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Abstract
The main goal of homology search is to find similar segments, or local alignments, be

tween two DNA or protein sequences. Since the dynamic programming algorithm of Smith- 
Waterman is too slow, heuristic methods have been designed to achieve both efficiency and 
accuracy. Seed-based methods were made well known by their use in BLAST, the most widely 
used software program in biological applications. The seed of BLAST trades sensitivity for 
speed and spaced seeds were introduced in PatternHunter to achieve both. Several seeds are 
better than one and near perfect sensitivity can be obtained while maintaining the speed. There
fore, multiple spaced seeds quickly became the state-of-the-art in similarity search, being em
ployed by many software programs. However, the quality of these seeds is crucial and comput
ing optimal multiple spaced seeds is NP-hard. All but one of the existing heuristic algorithms 
for computing good seeds are exponential. Our work has two main goals. First we engineer 
the only existing polynomial-time heuristic algorithm to compute better seeds than any other 
program, while running orders of magnitude faster. Second, we estimate its performance by 
comparing its seeds with the optimal seeds in a few practical cases. In order to make the 
computation feasible, a very fast implementation of the sensitivity function is provided.

Keywords: Similarity search, multiple spaced seeds, overlap complexity, sensitivity.
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Chapter 1 

Introduction

The main goal of homology search is to find similar segments or local alignments between 
two biological sequences, such as DNA or protein sequences. As the classical dynamic pro
gramming method of Smith-Waterman [34] is too slow to be practical, heuristic algorithms 
such as BLAST [1] are used. BLAST uses a filtration technique in which positions with short 
consecutive matches between two sequences, or hits, are identified first and then extended 
into local alignments. Alignments with high scores are reported, while those with low scores 
are discarded. These short sequence matches are called seeds. In similarity search, seeds are 
short sequence motifs which, if shared by two sequences, are assumed to witness a potential 
similarity.

While classically, contiguous seeds have been used, spaced seeds, introduced by Califano 
and Rigoutsos [9] and popularized by PattemHunter [26], where the hits were no longer re
quired to consist of consecutive matches, have been shown to be more sensitive. Indeed, Pat
temHunter looks for 18 consecutive nucleotides in each sequence such that only those positions 
that are specified by 1 ’s in the string 1 1 1 * 1 * * 1 * 1 * * 1 1 * 1 1 1  are required to match. The 
other positions are actually don’t cares. This string is called a spaced seed. BLAST seed is a 
contiguous seed and it can be represented by 11 consecutive matches or 11111111111. The 
number of 1 ’s is called the weight of a seed.

Seeds are used in the framework of pattern matching. To find approximate matches of a 
given string in a sequence, we can discard those parts of the sequence where matching can not 
occur. Such filtration is done by small patterns (seeds). Therefore, one of the main applications 
of seeds is in approximate string matching. Seeds are also used in similarity search to find 
alignments between biological sequences.

Multiple spaced seeds are an extension to the basic seed model. Multiple spaced seeds is 
a set of seeds that hits when any of the seeds hits. Multiple spaced seeds perform better in 
a variety of applications. They provide faster and more sensitive homology search [31, 26], 
Multiple spaced seeds can be used for finding homologous coding regions in DNA sequences
[4]. They also perform well in applications like the problem of oligonucleotide selection [22].

Finding optimal (multiple) spaced seeds is NP-hard but even finding good ones is very 
difficult. Therefore heuristic algorithms are used to find good sets of seeds. Exhaustive search 
involves two exponential-time steps:

• There are exponentially many seeds to be evaluated based on their sensitivities and
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• Computing the sensitivity of each seed takes exponential time as well.

Heuristic algorithms such as those of [3, 36] tried to alleviate the second exponential prob
lem by approximating the sensitivity. For the former, the number of seeds to be considered 
has been reduced by various heuristics like those of [12, 37] but their algorithms were still 
exponential.

Heuristic algorithms that were proposed were all exponential in theory and slow in practice. 
Hence, there are no fast software programs for computing seeds. However, the algorithm of 
[18] is the only one that computes good multiple spaced seeds in polynomial time and it is the 
focus of this thesis. It introduces the overlap complexity measure that has turned out to be well 
correlated with sensitivity but it is much easier to compute. It takes polynomial time instead of 
the exponential time required for sensitivity. Therefore, it can be used instead of sensitivity in 
computations.

Our contributions in this thesis are two fold. First, there has been no algorithm to compute 
better seeds than the one of [18]. We intend to engineer this algorithm in order to improve the 
quality of the seeds. Our goal is to provide the fastest and most sensitive software program for 
computing seeds.

Our second goal is to assess the overlap complexity measure. In other words, we study how 
close to optimal is the sensitivity of the seeds produced by our programs. Or, differently put, 
how much our algorithm can be improved. We performed several meaningful exhaustive tests 
and compared the optimal results with the results of our program.

The thesis is organized as follows. In Chapter 2, we introduce seeds. Multiple spaced 
seeds, the sensitivity concept and an algorithm for computing it are presented in this chapter. 
Besides, this chapter includes other types of seeds and applications of spaced seeds. In Chapter 
3, some algorithms that compute seeds are studied. In Chapter 4, we propose a new algorithm 
that is named SpEED. This algorithm solves the limitation of the algorithm proposed in [18]. 
The algorithm of [18] does not provide seeds lengths for the general case. Therefore, our 
approach is to propose a heuristic algorithm to find a set of length for a set of seeds that 
we want to design. We propose a modified polynomial time algorithm that generates seeds, 
which uses the algorithm that finds good seed lengths. Chapter 5 includes our experiments. 
We compute seeds with the SpEED algorithm to improve the seeds that have computed or 
used by different software programs, namely, PattemHunter II [26], BFAST [16], SHRiMP 
[33], PerM [11] and SToRM [15]. We compared our program with Mandala software (the 
best software that computes seeds) in terms of sensitivity and time for each of the mentioned 
test cases. Indeed, we compute seeds for the parameters of those software programs but with 
different similarity levels both with our program and with Mandala to compare our seeds with 
Mandala’s. Our seeds are more sensitive in all cases and our program is several orders of 
magnitude faster. This is why, in some cases, such as BFAST, our program computes seeds 
in seconds whereas Mandala could not finish in one day. We also improve all the seeds that 
are used by those software programs mentioned. In Chapter 6, we evaluate the performance of 
our algorithm. We perform exhaustive testing for some feasible test cases and investigates how 
close to optimal is the sensitivity of the seeds produced by our programs. The results confirm 
that sensitivities of our seeds are very close to optimal sensitivities in all three cases. The most 
important contribution in this part is a fast implementation of the sensitivity function so that 
exhaustive testing becomes possible.
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Chapter 2 

Seeds

2.1 Basic Definitions

DNA, or deoxyribonucleic acid, is the hereditary material in humans and almost all other or
ganisms. It contains the genetic instructions used in the development and functioning of all 
known living organisms with the exception of some viruses. The main role of DNA molecules 
is the long-term storage of information. The information in DNA is stored as a code made up 
of four chemical bases called nucleotides: adenine (A), guanine (G), cytosine (C), and thymine 
(T).

Proteins are organic compounds made of amino acids arranged in a linear chain. They are 
polymers and have an alphabet of 20 amino acids. A protein has several functions. It may 
serve as a structural material (e.g., keratin), as enzymes, as transporters (e.g., hemoglobin), as 
antibodies, or as regulators of gene expression.

For our purposes, a DNA molecule can be represented as a sequence of four different nu
cleotides A, C, G, T and a protein can be represented as a sequence of 20 different amino acids.

Similarity search is a task that compares a biological sequence such as a DNA sequence 
against another or to a database to find similar segments between them [19]. In other words, 
the main goal of this task, which is also called as homology search, is to find similar segments 
or local alignment between two DNA or protein sequences [26]. The concept of homology 
between two biological sequences is used to infer that two genes or their protein products are 
related by evolution. Homologous sequences are expected to have common functional role in 
enzymatic activity, cellular functions, or overall cellular processes. They may have common 
structural features, such as in their protein tertiary structure. Attributing structure, function, 
or process to a protein sequence experimentally can be expensive in time and effort. There
fore, biologists look at other sequences that are similar to predict homology and to infer these 
features. This approach has been used widely for structure prediction and function prediction 
[10].

Many programs have been developed for the similarity search task. BLAST [1] is the most 
widely used one.
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2.2 BLAST
Since the dynamic programming method of Smith-Waterman [34] is too time consuming, 
heuristic approaches like BLAST were introduced. Basic Local Alignment Search Tool, or 
BLAST, is an algorithm that approximates alignments that optimize a measure of local simi
larity, the maximal segment pair score. It follows the idea of hit-and-extend approach. BLAST 
first finds short exact matches, called hits. A BLAST hit consists of several consecutive posi
tions (the default is 11). For each, an alignment is built that extends the hit on both sides. If 
the alignment score exceeds a threshold, the alignment is reported, otherwise it is discarded. 
Some significant alignments do not contain 11 consecutive matches; thus, they are not discov
ered by BLAST. To find hits, we create a hash table of all the words of length 11 in one of the 
sequences and then search for each word of length 11 from the other sequence in the table [1].

BLAST introduced the concept of contiguous seeds. BLAST seed can be represented as 
11111111111. This seed is used as a pattern for determining hits. The performance of a 
particular seed can be characterized by its sensitivity and specificity. We need to recall a few 
concepts from statistics:

•  true positives are alignments that contain hits (detected alignments),

•  true negatives are subsequences that are not alignments and which do not contain hits 
(non-alignments correctly non-detected),

• false positives are subsequences that are not alignments but contain hits (non-alignments 
wrongly identified as alignments), and

•  false negatives are alignments that do not contain hits (alignments that are missed).

Using these, we define

• sensitivity = true positives 
all positives

_______true positives_______
true positives + false negatives

•  s n e c i f i c i t v  =  true negatives =  true negatives
r  J J  all negatives true negatives + false positives

Sensitivity is also called true positive rate and it is equal to 1 -fa lse  negative rate. Speci
ficity is also called true negative rate and it is equal to 1 -fa lse positive rate. A good seed has 
high sensitivity and specificity or, equivalently, low rates of false positives and false negatives.

As mentioned previously, there may be some significant alignments that are discarded by 
BLAST just because they do not contain 11 consecutive matches. This phenomenon increases 
the rate of false negatives, decreasing sensitivity.

On the other hand, also in the case of BLAST, just because two sequences happen to have 11 
consecutive matches need not imply the existence of a significant alignment. This phenomenon 
causes false positives, thus decreasing specificity.

Obviously, each hit increases the running time since the algorithm attempts to extend it to 
a full alignment. Therefore, a seed with large false positive rate slow down the computations. 
Ideally, we want seeds with both low false positive and negative rates. Unfortunately, there 
is a trade-off between these two measures. Longer BLAST seeds have fewer false positives 
and more false negatives rather than shorter ones. BLAST deals with a dilemma of sensitivity
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versus speed. While improving sensitivity needs shorter seeds, enhancing speed needs longer 
seeds. Mega-BLAST uses seeds of length 28 to improve the speed. It is much faster than 
BLAST but significantly less sensitive [38].

BLAST is actually a family of programs including BLASTN, BLASTP, PSI-BLAST and 
MegaBLAST and so on. BLASTN returns the most similar DNA sequence from database to the 
DNA query specified by the user. BLASTP compares protein queries to protein databases. PSI- 
BLAST has three major refinements on the original BLAST program, (i) ”Two-hit” method 
was used and it requires the existence of two non-overlapping word pairs on the same diag
onal, and within a distance A of one another, before an extension is invoked, (ii) The ability 
to generate gapped alignment has been added, (iii) BLAST searches can be iterated with a 
position-specific score matrix generated from significant alignments found in round i and used 
for round i +1 [2].

2.3 Other Similarity Search Softwares
Many programs have been developed for the similarity search task. These include FASTA
[30] that was proposed before BLAST, SIM [17], SENSI [35], MUMer [14], REPuter [25] and 
BLAT [20] and more recently PatternHunter [31]. Heuristic searches with FASTA, BLAST 
and SIM are slow for modern genomic data and miss many alignments. SENSI is faster but 
it works for ungapped alignments. Smith-Waterman approaches are too slow to be practically 
used. Softwares such as MegaBLAST, MUMer and BLAT were developed to increase the 
speed of BLAST for highly similar sequences. MUMer uses suffix trees. Using suffix trees 
may contribute to two problems, (i) They are meant to deal with precise matches, (ii) They 
need a large amount of space [31].

2.4 Spaced Seeds
PatternHunter introduced a novel seed model that impressively increases both sensitivity and 
speed. This means that the dilemma of BLAST type of search is solved by PatternHunter
[31]. The important novelty of PatternHunter was the use of “optimal spaced seeds.” The 
concept of spaced seed was introduced by Califano and Rigoutsos [9] and popularized by 
PatterHunter. Spaced seeds are often represented as a string of 1 ’s and 0’s, where 1 ’s indicate 
required matches at those positions, while 0’s indicate don’t care positions or positions that may 
mismatch. While BLAST looks for matches of w consecutive letters as seeds, PatternHunter 
proposes to use nonconsecutive w letters as seeds. The number of 1 ’s in the seed is called 
the weight of a seed. The length of a seed is its overall length or the number of 1 ’s plus the 
number of 0’s in a seed. The spaced seed used by PatternHunter is 111010010100110111 of 
weight 11 and length 18. Ma et al. [31] propose a simple probabilistic model of alignments 
to characterize the sensitivity of a spaced seed. In this model, a local alignment is represented 
as a binary sequence, in which 1 represents a match and 0 a mismatch. The probabilistic 
model has two parameters: N, the length of the alignment and p, the probability of a match. 
Therefore, it is a sequence of N independent Bernoulli random variables X0,X ],. ..X N-\ with 
Pr(Xi = 1) = p  for each i. Sensitivity of a seed is then the probability that the seed hits an
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alignment sampled from this model. Computation of sensitivity is discussed in Section 2.6.
While the expected number of hits of the PatternHunter seed is the same as the expected 

number of hits of the BLAST seed, the probability of having at least one hit by PatternHunter 
seed is greater than that of the BLAST seed. This means that the PatternHunter seed is more 
sensitive. PatternHunter’s seed, 111010010100110111, has the highest sensitivity of all seeds 
of weight 11 and length at most 20 in the Bernoulli alignment model with parameters N = 
64 and p = 0.7 [31]. Its sensitivity is 47%, compared to the BLAST consecutive seed of the 
same weight, which has sensitivity only 30%. Even the BLAST seed of weight 10 has lower 
sensitivity, 41%, and four times higher false positive rate. Hence, by using the PatternHunter 
seed of weight 11, we may expect to find more alignments, in shorter time, than using the 
BLAST seed of weight 10.

We will give an argument for the big difference between the sensitivities of BLAST and 
PatternHunter seeds. The reason for increased sensitivity in PatternHunter is that the event of 
having a match at different positions are more independent for spaced seeds. If a model and its 
shifted copy shares many 1 ’s in common, then a base mismatch in any position will make both 
matches fail. This is a simple example of non-independent events. To put it more simply, we 
consider the BLAST seed and p = 0.7. If a BLAST seed has a hit at position i of an alignment, 
it has probability 0.7 to have another hit at position i+ 1 since ten of the eleven required matches 
are guaranteed by the presence of a hit at position i. For the PatternHunter seed this probability 
is 0.76 = 0.117649 since 6 more matches are required [6], This is shown in Figure 2.1

11111111111 111010010100110111 

11111111111 111010010100110111 

BLAST Pattern Hunter

Figure 2.1: For an alignment that has Bernoulli model with match probability p, if a BLAST 
seed has a hit at position i of the alignment, the probability of a hit at position i + 1 is p. That 
is because it needs one another additional required match (red 1). PatternHunter seed requires 
6 additional matches (red 1 ’s) and hence the probability of hit at position i + 1 is p6

PatternHunter was used to compare human genome against the mouse genome at a speed 
over a hundred times faster than BLASTN at the same sensitivity.

2.5 Multiple Spaced Seeds
The design goal of PatternHunter II is to solve the sensitivity problem by using multiple spaced 
seeds. Multiple spaced seeds are sets of seeds that hit whenever one of them hits the sequence. 
PatternHunter II aims to achieve a sensitivity approaching that of Smith-Waterman with a speed 
similar to BLASTN. It was noticed in [26] that more spaced seeds can increase the sensitivity. 
We will define some concepts and notations that were used in [26],

We denote a spaced seed as a binary string. Let a be a seed. The length of seed a is denoted 
by |a| and weight of the seed is denoted by ||a||. The weight of a seed is the number if l ’s in a 
seed, while the length of a seed is number of 1 ’s plus number of 0’s where 1 means a required 
match and a 0 means a don’t care position. Since the weight of all seeds in a set of seeds are the
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same, we can denote the weight of the multiple seeds by w. Since if the first and the last bits 
of a seed are Os, they can be ignored in local alignment algorithms, we will focus our attention 
on seeds that have 1 at the beginning and at the end. As an example, BLAST seed can be 
represented as 11111111111. It has weight 11 and length 11. PatternHunter’s default seed is 
111010010100110111 with weight 11 and length 18.

A homologous region is similarly represented by a binary sequence with a 1 representing 
a match and a 0 representing a mismatch. The similarity p represents the probability of a 1. 
A substring from position i to j  (excluding j) is denoted by R[i : j]. Hence, R = /?[0 : |/?|J. 
A seed hits a homologous region R, if R has a substring R[j : j  + |a|], such that R[j + i] = 1 
whenever a[i] = 1 for 0 < / < |a|. We also say that a hits R at position j.

For a multiple spaced seed A = {ai,a2, . . . ,  ak], we say that A hits a region R if one of a, e A 
hits R.

Based on the definitions, the hit probability of multiple seeds is obviously not less than 
the hit probability of any one of them. Therefore, multiple seeds will increase the sensitivity 
of homology search. However, the search program needs to examine all hits generated by all 
seeds that makes the program slower.

2.6 Computing Sensitivity of Multiple Seeds
Computing the hit probability of a single seed was investigated in [19]. Sensitivity is computed 
using a dynamic programming algorithm. We will give the algorithm that was used in Pattern
Hunter II [26] for multiple spaced seeds that is the extension of the one proposed for a single 
seed in [19].

Let A = {a\,a2, be a multiple spaced seed and R a random homologous region of
length L with similarity p. For a binary string b and \b\ < i < L, we define:

/( i , b) = Pr(A hits /?[0 : i] | b is a suffix of R[0 : /]). (2.1)

Based on this definition, the hit probability of A on R is equal to f(L , e) where e is the 
empty string and L is the length of the homologous region. Therefore, for any i > \b\ we have:

f(i,b ) = ( \-p ) f( i ,0 b )  + p f(i,\b ).

Also, for i = \b\:

(2.2)

if A hits R[0 : i] 
otherwise (2.3)

The goal is to compute f(i,b )  in terms of other f(i',b ')  values that were computed earlier 
and stored in a table.

If a suffix b of a region R is hit by A, then f(i, b) = 1.
Compatibility: A binary string b is compatible with a seed a if b[\b\ -  j] = 1 whenever 
a[\a\ -  j] = 1 for 0 < j  < min(|a|, \b\). Therefore, if a suffix b of a region R is not compatible 
with a, then a can not hit the tail of R.
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S e n s it iv it y  (A, p ,  L )

input: A (seed set), p (similarity level), L (length of hit region)
output: The probability that A hits a random region of length L with p similarity level

1. compute the compatible suffix set B
2. for i from 0 to L do
3. for b in B from longest to shortest do
4. if i < \b\
5. «— 0
6. else if i = \b\
7. if A hits b
S. f ( i ,b )* -  1
9. else

10. f ( i , b ) < - 0
11. else
12. f 0 *~ f ( i  -  \b\ + m  Ob’), where Ob' = B(0b)
13. if A hits 1&
14. / ,  <- 1
15. else
16. ¿ « - / ( i ,  16)
17. /(/,£») <— (1 - p ) f 0 + pfi
18. return f{L ,e)

Figure 2.2: The pseudocode of the dynamic programming algorithm for computing the sensi
tivity of a set of seeds.

Let B be the set of binary strings that are not hit by A but compatible with some a € A. We 
define B(x) as the longest proper prefix of x that is in B. We know that e e B. We have 2 cases:

1. If b e B, then b is compatible with some a € A and so is 1 b.

2. If 1 b £ B, then it must hit by some a' e A, and f(i, lib) = 1

If Ob g B, then it can not be hit by A. In other words, since Ob is not in B, it is incompatible 
with all a' e A. In that case, /( / , Ob) equals f ( i  -  \b\ + \b'\, Ob'), where Ob' = B(0b).

Using these notations, f(i,b)  can be computed by the dynamic programming algorithm 
given in Figure 2.2

Example: We use an example to clarify the algorithm. Suppose the seed is A = {101,1001} 
and the length of homologous region is L = 4. We want to compute the sensitivity using the 
algorithm that has been discussed.

First, we need to compute the B set. This set is the set of binary strings that are not hit by 
A but compatible with some a e A. Therefore, for each a 6 A, B set contains all binary strings 
with length smaller than a and compatible with it. For example, for a = 101, we can add 1,01, 
11 to B. Also, for a = 1001 we can add 1, 01, 11, 001,011, 101, 111. However, 101 and 111 
are hit by A. Therefore, they can not be in B. Hence, B -  {e, 1,01,11,001,011}
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Based on the algorithm, we compute the /  table from the longest elements of 5  to the 
shortest ones. Hence, we should sort B set in decreasing length order and thus the first element 
that we compute is /(0 ,0 1 1). As mentioned in the algorithm, f(i, b) = 0 if i < \b\. Therefore, 
for instance, /(0 ,011) = /(0 ,001) = 0. The /  table is shown in 2.1.

011 001 11 01 1 6
0 0 0 0 0 0 0
1 0 0 0 0 0 0
2 0 0 0 0 0 0
3 0 0 p p p p1
4 p p p + p( 1 - p ) p + p( 1 - p ) p + p( 1 -  p) plO -2 p )

Table 2.1: The /  table.

As an example to find the value of /(4 , e), based on the algorithm, we need to see what 5(0) 
is. Since 5(0) = e, the value of / 0 = /(3 , e) = p2 and f\ = /(4 ,1 ) = p  + p(l -  p) are computed 
from the values of the f table that has already computed and /(4 , e) = (1 -p )p 2+p(p+p( 1 -p)) = 
P2(3 -  2p).

The S e n s it iv it y  algorithm as mentioned in [26] has time complexity 0((\A\ + M + L) x 
ZaeA M x 2M~W) where A is the seed set and M is the maximum length of a seed in A.

Besides the algorithm mentioned here and the one of [19], there are other papers that have 
discussed computing sensitivity. To mention a few, Choi and Zhang also studied how to calcu
late the sensitivity of a spaced seed and proposed a new algorithm for identifying the optimal 
spaced seed [13]. In [4], one considers conserved regions determined by hidden Markov model 
particularly for coding regions. These regions have three-periodic structure and variation in 
conservation level in the region. A dynamic programming algorithm for sensitivity computa
tion for HMM is discussed in this paper. The same authors introduced an extension to spaced 
seeds entitled as vector seeds in [5]. They gave an algorithm for computing sensitivity under 
their model. A general approach for computing sensitivity is proposed in [23]. This approach 
can be applied to any definitions of seeds. It treats three components of seed sensitivity prob
lem: (i) a set of target alignments (ii) an associated probability distribution and (iii) a seed 
model. They are all specified by distinct finite automata. In [21], the concept of homogenous 
alignment is introduced and a dynamic programming algorithm is proposed for computing the 
sensitivity under this model.

2.7 Other Types of Seeds
Apart from spaced seeds, other concepts and extensions were proposed in this area. In this 
section, we will first describe different types of filtration - lossy and lossless. Then we will 
debate on some other types of seeds such as vector seeds, transition constrained seeds and 
subset seeds.

This section is not necessary for understanding the contribution of the thesis. It’s purpose 
is to give a more general picture of this area.
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2.7.1 Different Filtration Types: Lossy and Lossless
Filtering is a widely used technique in biological sequence analysis. It comes from approximate 
string matching. Indeed, to find approximate matches of a given string in a sequence, we can 
discard those parts of the sequence that matching can not occur. This filtration is done by small 
patterns (seeds). Two types of filtering should be distinguished:

• Lossless: A lossless filtration guarantees to detect all sequence fragments of interest. 
Lossless filtration has been investigated in the context of approximate string matching 
problem [8, 22].

• Lossy: A lossy filtration does not guarantee to detect all interesting sequence fragments. 
In other words, it may miss some of them but still tries to detect a majority of them. 
Local alignment algorithms usually use a lossy filtration.

In this subsection, we will briefly focus on the related lossless filtration while the rest of 
this thesis is mainly related to lossy filtration.

Recall that the two measures used to evaluate the efficiency of a lossy filtration are sensi
tivity and selectivity, defined before.

In lossless filtration, since there would be no parts of sequence missed by the filter (there is 
no false negatives), sensitivity is not used as a measure. Indeed, in this case the sensitivity is 
always equal to 1. Therefore, only the selectivity parameter makes sense and is hence the main 
characteristic of the filtration efficiency.

Clearly, the choice of patterns used in filtration is crucial. Gapped seeds (spaced seeds, 
gapped q-gram) have been shown to enhance the filtration efficiency over the traditional tech
nique of contiguous seeds. In lossy filtration, using spaced seeds became popular since Pat- 
temHunter. In lossless filtration for approximate pattern matching, spaced seeds were studied 
in [8] and have been shown to improve the filtration efficiency. An extension of lossless single 
seed which was discussed in [8] was proposed in [22]. A family of seeds (multiple spaced 
seed) were used rather than a single seed. We mention some problems associated with lossless 
filtration here but we will not go into details.

In lossless filtration context, we will use another visual representation of seeds adopted 
in [8]. In this representation, seeds are words over the two-letter alphabet {#, -}, where # 
occurs at all matching positions while - occurs at all positions in between. Two sequences 
are similar if the hamming distance between them is smaller than a certain threshold. For 
instance, sequences CACTCGT and CACACTT are similar within hamming distance 2. This 
similarity can be detected by the seed ## -  # at position 2 or by the seed ### -  # at position 
1. A similarity of two sequences of length m is a binary word w e [0,1 }m that represents a 
sequence of matches ( l ’s) and mismatches (0’s). A match or hit of a seed on a similarity has 
been defined above. A seed Q is said to detect a similarity w if Q has at least one occurrence 
in w. Given a similarity length m and a number of mismatches k, consider all similarities of 
length m containing k 0’s and (m -  k) 1 ’s. These similarities are called (m, k)-similarities. A 
seed Q solves the (m, &)-problem iff all of (m, k)-similarities w are detected by Q. For 
example, seed # -  ## — # -  ## solves the (15,2)-problem as mentioned in [22].

There is a strong correlation between weight of a seed and the selectivity of filtration pro
cedure. With a larger weight less similarities pass through the filter as false positives become
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smaller and therefore selectivity improves. Increasingly, a smaller weight reduces the filtration 
efficiency. Therefore, the goal is to solve an (m, ^-problem  by a seed with the largest possible 
weight. Solving (m, &)-problem by a single seed is the problem that has been studied in [8] 
whereas [22] solves the (m, fc)-problem by a family of seeds.

Multiple spaced seeds perform better than a single seed. In [8], it has been shown that a 
seed solving (25,2)- problem has the maximal weight 12. The only seed that has this property 
is:

n  i i  i i  1 1  i i  i i  i i  i i  i i  i i  i i  i iffff# — ff----itwtt — # ----### -  #

Obviously, its reversal is also a seed with this property but we do not consider it as being 
different. However, the problem can be solved by the family of the following two seeds with 
weight 14:

##### _  # # ____________ -  ##TTTTtTT i t t  jt t t  T i t TtTt i TT Tt tt

# -  # # ------- ##### -  # # -------- ####

Clearly, two seeds of weight 14 have larger selectivity than one seed of weight 12 due to the 
decrease in the number of false positives.

A dynamic programming algorithm was proposed in [8] to compute the optimal threshold 
of a given seed. The optimal threshold of a given seed is the minimal number of its occurrences 
over all possible (m, k)-similarities. Also, an extension of this algorithm was proposed in [22]. 
The filtering efficiency of a q-gram clearly depends on the threshold. Small threshold means 
low filtering efficiency. Moreover, minimum coverage of a seed is another property of seeds 
that can affect the filtering efficiency. The minimum coverage is the minimum number of 
characters that need to match between a pattern and a text substring for there to be t matching 
q-grams. Small minimum coverage means a high filtering efficiency [8]. Several combinatorial 
results have been presented that allow us to construct efficient families composed of seeds 
with a periodic structure. Periodic seeds are obtained by iterating a smaller seed. Such seeds 
often turn out to be among the maximally weighted seeds solving the (m, ^-problem . This is 
interestingly in contrast with lossy framework where optimal seeds usually have an irregular 
structure. An important practical application of lossless filtration is the selection of reliable 
oligonucleotide for DNA microarray [22].

2.7.2 Vector Seeds
PattemHunter, which uses spaced seeds improves run-time and sensitivity of homology search 
over BLAST. Similar strategies were developed by other researchers. In particular, BLAT [20] 
allows a fixed number of mismatches in the region that makes up a hit. For example, we may 
require at least 11 matches in a region of length 12. The mismatch may occur at any of the 
twelve positions. This property could not be expressed by BLAST seed.

Vector seeds, introduced in [5], unify and further generalize the hit definitions used by 
PattemHunter and BLAT. They can also be applied to protein homology search, where pro
grams traditionally use more complicated hit definitions reflecting the properties of amino acid 
substitution matrices (score matrices) used to score alignments.

In [5], an ungapped pairwise local alignment is represented as a sequence of real numbers, 
each corresponding to a position in the alignment. This representation can help in defining a
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hit in seed vector model. Such a sequence of positional scores is called an alignment sequence. 
In the simplest case, we represent pairwise alignments as binary sequences like what we in
troduced in previous sections. Each 1 represents a match while each 0 represents a mismatch. 
For protein alignments, we represent the alignment between sequences Y = y\y2 ---yn and 
Z = z\Zt. . .  z„ by the sequence of positional scores, (syuZt,s ŷ Z2, . . . ,  syn<Zn), where S = (siyj) is 
the scoring matrix.

Definition. A vector seed is an ordered pair Q = (v, T), where v is the seed vector (v,, v2, . . . ,  v;) 
of real numbers and T is the seed threshold value.

An alignment sequence X  = (x\, X2, . . . ,  xn) hits the seed Q at position p if Zj=i(v,.Jcp+,-i) > 
T. That is, the dot product of the seed vector and the alignment sequence of length / beginning 
at position p  is at least the threshold T .

We now show how to express several examples of hit definition as vector seeds. Vector 
seeds can generalize the spaced seeds of PatternHunter, the mismatching seeds of BLAT and 
the minimum word score seeds used by BLASTP.

Expressiveness of vector seeds: Spaced seeds are a special case of vector seeds. To cast them 
in the vector seed framework we can use binary alignment sequences. To construct a vector 
seed (v, T) equivalent to a spaced seed Q, we set the weight vector v equal to the spaced seed 
string, and the threshold will be equal to the weight of the seed Q. For example, the nucleotide 
BLAST seed 11111 of weight 5 is equivalent to the vector seed ((1, 1, 1, 1, 1), 5) and the 
spaced seed 1011101 is equivalent to the vector seed ((1,0, 1, 1, 1,0, 1), 5). Similarly, the 
seeding strategy used in BLAT can be formulated as a vector seed over the binary alignment 
sequence. For example, a BLAT hit definition that requires at least 7 matches in a region of 
length 9 corresponds to the vector seed ((1, 1, 1, 1, 1, 1, 1, 1, 1), 7). Moreover, the BLASTP 
rule that a hit is three consecutive positions having total score at least 13 corresponds to the 
vector seed ((1, 1,1), 13). However, vector seeds can also encode more complicated concepts. 
For example, if the alignment sequence is binary, the vector seed ((1, 2, 0, 1, 2, 0, 1, 2), 8) 
requires matches in all positions with seed vector value of two, while allows one mismatch 
in the three positions with value one. Those positions with value 0 are non-relevant to a hit. 
This can not be expressed using spaced seeds or BLAT seeds. Vector seeds are not universally 
expressive. For example, there is no way in the vector seed model to require that three of the 
four codons are match in the first two positions each. The seed ((1, 1,0, 1, 1,0, 1, 1,0, 1, 1), 
6) also allows one mismatch each in two codons.

Now, we discuss how to identify hits in a sequence database. Assume we have two se
quences (or sequence databases) and want to find all hits between them. If hits are required to 
be exact matches of length k, the common approach is to create a hash table of all k-mers in 
one of the sequences and then search for each k-mer of the other sequence in the table. If hits 
are not exact matches (such as in BLAT or BLASTP), we can take each k-mer in the second 
sequence, generate a list of k-mers that would produce a hit and search for these k-mers in the 
hash table. This approach extends to the vector seed scenario. We need to hash only characters 
on positions corresponding to non-zero elements in the vector seed. Hence, we seek vector 
seeds with small support (number of non-zero elements in a vector seed) that allow for a small 
number of hash table entries to be examined for each position in a query sequence. Otherwise, 
it would not be practical.

Three models has been investigated in [5]. (i) PatternHunter Bernoulli model with simi
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larity level 0.7. (ii) Three-periodic model of alignments in protein coding regions, where each 
triplet is emitted as a unit, chosen from a probability distribution over {0, l}3. Each triplet is 
independent of the others in this model. Three-periodicity of an alignment means that some of 
the positions of a codon are less conserved than others. Such models can be used to effectively 
model the conservation in coding alignments [4]. (iii) For protein sequences, the alignment is 
represented as a sequence of BLOSUM62 scores ranging from -4 to 11, a positionally inde
pendent model similar to PatternHunters model is used.

Vector seeds offer a wider vocabulary for seed matches than spaced seeds. For example, 
they allow certain positions to be more important than others. They allow a fixed number of 
mismatches in some positions and an arbitrary number in others. Extensions of vector seeds 
improve the sensitivity. Especially, with the coding sequence nucleotide alignments, those 
alignment programs that use vector seeds have better sensitivity and the same specificity rather 
than those using spaced seeds.

In [5], an algorithm was proposed for computing sensitivity. This algorithm is an extension 
to the algorithm of [19] for computing sensitivity. The alphabet has changed and need not be 
binary, and that the definition of a hit is the more complicated dot product property. In [4], an 
extension of the original [19] algorithm to the case where the alignment sequence is generated 
by a hidden Markov model, was proposed. Although the spaced seeds can be helpful for pro
teins, the improvements are not as dramatic as for nucleotides. This is mainly because of two 
reasons. First, the BLASTP seed is very short, and thus it is hard to improve it by spacing. 
Also, spaced seeds consider only matches and mismatches, and not the richer similarity mea
sure introduced by amino acid substitution matrices. On the other hand, vector seeds and their 
generalizations (like multiple seeds) allowed researchers to achieve improvements compared to 
BLASTP seed. For example, [7] reports a collection of eight vector seeds that achieve almost 
the same sensitivity as the BLASTP seed while reducing the number of false positives four to 
five times. In this approach, a hit is a position where at least one vector seed from the collection 
has a hit.

2.7.3 Transition Constrained Seeds
Transition-constrained seeds are proposed in [32] as an extension to spaced seeds due to the 
possibility of distinguishing transition and transversion mismatches. We briefly describe the 
transition-constrained seed model as discussed in [32]. Its idea is based on the well-known 
feature of genomic sequences that transition mutations (nucleotide substitutions between purins 
or between pyrimidins) occur relatively more often than transversions (other substitutions).

In real genomic sequences transitions are twice more frequent than transversions. For ex
ample, [32] referred to real genomic sequences that the transition/transversion rate {tiltv) is 
greater than one on average. Transitions are much more frequent in coding sequences as most 
of silent mutations are transitions. Furthermore, ti/tv is often greater for related species, as 
well as for specific DNA.

Transition-constrained seeds are defined on the ternary alphabet 1, @,0, where @ stands 
for a match or a transition mismatch (A «-» G, C «-» T), and 1 and 0 have the same meaning 
as for spaced seeds. The weight of a transition- constrained seed is defined as the sum of the 
number of l ’s plus half the number of @’s since a transition carries one bit of information 
while a match carries two bits.
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Transition constraint seeds in [32] were used for Bernoulli alignment model and for Markov 
alignment model. We will briefly discuss some of their contributions. In order to com
pute the detection capacity of transition-constrained seeds, Bernoulli alignment model, was 
used. To apply this model, a gapless alignment was modeled by a Bernoulli sequence over 
the ternary match/transition/transversion alphabet with the match probability 0.7 (like Pattern
Hunter match probability) and the probabilities of transition/transversion varying according to 
the til tv ratio. The sequence length is set to 64 (like PattemHunter region length). Seed with 
weights between 9 and 11 are investigated. Transitions and transversions are assumed to occur 
with equal probability 0.15. The results of [32] claim that transition-constrained seeds have 
better sensitivity than best spaced seeds of the same weight. However, not only the efficiency 
of transition-constrained seeds depends on the ti/tv ratio but the weight computation, where 
each @ counts as 1/2, introduces additional complexities.

Apart from Bernoulli model, transition-constrained seeds for Markov alignment model was 
investigated. In aligning homologous coding sequences, due to protein coding constraints a 
distribution of errors was shown. Actually, transitions often occur at the third codon position, 
as these mutations are almost always silent for the resulting protein. Markov models can be 
used for homologous coding regions as shown in [4]. Several methods were proposed in [4, 3] 
to compute the hit probability of spaced seeds with respect to gapless alignments specified by 
(hidden) Markov models. Experimens for Markov model of order 5 was done by designing the 
optimal spaced and transition-constrained seeds of weight 9 - 1 1  with respect to this Markov 
model. Results show that transition-constrained seeds increase the sensitivity with respect to 
this Markov model too. Therefore, transition-constrained seeds perform better with respect to 
both Bernoulli and Markov model.

2.7.4 Subset Seeds

Spaced seeds use the simplest possible binary match-mismatch alignment model that allows an 
efficient implementation by hashing all occurring combinations of matching positions. Vector 
seeds are a powerful generalization of spaced seeds. They allow us to use arbitrary alignment 
alphabet and, on the other hand, provide a flexible definition of a hit based on a cooperative 
contribution of seed positions. Despite higher expressiveness, vector seeds have more compli
cated algorithms and direct hashing methods at the seed location stage are impossible.

Subset seeds, [23, 24], have an intermediate expressiveness between spaced and vector 
seeds. This concept allows an arbitrary alignment alphabet and, on the other hand, still allows 
using a direct hashing for locating seed, which maps each string to a unique entry of the hash 
table. A seed automaton for subset seeds was proposed and has been shown that it differs 
from the Aho-Corasick automaton. Subset seeds generalize spaced seeds based on the idea to 
distinguish between different types of mismatches in the alignments. This leads to representing 
both alignments and seeds as words over larger alphabets.

We consider an alignment alphabet A. We assume that A contains the symbol 1, interpreted 
as match. A subset seed is defined as a word over a seed alphabet B, such that:

•  letters of B denote subsets of alphabet A

• B contains a letter # that denotes subset {1}
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•  A subset seed b\b2 . . .b m e B m matches an alignment fragment a\a2 . . .a m e Am if Vi e 
[1. .  .m],a, e

As before, the length of seed n is its length, and the #-weight of seed is the number of 
# in n. For example, for DNA sequences over the alphabet A, C, G, T, in [32] the alignment 
alphabet is set to A = {1, /i, 0} that represents respectively a match, a transition mismatch 
(A <-> G,C *-* T), or a transversion mismatch (other mismatch). In this case, the appropriate 
seed alphabet is B = {#,<§>,-} corresponding respectively to subsets [1], {\,h}, and {1, A, 0}. 
Thus, the seed n = #@ -  # matches the alignment A = 10A1A1101 at positions 4 and 6. The 
#-weight of 7r is 2 and its length is 4. Unlike the weight of ordinary spaced seeds, the #-weight 
cannot serve as a measure of seed selectivity. In the above example, the symbol @ should be 
assigned weight 0.5, so that the weight of seed is equal to 2.5 and this weight can be considered 
as the weight of the seed.

A subset seed automaton was proposed in [23] that recognizes the set of all alignments 
matched by a seed. This automaton has 0(w2r) states regardless of the size of the alignment 
alphabet. It has been shown that its transition table can be constructed in time like construction 
time for spaced seeds with Aho-Corasick automaton but results in a smaller number of states 
in practice. (The automaton size is smaller). Different experiments confirm the practical effi
ciency of the subset seed, both at the level of computing sensitivity for designing good seeds, 
as well as using those seeds for DNA similarity search.

2.8 Applications of Seeds in Software Programs
In spite of many extensions of spaced seeds, multiple spaced seeds are the most widely used, 
due to their high sensitivity, simplicity, and efficiency.

There are a number of algorithms and associated software programs for read mapping that 
use multiple spaced seeds. For instance, MAQ [28], SToRM [15], BFAST [16], PerM [11], 
SHRiMP [33], ZOOM [29] use spaced seeding technique requiring one or several hits per 
read.

The next generation sequencing technologies are generating billions of short reads daily. 
Resequencing need fast softwares to map sequencing reads to a reference genome. The analysis 
of next generation sequencing data requires the mapping of short reads back to a reference 
genome, allowing a few mismatches and indels.

Seed-based methods for read mapping use different seeding strategies. SHRiMP [33]- the 
SHort Read Mapping Package is a set of algorithms and methods to map short reads to a 
genome, even in the presence of a large amount of polymorphism. It uses spaced seeds that 
can hit at any position of the read and introduces a lower bound on the number of hits within one 
read. In [33] algorithms were developed for the mapping of short reads to highly polymorphic 
genomes and also methods were proposed for the analysis of the mappings. An algorithm for 
mapping short reads is demonstrated in the presence of a large amount of polymorphism. By 
employing a fast k-mer hashing step and a simple, very efficient implementation of the Smith- 
Waterman algorithm, the SHRiMP method conducts a full alignment of each read to all areas 
of the genome that are potentially homologous. Actually, multiple seeds are used to determine 
if a good match exists where we require a predetermined number of seeds from a read to match
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within a window of the genome. MAQ [28] uses six light-weight seeds allowed to hit in the 
initial part of the read. ZOOM [29] proposes to use a small number (4 -  6) of spaced seeds 
each applying at a fixed position, to ensure a lossless search with respect to a given number of 
mismatches. Indeed, the idea of spaced seed has been extended to use different spaced seeds 
at several designated positions of the read. Thus, a spaced seed becomes the combination of 
its pattern and the read position where it is applied. For example, a seed 0001110100000000 is 
the seed 11101 applied at the fourth position of the read with length 16. A spaced seed has the 
same length as the read. Therefore, it is only used once to index a read. Multiple spaced seeds 
method was used to design different seeds on different positions of a read. This significantly 
reduced the number of indexes per read required to achieve 100% sensitivity, resulting less 
memory consumption and fewer hits. Consequently, the mapping speed is greatly improved.

In the lossless framework, PerM [11] proposes to use periodic seeds to save on the index 
size. Periodic spaced seeds are used to significantly improve mapping efficiency for large refer
ence genomes. The data structure in PerM requires only 4.5 bytes per base to index the human 
genome, allowing entire genomes to be loaded to memory, while multiple processors simulta
neously map reads to the reference. Weight maximized periodic seeds offer full sensitivity for 
up to three mismatches and high sensitivity for four and five mismatches while minimizing the 
number random hits per query, significantly speeding up the running time. BFAST method is 
based on creating flexible, efficient whole genome indexes to rapidly map reads to candidate 
alignment locations, with arbitrary multiple independent indexes allowed to achieve robustness 
against read errors and sequence variants. BFAST uses 10 seeds of weight 22 for reads of 50 
bp to be mapped on the human genome.
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Chapter 3

Algorithms for Computing Seeds

In this chapter, we will discuss about the hardness of designing multiple spaced seeds and then 
we describe the existing software programs for computing seeds. Given the fact that spaced 
seeds are so widely used in applications, one would imagine that many algorithms and software 
programs for computing seeds have been written. That is not the case due to two main reasons. 
First, the problem of finding optimal seeds is hard, as explained in the first section on this 
chapter. Second, finding good heuristic algorithms does not seem to be easy. In fact, there are 
only two software programs, Mandala [3, 36] and Iedera [23, 24]. We shall describe both in 
this chapter. Additionally, some authors of software programs using seeds constructed their 
own seeds and we shall describe those as well.

We should make it clear that we focus on designing multiple spaced seeds only, since 
single seeds can be computed by exhaustive search; see [12]. The exhaustive approach is 
computationally infeasible for multiple seeds.

3.1 Hardness of the Problem
Computing optimal multiple spaced seeds was proved to be NP-hard. Indeed, [26] shows that, 
given k seeds, computing the hit probability under the uniform distribution is NP-hard. The 
problem of finding even one optimal seed is NP-hard. When the homologous region is uniform, 
that is, a Bernoulli sequence generated with probability p, there have been many exponential 
time algorithms to compute the hit probability of a given spaced seed [26, 19, 3, 4]. In [27] it 
has been shown that computing sensitivity of a spaced seed over a uniform region is NP-hard.

Finding optimal (multiple) spaced seeds is NP-hard but even finding good ones is very 
difficult. Therefore heuristic algorithms are used to find good sets of seeds. Exhaustive search 
involves two exponential-time steps:

•  There are exponentially many seeds to be evaluated based on their sensitivities and

•  Computing the sensitivity of each takes exponential time as well.

Several approaches like [3,36] tried to alleviate the second exponential problem by approx
imating the sensitivity. For the former, the number of seeds to be considered has been reduced 
by various heuristics like [12, 37] but their algorithms were still exponential.
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Heuristic algorithms that were proposed were all exponential in theory and slow in practice. 
The algorithm of [18] is the only one that computes good multiple spaced seeds in polynomial 
time and it will be the focus of our thesis. Therefore, we do not present this algorithms here, 
instead, it will be thoroughly discussed in Chapter 4.

3.2 Mandala
Mandala is a software tool for seed design that was introduced in [3] and then improved by
[36] where the cost of designing multiple seeds was greatly reduced.

3.2.1 Mandala’s Problem
Designing seeds, even for simple probabilistic models of biosequence similarities, is compu
tationally challenging. Mandala’s probability model is a Markov model. Here is the problem 
that was investigated in [3, 36]:

Problem: Let M  be a Markov model that generates aligned pairs of biosequences, and let 
the parameters w (weight), s (maximum seed length), and n (number of seeds) be given. Find 
a set n of n seeds, each of weight w and length at most s, that maximizes the probability that 
at least one seed from n matches an alignment chosen at random from M.

The measure of goodness for seeds used in [3] is sensitivity which is computationally hard. 
In this new model, a similarity is modeled by a Ath-order Markov process M  that gives the 
probability that the next bit seen will be 1 (i.e., a matching pair of bases) given the values 
of the previous k bits. The zeroth-order marginal probabilities of M correspond to the sim
ilarity’s overall degree of conservation, while its higher-order marginals can reflect specific 
patterns of conservation. To illustrate, similarities in coding sequence often exhibit a pattern 
of two matches followed by a mismatch or a 110 pattern, corresponding to conservation of the 
underlying protein with silent mutations at third base positions of codons.

Actually the problem is to find a set of seeds that maximize the detection probability under 
the model M. An algorithm was given in [3] to compute detection probabilities for sets of seeds 
in Markov models. This algorithm uses dynamic programming on a finite automaton. Mandala 
uses the local search method for seed selection described in the following subsection.

3.2.2 Local Search Method
We represent a seed as a set of all match positions n = [jci, . . . ,  *„,} and let it be the current 
seed, with all jc, < s (s is the maximum seed length). To avoid generating shifted versions of 
the same seed, we fix x\ = 0. The local neighborhood of n is the set of all seeds ri that differ 
from n in exactly one of [x2, x w], with the differing position chosen from among the unused 
set {1, . . . ,  s -  1} - n .

With this neighborhood definition and the probability calculation discussed in [3] as an 
evaluation function, a hill climbing with random restart is performed in the seed space to find a 
near-optimal seed. In order to design a set of simultaneous seeds n, the neighborhood definition 
is extended to include all sets n ' in which one seed n\ € n ' differs from the corresponding 
jii g n  in a single position.
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The evaluation algorithm is fast for small lengths but its cost grows exponentially as the 
length increases for fixed weight. The improvements on the computational cost, proposed in 
[36], are discussed in the next subsection.

3.2.3 Greedy Covering Algorithm

In [36], a new method is proposed that relies on efficient incremental computation of the prob
ability that an alignment contains a match to a seed n, given that it has already failed to match 
any of the seeds in a set n. This approach greedily covers the highest probability alignments of 
M  with seeds that match them. This new method reduce the cost of designing multiple seeds 
compared to the local search algorithm of [3].

Let M  be the probabilistic alignment model. A sample from M is a bit string a  of length l, 
with 1 ’s where the aligned sequences match and 0’s where they do not. The event that a seed 
matches an alignment a  is denoted as E„(a) and its complementary event is denoted as En(a). 
A seed set II matches a  if one of its seeds matches a. Similarly, we denote the event that II 
matches a  by En(a) and its complementary event by En(a).

The greedy covering algorithm of multi-seed design is as follows. As mentioned, Mandala’s 
local search method starts with a set of seeds II and finds the best seed set in the neighborhood 
of II to perform a hill climbing approach. This procedure is done iteratively until no further 
local improvement can be done. To speed up this algorithm, a greedy covering heuristic for 
choosing seed sets was developed in [36]. Given a partial seed set n 0 of size n' < n, (n is the 
number of seeds), a set II of size ri + 1 is formed by choosing the next seed n to maximize 
the conditional match probability Pr(E„\En0). Each step of the heuristic attempts to cover the 
highest-probability alignments not already matched by some seed in the current partial set. 
Starting from a single locally optimal seed, after n -  1 iterations of greedy covering a seed set 
of size n will be produced. Greedy covering algorithm is faster than Mandala’s local search 
because most of seed set evaluations are performed on partial sets of size < n, while local 
search always evaluates sets of full size n. Also, in this new approach, each covering step 
optimizes only a single seed.

3.3 Iedera
Iedera is a program to select and design subset seeds. The theoretical concepts behind this pro
gram were proposed in [23,24]. As mentioned in 2.7.4, spaced seeds and transition constrained 
seeds can be perfectly represented in the subset seed model.

In [23] a general framework for computing sensitivity is proposed. It allows one to com
pute the seed sensitivity for different definitions of seeds and different alignment models. This 
approach is based on a finite automata representation of the set of target alignments and the set 
of alignments matched by a seed, as well as on a representation of the probabilistic model of 
alignments as a finite-state transducer. The main part of [23] is a finite automaton that recog
nizes the set of alignments matched by a given subset seed. This automaton is called a subset 
seed automaton. The efficiency of the whole algorithm depends on the size of this subset seed 
automaton. Note that [3] also constructs an automaton, based on the Aho-Corasick automaton.
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In [23] it was shown that size of this subset seed automaton has 0(w2r~w) states (w is the num
ber of #’s and r is the number of other symbols). In comparison with Aho-Corasick automaton 
that has 0(w\A\r~w) states, the subset seed automaton is more space efficient. This automaton 
construction is implemented in full generality in the lederà software package. To design spaced 
seeds or subset seeds, regarding to the model that is going to be used, a probability transducer 
is constructed. The seeds are enumerated exhaustively and the sensitivities are computed by 
the subset seed automaton. The best set will be reported. Consequently, the lederà software is 
very slow for designing multiple seeds. It is not competitive already with Mandala. Hence, we 
will not use it for comparing.

3.4 PatternHunter
The seeds of the PatternHunter II software, [26], were computed using a greedy algorithm. 
Enumerating all possible sets and evaluating them with the S e n s it iv it y  algorithm of Section 
1.6 is not feasible due to the exponential number of possible seed sets. Hence, PatternHunter 
proposes a method to construct good set of seeds greedily. The method is as follows.

It computes the first seed S\ that maximizes the hit probability of {si}. Then, fixing s\, the 
second seed is computed in a way that maximizes the hit probability of [si, s2}- This procedure 
is continued until the desired number of seeds or the desired hit probability is reached.

The set that is generated by the above algorithm is not necessarily optimal. All possible 
seed sets are not investigated since every time a partial set is fixed. As mentioned in [26], it 
took about 12 CPU days for a Pentium IV 3GHz to compute a set of 16 weight 11 seeds that 
each length could not be longer than 21.

3.5 BFAST
BFAST is an alignment tool for large scale genome resequencing. The novel contribution 
of BFAST is the candidate alignment locations (CAL) search step, where a list of CALs is 
tabulated for each read with the goal to include the true (or correct) location within the CALs. 
BFAST uses multiple indexes of the reference to increase sensitivity of alignment. An index is 
defined by a spaced seed (or mask), a string of Os and Is that start and end with a 1, that define 
the bases in the read considered during the lookup in the index. We will briefly explain how 
BFAST compute seeds (masks) in order to index the reads to proper positions. In this context, 
we will use the term mask instead of seed as it is used in [16].

For mask design problem, simple random search strategies have been developed. In the 
simplest strategy, a global random sampling search is performed. The total number of masks 
in the set, S, and the key size k, are fixed. This strategy allows a search range of mask widths 
(seed length), extending from w = k to some upper bound. The search is initialized with 
some given set of masks, which is typically taken to be a single mask, the most compact mask 
M -  111. . .  111 of width w = k. The remaining masks S -  1 of the set are then sampled at 
random, as follows: for each the strategy chooses a width, w, at random from the allowed range 
of widths, and then chooses the mask layout, from the w -  2 choose k - 2  ways of distributing 
the k ones of the mask in the w positions, insisting that the first and last position be one. Given a
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full mask set, the accuracy table is evaluated. The strategy repeats this global random sampling 
of mask sets for a specified numbers of samples, and retains the mask set that has the "greatest” 
accuracy. The result is an optimized S -mask set.
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Chapter 4 

SpEED

As mentioned in chapter 2, heuristic algorithms for computing seeds were all exponential in 
theory and slow in practice until the algorithm of [18] was proposed. It computes good multiple 
spaced seeds in polynomial time. The novelty of this algorithm is due to a completely different 
approach with respect to the previous methods. It proposes the overlap complexity idea which 
will be discussed in this chapter. Also in this chapter, after introducing the overlap complexity, 
we will talk about the limitation of algorithm proposed in [18] that it does not provide seeds 
lengths for the general case. Therefore, our approach is to propose a heuristic algorithm to 
find a set of length for a set of seeds that we want to design. In section 4.3, we will propose a 
modified polynomial time algorithm that generates seeds, which uses the algorithm that finds 
good seed lengths.

4.1 Overlap Complexity
In this section, we introduce the overlap complexity measure, proposed in [18]. This measure 
has turned out to be well correlated with sensitivity but it is much easier to compute: it takes 
polynomial time instead of the exponential time required for sensitivity. Therefore, it can be 
used instead of sensitivity in computations. Using it, we can have a polynomial time algorithm 
to compute seeds.

4.1.1 Definition

Spaced seeds are represented as words on alphabet {1, *} where 1 ’s represent required matches 
and *’s represent don’t care positions. We use an example to show intuitively why overlapping 
hits of a seed are undesirable. As shown in Figure 4.1, two seeds are used to detect an align
ment. The alignment is detected by one hit of a good seed while a bad seed wastes three hits 
to detect the same alignment.

Hence, the sensitivity of a seed appears to be inversely proportional with the number of 
overlapping hits, since the expected number of hits is the same (For a seed of length £ and 
weight w, the number of hits in a region of length N  is (L -  £ + \)pw, so it does not depend on 
the shape of the seed.) Therefore, good seeds have a low number of overlapping hits. Indeed, 
[27, 3] show that uniformly spaced seeds, that is, seeds that consist of a string 1 1 . . . 1 * * . . . *
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hit of good seed 1 1 1 * 1 * * 1 * 1 * * 1 1 * 1 1 1
local alignment 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 0  1
1 st hit of bad seed 1 1 * 1 1 * 1 1 * 1 1 * 1 1 * 1
2nd hit of bad seed 1 1 * 1 1 it 1 1 * 1 1 * 1 1 * 1
3rd hit of bad seed 1 1 j. 1 1 * 1 1 * 1 1 * 1 1 * 1

Figure 4.1: An example showing the intuition behind overlap complexity; a local alignment is 
detected by one hit of a good seed whereas a bad seed “wastes” three hits to detect the same 
alignment.

repeated a number of time (as the bad seed in Figure 4.1), are likely to be among the least 
sensitive choices for seeded alignment.

A measure is defined that is independent of similarity level p. For two seeds Si and s2, 
the number of pairs of 1 ’s aligned together when a copy of s2 shifted by i positions is aligned 
against sx is denoted by cr[i]. The shift i takes values from 1 -  |s2| to |i]| -  1, where a negative 
shift means s2 starts first. Precisely, if we denote

i, =
t2,i = for 1 -  |i2| < i < |ii| — 1

then

<t [i] = card{\ < j< \ s x\ + 2\s2\ -  2, tx[j] = t2J[j] = 1) 

The overlap complexity for two seeds is defined as

|S||-1
OC(su s2)=  ^  2°™ 

1= 1- 1*21

(4.1)

To illustrate the overlap complexity of two seeds, consider the following example. For two 
seeds, si = l l * * l * l , s 2 = l * l l ,  Figure 4.2 shows Si aligned against copies of s2 shifted by 
/' position where 1 -  |s2| < i < |si| -  1.

The overlap complexity measure is symmetric, that is O C ^ , s2) = OC(s2, ii). For a mul
tiple seed S = {s\,s2, . . . ,  s*} the overlap complexity is defined as

OC(S)= ^  OC(Si,Sj)
1 <i<j<k

(4.2)

In [18] it has been shown that the overlap complexity is, experimentally, very well corre
lated with sensitivity for single seeds. That means, seeds with low overlap complexity have 
high sensitivity.
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shift i cr[i]
* * k l l * * 1 k 1 * k *
1 k l l k * * * k * * k k -3 1
ic 1 k l 1 * * * k * k * * -2 2
k * 1 * 1 1 * * k * k k k -1 1
* * * l * 1 1 * k * k k k 0 1
* * k * 1 k 1 1 k * k k k 1 2
* * k k * 1 * 1 l k k k k 2 1
■ft k k k * k 1 * l 1 k k k 3 1
k k k k * * 1 * 1 l k k 4 2
k k k k * * * * l * l 1 k 5 0
* k k * * * * * * 1 * 1 l 6 1

Figure 4.2: An example of overlap complexity of two seeds: OC( 11 * * 1 * 1 , 1 *  11) =
Zf=-3 2°’[<1 = 25

4.1.2 Polynomial Time Algorithm

Finding optimal seeds by trying all seeds of a given weight (and length) and selecting the best 
is computationally very expensive. Actually, it has been shown by [26] to be NP-hard for an 
arbitrary distribution.

In [18], after introducing the overlap complexity measure, an algorithm is presented to 
compute good seeds. This algorithm does not need to consider exponentially many seeds. It 
starts from a fixed set of seeds and repeatedly modifies it to improve its overlap complexity. 
Each improvement consists of swapping a 1 with a * as long as the overlap complexity im
proves. Moreover, a swap is chosen that produces the greatest improvement. A flip function is 
necessary to flip a 1 with a * and vice versa: flip(s, i, j ) is meant to flip positions i and j  in the 
seed s. For example, flip(l * 11 * 11,3,5) = 1 **1111. Figure 4.3 shows the algorithm Mul- 
tipleSeeds described in [18], Initial seeds are seeds of form *li~w\w that are consecutive seeds 
and have very low sensitivity. By swapping, these seeds are improved. As an example, Pat- 
temHunter’s seed is obtained by performing only 4 swaps in the algorithm M ultjpleSeeds( 11, 
18); see Figure 4.4.

Seeds can be improved dramatically by swapping as it is shown in [18], This algorithm 
works fine when the lengths of the seeds are given. However, in practice usually only the 
weight and number of seeds are known. Solving the problem of finding good length of the 
seeds is one of the main goals of our research and we shall start discussing it in the next 
section. In [18] a very simple choice is adopted. The minimum seeds length is chosen as [^1  
and maximum seed length is 25. Although this choice works well for w = 11, k = 16 (the 
PatternHunter II case), it is not necessarily a good choice for other cases.

At the end of this section, we discuss the time complexity of the MultipleSeeds algorithm 
that is presented in [18], Steps 1-6 takes 0(kw) time. To perform a swap, all possibilities for 
the triple (r, i, j ) in step 9 are considered, that is, £*=1 w(/, -  w). For each, we compute the new 
overlap complexity in 0{l, £?= l /,) time since the overlap complexity of two seeds is computed 
in time the product of their lengths and here we need only to update the pairs containing the 
seed sr. If an upper bound for seeds length is set to L = maxi<i<klh then the time complexity of
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Algorithm 1 M u l t ip l e S e e d s ( w , k)
- given: the weight w and the number of seeds k
- returns: a multiple seed S with k seeds of weight w and high sensitivity

1: m =round-up(^)
2: M -2 5
3:
4: for i = 1 to k do
5: /, <— min(round-up(m + i x h), M)
6: Si <- *li~wlw
7: end for
8: S <— {$], S2, S*:}
9: swaps <— 0

10: while ((3 r ,i,j  with 0C({il t . f l i p  (sr,i ,j) ,s r+1,...,sk}) <
OC(S)) and (swaps < k x w)) do 

11: choose a triple (r, i, j ) that reduces OC(S) the most
12: S <- { i sn, f\ip(sr,i ,j) ,s r+l,...,sk}
13: swaps «— swaps +1
14: end while 
15: return (S )

Figure 4.3: The M u i .t ip l e S ef.d s  algorithm

the M ultipleSeeds algorithm is 0 (k*L2w2(L -  w)).

intermediate seeds pairs swapped
* ☆ * ■fc •it it it 1 1 1 1 1 1 1 1 1 1 1 (1, 12)
1 * * * * it it 1 1 1 1 * 1 1 1 1 1 1 (3, 15)
1 * 1 * ■it it it 1 1 1 1 * 1 1 * 1 1 1 (2.,9)
1 1 1 * ■it it it 1 * 1 1 * 1 1 it 1 1 1 (5, 11)
1 1 1 * 1 it it 1 * 1 * * 1 1 it 1 1 1

Figure 4.4: Intermediate seeds computed by M ultipleSeeds(11, 18) to find PatternHunter’s 
seed 111*1**1*1**11*111. The flipped positions are given in the right column..

4.2 Finding Good Lengths
As we mentioned in the previous sections, the M ultipleSeeds algorithm works only for fixed 
lengths of seed. This algorithm requires the lengths of the seeds to be given as the overlap 
complexity does not allow comparison of multiple seeds of different lengths. The procedure 
for finding these length in [18] is very limited. Comprehensive testing is needed to determine
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good seed lengths given the number of seeds, their weight, the length of the hit region, and the 
similarity level. We give in this section heuristic algorithms to find good lengths for seeds.

4.2.1 Reducing the Number of Lengths to be Guessed
Some of the software programs based on spaced seeds use very large sets of seeds (BFAST 
uses 10 and PatternHunter II uses 16). Therefore the number of possibilities for these lengths 
is very large and it makes it infeasible to do some relevant testing. Our first step is to reduce 
this search space. To start with, we shall try to infer all the seed lengths from the minimum and 
maximum of the lengths. This is done by the M akeLengths algorithm, presented in Figure 4.5.

Algorithm 2 MAKELENGTH(min, max, k)
- given: min minimum seed length, max which is maximum seed length and k is the 
number of seeds
- returns: a set of length l for k seeds

1: temp <— max, /[0] <— min, l[k -  1] <— max, cnt[l[0]] <— 1 ,cnt[l[k- 1]] <— 1
2: isReachedToEnd <— false
3: for i = 1 to k -  1 do
4: if isReachedToEnd = false then
5: l[i] <- l(l[i -  1] + max)/2]
6: else
7: l[i] <— temp
8: end if
9: if cnt[l[i]\ < Ty J to a l then

10: cnt[l[i]] <— cnt[l[i]] + 1
11 : else if cnt[l[i]\ = T 1 then 
12: isReachedToEnd <— true
13: l[i] l[i] -  1
14: temp <- l[i]
15: cnt[l[i]] <— cnt[l[i]] + 1
16: else
17: isReachedToEnd <- true
18: cnt[l[i]] <— cnt[l[i]] + 1
19: end if
20: end for
21 : Sort(/) { sort l array so that we have k elements in increasing order}
22: re tu rn  (/)

Figure 4.5: The M akeLength algorithm

A few clarifications are in order. The algorithm generates first one length with minimum 
length and one with maximum length. Then it continues by choosing the third length in the 
middle of that interval, the fourth in the middle between the third and the maximum, the fifth 
in the middle between the fourth and the maximum, etc. If there are many seed lengths to be
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generated and the [min..max] interval is not very large, the above procedure may eventually 
generate many seeds of length equal to max. To prevent this, we store the number of seeds of 
each length in the cnt array and, if the number of seeds of length equal to max becomes half of 
the total number of seeds, then we stop using the max length and move on to max -  1. Here we 
shall generate at most a quarter of the total number of seeds and, if that is reached, we move to 
max -  2, and so on. The basis for these upper bounds for the number of seeds of a given length 
is that the number of seeds of length l  and weight w is (Q. Therefore, if C is roughly twice as 
large as w, there will be approximately twice as many seeds of length t  + 1 than of length l.

For example, let min = 12, max = 20, and k = 10. To generate 10 lengths between 12 
and 20, using the algorithm we first pick 12 and 20 as the first lengths. Then we find the floor 
of average between them which is = 16. Hence, the next length will be 16. Similarly,
the next length will be = 18 and the fifth length is = 19. After that length
r = 20 is picked. In this case, we can only have up to = 5 lengths equal to 20. 
Therefore, we will have these lengths: 12, 16, 18, 19, 20, 20, 20 ,20 ,20 . Now, we have one 
more length to generate. We have to go back, to one length smaller which is 19. We can have 
up to r £ l  = 3 lengths equal to 19 but we do not need more since we have reached to 10 lengths 
that are 12, 16, 18, 19, 19, 20, 20, 20 ,20,20.

Using this algorithm, we can modify M ultipleSeeds algorithm in a way that it uses the 
length set that M akeLength generated. Figure 4.6 shows the modified algorithm that is called 
C omputeSeedsW ithM inM ax.

Algorithm 3 CoMPUTESEEDsWrmMiNMAx(/n/n, max, w, k)
- given: the min minimum length, max maximum length, weight w and 
the number of seeds k
- returns: a multiple seed S with k seeds of weight w and high sensitivity

1: MAKELENGTH(mm, max)
2: for i = 1 to k do 
3: Si <- *'rwr
4: end for
5. S < {.$1, i$2, •>•,‘Sjt)
6: swaps«- 0
7: while ((3 r , i , j w ith0C({si,...,sr„ flip(sr, i , j ) ,s r+u ...,sk]) <

OC(S)) and (swaps < k x w )) do 
8: choose a triple (r, i, j) that reduces OC(S) the most
9: S «- flip(s„

10: swaps <— swaps +1
11: end while 
12: return (5)

Figure 4.6: The ComputeSeedsW ithM inM ax algorithm

Once we have proper minimum and maximum length we can generate lengths between 
them using the algorithm presented. Now, the question is how do we find proper minimum and
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maximum lengths and it will be answered in the next section.

4.2.2 Finding Proper Min and Max
In this section, we will propose an algorithm to compute the appropriate minimum and max
imum length for the M a k e L e n g t h  algorithm. The proposed algorithm, M in M a x , is given in 
Figure 4.7.

The goal of this algorithm is to find a pair of values (min, max) which, preferably, maxi
mizes the sensitivity of the seeds obtained by the C o m p u t e S e e d s W it h M in M a x  algorithm. Such 
values will be computed for selected input parameters and then interpolated in the next section 
to produce good guesses for all cases. It should be noted therefore that the M in M a x  algorithm 
is used only as preprocessing for our main seed computing algorithm to be presented later.

Therefore, the complexity of this algorithm is not essential however, as this algorithm in
volves repeated computation of sensitivity, which is exponential, we have to build it carefully 
so that it is feasible. One unfeasible choice is to try all possible combinations of min and max 
values. We shall therefore starts with min = w+2, max = w*2, which are selected heuristically. 
We shall search then for values (min, max) so that the sensitivity resulting from this choice is, if 
not the global maximum, then at least a local one. Under the assumption that it is true, a binary 
search becomes the obvious choice however, computing sensitivity requires exponential time 
and space and therefore we cannot simply jump to trying very long seeds. Therefore, we shall 
advance carefully, by increasing the current max only by one unit (assuming the sensitivity 
increases that way) until the sensitivity stops increasing. After that, we start adjusting the min 
(one unit at the time) until we find its local maximum. We then switch back and forth between 
adjusting max and min until the local maximum is found, that is, increasing or decreasing either 
min or max by one unit would cause sensitivity to decrease.

The algorithm is divided into several procedures to increase readability. The procedure 
I d e n t if y M o v e  tells identifies the direction (increase or decrease) in which we need to adjust 
min or max (depending which one we currently considering) in order to increase the sensitivity. 
The procedure S in g l e M o v e  adjusts the min or max according to the moving direction indicated 
by I d e n t if y M o v e .

Note also that we always check that min and max do not go below w or above N, respec
tively. These checks were omitted from the pseudocode for clarity.

4.3 The Engineered Algorithm

4.3.1 Preprocessing and Analysis of Data
Using the M in M a x  algorithm, we did comprehensive testing to find proper (min, max) pairs for 
a wide range of of the parameters k, w, N, p, using especially values that are most common in 
practice. Our testing was perfomed on Sharcnet1 and the (min, max) pairs were computed for 
the following parameters:

• k = 2, w=  1 0 ,12 ,14 ,..., 22, N  = 35,50,75,100,p  = 0.9

1www.sharcnet.ca/

http://www.sharcnet.ca/
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Algorithm 4 MinMax(5, w, k, p, N)
- given: the set of seeds S, weight w, the number of seeds k and similarity p, region length N
- returns: best (min, max) pair 

1: min * *— w + 2
2: max <— 2w
3: sen <— SENSiTiviTY(CoMPUTESEEDsWiTHMiNMAx(mm, max), p, N)
4: repeat 
5: repeat
6: newMaxFound <— 0
7: senDecBy 1 <— SENsmvrrY(CoMPUTESEEDsWrrHMiNMAx(mm, max -  1), p, N)
8: senlncBy 1 «- SENsrrivrrY(CoMPUTESEEDsWiTHMiNMAx(/nm, max + 1 ),p, N)
9: move <—  lDENTiFYMovE(sen, senlncBy 1, senDecBy 1)

10: newMaxFound «- max(newMaxFound, move)
SiNGLEMovE(move, max, sen, senlncBy 1 , senDecBy 1)

11: until (move = 0)
12: repeat
13: newMinFound <— 0
14: senDecBy 1 <- SENsmvrrY(CoMPUTESEEDsWiTHMiNMAx(mm -  1, max), p, N)
15: senlncBy 1 <- SENsrriviTY(CoMPUTESEEDsWiTHMiNMAx(m/n + 1, max), p, N)
16: move <— lDENTiFYMovE(sen, senlncBy 1, senDecBy 1)
17: newMinFound <— max(newMinFound, move)

SiNGLEMovE(move, min, sen, senlncBy 1 , senDecBy 1)
18: until (move = 0)
19: until ((newMaxFound = 0) and (newMinFound = 0))
20: return (min, max)

Figure 4.7: The MinMax algorithm

•  k = 3,w=  10 ,12 ,14 ,..., 22, N = 35,50,75,100,p = 0.9

•  k = 4, w =  10 ,12 ,14 ,..., 22, N = 35,50,75,100,/? = 0.9

•  k=  10,w =  10 ,12 ,14 ,..., 22, iV = 35,50,75,100, p = 0.9

Therefore, 112 pairs of (min, max) are computed. Through this testing, our goal was to give 
a good approximation for (min, max) pairs. For each k, we did two interpolations one for min 
and one for max. Therefore, eight interpolations are performed.

To have a polynomial interpolation one method is to fit a single polynomial through all 
data points. In this case, for N points, one needs to fit a polynomial of degree N -  1. Problems 
arise when there are many data points, as then higher order polynomials are needed. However, 
higher order polynomials may exhibit oscillations, and thus may be a poor approximation of 
the function. Another method is to fit piecewise polynomials (splines) through the data points. 
This is a better choice when there are many points. All (piecewise) polynomials are of the same 
degree, and the best choice in 1 dimension is the cubic spline (degree 3 piecewise polynomials).
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Algorithm 5 lDENTiFYMovE(sen, senlnc , senDec)
- given: sensitivity, increased sensitivity, decreased sensitivity
- returns: move number 

1: move <— 0
2: maxSen <— maximum(senDec, senlnc)
3: if maxSen = senDec and maxSen > sen then 
4: move <— 1
5: else if maxSen = senlnc and maxSen > sen then 
6: move <— 2
7: else
8: move <— 0
9: end if 

10: return move

Figure 4.8: The IdentifyM ove algorithm

Algorithm 6 SiNGLEMovE(move, m, sen, senlncByl , senDecByl)
- given: move number, m can be minimum seed length or maximum seed length, sensitiv
ity, increased sensitivity, decreased sensitivity

l: if move = 1 then 
2: sen *- senDecByl
3: m  <— m  -  1
4: end if
5: if move = 2 then 
6: sen <— senlncByl
7: m  «— m  +  1
8: end if

Figure 4.9: The SingleM ove algorithm

For our problem, since we have exact values of min and max, interpolation is a better choice 
than least-squares approximation. Also, since we have many data points, splines are preferred 
to single polynomial interpolation. We used cubic spline interpolation. The MATLAB function 
is ”interp2” with the option of the method “spline” (for cubic spline). We plotted the approx
imating function in 2 dimensions in MATLAB with ’’surf ’ (for 3-D shaded surface plot). The 
plots obtained from our analysis are shown in Figures 4.10,4.11,4.12, and 4.13.

Based on the analysis we did on the mentioned points we can infer min or max knowing k, w 
and N. The plots contain the values as obtained from the spline, which are usually not integers. 
We rounded the values to the nearest integers and put them in arrays. In other words, we com
pute an array for each plot. Each array is a 2 dimensional array with 13 rows and 66 columns 
that can cover w e  {10,11,..., 22} and N  e {35,36,..., 100}. As an example, for computing 
good min length, seedLength_min_k4[13][66] array is computed. If we want to use that in our
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min: k = 2 max: k = 2

Figure 4.10: The min and max values for k = 2

min: k = 3 max: k = 3

Figure 4.11: The min and max values for k = 3

min: k -  4 max: k = 4

Figure 4.12: The min and max values for k = 4
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min: k = 10 max: k = 10

Figure 4 .13: The min and max values for k = 10

program, we can use seedLength_min_k4[w-10][N-35] value as it has the value of interpolation 
for min with w and N parameters. For instance, if we want to find the good minimum length 
for k = 4 seeds that have weight 12 and region length 50, we use seedLength_min_k4[w-10][N- 
35]= seedLength_min_k4[12-10][50-35] = seedLength_min_k4[2][15]. These arrays are given 
in the appendix.

4.3.2 Speed

By the preprocessing step explained in the previous section, we are able to find good length 
sets for seeds that we want to generate. To alleviate the M u l t ip l e S e e d s  length problem [18], 
we use our arrays to find good lengths and then apply overlap complexity measure. Therefore, 
we propose a new algorithm that is named SpEED and is shown in Figure 4.14.

Actually, since most software programs are using 2, 3, 4 or 10 seeds, and the usual ranges 
for w and N  are {10,11,..., 22} and {35,36,..., 100} respectively, we did our analysis for these 
values. Since, this program uses arrays that are computed in a preprocessing step, the whole 
algorithm has polynomial time complexity and can generate seeds fast. In the experiments 
chapter, not only the sensitivity but also the running time for computing different seeds will be 
given.
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Algorithm 7 SpEED(&, w , A)
- given: k (number of seeds), w (weight), A (length of the hit region)
- returns: a multiple seed S with k seeds of weight w and high sensitivity

1: (min, max) <— PrecomputedMinMax^ ,  w, A)
2: M A K E L E N G T H (m /n , max)
3: for i = 1 to k do
4; Si *'.-*1"
5: end for
6: S < {S j, 52> •••» ^it}
7: swaps <— 0
8: while ((3 r, i, j  with 0C ({si,..., sn , flip (sr, i, j), sr+l, ..., sk}) < 

OC(S)) and (swaps < k x w)) do 
9: choose a triple (r, i, j) that reduces OC(S) the most

10: S * - {su ...,sn , flip(sr,i , j ) ,s r+u...,sk)
11: swaps «— swaps +1 
12: end while 
13: return (S)

Figure 4.14: The SpEED algorithm

Algorithm 8 P r e c o m p u t e d M in M a x ( /c, w , N)
- given: k (number of seeds), w (weight), N  (length of the hit region)
- returns: (min, max) as computed above or (w + 2 ,2w) if outside range

1: ififc = 2 then
2: min <— seedLength_min_k2[w -  10][A -  35]
3: max «- seedLength_max_k2[w -  10][A -  35]
4: else if k = 3 then
5: min <— seedLength_min_k3[w -  10][A -  35]
6: max <— seedLength_max_k3[w -  10][A -  35]
7: else if k =  4 then
8: min <— seedLength_min_k4[w — 10][A — 35]
9: max <— seedLength_max_k4[w -  10] [A -  35]

10: else if k =  10 then
11: min <— seedLength_min_104[w — 10][A — 35]
12: max *- seedLength_max_klO[w -  10][A -  35]
13: else
14: min *- w + 2, max <— 2vv
15: end if
16: return (min, max)

Figure 4.15: The PrecomputedM inM ax function
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Chapter 5 

Experiments

This chapter includes our experiments. Our goal is to compute seeds with the SpEED algorithm 
that takes as input parameters k, w, N  and p in order to improve the seeds that have computed 
or used by different software programs. Since Iedera software is not competitive for comput
ing multiple spaced seeds, we compared our algorithm with Mandala based on two measures, 
sensitivity and runtime. Both are of crucial importance for algorithms that compute seeds. We 
tried to improve existing seeds that are used for instance in read mapping programs by com
puting seeds with the same parameters k, w, N  and p. To show the efficiency of our algorithm, 
we computed seeds with those parameters also by Mandala software. Our results show that our 
seeds are always more sensitive than Mandala’s and are computed much faster. Besides, our 
seeds improve the original seeds. Therefore, these seeds can be used to improve the programs 
that use them.

Mandala suffers from a deficiency of not producing length sets. The maximum seed length 
should be given to Mandala by the user. Therefore, we used the original seeds maximum 
length. Indeed, our work deals with this problem as mentioned in the previous chapter. Hence, 
one can compute seeds with our program much easier than Mandala since Mandala needs 
maximum seeds length and it should be tested for different values to see what would be the 
best maximum length (for each test case). Also, since Mandala takes exponential time to run, 
this testing would be very time-consuming or maybe infeasible altogether. Although for the 
sake of comparison, we used the original seeds maximum length for Mandala, our program is 
superior in this aspect due to its ability to compute good seed lengths.

In this chapter, we will also compute seeds to improve those used by various programs, 
namely, PatternHunter II, BFAST, SHRiMP, PerM and SToRM. We run all the programs on 
Sharcnet1.

5.1 PatternHunter II
The PatternHunter parameters are k = 16, w = 11, N = 64 and p = 0.7. We computed seeds for 
these parameters but with different similarity levels both with our program and with Mandala 
to compare our seeds with Mandala’s. For our program, since PatternHunter has 16 seeds, 
we computed the proper (min, max) pair by the M in M a x  algorithm proposed in the previous

www.sharcnet.ca/

http://www.sharcnet.ca/
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chapter. Actually, we did not compute min and max for 16 seeds of different weight and re
gion length because PatternHunter is a special case and usually softwares do not use 16 seeds. 
Therefore, we only computed the proper (min, max) for k = 16, w = 11, N  = 64 parameters to 
be used in our experiments. We used maximum seed length of 21 as it is the PatternHunter’s 
maximum seed length. Table 5.1 includes our results. It consists of the sensitivities of Pat
ternHunter seeds, Mandala’s seeds and our seeds (that we call it SpEED seeds) for different 
similarity levels. It also contains the comparison of runtime of Mandala’s program and our 
program for different similarity levels.

similarity
sensitivity time (sec)

PatternHunter Mandala Spee d Mandala Spee d
70% 0.924114 0.922232 0.929587 4038.81 20.456
75% 0.984289 0.983969 0.985904 3138.23 20.484
80% 0.998449 0.998387 0.998663 7063.78 20.472
85% 0.999951 0.999949 0.999960 2748.51 20.464
90% 1.000000 1.000000 1.000000 4299.92 20.46
95% 1.000000 1.000000 1.000000 1873.16 20.468

Table 5.1 : The sensitivity of our multiple seeds compared to that of PatternHunter and Man
dala. Last two columns show the running time of Mandala and our program SpEED. The seed 
parameters that programs use are k = 16, w = 11, N  = 64.

From Table 5.1 we can understand that our program computes seeds that are more sensi
tive than PatternHunter’s seeds while Mandala does not. Our seeds are more sensitive than 
Mandala’s seeds and it takes only about 21 seconds to compute these seeds while Mandala has 
different runtime for different similarity levels. Mandala’s runtime is on the average more than 
an hour. This runtime will be much longer if Mandala’s maximum length is set to a little larger 
value since Mandala has exponential time complexity while our program has polynomial time 
complexity. This is actually quite inconvenient. If we set maximum length to 100, Mandala 
tries to compute seeds with that length. In summary, we can easily conclude that our program 
is more efficient in computing seeds than Mandala and it also improves PatternHunter’s seeds.

5.2 BFAST
BFAST parameters are k = 10,w = 22, N  = 50 and p = 0.95 ([16]). Similar to the experi
ment discussed in Section 5.1, an experiment is done for BFAST seeds. We computed seeds 
for BFAST parameters k, w and N  for different similarity levels both with our program and 
with Mandala to compare our seeds with Mandala’s. Maximum seed length of 40 is used for 
Mandala as it is the BFAST’s maximum seed length. Table 5.2 includes the results. It consists 
of the sensitivities of BFAST seeds, Mandala’s seeds and SpEED seeds for different similarity 
levels. Moreover, this table contains the comparison of runtime of Mandala’s program and our 
program for different similarity levels.

Table 5.2 shows the speed advantage of SpEED program over Mandala software. As it can 
be seen in the table, Mandala program did not produce any results after a day while our program
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similarity
sensitivity time (sec)

BFAST Mandala Speed Mandala Spee d
80% 0.293775 - 0.30598 > 1 day 21.284
85% 0.586907 - 0.60340 > 1 day 21.292
90% 0.873359 - 0.88377 > 1 day 21.296
95% 0.992249 - 0.99353 > 1 day 21.296

Table 5.2: The sensitivity of our multiple seeds compared to that of BFAST and Mandala. 
Last two columns show the running time of Mandala and SpEED. The seed parameters that 
programs use are k = 10, w = 22,N = 50.

takes only about 21 seconds to run for each similarity level. This is due to the exponential time 
complexity of Mandala. Hence, Mandala program can be too time consuming for some cases 
like this. In such cases, Mandala is not a good tool to compute seeds.

Further to the time issue, our seeds are more sensitive than BFAST seeds for all similarity 
levels. For some similarities, like 80%, 85% and 90% our improvement is over a 1 % which is 
a notable increase.

5.3 SHRiMP
SHRiMP is a software package for aligning genomic reads against a target genome. It uses 
spaced seeds to rapidly and accurately identify candidate mapping locations for each read. 
Different sets of spaced seeds are used in SHRiMP. However, it has a 4 spaced seeds of weight 
12 as default.

SHRiMP parameters are k = 4, w e {10,11,12,16,18}, N e {35,50} and p = 0.95. 
Therefore, in order to improve each set, we computed seeds for (k, w, N) of each SHRiMP 
seeds for different similarity levels. We did this for Mandala too to compare our seeds with 
Mandala’s as we did for other softwares. We will consider each set here and give the results. 
For each pair (w, N), we give the results in a separate table.

5.3.1 SHRiMP - weight 10
This section contains comparison of SHRiMP seeds of weight 10 and region length {35, 50} 
with seeds computed by our program and Mandala for those parameters. We computed seeds 
for both cases with our program and Mandala and compare the sensitivities and runtime for dif
ferent similarity levels. Maximum seed length of 21 is used for Mandala as it is the SHRiMP’s 
maximum seed length for weight 10. Therefore, we give two tables and compare the results of 
N  = 35 in Table 5.3 and N = 50 in Table 5.4.

From these two tables, we can conclude the time efficiency of our method as well as its high 
sensitivity. Our method improves SHRiMP seeds, in all cases. In some cases the improvement 
are more obvious. As an exemplification, for similarity level 80% the difference is more sig
nificant. In comparison with Mandala, our seeds are always more sensitive than Mandala’s. 
Indeed, for SHRiMP, Mandala can also improve its seeds. Hence, it works well for SHRiMP
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similarity
sensitivity time (sec)

SHRiMP Mandala Spee d Mandala Spee d
80% 0.896379 0.90318 0.90534 53.504 0.076
85% 0.972424 0.97436 0.97643 35.86 0.076
90% 0.996749 0.99704 0.99752 23.28 0.076
95% 0.999942 0.99995 0.99997 58.908 0.072

Table 5.3: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4 ,w  = 1 0 ,#  = 35.

similarity
sensitivity time (sec)

SHRiMP Mandala Spee d Mandala Speed
80% 0.973159 0.97740 0.97766 17.464 0.076
85% 0.996613 0.99709 0.99745 28.436 0.076
90% 0.99988 0.99991 0.99992 38.348 0.076
95% 1.000000 1.00000 1.00000 29.876 0.076

Table 5.4: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4, w = 1 0 ,#  = 50.

parameters. Besides, we can see that the longer the region length, the greater the computed 
sensitivities.

5.3.2 SHRiMP - weight 11

Like what we did in the previous section, we perform our experiments for the SHRiMP seeds 
of weight 11 and region length {35, 50}. The maximum seed length of 23 is used for Mandala 
as it is the SHRiMP’s maximum seed length for weight 11. Therefore, we will give Table 5.5 
for #  = 35 and Table 5.6 for #  = 50.

similarity
sensitivity time (sec)

SHRiMP Mandala Spee d Mandala Speed
80% 0.825898 0.83608 0.83656 45.324 0.104
85% 0.944193 0.94843 0.95033 119.724 0.104
90% 0.991537 0.99199 0.99317 188.796 0.1
95% 0.999773 0.99985 0.99985 198.016 0.104

Table 5.5: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4,w = 1 1 ,#  = 35.

The results given in Tables 5.5 and 5.6 confirm that both our program and Mandala can 
improve the original SHRiMP seeds of weight 11 for #  = 35 and #  = 50. However, our 
program is more time efficient. It is also more sensitive in all of the cases. Also, comparing the
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similarity
sensitivity time (sec)

SHRiMP Mandala Spee d Mandala Spee d
80% 0.941141 0.94537 0.94824 72.856 0.092
85% 0.990145 0.99116 0.99198 32.932 0.088
90% 0.999484 0.99955 0.99963 125.176 0.092
95% 0.999998 1.00000 1.00000 44.764 0.092

Table 5.6: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4 ,w = 11, iV = 50.

■ .  c
results of these two tables with previous two tables show that a larger weight leads to smaller 
sensitivity.

5.3.3 SHRiMP - weight 12

The maximum seed length of 25 is used for Mandala as it is the SHRiMP-default’s maximum 
seed length for weight 12. The results are shown in Table 5.7 for N = 35 and Table 5.8 for 
JV = 50.

similarity
sensitivity time (sec)

SHRiMP Mandala Speed Mandala Spee d
80% 0.742772 0.74861 0.75395 161.124 0.12
85% 0.904162 0.90606 0.91171 210.844 0.12
90% 0.982291 0.98382 0.98477 66.608 0.12
95% 0.999365 0.99929 0.99953 64.532 0.12

Table 5.7: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4 ,w =  12, N  = 35.

similarity
sensitivity time (sec)

SHRiMP Mandala Speed Mandala Speed
80% 0.893037 0.90089 0.90383 347.608 0.12
85% 0.977253 0.97972 0.98102 785.784 0.12
90% 0.99833 0.99862 0.99877 613.776 0.12
95% 0.99999 1.00000 1.00000 191.416 0.12

Table 5.8: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4 ,w =  12, N  = 50.
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5.3.4 SHRiMP - weight 16
The maximum seed length of 30 is used for Mandala as it is the SHRiMP’s maximum seed 
length for weight 16. The results are shown in Table 5.9 for N = 35 and Table 5.10 for N = 50.

similarity
sensitivity time (sec)

SHRiMP Mandala Speed Mandala Spee d
80% 0.391545 0.39304 0.40180 137.104 0.144
85% 0.646024 0.64794 0.65489 202.36 0.144
90% 0.877337 0.87649 0.88143 519.456 0.14
95% 0.987896 0.98677 0.98840 323.828 0.144

Table 5.9: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4, w = 16, N = 35.

similarity
sensitivity time (sec)

SHRiMP Mandala Spee d Mandala Spee d
80% 0.601401 0.59989 0.60546 1167.8 0.536
85% 0.840995 0.84309 0.84568 1254.73 0.532
90% 0.971676 0.97011 0.97355 2282.13 0.528
95% 0.99926 0.99914 0.99936 2822.96 0.532

Table 5.10: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4, w = 16, N = 50.

5.3.5 SHRiMP - weight 18
The maximum seed length of 29 is used for Mandala as it is the SHRiMP’s maximum seed 
length for weight 18. The results are shown in Table 5.11 for N = 35 and Table 5.12 for 
W = 50.

similarity
sensitivity time (sec)

SHRiMP Mandala Speed Mandala Spee d
80% 0.259008 0.259345 0.26146 26.892 0.256
85% 0.499013 0.498443 0.503639 39.08 0.256
90% 0.780301 0.773827 0.785239 50.804 0.256
95% 0.967227 0.965637 0.969015 67.264 0.256

Table 5.11: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4 ,w =  18,N  = 35.

In all SHRiMP cases, our program performs better than Mandala with respect to both sen
sitivity and, especially, time. Also, the original seeds are improved. Our program can improve 
the original SHRiMP set as before.
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similarity
sensitivity time (sec)

SHRiMP Mandala Spe e d Mandala Speed

80% 0.433537 0.438502 0.444024 320.468 0.82
85% 0.711961 0.720055 0.728247 294.34 0.82
90% 0.925652 0.92504 0.935701 233.752 0.82
95% 0.996299 0.996634 0.997376 195.1 0.82

Table 5.12: Comparing SpEED with Mandala and SHRiMP for SHRiMP parameters of k = 
4 ,w = 18,N = 50.

5.4 PerM
PerM is a short-read sequence alignment software that indexes the genome with periodic 
spaced seeds. We tried to improve PerM-F3-S20 seed family used in PerM software. PerM 
Parameters are k = 2, w = 12, p = 0.95 and N e {35,50}. Similar to the experiments discussed 
in previous sections , we computed seeds (for both cases of N ) with our program and Mandala 
and compare the sensitivities and run time for different similarities. Maximum seed length of 
24 is used for Mandala as it is the PerM’s maximum seed length. Tables 5.13,5.14 include our 
results for N = 35 and N  = 50 respectively.

similarity
sensitivity time (sec)

PerM Mandala Speed Mandala Spee d

80% 0.542551 0.642179 0.643396 12.644 0.008
85% 0.759705 0.839183 0.84001 5.928 0.008
90% 0.924188 0.957713 0.960723 9.58 0.008
95% 0.992938 0.997255 0.997669 18.028 0.008

Table 5.13: Comparing SpEED with Mandala and PerM for PerM parameters of k = 2,w = 
12, N  = 35.

similarity
sensitivity time (sec)

PerM Mandala Speed Mandala Spee d

80% 0.748822 0.814538 0.818663 14.02 0.004
85% 0.910681 0.949099 0.950202 12.5 0.008
90% 0.984731 0.994331 0.994753 14.632 0.008
95% 0.999496 0.999928 0.999943 7.44 0.008

Table 5.14: Comparing SpEED with Mandala and PerM for PerM parameters of k = 2,w = 
12, N  = 50.

Tables 5.13 and 5.14 show that both our program and Mandala dramatically improve orig
inal PerM seed. This is mainly because PerM seeds are periodic and have low sensitivities.
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Again our program is more time efficient than Mandala and generates better and more sensitive 
seeds.

5.5 SToRM
SToRM is a read mapping tool that uses a three weight 12 seeds. We tried to improve 3-Lossy- 
12 seed family. SToRM parameter are k = 3, w = 12, p = 0.95 and N  e {35,50}. Similar to the 
previous sections , we computed seeds (for both cases of N) with our program and Mandala 
and compare the sensitivities and run time for different similarities. Maximum seed length of 
19 is used for Mandala as it is the SToRM’s maximum seed length. Our results for N = 35 and 
N = 50 are shown in Tables 5.15, 5.16 respectively.

similarity
sensitivity time (sec)

SToRM Mandala Speed Mandala Speed
80% 0.700365 0.706986 0.713519 1.064 0.04
85% 0.876455 0.87205 0.887065 1.36 0.036
90% 0.972965 0.971455 0.977287 1.276 0.036
95% 0.998644 0.998396 0.999051 0.852 0.04

Table 5.15: Comparing SpEED with Mandala and SToRM for SToRM parameters of k = 3, w =
12, N  = 35.

similarity
sensitivity time (sec)

SToRM Mandala Speed Mandala Spee d
80% 0.860248 0.862456 0.874631 1.42 0.052
85% 0.966088 0.966836 0.971637 1.24 0.052
90% 0.997003 0.997198 0.997745 1.452 0.052
95% 0.999976 0.999979 0.999985 1.94 0.052

Table 5.16: Comparing SpEED with Mandala and SToRM for SToRM parameters of k = 3, w = 
\2 ,N  = 50.

The results of this section again show that our program notably increase sensitivities of 
SToRM seeds and Mandala seeds. Our runtime is also more efficient than Mandala, as always.

In a nutshell, SpEED performs very well in computing highly sensitive multiple spaced 
seeds. It improves seeds that are currently used in different softwares. Our results show that our 
seeds are always more sensitive than Mandala’s and are computed much faster. This runtime 
advantage over Mandala can be especially seen for the BFAST case for which Mandala has 
not produced any seeds after a day while our program has generated highly sensitive seeds in 
about 21 seconds.



Chapter 6

Evaluation of Overlap Complexity

Our SpEED algorithm not only produces the best seeds but it does so with much greater speed 
than any other algorithm. It is the only one able to produce large sets of long seeds. Therefore, 
the natural question arises: How much can it be improved? Or, differently put, how far are its 
computed seed from optimal?

A natural answer to this question would be a theoretical result comparing the sensitivity 
of the seed computed by SpEED against the optimal. Such a result seems to be very difficult 
to prove. In addition, anything less than an optimal bound on the sensitivity of the seeds of 
SpEED would be useless since the difference to the optimal may be very small. Therefore, we 
shall attempt in this section to perform some meaningful exhaustive testing. In order to achieve 
something nontrivial, we need a very fast implementation of the sensitivity function.

6.1 Limitations on Exhaustive Search
In exhaustive testing, all possible seeds with the given length set, k, w, N  and p are computed 
and sensitivity of each seed set is computed by the S e n s it iv it y  algorithm. Therefore, the most 
important contribution here is a fast implementation of the sensitivity function so that exhaus
tive testing becomes possible.

In addition, we need to evaluate our work before starting the computations. The number of 
possible &-seed sets, of weight w region length N  and similarity p is

where is the length of ith seed. This is because each seed must start and end with a 1 and the 
remaining w - 2  l ’s can be arranged in any possible way on the £,■ -  2 remaining positions.

This number grows very fast with all parameters and we should pick test cases that are 
feasible to compute. For each test case we computed this value to estimate the running time of 
the exhaustive search and see if the case is feasible or not. Also, we tried to have a significant 
number of seeds in our tests, so that we can see how well the overlap complexity measure 
works for multiple spaced seeds.

The fast implementation of sensitivity is given in the next section, followed by pour tests at 
the end of the chapter.
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Figure 6.1: The elements of Br for the seed 1 * 1 * 1.

6.2 Fast Computation of Sensitivity
In this section, we explain our fast implementation for the S e n s it iv it y  function given in Fig
ure 2.2. Instead of giving a long and hard to read pseudocode, we shall explain the basic ideas 
of our approach.

Recall that we had a set A = {si, 5*} of seeds and that B denoted the set of all binary 
strings not hit by A but compatible with some s £ A. For example, for the seed s = 1 * 1 * 1, 
we have the set B = {1,01,11,101,111,0101,0111,1101,1111,10101,10111,11101,11111}.

As our first improvement, we shall store all binary strings, seeds or elements of B, as 
integers. For seeds it does not matter but for elements of B it is actually simpler to store their 
reversals (br denotes the reversal of b) since they always starts with a 1 and the length is no 
longer necessary. An important observation is that B is suffix closed, which means Br is prefix 
closed. Therefore, we can store it as a tree, where each node c has at most two children, cO and 
cl (this c is actually a br)\ see Figure 6.1.

The most time consuming part of the entire algorithm is the computation of the set B. 
Our second improvement is the computation of the set B before hand, together with direct 
computations of B(0b) from 0b. We shall also store all the elements of B in one array, as arrays 
are much faster than the pointers in a tree. In order to allocate memory for it, we need to have 
a good upper bound on its size. If we define 5 size as a function from seeds to integers by

f l s i z e d )  =  1

^sizeO^) = B$[le(s)
•®size(*s) = 22?size(s)

then a good (over)estimate for the size of B is
k

^  j ^size( î) • 
i=l

An entry in our array for an element b of B will contain the integer value of br, the positions 
of its children (if they exist, or -1 otherwise), the suffix link (position of B(br)r), and informa
tion whether it is hit or not by some s e A. The array is built by adding all elements of B of the
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Optimal seeds Overlap complexity seeds
111* 11* 1111*11111 1111* 11* 111*11111
11111**1*1***11*11111 1111**11*1*11**1*1111

Table 6.1: Optimal seed versus seeds computed by overlap complexity for 2 seeds

same length, in increasing order of lengths. That means, conceptually, we build the tree from 
top to bottom, one level at the time.

An essential improvement here is related to checking whether a b e B is compatible with 
a seed s. This is done using only three bit operations. Recall that we work with the reversals 
of all the strings. We right shift the seed by |s| -  \b\ positions and bit AND it with the bit 
complement of b. The obtained string contains no 1 ’s (which means it equals 0 as an integer) 
if and only if b is compatible with a.

The obtained sensitivity function is much faster than a naive implementation. It turned out 
to be much faster than Mandala’s as well. It will enable us to perform some nontrivial testing 
in the next section.

6.3 Tests
We performed three tests: one for k = 2, one for k = 3 and one for k = 4. For each test case 
we fix the ¿¡’s. We did exhaustive search and found the optimal solution. We set N  to 35 and 
find a value for p  that will lead to sensitivity around 80% so that differences between optimal 
sensitivity and sensitivity of overlap complexity based algorithm is increased. We also generate 
seeds with the same length sets by overlap complexity simply applying overlap complexity to 
find seeds with given length set. This can be done by changing the M u l t ip l e S e e d s  algorithm 
so that it allows fixed lengths. Here are the results of our three tests:

•  Parameters: k = 2, w = 14, vV = 35,p = 0.88, /o = 17 and l\ =21.

optimal sensitivity: 0.828460 
our sensitivity: 0.821946

The difference between sensitivities of our seeds and optimal seeds is about 0.65% which 
is a small difference and suggest that overlap complexity measure works well in comput
ing these two seeds. Optimal seeds and our seeds are given in Table 6.1.

•  Parameters: k = 3, w = 10, N  = 35, p = 0.78, /o = 12 and = 14, l2 = 16.

optimal sensitivity: 0.818325 
our sensitivity: 0.814159

The difference between sensitivities of our seeds and optimal seeds is about 0.42% which 
is a small difference even smaller than the previous test case and suggest that overlap 
complexity measure works well in computing these three seeds. The optimal seeds and 
our seeds are given in Table 6.2.
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Optimal seeds Overlap complexity seeds
111* 11*11111 1111* 111*111
111**111*1*111 111*11**1*1111
1111*1****11*111 111*1**1*1**1111

Table 6.2: Optimal seed versus seeds computed by overlap complexity for 3 seeds

Optimal seeds Overlap complexity seeds
1*111*11 11*1*111
111**11*1 111**1*11
11**1*1*11 11*11 * *1*1
11*1****111 111***1**11

Table 6.3: Optimal seed versus seeds computed by overlap complexity for 4 seeds

•  Parameters: k = 4,w = 6,N  -  35, p = 0.6, /0 = 8 and /o = 8, l\ = 9,l2 = 10, /3 = 11.

optimal sensitivity: 0.849525 
our sensitivity: 0.844622

The difference between sensitivities of our seeds and optimal seeds is about 0.50% which 
is a small difference and suggest that overlap complexity measure works well in comput
ing these four seeds. The optimal seeds and our seeds are given in Table 6.3.

As it can be seen from Tables 6.1, 6.2 and 6.3, the sensitivities of our seeds are very close 
to the optimal sensitivities in all three cases (less than 1 %). Although we did not perform 
exhaustive testing for larger test cases since they would be very time-consuming and for some 
cases infeasible, these three test cases are just a few examples that suggest the superiority and 
efficiency of overlap complexity measure.
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Chapter 7 

Conclusion

We have succeeded to engineer the overlap-complexity based algorithm so that it computes 
seeds that are better than any other ones, while being computed orders of magnitude faster. 
Considering the fact that increasingly many software programs for biological applications use 
multiple spaced seeds, our software program will be a very useful tool for creating fast the best 
seeds available. Further research remains to be done in order to adapt the overlap complexity 
idea to models other than Bernoulli, such as Markov.
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Appendix A 

Lists of Arrays



i n t  seedL ength_m inJc2[13][66] = {
1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 ,
1 2 .1 2 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 ,
1 4 ,1 4 ,1 4 ,1 4 ,1 4 ,1 4 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 .1 5 ,1 5 ,1 5 .1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 .1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 .1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 .1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 ,1 5 .1 5 , 
1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 .1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 .1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 6 ,1 7 ,1 7 ,1 7 ,1 7 ,1 7 ,1 7 ,1 7 ,1 7 ,1 8 ,1 8 ,1 8 .1 8 ,1 8 ,1 9 ,1 9 ,
1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 9 .1 9 .1 9 .1 9 .1 9 .2 6 .2 8 .2 9 .2 8 .2 8 .2 1 .2 1 ,
1 9 .1 9 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 ,
1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 ,
2 8 ,2 6 ,2 8 ,2 8 ,2 8 ,2 6 ,2 8 ,2 6 ,2 6 ,2 8 ,2 8 ,2 6 ,2 6 ,2 6 ,2 8 ,2 8 ,2 6 ,2 8 ,2 8 ,2 8 ,2 6 .2 6 ,2 6 ,2 6 ,2 8 ,2 6 ,2 8 ,2 6 ,2 8 ,2 8 ,2 8 ,2 6 ,2 6 ,2 8 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 3 ,2 3 ,2 3 ,2 3 ,2 3 ,2 3 .2 3 ,
2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 ,
2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 ,
2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 6 .2 6 .2 6 ,
2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 7 .2 7 .2 7 .2 7 .2 6 .2 6 .2 5 .2 5 ,
2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 ,

};
i n t  seedLength_max_k2[1 3 ][6 6 ] = {

1 6 .1 6 .1 6 .1 6 .1 6 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .2 8 .2 8 .2 6 .2 0 .2 9 .2 8 .2 6 .2 9 .2 0 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 9 .2 9 .2 9 .2 9 ,
1 8 .1 8 .1 7 .1 7 .1 7 .1 7 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 7 .1 7 .1 7 .1 7 .1 7 .1 8 .1 8 .1 8 .1 8 .1 9 .1 9 .1 9 .2 8 .2 8 .2 8 .2 1 .2 1 .2 1 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 5 .2 5 .2 5 .2 5 .2 4 .2 4 .2 3 .2 3 .2 2 ,
2 8 .2 8 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .2 8 .2 8 .2 8 .2 8 .2 8 .2 1 .2 1 .2 1 .2 1 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 6 .2 6 .2 6 .2 6 .2 5 .2 5 .
2 1 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 ,
2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 9 .2 9 ,
2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 ,
2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 9 .2 9 .2 9 .2 9 .2 9 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 8 .3 8 .3 8 ,
2 7 ,2 7 ,2 7 ,2 7 ,2 7 ,2 7 ,2 7 .2 7 ,2 7 ,2 7 ,2 7 ,2 7 .2 7 ,2 7 ,2 7 ,2 7 ,2 7 ,2 7 ,2 7 ,2 7 ,2 7 ,2 8 ,2 8 .2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 2 ,3 2 .3 2 ,3 2 ,3 2 ,3 2 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,
2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .2 9 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 7 .3 7 .3 8 .3 8 .3 9 ,
2 7 ,2 8 ,2 8 ,2 8 ,2 9 ,2 9 ,2 9 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 .3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 6 ,3 6 .3 6 .3 6 ,3 7 ,3 7 ,3 7 ,3 8 ,3 8 ,3 8 ,3 9 ,3 9 .4 8 ,4 8 ,
2 8 .2 8 .2 9 .2 9 .3 8 .3 8 .3 8 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 ,
2 9 .2 9 .2 9 .3 8 .3 8 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 8 .3 8 .3 8 .3 8 ,
2 9 .2 9 .3 8 .3 8 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 ,

};



i n t  seedLength_m inJc3[13] [66] = {
12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 . 12 , 12 , 12, 12 , 12 , 12 , 12 , 12 , 12 . 12 , 12 , 12 , 12 . 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 , 12 . 12 , 12 , 12 , 12 , 12 ,
1 3 .1 3 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 3 .1 3 .1 3 .1 3 ,
1 4 .1 4 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 4 .1 4 .1 4 .1 4 ,
1 5 .1 5 .1 5 .1 5 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 ,
1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 ,
1 8 .1 8 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 7 .1 7 .1 7 , 
1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 .1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 .1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 , 
2 6 ,2 8 ,2 6 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,2 8 ,2 ® ,2 ® ,2 8 ,2 9 ,2 ® ,2 ® ,2 ® ,2 8 ,2 ® ,2 « ,2 6 ,2 « ,2 « ,2 9 ,2 6 ,2 9 ,2 8 ,2 ® ,2 9 ,2 « ,2 9 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 , 
2 ® ,2 ® ,2 ® ,2 ® ,2 ® ,2 ® ,2 ® ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 2 ,2 3 ,2 3 ,2 3 ,2 3 .2 3 .2 3 ,2 3 ,2 3 ,2 3 ,2 3 .2 3 ,
2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 ,
2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 ,
2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 3 .2 3 .2 3 ,
2 4 ,2 4 ,2 4 ,2 4 ,2 4 ,2 4 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 .2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 .2 5 ,2 5 ,2 5 ,2 5 .2 5 ,2 5 .2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 .2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,2 5 ,

};
i n t  seedL ength_m ax_i3[13][66] = {
22,22,22,22,22,22,22,21,21,21.21,21,21,21.21,21,21,21,21.21.21,21,21,21,21,2®,2®,2®.2®,2®,2®,26,26,29,2®,26.29,2®,2®,2®,2®,2®,26,28,2®,28,2®,2®,2®,26,28,2®,29,28,2®,2®,2®,2®,29,29,2®,2®,26,2®,29,2®,
2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 ,
2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 ,
2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 ,
2 6 ,2 6 ,2 7 ,2 7 ,2 7 ,2 7 ,2 8 ,2 8 .2 8 ,2 8 ,2 8 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 .2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 .3 9 ,3 9 ,3 8 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 9 ,2 8 .2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 .2 8 ,2 8 , 
2 6 ,2 7 ,2 7 ,2 7 ,2 8 ,2 8 ,2 9 .2 9 ,2 9 ,3 9 ,3 8 ,3 8 ,3 9 ,3 9 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 .3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 .3 1 ,3 1 ,3 1 ,3 1 ,3 1 .3 1 ,3 1 .3 2 ,3 2 ,3 2 .3 2 ,3 2 ,3 2 ,3 3 ,3 3 ,3 3 ,
2 6 ,2 7 ,2 7 ,2 8 ,2 8 ,2 9 ,2 9 ,3 8 ,3 9 ,3 0 ,3 1 ,3 1 ,3 1 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 .3 2 ,3 3 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 .3 3 .3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 .3 3 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 5 .3 5 ,3 5 ,3 5 ,3 6 .3 6 ,3 7 ,3 7 .3 8 .3 8 ,
2 7 .2 8 .2 8 .2 9 .2 9 .3 9 .3 9 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 8 .3 8 .3 9 .3 9 .4 9 .4 8 .4 1 ,
2 8 .2 9 .2 9 .3 9 .3 9 .3 1 .3 1 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .4 9 .4 9 .4 1 .4 1 .4 1 .4 2 , 
2 8 ,2 9 ,3 ® ,3 « ,3 1 .3 1 .3 2 ,3 2 ,3 3 ,3 3 ,3 4 ,3 4 ,3 5 ,3 5 ,3 5 ,3 6 .3 6 ,3 6 ,3 6 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 8 ,3 8 .3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 .3 9 .3 9 ,3 9 ,3 9 .3 9 ,3 9 ,3 9 ,3 9 .3 9 ,3 9 ,3 9 ,3 9 ,3 9 ,3 9 .3 9 ,4 ® ,4 ® ,4 ® ,4 ® ,4 ® ,4 ® ,4 ® ,4 1 ,4 1 ,4 1 ,4 1 ,4 2 ,4 2 ,4 2 ,4 3 ,4 3 ,
2 8 .2 9 .3 6 .3 9 .3 1 .3 2 .3 2 .3 3 .3 4 .3 4 .3 5 .3 5 .3 6 .3 6 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .4 9 .4 9 .4 9 .4 6 .4 9 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 4 ,
2 8 .2 9 .3 9 .3 9 .3 1 .3 2 .3 2 .3 3 .3 4 .3 4 .3 5 .3 5 .3 6 .3 6 .3 7 .3 7 .3 8 .3 8 .3 9 .3 9 .4 9 .4 9 .4 9 .4 1 .4 1 .4 1 .4 2 .4 2 .4 2 .4 3 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 ,
3 9 .3 9 .3 1 .3 1 .3 1 .3 2 .3 2 .3 3 .3 3 .3 3 .3 4 .3 4 .3 5 .3 5 .3 6 .3 6 .3 6 .3 7 .3 7 .3 8 .3 8 .3 9 .3 9 .4 9 .4 6 .4 9 .4 1 .4 1 .4 2 .4 2 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 5 .4 5 .4 5 .4 6 .4 6 .4 6 .4 7 .4 7 .4 7 .4 7 .4 7 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 7 .4 7 .4 7 .4 7 .4 6 .4 6 ,};

N>



i n t  seedLength_m in_k4[13] [66] = {12,12,12,12,12,12,12,12,12,12,12,12,12,12,12.12,12,12,12,12,12,12,12,12,12,12,12,12,12.12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12.12,12,12,12,12,12,12,12,12,12,12,12.12.12,12,12,12,12,
1 3 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 2 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 3 .1 3 .1 3 ,
1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 5 .1 5 .1 5 .1 5 .1 5 .1 4 .1 4 .1 4 ,
1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 5 .1 5 .1 5 .1 5 ,
1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 ,
1 7 .1 7 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 6 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 , 
1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 8 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,2 8 ,2 8 ,2 8 ,2 8 ,2 « ,2 « ,2 8 ,2 8 ,2 8 ,2 8 ,2 « ,2 8 ,2 8 ,2 8 ,2 8 ,2 6 ,2 8 ,2 « ,2 8 ,2 8 ,2 9 ,2 9 ,2 8 ,2 8 ,2 8 ,2 8 ,2 « .2 9 ,2 8 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 ,1 8 ,1 8 ,1 8 ,1 8 ,
1 9 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 9 ,2 8 ,2 9 ,2 9 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 9 ,2 8 ,2 8 ,2 9 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,
21 , 2 1 , 21 , 21 , 21 , 2 2 , 2 2 , 2 2 , 22 , 2 2 , 22 , 2 2 , 22 , 2 2 ,2 2 , 2 2 , 22 . 2 2 , 22 , 2 2 , 2 2 , 2 2 , 2 2 , 22 , 2 2 , 2 2 ,2 2 , 2 2 , 2 2 , 22 , 2 2 ,2 1 , 2 1 , 21 , 21 , 21 , 21 , 21 , 2 1 , 21 , 2 1 , 2 1 , 21 , 2 1 , 2 1 , 2 1 , 21 , 2 1 , 2 1 , 2 1 ,21 , 21 , 2 1 , 2 1 , 2 1 , 21 , 21 , 2 1 , 2 1 , 21 , 2 1 , 2 1 , 22 , 2 2 , 22 , 2 2 ,
2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 ,
2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 ,
2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 4 .2 4 .2 4 ,
2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 ,

};
i n t  seedLength_ma*_k4[13] [66] = {
2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 1 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .2 8 .2 8 .2 9 .2 8 ,
2 5 .2 5 .2 4 .2 4 .2 4 .2 4 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 8 .2 6 .2 8 .2 8 .2 8 .2 8 .2 7 .2 7 .2 7 .2 7 .2 6 .2 6 .2 6 .2 5 .2 5 .2 4 .2 4 .2 3 ,
2 6 .2 6 .2 6 .2 6 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 6 .2 6 .2 6 .2 6 .2 6 .2 6 .2 7 .2 7 .2 7 .2 7 .2 7 .2 8 .2 8 .2 8 .2 8 .2 9 .2 9 .2 9 .2 9 .2 9 .3 8 .3 8 .3 9 .3 8 .3 8 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 8 .3 8 .3 8 .3 8 .2 9 .2 9 .2 8 .2 8 .2 7 .2 7 .2 6 .2 5 .2 5 .2 4 ,
2 6 .2 6 .2 7 .2 7 .2 7 .2 6 .2 8 .2 8 .2 8 .2 9 .2 9 .2 9 .2 9 .3 8 .3 9 .3 8 .3 8 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 3 .3 3 .3 3 .3 3 .3 3 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 1 .3 1 .3 1 .3 1 .3 8 .3 8 .3 8 .2 9 .2 9 .2 9 .2 8 .2 8 .2 7 .2 7 .2 6 .2 6 .2 5 .2 5 ,
2 6 .2 7 .2 7 .2 8 .2 9 .2 9 .3 8 .3 8 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 3 .3 3 .3 3 .3 3 .3 3 .3 3 .3 2 .3 2 .3 2 .3 2 .3 2 .3 1 .3 1 .3 1 .3 1 .3 1 .3 8 .3 8 .3 8 .3 8 .2 9 .2 9 .2 9 .2 9 .2 9 .2 8 .2 8 .2 8 .2 8 ,
2 6 ,2 7 ,2 7 ,2 8 ,2 9 ,2 9 ,3 8 ,3 8 ,3 1 ,3 1 ,3 2 ,3 2 ,3 2 ,3 3 ,3 3 ,3 3 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 4 ,3 4 ,3 4 ,3 4 ,3 4 ,
2 6 .2 7 .2 7 .2 8 .2 9 .2 9 .3 9 .3 8 .3 1 .3 1 .3 1 .3 2 .3 2 .3 2 .3 3 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 9 .3 9 .4 8 .4 8 ,
2 7 .2 8 .2 8 .2 9 .3 8 .3 8 .3 1 .3 1 .3 2 .3 2 .3 2 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 5 .3 5 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .3 9 .4 8 .4 8 .4 8 .4 1 .4 1 ,
2 8 .2 9 .2 9 .3 8 .3 1 .3 1 .3 2 .3 3 .3 3 .3 4 .3 4 .3 4 .3 5 .3 5 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .4 8 .4 8 .4 8 .4 8 ,
2 9 .2 9 .3 8 .3 1 .3 2 .3 2 .3 3 .3 3 .3 4 .3 5 .3 5 .3 6 .3 6 .3 6 .3 7 .3 7 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .4 8 .4 8 .4 8 .4 8 .4 8 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 2 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 8 .4 8 .4 8 ,
2 9 .3 8 .3 8 .3 1 .3 2 .3 3 .3 3 .3 4 .3 4 .3 5 .3 6 .3 6 .3 7 .3 7 .3 8 .3 8 .3 8 .3 9 .3 9 .4 8 .4 8 .4 8 .4 1 .4 1 .4 1 .4 2 .4 2 .4 2 .4 2 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 2 .4 2 .4 2 ,
2 9 .3 8 .3 1 .3 1 .3 2 .3 3 .3 3 .3 4 .3 5 .3 5 .3 6 .3 6 .3 7 .3 7 .3 8 .3 8 .3 9 .3 9 .4 8 .4 8 .4 1 .4 1 .4 1 .4 2 .4 2 .4 3 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 4 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 4 .4 4 .4 4 ,
3 8 .3 1 .3 1 .3 2 .3 3 .3 3 .3 4 .3 5 .3 5 .3 6 .3 6 .3 7 .3 8 .3 8 .3 9 .3 9 .3 9 .4 8 .4 8 .4 1 .4 1 .4 2 .4 2 .4 2 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 4 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 6 .4 5 .4 5 .4 5 .4 5 ,

};

u>



i n t  seedLength_jninJcl8[13] [66] = {12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12,12.12.12,12.12,12,12,12,12,12,12,12,12,12,12,12,12,12,12.12.12,12,12,12,12.12,12,12,12.12,12,12,12,12,12,
1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 .1 3 ,
1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 .1 4 ,
1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 .1 5 ,
1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 .1 6 ,
1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 .1 7 ,
1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 .1 8 ,
1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .2 9 .2 9 .2 8 .2 8 .2 9 .2 9 .2 6 .2 9 .2 9 .2 8 .2 6 .2 6 .2 8 .2 8 .2 9 .2 6 .2 9 .2 6 .2 6 .2 8 .2 6 .2 8 .2 8 .2 8 .2 9 .2 9 .2 0 .2 9 .2 8 .2 6 .2 6 .2 9 .2 9 .2 6 .2 6 .2 8 .2 6 .2 6 .2 9 .2 6 .2 9 .2 9 .2 9 .2 8 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 .1 9 ,
2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,
21 , 2 1 , 2 1 , 2 1 , 2 1 , 21 , 2 1 , 21 , 2 1 ,2 1 , 21 , 2 1 , 2 1 , 21 , 2 1 , 2 1 , 2 1 , 2 1 , 21 , 2 1 , 2 1 , 21 , 21 , 21 , 2 1 . 21 , 21 , 2 1 , 2 1 , 21 , 21 , 2 1 , 2 1 , 2 1 , 2 1 , 21 , 21 , 2 1 . 21 , 21 , 2 1 , 21 , 21 , 22 , 2 2 , 2 2 , 22 , 2 2 , 2 2 , 22 , 2 2 , 2 2 , 2 2 , 2 2 , 22 , 2 2 , 22 , 22 , 22 , 2 2 , 22 , 2 2 , 22 , 22 , 22 , 2 1 ,
2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 2 .2 3 .2 3 .2 3 .2 3 .2 3 ,
2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 3 .2 4 .2 4 .2 4 .2 4 ,
2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 5 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 .2 4 ,

>;

i n t  seedLength_max_Jcl9[13] [66] = {
2 4 .2 4 ,2 4 ,2 4 ,2 3 ,2 3 .2 3 .2 3 .2 3 .2 3 .2 3 ,2 2 .2 2 ,2 2 ,2 2 ,2 2 ,2 2 .2 2 ,2 2 ,2 2 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 .2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 9 ,2 9 ,2 6 .2 9 ,2 9 ,2 6 ,2 9 ,2 9 ,2 6 ,2 8 ,2 9 ,2 6 ,2 9 ,2 9 .2 9 .2 9 ,2 9 .2 9 ,2 8 ,2 9 ,2 9 .2 9 ,2 9 ,2 9 ,2 9 ,2 6 .2 6 ,2 9 ,2 9 ,2 9 ,2 9 .2 6 .2 9 ,2 9 ,
2 5 ,2 5 ,2 6 ,2 6 ,2 7 ,2 7 ,2 7 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 .2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 ,2 8 .2 7 ,2 7 ,2 7 ,2 6 ,2 6 ,2 6 ,2 5 ,2 5 ,2 5 ,2 4 ,2 4 ,2 4 ,2 3 ,2 3 ,2 2 ,2 2 ,2 2 ,2 1 ,2 1 ,2 1 ,2 8 .2 8 ,2 8 ,1 9 ,1 9 ,1 9 ,1 9 ,1 9 .1 8 ,1 8 .1 8 ,1 8 ,1 8 ,1 8 ,1 8 .1 9 ,1 9 ,1 9 ,1 9 ,2 8 ,2 8 .2 8 ,2 1 ,2 1 .2 2 .
2 5 ,2 6 ,2 7 ,2 7 ,2 8 ,2 8 ,2 9 ,2 9 ,3 8 ,3 8 ,3 8 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 8 .3 8 ,3 8 ,3 8 ,2 9 ,2 9 ,2 9 ,2 8 .2 8 ,2 8 ,2 7 ,2 7 ,2 7 ,2 6 ,2 6 ,2 5 ,2 5 ,2 5 ,2 4 ,2 4 ,2 4 ,2 3 ,2 3 ,2 3 ,2 2 ,2 2 ,2 2 .2 2 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 1 ,2 2 ,2 2 ,2 2 ,2 3 ,2 3 .2 3 .2 4 ,
2 5 ,2 6 ,2 7 ,2 7 ,2 8 ,2 9 ,2 9 ,2 9 ,3 8 ,3 8 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 1 ,3 1 ,3 1 ,3 1 ,3 1 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,2 9 ,2 9 ,2 9 .2 9 ,2 8 ,2 8 .2 8 ,2 8 ,2 7 .2 7 ,2 7 ,2 7 .2 7 .2 6 ,2 6 .2 6 ,2 6 ,2 6 ,2 6 ,2 6 ,2 5 .2 5 ,2 5 ,2 5 ,2 5 .2 5 .2 6 ,2 6 .2 6 ,2 6 ,
2 6 ,2 7 ,2 7 ,2 8 ,2 8 ,2 9 ,2 9 ,3 8 ,3 8 ,3 8 ,3 1 ,3 1 ,3 1 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 3 ,3 3 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 .3 3 ,3 3 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 ,3 2 ,3 2 ,3 2 .3 2 ,3 2 ,3 2 ,3 2 .3 1 ,3 1 .3 1 ,3 1 ,3 1 ,3 1 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,2 9 ,2 9 ,2 9 .2 9 ,2 9 ,2 9 ,2 9 ,2 8 ,2 8 ,2 8 ,2 8 ,
2 7 .2 7 .2 8 .2 9 .2 9 .3 8 .3 8 .3 1 .3 1 .3 1 .3 2 .3 2 .3 3 .3 3 .3 3 .3 3 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 5 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 4 .3 3 .3 3 .3 3 .3 3 .3 3 .3 3 .3 2 .3 2 .3 2 .3 2 .3 2 .3 2 .3 1 .3 1 .3 1 .3 1 .3 1 .3 1 .3 8 .3 8 .3 8 .3 8 .3 8 , 
2 7 ,2 8 ,2 9 ,2 9 ,3 8 ,3 1 ,3 1 ,3 2 ,3 2 ,3 3 ,3 3 ,3 4 ,3 4 ,3 4 ,3 5 .3 5 ,3 5 ,3 5 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 .3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 4 ,3 4 ,3 4 .3 4 ,3 4 ,3 4 ,3 3 .3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 3 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,3 2 ,
2 7 ,2 8 ,2 9 ,2 9 ,3 8 ,3 1 ,3 2 ,3 2 ,3 3 ,3 3 ,3 4 ,3 4 ,3 5 ,3 5 ,3 5 ,3 6 ,3 6 ,3 6 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 8 ,3 8 ,3 8 .3 8 ,3 8 ,3 8 ,3 8 .3 8 .3 8 ,3 8 ,3 8 ,3 8 .3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 .3 6 ,3 6 ,3 6 ,3 6 ,3 6 .3 6 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 5 ,3 4 ,3 4 ,3 4 ,3 4 .3 4 ,3 4 .3 4 ,3 4 ,3 4 ,3 4 , 
2 7 ,2 8 ,2 9 ,2 9 ,3 8 .3 1 ,3 1 ,3 2 ,3 3 ,3 3 ,3 4 ,3 4 ,3 5 ,3 5 ,3 6 ,3 6 ,3 6 ,3 7 ,3 7 ,3 7 ,3 8 ,3 8 ,3 8 ,3 8 ,3 8 ,3 9 ,3 9 ,3 9 .3 9 ,3 9 ,3 9 ,3 9 ,3 9 ,3 9 .3 9 .3 9 ,3 9 .3 9 ,3 9 ,3 9 ,3 9 ,3 9 ,3 9 ,3 9 .3 9 ,3 9 .3 8 ,3 8 ,3 8 ,3 8 .3 8 ,3 8 .3 8 ,3 8 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 7 ,3 6 ,3 6 ,3 6 ,3 6 ,3 6 .
2 8 .2 9 .2 9 .3 8 .3 8 .3 1 .3 2 .3 2 .3 3 .3 3 .3 4 .3 4 .3 5 .3 5 .3 6 .3 6 .3 6 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .3 9 .3 9 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 1 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .4 8 .3 9 .3 9 .3 9 .3 9 .3 9 .3 9 .3 8 , 
2 9 ,3 8 ,3 8 ,3 1 ,3 1 ,3 2 ,3 2 ,3 3 ,3 3 ,3 4 ,3 4 ,3 4 ,3 5 ,3 5 ,3 6 ,3 6 ,3 6 ,3 7 ,3 7 ,3 7 ,3 8 .3 8 ,3 8 ,3 9 ,3 9 ,3 9 ,4 8 ,4 8 ,4 8 ,4 8 ,4 8 ,4 1 ,4 1 ,4 1 ,4 1 ,4 1 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 2 ,4 1 ,4 1 .4 1 ,4 1 ,
3 8 .3 8 .3 1 .3 1 .3 2 .3 2 .3 2 .3 3 .3 3 .3 4 .3 4 .3 5 .3 5 .3 5 .3 6 .3 6 .3 7 .3 7 .3 7 .3 8 .3 8 .3 8 .3 9 .3 9 .3 9 .4 8 .4 8 .4 8 .4 1 .4 1 .4 1 .4 1 .4 2 .4 2 .4 2 .4 2 .4 2 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 3 .4 3 .4 3 .4 3 ,
2 9 .3 8 .3 8 .3 1 .3 1 .3 2 .3 3 .3 3 .3 4 .3 4 .3 5 .3 5 .3 6 .3 6 .3 7 .3 7 .3 7 .3 8 .3 8 .3 9 .3 9 .3 9 .4 8 .4 8 .4 8 .4 1 .4 1 .4 1 .4 2 .4 2 .4 2 .4 2 .4 3 .4 3 .4 3 .4 3 .4 3 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 4 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 5 .4 4 .4 4 .4 4 .4 4 .4 4 ,
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Ul4̂


	A FAST ALGORITHM FOR COMPUTING HIGHLY SENSITIVE MULTIPLE SPACED SEEDS
	Recommended Citation

	tmp.1651527305.pdf.VMUap

