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Abstract

This thesis proposes three contributing manuscripts related to patient flow management, server
decision-making, and ventilation time in the intensive care and step-down units system.

First, a Markov decision process (MDP) model with a Monte Carlo simulation was per-
formed to compare two patient flow policies: prioritizing premature step-down and prioritizing
rejection of patients when the intensive care unit is congested. The optimal decisions were ob-
tained under the two strategies. The simulation results based on these optimal decisions show
that a premature step-down strategy contributes to higher congestion downstream. Counter-
intuitively, premature step-down should be discouraged, and patient rejection or divergence
actions should be further explored as a viable alternative for congested intensive care units
(ICUs).

Secondly, an investigation of the length of stay (LOS) competition between the intensive
care unit (ICU) and the step-down unit (SDU), two servers in tandem without a buffer between
them was proposed using queuing games. Analysis of the competition was done under four
different scenarios: (i) both servers cooperate; (ii) the servers do not cooperate and make de-
cisions simultaneously; (iii) the servers do not cooperate but the first server, the ICU is the
leader; (iv) the servers do not cooperate, the second server the SDU is the leader. Finally, a
numerical analysis was performed. The results show that the length of stay decisions of each
server depends critically on the payoff function’s form and the exogenous demand. Secondly,
with a linear payoff function, the SDU is only beneficial to the system if the unit cost is greater
than its unit reward at the ICU. Perhaps most importantly, the critical care pathway performs
better under coordination and or leadership at the ICU level.

Finally, first-day ventilated patients’ ventilation time was analyzed using survival analysis.
The probabilistic behaviour of the ventilation time duration was analyzed and the predictors
of the ventilation time duration were determined based on available first-day covariates. Data
were obtained from the Critical Care Information System (CCIS) about patients admitted to
the ICUs in Ontario between July 2015 and December 2016. The log-logistic AFT model was
found to be the best to relate the association between first-day covariates and the ventilation
time.

Keywords: ICU/SDU, healthcare, patient flow, congestion, ventilation, Markov decision
process, queuing games, survival analysis.
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Lay Summary

In this thesis, I used statistics to address certain ICU-SDU server decision-making and
ventilation time in the intensive care and step-down unit system.

First, when the critical care unit was overcrowded, a Markov decision process (MDP)
model with Monte Carlo simulation was utilised to evaluate two patient flow strategies: pri-
oritising premature step-down and prioritising patient rejection. Under the two techniques, the
best decisions were made. The simulation findings based on these optimum judgments reveal
that a premature step-down method leads to increased downstream congestion. Premature step-
down should be avoided, and patient rejection or divergence measures should be investigated
further as a possible solution for overcrowded intensive care units (ICUs).

Second, utilising queuing games, an analysis of the length of stay (LOS) rivalry between
the intensive care unit (ICU) and the step-down unit (SDU) was proposed. Four scenarios
were used to analyse the competition: I both servers collaborate; (ii) both servers cooperate
but the first server, the ICU, is the leader; (iv) both servers cooperate but the second server,
the SDU, is the leader. After then, there was a numerical analysis. The findings reveal that
the payout function’s shape and exogenous demand have a significant impact on each server’s
length-of-stay decisions. The SDU, on the other hand, has a linear payout function.

Finally, survival analysis was used to look at the ventilation time of first-day ventilated
patients. Based on available first-day factors, the probabilistic behaviour of ventilation time
duration was studied, and predictors of ventilation time duration were identified. Patients hos-
pitalised to ICUs in Ontario between July 2015 and December 2016 were studied using data
from the Critical Care Information System (CCIS). The best model for relating the connec-
tion between first-day variables and ventilation time was determined to be the log-logistic AFT
model.
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Chapter 1

Introduction

1.1 Introduction and Motivation

Hospital units that face high demand and pressure include the intensive care unit (ICU) and
the step-down unit (SDU). The ICU is an integral part of the modern healthcare system with
many variant designations (e.g., Intensive Therapy Unit and Critical Care Unit). It is a special
unit of hospitals that provides specialized treatment for critically ill patients. ICUs cater to pa-
tients with severe or life-threatening illnesses and injuries, which require constant care, close
supervision from life support equipment and medication to ensure normal bodily functions.
Admission in the ICU can either be a planned admission as part of recovery after surgery or an
emergency measure if there are complications during surgery or an emergency after an acci-
dent. The time it takes to recover varies from person to person and depends on various medical
and clinical factors. The ICU beds and nurses are the most expensive ones in a hospital regard-
ing quality, training, and specialization. Therefore, there is a limited resource [65, 170, 142].
So an unnecessary use through overstays of this resource is detrimental to the hospital’s effec-
tiveness and efficiency especially with the high demand experienced in the ICU. Unfortunately,
the ICU overstay phenomenon has not been vastly explored. The Canadian Institute for Health
Information (CIHI) in 2016 found a noticeable increase in lack of capacity in the ICU due
to increasing demand [74]. Commonly, the ICU may be over its capacity. At this moment,
the service quality indicators, such as the wait times, length-of-stay, condition to discharge to
the SDU, and the quality of care are of growing concern to the management and stakeholders
patients and their families. During the COVID-19 pandemic, the ICU’s congestion became
more evident with more than 9000 Ontarians admitted to (ICUs) with COVID-19 related criti-
cal illness and the number of patients on ventilators was over 180% of pre-pandemic historical
averages on the peak day ([104]).

Health care units in general and ICU in particular are long known for their congestion
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2 Chapter 1. Introduction

problems [50, 7, 8]. Moreover, factors such as advancement in health care technologies and
an aging population have increased the demand, the complexity of service requirements, and
contributed to the accentuation of the problem [14, 171, 13, 132]. In the ICU, congestion and
delay worsen patients’ severity, increase morbidity and mortality, and so there is a constant
need for improved patient flow management [100]. Decision-making in the healthcare system
is of primary importance for patients’ well-being and safety. Fast access to high quality health
care is one of the recurrent indicators of quality of life globally [44]. Many services are per-
formed by several consecutive queues in tandem, and due to the slow process at one end, the
whole system becomes tense.

ICU beds are the most expensive service at a hospital and require well-trained and spe-
cialized nurses and physicians [65, 170, 142]. As patients’ acuity lessens in the ICU, they no
longer require an ICU bed and high nurse monitoring (one nurse per patient). One solution to
reduce ICU congestion was to create the SDU as an intermediary level of care to alleviate the
ICU burden and cost. But instead of a reduction in congestion, with time, the ICU/SDU sys-
tem became as congested as before. In addition, since its introduction, there has been relatively
little research on its benefits and, medically, a lot of debate about its usefulness [8].

The SDU also known as High Dependency Care Unit or Transitional Care Unit or Pro-
gressive Care Unit or Level 2 Care Unit, is an intermediate care unit between the ICU and the
general ward. The SDU is designed to care for critically ill patients recovering in the ICU yet
require higher and continuous monitoring than the patients in the ward. Gotsman and Schrire
[61] introduced the concept of SDU in 1968. They proposed a patient-care area with special-
ized monitoring and nursing care for cardiac patients who no longer require full intensive care
but are not ready for discharge to a regular ward [61]. The idea was that patients who can
breathe unaided by ventilation equipment for example, would be transferred to an SDU to con-
tinue their recovery. Prin and Wunsch [129] gave an extensive review and utility of the SDU
units in the hospital. The creation of the SDU was to improve the efficiency of patient flow and
reduce cost. But it has been observed and reported without ample support by hospital manage-
ments that, in the ICU/SDU system, readmission, shortage of bed capacity, limited health care
resources and the downstream congestion in the case of tandem queue services contribute to
overstay in the ICU [100, 12]. Overstaying the system when the system is in high demand is
critically damaging and has a crucially high repercussion on the arriving patients that demands
the use of the ICU. The average ICU occupancy of teaching and large hospitals in Canada was
estimated to be 90% in 2009 [74] and is increasing. Such a highly utilized unit could benefit
from the smallest amelioration of its management. Due to the COVID-19, currently, the ICU
occupancy is above 100% in Ontario [45]. Studies have shown that bottleneck congestion and
crowded hospitals cause higher patient mortality rates and physician error in many hospital
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units [14, 83, 33].

Overstaying the system when the system is in high demand is critically damaging and
has a crucially high repercussion on the arriving patients demanding ICU use. Overstay in a
hospital unit is defined as the stay in the unit that exceeds the discharged time. Overstay in
the emergency department (ED) is referred to as “boarding” and is a well-researched situation
[32, 108]. Many researchers have identified downstream congestion as the main source of
overstay. This assertion has not been proved empirically by available data from the SDU.
We postulate that other factors such as patient characteristics or external characteristics might
influence their overstay. In the ICU, decisions are often made in the face of uncertain and
incomplete information, pressure from managers, patients, their families, time, and capacity
constraints. These are conditioned by a shortage of bed capacity, limited health care resources,
an additional burden to the system due to staff’s stress.

In the literature, guidelines addressing decisions on patient flow in a congested ICU/SDU
system are varied and subjective [117, 116, 85, 151, 76]. In practice, hospitals have resorted
to premature discharge, which is done by moving current inpatient from ICU to SDU to admit
an arriving patient. Secondly, who should make patient flow decisions, the ICU or the SDU?
Should the decision be centralized or decentralized? Such questions have yet to be answered
in the literature. Consequently, in many hospitals where patients are to be served by different
units, overstay and off-service have become a recurrent problem for the management. And
the well-being of patients in many health care systems is at risk. Off services occur when the
hospital admits patients to units that belong to different services because the required units are
congested. Off service is part of the practices that hinder patients from receiving the proper
care.

In the ICU, life and death decisions are made or received daily. These decisions are often
made in the face of uncertain and incomplete information, pressure from managers, patients,
their families, time, and capacity constraints. The problems associated with the ICU/SDU
system are of two aspects; resource and patient management and service performance. ICU
resources are scarce. First, the ICU capacity is limited; the ICU deals with a shortage of beds
and nurses. The fragility of patients and the severity of the illness in the ICU create the need
for a specially trained nurse for a 1:1 or at most a 1:2 nurse to patient ratio. Thus, the provision
of more ICU beds would necessitate the employment of more specially trained clinicians and
nurses.

Due to the high operational cost, increasing ICU demand, and the congestion of the other
hospital units, the problem of admission and discharge (i.e., patients flow in general) guide-
lines surfaced. Most guidelines in the literature addressing decisions on patient flow in the
ICUs have had significant limitations, and this literature does not yet provide a consistent view
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of a mathematically generated model to use [117, 116, 151, 76, 85]. ICUs flow is a complex
and intricate process that depends on multiple characteristics. For the most ICUs, the patients’
flow decision is taken by the intensive care specialist. These decisions are based on the health
condition (severity and status), the therapeutic proneness, the physiological state, and the pa-
tients’ wishes [117]. But for a scarce, costly, sensitive, and highly demanded service like the
ICU, the flow decisions must involve a trade-off balancing the importance of an individual
against the overall benefit of the system to society. The incomplete data available and the con-
sistent answer to the question of whether patients would obtain better outcomes if they had
been admitted earlier into the ICU is of interest. An intuitive solution to this problem in a so-
cial system would be providing more resources in terms of beds and personnel. However, the
possibility of offering more critical care beds and employing more nursing staff is challenging
and must be weighed up against the relative benefit. VanBerkel and Blake [165] found that
increasing capacity alone is not enough to stabilize patient flows, but faster services are also
necessary. What about increasing capacity without the complementary provision of qualified
staff needed? We know that congested environments trigger negative responses in the patient
[47, 5]. Problems involving patient flow through discharge and admission management are
increasing due to the increasing demands resulting from a growing and aging population [63]
or unexpected circumstances such as the COVID-19 pandemic [147]. In addition to the ques-
tion of the role of the SDU in a congested environment [129], the question of its geographic
position and leadership between the two units also emerged. Should the SDU be under the
leadership of the ICU management, that is, the two units having a central administration or not.
The literature does not provide information on this. To open the discussion, we will provide a
competition of a patient length-of-stay between the two units and study the difference between
the centralized and decentralized settings to optimize critical indicators.

Several research papers have developed statistical and mathematical models that showed
and reviewed the clinical, medical, financial, and economic importance and impact of the SDU
[129, 94, 101, 50, 35]. However, the problems tackled by these articles are discussions about
planning within the hospital. Secondly, these studies are limited to forecasting the likelihood
of mortality, rejection, capacity for the ICU. The last bed problem in the ICU/SDU system
due to the downstream congestion in the SDU and interdependence of ICU, SDU, and other
hospital units are often overlooked. Thus, this thesis investigates and compares two patient
flow decision strategies in a congested environment. This adds options to decision-makers to
consider in case the demand rate to the ICU is increasing and there is a capacity shortage.
For example, during the COVID pandemic, the ICU capacities are constrained, yet many more
people are requesting the service of the ICU.

A defining characteristic of intensive care is life support and dedicated nursing staff. Per-
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haps the most essential organ support machine in the ICU is the invasive mechanical ventilator.
Invasive ventilation is used for patients without any strength and ability to breathe indepen-
dently. The ventilator takes over the breathing and enables the body to receive oxygen and
recover. The duration of these supportive therapies is clinically relevant to outcomes, espe-
cially during the Covid-19 pandemic. From the statistical perspective, these quantities are
challenging to estimate due to episodes being time-dependent and potentially multiple and
being influenced by the competing, terminal events of discharge alive and death.

In this thesis, we present three research projects. In the first, a simulation of the Markov
decision model to investigate decisions with or without premature ICU step-downs. Decisions
need to take place in a sequence and thus need to be planned ahead. The benefit or drawback of
an action may not be immediately evident to a myopic decision maker due to the randomness
of the future state of the system; nonetheless, may help achieve a higher future payoff (or a
lower future cost). Therefore, MDPs are a principled methodology for this kind of problem
[89]. The second project is a queuing game model between two servers (ICU and SDU) in
tandem. The third project focus on applying survival analysis methods to characterize invasive
ventilators’ use time at admission in ICUs, considering various clinical covariates.

1.2 Patients Flow through the ICU/ SDU system

The hospital studied uses the patient/nurse ratio as a proxy for patient readiness to be moved
to a lower level of care. As part of their routine, every patient is scored daily on a 56-point
scale known as “Nine equivalents of nursing manpower use score” or “NEMS”. The NEMS
is closely related to patient health because as the patient’s health improves, less nursing at-
tention is needed, resulting in a lower NEMS. Empirically, a score below ten is considered to
be a recovering patient (RP); scores between 11–25 are low acuity patients (LAP), and from
those more than 25 as high acuity patients (HAP). HAPs arrive at the ICU individually from
different sources. The emergency department (ED), a unit with varying patient severity, pro-
vides the highest proportion of ICU patients. From our data sample, about 38% of the patients
come from the ED, 22% from the ward, 21% from the Operating room, and 20% from other
places such as other hospitals or the SDU. 99.1% of the admission into the ICU are unplanned,
and patients require immediate medical care. With the priority triage policy used in many
hospitals, they have little, or no control over admitting HAP arriving through the emergency
route. Daily arrivals are essentially equally distributed, with Thursdays having the maximal
admission. Hourly admission trends are also examined. Most admissions of patients fall in the
afternoon or evening, between 4 pm and 8 pm. Once an available ICU bed is assigned, “service
time” commences, during which patients are stabilized and receive active management of their



6 Chapter 1. Introduction

critical illness. Service terminates if a patient dies, or survives and is deemed clinically ready
for a lower level of care and staff request transfer from the ICU to the downstream unit, known
as a “booking.” Physicians do not preemptively request transfer before the patient is clinically
ready per hospital policy. While waiting for transfer, patients experience ICU “boarding” when
they physically remain in the ICU bed but no longer receive high-intensity services. If a patient
clinically deteriorates and requires re-initiation of critical care-level interventions, service time
commences again until the physician requests a new booking time in the future; we only con-
sider these final booking times in our analysis. Patients exit the ICU upon physical transfer to
the SDU or ward, where they complete their stay until hospital discharge or bounce back into
the ICU if they require critical care services again before discharge.

1.3 Thesis Organization

This thesis presents three projects modelling the decision-making in the ICU/SDU system un-
der congestion and the time patients spend on invasive mechanical ventilation. It consists of
six chapters with content summarized as follows.

Chapter 1 introduces the research background and the system considered. In addition,
motivations, objectives, and the outline of the thesis are described.

Chapter 2 provides an overview of the mathematical and statistical background of the
projects presented.

In Chapter 3, Project 1 entitled ‘Patient Flow in Congested Intensive Care Unit /Step-down
Unit system: To Premature Step-down or not?” is developed. A Markov decision process
(MDP) model is constructed to model the flow process in the ICU and SDU systems.

In Chapter 4, Project 2 entitled “Intensive Care Unit / Step-Down Unit Queuing Game
with Service Time Decisions” constructs a queuing game between the ICU and SDU. The
equilibrium characteristics of the system are determined with each of the units seeking its
reward. Given that there are numerous questions about the configuration of the ICU/SDU,
whether it should be under a single leadership or different leaderships, we consider leadership
in decision making on the length-of-stay (LOS) between the ICU and SDU.

Chapter 5 presents Project 3 entitled “Invasive Mechanical Ventilation Duration Prediction
using Survival Analysis” where a survival analysis of the ventilation time of first-day ven-
tilated patients is performed to characterize the ventilation time, determine predictors of the
ventilation time, and predict ventilation time of each patient.

Finally, in Chapter 6, I concluded the thesis and itemized its main contribution.



Chapter 2

Background

In Section 2.1, a brief overview of optimization methods is presented. Section 2.2 gives an
overview of the Markov decision process modelling. In Section 2.3, game theory is discussed.
Section 2.4 presents some basic queuing theory results, and Section 2.6 introduces Survival
models.

2.1 Optimization

In order to support human decision-making performance, statistical, mathematical, and com-
putational methods are needed. Operational research (OR) in general, plays an important role
in finding optimal solutions to problems in many parts of our lives. Optimization methods have
been the backbone of OR. All statistical criteria in one way or the other, are, in its essence a
well-formulated optimization problem.

Optimization is also referred to as mathematical optimization or mathematical program-
ming [102]. Merriam-Webster dictionary (https://www.merriam-webster.com/dictionary/optimization)
defines optimization as a process or methodology of making something as fully perfect, func-
tional, or effective as possible according to previously set objectives. Mathematical optimiza-
tion seeks to select the element to obtain the maximum or the minimum of some function rel-
ative to some set. For complex allocation and decision problems, optimization methods have
been the underlying analysis principle since it offers a level of conciseness and clear operational
simplicity indispensable. Optimization problems can be classified to be either constrained or
unconstrained optimization. For example, equality constraints problems can be converted into
unconstrained problems using the method of Lagrange multipliers. Constrained optimization
models can be classified into linear and nonlinear programming models. Linear programming
is the simplest. The general formulation of a constraint optimization problem can be stated as
follows [102]:
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min
x

f (x)

subject to

hi(x) = 0, for each i = 1, 2, . . . ,m

g j(x) ≤ 0, for each j = 1, 2, . . . , p

x ∈ S

(2.1)

where x = (x1, x2, . . . , xn) is a n-dimensional vector of unknowns and f , hi, i = 1, 2, . . . ,m
and g j, j = 1, 2, . . . , p, are real-valued functions of the decision variables x1, x2, ..., xn. The set
S is a subset of the n-dimensional space of restriction on the decision variables. The function
f (x) is the objective function that needs to be optimized. h j(x) = 0 is the m-equality con-
straints and g j(x) is the p-inequalities constraints. If we maximize the objective function, the
inequality constraints will change from less or equal to greater or equal. Generally, additional
assumptions are introduced based on the real-life situation problems we are trying to solve. The
unconstrained optimization has no other conditions attached to it. It is generally formulated as:

min
x

or max
x

f (x) (2.2)

There are other ways to classify optimization problems. For example, optimization prob-
lems may be classified based on the structure of the problem (i.e. deterministic or stochastic),
the number of the objective functions (single or multiple objective functions), type of decision
variable (integer, continuous or mixed), the constraint structure (linear, non-linear, other), and
based on the optimization structure (convex, non-convex or quasi-convex). Figure 2.1 shows
the classification of optimization models.

2.1.1 Linear Optimization Problems

Linear optimization problems are problems in which the objective function and the constraints
are all linear functions of the decision variables [102, 22]. In a matrix-vector notation, it is
formulated as 2.3:
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Figure 2.1: Classification of optimization problems (formulated by the author).
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min
x

cT x

subject to

Ax = r

Bx ≤ 0 and x ≥ h

(2.3)

where x is a n-dimensional column vector, cT is a n-dimensional row vector, A is a m × n

matrix, r is a m-dimensional column vector, B is a p × n matrix, and h is an n-dimensional
column vector.

Linear optimization problems with continuous decision variables are termed linear pro-
gramming (LP). Linear programming is the most used method in formulating the most natu-
rally occurring problems. For example, Luenberger and Ye [102] and Boyd et al. [22] observed
that many constraints and objective functions that arise in practice are linear. Moreover, the
formulation is done with a modest effort since the mathematics is tidier, the model is precise
and concise, the theory is richer, and the computation simpler compared to the non-linear ones
[102].

The simplex method is usually used for manual computations. The simplex method in min-
imization is to start with a basic feasible solution of the constraint set of a problem and proceed
to another, in such a way as to continually decrease the value of the objective function until
a minimum is reached [102]. There are elegant, effective and efficient algorithms available in
many languages to compute and obtain the solution for more extensive and complex problems
[102, 22].

2.1.2 Non-linear Optimization problems

In linear optimization problems, we have seen that the objective function and all the constraints
are linear functions of the decision variables. However, at other times, the objective functions
and constraints may be non-linear. Those cases correspond to non-linear optimization prob-
lems, and intrinsically, these problems are harder to solve [23, 22, 102]. The form of the
problem remains the same as in Equation 2.1, but the type of constraints and objective function
are non-linear.

Among the types of non-linear functions, we can list those with polynomial objective func-
tions, and exponential objective functions with linear constraints. An example of a polynomial
objective function is the quadratic objective function. Solving non-linear optimization models
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is challenging. The type of non-linearity determines the sufficiency and necessity for a solution.
Convex objective functions tend to be the easiest to solve. Convex or concave objective func-
tion with convex or concave constraint set problem is solved with methods known as convex
optimization. For quadratic objective function and linear constraints, quadratic optimization
methods are used. A non-linear problem that satisfies the Karush–Kuhn–Tucker (KKT) con-
ditions, has an optimal solution [23, 22, 138]. And convexity is a sufficient condition. There
have been two ways to solve optimization problems: classical and computational. Classical
methods use analytical means that solve differentiable functions. This method is used when
the underlying conditions are fulfilled. Computational methods use computer algorithms that
are designed for high-dimensional search. The following example taken from [23] illustrates
how nonlinear programs can arise in practice.

Portfolio Selection Example

An investor has $5000 and two potential investments. Let x j for j = 1 and j = 2 denote
his allocation to investment j in thousands of dollars. From historical data, investments 1
and 2 have an expected annual return of 20 and 16 percent, respectively. Also, the total risk
involved with investments 1 and 2, as measured by the variance of total return, is given by
2x2

1 + x2
2 + (x1 + x2)2, so that risk increases with total investment and with the amount of each

investment. The investor would like to maximize his expected return and at the same time
minimize his risk.

max
x

f (x) =20x1 + 16x2 − θ(2x2
1 + x2

2 + (x1 + x2)2)

s. t. g1(x) = x1 + x2 ≤ 5,

x1 ≥ 0, x2 ≥ 0.

(2.4)

The constant θ > 0 is the trade-off between risk and return.

2.2 Overview of Markov decision process (MDP)

A Markov decision process (MDP) is a mathematical framework for modelling discrete time-
sequential decisions of an intelligent decision-maker with stochastic outcomes [130]. MDPs
are useful for studying discrete dynamic programming optimization problems [72] with ap-
plications in finance, operation research, artificial intelligence (AI), and many other domains
[17, 19, 127, 157]. Like all other sequential decision problems, MPD problems involve a dy-
namic system where inputs are selected sequentially after observing past outputs [130].
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2.2.1 Components of a Markov decision process

An MDP model is generally built as a 4-tuple (S , As, p(s′|s, a), r(s, a)), where S is the set of
possible states, As is the set of actions from which to choose in each state. As in a Markov
chain, the state space represents the possible conditions in which the system may find itself.
In each state s ∈ S at time t an action a ∈ As is taken, and the agent receives an immediate
reward, r(s, a), then the system moves randomly to state s′ at time epoch t + 1 according
to the transition probability distribution p(s′|s, a). The decision-maker aims to determine the
collection of actions in each state that maximizes the expected discounted reward V(s), given
by

V(s) = E
(
r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + . . .

)
, (2.5)

where 0 < γ < 0 is the discount factor, t = 0, 1, 2, . . . is the time epochs, and r(si, ai) represent
deterministic or stochastic rewards.

The decision epoch is the periodic moment the decision-maker must make a decision. LetT
be a finite or infinite sequence of the natural numbers of the form (1, 2, 3, ...,Tmax) or (1, 2, 3, ...)
respectively, denoting the decision epochs, also called time steps, at which actions need to be
taken. The MDP is called finite horizon if Tmax < ∞ else it is infinite horizon. For discrete-time
problems, decisions are made at decision epochs, while, decisions are made continuously at
random points of time when certain events occur when dealing with continuous-time problems.
Continuous MDP’s are best dealt with in control theory methods based on dynamic system
equations.

The collection of actions over a horizon is called a policy. A policy π maps each state s ∈ S

to an action a ∈ As. Given a policy π, the expected value function Vπ is defined as

Vπ(s) = E(π)
(
r(s0, a0) + γr(s1, a1) + γ2r(s2, a2) + . . .

)
(2.6)

This is the expected discounted return of the payoffs when policy π is used.

The optimal policy is the collection of action, a ∈ As from each state s ∈ S over the horizon
that maximizes the expected return. The optimal policy π∗ is quickly recuperated using the
optimal value function in computation. More generally, Vπ∗(s) recursively satisfies the Bellman
equation [17] given by

Vπ∗

k (s) = max
a

r(s, a) + γ
∑
s′∈S

p(s′|s, a)Vπ
k−1(s)

 (2.7)

and the optimal policy π∗ is obtained as
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π∗ = arg max
a

r(s, a) + γ
∑
s′∈S

p(s′|s, a)Vπ
k−1(s)

 . (2.8)

2.2.2 Solving MDPs

Here we briefly describe methods, approximations, and algorithms used to solve MDPs. The
fundamental approach to solving an MDP is the use of iterative algorithms. Many iterative
methods are available to find the optimal or approximately optimal policies for the MDP [19]
but the value iteration, the policy iteration, and the linear programming stand out.

Value iteration

Howard [72] was the originator of the value iteration algorithm. Value iteration uses dynamic
programming methods iteratively to determine the value function of each state. The optimal
value is obtained when the value of the iteration becomes stationary, satisfying the vector equa-
tion V∗ = LV∗ [17, 130], where L is the Bellman operator. The algorithm is given as follows
[20, 130]:

Value Iteration Algorithm

Step 1 Select v0 ∈ R, set n = 0, and specify ε > 0.
Step 2 Compute vn+1(i) = Lvn(i) for all i ∈ S.
Step 3 If ||vn+1 − vn|| < ε(1 − γ)/2γ, go to Step 4,

otherwise, increase n by 1 and return to Step 1.
Step 4 Return with the actions attaining the maximum.

The run time of every step of the value iteration algorithm is complex. It requires Ā|S |2

multiplications and divisions, where Ā is an average number of actions per state, and the total
maximum number of iterations needed by the algorithm is polynomial in |S | and Ā [149]. It
also converges slowly with an exponential rate to discount factor γ when the discount factor
approaches 1.

Policy iteration

Another iterative algorithm to solve the MDP is the policy iteration algorithm. The policy
iteration algorithm operates the policy directly. It begins by assessing an arbitrary policy and
then uses the value function of that policy by an iterative update to find better policies according
to

π∗ = arg max
a

r(s, a) + γ
∑
s′∈S

p(s′|s, a)Vπ
k−1(s). (2.9)
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The policy iteration algorithm is as follows [20, 130]:

Policy Iteration Algorithm

Step 1 Select arbitrary decision rule d0, set n = 0.
Step 2 (Policy evaluation) Compute vn by solving (I − γPdn)v = rdn .
Step 3 (Policy improvement) Choose the decision rule dn+1 such

that dn+1 ∈ argmaxd∈D{rd + γPdvn} setting dn+1 = dn if possible.
Step 4 If dn+1 = dn, set d∗ = dn, stop.

Otherwise, increment n by 1 and return to Step 2.

The policy iteration algorithm requires |S |3 multiplications and divisions, converging much
faster than the value iteration [174]. The detailed discussion of the complexity of iterative
methods of MDP can be found in Littman et al. [99], Papadimitriou and Tsitsiklis [121].

Linear Programming

The linear programming approximation method proceeds by transforming the MDP into an
equivalent LP and approximates the value function by assuming a specific parametrized form
then solving the chosen approximations to obtain the approximate values of the value function,
vALP [106, 2, 42, 130]. The Approximate vALP is then used to determine the optimal policy in
each state. A popularized LP approximation of MDP formulations is given in De Farias and
Van Roy [42], Puterman [130].

From Powell [127] and Puterman [130], we know that, if

V(s) ≥ max
a

(R(s, z) +
∑
s∈S

P(s′ |s,zi)V(s′)),

then V(s) is an upper bound on the value of being in each state. This means that the problem
of finding the optimal values can be solved using the primal linear program

min
∑
j∈S

d(s)V( j, z) (2.10)

subject to
V(s, z) ≥ r(s, z) + γ

∑
j∈S

p( j|s, z)V( j, z) ∀s, j ∈ S, z ∈ Z

where d(s) is any positive value, V(s, z) is state s value, r(s, z) is the instantaneous result in
state s, p( j|s, z) is the transition probability and γ is the discount rate.

With this primal in Equation 2.10, we know from Denardo [43] that solving the dual pro-
vides an approximation to the weight of the actions. The dual is obtained as Equation 2.11



2.3. Overview of Queuing Game 15

max
∑

s

∑
z

r(s, z)W(s, z)

subject to ∑
z

W( j, z) − γ
∑
s∈S

∑
z∈A

p( j|s, z)W(s, z) ≤ d( j)

∀s, j ∈ S, z ∈ Z

(2.11)

where W(s, z), s ∈ S , and z ∈ A are the policy flow in state s when action z is taken. The
normalized W(s, z) is interpreted as the optimal steady-state probability that action z is applied
in state s.

The cost function: ∑
st

∑
zt

R(st, zt)W(st, zt)

is the steady-state average reward per transition. Then as a result, the probability mass function
of action zt in state st is obtained as :

π(st, zt) =
W(st, zt)∑
zt

W(st, zt)
(2.12)

The action that provides the optimal policy is the action with the maximum probability in
that state and is defined as

z∗t = arg max
zt∈Ast

π(st, zt),

whereAst is the set of all the actions possible in state st.

2.3 Overview of Queuing Game

2.3.1 Game Theory

Game theory is the mathematical theory of games and has been popularized by John Von Neu-
mann and Morgenstern [166]. It is concerned with the logic of decision-making in situations
where self-interested entities interact and how those interactions should be structured to lead
to a “better” abstract concept called utility. In economic literature, utility or payoff function is
a function representing a consumer’s preference. A game is any situation in which a decision-
maker optimizes its utility by anticipating the reactions to his actions by one or more other
decision-makers.

While in optimization problems, one decision-maker seeks a value x ∈ X (X ⊆ Rm is
a closed, unbounded domain of the decision variable x) that maximizes/ minimizes a typical
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function f (x), game theory on the other hand, is concerned with the situation with two or more
decision-makers called players. The function each player has to maximize/ minimize is called
the payoff function/ utility and depends on the decision variable of other players.

In the case of two players, if Player 1 has to decide on x1 ∈ X1 and Player 2 on x2 ∈ X2, the
goal of Player i, i = 1, 2 is

max or min
x

fi(x1, x2). (2.13)

Abstractly, a game has three components:

• A set of players.

• Sets of actions or decisions or strategies, S i, i = 1, 2, . . . available to each player.

• Payoffs functions fi : S 1 × S 2 × · · · → R defining each player’s preference.

Various relevant concepts of the game process referring to different situations have been
proposed in the literature. Based on the order of play, that is the order of decision-making,
games can be distinguished into sequential-move and simultaneous-move games. In sequential-
move games, decision-makers choose their actions one after the other, and in simultaneous-
move games, they choose their actions simultaneously. In simultaneous-move games, we can
distinguish between a cooperative or a non-cooperative game. In non-cooperative games, play-
ers do not communicate with each other and work independently to achieve their selfish goals.
In a cooperative game, players can discuss their actions and agree.

Games are also classified based on the number of alternative strategies available to each
player. Games may be finite or infinite. A finite game has all players with a finite number of
strategies. It is infinite if at least one player has an infinite number.

A game is also classified based on the nature of the players’ payoffs. In zero-sum games,
the sum of the players’ payoffs is zero. It is an interaction in which one person’s gain is equiv-
alent to another’s loss, so the net change in wealth or benefit is zero. Otherwise, it is called a
nonzero-sum game. The state of the information available to each player is another extensive
way to classify games. We have complete and incomplete information games. Finally, a game
is classified based on the involvement of time. If time is a factor considered in any player’s
decision-making, the game is dynamic; else, the game is static. In dynamic games or evolu-
tionary games, the decision variable is a function of time x(t). The time variable can be discrete
or continuous over a range.

For static games, solution schemes depend on the formulation of the problem and are di-
vided into cooperative and non-cooperative solutions. In general, there is no optimal solution
for the game instead an equilibrium solution. Since an outcome that is optimal for one player
can be detrimental for the other one. For cooperative games, the Pareto optima are sought.
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Definition A tuple of strategies s∗1, s
∗
2, . . . , s

∗
n is said to be Pareto optimal if there exists no other

tuple (s1, s2, . . . , sn) ∈ S1 × S2 × · · · × Sn such that

f1(s1, s2, . . . , sn) > f1(s∗1, s
∗
2, . . . , s

∗
n) and f2(s1, s2, . . . , sn) ≥ f2(s∗1, s

∗
2, . . . , s

∗
n)

or

f2(s1, s2, . . . , sn) > f2(s∗1, s
∗
2, . . . , s

∗
n) and f1(s1, s2, . . . , sn) ≥ f1(s∗1, s

∗
2, . . . , s

∗
n)

where fi() is the payoff function of player i and si is player i’s action or strategy.

Under Pareto optimality, it is impossible to strictly increase one of the players’ payoff

without strictly decreasing the payoff of the others. For ηi ∈ [0, 1], such that
∑

i ηi = 1, the
tuple (s1, s2, . . . , sn) that maximize the optimization problem

max
s1∈S1,s2∈S2,...,sn∈Sn

∑
i

(ηi fi(s1, s2, . . . , sn)) (2.14)

is Pareto optimal.
There are two major non-cooperative solutions: the Nash equilibrium and the Stackelberg

equilibrium. The Nash equilibrium is the main solution concept for symmetric non-cooperative
games. The Nash equilibrium [115] is an n-tuple of optimal strategies, one for each player, such
that anyone who deviates from it unilaterally cannot possibly improve his payoff, as long as
the other players stick to their equilibrium strategy.

Definition The tuple (s∗1, s
∗
2, . . . , s

∗
n) is Nash equilibrium of the game if, for every strategy

si ∈ Si, i = 1, 2, . . . , n denotes player i’s strategy, we have

fi(s∗1, s
∗
2, . . . , s

∗
n) ≥ fi(s∗1, s

∗
2, . . . , s

∗
i−1, si, s∗i+1, . . . , s

∗
n), (2.15)

where fi() is the payoff function of player i.

Strategies (s1, s2, . . . , ) is a Nash equilibrium if and only if it is a fixed point of the best reply
map. In general, a Nash equilibrium may not exist or be unique. However, there is no gen-
eral method for finding the Nash equilibrium and mostly optimization methods such as LP,
graphical methods, algorithms or heuristic approaches are used. When the payoff functions are
differentiable, Nash equilibrium is obtained by the first-order conditions of the player’s payoff

concerning the player’s strategy.
The other important solution scheme of the non-cooperative game is the Stackelberg equi-

librium. The Nash equilibrium provides a solution to non-dominating or asymmetric games.
The Stackelberg equilibrium specifies the behaviour when one of the players (the leader) can
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impose his strategy. It is named after the economist Von Stackelberg for his work [153]. It
assumes the leading player announces his strategy in advance, and the follower player chooses
accordingly. For an illustration, suppose Player 1 is the leader and Player 2 is the follower
who reacts to Player 1’s decision. When Player 1 announces its strategy, Player 2 responds to
maximize his payoff according to Player 1’s decision. If s1 ∈ S1 denotes Player 1’s strategy,
then Player 2 chooses its optimal strategy s∗2 ∈ S2 to maximize its payoff denoted by f2(s∗1, s2).
Player 2 assumes the knowledge of Player 1’s strategy. Player 2 chooses its optimal strategy s∗2
such that

f2(s1, s∗2) ≥ f2(s1, s2), ∀ s2 ∈ S2. (2.16)

This best response function of the follower is known as the reaction function and is obtained as

Γ(s1) ∈ arg max
s2∈S2

f2(s∗1, s2). (2.17)

Using the follower’s best response, the goal of the leader is now to maximize the composite
function f1 (s1,Γ(s1)).

Definition A couple of strategies (s∗1, s
∗
2) ∈ S1 × S2 is called a Stackelberg equilibrium if

f1(s1, s2) ≤ f1(s∗1, s
∗
2).

The computation is done backward since the leader needs the reaction function of the follower
to compute its best response. A complete discussion and review of game theory is provided in
Osborne and Rubinstein [120].

2.3.2 Queuing Theory

In this section, we will review some basics of queuing theory. The review will elaborate on
notations, queue disciplines, and elementary queues key performance indicators.

Agner Krarup Erlang in 1909 [53] did a seminal work on queuing systems. During the
Second World War and the advent of modern computing, the field has evolved with varied
results and applications even in healthcare planning.

A queuing system is characterized by several elements: the arrival pattern, service pattern of
servers, queue discipline, the system capacity, the number of service channels, and the number
of service stages.

Since the description of the characteristics of a queue becomes very wordy, Kendall [82]
popularised a standard shorthand notation used to describe queuing systems. In his abbrevia-
tion A/B/X/Y/Z, the first and the second character indicates the distribution of the arrival and
service time respectively, the third, the number of parallel channel of servers, the fourth de-
scribes the system capacity, the fifth the queue discipline by its given acronym and the sixth
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indicates the pool size of customers system draw from. For example, M/D/S/∞/FCFS/∞ could
represent an ICU unit where inter-arrival time distribution is exponential, service time distri-
bution is deterministic, the system has S beds (servers), no restriction on the number of people
allowed in the system, patients are treated on a first come first serve basis, and an infinite
population pool to draw from.

We used three types of performance indicators of interest: a measure of time customers
spends in the system, a measure of the number of customers in the system and a measure of the
performance time of servers. Little’s formulas are simple yet powerful relationships between
the average number of customers in the queue, L, the mean waiting time, and the arrival rate
at any time, assuming a steady-state system (λ = µ). Little showed that if N(t) is the random
number of customers in the system, the expected number of customers in the system is given
by

L = E(N(t)) =

∞∑
n=0

npn = λW, (2.18)

where pn is the probability that there are n customers in the system. The simplest queue model
is the M/M/1 queue. For this queue, the inter-arrival time and the service times are exponential
with rates λ and µ, respectively. At equilibrium, the first principle flow balance equations are
given by

(λ + µ)pn = µpn+1 + λpn−1 (n ≥ 1)
λp0 = µp1.

(2.19)

Using an iterative method or generating functions of operators, the probability distribution of
the full steady-state for the M/M/1 queue system is obtained as

pn =

(
1 −

λ

µ

) (
λ

µ

)n

. (2.20)

Some basic measures of effectiveness are derived as follows. The expected number in the
system

L =
λ

µ − λ
. (2.21)

The expected number in the queue is

Lq =
λ2

µ(µ − λ)
. (2.22)
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It follows from Little’s formula that the expected time in the system is

W =
1

µ − λ
(2.23)

and the expected time in queue is

Wq =
λ

µ(µ − λ)
. (2.24)

For a complete introduction to the queuing theory, see Shortle et al. [146], Kleinrock [87].

2.3.3 Queuing Games

A queuing game is the application of game theory to strategically manage customers and
servers’ decision in a queue. It models situations where two or more players (customers or
servers) control different components of the queue. Customers want to spend the least time
in queue and must decide on the queue to join. Servers want to attract as many customers as
possible. So, they try to provide the shortest time in queue or in service and the best service
experience possible. In a queuing game, a model is constructed so that decisions about queue
lengths, waiting time, queueing cost and other vital indicators can be studied and predicted.

The queuing game literature is replete with models that capture customer’s behaviour in
the system. In this thesis, we focus on the system’s behaviour. Queuing games are mostly
defined as a non-cooperative game with N = {1, . . . , n} finite set of players with a set of actions
Ai, i ∈ N for each player. A pure strategy for player i is an action a ∈ Ai. A mixed strategy
assigns a probability distribution for selecting an action from Ai. A strategy profile is a set
s = {s1, . . . sn} of strategies used by each player. The payoff of player i is, therefore, fi(s).
Strategy s∗i dominants if fi(s1, . . . , s∗i , . . . sn) ≥ fi(s1, . . . , si, . . . sn) for all strategies si available
for player i. A strategy profile is an equilibrium strategy if it is the set of the best response
of each player. An equilibrium may not always exist. In queuing games, queues are mainly
classified as being observable or unobservable. In observable queues, customers arriving at
the station know the queue length and decide to join the queue or not. The queue can also be
considered from the social welfare point of view. In this case, the objective is to maximize the
benefit for the entire society, both the customers and the servers.
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2.4 Survival Analysis

2.4.1 Introduction and Basic Concepts

Survival analysis is a collection of statistical methods for data analysis where the outcome
variable of interest is the time to the occurrence of an event known as survival time. It is also
referred to as time to the event analysis. Survival time is the length of time measured from the
beginning of a process to the occurrence of a given event of interest. In health sciences and
insurance for example, survival time or time to the event can be time to death, or time to a
sickness or a handicap or time until an accident or time to the failure of an organ. Therefore,
the measurement of the survival time, requires an exact time origin, a time measurement scale,
and a clear definition of an event of interest.

The interesting characteristic of survival data that led to the development of new statistical
methods is the presence of censored observations. Censored observations occur when some
observations have not experienced the event of interest before the end of the data collection
or study. The precise time to the event of these observations is unknown. Censoring occurs
when the survival time information about some individuals is only partially known, and the
exact survival time is unknown. There are three types of censoring: 1) right censoring, 2) left
censoring, and 3) interval censoring.

Right censoring occurs when the time it took the event of interest to occur is greater or
equal to the observed length of time. Let C denote the censoring time and X the observed event
time. The observed survival time is X if the event occurs or C if it is censored, whichever
comes first. Let (T ; δ) denote the observed data. T = min(X,C) and

δ = I(X≤C) =

0, if X > C (Event unobserved, right censored)

1, if X ≤ C (Event observed).
(2.25)

Left censoring occurs when the time it took the event of interest to occur is less or equal to the
observed length of time. Interval censoring occurs when the event of interest is known to have
happened within a two-time interval, but the actual survival time is not known.

In an experimental setting, Type I censoring occurs when in an experiment that is set to
stop at a predetermined time, some observations have not experienced the event. Those events
right-censored. Type II censoring occurs when in the experiment, a predetermined number
of subject are observed to have experienced the event of interest and the remaining are right-
censored. A random or non-informative censoring is when each observation has a censoring
time that is statistically independent of their survival time. Right censoring is very common
in survival time data, but left censoring is relatively rare. Therefore, the terms “censoring” or
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“censored” will be used in this thesis to mean “right censoring”.

2.4.2 Survival Time Distribution

This part of the presentation is based on the textbook Kalbfleisch and Prentice [78]. Survival
times are completely characterized by any of three functions: the survival function, the proba-
bility density function, and the hazard function.

Let T be a random variable denoting the survival time. The event time may be a discrete
or continuous non-negative random variable. The probability density function (PDF) of the
continuous random variable is specified as f (t) and the cumulative distribution function (CDF)
is

F(t) = Pr(T ≤ t) =

∫ t

0
f (s)ds, t ≥ 0. (2.26)

The CDF is the probability of the event happening before or at most at time t. The probability
of the event happening after time t is known as the survival function and is defined as

S (t) = Pr(T > t) =

∫ ∞

t
f (s)ds, t ≥ 0. (2.27)

Of interest is the hazard function h(t), which is the instantaneous failure rate at t given
survival up to time t, i.e.,

h(t) = lim∆t→0
P(t ≤ T < t + ∆t|T ≥ t)

∆t
, t ≥ 0. (2.28)

The relationship between the hazard rate, the PDF, and the survival function is given as

h(t) =
f (t)
S (t)

= −
d log(S (t))

dt
, (2.29)

and the integral of the hazard rate is the cumulative (or integrated) hazard function H(t), defined
as

H(t) =

∫ t

0
h(s)ds. (2.30)

The relationship between the survival function and the cumulative hazard function is

S (t) = exp (−H(t)), (2.31)

and we also have
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f (t) = h(t) exp (−H(t)) = h(t)S (t) (2.32)

The survival function, the probability mass function and the hazard functions are analo-
gously specified for the discrete variable. For a discrete random variable T taking well-ordered
values 0 ≤ t1 < t2 < . . . , let P(T = ti) = f (ti), i = 1, 2, . . . , be the probability mass function
then the survival function is defined as

S (t) =
∑
j|t j≥t

f (t j) =
∑

f (t j)It j≥t, (2.33)

where the indicator function

I(t j≥t) :=

0 if t j < t

1 if t j ≥ t.
(2.34)

The hazard at time ti, h(ti) is the conditional probability of failure at time ti given that the
individual has survived up to time ti,

hi = h(ti) = P(T = ti|T ≥ ti) =
f (ti)
S (ti)

=
S (ti) − S (ti+1)

S (ti)
= 1 −

S (ti+1)
S (ti)

, i = 1, 2, . . . , (2.35)

thus

1 − h(ti) =
S (ti+1)
S (ti)

, (2.36)

and

∏
i|ti<t

(1 − h(ti)) =
S (t2) × S (t3) × . . . S (ti+1)
S (t1) × S (t2) × . . . S (ti)

= S (t) (2.37)

since S (t1) = 1 and S (t) = S (ti+1).

2.4.3 Non-Parametric Estimation of the Survival Models: Kaplan-Meier
Analysis

Every statistical data analysis starts conveniently with a data summary through descriptive
statistics. This section presents the numerical and graphical summaries of the survival time
data. For the survival times, this analysis is done through estimates of the survival function and
hazard function using the data. These methods are said to be non-parametric methods because
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no parametric assumptions are made about the distribution of survival time.

There are generally two non-parametric methods: the life-table analysis and the Kaplan
Meier (KM) analysis. The life-table analysis method was the first to be developed and provided
more detailed statistics. However, the Kaplan-Meier analysis method is superior in many cases
and, with the advent of computers, is now the method of choice [80, 131, 91, 137]. Whereas
the life-table approach is based on grouped data, the KM focus on analyzing individual data.
Here, we present only the Kaplan Meier analysis method.

If an uncensored survival sample of n distinct survival times is observed from a continu-
ous homogeneous population, then the survival function can be estimated using the empirical
survival function

S n(t) =
1
n

n∑
i=1

I(ti>t), (2.38)

where I(ti>t) is the indicator function that takes the value 1 if ti > t and 0 otherwise. This simple
and convenient summary is the proportion alive at time t. Graphically, it is a step function that
decreases by n−1 at each observation. However, survival data often contain censoring and for
this purpose, the KM estimator is a more consistent and convenient method for estimating the
survival function. The KM estimator uses only the data on the time to the event without any
covariate to estimate the survival curves.

Let n be the sample size of the observed survival time. Let 0 ≤ t(1) < · · · < t(m) < ∞

be the distinct ordered observed times of events. Suppose that d j observations experience
the event of interest at time t j and u j observations are censored in the interval [t j, t( j+1)). Let
n j = (d j +u j)+ · · ·+ (dm +um) be the size of the risk set at time t j, where the risk set denotes the
collection of individuals alive and uncensored just before t( j). The Kaplan-Meier or product-
limit estimate of the survival function, S (t), is defined by

Ŝ (t) =
∏
j|t( j)≤t

(
n j − d j

n j

)
=

∏
j|t( j)≤t

(
1 −

d j

n j

)
(2.39)

The Kaplan-Meier estimate is a step function with discontinuities or jumps at the observed
event times. If there is no censoring, the K-M estimate coincides with the empirical survival
function.

Non-parametric Maximum Likelihood

The K-M estimator has been shown to maximize the discrete likelihood. Considering both
the contribution to the likelihood of cases that die and those that are censored at time t, the
likelihood function is given as
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L =

m∏
i=1

[
S (i−1) − S (i)

]di S ui
(i) (2.40)

where [S (i−1)−S (i)] is the probability of experiencing the event at time t(i) and S (t(i)) is the prob-
ability of a censored observation between time interval [t(i), t(i+1)). Note that in the likelihood
function, it is assumed that all censored observations between the given interval have the same
likelihood. Without loss of generality, take t(0) = 0 and S (t(0)) = 1, and from Equation 2.37,

S (t( j)) =
S (t(1)) × S (t(2)) × · · · × S (t( j))

S (t(0)) × S (t(1)) × · · · × S (t( j−1))
.

Let h( j) =
S (t( j))
S ( j−1)

, then S ( j) = h(1)×h(2)×· · ·×h( j). Substituting S ( j) by h( j) in Equation 2.40,
we obtained the following binomial likelihood of the parameter h( j).

L =

m∏
j=1

[[
1 − h( j)

]d j
[
h(1) × h(2) × · · · × h( j − 1)

]d j+u j
[
h( j)

]ui
]

=

m∏
j=1

[
1 − h( j)

]d j
[
h( j)

]n j−d j

(2.41)

Therefore, the maximum likelihood estimator of h( j) is equal to

ĥ( j) = 1 −
di

n j
. (2.42)

The K-M estimator follows from multiplying these as

Ŝ (t) =
∏
j:t( j)≤t

ĥ( j) =
∏
j:t( j)≤t

[
1 −

d j

n j

]
(2.43)

Greenwood [62] were the first to provide confidence intervals for the survival probability.
First, the sample variances of ĥ( j) follow from the usual binomial formula

Var(ĥ( j)) =
h j(1 − h j)

n j
(2.44)

The sample variance of the K-M estimate, Ŝ (t), is obtained by applying the delta method
twice.

Let log(Ŝ (t)) =
∑ j

i=1 log(ĥ j). Applying the delta method for the first time, we have

Var(log(ĥ j)) =
[
log

′

(h j)
]2

var(h j) =

[
1

h( j)

]2 h j(1 − h j)
n j

=
(1 − h j)

n jh j
. (2.45)
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Since the event and its censoring are independent, cov(ĥi, ĥ j) = 0 and because log(Ŝ (t)) is
a sum,

Var(log(Ŝ (t))) = Var(
∑

log(ĥ j)) =
∑ (1 − h j)

n jh j
=

∑ (d j)
n j(n j − d j)

. (2.46)

Applying the delta method again for the second time, we get the variance of the survivor
function from the variance of its log:

Var(Ŝ (t)) =
[
Ŝ (t))

]2
Var(log(Ŝ (t))) =

[
Ŝ (t))

]2 ∑ (d j)
n j(n j − d j)

(2.47)

This equation is known as Greenwood’s formula. Using Greenwood’s formula, the K-M
estimator is a consistent and convergent estimator of the survival function [26, 4, 57]. Thus the
confidence intervals can be constructed based on the normal approximation of S (t).

As pointed out by Kalbfleisch and Prentice [78], many other authors consider first the
cumulative hazard function Λ(t). Nelson-Aalen estimated the cumulative hazard function as

Λ̂(t) =
∑
t j≤t

d j/n j =
∑
t j≤t

ĥ j. (2.48)

Breslow and Crowley [26] suggested that the survival function be estimated as

Ŝ (t) = exp
(
−Λ̂(t)

)
. (2.49)

Breslow’s estimator and the K-M estimator are asymptotically equivalent, and usually are
quite close to each other, particularly when the number of deaths is small relative to the number
exposed.

To compare two or more K-M survival functions, the survival curves can give us a graphical
view. To check the statistical significance of the difference observed, a commonly used formal
non-parametric statistical test is the Mantel-Haenszel log-rank test [107].

Let t(1) < t(2) < · · · < t(m) denote the ordered event times across all groups. Suppose that
di events occur in the whole sample and di j events occur at t(i) in group j, and ni subjects at risk
in the whole sample while ni j subjects are at risk just before t(i) in group j (i = 1, 2, . . . ,m). If
the survival probabilities are the same in all groups, then the di events at time t(i) are distributed
among the k groups in proportion to the number at risk. Thus, conditional on di and ni j,

E(di j) =
ni jdi

ni
. (2.50)

Given n j and d j, the distribution of the counts conditional on both the row and column totals
is hypergeometric
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d j

di j

  n j − d j

ni j − di j

n j

ni j


. (2.51)

The mean is given above and the variance and the covariance are given as

Var(di j =
di(ni − di)ni j(ni − ni j)

n2
i (ni − 1)

, (2.52)

and
Cov(div, diw) = −

di(ni − di)nivniw

n2
i (ni − 1)

. (2.53)

Let ~di denote the vector of the number of events for all groups at time t(i). Let the mean of
~di be E(~di) and var-cov matrix var(~di). The overall sum is given as

D =

m∑
i=1

[~di − E(~di)] V =

m∑
i=1

Var(~di). (2.54)

Under the null hypothesis

H0 : S 1(t) = S 2(t) = ... = S k(t), (2.55)

the quadratic form
Q = D

′

V−D, (2.56)

where D
′

is the transpose of D and V− is the generalized inverse of V , has a χ2 distribution with
degree of freedom k − 1. For k = 2, we have

z =
√

Q =

∑
(di1 − E(di1))
√∑

var(di1)
. (2.57)

An approximation for k ≥ 0 which does not require matrix inversion is

∑
i

∑
j

(Oi j − Ei j)2

Ei j
, (2.58)

where Oi j is observed, and the Ei j is expected deaths at time t(i) in group j. There is an alterna-
tive test such as the Wilcoxon’s test, but the M-H test is the most popular.
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2.4.4 Common Parametric Distribution Functions for Survival Data

While non-parametric methods work naturally well with observed data from homogeneous
populations in building the survival function, one can also consider the analysis of survival
data making parametric assumptions for the distribution of survival time. In this section,
we introduce widely used parametric probability density functions to characterize survival
time. Some of the often used models include but are not limited to Exponential, Weibull,
Gompertz-Makeham, Gamma, Generalized Gamma, log normal, Gumbel, Frechet, Gener-
alized Extreme Value, Log-Logistic, Exponential power, Inverse-Gaussian, Pareto, and the
Generalized-Gamma distributions. This presentation is based on the textbooks Klein and
Moeschberger [86], Kalbfleisch and Prentice [78] and Sun [156].

The Exponential Distribution

The exponential distribution has a constant hazard function

h(t) = λ, t ≥ 0, (2.59)

the density function is given as

f (t) = λ exp(−λt), t ≥ 0, λ > 0, (2.60)

and the survival function is obtained as

S (t) = exp(−λt). (2.61)

Thus, a survival time, T has an exponential distribution with parameter λ is denoted T ∼

exp(λ). The mean and standard deviation are 1/λ. The exponential distribution has a fairly
simple mathematical form and interesting properties that make it mathematically tractable and
easy to manipulate. The memoryless property states that

P(T > t + s|T > s) = P(T > t). (2.62)

This property means that given that a subject survived s units of time, its chances of surviving
an additional t is the same as if the subject just started its life. Although the exponential
distribution has been historically very popular, its constant hazard rate appears too restrictive
in both health and industrial applications.
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The Weibull Distribution

The Weibull distribution is an important extension of the exponential distribution with three
parameters. It is denoted T ∼ W(λ, θ; p). The hazard function is defined as

h(t) = λp p(t − θ)p−1, λ > 0, t > θ, p > 0. (2.63)

The probability density function, f (t) with shape parameter p , scale parameter λ , and location
parameter θ is given by

f (t) = pλp(t − θ)p−1 exp(−λp(t − θ)p), λ > 0, t > θ, p > 0, (2.64)

and the survival function, S (t) is defined as

S (t) = exp(−λp(t − θ)p), λ > 0, t > θ, p > 0. (2.65)

When the location parameter θ = 0, then T p can be expressed as an exponential distribution as
T p ∼ exp(λ). Clearly, the log of the Weibull hazard function is a linear function of log time:

log(h(t)) = (p − 1)log(t − θ) + p log(λ) + log(p). (2.66)

This is used as an empirical test for the Weibull distribution.

Gompertz-Makeham Distribution

The first parametric family of distribution to smooth mortality tables is the Gompertz dis-
tribution. It is a three-parameter distribution that assumes that the hazard rate increases in
geometrical progression. Thus

h(t) = θλ exp(λt), λ, θ > 0, t ≥ 0. (2.67)

The survival function is given as

S (t) = exp(−θ(eλt−1)), λ, θ > 0, t ≥ 0, (2.68)

and the corresponding density function is obtained as

f (t) = λθ exp(λt − θ(exp(λt) − 1)), λ, θ > 0, t ≥ 0. (2.69)

λ is a scale parameter and θ is known as the frailty parameter. An interesting characterization
of the Gompertz distribution is that like the Weibull, the log of the hazard is linear in time,



30 Chapter 2. Background

therefore closely related to the Weibull distribution. The Gompertz distribution can be thought
of as a log-Weibull distribution. The Gompertz distribution family was extended by [105] with
the hazard rate redefined as

h(t) = αθλ + θλ exp(λt), α, λ, θ > 0, t ≥ 0. (2.70)

Thus the survival distribution is given as

S (t) = exp(−θ(exp(λt) − 1) − θλαt), (2.71)

and the density is

f (t) =
(
αθλ + θλeλt

)
exp

(
−θ

(
eλt−1 − θλαt

))
. (2.72)

Log-Normal Distribution

T is log-normally distributed if X = log(T ) is normally distributed. It is a skewed distribution
that empirically fits many types of time to failure data. The PDF is given as

f (t) =
1

tσ
√

2π
exp−

(ln(t) − µ)2

2σ2 , (2.73)

and the survival function obtained as

S (t) = 1 − Φ

(
ln(t) − µ

σ

)
, (2.74)

where Φ is the standard normal CDF.

The Gamma Distribution

The Gamma distribution is a 3-parameter probability density function, with shape, scale, and
location parameters given by α, λ, γ respectively. It is denoted by T ∼ Γ(α, λ, γ) with density
function

f (t) =
λ(λ(t − γ)α−1e−λt

Γ(α)
, (2.75)

and survival function
S (t) = 1 − I(α, λ, γ), (2.76)

where I(α, λ, γ), the incomplete gamma function is defined as
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I(α, λ, γ) =

∫ t

0

λα−1e−t+γdt
Γ(α)

, (2.77)

and

Γ(α) =

∫ ∞

0
λα−1e−t+γdt, (2.78)

is the gamma function. There is no closed-form expression for the survival and hazard func-
tions; however, there are numerical algorithms for the computation.

The Generalized Gamma Distribution

The generalized gamma distribution has density

f (t) =
λp(λ(t − γ)pα−1e−λ(t−γ)p

Γ(α)
, λ ≥ 0, γ ≥ 0, α ≥ 0, p ≥ 0, k ≥ 0. (2.79)

• When p = 1, it is a gamma distribution.

• When k = 1, a Weibull distribution.

• When p = 1 and α = 1, an exponential distribution.

• When k → ∞, a log-normal distribution.

The Gumbel Distribution

The Gumbel distribution is known as the Type I extreme value distribution and has two forms:
the smallest extreme referred to as Minimum Extreme Value Type I and the largest extreme
referred to as Maximum Extreme Type I. The density function of the Maximum Extreme Value
Type I is given by

f (t) =
1
β

e−
t−µ
β e−e

−
t−µ
β
, µ ≥ 0, β ≥ 0, (2.80)

and that of the Minimum Extreme Type I is given by

f (t) =
1
β

e
t−µ
β e−e

t−µ
β
, µ ≥ 0, β ≥ 0, (2.81)

where µ is the location parameter and β is the scale parameter. The Survival functions are
defined as

S (t) = e−et
, µ ≥ 0, β ≥ 0, (2.82)
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and

S (t) = 1 − e−e−t
, µ ≥ 0, β ≥ 0 (2.83)

respectively.

The Fréchet Distribution

The Fréchet distribution is referred to as the Maximum Extreme Value Type II distribution.
The Fréchet distribution has a shape parameter α, scale parameter β, and location parameter γ.
The density is given by

f (t) =
α

β

(
β

t − γ

)α+1

exp−
(
β

t−γ

)α
, t > γ, α > 0, β > 0. (2.84)

And the survival function is given by

S (t) = 1 − exp
(
−

(
β

t − γ

)α)
. (2.85)

Generalized Extreme Value (GEV) Distribution

The generalized extreme value (GEV) distribution is a family of continuous probability dis-
tributions that combines the Gumbel, Fréchet and Weibull distribution families. The density
function for the generalized extreme value distribution with location parameter µ, scale param-
eter β, and shape parameter k is given as

f (t) =
1
β

r(t)k+1 exp (−r(t)), β ≥ 0, (2.86)

where

r(t) =


(
1 +

k(x−µ)
β

)−1/k
if k , 0

e
−(t−µ)
σ if k = 0

(2.87)

The survival function is then obtained as

S (t) = 1 − exp (−r(t)). (2.88)

Varying the shape parameter k by setting k = 0, k > 0 and k < 0 defines the sub-families as
Gumbel, Fréchet and Weibull families respectively.
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2.4.5 Regression Survival Models

Survival distribution methods work well on survival time for homogeneous populations. How-
ever, when we consider a more general problem where we have a vector x of covariates, survival
distributions do not determine whether or not certain variables affect the survival times. There
are explanatory variables that may characterize the survival time. Application of regression
methods for analyzing survival data are therefore necessary and require suitable methods due
to the existence of censored observations and the fact that survival times are positive variables,
and are rarely normally distributed.

Cox Proportional Hazards Model: A Semi-parametric Model

The Cox proportional hazard model has been proposed by Cox [40]. The model is a regression
model for survival analysis, which relates several predictors simultaneously to the survival
time. The model is called semi-parametric because it does not assume any distribution for the
survival time but assumes that the effects of the independent covariates upon the survival time
are constant over time and are additive in one scale. The model assumes that the covariates
have a proportional effect on the hazard rate. In general, the model is of the form

h(t, x) = h0(t) f (x), (2.89)

where h0(t) is the baseline hazard and f (x) is the function of the relative risk associated with
covariate values x that acts multiplicatively on the hazard function. Specifically, the relative
risk model by Cox [40] specifies that

h(t, x) = h0(t) exp

β0 +

p∑
i=1

βixi

 = h0(t) exp (βX) , (2.90)

where h(t, x) is the expected hazard at time t, h0(t) is the baseline hazard at time t when all of the
independent variables are zero and βs are the coefficients to be estimated. The corresponding
survival functions known as the Lehman are is given as follows:

S (t, x) = [S 0(t)]exp (βX) , (2.91)

where S 0(t) = exp
[
−

∫ t

0
h0(s)ds

]
.

A key characteristic of proportional hazards models is the constancy of all covariates at
time 0. As a result, due to the proportionality of the hazard function, the ratio of the hazard
rate of two different subjects with covariates X1 and X2 called the hazard ratio is a constant.
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HR =
h0(t) exp (βX1)
h0(t) exp (βX2)

= exp
[
(X1 − X2)β

]
, (2.92)

which is time-independent.

Estimation of the Cox Proportional Hazard Model

The baseline hazard function and the parameters, β of the model are estimated as proposed by
Cox [40] using partial likelihood. The construction of the partial likelihood follows suit.

Let t1, t2, . . . , tn denote the observed survival times, t(1) < t(2) < · · · < t(r) be the observed
distinct times of death, and R(t( j)), j = 1, 2, . . . ,m be the risk set at time t( j), defined as the set
of indices of the subjects that are alive just before time t( j. The conditional probability that the
ith individual experiences the event at t( j) given that one individual from the risk set on R(t( j))

experiences the event at time t( j) is

P(subject i dies) =
P(subject i dies at t( j))

P(one death at t( j))

=
hi(t( j))∑

r∈Rt( j)
hr(t( j))

=
h0(t( j))exp(β′Xi)∑

r∈R(t( j)) h0(t( j))exp(β′Xr)

=
exp(β′Xi)∑

r∈R(t( j)) exp(β′Xr)
,

(2.93)

which does not depend on the baseline hazard h0(t). Cox [40] proposed that the partial likeli-
hood is given as the product of those probabilities resulting

L =

m∏
j=1

exp(β′Xi(t( j)))∑
r∈R(t( j)) exp(β′Xr(t( j)))

, (2.94)

where Xi(t( j)) is the vector of covariate for subject i at risk at time t( j) and no observation is
censored. For censored information, the likelihood is expressed by

L =

n∏
i=1

[
exp(β′Xi(t(i)))∑

r∈R(t(i)) exp(β′Xr(t(i)))

]δi

, (2.95)

where δi =

1 if not censored

0 if censored
is the event indicator for the ith observation and no ties are

assumed in the occurrence of events.
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Parametric Cox Proportional Hazard Model

Parametric formulation of the Cox proportional hazard model assumes that the baseline hazard
rate, h0(t) follows one of the parametric distribution functions described in section 2.4.4 and
the hazard function depends on a covariates vector X of p independent variables. Different
hazard functions produce a specific family of parametric PH models.

For example, if one assumes an exponentially distributed survival time, the baseline hazard
rate, h0(t) = λ is constant then the hazard rate of the PH model obtained is given as

h(t|x) = λexp(βX), (2.96)

where β is a vector of coefficients to be estimated and X is the covariate vector. This model
is known as the exponential PH model. An important extension of the exponential PH model
is the piecewise exponential model. In this model, the survival time is divided into intervals
(t j, t j+1], j = 1, 2, . . . , k, t1 = 0 and the constant baseline hazard varies across intervals. (See
[25, 70, 71]).

If the Gomperts distribution is assumed, the baseline hazard rate is given as h0(t) = λ exp(θt),
and the hazard rate of the PH model is given by

h(t/x) = λ exp(θt)exp(β′X). (2.97)

For the final example, if the Weibull distribution is assumed, then the baseline hazard rate is
given by λptp−1 with λ, p > 0. The Weibull PH model’s hazard function with covariates vector
X is given by

h(t|x) = λptp−1 exp(β′X). (2.98)

To determine the suitability of the parametric model, a non-parametric estimate of the sur-
vival time is performed. For example, if the hazard function is approximately constant over
time, the exponential distribution might be used; if the hazard function increases or decreases
monotonically with increasing time, a Weibull or Gompertz model should be considered.

The advantage of the parametric assumption is that the survival function is smooth and the
model is flexible. But the downside is that the model is not parsimonious and does not lead
to easy interpretations. And also, one requires the parametric model to be a good fit to the
survival life data and must be tested. The maximum likelihood method is used to estimate the
parameters instead of the partial likelihood in the Cox model.
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Accelerated Failure Time Formulation

A proportional hazards model assumes a multiplicative effect of the covariate on the hazard
rate. In contrast, the accelerated failure time model assumes an accelerative effect of the co-
variate directly on the survival time instead of on the hazard.

The AFT model formulation proposes a regression model for the log-transform survival
time using the covariate as follows:

log(T ) = β0 +

p∑
i=1

βixi + σξ = βX + σξ, (2.99)

where σ is a scale parameter and ξ, the error term is assumed to follow any of the survival
parametric density functions discussed. If ξ follows an extreme value distribution, then the
survival time T has a Weibull distribution. Depending on the parametric form assumed for the
ξ, the AFT models are named according to the distribution of T obtained. Therefore, there can
be exponential AFT models, Weibull AFT models, log-logistic AFT models, Log-Normal AFT
models, or the gamma AFT models. The survival function of Ti is obtained following random
variable transformation

S (t) = P (Ti > t)

= P
(
log(Ti) > log(t)

)
= P

β0 +

p∑
i=1

βixi + σξ > log(t)


= P (βX + σξ > log(t))

= P
(
ξi >

(
log(t) − βX

σ

))
= S ξ

(
log(t) − βX

σ

)
.

(2.100)

Table2.1 summarizes the distributions of some commonly used ξ and their corresponding
distributions of Ti. Generally, the survival function and its corresponding hazard function are
of the form

S (t|X) = S o (t/ν(X)) , (2.101)

and
h(t|ν(x)) =

h0[t|ν(x)]
ν(X)

. (2.102)

where S 0 is the baseline survival function, h0() is the baseline hazard rate, and ν is an acceler-
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ation factor. The acceleration factor is given as

ν(x) = exp

β0 +

p∑
i=1

βixi + σξ

 = exp
(
β′X + σξ

)
. (2.103)

Table 2.1: Summary of parametric AFT models

Distribution of ξ Distribution of T
Extreme value(1 parameters) Exponential
Extreme value(2 parameters) Weibull

Logistic Loglogistic
Normal Lognormal

LogGamma Gamma

The most common estimation method for the AFT models is the maximum likelihood
method. The likelihood function of the n observed survival times, t1, t2, . . . , tn is given by

L(β, σ) =

n∏
i

[
f (ti)

]δi [S (ti)]1−δi , (2.104)

where fi(ti) and S i(ti) are the density and survival functions for the ith individual at time ti and

δi =

1 if not censored

0 if censored
is the event indicator for the ith observation.

Substituting S (ti) = S ξ

(
log(t)−β′X

σ

)
as obtained from Equation 2.100, the log-likelihood func-

tion is then obtained as

log
[
L(β, σ)

]
=

n∑
i=1

[
δi log

(
σti + δi log

(
fξi(zi) + (1 − δi) log

(
S ξi (zi)

)))]
, (2.105)

where zi =
log(t)−β′X

σ
and the maximum likelihood estimates of the unknown parameters, β and

σ are obtained using the Newton-Raphson algorithm.



Chapter 3

Intensive Care Unit-Step-down Unit
System Congestion: To Premature
Step-down or not?

Abstract

A Step-Down Unit (SDU) provides an intermediate Level of Care for patients from an Inten-
sive Care Unit (ICU) as their acuity lessens. However, SDU congestion and upstream patient
arrivals force ICU administrators to incur a cost, either in the form of overstays or premature
step-downs. When the ICU and the SDU are congested, patient flow decisions are challenging.
We develop two patient flow policies using a Markov decision process model to select actions to
optimize the system’s net health service benefit. One allows for premature step-down actions,
and the other allows for patient rejection actions when the system is congested. Our simulation
results using the optimal actions obtained from the MDP models show that the policy with pa-
tient rejection has a net health service benefit that significantly exceeds that of the policy with
the premature step-down option. Furthermore, based on the results, it is observed that prema-
ture step-down action contributes to congestion downstream. Counter-intuitively, premature
step-down should therefore be discouraged, and patient rejection or diversion actions should
be further explored as viable options for congested ICUs.

Keywords: Healthcare, ICU, SDU, patient flow, policy, congestion, MDP
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3.1 Introduction

Intensive care units (ICUs) provide care to patients with high levels of acuity. Patient acuity has
often been measured by standardized scores such as SOFA and the variants of APACHE [88,
90] as well as nursing manpower scores, such as the “Nine Equivalents of Nursing Manpower”
(NEMS) score [125, 113]. Staffing is typically one nurse per ICU patient, and ICU beds are
rarely idle. During recovery, the continued need for intensive care (and consequently, an ICU
bed) diminishes and this is reflected in a lower NEMS score. To provide better continuity of
care, so-called Step-down Units (SDUs) are intended for these recovering patients [94, 101,
59], with staffing typically one nurse per two SDU patients. In a congested setting, patients
with lesser acuity who continue to occupy ICU beds represent at best a sub-optimal use of
resources, and at worst may prevent an arriving high-acuity patient from getting the care she
requires.

The NEMS score is a scoring derived by Miranda et al. [113] from the therapeutic inter-
vention scoring system (TISS) to determine the required levels of intensive care needs, provide
information on the severity and prognosis of patients’ acuity and determine the needed number
of nurses and their workload. The NEMS score is a value between 0-56 points, the sum of
nine (9) patient’s related factors (see Table: 3.2) which have an influence on nurses’ workload
during the administration of care [31, 112, 167].

ICU beds and staffing represent a high operational cost for any hospital [65, 170, 142].
Therefore, with its highly valued care and the increasing demand, it is necessary to improve the
ICU flow to optimize the system’s throughput [8]. For a patient to be discharged or transferred
from the ICU, a physician’s declaration of the patient’s medical stability is required [117, 119].
Determining the patients’ suitability to leave the ICU often takes time. Also, if there are no
available beds downstream, patients may occupy ICU beds longer than medically necessary
[154]. Furthermore, ICUs avoid rejecting patients as there is often a risk of death if a patient
is turned down or left untreated. As such, patient arrivals may trigger the step-down of a
suspected lower acuity patient to free up a bed for the recent arrival. Motivated by these
phenomena, we define two types of ICU patient transfers or ’step-down’: regular step-down,
during which sufficiently low acuity patients (LAP) are moved from the ICU to the SDU and a
premature step-down during which a HAP is moved from the ICU to the SDU before reaching
her intended medical stability.

In the case of increasing demand for intensive care and a congested ICU, management
needs to decide between rejecting a new patient in need of critical care or prematurely step-
ping down a current occupant. Possible future scenarios, including demand surges due to new
diseases, may put the ICU in a precarious situation. For example, increasing numbers of coro-
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navirus disease 2019 (COVID-19) cases may create a surge in demand for hospital admission
and critical care. In such a situation, when the ICU is full, and resources are constrained who
receives the service: the newly arriving patient or the existing patient [11]?

In this study, we compared two patients flow policies. The first combines the following
actions: reject or admit an arriving HAP to the ICU, step-down or retain existing LAP in the
ICU, premature step-down or retain HAP in the ICU, and prematurely discharge or retain a
LAP from the SDU. In Policy 2, however, whenever the system is congested and there is an
arriving patient, an existing HAP is prematurely stepped down in other to admit the arriving
patient instead of rejection in Policy 1. In this policy, premature step-down of existing patients
and admission of an incoming patient has priority over rejection of the latter under congestion.
We only quantify the variation in the system’s health service benefit in a congested environment
via a metric that reflects the benefice or detriment of action, i.e an action either increases or
decreases the system’s health service benefit. We aim to assess the impact of the two decision
policies on patient flow in a congested environment. The main difference between the two
policies is that the first perform premature step-downs of existing high acuity patients (HAP)
to avoid rejection of arriving patients when the ICU is full, whereas once the ICU is full, the
second reject arriving patients. We sought to optimize the long-term health service benefit of
these policies. In our methodology, we assigned relative weights to each atomic action, built
and solve a Markov decision model to obtain optimal actions that made a policy based on such
weights. The optimal actions of the two are then analyzed for sensitivity and used as inputs to
simulate the hospital management flow and compare the two policies under an increasing rate
of arrival.

The remainder of the chapter proceeds as follows. Section 3.2 provides an overview of
related literature, with keen attention to the use of operation research applications to patient
flows in the ICU. Section 3.3 briefly describes the empirical data used in this research. Section
3.4 describes the simple solution methodology of the infinite horizon Markov decision pro-
cess model we proposed, its sensitivity analysis and the simulation model. In Section 3.5, we
present the result of the decision rules for each policy, the sensitivity analysis, and the simula-
tion results. In Section 3.6, we discussed the implication of the results obtained and the chapter
closes in Section 3.7 with the conclusions and recommendations.

3.2 Overview of Related Literature

ICU Patient flow and capacity planning have received a lot of attention in the operation research
literature, even more so during COVID-19 pandemic [147, 37, 114]. Several papers study
patient flow and capacity planning based on resources such as beds and staffing and its scarcity.
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Comprehensive reviews of this literature can be found in Bai et al. [12], Lin et al. [98]. They
found various stochastic (queueing models, MDP), deterministic (mathematical programming)
and empirical (statistical) methods used in the literature to model ICU patient flow.

Here, we focus our review on a few key papers in the literature on the decision-making in
an ICU under congestion. ICU flow decision-making process is complex and challenging. Az-
carate et al. [11] remark that flow decisions guidelines in the ICU are hindered by the absence
of clear and objective metrics to determine which patients will continue to benefit from criti-
cal care. Levin [95] observed that only a small number of ICUs use written patient discharge
guidelines and follow an empirical decision process and that consensus, rather than empirical
evidence, dictates the importance of guidelines and policies.

In a congested scenario, the practice may be to triage current ICU patients [152]. Like
Levin [95], most literature suggested that discharging patients is a way to relieve congestion
pressure in the ICU. At the same time, the lack of beds in other downstream units of the hospital
can also cause discharge delays or overstays. A majority of the unsuccessful discharges from
ICU were due to a lack of beds in the downstream or disagreement over admitting services in
the wards [150, 95, 8].

Downstream congestion has also been observed to cause blocking in the ICU. It keeps pa-
tients from moving [38]. Mathews and Long [110] found that in the USA, ICU patients who
are ready for transfer to a downstream unit often stay in the ICU for longer than clinically nec-
essary. Most of such patients remain in a critical care bed and thereby delaying admission for
other incoming patients. In their studies, Mathews and Long [110] examined varying discharge
policies in times of capacity strain in the Emergency Department (ED). Shi et al. [144] develop
a stochastic network queuing model with dynamic discharge policies, which reduce admission
delays and ED wait times for admission to the ward in times of peak utilization.

Markov Decision Process (MDP) models have been used actively in recent years in hospi-
tal resource and inventory management in general, and ICU resources and service modelling
in particular. Broyles et al. [27], Dobson et al. [47], Patrick et al. [123], Patrick [122], Chan
et al. [34], Li et al. [97], Nunes et al. [118] all used discrete-time MDP to model discharge
and admission decisions in the ICU with many dissimilarities in the models. One major dif-
ference is the state definition of the particular MDP model. Nunes et al. [118] presented an
MDP model for elective (non-emergency) patient admissions to promote more efficient uti-
lization of hospital resources, thereby preventing idleness or excessive use of these resources.
Their solution approach was the value iteration algorithm. Their model was able to generate
an optimal admission control policy that maintained resource consumption close to the de-
sired levels of utilization. They however report difficulties using it since it is a complex model
due to its stochastic dynamic and high dimensionality and requires the development of cus-
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tomized solution methods. Patrick [122] analyzed several scenarios that explore the trade-off

between patient-related measures (lead times) and physician- or system-related measures (rev-
enue, overtime, and idle time). They did so by using a MDP model with a three-dimensional
state: the current number of patients who can be booked in advance, the number of previously
booked appointments and the new demand, to analyze several scenarios that explore the trade-
off between patient-related measures (lead times) and physician- or system-related measures
(revenue, overtime and idle time). Through simulation, the paper demonstrates that, over a
wide variety of potential scenarios and clinics, the MDP policy does as well or better than open
access in terms of maximizing net health service benefit as well as providing more consistent
throughput. Chan et al. [34] examined priority demand-driven ICU discharge policies on pa-
tient mortality and total readmission load. They define the state to be the number of different
types of patients in the ICU to reflect the total occupancy of the ICU. They designed an approx-
imation algorithm and found optimal policies in certain regimes. Li et al. [96] applied an MDP
approach to study the admission decisions. Their state definition is similar to Chan et al. [34].
but they combined both the number of different types of patients in the ICU and the number
of available beds. Using this model, a lower and upper bound of the parameter was therefore
found to evaluate the admission policy and improve the policy. Edbrooke et al. [51] examined
the cost-effectiveness of ICU admission by comparing patients who were accepted into ICU
after ICU triage to those who were not accepted while attempting to adjust such comparison
for confounding factors. They found that not only does the ICU appear to produce an improve-
ment in survival, but the cost per life saved falls for patients with greater severity of illness,
that is timely ICU admission reduces 28-day mortality by 30%. Other studies demonstrate that
delaying ICU admission can prolong ICU length-of-stay [32] and increase the risk of death
[30]. Thus, a vicious cycle is born. Chronic beds shortages contribute to admission delays and
longer wait times. This further increases the length-of-stay (LOS) and creates exacerbating
beds shortages.

More recently, Li et al. [97] developed an analytical framework of an MDP model with
the system state characterized by the number of two patient types in the ICU to quantify the
impact of the number of reserved beds and suggest when to prematurely discharge current
patients. After extensive numerical experiments were performed to analyze the effect of each
parameter on the total survival benefits, the model is established to strike a balance between
rejection of incoming patients and premature discharge.

There are metrics developed by the clinical community as systematic criteria to evaluate
the patient health severity status. Rodrigues et al. [134] working with a large dataset from an
academic hospital use a discrete event simulation to show the benefits of SDU beds in improv-
ing both patient flow and costs in a highly congested hospital based on a metric called the Nine
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Equivalents of Nursing Manpower (NEMS). Shmueli et al. [145] used Acute Physiology and
Chronic Health Evaluation II (APACHE II) to evaluate patient severity. The NEMS and the
APACHE are based on the clinical observation of the patients and are generally assigned daily
based on data available within an ICU stay. Strand and Flaatten [155] provided a review of
several versions of three different prognostic scoring systems to review the severity metrics in
the hospital. Kim et al. [84] estimated the cost of denied ICU care for all the medical patients
admitted to 21 hospitals through the EDs. They empirically found that ICU congestion could
have a significant impact on ICU admission decisions and patient outcomes.

The step-down and discharge process in the ICU-SDU system is currently prolonged be-
yond the acute care days of patients. The unavailability of empty beds in the SDU results in
patients using the ICU even when they have no need of it [8, 94]. The congestion of the SDU
contributes to that of the ICU and therefore produces an increased length-of-stay. When pa-
tients who do not need the ICU service stay in the ICU longer than the need, this prevents the
admission of others who need it the most and exposes them to higher risk of mortality. The
question worth asking here is what the hospital can do in terms of step-down policy planning to
reduce not only length-of-stay but also increase health service benefit of patients who request
ICU. To answer this question, we must first look into how the step-down process is performed
currently.

Studies on the impact of SDUs are primarily limited to observational and simulation-based
models with different objectives [111, 49, 133, 129]. Most studies to date recommend the
SDUs as a safe care option for patient who does not need ventilation [129]. But, these studies
have not been conclusive on the benefit of the SDU in reducing mortality. Many hospitals have
used SDUs specifically as an alternative to full intensive care and this practice is thought to be
an alternative level of care. Continued research and data collection from the SDU is needed
and required in this arena to contribute to the development of the patient discharge process to
characterize and completely specify the medical and physiological step-down to SDU policy,
and to allow for comparison of outcomes across different units.

In this research, we will look at congestion from the last bed problem perspective. When the
ICU is full how to decide between rejecting a new patient in need of critical care and creating
a vacancy by prematurely discharging a current occupant? Azcarate et al [11] offer a review
of literature on this clinical management dilemma with factors to consider and the patient
health consequences of each decision. However, they noted that mathematical models of ICU
management practices overlook these health factors and its consequences on patients. To the
existing literature, we propose the determination of actual decisions to be taken in congestion
instead of the determination of a certain threshold considering risk factors. The decisions about
all the aspects of patients’ flow are considered instead of focusing on a subset. We suggest
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focusing on the congestion area instead of solving a bulky state space with the state that is not
relevant for congestion. Finally, the result of our simulation model counter-intuitively suggests
that rejection of HAP when the system is full is better than to the conventional practice of
prematurely stepping down high acuity.

3.3 Data Description

Empirical data from the London Health Sciences Centre (LHSC) have been used to estimate
the distribution function of the transition used for the simulation. The LHSC is a multi-site
health care facility. It has two main hospitals: University Hospital and Victoria hospital which
includes the Children’s Hospital at London Health Sciences Centre. The data used is a set of a
four-year record containing more than 70000 logs with nearly 8000 patients from January 2015
to December 2018. The Patient information includes patient age, gender, admitting diagnosis,
admitting source, discharge destination, and daily NEMS scores till discharge. The NEMS is
closely related to patient health because as the patient’s health improves, less nursing attention
is needed, resulting in a lower NEMS. Empirically, a score below 10 is considered to be a “Very
Low Acuity” patient; scores between 11–25 would be “Low Acuity” patient, and from 26–56
a “High Acuity” (See Table 3.1) [134]. From Figure 3.1, it is observed that more than 95 %
of patients requesting the ICU’s service has their NEMS score higher than 25. It is therefore
reasonable to assume that all patients requesting the ICU are HAP.

Figure 3.1: First day NEMS score of Victoria hospital patients
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Table 3.1: Severity and Levels of Care Characteristics. (S ource:Rodrigueset al. [134])

Level Beds Patient per Cost ($ NEMS
of Care characteristics nurse ratio /patient-day) Score
1 Standard Ward beds: 3 or more to 1 $600 ≤ 10

No organ support, no ventilation
2 Step-down beds: Support single 2 to 1 $2,000 11 to 25

failed organ system, no ventilation
3 Intensive care beds: 1 to 1 $3,500 26 to 56

and multiple organ support

Table 3.2: NEMS Component (S ource:Mirandaet al. [113])

Items Points
1. Basic monitoring: hourly vital signs, regular
record and calculation of fluid balance 9

2. Intravenous medication: bolus or
continuously, not including vasoactive drugs 6

3.Mechanical ventilatory support: any form of mechanical/
assisted ventilation, with or without PEEP 12

4. Supplementary ventilatory care: breathing
spontaneously through an endotracheal tube;
supplementary oxygen any method, except if (3) applies

3

5. Single vasoactive medication: any vasoactive drug 7
6. Multiple vasoactive medications: more than
one vasoactive drug, regardless of type and dose 12

7. Dialysis techniques: all 6
8. Specific interventions in the ICU: such as
an endotracheal intubation, the introduction of a pacemaker,
cardioversion, endoscopy, emergency
operation in the past 24 h, gastric lavage; routine
interventions such as X-rays, echocardiography,
electrocardiography, dressings, the introduction of
venous or arterial lines, are not included

5

9. Specific interventions outside the ICU: such
as surgical intervention or diagnostic procedure;
the intervention/procedure is related to the
severity of illness of the patient and makes an
extra demand upon manpower efforts in the ICU

6

Patients arrive at the ICU individually from different sources. The ED, a unit with varying
patient severity provides the highest proportion of ICU patients. From the hospital studied,
about 38% of the patients come from the ED, 22% from the ward, 21% from the Operating
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room, and 20% from other places such as other hospitals or the SDU. The majority of the
admission into the ICU are unplanned and requires immediate medical care. With the priority
triage policy used in many hospitals, the hospital we study has very little, or no control over
admitting HAP arriving through the emergency route. Daily arrivals are essentially equally
distributed with Thursdays having the maximal admission. Hourly admission trend is also
examined. Figure 3.4 is the distribution of the inter-arrival time of the patients. The average
inter-arrival time is 6.47 hours and is approximately exponential. The system’s capacity is 30.
Figure 3.2 is the daily ICU occupancy in the year 2018. There is no evident trend available
in the data. Nevertheless, occupancy is observed to be often higher than capacity. Congestion
is a daily routine. In most cases, to offset overcapacity, patients are placed elsewhere at an
alternative level of care (ALC). Figure 3.3 is the time plot of the various acuity level observed
in the system. The evolution of the patients’ acuity levels depends on the severity and the care
they received.

Figure 3.2: Time plot of daily Victoria hospital occupancy in 2018. (Blue dashed line repre-
sents the mean and the red dashed lines represent one standard deviation below and above the
mean.)

The daily number of the various category of patients in the ICU is recorded. From that,
we obtain the distribution of the number of patients that recover from one acuity level to the
other in the system. Figure 3.5 is the density function of the number of patients that recovered
from high acuity to low acuity at the ICU. These are patients with NEMS score between 11
and 25 that are destined to move from the ICU to the SDU. Figure 3.6 is the density function
of the number of patients that recovered from low acuity to recovered in the system. These
are patients with NEMS Score less than 10 that are moved from the SDU to the general ward.
The patients that died or leave the ICU directly to the house are termed the discharged. Since
the number of recovered patients is countable, and the number of occurrences is independent,
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Figure 3.3: Time plot of daily number of acuity levels’ occupancy at the Victoria hospital.

Figure 3.4: Density distribution of the system’s inter-arrival time.

and the estimated average rates are approximately equal and independent of every occurrences,
we can safely assume that the recovery processes follow a Poisson distribution with parameter
estimates 2.45 and 3.22 for the high and low recoveries respectively. Table 3.3 provides the
descriptive statistics of the recovery processes.

Table 3.3: Descriptive statistics of daily recovery process

Mean Var Median Min Max Skew Kurtosis

High- Low 2.45 2.56 2 0 9 0.55 −0.058

Low-Recovered 3.22 3.67 3 0 11 0.60 0.19

On average, the daily transition matrix from one acuity level to another is tabulated in Table
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Figure 3.5: Daily distribution of the number of patients that move from high acuity to low
acuity. (Blue line represents the mean and the red lines are the one standard deviations from
the mean.)
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Figure 3.6: Daily distribution of the number of patients that move from low acuity to recovered.
(Blue line represents the mean and the red lines are the one standard deviations from the mean.)

3.4 given as

Table 3.4: Average daily transition probability

High Low Recovered Discharged
High 0.7760 0.1360 0.0020 0.0690
Low 0.1505 0.4342 0.0040 0.346

Recovered 0.0700 0.2250 0.0899 0.6140
Discharged 0 0 0 1



3.4. Methodology 49

3.4 Methodology

Patient flow through the SDU in most hospitals is assumed to come from two areas: either
directly from the ICU, or as a direct entry if the ICU is full. Patients are admitted to the SDU
directly from the ICU if they are deemed to be less acute for the ICU, but not so sick that they
require ICU care; and alternatively, acute patients who cannot be admitted to the ICU due to
congestion are admitted to the SDUs. A direct entry into the SDU is another example of an
Alternative Level of Care (ALC). That is, patients are sometimes placed in the SDU before
ICU care if the ICU is too congested to immediately admit the patient. Cady et al. [29] and
Eachempati et al. [50] for example only admit post-ICU patients into their SDU, while others
allow different admission patterns. Like Cady et al. [29] we assume in our setup that all SDU
patients are post-ICU.

Patients arriving at the ICU are assumed to be HAP only and are admitted immediately to
the ICU if there is a bed. In reality, some patients admitted to the ICU may have their NEMS
score less than 25. But due to the presence of multiple factors described in Table 3.2, they are
treated in the ICU. We assume only two types of patients in the ICU: high and low acuity. HAP
have NEMS score greater or equal to 25 and the LAP have NEMS score less than 25 [134]. At
a decision epoch, which is continuous, a patient flow decision has to be made. So when the
ICU is full and a HAP arrives at the ICU, he or she is rejected or a less acute patient may be
stepped down to make a space or a HAP may be prematurely stepped down. A critical patient
who is admitted to the ICU will be treated until either she reaches a stable enough low acuity
state to be stepped-down to the SDU or she dies and is discharged.

We propose a Markov decision process (MDP) to model the patient flow dynamics. Our
objective is to maximize what we call “the net health service benefit” of the system’s flow
under a congested environment. The accumulation of the rewards and the costs associated with
each of the actions under a policy gives the net health service benefit of a policy. Our goal is
then to find the set of actions that maximizes the net health service benefit.

3.4.1 State Space and Action Set

At a decision epoch, t ∈ [0,∞) considered to be continuous, the decision-maker has a set
of decisions to make: (i) Admit or reject an arriving patient to ICU if any (rejection can be
an alternative level of care or an off service), (ii) step-down or retain a LAP to the SDU,
(iii) prematurely discharge or retain recovering patient from the SDU to the ward and (iv)
prematurely step down or retain a HAP from the ICU to the SDU (if the ICU is full and there is
an arrival, premature may be considered). Since we are looking at decisions under congestion,
the system state is defined in terms of the congestion zone or the last beds zone [11]. The
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system’s state is denoted by st = (x1
t , x

2
t , yt, qt) where x1

t ∈ 0, 1, . . . , BI is the number of HAP
occupying the BI congestion zone of the ICU, x2

t ∈ 0, 1, . . . , BI is the number of LAP occupying
the BI congestion zone of the ICU, yt ∈ 0, 1, . . . , BS is the number of LAP occupying the BS

congestion zone of the SDU, and qt ∈ 0, 1 is the number of arriving patients.The state-space at
time epoch t is defined as:

S :=
{
st = (x1

t , x
2
t , yt, qt), 0 ≤ x1

t + x2
t ≤ BI , 0 ≤ yt ≤ BS , 0 ≤ qt

}
. (3.1)

For each state st ∈ S, zt = (z1t, z2t, z3t, z4t),A(st) denote a feasible action that can be taken.
And the action state is given as:

A(st) := {zt = (z1t, z2t, z3t, z4t), z1t ∈ {0, 1}, z2t ∈ {0, 1}, z3t ∈ {0, 1}, z4t ∈ {0, 1}} (3.2)

z1t = 1 denotes admission otherwise rejection; z2t = denotes step-down to the SDU, otherwise,
retain; z3t = 1 denotes discharge to the ward or otherwise retain; and, z4t = 1 denotes premature
step down otherwise retain. Every action must satisfy the capacity constraint expressed as

x1
t + x2

t + z1t − z2t − z4t ≤ BI (ICU)

yt + z2t + z4t − z3t ≤ BS (S DU)

∀t ∈ [0,∞).

(3.3)

The actions are taken such that the system cannot accept more than its capacity. The rejection
of arriving patients when the capacity is exceeded guarantees that.

If there are enough beds in the ICU, then the decision may seem simple, admit all arriving
patients. If there is enough capacity in the SDU, then step down all LAP in the ICU. We know
that if the ICU is not full, there is no need to discharge prematurely [97]. The main concern
that motivates this research is the problem of congestion, or “the last bed” in both the ICU
and the SDU. Rejecting patients is undesirable and may be impractical. If congestion exists in
the ICU, patients that would have been admitted may wait in other hospital’s units (e.g. ED,
surgical wards, general wards) but maybe recorded as ICU patients. Keeping a patient in the
ICU while that patient is supposed to be discharged to the SDU due to SDU congestion is
also undesirable, since this patient consumes resources he or she is no longer in need of and
preventing others from using those resources. It may also not be in the hospital’s best interest
to have too many idle beds. Since we are considering only congestion, instead of considering
the whole system capacity of the units to build our state space, we consider only the congestion
zone. For simplicity, we assume a toy example of the last two beds of the ICU and the last bed



3.4. Methodology 51

of the SDU correspond to the congestion zone so that the problem will become the last bed
problem in the medical literature [48, 135, 11].

Table 3.5 describes the state space. The first policy allows admit or reject, step-down or
retain a LAP in the ICU, and premature discharge or not from the SDU. The actions are coded
as tabulated in Table 3.6. A feasible combination of these actions is described in Table 3.7.
The second policy allows in addition to the actions of Policy 1, premature step-down of HAP.
The actions are coded as shown in Table 3.8. A feasible combination of these values gives us a
complete description of the action space for the first case as shown in table 3.9.

Table 3.5: Description of state space of the system with arrival, high acuity patients (HAP),
low acuity patients (LAP) in the intensive care (ICU) or step-down unit (SDU).

State number HAP ICU (x1) LAP ICU (x2) LAP SDU (y) Arrival (q)
1 0 0 0 0
2 0 1 0 0
3 0 2 0 0
4 1 0 0 0
5 1 1 0 0
6 2 0 0 0
7 0 0 1 0
8 0 1 1 0
9 0 2 1 0
10 1 0 1 0
11 1 1 1 0
12 2 0 1 0
13 0 0 0 1
14 0 1 0 1
15 0 2 0 1
16 1 0 0 1
17 1 1 0 1
18 2 0 0 1
19 0 0 1 1
20 0 1 1 1
21 0 2 1 1
22 1 0 1 1
23 1 1 1 1
24 2 0 1 1

Table 3.6: Actions in the Policy 1

Action Value Description
a1 0,1 Admission of high acuity to ICU
a2 0,1 Step-down of low acuity to SDU
a3 0,1 Discharge of low acuity out of SDU
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Table 3.7: Feasible actions under the Policy 1

Action number (z1) (z2) (z3)
1 0 0 0
2 0 0 1
3 0 1 0
4 0 1 1
5 1 0 0
6 1 0 1
7 1 1 0
8 1 1 1

Table 3.8: Actions in the Policy 2

Action Space Description
a1 0,1 Admission of high acuity patients (HAP) to ICU
a2 0,1 Step-down of low acuity patients (LAP) to SDU
a3 0,1 Discharge of LAP out of ICU
a4 0,1 Premature Step-down of HAP

Table 3.9: Feasible actions under the Policy 2

Action number (z1) (z2) (z3) (z4)
1 0 0 0 0
2 0 0 0 1
3 0 0 1 0
4 0 0 1 1
5 0 1 0 0
6 0 1 0 1
7 0 1 1 0
8 0 1 1 1
9 1 0 0 0
10 1 0 0 1
11 1 0 1 0
12 1 0 1 1
13 1 1 0 0
14 1 1 0 1
15 1 1 1 0
16 1 1 1 1

3.4.2 Health Service Benefit Rewards and Costs

The reward and cost structure of this study is defined as the health service benefit of an indi-
vidual in the hospital. Since ICU managers desire to serve the HAP in the ICU and the LAP in
the SDU, the reward comes from two sources: admitting patients in the ICU is given a higher
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reward and stepping down a LAP from the ICU to the SDU to accommodate HAP. A reward, rh

is associated with every admission and a reward, rl is associated with every natural step-down.
Natural discharges are not rewarded in order not to double reward. The reward, rl, is viewed
as the profit of not using the ICU with higher cost and using the SDU with lesser cost but
with the same result. It is considered the difference between the cost of rejecting an arriving
patient to the ICU and the cost of the current patient using the ICU for a full recovery. The
undesirable events are then seen as the elements that contribute to the cost. Rejecting patients,
premature step-down, keeping a LAP in the ICU and premature discharge of the patient that
has not fully recovered all contribute to the cost of health service benefit to individual patients
in the hospital. A cost, ch is associated with every HAP rejected; a cost, cl is associated with
every overstay of a LAP in the ICU; a cost and a cp, is the cost of a premature step-down out
of the ICU. The cost of a premature step down represents the cost of incomplete service at the
ICU. The reward associated with the natural step down is considered the difference between
the cost of rejecting an arriving patient to the ICU and the cost of the current patient using the
ICU for a full recovery. The premature step-down cost is the cost of incomplete service at the
ICU.

Health service benefit rewards are gains and health service benefit costs are losses. The
accumulation of the rewards and the costs defined above produces the net health service ben-
efit. This research aims to obtain the decision structure to maximize the discounted net health
service benefit over a quarter. The structure of the net health service benefit can be written as:

r(st ,zt) = rh(st, zt) + rl(st, zt) − ch(st, zt) − cl(st, zt) − cp(st, zt) (3.4)

We assume that the cost of ICU refusal is equal in absolute terms to the reward of ICU use.
Given that the SDU is poorly equipped and less monitored, we assumed that its absolute service
cost is less than that of the ICU. Rejecting a patient has a higher negative effect compared to
prematurely stepping down a patient. Likewise, premature step-down has a higher negative
effect compared to premature discharge from the SDU. For our toy example, the baseline values
for the computation are set as follows: the reward for admitting a patient is set to 100, the
reward for stepping down a patient is 25, the cost for rejecting a patient is 100, the cost for
overstay in the ICU is 50, and the cost for premature step-down of a HAP is set to 80. These
values are chosen as relative weights of the consequences of each action. A measure of the
effect of these actions is difficult. Since such research will be unethical. The idea is to start
with a naive relative weight for each action. Thus, we performed sensitivity analysis of these
values for its robustness.
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3.4.3 Value Function and Transition Probability

The value function estimates how good it is for the decision-maker to perform a given map of
actions to the state. That is a measure of each policy. A policy π is a distribution of a set of
the feasible action in each state (a mapping from each state, s ∈ S, and action, z ∈ A, to the
probability p(s,z) of taking action z when in state s). In other words, it is a mixed policy. The
value function in state s under a policy π at time t, denoted Vπ(st), is the expected long run of
the discounted rewards when starting in s and following the policy π thereafter. It is defined by

Vπ(st) = Eπ

 T∑
i=0

λir(st+1, zt/st)

 (3.5)

where r(st+1, zt/st) is the reward to-go function at time t + 1 given action z is taken in state
s at time t and T is the time horizon. When T = ∞, we have an infinite time horizon. We
considered the infinite horizon because our decision epochs happen continuously and arrivals
occur randomly. The optimal value function of the MDP model specifies the maximal expected
reward over the infinite horizon for each state and satisfies the Bellman’s optimality equation
[130] for all st ∈ S defined by

v∗π(st) = max
π

r(st, zt) + λ
∑

st+1∈S

P(st+1/st, zt)Vπ(st+1)

 (3.6)

Our objective is to determine the optimal policy π∗ of the MDP. This policy specifies the dis-
tribution of the actions that optimize the value function for each state and is given by

π∗(st) = arg max
π

r(st, zt) + λ
∑

st+1∈S

P(st+1/st, zt)Vπ(st+1)


P(st+1/st, zt) is the probability of transiting from state s to another when action z is taken

at time t. The transition probability described the interactive combination of the progression
of patients’ health status from one acuity level to another, death, the random arrival, and the
action taken and is given by

P(st+1|st, zt) = Pr(x1
t+1 = x1

t − rt + z1t − z4t − dt, x2
t+1 = x2

t + rt − z2t, yt+1 = yt + z2t − r2t − z3t)
(3.7)

where P(x1
t+1 = x1

t − rt + z1t − z4t − dt, x2
t+1 = x2

t + rt − z2t, yt+1 = yt − z3t) is the probability
that at time t + 1, the number of HAP patients in the ICU is x1

t+1 = x1
t − rt + z1t − z4t − dt, the

number of LAP in the ICU is x2
t+1 = x2

t + r1t − z2t, and the number of LAP in the SDU, where
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rt is the number of people who recover from the xt, and r2t is the number of natural recoveries
who left the SDU. At time epoch t, the system state is

(
x1

t , x
2
t , yt, qt

)
. Between time epoch t

and t + 1, four processes influence the transition of the state. Arrivals qt, recovery of r1
t HAP

to LAP in the ICU, complete recovery of r2
t LAP that move out of the system at time t + 1,

and dead patients, dt. We assumed that only HAP die. The system state at time t + 1 becomes(
x1

t+1 = x1
t − rt + z1t − z4t − dt, x2

t+1 = x2
t + rt − z2t, yt+1 = yt + z2t − r2t − z3t

)
. This is depicted in

the diagram below.

Time t t + 1

x1
t x1

t+1 = x1
t − rt + z1t − z4t − dt

S tate(s) x2
t x2

t+1 = x2
t + rt − z2t

yt yt+1 = yt + z2t − r2t − z3t

The transition probability is obtained from four random events: the arrival, the recovery
in the ICU, the recovery in the SDU, and the dead. qt arrivals occur at time t with proba-
bility Pr(qt). This random arrival is independent of patients’ recovery rate and the hospitals’
management. r1t recovered from high acuity to low acuity with probability Pr(r1t), r2t recov-
ered from low acuity to recovered with probability Pr(r2t), and dt death occur with probability
Pr(dt). Since these four processes are independent, we can safely approximate the transition
probability as:

P(st+1|st, zt) = Pr(r1t)Pr(r2t)Pr(qt)Pr(dt) (3.8)

and the distribution of each of these events is estimated from data as shown in Table 3.4 in
Section 3.3. Since a Poisson distribution is the limit of a binomial distribution with parameter
p = λ/n, where λ is the Poisson rate, and n, the number of trials approaches infinity. Since we
are considering continuous-time epochs, we can assume that at most one patient may arrive, at
most one patient may recovery from high acuity to low, at most one patient may recover from
low to recovered, and at most one patient will arrive. Each process can then be a Bernoulli
process with parameter p. Because the assumption on n is subjective, if we assumed that the
probability of an event occurring or not is equi-probable. Hence, the transition probability
from state st to state st+1 is P(st+1|st, zt) =

(
1
2

)r1t+r2t+qt+dt
(

1
2

)4−(r1t+r2t+qt+dt)
with r1t, r2t, qt, and dt ∈

{0, 1}. In the computation, we use the empirical probabilities in Table 3.4.

z1t is admitted, z2t is stepped down to the SDU, z3t is prematurely discharged, and z4t is
prematurely stepped down from the ICU at time t. Our objective is to determine the weight
of every action in every state and use the action with the maximum weight to proxy optimal
action in the various state.
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Several methods have evolved for solving MDPs and dynamic processes in general. Solu-
tion methods for infinite-horizon problems use policy iteration, value iteration and linear pro-
gramming while finite-horizon problems are mostly solved backwards induction algorithms.
In this paper, we use the linear programming method developed by Schweitzer and Seidmann
[141] with more recent expansions by Adelman [2], De Farias and Van Roy [42], Puterman
[130] to solve the MDP due to its simplicity and easy reproducibility. Bertsekas and Tsitsiklis
[19], Powell [127], Manne [106], Adelman [2], De Farias and Van Roy [42], Puterman [130]
are extensive literature on linear programming methods for solving MDPs. From Powell [127]
and Puterman [130], we know that, if v(s) ≥ maxa(R(s, z) +

∑
s∈S P(s′ |s,zi)v(s′)) where P(s′ |s,zi) is

the transition probability, then v(s) is an upper bound on the value of being in each state. This
means that the optimal value function can be obtained, and the optimal actions determined by
backward induction by solving the following linear program

min
v

∑
zt∈A

d(st)v(st, zt)

s.t. v(st, zt) ≥ R(st, zt) + λ
∑
j∈S

p( j|st, zt)vπ(st, zt), ∀st ∈ S, zt ∈ A.
(3.9)

Where d(st) is any positive value. Alternatively, the solution of the dual of Equation 3.9 shown
in Equation 3.10 provides the distribution of the actions in each state [43].

max
∑

st

∑
zt

R(st, zt)W(st, zt)

s.t.
∑

zt

W( j, zt) −
∑

st

∑
zt

p( j|st, zt)W(st, zt) ≤ d( j), ∀ j ∈ S.
(3.10)

Where the normalized W(st, zt), (st ∈ S , zt ∈ Z) are interpreted as the steady-state probabilities
that action zt is applied when the system visit state st at the typical transition. There are in
total # S constraints, where # S represents the total number of states in the states space. The
cost function

∑
st

∑
zt

R(st, zt)W(st, zt) represents the steady-state average reward per transition.
From Ross [136] and Wang et al. [168] by strong duality, we know that the optimal objective
value of the dual LP equals the optimal objective value of the primal LP. Therefore, given
a solution to the dual, the optimal action can be approximated directly by a much simpler
transformation as

z∗t = arg max
zt∈Ast

{
W(st, zt)∑
zt

W(st, zt)

}
(3.11)

whereAst is the set of all the actions possible in state st.
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3.5 Results

3.5.1 Optimization Results

As described above, we solved equation 3.10 and computed the values of the probabilities of
each of the actions in every state. The action with the maximum probability in the state is the
optimal action. We did so in R using lpSolveAPI package, a 64 bit laptop with 32 GB memory
and an Intel(r) Core i7-4600U CPU at 2.69 GHz.

The optimization and the computation were done as described in Sections 3.5 and 4.1.
Table 3.10 exhibits the optimal actions in each state for Policy 1. In states without arrival,
the possible actions are reduced to step-down or retain LAP in the ICU to the SDU and/or
discharge or retain a LAP from the SDU. Discharges occur only when there is at least one LAP
in both the ICU and the SDU and this is when there is an arrival or not. Every discharge out
of the SDU has been triggered by a step-down from the ICU, and the presence of two LAP in
the system. Either the two LAP are in the ICU or there is one in the ICU and one in the SDU.
Whenever there is a space in the SDU and there is a LAP in the ICU, a step-down is triggered.
Once there is an arrival if there is a LAP in the ICU, a step-down is triggered. Whenever there
is an arrival and the ICU has an empty bed, we admit. In the state where we have the two ICU
beds taken by low acuity patients, the SDU is empty and there is an arrival, the recommended
action is to admit and step down. In general, accept arrivals when you can, step down when
you can, and discharge when needed.

Table 3.11 describes the optimal actions selected in the various states under Policy 2. In
states where there is no arrival, the possible actions are reduced to step-down LAP from the
ICU to the SDU and/or discharge a LAP from the SDU and/or premature discharge of a high
acuity patient. It can be observed that whenever there is no arrival, a premature stepping down
is not necessary. We note that the only state in which a premature stepping down is allowed is
state 18, i.e. when all ICU beds are occupied, one SDU bed is available and there is an arrival,
one of the ICU patients is prematurely stepped down and the arriving HAP admitted.

Whenever there is at least two LAP in the system and a LAP occupying the SDU bed, a
discharge is triggered by a stepping down of a LAP in the ICU. Admission is denied when the
ICU is full and the SDU is also full. If all the patients in the ICU are HAP, we may have a HAP
in the SDU as well. That is the patient occupying the last bed in the SDU may also be a high
acuity patient. In general, it is better to allow the recovering patient in the SDU to recover than
to discharge him, with a cost, and admit an arriving patient in the SDU with another cost.
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3.5.2 Sensitivity analysis of the costs and rewards

A sensitivity analysis was undertaken to check how changes in the baseline costs and rewards
change the optimal action in the different states. The base parameters of the cost/reward used
in the model are as follows. The reward for admitting a patient is 100, the reward for stepping
down a patient is 25, the cost for rejecting a patient is 100, the cost for overstay in the ICU is
50, the cost for prematurely discharging a patient is 25 and the cost of premature step-down of a
patient is 80. In general, the actions are robust to rewards and costs associated with each action
within the neighbourhood. A large variation of the cost and reward parameters is necessary for
a fundamental change in the decision. For example in state (0,2,0), i.e. 0 high acuity in the
ICU, 2 low acuity in the ICU and zero low acuity in the SDU, using Policy 1, rewards must
be increased from 100 to 800 before we observe a change in the action from action (0,1,0) i.e.
admit 0, step-down 1 and discharge 0 to action (0,0,0) i.e. admit 0, step-down 0 and discharge
0 (see Table 3.12 first row).

In Policy 1, assuming that stepping down reward and the cost of overstay is always less
than the rejection cost. With that assumption, the model is always robust to stepping down
reward and the cost of overstay. And only the admission reward or rejection cost have the
same change as summarized in Table 3.12. Note that the Tables summarise only states with a
variation. When we are in state (1,1,0), i.e. one high acuity, one low acuity in the ICU last bed
and no patient in the SDU last bed, the baseline action is to do nothing, but when the admission
reward increased from 100 to 1000, the replacement action becomes stepping down the LAP
from the ICU to the SDU. When the admission reward or the rejection cost increases, the
system tends to perform fewer step-down actions. In Policy 2, increasing discharge cost while
keeping all other rewards and cost constant significantly affects decisions in only two states
mainly. In states (0,2,1,1) and (1,1,1,1), action (0,1,1,1) is replaced by action (0,0,0,0). In
other words, when there are at least two LAP in the system, and the discharge cost is high, the
optimal action recommended is to do nothing. Table 3.13 summarizes the variations observed
when we increase the reward of admission, the cost for rejection and the step-down reward.
Increasing the cost of overstay while keeping all other rewards and cost constant affects two
states. In state (1,0,0,0), the action changed from action (0,0,0,0) to action (0,0,0,1). In state
(1,0,0,0), the decision changed from action (0,0,1,0) to action (0,0,0,0). In state (1,0,0,1), the
decision changed from action (1,0,0,0) to action (0,0,0,0). When the ICU is full and the SDU is
full, no matter how we decrease the cost, premature step-down is not a better option to choose
(See Table 3.9 for actions). In state (2,0,0,1), when the cost increased, it is not a better option
to premature step-down. In state (1,0,0,0), when the cost is low, we can afford to premature
step-down and admit once there is a space in the SDU. In state (1,0,0,0) even though the ICU
is not full, when the cost of premature step-down is low, it is recommended to step down.
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Table 3.12: Sensitivity summary of Policy 1.

States Baseline actions Threshold Replacement actions
(0,2,0) (0,1,0) 800 (0,0,0)
(0,0,1) (0,1,0) 1000 (0,0,0)
(1,1,0) (0,0,0) 1000 (0,0,1)
(0,2,1) (0,1,1) 1000 (0,0,1)
(1,1,1) (0,1,1) 1000 (0,0,1)
(0,1,1) (1,1,0) 1000 (1,0,0)

Table 3.13: Sensitivity summary Policy 2.(AR: Admission Reward, RC: Rejection Cost, SR:
Step-down Reward)

Parameters States
Baseline Replacement

Threshold
action action

AR

(1,0,0,0) (0,0,0,0) (1,0,0,0) 250
(2,0,0,0) (0,0,0,0) (1,0,0,0) 500
(1,0,1,0) (0,0,0,0) (0,0,0,1) 1000
(1,0,0,1) (0,1,0,0) (1,0,1,0) 1500
(0,0,1,1) (0,1,0,0) (0,1,0,1) 500

SR
(0,0,1,0) (0,0,0,1) (0,0,0,0) 1000
(2,0,1,0) (0,0,0,0) (1,0,0,1) 1000

RC

(2,0,0,0) (0,0,0,0) (1,0,1,0) 1000
(0,2,1,0) (0,0,1,1) (0,0,0,0) 1000
(1,1,1,0) (0,0,1,1) (0,0,0,0) 1000
(1,0,0,1) (0,1,0,0) (1,0,1,0) 2000
(0,1,1,1) (0,1,1,1) (0,1,0,0) 2000
(2,0,1,1) (0,0,0,0) (0,0,0,1) 2000

3.5.3 Simulation

The model is built using Simul8 6.0 (See Figure 3.8). The software was chosen for its availabil-
ity, flexible coding, simplicity, and its interactive display of sequential events. In the simulation
frame, there are 30 ICU beds and 12 SDU beds. Decision epochs are continuous. The opti-
mal decisions are triggered only when the system is in the congestion zone. Arrivals follow a
Poisson distribution with a rate of 6.3 patients/day (Approximation from the hospital data, see
Figure 3.4). As estimated in Section 3.3, the recovery process from High acuity to Low acuity
follows a Poisson distribution with a rate of 2.45 patients/day, recovery from low acuity to
recovered is a Poisson process with a rate of 3.22 patients/day, the discharge process from the
system to elsewhere also follows a Poisson distribution with a rate of 4.47 patients/day, and the
death process is also Poisson with a rate of 1.24 patients/day. Decision-making is a continuous
process triggered by any of the previous processes. When there is space in the ICU, an arriving
patient is automatically admitted. The internal decisions in the ICU and SDU are coded into
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the system as tabulated in Table 3.10 or Table 3.11 depending on the policy considered. In the
ICU, the LAP are then made distinct from the HAP. If there is space in the SDU, the LAP are
moved to the SDU.

Two methods were used to validate the model: Experts face validation and the comparison
of parameter estimates and the results of the simulation without the implementation of the op-
timal decisions. The average throughput is within 5.78% of the empirical estimate. Total LOS
is lower but with a standard deviation of 3.4, resulting in no statistically significant difference
compared to the empirical data (p-value > 0.05). The mean LOS was found to be within 9.27%
of the empirical. Figure 3.7 is the plot of the superimposed distributions of the empirical and
simulated LOS. Given that the empirical data contains some special patients (about 0.07% of
the data) who have used the ICU for more than two months, we considered those observations
as outliers and removed them from our analysis.

Indicator Low 95 %
Simulation

Up 95%
Emp data

Difference
Average Estimate

Throughput (Patients/year) 1332 1366 1399 1287 -5.78%
Average LOS (days) 4.04 4.11 4.18 4.53 -9.27%

Standard Deviation (days) 3.354 3.4 3.447 4.13 -17.67%

Table 3.14: Comparative Patients Performance Measures

Figure 3.7: length-of-stay Distribution

Each policy was run for ten months duration with 300 replications of 50000 trials. We
reported only records of the last four months of the simulation to have stable results. The



3.5. Results 63

number of replications was recommended by the replication calculator, a function embedded
in Simul8. We set the precision to a 95% confidence interval. A different random seed was
used for each of the runs. We examine the costs incurred, the number of patients rejected and
the number of patients prematurely stepped down under the two scenarios to find and compare
the performance of the decision policies.

Figure 3.8: Screenshot of Simulation in Simul8

3.5.4 Simulation Results

The estimated performance indicators of the system when the arrival rate is 6 patients per day
(from empirical data) are tabulated in Tables 3.14 and 3.16. From Table (3.14), the results sug-
gest that on average, no patient is rejected with this average arrival rate. Policy 2 prematurely
stepped down on average about 47% (253) of the patients admitted causing an average overstay
of 10% (55) patients. Conversely, Policy 1 overstayed only 2.57 % (13) patients. ICU beds
utilization is moderate but the SDU beds utilization is high as observed in real life. Policy 2 has
on average a lesser utilization of the ICU (35%) compared to Policy 1 (49%). Policy 1 gives a
less congested SDU utilization of about 58% on average compared to the 71.8% of Policy 2. In
terms of health service benefit and cost, Policy 1 has an average cost per admitted of 13.57, an
average total reward of 125.24, thus a net benefit of 111.67 per patient admitted. Oppositely,
Policy 2 has an average cost per admitted of 55.40, an average total reward of 113.28, therefore
a net average benefit of 57.896 per patient admitted.

A similar analysis was performed investigating the increasing arrival rate of the patients into
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Performance Policy 1 Policy 2 Diff
measures Low 95% Av Up 95% Low 95% Av Total Up 95%
Admitted 462 515 568 534 537 540 -22
Rejected 0 0 0 0 0 0 0

Pre-stepped down 0 0 0 251.46 253.22 254.97 -253.22
ICU overstay 4.79 13.25 21.71 52.43 55.33 58.22 -42.08

ICU utilization (%) 41.81 47.81 53.82 34.68 34.95 35.22 12.86
SDU utilization (%) 53.08 57.73 62.37 71.41 71.81 72.22 -14.08

Table 3.15: Patients flow performance measures over four months.

Performance Policy 1 Policy 2 Diff
measures Low 95% Av Up 95% Low 95% Av Total Up 95%

Rejected Cost 0 0 0 0 0 0 0
Overstay Cost 0.52 0.90 1.09 4.91 5.16 5.39 -50.25
Discharge Cost 12.01 12.29 12.66 12.51 12.51 12.54 -0.22

Pre-Step-Down Cost 0 0 0 37.66 37.73 37.78 -37.73
Total Cost 13.18 13.57 13.91 55.07 55.40 55.70 -41.83

Admission Reward 100 100 100 100 100 100 0
step-down Reward 24.84 25.11 25.41 13.18 13.20 13.24 11.91

Total reward 124.98 125.24 125.56 113.28 113.28 113.28 11.97
Net benefit 111.06 111.67 112.40 57.57 57.90 58.20 53.77

Table 3.16: Average service performance per admitted patient.

the ICU. The results are summarized graphically in the following figures. The blue vertical line
represents the point the arrival rate is equal to the service rate (λ = µ). Policy 1 is plotted in
green while Policy 2 is plotted in black.

Fig. (3.9) shows the average number of ICU requests made in the last four months of the
simulation under various arrival rates with its 95% confidence interval. The confidence interval
is tiny and imperceptible. As expected, the ICU demand grows linearly with an increasing rate
of arrival. Fig. (3.10) the percentage of ICU requests admitted into the ICU during the last
four months of the simulation under various arrival rates with its 95% confidence interval. The
confidence interval is also indiscernible. When the arrival rate is less than the service rate, all
patients are admitted, once the arrival rate becomes higher, we observe a linear decrease in
the percentage admitted into the ICU. Fig. (3.11) the percentage of ICU requests rejected into
the ICU during the last four months of the simulation under various arrival rates with its 95%
confidence interval. When the arrival rate is less than the service rate, no patient is rejected,
once the arrival rate becomes higher, we observe a liner increase in the percentage rejected
patients. Fig. (3.12) is the percentage of admitted ICU patients who stepped down in Policy 2
during the last four months of the simulation under various arrival rates with its 95% confidence
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interval. Fig. (3.13) is the the percentage of admitted ICU patients who prematurely stepped
down in Policy 2 during the last four months of the simulation under various arrival rates with
its 95% confidence interval. When the arrival rate is less than the service rate, a little above half
of the admitted patients are stepped down and the remaining prematurely stepped down. When
the arrival rate is higher than the service rate, premature step-down leaves room for normal
step-downs. Note that in the figures, strategy means the optimal policy.

Figure 3.9: Average ICU requests

Figure 3.10: Percentage ICU Admission versus increasing arrival rate with its 95% CI. The
blue vertical line represents, (λ = µ), the point the arrival rate is equal to the service rate
follows. The policy without premature step-down is plotted in green while the policy with
premature step-down is plotted in black.

Fig. (3.14) and Fig. (3.15) are the average ICU utilization and SDU utilization with their
95% confidence interval. In the ICU, Policy 2 has a linearly increasing utility that is unaffected
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Figure 3.11: Percentage ICU rejection versus increasing arrival rate with its 95% CI. The blue
vertical line represents, (λ = µ), the point the arrival rate is equal to the service rate follows.
Policy 1 is plotted in green while Policy 2 is plotted in black.

Figure 3.12: Percentage ICU step-downs using Policy 2 with its 95 % CI. The blue vertical line
represents, (λ = µ), the point the arrival rate is equal to the service rate follows.

by the steady condition. Policy 1’s utility whoever, has a reduced steepness when arrival rates
are greater than service rate. In general, Policy 1’s ICU utility is higher than that of Policy
2. In the SDU, both policies have reduced utility steepness when arrival rates are greater than
service rate. In general, Policy 2’s SDU utility is higher than that of Policy 1. ICU utility and
SDU utility in Policy 1 have equivalent trend while SDU’s utility in Policy 2 is exorbitant.

Fig. (3.16) shows the average benefit per patient admitted. Both policies experience a
decreasing trend with a higher steepness when the arrival rate is high. In general, Policy 1 has
a higher benefit per admitted patient than Policy 2.
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Figure 3.13: Percentage ICU premature step-downs using Policy 2 with its 95% CI. The blue
vertical line represents, (λ = µ), the point the arrival rate is equal to the service rate follows.

Figure 3.14: ICU utility versus increasing arrival rate with its 95% CI. The blue vertical line
represents, (λ = µ), the point the arrival rate is equal to the service rate follows. Policy 1 is
plotted in green while Policy 2 is plotted in black.

3.6 Discussion

In the literature, the use of the SDU has been shown to considerably increase the ICU through-
put [110, 94, 109, 134]. But the effect of premature step-down has not been compared to that of
rejection in a high-demand system. The two decision rules are used to investigate the last bed
problem of patient flow management in the congested environment. The sequential optimal
solution stipulates admission whenever it is possible, i.e. if there is a mean of stepping down
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Figure 3.15: SDU utility versus increasing arrival rate with its 95% CI. The blue vertical line
represents, (λ = µ), the point the arrival rate is equal to the service rate follows. Policy 1 is
plotted in green while Policy 2 is plotted in black.

Figure 3.16: Average benefit per patient admitted and its 95% CI.

a patient to the SDU (either normal stepping down or premature stepping down, it should be
done), reject whenever the ICU is full, the demand is high and the cost of premature discharge
from the ICU is increased. Whenever both the ICU and the SDU are full, there is first a dis-
charge action before a step-down action. If the cost of premature discharge is increased, then
discharging patients become so costly that doing it will be rarely creating a congested ICU that
prevents admission and therefore other actions may not even be possible. The interdependence
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of the ICU and the SDU is clearly shown in this relationship. Because we assumed that the
costs are lesser than the reward, the results are robust. As expected once the cost of premature
step-down is greater than the reward of admission, the optimal action is to “do nothing”, that
is, it is preferable to reject arriving patients than prematurely discharging a present high acuity
patient.

Because ICU lengths of stay may be long and Policy 2 has the default action to prema-
ture step-down, it initially tends to perform excessive premature step-downs. This not only is
detrimental to the health service benefit of those patients but also seems to increase the SDU
length-of-stay in the long run. Therefore, in the long run, the SDU is full and further normal
step-downs are impossible. The flow rate into the SDU/ICU system becomes highly reduced.
Fig. (3.10) and Table. (3.15) show that when the rate of arrival is less than the service rate,
both policies admit on average a comparable number of patients, with Policy 1 having a higher
variation due to the rejections. Premature step-down causes congestion downstream. Increas-
ing the number of patients the SDU receives lengthens the patients stay at the ICU creating a
downward congestion, preventing upstream patients to be moved out. When the SDU is con-
gested, it creates overstay at the ICU even though the ICU may seen less busy with empty beds.
Empty beds are costly to the ICU since the ICU beds’ capacity is hard to change whether used
or not [64].

Premature step-downs increased the SDU artificially creating higher overstays at both the
ICU and the SDU and therefore reducing the normal step-downs. This creates congestion at the
ICU and in the whole system creating more rejection (Fig. (3.11)). Using Policy 2, increases
the number of premature step-downs as the arrival rate increases, and the SDU utilization
increases faster than the ICU utilization. An increase in the SDU occupancy, increases the
SDU overstays, prevents ICU normal and premature step-down and causes an increased ICU
rejection. This partially explains the fewer admission by Policy 2 compared to Policy 1 when
arrival rates increases. An increase in rejections leads to a drop in net survival. With an
arrival rate of more than half a patient per hour whatever the policy or the system, there is
no further improvement in the admittance of newly arriving patients, as the ICU is already
full. In such states, the system’s capacity is near 100% utilization. In general, even with the
premature discharge, the system will reach a point under heavy traffic where the number of
rejected patients, the ICU utilization and the SDU utilization in both policies will converge as
the rate of arrival increases. In those busy states, though the policy without premature step-
down rejects more patients, the policy with premature step-down rejects nearly as many and
performs even more premature step-downs.

Even if a patient may be denied access to ICU due to its full capacity, nonetheless hospi-
tal management may be pressed to identify an individual to premature step-down to prevent
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rejection. The perceived high risk of rejecting ICU patients and ethical considerations when
rejecting a patient, constrain the practice of premature step-downs. Instead of thinking about
the rejection as onsite rejection of patients, rerouting of ambulance can prevent the negative
impact on those patients who may be rejected and for whom a lack of bed may prove fatal.
Even if Policy 2 seems right and ethical overall, under high demand, it proves more detrimen-
tal than Policy 1. Likewise, we need to consider other arrangements when alternate levels of
care are not available to patients and all beds are occupied.

3.7 Conclusions

This research is concerned with the modelling of an ICU supplemented by a Step-down Unit
(SDU) to assist with efficient patient flow as patients recover, in a congested environment.
The Nine Equivalents of Nursing Manpower Score (NEMS) data-set for the ICU which we
considered served as the measure of patient recovery over time. We approximated the optimal
actions in the resulting Markov decision process to enable patient flow under two cases. Both
cases allowed for the admission of new HAP, the stepping down of existing HAP to the SDU,
and the discharge of LAP from the ICU. The latter case also allowed for the premature stepping
down into the SDU of HAP who have not yet completed the care they would ordinarily receive
in the ICU.

Through numerical comparison, we discovered that the optimal policy for the latter case
ended up doing more premature step-downs to admit a few more arrivals, relative to the case
where premature stepping down was not allowed. In this way, premature step-downs were
shown to impact future arrivals due to the greater level of occupancy downstream, which im-
pedes the movement of recovering patients to the SDU. As a result of this study, we found that
NEMS works well as a proxy for classifying daily patient health states and as such, translates
well into a transition matrix to be used in an MDP model. As defined in this research, cohort
health service benefit seems to be a good measure of the overall hospital’s pressure in its acute
units(ICU and SDU). We also found that the rewards and costs accumulated into the health
service benefit are not very sensitive; in other words, considerable changes in the values of
the rewards and costs are needed to change our general findings. In most cases, we observed
that premature step-downs stress the acute care pathway and lead to further congestion down-
stream. In steady-state systems with lower utilization rates, we recommend Policy 1, with the
use of an alternative level of care when there is an empty bed in the SDU in case the ICU
becomes full. Surprisingly and counter-intuitively, in prolonged busy states (high utilization
with high-demand scenarios), our findings recommend Policy 1. This policy does not allow for
premature step-downs, while achieving similar levels of overall health service benefit perfor-



3.7. Conclusions 71

mance. The added benefit of Policy 1 is that it does so without the additional stress downstream
which would further impact future arrivals.

Our model has its limitations. We look at the system level, not the individual. Due to its
intensive level of care, the individual benefits from overstaying at the ICU, while the system
under-performs. If an individual overstays in the ICU, his health service benefit does not
decrease, however, the system suffers a dis-utility. Especially, if there is an arrival finding the
ICU full. Secondly, NEMS is mostly used in Canada, so other jurisdictions may need to rely on
other daily metrics to determine a patient’s acuity such as APACHE (all versions) and SOFA.
Furthermore, the MDP model captures only the congestion zone of the system’s capacity. In a
model with full capacity, the state space increases rapidly, making it less tractable and harder to
solve both computationally and analytically. Moreover, the ICU/SDU ratio used in our MDP
model is fixed at 2:1. This was so to help formulate and solve the MDP. Finally, the health
service benefit as defined in the research may be an over-simplification of real-life phenomena
in the ICU.



Chapter 4

Intensive Care Unit-Step-Down Unit
Service Time Decisions Queuing Game

Abstract

In this paper, a length-of-stay competition between two servers in tandem without buffer be-
tween them is investigated using queuing games. This system typifies the relationship between
the intensive care unit (ICU) and the step-down unit (SDU) of a hospital. We model and an-
alyze the equilibrium length-of-stay decision under four different games (one cooperative and
three non-cooperative games) as follows: (i) both servers cooperate; (ii) the servers do not
cooperate and make decisions simultaneously; (iii) the servers do not cooperate and the first
server, the ICU, is the leader (ICU Stackelberg); (iv) the servers do not cooperate and the sec-
ond server, the SDU, is the leader (SDU Stackelberg). The payoff of the ICU is expressed as
the difference between the service benefit and the waiting in queue penalty, while that of the
SDU is the difference between the service benefit and the overstay penalty. The results show
that length-of-stay decisions of each server depends critically on the payoff function’s form and
the the exogenous demand. Secondly, with a linear payoff function, the SDU is only beneficial
to the system if the unit cost is greater than the unit reward at the ICU. Our results revealed
also that payoffs depend on the substitutability in both ICU Stackelberg and SDU Stackelberg
games. When most of the length-of-stay is spent at the ICU unit, our results suggest that the
critical care pathway performs better under coordination and or leadership at the ICU level.

Keywords: Game theory, buffer-less tandem queue, cooperation, Stackelberg, simultaneous
decision, length-of-stay allocation
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4.1 Introduction

The intensive care unit (ICU) represents the severest and most costly level of care within a given
hospital [169, 129]. To reduce cost and provide efficient care, the step-down unit (SDU) is used
as an intermediate level of care between the ICU and the general ward to care for recovering
patients and reducing patients’ time spent in the ICU [66]. The ICU is often a congested
unit due to its high demand. Therefore, the SDU is initially tasked to provide a transition
for recovering patients as an alternative to increase the ICU’s capacity or perform premature,
demand-driven discharge of patients from ICUs to general care units [101]. However, the use of
the SDUs has evolved, and there are considerable subjective views on their benefits and role in
the hospital [8]. While there are opposing views on the role of the SDU to the hospital system,
we will focus on its primal purpose, which is to provide a transitional place for recovering ICU
patients. Of note is the fact that: Firstly, it is not clearly defined how long a patient would stay
in the ICU before being moved to the SDU and secondly, the dependence or independence of
the SDU in making its own decisions has not yet been studied. Therefore, it is necessary to
study time partitioning (length-of-stay, or LOS) decisions between the ICU and the SDU to
provide guidelines and optimal care decisions at each server. In addition, understanding the
effect of power structure on the patients’ LOS helps set up procedures that can reduce cost,
congestion and improve coordination in the ICU/SDU system.

Though the ICU and SDU may be viewed as independent units, the SDU is created mostly
to absorb ICU outpatients. In this case, a discharge decision from the ICU is dependent on the
availability of space in the SDU. Decision-making will be different at the unit level, whether
the two servers cooperate (as in a centralized planner) or compete. In the latter, each server is
viewed as a decision-maker (or player) in a utility maximization game and an optimal setting is
the one that provides the highest utility. On the other hand, in games where the objective is to
maximize the throughput of a queue, we are in a queuing game [69, 58]. There are alternative
ways of studying a queuing game, and the most used is viewing the customers as the players
of the game, where the players observe (or not) the queue and decide whether to join or not
such queue. In contrast, in this work, we view the servers as players competing against each
other for the patients’ LOS when servers in a series in the same feed-forward network compete.
The objective of the competition is not the customers. The servers’ objective or utility can be
considered in terms of the share of the burden of care (patient LOS) of each of the servers.

In this work, we determine and characterize the LOS decisions between the ICU and the
SDU using payoff functions that measure the burden of care in a congested system by ad-
dressing the question of competing servers in tandem without a buffer in between. To our
best knowledge, this is an approach that has not been used frequently in the general queuing
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game literature, much less in healthcare. We tackle this problem considering a centralized
decision-making cooperative game as well as decentralized decision-making via simultaneous
decision-making games and Stackelberg games.

The remainder of this paper is organized as follows: Section 4.2 provides the background
literature in applications of queuing games in operations management and healthcare opera-
tions management. Then, in Section 4.3, we describe our system and the proposed model
formulation. In Section 4.4, we present the results and discussion. Next, we present and dis-
cuss numerical results. Finally, the conclusion and recommendations are presented in Section
4.5.

4.2 Relevant Literature

There is a broad range of strategic decision-making research concerning customers and firms.
For example, competition and cooperation among firms have been studied actively in game the-
ory literature. Customers’ strategic decisions to choose between firms have also received much
attention in the literature. The works by Hassin [67] and Hassin and Haviv [68] provide an
exhaustive literature review on the topic. This section, briefly presents some related papers that
looked at queuing game progress in healthcare followed by papers with profit maximization
objective in a network of servers’ system.

In his seminal work, Arrow [9] laid the foundation of what is later known as the “contract
theory”. He argues that a physician’s medical decision-making cannot be simply modelled as a
profit-maximization problem as it is in the case of a firm’s decision-making problem. Thinking
in the same direction, Siciliani and Hurst [148] and Brekke et al. [24] studied the impact of
hospital competition on waiting times. Siciliani and Hurst [148] modelled a market with only
two dominant producers where a general practitioner refers the patients to the hospital with
the lowest waiting time. The hospitals choose the supply of care and waiting time to compete
for patients. The paper shows that substitutability among hospitals reduces the supply of care
in equilibrium and results in longer waits. Brekke et al. [24] modelled hospitals competing
in a spatially differentiated market. They considered two types of patients who differ in their
treatment benefits: high segment and low segment. The hospitals simultaneously announce
waiting times, but they cannot differentiate the two patient segments in terms of waiting times.
Sadat et al. [139] consider a duopoly quality of care competition between two hospitals to
capture a fraction of the total market demand. Patients decide on the hospital that provides the
highest utility, as a function of price and the patient’s perceived quality. They show that while
patients may enjoy a positive utility based on demand and perceived quality of care, hospitals
share the market demand based on their perceived quality of care and capacity. Chen et al.
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[36] focus on price competition in a market of three service providers; one free public service
provider and two private service providers who charge a price. The objective of the service
providers is to choose the price that optimizes their profits by providing quality service, higher
capacity to reduce wait time. They show that such a price competition between the private
service providers in a market with a public service provider reaches a pure Nash equilibrium.
They investigate the impact of competition and collaboration between the two private service
providers on social welfare.

Attempt to maximize the network of servers through cooperation have also been studied in
the literature. Anily and Haviv [6] using a transferable utility cooperation game, considered
improving n servers’ efficiency by pooling service capacities to serve individual streams of
customers. They observed that for any subset of servers there exists cost-sharing allocations
under which no partial subset can take advantage by leaving and forming a separate coalition.
Karsten et al. [81] modelled M/M/C queue system by complete pooling of their resources and
customer streams into a joint service system by providing sufficient conditions for the games
under consideration to possess a core allocation using cooperative game theory concepts. Tim-
mer and Scheinhardt [158] study cooperation between n-node tandem Jackson network servers
in series to minimize the overall waiting time in the system. For two and three M/M/1 servers,
they discover that cost-sharing through cooperation is possible in many ways and depends on
the service and arrival rates. Zeng et al. [173] develop a marginal analysis algorithm and a
greedy heuristic algorithm before conducting numerical studies to solve what they call the
server transfer problem. They attempted to obtain a win-win capacity transfer solution of in-
dependent M/M/C queue systems through cooperation. Karsten et al. [81] model the resource
pooling of collaborated servers to pool resources into a joint service system as Erlang loss
systems. Their objective was to minimize additive fixed cost rate per server and penalty costs
for lost customers. They identify a cost allocation that gives no subset of players an incentive
to split off and form a separate pooling group. Bendel and Haviv [18] considered a tandem
network of queues that cooperate by pooling resources with a transferable utility leading to a
single combined server that satisfies the aggregated service demands with a greater service rate.
They derived the core allocation and found out that the cost of a coalition is the steady-state
mean total number of customers in the system formed by its members. Additional literature that
has minimized the cost of independent servers using cooperative games are [159, 172, 160].

As we’ve shown, competition and cooperation between hospitals have a wide presence
in the queuing game literature. But all have either being parallel servers competing for the
jockeying customers in a queue or a network of queues cooperating. In this paper, we consider
a game between two servers (two hospital units) in series and the servers compete for the
service time of customers, not the customers themselves.
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4.3 Proposed System and Model

This section describes and introduces the basic framework of our system and its associated
model. We consider a system of two stations of servers (ICU and SDU) arranged in series
without a queue between them. In the first station, the ICU can provide full service to the
patients with a concave payoff function. To reduce cost, ICU will transfer patients to the second
station, the SDU with a lower service cost to complete the service. We denote this system using
Kendal’s notation as the A/B/C-D/E system, where A is the arrival pattern to the first station,
B is the service distribution of the servers at the first station, C is the number of servers at the
first station, D is the service distribution at the second station and E is the number of servers at
the second station. In Fig. (4.1), we consider an M/M/1-M/1 system, where the M stands for
a Markovian or memory-less process. Customers arrive at the servers according to a Poisson
process with a rate of λ. Length-of-stays at each station are exponentially independent and
identically distributed with a mean length-of-stay li = 1

µi
, i = 1, 2, where µi is the service rate

at server i. The arrival rate is assumed to be known and the average length-of-stays (Patients’
LOS) are the decision variables. The system is a first come first serve (FCFS) type of service
and each newly arriving customer immediately goes into service if an idle server is available. If
the customer finds the first station occupied, they wait in the queue. The waiting time in queue
costs c at the first server. The cost of overstaying the first server because the second server is
occupied is c. The servers are rewarded with benefits ri, i = 1, 2, for service.

Figure 4.1: M/M/1-/M/1 System flow. Customers arrive at the servers according to a Poisson
process with a rate of λ. length-of-stays at each of the stations are exponentially independent
and identically distributed with mean length-of-stay li = 1

µi
, i = 1, 2, where µi is the service rate

at server i.

In the ICU/SDU system, new patients represent the customers. Patients do not decide on
whether to join the queue or not, however, the ICU and the SDU make decisions on how
long a patient stays in their respective services given that if it was only the ICU serving, the
LOS will be l. Let the LOS at server i be li, i = 1, 2, then lICU + lS DU ≤ l. We formulate
the decision models as a constrained optimization problem. The objective is to determine the
optimal average length-of-stay for each of the two stations. We consider four possible power
game scenarios for which the rules and structure of the game are given as follows:



4.3. Proposed System andModel 77

1. Cooperation (CP). The two servers have a unified payoff they try to maximize. This case
is similar to having one central planner overseeing the two units.

2. Simultaneous Decision (ST). The two servers have different payoff profits. Each server
maximizes its own payoff. Decisions are made simultaneously. This case is similar to
have two decentralized managers over the two servers.

Stackelberg Game. The two servers have different payoffs. Each server maximizes its
payoff. Decisions are made sequentially.

3. ICU Stackelberg (IS). The ICU chooses its LOS first using the response function of the
SDU. The SDU determines its LOS to maximize its payoff function.

4. SDU Stackelberg (SS). The SDU chooses its LOS first using the response function of
the ICU. The ICU determines its LOS to maximize its payoff function.

Our optimization problem is given as

max
li

S i = R(li) −C(wi) i = 1, 2

s.t.
2∑

j=1

l j ≤ l, l j ≥ 0

λ ≤
1∑2

j=1 l j
, j = 1, 2

(4.1)

where S i is the payoff of server i. and l is the LOS when only one server performed all the
services. The first part of the payoff R(li), represents the service benefit as a function of the
LOS li at the server, and the second part C(wi), is the penalty associated with the waiting time,
wi, before service. At the ICU, this corresponds to waiting in queue to join the system, and at
the SDU, this corresponds to waiting at the first server to join the second server. The expected
wait and length-of-stays are obtained as a characteristic of the queue using queuing theory
formulas for the M/M/1 queue. The first constraint assumes that the sum of all the length-of-
stays at each of the servers is less or equal to the LOS if only one server did the full service.
The second constraint is the steady-state stability requirement of a simple queuing system.

The ICU’s payoff function is

S 1 = λ

(
r1lICU −

cλ(lICU + lS DU)2

1 − λ(lICU + lS DU)

)
(4.2)

where the ICU benefit function, R(lICU) = r1lICU is a linear function of the LOS with r1 being
the unit service benefit (for the rest of the paper, for simplicity and without loss of generality,
we assume r1 = 1 and measure the SDU benefit against it, and the queue penalty function,
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C(w1) = cWq is a linear function of the waiting time Wq = λl2
1−λl with c being the unit wait time

cost.

The SDU’s payoff function is

S 2 = λ

(
r2lS DU −

clICU lS DU

lICU + lS DU

)
(4.3)

with similar benefit function, R(lS DU) = r2lS DU , (for the rest of the paper, we assume (0 ≤ r2 =

r ≤ r1 = 1) and queue penalty function, C(w2) = cW2. The waiting time, W2, is the expected
overstay time at the first server due to the second server’s business. This happens when the
first server finishes service first and the second does not. Since each of the two servers serves
according to an exponential distribution with parameters µi = 1

li
, i = 1, 2, we can show that the

probability that the first server finishes first is given by

P(T1 < T2) = P(argmini∈{1,2}{T1,T2} = 1)

=
µ1

µ1 + µ2

=
lS DU

lICU + lS DU
,

(4.4)

where µi, i = 1, 2 is the service rate at server i. Table 4.1 presents the description of each
variable in our model.

Table 4.1: Model variables

Variable Description
λ Arrival rate into the system
l LOS needed for full recovery

lICU ICU LOS
lS DU SDU LOS

c Unit loss time penalty
r1 ICU benefit
r2 SDU benefit
W1 Expected waiting time in Queue
W2 Expected overstay time
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4.4 Results and Discussions

4.4.1 Equilibrium Length of Service Decisions and Payoffs

We first solve the following optimization problem:

max
l

S u = λ

(
l −

cλl2

1 − λl

)
(4.5)

to obtain the optimal average LOS, l∗, if the system is a single ICU station. The payoff function
of the ICU alone system in Eq. 4.5 is illustrated in Fig. (4.2).

0.1 0.2 0.3 0.4 0.5

l

-0.05

0.05

0.10

0.15

Su

Figure 4.2: Concave payoff function of the system with only one station (ICU) as a function of
the LOS (l) when r = 1, c = 1. The LOS is in a unit length-of-stay and the payoff function is
measure in system service effectiveness.

The concavity of the utility as a function of the LOS l guarantees the existence of a unique
maximal value for the optimal average LOS l∗. When the steady-state condition, (λlICU < 1),
is fulfilled. The optimal average LOS is obtained as

l∗ =
1
λ

(
1 −

√
c

1 + c

)
. (4.6)

Analysis of the one station ICU system’s payoff from Eq. 4.5 shows that the utility function
is a decreasing function of the queue cost, c, a concave function of the LOS, l, and the demand,
λ, and an increasing function of the in the ICU benefit, r. Thus, a high arrival rate negatively
affects the payoff value due to the queue in front of the server by causing wait. The queue
cost can force the server to set a lower service length that will increase the service rate but
is not effective as many will not be served efficaciously. To avoid the loss of utility to the
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whole system, due to the cost of waiting patients in a queue, as the length-of-stay of the current
patient increases, a second station (SDU) with lower service cost is created to care for those
patients after a given amount of time in the ICU. As the two servers in tandem either cooperate
or compete for the patient’s LOS, we now derive analytical equilibrium average length-of-stays
solutions for those two stations under each power structure game scenario. Then illustrate them
using numerical examples.

Cooperative Decision (CP)

Under the cooperation game, there is no competition between the servers. The two servers
are assumed to be managed by one central planner. This manager has to choose the LOS of
both servers cooperatively and optimize the payoff function of the entire system formed by the
ICU and the SDU. The manager may choose to give all services to one server or divide the
service among them. One server may have a larger service time compared to the other. Under
cooperation, the following optimization problem is considered:

max
lICU ,lS DU

S c = λ

(
lICU + rlS DU −

cλ(lICU + lS DU)2

1 − λ(lICU + lS DU)
−

clICU lS DU

lICU + lS DU

)
s.t. lICU ≥ 0, lS DU ≥ 0

λ <
1

lICU + lS DU
.

(4.7)

S c is the sum of the ICU and SDU’s payoffs. The ICU and SDU’s reaction functions given the
LOS of the other server are derived as:

∂S c

∂lICU
= λ

(
clICU lS DU

(lICU + lS DU) 2 −
clS DU

lICU + lS DU

)
+λ

(
1 −

cλ2 (lICU + lS DU) 2

(1 − λ (lICU + lS DU)) 2 −
2cλ (lICU + lS DU)

1 − λ (lICU + lS DU)

)
= 0

(4.8)

∂S c

∂lS DU
= λ

(
−

cλ2 (lICU + lS DU) 2

(1 − λ (lICU + lS DU)) 2 −
2cλ (lICU + lS DU)

1 − λ (lICU + lS DU)

)
+λ

(
r −

clICU

lICU + lS DU
+

clS DU lICU

(lICU + lS DU) 2

)
= 0

(4.9)

From Eqs. (4.8) and (4.9), the ICU and SDU’s equilibrium average length-of-stays are derived
as:

lCP∗
ICU =

(
c + r − 1

2cλ

) 1 −
√

4c2

3c2 + 2c(r + 1) − (r − 1)2

 , and (4.10)
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lCP∗
S DU =

(
c − r + 1

2cλ

) 1 −
√

4c2

3c2 + 2c(r + 1) − (r − 1)2

 . (4.11)

The sum of the length-of-stays in (4.10) and (4.11) is the total LOS under cooperation,
given by

lCP =
1
λ

1 −
√

4c2

3c2 + 2c(r + 1) − (r − 1)2

 . (4.12)

And also, by substituting Eqs. (4.10) and (4.11) in the payoff functions in Eqs. (4.2) and
(4.3), the payoffs are derived as follows:

S CP
ICU =

1 −
√

4c2

3c2 + 2c(r + 1) − (r − 1)2


(
2c2 + c + r − 1

2c
−

1
2

(
3c2 + 2c(r + 1) − (r − 1)2

))
(4.13)

S CP
S DU =

1 −
√

4c2

3c2 + 2c(r + 1) − (r − 1)2


(
1 − (c − r)2

4c

)
(4.14)

with the full system payoff shown in Eq. A.2 in the appendix.

Lemma 4.4.1 Under cooperation,

lCP
ICU , l

CP
S DU > 0 and lCP

S DU > lCP
ICU , if (0 < c ≤ 1 and 1 − c < r < 1)

or (1 < c < 4 and (1 −
√

c)2 < r < 1)
and S CP

S DU > S CP
ICU , if 0 < c < 4 and (1 −

√
c)2 < r < 1.

Lemma 4.4.1 states that, under cooperation game, at equilibrium, the LOS (or burden of
care) at the SDU is longer than that of the ICU, as shown in Fig. 4.3(a),(b) and (c). Both stations
share the burden of care when the ICU service benefit is four times less than the queuing cost.
The cost can be at most four times the ICU benefit, otherwise, both servers’ LOS will have a
negative LOS, which means, its service would not be appropriate and violates the constraints
of the modell. Fig. 4.3(a) shows that when the SDU benefit approaches that of the ICU, there
is a transfer of the burden of care from the SDU to the ICU. Conversely, when the cost and/or
the demand increases, both server’s length-of-stays decreases exponentially.

As shown in Fig.4.4(a) and (b), under cooperation game, the payoff of the SDU is greater
than that of the ICU, S CP

S DU > S CP
ICU . This can partially be explained by the fact that under the

cooperative game, patients spend less time in the ICU, i.e., lCP
S DU > lCP

ICU . Fig.4.4(a) shows that
increasing the SDU reward reduces the ICU payoff, making the ICU perhaps unnecessary. This
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Figure 4.3: length-of-stay at the ICU and SDU (lICU in blue and lS DU in orange) under the
cooperation game as a function of (a) SDU benefit, (b) Lost time Cost, and (c) Arrival rate.
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Figure 4.4: Payoffs at the ICU and SDU (S ICU in blue and S S DU in orange) under the coopera-
tion game as a function of (a) SDU benefit and (b) Lost time Cost.

supports the assumption and the reality of the SDU reward being lesser than that of the ICU.
Under cooperation, it will be better to have a unique station if the cost is lower than the reward
but if the cost is higher than the reward, then the two servers are beneficial. Fig.4.4(b) shows,
as expected that as the cost increases, the payoffs decrease.
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Simultaneous Decision (ST)

As hospitals become congested, coordination efforts can fall apart rather quickly. So under
simultaneous decision-making, servers make their decision individually and simultaneously as
they compete for the patient’s LOS. The two servers are assumed to be managed independently,
each manager chooses its service length in a non-cooperative manner to maximize its payoff

function. The servers’ reaction functions are obtained as a derivative of Eqs. (4.2) and (4.3) as:

ΓS T
ICU = λ

(
1 −

cλ2 (lICU + lS DU) 2

(1 − λ (lICU + lS DU)) 2 −
2cλ (lICU + lS DU)

1 − λ (lICU + lS DU)

)
(4.15)

ΓS T
S DU = λ

(
r −

clICU

lICU + lS DU
+

clS DU lICU

(lICU + lS DU) 2

)
(4.16)

The elements of the Hessian of this system are given in Appendix Eq. (A.3). Under simul-
taneous game, the equilibrium length-of-stays are obtained as:

lS T∗
ICU =

1
λ

(
1 −

√
c

1 + c

) √
r
c
, and (4.17)

lS T∗
S DU =

1
λ

(
1 −

√
c

1 + c

) (
1 −

√
r
c

)
. (4.18)

The total LOS under the simultaneous decision is obtained as

lS T =
1
λ

(
1 −

√
c

1 + c

)
. (4.19)

The stations’ payoffs under simultaneous decision are given as

S S T
ICU =

(
1 −

√
c

c + 1

) (
2c +

√
r
c

)
−

√
c

c + 1
, (4.20)

S S T
S DU =

(
1 −

√
c

c + 1

) (
2r − (r + c)

√
r
c

)
, and (4.21)

S S T =

(
1 −

√
c

c + 1

) 
√

(c + 2r)2

c + 1
−

√
r(c + r − 1)2

c(c + 1)
−
√

c

 . (4.22)

Lemma 4.4.2 Under simultaneous decision game,

1. lS T
ICU > lS T

S DU > 0, if r < c < 4r and 0 < r < 1.

2. S S T
ICU > S S T

S DU , if 1 < c and rls < r < 1.



84 Chapter 4. ICU-SDU LOS Decisions Queuing Game

where rls is the solution of the Equation 4.23 close to zero.

X6 + X5(4 − 4c) + X4
(
14c2 − 4c + 6

)
+ X3

(
−24c3 + 10c2 + 4c + 4

)
+

X2
(
17c4 + 10c2 + 4c + 1

)
+ X

(
−4c5 − 2c4 − 8c3 − 2c2

)
+ c4 = 0

(4.23)

Lemma 4.4.2 states and it is shown in Fig.4.5(a), (b) and (c) that under simultaneous de-
cision, the ICU takes most of the burden of care and both servers are needed when the cost is
higher than the SDU reward. The ICU only gives up LOS when the SDU reward is small and
its cost is high. In Fig. 4.5(a), it is shown that the ICU LOS in blue increased while that of
the SDU in orange decreased when the SDU benefit increased. This transfer of the burden of
care from the SDU to the ICU from low benefit to high benefit is counter-intuitive. Fig. 4.5(b)
proves that when the cost is higher than the SDU reward, the ICU LOS is higher than the SDU
LOS. We also observe a partial transfer of the burden of care from the ICU to the SDU when
the cost increases, yet the ICU LOS remains higher. Thus the ICU remains the provider of most
of the patient’s LOS in the system under simultaneous decision. From Fig. 4.5(c), increasing
the demand on the other hand does not affect the leader in terms of care.

Fig.(4.6) shows that the SDU payoff imay prove to be negative, i.e., though the SDU pro-
vides a positive care, it does not benefit itself but benefits the system. In the simultaneous
decision game, the SDU does not benefit itself even though it contributes to the lessening of
the burden of care. As expected, the payoffs increase as the SDU reward increase but that of
the SDU remain low (see, Fig.4.6(a)). Also, when the cost increased, the payoffs decrease
(See, Fig.4.6(b)). In Fig. 4.6(c) we can clearly observe that the payoffs are independent of the
demand.

ICU Stackelberg (IS)

Under the ICU Stackelberg (IS) assumption, the ICU as the leader makes its LOS decision first
then the SDU reacts to the ICU’s decision. The equilibrium is computed backwardly starting
from the SDU’s reaction function. The SDU’s reaction function is derived from Eq. (4.3) as
follows:

Γ(lS DU) = lICU

(√
c
r
− 1

)
, (4.24)

where lICU and lS DU represent the ICU and the SDU LOS respectively.

This form of the SDU reaction function implies that the LOS of the SDU is proportional to
that of the ICU. From Eq . (4.24), the ICU’s Nash equilibrium LOS decision can be derived as
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Figure 4.5: length-of-stays at the ICU and SDU (lICU in blue and lS DU in orange) under simul-
taneous decision as a function of (a) SDU benefit, (b) Lost time Cost,and (c) Arrival rate.

the following maximization problem:

max
lICU

λlICU

(
λlICU

(
c2 +

√
cr

)
− r

)
λlICU

√
cr − r

 . (4.25)

The equilibrium ICU LOS under the ICU Stackelberg is obtained as:

lIS
ICU =

r(c2 +
√

cr) − cr
√

c2 +
√

cr

λ(c2
√

cr + cr)
. (4.26)

Back substitution in Eq. 4.24 gives the SDU LOS equilibrium as follows:

lIS
S DU =

(√
c
r
− 1

) r(c2 +
√

cr) − cr
√

c2 +
√

cr

cλr + c2λ
√

cr

 , (4.27)

and the total length-of-stay in the system
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Figure 4.6: Payoffs at the ICU and SDU (S ICU in blue and S S DU in orange) respectively under
simultaneous decision as a function of (a) SDU benefit and (b) Lost time Cost.

lIS =

√
c
r

r(c2 +
√

cr) − cr
√

c2 +
√

cr

cλr + c2λ
√

cr

 . (4.28)

The payoffs under the ICU Stackelberg game are displayed in Appendix Eqs. (A.5) and
(A.6).

Lemma 4.4.3 Under the ICU Stackelberg game,

1. lIS
ICU > lIS

S DU > 0, if (0 < c < 1 and c
4 < r < c), or (1 < c < ciu and c

4 < r < 1).

From Lemma 4.4.3 it is noted again that, for the system to require both servers, the cost
must be higher than the ICU benefit and the SDU reward must be lower than the ICU benefit.
The ICU has the highest burden of care when c

4 < r < 1 while the SDU leads when 0 < r < c
4 .

From Fig. 4.7(a), increasing the SDU benefit increases the ICU LOS in blue while that of the
SDU in orange has a concave form. From Fig. 4.5(b) higher cost reduces the LOS at both
servers. From 4.5(c), increasing the demand decreases the length-of-stay exponentially. From
Fig. (4.8), the SDU payoff can be mostly negative . It does not benefit itself but contributes to
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the overall care of the system. Increasing the SDU reward increases the payoff at both servers
(Fig. 4.8(a)). Increased cost decreased payoff at both servers (Fig. 4.8(b)).
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Figure 4.7: length-of-stays at the ICU and SDU (lICU in blue and lS DU in orange) under the ICU
Stackelberg game as a function of (a) SDU benefit, (b) Lost time Cost, and (c) Arrival rate.
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Figure 4.8: Payoffs at the ICU and SDU (S ICU in blue and S S DU in orange) under the ICU
Stackelberg game as a function of (a) SDU benefit and (b) Lost time Cost.
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SDU Stackelberg (SS)

Under the SDU Stackelberg (SS) game, the SDU becomes the leader and the ICU the follower.
In this case, the SDU takes the ICU’s reaction functions into account for its own LOS decisions.
The ICU’s reaction function is derived as

Γ(lICU) =
1
λ

(
1 −

√
c

1 + c

)
− lS DU . (4.29)

The SDU exploits the ICU’s reaction function (Eq.(4.29)) by setting optimal LOS in its
payoff maximization problem in Equation (4.3)). Solving this maximization problem provides
the equilibrium SDU LOS as

lS S
S DU =

(c − r
2cλ

) (
1 −

√
c

1 + c

)
. (4.30)

Back substitution of (4.30) in Eq. (4.29) gives the ICU equilibrium LOS

lS S
ICU =

(c + r
2cλ

) (
1 −

√
c

1 + c

)
. (4.31)

The total system LOS under the SDU Stackelberg is obtained as

lS S =

(
1
λ

) (
1 −

√
c

1 + c

)
. (4.32)

The corresponding payoffs of the stations under the SDU Stackelberg game are obtained as
follows:

S S S
ICU =

4c2 + c + r
2c

−

(
4c2 + 3c + r

)
2c

√
c

c + 1
(4.33)

S S S
S DU =

(c − r)2

4c

(√
c

c + 1
− 1

)
(4.34)

S S S =

(
7c2 + 2c(r + 1) − (r − 2)r

4c

)
−

(
7c2 + 2c(r + 3) − (r − 2)r

4c

) √
c

c + 1
(4.35)

Lemma 4.4.4 Under SDU Stackelberg game,

1. lS S
ICU > lS S

S DU > 0, if 0 < r < 1 and r < c.

2. S S S
ICU > S S S

S DU , if 0 < r < 1 and 0 < c.
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Figure 4.9: length-of-stays at the ICU and SDU (lICU in blue and lS DU in orange) respectively
under SDU Stackelberg game as a function of (a) SDU benefit, (r), (b) Lost time Cost, (c), and
(c) Arrival rate (λ).
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Figure 4.10: Payoffs at the ICU and SDU (S ICU in blue and S S DU in orange) respectively under
SDU Stackelberg game as a function of (a) SDU benefit, and (b) Lost time Cost.

Lemma 4.4.4 states that, for the system to require both servers, the unit cost of queuing must
be higher than the SDU benefit and the SDU reward must be lower than that of the ICU. This is
shown numerically on Fig. 4.9(a),(b) and (c). Under the SDU Stackelberg decision, ICU LOS
is always larger than that of the SDU. The ICU has the highest-burden of care when 0 < r < 1
and c > r. From Fig. 4.9(a), and counter-intuitively, increasing the SDU benefit increases the
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ICU LOS in blue while that of the SDU in orange decreases. Increasing SDU benefit increases
the level of the burden of care at the ICU while decreasing that of the SDU. From Fig. 4.9(b)
higher cost reduces the LOS at both servers and the ICU transfers some of its burden to the
SDU. From 4.5(c), increasing the demand decreases the length-of-stay exponentially. As seen
in Fig. 4.9(c), the demand keeps the burden of care at both servers decreasingly proportional.
The SDU payoff can be mostly negative (see Fig.4.10), that is, it does not benefit itself. But
given the positive LOS, it benefits the whole system. Increased SDU reward increases the
payoff at both servers. Increased cost decreased payoff at both servers.

For the remainder of the paper, we use superscripts CP, ST, IS, and SS to denote that the
corresponding quantities are for the CP (Cooperative), ST (Simultaneous decision), IS (ICU
Stackelberg), and SS (SDU-Stackelberg) cases, respectively. Apart from the cooperative game,
CP, the rest of ST, IS, and SS are competitive games. In the rest of the paper, competition or
competitive games refer to these three games.

4.4.2 Further Results and Implications

In Subsection 4.4.1, we obtained equilibrium length-of-stays and corresponding payoffs at the
two servers under various competitions. In this section, we analyze and discuss the implica-
tions of these results on the game structures and compare them to the system with one server.
We start with a general comparison between the power structures at both servers. First, we
compare the length-of-stays among the different game structures at each server. Then we an-
alyze the whole system and compare the system with two servers to the system with only one
server. Due to the complexity of the analytical results, an exhaustive analytical comparison is
challenging. To ease the discussion, numerical results are summarized graphically to provide a
visual illustration. The discussion here is based on the assumption that the unit cost of waiting
in a queue is greater than that of the unit rewards, (c > 1 > r > 0). In the figures, when compar-
ing the length-of-stays or the payoffs of four structures at the ICU or the SDU, the Cooperative
(CP) line is blue, the Simultaneous decision, (ST), is yellow, ICU Stackelberg, (IS), is green,
SDU-Stackelberg, (SS), is orange, and the unique server system lines are in purple.

ICU length-of-stays

In general, Fig.(4.11) shows that when (c > 1 > r > 0),

lS S ≥ lS T ≥ lIS ≥ lCP. (4.36)

In Fig.4.11(a), it is observed that when c and λ are constant, the ICU LOS increases with
respect to the SDU benefit under all game structures. The SS consistently gives the highest
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Figure 4.11: ICU length-of-stays under the various power structure (CP (Cooperative), ST
(Simultaneous decision), IS (ICU Stackelberg), and SS (SDU-Stackelberg) ) as a function of
(a) SDU benefit, (b) cost, and (c) Arrival rate.

burden of care to the ICU followed by the ST, then the IS and finally the CP. The competitive
games tend to give a higher burden of care to the ICU. We note also that when the SDU benefit
is equal to the ICU benefit, the SS and the ST are equivalent.

In Fig.4.11(b), it is observed that as expected, when r and λ are constant, the ICU LOS
decreases with respect to the cost under all game structures. The IS has a sharper decline while
the SS and the ST behave similarly. When the cost is small, close to the ICU reward, the IS
gives the highest-burden of care to the ICU followed by the SS, the ST and finally the CP.
When the cost is high, the SS followed by the ST has the highest-burden of care in the ICU.
When the cost and the ICU benefit are equal, the SS burden and the IS burden are equivalent.

Fig.4.11(c) shows that increasing the arrival rate does not change the structure with the
highest burden of care. Therefore, there is no transfer of the weight of the burden of care when
(c > 1 > r > 0) and the rate of arrival increases.

SDU’s length-of-stays

Fig.(4.12) shows that when the SDU’s LOS increases only under cooperation. In general, at
the SDU,
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lCP ≥ lS T ≥ lS S ≥ lIS . (4.37)
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Figure 4.12: SDU length-of-stays under the various power structures (CP (Cooperative), ST
(Simultaneous decision), IS (ICU Stackelberg), and SS (SDU-Stackelberg) ) as a function of
(a) SDU benefit, (b) Queue cost, and (c) Arrival rate.

Under competition, the ST and the SS have a monotonic decrease while the IS is concave.
All three decreased to zero where the SDU reward, r, equal the ICU reward. When the ICU
reward is equal to the SDU reward, under competition, the SDU’s LOS is 0. That is the SDU is
often dominated by competition structures. When the reward is small, the ST has the highest-
burden of care for the SDU followed by the SS, then the CP and finally the IS. When the reward
is high, the CP provides the highest-burden of care followed by the ST, then the SS and finally
the IS. The IS consistently allocates a lower burden of care to the SDU.

From Fig.4.12(b), when the cost alone varies, the cooperation game’s burden of care de-
creases while that of the competition increases except the IS. As seen under the SDU benefit,
the IS has the lowest burden of care in the SDU followed by the SS, then the ST and finally
the CP. When the cost of overstay is equivalent to the reward at the SDU, the SDU LOS is zero
under competition.

Change in arrival rate only affect change in the length-of-stays not in the dominance of the
game structure. This is shown in Fig.4.12(c).
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System’s Total LOS

In this section, we compare the system’s total LOS under all the game structures. In general,
when c > 1 > r > 0, the system’s burden of care can be summarised as follows:

lS S = lS T > lCP > lIS .

when the lICU represents the LOS in the system with a unique server.
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Figure 4.13: ICU length-of-stays under the various power structures (CP (Cooperative), ST
(Simultaneous decision), IS (ICU Stackelberg), and SS (SDU-Stackelberg) ) as a function of
(a) SDU benefit, (b) Queue cost, and (c) Arrival rate.

From the three plots in Fig.4.13, we observe that when the cost and the arrival rate are fixed
and the reward varies, the system’s total LOS under ST, SS and the unique ICU system are
equivalent and constant. Increasing the SDU reward does not change the total length-of-stay
in the system, only the two servers’ LOS have inverse variation. These three configurations
have the highest total LOS. The ST, the SS and the unique ICU system, therefore, tend to keep
patients longer in the system, increasing the total burden of care. When the cost is equal to the
ICU reward then the IS’s burden of care is equal to those of the ST, SS and ICU, otherwise, it
is higher. The structure with the lowest burden of care is the IS, followed by the CP, then the
three mentioned earlier (See Fig. 4.13(c) ).
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Increasing the SDU benefit increases the system’s burden of care under the CP and the IS,
while under the SS, the ST and the unique ICU server system, the LOS is constant. Under the
SS and the ST, the ICU and the SDU behave like they are playing a constant sum game. In
this constant game, they share the unique ICU LOS. Increasing the cost decreases the burden
of care and the time spent in the system. The system hastens the service in other to reduce the
accumulation of patients in the overstay state.

ICU’s Payoff

The ICU’s payoff is simply the difference between the benefit of the average time used in the
ICU bed and the average penalty to queuing time. Generally, the competitive games’ ICU
payoffs increase with the SDU benefit, while they decrease in cost. ICU payoff under the co-
operation decreases with both SDU benefit and cost. The Payoff is invariant with an increased
arrival rate, which is independent of the arrival rate. Generally, the SS dominates at the ICU
with the highest payoff, followed by the IS, then the ST game and finally the CP game (see also
Fig. 4.14):

S S S
ICU > S S T

ICU > S IS
ICU > S CP

ICU (4.38)

SDU’s Payoff

The SDU’s payoff is the difference between the SDU’s benefit per service time and the overstay
per service time penalty. Generally, the competition games’ payoff at the SDU are negative.
Though the cooperation’s payoff increases when the SDU benefit increases, it decreases with
cost. The CP has the highest payoff followed by the IS game, then the ST and finally the SS
game (see Fig. 4.15).

S CP
S DU > S IS

S DU > S S T
S DU > S S S

S DU (4.39)

System’s Payoff

In the whole system, increasing the SDU benefit increases the payoff of every game structure
except the CP game (See Fig.4.16(a)). However, increasing the cost decreases the payoffs of
every game (See Fig.4.16(b)). In Fig.4.16(c), when the SDU benefit is less than the ICU benefit
and the cost higher than the ICU reward, the competitive games are the most beneficial. When
the SDU reward is higher than that of the ICU and the cost is higher than the rewards, the
competition games dominate. When the Cost is lower than the ICU reward, the SS and the ST
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Figure 4.14: ICU’s Payoff under the various power structures (CP (Cooperative), ST (Simulta-
neous decision), IS (ICU Stackelberg), and SS (SDU-Stackelberg) ) as a function of (a) SDU
benefit, (b) Cost, and (d) arrival rate.

dominate. In general, under the assumption that c > 1 > r > 0, cooperation is dominated while
the unique system dominates.

There is no direct incentive as a leader as neither the ICU nor the SDU Pareto dominates
each other under the ICU and SDU Stackelberg respectively. However, all parties are worse
off when no one assumes the leadership since the CP and the ST payoffs are the lowest for
both servers. This implies that the system is better off when one of the units is in the leading
position.

Comparing Game Structures

The game structure with the smallest burden of care and the highest reward is preferable. The
ratio analysis method will be used to compare the performance of the game structures. The
ratio payoff per LOS denoted by P produces information on the relationship between one input
(LOS) and one output (payoff). That is, efficiency is defined as the number of output units per
unit of input. Figs. (4.18), (4.17) and (4.19) are the payoff per LOS plots.

In general, from Figs. 4.17 it can be observed that competition games have the highest ratio
in the ICU while cooperation’s payoff has the lowest and is negative. The ICU Stackelberg has
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taneous decision), IS (ICU Stackelberg), and SS (SDU-Stackelberg) ) as a function of (a) SDU
benefit, (b) Cost, and (d) arrival rate.

the greatest ratio, followed by the SDU Stackelberg, then the simultaneous decision and finally
the cooperation: (see Fig. (4.17)).

PIS
ICU > PS S

ICU > PS T
ICU > PCP

ICU (4.40)

In particular, Figs. 4.17(a) shows that at the ICU, as the SDU reward increases, the ratio in-
creases but that of cooperation decreases to negative. Figs. 4.17(b) shows that as the queueing
cost increases, only the ICU Stackelberg’s ratio increases and the rest decreases with that of co-
operation being negative. Figs. 4.19(c) shows that when the demand increases the competition
games have a steady ratio increase and cooperation has a decreasing ratio.

In the SDU, in general, from Figs. 4.18 we can observe that the cooperative game has the
highest payoff per LOS in the SDU, while competition payoffs are negative. The cooperation
has the greatest payoff per LOS, followed by the ICU Stackelberg, the simultaneous decision
and the SDU Stackelberg: (see Fig. (4.18)).

PCP
S DU > PIS

S DU > PS T
S DU > PS S

S DU (4.41)
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Figure 4.16: Full System’s Payoff under the various power structures (ICU, (Unique server
system), CP (Cooperative), ST (Simultaneous decision), IS (ICU Stackelberg), and SS (SDU-
Stackelberg) ) as a function of (a) SDU benefit, (b) Cost, and (d) arrival rate.

In particular, Figs. 4.17(a) shows that at the ICU, as the SDU reward increases, the payoffs per
LOS increase but that of cooperation is negative. Figs. 4.17(b) shows that as the queueing cost
increases, only the ICU Stackelberg’s payoff per LOS increases and the rest decreases with
that of cooperation being negative. Figs. 4.19(c) shows that when the demand increases the
competition games have a steady payoff per LOS increase and cooperation has a decreasing
payoff per LOS.

Figs. 4.19(a) shows that as the SDU reward increases, competitions payoff per LOS in-
creases but that of cooperation decreases. When the SDU benefit is equal to the ICU benefit,
the SDU Stackelberg’s payoff per LOS is equivalent to the simultaneous decision’s payoff per
LOS. Figs. 4.19(b) shows that as the queueing cost increases, only the ICU Stackelberg’s
payoff per LOS increases and the rest decreases. Figs. 4.19(c) shows that when the demand
increases the competition games have an increasing payoff per LOS and cooperation has a
decreasing payoff per LOS. In general, the ICU Stackelberg has the greatest payoff per LOS,
followed by the SDU Stackelberg, then the simultaneous decision and finally the cooperation:
(see Fig. (4.19)).

PIS > PS S > PS T > PCP (4.42)
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Figure 4.17: ICU Payoff per LOS under the various power structures (ICU, (Unique server
system), CP (Cooperative), ST (Simultaneous decision), IS (ICU Stackelberg), and SS (SDU-
Stackelberg) ) as a function of (a) SDU benefit, (b) Cost, and (d) arrival rate.

Proposition 4.4.5 Under the assumption that the SDU reward is less than that of the ICU, the

SDU is needful and useful when the unit cost of staying in a queue or overstaying the ICU is

higher than the unit benefit at the ICU.

From Lemmas 4.4.1, 4.4.2, 4.4.3, and 4.4.4, we established that the LOS under all the game
structures at the SDU is positive if the queueing unit cost per time is higher than the unit utility
per time. Recovering patients have a moderate risk compared to arriving patients therefore the
SDU benefit is lower than that of the ICU. And patients that are in service at the ICU have a
lower risk compared to arriving patients without any care. This may help explain the fact that
the cost is higher than the reward received.

Proposition 4.4.6 When the SDU benefit is less than that of the ICU and the costs higher than

the reward, the ICU Stackelberg provides the highest payoff per unit LOS.

4.5 Conclusion and Recommendations

While previous studies address customers’ decision to join a queue and the servers’ decision on
pricing to attract customers in parallel servers, in the proposed ICU/SDU system, the servers
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Figure 4.18: SDU Payoff per LOS under the various power structures (ICU, (Unique server
system), CP (Cooperative), ST (Simultaneous decision), IS (ICU Stackelberg), and SS (SDU-
Stackelberg) ) as a function of (a) SDU benefit, (b) Cost, and (d) arrival rate.

are in a series, and there is no decision on the patient’s side. Instead, the hospital is assumed to
be a monopoly, and the servers do not compete for the patients but for the time to spend with a
patient (LOS).

We considered two traditional forms of power structures: competition and cooperation.
We studied competition under three directions (two Stackelberg games and one simultaneous
game) and compared the equilibrium payoffs and length-of-stays under four power structures.
Furthermore, we determine the conditions for which each structure is feasible. For the ICU,
the SDU Stackelberg games provide the highest payoff and the highest burden of care (LOS).
For the SDU, the Cooperation tends to provide the highest payoff. The SDU Stackelberg
game produced the highest payoff for the whole system under all cases while the simultaneous
decision game yielded the lowest reward to the overall system. It is interesting to remark that
no leader has a leading privilege under all circumstances.

One may assume that a leader’s payoff should generally be larger than that of the follower;
however, our results revealed that payoffs depend on the demand and the substitutability in both
ICU Stackelberg and SDU Stackelberg games. When the simultaneous game is played, the pay-
off worsens off at both servers, thus in the system as a whole. Consequently, the simultaneous
decision game is the least to be recommended in such a system. Moreover, even though none
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Figure 4.19: Full System’s Payoff per LOS under the various power structures (ICU, (Unique
server system), CP (Cooperative), ST (Simultaneous decision), IS (ICU Stackelberg), and SS
(SDU-Stackelberg) ) as a function of (a) SDU benefit, (b) Cost, and (d) arrival rate.

of the leaders have a leading advantage in all conditions, in the Stackelberg games, the patients
spend most of their LOS at the ICU. While this study adds to the growing literature on queu-
ing games, some of the limitations may be present. The formulation of the payoff functions
is simplified, albeit already challenging to solve. There’s also the lack of patients’ decision to
join the queue at the ICU, while there is no loss of patients due to other circumstances, i.e. all
patients go through both servers in tandem. The use of the M/M/1 queue system, while useful,
provides only the “last bed” scenario, and the constant demand rate may be a simplification of
a system that may have its arrival rate somewhat service-dependent.



Chapter 5

Invasive Mechanical Ventilation Duration
Prediction using Survival Analysis

Abstract

Invasive mechanical ventilation is one of the leading life support machines in the intensive care
unit (ICU). By identifying the predictors of ventilation time upon arrival, important information
can be gathered to improve decisions regarding capacity planning and patient care.

In this study, first-day ventilated patients’ ventilation time was analyzed using survival
analysis. The probabilistic behaviour of the ventilation time duration was analyzed and the
predictors of the ventilation time duration were determined based from available first day co-
variates.

A retrospective analysis on ICU ventilation time in Ontario was performed with data about
ICU patients obtained from the Critical Care Information System (CCIS) in Ontario between
July 2015 and December 2016. As part of the procedure for inclusion, a patient must be con-
nected to the invasive ventilator upon arrival to the ICU. Parametric survival methods were
used to characterize ventilation time and determined covariates associated with ventilation
time. Parametric and non-parametric methods were used to determine predictors of ventila-
tion duration of the first-day ventilated patients.

A total of 128 030 patients visited the ICUs between July 2015 and December 2016. 51 966
(40.59%) patients received invasive mechanical ventilation on arrival. The analysis of the dura-
tion of ventilation suggested that the log-normal distribution provided a better fit for the venti-
lation time, whereas the log-logistic Accelerated Failure Time model best describes the associ-
ation between the covariates and the duration of ventilation. ICU site, admission source, admis-
sion diagnosis, scheduled admission, scheduled surgery, referral physicians, central venous line
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treatment, arterial line treatment, intracranial pressure monitor treatment, extra-corporeal mem-
brane oxygen treatment, intraaortic balloon pump treatment, other interventions, age group,
pre-ICU LOS, and MODS score were significant predictors of the ICU ventilation time.

The results show substantial variability in ICU ventilation duration for different ICUs, pa-
tient’s demographic, underlying condition, and underline mechanical ventilation as an impor-
tant driver of ICU stay.

The prediction performance of the proposed model showed that both the model and the
data can be used to predict individual patient’s ventilation time and provide insight into the
predictors of ventilation time.

Keywords: Mechanical ventilation, Ventilation duration, Survival analysis, ICU

5.1 Introduction

Mechanical ventilation (MV) is defined as the use of a breathing support machine that takes
over the breathing process in patients who cannot breathe properly on their own. MV is one
of the life support alternatives the Intensive Care Unit (ICU) provides that differentiate it from
other hospital units. There are two forms of MV: invasive and non-invasive. Non-invasive
ventilation (NIV) is the delivery of oxygen via a face mask. According to Hyzy and McSparron
[73], invasive mechanical ventilation (IMV) is “the delivery of positive pressure to the lungs
via an endotracheal or tracheostomy tube.” During IMV, a ventilation machine (also called a
ventilator) forces a predetermined mixture of air (i.e., oxygen and other gases) into the central
airways that then flows into the alveoli [73, 103]. A patient may need a ventilator when there
is a low oxygen level in the blood or severe shortness of breath from an infection such as
pneumonia, SARS or COVID-19. Over 20 million patients worldwide per year use mechanical
ventilation [164, 3].

Since the outbreak of the COVID-19 pandemic, one of the most globally cited causes for
the inability for ICUs to manage patients appropriately is the lack of ventilators [16, 52, 124,
15, 75]. However, the concern about an insufficient supply of ICU beds and ventilators to
handle critically ill patients is old. COVID-19 sparked a debate on when and how ventilators
should be used within the ICU. Before COVID-19, there have been very few publications about
modelling the use, demand, and practice of ventilation on ICU patients. Kacmarek [77] gave
a detailed history of the evolution of these human breathing aids in medicine. Ventilators are
not built-in to the ICU beds like other organ support machines. Nevertheless, as many as 90%
of ICU patients required ventilation [124]. Previous papers in the literature associate ICU
ventilators use to the ICU bed use, but not all patients in the ICU use ventilators, and their use
is patients’ state-dependent.
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From a managerial perspective, it is important to know the distribution of the time patients
are reliant upon IMV to predict ventilation demand. In this case, survival models are often
used to study the time to stop the invasive ventilation. The application of survival analysis is
extensive in health care. However, the application of survival models on ventilation time is
less common. Nevertheless, up to our knowledge, no study has analyzed ventilation time using
AFT survival models.

Most of the studies on ventilation time in the literature were interested in classifying the
duration of mechanical ventilation into two categories: prolonged versus short ventilation time
[161, 55, 46, 1, 56, 162, 10]. Prolonged mechanical ventilation (PMV) was defined differently
within each study. Estenssoro et al. [55] described it as being mechanical ventilation for longer
than 21 days, [46] define PMV as greater than seven days, [162] define it as patients receiving
ventilation for longer than three days, and [92] describe it as greater than a day. Logistic
regression, linear regression and machine learning methods are the primary tools used in the
literature to model ventilation time and identify significant predictors of PMV.

Dimopoulou et al. [46] investigated PMV in patients with blunt thoracic trauma and found
that advancing age, the severity of head injuries, and bilateral thoracic injuries were signif-
icant in predicting PMV. Trouillet et al. [162] gathered data on patients undergoing cardiac
surgery. They found that a post-operative score could be used to identify patients eligible for
rapid weaning of ventilation on day three, which reduces the need for PMV. Légaré et al. [92]
took a group of coronary artery bypass grafting patients, identified the predictors of PMV, and
found that intra-operative complications significantly impact those patients who required pro-
longed mechanical ventilation. Trouillet et al. [163] investigated the outcomes of two groups
of severely ill patients who required mechanical ventilation. One group received an early per-
cutaneous tracheotomy and the other received prolonged intubation. Upon comparing the two
treatments, it was found that early tracheotomy provided no benefit in terms of mortality rates
or length-of-stay. Esteban et al. [54] found that factors at the start of mechanical ventilation
and complications of critical illness influence the outcome of patients receiving mechanical
ventilation.

Logistic regression is used to model the probability of an event, and, therefore, it cannot be
used to predict ventilation time. Moreover, when studies used linear regression, the results were
often unreliable. Seneff et al. [143] analyzed an individual patient’s duration of mechanical
ventilation using linear regression and found an R2 of 0.18. Aung et al. [10] used multiple
linear regression to identify variables independently associated with the duration of mechanical
ventilation and obtained an R2 of 0.235.

Abujaber et al. [1] and Sayed et al. [140] used machine learning models but could not
find direct relationships between the predictors and the duration of mechanical ventilation.
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Abujaber et al. [1] started with logistic regression and built upon this by creating Artificial
Neural Networks, Support Vector Machines, Random Forests, and Decision Trees to predict
prolonged mechanical ventilation. Ultimately, Support Vector Machines gave the best predic-
tion technique in this study, with an accuracy of 0.79. Sayed et al. [140] attempted to predict
the duration of mechanical ventilation using machine learning models. When using the Light
Gradient Boosting Machine, it was found that predictors gathered before the third ICU day
could be used, allowing for mechanical ventilation to be predicted earlier than other machine
learning models, such as random forest and extreme gradient boosting.

In this work, we predict ventilation duration in the ICU using patient information avail-
able on arrival (day 1) using survival analysis techniques. We identified the distribution of
ventilation duration and evaluated whether differences exist in terms of first-day treatments,
ICU sites, admission source, referral physician, patient category, sex, NEMS, and MODS. Our
study demonstrates the importance of patient information available at arrival when predicting
the risk of ventilation duration amongst ICU patients. Thus, the importance of these results in
ventilation planning and management.

5.2 Methods

5.2.1 Study Design and Data Collection

This is a retrospective study designed to predict the time distribution of ICU patients that were
connected to IMV on arrival using information available on arrivals, such as Demographics,
First-day treatments, NEMS and MODS scores. The outcome is to determine the predictors
of ventilation time after the first day and predict the duration of ventilation. Survival analysis
was performed using a large dataset of variables obtained from the Critical Care Information
System (CCIS) Ontario database.

The CCIS dataset contains information from July 2015 to December 2016. The data has
forty-five variables. Priestap et al. [128] used the CCIS dataset to predict ICU mortality and
provide detailed information on the data collection procedure, the variables and the ICUs in
the CCIS database. The following subset covariates on patients’ arrival are used in our study:
Basic Monitoring, Central Venous Line, Arterial Line, Intracranial Pressure Monitor, Dialysis,

Extra-corporeal Membrane Oxygen, Intra-aortic Balloon Pump, Other Interventions Within

this Unit, Interventions Outside this Unit, the nursing workload proxy by the First-day NEMS

score, demographic information (Age, Sex), the MODS Score, the admission sources, the ad-

mitting diagnosis, referral physician specialist, and patient category. For model external val-
idation, data from London Health Science Center (LHSC) are also used in this study. The
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Table 5.1: First-day ventilation frequency

Ventilation status Count Percentage
Mechanical: Invasive Ventilation 51 966 40.59
Mechanical: Non-Invasive Ventilation 8 917 6.96
No Ventilation 28 650 22.38
Supplementary Ventilator Care 38 497 30.07
Total 128 030 100

LHSC datasets contains information from January 2020 to May 2021.

The data were pre-processed to remove duplicates, transform variables and create new vari-
ables needed for the analysis. The data contain records of 128 030 patients admitted into the
ICUs. 40.59% (51 966) of those patients received IMV on arrival. Table 5.1 presents the sum-
mary of the patient’s ventilation status on arrival. From the patients that received IMV upon
arrival, we excluded those with missing information and obtained 49 703 (i.e., 38.82% of total
ICU patients). Further, we excluded those with ventilation time greater than 60 and we used
the 49 467 (99.53 % of patients connected on arrival) remaining. Table 5.2 shows the sex and
censoring distribution of patients’ information used in this research. Censored patients include
those discharged to the Complex Continuing Care Facility, other hospitals, the Level 3 Unit,
and Outside ICU while on the ventilator.

Table 5.2: Sex and censor status distribution of used data

Ventilation status Count Percentage
Female 18 185 36.76
Male 31 282 63.24
Censored 1 407 2.84
Uncensored 48 060 97.16
Total 49 703 100

This study was approved by the Research Ethics Review Committee at King’s University
College at Western University, Principal Investigator, Prof. Felipe F. Rodrigues. De-identified
data and restrict access and storage of the data is mantained per ethics protocol guidelines.

5.2.2 Statistical analysis

Descriptive analysis
Descriptive statistical analysis was performed, reporting the following measures for contin-

uous variables: mean, standard deviation, skewness, kurtosis, and quartiles. For the modelling,
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the continuous variables were grouped into categories. Categorical variables are reported as
counts and percentages.

Non-parametric survival analysis
Kaplan-Meier analysis was used to construct non-parametric survival curves based on pa-

tients’ age and sex. The log-rank (Mantel-Cox) test and the Kruskal-Wallis test were used for
multiple comparisons between sub-groups.

Parametric survival analysis
Different classical distributions were fitted to the observed ventilation time to identify the

probability distribution function (PDF) that best fit ventilation time. To assess goodness-of-
fit, P-P plots, as well as three regularly used goodness-of-fit tests: Kolmogorov-Smirnov,
Anderson-Darling, and Chi-Squared were employed. Appropriate maximum likelihood esti-
mates of the parameters were obtained with their respective 95% confidence limits based on
the probability distribution function. Parametric Accelerated Failure Time (AFT) modelling
was done by randomly dividing the dataset a “training” and a “testing” set (training with 70%
of the observations and testing set with 30%). The training set was used for modelling and the
test set was used for model prediction performance. External data of different years gathered
from the London Health Science Center (LHSC) were used to validate the model.

All covariates included in the analysis were obtained on arrival and are included based on
their availability, clinical relevance, statistical significance, and possible association with ICU
LOS or mortality in the literature. We followed the variable selection approach as outlined in
Collett [39]. This approach fits a univariate model for each covariate, identifying significant
predictors, then, a multivariate model is fit with all significant univariate predictors, eliminating
insignificant variables using backwards selection. Graphical methods, the likelihood ratio, AIC
and BIC criteria were used to compare and select the AFT models (Exponential, Weibull, Log-
normal, and Log-logistic). The validity of the model was ascertained using external data. All
tests presented are two-sided, and a p-value < 0.05 is considered significant.

Prediction performance
To assess prediction performance, we applied the best fitted model on the test set and con-

sidered the following metrics: Mean Squared Error (MSE), Mean Absolute Error (MAE),
Percent bias (PBIAS), and Nash-Sutcliffe efficiency (NES). These metrics are calculated as
follows.

MS E =
1

NT

NT∑
i=1

(yi − ŷi)2,

MAE =
1

NT

NT∑
i=1

|yi − ŷi|,
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PBIAS =

∑NT
i=1(yi − ŷi)∑NT

i=1 yi
× 100, and

NES = 1 −
∑NT

i=1(yi − ŷi)2∑NT
i=1(yi − ȳi)2

,

where NT is the total number of observations in the test set, yi and ŷi are respectively the
observed and predicted time on ventilation for the ith observation in the test set.

Statistical software
The data were analyzed using using R version 4.1.2. Statistical modelling employed the

glmnet, flexsurv, SurvRegCensCov, survival, and surminer R packages.

5.3 Results

5.3.1 Descriptive Analysis

Table 5.3 summarizes the number and proportion of patients that received each of the various
treatments at ICU arrival. The most common were basic monitoring (99.93 % of patients), an
arterial line (81.76 %), and a central venous line (72.95 %). Variation in treatment patterns
showed that 98.34% had no intracranial pressure monitoring, 97.13% had no dialysis, 99.73%
had no extracorporeal membrane oxygen, 98.59% had no intra aortic balloon pump 67.38 %
had no other interventions within this unit and 78.15% had no interventions outside this unit.

Table 5.3: Distribution of treatments IMV patients received

Treatment No Yes
Basic Monitoring 33 (0.06 %) 49 434 (99.93%)
Arterial Line 9 065 ( 18.33%) 40 402 ( 81.67 %)
Central Venous Line 13 383 (27.05 %) 36 084 (72.95%)
Other Interventions Within this Unit 33 331 (67.38 %) 16 136 ( 32.62%)
Interventions Outside this Unit 38 658 (78.15 %) 10 809 (21.85 %)
Dialysis 48 046 ( 97.13 %) 1 421 (2.87 %)
Intracranial Pressure Monitor 48 648 ( 98.34%) 819 ( 1.66%)
Intra Aortic Balloon Pump 48 771 ( 98.59%) 696 ( 1.41%)
Extracorporeal Membrane Oxygen 49 331 ( 99.73%) 136 ( 0.27%)

Fig 5.1 shows the bar plot of the admission sources, admitting diagnosis, referral physician
specialist, and patient category. The admission sources included the ward (5 607, 11.33%),
downstream units (i.e., Level 2 and Level 3 units) (2 971, 6.00%), the emergency department
(ED) (12 507, 25.28%), home (191, 0.39%), hospital outside and within (5 210, 10.53%), the
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operation room (OR) (22 608, 45.70%), and other sources (373, 0.75%). The other sources
include complex continuing care facilities, rehabilitation centers, outside provinces, and oth-
ers. ICU admitting diagnosis were categorized as Cardiovascular (22 269, 45.00%), Gas-
trointestinal (2 920, 5.90%), Neurological(4 652, 9.40), Trauma (1 927, 3.90%), and Other
(17699, 35.78). Other diagnosis includes patients with the following diseases: Genitourinary,
Metabolic, Endocrine, Musculoskeletal, Skin, Oncology, Haematology and Other. Referral
physician specialists were grouped into medical (16930, 34.22%), respiratory (1 364, 2.76%),
surgical (21 848, 44.17%), and other (9 325, 18.85%). Other referral physician specialist in-
cludes Dermatology, Psychiatry, Oncology, Haematology, Ophthalmology, Orthopaedic, and
others.
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Figure 5.1: Variables levels.

Table 5.6 provides the descriptive statistics for the continuous variables. Table 5.5 provides
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the descriptive statistics of ventilation time under various patient categories. On average, ven-
tilation time was 4.57 (sd = 6.57) days, NEMS score was 29.09 (sd = 6.85), and MODS score
was 5.57 (sd = 3). Table B.2 tabulates the baseline characteristics of the number of events under
each category and the result of the Log-rank test, which compares the differences in ventilation
times between the independent groups of each covariate.. For ease of readability, the results of
the Log-rank test are shown in Table 5.7.

5.3.2 Non-parametric Analysis

As a preliminary analysis, we conducted a non-parametric analysis of the entire dataset using
the Kaplan-Meir method. Figure 5.2 shows the Kaplan-Meier (KM) curve of ICU ventilation
time. The KM curve shows the unconditional probability that a subject will experience the
event beyond time t but does not indicate the proportion of subjects surviving to time t. In our
case, survival means becoming independent of ventilation by time t.
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Figure 5.2: Ventilation time KM survival curve.

Table 5.4 tabulates selected KM survival probabilities at some specific times and their as-
sociated confidence interval. From Fig 5.2 and Table 5.4, the probability that a person will
remain connected to the IMV longer than one day is approximately 0.69. That is 31% get dis-
connected from mechanical ventilation after the first day. The probability of patients remaining
connected beyond 10 days is about 0.112, indicating 88.8% of ICU patients get disconnected
after ten days of IMV.

There were 18 185 (36.76 %) females with a mean ventilation time of 4.84 (sd = 6.82) and
31 282 (63.23%) males with mean ventilation time 4.41 (sd = 6.41). There was a significant
difference found between the two sexes (χ2 p-value < 2e−16). Investigating age, 4 355 patients
(8.80%) aged 18 to 39 had a mean ventilation time of 4.91 (sd = 6.47), 38 009 (76.84%) aged
40 to 79 with a mean ventilation time of 4.54 (sd = 6.61), and 7 103 aged 80 and above with
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Table 5.4: Selected survival estimates from the KM curve.

t n.risk n.event n.censor surv (95% CI)
1 49 467 15 125 646 0.694 (0.698, 0.690)
7 9 100 1 270 28 0.167 (0.170, 0.163)
10 5 879 698 20 0.112 (0.115, 0.109)
30 791 68 2 0.016 (0.018, 0.015)
50 119 12 0 0.003 (0.003, 0.002)
55 56 12 0 0.001 (0.001, 0.001)

n.risk, n.event, n.censor, and surv are number at risk,
number of events, number censored,

and Survival probability at time t.

a mean ventilation time of 4.51 (sd = 6.36). There was a significant difference found between
the age groups (χ2 p-value = 3e−08). The admission sources with the highest ventilation times
included the Other 373 (0.75%), a mean ventilation time of 7.20 (sd = 8.52) and downstream
2 971 (6.00%), a mean ventilation time of 6.93 (sd = 8.16). There was a significant difference
found between the sources of admission (χ2 p-value < 2e − 16). There was also a significant
difference found between diagnosis, referral physician, and patient category groups with a χ2

p-value < 2e − 16. Patients with trauma (1 927 (3.90%) had a mean ventilation time of 6.34
(sd = 7.13)) and had the highest average ventilation time and Cardiovascular patients (22269
(45.02%) had a mean ventilation time of 2.87 (sd = 4.77) and was the lowest. The MODS and
NEMS scores were both significantly associated with ventilation time (χ2 p-value = 3e − 08).
Pre-ICU hospital stay was significantly associated with ventilation time (χ2 p-value < 2e−16).
The MODS and NEMS scores were both significantly associated with ventilation time (χ2 p-
value < 2e − 16). Admission and surgery schedule were both significantly associated with
ventilation time (χ2 p-value < 2e−16). Among the recorded treatment received at arrival, only
the basic monitoring had no significant association with ventilation time (χ2 p-value =0.8).
This can be explained by the fact that the majority of the patients (99.93%) received basic
monitoring. This covariate will be removed in further analysis.

In Fig 5.3 and Fig 5.4, the log-rank test of the difference shown in Table 5.7 is confirmed
with the distinction in the ventilation time of the various category for each covariate.

Table 5.5: Descriptive statistics of ventilation time under various patient categories.

Variables Count Mean sd Skew Kurt Q0.25 Q0.5 Q0.75

Vent days 49467 4.57 6.57 3.65 17.02 1 2 5
(Sex) Female 18185 4.84 6.82 3.59 16.35 1 2 5

Male 31282 4.41 6.41 3.69 17.39 1 2 4
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(NEMS) 0 − 22 629 4.79 7.21 3.75 17.09 1 2 5
23 − 29 11823 4.03 6.06 4.05 21.11 1 2 4
≥ 30 37015 4.74 6.70 3.55 16.00 1 2 5

(Age group) 0 − 39 4355 4.91 6.47 3.30 14.18 2 2 5
40 − 79 38009 4.54 6.61 3.67 17.06 1 2 5
≥ 80 7103 4.51 6.36 3.77 18.65 1 2 5

(MODS) 1 4389 2.80 4.66 5.44 39.28 1 1 2
1 − 4 14185 4.02 6.09 4.22 23.00 1 2 4
5 − 8 16070 4.89 6.75 3.40 14.63 1 2 5
9 − 12 6861 5.94 7.73 3.00 11.10 2 3 7
≥ 13 7962 4.71 6.52 3.55 16.28 1 2 5

Source Downstream 2971 6.93 8.16 2.57 8.03 2 4 8
ED 12507 5.50 6.78 3.24 13.79 2 3 6
Home 191 5.75 6.07 2.06 4.38 2 3 7
Hospital 5210 6.81 8.08 2.83 9.86 2 4 8
OR 22608 2.68 4.36 5.91 46.25 1 2 2
Other 373 7.20 8.52 2.65 8.15 2 4 9
Ward 5607 6.54 8.40 2.80 9.32 2 3 8

Diagnosis Cardiovascular 22269 2.87 4.77 5.61 41.35 1 2 2
Gastrointestinal 2920 4.76 5.97 3.30 13.99 2 3 5
Neurological 4652 5.47 6.61 2.96 11.55 2 3 6
Other 17699 6.24 7.88 2.98 10.80 2 3 7
Trauma 1927 6.34 7.13 2.54 8.77 2 4 8

Referral Medical 16930 5.91 7.33 3.09 11.94 2 3 7
Other 9325 5.59 7.24 3.18 12.86 2 3 6
Respirology 1364 7.94 9.72 2.66 8.00 2 4 9
Surgical 21848 2.89 4.74 5.22 35.65 1 2 2

Pat Category Medical 22811 6.10 7.60 3.05 11.58 2 3 7
Surgical 26656 3.26 5.19 4.68 28.73 1 2 3

Table 5.6: Descriptive statistics of continuous variables.

Variables Count Mean sd Skew Kurt Q0.25 Q0.5 Q0.75

Day 1 NEMS 49467 35.22 6.69 0.36 -0.36 28 34 39
0 − 22 629 20.93 0.61 -11.6 153.35 21 21 21
23 − 29 11823 27.01 0.19 -0.41 64.71 27 27 27
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≥ 30 37015 38.08 5.16 0.86 0.07 34 38 40

Age 49467 63.84 15.88 -0.70 0.20 55.25 66.05 75.29
18 − 39 4355 29.19 5.95 -0.10 -1.19 24.14 29.47 34.38
40 − 79 38009 63.85 10.00 -0.42 -0.64 56.75 65.00 71.96
≥ 80 7103 85.02 3.79 0.93 0.57 81.95 84.23 87.32

Pre ICU LOS 49467 9.05 102.61 25.76 845.44 0 0 2
≤ 1 35911 0.19 0.40 1.54 0.36 0 0 0
2 − 7 7661 3.85 1.71 0.48 -1.07 2 4 5
> 7 5895 69.78 290.10 8.93 100.69 10 15 29

MODS Score 49467 5.57 3 0.42 0.24 4 5 7
1 4389 0.58 0.49 -0.33 -1.89 0 1 1
1 − 4 14185 3.23 0.81 -0.43 -1.33 3 3 4
5 − 8 16070 6.87 0.80 0.23 -1.41 6 7 8
9 − 12 6861 9.95 1.01 0.67 -0.75 9 10 11
≥ 13 7962 6.06 2.95 2.51 4.62 5 5 5

Table 5.7: Log-rank test of equality between groups in covariates

Covariate χ2 df p-value
Pre ICU LOS 262 2 <2e-16
Age group 35 2 3e-08
Sex 77.8 1 <2e-16
ICU Site 3350 65 <2e-16
Admission source 6875 6 <2e-16
Diagnosis 5213 4 <2e-16
Referal physician 5171 3 <2e-16
Patient Category 3929 1 <2e-16
MODS 1107 4 <2e-16
NEMS 157 2 <2e-16
Schedule admission 9579 1 <2e-16
Schedule surgery 8809 1 <2e-16
Basic Monitoring 0.1 1 0.8
Central Venous Line 53.9 1 2e-13
Arterial Line 79.4 1 <2e-16
Intracranial Pressure Monitor 227 1 <2e-16
Dialysis. 194 1 <2e-16
Extra corporeal Membrane Oxygen 79.7 1 <2e-16
Intra Aortic Balloon Pump 22.5 1 2e-06
Other Interventions Within this Unit 878 1 <2e-16
Interventions Outside this Unit 554 1 <2e-16



5.3. Results 113

+

+

+

+
+

+
++++++++++ + +++ ++ + ++ + + +

+

+

+
+

+
+

+++++++++++++ +++ + + ++ + ++ + ++ + + +0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Days

O
ve

ra
ll 

s
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

Strata + +Females Males

(a) Sex subgroups

+

+

+

+
+

+
+++

++
++ ++

+

+

+

+
+

+
+

+++++++++++++ +++ ++++ + ++ + + + ++ + +

+

+

+

+
+

+
++++

+++ + + + + +0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Days

O
ve

ra
ll 

s
u

rv
iv

a
l 
p

ro
b

a
b

ili
ty

Strata + + +Adults Seniors Youths

(b) Age subgroups

+

+

+

+
+

+

+

+
+
+
++++++++++++ + ++ + + + +

+

+

+
+
+
+
+++++++++++++ +++ ++++++ + ++ + + + + + +0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Days

O
ve

ra
ll 

s
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

Strata + + +<22 22−29 > 30

(c) NEMS subgroups

+

+

+
+++++++ +

+

+

+

+
+
+
+++++++++++ ++ ++ + + + + +

+

+

+

+
+
+
+++++++ +++++ + + + + + ++ + +

+

+

+

+
+
+
+
++++++++ ++ + ++ + + + +

+

+

+
+
+
+
+++++ +++++ + + ++ + +0.00

0.25

0.50

0.75

1.00

0 10 20 30 40 50 60

Days

O
ve

ra
ll 

s
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty

Strata + + + + +MODS = 1 2−4 5−8 9−12 > 13

(d) MODS subgroups

Figure 5.3: Kaplan-Meier survival curves

5.3.3 Probabilistic Characterization of ICU Ventilation Time

Here, we performed a parametric analysis of the ventilation time to determine the best distri-
bution that fit the data. Fig 5.5(a) shows the plot of the negative log of the estimated survivor
function against time. It shows approximately linear curve trends with minor deviation at the
extremes. This suggests that the exponential distribution might be a good candidate. Fig 5.5(b)
is the plot of the log of the negative log of the estimated survivor function against log time.
It shows an approximately linear trend and suggesting that the Weibull distribution should be
considered a good candidate. Fig 5.5(c) shows the plot of the cumulative probabilities versus
log time. We observe a concave trend with a faulty linear fit suggesting that the log-normal
distribution should be investigated further. Fig 5.5(d) shows the log of the survival probability
versus the log of time in black, with a fitted linear model. It shows that the linear trend does
not fit appropriately. This implies that the logistic model is not a good fit for the ventilation
data.

Fig 5.6(a) shows a histogram of the data overlaid with the density plot of the fitted distribu-
tion and Fig 5.6(b) contains the PP plot. Table 5.8 tabulates the criteria (Kolmogorov-Smirnov
score (K-S), Cramer-von Mises score (C-M)), Anderson-Darling score (A-D), log-likelihood
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Figure 5.4: Kaplan-Meier survival curves
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Figure 5.5: Graphical check of AFT assumption for (a) exponential, (b) Weibull, (c) log-
logistic, and (d) log-normal distributions

(log-l), the AIC, and the BIC) of the fitted distributions. Based on the criteria, the log-normal
probability distribution function was identified as the best distribution for the First-day venti-
lation time. The maximum likelihood estimates of the shape and scale parameters and their
standard deviations are given as µ̂ = 0.98(0.004), and σ̂ = 0.94(0.003) respectively. The actual
form of the probability density function is of the form

f (t; µ̂, σ̂) =
1

tσ̂
√

2π
exp

(
−

1
2σ̂2 (log(t) − µ)2

)
, t > 0. (5.1)
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Figure 5.6: Estimation of the probability density function for the ventilation time.

Table 5.8: MLE Estimates of ventilation time of all First-day ventilated patients.

Dist Estimate (sd) K-S C-M A-D log-l AIC BIC
Exp λ̂ =0.22 (0.00098) 0.22 521 2929 -124637 249275.3 249284
Weibull k̂ =0.94 0.003, λ̂ =4.40 (0.02) 0.22 462 2710 -124409 248822 248840
Gamma σ̂ =1.06 (0.01), λ̂= 0.23 (0.002) 0.23 555 3063 -124588 249179 249197
Lognorm µ̂ = 0.98 (0.004), σ̂ =0.94 (0.003) 0.19 299 1917 -115538 231080 231098
Gumbel α̂ =2.46 (0.01), σ̂ =2.78 (0.01) 0.26 739 4292 -137551 275107 275124

Dist (distribution), sd (standard deviation, KS (Kolmogorov-Smirnov), C-M (Cramer-von Mises), and A-D
(Anderson-Darling)

5.3.4 Cox Proportional Hazard Model

In this section, we fitted the Cox-proportional hazard (PH) model and checked the proportional
hazard assumption. The Cox PH model has no assumption about the distribution of the event
time, however, it assumes that the hazard ratio is constant over time. This assumption was
tested for each covariate and globally. The goodness of fit test of proportional hazards assump-
tion tabulated in Table B.3 in the Appendix gives a significant p-value < 2e − 16. Therefore
the null hypothesis that the proportionality assumption holds is rejected globally. It indicates a
lack of proportionality for the hazard function. There is a significant deviation from the propor-
tional hazards assumption for all the variables (p-value < 0.05). By inspecting Figures 5.3 and
5.4, the lines for male and female patients as well as the various age groups were not parallel,
confirming that the proportional hazards assumption is not reasonable in this case of stratifying
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the data. The PH model is not appropriate for our data and we therefore proceed to model the
ventilation time using the AFT model.

5.3.5 Accelerated Failure Time Model

Model Selection

To model the ventilation time, we fit Exponential, Weibull, Log-logistic, and Lognormal AFT
models. In each case, we fit the model to all the covariates without Basic monitoring on arrival.
From Table 5.9, we assessed each model using Akaike Information Criterion (AIC), Bayesian
Information Criterion (BIC), and the Log-Likelihood from model selection. Here, we identified
the Log-logistic model (log-likelihood = -73 400.5, AIC = 147 067, and BIC = 148 191) as a
better fit, as it is the model with the smallest criteria. The fitted log-logistic AFT model on all
covariates is tabulated in Table B.4 in the Appendix.

Table 5.9: Performance comparison of AFT models on the regional data

Model log − lik log − lik2 χ2 AIC BIC
Exponential -79951 -85627 11352 160165 161281
Weibull -79604 -85476 11745 159474 160598
Log-Normal -73852 -79452 11201 147970 149094
Log-logistics -73401 -79744 12687 147067 148191
log − lik (log-likelihood), log − lik2 (log-likelihood with intercept only)

We assessed the goodness of fit of each models using the distribution of the Cox-Snell resid-
uals. To do this, we compared the survival estimates of each parametric model with the KM
estimates, by plotting the survival probability against the Cox-Snell residuals. We are looking
for the survival function to closely follow the KM estimate. From Fig 5.7, the survival function
for the Log-logistic model found in Fig 5.7(d) is superimposed with the KM curve, clearly
showing that this model approximates the empirical survival better than the other models.

Variable Selection

We followed the variable selection approach outlined in the methods section. Using the back-
ward selection procedure, patient category (p-value > 0.74), dialysis (p-value > 0.57), inter-
ventions outside (p-value > 0.10) and sex (p-value > 0.65) were eliminated, resulting in the
final model presented in Table 5.10.

The analysis of the log-logistic AFT model revealed that the model containing the explana-
tory variables significantly improved the predictive ability of the model with the intercept only,
as the likelihood ratio gave a p-value < 2e − 16. The overall effect of each of the retained
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Figure 5.7: Residual survival plot to assess AFT models’ goodness of fit.

covariates on survival time revealed that all had a significant independent effect on IMV time
(all likelihood ratio tests resulted in a p-value < 10e − 5). Table B.5 tabulates the likelihood
ratio test results of variable selection criteria for models fitted to the data using backward elim-
ination.
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Table 5.10: Log-logistic AFT model of the training set

Covariate coe f L95% U95% e(coe f ) L95% U95%

shape 2.26 2.24 2.28 - - -
scale 1.12 0.98 1.29 - - -
ICU Site Code

3970 (reference)
3972 0.30 0.16 0.45 1.36 1.17 1.57
3985 0.38 0.27 0.49 1.46 1.31 1.62
3986 0.47 0.34 0.60 1.60 1.40 1.82
3987 0.19 0.05 0.33 1.21 1.05 1.39
3996 0.54 0.38 0.70 1.71 1.46 2.01
4001 0.19 0.08 0.30 1.21 1.08 1.34
4044 0.33 0.17 0.49 1.39 1.19 1.63
4045 0.24 0.11 0.36 1.27 1.12 1.44
4052 0.33 0.21 0.45 1.39 1.23 1.57
4054 0.42 0.29 0.54 1.52 1.34 1.71
4056 0.46 0.32 0.59 1.58 1.38 1.80
4057 0.10 -0.13 0.32 1.10 0.88 1.38
4063 0.02 -0.09 0.13 1.02 0.91 1.14
4071 0.07 -0.25 0.40 1.07 0.78 1.49
4073 0.29 0.17 0.42 1.34 1.18 1.52
4076 0.58 0.36 0.79 1.78 1.44 2.20
4079 0.42 0.30 0.53 1.52 1.35 1.70
4085 0.39 0.27 0.51 1.47 1.31 1.66
4089 0.43 0.16 0.69 1.53 1.18 2.00
4090 0.26 0.15 0.37 1.29 1.16 1.44
4093 -0.28 -0.62 0.07 0.76 0.54 1.07
4097 0.39 0.24 0.54 1.48 1.27 1.72
4103 0.17 0.01 0.33 1.19 1.01 1.39
4107 0.47 0.34 0.60 1.60 1.40 1.82
4108 0.70 0.50 0.90 2.02 1.65 2.46
4109 0.25 0.09 0.41 1.28 1.09 1.51
4110 0.10 -0.03 0.23 1.11 0.97 1.26
4123 0.30 0.13 0.47 1.35 1.13 1.60
4130 0.37 0.23 0.51 1.45 1.26 1.66
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4131 0.02 -0.16 0.19 1.02 0.85 1.21
4138 0.62 0.49 0.76 1.87 1.63 2.13
4144 0.46 0.31 0.61 1.58 1.36 1.85
4168 0.21 0.02 0.40 1.23 1.02 1.50
4171 0.42 0.30 0.55 1.53 1.34 1.73
4180 0.16 0.05 0.27 1.17 1.05 1.31
4186 0.29 0.03 0.55 1.33 1.03 1.73
4192 0.50 0.36 0.64 1.65 1.43 1.91
4193 0.32 0.06 0.59 1.38 1.06 1.81
4197 0.06 -0.31 0.42 1.06 0.73 1.53
4199 -0.12 -0.31 0.06 0.88 0.74 1.06
4205 0.46 0.35 0.57 1.58 1.42 1.76
4209 0.14 0.01 0.28 1.15 1.01 1.32
4231 0.20 0.09 0.30 1.22 1.10 1.35
4233 0.26 0.14 0.39 1.30 1.15 1.48
4235 0.31 0.16 0.46 1.36 1.17 1.59
4238 0.34 0.19 0.50 1.41 1.21 1.64
4241 0.21 -0.05 0.48 1.24 0.95 1.62
4245 0.27 0.13 0.41 1.31 1.14 1.51
4260 0.25 0.04 0.46 1.29 1.04 1.59
4265 0.57 0.46 0.67 1.76 1.59 1.96
4266 0.54 0.42 0.67 1.72 1.52 1.95
4285 0.18 0.05 0.31 1.20 1.06 1.36
4303 0.48 0.37 0.59 1.61 1.44 1.80
4310 0.27 0.17 0.38 1.31 1.18 1.46
4311 0.25 0.14 0.36 1.28 1.14 1.43
4315 0.38 0.25 0.51 1.46 1.28 1.66
4414 0.36 0.21 0.51 1.43 1.24 1.66
4471 0.27 0.10 0.45 1.32 1.11 1.56
4774 0.35 0.22 0.47 1.41 1.25 1.60
4799 0.46 0.33 0.59 1.59 1.39 1.81
4832 0.32 0.20 0.43 1.37 1.23 1.54
4837 0.43 0.29 0.57 1.53 1.33 1.76
4839 0.72 0.57 0.87 2.05 1.77 2.38
4841 0.44 0.27 0.60 1.55 1.31 1.83
4845 0.45 0.30 0.61 1.57 1.34 1.84
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Admission Source
Down stream units (reference)

ED -0.13 -0.17 -0.09 0.88 0.84 0.92
Home 0.13 -0.01 0.27 1.14 0.99 1.31

Hospital 0.11 0.06 0.16 1.12 1.06 1.17
OR -0.31 -0.36 -0.27 0.73 0.70 0.77

Other 0.16 0.05 0.27 1.17 1.05 1.31
Ward -0.13 -0.18 -0.09 0.88 0.84 0.92

Diagnosis
Cardiovasclar (reference)

Gastrointestinal 0.28 0.24 0.32 1.33 1.27 1.38
Neurological 0.31 0.28 0.35 1.37 1.32 1.42

Other 0.40 0.37 0.43 1.49 1.45 1.53
Trauma 0.53 0.47 0.58 1.70 1.61 1.79

Is Scheduled ICU Admission
No (reference)
Yes -0.22 -0.27 -0.17 0.80 0.76 0.84

Is Scheduled Surgery
No (reference)
Yes -0.16 -0.20 -0.11 0.86 0.81 0.90

Referral physician specialist
Medical (reference)

Other -0.01 -0.04 0.02 0.99 0.96 1.02
Respirology 0.15 0.08 0.21 1.16 1.08 1.23

Surgical -0.08 -0.11 -0.04 0.93 0.89 0.96
Central venous line

No (reference)
Yes 0.17 0.14 0.19 1.18 1.15 1.21

Arterial line
No (reference)
Yes 0.19 0.16 0.21 1.21 1.18 1.24

Intra-cranial pressure monitor
No (reference)
Yes 0.56 0.48 0.63 1.74 1.62 1.88

Extracorporeal membrane oxygen
No (reference)
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Yes 0.66 0.48 0.84 1.94 1.62 2.32
Intra aortic balloon pump

No (reference)
Yes 0.34 0.26 0.41 1.40 1.30 1.51

Other Interventions Within this Unit
No (reference)
Yes 0.07 0.05 0.09 1.07 1.05 1.10

Age group
18 - 39 (reference)
40 - 79 0.12 0.09 0.15 1.12 1.09 1.16
≥ 80 0.05 0.01 0.09 1.05 1.01 1.09

Pre ICU LOS
≤ 1 day (reference)

2 − 71 day 0.04 0.01 0.06 1.04 1.01 1.07
≥ 7 day 0.15 0.12 0.18 1.16 1.12 1.19

MODS
1 (reference)

1-4 0.10 0.07 0.13 1.11 1.07 1.14
5 - 8 0.22 0.19 0.25 1.25 1.21 1.29

9 - 12 0.27 0.23 0.31 1.31 1.26 1.36
≥ 13 0.17 0.14 0.21 1.19 1.15 1.23

NEMS
0-22 (reference)

23 - 29 -0.01 -0.09 0.06 0.99 0.92 1.07
≥ 30 0.04 -0.03 0.12 1.04 0.97 1.13

Model predictive performance

To assess the predictive performance of the model, we used a test dataset, and predicted the
ventilation time using the log-logistic model. We computed and compared the residuals of the
test data with those of the training data. Table 5.11 presents the comparison prediction perfor-
mance on the training and testing data. The predicted average ventilation duration was 2.96
days for the test data compared with 2.94 days for the training data. There is an insignificant
loss of performance from the prediction of the training data to the test data in the quantiles
(1.60, 2.75, 3.81 days to 1.59, 2.77, 3.85 days), in the MSE (from 46.81 to 60.21), in the MAE
(from 2.95 to 3.00), in the PBIAS (from 0.36 to 0.35), and the NES (from 1.090 to 1.380).
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Table 5.11: Table comparing prediction statistics from the test and training dataset.

Statistics N (%) Mean SD Q0.25 Q0.5 Q0.75 MSE MAE PBIAS NES
Training 34 626 (70%) 2.94 2.83 1.59 2.77 3.85 46.81 2.95 0.36 1.09
Test 14 840 (30%) 2.96 4.55 1.60 2.75 3.81 60.21 3.00 0.35 1.38

Fig 5.8 shows the survival functions of the training (in blue) and testing (in black) residuals
superimposed on the baseline KM survival. We observe that the survival curves of the training
and testing data are similar to the baseline KM survival. The performance of the training
model is revealed on the test data with an insignificant difference and a narrow gap. This
indicates that the model has a good ability to predict patients’ ventilation duration using First-
day observations.
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Figure 5.8: Residuals’ survival curves: Test (Black), Training (Blue), and Log logistic survival
(Red).

Model Validation

To validate the model’s prediction, we used a new dataset from the London Health Sciences
Center (LHSC), with data gathered from January 2019 to May 2021. The first step was to
calibrate the data. Calibration checks the agreement between observed outcomes and predicted
ones. To assess the need for model calibration, a simple linear regression and scatter plot of
the observed versus the predicted outcomes is performed. Perfect predictions yield a slope of 1
with an intercept of 0, which is the line of best fit that should divide the first quadrant into two
equal parts. A failure could inform a need for a model that considers shrinkage. The prediction
performance compares the estimated Kaplan-Meyer survival curve of the predicted residual to
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the expected empirical survival curve. This was done on three subgroups: COVID-19 patients,
Non-COVID-19 patients, and the whole LHSC data. Fig 5.9(a) is the survival of the residual
obtained from the LHSC data from January 2020 to May 2021, including all patients that
received IMV on arrival.
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(b) LHSC 2019 to 2021 non-COVID-19 patients’
data
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Figure 5.9: Residual survival plot using the LHSC data: predicted survival function (black),
logo-logistics survival distribution (Red)..

In Fig 5.9(a), the survival curve of the AFT model poorly approximates the expected em-
pirical survival, as there appears to be a major departure between the two. This could be due
to a medical condition that has not been present in the previous time interval, in particular,
COVID-19. To confirm our assumption about the effect of COVID, we divided the data into
two; patients with COVID-19 and patients without COVID-19.

Interestingly, in Fig 5.9(b), we observed a survival function that closely follows the KM
estimate, suggesting a good fit for the non COVID patients. However, the survival plot of
the residual from the prediction of the COVID patients in Fig 5.9(c) performs poorly. This is
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confirmed in Table 5.12, where we numerically compare the model’s predictive performance
on the three sub-datasets (Covid patients data, Non-COVID patients, and Mixed data).

Table 5.12: Model validation performance on three sub-data set.

Statistics n mean sd Q0.25 Q0.5 Q0.75 MSE MAE PBIAS NES
Covid Patients 162 4.7 1.11 3.96 4.86 5.28 201.9 10.16 0.67 1.84
Non-Covid patients 3594 3.52 1.19 2.74 3.39 4.08 49.42 3.60 0.37 1.05
All patients 3756 3.57 1.21 2.77 3.43 4.15 56.00 3.89 0.40 1.06

5.4 Discussion

Accurate prediction of ICU resources helps guide therapeutic decision-making, resource al-
location, and patient flow management. The number of days on IMV is a major concern of
critical care management and costs [41, 21]. However, IMV duration prediction models in
the literature were mainly based on the conventional multivariate regression model and the
logistics regression, thus, do not incorporate censored observations and are based on classify-
ing patients ventilation time to either a short or long duration [161, 46, 1, 56, 162, 10]. We
performed comprehensive survival analysis to predict and determine predictors of ventilation
time using the CCIS Ontario dataset. Information obtained at arrival is an important piece in
forecasting patient ventilator days.

The Log rank test on the KM curves of the covariates available on the first-day of ventilation
show that only basic monitoring was insignificant (p-value = 0.80). This is likely because a
very small number did not receive the basic monitoring treatment and therefore do not have the
power to rule out a real difference and avoid a type II error (false negative).

The covariate’s effect in the AFT model is to accelerate or decelerate the event time, which
in this case is the invasive ventilation time. The results of the association are shown in Table
5.10. A convenient way to understand the coefficients better is through interpretation of the
time ratio (TR), also called the acceleration factor. The TR for a given covariate is the (natural)
exponent of the estimated parameter coefficient (i.e, exp(β)). A positive coefficient corresponds
to a TR greater than 1, while a negative coefficient corresponds to a time ratio less than 1.
Correspondingly, a TR greater than one implies that the covariate increases the time to event.
An acceleration factor equal to 1 corresponds to no effect on the time to event.

A positive coefficient was observed for the majority of the ICUs (SiteCode) implying that
for the majority of the ICUs, the time to event is higher than average. Relatively, the ICU a
patient visited was a significant predictor of the patient’s ventilation time. Different ICUs had
differing TR. Compared to the ICU with code 3970 (use as reference), ICUs with site codes
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4057, 4063, 4071, 4093, 4110, 4131, 4197, 4199, and 4241 (9 out of 65) had an insignificant
coefficient. That is, their acceleration factor’s confidence interval covers 1 and is not signifi-
cantly different from that of 3970. Moreover, the 56 remaining ICUs had significantly higher
TR. Attending those ICUs increases the time a patient spends using a ventilator. This high dif-
ference in ventilation time in the ICU may be attributed to the practices and the location of the
various ICUs as outlined in Burns et al. [28]. The implication of this to the ICU management
is that the ICU managers should learn best practices from the ICUs that seem to have a lower
ventilation time.

Comparing patients admitted to the ICU from the downward stream (SDU and Level 3) to
those patients admitted from the house (TR = 1.14, CI = (0.99,1.31)), there was no significant
difference. However, patients from the ED (TR = 0.88, CI = (0.84 0.92)), OR (TR = 0.73, CI
= (0.70, 0.77)), and ward (TR = 0.88, CI =(0.84, 0.92)) had lower odds of longer ventilation
time, while patients admitted from hospitals (TR = 1.12, CI = (1.06, 1.17)) and other sources
(TR = 1.17, CI = (1.05,1.31)) had higher odds of longer ventilation time within the ICU.
Admitted with cardiovascular/cardiac/vascular diagnoses had a higher experience of the event
as compared to other etiologies. Gastrointestinal (TR = 1.33 , CI = (1.27 1.38)), Neurological
(TR = 1.37 , CI = (1.32 1.42)), Trauma (TR = 1.70 , CI = (1.61 1.79)), and Other diagnosis (TR
= 1.49 , CI = (1.45 1.53)) had higher odds to say on the ventilator compared to cardiovascular
patients. This could be explained by the founding of Kao et al. [79] using the same data where
cardiovascular diagnoses patients had higher mortality as compared to other etiologies [128].
Patients’ admission diagnosis types were also significant factors affecting ventilation time.
Surgical patients (TR = 0.770, CI = (0.702, 0.843)) had higher odds to leave the ventilator
earlier than medical patients.

Scheduled ICU admission (TR = 0.827, CI = (0.784, 0.873)) has a decelerating effect on
the ventilation time. This implies that scheduled admission was a significant predictor of pa-
tients’ ventilation time. Scheduled patients have 17.3% higher odd for shorter ventilation time
compared to non-scheduled patients. Scheduled patients have 17.3% higher odds for shorter
ventilation times compared to non-scheduled patients. This may be attributed to the fact that
generally, scheduled patients are taking elective procedures that support their faster and safer
transit through the ventilator, and are thus less likely to remain connected to the ventilator com-
pared to non-scheduled patients. Also, compared to non-scheduled surgery patients, patients
with scheduled surgery (TR = 0.823, CI = (0.783, 0.864)) have a 17.7% higher probability of
a shorter ventilation time. Referring Physician services such as Cardiology (TR = 1.100, CI =

(0.989, 1.220)), Ophthalmology (AF = 1.39, CI = (0.726, 2.64)), and Psychiatry (AF = 1.01,
CI = (0.639,1.610)) were non-significant. Referrals from these physicians had no ventilation
time effect. They act as the average baseline. However, the rest of the referring physicians’
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services had a significantly higher TR with none that were a significantly lower. For example,
patients from Trauma (TR = 2.28, CI = (2.12, 2.45)) and Paediatric (TR = 10.100, CI = (2,910,
34.900)) have the longest time on a ventilator. Unequivocally, treatments received on arrival
had a significant effect on ventilation time. The likelihood of longer ventilation is much higher
for patients who received central venous line (CVL) (TR = 1.18, CI = (1.15, 1.21)), arterial
line (AL) (TR = 1.21, CI = (1.18, 1.24)), intracranial pressure monitor (IPM) (TR = 1.74, CI
=(1.62, 1.88)), extracorporeal membrane oxygen (EMO) (TR = 1.94, CI = (1.62, 2.32)), Intra
Aortic Balloon Pump (IABP) (TR = 1.40, CI = (1.30, 1.51)), and other intervention within the
ICU (OIWU) (TR = 1.07, CI =(1.05, 1.10)). These treatments had a decelerating effect on the
event. Patients who received these interventions in ICU on arrival were connected for a longer
time compared to those who did not. The odds of longer ventilation time are much higher for
adults and seniors compared to youths. Patients aged 40–79 (TR = 1.12, CI =(1.09, 1.16)) and
those ≥ 80 years old (TR = 1.05, CI = (1.01, 1.09)) spent longer time on the ventilator com-
pared to those of patients age ≤ 39. This confirms the results by Piotto et al. [126] and Lei et al.
[93] who showed that advanced age (more than 60 years) was a significant predictor for IMV.
However, we found that patients’ sex is not a significant predictor. Longer pre-ICU LOS is
associated with a longer ventilation time. Specifically, patients who spend more than 1 day but
less than 7 days in the hospital post ICU (TR = 1.04, CI = (1.01, 1.07)), and those who spend
more than a week post ICU admission (TR = 1.16, CI =(1.12, 1.19)) are more likely to expe-
rience the event later than compared to those who spent less than 1-day post ICU admission.
Higher First-day scores in MODS corresponded to increasing time to event (MODS = (1-4),
TR = 1.11, CI = ( 1.07 1.14)) (MODS = (5 - 8), TR = 1.25, CI = ( 1.21 1.29)), (MODS = (9 -
13), TR = 1.31 , CI = (1.26 1.36)), and (MODS ≥ 13, TR = 1.19, CI = ( 1.15 1.23)). Patients
with high MODS scores upon arrival are at a higher risk of longer ventilation connection times
compared to those with low scores. Patients with high MODS score on arrival are at high risk
of longer connection to the ventilator compared to those with low scores. The First-day NEMS
score however had a weak association with the ventilation time (NEMS = (0-22), TR = 0.99
, CI = (0.92 1.07)), (NEMS ≥ 30, TR = 1.04 , CI = (0.97 1.13)). In the review by Ghauri
et al. [60], results based on logistic regression models indicated no significant effects for the
Acute Physiology and Chronic Health Evaluation (APACHE II) on the prediction IMV time of
ICU patients. Although one would expect NEMS to be a significant predictor because of the
weight of the respirator component, the results show the opposite, where it is not highly asso-
ciated. However, the presence of the covariate in the model significantly increases the model’s
prediction performance, as seen in the variable selection.
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5.5 Conclusion

This study proposed survival analysis to investigate the duration of invasive mechanical ven-
tilation in ICU patients. Both parametric and non-parametric methods have been explored.
Nonetheless, based on the AIC and BIC criteria, the log-logistic AFT model has been retained
as the best to predict ventilation time for each ICU patient. ICU site, admission source, admis-
sion diagnosis, scheduled admission, scheduled surgery, referral physicians, central venous line
treatment, arterial line treatment, intracranial pressure monitor treatment, extra-corporeal mem-
brane oxygen treatment, intra-aortic balloon pump treatment, other interventions, age group,
pre ICU LOS, and MODS score were significant predictors of the ICU ventilation time. Even
though the data used for the modelling is five years old, it performed well on current non-
COVID patients. The prediction performance of the proposed model showed that it can be
used to predict future ventilation time duration and provide insight into the predictors of venti-
lation time.

Our study differs from the previous studies in several ways. First, unlike the studies of
[161], [46] , [1], [56], [162], and [10] our study focused entirely on predicting the continuous-
time of ventilation time, where we used information gathered on the first day to predict the
ventilation time. Additionally, our sample size was larger and we used external validation
instead of bootstraps. This gives us more power to detect prediction performances.

Our study has several limitations. Our analysis includes only patients who entered the ICU
for one and a half years. Although the patient characteristics of this subgroup are not dissimilar
to that of the patients in the validation set, we note that the differing study period could have
significant, unrecognizable differences due to the appearance of COVID-19. The heterogene-
ity of the ICU site may affect our results. Since the models perform differently for different
ICUs, ICU site could be considered as a random effect. In that case, each ICU will have its
own model. Nonetheless, with the current model, we can compare the acceleration functions
of the various ICUs in the province. The survival model used in this research could benefit
from the automatic variable selection tools of penalized AFT models. Additionally, other ma-
chine learning methodologies, such as the random forest and Support vector machines (SVM)
could be used. In addition, nonlinear tree based machine learning algorithms as implemented
in libraries such as XGBoost, scikit-learn, LightGBM, and CatBoost with more accuracy esti-
mation could be used. However, the state-of-the-art implementations of such methods for the
AFT models are limited.



Chapter 6

Conclusion and Future Work

6.1 Main Contributions

This thesis has studied patients’ flow decisions, queuing game interaction, and duration of
ventilation in the ICU-SDU system via three research projects. The contributions of each
project are outlined as follows.

1. In the first project, we have studied patients flow in the ICU-SDU system. A Markov
decision model was used to model patient flow decisions by managing the ICU and
the SDU with or without premature ICU step-downs. Using the optimal solution of the
model parametrized on real data obtained from LHSC, we simulated the system and have
discovered counter-intuitive results. Some of the significant contributions of this study
are as follows:

• The last bed problem in the ICU-SDU flow has been formulated as a Markov de-
cision problem (MDP) to model the patient admission, step-down, and discharge
decisions.

• As a last bed problem, we proposed a reduced state space in the formulation of the
MDP model to avoid the problem of high dimensionality, which gave the possibility
to zoom in to congestion times and study the situation without blurring the actions
in non-congestion times.

• We implemented the determination of a set of actual actions to be taken when the
system is congested instead of the determination of a certain threshold.

• We optimized the MDP model under two sets of actions in congestion: one re-
jecting a new patient in need of critical care by default, and the other prematurely
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discharging a current critical care patient to the SDU in other to admit the new
arriving patient.

• We solved the Markov decision process using linear programming approximation
and showed that it is simple, effective, and computationally inexpensive for mod-
elling sequential decision-making processes under congestion.

• We simulated the ICU-SDU system under two sets of actions using the optimal
actions obtained from the MDP models.

• Our results counter-intuitively contradict conventional practice. Premature step-
down of critical patients done under congestion was found to be a less efficient
patient flow policy than rejecting arriving critical patients.

2. The second project is a queuing game model between two servers (ICU and SDU) in
tandem without a buffer in between them. In this chapter, our main contributions are as
follows.

• We introduced a queuing game model between two servers in tandem where the
first server (ICU) has a queue and the second server (SDU) has no queue.

• We modelled each unit’s objective function as a decentralized integrated system,
and as a central planner.

• We built queueing game models where the servers decide on the treatment efforts
in both competition and cooperative games instead of patients choosing to join the
queue or renege.

• We determined the feasibility conditions for each game structure.

• We found closed form solution for the decisions made by all players in all game
structures.

• We determined the conditions in which the downstream server improves the payoff

of the system.

• Results showed that the best performing structure depends on the KPI metric used.

3. The third project focused on modelling ventilation time in the ICU using survival models.
In this project, our main contributions are as follows.

• We used an extensive data set obtained from the Critical Care Information System
of Ontario to identify the distributions that best characterize the ventilation time
duration of patients connected to the ventilator on arrival at the ICU.
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• We built parametric and non-parametric survival models to infer among several
covariates, those that significantly characterize the time to disconnection of invasive
mechanical ventilators of patients that started using ventilation at arrival.

• Log-logistic AFT model was found and used as the best model to determine sig-
nificant predictors, their acceleration function, and the ventilation time of first day
ICU patients ventilation time.

• It is important to consider ICU site disparities to improve the analysis of ventilation
time and make capacity prediction and inform better decisions.

6.2 Limitations

The findings of this thesis must be seen in light of some limitations.

1. The limitations of the first project are as follows:

• The first limitation is the assumption regarding the ICU-SDU system capacity and
organization. If ICU and SDU capacities and length of stays are equal, our results
and conclusions may change. Even though we did an extensive sensitivity analy-
sis, changes to the capacities were not attempted due to the nature of the last bed
problem.

• Further, in some hospitals, the physical structure and the patient flow policy of the
ICU and the SDU may differ. Our model was based on LHSC’s parameters, which
may pose difficulties to ICU-SDU systems at other hospitals.

• The third limitation concerns the effects of the assumed value for the reward and the
cost. Even though cost and reward are robust to small changes, we postulate that
they should vary differently in different systems. From a managerial perspective,
the value of life analysis (willingness to pay) will be required to better estimate the
reward and cost of every action. The value of life is an economic value that can
quantify the benefit or loss of avoiding or falling into a fatality.

• The fourth limitation concerns the data used and the various model parameters es-
timated, which may be subject to biases and confounding factors. Different ICU-
SDU systems with different data may produce different results from a regional dis-
tributional perspective.

2. The second project is subject to the following limitations:
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• The model we used considered a one-server system at both ICU and SDU and an
exponential distribution for inter-arrival times and service times. In practice, ICUs
and SDUs have multiple beds, and the number of beds at the ICU differs from those
at the SDU.

• The SDU can be used as a buffer between the ICU and the Ward in some hospi-
tals. Therefore, the interaction between SDU and Ward was not considered in the
system.

• Finally, the linear payoff used may be too simplistic, and more research is needed
to determine the actual structure of the utility of the servers in the system.

3. In the third project,

• The study cohort is the primary limitation to the generalization of the obtained
results.

• In addition, it is important to highlight that our results present the mean estimated
survival curve for the targeted population and not the individual patient’s survival
curves.

• Furthermore, the relative risks estimated in the model must be cautiously inter-
preted as they are based on retrospective records and, therefore, are subject to con-
founding factors.

• The recent COVID-19 pandemic have changed the nature of mechanical ventilation
use in Ontario’s ICUs. Therefore, further investigation may be necessary.

6.3 Future Work

We highlight below some extensions of our work for future research.

1. Chapter 3 we proposed an MDP model with a Monte Carlos simulation to optimize
patient flow in the ICU.

• One obvious extension is the definition of the objective function at the individual
level, instead of the overall health service benefit of the system.

• In addition, further dividing patient’s acuity level (e.g., low, medium, high NEMS)
may provide further insight so long as it proves to be mathematically tractable.
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• This MDP could be reformulated as a re-enforcement learning problem where the
algorithm will decide on the actions instead of the user defining the action space of
the system.

• Finally, alternative measures of utility may be incorporated into the objective func-
tion of the MDP to include other measurement of ICU performance, especially as
it concerns the last ICU bed problem.

2. In Chapter 4, we proposed a queuing game between the ICU and the SDU assuming an
exponential arrival, an exponential service, and one server per station.

• From the queuing game perspective, we could consider extending of the queuing
game between the ICU and the SDU model to study pooling effects, generalized
arrival and service distributions.

• We could explore the equilibrium state properties of competition and cooperation
between more than one downstream unit, eg, ICU-SD-Ward patient flow. The Ward
may function as an alternative level of care for the SDU and they may compete for
ICU patients.

• We plan to study service time demand dependence by relaxing the assumption of
the exogenous demand.

• Finally, we envision a model where capacity ad or LOS becomes decisions for each
of the units (M/M/C-M/K system or G/G/C-G/K system).

3. The fifth chapter focuses on modelling ventilation duration in the ICU using survival
analysis. We can foresee the following extensions.

• Further studying ventilation time duration prediction by applying penalized ridge,
lasso, elastic net regression methods and comparing them to deep learning tools.

• In addition, we can investigate if more accurate predictions could be obtained by
ensemble models as well as nonlinear tree based machine learning algorithms as
implemented in libraries such as SuperLEarner, XGBoost, scikit-learn, LightGBM,
and CatBoost.

• We could also combine the logistic regression model with the survival model as a
Bayesian model to update predictions of consecutive days of ventilation time.

• Finally, instead on focusing on the individual ventilation time prediction, we could
attempt to predict mechanical ventilation of the current cohort of patients, ie, the
utilization of the resources themselves.
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Appendix A

Complementary on Chapter 4

A.1 Payoff functions

A.1.1 Cooperation

Elements of the Hessian matrix

∂2S c

∂2l1
= λ

(
−

2cλ3 (l1 + l2) 2

(1 − λ (l1 + l2)) 3 −
4cλ2 (l1 + l2)

(1 − λ (l1 + l2)) 2 −
2cλ

1 − λ (l1 + l2)

)
+ λ

(
2cl2

(l1 + l2) 2 −
2cl1l2

(l1 + l2) 3

)
∂2S c

∂2l2
= λ

(
−

2cλ3 (l1 + l2) 2

(1 − λ (l1 + l2)) 3 −
4cλ2 (l1 + l2)

(1 − λ (l1 + l2)) 2 −
2cλ

1 − λ (l1 + l2)

)
+ λ

(
2cl1

(l1 + l2) 2 −
2cl1l2

(l1 + l2) 3

)
∂2S c

∂l1∂l2
= λ

(
−

2cλ3 (l1 + l2) 2

(1 − λ (l1 + l2)) 3 −
4cλ2 (l1 + l2)

(1 − λ (l1 + l2)) 2 −
2cλ

1 − λ (l1 + l2)

)
+ λ

(
−

c
l1 + l2

+
cl1

(l1 + l2) 2 +
cl2

(l1 + l2) 2 −
2cl1l2

(l1 + l2) 3

)
∂2S c

∂l2∂l1
= λ

(
−

2cλ3 (l1 + l2) 2

(1 − λ (l1 + l2)) 3 −
4cλ2 (l1 + l2)

(1 − λ (l1 + l2)) 2 −
2cλ

1 − λ (l1 + l2)

)
+ λ

(
−

c
l1 + l2

+
cl1

(l1 + l2) 2 +
cl2

(l1 + l2) 2 −
2cl1l2

(l1 + l2) 3

)
(A.1)

Full System payoff under cooperation

S CP =
2(2c(r − 1) + c(3c − r)(c + r) − r + 1)
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A.1.2 Simultaneous Decision

Elements of the Hessian matrix
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Full System payoff under Simultaneous decision
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A.1.3 ICU Stackelberg Decision

System payoff under ICU Stackelberg
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A.1.4 SDU Stackelberg Decision

Full System payoff under SDU Stackelberg
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Appendix B

Complementary on Chapter 5

Table B.1: Selected estimates from the K-M curve.

Time n.risk n.event n.censor surv UCI LCI
1 49, 467 15, 125 646 0.694 0.698 0.690
2 33, 696 12, 213 273 0.443 0.447 0.438
3 21, 210 5, 179 129 0.335 0.339 0.330
4 15, 902 2, 979 60 0.272 0.276 0.268
5 12, 863 2, 092 39 0.228 0.231 0.224
6 10, 732 1, 594 38 0.194 0.197 0.190
7 9, 100 1, 270 28 0.167 0.170 0.163
8 7, 802 998 33 0.145 0.149 0.142
9 6, 771 866 26 0.127 0.130 0.124
10 5, 879 698 20 0.112 0.115 0.109
15 3, 249 326 8 0.064 0.066 0.062
20 1, 963 176 0 0.040 0.041 0.038
25 1, 258 110 6 0.026 0.027 0.024
30 791 68 2 0.016 0.018 0.015
35 528 41 2 0.011 0.012 0.010
40 334 26 0 0.007 0.008 0.006
45 201 25 1 0.004 0.005 0.004
50 119 12 0 0.003 0.003 0.002
55 56 12 0 0.001 0.001 0.001
59 10 9 0 0.000 0.000 0.000

n.risk (number at risk at time t), n.event (number of events at time t),
surv (Survival probability), UCI (upper confident interval limit),

LCI (lower confident interval limit).
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Table B.2: Description of the Log rank uni-variate test

Covariates Counts events

Pre ICU LOS (χ2 = 262 on 2 df, p <2e-16)

<=1 35911 34925
<8 7661 7430
>7 5895 5705

Age group (χ2 = 35 on 2 df, p= 0.00000003)

18-35 4355 4209
36-64 38009 36914
65+ 7103 6937

Sex (χ2 = 77.8 on 1 df, p <2e-16)

Female 18185 17696
Male 31282 30364

ICU Site (χ2 = 3350 on 65 df, p <2e-16 )

3970 359 349
3972 296 293
3985 2417 2353
3986 530 526
3987 398 387
3996 261 254
4001 2352 2292
4044 291 251
4045 612 604
4052 882 870
4054 786 774
4056 476 468
4057 80 76
4063 1596 1578
4071 31 29
4073 586 568
4076 127 123
4079 1127 1101
4085 813 802
4089 58 57
4090 2881 2856
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4093 27 27
4097 270 261
4103 196 193
4107 559 546
4108 126 123
4109 228 221
4110 504 490
4123 159 145
4130 409 400
4131 170 163
4138 540 524
4144 281 278
4168 127 124
4171 660 653
4180 1563 1530
4186 57 55
4192 334 327
4193 62 62
4197 29 28
4199 138 131
4205 2516 2474
4209 427 423
4231 4112 3995
4233 661 655
4235 302 278
4238 242 236
4241 58 52
4245 352 348
4260 127 123
4265 3567 3508
4266 786 776
4285 642 625
4303 2570 2088
4310 3215 3198
4311 1441 1428
4315 489 482
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4414 417 406
4471 180 170
4774 754 739
4799 622 620
4832 1265 1255
4837 430 413
4839 399 392
4841 230 224
4845 265 260

Admission source (χ2 = 6875 on 6 df, p <2e-16)

Downstream Unit 2971 2864
ED 12507 12217
Home 191 181
Hospital 5210 5000
OR 22608 21927
Other 373 358
Ward 5607 5513

Diagnosis (χ2 = 5213 on 4 df, p <2e-16)

Cardiovascular 22269 21517
Gastrointestinal 2920 2866
Neurological 4652 4557
Other 17699 17255
Trauma 1927 1865

Physician Referral (χ2 = 5171 on 3 df, p <2e-16)

Medical 16930 16457
Other 9325 9098
Respirology 1364 1316
Surgical 21848 21189

Patient Category (χ2 = 3929 on 1 df, p <2e-16)

Medical 22811 22189
Surgical 26656 25871

MODS (χ2 = 1107 on 4 df, p <2e-16)

<=1 4389 4070
1 − 4 14185 13704
5 − 8 16070 15787
9 − 13 6861 6721



156 Chapter B. Complementary on Chapter 5

>13 7962 7778

NEMS (χ2 = 157 on 2 df, p <2e-16)

<22 629 613
C2 11823 11462
C3 37015 35985

Schedule admission (χ2 = 9579 on 1 df, p <2e-16)

No 32488 31629
Yes 16979 16431

Schedule surgery (χ2 = 8809 on 1 df, p <2e-16)

No 30670 29858
Yes 18797 18202

Schedule (χ2 = 0.1 on 1 df, p= 0.8)

No 33 31
Yes 49434 48029

CentralVenousLine (χ2 = 53.9 on 1 df, p= 2e-13)

No 13383 12996
Yes 36084 35064

ArterialLine (χ2 = 79.4 on 1 df, p <2e-16)

No 9065 8822
Yes 40402 39238

IntracranialPressureMonito (χ2 = 227 on 1 df, p <2e-16)

No 48648 47253
Yes 819 807

Dialysis. (χ2 = 194 on 1 df, p <2e-16 )

No 48046 46668
Yes 1421 1392

ExtracorporealMembraneOxygen (χ2 = 79.7 on 1 df, p <2e-16)

No 49331 47934
Yes 136 126

IntraAorticBalloonPump (χ2 = 22.5 on 1 df, p= 0.000002)

No 48771 47390
Yes 696 670

OtherInterventionsWithinthisUnit (χ2 = 878 on 1 df, p <2e-16)

No 33331 32357
Yes 16136 15703
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InterventionsOutsidethisUnit (χ2 = 554 on 1 df, p <2e-16)

No 38658 37531
Yes 10809 10529

Table B.3: Test of Cox PH assumption

Covariate χ2 df p−value
Site Code 1156.267 65 < 2e − 16
Admission Source 847.177 6 < 2e − 16
Diagnosis 851.135 4 < 2e − 16
Is Scheduled ICU Admission 953.906 1 < 2e − 16
Is Scheduled Surgery 884.831 1 < 2e − 16
Patient Category 609.514 1 < 2e − 16
Physician Specialist 688.851 3 < 2e − 16
Central Venous Line 29.441 1 5.8e − 08
Arterial Line 0.206 1 0.6502
Intracranial Pressure Monitor. 69.925 1 < 2e − 16
Dialysis 33.588 1 6.8e − 09
Extra-corporeal Membrane Oxygen 7.091 1 0.0077
Intra-Aortic Balloon Pump 21.868 1 2.9e-06
Other Interventions Within this Unit 113.692 1 < 2e − 16
Interventions Outside this Unit 186.073 1 < 2e − 16
Age 27.107 1 1.9e-07
Gender 8.828 1 0.0030
Age group 7.381 2 0.0250
Pre LOS 28.340 2 7.0e-07
MODS Cat 145.383 4 < 2e − 16
NEMS Cat 21.775 2 1.9e-05
GLOBAL 2552.177 101 < 2e − 16

χ2 (Chi-square value), df (degree of freedom)
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Table B.4: Survival distribution of log-logistic AFT model for CCIS data

Covaraite est L95% U95% exp(est) L95% U95%

shape 2.26 2.24 2.28 NA NA NA
scale 1.11 0.96 1.27 NA NA NA
SiteCode 3972 0.31 0.16 0.46 1.36 1.18 1.58
SiteCode 3985 0.39 0.28 0.50 1.48 1.32 1.64
SiteCode 3986 0.48 0.34 0.61 1.61 1.41 1.84
SiteCode 3987 0.22 0.08 0.36 1.25 1.09 1.43
SiteCode 3996 0.55 0.39 0.71 1.73 1.48 2.03
SiteCode 4001 0.20 0.09 0.31 1.22 1.09 1.36
SiteCode 4044 0.34 0.18 0.50 1.40 1.20 1.64
SiteCode 4045 0.25 0.12 0.37 1.28 1.13 1.45
SiteCode 4052 0.35 0.23 0.47 1.41 1.25 1.59
SiteCode 4054 0.43 0.31 0.55 1.53 1.36 1.73
SiteCode 4056 0.49 0.35 0.62 1.62 1.42 1.86
SiteCode 4057 0.10 -0.12 0.33 1.11 0.89 1.39
SiteCode 4063 0.03 -0.08 0.14 1.03 0.92 1.15
SiteCode 4071 0.07 -0.25 0.40 1.08 0.78 1.49
SiteCode 4073 0.31 0.19 0.44 1.36 1.20 1.55
SiteCode 4076 0.57 0.36 0.78 1.76 1.43 2.18
SiteCode 4079 0.43 0.31 0.55 1.54 1.37 1.73
SiteCode 4085 0.40 0.28 0.52 1.49 1.32 1.68
SiteCode 4089 0.44 0.17 0.70 1.55 1.19 2.02
SiteCode 4090 0.27 0.16 0.38 1.31 1.18 1.46
SiteCode 4093 -0.29 -0.64 0.06 0.75 0.53 1.06
SiteCode 4097 0.41 0.25 0.56 1.50 1.29 1.75
SiteCode 4103 0.19 0.03 0.35 1.21 1.03 1.42
SiteCode 4107 0.46 0.33 0.59 1.58 1.39 1.80
SiteCode 4108 0.71 0.51 0.91 2.04 1.67 2.49
SiteCode 4109 0.26 0.10 0.42 1.30 1.11 1.53
SiteCode 4110 0.11 -0.01 0.24 1.12 0.99 1.27
SiteCode 4123 0.30 0.13 0.47 1.35 1.13 1.60
SiteCode 4130 0.37 0.23 0.51 1.45 1.26 1.66
SiteCode 4131 0.04 -0.14 0.21 1.04 0.87 1.24
SiteCode 4138 0.63 0.50 0.77 1.88 1.65 2.15
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SiteCode 4144 0.47 0.31 0.62 1.59 1.37 1.86
SiteCode 4168 0.22 0.03 0.42 1.25 1.03 1.52
SiteCode 4171 0.43 0.31 0.56 1.54 1.36 1.75
SiteCode 4180 0.17 0.06 0.28 1.19 1.06 1.33
SiteCode 4186 0.26 0.00 0.52 1.30 1.00 1.69
SiteCode 4192 0.51 0.37 0.65 1.66 1.44 1.92
SiteCode 4193 0.35 0.08 0.62 1.42 1.09 1.86
SiteCode 4197 0.05 -0.32 0.42 1.06 0.73 1.53
SiteCode 4199 -0.12 -0.30 0.06 0.89 0.74 1.07
SiteCode 4205 0.47 0.36 0.58 1.60 1.43 1.78
SiteCode 4209 0.15 0.01 0.28 1.16 1.01 1.33
SiteCode 4231 0.21 0.10 0.32 1.23 1.11 1.37
SiteCode 4233 0.28 0.15 0.40 1.32 1.16 1.49
SiteCode 4235 0.33 0.17 0.48 1.39 1.19 1.62
SiteCode 4238 0.37 0.21 0.52 1.44 1.24 1.68
SiteCode 4241 0.22 -0.05 0.49 1.25 0.96 1.63
SiteCode 4245 0.28 0.14 0.42 1.33 1.15 1.53
SiteCode 4260 0.29 0.07 0.50 1.33 1.08 1.65
SiteCode 4265 0.58 0.47 0.69 1.79 1.60 1.99
SiteCode 4266 0.55 0.43 0.68 1.74 1.54 1.96
SiteCode 4285 0.19 0.07 0.32 1.21 1.07 1.37
SiteCode 4303 0.49 0.38 0.60 1.63 1.46 1.82
SiteCode 4310 0.29 0.18 0.39 1.33 1.20 1.48
SiteCode 4311 0.26 0.15 0.37 1.30 1.16 1.45
SiteCode 4315 0.37 0.24 0.50 1.45 1.27 1.66
SiteCode 4414 0.37 0.22 0.52 1.44 1.25 1.67
SiteCode 4471 0.28 0.11 0.45 1.32 1.11 1.57
SiteCode 4774 0.35 0.23 0.48 1.42 1.26 1.61
SiteCode 4799 0.46 0.34 0.59 1.59 1.40 1.81
SiteCode 4832 0.33 0.22 0.45 1.40 1.24 1.57
SiteCode 4837 0.44 0.30 0.58 1.55 1.35 1.79
SiteCode 4839 0.73 0.58 0.88 2.08 1.79 2.41
SiteCode 4841 0.44 0.27 0.60 1.55 1.31 1.83
SiteCode 4845 0.47 0.31 0.62 1.60 1.36 1.87
Admission Source ED -0.13 -0.17 -0.08 0.88 0.84 0.92
Admission Source Home 0.13 -0.01 0.27 1.14 0.99 1.31
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Admission Source Hospital 0.11 0.06 0.16 1.12 1.07 1.17
Admission Source OR -0.31 -0.36 -0.26 0.73 0.70 0.77
Admission Source Other 0.15 0.04 0.26 1.17 1.04 1.30
Admission Source Ward -0.13 -0.18 -0.08 0.88 0.84 0.92
Diagnosis Gastrointestinal 0.28 0.24 0.33 1.33 1.27 1.38
Diagnosis Neurological 0.31 0.27 0.35 1.37 1.31 1.42
Diagnosis Other 0.40 0.37 0.43 1.49 1.45 1.53
Diagnosis Trauma 0.52 0.47 0.58 1.69 1.59 1.79
Is Scheduled ICU Admission Yes -0.22 -0.27 -0.17 0.80 0.77 0.85
Is Scheduled Surgery Yes -0.16 -0.21 -0.11 0.85 0.81 0.90
Patient Category Surgical 0.01 -0.04 0.06 1.01 0.96 1.06
Physician Specialist Other -0.01 -0.04 0.03 0.99 0.96 1.03
Physician Specialist Respirology 0.15 0.09 0.22 1.16 1.09 1.24
Physician Specialist Surgical -0.08 -0.13 -0.03 0.92 0.88 0.97
Central Venous Line Yes 0.17 0.14 0.19 1.18 1.16 1.21
Arterial Line Yes 0.19 0.16 0.21 1.20 1.17 1.24
Intracranial Pressure Monitor Yes 0.55 0.48 0.63 1.74 1.61 1.87
Dialysis Yes 0.01 -0.04 0.07 1.01 0.96 1.07
Extra corporeal Membrane Oxygen Yes 0.67 0.49 0.85 1.95 1.63 2.33
Intra Aortic Balloon Pump Yes 0.33 0.25 0.40 1.39 1.29 1.50
Other Interventions in this Unit Yes 0.07 0.05 0.09 1.07 1.05 1.10
Interventions Outside this Unit Yes 0.02 0.00 0.04 1.02 1.00 1.04
Gender Male 0.00 -0.01 0.02 1.00 0.99 1.02
Age group2 0.12 0.08 0.16 1.13 1.08 1.18
Age group3 0.05 -0.01 0.12 1.05 0.99 1.12
Pre LOSC2 0.04 0.02 0.06 1.04 1.02 1.07
Pre LOSC3 0.15 0.12 0.18 1.16 1.12 1.19
MODS CatC2 0.11 0.07 0.14 1.11 1.08 1.15
MODS CatC3 0.22 0.19 0.26 1.25 1.21 1.29
MODS CatC4 0.27 0.23 0.31 1.31 1.26 1.36
MODS CatC5 0.18 0.14 0.21 1.19 1.15 1.24
NEMS CatC2 -0.01 -0.09 0.06 0.99 0.91 1.06
NEMS CatC3 0.04 -0.04 0.11 1.04 0.96 1.12
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Table B.5: Variable selection criteria for models fitted to the data using backward elimination.

Variable removed df Deviance Pr(>Chi)
Site Code 65 1267.19 2.80E-222
Admission Source 6 452.51 1.42E-94
Diagnosis 4 889.69 2.86E-191
IsScheduledICUAdmission 1 75.50 3.65E-18
IsScheduledSurgery 1 38.93 4.38E-10
PatientCategory (PC) 1 0.10 0.7498
PC + PhysicianSpecialist 4 44.34 5.46E-09
PC + CentralVenousLine 2 184.81 7.40E-41
PC + ArterialLine 2 193.28 1.07E-42
PC + IntracranialPressureMonitor 2 210.01 2.50E-46
PC + Dialysis (D) 2 0.40 0.8200
PC + D + ExtracorporealMembraneOxygen 3 51.27 4.28E-11
PC + D + IntraAorticBalloonPump 3 77.06 1.31E-16
PC + D + OtherInterventionsWithinthisUnit 3 42.75 2.78E-09
PC + D + Interventions Outside (IO) 3 3.06 0.3826
PC + D + IO + Gender 4 3.24 0.5179
PC + D + IO + Gender + Age group 6 77.82 1.00E-14
PC + D + IO + Gender + Pre LOS 6 100.58 1.90E-19
PC + D + IO + Gender + MODS 8 273.48 1.79E-54
PC + D + IO + Gender + NEMS 6 26.86 0.0002
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