excelled at was the

15 It is quite plausible that architectures are assessed subsequent to the implementation of a system. 
This, however, is another perspective of architecture assessment and it involves many other factors not 
necessary in our study, such as design, coding and testing and how these might have affected the 
architectural design.
16 The detailed topics in Table 6 were not statistically tested because the study was controlled only at 
the overall level, and not at the detailed topic level. For example, if a non-RKE group did not perform 
well at beh aviour m odels, this could be because they lack a type of knowledge, or that they did not 
have time to do this task because they struggled through the initial part of the project. Only through 
further, more tightly controlled experiments can causal inferences be made at the detailed topic level.
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p a ttern s  work (on average, on a 7-point scale RKE: 4.5, Non-RKE: 3.5). They were 

better able to come up with a pattern that encompassed architectural tactics (i.e., 

design decisions) that did not introduce significant tradeoffs between the quality 

attributes, and therefore met the quality requirements for the system. This qualitative 

finding corroborates with the quantitative findings from the feedback data (see Figure 

2-1, Figure 2-2, and Figure 2-3) where there was a difference in the quality  

satisfaction , tactics, and p a tte rn s  work.

The dep loym en t aspect of the architecture clearly favours the RKE group; 

they consistently performed better in all the criteria underlying this score 

(understandibility, readability, appropriateness of patterns to address quality issues, 

etc.). The underlying reasons, however, are not clear because of the lack of 

completeness in this area on the part of the non-RKE group. It could be that the non- 

RKE-group’s processes did not enable them to complete this part.

The com pon en t an d  con n ector (C&C) views, unsurprisingly, were evaluated 

about the same for both the groups (62.7 for RKE, and 60.8 for non-RKE). First, we 

note that this topic is very architecture-centric (i.e., no background differential across 

the groups). Also, the 60’s averages seem to reflect the fact that unlike module 

decomposition (which has similar properties to low-level design modelling) C&C is a 

relatively new topic for all the participants.

O vera ll A rch itec tu ra l P ro p er tie s  were assessed roughly the same (67.7 for 

RKE, and 64.6 for non-RKE). This category deals with how well various system 

views map to each other, dependence on COTS products, and the buildability quality 

attribute. Looking closer at these attributes, both types of groups were almost equal 

for mapping system views and buildability, which is to be expected since both are 

more solution-oriented attributes. The dependence on COTS products was not 

prevalent in this particular project and therefore both types of groups received a 

similar assessment.

Interface specifica tion  shows the biggest gap out of any of the areas in the 

architecture quality between the two groups (86.7 for RKE, 60.4 for non-RKE). This 

is quite surprising since there was no indication that this would likely occur from 

looking only at the feedback data (see Figure 2-1, Figure 2-2 and Figure 2-3), where
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both groups performed relatively equally. The principal reason for the gap could be 

that, the in terface specifica tion  activity at first seems architecture and design 

oriented, without a clear or obvious link to the requirements. Yet, a “good” in terface  

specifica tion  requires that (Bass et ah, 2003) the natural language and modelled 

fu n c tio n a l requ irem en ts be “parsed” into: (i) services that the modules (or 

components) must provide; (ii) resources these modules require; (iii) exceptions that 

can occur; (iv) quality attribute characteristics of the interface; and (v) the resources’ 

syntax and semantics. It thus seems that those architects who are more “rooted” in 

the requirements, and also who can understand better the quality and functional 

implications of the requirements can create better in terface specifications.

Architecture Topics RKE Ave. 
(Out of 

100)

Non-RKE 
Ave. (Out 

of 100)
Module
Decomposition

74.5 66.

Deployment 78.9 47.2
Component and 
Connector

62.7 60.8

Overall Architecture 
Properties

67.7 64.6

Interface Specification 86.7 60.4
Behaviour Models 74.9 46
Descriptions 71.8 70
Architecture Reasoning 58.3 50.2
Documentation 73.7 59.7
Overall Architectural 
Quality

78.4 62.4

Table 2-6. Architecture quality comparison
Modelling the system’s beh aviou r is another task that resulted in a wide gap between 

the two groups (74.9 for RKE, 46 for non-RKE). Much of the discussion from the 

in terface specifica tion  can apply to this task as well. However, it is not quite as clear 

because three of the non-RKE groups did not submit any behaviour models, 

suggesting that they either did not know how to construct them at all (which is not 

very plausible, since this type of work is carried out similarly at low-level design 

which they have learnt in prerequisite classes), or that they simply did not have the 

time to complete because much work was invested in the other activities of the
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project. Since the feedback data is also inconclusive for this activity, more data is 

required to fully assess the difference between the two groups.

The score on arch itec tu ra l descrip tion s  are slightly higher for the non-RKE 

group than for the RKE group (71.8 for RKE, 70 for non-RKE), though upon 

examining the architectures, it suggests that there is no trend for this slight difference 

between the two groups.

A rch itectu re  R eason ing  score is higher for the RKE group, but overall is 

disappointingly low for both groups (58.3 for RKE, 50.2 for non-RKE). Some 

reasons are that both groups performed poorly in discussing altern a te  decisions to the 

principal design used, discussing the qu a lity  a ttr ibu te  tradeoffs that are introduced 

from their decisions, and documenting any underlying assum ptions of the system. 

The criteria in which the RKE group performed better at was the documentation of 

how the chosen design satisfied quality attributes and how it implemented the tactics 

selected. This result again supports the trend of the RKE group understanding 

qu a lity  issues, ta ctics  and p a tte rn s  better than the non-RKE group.

Finally, the RKE group did much better than the non-RKE group (73.7 for 

RKE, 59.7 for non-RKE) in the architectural documentation, but it is difficult to 

claim this as an impact of the RE knowledge without further investigation.

4.3 Summary of the Findings

The preceding subsections discussed the results of the study’s two research 

questions (RQ1 and RQ2); the first dealing with the quality of the final architecture 

submitted, and the second probing into the details of the first research question by 

investigating, in-depth, the product and process of the two respective study groups. 

The following are the key summary points:

• The RKE groups developed a better final architecture than the groups without 

RKE -  the average on their assessment (out of a possible 100 points) was 

approximately 10 points higher for the RKE groups. This difference was found 

to be statistically significant.
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• The feedback sessions (section 4.2.1) show that the non-RKE group sought more 

feedback than the RKE group in quality related categories such as tactics, quality  

scenarios, the sa tisfaction  o f  quality, and p a tte rn  determ ination .

• Other areas of interest that emerged, although not as prominent, were the issues 

of a b stra c tio n , and of a llo ca tin g  fu n c tio n a lity  to elem ents. Both of these are not 

as “directly” linked to RE knowledge as the quality-related issues are, but they do 

have “indirect” ties to RE.

• The quality data also provided new areas of interest. Interface Specification  was 

the task with the biggest difference between the two groups in terms of quality 

(86.7 for RKE, 60.4 for non-RKE). B ehaviour and dep loym en t modelling were 

also done much better by the RKE group.

We now proceed to discuss the implications of the findings.

5 Implications

The implications of the findings centre upon the areas of: hiring and training 

in the software industry, aligning RE and SA courses in the Software Engineering 

curricula, and methods and tools.

5.1 Hiring and Training

The response to research question RQ1 (see section 3.1) indicates that RKE 

architects outperform non-RKE architects. Thus, architectural training costs and 

architectural defects, at least in the early stages of an architect’s career, can possibly 

be reduced by employing architects with the proper background in requirements. 

The detailed findings (see section 4.2) suggest that training for non-RKE architects 

could focus on the areas of tactics, in terface specifica tion  a n d  p a ttern  determ ination . 

In addition to these areas, in (Ferrari and Madhavji, 2006) Ferrari and Madhavji 

identify specific requirements-oriented problematic areas for training architects 

(quality satisfaction, quality drivers determination, modelling quality requirements, 

abstraction, and requirements understanding).

Our long-term exposure with the software industry (in Canada) in the 

domains of database and information systems, systems software, insurance,
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telephony, games, utilities and the like, and phone interviews with practitioners in 

these domains, suggest that architects’ roles are rarely filled consciously by agents 

with RKE. In many situations, they tend to have a technical background (databases, 

backup and recovery, platforms, etc.) which, while helpful for deploying 

architectures, still seems to leave an important gap in the front-end and more 

conceptual areas of architecting such as system structuring, determining dynamic 

models of the architecture, determining architectural patterns, dealing with potential 

quality attribute tradeoffs, among others.

Some practitioners indicated that requirements engineering, as pursued by 

pedagogy and research is still far from the reality of development practices in 

industry. For example, pedagogy and research tend to focus more on modelling 

requirements in specific notations and getting them consistent; whereas, industry 

tends to focus more on eliciting the right requirements (typically in a natural 

language), prioritising, and on the issues of costing, resources and deliverability.

Thus, RKE background amongst the developers in industry is not a common 

phenomenon and so this could be one reason why architect employees tend to have 

more technical (or implementation-oriented) background. However, with the field of 

RE increasingly penetrating higher institutions of learning through SE curriculum, 

there is hope that in the years to come the RKE “gap” amongst many architects in 

industry today may reduce, hopefully leading to higher quality of software systems.

5.2 Aligning RE and SA courses

As described in the introduction section, currently, there is considerable 

variability in the pre-requisites to the SA courses in post-secondary institutions. This 

can lead to: (i) implicit or unintended unfairness in courses where no allowance is 

made for students with/without RE background and (ii) difficulty in satisfactorily 

teaching both types of students at the same time. Certainly our own experience 

strongly supports this position.

Also, the IEEE/ACM curriculum for SE (Software Engineering, 2004) 

recommends only general SE or software construction as prerequisites for SA 

courses, depending on the core package selected. The general SE or software
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construction courses do not cover, in depth, the critical aspects, as highlighted in this 

study, of RE knowledge (e.g., q u a lity  drivers, qu a lity  sa tisfaction  an d  m odelling  

qu a lity  scen arios) that we have found to have significant impact on SA and so the 

current recommendations are less than ideal pre-requisites for an SA course. Whether 

a course on RE, in its entirety, should be a prerequisite (or even a co-requisite) to an 

SA course merits further investigation. Also, the “twin-peaks” model of life-cycle 

processes (Nuseibeh, 2001), where RE and SA are iteratively closely intertwined, is 

yet another consideration for organising RE and SA courses.

5.3 Methods and Tools

Lately, there has been some research interest in bridging the gap between RE 

and SA (STRAW, 2001 and 2003). Our findings in terms of targeted SA areas where 

RE has particular impact could thus help expedite this research both in the area of 

methods and tools. In (Bachmann et al., 2003b), they discuss the preliminary design 

for ArchE, a tool built to support ADD method. Currently, the tool supports 

decision-support for moving from quality scenarios to tactics for two quality 

attributes (m od ifiab ility  and perfo rm a n ce). However, based on the findings from 

this study, this tool (or other tool efforts such as GRL (Liu and Yu, 2003) and CBSP 

(Egyed et al., 2003), to name a couple), could possibly take advantage of specific 

linkages of the aforementioned qu a lity  scen arios and tactics, but also quality  drivers  

and a rch itec tu ra l p a tte rn s  (see section 4.2) by enhancing decision support for non- 

RKE architects. For example, these tools could possibly capture the experience 

profile of their users to then automatically adjust to the varying architects potential 

needs. Likewise, the twin-peaks model (Nuseibeh, 2001) of life-cycle processes 

could possibly be refined further to give more detailed explanations of the inter

relationships between RE and SA. For example, explicit consideration can be made 

for RE and SA tasks where there is a particularly strong dependence between the two 

areas (such as qu ality  d rivers determ ination , tactics usage, and m odelling  quality  

scen a rio s  to name a few). Besides, improvement of existing architecting methods 

(such as the ADD process (Bass et al., 2003), Preskriptor Process (Brandozzi and 

Perry, 2003), and CBSP (Egyed et al., 2001) could consider incorporating sub-areas
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where both RKE and non-RKE architects experienced significant difficulties (such as 

patterns and component and connector views).

6 Future Work

While the findings from the study described in this paper are interesting, they 

should be considered only a humble beginning, for there are many new areas for 

future studies. Here, we highlight a sample of these:

• A replication of this study would be critical to either refute or support the 

trends that emerged in this study’s findings. Indeed, many such studies need 

to be conducted until firm conclusions can be drawn. Furthermore, 

replication within industry (though highly unlikely at least due to resource 

and time constraints) and architecting different application domains would be 

invaluable for generalisation of the findings to wider contexts and different 

types of systems.

• In our study, we did not track the feedback on requirements changes made 

after releasing them to the architects and, likewise, the impact of these 

changes on the architecture. Empirical work is lacking in this area and it 

would be potentially beneficial to see how the evolving system requirements 

would affect the architecting process.

• While this study primarily looked at RE knowledge and its impact on 

architectural technical activities, there is still a strong behavioural aspect to 

architecture development and requirements engineering such as 

communication among the various stakeholders, understanding customer 

needs and market trends, assembling and managing development teams, 

among others (Bredemeyer and Malan, 2006). Many of these skills are more 

human related, and less technically-oriented than what is needed in other 

software development phases (such as coding and testing). A strictly 

behavioural study would be useful in empirically providing skill and 

personality-aptitude sets for determining the “right” people for carrying out 

RE and SA, and also providing improvements in the human communicative
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aspects of these areas (Curtis et al., 2001). This would provide empirical

support for the discussions raised on this topic in (Clements et al., 2007).

7 Conclusions

The fields of Requirements Engineering and Systems Architectures are 

recognised to be amongst the most critical areas of software development, and 

recently there has been much interest in transitioning from requirements to 

architectures (STRAW, 2001 and 2003). In this paper, our objective was to 

investigate how, when architecting systems, the architects with software 

requirements knowledge and experience compare against those without. In particular, 

we conducted an empirical study involving 15 teams, collecting and analyzing data 

from diverse sources such as documented architectures, decision templates, emails, 

logs, and feedback sessions.

From the findings of the study, we conclude that architects with requirements 

knowledge and experience (RKE) perform better in terms of architectural quality, 

than those without RKE (in our study, it was by 16% (RKE: 78.4% and non-RKE: 

62.4%), see Table 2-4). This difference was found to be statistically significant at a 

96.5% confidence interval.

There were two data sources used to provide details into the relative 

performance of the specific technical areas: feedback sessions and final architectures. 

Based on our analysis of feedback (see section 4.2.1), the specific technical areas 

where RKE group excelled were: tactics, qu a lity  scenarios, the sa tisfaction  o f  

quality, and p a tte rn  determ ination . Looking more closely at the details in the final 

architectures produced (see section 4.2.2), two new areas emerged where the RKE 

group excelled: in terface specifica tion  and behaviou r m odelling.

These findings can have important implications for hiring and training in the 

software industry, pedagogy, and architecting methods and tools, as described in 

section 5. For example, for hiring software architects, background analysis can be 

used as a discriminator between those with requirements knowledge and experience 

and those without. Likewise, for training in the area of systems architectures, specific 

requirements-oriented material (see section 5.1) can be used to augment the training
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of those without requirements knowledge and experience. In pedagogy, systems 

architecture and requirements courses can be aligned appropriately (see section 5.2) 

to take advantage of the requirements-oriented knowledge for optimal student 

performance in systems architecture courses. Finally, methods and tools research in 

the area or improved transitioning from requirements to architectures can possibly 

consider the findings (see section 5.3) as requirements for designing and 

implementing these methods and tools.

Examples of further ideas for empirical studies that could extend this work 

are discussed in section 6. These are replication of this study; examining how 

requirements that evolve during architecting affect the RE and SA process; and a 

more behaviour-oriented study that could empirically examine optimal skill-sets for 

architects.

Since this was only one exploratory-based study in a particular context, it 

would be a mistake to generalise these results verbatim to other contexts (Zave, 

1997). However, this does not diminish the importance of the findings described in 

this paper. Rather, more such studies are needed in this area to add to the currently 

meagre body of empirical knowledge on RE and SA.

References

Bachmann, F., Bass, L., Klein, M., 2003a. Moving from quality attribute 
requirements to architectural decisions. Second International Workshop from 
Software Requirements to Architectures (STRAW ‘03), Portland, USA, pp. 122
129.

Bachmann, F., Bass, L., Klein, M., 2003b. Preliminary Design of ArchE: A 
Software Architecture Design Assistant. Technical Report, Software Engineering 
Institute, Carnegie Melon University, CMU/SEI-2003-TR-021 ESC-TR-2003-021.

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice, 2nd 
edition, Addison-Wesley.

Berander, P., 2004. Using Students as Subjects in Requirements Prioritization. 
Proceedings 7th International Conference on Empirical Assessment & Evaluation 
in Software Engineering, Keele University, Staffordshire, UK, pp. 95-102.

Berg, B. L., 2007. Qualitative Research Methods for the Social Sciences. Boston, 
Pearson Allen & Bacon.



53

Boehm, B., 2002. Get ready for agile methods, with care. Computer Volume 35, 
Issue 1, pp. 64 -  69.

IEEE SWEBOK, 2004. Guide to the Software Engineering Body of Knowledge: 
2004 Version. IEEE and IEEE Computer Society project, available at 
http://www.swebok.org/.

Brandozzi, M , Perry, D. E., 2003. From Goal-Oriented Requirements to 
Architectural Prescriptions: The Preskriptor Process. Second International 
Workshop from Software Requirements to Architectures (STRAW ‘03), Portland, 
USA, pp. 107-113.

Bredemeyer, D., Malan, R., 2006. The Role of the Architect. Archticture Resources 
for Enterprise Advantage, Bredemeyer Consulting.

Campbell, D. T., Stanley, J. C., 1963. Experimental and quasi-experimental designs 
for research. In N. L. Gage (Ed.), Handbook o f research on teaching (pp. 1 -76). 
Chicago: Rand-McNally.

Carmines, E. G., Zeller, R.A., 1991. Reliability and validity assessment. Newbury 
Park: Sage Publications.

Carver, J., Jaccheri, L., Morasca, S., 2003. Issues in Using Students in Empirical 
Studies in Software Engineering Education. Proceedings of the ninth International 
Symposium on Software Metrics (METRICS’03), Sydney, Australia, pp. 239-249.

Clements, P., Kazman, R., Klein, M., 2007. Working Session: Software Architecture 
Competence. Proceedings of the Working IEEE/IFIP Conference on Software 
Architecture (WICSA ‘07), Mumbai, India.

Curtis, B., Hefley, W. E., Miller, S. A., 2001. People Capability Maturity Model (P- 
CMM): Version 2.0. Carnegie Mellon Software Engineering Institute technical 
report, CMU/SEI-2001-MM-001.

Damian, D., Chisan, J., 2006. An Empirical Study of the Complex Relationships 
between Requirements Engineering Processes and Other Processes that Lead to 
Payoffs in Productivity, Quality, and Risk Management. Transactions on Software 
Engineering, 32(7), pp. 433-453.

Creswell, J. W., 2003. Research Design: Qualitative, Quantitative, and Mixed 
Methods Approaches. Thousand Oaks, CA: Sage Publications.

De Vaus, D. A., 2002. Analyzing social science data. SAGE Publishing Ltd, London.

Easterbrook, S.M., Yu, E., Aranda, J., Fan, Y., Horkoff, J., Leica, M., Qadir, R. A., 
2005. Do Viewpoints Lead to Better Conceptual Models? An Exploratory Case

http://www.swebok.org/


54

Study. 13th IEEE International Requirements Engineering Conference (RE’05), 
Paris, France, pp. 199-208.

Egyed, A., Grunbacher, P., Medvidovic, N., 2001. Refinement and Evolution Issues 
in Bridging Requirements and Architecture -  The CBSP Approach. First 
International Workshop from Software Requirements to Architectures (STRAW 
‘01), Toronto, Canada.

Ferrari, R., Madhavji, N., 2006. Requirements-Oriented Problems While 
Architecting: An Empirical Study. 12lh Working Conference on Requirements 
Engineering: Foundation for Software Quality (REFSQ ’06), Luxembourg, pp. 81
96.

Ferrari, R., and Madhavji, N. H., 2008. Software architecting without requirements 
engineering knowledge and experience: What are the repercussions?. Journal of 
Systems and Software, Volume 81, Issue 9, September 2008.

Hall, B., 2004. Public Interest Anthropology (PIA)”, University of Pennsylvania, 
http ://w ww. sas. upenn. edu/anthro/C PI A/methods. html.

Hoest, M., Regnell, B., Wohlin, C., 2000. Using Students as Subjects -  A 
Comparative Study of Students and Professionals in Lead-Time Impact 
Assessment, Empirical Software Engineering, pp. 201-214.

In, H.; Kazman R., Olson, D., 2001. From Requirements Negotiation to Software 
Architectural Decisions. Second International Workshop from Software 
Requirements to Architectures (STRAW ‘01), Toronto, Canada.

Kazman, R., Klein, M., Clements, P., 2000. ATAM: Method for Architecture 
Evaluation. Technical Report, Software Engineering Institute, Carnegie Melon 
University, CMU/SEI-2000-TR-004 ESC-TR-2000-004.

Kotonya, G., Sommerville, L, 1998.Requirements Engineering - Processes and 
Techniques. Wiley.

Liu, WenQian, Easterbrook, S., 2003. Eliciting Architectural Decisions from 
Requirements using a Rule-based Framework. Second International Workshop 
from Software Requirements to Architectures (STRAW ‘03), Portland, USA, pp. 
94-99.

Liu, D., Mei, H., 2003. Mapping requirements to software architecture by feature
orientation. Second International Workshop from Software Requirements to 
Architectures (STRAW ‘03), Portland, USA, pp. 69-76.

Liu, L. and Yu, Eric, 2003. From Requirements to Architectural Design -  Using 
Goals and Scenarios. Second International Workshop from Software Requirements 
to Architectures (STRAW ‘01), Toronto, Canada.

http://www.sas.upenn.edu/anthro/CPIA/methods.html


55

Mason, J., 1996. Qualitative Researching. SAGE Publishing Ltd, London.

Miller, J., Madhavji, N., 2007. The Architecture-Requirements Interaction. 5th 
Working IEEE/IFIP Conference on Software Architecture (WICSA 07), Mumbai, 
India, pp. 20-23.

Nord, R. L., Soni, D., 2003. Experience with Global Analysis: A Practical Method 
for Analyzing Factors that Influence Software Architectures. Second International 
Workshop from Software Requirements to Architectures (STRAW ‘03), Portland, 
USA, pp. 34-40.

Nuseibeh, B., 2001. Weaving the Software Development Process Between 
Requirements and Architectures. Second International Workshop from Software 
Requirements to Architectures (STRAW ‘01), Toronto, Canada.

Poort, E.R., De With, P.H.N., 2004. Resolving requirements conflicts through non
functional decomposition. Fourth Working IEEE/IFIP Conference on Software 
Architecture (WICSA 04), Oslo, Norway, pp. 145-154.

Rapanotti, L., Hall, G., Jackson, M., Nuseibeh, B., 2004. Architecture-driven 
Problem Decomposition. Proceedings of the 12th IEEE International Requirements 
Engineering Conference (RE 2004), Kyoto, Japan, pp. 80-89.

Runeson, P., 2003. Using Students as Experiment Subjects -  An Analysis on 
Graduate and Freshman Student Data. EASE’03 -  Proceedings 7th International 
Conference on Empirical Assessment & Evaluation in Software Engineering, Keel, 
U.K.

Schwanke, R., 2005. GEAR: A Good Enough Architectural Requirements Process. 
5th Working IEEE/IFIP Conference on Software Architecture (WICSA 05), 
Pittsburgh, USA, pp.57-66.

Shaw, M., 2003. Writing good software engineering research papers: minitutorial. 
Proceedings of the 25tT' International Conference on Software Engineering (ICSE
2003), Portland, USA, Tutorial Session, pp. 726-736.

Sheskin, D. J., 2004. Handbook of Parametric and Non-paramteric Statistical 
Procedures. Chapman and Hall/CRC.

Software Engineering, 2004. Curriculum Guidelines for Undergraduate Degree 
Programs in Software Engineering. A Volume of the Computing Curricula Series, 
August 23, 2004, The Joint Task Force on Computing Curricula, IEEE Computer 
Society, Association for Computing Machinery.

Software Requirements to Architectures Workshop (STRAW), 2001 and 2003.



56

Sommerville, L, 2006. Software Engineering. Addison Wesley, 8th edition.

Thelin, Thomas, 2004. Team-based fault content estimation in the software 
inspection process. 26th International Conference on Software Engineering (ICSE
2004), Edinburgh, Scotland, pp. 263-272.

Tichy, W.F. , Lukowicz, Prechelt, L., Ernst A., 1995. Experimental Evaluation in 
Computer Science: A Quantiative Study. Journal of Systems and Software, 
January, pp. 1-18.

Wang, Z., Sherdil, K., Madhavji, N.H., 2005. ACCA: An Architecture-Centric 
Concern Analysis Method. 5th Working IEEE/IFIP Conference on Software 
Architecture (WICSA 05), Pittsburgh, USA, pp.99-108.

Wieringa, R. J. , Heerkens, J., 2006. The methodological soundness of requirements 
engineering papers: a conceptual framework and two case studies. Requirements 
Engineering Journal, Vol. 11, pp. 295-307.

Wildt, A. R., Ahtola, O. T., 1978. Analysis o f covariance. Quantitative Applications 
in the Social Sciences series #12. Thousand Oaks, CA: Sage Publications.

Wohlin, C., Hoest, M, Wesslen, A., 2000. Experimentation in Software Engineering: 
An Introduction. Kluwer Academic Publishers, Norwell, MA.

Zave, P., 1997. Classification of Research Efforts in Requirements Engineering. 
ACM Computing Surveys, Voi. 29, No. 4, pp.315-321.

Zelkowitz, M., Wallace, D., 1997. Experimental validation in software engineering. 
Information Software Technology, volume 39, pp. 735-743.



57

Chapter 3

Architecting-problems rooted in 
requirements17

1 Introduction

Requirements! This expletive is obviously not meant to deny the importance 

of other kinds of software artefacts in a software project, such as architecture, design 

and code. Rather, it is meant to emphasise the ubiquity, not to mention the 

importance, of requirements when carrying out non-requirements engineering tasks. 

It is important to stress this point because a closer examination of the community’s 

research focus on “requirements” suggests that, predominantly, the effort is being 

spent within the confines of the requirements engineering (RE) process (e.g., on 

ways to elicit, analyse and model requirements) and little on other software 

engineering processes where requirements are actually being used.

There are exceptions to this norm, however; in particular, the work on 

requirements traceability (Ramesh and Jarke, 2001); on bridging the gap between 

software requirements and architectures (STRAW, 2001 and 2003; Nuseibeh, 2001; 

Madhavji and Perry, 2004; Rapanotti et al., 2004) and on developing specifications 

that are well-suited for design and implementation activities (Zave, 1997). Besides 

such individual efforts, there is recognition also at the community level of the 

importance of requirements in relation to other processes. In particular, at the 14th 

Requirements Engineering Conference, 2006, there was a keynote address on the 

relation between testing and requirements (Graham, 2006).

In the quest to explore requirements issues in a non-requirements setting, we 

ask a rather rarely posed question:

17 A version of this chapter was published in (Ferrari and Madhavji, 2008).
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“What kinds o f requirements-oriented problems are being experienced while 

architecting a software system?”

That is, the focus of this paper is that, during the software architecting (SA) process, 

if there are problems experienced by the architects then we would like to determine 

those subset of problems that are associated with (or rooted in) software 

requirements. In other words, we are primarily interested in investigating the 

architecting process and how requirements are treated in the context of this process. 

The focus of the paper is not in scrutinising the requirements engineering process 

directly or the artefacts being developed in that process.

While the essence of the posed question is also important for processes other 

than architecting (Bass et al., 2003), our focus on the architecting process is based on 

the fact that architecting is not only at the front-end of the development and evolution 

processes but is also tightly intertwined with the RE process (Nuseibeh, 2001) and so 

diminishing requirements-oriented (RO) problems there can have major (positive) 

quality, cost and time impact on the rest of the development process.

The practical value of the posed question lies in the kind of feedback that can 

be obtained from the findings that could precipitate improvements in the RE 

technologies, which is clearly of central importance to the RE community (Nuseibeh, 

2001; Madhavji and Perry, 2004; Finkelstein, 2000). For instance, if the architects 

persistently have difficulty in understanding certain types of requirements, this 

feedback could drive ways to improve requirements specification, documentation and 

communication of these particular types of requirements tailored to the needs of the 

software architects. Likewise, if they have difficulty in ascertaining whether or not 

the emerging architecture will satisfy the desired qualities, this feedback could lead 

to improved linguistic mechanisms to describe the different quality drivers so that 

quality assessment is simplified. This way, the feedback obtained from answering the 

posed research question could play an empirical role in improving RE technologies 

which, in turn, could improve the handling of requirements outside the RE process.

Note that the RO problems experienced outside the RE process can stem from 

two key sources: (i) deficiencies (e.g., incompleteness, inconsistency, ambiguity,
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etc.) inherent in the requirements themselves and (ii) deficiencies in the RE 

technologies (e.g., notation complexity, expressive power, documentation meta

model, analysis tools, validation process, prioritisation techniques, handover process 

and others). In a development-focused setting, the first source would normally lead to 

product-oriented feedback, which could result in requirements fixes but not 

necessarily improvement in RE technologies; whereas, the second source would not 

normally lead to such feedback but, instead, would likely stifle development 

capability. In a research setting, however, both sorts of deficiencies could lead to 

technology-oriented feedback which, in turn, could lead to RE technology 

improvements. It is such feedback from both sorts of deficiencies, that is of particular 

interest in this paper because it is the resultant improvements from such feedback that 

could have a lasting impact in the RE field. Thus, a prerequisite to improving RE 

technologies is to understand the kinds of problems stakeholders face in using 

requirements to accomplish their goals.

The posed research question is, in fact, part of an empirical study involving 

sixteen teams, each architecting the same banking application from the same set of 

requirements. The architecting method used was Attribute Driven Design (ADD) 

(Bass et al., 2003). The study found that, for example, there were several different 

types of RO problems, of varying severity, which the architects faced in using the 

given requirements; that those architects with RE background also faced RO 

problems; and about a third of all problems were RO problems. When we shared our 

results with requirements analysts, architects and process specialists from a large 

insurance company, they concurred with our findings with their experience within the 

company. There were also some areas where there were relatively few RO problems.

The paper also describes some implications of the findings for the RE field, 

particularly in areas of: expression of quality requirements for different stakeholders; 

empirical studies on quality scenarios; tighter integration of RE and software 

architecting (SA) processes; and requirements to architecture mapping. To our 

knowledge, the current literature does not describe any empirical studies on RO 

problems in other development areas, especially architecting. In this sense, this study
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is the first one of its kind and acts as a precursor to potential other studies that can 

focus on replication.

In the next section, this paper describes the case study, section 3 describes the 

findings and discusses the implications of the results for the field of RE. Following 

this, section 4 describes related work, section 5 describes possible future studies 

involving hypotheses that have emerged from this study, and section 6 concludes the 

paper.

2 The Empirical Study

In this section, we first describe the study design. Following this, we discuss the participants 

of the study; system requirements; the architecting project; and the research procedures used.

2.1 Study Design

The type of study conducted was a m u ltip le-case  study design (Creswell, 2003). There were 

sixteen parallel cases (i.e., one case per architecting team) in our study. We also had a degree of 

control in our study in that we separated the participants into two groups: one that was composed of 

teams consisting only of requirements engineering knowledgeable participants (the RE teams), and the 

other group composed of teams without this knowledge (the non-RE teams). This was determined 

through a background questionnaire, where a series of “Yes/No” questions relating to their academic 

and industrial background were given. The participants who answered “Yes” for academic 

background were later checked to confirm that they had all taken a Requirements Engineering course, 

where they had learnt such topics as requirements elicitation, modelling, analysis, prioritisation, 

validation, among others. No participants had reported any industrial experience. Also, through the 

numerous interactions with the subjects during the course of this study, at no time was there any doubt 

concerning any specific subject as to whether he or she was mis-classified. There was thus a clear split 

between those who had requirements knowledge and those without such knowledge.

Despite the control we had in the study, it was an explora tory  study in that we had no initial 

hypothesis, and we did not know which phenomena were important (i.e., the types of RO problems 

experienced by the architects). This is because, to our knowledge, there wasn’t much background 

literature related to the posed research question. Though the exploratory nature of the case study is 

well suited for analysing the commonality and differences across cases that have similar traits 

(Creswell, 2003), it is important to note that the primary focus of the study was on discovering the 

major RO problems while architecting a system, not on making comparisons between the two groups.
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2.2 Participants

We used availability (or convenience) sampling (Creswell, 2003), where the 

participants were drawn from the final year Software Architecture course at the 

University of Western Ontario (UWO). There were sixteen architecting teams, each 

comprised of four members.

2.3 The Requirements Document

The system to be architected was in the “banking” domain. The application 

included three different modes of banking for the clients: ATM, internet banking and 

telephone banking services; access and reporting features for the banking staff; client 

and financial database; various quality drivers, such as security, availability, 

performance, usability, maintainability, and others. In all, there were some eighty- 

five high-level requirements to contend with, which is sizeable. The requirements 

followed the organisational structure as found in (Somerville and Sawyer, 2000). 

This included a document preface, which described the organisation and the business 

needs, followed by the actual requirements with rationale written in natural language. 

The requirements section was split into different sub-sections each detailing 

requirements for a given subsystem, along with requirements that described 

properties that the overall system should have. Prior to the start of the architecting 

project, the architects were given a session where the project was described, 

including the application domain and the format and structure of the requirements, 

and any questions or concerns were addressed.

The requirements for the system were obtained from an external source. Prior 

to conducting the study, these requirements were validated by a team of five people 

for acceptability in general, “and for any serious or obvious flaws”; the semantic- 

content of the document was not altered. The result of this process is that a few 

grammatical fixes were made, along with the elaboration and clarification of certain 

requirements.
The validators had requirements, architecture, and software engineering 

experience ranging from 3 to 27 years. We did this in order to reduce researcher bias 

in the study. We also did not want to “fix” the document to the point where it was
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considered “perfect”. In a real-world setting, the requirements documents given for 

architecting or system development are not always “perfect”, and we wanted to 

emulate this by delivering an acceptable document to the participants.

2.4 Architecting Project

Given these requirements, as mentioned in the introduction section, each of 

the sixteen teams developed an architecture from the same requirements using the 

ADD method18 (Bass et al., 2003). The projects were all conducted at UWO. The key 

steps of the ADD method include: understanding the requirements and developing 

the quality scenarios if they do not already exist; iteratively decomposing a selected 

module, choosing architectural drivers from the scenarios and functional 

requirements, choosing or creating an architectural pattern (using appropriate tactics) 

that satisfies the architectural drivers, identifying child modules to implement the 

tactics, instantiating the modules with functionality, defining interfaces, verifying and 

refining use cases and quality scenarios and making them constraints for the child 

modules.

Each team had to develop and document the system architecture and, in the 

process, capture, in the defined templates, such items as: design decisions, rationale, 

underlying assumptions, issues arising, resolution of items, etc. In addition, each 

team had the freedom to seek help on any difficulties they faced during their project. 

We termed these “feedback” sessions.

There were always two researchers conducting these feedback sessions. One 

researcher was present in all the sessions to ensure that the sessions were carried out 

in a consistent manner. The second researcher contributed to the feedback 

interactions as and when necessary. The researchers involved had no direct 

investment in the study; this was done to reduce researcher bias. Also, there were 

two levels of management inherent in these feedback sessions. One was of a global 

nature to ensure that feedback sessions were scheduled and held across the teams, 

that the process was running smoothly, and that, finally, data was transcribed and met

18 We used the ADD method for this study because the context (Architecture course at UWO) in 
which the study was to be conducted already had the ADD method established in terms of both
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quality requirements. The second level of management was more local to a particular 

session to ensure that team members were present in the appropriate session, data 

was properly recorded in the equipment, and that it was logged in a database. All the 

feedback sessions were recorded and later transcribed. More details on this process 

are given in Section 2.5.1.

A possible threat with the architecting project is that the participants’ 

architectures produced were conceptual. That is, there was not to be any 

implementation and so certain static properties (such as fitness between the 

architecture’s structure and allocation of code components) and dynamic properties 

(such as delivery of performance, security, availability, etc.) couldn’t be checked 

through actual implementation and operation of the system. This implied that there 

were no end-user consequences of the architectural decisions being made, though 

there were clearly academic-performance-related consequences. Thus, these 

differences should be bom in mind when attempting to generalise results from this 

study to other domains. However, in order to mitigate the threat of the “quality of the 

results”, weekly motivational meetings were held where the participants’ decisions 

were reviewed by the researchers on an on-going basis, and feedback for 

improvements was given.

2.5 Research Procedures

In this section, we describe the research methodology that was used to conduct the study. 

First we discuss the data collection method, second the data analysis procedure, and then we describe 

validation checks that were conducted on our empirical procedures.

2.5.1 Data Collection
In theory, there are two “areas” where data and information pertaining to 

requirement-oriented (RO) problems could be collected: product (e.g., the 

documented architectures) and process (e.g., intra-team email communications, data 

templates and feedback sessions). In this study, we focused expressly on the process 

and there is a good reason for this.

material and teaching resources. Using another architecting method in the course was not an option.
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Analysis of the final architecture (or product) quality was not used to judge 

RO problems because the architecting process is much “closer” to the RO issues 

(e.g., understanding and consideration of quality drivers and relating them to 

architectural choices); whereas, the documented architecture is much “farther” away 

from the RO issues in that the architecture is a culmination of many different 

elements such as various modelling techniques used; documentation organisation; 

and degree and clarity of the documentation on the tactics used, allocation of 

functionality, deployment, views of the architecture, design choices and rationale, 

etc. Thus, it is difficult to discern from the final documentation the kinds of RO 

problems the teams had encountered. Rather, in this study, we were concerned with 

the process work that was carried out and the RO problems that were encountered 

along the way. In practice, it was much simpler to gather relevant data while the 

process was being conducted.
The data-set gathered in the study was quite extensive -  approximately 50 

hours of recorded interactive feedback sessions (see section 2.4 above), which were 

subsequently transcribed by three domain experts and verified for accuracy. Beyond 

this, there were numerous email communications and many data templates which 

were also explored to identify in-process RO problems.

Ethnographic methods (Hancock, 2002) were used such as participant 

observation and semi-structured interviews. These methods focused on gathering 

rich and detailed data regarding any possible topic or theme that arose within the 

research domain to be investigated, thus complying with the exploratory nature of the 

study.

2.5.2 Analysis of Feedback
To assess the issues that arose in the feedback sessions, we carried out content 

analysis (Mason, 1996) on the transcribed data. In essence, the frequency of the 

various types of feedback (i.e., severity of RO problems, and technical activity in the 

architecting process) was counted. The technical activities were identified beforehand 

from the ADD architecting process (Bass et al., 2003) and relevant research
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literature, and appropriate categories were formed a priori and validated by six 

experts over several iterations. These categories19 are shown in Table 3-1.

To determine the type of feedback, thematic coding20 was done on the entire 

data set, using the a priori categories of the architecting process and discovering any 

new inductive categories while coding (Mason, 1996). QSR’s NUD*IST 4.021 was 

used for thematic coding; it manages and stores all the emerging codes, and 

simplifies retrieval of text units that have been coded.

No new categories of the architecting process were discovered and that our 

initial list of a priori categories covered the breadth of problems that were 

experienced during the architects process. However, the analysis resulted in the 

identification of three levels of severity of RO problems experienced by various 

teams: “Mild", “Moderate” and “Severe". These categories were inductive in that 

they were discovered after the data collection phase.

The definitions of the severity levels, with examples, are:

“Mild" - These were interactions where the participants only had a mild problem; 

little feedback was required to proceed with their architectural design. An example 

about modelling quality requirements (see Table 3-1) from the data (P: participant; 

R: researcher) is:

P: Do our concrete scenarios help us in shaping our architectural patterns?

R: Not directly so, concrete scenarios are there to identify things that will happen 

often in the system, and with those identified you can prioritise what is important in 

the system.

“Moderate” -  These are interactions where the participants asking a question about a 

given topic needed a detailed explanation in order to proceed further in their solution 

design. Another example of modelling quality requirements (see Table 3-1) is:

19 There also were 15 non-RO categories (mainly architectural), which are not relevant to this paper 
but examples of which can be found in (Ferrari and Madhavji, 2007).
20 Them atic cod in g  is a qualitative data analysis procedure where the researcher develops categories of 
concepts and themes that emerge from the data source. It is an ‘open’ process in that the researcher 
makes no prior assumptions about what the findings may be.
21 QSR NUD*IST 4.0. QSR International Pty Ltd., 1999. Available at
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P: We weren 7 sure how specific we should be getting with the quality scenarios. 

Here’s a few that deal with availability, but some seem to be specific, like this one 

about a power failure, which will not happen often. We 're just confused with these 

scenarios.

R: So this is something that would happen a lot so that's the purpose o f the quality 

scenarios, you're just thinking o f ... obviously there's hundreds o f scenarios you can 

think o f in any given system, but, you're trying to think o f those that are most 

important in the system, the ones that will be encountered the most often.

“Severe” -  These are interactions where the participants asking a question about a 

given topic needed a full solution to a particular problem for them to move forward 

in their design. A modelling quality requirements (see Table 3-1) example of this is:

P: we kind o f just did the drivers as the requirements dictated, the ones that seemed 

the most important. Is that the way it's supposed to happen? I  was a little worried 

about that, so do you want say performance, and then just say why you do based on 

the requirements?

R: ummm, yeah, you could use the requirements as an example o f why you consider 

performance a key driver. I  mean that's where quality scenarios are critical. 

Scenarios deal with quality issues, non-functional, and so really the scenarios, I 

mean you could come up with hundreds o f them ... but you're trying to come up with 

the ones that seem the most important based on the requirements and your own 

banking knowledge. And then, you can use these scenarios and say ok, so this will 

happen a lot, so it is high priority. Once this is done, you come up with tactics to 

resolve those scenarios. But I  mean a scenario is attached to a quality attribute. So 

really, it's just a way ofprioritising, your key quality attributes.

C ategory D efin ition
Requirements
Separation

Deals with separating the functional and non-functional requirements.

http://www.qsrinternational.corn

http://www.qsrinternational.com
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Requirements
Understanding

This task involves understanding specific, individual requirements, as well 
as the set as a whole.

Domain
Understanding

Deals with the understanding of the application domain, in our case, the 
domain of electronic banking.

Use Case 
M odelling

Use case models illustrate the units of functionality provided by the system.

Constraints This relates to working with requirements that act as constraints on the 
system but not necessarily architectural properties. Examples include 
requirements that deal with coding and low-level design standards, process 
requirements, and software testing requirements.

Context
Modelling

The aim here is to model the system to be built as a ‘black box’, and to show 
how it interacts in the environment in which it is to exist.

Quality
Drivers
Determination

This is the activity of deciding the key architectural quality drivers from the 
set of given requirements.

Modelling
Quality
Requirements

This is complementary to modelling functional requirements, involving, 
amongst other things, a stimulus (e.g., a change request of a certain type), a 
response to this stimulus (e.g., changes made to certain components) and 
response measure (e.g., estimated time for that type of change) (Bass et al., 
2003). The resultant quality scenarios help understand, specify and prioritise 
the desirable system qualities. They are a trigger for architectural design and 
they provide a means to check that the architecture satisfies the intended 
quality attributes.

Quality
Satisfaction

This task involves discerning whether the architectural solution would, or 
did, meet the quality requirements.

Reasoning This activity deals with the thinking, expressing and rationalising about 
architectural decisions made in terms of the functional and quality 
requirements.

Abstraction Some requirements were documented at a higher-level of abstraction; 
whereas, some others were broken down to finer levels. These multi-level 
requirements often were related functionally, which meant that for 
architecting purposes the mapping between multi-level requirements and 
components needed to be controlled through component hierarchies and 
interface descriptions.

Table 3-1. Feedback categories.

This analysis procedure was validated, as discussed in the next section.

2.5.3 Validation of Coding Procedure

A single researcher executed the coding procedure initially. After two teams’ 

worth of feedback was analysed, two researchers in the Social Sciences area (where 

qualitative coding is more commonly used) reviewed the work for accuracy of the 

coding procedure. The feedback from these researchers was used to further train and 

refine the lead coder for doing the work. The feedback included being aware of the
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multiple levels of severity, which eventually led to the three defined levels: mild, 

moderate and severe. With this feedback, the “test-retest” method (Metze, 2001) was 

used to ensure a high level of reliability. This is an inter-rater agreement method 

where two raters are used and wherever there is disagreement between them, that 

“part” of the data is retested by at least one other rater until an agreement is reached.

All the data was analysed and “transformed” into frequency counts. 

Following this step, a second researcher reviewed the analysis to check for flaws in 

the coding process. The reviewer would take a number of coded items in the text and 

state agreement or disagreement on the assigned code. If there were any major 

disagreements, then a second reviewer was brought in to reconcile the disagreement 

and come up with a code for the given text. In the end, all the data was coded with 

agreement. In all, over 60 hours were invested in the coding analysis, and another 

15-20 hours to conduct the validation.

2.6 Threats to Validity

As described in section 2.1, our study is exploratory and therefore we are not 

specifically looking for causal relationships with respect to our study constructs 

(requirements oriented problems). Thus, we do not discuss threats to the “internal” 

validity of our study. Internal validity is the extent to which the findings of a study 

accurately represent a causal relationship between an independent variable(s) and the 

dependent variable (or outcome). We discuss in the following section typical 

qualitative study threats and also discuss the external validity and, in particular, the 

generalisability of our findings to other settings and contexts.

2.6.1 Qualitative Validity
In qualitative studies, a validation technique, called triangulation (Guion, 

2002), is used to ensure validity in the study. Triangulation is a method of 

establishing the accuracy of a study’s findings by comparing three or more types of 

independent points of view on a given aspect of the research process (methodology, 

data, etc.) (Guion, 2002). There are different types of triangulation that can be used 

together to form a strong basis of validity. In this section, we will discuss how we 

used three different types of triangulation to ensure validity in our study. The
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triangulations used were: data triangulation, methodological triangulation, and 

investigator triangulation.

2.6.1.1 Data T riangulation
Data triangulation is the use of different sources of data/information on which 

the study results are based. If there is consistency in the data/information provided 

across the various data sources that are used, then this suggests that the data is valid. 

In our study, as mentioned in section 2.5.1 (Data Collection), our data-set came from 

numerous sources including the feedback sessions, intra-team e-mail 

communications, and various data collection templates that the participants had to 

complete. Although the volume of data provided by each of these sources was 

different (feedback sessions provided the most data, then the templates followed by 

the e-mail communications), the proportion of the types of requirements-oriented 

problems were quite similar in each of the sources.

2.6.1.2 Methodological Triangulation
Methodological triangulation is the use of different methodological

techniques (that could be either quantitative or qualitative) in the study and, if the 

conclusions from each method are consistent, then validity is increased. In our study, 

we used various qualitative methods such as participant observation, semi-structured 

interviews, document analysis, as well as quantitative content analysis. The resultant 

data from these various methods, and its subsequent analysis, showed similar 

conclusions, that architects experienced RO problems when architecting a system 

(see section 3). This consistency establishes methodological validity in our study.

2.6.1.3 Investigator T riangulation
Investigator triangulation is using several investigators/researchers in the

conduct of the study and all its processes. In our study, at every stage in the process 

(e.g., data collection, data analysis, research question validation, etc.), we used 

multiple researchers to actually perform the processes as well as validate them. The 

findings observed from each researcher were compared to ensure that their 

conclusions were similar and therefore we conclude validity was reached.
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2.6.1.4 Ecological Triangulation
Another type of triangulation that exists, but which we could not attain, is

Ecological Triangulation. This is when the study is conducted at many different 

settings and places, and then the findings from each of these settings/places are 

compared to see if they are similar. This type of triangulation can be attained for this 

study through replication of this study in other contexts (e.g., in industry).

Without first replicating this study, it is difficult to immediately generalise the 

results to other contexts. However, this research provides a necessary groundwork for 

further studies of this kind. In the next section we further discuss validity, 

specifically the external validity threats to our study.

2.6.2 External Validity
External validity is the degree to which any findings from the study can be 

“generalised to and across populations of persons, settings, and time.” (Creswell, 

2003).

2.6.2.1 Population validity
Using students as participants in our study is a threat that is directly imposed 

on the generalisability of the findings to industrial contexts. This is a common risk 

in ethnography based studies but recent research in Software Engineering (Host et al., 

2000; Runeson, 2003; Thelin, 2004) have shown that senior-level students perform 

similarly to “novice” software engineers with one-two years industry experience. 

Also, in (Berander, 2004), the use of students is promoted when conducting an 

investigation that has not been studied much before, such as in our case. Studies with 

students can provide early indications of trends, and preliminary evidence prior to 
committing to conducting studies in industry.

2.6.2.2 Ecological validity
This threat refers to the generalisability of the study results across all settings. 

As with population validity, the academic setting can be quite different from an 

industrial context so the threat is present. However, the project was loosely 

structured (as opposed to a strict “laboratory” setting) so that the setting could more 
closely mirror real-world work.
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We omit the temporal validity threat here because there is little reason to 

believe that the results of this study could not be generalised over time given the 

current set of requirements methods, tools, processes, etc. that requirements 

engineers use.

To determine the alignment of our study’s findings with that of industry, we 

conducted an external validation session that is described in the next section.

2.6.2.3 External Validation
Following the analysis of the results, we had an approximately three-hour 

interactive session with two senior practitioners from a large insurance company. The 

purpose of this session was to share our findings with them and to obtain their views 

on the findings in the context of their work environment (external validation). One 

practitioner was the head of software development processes and technologies and 

had a mandate to improve these processes and technologies in the company. She was 

also heading the Quality group. The second was a requirements expert, linking 

business needs to software development. Both the agents were with the same 

insurance company for over fifteen years.
The validation session proceeded by first presenting the company agents with 

our research context and briefing them generally on the research projects underway at 

UWO. We then presented the goals of the empirical study described in this paper, the 

study context and design, and the findings and implications. Following this, we 

discussed, in turn, each finding and its implication and asked the agents whether or 

not the finding had any validity in their work context and whether the implication had 

any relevance to them. We took notes of their views.

Separately, we also interviewed a senior developer/architect (with over 20 

years of experience) from the same insurance company and basically underwent a 

similar validation procedure. Their collective feedback is described in this paper in 

the next section along with the results.
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3 Results, Interpretations and Implications

In this section, we present the various findings, interpret the results and describe their 

implications for the field of RE. Each of the findings is modularised in that the results, interpretations 

and implications are discussed all together for each of the points.

We begin by first examining the overall picture. Requirements-oriented (RO) 

problems constituted 35% of the total problems encountered in conducting the ADD 

architecting process. This number indicates that despite working on the solution side 

of system design, the architects had significant RO difficulty in conducting the tasks 

-  which suggests that it merits further analysis if not action.

Table 3-2 shows the frequency distribution of the varying levels of severity

of problems across the sixteen teams.

Table 3-2. Distribution of RO problems by severity across all teams.
We see that teams 14 and 6 encountered most problems; whereas, teams 2 and

10 encountered fewest problems. The mean and the standard deviation values suggest

that, overall, the RO problems are not isolated incidences. This should therefore raise

some concern in the RE community.
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3.1 RO Problems in Technical Areas

The pie chart in Figure 3-1 shows the identified RO problem areas and their 

magnitudes. The most problematic areas were:

• Quality Satisfaction (22%)

• Requirements understanding (18%)

• Quality drivers determination (15%)

• Abstraction (14%)

• Modelling quality requirements (scenarios) (12%)

A b s t r a c t i o n

14%

Q u a l i t y
Satisfaction

22%

Q u a l i t y  D riv e r s  
Q u a l i t y  1 5 %

S c e n a r io s  12%

R e a s o n i n g  A 
5% M

R e q u i r e m e n t s
S e p e r a t i o n

%

D o m a i n
U n d e r s t a n d i n g

5%
U s e  C a s e s  

1%

C o n s t r a i n t s  

2%

C o n t e x t  W o rk  

6%

Figure 3-1. RO problems areas.

Figure 3-2 shows the severity levels of the problems among the top five problematic 

areas. In four of the five categories (except abstraction), 8-10% of the problems were 

severe. Also, other than the Requirements Understanding and Quality Satisfaction 

categories, there was an almost even split between moderate and mild number of 

problems in the remaining categories. This suggests that these areas were quite 

problematic for the architects; they did not only face mild problems. The
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Requirements Understanding category was dominated by mild problems. The 

detailed severity data supports that Quality Satisfaction is the most problematic 

category with over 50% of its problems being moderate. This rendition of the 

problems seems to prioritise the five key problem areas into three main buckets: 

Quality Satisfaction; Quality Drivers Determination, Quality Modelling and 

Abstraction; and Requirements Understanding. Each of these problematic areas are 

discussed below.

■  M ild  ■  M o d e r a t e  ■  S e v e r e

Reqt's.  Quality Drivers Quality  Quality A bstraction
U n d ers ta n d in g  D e te rm in a t io n  M odelling  Satisfaction (14%)

(18%) (15%) (12%) (22%)

The bars in the chart show the Jive key problematic areas from Figure 3-1. A given 
bar also shows the relative volume o f problem spread across the three severity levels

(rounded to zero decimal places).
Figure 3-2. Severity levels in the key RO problematic areas.

Quality Satisfaction (22%): is the ability to discern whether the architectural solution 

would, or did, meet the quality requirements. This analysis was done where 

appropriate in the ADD process, for example whenever a pattern was formed/selected 

based on the key quality drivers and the tactics used to meet the quality demands. 

Often times when the quality was considered to be unsatisfactory, the architects 

refined and re-prioritised the requirements or the quality drivers with appropriate 

consultation with the stakeholders.
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When examining the data closely, most of the problems seem to lie with 

performance and availability requirements; security and modifiability were the other 

quality attributes that were typically considered to be of the highest priority, but these 

were implemented and reasoned with relative ease. This finding was shared by 

industry experts in the insurance business when we discussed our results with them. 

However, their experience suggested that the performance requirements involving 

hardware equipment are simpler to deal with than those that are purely software or 

conceptual in nature. In our study, we were dealing with the latter type of 

requirements.

This suggests that there is a certain type of property in requirements that 

makes it simpler (or harder) to relate the requirements to an architecture. That the 

way the different types of quality requirements are expressed can lend themselves to 

the different degrees of understanding by the developers. For example, security 

requirements will often express, tangible, concrete functions involved in security 

matters, e.g., access to services in:

R i.i Customer should be provided access to internet banking services based on valid 

bank account number, user defined password, and access permissions set out for the 

bank customer.

which can then be mapped to specific elements in an architecture with relative ease. 

Likewise, modifiability has long established principles of information hiding, 

cohesion and coupling which help in system structuring to localise change; issues 

that are closely tied to the structure of the system and are therefore architectural 

issues.

Conversely, performance requirements do not readily suggest specific, 

implementable elements except perhaps those involving specific physical elements. 

The following example from the requirements document is by no means flawed or 

defective, yet there were many difficulties encountered when using such a 

requirement:



76

R1.18 System must complete a transaction in less than three seconds. This assumes 

a direct connection by an employee. For other services, like Internet banking, this 

time could be different because o f external factors like the user’s connection.

Whereas, for example, in the software testing process the above performance 

requirement can be (more or less) related easily to specific test cases, the same 

requirement does not lend itself readily to any architectural decisions.

The difficulties that arose did not only lie in the initial phases of the 

architecture design, but also at the back-end of the architecting process when reviews 

were performed to check whether the quality requirements were satisfied. This 

indicates that the RO problems can penetrate deeply into non-RE processes and may 

not lend themselves easily to a “quick-fix” solution outside the RE processes.

Previous work described in (Nixon, 1993) touches upon this by proposing a 

means of specifying and implementing performance requirements. The Twin Peaks 

lifecycle model (Nuseibeh, 2001) also suggests that requirements and architectural 

design issues need to be brought closer together to simplify design-fitness 

assessment. Our industrial associates are attempting to deal with such closer 

integration but have not concluded as yet on which approach to pursue. Although 

our quality attribute coverage is not exhaustive, the results do suggest the need for 

further research in the way different quality attributes could be expressed for the 

different types of users.

Modelling quality requirements (12%): is complementary to modelling functional 

requirements, involving, amongst other things, a stimulus and a response to this 

stimulus (Bass et al., 2003). This activity is done at the start of the ADD process and 

the resultant scenarios act as input into the architecting process. These quality 

scenarios are refined (changed or removed) during the architecting process as 

problems arise with tradeoffs being introduced with key quality drivers. The 

resultant quality scenarios help understand, specify and prioritise the desirable 

system qualities. They are a trigger for architectural design and they provide a means 

to check that the architecture satisfies the intended quality attributes. The relatively
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high frequency of difficulties encountered in this area corroborates with the tightly 

related area of Quality Satisfaction described above. It seems that theory is ahead of 

practice in this area at the moment, which should be a motivation to conduct 

empirical studies. For example, our industry associates are struggling with modelling 

quality requirements in several ways: from getting the idea accepted to getting 

quality models institutionalised into their processes, and ensuring that there is 

satisfactory coverage of the quality scenarios. An implication of this could be to 

conduct empirical studies in industrial contexts on the modelling and use of quality 

scenarios to assess their practicality.

Quality Drivers Determination (15%): This is the activity of deciding the key 

architectural quality drivers from the set of given requirements. Because not all 

qualities can be realistically satisfied in a given design, they tend to introduce 

tradeoffs, which implies that prioritisation of the qualities is required. This step is 

carried out prior to entering the ADD process and it provides input to the ADD 

process. However, it is also carried out as architectural patterns are determined 

(while iterating through ADD), and tradeoffs introduced from the patterns suggest 

that quality drivers should be modified.

Individual requirements, however, already have one or more quality drivers 

associated with them as part of their specification. Thus, when it comes to 

architecting, several, related requirements need to be considered together to form a 

set of interacting components. This is when the conflicts and tradeoffs among the 

competing quality drivers arise. But note that requirements-level conflicts and 

tradeoffs, and prioritisation of quality drivers are usually done at RE time. An 

implication of this is that the results of the RE work, including the underlying 

assumptions and the supporting rationale should thus be made available to the 

architects in the hope that they would have a head start in their processes. This can 

be in the context of a “handover” process or something similar to SEI’s Quality 

Attribute Workshop (QAW) (Barbacci et al., 2003). In the case study, there was a 

disconnect between the RE and SA processes in this respect. A tighter integration 

between these two processes is therefore quite appealing (Nuseibeh, 2001). Our
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industrial associates’ experience is that while requirements rationale was generally 

passed along to the architects, it was not adequate; the architects still struggle with 

the lack of domain information (e.g., assumptions), alternative strategies, and 

documents about unresolved issues or to be aware of certain pitfalls.

Abstraction (14%): Yet another area of difficulty experienced was Abstraction in the 

requirements document. As described earlier, this was to do with varying levels of 

abstraction of the different requirements. This activity, of mapping requirements to 

architectural components, is done throughout the ADD process, but perhaps where it 

is most prevalent is the step of ADD that involves allocating functionality (specified 

in the requirements) to the software architecture. With subjective judgment on the 

levels of abstraction of the requirements, it seemed to leave room for mapping 

problems between requirements and component hierarchies in the architectures 

amongst some architects.

An implication of this problem might be the need to ask or verify, during 

requirements engineering or architecting, whether the requirements have been 

documented at a level consistent with the “emerging” architectural components and, 

if not, whether they should be regrouped so that the mapping from requirements to 

architectural components leads to abstraction-consistency in the architecture. Our 
industrial associates also use more or less a similar negotiating and verification 

approach between the architects and the requirements analysts, though they use a 

particular classification technique. For example, they categorise use cases into three 

levels, where lower the level of maturity of the corresponding requirement (i.e., its 

degree of understandability), lower the level number of the use case category, and 

vice versa. The more abstract use cases are left to the architects to detail in the 

design. Ultimately, the allocated budget will dictate where in system design the 

architects will “cut comers” and what exactly they will implement. Our interpretation 

was that the architects’ decisions may not be all open for the requirements analysts to 

validate.
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Requirements Understanding (18%): This task involves understanding specific, 

individual requirements, as well as the set as a whole. This step was mainly done at 

the start of the ADD process. The participants were given the requirements document 

for analysis and understanding, and for asking questions concerning any problems or 

ambiguities they were having with the document.

Upon closer inspection of the data, some of these misunderstandings have 

their roots in ambiguously expressed requirements (almost what one would consider 

requirements defects) -  which can be fixed relatively easily. Yet, there were many 

cases of difficulty with the fact that functional and quality requirements are separated 

in the documentation yet they are integrated into a single architecture. From the 

technological standpoint, perhaps, this calls for innovative ways to specify, organise 

and manage quality and functional requirements in such a way as to help the 

architects probe into the documentation for their purposes.

Our industrial associates made a particular remark that architects and other 

stakeholders use requirements in quite different ways. For example, business users 

use requirements to communicate their needs (the what) and to prepare acceptance 

test cases, normally from mid-level use cases. Software analysts use requirements to 

communicate the business needs to other project resources (who), use them for 

traceability, coverage of testing against requirements (using mid-to-detailed level use 

cases). Architects use the requirements mainly to determine how the business needs 

are going to be met. Project managers make sure that the requirements are met by 

answering their own questions, concerning the schedule (when), resources (who), and 

processes (how). Developers use requirements to provide a detailed solution to all the 

above questions (the what, how, who and when) and, finally, the Quality Assurance 

agents use requirements to determine test strategies, conduct risk assessment, build 

test scenarios, test cases and test plan, and make sure that all answers to the questions 

are aligned to the product goals (the what). What is not clear is whether a standard 

requirements document hinders the understanding and interpretation by these 

different types of stakeholders in their different contexts and whether the 

requirements document needs to be customised to their specific needs.
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Other: Of course, the findings of the study would not be complete without 

identifying what was not found to be problematic. Figure 3-1 shows that the 

architects encountered few RO problems in the following areas: requirements 

separation, domain understanding, use-case modelling, constraints, context 

modelling, requirements coverage, and reasoning. Briefly:

• Requirements separation - A fairly simple task for the architects.

• Domain understanding -  This can be difficult, admittedly, but as mentioned 

earlier, in this study we chose a familiar domain.

• Use case modelling -  Though architects did not have to model use cases, 

some chose to do this where they felt it was an aid and this was not a 

problematic task. In fact, tasks that had to do strictly with functional 

requirements were fairly problem-free.

• Constraints -  The role of certain types of requirements as a constraint seemed 

to be well understood by the architects.

• Context Modelling - The main difficulty here was in separating contextual 

issues from what should be in the SA. Some thought aspects of this 

overlapped, and it could be because of the lack of distinction made in the 

requirements.

• Reasoning - Most architects did relate architectural decisions to the 

requirements. In (Bass et al., 2003), the rationale of the architecture is used to 

explain implications of system-wide decisions on meeting requirements and 

satisfying constraints, as well as the effects on the architecture if new 

requirements are added or existing ones changed.

3.2 RE Knowledge on Architecting

In our study, we had seven teams of architects that had requirements 

engineering experience and nine without. This was ascertained through background 

analysis at the beginning of the project. Not truly knowing beforehand the impact of 

the extent of RE knowledge on software architecting, we had wanted to explore the 

similarities and differences between these two groups in terms of RO problems 
during architecting.
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On average, the RE-experienced teams had five fewer problems than the non

RE teams (15 vs. 20 per team, respectively, with the “Severe” problems being the 

same for both types of teams, and the “Mild” and “Moderate” problems contributing 

to the difference between the two. This overall result, however, is statistically not 

significant (t (14df) = 1.76131, p =0.189479). What this finding means is that both 

types of architects encountered RO problems. This is also evident from the detailed 

analysis shown in Figure 3-3.

Abstraction 

Reasoning 

Quality Satisfaction 

Quality Scenarios 

Quality Drivers 

Context Work

Constraints

Use Cases

Domain
Understanding

Req's Understanding

Requirements
Seperation

0 1 2 3 4 5 6

Figure 3-3. RO problems: RE vs. Non-RE teams.
As mentioned earlier, an implication of the finding from our case study could be that 

in the “handover” process, from requirements engineers to the architects, emphasis 

should be put on ensuring that the architects not only understand the requirements as 

documented but have comprehended them in terms o f architecting. In this matter, our 

industrial associates indicated that it was not clear how the architects and the 

requirements analysts should integrate though senior management desired that the 

architects participate in the user-centred requirements elicitation. This was because 

the architects were generally capable of dealing with technological requirements.

3.3 Summary
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The results of the study show several quality-related areas where architects had 

difficulties. These are: Quality Satisfaction, Quality drivers determination, Modelling 

quality requirements, Abstraction and Requirements understanding. The 

implications of these findings include:

• The need for further research in the way that the expression of certain types of 

quality requirements can be targeted at specific stakeholders in the 

development process.

• The need to conduct empirical studies on the modelling of, and use of, quality 

scenarios in industrial projects.

• A tighter integration of the RE and SA processes, for example, through 

“handover” processes where details of conflicts and tradeoffs analysis, and 

underlying assumptions and rationale from RE process are shared with and 

passed on to the architects.

• The need to ask or verify, during requirements engineering or architecting, 

whether the requirements have been documented at a level consistent with the 

“emerging” architectural components

There were also some areas where architects encountered few RO problems: 

requirements separation, domain understanding, use-case modelling, constraints, 

context modelling, requirements coverage, and reasoning.

4 Related Work

While we could not find another formal study examining RO problems during 

the architecting process, other researchers certainly have touched upon requirements- 

related issues outside RE processes. In (Kuwana and Herbsleb, 1993), for example, 

Kuwana and Herbsleb describe an empirical study that explored the “types of 

questions” various developers asked during requirements and preliminary design 

stages. Their findings show from two different sources that approximately 65% of 

the questions are requirements-oriented and approximately 35% were design- 

oriented. In contrast to this early work, which can be summed up as a “pre
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occupation” study, in our study, about 35% of the problems during architecting were 

requirements-oriented.

In (Nixon, 1993), Nixon describes a model for representing performance at 

requirements time to better facilitate its implementation in subsequent development 

phases. Our findings on the architects’ difficulties with the quality attributes, 

performance and availability (see section 2.4.4.1 -  Quality satisfaction subsection), 

support the need to further conduct this kind of research.

Although not directly investigating RO problems outside RE processes, there 

is a growing body of research aimed at creating new methods and tools that are 

focused on making a smoother transition from requirements to architecture. It is this 

type of work that the findings from studies such as ours could feed into.

One such work is Brandozzi and Perry’s “Preskriptor” process (Brandozzi 

and Perry, 2003) which is centred on an architectural descriptor language and its 

associated process to systematically ensure that requirements are being satisfied. 

Here, our findings in the area of Quality satisfaction could be potentially helpful as it 

highlights the kind of quality satisfaction problems faced by the architects. Egyed et 

al. (Egyed et al., 2001) in their CBSP (Component-Bus-System and Properties) 

method also use an intermediate language for expressing requirements in a form that 

more closely relates to architecture, where requirements are identified and 

categorised based on various architectural and other properties. Our study supports 

this because we identify the need for “handover” processes between requirements 

and architecture (see section 2.4.4.2) where CBSP-like methods can play an 

important role. Liu and Easterbrook (Liu and Easterbrook, 2003) extend the CBSP 

method by introducing a rule-based framework that allows for requirements- 

architecture mappings to be automated where possible. Liu and Mei’s work (Liu and 

Mei, 2003) is also interested in formally mapping requirements to architecture, but in 

their approach it is accomplished through features, where a feature is defined as “a 

higher-level abstraction of a set of relevant detailed software requirements, and is 

perceivable by users (or customers).” Thus, our findings on the architect’s 

difficulties with requirements understanding (see section 2.4.4.1 -  Requirements 
understanding subsection) might very well feed into this type of work.
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Also, there are many other research efforts in the requirements-architecture 

area where our findings could possibly find a suitable home. We describe several 

representative examples. In (In et al., 2001), Hoh In et al. propose an eight-step 

framework that is based on existing RE and SA methods (WinWin and CBAM 

respectively) to help not only developers, but all stakeholders, to elicit, negotiate, and 

evaluate requirements-architecture properties while concurrently executing these 

processes. Nord and Soni’s architecting method (Nord and Soni, 2003) deals with 

the identification and analysis of global factors - those that take into account more 

holistic issues such as the environment in which the system is built, organisation of 

developers, external technological solutions, “flexibility or rigidity o f requirements”, 

and more. In (Silva et al., 2003), Silva et al. describe their requirements-oriented 

Tropos methodology and how it defines a number of architectural patterns for various 

domains that take into account domain and environmental issues. Bass et al.’s ADD 

process (Bass et al., 2003) focuses on iteratively building architectures based on the 

key architectural drivers of the system. Tradeoffs emerge in the patterns between 

various quality attributes, and the architects and other stakeholders must negotiate a 

resolution to these tradeoffs (similar in principle to the Architecture Tradeoff 

Analysis Method (ATAM) [Kazman et al., 2000]) to finalise architectural patterns.

In all such work, there could be plausible hooks where the findings and 

knowledge gained from our study (and other such studies) can be fed back to 

improve the RE-to-SA methods, processes, and tools. We believe it is through such 

theory-empirical dialogues that the community as a whole can make efficient 

progress.

Yet other work is that by Rapanotti et al. (Rapanotti et al., 2004) where the 

concept of problem frames is extended into “architecture frames” which capture 

information about architectural styles and their interaction with the problem space. 

The benefit of this mechanism is that in introducing solution-oriented approaches 

early in development, one can refine problem analysis.

Finally, in (Damian and Chisan, 2006), Damian and Chisan report on a large- 

scale case study on the effectiveness of requirements engineering processes on other 

development processes such as architecting, lower-level design and implementation.
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Also, they link many problems that occur later in development back to problems that 

originated during the requirements phase. However, the sorts of problems they have 

investigated are quite complementary to the ones we have investigated in our study,

e.g., requirements not being properly documented and shared, relying on word-of- 

mouth, incompleteness, inconsistencies, etc.

5 Future Work

One purpose of an exploratory study is to lay a foundation for possible future 

work on the theme of the research so as to build an appropriate body of knowledge 

(Zave, 1997). In a sense, the exploratory study is conducted in a “bottom-up” 

manner, where the research question acts as a guide to collecting a wide range of data 

about the research topic, and the findings are discovered from the exploratory 

analysis of this data. In an effort to lay such a foundation, it is important to identify 

any emergent hypotheses or investigative questions from this research. From such 

hypotheses, it would then be possible to conduct, in a “top-down” manner, 

quantitative studies that focus on specific research issues.

A well-known Software Engineering research paradigm that can be used in a 

top-down manner is GQM (Goal-Question-Metric) (Basili and Rombach, 1988; 

Basili and Weiss, 1984). In such studies, instruments would typically need to be 

developed to measure the dependent variable and any other metrics required. The 

main purpose of conducting a “top-down” study is to statistically test the hypothesis 

to lend quantitative support to the topic being investigated.

From the results of our study and their implications, below we describe the 

following two emergent hypotheses that could be tested in future studies:

Hypothesis 1: I f  the requirements engineers and software architects together model 

quality requirements, then the number o f requirements-oriented problems during the 

architecting process will decrease.

This hypothesis emerges from the finding that the architects had many 

problems dealing with the modelling of quality requirements during the project. In
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our example, the requirements engineers did not do the modelling beforehand, it was 

expected that the architects would model the scenarios based on the key quality 

requirements. Evidently, the architects had many difficulties with this which 

centered around two main issues: (a) identifying the purpose and benefit of 

modelling quality scenarios; and (b) conceptualising how the quality scenarios would 

fit into the various levels of abstraction in the architecture. We believe that if the 

requirements engineers and software architects model the quality requirements 

together, this would not only give the architects a better understanding of the specific 

purpose of each model, but also an increased knowledge of the key quality drivers for 

the system. It is also likely that the resultant quality models would fit better with the 

existing architecture due to knowledge transfer from the architects to the 

requirements engineers.

A related point is that this hypothesis testing could also demonstrate the 

cost/benefit of modelling quality. Are such models worth building? If so, how 

many, or how rigorous, should we strive to build for each system before the time and 

cost outweigh the benefits?

To test this hypothesis, we would need to measure and compare the number 

of requirements-oriented problems that occur in two different groups of architects. 

One of these groups would conduct the quality requirements modelling with the 

requirements engineers; whereas, the other group of architects would model the 

drivers without the involvement of the requirements engineers. In this hypothesis, 

the independent variable would be the quality requirements modelling, and the 

dependent variable is the number of requirements oriented problems.

Hypothesis 2: I f  adequate background information about the requirements (such as, 

rationale, assumptions, priority, etc.) is given to, or shared with, the software 

architects (either through a handover process or formal documentation) then fewer 

requirements-oriented problems will be encountered by the architects.

By intuition, this hypothesis would seem to be true. However, there is a lack 

of empirical knowledge pertaining to this hypothesis and the overall usefulness of
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full background requirements information that should be made available to the 

architects. In many organisations it would be quite costly to fully document their 

requirements, or to add extra processes that involve the requirements engineers and 

the software architects. Testing this hypothesis would bring quantitative data in 

either justifying this extra “work”, or refuting it.

To test this hypothesis, we would measure the number and severity of 

requirements-oriented problems that occurred in the conduct of a software 

architecting project with two groups of architects. One of these groups would not be 

given access to the full background information about the requirements (rationale, 

assumptions, etc.); the other group of architects would be given the full 

documentation. In this hypothesis, the independent variable is the requirements 

background information, and the dependent variable is the number and severity of 

requirements-oriented problems.

Aside from the hypotheses, more in-depth analysis can possibly be carried out in 

such areas as Requirements Understanding (see Figure 3-2). We see here that severe, 

moderate and mild problems constituted 8%, 23% and 68%, respectively, of the total 

requirements understanding problems. However, in this study we did not break these 

down further into, for example, user-oriented and technological requirements. Such 

decomposition could give further insight into specific aids that could be devised for 

the architects.

6 Conclusions

Based on our analysis of the requirements literature, an insignificant amount 

of research has been carried out on requirements outside the requirements 

engineering (RE) process. By conducting empirical studies of requirements in non

RE processes, much feedback can be gathered which can be invaluable for improving 

both requirements and RE technologies. In this paper, we describe a case study of 

requirements-oriented (RO) problems experienced by sixteen teams architecting the 

same banking application. The study found that the key RO problems, of varying 

severity, were:



88

• Quality Satisfaction (22%)

• Quality drivers determination (15%)

• Modelling quality requirements (scenarios) (12%)

• Abstraction (14%)

• Requirements understanding (18%)

In addition, the study found that about a third of all problems were RO 

problems, which should thus be a source of concern to the RE community in that 

there may be ways to reduce RO problems in non-RE processes. However, the study 

found relatively few RO problems in the areas: requirements separation, domain 

understanding, use-case modelling, constraints, context modelling, requirements 

coverage, and reasoning. The paper also describes some implications of the findings 

for the RE field, particularly in the areas of: expression of quality requirements for 

different stakeholders; empirical studies on quality scenarios; tighter integration of 

RE and SA processes; and requirements to architecture mapping. There was much 

concurrence of our findings with expert opinion from a large insurance company.

Since this was only one case study in a particular context, and despite our 

validation through industrial associates, we caution the liberal use of these results in 

other contexts. It would be ideal to first conduct more such studies. However, such a 

case study in industry is non-trivial. It would involve selection of an appropriate 

architecting project, which would clearly need a “buy-in” from the project staff. 

Also, appropriate project deliberations (e.g., discussion of RO problem areas) would 

need to be gathered, through project meeting logs or data gathering templates. 

Practitioners can gather their own data (as in Action Research [Mason, 1996]) or this 

could involve a researcher as observer (as in Ethnographic studies [Hancock, 2002]). 

If the study captures data from a specific moment in the project then this would be a 

“case” study; if it captures data over a long period of time then this would be a 

“longitudinal” study. Due to continuous development cycles in industry, the latter 

types of studies are plausible or even desirable for quality findings. The aspect of 

separating RE vs. non-RE project-staff in industrial projects, however, could be
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extremely difficult because of their accumulated experience over long periods of 

time.

Despite the described limitations, it does not diminish the importance of our 

results; in fact, all the more, it lays a foundation for future analogous studies so that, 

one day, meta-analysis can be carried out over accumulated results. In this respect, a 

relatively new area of research that unfolds with this case study is that of conducting 

requirements studies in all sorts of non-RE processes, not only the architecting 

process considered in our study, so that much needed feedback can be passed on to 

the RE technologists.
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Chapter 4

Characteristics of New Requirements in 
Presence/Absence of Existing Systems 
Architecture22

1 Introduction

While much research attention has been paid to transitioning from requirements 

to system architectures (SA)23 (STRAW, 2001 and 2003), relatively little attention 

has been paid to how new requirements are affected by an existing SA. Indeed, it was 

over a decade ago, in a panel session (Shekeran, 1994), when several concerns and 

thoughts expressed the need to consider SA during requirements engineering (RE), 

for example: “We still do not have a clear understanding of the role of software 

architecture in requirements engineering” (Shekeran, 1994); “Software architecture 

must be considered during requirements engineering to ensure that requirements are 

valid, complete, consistent, feasible, etc.” (Nuseibeh and Easterbrook, 2000). Also, 

SWEBOK (IEEE SWEBOK, 2004) -  the software engineering body of knowledge -  

for example, does not describe any practices to deal with this issue.

Thus, to explore this matter further, given its thin baseline, we first conducted a 

survey (Miller et al., 2008) of 17 experienced RE and SA researchers and 

practitioners from North America and Europe. We found that the average rating of 

the importance of considering existing architecture when engineering new 

requirements was 4.5 (on a 5-point Likert-scale) -  implying that the respondents 

strongly agreed with this concept. Despite this, several respondents noted in the 

qualitative part of the survey that, in actual practice, many organizations neglect this

22 A version of this chapter has been published in (Ferrari et al., 2010). The final publication is 
available at www.springerlink.com.
23 For the rest of the paper, the acronym SA refers to System (or Software) Architecture as a software 
artefact.

http://www.springerlink.com


94

consideration, or perform analysis only on existing high-level features (i.e., the 

requirements) of the current system, and not on the system’s architecture.

Although there is curiosity in the RE community about the impact of SA on RE, 

and that there is a dichotomy between theory and practice, to our knowledge no 

scientific studies have ever been conducted to investigate this issue. Thus, we still do 

not truly know the “characteristics” of the newly elicited requirements in terms of 

how they are affected by the presence or absence of a SA in the RE process.

For example, firstly, a general question is: to what extent are new requirements 

affected by the existing SA? Also, the extent to which they are affected, what are the 

characteristics of this effect? For instance, to what degree are the requirements “user

needs” focused, “technological-needs” focused, or “architecturally focused”? Etc. 

There are a number of such questions to which the RE research and practice 

community has no specific answers.

Having a grounded body of knowledge on these issues could benefit RE practice 

in a number of ways. For example, it could help in determining:

• when in the RE process one should examine the SA to ensure fitness of the new 

requirements;

• when in a product’s lifecycle it is advantageous not to be influenced by the 

existing SA;

• the extent to which the system’s requirements are misaligned with the business 

goals; and

• the requirements characteristics that should be tweaked in order to bring them 
back in line with the business goals.

Ultimately, such investigations are aimed at increasing the general quality and 

relevance of the system, improving RE processes, and at improving business 

efficiency and profitability.

Motivated by these issues, we conducted an exploratory, controlled, study to 

characterise the differences in the newly elicited requirements in the presence or 

absence of the SA. The study involved two types of groups. One type of group (the 

SA-group) received the SA of an existing (banking) system; whereas, the second type 

of group (non-SA group) did not receive the SA of this system. Both types of groups
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received the same initial requirements for this system and they were both asked to 

enhance the system’s requirements given the same problem description (or project 

goals).

This paper describes this empirical study and its findings in quantitative terms. 

For example, specific biases of various requirements characteristics in the 

presence/absence of the existing SA are given and interpreted. These findings 

constitute new knowledge and are the chief contribution of the paper. The paper also 

describes the implications of the findings for both RE practice (e.g., RE process 

engineering, post-requirements analysis, traceability management) and RE research 

(e.g., seven emergent hypotheses, RE tools).

This paper is a significantly enhanced version of (Miller et al., 2009). The 

additions to this paper include:

• The investigation of a new research question regarding specific aspects of the 

SA that affected the requirements.

• A significantly expanded related work section.

• More information given on the data analysis conducted.

• Extended implication section including new hypotheses for further empirical 

studies.

• Elaboration of empirical study procedures employed.

• Appendix describing data collection instrument used.

The rest of the paper is structured as follows: Section 2 describes related work; 

Section 3 describes the empirical study; Section 4 analyses the data, presents the 

results and makes interpretations. Section 5 discusses the implications of the 

findings; and Section 6 concludes the paper.

2 Related Work

In this section on related work, we focus on two key aspects: (i) observations, 

commentary and empirical work on the role of SA in RE, and (ii) recent 

technological-based research on requirements evolution. Subsection 2.3 concludes 

with a reflection on the current state of research described in subsections 2.1 and 2.2. 

Other aspects that are related (for example, technology to transition from RE to SA,
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or empirical studies focused on requirements-oriented issues while architecting) are 

omitted here because they are not as relevant as the two aspects identified above. 

The reader can refer to (Ferrari and Madhavji, 2008) for a thorough discussion of 

related works focused on the transition from RE to SA.

2.1 Role of SA in RE

As early as 1994, a panel session at a RE conference was held to deliberate on 

the role of SA in RE (Shekaran, 1994). This marks perhaps the first attempt by the 

RE research community to recognise this relationship24. The consensus in this panel 

session was that this relationship is an important one but was little understood.

In this same session, Jackson (Jackson, 1994) gave four key reasons as to why RE 

and architecting are best treated as interweaving processes. First, RE can be “very 

tricky” in that, often, it can be simpler to start by building the system right away, 

even if only in outline. Second, evaluating possible system designs early can help 

gain an important understanding of which requirements might not be feasible, saving 

time and money. Third, requirements can sometimes be reasonably embedded in 

system design, eliminating the need for formal specification during RE. Finally, 

there is evidence that successful developers are those who are able to move relatively 

more freely between stages (i.e., RE, architecting, design, testing, etc.) within the 

development cycle.

Shortly thereafter, in 1995 (El Emam and Madhavji, 1995), El-Emam and 

Madhavji found four factors for RE success in information systems that deal with 

architecture or the system (the first being relevant for this study): the adequacy of 

diagnosis of the existing system (which includes SA); the fit between the architecture 

and the way users work; the fit between the recommended requirements solution and 

the strategic orientation o f the organization; and the fit between the recommended 

solution and the technical orientation o f the organization.

Subsequently, hints can be found in the pedagogical literature (Kotonya and 

Sommerville, 1998) promoting the need to consider the existing system in the RE

24 Related workshops, such as STRAW ’01 and ’03 (STRAW, 2001 and 2003) focused mainly on 
transitioning from RE to SA and not on the role of SA in RE.
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process. More recently, in 2000, Nuseibeh and Easterbrook (Nuseibeh and 

Easterbrook, 2000) stated that we needed a “better understanding of the impact of 

software architectural choices on the prioritization and evolution of requirements.” In 

(Nuseibeh, 2001), Nuseibeh describes the “twin-peaks” model, which captures the 

iterative relationship between RE and architecting. An important aspect of this 

model is that the architecting process can and should feed back into the RE process 

(as well as vice versa).

In a recent study (Miller et al., 2008), Miller, Ferrari and Madhavji investigated 

the different types of effects a SA has on requirements decisions. They identify and 

quantify four principal ways in which a previous architecture can affect evolving 

requirements work, i.e., as an enabler (30%), as a constraint (25%), as an influence 

(6%) or the null case (39%). This means that approximately 60% of the decisions 

were affected by the architecture, highlighting the impact an existing architecture has 

on RE.

While these are some of the key works highlighting the role of SA in RE, the body 

of knowledge on this topic is fairly thin overall and has basically remained static.

2.2 Requirements Evolution

An area of research that is related to our work is requirements evolution, in 

particular from the viewpoint of methods, notations, and tools development. In the 

following subsection we highlight recent research in this area from prominent RE 

literature sources. Because our study is focused on both the absence and presence of 

SA in RE, we include research that does not, explicitly or implicitly, consider the 

existing SA in requirements evolution.

In (Vilella and Doer, 2008), the authors present a method for requirements 

engineers and project managers to perform software evolution in the domain of 

embedded systems. The method’s primary purpose is to aid in systematic reasoning 

on the identification of volatile requirements, and planning changes to the 

architecture. The method is composed of four phases. The first phase is preparation 

for volatility analysis and is meant to establish the timeframe restricting the current 

volatility analysis and identifying the types of components that will be involved in



98

the changes. The second phase is environmental change anticipation, where the 

primary tasks are to identify and characterize changes that may occur in the system’s 

environment within the identified timeframe. Specifically, the analyst needs to 

identify actors, roles, external events and environmental facts that could cause 

changes. The third phase is the actual change impact analysis, which is composed of 

identifying the adaptation needs, such as identifying features to be affected and 

estimating their business impact. The result of this phase is a prioritized list of 

adaption needs that should be included for implementation. The final phase is the 

product evolution planning, where the analysts establish when and how the 

previously high priority adaptation needs are to be introduced into the system. The 

result of the method is a plan for product evolution based on the high-priority 

adaptation needs.

In (Etien and Salinesi, RE 2005), the authors present a framework that defines 

challenges for RE caused by co-evolution, and also show which and how existing 

requirements technologies address the identified challenges. Their framework is 

structured around five dimensions which each correspond to a RE-related issue 

regarding co-evolution. These dimensions were determined from their experience in 

three industrial evolution projects. To summarize, the five dimensions are: (1) 

understanding the consistency relationship between RE-related artefacts and other 

co-evolving artefacts from outside RE (e.g., design, testing, code, etc.), (2), 

formalizing notations to express evolution requirements, (3), elicitation of evolution 

requirements, (4), propagating identified changes to processes outside RE, and, (5), 

verifying the relationships between the proposed changed system entities. The 

authors conclude that no particular existing technology addresses all of the above 

dimensions of co-evolution, and therefore that a research gap exists in this area.

In (John et al., RE 2002), the authors propose the use of a domain analysis 

approach to identify and document current and future requirements in an application 

domain. The author’s primary motivation for this approach is that defining a long

term strategy for software product evolution is an extremely difficult task because the 

requirements and future trends must be anticipated in advance. They argue that a 

domain analysis technique can be used for this anticipation of future requirements,
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while recognizing the problem that ongoing domain analysis for evolutionary 

purposes can be costly (in terms of time and cost). Thus, they propose to use an 

instantiation of the PuLSE-CDA (Customized domain analysis) method (Bayer et al., 

2000), which aims to overcome this problem by systematically coordinating domain 

analysis effort with necessary product evolution activities. The primary goal to 

facilitate a cost-effective approach is to only model a sub-domain where only the key 

future changes are modeled, in order to reduce excess modeling of irrelevant 

information. In short, the main steps are: (1) to analyze existing change requests 

from maintenance and marketing, in addition to analyzing existing application 

domain knowledge, which provides an initial list of sub-domain candidates, (2), map 

the identified candidates to logical software components; (3), Model and refine each 

logical component’s relevant data attributes and processes in which the components 

are involved. The output of this method is a map of inter-related domain models (and 

logical components) that are a subset of the overall application domain. Each 

component can then be implemented and integrated with the existing system.

In (Breitman and Sampaoi, 2001), the authors investigate requirements 

evolution from the perspective of scenarios. Specifically, they derive a scenario 

evolution taxonomy from the investigation of twelve case studies spanning over 200 

scenarios; each of these studies comprised the analysis of a software project during 

its evolutionary phase. The authors state, based on the findings from the case studies, 

that the main challenges in scenario evolution are in understanding and managing the 

relationships between scenarios; an individual scenario can often be related to many 

other scenarios and in the projects examined in the case study, there was minimal 

technological support for this problem. The resultant scenario evolution taxonomy 

then describes the classification and formal heuristics for semi-automated detection 

of scenario relationships, as well as an initial suggestion for a formal notation that 

can be used for scenario relationship representations.

In (Ferreira et al., 2009), the authors propose a simulation model to help 

project managers and requirements analysts understand how requirements volatility 

impacts a given software development project. The model is built on results from an 

empirical survey administered to software project managers and developers, where
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more than 50 parameters (such as number of requirements change requests per 

release, requirements defects detection rate during design, percentage of perceived 

job size increase due to requirements change) were derived from the survey data. 

Based on this theoretical model, the authors designed a software simulator that can be 

used by developers to input project parameters that are related to requirements 

volatility and determine the potential impact for a given project of changing 

requirements. The simulator was used on two industrial projects to explore the 

relationship between requirements volatility and its impact on software projects. The 

results of these case studies show that there were significant simulated cost, schedule 

and quality impacts due to requirements volatility.

In (Rolland et al., 2004), the authors tackle the problem of requirements 

evolution with a formal requirements specification modeling approach and tool. 

Currently, this approach works on specifications modeled using i* (Yu, 1997). The 

aim of the approach is the precise definition of the change requirements, and the 

approach does this by facilitating the modeling of specific gaps between the current 

requirements specification and the target specification. The approach uses a generic 

gap typology where each gap is associated to a predefined type of requirements 

change (such as add actor, remove feature, etc.), and these are then associated with 

gap operators which perform the actual transformations in the i* model. The 

approach and tool was validated, and the authors estimate that approximately 50% 

time was saved eliciting change requirements using this approach vs. a manual 
approach.

In (Burgess et al., REJ 2001), the author’s raise the problem that in large 

software projects, the number of changes and enhancements requested for inclusion 

in the next release often exceeds the resources available to implement those changes. 

Therefore, technological support is needed to incorporate the multitude of factors 

(such as approval for finance for the change, development time, human expertise 

required, etc.) that influence these possible changes into an improved set of 

information for the purpose of facilitating better decision-making. The authors 

propose the use of influence diagrams, which are an extension to Bayesian nets 

(Castillo et al., 1997), to formalize the combining of the different change factors to
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address the requirements change problem. Influence diagrams, as argued by the 

authors, are suitable because they model both decision-making trees along with 

random chance events. The combination of these two dimensions adequately covers 

both fixed and volatile project factors that can influence decisions to implement 

certain requirements changes.

2.3 Reflection on Research

Having discussed the current knowledge pertaining to the role of an SA in RE 

and requirements evolution, in this subsection, we reflect on the current state of 

research in these areas. As discussed In Section 2.1, as early as 1994, researchers 

discussed the importance of the role of an SA in RE (Shekeran, 1994). A few other 

works have commented on this issue since then (El Emam and Madhavji, 1995; 

Nuseibeh and Easterbrook, 2000; Miller et al., 2008). However, beyond these works 

there has been, to our knowledge, little research conducted in the area of the role of 

an SA in RE. Despite the sparse research in this specific issue, there is a wide range 

of technological-based research done in the area of requirements evolution, as 

described in Section 2.2, which are meant to improve the RE process in the context 

of an evolving system. However, the work is often focused solely on the RE process; 

downstream activities such as architecting, coding, testing, etc. are treated as black

box processes and there is thus a lack of explicit recognition of the interaction of RE 

and SA as highlighted as being important, for example, in Nuseibeh’s Twin Peaks 

Model (Nuseibeh, 2001). Furthermore, there is a lack of empirical evidence 

regarding the different requirements characteristics, and how these characteristics are 

impacted by the presence or absence of an SA during systems evolution. The 

empirical study presented in this paper is meant to present detailed quantitative 

findings on the impact of an SA on requirements characteristics, which can then be 

fed back into technological research as described in Section 2.2. .

Though the importance of conducting empirical studies in software engineering 

(SE) has been recognised (Tichy et al., 1995; Wieringa and Heerkens, 2006), Shaw’s 

analysis (Shaw, 2003) of research papers submitted at a prominent 2002 SE 

conference suggests that only 12% were submitted in the category of “Design,



102

evaluation, or analysis of a particular instance" and 0% in the category of 

“Feasibility study or exploration". In (Ferrari and Madhavji, 2008), we presented our 

own analysis of published papers. In the fields of RE and SA, since the year 2000, 

only approximately 15% of the published papers were in the above-mentioned 

categories, suggesting that studies such as the work described in this paper are 

currently rather rare. Our work is meant to help in filling this research gap.

3 The Study

We now describe the core parts of the study. Section 3.1 describes the research 

paradigm used, GQM (Basili and Weiss, 1984), to state the goal, questions and 

metrics for this study. Section 3.2 describes the study design. Section 3.3 describes 

the study hypothesis. Section 3.4 describes the participants. Section 3.5 describes the 

RE project. Section 3.6 describes the data collection procedures. Finally, Section 3.7 

describes threats to the study.

3.1 Goal, Research Questions and Metrics

This study followed the Goal-Question-Metric (GQM) paradigm, which helps in 

ensuring that measurements taken in the study are aimed at answering specific 

research questions which, in turn, help in achieving the overall goal of the study 
(Basili and Weiss, 1984).

The overall goal of this investigation was:

To better understand the characteristics o f requirements elicited in the absence 
or presence o f a SA.

In order to obtain a quantitative insight into the elicited requirements, we 

decomposed the notion of a requirement into specific, measurable, characteristics. 

Table 4-1 defines these characteristics, which are rooted in three sources: those 

which are prominent in the literature (such as requirement type); those which would 

intuitively be of interest to industry (such as cost); and those which relate to an 

architecture (such as architectural relevance (Bass et al., 2003). Five researchers
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subsequently validated these characteristics, and their associated metrics, as an 

acceptable set of variables for the study.

(1) Focus on Cost - T he degree to  w hich the cost factor, concerning the system ’s content, is
p rom inent in  the requirem ent.

(2) Focus on Time -  T he degree to  w hich the developm ent tim e factor, concerning the
system ’s content, is p rom inent in  the requirem ent.

(3) Focus on Quality - T he degree to  w hich the quality  factor, concerning the system ’s
conten t, is prom inent in  the requirem ent.

Note: a requirem ent can be prom inen t in  one o r  m ore o f  the above three characteristics.
(4) Focus on user's needs -The degree to  w hich the requirem ent is focused on the needs o f

the  end-users. E nd-user issues include: d ifferent w ays o f  accessing the system , end 
u se r features provided, usab ility  requirem ents, etc.

(5) Focus on client’s needs - T he degree to  w hich  the requirem ent is focused on the needs o f
the client (i.e., the needs o f  the organisation  itself.) N ote the difference from  (4) 
above.

(6) Focus on technological needs - T he degree to w hich the requirem ent is focused on
techno log ica l needs. T echnological issues include: the “back  end” server, choice o f  
a lgorithm s and  data  types, in terface specifications, com m unication  protocols, data 
access m echanism s, etc. that are im portan t in  term s o f  ensuring  that the system  will 
be  techn ically  sound.

(7) Testability - T he degree to  w hich  it can  be  show n that a requirem ent can be tested
against.

(8) Implementability - T he level o f  effort required  to  im plem ent a requirem ent.
(9) Importance - T he degree to  w hich  the success o f  the system  depends on  the

im plem entation  o f  a requirem ent.
(10) Architectural relevance - T he degree to w hich the requirem ent w ill have an im pact 

on  the  arch itecture , e.g ., architectural-driver. N ote: not all “im portan t” requirem ents 
are arch itectura lly  relevant, e.g., a com m on bu t basic requirem ent.

Scale for characteristics (1-10) above: These were measured using a 7-point Likert scale. 
The scale was the same for all characteristics and is defined as follows: 7 -  Very high, 6 -  
High, 5 -  Moderately high, 4 -  Neither high nor low, 3 -  Moderately low, 2 -  Low, 1 -  Very 
low._______________________________________________________________________________
(11) Level of abstraction - The breadth o f impact of a requirement. Does the requirement 

affect a module, a component, an entire sub-system, etc.

Scale: This was measured with a 7-point ordinal scale; this scale was used because there is 
an ordering in the levels o f abstraction (high to low for example), but this ordering does not 
denote specific, discrete values, with equal intervals between them (Pett, 1997).____________
(12) Type of requirement - This categorizes the requirement into functional, non

functional, and business quality, where there can be more than one category for non
functional and business qualities. Examples o f categories in this scale include 
functional, standards, legal, performance, and safety.

Table 4-1. Requirement characteristics

Linking the overall goal and the characteristics described in Table 4-1 is the 

following question aimed at achieving the goal:
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Ql: Which requirement characteristics were affected, and to what extent, by the 

presence or absence o f the SA?

Our objective now is to determine whether or not the SA (an independent 

variable) has an impact on the requirements characteristics (the dependent variables). 

We can accomplish this by comparing the requirements sets elicited by two different 

types of study groups, one group which is comprised of teams that have access to the 

SA while doing RE (the SA-groups), and the other set of teams do not have access to 

the SA (the non-SA-groups). To complement and probe deeper into the findings 

from Ql, we raise the following research question.

Q2: Which specific aspects o f the SA affected the requirements?

In this question, we are examining the specific aspects of the architecture and how 

they affected the requirements characteristics that exhibited significant differences 

(i.e., findings from Ql). To investigate this question the requirements analysts 

teams, during the RE process, had to explicitly state when an architectural aspect 

affected their RE work. We then take the intersection between the identified affected 

architectural aspects and the requirements characteristics with significant differences 

from Ql.

3.2 Hypothesis

Because this study was undertaken without a significant underlying theory (on 

how requirements characteristics are affected by systems architectures) on which to 

build a priori hypotheses, this study is best described as an exploratory study (Rao, 

1997). Contrary to a dogmatic viewpoint, hypothesis testing can be done in 

exploratory studies but is not meant to confirm existing scientific theory as in a 

purely experimental design. Rather, the results of the hypothesis testing here provide 

initial indications on which future experimental research can be conducted (Rao, 

1997). As a result, the only hypotheses that will be discussed in this paper are the
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“null hypotheses” which are necessary for null hypothesis statistical testing (NHST). 

The null hypothesis for a given metric M, where M is a requirement characteristic 

described in Table 4-1, can be generally stated as:

Ho', the presence o f a SA has no impact on M.

If NHST leads to the rejection of this hypothesis for any metric M then we can say 

that “characteristic M is affected by the SA”.

3.3 Study Design

This is a post-test only control group design experiment (Johnson and 

Christensan, 2003). This type of design involves administering a treatment (i.e., SA 

documentation) to one type of groups (in this case, the SA-groups), with observations 

taken only at the end following the treatment. These observations are contrasted 

against the non-SA-groups that did not receive the treatment. It is from this contrast 

that the results of this study are drawn. A visual depiction of this design is given 

below; where the O represents observation, X represents treatment, and R represents 

random assignment. This study design was used because it falls in the category of 

strong designs (Johnson and Christensan, 2003), and alleviates many internal validity 

threats in a multiple group design.

SA-Groups R —— X ------ -----o

Non-SA Groups R — ------o

The specific type of experimental design that our study falls under is a nested- 

ANOVA design (Rao, 1997). This design is used when there is one measurement 

variable (i.e., requirement characteristic), and two or more nominal variables (i.e., 

categorical variables). In our study, there are two nominal variables: (1), the type of 

study group (SA-Groups vs. non-SA groups) and (2), the different requirements 

teams. These nominal variables are nested, meaning that each requirements team
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belongs to only one category of the higher-level nominal variable (i.e., the SA- 

Groups vs. non-SA groups). We used this design because although our unit o f 

observation is the requirements teams, the unit o f analysis was the individual 

requirements since we were interested in the differences in the requirements 

characteristics, and not differences in teams. The subsequent analysis (see Section

4.1) supports this study design and reconciles the difference between the unit o f 

analysis and unit o f observation.

3.4 Participants

We used convenience sampling (Johnson and Christensan, 2003) to involve 25 

final-year RE students in the study. In order to conduct the study involving students, 

we received consent from the ethics board at The University of Western Ontario. 

The threat of using students as participants is discussed in the external threats to 

validity section (Section 3.6.2). The participants were randomly assigned to groups 

of two with one group of 3, making a total of 12 groups. The groups were then 

randomly divided into two types: the so-called "architecture (SA) groups" and "non

architecture (non-SA) groups".

To ensure that the participants had sufficient knowledge to conduct the project, 

they were given theory knowledge in RE and two pre-requisite requirements projects 

prior to the project to learn and familiarize themselves with RE practices such as 

elicitation, analysis, negotiation, validation, and prioritisation. The assessment of the 

pre-requisite projects and RE knowledge indicated a satisfactory level of attainment 

to conduct the investigative project. Subsequent to this, SA learning sessions were 

given to the SA groups, so that they could perform architectural analysis required for 

the project. These sessions focused on understanding architectural documentation 

and the ADD/ATAM methods for architecture design and assessment (Bass et al., 

2003).

3.5 The RE Project

Each of the 12 groups was given the same set of requirements elicitation tasks for 
upgrading a software infrastructure for a fictitious bank:
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1. To add support for Interac service to the existing system.

2. To create a new wireless banking application which would allow customers to 

carry out basic banking transactions through their cell phones or PDAs.

3. To reduce the operational cost of the telephone banking system.

4. To increase modifiability in the web banking system.

These tasks were chosen since they constituted a sizeable and complex RE 

project that would still be feasible within the constraints of a University course. We 

held numerous peer-review sessions with a total of six experts to validate these four 

tasks with respect to their appropriateness in giving a project that met both 

pedagogical and study needs.

Both types of groups, SA and non-SA, were given the requirements for the 

existing system. These pre-existing requirements were baselined from a previous 

project (Ferrari and Madhavji, 2008). The requirements elicitation process and 

techniques followed are described in (Kotonya and Sommerville, 1998).

Also baselined was the pre-existing architectural document (developed using the 

ADD method (Bass et al., 2003)) from the same previous project (Ferrari and 

Madhavji, 2008), given to each of the SA-groups only. This document included 

architectural information such as: numerous different tactics, quality attribute 

scenarios, decomposition views, user/layer views, class views, component and 

connector views, deployment views, work assignment views, sequence diagrams and 

state charts. The RE project, including logging of the elicited requirements, took two 

months to complete.

3.6 Data Collection

The data collected for analysis were the ratings for the requirements- 

characteristics (defined in Table 4-1) for the elicited requirements (to answer Q1 -  

see Section 3.1), and the list of architectural aspects that affected the SA-group 

during the RE process (to answer Q2 -  see Section 3.1). In the following two 

subsections, we discuss these two disparate sources of data.
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3.6.1 Requirement Characteristics Ratings
The primary source of data is the requirements ratings for the requirements-

characteristics (defined in Table 4-1), where an instrument was designed for this 

purpose (see Appendix B). Three external researchers rated the requirements using 

this instrument. This process involved examining the title, description and rationale 

for each requirement and giving a rating on the appropriate scale of each and every 

characteristic.

Since the data was subjective and different raters could measure constructs in 

different ways, an inter-rater agreement method from (Fusaro et al., 1997) was used 

to establish rating reliability. Basically, the ratings for each characteristic for each 

requirement were assigned to two researchers. The two researchers independently 

performed the ratings. Following this, if necessary, the researchers harmonized their 

ratings to finalize a rating. In particular, if there was a difference of more than one in 

the ratings, a third researcher also performed the rating to reconcile the difference. 

All ratings were conducted blindly, i.e., without knowledge of which group authored 

which requirements. The researchers used for the rating procedure all had 3-10 

years experience in RE, and the minimum academic level was a PhD candidate. 

Prior to the ratings collected for this study, a pilot rating session was conducted on a 

subset of the requirements with all researchers involved, the purpose of which was to 

train the raters on the rating procedure. Table 4-2 shows the ratings of two example 

requirements, R1 and R2.

R1: When performing an Interac transaction, i f  the primary server is busy it will send 

a 'Server busy' response signal followed by a secondary sender IP. The client 

machine should then have to re-establish connection with the secondary server and 

perform a second request. This results in less demand on the primary server.

R2: The customer shall be able to add or remove companies from their profile to 

which bills are being paid using their mobile application (cell-phones, PDA’s, etc.).
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4
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4
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1.5

1,1,7 7, 7,7 7, 6, 
6.5

7, 7, 7 5, 4, 
4.5

2, 3, 
2.5

R2 4, 3, 3.5 4, 3, 
3.5
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7, 6, 
6.5

1,2,1.5 1,1,7 7, 7, 7 4, 5, 
4.5

5, 4, 
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The first two numbers in each column represent ratings given to the requirement for the 
given characteristic by two independent raters (see Table 4-1 for explanation of scale). The 
third value in bold italic is the final, agreed upon value. One example interpretation o f  this 
instance of ratings is that Rl is high on technological-focus (7 out of 7) but low on user
focus (1.5 out of 7) and R2 is high on user-focus (6.5 out of 7) but low on technological focus 
(1 out of 7). Likewise, interpretations can be made about other characteristics and their 
ratings. Because the scale for the characteristics Abstraction and Requirement Type are 
different, we omit them in the example for simplicity.

Table 4-2. Sample requirements ratings.

3.6.2 Architectural Aspects
We used a tool from (Miller et al., 2008) that had the dual purpose of supporting 

the subjects’ project and of recording relevant data for this study. For example, the 

tool maintained a pervasive list of both the original requirements (as well as their 

evolution) and new requirements introduced by each team. Also, the tool recorded 

data from the SA-groups (only) about the specific parts of the architecture that had an 

impact on the requirements. To help ensure the quality of the data gathered in this 

tool, regular meetings with each project team were held to clear up issues and to 

monitor the progress.

3.7 Threats to Validity

We classify threats into those internal and those external to the project, as well as 

construct and conclusion validity. We focus here only on those considered relevant 

to our study. Description of other types of threats can be found in (Johnson and 

Christensan, 2003).
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3.7.1 Internal Validity
Internal validity deals with whether we can infer that a relationship between two 

variables is causal, and not due to any confounding factors (Johnson and Christensan, 

2003). There are numerous specific types of internal validity threats (Johnson and 

Christensan, 2003), we discuss here only the threats that applied to our study and the 

procedures we employed to contain the threat.

Differential selection: This is when_possible characteristics of the subjects may, by 

chance, differ between the two types of groups and possibly affect the quality of the 

data. In our study, such a characteristic is the participants’ SE educational and 

industrial-experience backgrounds; participants with differing SE background could 

possibly perform differently in the project. To identify any such possible outlier 

participants, prior to the study, each participant was interviewed about their 

background experience so that any subjects with prior SE industry experience could 

be identified. None had any such experience. This, coupled with the knowledge that 

every participant was a full-time computer science student, and had taken similar 

software engineering courses for specialization, ensures that they had undergone 

similar SE training. Furthermore, weekly review sessions were used to identify any 

obvious outliers during the project, which we did not find.

Differential mortality: This occurs when a physical or mental change occurs to 

participants during study that is not “equal” between the two types of study groups. 

This threat existed in our study because of the duration of the participants’ project 

(see Section 3.5), which lasted approximately two months. To contain this threat, the 

researchers reviewed and assessed weekly submissions of work and collected data. 

Additionally, weekly motivation meetings were held to further monitor the 

participants’ progress. At the conclusion of the study, all initial participants 

remained in the study and no effects of the differential mortality threat were 
observed.

Researcher bias: Occurs when the researcher, knowingly or unknowingly, influences 

the outcome of the study. This threat exists in our study because of the subjective 

nature of the requirements characteristics ratings (see Section 3.6.1). To mitigate this 

threat, multiple researchers and domain experts, and an “open” process (with no
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direct investment in study), were used in the study processes. These are recognized 

techniques for dealing with researcher bias (Johnson and Christensan, 2003).

3.7.2 External Validity
External validity refers to the degree to which the results of a study can be 

generalized across a population, time or place (Johnson and Christensan, 2003). 

Population validity can exist when generalizing to industry; the reason for using 

students in our study was the availability sampling technique. It would have been 

extremely difficult (if not impossible) to conduct this first-time controlled-study in 

industry. The use of students should not diminish the results of this study, as 

important results have been found in other SE studies when student-based studies 

have been conducted (e.g., in requirements triage (Berander, 2004); code inspection 

(Carver et al., 2003); and lead-time impact assessment (Host et al., 2000). We do 

acknowledge the threat in generalizing to experienced requirements engineers; 

however, there is no evidence suggesting that the results could not be generalizable 

to, at the very least, novice requirements engineers in industry (Host et al., 2000). 

Regardless, exploratory studies such as this are an important first step towards 

determining initial results on a particular research issue that can provide the 

groundwork for future studies in wider contexts.

3.7.3 Construct Validity
Construct validity refers to the extent to which a measurement corresponds to 

theoretical concepts (i.e., constructs) concerning the phenomenon under study 

(Johnson and Christensan, 2003). In this study, the constructs were the requirement 

characteristics. These were measured by an instrument created and used by external 

researchers (see Section 3.6.1). We held numerous peer-review sessions with a total 

of six experts to validate the measurement instrument with respect to the theoretical 

constructs we wanted to investigate (see section 3.1).

3.7.4 Conclusion Validity
Conclusion validity is the degree to which conclusions we make based on our 

findings are reasonable (Johnson and Christensan, 2003). There are three ways in 

which conclusion validity can be improved in a quantitative-based study: statistical
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power, reliability, and proper implementation of study methods. In our study, 

statistical power (or lack thereof) is not an issue, as our statistical tests are performed 

on ratings from approx. 900 requirements which were elicited by the 12 RE teams. 

Also, the study design and statistical tests (see Section 3.3 and Section 4.1 

respectively) accounted for the difference between the unit o f analysis (RE teams) 

and unit o f observation (requirements). As discussed in section 3.6.1, we used 

multiple researchers to rate each requirement in order to achieve a reliability of the 

rankings. Lastly, the researchers performing the ratings were trained prior to the 

actual rankings to ensure they properly carried out their task.

4 Data Analysis, Results and Interpretations

We now describe the analysis of the data gathered, the findings and their 

interpretation. The implications of the findings are described in Section 5.

4.1 Data Analysis

The SA-groups collectively produced 443 newly elicited requirements; whereas, 

the non-SA groups collectively produced 458 newly elicited requirements. Note that, 

normally, in a controlled experiment the analysis of data would be conducted on the 

randomised construct (in our case, the teams). However, we are primarily interested 

in exploring whether there are significant differences in the “characteristics” of the 

requirements elicited by the teams (SA vs. non-SA) and not simply in the teams 

themselves. Thus, the analysis we have conducted acknowledges the team 

randomisation and “takes into account the extent to which outcomes (i.e., 

characteristic ratings of the requirements) differ across all the teams “independent of 

the treatment effect” (i.e., ignoring the presence of SA for the treatment group. This 

is an established procedure (Rao, 1997)”. Specifically, we conducted separate 

statistical analysis that incorporated the possible effect of the different teams on the 

characteristic ratings. That is, we performed a 2-way nested ANOVA25 with the 

presence of SA as a fixed variable and the teams as a random variable. This

25 The 2-way nested ANOVA testing was done using SPSS 16.0 from SPSS Inc. 
(http://www.spss.com).

http://www.spss.com
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statistical analysis corresponds to the experimental design used for this study (see 

Section 3.3) and is used to test the hypotheses (see Section 3.2). The results of the 2

way nested ANOVA are presented and discussed in the next section. We 

qualitatively analyse identified architectural aspects that affected the SA-groups’ RE 

process and link them as sources for the differences reported in the preceding 

analysis.

4.2 Results and Interpretations

We now describe the results and interpretations from the data analysis that was 

performed. In the following subsection we discuss the results from the hypothesis 

testing (answer for Q1 -  “which requirements characteristics were affected” -  See 

Section 3.1). We then discuss more detailed results regarding each requirement 

characteristic. Lastly, we present the findings from Q2 (see Section 3.1) where we 

qualitatively link the SA aspects that were determined to have affected the RE 

process with the requirement characteristics that showed statistical significance in the 

preceding analysis.

4.2.1 Requirements Characteristics Hypothesis Testing
Recall that in Section 4.1 we mentioned the 2-way nested ANOVA which tests

for the effect, on the requirements characteristics, of both the SA and being in a 

different requirements team. Here, we now present and interpret the results from this 

2-way nested ANOVA. From Table 4-3, we see the characteristics that showed 

statistically significant difference due to the presence/absence of an SA when 

controlling for the “team effect” {focus on user needs, focus on technology needs, 

architectural relevance and importance -  all significant at p = 0.000). This means 

that there is virtually no possibility that these results were due to chance. Table 4-3 

also shows that there was a statistically significant effect from the teams for the 

characteristics focus on user needs and focus on technology needs (p = 0.001 and

0.003 respectively). The characteristics architectural relevance and importance did 

not show a statistical significant difference for the team variable. The characteristics
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in this table were the only characteristics that showed a significant difference for 

either the SA or team variable .

Requirement
Characteristic

Independent
Factor

Degrees of 
Freedom

F-value Significance

Focus on user 
needs

SA 2 267.038 0.000
Team 10 2.914 0.001

Focus on 
technology needs

SA 2 335.914 0.000
T eam 10 2.688 0.003

Architectural
relevance

SA 2 2148.621 0.000
T eam 10 1.233 0.266

Importance SA 2 3244.578 0.000
T eam 10 1.830 0.052

Table 4-3. Results of nested ANOVA testing

What this means is that both the presence/absence of the SA and being on a 

different team had an effect on the user and technology-focus characteristics. 

Because this study was more technically oriented, we did not collect more specific 

data on why being in a different requirements teams led to an effect on these 

particular requirements characteristics. However, there are some intuitive 

explanations for why this interesting phenomenon occurred. It is possible that 

different individual personal interests and capabilities played a role in changing the 

“flavour” of the requirements. For example, if the teams had individuals who 

preferred downstream processes and were thus more “solution” driven (e.g., 

designing, testing, coding, etc.) then these teams’ requirements would have a more 

technological bias regardless of the presence/absence of an SA. Conversely, if the 

teams had individuals who preferred the more human aspect of SE (e.g., RE, human

computer interaction, etc.), then their requirements would necessarily be more user- 

focused. The role of human personality and capability is outside the scope of this 

study; however, it could prove to be an interesting avenue for future empirical 

research and is the focus of one of our emerging hypotheses in Section 5.5.

Irrespective of the team effect exhibited above for the two requirements 

characteristics, we have demonstrated that the SA does have a significant effect on 26

26 The ANOVA test can only be conducted on the Likert-based requirements characteristics and not 
the ordinal-based characteristics (abstraction  and type  o f  requirem ent). These ordinal-based
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the requirement characteristics, and so we discuss the results for the rest of this 

section at the requirements level which is the focus of this paper.

4.2.2 Detailed Requirements Characteristics Results
We now discuss in more detail the results and their interpretations pertaining to

each of the requirements characteristics (described in Table 4-1). Recall, from Table 

4-1 in Section 3.1, that 10 of the 12 characteristics ( e .g focus on cost, focus on time, 

focus on quality, etc.) were measurable on the Likert scale; whereas, the remaining 2 

{level o f abstraction and type o f requirement) were measurable on the ordinal and 

nominal scales.

Group Focus
on

User
Needs

Focus
on

Tech.
Needs

Arch.
Relevance

Imp.

Mean SA 3.26 4.12 4.59 5.63
Non
SA

3.65 3.42 4.12 5.28

Cohen’s 
Effect Size27

Large Large Large Large

Table 4-4. Mean scores of the two types of groups for selected qualities.

4.2.2.1 Technological Needs versus User Needs
On average, the SA-groups scored higher for focus on technological needs (4.12

vs. 3.42, Table 4-4); whereas, the non-SA-groups scored higher for focus on user 

needs (3.65 vs. 3.26). There was thus a tradeoff between the characteristics of the 

requirements from the two types of groups. Usually, when focus on technological 

needs was high (scoring a 5, 6 or 7 on the Likert scale), focus on user needs was low 

(scoring a 1, 2 or 3) and vice versa. The notion of this tradeoff is supported by a 

follow-up test that was conducted, Spearman’s rho test, which showed a statistically 

significant (p = 0.007) inverse correlation between the two characteristics. From the

characteristics are analyzed separately in Section 4.2.5.
27 The Cohen’s effect size indicates the difference between the two types of groups is “large” (Rao, 
1997), meaning that there is not only a statistical difference between the two groups, but that the 
difference is substantial for real-world application of the results (e.g., making a business decision). 
What this means in terms of the real-world RE processes and products is discussed in the next 
subsection.
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perspective of RE processes, this data suggests that the SA-groups had technological 

needs higher than user needs in 52.9% of their requirements compared to 41.6% for 

the non-SA-groups. Likewise, the non-SA-groups had user needs higher than 

technological needs in 46% of their requirements compared to 37% for the SA- 

groups. Table 4-5 characterizes the bias towards technological and user needs for 

each type of group.

The surface-level reasoning for this difference could be that the SA-groups 

oriented themselves towards the technological arrangement of the system; whereas 

the non-SA group oriented themselves towards the user perspective of the system. 

However, the fact that the SA-group, either knowingly or unknowingly, 

“shortchanged” the user-oriented requirements is rather surprising.

SA-
groups

N on
SA
groups

H igher focus on  u ser needs 37% 46%
E qual focus 10% 14%
H igher focus on  
tech nologica l needs

53% 42%

Table 4-5. Focus on technological needs vs. user needs
What this means is that the potential benefactors of these requirements (i.e., the 

various stakeholders) are not having their needs fully met, which could then lead to 

negative feedback later in downstream processes or when the given product is 

released, resulting in lower customer satisfaction, poorer product quality, 

development rework, etc.

4.2.2.2 Architectural Relevance
Another characteristic where the two types of groups scored differently is

architectural relevance (see Table 4-4), (i.e., the degree to which a requirement will 

affect the architecture [Bass et al., 2003]). The mean ratings were 4.59: SA-groups 

vs. 4.12: non-SA-groups. Examining the data more closely, the SA-groups had more 

requirements (56) [13%] that scored 7 - extremely high than the non-SA-groups 

(23)[5%]. Conversely, the non-SA-groups had more requirements that scored 1 - 3  

(extremely low to slightly low) (163) [37%] than the SA-groups (161) [27%].
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The reason for this variance could be that having access to the system’s 

architecture, the SA-groups are better poised to question the architectural-relevance 

of an elicited requirement in their decision-making. Ultimately, they seem to be have 

selected more architecturally relevant requirements from their base-set in their 

solution strategy than have the non-SA groups.

4.2.2.3 Importance
The two types of groups also scored differently with regard to the level of 

importance of the requirements they produced (see Table 4-4), namely, the degree to 

which the success of the system depends on the implementation of a requirement. 

Upon closer examination, the difference for this characteristic is similar to that for 

architectural relevance in that the SA-groups had more requirements that scored 6 or 

7 (quite high and extremely high) was 255 (59%) than the non-SA-groups (216) 

[50%]. The non-SA-groups had more requirements that scored 1 -  3 (extremely low 

to slightly low) (62)[ 14%] than the SA-groups (27)[6%]. Both types of groups 

scored closely for 4 - neither high nor low (42 [10%] for the SA-groups, 46 [11%] for 

the non-SA-groups) and 5 - slightly high (106 [25%] and 109 [25%]).

This shows that the SA-groups were better able to elicit the kinds of requirements 

that would be important to the success of the system than the non-SA-groups. This 

result is surprising because importance of a requirement for system success is not 

influenced only by its technological or user orientation. Other influencing factors 

include: return on investment, cost, implementability, resource consumption, etc. 

Rather, these orientations are simply orthogonal. One would thus not expect a 

statistically significant difference between the SA and non-SA groups. The cause of 

the difference thus calls for further investigation.

4.2.2.4 Categories with no difference
The means of the ratings for the requirements from the SA-groups and non-SA

groups were similar in a number of categories: focus on time, cost, and quality, 

implementability, and focus on client needs. Testability was higher for the SA-groups 

at p = 0.06, close to a statistically significant result, and so it is a characteristic of 

interest for future studies. Thus, for these six characteristics, there is no evidence to
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support the rejection of the null hypothesis (the presence o f a SA has no impact on 

characteristic -  see Section 3.1).

What this means is that the characteristics of the requirements gathered in the 

presence or absence of the architecture by the respective two types of groups were 

statistically not different in so far as these six particular characteristics are concerned.

4.2.2.5 Abstraction and Type
Two of the requirements characteristics (see Table 4-1), requirement type and 

level o f abstraction, were rated on a nominal and an ordinal scale respectively28.

For the characteristic level o f abstraction, the SA-groups had more requirements 

that scored high values (5 and 6) (71 [16%] vs. 38 [9%]), which denote requirements 

having a greater breadth of impact (sub-system level, system level, inter-system 

level). The non-SA-groups had more requirements with lower scores (0 and 1) (58 

[13%] vs. 37 [9%]), indicating a small breadth of impact (module or component 

level). The NHST reveal that the difference in frequency counts is statistically 

significant (p = 0.001) so we conclude that there is evidence to support the rejection 

of the null hypothesis for this requirements characteristic.

An inference of the SA-groups’ higher score on the level o f abstraction quality 

over non-SA groups’ is that, not having access to the architecture, the non-SA groups 

were dealing with requirements at a functional level which are dealt with at an 

individual component’s level. On the other hand, the SA-groups’ requirements are 

more cross-cutting across the architecture, since they elicited requirements that dealt 

with the integration of new sub-systems and components with the existing SA.

For rating the characteristic requirement type, requirements were analyzed 

according to a priori nominal categories from standard RE literature (Kotonya and 

Sommerville, 1998). Examples of these categories include usability, performance, 

delivery, reliability, etc. The dataset shows that the SA-groups produced more 

implementation (62 vs. 50) and interoperability (51 vs. 30) requirements; whereas, 

the non-SA-groups produced more usability (51 vs. 20) and functional (99 vs. 81) 

requirements. NHSTs for this characteristic (type o f requirement) show that the

28 Because of the scale types used for these two attributes, the Cohen Effect Size tests cannot be 
applied.



119

differences between the two types of groups are statistically significant (p = 0.013), 

so we conclude that there is evidence to support the rejection of the null hypothesis 

for this requirement characteristic.

The observation here is consistent with our earlier observation (see Section 

4.2.2.1.) that the SA-groups were more focused on back-end technical issues; 

whereas, the non-SA-groups were more focused on user issues.

4.2.3 SA Aspects vs. Requirement Characteristics
To answer Q2 (see Section 3.1) we can now link aspects of the SA identified by

the SA-groups as affecting the specific requirements characteristics that showed a 

statistically significant difference (see Section 4.2.1). First, requirements of the SA- 

groups will be divided according to whether or not they were affected by the SA . 

Thus, we now have three sets of data: (i) those of the SA-groups which were affected 

by SA, (ii) those of the SA-groups which were not affected by SA and (iii) the 

requirements of the non-SA-groups. This division will be used to show that the 

differences measured between the two types of groups are a direct result of the 

requirements being affected by the architecture. That is, the presence or absence SA 

is the “cause” of the specific types of differences observed between the two types of 

groups.

To confirm that the six requirements characteristics identified in Q1 (see Section

3.1):

• focus on user needs, focus on technological needs, architectural relevance, 

and importance

• type and level o f abstraction.

were indeed affected because of the SA, we now qualitatively examine the 

differences in the three sets of data identified above (i, ii and iii) with respect to these 

six requirements characteristics.

Subsection 4.2.3.1 discusses these six requirements characteristics and the 

differences with respect to them in the three identified groups, and Subsection 4.2.3.2 29

29 In total, there were 148 requirements that were en ab led  by the architecture, 126 requirements that 
were con stra in ed  and 51 requirements that were influenced. However, since we found no statistically 
significant differences between enabled, constrained and influenced requirements they will simply be
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relates specific architectural aspects and their impact on the above six requirement 

characteristics.

4.2.3.1 Causal Impact of SA on Requirements Characteristics
Earlier findings (see section 4.2.2) indicated that requirements from the SA-

groups generally scored lower with regards to focus on user needs and higher with 

regards to focus on technological needs, architectural relevance and importance. 

Table 4-7 shows this along with the statistical significance of this new distribution.

On average, when the architecture was not affecting a requirement (188 

requirements), both the SA and non-SA groups scored similarly for three 

characteristics: focus on user needs, architectural relevance, and importance. For 

these three characteristics, it can now be seen that the differences in means that were 

observed earlier between the two types of groups (SA groups: 3.26, 4.59, and 5.63 vs. 

Non-SA groups: 3.65, 4.12, 5.28 respectively — see Table 4-4) were caused almost 

entirely by affected requirements (255 in Table 6). That is, we see "decreased" 

architectural effect on the characteristic focus on user needs, and "increased" effect 

on the characteristics architectural relevance, and importance. For focus on 

technological needs, the difference in means reported earlier (SA groups: 4.12 vs. 

Non-SA groups: 3.42 in Table 4-5) was not caused entirely by affected requirements 

but was certainly augmented by them (SA group not affected: 3.69 vs. SA group 

affected: 4.4 in Table 4-6).

For the characteristics level o f abstraction and type, we did not find any causal 

link between (i) the differences between the two groups (see Section 4.2.2) and (ii) 

the SA.

4.2.3.2 Architectural source of the impact
In the previous section, we saw which particular requirements characteristics

were affected by the SA (see Table 4-6). However, we do not know as yet which 

particular aspects of the SA were the causes of those effects -  this is the focus in this 

subsection. Determining specific aspects of the SA affecting particular requirements 

characteristics can help during future elicitation of requirements, for example, in

grouped as a ffected  requirem ents.
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being vigilant about any architectural implications on development cost, system 

quality and schedule and, accordingly, negotiate the requirements with the 

stakeholders.
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A ffected 255 3.1 4.4 4.8 5.8

N H S T  p-value
Chi-
square 0.046 0.001 0.001 0.003

Table 4-6. Characteristics of requirements and the architecture’s e 'feet.

In Table 4-7, we can see that four specific SA aspects affected requirements that 

exhibited the properties in Table 4-6: existing hardware, non-functional 

characteristics (same sub-system), non-functional characteristics (different sub

system) and architectural patterns. Requirements affected by one of these four 

architectural aspects showed lower mean values for focus on user needs and higher 

mean values of focus on technological needs, architectural relevance and 

importance. This suggests that these four architectural aspects had a substantial and 

consistent impact on the requirements elicited by the SA-groups.

Modifiability was another SA aspect that affected requirements exhibiting three 

of the four characteristics (i.e., scored higher means than the groups not affected by 

SA): focus on technological needs (4.26), architectural relevance (5.12) and 

importance (5.98). However, unlike the four SA aspects described above, these 

requirements scored higher for focus on user needs than did requirements which were 

not affected by the architecture (3.95 vs. 3.56). Without further data and analysis it is 

difficult to discern the extent of the impact of modifiability on focus on user needs.
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Requirements Characteristics
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NF characteristics 
(same sub-system)

53 1.94 5.32 4.77 5.85

NF characteristics 
(different sub-system)

100 3.29 4.55 4.88 5.93

Arch. Patterns 25 2.88 3.80 4.54 6.25

Modifiability 42 3.95 4.26 5.12 5.98

Table 4-7.1fhe source of architectural ef ‘ects and the affected requirements
characteristics30.

4.3 Summary of Results

The following are the key results of the study:

• Given access to the architecture, the analysts tend to elicit approximately 10% more 

technologically-oriented requirements; without access to the architecture, they tend 

to elicit approximately 10% more user-needs oriented requirements.

• For a given type of group (SA or non-SA), there is an inverse relationship within 

the set of elicited requirements between the characteristics technological needs and 

user needs; as the quantity of one increases the other decreases (e.g., requirements 

focused on user needs have less focus on technology needs -  46% vs. 37% 

respectively).

• Given access to the architecture, the analysts tend to elicit 10% more architecturally 

relevant and 10% more important requirements. 30

30 The numbers in this table do not equal the totals in Table 6 because Table 6 includes requirements 
affected by all nine identified architectural aspects, whereas Table 7 contains only those five aspects 
that had an impact on requirements with differing characteristics.
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• Given access to the architecture, the analysts elicited approximately 7% more 

abstract requirements (i.e., those with cross-cutting concerns across system 

requirements) than analysts without access to the architecture.

• Given access to the architecture, the analysts elicited more implementation (62 vs. 

50 requirements) and interoperability (51 vs. 30) requirements.

• Without access to the architecture, the analysts elicited more requirements of type 

usability (51 vs. 20) and functionality (99 vs. 81).

• Specific architectural aspects were identified that affected the requirements 

characteristics: Existing hardware, NF characteristics (same sub-system), NF 

characteristics (different sub-system), architectural patterns, and modifiability.

Until now, there was no scientific data on the above issues. This can therefore be 

considered an important step towards building a grounded theory on the impact of 

SA (or non-SA) on RE. While the findings may be interesting, it is rather unfortunate 

that the various SA and non-SA groups had long disbanded and therefore not 

accessible by the time the data analysis was completed. Thus, we couldn’t obtain 

their perspective of our inferences. The next section discusses example implications 

of our findings.

5 Implications

We discuss the implications of the described findings on such issues as RE 

process engineering, post-requirements analysis, RE tools, traceability management, 

and further empirical work in RE.

5.1 RE Process Engineering

The findings described in Section 4.3 raise some interesting questions, such as: 

should the SA always be used in the RE process as promoted by the literature 

(Shekaran, 1994; Mead, 1994), and as strongly supported by our survey results (see 

introduction)? Could there be some conditions when it would be advisable not to use 

SA in RE? Of course, the considerations behind these questions are such factors as
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project costs, time-to-market, system quality, profitability, innovation, sustainability, 

and human factors.

We have identified three key cases which merit consideration in the design of 

RE processes: (1) new innovative system; (2) mature system; and (3) system with 

user and technology balance.

When evolving a relatively new product, the business strategy might be to focus 

more on innovative features (so as to attract a large customer base) than on refining 

technical system attributes such as: reliability, security, performance, etc. (so as to 

stabilise the system) (Rajlich and Bennett, 2000). In this scenario, management can 

determine whether the cost/benefit of the RE process would be better if the influence 

of the existing SA on elicited requirements was omitted or minimized, if not entirely 

in the RE process then at least at the outset of the RE process.

Likewise, in a mature product, with a large dependent customer-base, it would 

be imperative that new requirements do not destabilise system quality, and, 

accordingly, it would be advisable to use SA in RE. For example, we saw that 

involving SA in RE led to more global or architecturally-relevant requirements (see 

Section 4.2.2.2), whereas, absence of SA in RE in this scenario could lead to myopic 

requirements. In turn, this could lead to increased development backtracking to fix 

architectural problems or duplication of features (both functional and non-functional) 

across the system (Kamiya et al., 2002).

In the cases where there is a need for a user and technology focused 

requirements, we need to design the RE process to have mechanisms built-in to 

ensure that the characteristics of the requirements are not lop-sided in favour of SA 

and against user-focus (or vice-versa). For example, in section 4.2.2.1, we saw that 

involving SA in the RE process short-changed user-focused requirements. 

Consequently, not having vigilance about the impact of SA on RE could result in 

system qualities that may not satisfy diverse stakeholders’ interests.

These are but specific examples. There are many project and organizational 

factors that could influence when to utilize the SA in a RE process, for example: size 

and competency of the development team, development paradigm used (e.g., agile vs. 

iterative), familiarity of SA by the development team, budget, etc. Therefore, in
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deploying the RE process, these multitude of factors should be considered when 

planning the inclusion of the SA in the RE process.

5.2 Post-requirements Analysis

As permitted by a project-specific situation, it is prudent to examine the 

requirements being elicited -  as a post-RE or post-project exercise — to detect any 

biases counteracting business goals, which could then be adjusted in the subsequent 

elicitation efforts. For example, by integrating the rating (see Table 4-2 in Section

3.6.1) into post-requirements (or post-development) analysis, a project could gather 

(release-based or timed) quantitative data on requirements characteristics. This would 

create a history of the “flavour” of the system, as dictated by the characteristics of the 

requirements (e.g., trends on quality-attribute biases, user-needs focus, technological 

focus, etc.). By analysing such trends, management can assess, periodically, whether 

the evolving system is aligned with the current and future organizational goals. For 

example, a trend heavily in favour of “user-focus” coupled with heightened 

architectural defects could indicate inadequate consideration of SA during the RE 

(and development) processes. Based on such analysis, tweaking the requirements and 

the associated RE processes can help align the requirements characteristics to the 

system and business goals. Figure 4-1 shows an example process model of how the 

requirements rating method could be integrated in a software development process.

Unlike other implications in this paper, this one is rooted in the empirical 

procedures of the study and not the findings. There is precedence for this idea. For 

example, in software effort estimation (Johnson et al., 2000), the collection and 

analysis procedures of software defects, size and effort data has been integrated into a 

software estimation tool. Likewise, in software process improvement (Cook et ah, 

1998), the authors propose the use of historical, exploratory research studies to 

identify process improvement opportunities in industrial projects. Finally, in software 

maintenance (Porter and Selby, 1990), the analysis of software metrics (such as 

development effort, defaults, and component changes) in past releases of a software 

project is used to automatically identify components most likely to cause rework.
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Figure 4-1. Integration of requirements rating method in software development
process.

5.3 RE Tools

The realisation that specific characteristics of new requirements are affected by 

particular aspects of existing system architectures (as depicted in Table 4-7) opens 

up possibilities for a new generation of RE tools. In particular, requirements 

management tools (such as DOORS and Requisite pro) and goal-oriented modelling 

tools (such as i* [Yu, 1997] and KAOS [Lamsweerde, 2003]) could be enhanced 

with a product-centric knowledge-base that accumulates, over a span of many 

releases, how different aspects of the evolving system architecture affects 

requirements characteristics (e.g., as shown for one evolutionary iteration in Table 

4-7). Such tools thus would have a characteristic of becoming more and more mature 

over time while enhancing the elicitation, analysis and reasoning capabilities of the 

requirements engineers.

5.4 Traceability Management

Recent work in (Heindl and Biffl, 2005) encourages value-based requirements 

traceability, as opposed to early research which attempted at all encompassing 

traceability (implemented in tools such as DOORS and Requisite Pro) which is 

known to be wasteful in terms of future use and thus has not gained wide acceptance
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in practice (Arkley and Riddle, 2005). In this paper, we show how empirical studies 

can lead to discovery of targeted product dependencies and relationships (e.g., 

between SA and requirements) that can be worth tracking during software evolution.

In Table 4-6, for example, we see that 255 requirements (58%) were affected by 

the SA. Also, Table 4-7 indicates the particular SA aspects that affected the 

requirements with particular characteristics. Furthermore, previous research (Miller 

et al., 2008) has already shown the different effect types of SA on requirements (e.g., 

SA as a constraint on new requirements or as an enabler of new requirements). Thus, 

by collating these different pieces of information, it would be possible to create 

targeted traceable links. For example, by linking those architectural aspects (e.g., 

components with particular non-functional characteristics) that are historically known 

to constrain certain types of requirements, it could help in speeding up detection and 

analysis of new risky requirements that are in conflict with the baseline architecture. 

We can see that empirically derived targeted links would (a) reduce the burden 

considerably in making the select-few links in the first place and (b) render 

invaluable information upon usage of traceability tools during RE.

5.5 Further Empirical Studies in RE

Based on the findings of the exploratory study, we raise the following example 

emergent hypotheses:

HI: Requirements elicited from a RE process that involves analysis o f a current 

architecture will be more technologically focused than a RE process that does not 

include such analysis.

This hypothesis emerges from the finding in Section 4.2.2.1 and improves upon the 

null hypothesis used in this study by providing a direction of the effect (i.e., SA 

analysis implies more technological focus). While the finding on technology focus 

vs. users-need focus may seem intuitive, further testing of this hypothesis in different 

domains and project contexts would not only confirm whether these results are 

generalizable across different population and settings (see Section 3.6.2), but would
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also indicate the variance in extents across them. This could help tune the RE 

process specific to the domain concerned.

H2: Requirements elicited from a RE process that does not analyze the current 

architecture will be more user-focused than a RE process that does not include such 
analysis.

In Section 4.2.2.1, the results show that requirements elicited in the absence of an 

existing architecture are more user-focused than requirements in the presence of an 

existing architecture. The motivation for this hypothesis follows from H1 above.

H3: Requirements elicited when the current architecture is analyzed are considered 

more important for system success than without such analysis.

This hypothesis is rooted in the finding from Section 4.2.2.3. This result is surprising 

and seems more based on factors outside of technology and user needs, and is 

therefore difficult to discern whether this would hold across other project domains 

and business contexts.

H4: Requirements elicited when the current architecture is analyzed are more 

architecturally relevant than requirements without such analysis.

This hypothesis emerges from the finding in Section 4.2.2.4, and the motivation for 

this hypothesis follows from HI above.

H5: An RE process that does not include analysis o f current architecture will output 

more innovative requirements.

A requirement characteristic that was not measured in this study was innovation. 

This was due to the fact that the project domain was banking which is not a new 

domain, and thus it would be difficult to measure innovation in such a system.
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However, it is an important characteristic that we initially did want to investigate. 

Although this hypothesis is not directly derived from the findings, we include it here 

because this characteristic should be investigated if the domain permits. By intuition, 

seems that it could be affected (most likely constrained) by the analysis of a current 

architecture. The investigation of this hypothesis complements recent research effort 

(Maiden et al., 2004) in improving the process of eliciting innovative requirements.

H6: A requirements elicitation team with motivation and expertise in system solution 

is more likely to elicit requirements that have technological bias regardless o f the 

absence or presence o f an existing system architecture.

This hypothesis emerges from the finding in Section 4.2.1 where it was shown that 

the simply being in a different requirements team had a significant effect on the 

technological bias of the requirements. One possible explanation for this phenomena 

occurring is that the motivation and expertise of the team members was more 

solution-oriented and accordingly biased the requirements.

H7: A requirements elicitation team with motivation and expertise in a system’s 

context (e.g., human-computer interaction and end-user satisfaction) is more likely to 

elicit requirements that user-focused regardless o f the absence or presence o f an 

existing system architecture.

This hypothesis emerges from the finding in Section 4.2.1, and the motivation for this 

hypothesis follows from H6 above.

To test hypotheses H1-H5, controlled experiments with the same type of project 

setup as described in this paper (see Section 3) would need to be designed. The study 

design for testing H6-H7 would be more difficult in randomized controlled 

experiment, and thus, a quasi-experiment design would be more suitable for these
cases.
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6 Conclusions

While the role of Systems Architecture (SA) in Requirements Engineering (RE) 

has been discussed several times over the past decade (Shekaran, 1994; Mead, 1994; 

Jackson, 1994), no scientific studies have ever been conducted to explore the 

quantitative relationship between SA and requirements. In this paper, we describe a 

controlled study, involving 12 teams, investigating the characteristics of new 

requirements in the presence or absence of an existing SA.

In a nutshell, we found that of the 12 requirements characteristics identified (see 

Table 4-1), the following were significantly affected by the presence or absence of 

the SA (see Section 4.3): focus on technological needs, architectural relevance, 

importance, level o f abstraction, requirement type, and focus on user needs. We did 

not find SA effects on the remaining characteristics (see section 4.2.2.4). We then 

probed the results further from the perspective of the specific architectural aspects 

that affected these characteristics and found five such aspects (Existing hardware, NF 

characteristics (same sub-system), NF characteristics (different sub-system), 

architectural patterns, and modifiability). From these findings, we discuss 

potentially useful implications in the areas of RE process engineering, requirements 

alignment with business goals, RE tools, traceability management, and future 

empirical work based on four emergent hypotheses from this study.

While these findings contribute new scientific knowledge concerning SA- 

requirements interaction, let us not forget that this was only one exploratory 

controlled study on a particular domain (Banking system). Significant as it is, we 

advise caution when making business or project decisions based on the findings of 

this foundational study alone! Rather, we encourage other researchers to conduct 

confirmatory studies in other domains and contexts to help build grounded theory on 

the impact of SA on RE.

Though our study, in principle, can be replicated in both industry and academia, 

each of these contexts has its own limitations to consider when planning replications 

of the study. Conducting controlled studies in industry would be extremely difficult, 

if not impossible, due to the unavailability of equivalent projects, and the inability to 

impose research control (i.e., presence or absence of SA in the RE process). More
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likely, the chances are better to conduct controlled studies and perform hypothesis 

testing in academia using qualified students as participants. This, however, does 

have the issue of being able to generalize the results to industrial contexts. Despite 

this threat, studies such as these are still a critical stepping-stone to conducting “case 

studies” in industry. Case studies in industry would be invaluable for providing an 

industrial perspective on the impact of SA on RE. These studies can be carried out 

by analyzing the existing requirements of projects where the RE processes have 

either involved SA or not. In particular, data from different projects with varying 

levels of complexity, and in different domains, would help solidify the body of 

knowledge in this research area.

References

Arkley, P., Riddle, S., 2005. Overcoming the Traceability Benefit Problem. 13th 
IEEE International Conference on Requirements Engineering (RE’05), Paris, 
France, pp. 385-389.

Basili, Victor R. and Weiss, D., 1984. A Methodology for Collecting Valid Software 
Engineering Data. IEEE Trans.OnSoft.Engineering, pp 728-738.

Bass, L.; Clements, P.; and Kazman, R., 2003. Software Architecture in Practice, 2nd 
edition. Addison-Wesley.

Bayer, J., Muthig, D., Widen, T., 2000. Customizable Domain Analysis. Proceedings 
of the First International Symposium of Generative and Component-Based 
Software Engineering (GCSE ’99), Lecture Notes in Computer Science. Springer
Verlag, pp. 178-194.

Berander, P., 2004. Using Students as Subjects in Requirements Prioritization. 
Proceedings of the 7th International Conference on Empirical Assessment & 
Evaluation in Software Engineering, pp. 95-102.

Breitman, K., Sampaio do Prado, J. C., 2000. Scenario Evolution: A Closer View on 
Relationships. Fourth International Conference on Requirements Engineering 
(RE'00), Illinois, US, pp.95-107.

Burgess, C., Dattani, I., Hughes, G., May, J., Rees, K., 2001. Using Influence 
Diagrams to Aid the Management of Software Change. Journal of Requirements 
Engineering, Volume 6, Number 3, pp. 173-182.

Carver, J.; Shull, F.; Basili, V., 2003. Observational Studies to Accelerate Process 
Experience in Classroom Studies: An Evaluation. Proceedings of the 2003



132

International Symposium on Empirical Software Engineering (ISESE ’03), Rome, 
Italy, pp. 72-79.

Castillo, E., Gutiérrez, M., Hadi, A., 1997. Learning Bayesian Networks. Expert 
Systems and Probabilistic Network Models. Monographs in computer science. 
New York: Springer-Verlag, pp. 481-528.

Cook, J., Votta, L. G., Wolf, A. L., 1998. Cost-Effective Analysis of In-Place 
Software Processes. IEEE Transactions on Software Engineering, Volume 
24, Issue 8 (August 1998), pp. 650 - 663.

Egyed, A., Grunbacher, P., Medvidovic, N., 2001. Refinement and Evolution Issues 
in Bridging Requirements and Architecture -  The CBSP Approach. First 
International Workshop from Software Requirements to Architectures (STRAW 
‘01), Toronto, Canada, June, 2001.

El Emam, K. and Madhavji, N., 1995. Measuring the Success of Requirements 
Engineering Processes. Proceedings of the 2nd IEEE International Symposium on 
Requirements Engineering, pp. 204-211.

Etien, A., and Salinesi, C., 2005. Managing Requirements in a Co-evolution Context. 
13th IEEE International Requirements Engineering Conference (RE'05), pp.125
134, Paris, France.

Ferrari, R., and Madhavji, N. H., 2008. Software architecting without requirements 
knowledge and experience: What are the repercussions?. Journal o f Systems and 
Software, Voi. 81, No. 9. (September 2008), pp. 1470-1490.

Ferrari, R., Miller, J., Madhavji, N. H., 2010. A controlled experiment to assess the 
impact of system architectures on new system requirements. Requirements 
Engineering Journal, accepted, publication to appear, DOI: 10.1007/s00766-010- 
0099-3.

Ferreira, S., Collofello, J., Shunk, D., Mackulak, G., 2009. Understanding the effects 
of requirements volatility in software engineering by using analytical modeling and 
software process simulation. Journal of Systems and Software, Volume 82, Issue 
10, October 2009, Pages 1568-1577.

Fusaro, P.; El Emam, K.; Smith, B., 1997. Evaluating the interrater agreement of 
process capability ratings. Proceedings of the 4th International Software Metrics 
Symposium, pp. 2-11.

Heindl, M., and Biffi, S., 2005. A case study on value-based requirements tracing. 
Proceedings of the 10th European software engineering conference held jointly 
with 13th ACM SIGSOFT international symposium on Foundations of software 
engineering, pp. 60-69, Lisbon, Portugal.



133

IEEE SWEBOK, 2004. Guide to the Software Engineering Body of Knowledge: 
2004 Version. IEEE and IEEE Computer Society project.
<http://www.swebok.oni.''>

M. Host, B. Regnell, C. Wohlin, 2000. Using students as subjects -  a comparative 
study of students and professionals in lead-time impact assessment. Empirical 
Software Engineering, pp. 201-214.

Jackson, M., 1994. The Role of Architecture in Requirements Engineering. 
Proceedings of the 1 st International Conference on Requirements Engineering (RE 
‘94’), pp. 241.

John, I., Muthig, D., Sody, P., Tolzmann, E., 2002. Efficient and Systematic 
Software Evolution Through Domain Analysis. 10th IEEE Joint International 
Requirements Engineering Conference (RE ’02), pp. 237-245, Essen, Germany.

Johnson, P. M., Moore, C. A., Dane, J.A., and Brewer, R. S., 2000. Empirically 
guided software effort guesstimation. IEEE Software, 17(6), December 2000.

Johnson, R. B., and Christensan, L., 2003. Educational Research: Quantitative, 
Qualitative and Mixed Approaches.
www.southalabama.edu/coe/bset/iohnson/dr iohnson/21ectures.htm. Date last 
accessed June 2009.

Kamiya, T., Kusumoto, S., Inoue, K., 2002. CCFinder: a multilinguistic token-based 
code clone detection system for large scale source code. IEEE Transactions on 
Software Engineering, July 2002, Voi. 28, Issue 7, pp. 654-670.

Kotonya, G.; Sommerville, I., 1998. Requirements Engineering. England: John Wiley 
& Sons Ltd.

Lamsweerde, A. Van, 2003. From System Goals to Software Architecture. In Formal 
Methods for Software Architectures, M. Bernardo & P. Inverardi (eds), LNCS 
2804, Springer-Verlag, pp. 25-43.

Maiden, N., Manning, S., Robertson, S., Greenwood, J., 2004. Integrating creativity 
workshops into structured requirements processes. Proceedings of the 5th 
conference on Designing interactive systems: processes, practices, methods, and 
techniques, Cambridge, MA, US, pp. 113-122.

Mead, N., 1994. The Role of Software Architecture in Requirements Engineering. 
Proceedings of the 1st International Conference on Requirements Engineering, pp. 
242.

Miller, J., Ferrari, R., Madhavji, N. H., 2008. Architectural Effects on Requirements 
Decisions: An Exploratory Study. 7th Working International Conference on 
Software Architecture, Vancouver, pp. 231-240.

http://www.swebok.oni.''
http://www.southalabama.edu/coe/bset/iohnson/dr_iohnson/21ectures.htm


134

Miller, J., Ferrari, R., Madhavji, N. H., 2009. Characteristics of New Requirements in 
the Presence or Absence of an Existing System Architecture. 17th International 
Conference on Requirements Engineering (RE ’09), Atlanta, United States, pp. 5
14.

Nuseibeh, B., 2001. Weaving Together Requirements and Architectures. IEEE 
Computer, 34(3): 115-117.

Nuseibeh, B., Easterbrook, S., 2000. Requirements engineering: a roadmap. 
Proceedings of the 22nd International Conference on Software Engineering (ICSE), 
pp. 27-46.

Pett, M. A., 1997. Nonparametric Statistics for Health Care Research: Statistics for 
Small Samples and Unusual Distributions, Edition: 2. Published by SAGE, 1997.

Porter, A. A., Selby, R. W., 1990. Empirically Guided Software Development Using 
Metric-Based Classification Trees. IEEE Software, Volume 7, Issue 2, March 
1990, pp. 46-54.

Rajlich, V. T., Bennett, K. H., 2000. A staged model for the software life cycle. IEEE 
Computer, Volume 33, Issue 7, Jul 2000 Page(s): 66-71.

Rao, P.V., 1997. Statistical Research Methods in the Life Sciences, Brooks/Cole.

Rolland, C., Salinesi, C., Etien, A., 2004. Eliciting gaps in requirements change. 
Journal of Requirements Engineering, Volume 9, Number 1, 2004, pp. 1-15.

Shaw, M., 2003. Writing good software engineering research papers: minitutorial. In: 
Proceedings of the 25th International Conference on Software Engineering (ICSE 
2003), Portland, USA, Tutorial Session, pp. 726-736.

Shekaran, C., 1994. Panel Overview: The Role of Software Architecture in 
Requirements Engineering. Proceedings of 1st International Conference on 
Requirements Engineering, April 1994, pp. 239.

Software Requirements to Architectures Workshop (STRAW’01 & ’03), June 2001, 
Toronto, Canada; May 2003, Portland, USA.

Tichy, W.F., Lukowicz, Prechelt, L., Ernst, A., 1995. Experimental evaluation in 
computer science: a quantitative study. Journal of Systems and Software (January), 
1-18.

Vilella, K., Doerr, J., Gross, A., 2008. Proactively Managing the Evolution of 
Embedded System Requirements. 16th International Conference on Requirements 
Engineering (RE ’08), pp. 13-22, Delhi, India.



135

Wieringa, R.J., Heerkens, J., 2006. The methodological soundness of requirements 
engineering papers: a conceptual framework and two case studies. Requirements 
Engineering Journal 11, 295-307.

Yu, E., 1997. Towards Modelling and Reasoning Support for Early-Phase 
Requirements Engineering. Proceedings of the 3rd IEEE International Symposium 
on Requirements Engineering (RE'97) Jan. 6-8, 1997, pp. 226-235, Washington 
D.C., USA.



136

Chapter 5

An Exploratory Study of Architectural 
Effects on Requirements Decisions31

1 Introduction

No one would deny that if we were to extend an existing edifice, many of its 

functional and non-functional features would be of central importance in considering 

new requirements for the extension. Yet, in the software engineering (SE) literature, 

this is rather an understated issue -  that is, consideration of existing system design is 

not a key factor in engineering new requirements. While in software practice many 

developers are indeed aware of the need to assess the fitness of new requirements 

with the existing system design, the approaches are rather subjective and experiential. 

SWEBOK (IEEE SWEBOK, 2004) -  the SE body of knowledge -  for example, does 

not describe any practices to deal with this issue. To explore this issue further, we 

conducted a preliminary survey of 17 professional requirements engineers and 

software architects. We found that the average rating of the importance of 

considering existing systems architecture (SA32) when engineering new requirements 

was 4.5 (on a 1-5 Likert-scale) -  implying that the respondents strongly agreed with 

this concept. Despite this, several respondents noted in the qualitative part of the 

survey that in actual practice, many organizations neglect this consideration, or only 

perform analysis on existing high-level feature descriptions of the current system, 

and not the system’s architecture. In many situations, a lack of consideration for an 

existing system in the new requirements work can lead to rework of requirements and 

design, incurring extensive costs especially if further downstream in the development 

process (Boehm and Basili, 2001).

31 A version of this chapter has been accepted for publication in Journal of Systems and Software.
32 For the rest of the paper, the acronym SA refers to Systems (or Software) Architecture as a software 
artefact.
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The uptake of this, architecture-requirements, issue in research is not impressive 

either. It was not until 1994 that the role of an existing SA in requirements 

engineering (RE) was recognised as important in a panel session. However, at that 

time, “we still [did] not have a clear understanding of [it].” (Shekaran, 1994a). 

Shortly thereafter, 5 of the 34 identified indicators of RE success were found to have 

links with SA (El Emam and Madhavji, 1995). A few years later, the question of an 

architecture’s role in RE was raised again (Nuseibeh and Easterbrook, 2000). While 

the awareness of an architecture’s role in the RE process has no doubt increased, to 

our knowledge, the effects of an existing SA on RE decisions have not been 

scientifically explored. It is not until such studies are conducted, and a dependable 

body of knowledge created, that practice can begin to use such knowledge in day-to

day projects. As a first step in this direction, this paper describes an exploratory case 

study on the effects of an existing SA on RE decisions. Specifically, we ask:

“In which manner does an architecture affect requirements decision-making33?”.

We explore this question on two fronts: (1) the kind of role a SA plays in 

requirements decision-making and (2) the specific aspects of the architecture that 

affect RE decisions.

For point (1) above, it has already been suggested that a SA might constrain a RE 

process (Shekaran, 1994b). For example, while analysts could be eliciting 

requirements to employ a new technology that requires a specific communication 

protocol, the current legacy system has long implemented a conflicting 

communications protocol, thereby constraining the current RE strategy. For point 

(2) above, while SA aspects are likely largely unique to the domain of these cases, 

they would give us an indication of which parts of an existing architecture can affect 

RE decision-making (e.g., non-functional SA areas outside the focus of an RE agent) 

and, consequently, which parts of the architecture are critical to document for use by 
requirements engineers

33 Decision-making leads from recognition of a problem to be solved to a specification of that problem 
or a solution strategy.
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Our results indicate that the relationship between SA and RE is more complex 

than what is intuitively known in the literature. In particular, “SA as a constraint” is 

only one of the four types of effects observed in our study. The other three types of 

effects we found are: enabled, influenced and neutral. In short, an enabled effect is 

where the proposed solution (denoted by the new requirements) is made feasible 

because of the implemented decisions in the existing system; an influenced effect is 

where the architectural configuration has an effect on the requirements decision 

without affecting its feasibility; and a neutral effect is where there is no noticeable 

architectural effect on the decision. This paper gives quantitative measures on these 

effects from the study and qualitative interpretation of the findings. Also, in our 

study, nine architectural aspects were identified across 117-recorded decisions. 

Again, this paper gives quantitative measures and qualitative interpretations.

A deeper understanding of the role of SA in RE could open up new opportunities 

for RE and architecting methods, tools and processes. For instance, in the area of 

planning and risk assessment, the management could make more informed cost 

estimates of new requirements by considering how the SA has historically affected 

the various types of requirements. Likewise, in the area of technology improvement, 

RE and SA tools can be integrated so that analysts and architects can share, access 

and change requirements and architecture information more easily. We describe 
several other cases in the paper.

Our empirical study involved six RE teams that gathered new requirements for an 

existing system and were observed over the course of two months. The project was 

in the banking domain and required the RE teams to elicit and analyse new 

requirements based on a set of high-level features that needed to be integrated into 

the current architecture. A requirements-decision meta-model was created as a basis 

for the development of a requirements-tool that served to gather data from the 

participants during the project on how requirements decisions they were making were 

affected by specific aspects of the existing architecture. This paper describes: the 

study context, participant details, project work involved, the underlying decision
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meta-model34 for the data that is gathered, use of tools for gathering data, and the 

various threats to validity.

The key results are the quantitative characterization of the different interaction 

effects mentioned earlier. For example, for this particular system, nine SA aspects 

affected approximately 60% of the RE-decisions. From the findings, we have 

derived four hypotheses that provide a basis for future studies. A general description 

of how each of these studies could be conducted is also described.

This paper is structured as follows: Section 2 discusses related work; Section 3 

describes the exploratory study; Section 4 presents the results; Section 5 discusses 

various implications from the results; Section 6 discusses future empirical work and 

emergent hypotheses from this study, and Section 7 concludes the paper.

2 Related work

This section describes the work that is related to our study. The section focuses 

on three key aspects: (i) observations, commentary and empirical work on the 

relationship between RE and SA, (ii) technological research spanning RE and SA, 

and (iii) recent technological-based research on architecture evolution. In subsection 

2.4, the section concludes with a reflection on the current state of research described 

in subsections 2.1 to 2.3.

2.1 RE and SA relationship

There is an increasing interest in exploring and refining the transitions between 

various activities in the software development process. In particular, the relationship 

between RE and SA, and their impact on each other was the focus of a couple of 

workshops five-to-seven years ago (STRAW, 2001; STRAW, 2003). In fact, even 

earlier, Jackson argued in a panel session (Jackson, 1994) for a tight coupling of the 

RE and SA processes, suggesting that the most successful developers are those who 

are able to move relatively more freely between stages within the development cycle. 

In (Kozaczynski, 2002), Kozaczynski discusses that a level of foresight on the part of

34 The decision meta-model defines the type of data relevant to this study and is a basis for the tool 
developed for data gathering. The meta-model and tool are bi-products of this study.
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architects to focus on those requirements that are architecturally relevant can help to 

mitigate development risk in the software process, by being able to develop the 

architecture early without all requirements being elicited. This, early development, 

can then be fed-back to the requirements process to further refine the requirements.

In our earlier work in (El Emam and Madhavji, 1995), El Emam and Madhavji 

presented an instrument for measuring RE success. Through an industry field study 

to design this instrument, we found that in evolutionary work, the level of 

understanding of the existing architecture can have an impact on the success of the 

RE process. In understanding the architecture, requirements engineers can provide 

requirements solutions that are consistent with the current technical and corporate 

orientation of its organization. In turn, this can lead to better cost/benefit analysis 

during RE. This early understanding, however, did not delve into the type of 

technical effects an existing architecture has on RE decision-making; in this paper, 

we investigate this issue further.

In (Garlan, 1994), Garlan recognizes that architectural families constrain system 

requirements. Further, he identifies that solutions can drive requirements. For 

example, the architecture of a family of systems determines the range of variability 

allowed in a product line. Though not explicitly stated, one can interpret this as not 

only architectures imposing “constrains” on requirements decision-making, but also 

as “enabling” and “influencing” such decision-making. This is a central aspect of the 

current paper.

In (Bass et ah, 2003), Bass et al. discuss that different stakeholders of the 

architecture will have different needs for documentation, and the level of detail 

provided to them should reflect this. Depending on the stakeholders’ needs, they can 

be provided with detailed information, some details or overview information of the 

various architectural views available. The specific architectural aspects that could be 

important in RE, however, are not mentioned in (Bass et ah, 2003); our study 
uncovers these details.

Three previous studies of ours, described below, empirically examine RE and 

SA interaction issues from the viewpoints of: architecting problems rooted in 

requirements, the effect of using different types of human agents when architecting,
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and the impact of an SA on requirements characteristics. In (Ferrari and Madhavji, 

2008a), we report on a multiple-case study that investigated requirements-oriented 

problems that are encountered while architecting. Overall, we found that 

approximately 35% of the problems encountered during architecting were 

requirements-oriented. Also, specific problem areas together with their severity were 

identified (such as, quality satisfaction, requirements understanding and quality 

drivers) as well as the relative frequency of problems occurring in these areas. 

Implications of this work are on improving methods, tools, and techniques to 

transition from requirements to architecture. In another study, described in (Ferrari 

and Madhavji, 2008b), we report on a controlled-study that investigates the impact of 

software architects having RE knowledge and experience when performing SA. 

Specifically, two types of study groups were used, the one type of group had previous 

training and/or experience in RE, and the other type of group did not. Both types of 

groups conducted the same architecting project given the same initial set of 

requirements from the banking domain. The results show that the architects with RE 

knowledge/experience produced a significantly better architecture (10% difference in 

the overall architectural quality), and the study also highlighted specific architecting 

areas where these architects performed better. Examples of these areas include: 

determining architectural tactics, selecting/creating an architectural pattern to satisfy 

key quality drivers, and interface specification. In a more recent study of ours (Miller 

et al., 2009), we report on a controlled-study that investigates the impact an SA has 

on the characteristics of newly elicited requirements. Two types of study groups 

were used and conducted the same requirements project. One type of group had 

access to a previous SA whereas the other type of group did not. The results 

showed that_a multitude of characteristics (e.g., end-user focus, technological focus, 

abstraction, and importance) were significantly affected by the presence or absence 

of an SA, and the results also showed extent of this effect. Implications of this work 

are on RE process engineering in the contexts of new development and legacy 
systems, and on post-requirements analysis.
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2.2 RE and SA technology

There is a growing body of technological work (e.g., methods, software tools, 

processes, development paradigms, notations, etc.) that is aimed at bridging the areas 

of RE and SA (STRAW 2001; STRAW 2003). The study presented in this paper is 

meant to elicit new findings regarding the RE and SA interplay that could then 

possibly be used in improving such technologies.

Bass et al.’s stakeholder-centred Attribute-driven Design (ADD) method (Bass 

et al., 2003) focuses on iteratively building architectures based on the key 

architectural drivers of the system. These drivers are composed of key requirements 

and quality scenarios that shape the architecture. The drivers are input into the 

process where architectural patterns are created/selected to realize the tactics (i.e., the 

architectural design choices made) which, in turn, are aimed at satisfying the quality 

scenarios. Tradeoffs emerge in the patterns between various quality attributes, and 

the architects and other stakeholders must negotiate a resolution to these tradeoffs 

(similar in principle to the Architecture Tradeoff Analysis Method (ATAM) (Kazman 

et al., 2000) to finalize patterns that would represent an architecture that is most 

suited to meet the system’s goals. Recently, a prototype tool, called ArchE (Diaz- 

Pace et al., 2008) has been developed to provide support to the ADD method. This 

support is in the form of modelling the functional responsibilities of the architecture, 

storing the quality scenarios, and through analysis of the architecture and quality 

scenarios, the tool suggests tactics that can be used to satisfy the quality 

requirements. To date, the tool supports modifiability and performance quality 

attributes, but provides plug-in support so users can add reasoning and analysis 

frameworks for other quality attributes.

In our previous work, we had developed a method that traces architectural 

concerns back to the requirements — the Architecture-centric Concern Analysis 

Method (ACCA) (Wang et al., 2005). The method uses a Concern Traceability map 

(CT-map) that captures and presents architectural design decisions starting from 

software requirements through to the systems architecture and these are then linked 

to architectural concerns that are identified in the architecture evaluation phase. 

Through a visual, decision-based, model this method aids in identifying potentially
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problematic, or sensitive, requirements or decisions that resulted in the concerned 

architectural parts.

Egyed et al., in their CBSP (Component-Bus-System and Properties) method 

(Egyed et al., 2001), use an intermediate language (and tool-support) for expressing 

requirements in a form that more closely relates to architecture, where requirements 

are identified and categorized based on various properties such as whether they 

should be implemented as components, bus, system properties, and so on. This 

method is focused on early architecting work and is not intended for the entire 

architecting process. In (Hofineister et al., 2005), the authors deal with the 

identification and analysis of global factors - those that take into account more 

holistic issues such as the environment in which the system is built, developing 

organization, external technological solutions, flexibility or rigidity of requirements, 

and more. Their two-phase method is a means to design and describe a high-level 

architecture, and analyse and resolve architectural issues introduced by global 

factors. In particular, the second phase of their approach (Global Analysis phase), 

explicitly captures alternative high-level architectural strategies with decomposed 

design decisions and supporting rationale, and also provides traceability to the 

requirements.

In (Bruin and Van Vliet, 2003), the authors propose an architectural design 

method called Quality-Driven Architecture Composition (QAC) where the emphasis 

is on the reuse of architectural solutions. Their method is iterative and starts with the 

design of an architecture — based only on functional features -  and where variability 

points of the architecture are identified. These variability points are expected to cater 

to the non-functional requirements. The authors call this initial design the “reference 

architecture”. Next, the method focuses on the non-functional requirements by 

iteratively applying known design solutions (i.e., architectural and design patterns). 

The Feature-Set (FS) graph (which contains pre-existing knowledge about the 

domain — expressed as requirements) and the resultant design fragments (with their 

accompanying rationale, assumptions, etc.) that can satisfy the requirements drive 

this entire process. In (Farenhorst et al., 2007), the authors report on a case study 

that was conducted to explore practitioner’s needs for tool support that focuses on
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architectural knowledge. The study found that practitioner’s require a tool that 

provides “just-in-time” architectural knowledge, defined as access and delivery of the 

pertinent architectural knowledge to the right person at any given point in time. 

Given this broad requirement, the authors developed an architectural knowledge

sharing portal that stores various types of architectural knowledge and allows for 

near-instant retrieval through integrated codification techniques.

In (Stoll et al., 2008), the authors present the Influencing Factors method that 

guides architects in transitioning from high-level stakeholder concerns to preliminary 

architectural decisions. An “Influencing Factor” is any stakeholder concern that is 

considered to play an influential role on the architecture. These influencing factors 

can be derived from, to name a few, software quality attributes, business goals, 

market trends, project experience, etc. The method itself has three main steps: 

identification of influencing factors, which is accomplished through interviews and 

workshops with stakeholders; prioritization of the influencing factors; and lastly, the 

factors are analysed with respect to their impact on software quality attributes, which 

can then aid the architect to make preliminary architectural design decisions.

Cui, et al. (Cui et al., 2008) present an architectural design approach that is also 

aimed at transitioning from requirements to architecture through the automatic 

synthesis of candidate architectural solutions. The authors construct their approach 

on a meta-model that models issues (architecturally relevant requirements), 

architectural solutions, rationale, and architectural decisions and their relationships. 

The authors argue that these elements are the key notions for architecture design and 

the derivation of target architectures. The approach itself has four phases. In the first 

phase the system stakeholders elicit all possible issues (i.e., architecturally relevant 

requirements). In the second phase, the architects derive candidate architectures for 

each issue. The third phase involves the use of a formal grammar that facilitates the 

automatic synthesis of the candidate architectures developed in the previous phase. 

These architectural solutions are then presented to the architects in the final phase 

who can then decide to adopt or reject various aspects (or the entire architectures) 

and provide rationale for their decision which is then stored for future architectural 
development iterations.
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In (Schwanke 2005), Schwanke discusses the “Good Enough Architectural 

Requirements Process” (GEAR). This process is meant to further refine an initial set 

of requirements through architectural means. The process is based on three 

architectural requirements engineering approaches: model-driven requirements 

engineering (where elicited candidate-requirements are modelled as use cases, 

activity diagrams, state charts, etc.), quality attribute scenarios (used to elicit, 

document and prioritize stakeholder concerns), and global analysis (a general way of 

organizing information about the problem context that surrounds the architecture). 

The main purpose of the process is to show where the above approaches overlap and 

where they complement each other, providing insight into the identification of 

architectural requirements.

Rapanotti et al. (Rapanotti et al., 2004) propose the extension of “problem

frames” into “architecture frames”, which capture information about architectural 

styles and their interaction with the problem space. The benefit of this mechanism is 

that in introducing solution-oriented approaches early in development, one can refine 

problem analysis.

2.3 Architecture evolution
An area of research that is related to our work is architecture evolution, in 

particular from the viewpoint of methods, processes, and tools development. In the 

following subsection we highlight recent research in this area; later in Section 5, we 

discuss how our study can benefit architectural evolution research.

In (Keuler et al., 2008), the authors propose an approach for performing quality 

impact analysis on an SA. Their approach uses an aspect-oriented solution to 

automate integration of automated integration of specific concerns (e.g., 

performance) into architectural models, providing specific quality impact 

evaluations. This approach is structured in four phases, the first two which can be 

executed concurrently: (1) architectural styles are applied to create an initial style that 

is specific to the product architecture; and (2) quality models for the key quality 

drivers are created, along with their accompanying evaluation models. In the third 

phase, aspects are used to automatically connect the quality models to the existing 

architecture; and, in the fourth phase, quality specific views are extracted from the
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integrated architectural models and are assessed against the evaluation models from 

(2). The output of this approach is an identification of the specific parts of the 

architecture that are affecting the achievement of quality attributes. The architect can 

then use this information for planning changes to the architecture as appropriate.

In (LaMantia et al., 2008), the authors provide case study results from two 

architecture evolution projects examined over multiple releases where, in each 

project, architectural modeling was aided by design structure matrices and in 

accordance with Baldwin and Clark’s design rule theory (Baldwin and Clark, 2000). 

Design rule theory is a formal theory that explains how design rules (such as splitting 

or substituting modules) can be used to resolve interdependencies and create modular 

architectures by specifying the interface between modules. Design structure matrices 

were designed to support this theory, and are a means of formally modeling 

interactions between modules of engineered systems. In short, design structure matrix 

is a square matrix, in which each module corresponds both to a row and a column of 

the matrix. A cell is checked if and only if the design decision corresponding to its 

row depends on the design decision corresponding to the column. Based on the two 

case studies results, the authors argue that the use of design structure matrices and 

design rule theory improved the modifiability of the systems by (1) allowing for 

different concurrent levels of evolution in different modules with no negative 

consequence on system or development process, and, (2) facilitated the substitution 

of risky components with newly proposed components without substantial change to 

other parts of the system. The authors conclude that the functionality of design rule 

theory and design structure can be expanded to provide prescriptive and predictive 

power in software evolution. Specifically, that the technology could be used to 
proactively plan for system refactoring.

In (Shen and Madhavji, 2006), the authors propose a method for developing 

evolutionary scenarios that provide information concerning the impact different types 

of historical changes (e.g., those related to specific functionality, or those related to 

external concerns such as security, performance, availability, or those due to internal 

concerns such as maintainability, system defects, etc.) have had on the quality of 

software architectural elements of interest. Software maintainers, in particular
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software architects, can use this information when planning system changes. For 

example, if the maintainer receives a request for a performance modification, they 

can consult the scenarios to determine the past impact of performance modifications 

on the modifiability of the system. The scenarios could suggest, for example, that a 

major refactoring job was required for most past performance modifications, so the 

maintainer can then plan accordingly the resource and time allocation to complete the 

performance modification and any accompanying changes. The evolutionary 

scenarios focus on the different types of changes that have historically affected a 

given architectural element at different times in the evolution of the system. This 

affect is indicated by measures of the quality of the component, for example 

performance, fault-proneness, level of maintainability, etc. The scenarios also 

provide information on which component sets that have been affected by a given type 

of change at different times in the evolution of the system. To create these 

evolutionary scenarios, the Evolutionary Scenario Development Method was 

designed. This structured and automated (where possible) method is needed since 

the data sources on which the scenarios are constructed can be quite large. The 

possible inputs to the method can include: bug reports, CVS data, source code, 

change log fixes, architectural design documents and feature requests. Currently, the 

method and supporting technology facilitate building evolutionary scenarios that 

have a focus on maintainability and fault-proneness.

The above work describes research that is focused on performing “off-line” 

evolution, which basically assumes that the system can be shutdown to perform and 

integrate the new changes. Other recent research in the area of architecture evolution 

proposes technology for performing automated run-time architectural evolution.

In (Wagnier et al., 2007), the authors propose a framework for performing 

automated architectural evolution. Specifically, they detail FIESTA, a framework 

that aids architects in adding new functionality when performing architectural 

evolution. Their framework is generic in that it allows an architecture to be specified 

in any architectural description language. The framework functions by taking as 

input a formal specification of the new functionality to be added and the architect 

then decides where in the existing architecture the new functionality should be
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integrated. The system then automatically makes the transformation into a modified 

architecture. In another automated architectural evolution approach, described in 

(Morrison et al., 2007), the authors propose a formal architectural description 

language called Archware-ADL that facilitates active architectures, namely an 

architecture that can be evolved automatically during system run-time based on both 

internal system and external changes. The basic premise of the language is to 

formally model the architecture as part of the on-going computation, thereby 

allowing evolution during execution. Developers can express new components, 

connectors, constraints and evolutionary rules in this notation and initiate integration 

with the system. The system will then accordingly modify and monitor system, 

without any downtime. The authors also propose a set of support technologies to 

support this language for these evolutionary purposes.

2.4 Reflection on research

The previous three subsections discuss research in the primary areas that are 

related to our study: current knowledge pertaining to the relationship between RE and 

SA; technology aimed at transitioning from RE to SA; and, architecture evolution. In 

this subsection, we reflect on the current state of research in these areas.

As discussed In Section 2.1, as early as 1994, researchers discussed the 

importance of the role of an SA in RE (Shekeran, 1994). A few other works have 

commented on this issue since then (El Emam and Madhavji, 1995; Nuseibeh and 

Easterbrook, 2000), and also other knowledge-seeking empirical studies have been 

conducted in the area of the RE and SA relationship (Ferrari and Madhavji, 2008a; 

Ferrari and Madhavji, 2008b; Miller et al., 2009). However, beyond these works 

there has been, to our knowledge, sparse research conducted in the area of the role of 

an SA in RE. When looking at the other direction in the RE and SA relationship, i.e., 

transitioning from RE to SA, there is an abundance of research work conducted in 

this area, particularly with a focus on technological approaches. In the RE and SA 

interaction technological works described in Section 2.2, there is an implicit 

assumption that the development is starting from “scratch” i.e., there is no existing 

system that is being enhanced. In industrial practices, however, software
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development is largely conducted within evolutionary processes, (IEEE SWEBOK, 

2004). Conversely, the research work presented in Section 2.3 (Architecture 

Evolution) is focused on the improvement of the architecting process in the context 

of an evolving system. However, this work solely focused on architecting; the RE 

process is not explicitly considered during architectural evolution and is treated as a 

“black-box” process where requirements are simply input into the architecture 

evolutionary processes. Therefore, there is little to no consideration in this research 

for the RE -SA interaction as highlighted in the works from Sections 2.1 and 2.2.

Thus, there is a need to consider the current system explicitly when performing 

RE and SA. Furthermore, there is a lack of empirical evidence regarding the specific 

interaction effects between RE and SA. The empirical study presented in this paper 

is meant to present detailed quantitative findings on the effect of the presence of a 

current architecture when performing RE. Such findings can be fed back into 

research on state-of-the-art technologies (such as the work described in Sections 2.2 

to 2.3) to facilitate improvement in RE and SA evolutionary processes.

Though the importance of conducting empirical studies in software engineering 

(SE) has been recognised (Tichy et al., 1995; Wieringa and Heerkens, 2006), Shaw’s 

analysis (Shaw, 2003) of research papers submitted at a prominent 2002 SE 

conference suggests that only 12% were submitted in the category of “Design, 

evaluation, or analysis of a particular instance" and 0% in the category of 

“Feasibility study or exploration". In (Ferrari and Madhavji, 2008b), we presented 

our own analysis of published papers. In the fields of RE and SA, since the year 

2000, only approximately 15% of the published papers were in the above-mentioned 

categories, suggesting that studies such as the work described in this paper are 

currently rather rare. Our work is meant to help in filling this research gap.

3 The study

Exploratory studies are used when the “research looks for patterns, ideas, or 

hypotheses rather than research that tries to test or confirm hypotheses” (Vogt, 1993). 

The current research about architectural effects on RE decisions has been anecdotal 

(Nuseibeh, 2001; Shekaran, 1994a), and thus there is not much grounded theory on
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this subject. Our study fits the exploratory study characteristics. By having multiple 

cases, we are able to identify trends and patterns beyond a single-case study design.

The following sub-sections deal with: the research questions, participants, the 

requirements project, data collection, and threats to validity.

3.1 Research questions

Recall from the Introduction section that the intent of this case study was to 

investigate the role of an architecture in requirements decision-making. We thus have 

two pertinent research questions:

Q1: How does an architecture affect requirements decision-making?

This question deals with the impact the presence of an architecture has on 

decision-making in RE. This is accomplished by asking the participants of this 

study, for every decision that they make, how has the architecture affected that 

decision. By having a quantitative profile of various architectural effect types, we can 

investigate improvement to RE and software architecting technology with the help of 

this new information.

Q2: Which aspects o f the architecture affect requirements decisions?

This second question is intended to probe into the details of Ql. Whereas Q1 was 

aimed more generally at the effect of architecture on requirements decisions, this 

question aims to characterize the various architectural aspects that are found to have 

an effect. Through characterization of the different architectural aspects, we can 

begin to examine improvement opportunities during architecting that can optimize 

future requirements work on a system.

A purposeful tool was developed to gather the data for both the research 

questions Ql and Q2 above. The tool is discussed in Section 3.4.2.

3.2 Participants
The population of this study is requirements engineers working in the 

evolutionary phase (i.e., after the initial release) of a system. The participants of the 

study were 12 graduate and final-year undergraduate level computer science students
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at the University of Western Ontario who were randomly assigned to 6 teams, each 

composed of 2 members. The external validity threat from using students in studies 

is discussed in Section 3.5.1.

3.3 The RE project
In this study, the participants were given a set of tasks that involved upgrading 

the requirements for an existing banking system as represented by its architecture. 

Their work involved both creating new requirements and evolving old ones in order 

to create a new requirements set that satisfied the requested changes. For this 

purpose, they were given the pre-existing requirements and architecture documents 

(described in the following sub-sections) from the previous version of the system. 

Each team was given the same 4 requirements-tasks:

• Add Interac service to the existing system. It assumes that the transaction is 

conducted by the bank’s employee on behalf of the user. For other services, like 

Internet banking, this time could be different because of external factors like the 

user’s connection.

• Create a new wireless banking application which would provide features to the 

customers to carry out basic banking transactions through their cell phones or 

PDAs.

• Reduce the operational cost of the telephone banking system.

• Increase modifiability in the web banking system.

These tasks were chosen since they constituted a sizeable and complex RE project 

that would still be feasible within the constraints of a University course. We held 

numerous peer-review sessions with a total of six experts to validate these four tasks 

with respect to their appropriateness in giving a project that met both pedagogical 

and study needs. The requirements elicitation process and techniques followed are 

described in (Kotonya and Sommerville, 1998).

3.3.1 The pre-existing requirements document
The pre-existing requirements for the system were originally obtained from an

external source. These requirements were used to architect the previous version of
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the system (Ferrari and Madhavji, 2008b). The final requirements from that project 

are what were used as a baseline requirements set for enhancement in the 

requirements project on which the study was conducted. Thus, the study project 

essentially involved one iteration of an evolutionary cycle of the system’s 

requirements.

However, these requirements were re-validated by several experts for 

acceptability in the enhancement project (i.e., the four requirements tasks described 

earlier). There were approximately 80 requirements in the set, and supporting use 

cases and sequence diagrams for ten of the key functions of the system. The 

document structure followed the guidelines from (Kotonya and Sommerville, 1998). 

We list here a few example requirements in natural language to give their flavour:

• The system must complete a transaction in less than three seconds. It that the 

transaction is conducted by the bank’s employee on behalf o f the user. For other 

services, like Internet banking, this time could be different because o f external 

factors like the user's connection.

• A customer shall be able to deposit money using A TM into the indicated account 

by cheque or cash.

• A customer shall be provided access to Internet Banking sendees based on valid 

bank account number, user defined password, and access permissions set out for 

the bank customer.

3.3.2 The architectural document
The architectural document given to each of the RE teams resulted from the 

described previous study (Ferrari and Madhavji, 2008b). That study involved a set of 

16 software architecting teams in an academic setting, each of which worked to 

create a systems architecture, using the ADD method (Bass et al., 2003). The 

participants in that study created their architectures based on the requirements 

mentioned in Section 3.2.1. That study also involved identifying one particular 

architectural document as being of the highest quality based on an instrument 

designed for this purpose (Ferrari and Madhavji, 2008b).
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The architecture in question was documented in a 161-page document and 

included information on: quality attribute scenarios, tactics employed, module 

decomposition views, user/layer views, class views, component and connector views, 

deployment views, interface specification, work assignment view, sequence 

diagrams, state charts, and architectural rationale.

3.4 Data collection
In order to gather appropriate data to answer the two research questions, Q1 and 

Q2 (see Section 3.1), we first designed a meta-model for requirements decisions. 

Also, to simplify data collection and organization, we developed a software tool 

based on this meta-model. Furthermore, we had specific measures in place to ensure 

that quality data would be obtained from this study. These issues are described below 

in more detail.

3.4.1 The decision meta-model
The decision meta-model specifies the types of entities and relationships involved 

in the myriad of decisions underlying the requirements process. This meta-model, 

therefore, can guide data gathering. Since research on requirements decisions is 

limited, there was no established meta-model available which fitted the specific 

investigative needs of this study. Instead, a combination of elements from two 

different sources was used: Ramesh and Jarke’s Rationale Submodel (Ramesh and 

Jarke, 2001) and Wang and Madhavji’s Traceability Meta-model (Wang et al., 2005). 

The integrated meta-model is illustrated in Figure 5-1 and uses UML notation to 

depict the elements and links.
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Figure 5-1. A meta-model for RE decisions35

The meta-model captures the key notions of decisions, assumptions, requirements 

and solution approaches. It links various elements to the system through decisions. 

The input to the model is the Change Driver element. Change Driver is left 

intentionally abstract since it subsumes many possible drivers of change including 

(but not limited to) shifting business goals and needs, new contractual requirements, 

changes in the system’s environment, and end-user change requests. In our study, the 

change drivers were the four project tasks given to the teams (see Section 3.3).

One of the primary attributes that differentiates our meta-model from the earlier 

ones (Ramesh and Jarke, 2001; Wang et al., 2005) is that, in our model, requirements 

decisions relate only indirectly to requirements, issues and assumptions, through 

solution approaches. That is, in the ensuing instance-level model (or enactment of 

the model), each solution approach (i.e., a strategy to meet high level requirements) 

involves its own set of issues (e.g., cost implications, constraints, actions, etc.), 

requirements and assumptions (see Figure 5-2). These are only instantiated if the 

solution approach is accepted through a decision (and hence the “indirect” 

relationship). 35

35 Some terms to note: Requirements decision - denotes a chosen subset of high-level requirements (or 
solution strategies) amongst a set of alternatives in order to achieve a goal; Issue - an important topic 
or problem for debate or discussion relating to the acceptance/rejection of a solution approach; System 
-  computing system of interest; Rationale -  why a requirement is needed with respect to the goals it 
realizes; Argument -  statement supporting or refuting the solution approach; Domain knowledge -  the 
valid knowledge used to refer to an area of human endeavour (in this case the Banking domain); 
Assumption -  a statement which is considered true regarding any aspect of system development.
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For example, a decision concerning the reduction of operating costs in the 

telephone banking system might involve two solution approaches; reducing the 

number of human operators and/or reducing the available functionality of the system. 

Both solution approaches are feasible, and the RE team must choose (based on the 

associated issues) whether or not to implement either of the approaches. Note that it 

is possible to choose both or neither. Once a decision is made, rationale can be given 

describing why a particular decision was made (e.g., why a particular solution 

approach should be implemented over another solution approach).

Specific issues can apply to many solution approaches. Each requirement and 

assumption is associated to a single solution approach, which can then be traced to 

one or more decisions. Each requirement has its own rationale, underlying 

assumptions, relationships to other requirements, importance and other project- 

related attributes such as cost estimate and tasks. However, these are not elaborated 

in the meta-model for simplicity. It is around this model that the data collection 

tool (see Section 3.4.2) was designed.

For each of the elements that help to make up the meta-model, relevant 

information was captured by the tool. Each element had a unique set of attributes that 

were captured. The attribute that is of particular interest here is the role that the 

architecture played in requirements decision-making. The role of the architecture is 

denoted by whether it acted as an effect (constrained, enabled, influenced, or none) 

on the requirements decision, and the aspect of the architecture that had the effect. 

The System and Domain Knowledge elements are not directly implemented in the 

tool, but are meant to provide a context for the rest of the elements and how they fit 

with the overall system. 36 37

36 Note: though the RE team is not expected to do downstream developm en t work (design, coding, 
testing, etc.), it is evident here that their decision here is carving an implementation path through the 
“solution approach” they would choose, thereby denoting a problem-solution space relationship.
37 Prior to the start of the study, peer review with RE experts was used to validate the model’s quality.
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Decision

Figure 5-2. A sample decision tree from the meta-model

3.4.2 Data gathering tool
The data-gathering tool could best be described as a decision-centric 

requirements engineering tool. The subjects logged each decision they made into the 

tool. Each decision had a series of potential solution approaches associated with it, 

all of which were also logged (see Figure 5-3 for an example screenshot). 

Underlying the decisions captured, and the way the tool operated is the decision 

“meta model” described earlier (see Figure 5-1). The tool was implemented in Visual 

Basic 6 (VB6). It had the dual purpose of supporting the subjects’ work and of 

recording decision data relevant to this study.

Because of this semi-automated tool, data quality could be ensured in several 

ways that a manual tool (such as forms that subjects must fill out) could not. For 

example, the subjects could be required to fill in essential fields at the right time such 

as a requirement’s rationale when a requirement is logged so that there’s no danger 

that they might be left blank or, worse, filled in at a later time when the knowledge is 

no longer fresh. Other fields (e.g., the time of modification) could be generated
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automatically, thus, alleviating the subjects’ workload while guaranteeing correctness 
of the data.

Edit architectural information

List of decisions
What types of devices will be supported? a  :
How should we address the fact that users will inc 
What commands will be supported over the mobilr 
How will users be informed of software updates?
Will the mobile software be offered at a cost users 
How will communication between the customer's r 
We are deciding on performance requirements for 
We are deciding details on the deployment and d<
No alternatives. Just adding another requirement 
How will we structure the dedicated system to har 
How do we handle over-buffered requests to the I 
How will the interac system communicate and co-i 
Through what medium will communication occur b ! 
How will we structure the message between inters 
What type of messages can be sent between fron
How will security be ensured during communicatk
What performance requirements are necessary foi 
Where will data be stored for the interac system tc 
How will the internet banking system be set up to 
How will the internet banking system network be E 
How will the internet banking system integrate with 
What communications protocol(s) will be used to p 
What type of messages can be sent from the banl ~ 
What Performance Requirements are necessary fi 
Where will system logs for the internet banking sy: 
How will the internet banking system web server b 
How will communication security between custom 
What language/protocol will be used to develop t 
What internet protocol standard should we suppoi 
What system can we use to operate as a short ter

IMi

Impact of the system architecture.............—
Is the architecture acting as either a constraint or an 
enabler in your RE activity? y es

r  no
In which way does it act as a constraint? In which way does it act as an enabler?
______________ ________ _________ _
The architectural document focuses on 
SSL encryption and dial-up 
communication, which constrains us to 
use symmetric key encryption methods 
rather than public key methods combined 
with internet usage.

The architectural document suggests 
that we support encryption for message 
communications. In particular, it outlines 
SSL encryption for the ATM module, and 
we ported that to interac machine usage.

What would you have done differently if What would you have done differently if 
this constraint did not exist? this enabler did not exist?

We would have offered stronger 
encryption algorithms than just SSL so 
that messages cannot be reproduced.

We would have likely come up with the 
same conclusion.

Which specific elements of the Which specific elements of the 
architecture constrain this decision? architecture enable this decision?

O  T op Level System T actics a  

0  Top Level System Quality Attribute
□  1.0 Introduction
□  2.0 - Problem Definition
□  ATM - Element Catalog
□  X.2.2 - Main Transactions (pg. 40) —

□  Top Level System Tactics ¡§§| 
53 Top Level System Quality Attribute
□  1.0 Introduction
□  2.0 - Problem Definition
□  ATM - Element Catalog
□  X.2.2 - Main Transactions (pg. 40) —

M jSSL Encryption 'L ip

Note
Changes are saved automatically.

The left-side pane lists the decisions that have been logged in the system. The highlighted decision 
is the one being currently worked on. The right-side of the screen is split between two sets ol 
windows: the left-side is where architectural constraint information is logged, and the right-side is 
where architecture acting as an enabler information is logged.

Figure 5-3. A sample screen shot from the decisions data gathering tool.

3.4.3 Data collection
The data collection phase of this study took place over a span of two months. To 

help ensure the quality of the data, each team was given one hour a week to meet 

with a system “stakeholder” played by the course’s teaching assistant. During the 

meetings the subjects had the opportunity to ask questions about the company’s 

needs regarding the new system. Their work to date was reviewed priori to, and 

discussed at, these meetings to ensure that the subjects properly understood how to
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use the tool for logging data. Additionally, e-mail communication was used to answer 

questions regarding tool usage.

3.5 Threats to validity
Based on (Johnson and Christensan, 2004), three types of threats that might apply 

to the type of study conducted here were identified: External, Construct, and 

Conclusion validity. Because we are not attempting to demonstrate causality 

between variables, threats to internal validity are not a concern.

3.5.1 Threats to external validity
External validity refers to the degree to which the results of a study can be 

generalized across a population (Johnson and Christensan, 2004). Threats to external 

validity occur when researchers draw incorrect conclusions about the population 

based on the sample data (Creswell, 2003).

Population validity is the ability to generalize the study results from the sample to 

the population. Because exploratory studies on students have become so prevalent, 

there is much work done to explore the population validity of students. Specifically 

regarding SE related student-based studies in academic settings, important results 

have been found in several cases, e.g., in requirements triage (Runeson, 2003), code 

inspection (Carver et al., 2003), and in lead-time impact assessment (Host et al., 

2000). We do acknowledge the threat in generalizing to experienced requirements 

engineers and architects; however, there is no evidence suggesting that the results 

could not be generalizable to, at the very least, novice requirements engineers and 

architects in industry. Regardless, exploratory studies such as this are an important 

first step towards eventually solidifying a body of knowledge and providing the 

groundwork for future studies in wider contexts.

3.5.2 Threats to construct validity
Construct validity refers to the extent to which a measurement corresponds to 

theoretical concepts (constructs) concerning the phenomenon under study. In this 

study, the constructs (e.g., decisions) were operationalized through the decision meta

model (see Figure 5-1) and the tool that was built on this model. We held numerous 

peer-review sessions with a total of six experts to validate the meta-model and tool
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with respect to the theoretical constructs we wanted to investigate (see Section 3.4.1). 

Also, at no stage in the research process did we come across any instant of data or 

relationship that questioned the validity of the meta-model or the tool’s capability in 

capturing data pertaining to the meta-model. We are thus confident in the 

effectiveness of these artefacts for collecting data pertaining to the study’s constructs.

3.5.3 Threats to conclusion validity
Conclusion validity is the degree to which conclusions we make based on our 

findings are reasonable (Trochim, 2006). There are two accepted principles for 

improving conclusion validity (Trochim, 2006) that applied to our study: ensuring 

reliability of data measurements and proper implementation of study processes. For 

reliability of data measurements, we utilized a data-collection tool and weekly 

meetings to ensure tool was utilized correctly (see Section 3.4.3). Proper 

implementation was in-place by having a single researcher involved in the study 

design to perform the various research tasks. Additionally, we discuss the 

conclusions in the last section of the paper, and there we demonstrate that all our 

conclusions are rooted in the results, thereby maintaining conclusion validity.

4 Results

This section discusses the findings of the study. We describe first the manner in 

which the architecture affects requirements decisions (Ql). Then, we describe the 

quantitative findings related to the specific architectural aspects that affected the 

requirements decisions (Q2).

4.1 How an architecture affects requirements decision-making (Q1)
The six project teams recorded a total of 117 requirements decisions, all of which

related to the four requirements tasks assigned (described in Section 3.3). A 

significant portion of these decisions was affected in some way by the architecture. 

We describe the types of effects found in our study and their characteristics.

4.1.1 Types of architectural effects
We identified four types of architectural effects on requirements decisions from 

our data, shown in Table 5-1 (leftmost column): Enabled, Constrained, Influenced,
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and Neutral. An architectural effect is of type enabled if it makes a solution approach 

(more) feasible because of the current architectural configuration. Conversely, an 

architectural effect is of type constrained if it makes a solution approach less (or in-) 

feasible. An influenced is where the architectural effect altered a requirements 

decision without affecting the feasibility of its solution approaches. Finally, the 

neutral type of effect is one where there is no noticeable architectural effect of any 

kind.

Example 1 — enabled:
Decision: Implement a back up system for the Interac banking system.
Solution approach 1 (rejected): Introduce new web server which will be used as a 
backup for Interac transactions.
Solution approach 2 (accepted)'. Use Internet subsystem web server as a backup for 
Interac transactions.
Architectural enabler. The web server for Internet already exists. Queue will allow 
us to hold over 500 transactions and deal with all the requested transactions. Overall 
System Requirement 1.19 requires that the system should not fail in case of overload.

In this example the decision to use the existing Internet banking web server as a 

backup for the Interac sub-system was made easier because the team in question 

knew that existing performance and reliability requirements were sufficient to 

accommodate the extra workload. This is an example of being enabled by “Non

functional characteristics from a different sub-system” (an aspect of the architecture) 

than the one being worked upon.

Example 2 — constrained:
Decision: Establish communications protocol(s) that will be used for the wireless 
banking system.
Solution Approach 1 (accepted): Communication protocol should be GPRS (General 
Packet Radio Service).
Solution Approach 2 (rejected)'. Communication protocol shall be UMTS (Universal 
Mobile Telecommunications System).
Architectural constraint: Architecture document clearly stated a preference for 
GPRS; otherwise we would have chosen UMTS.

Here, the example is of a decision being constrained because the decision had 

already been made in the architectural document.
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Example 3 -- influenced:
Decision: Deploy the Interac system.
Solution Approach 1 (accepted): Develop the Interac system based on the conceptual 
model of system based on the current implementation of the ATM sub-system. 
Architectural influence: The architecture document defines functionality for the 
ATM system. The Interac system can be loosely based upon this conceptual model 
since the ATM system has been successfully implemented and maintained. 
Therefore, the presence of the ATM subsystem and how it was implemented 
influences the solution approach for the Interac system.

This is an example where the decision was not constrained or enabled; nothing 

about the ATM sub-system makes any of the proposed solution approaches more or 

less feasible. However, for the sake of consistency, the requirement engineers chose 

to model the new Interac system after the ATM system. This decision is an example 

of a decision being influenced by architectural patterns.

Example 4 -- Neutral:
Decision: Determine support for different languages in the mobile banking 
application.
Solution Approach 1 (rejected): English will be the only language supported.
Solution Approach 2 (accepted): English language as the default language of the 
system, with other languages to be downloaded and installed on request.
Solution Approach 3 (rejected): Provide support for many languages together with 
the application.
Architecture Effect (None): The mobile banking application has not been developed, 
and therefore the technical challenges associated with implementing language 
support on a wide-variety of mobile devices are considered outside the scope of the 
current overall system architecture.

Example 4 demonstrates a decision that was unrelated to the existing architecture. 

In this situation, the mobile banking application has not yet been implemented so the 

requirement engineers can consider various solution approaches for language support 

without considering the current architecture.

Note that the described effects are “technical” in nature. That is, our focus is on 

the “architectural basis” for deciding whether a requirement decision is enabled, 

constrained, influenced or neutral. In a given software project, there are other factors 

that also need to be considered in prioritising requirements and in release planning, 

e.g., implementation cost, revenue potential, and resource requirements. Irrespective 

of these factors, it is invaluable to know at elicitation-time what the architectural
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effects are on the decisions being made. Thus, for example, with revenue-potential 

being equal among two competitive decisions, an enabled decision would be more 

favourable than a constrained one.

4.1.2 Architectural impact characteristics
Of the 117 requirements decisions mentioned in Table 5-1, 69 of the decisions

were affected by the architecture. A decision could be affected by more than one 

architectural effect (for example, the choice of upgrading a database could be enabled 

by the current hardware configuration, but also be constrained by poor modifiability 

in the system components that would need to interact with the database). With 

reference to Table 5-1, in our study there were 5 such cases, so we had a total of 122 

“effect-counts”38. Out of the 69 affected decisions, an effect-count of 74 out of 122 

(61%) were affected by the architecture. This is a substantial number of effect

counts that were affected in some way. There is, more or less, an even-split between 

those “Enabled” and “Constrained”, which outnumber the category of “Influenced” 

by a factor of 5.
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Note that a given decision can be affected by more than one 
architectural aspect and therefore the number o f effect counts may not 
equal the number o f affected decisions.

Table 5-1. Characteristics of architectural impact on requirements 
decisions

38 The effect-count includes some decisions in more than one category of effects, thus the summation 
does not tally, or the % is more than 100.
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Equally important is to note that 48 (41%) of the requirements decisions were not 

affected by the architecture (i.e., type Neutral). Also, all instances of architectural 

effects on requirements decision-making in our study fit into the defined types of 

effects.

In previous literature (Shekaran, 1994b), only the “constraint” effect-type was 

identified. In Section 4.1.1, we identify additional types of effects. Also, in this 

section, we give quantitative characteristics of the various effect-types. However, it 

should be noted that different application systems are expected to have different 

quantitative values because these values depend on factors specific to the 

development of individual products or systems. Still, it is a subject for future studies 

as to whether there are approximate quantitative ranges for different effect-types 

across different applications and application-domains.

4.2 Architectural aspects affecting requirements decisions (Q2)

The types and quantitative characterization (see Table 5-1) of architectural 

effects on requirements decision-making (Ql) is complemented by the findings of the 

different aspects of the architecture that had impact on requirements decisions (Q2).

Table 5-1 shows, on the top, 9 architectural aspects that were found to affect 

requirements decisions in the project. These aspects are:

1. Existing hardware: Decisions that were affected by the existing hardware in the 

system.

2. Non-functional characteristics (from the same sub-systemf Decisions that were 

affected by non-functional characteristics of the same sub-system with which the 

decision was concerned.

3. Non-functional characteristics (from a different subsystem): Decisions that were 

affected by non-functional characteristics from a different sub-system than the 

one with which the decision was concerned.

4. Reusability o f modules: Decisions that were affected by the possibility of reusing 
existing modules.

5. Architectural patterns: Decisions that were affected by the choice of architectural 
patterns already implemented.
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6. Modifiability: Decisions affected by existing features that were known to be 

easily modifiable.

7. Structural features'. Decisions that were affected by structural features of the 

existing SA.

8. Decisions already made: Decisions that were affected when it was realized that 

the decision in question had already been made in the existing architecture.

9. Communications: Decisions that were affected by the existing choice of 

communications protocols.

Below, we analyze architectural aspects against effect types and against the 

project groups.

4.2.1 Architectural aspects across effect types
Table 5-1 depicts the role of the architectural aspects (top row) in relation to the

type of effects (leftmost column) on the total set of “effect-counts” (122) recorded by 
the project teams.

Though the category influenced occurred less frequently than enabled and 

constrained, they are still noteworthy. In our study, influenced usually denoted that 

solution approach used in another part of the system was being used to solve the 

problem at hand. For example, an architectural pattern might be chosen because it 

has been implemented successfully elsewhere in the system.

While this may suggest a movement towards a more homogonous architecture, an 

aspect acting as an influence on future RE decisions may be less foreseeable (by a 

software architect) than those acting as types enabled and constrained. In particular, 

whereas enabled, and constrained are related to creating requirements which are 

consistent with the established architecture and previously made decisions, 

influenced involve implementing previous (or similar) decisions in a new context 

(i.e., a different part of the system than was originally intended). The risk associated 

with this, however, is not clear. Thus, if an aspect is known to be of type influenced, 

the architect should be aware that design decisions involving that aspect may have 

ramifications in other parts of the system that may not be obvious. Care should 

therefore be taken when architecting these aspects.
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4.2.2 Architectural aspects across project groups
Table 5-2 shows the number of requirements decisions that were affected by each

architectural aspect and for each of the six project teams. The table shows that the 

architectural aspect “NF characteristics of a different sub-system” affected most 

number of decisions (20; or 17% of 117 decisions; or 29% of 69 affected decisions) 

Besides this, all the remaining architectural aspects affected between 4% and 

13% of the affected decisions (see last row in Table 5-2). Also, we see that in Table

5-1, the aspect “NF characteristics (different sub-system)” has the greatest % of 

“enabled” requirements decisions (16 of 36, or 44%).
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Table 5-2. The relationship between architectural aspects and project teams.

8

We do see some discrepancies, however. While “NF characteristics (different sub

systems)” was the most active architectural aspect (see Table 5-2), the instances of 

affected requirements decisions came from groups 3, 4 and 5. One explanation for 

this phenomenon could be that this particular aspect depended on how much effort 

the subjects put into understanding sub-systems that were non-local to those in their 

focus of attention. Indeed, while acquiring an understanding of the other sub-systems
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in the architecture did actually affect the decision making of groups 3, 4 and 5, it is 

possible that the other groups simply did not focus their attention on seemingly 

unrelated sections of the architectural documentation. We do not have data for this 

analysis, and so future empirical studies could help explain this phenomenon.

Despite this variance between teams, we include all data points since this a 

multiple case study. However, including this data results in 59% of requirements 

decisions being affected by architectural aspects (as seen in Table 5-2, last column, 

3rd row from the bottom), while their exclusion would result in 52% of the decisions 

being affected, so there is not much difference. Thus, we will simply state that the 

architectural aspects listed affected approximately 50% of the requirements 

decisions.

5 Implications

There are a number of implications for SA and RE of the findings from our

study:

Planning and risk management: The analysis and categorisation, during the RE 

process, of architectural effects on RE decisions (see Section 4.1.1.) could help 

architects to separate the more easily implementable, enabled, requirements from the 

more difficult to implement (or compromised), constrained, requirements. This 

separation of concerns could be useful from the point of view of project planning 

(e.g., time-to-implement, resource allocation, requirements prioritisation and 

scheduling), risk management (e.g., implementability) (Boehm, 1988), and product 

evolution (e.g., new feature planning).

For example, one group in the dataset elicited high-level requirements to reduce 

the cost of telephone operators in telephone banking by introducing an automatic 

speech recognition system. These requirements were “enabled” in two principle 

ways: one, by readily available COTS systems/components from the marketplace and 

two, by the modifiability of the current implementation of the telephone sub-system. 

The same group elicited high-level requirements for the mobile banking application, 

specifically that the existing infrastructure (i.e., servers and their throughput) could 

be used to handle the mobile banking application transaction load. However, these
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requirements were assessed as “constrained” because of the existing performance 

demands from the other major types of access to the system (e.g., Internet, teller, 

etc.). So, for planning purposes, the management had to decide: Should I upgrade 

the SA in order to implement the requirements for the mobile application, which has 

a potentially high positive impact on the customer's point of view? Or, should I 

implement instead the requirements for the automated phone system, where these are 

less desirable from the customer point of view but less-time consuming to implement 

and hence can lead to releasing the system faster and thus start saving money by 

removing the human telephone operators?

RE and SA technology: Similarly, this separation of concerns of architectural effects 

could help researchers and tool developers to enrich the requirements elicitation and 

analysis tools (e.g., DOORS, Requisite pro, i* (Liu and Yu, 2001), etc.) which, in 

turn, could enrich SA tools (e.g., ArchE (Diaz-Pace et al., 2008), Software Architect, 

etc.) in making judicious choices of architectural tactics and patterns to satisfy 

quality requirements. Currently, RE and SA tools do not consider the presence of an 

existing system when performing further RE and SA work, and therefore do not 

facilitate the presentation or analysis of information describing the RE and SA 

interaction effects (such as the information in Table 5-1). Integrating this 

information, and subsequent analysis support, into RE and SA interaction tools could 

then enable users to make decisions based on information that is currently left 
implicit.

Likewise, this separation of concerns can help in implementing, automatic, 

dialogue-triggering mechanisms in RE-to-SA workflow processes (Georgakopoulos 

et ah, 1995), especially for the “constraint” category of requirements. That is, the RE 

and SA agents can be notified automatically to resolve the tradeoffs between 

implementing a constrained decision (at the expense of customer dissatisfaction) and 

implementing an unconstrained decision (at the expense of architectural 
modifications).
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Architectural evolution: Historical trends of aggregate quantitative data (as in Table 

5-1) can aid in SA management and in opportunistic or restrained RE practice. For 

example, if the trend shows that too many RE decisions are constrained by the 

specific aspects of the legacy SA (e.g., 8, 5 or 6 in the “Constrained ” row in Table 

5-1) then this might call for: (i) examination of SA practices and developing 

checklists to ensure that architects are not inadvertently restricting potential future 

business goals; (ii) restructuring39 the SA to align it with business goals; or (iii) 

restraining the RE process (from attempting to integrate unconstrained requirements 

into the constraining parts of the SA) until such time that the architecture has been 

adequately restructured. Conversely, trends of too many enabled decisions (e.g., 16 in 

the “Enabled” row for “NF characteristics (different sub-system)” in Table 5-1) 

could possibly indicate that the enabling aspects of the SA are, at least, 

technologically supportive of the new ventures and can unleash RE to be more 

opportunistic. This type of analysis and questioning is not a part of architecting 

methods (e.g., ADD (Bass et al., 2003), GRL (Liu and Yu, 2001), and CBSP (Egyed 

et al., 2001)) or architecture evolution approaches (e.g., ArchWare (Morrison et al., 

2007), ESDM (Shen and Madhavji, 2006), FIESTA (Wagnier et al., 2007)), and, 

doing so, could allow for improved architectural evolution support.

Tighter SA-RE integration: With over 50% of the RE decisions being affected by an 

SA (see Table 5-2), and many of these (29% or 20/69) originating from the aspect 

“NF characteristics of a different subsystem”, this is strong empirical evidence in 

favour of integrating software architecting and RE processes more tightly (Nuseibeh, 

2001). Specifically, the SA agents could work with the RE agents during 

requirements elicitation, negotiation and feasibility analysis in order to provide 

critical insight on the technical feasibility of the elicited requirements in terms of 

them being constrained or enabled from a different sub-system as opposed to the 

subsystem they are working on.

39 SA restructuring can include such tasks as: capability analysis (of the SA as to whether it can cope 
with stakeholder scenarios), tactics and pattern choices, technology assessment, deployment strategies, 
and others.
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Therefore, a hypothesis emerges (see Section 6) that, in order to reduce the 

amount of backtracking and requirements-rework (and also reduce the associated 

project costs), it is important that the architects provide “live” feedback to the RE 

agents on these potential system-wide “constraints” and “enablers”.

However, due to resource constraints in RE and SA processes of a software 

project (for example, in some projects it may not be possible for requirements 

engineers to have extensive interaction with the architects), at the very least 

requirements engineers could analyse different sub-systems than the one they are 

working on to possibly discover more local requirements decisions that could be 

enabled. If this is so, requirements engineers could be trained, and appropriate tools 

developed, specifically for this circumspective analysis in order to yield more 

enabled solutions for better service and satisfaction to the end user. As mentioned in 

the introduction section of this paper, the current industry practice does not align with 

this recommendation.

RE to SA feed-forward process: Iterative development approaches (such as RUP 

[Kruchten, 2001] and Spiral [Boehm, 1988]) tend to promote that significant chunks 

of requirements are validated and prioritised preceding the development effort. While 

this may be quite appropriate in many situations, there is room to be agile in some 

situations across RE-architecting processes by introducing “feed-forward” processes 

from RE to SA. In particular, requirements engineers can package critical 

information and deliver this to the architects prior to the delivery of the validated 

new requirements. For example, in our case-study projects the requirements 

engineers could have packaged information about the four architectural categories of 

high impact (see Section 4.1.2: existing hardware, NF standards (same sub-system), 

NF characteristics (different sub-system), and architectural patterns), the specific 

requirement decisions that are affected, and how they were affected (e.g., 

constrained, enabled or influenced). This package of information, if made available 

to the architects “ahead of time”, could facilitate groundwork for specific 

architectural enhancements, and change, while the rest of new requirements are still 

being elicited in the RE process. We note that agile practices (Larman, 2003) do not
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explicitly promote such feed-forward processes from user stories to system 

development.

Increased middleware: The neutral type of effect has a significant amount of cases 

(approx. 40%, see Table 5-1). Neutral cases actually mean that the developers will 

likely have to “wire in” the design and code for a new requirement into the system 

much more deeply than in the “enabled” cases where, for example, the groundwork 

would already have been prepared in the existing architecture for the new 

requirements to be implemented. Deeper the “wiring in”, higher the software costs in 

general and more arduous the development. Thus, some of the “wiring-in” work 

could possibly be reduced in the future by increased “middleware” strategy in the 

architectural design.

Analysis: So, as we see above, there are quite a few implications of determining 

architectural effects on requirements decisions: on early software development 

practices, methods and tools. The identified implications are threads for further 

empirical work to ground them in development processes.

6 Future empirical work

One purpose of an exploratory study is to lay a foundation for possible future work on the theme 

of the research so as to build an appropriate body of knowledge (IEEE SWEBOK, 2004). In a sense, 

the exploratory study is conducted in a “bottom-up” manner, where the research question acts as a 

guide to collecting a wide range of data about the research topic, and the findings are discovered from 

the exploratory analysis of this data. In an effort to lay such a foundation, it is important to identify 

any emergent hypotheses or investigative questions from this research. From such hypotheses, it 

would then be possible to conduct, in a “top-down” manner, quantitative studies that focus on specific 

research issues. The main purpose of conducting a “top-down” study is to statistically test the 

hypothesis to lend quantitative support to the topic being investigated.

From the results of our study and their implications, below we describe the 

following four emergent hypotheses that could be tested in future studies and how 
they could be tested:
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Hypothesis 1: I f  the architects provide “live" feedback to the RE agents on potential 

system-wide constraints and enablers, then the amount o f requirements-rework will 
be reduced.

See Section 5: Tighter SA-RE integration section for a more detailed discussion 

of the background of this hypothesis. To test this hypothesis, we would need to 

measure the amount of requirements rework between two different groups of 

Software Engineers. This measurement could include the amount of requirements- 

rework needed to be done, and also the extent of the rework (i.e., effort and time). 

One of these study groups would have requirements engineers and architects who are 

working together in an integrated manner to develop the requirements and 

architecture; the other type of group would not have the requirements engineers and 

architects working as closely integrated. For this hypothesis, the independent 

variable would be the requirements and architecting process used, and the dependent 

variable is the time and effort expended performing requirements-rework.

Hypothesis 2: Non-functional (NF) characteristics o f a non-local sub-system 

significantly affect (enable or constrain) requirements for the local sub-system being 
worked on.

In Table 5-1, we see that NF characteristics of a different sub-system than the 

one being worked upon affected requirements more than any other aspect. This 

could have potentially important implications on RE and SA technology as discussed 

in Section 5. Despite this importance, prior to investigating into new technologies, 

there is a need to replicate this study in different domains and contexts in order to 

determine generalizability.

To test this hypothesis, therefore, two types of RE and SA groups are needed 

for the study: one that is given the entire architecture including information regarding 

the NF-characteristics of all the subsystems; whereas, the other group does not 

receive this NF information. Both groups would elicit requirements for a single 

subsystem and, as in this study, architectural aspect analysis is performed and the
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number of impacted requirements is logged and statistically compared. The 

independent variable would then be the presence/absence of NF-characteristic 

information of non-local subsystems, and the dependent variable would be the 

reported number of impacted requirements.

Hypothesis 3: If  the history o f interaction effects between SA and RE is used 

effectively, then the time/effort spent performing evolutionary work in requirements 

and architecture processes will decrease.

As discussed in Section 5, maintaining and using the history of information 

presented in Table 5-1 could be useful for evolutionary work in the requirements and 

architecting processes. This hypothesis aims at providing scientific evidence as to 

whether or not having such information is useful and, if so, to what extent.

A controlled experiment involving two study groups could be used to test this 

hypothesis. Development teams expected to enhance a system (both requirements 

and architecture) would be used. One type of study group would be given the 

historical interaction effect information from the past revisions of the system; 

whereas, the other group would not receive this information. Process data such as 

effort and time would be gathered and then analysed to determine any statistically 

significant differences between the two types of groups. The independent variable is 

the historical information, and the dependent variable is the time and effort spent in 

performing an evolutionary phase in an RE and SA project.

Hypothesis 4: Architectural communication protocols used in the current system 
have a significant effect on new requirements.

In Table 5-1 in Section 4.2, communication protocols used in the architecture 

have an effect on new requirements. Despite the finding that the effect is mostly 

constrained, this is more likely due to a function of our product circumstances, thus 

we generalize this hypothesis for all the types of effects. Establishing further
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evidence of this claim can lead to improved RE and SA technology where this issue 

is more explicitly considered in those processes.

To test this hypothesis, a study with two types of RE groups enhancing the 

requirements for an existing system is needed. One type of group will be given an 

existing system architecture with fully realized communication protocols. The other 

type of group would be given an existing architecture, however, the communication 

protocols would be undetermined. The two types of groups would provide data on 

the architectural aspects affecting the requirements they are eliciting, and in the end 

the number of requirements affected by communication protocols would be 

statistically compared to determine evidence to support or refute the hypothesis. The 

independent variable is the realization of communication protocols, and the 

dependent variable would be the reported number of affected requirements.

7 Conclusions

The role of an existing systems architecture (SA) in requirements engineering 

(RE) was recognised as important over a decade ago (Shekaran, 1994a). However, to 

our knowledge, this issue has not been scientifically explored. This paper describes 

an exploratory study on this question. This study involved six RE teams eliciting 

requirements to enhance an existing system, and collecting and analyzing data from 

their in-project decisions that they made. Collection of data was facilitated by a tool 

that allowed the teams to not only do their requirements work but also capture study- 

specific data. This tool was based on a requirements decision meta-model (see 

Figure 5-1) that was designed and validated for use in this study.

From the findings of the study, we conclude that:

1. There exist at least four types of architectural effects on RE decisions (see 

Section 4.1.1): as an enabler (30%), as a constraint (25%), as an influence (6%), 

and as neutral (39%). This means that approximately 60% of the RE-decisions 

were affected (or approximately 40% were not affected) by the SA. These 

characteristics add significant new knowledge to the literature (Shekaran, 1994b) 

where the existence of the “constraint” effect was suspected but the different 

types of effects and their extent were not known.
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2. Also, different aspects of the SA can have different degrees of effects on RE 

decisions (see Section 4.1.2). From our study, there were nine different aspects of 

which “non-functional characteristics (of sub-systems other than the one the 

analyst is working on for eliciting new requirements)” had the most impact on the 

affected RE decisions: approximately 29%.

There are several implications of the findings on: Planning and Risk 

management; RE and SA technology; Architecture evolution; SA and RE processes; 

and Middleware. These are discussed in Section 5.

Apart from the general need to replicate empirical studies, several notable 

suggestions for future empirical work would be to conduct studies based on the 

following four emergent hypotheses: (1) architects providing "live” feedback to RE 

agents on system-wide constraints and enables will reduce amount o f requirements- 

rework, (2) Nonfunctional characteristics o f non-local sub-system significantly 

affect requirements for the local sub-system being worked on, (3) time/effort spent 

performing evolutionary work in requirements and architecting processes will 

decrease i f  history o f interaction effects between SA and RE is used effectively, and 

(4) architectural communication protocols used in a current system has a significant 
effect on new requirements.

Since ours was only one exploratory-based study in a particular context, it would 

be a mistake to generalise these results verbatim to other contexts (Zave, 1997). 

However, this does not diminish the importance of the findings described in this 

paper. Instead, we encourage the readers to view this study as an important first step 

for establishing grounded theory for future studies in this area.

Acknowledgement
This work was, in part, supported by Natural Science and Engineering Research 

Council (NSERC) of Canada.

References
Baldwin, C. Y. and Clark, K. B., 2000. Design Rules, Vol. 1: The Power of 

Modularity. The MIT Press.



175

Bass, L., Clements, P., Kazman, R., 2003. Software Architecture in Practice, 
Addison-Wesley.

Boehm, B., 1988. A spiral model of software development and enhancement. IEEE 
Comp. Vol. 21, Iss. 5, pp. 61-72.

B. Boehm and V. Basili, 2001. Software Defect Reduction Top 10 List. IEEE 
Computer, vol. 34(1): 135-137, January 2001.

Hans de Bruin, Hans van Vliet, 2003. Quality-driven software architecture 
composition. Journal of Systems and Software 66(3): 269-284.

Carver, J.; Shull, F.; Basili, V., 2003. Observational Studies to Accelerate Process 
Experience in Classroom Studies: An Evaluation. Proc. of the 2003 Int. Symp. on 
Emp. Software Engineering (ISESE ‘03), Rome, Italy, pp. 72-79.

Creswell, J. W., 2003. Research Design: Qualitative, Quantitative, and Mixed 
Methods Approaches. Thousand Oaks, CA: Sage Publications.

Xiaofeng Cui; Yanchun Sun; Hong Mei, 2008. Towards Automated Solution 
Synthesis and Rationale Capture in Decision-Centric Architecture Design. Seventh 
Working IEEE/IFIP Conference on Software Architecture, Feb. 2008 Page(s): 221 
-230.

Diaz-Pace, Andres; Kim, Hyunwoo; Bass, Len; Bianco, Philip; & Bachmann, Felix, 
2008. Integrating Quality Attribute Reasoning Frameworks in the ArchE Design 
Assistant. Proceedings QoSA’08, 4th International Conference on the Quality of 
Software Architecture. University of Karlsruhe (TH), Germany. October 14-17.

Egyed, A., Grunbacher, P., Medvidovic, N., 2001. Refinement and Evolution Issues 
in Bridging Requirements and Architecture -  The CBSP Approach. First 
International Workshop from Software Requirements to Architectures (STRAW 
‘01), Toronto, Canada, June, 2001.

El Emam, K.; Madhavji, N. H., 1995. Measuring the Success of Requirements 
Engineering Processes. Proc. of the 2nd IEEE International Symposium on RE, 
York, England, March 1995, pp. 204-211.

Rik Farenhorst, Patricia Lago and Hans Van Vliet, 2007. EAGLE: Effective Tool 
Support for Sharing Architectural Knowledge. International Journal of Cooperative 
Information Systems, Vol. 16, Nos. 3 & 4, pp. 413-437.

Ferrari, R. and Madhavji, N. H., 2008a. Architecting-problems rooted in
requirements. Information and Software Technology, Volume 50, Issue 1-2 
(January 2008), Pages 53-66.



176

Ferrari, R. and Madhavji, N. FL, 2008b. Software architecting without requirements 
knowledge and experience: What are the repercussions?. Journal of Systems and 
Software, Volume 81 , Issue 9 (September 2008), Pages 1470-1490.

Garlan, D., 1994. The Role of Software Architecture in Requirements Engineering. 
Proceedings of the First International Conference on Requirements Engineering, 
April, 1994, pp. 240.

Georgakopoulos, D., Homick, M. and Amit Sheth, 1995. An overview of workflow 
management: From process modeling to workflow automation infrastructure. 
Journal of Distributed and Parallel Databases, Volume 3, Number 2, April 1995, 
pp. 119-153.

C. Hofmeister, R. Nord, D. Soni, 2005. Global Analysis: Moving from Software 
Requirements Specification to Structural Views of the Software Architecture. 
IEEE Proceedings Software, Vol. 152, Issue 4, pp. 187-197, August 2005.

M. Host, B. Regnell, C. Wohlin, 2000. Using students as subjects -  a comparative 
study of students and professionals in lead-time impact assessment. Empirical 
Software Engineering, pp. 201-214.

Guide to the Software Engineering Body of Knowledge: 2004 Version. IEEE and 
IEEE Computer Society project, <http://www.swebok.org/>.

Jackson, M., 1994. The Role of Architecture in Requirements Engineering. 
Proceedings of the First International Conference on Requirements Engineering, 
April, 1994, pp. 241.

Johnson, R. B., and Christensan, L., 2004. Educational Research: Quantitative, 
Qualitative and Mixed Approaches. Allyn & Bacon; 2 edition.

Kazman, R., Klein, M., Clements, P., 2000. ATAM: Method for Architecture 
Evaluation. Technical Report, Software Engineering Institute, Carnegie Melon 
University, CMU/SEI-2000-TR-004 ESC-TR-2000-004.

Thorsten Keuler, Dirk Muthig, Takayuki Uchida, 2008. Efficient Quality Impact 
Analyses for Iterative Architecture Construction, pp. 19-28, Seventh Working 
IEEE/IFIP Conference on Software Architecture (WICSA 2008).

Kotonya, G.; Sommerville, I., 1998. Requirements Engineering. John Wiley & Sons 
Ltd.

Kozaczynski, W., 2002. Requirements, Architectures and Risks. Proceedings of the 
IEEE Joint International Conference on Requirements Engineering, Essen, 
Germany, pp. 6-7.

http://www.swebok.org/


177

Kruchten, P., 2001. The Rational Unified Process: An Introduction. Second Edition. 
Addison-Wesley, Boston.

Matthew J. LaMantia, Yuanfang Cai, Alan MacCormack, John Rusnak, 2008. 
Analyzing the Evolution of Large-Scale Software Systems Using Design Structure 
Matrices and Design Rule Theory: Two Exploratory Cases, pp.83-92, Seventh 
Working IEEE/IFIP Conference on Software Architecture (WICSA 2008).

Larman, Craig, 2003. Agile and Iterative Development: A Manager's Guide. 
Addison-Wesley Professional, August 21.

Liu, L. and Yu, Eric, 2001. From Requirements to Architectural Design -  Using 
Goals and Scenarios. 2nd Int. Workshop from Soft. Reqts. to Arch. (STRAW ‘01), 
Toronto, Canada.

Miller, J., Ferrari, R., Madhavji N. H., 2008. Architectural Effects on Requirements 
Decisions: An Exploratory Study. 7th Working IEEE/IFIP Conference on Software 
Architecture (WICSA ’08), Vancouver, Canada, pp. 231-240.

Miller, J., Ferrari, R., Madhavji, N. H., 2009. Characteristics of New Requirements 
in the Presence or Absence of an Existing System Architecture. Proceedings of the 
17th IEEE Conference on Requirements Engineering (RE ‘09), Atlanta, United 
States, August 2009.

Ron Morrison, Dharini Balasubramaniam, Flavio Oquendo, Brian Warboys, and R. 
Mark Greenwood, 2007. FIESTA: A Generic Framework for Integrating New 
Functionalities into Software Architectures, First European Conference on 
Software Architecture (ECSA 2007), LNCS 4758, pp. 2 -10 .

Nuseibeh, B., 2001. Weaving Together Requirements and Architectures. IEEE 
Comp., March 2001, 34(3): 115-117.

Nuseibeh, B.; Easterbrook, S., 2000. Requirements engineering: a roadmap. 
Proceedings of the Conference on the Future of Software Engineering, ACM Press, 
pp. 35-46.

Ramesh, B. and Jarke, M., 2001. Toward Reference Models for Requirements 
Traceability. IEEE Transactions on Software Engineering, Volume 2, Issue 1, pp. 
58-93, January 2001.

Rapanotti, L., Hall, G., Jackson, M., Nuseibeh, B., 2004. Architecture-driven 
problem decomposition. In: Proceedings of the 12th IEEE International 
Requirements Engineering Conference (RE 2004), Kyoto, Japan, pp. 80-89.

Runeson, P., 2003. Using Students as Experiment Subjects -  An Analysis on 
Graduate and Freshman Student Data. EASE’03 -  Proc. 7th Int. Conf. on Empirical 
Assessment & Evaluation in Software Engineering, April, 2003, pp.95-102.



178

Schwanke, R., 2005. GEAR: a good enough architectural requirements process. In: 
5th Working IEEE/IFIP Conference on Software Architecture (WICSA 05), 
Pittsburgh, USA, pp. 57-66.

Shaw, M., 2003. Writing good software engineering research papers: minitutorial. In: 
Proceedings of the 25th International Conference on Software Engineering (ICSE 
2003), Portland, USA, Tutorial Session, pp. 726-736.

Shekaran, C., 1994a. Panel Overview: The Role of Software Architecture in 
Requirements Engineering. Proceedings Of the First International Conference on 
Requirements Engineering, April, 1994, pp. 239.

Shekaran, C., 1994b. The Role of Software Architecture in Requirements 
Engineering. Proceedings of the First International Conference on Requirements 
Engineering, April, 1994, pp. 245.

Shen, Y., and Madhavji, N. H., 2005. ESDM -  A Method for Developing 
Evolutionary Scenarios for Analysing the Impact of Historical Changes on 
Architectural Elements. 22nd IEEE International Conference on Software 
Maintenance (ICSM'06), pp. 45-54.

Stoll, P.; Wall, A.; Norstrom, C., 2008. Guiding Architectural Decisions with the 
Influencing Factors Method. Seventh Working IEEE/IFIP Conference on Software 
Architecture, Feb. 2008 Page(s):179 -  188.

Software Requirements to Architectures Workshop (STRAW), 2001. International 
Conference on Software Engineering (ICSE) workshop, June 2001, Toronto, 
Canada.

Software Requirements to Architectures Workshop (STRAW), 2003. International 
Conference on Software Engineering (ICSE) workshop, May 2003, Portland, USA.

Tichy, W.F., Lukowicz, Prechelt, L., Ernst, A., 1995. Experimental evaluation in 
computer science: a quantitative study. Journal of Systems and Software (January), 
1-18.

Trochim, W.„ 2006. Research Methods Knowledge Base. This is available at 
http://www.socialresearchmethods.net/kb/desisn.php. Last accessed January 2009.

Vogt, P., 1993. Dictionary o f Statistics and Methodology: A Nontechnical Guide for 
the Social Sciences. Sage Publications, California, US.

Waignier, G., Anne-Franc DLoise Le Meur, and Laurence Duchien, 2007. FIESTA: 
A Generic Framework for Integrating New Functionalities into Software 
Architectures. First European Conference on Software Architecture (ECSA 2007), 
LNCS 4758, pp. 76-91.

http://www.socialresearchmethods.net/kb/desisn.phv


179

Wang, Z, Sherdil, K., Madhavji, N., 2005. ACCA: An Architecture-centric Concern 
Analysis Method. IEEE Working International Conference on Software 
Architecture (WICSA), Pittsburgh, USA, November 2005, pp. 99-108.

Wieringa, R.J., Heerkens, J., 2006. The methodological soundness of requirements 
engineering papers: a conceptual framework and two case studies. Requirements 
Engineering Journal 11, 295-307.

Zave, P., 1997. Classification of Research Efforts in Requirements Engineering. 
ACM Computing Surveys, Vol. 29, No. 4, pp.315-321.



180

Chapter 6

Requirements Engineering Decisions in the 
Context of an Existing Architecture: A 
Case Study of a Prototypical Project40

1 Introduction

In (Miller et al., 2008), we describe a laboratory-scale study on the effects of 

the existing systems architecture (SA) on new requirements engineering (RE) 

decisions -  those typically in the context of an evolving system. The basic issue of 

interest in that study was whether the RE decisions are influenced in any way if the 

existing systems architecture is taken into account in the RE process. This issue is 

important because RE does take place in the context of existing SA in 60-80% of 

software development (Huff, 1990), if not more, and yet there are virtually no 

scientific studies on this matter and the Software Engineering Body of Knowledge 

(SWEBOK) (IEEE SWEBOK, 2004) or the RE standard (IEEE Std., 1998) are 

practically devoid of relevant advice.

For example, what proportion of the newly elicited requirements is likely to 

be constrained by the system’s architecture? Or, what is the time and effort impact of 

SA-constrained requirements, as opposed to non-constrained requirements, on 

downstream development?

Not knowing answers to such questions implies: (i) RE practice is ad hoc in 

terms of how to treat SA when engineering requirements; (ii) pedagogical literature is 

silent on this issue and thus learning and training is held back; and (iii) research 

advances on RE methods, tools and processes are oblivious of the “what, why and 

wherefore” of SA in RE which, in turn, is holding back to some extent learning, 

training and disciplined practice of RE.

40 A version of this chapter was published in (Ferrari et al., 2010).
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As a matter of fact, the issue of the role of a SA in RE has been brewing in 

the RE research community since the mid-90s (Jackson, 1994; Nuseibeh and 

Easterbrook, 2000), albeit with little progress to date. In our laboratory study (Miller 

et al., 2008), we identified four types of architectural effects -  and their extent — on 

RE decisions: (i) constrained (25%) -- the existing SA makes a solution approach 

(i.e., high-level requirements) less (or in-) feasible; (ii) enabled (30%) — the existing 

SA makes a solution approach (more) feasible; (iii) influenced (6%) — the 

architectural effect alters a requirements decision without affecting the feasibility of 

its solution approaches; and (iv) no effect (39%) -- the architecture has no known 

effect on a requirements solution.

While these initial findings are promising, it is generally accepted in the 

wider scientific community that such laboratory studies are only a starting point in 

developing a grounded body of knowledge and that there are compelling reasons for 

conducting further empirical studies, including replications (Neuliep, 1991), 

involving real-world projects (Kitchenham et al., 2004). This is critical none more so 

than in the field of Software Engineering (SE) in general (Brooks et al., 2008), and 

RE in particular (Wieringa and Heerkens, 2006), because they are still considered in 

their infancy. In this respect, the recent first international workshop on replication in 

SE is noteworthy (RESER, 2010).

In this paper, we present results of a case study on a large-scale prototypical, 

automated, rail project (RailCab) being carried out in Germany. These results support 

the previous findings (Miller et al., 2008) in terms of the different types of SA effects 

on RE decisions (see above) though there is some variance in the extent of the 

effects, which is to be expected from a radically different type of project (RailCab is 

systems engineering41 in automated trains; whereas, [Miller et al., 2008] was a 

banking system) and scale (RailCab is a 10-year, real, pre-production, prototype train 

involving professionals; whereas, [Miller et al., 2008] was a class project over one 

term involving students).

41 In this paper, the focus is on the RailCab system as a whole, which includes both hardware and 
software aspects. Thus, we do not separate “software” parts from “hardware” parts.
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This paper also describes completely new findings, not investigated in (Miller 

et al., 2008), on two major research questions: (1) the characteristics of the RE 

decisions affected by SA, based on the requirements evolutionary framework 

described in [8] and the type of requirements identified by Sommerville (Kotonya 

and Sommerville, 1998), and (2) the impact of the affected RE decisions on (i) 

downstream development activities (such as construction and testing) in terms of 

time and effort and (ii) the RailCab system as a product. These findings have 

implications for tighter RE and SA integration across subsystems, SA impact 

analysis, project planning and risk management, and future empirical research in RE 

based on three emergent hypotheses, which are also described in this paper.

The case study involved an investigation of the 10-year history of 

requirements and architecting decisions in several major components of RailCab 

(drive and brake, energy management and active guidance). The data was collected 

from numerous project documents and extensive interviews with the RailCab 

developers and planners. In total, 108 requirements decisions were examined.

In the next section we describe the case study design; in Section 3 we present the 

results of the case study; Section 4 discusses example implications; in Section 5 we 

provide a summary and comparison to related work; and lastly, Section 6 concludes 
the paper.

2 The Case Study

In this section, we describe the core parts of the case study. This includes: the 

research questions, an overview of the RailCab project, case study participants, data 

collection and analysis procedures, and threats to the study.

2.1 Research Questions

We have three pertinent research questions:

Ql: What is the impact o f an existing system’s architecture on RE decisions?

This question replicates the investigation in (Miller et al., 2008) on the impact 

the presence of an architecture has on decision-making in RE. Requirements 

decision-making leads from recognition of a problem to be solved to a specification
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of that problem or a solution strategy (Miller et al., 2008), which is in contrast to an 

architectural decision that deals with the structure of the system in terms of the key 

structural elements of the system, and their interrelationships (Garlan, 2000). 

Basically, a RE decision denotes a chosen subset of high-level requirements (or 

solution strategies) amongst a set of alternatives in order to achieve a goal. For 

example, deciding to provide a web-based self-help service to clients (as opposed to 

phone-in service or personal contact service) in order to cut down operational costs. 

It is through the choice of such high-level business strategies that detailed 

requirements are then elicited and established. This decision-making process is not 

strictly a top-down process. For example, detailed requirements for several strategies 

may first be elicited and assessed (for relative business advantage, feasibility, cost, 

resource consumption, etc.) prior to deciding upon a particular subset of strategies to 

implement (Nuseibeh, 2001). Thus, an individual requirement is only “indirectly” 

related to a RE decision through identified strategies (Miller et al., 2008). 

Nonetheless, requirements are explicitly traceable, at one end, from more abstract 

constructs such as RE decisions, strategies and scenarios and, at the other end, from 

software artefacts such as lower-level design, code and test cases (Ramesh and Jarke, 

2001). This notion of requirements decisions is operationalised through the decision 

meta-model designed and validated in (Miller et al., 2008).

We list here an example requirement decision, Dl, from the RailCab project 

and, for Dl, we give alternate strategies:

Dl: To use Nickel cadmium batteries for the Energy Management Component during 

system development and testing.

Solution strategy 1 (accepted): Nickel cadmium batteries are robust, safe, and 

relatively easier to implement. Thus, they will be used during the experimental 

development and testing o f the system; however, because they are costly, they will 
not be used for the operation o f the final system.
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Solution strategy 2 (rejected): Nickel-metal hydrate batteries weigh less and take up 

less physical space than Nickel cadmium batteries, allowing for more batteries to be 

installed in the same physical space while increasing the maximum energy capacity. 

Furthermore, they are cheaper than Nickel cadmium batteries. However, they are 

more difficult to implement and therefore impose more requirements on the system, 

thus they will be used for final operation o f the system, and not during system 

development and testing.

In deciding whether to elect solution approach 1 or 2, factors to be considered 

include, SA constraints (or impact on the RE decision), cost, time and system 

functionality and quality. Both strategies were constrained by the physical space in 

the RailCab, but this was more the case with the first strategy. However, the time for 

implementing strategy 2 is considerably higher, so the decision was to accept strategy 

1 for the development and testing of the system, but not for the final system. The 

second strategy will be used for the final system only. Note that decision D1 relates 

to a solution strategy in that it lays out a plan for the types of battery to use for the 

Energy Management Component. By itself, D1 is not an “architectural” decision 

because it does not indicate how the batteries are to be “structurally” organised (i.e., 

patterns) as part of the overall system architecture and how these batteries will be 

interacting with other modules of the system (i.e., interfaces). Thus, decision D1 is 

essentially the first high-level step towards eliciting more detailed requirements and, 

hence, it is deemed a requirement decision and not an architectural decision.

The research question Q1 is investigated by collecting and analyzing the data 

from two constructs: the requirements decisions (such as D1 above) and their RE and 

SA interaction type (i.e., whether a decision such as D1 is constrained, enabled, or 

influenced by the SA, or is neutral -  see Section 1).

Furthermore, this paper surpasses the limits of analysis in (Miller et al., 2008) 

in two significant ways: (a) the characteristics of the affected decisions are 

determined (e.g., source of the decision), and (b), the impact of the affected decisions 

on the system and process (e.g., implementation and testing) is identified. These new



185

results are consequences of the following two new research questions posed in this 
paper:

Q2: What are the characteristics o f the affected decisions?

In so far as “requirements” are concerned, literature has long promoted the 

idea of categorising them. For example, (Harker et al., 1993) has categorised 

requirements by source (e.g., external stakeholder request, fix an unforeseen 

implementation problem, requirements that emerge during detailed planning, etc.) 

and Sommerville (Kotonya and Sommerville, 1998) has categorised requirements 

into type (e.g., non-functional, functional, deployment, etc.). Although in the case 

study we are dealing with RE “decisions” and not requirements per se, we still used 

the above categories because of several reasons: (i) requirements decisions are 

closely related to requirements themselves, (ii) one can examine a requirements 

decision in conjunction with its relevance to the project or business goals and 

associate appropriate categories to that decision. Such categorisation of RE decisions 

can aid analysis in software projects.

Q3: What is the impact o f the affected RE decisions on the resultant system and 

downstream development activities?

Researchers have investigated the impact of RE practices on downstream 

activities (Damian and Chisan, 2006), and while these studies were indeed 

interesting, they did not scrutinize such impact in the context of constrained 

architectural effects on RE decisions. Such an understanding has the potential to 

influence project planning, traceability, and RE and SA interaction technology. Note 

that question Q3 is examined from two angles: product and process. For each 

affected decision, we interviewed the RailCab project staff to qualitatively determine 

the impact of RE decisions on (i) the system and (ii) activities outside of the 

requirements elicitation process, in particular: requirements costing, implementation 

and testing processes, system reliability, safety, and maintainability.
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2.2 Study Context: The RailCab project

The RailCab project has been in development for approximately ten years at the 

University of Paderbom in Germany, with a budget of over twelve million Euros. 

The project is expected to continue for several more years. The train’s test track is 

approximately 530 metres in length with one track-switch and one railway station, 

and the RailCab vehicles are constructed to the scale of 1:2.5. The goal of the 

prototype project is to introduce new technologies that can be used in future 

production rail systems. RailCab is considered a “mechatronic” system, i.e., it 

requires the interdisciplinary expertise in the areas of mechanical, electrical and 

software engineering fields.

2.2.1 Features and Components
The key feature of the RailCab42 vehicle is that it is an autonomous, self- 

optimizing system, and thus does not require any human operator to drive the train. 

The RailCab consists of five major components: Drive and Brake, Energy 

Management, Active Guidance and Steering, Tilt and Suspension, and Track 

Topology and Motor Design. The first four components contain a mix of hardware 

and software components, where the software plays the role of embedded controllers 
within the hardware.

Figure 6-1 depicts a high-level architecture diagram of the RailCab43, with the 

major components shown as rectangles and the key dependencies between them 

represented as lines with arrow connectors. For example, in this diagram it can be 

seen that the Energy Management Module is one of the core modules of the system, 

as all the modules depend on its operation. Conversely, the Active Guidance and 

Tilt/Suspension operate on top of the Drive and Brake and Energy Management, and 

thus are not essential for safe operation of the RailCab. More description of the 

modules investigated in this study is given in Section 2.4.

42 Readers are encouraged to view videos showing the RailCab executing at different stages of its 
development. The videos can be viewed at http://nbp-www.upb.de/index.php?id=57&L=l
43 Note that this diagram intentionally does not depict the complex information and control flow that 
exist between the modules in order to provide a simple high-level diagram of the architecture. For 
more information regarding the technical SA details of the RailCab, the readers are referred to the 
many publications associated with the RailCab project at

http://nbp-www.upb.de/index.php?id=57&L=l
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Figure 6-1. High-level RailCab architecture

2.2.2 Prototypical development process
The RailCab’s development process is understandably quite different from

that of a “traditional” production project. Its process is exploratory and iterative; the 

system is continually evolving in different directions depending on the current 

research ideas being investigated. This is in stark contrast to a production 

environment which is more a planned iterative or waterfall process. The research 

process also implies a tighter and fixed budget that constrains the developers to find 

partial solutions that will work given their limited resources. Conversely, in a 

production project, the project costs often greatly exceed the original budget due to 

hardware replacement, extensive re-work, and business priorities. In the research 

process, there are fewer developers allocated to the project, and a combination of 

full-time employees, university professors, research assistants and students are 

employed resulting in a higher turnover in staff than that in a production project. 

Another implication of the prototypical process is that the collection and reporting of 

process data is much “looser” than in a production project where these issues would 

be formalized and more strictly enforced. Lastly, in the RailCab project, external 

standards and regulations do apply but are almost strictly related to the development 
lab itself (e.g., development and testing of the RailCab does not emit excessive gases 

into the environment) and thus these standards do not have serious repercussions on

http://www.sfb614.de/en/sfb614/subproiects/proiect-area-d/subproiect-d2/

http://www.sfb614.de/en/sfb614/subproiects/proiect-area-d/subproiect-d2/
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the RailCab development. In contrast, in a hill production system meant for 

travelling passengers and cargo there will be a dramatically large number of 

regulations and standards imposed from external sources such as the government and 
engineering standards.

2.2.3 Requirements process

The core set of features in the RailCab project originally came from senior 

members of the staff and also external partners (e.g., industry partners, government, 

etc.). Beyond these core features, any member of the RailCab staff can elicit new 

requirements to implement in the project; the main driver for a new requirement is 

the research innovation that it brings and as such, the sources of the requirements 

were often cutting-edge technology from research literature that could be applied to 

the RailCab project. However, new requirements that have an impact across more 

than one major module, or require hardware purchases, must be approved by the 

senior members of the staff and communicated to the entire staff. Part of the 

approval process is the prioritisation of new requirements, based mainly on the 

innovation that a new requirement brings counterbalanced by cost implications. 

Requirements that are deemed to be low in priority will not be implemented on the 

RailCab vehicles themselves but can still be implemented in the laboratory (i.e., 

small standalone testable units or simulations).

2.3 Participants

In this study, eight senior-level developers and researchers were extensively 

interviewed over a span of approximately one year on a bi-weekly basis for 

approximately 1-2 hours each interview session. Additionally, they provided project 

documents and validated emergent findings from the study. Each developer is 

primarily responsible for his/her own major module. They each have over five years 

of experience and have expertise in systems engineering, specifically in electrical, 

software, control and mechanical engineering. Their primary project tasks are the 

implementation and deployment of the system; however, they are also key project 

members in the front-end systems development activities such as RE and SA.



189

2.4 RailCab Modules Investigated

In this study, three of the five major modules of the RailCab were investigated: 

Energy Management, Drive and Brake, and Active Guidance. The other two 

modules were omitted because the primary planners and implementers of these 

components were not accessible for the extensive interviews that were conducted as 

part of this study. We now provide a general description of each of the three 
investigated modules.

The primary purpose of Energy Management Component is to ensure that each of 

the RailCab subsystem’s energy demands are fulfilled. Additionally, the module is 

responsible for recharging the energy sources (through its innovative hybrid energy 

system) as the RailCab vehicle operates. Other features include heat and voltage 

monitoring of battery arrangements for safety purposes, using batteries as main 

power supply for driving if track energy is not available, and adjusting energy levels 

at runtime based on differing priority levels of subsystems requesting energy.

The Drive and Braking module is responsible for the general autonomous driving 

and braking of the vehicle and also includes features such as forming convoys of 

multiple individual vehicles, and maintaining routes and speeds that avoid possible 

unsafe driving states. The module uses physical sensors that collect data from the 

environment (such as pertinent track information like slope and track quality, or 

obstacle detection) and from this data the RailCab vehicle automatically determines 

the speed and acceleration of the vehicle.

The Active Guidance module is primarily responsible for the smooth lateral 

motion of the vehicle. Whereas the Drive and Brake module is responsible for basic 

driving parameters such as speed and acceleration, the Active Guidance is in charge 

of optimizing the lateral motion and steering of the vehicle to promote smoothness of 

the vehicle, in particular when traversing around comers in the track.

All of these components involve a mix of hardware and software components. The 

software is executed on an on-board computer in the RailCab vehicle and controls the 

various functions of the components listed above.
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2.5 Data Collection and analysis

The case study involves examining each major module of RailCab; specifically, 

the history of the requirements and architecting decisions in the project, but also the 

interaction effects between newer requirements elicited in the presence of the 

existing SA. There are numerous qualitative-based sources of data for this 

investigation that include: meeting minutes, planning documents, theses and 

technical reports, research papers, presentation slides, prototypes, and other project 

documents such as memos, notes and bulletins.

In addition to these documents, the other primary source of data is the RE and SA 

knowledge from the RailCab developers (see Section 2.3) elicited through semi

structured interviews. These interviews were audio recorded (in excess of 25 hours) 

and subsequently transcribed (into over 275 pages of typed text) to provide a written 

account of the interviews.

Since the data collected is mostly qualitative, analysis techniques more commonly 

associated with the Social Sciences were used. Specifically, content analysis 

(Creswell, 2003) was used to analyse the project documents and interview text. In 

short, the technique is when the researcher scans through the textual data and 

categorizes text segments of interest. In our case, this was annotating any text 

pertaining to requirements decisions and their impact from the existing SA. This 

technique was supported by the qualitative analysis tool Nvivo 844, which facilitated 

the storage of annotations, allowed for creation of links between different textual 

sources, and facilitated the creation of tables, charts and matrices to visualize 

computed frequencies of the categorization.

2.6 Threats to Validity

From (Runeson and Host, 2009), three types of threats that might apply to the case 

study proposed here were identified: External and Construct validity, and Reliability. 

Because we are not attempting to demonstrate causality between variables, threats to 

internal validity are not considered.

44 QSR NVIVO 8. QSR International Pty Ltd., 2010. Available at http://www.qsrintemational.com.

http://www.qsrintemational.com
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2.7.1 Threats to External Validity
External validity refers to the degree to which the results of a study can be 

generalized across a population, time and setting (Runeson and Host, 2009).

Ecological validity refers to the generalizability of the study results across all 

settings. As discussed in section 4.1, RailCab is a prototypical project that is carried 

out in an experimental setting. Furthermore, the domain is systems-oriented and its 

primary drivers are safety-critical and real-time performance. These project and 

system characteristics are different from those of the banking system in our previous 

study (Miller et al., 2008) so comparisons across the domains need to be made prior 

to any generalization and beyond this, generalization should not be taken for granted. 

However, there is hope that that the results would be useful, if not completely 

generalizable, to other prototypical projects in the systems domain.

2.7.2 Threats to Construct Validity
Construct validity refers to the extent to which a measurement corresponds to

theoretical concepts (constructs) concerning the phenomenon under study. In this 

study, the constructs (e.g., requirements decisions) were operationalized through the 

decision meta-model designed and validated in (Miller et al., 2008). The data itself 

comes directly from the project employees and documents. Additionally, numerous 

researchers external to the project validated the results and interpretations to ensure 

that that the constructs are properly measured.

2.7.3 Reliability
Reliability is concerned with the extent that the data and analysis are 

dependent on the specific researchers of the study (Runeson and Host, 2009). To 

contain this threat, data triangulation was used with the study’s multiples sources of 

data (see Section 2.5) used to corroborate data from the interview sessions with 

participants. Researcher triangulation was also used, where one other researcher and 

the study participants reviewed and validated the study’s analysis and results, as well 

as the audio transcript files (see Section 2.5) derived from the interview sessions in 

which they were involved.
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3 Results

We now describe the results and interpretations from the data analysis that was 

performed for the investigation of the three research questions (see Section 2.1).

3.1 Architectural Impact on RE decision-making (Q1)

In the three major modules investigated (see Section 2.4), a total of 106 

requirements decisions were extracted from the project documents and interviews 

with the RailCab staff. A substantial portion of these decisions was affected in some 

way by the evolving architecture. Here, we describe the characteristics of these RE 

and SA interactions.

Overall, 37 out of the 106 decisions (35%) were affected by previous architectural 

decisions. Likewise, this implies that 69 out of the 106 decisions (65%) were not 

affected. Out of the 37 affected decisions, 25 were of the type constrained (23%) 

and 13 were of type enabled (12%).

These figures are slightly different to what we observed in our previous case study 

from the banking domain (Miller et al., 2008). Overall, approximately 55% of 

decisions were affected, meaning 45% were not affected. Out of the affected 

decisions, the constrained vs. enabled was 30% vs. 23%. Likewise, unlike in our 

previous case study (Miller et al., 2008), there were no observations of the effect type 

influenced (i.e., if the architectural effect altered a requirements decision without 

affecting the feasibility of its solution approaches).

When examining the distribution from the three investigated components, the 

Energy Management component had the highest number of affected decisions at 

47%, followed by the Drive and Brake and Active Guidance at each approximately 

32%. When interviewing the developers further about this discrepancy, they 

indicated that much of the functionality of the latter two components was software- 

driven and this software needed to be written from scratch and was done 

independently of earlier major systems and software architecting decisions that were 

made. On the other hand, the Energy Management Component’s architecture had 

three properties that lead to it having tighter association with SA decisions: (1) its 

architecture was tightly coupled with the initial decisions on the Track Topology and
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Motor Design, essentially the “load-bearing” (Garian, 2000) decisions of the entire 

RailCab vehicle, (2), its functionality is critical to the overall running of the system, 

as it provides energy to all the major functional modules of the system, leading to 

interdependencies with every major module of the system, and (3), the component is 

very hardware-focused, which means there is inflexibility in the changes that can be 

made and thus potentially leads to more constrained decisions.

3.2 Characteristics of Decisions (Q2)

We now probe into the characteristics, justified in Section 2.1, of the different 

types of decisions (i.e., constrained, enabled, neutral) -  when posing question Q2. 

The characteristics of interest are the “source” of the requirements decision and, for 

this, we use the categories from a requirements evolution framework in (Harker et al., 

2003), and the “type” of requirements, given in (Kotonya and Sommerville, 1998). 

The associated categories are: (i) consequential, new (or modified) requirements 

decisions triggered by feedback from implementation activities, (ii) core or stable, 

decisions that are essential for the system, (iii) emergent, decisions which cannot be 

(or may not have been) completely defined when the system is specified but which 

emerge as the system is designed and implemented (e.g., some UI requirements), (iv) 

functional based decisions, (v) nonfunctional based decisions, and (vi) 

implementation decisions. The key idea is to determine how many RE decisions, and 

of what type, fall under which categories -  as depicted in Table 6-1. This would give 

us a handle on reasoning about the various decisions.

Decision Tvne of SA effect
Cate2ories Constrained Enabled Neutral
Consequential 18(72%) 4(31%) 10(14%)
Core/Stable 3 (12%) 6 (46%) 34 (49%)
Emergent 4(16%) 3 (23%) 26 (37%)
Total 25 I I 70

Functional 11 (44%) 9 (69%) 42 (60%)
Non-functional 10(40%) 4(31%) 23 (33%)
Implementation 4(16%) 0 (0%) 5 (7%)



194

Table 6-1. Characteristics of requirement types.
Constrained:

A fairly substantive number of new RE decisions were constrained by 

previous architectural decisions (see Table 6-1). 18 of the 25 (72%) constrained 

decisions were classified as consequential, decisions that emerged as a consequence 

of implementing other requirements decisions, often triggered by feedback from 

other implementation-based development activities. This is a substantial number and 

a key finding here is that consequential decisions would be constrained and should 

thus be treated with a tighter RE and SA integration for compatibility reasons (see 

Impact analysis in Section IV for further discussion of the implication of this 

finding). The fact that consequential decisions were the most constrained may be 

intuitively obvious, however, the extent and the relative frequency to the other 

categories is new knowledge and currently not reported in the literature.

Of these 18 consequential decisions, 5 (28%) were resultant from 

architectural oversights made previously in other components that were not 

discovered until the implementation and testing phases of development. The domain 

experts considered these decisions as the most problematic, because they were 

unknowingly constrained by previous SA decisions in other components where these 

experts were not involved in the RE and SA decision-making. Furthermore, because 

of the inter-disciplinary nature of the RailCab project, the domain expertise required 

for each different module can be quite different, further leading to problems when 

dealing with architectural oversights from other components.

For example, a requirements decision in the Energy Management component 

was to use the onboard power supply as a backup power source only when the public 

energy network failed. This decision turned out to be constrained by the physical 

space in the track switch segment of the track; the energy transformers that were 

installed in the other segments of the track could not be installed properly in the track 

segment portion because of a previous architectural decision to have a “reaction” rail 

which would help manually guide the RailCab vehicle through the track switch. 

However, the physical space of the reaction rail was overestimated, leading to 

problems in this portion of the track. This previous faulty architectural decision 

could not be fixed without extensive cost and development time expenditure, so the
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solution was to come up with a new solution approach to always use the onboard 

power supply when driving through a track switch segment. Accepting this 

alternative approach meant that the lower capacity energy of the onboard supply 

resulted in advanced features of the RailCab (such as Active Guidance optimizing 

processes) being disabled during driving through the switch, ultimately resulting in a 

negative impact on stakeholder satisfaction. See Tighter SA-RE integration in Section 

IV for a more detailed discussion of the implication of this finding.

The remaining 13 out of the 18 (72%) were mostly self-contained decisions 

within a single module, and were not considered as problematic as the previously 

discussed 5 decisions.

The remaining 7 (28%) decisions were core (i.e., essential for the operation of 

the RailCab) or emergent. The high number of consequential decisions, coupled with 

the low frequency of core and emergent, suggest a trend that the source of 

constrained decisions can be characterized as almost “work-around” decisions in 

response to implementation of previous requirements that did not go as smoothly as 
planned.

Neutral:

We now discuss the Neutral column in Table 6-1, acknowledging that this is 

out of order of the table but instead presenting the results in order of interest. These 

decisions can be characterized as mostly stable or core decisions (34 out of 70 -  

49%), or emergent during development (26 out of 66 -  39%). Basically, these 

decisions were predominantly made during the early phases of planning of the 

RailCab, which spanned approximately 2-3 years, and remained stable for the entire 

duration of the development process -  therefore did not suffer being consequential as 

much as the constrained category. Furthermore, these decisions and their subsequent 

implementation solutions were largely dictated by the system’s domain (automated 

trains) and in many cases did not offer many alternative solution strategies (e.g., 

decisions regarding energy converters to use, how the converters will be structurally 

connected to the various units requiring energy, using an accelerometer to measure 
vertical acceleration, etc.).
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Enabled:

As shown in Table 6-1, the results for the enabled decisions do not show any 

discernible trend towards a bias in any of the categories; there is an almost split 

between all the categories. This suggests that the source of enabled requirements can 

come from any source.

Requirements Type:

In Table 6-1, we see an even ratio of functional and non-functional decisions 

being affected in all the types of categories (constrainedenabled, neutral), 

suggesting that there is no bias towards the type of the decision being affected by the 

existing SA. For the implementation type, the frequency count in the RailCab data 

set was too low to discern any noticeable trends.

3.3 The Impact of Affected Decisions (Q3)

With reference to question Q3, we qualitatively probed the affected decisions to 

determine the impact (positive or negative) they had on development activities (e.g., 

construction, lower-level design, testing, etc.) and the resultant system. These results 

are rooted in the interviews with the RailCab’s development staff (see Section 2.3) 

and are based on their accounts of the events and issues with each affected decision 

(compared to their perception of events and issues had there been no effect).

3.3.1 Impact on Development Processes
Referring to Table 6-2 (development activities), we can clearly see that

constrained RE decisions had a noticeable impact on activities outside the RE 

process45. In particular, the top three development activities that suffered increased 

time and effort due to constrained RE decisions were construction (i.e., hardware 

implementation), testing (i.e., testing process, including actual testing of system as 

well as design of test cases) and systems architecting. The measures are in terms of 
RE decision counts.

45 We could not report on actual cost and time impact since this data was not reliably recorded during 
the execution of the project.
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For construction, 20 out of the 25 (80%) constrained RE decisions resulted in 

increased hardware assembly and software coding time and effort. For testing, 18 

out of the 25 (72%) cases resulted in extra time and effort in creating new test cases 

as well as testing procedures. For systems architecting, 10 out of the 25 (40%) cases 

resulted in extra time and effort in re-architecting the physical space and layout and 

determining which hardware to purchase/design. For the other development activities 

(e.g., software architecting, pure software implementation, etc.), impact was also 

observed but in no more than 5 cases. An obvious question that surfaces is, “How do 

we know that the constrained RE decision increased development time and effort”? 

This judgment is based on stakeholders’ unanimous opinions.

Affected Constrained
RE
decisions 
(25 Total)

D
ev

el
op
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t 
Ac

tiv
iti
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(2
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Systems Architecting 10(38%)
Software Architecting 5 (19%)
Construction 20 (77%)
Software
Implementation

5 (19%)

Testing 18(69%)
Other 4 (15%)

Pr
od

uc
t

(1
7 d

ec
isi

on
s)

Physical design 4 (24%)
Modifiability 2(12%)
Reliability 3(18%)
Availability 2 (12%)
Driving performance 2 (12%)
Loss of functionality 2(12%)
Other 4 (24%)

# of overlapping decisions 
(Activities and Product)

12

Table 6-2. Impact of constrained RE decisions on process and system
as per data from interviews.

For example, to implement one constrained RE decision (Improve the 

smoothness and comfort o f the RailCab driving through Active Guidance self

optimization processes), the domain experts reported that they had to: (i) replace 

some of the existing sensors (costing over 100, 000 Euros), (ii) physically re-organize 

and attach the new sensors because they could not be installed in the same way as the 

former sensors, (iii) re-implement the software interfaces and connectors that interact
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with the new sensors, (iv) change the data formats that the sensor data could receive 

and, (v) all the above changes had to be thoroughly tested to ensure that the desired 

result was achieved. The extra time and cost in these downstream activities to 

implement the RE decision was thus directly attributed by the domain experts to the 

previous SA decisions that were implemented, namely, the physical architecture of 

the undercarriage and the sensors that were used.

For the enabled cases, the impact of RE decisions on other activities is 

difficult to discern since there are no counter-cases to compare against. In these 

cases, the benefit could only be observed during RE decision making; but later, the 

implementation, lower-level design and testing was not reported any differently than 

not affected decisions.

3.3.2 Impact on System
Not only development activities were affected by constrained RE decisions, 

the resultant system quality (such as modifiability, reliability, availability and 

performance) was also affected negatively, though slightly less as measured by 

decision counts -  see Table 6-2: 17 out of 25 (68%) for system vs. 20 out of 25 

(80%) for activities). 12 of the 17 (70%) decisions also affected downstream 

activities, implying that these were hybrid process/product decisions. In most of 

these hybrid decisions, however, the reported degradation of system quality was 

characterised by the developers as “slight”. That is, much time and effort was spent 

in downstream activities ensuring that the threat to system quality was mitigated. 

There was not a single constrained decision where no impact on downstream 

activities or system was reported.

However, in a couple of cases, the resultant product quality was substantially 

less than originally desired, in addition to increased construction and testing time. 

For example, in one decision in the Active Guidance module the desired quality is 

that the Active Guidance is always available, barring any problems in other critical 

modules (such as the Energy Management Component). However, the physical 

architecture of the track topology, in particular the track switches, did not allow for 

power transfer and thus the steering of the RailCab vehicle had to be aided manually 

with a track-locking device that guided the RailCab.
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As with the previous subsection, it was difficult to discern any positive 

benefit in the enabled cases because they followed a similar implementation path as 

the not affected cases.

These results seem to fit the characteristics of a prototypical project where, in most 

constrained decisions, developers could not simply upgrade or replace hardware 

components due to the cost involved. Instead, they had to spend a lot of time and 

effort in finding alternative solutions that still provided near-desired levels of system 
quality.

4 Implications

There are a number of implications for SA and RE of the findings from our 

study. We discuss four examples here:

Tishter SA-RE integration across different subsystems: With 35% of the RE 

decisions being affected by the architecture (see Section 3.1), and several of the 

affected decisions originating outside of the component being analysed (see Section

3.2 -  Constrained for the specific results), it is strongly encouraged that the SA and 

RE processes be more tightly integrated (Nuseibeh, 2001). This corroborates with 

our earlier findings from (Miller et al., 2008), where 29% of the affected decisions 

originated from non-functional properties of non-local subsystems.

Specifically, the RE agents should work with the SA agents (not only those 

responsible for the areas/subsystems RE agents are working upon but also those 

responsible for other areas/subsystems) during requirements elicitation, negotiation 

and feasibility analysis in order to provide critical insight on the technical feasibility 

of the elicited requirements in terms of constraints and enablers from a non-local 

subsystem as opposed to the subsystem they are working on.

In RailCab, RE and SA decisions are predominantly made synonymously 

within a single subsystem and no distinction is made between SA and RE roles. 

However, the iterative approach used in RailCab contributed to a separation between 

RE and SA concerns when working across the different subsystems. For example, 

some of the early decisions for the motor and track topology architecture led to
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constraints in the energy management system which the planners knew about but 

deferred until later. RE and SA were highly intertwined in the motor and track 

subsystem, yet during this early planning phase the focus was almost entirely on the 

motor and track subsystem; high-level requirements were elicited for the energy 

subsystem but no detailed RE or SA work was done at that time. After the motor and 

track architecting phases were near completion, the energy subsystem’s detailed RE 

and SA phases commenced. However, it was then determined that previously known 

constraints would be more difficult to plan and implement because of tradeoffs 

introduced in architectural decisions from the motor and track subsystem. Thus, one 

lesson learnt from this is that during the architecting phase of motor and track, 

corresponding detailed RE and SA work should also have been carried out in the 

energy subsystem to handle alignment issues.

Impact analysis o f requirements on SA: Literature promotes that the impact of new 

requirements on the existing SA is analysed during the RE process, irrespective of 

the source of these requirements (Jackson, 1994; Nuseibeh, 2001). However, this 

analysis can be costly, especially when done at a detailed level of all architectural 

components, as architects, requirements analysts and other appropriate stakeholders 

need to communicate and coordinate on this task. While our study results show that 

implementation of constrained RE decisions was costly (see examples in Section 

3.3), the overall findings from Section 3.1 show that approximately 65% of the RE 

decisions were not affected by the existing SA, and therefore did not require detailed 

SA impact analysis. This, empirical, finding contravenes the informal wisdom 

promoted in the literature (Nuseibeh, 2001). Thus, this raises an important issue, i.e., 

can we a priori identify classes of requirements that are more or less likely to be 
affected by the SA?

The characterization of affected RE decisions based on source and type in 

Section 3.2 is a first step towards such identification. We observed two discernible 

trends in this section that can aid in planning for SA impact analysis. The first trend 

is that approx. 70% of the constrained RE decisions (18 out of 25, see section 3.2 - 

Table 6-1) were triggered by feedback from implementation activities (i.e., 

consequential decisions), suggesting that when requirements analysts receive
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requirements from this source, they really ought to perform detailed SA impact 

analysis as recommended in the literature (Nuseibeh, 2001). However, approx. 85% 

of the neutral RE decisions (i.e., not affected), were predominantly core or emergent 

decisions (33+26 = 59 out of 69 -  see Table 6-1 in Section 3.2) which suggests that 

requirements coming from the domain, or that which can be classified as core 

requirements for a system, will be absorbed more easily into the existing SA, 

prompting less time and resources expended performing SA impact analysis during 
RE.

Planning and Risk management: In the RailCab project, as we saw in the example of 

Section 2.1, that management had to choose between: (1) re-architecting and 

reconstructing the physical layout of the RailCab vehicle, to allow the use of nickel- 

metal hydrate batteries which facilitated faster development time and (2) 

implementing the safety requirements associated with the nickel-cadmium batteries, 

where these requirements are less desirable in the short-term (with regard to 

providing innovative features for demonstrative purposes) but provide better system 

quality for the long-term. To help in this decision-making, the analysis and 

categorisation, during the RE process, of architectural effects on RE decisions (see 

Section 3.1) can help architects to separate the more easily implementable, enabled, 

requirements from the more difficult to implement (or compromised), constrained, 

requirements.

Further empirical work in RE: Based on the findings of this case study, we raise the 
following example emergent hypotheses:

HI: Significantly more consequential requirements affect the SA than do core or 

emergent requirements.

This hypothesis emerges from the finding in Section 3.2, where it was shown that 

consequential decisions were often constrained by the SA (70%), and the core 

requirements decisions were more often not affected by the SA.
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H2: Older, “load-bearing ” components o f a system lead to more constrained effects 

on new requirements decisions than newer implemented components.

This hypothesis comes from the detailed explanation of the results in Section 3.1, 

where it was observed that the SA components causing the constraints for new 

requirements decisions were the first components to be implemented (in the RailCab 

project, these were implemented approximately 4-6 years prior to new decisions in 

other components), and they were also the core components of the system (i.e., many 

components depended on them).

H3: The implementation o f constrained requirements decisions has a more negative 

impact on downstream development activities than on product quality.

This hypothesis emerges from the findings in section 3.3, where it was shown 

constrained requirements decisions were more problematic in terms of effort, time, 

and rework on downstream development activities than on product quality. The 

experts reported that for most cases, despite the constraint from the SA, they could 

still achieve (near) desired product quality.

5 Related Work

In (Miller et al., 2008), we discuss at length related work pertaining to the 

role of a software architect in the RE process. In particular, there we describe three 

key aspects: (i) relationship between RE and SA based on observations and empirical 

work, (ii) technological research spanning RE and SA, and (iii) recent technological- 

based research on architecture evolution. Here, however, because this is a paper on, 

in part, a replication of the previous study (albeit in a much more sophisticated 

context), we do not re-describe all that related work but, instead, summarize it below 

and make links to specific experiences in the RailCab project.

In 1994, Jackson (Jackson, 1994) gave some key reasons why RE and SA are 

best treated as interweaving processes, e.g.: (i) creating an abstract design as a way of 

better understanding the system’s specifications; (ii) assessing alternate architectures 

as a way of creating specifications that can be economically implemented; and (iii)
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ease of movement of developers within the bounds of requirements and architecture. 

As described previously (see Section 2.2), the RailCab project followed a fluid, 

prototype, development process with overlapping sub-process boundaries (e.g., 

between requirements, architecture, coding and testing) in order to experiment with 

innovative ideas and assess implementation risks. All the key points described by 

Jackson (Jackson, 1994) seem very relevant for the RailCab’s development.

In 1995, El-Emam and Madhavji (El Emam and Madhavji, 1995) found four 

factors for RE success in information systems that deal with architecture and/or the 

system. One of these factors is relevant for this study: the adequacy o f diagnosis of 

the existing system (which includes SA). We saw in Section 3.1) that existing 

system implementation in the RailCab project had significant impact on new RE 

decisions, either as constraints (25%) or enabled (12%). Also, from Table 6-1 we saw 

that 70% of the constrained RE decisions were “consequential”, meaning that these 

decisions and associated requirements emerged as a consequence of implementing 

other requirements decisions, often triggered by feedback from other 

implementation-based development activities. Furthermore, in section 3.3 we saw 

how the constrained RE-decisions in RailCab led to rework during implementation 

and increase in cost and time. The lack of significant system diagnosis during the 

elicitation of requirements in the RailCab project -  and the ensuing consequences -  

seems to lend support to the finding for RE success by El-Emam and Madhavji.

In 2001, Nuseibeh (Nuseibeh, 2001) described the “twin-peaks” model, which 

captures the iterative relationship between RE and SA. An important aspect of this 

model is that SA can, and should, feed back into the RE process (as well as having 

RE feed into SA, as usual). This aspect is discussed in more detail under the “tighter 

RE and SA integration” implication in Section 4.

In (Rapanotti et al., 2004), Rapanotti et al., propose the extension of 

“problem-frames” (a structured way of describing the problem space, pioneered by 

Jackson [Jackson, 2001]) into “architecture frames”, which capture information about 

architectural styles and their interaction with the problem space. The benefit of this 

mechanism is that in introducing solution-oriented approaches early in development, 

one can refine problem analysis. We can clearly see the link between this interesting
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work on problem and architecture frames and the empirical study on SA effects on 

RE decision in the RailCab project as well as in (Miller et al., 2008). What is more, 

the RailCab study has led to the characterisation of RE decisions (such as: 

consequential, code/stable, emergent, etc. -  see section 3.2) and the consequences on 

rework, cost and time due to constrained RE decisions. Perhaps, the problem and 

architecture frame approaches can be extended to capture such empirical results for 

the benefit of evolving projects.

While these are some of the key works highlighting the role of SA in RE46, 

the body of knowledge on this topic is fairly thin overall and has basically remained 

static.

6 Conclusions

In this paper, we describe the impact an existing Systems Architecture has on 

requirements decisions, determined through a case study on a large-scale, 

prototypical, rail project (RailCab). This study is an extended replication of an initial 

exploratory study (Miller et al., 2008) that was conducted in a “laboratory” setting. 

The case study involved the analysis of approximately 10 years worth of project 

documents and extensive interviews with RailCab staff -  with a focus on three of the 

five major RailCab system components (Energy Management, Active Guidance, and 

Drive and Brake). In a nutshell, we found 106 requirements decisions where: 37 

(35%) were affected by a previous architectural decision; 26 (25%) of these decisions 

were constrained by the existing architecture and 13 (12%) of these decisions were 

enabled by the existing architecture (see Section 3.1). These results are comparable 

to that found in the previous study (Miller et al., 2008) and provide a critical step in 

the empirical process by generating comparable results across domains and study 

contexts, that can lead to a more solidified body of knowledge in SE (Kitchenham et 

al., 2004).

Further to the above overall results, this study probed deeper into the affected 

decisions in two significant ways: (i) to characterize the decisions based on their type

46 We exclude the work focused on transitioning “from RE to SA”, which abound in the literature, 
because predominantly these works do not explicitly consider the effects of S A on RE decisions.
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(Kitchenham et al., 2004) and source (Harker et al., 1993), and, (ii), to qualitatively 

determine their impact on downstream development activities and properties of the 

resultant system. For (i), we found that approximately 70% of the constrained 

decisions originated from feedback in downstream development activities (see 

Section 3.2), and the not-affected decisions had the characteristic as being core or 

domain-driven decisions (86%) (see Section 3.2). In (ii), it was observed that all 

constrained decisions had a negative impact on product or process, with the severity 

being higher on the process side (see Section 3.3).

These results have implications for: project planning and risk management, 

tighter RE and SA integration across subsystems, and SA impact analysis. Also, 

three emergent hypotheses from this study (see Section 4) form the basis for future 

empirical research in RE.
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Chapter 7

Non-technical factors’ impact on 
architecting47

1 Introduction

It was more than twenty years ago that Curtis et al. (Curtis et al., 1988) 

identified the importance of human-based non-technical factors (such as 

communication skills, leadership skills, and professionalism) in design processes for 

the success of large projects. Despite the importance of such factors, in recent 

Software Engineering (SE) educational research, sentiments have been expressed that 

SE graduates are not well prepared for their professional careers due to their lack of 

non-technical skills training (Karunasekera and Bedse, 2007; Taran, 2008).

If there is one area of system development, more so than most others if not 

all, where SE personnel need to have non-technical factors under control then it is 

"Systems Architecture". This is because an architecture is not only a technical 

artefact of the system, it is a key artefact that is of interest to many different types of 

stakeholders (Bass et al., 2003), requiring leadership and other qualities in an 

architect so as to manage stakeholder relationships and expectations (Bredemeyer, 

2006; Clements et al., 2007). For example, from the end users' perspective on 

operational quality, the customers’ perspective on what they are buying or how much 

the system will support their business processes, the management's perspective on 

system implementability and cost, the tester's perspective on test plan prioritisation 

and scheduling, and from an integrator's perspective on which components and how 

they will be integrated to yield the desired system, etc., the system architect needs to 

be multi-faceted.

Our own discussions with senior members of large organizations suggest that

47 This chapter is an extended version of (Ferrari et al., 2009).
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recent university-level graduates, while being well-trained in technical issues, often 

lack the non-technical skills for entry into industry to be effective junior architects. 

Such concerns are not surprising considering that most of the research and 

pedagogical literature about SA are on technical issues (such as design methods, 

architectural notations, patterns and styles, analysis, etc. [Bass et al., 2003]), and only 

little on human-centred factors.

Recently, however, there has been increasing interest on the importance of non

technical factors in Systems Architecture (Bass and Berenbach, 2008; Clements et 

al., 2007a). Some of these non-technical factors include: leadership, communication, 

inter-personal, project management, work habits, etc. (Clements et al., 2007b). 

Research that has been done includes building a model of architect competency 

(Clements et al., 2007b), design of architecture skills assessment instrument 

(Downey and Babar, 2008), and observations of the human-factors effect in security 
risk management (Islam and Creighton, 2008).

Despite this recent research, there has been no empirical study conducted on the 

preparedness of university graduates for a career as system architects in industry. In 

particular, the concerns voiced by others on the lack of non-technical skills amongst 

the graduates (Karunasekera and Bedse, 2007; Taran, 2008) prompted us to 

investigate the following research question from an educational perspective: What is 

the impact o f non-technical factors on Systems Architecture?

To answer this question, we conducted an empirical study on 15 student 

architecting teams developing an architecture from the same set of requirements. 

Specifically, we identified the type of non-technical based problems that students 

have, and provided a quantitative breakdown of these problems. Examples of such 

problems include procrastination, poor planning, and missing/late for meetings. 

Additionally, we examined how these problems affected the product quality of the 

teams’ architectures. The findings from this study are meant to provide much-needed 

empirical evidence in this area.

Furthermore, to identify the possible causes of the weaknesses identified in 

student/junior architects, we analysed the current state of the IEEE/ACM software 

engineering (SE) (IEEE/ACM, 2004) and computer science (CS) curriculums
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(IEEE/ACM, 2005). The findings from this assessment were then analysed together 

with the findings from the student projects to determine whether or not there is any 

correspondence between the two.

Our general finding is that non-technical issues are under-represented in the 

current curriculums. For example, only 7% of the total hours in a recommended 

curriculum are allocated to non-technical factors. Based on this analysis, the main 

contribution of this paper is then a set of recommendations for improving education 

of students who are interested in becoming software architects in industry. These 

recommendations centre on suggestions for improvement to the IEEE SE and CS 

curriculums, and for SE educators to be active in recommending to SE/CS students 

relevant non-technical focused courses outside of SE.

The rest of the paper is organized as follows. In the next section we describe 

related work; in section 3 we discuss the empirical study on student architecting 

projects; in Section 4 we present analysis of the current ACM SE and CS 

curriculums; Section 5 discusses correspondence between the results from sections 3 

and 4; in Section 6 we give recommendations for improving architect education in 

academia; and lastly, Section 7 concludes the paper.

2 Related Work

In this subsection, we overview related work pertaining to research done on 

non-technical factors in SA, and also research focused on improving SA education.

In (Clements et al., 2007b), the authors report on a survey that was conducted 

to identify the prominent duties, skills and knowledge of a software architecture. 

Their analysis is focused on three key categories for architecting success: duties, 

skills and knowledge. Within the area of architecting duties, their analysis shows 

that the specific duties of Project management, requirements, architecture evaluation, 

analysis, and interaction with clients were the most prominent. Under the skills 

category, the survey found that the prominent sub-categories were communication, 

inter-personal skills (within team), leadership, and the ability to handle the unknown. 

Lastly, under knowledge, computer science knowledge was considered the most 

valuable type of knowledge, followed by architecting conceptual knowledge,
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platforms and technology knowledge, and organizational knowledge. The output of 

this work is a model of architect competency that can be used as a basis for hiring 

and training processes, and curriculum development.

(Berenbach, 2008) expands on the previously identified list of skills and 

knowledge, and the discussion is in the context of observations from industry. 

Examples of the identified skills are the understanding of the impact of testing and 

maintenance needs, ability to understand and resolve stakeholder conflicts, and the 

ability to efficiently train project team members. In addition to discussing 

architecting skills, Berenbach identifies key personality traits for successful 

architects. These include: attention to detail, ability to listen, ability to motivate and 

coach, and having an “open mind”. Furthermore, he discusses the gap between the 

perceptions of what non-technical attributes competent architects require in academia 

and industry. Our current paper complements the work described in (Berenbach,

2008); in particular, the empirical study in our paper is meant to provide concrete 

findings that can support the more intuitive-based discussion provided in (Berenbach, 

2008).

A previous study of ours (Ferrari and Madhavji, 2008) reports on an empirical 

study examining one type of knowledge (Requirements Engineering [RE]) that could 

have an impact on SA. Specifically, we conducted a controlled-study that 

investigates the impact of software architects having RE knowledge and experience 

when performing SA. Two types of study groups were used where: one type of group 

had previous training and/or experience in RE; whereas, the other type of group did 

not. Both types of groups conducted the same architecting project given the same 

initial set of requirements from the banking domain. The results show that the 

architects with RE knowledge/experience produced a significantly better architecture 

(10% difference in the overall architectural quality as measured through some 12 

architecting areas). The study also highlighted specific architecting areas where these 

architects performed better. Examples of these areas include: determining 

architectural tactics, selecting/creating an architectural pattern to satisfy key quality 
drivers, and interface specification.
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In (Downey and Babar, 2008), Downey and Babar present an instrument to 

collect data for the empirical assessment of the needed skills for a software architect. 

Unlike in (Clements et al., 2007b), which was based on a survey of many different 

sources (not necessarily architecting practitioners), the work in (Downey and Babar, 

2008) is focused on collecting data directly from practitioners from a socio-cognitive 

perspective. The authors’ ongoing work is to use this instrument to interview 

architects in industry to create an empirical based profile of architects skills and 

competencies.

The issue of student architects not being properly trained through university 

education was raised at a working session at WICSA 2005 (Shaw and Van Vliet,

2005). The overall goal of the session was to identify shortcomings in SA courses at 

university-level institutions. Specifically, issues that were identified and discussed 

were: how to make SA courses sufficiently realistic? How to teach non-technical 

competencies? How such an SA course can fit within current curricula? And, what 

further training to software architects need beyond the university setting? Further to 

the identification of the above issues, the participants of the session created a map of 

the various architecting competencies (e.g., people skills, architecting techniques, 

domain knowledge, etc.) and their relative importance for different types of students 

(CS graduates, SE graduates, SE graduates with specialized SA training).

Following this working session, as reported in (Mannisto et al., 2008), 

Mannisto et al. describe the design and evaluation of an advanced course for teaching 

systems architecture in academia which considers the issues raised in (Shaw and Van 

Vliet, 2005). The goals of the course are to explicitly train and raise awareness for 

student architects on issues that are currently not taught in SA courses but are 

relevant for industrial practice. These issues include: architecting in the context of an 

unclear problem definition, knowing when the solution is “good enough” to begin 

detailed design and coding, and dealing with a priori constraints from architecting in 

an evolutionary context.

While all the described efforts seem worthwhile in making progress in the 

field of system architectures, there is a clear research gap in the community’s 

understanding of the kinds of problems, especially non-technical ones that exist in
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student architecting projects. A deeper understanding of this would help in 

improving SA curricula and in ensuring that students are better prepared for 

architects’ positions in industry software projects. This paper is a step in the 

direction of filling this gap.

3 Empirical Study on Software Architecting Projects

In this section, we describe the empirical study on software architecting 

projects. This includes an overview of the study (variables of interest, participant 

description, data collection and analysis, threats to validity), and the results of the 

analysis.

3.1 Study Overview

The empirical study, conducted in the university setting, investigated the 

following research question: what is the impact o f non-technical factors on SA? The 

main variable of interest from this question is the non-technical factors, and the 

corresponding metrics are the type and frequency with which they occurred during 

the architecting process. As discussed in the Introduction section, such factors 

include: leadership, communications, inter-personal, project management, work 

habits, etc.

The study involved senior-level university student architects working on a 

two-month architecting project in an SA course. In total, there were 60 participants 

with 4 participants allocated to each team, giving a total of 15 architecting teams.

Each team had to design an architecture given the same set of requirements. 

The requirements were created externally to the project, and in total there were 

approximately 80 high-level requirements. Given these requirements, each of the 15 

teams independently developed an architecture using the ADD method (Bass et al., 

2003). Examples of key steps in ADD include: choosing architectural drivers from 

requirements, determining architectural tactics to satisfy drivers, and identifying 

child modules during decomposition to implement the tactics.

For identifying non-technical factors, there were two sources of data: audio 

recordings of student/staff help-sessions and intra-team e-mail communications
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(approximately 80 e-mails average per group). It was mandatory that each team met 

with the course staff once a week minimum to discuss their project; this resulted in 

over 100 hours of audio that was later transcribed. It was not possible to observe 

intra-team’s working-sessions to obtain live data.

Content analysis (De Vaus, 2002) was used to analyze the transcribed textual 

data and e-mail communications. In short, the analysis technique works by scanning 

through the text and categorizing text segments of interest. For example, text 

fragments that loaded significantly on variables such as “Missing/late for meetings”, 

“Delivery of inadequate work”, “Procrastination”, etc. would be tagged with the 

corresponding category-labels. These can then be counted to create frequency figures 

of the various categories.

The other source of data used in the analysis was the assessment of quality of 

the teams’ architectures, which was used to corroborate findings with the frequency 

of non-technical factors encountered in the transcribed data and emails. The quality- 

criteria for the instrument items were derived from SA literature, and the standard 

templates from (Bass et al., 2003). The central components measured by the 

instrument include: Model the environment; Use Cases; Quality Scenarios; Module 

Decomposition structure; Component and Connector structure; Deployment 

structure; Interface specification; Modelling the dynamic behaviour of the system; 

Overall Architectural properties; Architectural reasoning; View descriptions; and 

Overall documentation quality. This instrument was used by five experienced 

software engineers (with experience ranging from 5 to 27 years in SE and research) 

to assess the resultant architectures from the study projects. Also, to ensure content 

and face validity (Johnson and Christensan, 2004) of the instrument, there were 

numerous iterations and stages in the design and implementation of the instrument. 

This included reviews and establishing relative weights for diDerent items 

corresponding to the project requirements, and had intimately involved six 

knowledgeable software engineers with RE and SA experience. The instrument is 
described in more detail in (Ferrari and Madhavji, 2008).
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3.2 Threats to Validity

Based on (Johnson and Christensan, 2004), four types of threats that might apply 

to the multi-case study described here were identified: External, Construct and 

Conclusion validities, and reliability. Because we are not attempting to demonstrate 

causality between variables, threats to internal validity are not a concern.

3.2.1 External Validity
External validity refers to the degree to which the results of a study can be 

generalized across a population, setting, and time (Johnson and Christensan, 2004). 

Threats to external validity occur when researchers draw incorrect conclusions based 

on the sample data (Johnson and Christensan, 2004). We discuss only the threats to 

population validity as other types of threats did not apply.

Population validity -  this threat refers to the generalization of the sample to the 

population, and the sample results to the different types of people within the 

population. In our study, this threat exists since our study was conducted in a single 

university setting and it is possible that the overall student’s maturity and proficiency 

could differ among universities, leading to potentially different results. However, the 

students educational backgrounds at the university level will be similar since, in 

general, educational institutions incorporate the IEEE SE and CS curriculums within 

their degree programs (see Section 4). Further to this, our discussions with senior- 

level members of a large-scale organization suggest that students coming into 

industry, no matter from which university, encounter non-technically oriented 
difficulties in industry.

Also, our study focused on fourth-year undergraduate students who may 

perform differently than graduate-level students; therefore there is a threat of 

generalizing these results to graduate students.

3.2.2 Construct Validity
Construct validity is the degree to which inferences can be made from the 

measures in the study to the theoretical constructs on which those measures were 

based. In our study, the variable of interest non-technical problems was measured by 

collecting data directly from the study participants (through interviews and e-mail
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communications). To mitigate the threat of content and face validity, the data 

analysis procedure described in Section 3.1 was validated through piloting, 

independent review and re-coding. Furthermore, the various categories of non

technical problems were identified a priori based on discussions with senior-level 

members of a large organization and existing literature. This apriori identification is 

important since the data gathered is readily related to the constructs of interest (i.e., 

non-technical problems).

3.2.3 Conclusion Validity
Conclusion validity is the degree to which conclusions we make based on our 

findings are reasonable (Johnson and Christensan, 2004). There are three ways in 

which threats to conclusion validity can be mitigated in a quantitative-based study: 

statistical power, reliability, and proper implementation of study methods. In our 

study, statistical power is mitigated in our co-relational analysis through the use of 15 

data points (i.e., the fifteen teams). As discussed in section 3.2.2, we used multiple 

researchers to review the coding of the data, to alleviate potential researcher bias 

increasing reliability of the data. Furthermore, data triangulation was used through 

the investigation of different sources of data (meeting and e-mail communications), 

again to promote data reliability. Lastly, the researchers performing the coding were 

trained prior to the actual codings to ensure they properly carried out their task.

3.3 Results

In this sub-section, we present and discuss the results of analyzing the non

technical problems in the student projects. In total, we identified 156 problems, 

spread out amongst the 15 teams and across various identified categories. This 

overall result is conservative because we only had access to staff/student help 

sessions and e-mail communications (see Section 3.1). Other sources of data such as 

observations of a team’s project meetings or intra-team communications (such as 

instant messages) would have provided additional insight into these non-technical 

problems. In view of this conservative measurement, the 156 problems we noted can 
be considered substantial.
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Apart from the type and frequency of non-technical problems encountered, it 

is also important to assess the impact of these problems on the end result -  the 

resultant systems architectures. The second sub-section deals with this aspect.

3.3.1 Profile of Non-technical Problems
Figure 7-1 shows the details of the quantitative breakdown of the non-technical

problems encountered in the architecting process in the various categories. Below, 
we discuss these findings.

■ P r o c r a s t i n a t i o n

M is s in g /L a te  m e e t i n g s

‘ T e a m  m e m b e r ( s )  n o t

d e l iv e r in g  a d e q u a te

w o r k

P o o r  p l a n n in g  a n d

g r o u p  s t r a t e g y

*  O th e r

Figure 7-1. Profile of non-technical problems

Missing/late for meetings (32%): This is when group members either missed or 

were late for meetings and did not provide sufficient notice as to their tardiness. This 

category constituted the largest percentage of problems that occurred in the teams’ 

process. This obviously led to many specific problems in the process, such as project 

delays, not having all group members “on the same page” in terms of what 

deliverables were expected, and a lack of understanding of emerging product details. 

The following is a quote from a student describing an instance of this problem and 
the consequence:

“The problem that I'm having right now is that the work I’m doing should be in 

accordance to what is happening at the system interface level, which has been left to
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anonymous (a team member). However, he has missed the last couple meetings so 

I’m not exactly sure why he made a few decisions the way he did, so it’s difficult for 

me to proceed.”

Procrastination (22%): This is when either individuals or the entire group pushed 

back expected work until a later due date, or left work items to be completed until 

just before an expected due date. This result is not entirely surprising; in (Berenbach, 

2008), it is observed that this is a common problem seen in students and the work 

that they perform. The root of the problem lies in the fact that the time frame for a 

student project is often much shorter than an industrial project, so it is possible to 

delay the work and still complete the project, and also that the final result is to “get a 

passing grade”; whereas, in industry, real customers must be satisfied with the end 

result, leading to harsher consequences for unsatisfactory work. The following 

student quote highlights this issue and the possible cause:

“Well I think maybe what's going on is we’re taking other classes and 

working entirely on those assignments, since they’re due sooner, and leaving this one 

to the very end, which isn’t a good thing but this is the way we’ve always worked. 

And now, we don’t have much to show for this project and little time left to complete 

— what threw us off was the way the project was structured and nature of architecting 

work, it’s a lot different than assignments/projects in our other classes.”

Poor planning and group strategy (15%): This involved the team’s planning of 

deliverables, meetings (times, setting, agenda) and overall group strategy (e.g., work 

more individually and combine results, or perform the majority of the work as a 

team). This category was impacted mostly by the ability of the designated lead 

architect to organize the project. Some of the more common problems within this 

category were: meeting agendas were not planned ahead of time, so some individuals 

of teams did not arrive prepared; contingency plans were not in place for unforeseen 

events (e.g., group member becomes sick and cannot deliver expected product); and 

tasks and their dependencies were not well thought out, often, tasks were assigned to 

individuals without analyzing or discussing who would be best suited to a particular 

task. The following quote describes an instance of this problem relating to decision
making strategy of the group:
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“The one thing that I was really having problems with was everyone going 

their own way doing their work and coming back with four really great diagrams that 

don't really agree with each other, I know we originally thought that everyone could 

work on the same thing independently to have more ideas but this strategy has ended 

up wasting a lot of time and effort.”

Individuals delivering inadequate work (14%): This problem category is where an 

individual in the team was given a task and a deadline, and when they submitted the 

work it was incomplete, late, or lacking in details. This had a direct impact on the 

number of iterations required to complete the project, as rework was required. Also, 

other team members’ work suffered when they were expecting completed work from 

their co-workers. Although this problem seems to be rooted in an individual’s lack 

of work ethic or intelligence, there were several cases where the cause could be 

traced to the deficiency in the expression of the project or architectural plans, in 

particular, by the lead architect. The following is a quote from a student denoting an 

instance of this problem, “here you go guys, I could not quite finish this sub-system 

as expected. When I went to do the work I didn’t really understand what we had 

brainstormed the other day and we don’t have a soft-copy so this is all I could do.” 

Other (16%): Other categories such as lack o f leadership, communication issues, 

and mistrust between team members each had several problems, however, these were 

not as high as the aforementioned categories.

3.3.2 Non-technical Factors and Architectural Quality
Further to the identification of the most common non-technical problems as

identified in the previous subsection, we examined the relationship between these 

problems and the final architectural quality. The correlation between the frequency 

of problems a team had and final architectural quality was -0.51, with a statistical 

significance of p=.02, meaning this result was most likely not due to chance. The -

0.51 co-relation means that as the frequency of non-technical problems increases, the 

architectural quality decreased. The strength of this relationship is classified as 
“medium”.

This is not entirely surprising, as in our previously published work (Ferrari 

and Madhavji, 2008) we found that an architect’s past academic performance and
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whether an architect had Requirements Engineering knowledge and experience were 

the most significant factors for determining a team’s success in architecting. 

Regardless, examining more closely the team’s data, we do find some interesting 

points.

Team # # of Non- Architectural

technical Quality (out

problems of 100)

1 4 100

2 4 88

3 11 82

4 21 73

5 9 61

6 16 77

7 12 60

8 7 65

9 13 45

10 12 48

11 6 83

12 15 62

13 6 83

14 15 41

15 5 72

Table 7-1. Team breakdown of non-technical problems and architectural quality

Referring to Table 7-1, out of five (of 15) teams that had the least number of 

non-technical problems, four of these were the highest performing teams in terms of
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final architectural quality. Conversely, three of the five teams that had the most 

number of non-technical problems had the weakest architectures.

Also, the four teams with the lowest quality architectures were in the top five 

for the most procrastination problems (3, 3, 4 and 4 instances of the problem for 

each of these three teams respectively). When further examining the details of the 

architectural quality of these three teams, we see that the scores most affected by the 

procrastination issues were their deployment view(s) (received a 0 out of 100 -  these 

teams did not submit any work in this area suggesting that for their particular process 

they were leaving this more to the end and did not have time to work on it), 

architectural reasoning (average of 40.5), detailed interface specification (average of 

54), and behavioural modeling (average of 30). The latter two areas are typically 

done more at the back-end of the architecting process so the procrastination issue 

clearly led to them not having enough time to do a proper job in these areas and the 

quality suffered. Architectural reasoning deals with the quality of the given 

rationale, assumptions, alternative design decisions, and also of any preliminary 

analysis of the architecture. For these teams, they simply submitted a first draft of 

this work and did not have time to fully flesh out the details.

Other than procrastination, none of the other specific non-technical problem 

categories (e.g., missing/late for meetings, poor group planning/'strategy, etc.) could 

be clearly corroborated with the overall architectural quality scores; however, this 

does not mean that specific instances (not necessarily the total frequency) did not 

have an impact on specific technical architecting areas. We are currently performing 

further analysis to link specific instances of non-technical problems to specific 

problems in the architecture.

Nevertheless, the findings presented in this sub-section do suggest that the 

non-technical problems (or lack of) had an impact on the SA quality, but further 

studies would need to be conducted to strengthen this claim.

4 Analysis of the IEEE/ACM SE Curriculum

The purpose of the IEEE/ACM SE curriculum (IEEE/ACM, 2004) is to 

provide guidance and recommendations to academic institutions regarding the design
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of SE undergraduate degrees. In this curriculum, it is recommended that an SE 

degree should consist of a total of 475 contact hours, with approximately 3 hours of 

outside lecture time spent per lecture hour. The curriculum allocated this total time 

into 10 broad categories, examples of which are: computing essentials, mathematical 

and engineering fundamentals, software modeling and analysis, etc. Nine out of the 

ten categories are heavily technically oriented. The one category that deals with non

technical factors is Professional practice. Specifically, this category contains the 

following topics: group dynamics/psychology, communication skills (specific to SE), 

and professionalism. This category is recommended an allocation of 35 hours 

(approximately 7% of the total) to be sub-divided into the aforementioned topics.

Based on the specific items listed within each of the topics (for example, 

under communication skills there is Reading, understanding and summarizing 

reading (e.g., source code, documentation), most of the hours in the sub-categories 

would be subsumed within technical projects (for example group projects). Thus, the 

non-technical learning in software projects occurs through “implicit” learning; 

students would not explicitly learn foundational theory, principles, guidelines, etc. 

concerning non-technical factors.

This corroborates with our own observations of students within various 

academic institutions; for example, often when a student, even at the doctoral level, 

gives a presentation based on their research they flounder on such issues as an 

appropriate title, succinctly describing their research in a few slides, and convincing 

the audience of the cost-benefit of their research. They are expected to give 

presentations, but are never actually taught how to effectively create and deliver one.

Software engineers in practice will not necessarily have graduated with a SE 

degree, but instead may have a Computer Science (CS) degree and background. The 

reason for this is that many universities do not offer SE-only degrees, but instead will 

offer CS degrees with electives in, or specialization in, SE. When examining the 

ACM CS (IEEE/ACM, 2005) curriculum with respect to learning about non

technical factors, the situation is even worse than in SE. While there is a set of 

knowledge areas devoted to non-computing topics (i.e., non-technical factors) such 

as organizational theory, decision theory, and organizational behaviour, the weights
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assigned for most areas on a scale of 0 to 5 (where 0 means not important in CS) was

0. The only areas that were assigned a weight greater than 0 were interpersonal 

communication and project management.

The only other option to formally learn non-technical factors is through a 

student’s non-CS and non-SE elective courses. Such electives enable students to take 

courses that are more aligned with non-technical factors such as psychology, 

business, and management. However, based on our own observation of university 

curriculums, the number of electives a student can take is quite limited (typically 

around 1 full course per year) and there are also no recommendations or guidelines 

from within an SE or CS degree on which, or how many, courses outside of the 

CS/SE degree would be useful and for what type of purposes. Therefore, it is not 

surprising that students lack substantial experience in non-technical factors when 

involved in group projects.

5 Discussion

In this section, we discuss the correspondence between the findings from the 

student projects in section 3, and the analysis of the ACM SE curriculum in section 4.

Recall that in Section 3 we presented and discussed results of a student 

architecting project where the teams encountered 156 problems rooted in non

technical factors (missing/late for meetings, procrastination, poor planning, etc.). 

These problems, in many cases, led to reduced architectural quality in their final 

deliverable. Based on our discussions with senior members of large organizations, 

these types of problems are highly problematic in industry and do frequently occur. 

Despite the severity of the consequences of these problems in the real-world, in 

academia it seems that many students, even by the time they are nearing completion 

of their degrees, still have not learnt the importance of “real-world” skills. These 

findings corroborate with observations made by others (Berenbach, 2008) — of a gap 

between the attitudes in industry to academia.

To reason about the cause of this gap, we analysed the ACM SE and CS 

curriculums (IEEE/ACM, 2004/2005) in order to discern how much emphasis was 

placed on the formal education of non-technical factors. Our findings suggest that
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these non-technical skills are seriously under-represented. Specifically, the 

weaknesses identified in the current curriculum “do” seem to correspond to the 

problems encountered in the student projects; the lack of hours devoted to such issues 

as communication and professionalism will have a direct impact on a student’s 

performance in these areas.

Furthermore, specific types of problems as identified by our study, and the 

implications of committing such problems, are not accounted for in any way in the 

curriculum. For example, the specifics of professionalism present the broad topics of 

ethics, legal issues, organizational behaviour, etc., but these are not discussed in a 

detailed way so that educators and students have a firm understanding of the “What” 

and the “How” of these broad categories. Furthermore, the fact that only twenty 

hours of teaching time are recommended over a span of a four-year degree, we 

believe, severely limits the ability to adequately educate/train students in these areas.

Despite the apparent correspondence between the weaknesses identified in the 

student projects and the SE and CS curriculum, controlled studies would need to be 

conducted to determine causality. In such a study, the dependent variable would be 

the quality of the architecting process and quality of architecture, and the 

independent variable would be whether a participant had formal education/training in 

non-technical factors. This design of the study, however, would be difficult to 

conduct because of the problem in finding participants to form the control/non- 

control groups.

6 Recommendations

Based on our findings, we have two recommendations that could improve the 

problem of students not being educated/trained in non-technical factors. First is that 

CS and SE departments in universities should explicitly provide guidance and 

information to students on which courses they can take outside of the department 

(such as organizational psychology, management and business) that would be useful 

for excelling at positions in industry that require more than basic technical skills. 

The implementation of such guidance and information delivery would be university
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or department specific, because each academic institution has its own curriculum and 

departmental structure.

Second, that the SE and CS ACM curriculums be revisited to elaborate on the 

non-technical skills sections. Senior-level members of large organizations have 

stressed that it is easier to find people with good technical skills than finding people 

that excel in both technical and non-technical skills (Karunasekera and Bedse, 2007). 

The first suggestion is to simply increase the weight of non-technical education in SE 

and CS degrees. The second curriculum improvement can be to tailor educational 

suggestions for different career paths in SE. For example, educational curriculum 

recommendations can be different for a student aiming to be a software architect 

(which would have more emphasis on non-technical skills) vs. a student aiming at a 

career in software testing (where skills-base should be more technical).

7 Conclusions and Future Work

Systems Architecture has traditionally been seen as a mostly technically 

based discipline (Bass et al., 2003). However, recently there has been research in 

identifying and understanding the role that non-technical aspects have in architecting 

(Bass and Berenbach, 2008; Clements et al., 2007a). We continue this line of 

research by investigating the impact of human-based non-technical factors in 

Systems Architecture. To investigate this issue, we conducted an empirical study in 

a university setting to determine what type of non-technically based problems 

architecting students had, and the impact of these problems.

Based on the findings of our study (see section 3), we conclude that senior- 

level students do encounter many problems rooted in non-technical factors. The 15 

architecting teams had 156 non-technical problems, the majority of these being in the 

areas of: missing/late for meetings (34%), procrastination (23%), poor planning and 

group strategy (16%), and individuals delivering inadequate work (11%).

Additionally, we analysed the ACM SE and CS curriculums (IEEE/ACM, 

2004/2005) in order to determine how much emphasis was placed on the formal 

education of non-technical skills (see section 4). Our findings suggest that these non

technical skills are under-represented. We make specific recommendations for SE-
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CS curriculum improvement (see section 6) that would aid in the training and 

education of software architects.

For future work, further empirical research is needed in this area. As 

suggested in Section 5, controlled studies would be beneficial for establishing 

causality between non-technical factors and the success of an architecting project. 

Case studies could also be conducted examining the effect on SA of issues such as 

compatibility of the team-members’ personality, team’s heterogeneous skill sets, and, 

team politics and trust.
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Chapter 8

Emerging Theory

1 Introduction

The Requirements Engineering (RE) and Systems Architecting (SA) discipline is 

abundant in technology, especially for aiding in the transitioning from RE to SA, 

along with its accompanying underlying construction (or engineering) theory 

(STRAW, 2001 and 2003). However, “empirically grounded theory” on the 

interaction between RE and SA in terms of the human and process factors involved 

in RE and SA development is scattered and mostly anecdotal. Furthermore, there is a 

near total absence of any grounded theory (construction, human involvement, 

process, etc.) on conducting RE in the presence of an existing SA (Jackson, 1994; 

Shekaran, 1994) - this issue is orthogonal to mainstream RE and SA development 

and how RE and SA is taught in pedagogical literature.

Thus, an emerging descriptive theory is proposed (see later in Section 3) that 

describes the impact of human and process factors in the interaction between the RE 

and SA processes. The emerging theory is developed “bottom-up” based on the 

evidence from the six empirical studies described in Chapters 2-7 of this thesis. The 

theory building followed the hypothetico-inductive model (Sjoberg et al., 2008), 

which means that the theory is inferred directly from observational data.

There are numerous implications of the proposed emerging theory for RE and SA 

practice and research which are also described in this chapter.

The chapter is structured as follows. In the next subsection, an overview of the 

six studies from which the emerging theory is derived is given; Subsection 3 

describes the emerging theory; In Subsection 4, the emerging theory is evaluated 

based on the guidelines from (Boehm and Jain, 2006) and (Sjoberg et al., 2008). 

Lastly, Subsection 5 concludes the chapter.
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2 Overview of studies

Before describing the emerging theory, a brief description of the six studies 

from this thesis is given. Table 8-1 provides this brief summary information and 

consists of a study ID, main research topic, empirical approach, context and reference 

to the chapter in this thesis where more information can be found.

Study
ID

Main topic Empirical
approach

Context Reference

SI Impact of RE knowledge 
on architecting

Controlled
experiment

Architecting 
course project

Chapter 2

S2 Requirements-oriented 
problems while 
architecting

Multiple 
case study

Architecting 
course project

Chapter 3

S3 Characteristics of new 
requirements in 
presence/absence of 
existing architecture

Controlled
experiment

Requirements 
course project

Chapter 4

S4 Impact of SA on 
requirements decision
making

Multiple 
case study

Requirements 
course project

Chapter 5

S5 Impact of SA on 
requirements decision
making (replication and 
extension of S4)

Case study Large-scale 
innovative rail 
project

Chapter 6

S6 Impact of non-technical 
factors on RE and SA

Multiple 
case study

Architecting 
course project

Chapter 7

Table 8-1. Summary of studies

3 The Emerging Theory

Before describing the emerging theory in detail, we first describe the 

necessary background information on how the theory is organized and presented.

In (Sjoberg et al., 2008), three levels of abstraction for theoretical 

propositions are identified, where Level 1 propositions are minor working 

relationships that are concrete and based directly on observations, Level 2 are 

theories of the middle range that involve abstraction of possibly many Level 1 

theories but are still closely linked to observations, and Level 3, all-embracing 

theories that seek to explain an aspect of Software Engineering.
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The preliminary theory propositions are given in Table 8-2 and Table 8-3, for 

human and process factors respectively, both of which are described in more detail in 

the next two subsections. The tables are hierarchically structured to reflect the 

different levels of abstraction denoted in the propositions. The propositions at Level 

1 are mostly directly based on emergent hypotheses and implications of results from 

the six studies in this thesis (described in Chapters 2-7); whereas, Level 2 

propositions comprise higher-level abstractions of the Level 1 propositions. 

Essentially the Level 1 propositions are more concrete and testable sub-issues that all 

serve to test the more abstract Level 2 propositions. Because of the emergent nature 

of the theory and the exploratory nature of the six studies, the given propositions are 

mostly at Level 1, with six at Level 2. There are no Level 3 theories given; these are 

typically derived from a much larger set of related study findings when the discipline 

is more mature (Sjoberg et al., 2008). Table 8-2 and Table 8-3 also contain a 

reference to the study where the Level 1 proposition is derived (in Column 3), and 

key summary terms (in Column 4).

For each theory theme (human or process factors) and the Level 2 statements, 

the grounded evidence used to form the theory will be presented. This is equivalent 

to logical or mathematically based proofs being given for a more prescriptive or 

mathematical theory. Each proposition has a unique ID that is used to reference 

specific propositions in the Tables in the descriptive text accompanying the Tables.

3.1 Human factors theory

Level 2 Level 1 Source Key
terms

PL Different types of 
RE and SA knowledge 
possessed by the 
human agents 
conducting RE and SA 
processes have a 
significant effect on 
RE and SA products 
and process quality.

P1.1 Software architects with 
education and training in RE 
positively impact resultant 
architecture and architecting 
activities.

SI, S2 Knowledg 
e factors

PI.2 Requirements analysts with 
education and training in SA 
positively impact resultant 
requirements and requirements 
activities.

Logical 
extensi 
on from 
SI

Knowledg 
e factors
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P2. Varying types of 
skill-sets and personal 
interests (such as more 
technologically 
motivated vs. user
needs motivated) 
possessed by the 
human agents 
conducting RE and SA 
processes significantly 
alter resultant RE and 
SA product 
characteristics.

P2.1 A requirements elicitation team 
with motivation and expertise in 
system solution is more likely to elicit 
requirements that have technological 
bias.

S3 Personal
interests
factors

P2.2 A requirements elicitation team 
with motivation and expertise in a 
system’s context (e.g., human
computer interaction and end-user 
satisfaction) is more likely to elicit 
requirements that are user-focused.

S3 Personal
interests
factors

P3. Human factors 
such as mental 
capability, education, 
and others (e.g., 
professionalism, 
communication, 
leadership, etc.) 
significantly override 
the impact of 
technological usage in 
an RE and SA project.

P3.1 Non-technical factors training 
and education reduces non-technically 
oriented problems in RE and SA.

S6 Non
technical
factors

P3.2 Mental capability, education and 
experience are the highest 
determinant factors for predicting RE 
and SA product quality.

SI, S2, 
S5

Mental
capability
factors

P3.3 The employment of RE and SA 
technology does not significantly 
decrease variance between project 
outcomes in terms of RE and S A 
product and process quality.

SI, S3, 
S5, S6

Technolog 
y factors

Table 8-2. Human factors theory propositions
1. Different types o f RE and SA knowledge possessed by the human agents 
conducting RE and SA processes have a significant effect on RE and SA products and
process quality.

In S1, it was found that a strong contributing factor in the quality of the final 

architecting products was the type of education possessed by the architects; 

specifically those with RE education performed better than those without 

(approximately 10% difference between the two types of groups -  See Chapter 2 

Section 4.2). Also in SI, it was qualitatively determined technical areas (such as 

determining architectural tactics, modeling quality scenarios and pattern 

determination) where feedback was required during the architecting process to 

overcome project difficulties -  again teams with RE knowledge performed better (see 

Chapter 2 Section 4.2). This phenomena was also observed in S2, architects with RE 

knowledge had less requirements-oriented problems in-process than those without 

RE knowledge (see Chapter 3 Section 3.2). These findings led to proposition P l.l.
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One knowledge factor that was not explicitly studied, due to contextual 

constraints, is the impact of architecting knowledge on RE. Therefore, proposition 

PI.2 was derived and is based on the logical assumption that critical knowledge from 

SA would be useful for, at the very least, parts of the process and product quality of 

RE.

2. Varying types o f skill-sets and personal interests (such as more technologically 
motivated vs. user-needs motivated) possessed by the human agents conducting RE 
and SA processes significantly alters resultant RE and SA product characteristics.

This proposition is entirely inferred from the observations in S3, where one of 

the side-results of this study is that human factors such as personal interest and 

motivation influenced specific requirements characteristics (degree of tech focus vs. 

user-focus, etc.), but not necessarily the “goodness” of the requirements, leading to 

P2.1 and P2.2. These attributes, coupled with presence/absence of technical artefacts 

(such as the existing SA) ‘boosted’ specific product characteristics (e.g., analyzing 

existing SA output requirements that were tech-focused, but more so if teams were of 

a more technological-background). This suggests that when engineering RE and SA 

processes, a careful examination of the makeup of the team’s non-technical 

properties should be done in order to determine which artefacts should be used 

during the process to maximize impact of intended effect.

3. Human factors such as mental capability, education, and others (e.g., 
professionalism, communication, leadership, etc.) significantly override the impact of 
technological usage in an RE and SA project.

A side result of S1 was that the individual mental capability of the architects was 

the prime factor for determining the final architecture quality (P3.2). Furthermore, 

other human-factors (such as professionalism, communication, etc.) impacted the 

“goodness” of RE and SA projects, but not necessarily to the same extent (a 

“moderate” co-relation with high-quality architectures -  see Chapter 7 Section 3.3). 

However, these same non-technical factors had a high negative impact on the process 

itself -  leading to extra time spent and rework, resulting in P3.1. In S5, participants 

also informally reported that a lack of coordination and communication mechanisms
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led to difficulties in enhancing and understanding the existing system (see Chapter 6 

Section 3).

Despite employing varying available RE and SA technology, there was always a 

high variance in the productivity reported by various participants in the six studies, 

suggesting that the technology is not “streamlining” the process. In all academic 

studies (S1-S4, and S6), there was observed project variance that is invariably due to 

capability differences among project teams. The common technological support used 

by all teams in all studies did not decrease variance in teams’ projects. These facts 

led to proposition P3.3.

Overall though, the contribution of mental capability and other non-technical 

factors to the results is not surprising. Numerous researchers have previously 

reported this in software development in general (Boehm, 1988; Curtis et al., 1988). 

These theoretical propositions are included in the theory for the sake of completeness 

and to provide a broader range of the lower-level theory.

3.2 Process factors theory

Level 2 Level 1 Source Key
Terms

P4. RE and 
SA
artefacts
and
processes 
significantl 
y vary 
when 
conducted 
in the
presence or 
absence of 
an existing 
SA.

P4.1 Non-functional (NF) characteristics of a 
non-local sub-svstem significantly affect 
(enable or constrain) requirements for the local 
sub-system being worked on.

S4, S5 Existing 
SA effect 
on
requireme
nts
products

P4.2 Constrained requirements decisions have a 
(strong) negative impact on construction and 
testing.

S5 RE and 
SA
interaction 
effects on 
software 
developme 
nt
processes

P4.3 Constrained requirements decisions have a 
(moderate) negative impact on a multitude of 
project-specific system properties (such as 
performance, safety, reliability, etc.)

S5 RE and 
SA
interaction 
effects on 
system
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quality
P4.4 Older, “load-bearing” components of a 
system lead to more constrained effects on new 
requirements decisions than newer 
implemented components.

S5 RE and 
SA
interaction
effect
factors

P4.5 Significantly more consequential 
requirement decisions affect the SA than do 
core or emergent requirements decisions.

S5 RE and 
SA
interaction
effect
factors

P4.6 Requirements elicited from a RE process 
that involves analysis of a current architecture 
will be more technologically focused than a RE 
process that does not include such analysis.

S3 Existing 
SA impact 
on
requireme
nts
product
characteris
tics

P4.7 Requirements elicited from a RE process 
that does not analyze the current architecture 
will be more user-focused than a RE process 
that does not include such analysis.

S3 Existing 
SA impact 
on
requireme
nts
product
characteris
tics

P4.8 Requirements elicited when the current 
architecture is analyzed are considered more 
important for system success (in terms of 
providing essential value for system 
stakeholders) than without such analysis.

S3 Existing 
SA impact 
on
requireme
nts
product
characteris
tics

P4.9 Requirements elicited when the current 
architecture is analyzed are more 
architecturally relevant than requirements 
without such analysis.

S3 Existing 
SA impact 
on
requireme
nts
product
characteris
tics

P4.10 The degree of requirements 
characteristics will vary between projects, but 
the impact from presence/absence of SA will

S3 SA
analysis
impact
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be roughly the same. factors
P4.11 The existing architecture has a 
significant impact on new requirements 
decisions as a constraint or an enabler.

S4, S5 RE and 
SA
interaction
effect
factors

P4.12 Approximately 20-30% of requirements 
decisions are constrained by an existing SA.

S4, S5 RE and 
SA
interaction
effect
factors

P5. The 
incorporati 
on of RE 
and SA 
effect
information
into
architecture
impact
analysis
increases
the
effectivenes 
s of RE and 
SA
evolutionär 
y processes.

P5.1 If the history of interaction effects 
between SA and RE is used effectively (in 
terms of cost-efficiency of the documentation, 
maintenance and retrieval of the critical RE and 
SA interaction information) then the time/effort 
spent performing evolutionary work in RE and 
SA will decrease.

S4, S5 Process 
support for 
RE and 
SA
interaction
effects

P5.2 Retrieving pertinent lost RE and SA 
interaction information, from project sources 
such as people and existing project documents, 
for the purpose of making current RE and SA 
decisions increases RE and SA development 
time and cost.

S4, S5 Cost of
lack of RE
and SA
interaction
effect
process
support

P6. RE and 
SA
processes 
that are 
augmented 
with sub
activities 
that enforce 
a tighter 
integration 
between 
critical RE 
and SA 
links will 
lead to an 
increase in 
the
effectivenes

P6.1 Coordination between requirements 
analysts and architects during handover 
processes reduces number of problems during 
RE and SA activities.

S2, S5 RE and 
SA
handover
process
support

P6.2 Requirements-oriented problems 
encountered during architecting are 
predominantly limited to quality satisfaction, 
quality drivers determination, modeling quality 
requirements, abstraction, and requirements 
understanding.

S2 RE and 
SA
process
problems

P6.3 If the requirements engineers and software 
architects together model quality requirements, 
then the number of requirements-oriented 
problems during the architecting process will 
decrease.

S2 RE and 
SA
integration
and
process
support

P6.4 If adequate background information about S2, S5 RE and
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s and 
efficiency 
of these 
processes.

the requirements (such as, rationale, 
assumptions, priority, etc.) is given to, or 
shared with, the software architects then fewer 
requirements-oriented problems will be 
encountered by the architects.

SA
handover
process
support

P6.5 If the architects provide “live” feedback to 
the RE agents on potential system-wide 
constraints and enablers, then the amount of 
requirements-rework will be reduced.

S4, S5 RE and 
SA
integration
and
process
support

Table 8-3. Process factors theoretical propositions

4. RE and SA artefacts and processes significantly vary when conducted in the 
presence or absence o f an existing SA.

The explicit focus of S3, S4 and S5 was investigating the issue of new 

requirements and requirements decision-making between two contexts: existing SA 

and no existing SA (or new systems development). Whereas S3 was strictly looking 

at differences in the resultant product (specifically the requirements), S4 and S5 

examined requirements decisions made in-process and how they were affected by the 

existing SA. In S3, a set of propositions emerged directly based on the study’s 

significant findings (P4.6 -  P4.9).

P4.10 is not based on an explicit finding from S3, but arises based on the analysis 

of the generalizabiltiy of the results where project and domain factors will certainly 

influence requirements characteristics, but there is no reason why the specific 

characteristics that showed differences (such as degree o f technological focus, degree 

o f user focus, and architectural relevance) could not be consistent across projects. 

From this set of propositions from S3, the common theme is that there is a significant 

difference in a few of the resultant requirements products characteristics when 

elicited in the presence of an existing SA.

S4 and S5 differ from S3 in that they were investigating in-process requirements 

decisions in the presence of an existing SA. S4 was the initial study, and from its 

observations the set of propositions P4.1 - P4.2 were inferred. Based on these initial 

findings, S4 was replicated and extended in a larger-scale context (S5 -  the RailCab 

project), where S5 probed deeper into the characteristics of the affected requirements
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decisions. It further led to new propositions (P4.3 -  P4.6) that further demonstrate 

the impact of an existing SA on requirements decisions.

The quantitative results from S4 and S5 suggest that the RE and SA impact 

profiles will vary from project to project, and across domains. However, the same 

types of effects (e.g., constrained, enabled, none) do occur, and their impact on 

requirements decisions is significant, leading to proposition P4.ll. There was a 

similarity in the frequency of the constrained effect type (23% vs. 30%) in both S4 

and S5 which led to the derivation of proposition P1248.

5. The incorporation o f RE and SA effect information into architecture impact 
analysis increases the effectiveness o f RE and SA evolutionary processes.

This proposition comes from the implications of the findings of S4 and S5, 

and not directly from the results. The essence of the proposition is that RE and SA 

processes should be augmented with process support (and any accompanying 

technology) for aiding architectural impact analysis in evolutionary processes (P5.1 

and P5.2). These propositions have not been empirically observed or tested, but are 

more of a solution-oriented mechanism for dealing with specific phenomena that 

occurred in S3 and S4. Currently, in the research literature, RE and SA interaction 

effects are not explicitly incorporated in architecture impact analysis processes, and 

this emerging theory provides a framework for assessing the effectiveness of such 

information during RE and SA processes.

6. RE and SA processes that are augmented with sub-activities that enforce a tighter 
integration between critical RE and SA links will lead to an increase in the 
effectiveness and efficiency o f these processes.

From the observations in S2, S4, and S5, problems were occurring during RE and 

SA that were as a result of a lack of process activities that enforced a tight integration 

on key links between RE and SA (P6.1 -  P6.5). These problems were irrespective of 

the impact of human factors and so we conclude that these really are process specific

48 Note that no other propositions in either Tables 2 and 3 have quantitative figures because they are 
not based on repeated studies. Thus, we opt for more conservative qualitative propositions which, if 
shown to converge with further studies (i.e., replications), can then be expressed quantitatively and the 
theory updated accordingly.
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deficiencies; overcoming these deficiencies will maximize communication, 

coordination, and knowledge sharing on critical RE and SA issues that will in turn 

improve the effectiveness of an RE and SA process. The common theme among 

these propositions is that handover processes or RE and SA work focused on certain 

activities and artefact types need to be done in an integrated manner by the human 

agents conducting these processes. For other sub-activities and artefact types, the 

problems were not encountered. Knowing the minimal set of activities and artefact 

types that require “extra” care leads to more cost-efficient, yet still effective RE and 

SA processes.

3.3 Key Points

Overall, based on the key terms in Table 8-2 and Table 8-3, the proposed emergent 
theory states that:

The effectiveness o f RE and SA processes is increased i f  technological 

support ensures:

(1) tighter coupling between the artefacts and activities across RE 
and SA,

(2) the project’s development context (such and new development vs. 

enhancements, agile vs. traditional development models, 

centralized vs. distributed organization, etc.), and,

(3) compatibility with the varying degrees o f knowledge, skill-sets 

and personal motivation possessed.

Here, the effectiveness of RE and SA processes is evidenced by such measures as 

higher quality of RE and SA products, lower development time, or reduced rework. 

Also, note that the theory statement is not arguing for always having a tighter process 

integration between RE and SA; as observed in S4 (see Chapter 4, Section 5.1) this is 

not always ideal. The theory is simply arguing that the employed technology has the 

capability for conducting both the RE and SA processes in an integrated manner 

wherever appropriate for a given project. This is orthogonal to the current design of
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industrial RE and SA tools where each tool focuses exclusively on only one of these 

processes (such as IBM’s Doors for RE, and Rational’s Software Architect for SA).

The theory statement is abstracted from the following higher-level propositions 

that are resultant from the key terms in Table 8-2 and Table 8-3:

• Different types of RE and SA knowledge, skill-sets and personal interests 

possessed by the human agents conducting RE and SA processes have a 

significant impact on RE and SA products and process quality, and also their 

characteristics.

• RE and SA processes should be augmented with sub-activities that enforce a 

tighter integration between critical RE and SA technical links in order to 

reduce the number of RE and SA problems encountered, and increase the 

coordination and knowledge sharing between RE and SA agents conducting 

these processes.

• RE and SA processes need process and technological support for capitalizing 

on the presence/absence of an existing SA; RE and SA product and process 

characteristics vary significantly between these two contexts.

We now present an initial evaluation of the emerging theory.

4 Evaluation of emerging theory

(Boehm and Jain, 2006) and (Sjoberg et al., 2008) list similar criteria for 

evaluating the “goodness” of theories, both lists of which were adapted for SE theory 

evaluation from other disciplines such as Business Management (Bacharach, 1989), 

Psychology (Haig, 2005), and Sociology (Cohen, 1989). The following criteria were 

amalgamated from the criteria in these two sources. Note that these criteria are all 

considered important and are thus their ordering does not indicate any priority.

1. Empirical support - The degree to which a theory is supported by empirical 

studies that confinn its validity.

2. Utility - The degree to which a theory supports the relevant areas of the
software industry.
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3. Generality - The breadth of the scope of a theory and the degree to which the 

theory is independent of specific settings.

4. Parsimony - The degree to which a theory is economically constructed with a 

minimum of concepts and propositions.

5. Testability - The degree to which a theory can be empirically refuted.

6. Explanatory power - The degree to which a theory accounts for and predicts all 

known observations within its scope, is simple in that it has few ad hoc 

assumptions, and relates to that which is already well understood.

For the rest of this section, the emerging theory will be evaluated with respect to each 

of the above criterion.

Empirical support:
Since this is an emerging theory, the number of empirical studies on which the 

theory is derived is low, and they are all from one research group creating a possible 

bias for the theory. Furthermore, each study investigated its own discrete topic; the 

propositions were not pre-determined to be directly related to each other (except for 

the ones involving S4 and S5) -  other than them being loosely coupled in the context 

of RE and SA interactions.

A point in favour of the degree of Empirical support of the emerging theory is 

that, in fact, as shown in Table 8-2 and Table 8-3, there is a clear traceability from 

higher-level statements to lower-level statements, which are in turn based directly on 

empirical evidence from the studies. Except for PI.2 and P4.10, all statements are 

empirically grounded which is considered a stronger form of theory than more 

conjecture-based theory (Sjoberg et al., 2008).

Regardless, the empirical support is still considered low to moderate, which is 

expected in an emerging theory until more families of studies are conducted (Carver, 

2010) in the domain of RE and SA interaction.

Utility:
The emerging theory can be directly used in the decision making in RE and SA 

projects with little adaptation, in particular for decisions concerning human and
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process factors. For example, concerning human factors, propositions P l.l and PI.2 

can be directly used in industrial hiring and training processes of relatively 

inexperienced requirements engineering or software architects, to ensure that the RE 

and SA staff have the appropriate types of knowledge for maximizing RE and SA 

performance. Likewise for process factors, proposition P4.4 can be used to inform 

new requirements decisions that the most problematic and costly decisions originate 

from the “load-bearing” subsystems, and thus extra attention should be given to these 

subsystems during impact analysis. Since all of the propositions have a direct 

practical impact (as in the above examples), we consider the utility of the theory to be 

high.

Generality:

The emerging theory’s scope covers both human and process factors, and so is 

generalizable to these types of issues, irrespective of technology and setting. 

However, the theory does not extensively consider important RE and SA issues such 

as economic decisions, technological employment, organizational/project/team 

structure, and development lifecycle (e.g., agile vs. iterative) that would have an 

impact on the success of RE and SA projects. Furthermore, the empirical evidence 

on which the theory is derived is mostly from “lab” settings, which limits the 

generalizability of their findings, and thus any theory inferred from these studies. 

Therefore, the generality of the theory can be considered low to moderate.

Parsimony:
In the details of the studies (S1-S6), it is obvious that there is an expansive set 

of constructs of interest in the RE and SA interaction domain (e.g., specific RE and 

SA activities, products, types of human knowledge, etc.). In the emerging theory, 

this expansive set of constructs is reduced to a smaller, more manageable number that 

improve clarity and understandability of the theory, effectively leading to its easier 

application to practice. The Parsimony of the theory is thus considered high.

T estability:

Each proposition of the emerging theory is expressed in a way that is directly
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testable. Specific hypotheses can also be derived from the propositions; each 

proposition can essentially be tested in its own study with minimal dependencies on 

other propositions. Furthermore, the propositions are also testable through a variety 

of study designs and contexts; the most likely candidates for testing the propositions 

are industrial case studies and surveys, and “lab” controlled and case studies. The 

Testability of the theory is therefore considered high.

Explanatory power:
SE theories in general are considered to have difficulties with their explanatory 

power, due to the complexity of SE and the multitude of factors that can influence a 

SE project (e.g., human-based, technical, political, organizational, etc. [Boehm, 

1988]). RE and SA processes are no different; they are complex processes that 

involve a wide range of factors (such as, heavy human involvement, conceptual 

artefacts, early part of a development thread, business and external issues, etc.) and 

so it is difficult to have a high degree of explanatory power for any particular 

theoretical concept. Since the theory presented in this chapter is emerging and is 

based mostly on observations from exploratory studies it provides first-step 

explanations for some of the aspects in RE and SA development (human and process 

related), but certainly further studies are required to expand and strengthen the 

explanatory power of the theory. The explanatory power is thus considered low.

5 Implications

There are numerous potential implications for the emerging theory for both 

practice and research which we list here.

• Practice:

o Understanding the key activities in the RE and SA interaction - 

knowing these can aid in their smooth execution, 

o The impact of the existing SA on elicitation (e.g., 

enabled/constrained) and analysis (e.g., impact of non-functional 

attributes of the non-local subsystems on new requirements).
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o Resource management (e.g., assignment of staff to projects and 

roles, training and hiring processes, etc.).

o RE and SA project planning.

o Predicting RE and SA project outcomes based on 

control/manipulation of key attributes to achieve desired business 
goals.

• Research:

o Researchers can use preliminary theory for hypothesis forming 

and testing, which can then be fed back into the theory (i.e., 

transition from descriptive to normative theory [Sjoberg et al., 

2008]).
o Researchers can perform further grounded theory building on new 

research issues that were not explored in this dissertation (i.e., 

continue the preliminary inductive theory building established in 

this thesis).

o Aids in assessing the maturity of the RE and SA interaction field 

(and its theory).

6 Conclusions

The RE and SA interaction discipline is abundant in underlying construction 

(or engineering) theory that is used to develop technology for aiding in the 

transitioning from RE to SA. However, “empirically grounded theory” on the 

interaction between RE and SA in terms of the human and process factors involved 

in RE and SA development is scattered and mostly anecdotal. We have thus 

presented an emerging theory that describes phenomena related to human and 

process factors in RE and SA development. The emerging theory is based on 

observations from the six studies reported in earlier chapters of this thesis.

The theory was constructed in a “bottom-up” manner and the chapter 

demonstrated clear traceability from the lower-level observations of the six studies 

reported in this thesis, to the higher-level propositions of the theory.

Furthermore, the emerging theory was evaluated based on “theory goodness”
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criteria from (Boehm and Jain, 2006) and (Sjoberg et al., 2008) and was found to 

satisfy the main criteria for a good theory (utility, generality, parsimony, testability, 

empirical support, and explanatory power) reasonably well, particularly considering 

the theory is based on a limited number of studies and is still at initial stages of 

development.

As with all theories, the emerging theory needs more empirical studies, either 

to test specific aspects of the theory, expand the breadth of propositions that are 

currently described, or to provide more detailed explanations as to why phenomena 

observed are occurring. This requires a concerted effort by the RE and SA 

community to conduct studies in various contexts (i.e., “lab” or industrial practice) 

and to feed the resultant findings back into the emerging theory.
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Chapter 9

Conclusions and Future Work
We state the conclusions of the thesis before discussing future work.

9.1 Conclusions
While the interaction between RE and SA has been recognized and 

researched in terms of new technology (methods [Bass et al., 2003][Wang et al.,

2005], development methodologies [Castro et al., 2002], tools [Bachmann et al., 

2003a], processes [Schwanke, 2005][Brandozzi and Perry, 2003], etc.), there is a 

distinct lack of empirical understanding regarding the scientific properties of this 

interaction (such as: the impact of an existing SA on newly elicited requirements, 

how non-technical factors affect RE and SA processes, and the specific architecting 

process areas that architects without RE knowledge encounter the most difficulties). 

Furthermore, in SE, both technical and human aspects are considered critical for the 

success of software development (John et al., 2005; Bass and Berenbach, 2008; 

Clements et al., 2007). In particular, for RE and SA, human factors are even more 

important due to these processes lying at the front-end of the development cycle and 

therefore being more aligned with real-world issues. Thus, the scientific properties 

of the RE and SA interaction can be broken down into two key areas: human and 

technical based.

To address this lack of scientific understanding, we conducted a suite of six 

empirical studies over the past five years, each addressing a distinct topic under the 

general area of human and technical factors in the interaction between RE and SA. 

Examples of such issues addressed are: what are the critical types of RE and SA 

knowledge required to produce high quality RE and SA products? How does 

requirements decision-making change when done in the presence of an existing SA? 

What types of requirements-oriented problems occur while architecting?

These six studies are documented, each in its own specific chapter, and were 

conducted in a variety of contexts, such as academic “lab” experiments and studies, 

and case study on a real large-scale project. The studies also employed a mix of
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empirical methodological designs, from quantitative based data collection and 

analysis, to more Social Sciences oriented qualitative techniques (Creswell, 2003).

Based on the observations from these six studies, an emerging grounded 

theory is proposed that describes the impact of human and technical factors in the 

interaction between RE and SA. In short, the emergent theory states that:

The effectiveness o f RE and SA processes is increased i f  technological

support ensures:

(1) tighter coupling between the artefacts and activities across RE 

and SA,

(2) the project’s development context (such and new development vs. 

enhancements, agile vs. traditional development models, 

centralized vs. distributed organization, etc.), and

(3) compatibility with the varying degrees o f knowledge, skill-sets 

and personal motivation possessed.

Further to this theory, specific findings from the various studies were discovered that 

add to the body of knowledge in RE and SA. From this, we conclude that:

1) software architects with RE knowledge performed approximately 16% 

better than architects without such knowledge (see Chapter 3);

2) a third of all problems encountered during architecting are requirements- 

oriented. The highest severity requirements-oriented areas are: quality 

satisfaction, quality drivers determination, modelling quality requirements 

(scenarios), abstraction, and requirements understanding (see Chapter 4).

3) that requirements elicited in the presence of an existing SA are more 

technologically-focused, architecturally relevant, and important. 

Conversely requirements elicited without an existing SA are more user- 
focused (see Chapter 5);

4) that there are three ways in which an existing architecture affects new 

requirements decisions: constrained, enabled, and none (see Chapters 6 
and 7);
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5) that approximately 40-50% of new requirements decisions are affected by 

the existing SA (see Chapters 6 and 7);

6) that approximately 20-30% of new requirements decisions are constrained 

by the existing architecture (see Chapters 6 and 7);

7) that most of the constrained requirements decisions originate from 

implementation activity feedback (see Chapter 6);

8) that early architecting decisions in “load-bearing” subsystems are the 

source of the most costly and problematic new requirements decisions 

(see Chapter 6);

9) that non-technical factors have a moderate impact on RE and SA 

products, and a high impact on RE and SA processes (see Chapter 7);

10) and that the representation of non-technical skills in the current ACM SE 

and CS curriculums are under-represented for effectively performing RE 

and SA processes (see Chapter 7).

While our exploratory findings and theory are promising (see their 

implications in Chapters 2-8), they are but the start for developing a mature scientific 

discipline (Sjoberg et al., 2008). The results are thus limited to the contexts of the 

study and their use in out-of-context areas is cautioned. Further, only through the 

execution of families of studies will the body of knowledge solidify (Carver, 2010), 

leading to improved scientific understanding that can reliably be used in wide 

practice (Kitchenham et al., 2004). We encourage others in the research community 

and industry to join in this quest.

9.2 Future Work

The opportunities for further work centre on two orthogonal dimensions: 

technology development and further RE and SA interaction empirical work, which 

we now discuss.
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9.2.1 RE and SA technology development
The suite of exploratory empirical studies presented in this thesis focused on

“new knowledge” or “problem exploration” and were not directly solution-oriented. 

However, with the various issues observed in the six studies, we believe new avenues 

of technological research can be researched to aid RE and SA practitioners.

For example, in the more human factors based studies (Chapters 2-3 and 

Chapter 7) we observed that a lack of specific types of knowledge during RE and SA 

processes (such as RE or SA knowledge) had a significant detrimental impact on RE 

and SA quality (product and process). RE and SA decision support tools support 

could then possibly be developed that encode key RE and SA knowledge, and using 

this knowledge, aim to guide RE and SA practitioners through the more difficult 

process activities when making RE and SA decisions. Essentially, these tools could 

help to bring the RE and SA practitioners to a minimum baseline instead of relying 

entirely on the competence and knowledge-level of the RE and SA practitioners. The 

ArchE tool by (Bachmann et al., 2003b) is an example of a first step in this direction, 

as they guide practitioners through determining and analysing a few architectural 

tactics (modifiability and performance), but more work is needed to encompass the 

wider range of RE and SA activities and artefacts.

Another aspect that can possibly be incorporated into an RE and SA decision 

support tool is the integration of RE and SA interaction effects as observed in 

Chapters 4 and 5. Currently, there are few tools that allow for concurrent RE and SA 

design, and these tools do not focus on issues such as impact analysis during RE. For 

example, while the RE and SA practitioners are documenting their requirements, tool 

support that showed which parts of the architecture historically affected these 

requirements and what implementation implications there were would be invaluable 

for making cost-effective requirements decisions. However, the real research 

challenge here would be in capturing and maintaining this key RE and SA interaction 

information in a cost-efficient manner, either through automatic means or guiding the 

users towards eliciting a small subset of what they deem is the critical information, 

and suitably enforcing that this information is maintained on an ongoing basis. The 

participants in the RailCab study (described in Chapter 6) regularly mentioned that
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having such information would be useful. In particular, when staff turnaround 

occurred, they often neglected periphery information capture because this incurred a 

short-term time penalty that posed a risk to the completion of impending deadlines.

Beyond tool support, current RE pedagogical textbooks do not describe how 

to do RE in the presence of an existing SA; impact analysis techniques are virtually 

non-existent yet most industrial projects are of a more maintenance nature (i.e 

brownfield development) and are not greenfield as implicitly assumed in current RE 

literature. Future technological research could then focus on expanding current 

methods and techniques to add support in how to more precisely determine cost and 

feasibility of new requirements due to technical constraints or enablers from the 

existing architecture (see Chapters 5 and 6 for more details on these factors). 

Conversely, architecting methods and techniques could be updated or redesigned to 

add support for architecting during maintenance phases of the software lifecycle.

9.2.2 Further RE and SA interaction empirical work
The empirical suite of studies presented in this thesis, along with the

emerging theory, provides an initial body of knowledge on the scientific properties of 

the interaction between RE and SA processes. Despite the promise of this new 

knowledge and theory, the empirical studies conducted were all exploratory, and are 

thus just the beginning for establishing a solid grounded body of knowledge. What is 

needed then are further replications and extensions to these studies, as well as testing 

of the studies emergent hypotheses. Specifically, these studies need to be conducted 

in a variety of contexts and settings, on projects with different degrees of complexity, 

and in different domains to assess which results are common among the studies, and 

which results do not hold. These findings would then be fed back into the theory to 

add, modify or delete current theoretical propositions that have been proposed.

Further to this general replication, the studies, when replicated, should be 

extended with new or expanded research questions (where possible) that probe 

deeper into explaining the phenomena observed in this thesis. As discussed in 

Chapter 8: Emerging theory, due to the emerging nature of the theory, the theory’s 

explanatory power is low and requires further studies that go beyond the exploratory 

nature of these studies (which focus more on breadth of observations [Mason, 1996])
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to more explanatory based studies (which focus on depth of observations [Runeson 

and Host, 2009]).
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Appendix A

Software Architecture Assessment Instrument49

Assessor Name(s):_________________________
Project Team #____

Purpose: The purpose of this instrument is to help assess the Software Architecture 
projects. The assessments will be used in an empirical study on software 
architectures.

Background: Bredeyemer consulting50 states that a Software Architecture should be:

• Good — i.e., it is technically sound and clearly represented.
• Right — i.e., it meets the needs and objectives o f key stakeholders.
• Successful — i.e., it is actually used in developing systems that deliver 

strategic advantage.

This assessment instrument is meant to assess the Architecture with respect to only 
the first two attributes listed since the architectures in question will not be 
implemented, or judged, in any real-world setting. The minimum amount of work 
that the instrument is based on is taken from the document “Minimum Project 
Documentation”. This document was given to the students to state the expected type 
and quantity of the various architecting artifacts that should be in the final product. 
Also, the students used documentation templates from the course textbook (Bass et 
al., 2003) to complete their project so these templates are also a source for this 
instrument.

Instructions:

Use the accompanying Microsoft Excel template to rate each statement according to 
the following scale except where otherwise instructed. Each statement refers to the 
‘level of agreement’ of the statement. The scale is: 6 -  very strongly agree; 5 -  
strongly agree; 4 -  mostly agree; 3 -  neither agree nor disagree; 2 -  mostly disagree;
1 -  strongly disagree; 0 -  very strongly disagree. The template also has three 
columns for “Evaluator Confidence”, “Rationale”, and “Suggestions”. In the

49 The format and style of this instrument is based on an assessment manual from the field of 
Psychology. J. Fortin and C. Cuerrier: E valuating  a M entoring Program , Canadian Cataloguing in 
Publication Data, 2003.
50 Ruth Malan and Dana Bredemeyer: “The Visual Architecting Process™”, Architecture Resources 
for Enterprise Advantage, http://www.bredemeyer.com, 2003.

http://www.bredemeyer.com
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confidence column, mark your confidence level from 1-10 (where 1 is very little 
confidence and 10 is extremely confident) for each of your responses. In the 
rationale box, provide where necessary a justification to your rating. The suggestions 
column is where you can input feedback about the instrument for any given 
statement.

1. Domain Work

The domain work includes tasks that are based on understanding the requirements 
and the domain of the system. They deal with issues that are not part of the design of 
the system, but more with modelling and understanding the problem definition of the 
system to be built.

1.1 The context diagram(s)

1. Minimum one context diagram showing overall system within its environment 
(2 -  Has more than one context diagram for different sections, 1 -  meets this 
requirement, 0 -n o  context model).

2. Models show links to all external institutions and entities in the problem 
domain (Completeness) (should be 4 or 5 links in the ideal solution).
• The Banking system.
• ATM, internet phone banking, direct staff access, and automated phone 

banking.
• Other financial institutions such as: other banks, stock exchange, 

government institutions.
• Other users such as managers and maintainers.

3. Model(s) (possibly explained by supporting description) are easy to read and 
understand.

4. The context model(s) are too complex and detailed for the level o f abstraction 
they are representing.

1.2 Use Cases (Enter N/A i f  there is no work on the use cases)
1. Existence o f use cases for key functionality such as withdraw and deposit 

funds, transfer funds, check account balance, and edit personal information.
2. Clear and logical models.
3. Use cases are rooted in the requirements.
4. The use case models, components, or links are superfluous.
5. Appropriate labelling o f links between elements in the models.

2. Requirements-Architecture Work

Bass, Clements and identify the quality scenario work and tactics determination to be 
the tasks that lie in the link between Requirements and Architecture. Other 
researchers have proposed other RE-SA methods that would involve a different set of 
RE-SA tasks, but since the subjects of our study used Bass et al.’s ADD process, we 
are using their definition of RE-SA tasks.
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2.1 Quality work (attributes and scenarios) (Enter N/A i f  there are no quality 
scenarios).

1. Explicit quality scenarios that are representative o f the problem domain.
2. For each scenario, six elements o f quality scenarios are required: (for each 

o f the elements o f a scenario, give a ‘1 ’ i f  it exists and is reasonable, and a 
‘0 ’ i f  it is not. Total will be given out o f six)

o Source 
o Stimulus 
o Environment 
o Artefact 
o Response 
o Response measure

3. Architecting

Architecting forms the bulk of the tasks the subjects had to perform. It involves 
high-level design focused on creating the structure of the system, and the 
relationships within this structure. Everything from the conceptual models to the 
corresponding documentation is included in Architecting tasks.

3.1 Architectural Structure

3.1.1 Module-level view

“In the module view, the elements are modules, which are units of implementation. 
Modules represent a code-based way of considering the system. There is less 
emphasis on how the resulting software manifests itself at runtime. The module 
structure allows us to answer questions such as, “What is the primary functional 
responsibility assigned to each module? What other software elements is this module 
allowed to use? What other software does it actually use?”

1. Appropriate use o f architectural patterns (either selected or created) to 
satisfy quality attributes and tactics. Please refer to BCK (chapters 3-7) 
textbook for discussion on patterns and how they relate to quality attributes 
and tactics

2. Three levels o f decomposition for the main functions: (3 -  three levels, 2 -  
two levels, 1 - 1  level, 0 - n o  levels)

• deposit (cheque or cash)
• withdraw
• check balance
• transfer funds between accounts
• view/print recent transactions
• pay bills
• edit personal information
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3. At least two levels o f module decomposition for “other” features such as:
• 3.1 user interface functionality: (2 -  two levels, 1 -  one level, 0 - n o  level)

o Representation o f differences between ATM, Internet Banking, 
Staff Access, and Telephone Banking.

• 3.2 security features: (2 -  two levels, 1 -  one level, 0 - no level)
o Encryption/decryption, authentication, and audit trail, among 

others.
4. At least one level for database functionality (1 -yes, 0 -  no).
5. The different levels o f decomposition are consistent with one another:

• 5.1 Features well-defined modules whose functional responsibilities are 
allocated on the principles o f information hiding and separation of 
concerns.

• 5.2 Sub-modules coverage o f the parent module functionality.
• 5.3 Sub-module links show the data flowing up/down the links (see 

Sommerville's SEng book (Sommerville, 2006) on module 
decomposition).

• 5.4 The sub-module dataflow (in/out) are consistent with the in/out 
dataflows o f the parent (Sommerville, 2006).

6. Diagrams are readable (not “messy ”).
7. Elements in a model are given appropriate names.

3.1.2. Deployment view

“This view is meant to show the relationship between the software elements and the 
elements in one or more external environments in which the software is created and 
executed. They answer questions such as:

• What processor does each software element execute on?
• In what files is each element stored during development, testing, and system 

building?
• What is the assignment of software elements to development teams?”

1. Minimum one deployment structure for a particular level o f decomposition (2 
-  goes beyond the required one section, 1 -  one section, 0 -  none).

2. Appropriateness o f the patterns selected/created with respect to the quality 
attributes and tactics.

3. Deployment view is centred on appropriate issues (such as, network topology, 
assignment o f software units to processors, middleware, etc.) based on 
fulfillment o f quality attributes (1 -yes, 0 -  no).

4. Understandibility -  the model is conceptually clear.
5. Readability -  the model is well-labelled and clear, use o f key for notation.
6. Logical displacement and labelling o f links (relations) between the elements.

3.1.3 Component and Connector (C&C) view
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“In this view, the elements are runtime components (which are the principal units of 
computation) and connectors, which are the interactions among the components. 
Component-and-connector structures help answer questions such as:

• What are the major executing components and how do they interact?
• What are the major shared data stores?
• Which parts of the system are replicated?
• How does data progress through the system?
• What parts of the system can run in parallel?”

1. Minimum one C&C structure section for a particular level o f decomposition. 
(2 -  goes beyond the required one section, 1 -  one section, 0 -  none)

2. Appropriateness o f the patterns selected/created with respect to the quality 
attributes and tactics.

3. C&C view is centred on an appropriate issue based on fulfillment o f quality 
attributes (e.g. showing concurrency for performance, timing properties, 
data-flow, etc.). (1 -yes, 0-no)

4. Understandibility -  the model is conceptually clear.
5. Readability -  the model is well-labelled and clear.
6. Logical displacement and labelling o f links (relations) between the elements.

3.2 Overall Architecture

1. Buildability:
a. Architecture amenable to be assigned to separate development groups 

for implementation and, subsequently, amenable to incremental 
integration and incremental testing.

2. The architecture depends on a specific version o f a commercial product (1: 
yes, 0: no)

a. I f  yes, architecture is structured so that changing to a different 
product is straightforward and inexpensive.

3. The various views (module, C&C, and deployment) all map to each other in a 
seamless, non-conflicting way. They depict different aspects o f the system.

3.3 Documenting an Architecture

3.3.1 Interfaces

1. Completeness -  has interface description for the lowest levels o f
decomposition o f the main features listed below (put a 1 for exist, 0 for not 
described).

a. Print Reports for bank manager
b. withdraw money
c. deposit money
d. transfer funds
e. check balance
f. cancel card
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g. postdate transactions
h. pay bills
i. order cheques and bonds
j. edit personal information
k. request stop payments

2. Interface description includes public services o f a module.
3. Interface description includes information an element needs in order to 

perform a function.
4. Interfaces are accurate and correct to the extent they can be at this level o f 

abstraction.
5. Interfaces are written in a format (can be any) that is readable and 

understandable.

3.3.2 Behaviour

1. All the critical functionality is represented using sequence, state, and/or 
activity diagrams (completeness).

2. Behaviour diagrams maintain consistency with the rest o f the models 
representing the ” architecture?

3. Redundancy (functions that are similar in behaviour, such as withdraw, 
deposit and check balance for each o f the different types o f access (ATM, 
internet banking, etc.), are not represented multiple times).

4. Models are technically correct.
5. Architectural behaviour is depicted (meaning the behaviour across elements, 

not within a given element) (3 -  all the time, 2 -  most o f the time, 1 -  very 
little, 0 -  no architectural behaviour).

6. Diagrams are clear and easy to read.

3.3.3 Descriptions

This section is for the textual descriptions of the views. The elements and their 
relations are described to complement the graphical models that are given.

1. Sound grammar and spelling.
2. Describes enough information to understand the system at this level of 

abstraction.
3. Completeness -  existence o f descriptions o f all elements and their relations.

3.3.4 Architecture Background (rationale, assumptions, analysis o f results, and 
design alternatives)

This section contains all the reasoning description about the corresponding sections 
of the architecture. Items such as rationale, assumption, analysis of results, and 
design alternatives should all be detailed in this section.

1. Rationale is based on quality attributes trying to achieve and the means for 
achieving them.
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2. Quality attribute tradeoffs and sensitivity points are made explicit.
3. Discusses possible design alternatives and why they were dismissed.
4. Sound grammar and spelling.
5. Appropriate explicit assumptions should be documented for each view.

3.3.5 Overall Documentation

1. Existence of: (enter 1 for yes, 0 for no for each o f the following 
documentation elements)

a. Page numbering
b. Table o f contents
c. Section headers
d. Glossary o f terms
e. References are used when necessary

2. Documentation across views section (see pages 215-218 in the course 
textbook (Bass et al, 2001).

3. Models have key to describe the notation used for modelling.
4. Consistency o f documentation across all sections. Different individuals might 

be responsible for different sections o f the documentation, so is there 
differences in the format, structure, or writing style o f the various sections?

5. The documentation is well structured, organized and clear.
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Appendix B

Requirements Ratings Data Collection 
Instrument

The requirements ratings data collection instrument was administered to each 
requirements rater to collect the requirements rating data (see Section 3.6.1). The 
instrument was operationalized through an MS Excel Spreadsheet file, and the 
organization of the spreadsheet is organized from the structure of Table 1 below.

Essentially, each requirement takes up two rows of this table. The first row is 
where the information pertaining to the requirement is given to the raters, and where 
they enter the ratings for the different requirements characteristics. Specifically, for 
each requirement, there are four pieces of information given to the reviewer: 
requirements ID, a title, a description and a rationale. The requirement ID is a 
numerical value that uniquely identifies the requirement. The title explicitly 
indicates what part of the system the requirement is referring to (Tele-Banking, 
Wireless Banking, Web Banking or Interac.) The description is the requirement 
itself, and the rationale provides additional reasoning as to why the requirement is 
necessary. These four pieces of information are given in the first four columns of the 
table. The next twelve columns51 are where the rater enters their rating for the 
particular requirements characteristic given in the column header. The raters filled 
out this part of the instrument with reference to the list of requirements 
characteristics, their definitions and the scales to use for each characteristic (see 
Table 1). In the second row for a given requirement, the rater can optionally leave 
any comments regarding their specific ratings for a particular requirement 
characteristic entry.

Note that in order to remove possible researcher bias during the ratings 
process, the table does not contain any information that can associate given 
requirements with specific teams that elicited the requirements, and whether they had 
access to the existing SA during their RE project.

The results of each individual rater’s assessment are merged into another MS 
Excel sheet which is organized based on the structure from Table 4-2 in Chapter 4: 
Section 3.6.1, where the inter-rater agreement procedure from Section 3.6.1 can be 
conducted.

51 Due to readability of the template, not all columns with characteristics are shown. See Table 4-1 for 
full list.
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Table 1. Requirements Rating Data Entry Template
ation Req uirements Characteristics

Reqt.
ID

Jl ill G
■ W -- .;  *>>‘t

* 4 -*

V ,  § ' ■*_•>*
4-*  a  . -í Cost Time Quality User

Needs
Tech.
Needs

•  •  •

(cont’d.)
R1
Rater comments
R2
Rater comments
R3
Rater comments
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