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Abstract 

This integrated article thesis provides an analysis of the past, present, and potential future 

state of Computer Science (CS) in K-12 education. Once implemented in optional courses at 

the secondary level, CS concepts and skills are now being integrated into other subject areas 

such as mathematics, science, and technology and other grades including K-8. This new state 

of K-12 CS education is explored through an analysis of 1) related theory reflected in the 

literature, 2) historical secondary school CS curriculum, 3) enrolment data and important 

issues related to equity, diversity, and inclusion, and 4) K-8 CS-related curriculum 

approaches currently being implemented in educational jurisdictions across Canada. The four 

articles in this dissertation employ a qualitative approach to research, drawing on a 

constructivist epistemology. Thematic Analysis is used to examine the goals and rationale of 

historical curriculum documents from Ontario and Document Analysis is used to compare 

various K-8 curriculum documents from across Canada. Together, the chapters included in 

this integrated article thesis provide a comprehensive analysis of K-12 CS education that 

supports educators, policy makers, and researchers in the field during a transformative time. 
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Summary for Lay Audience 

This integrated article dissertation explores the field of Computer Science (CS) education in 

kindergarten to grade 12 (K-12), during a transformative time. In the past, CS concepts and 

skills were introduced to students in optional courses at the high school level, but now these 

concepts and skills are being introduced into other subject areas, such as mathematics, 

science, and technology and other grades, such as K-8. This thesis explores this change by 

analyzing theoretical perspectives from a variety of researchers as well as historical CS-

related curricula. Enrolment data in CS courses is also explored, and the important themes of 

equity, diversity, and inclusivity in CS education are investigated, as well new CS-related 

curricula in the K-8 grades. The goal of this dissertation is to develop an understanding of the 

past, present, and future direction of CS in K-12 education. 



 

iv 

 

Dedication 

To Lisa, Cohen, Maxwell, Charles and Elizabeth. 



 

v 

 

Acknowledgments 

A heartfelt thank you to my wife Lisa, you have endured my early morning and late-night 

exploratory speeches on all things coding, CS, and CT and you have shared with me quite a 

few of your own. Since we both started teaching CS courses back in 2003, you have been an 

inspiration and an honest and thought-provoking critical lens throughout. You encouraged 

me to share my experiences in CS education with others, outside of my classroom, and 

without your support this thesis would not have even begun. You also just happen to be a 

wonderful wife and a wonderful mother to Cohen, Maxwell, Charles, and Elizabeth. 

To Cohen, Maxwell, and Charles: thank you for testing out so many programming activities, 

and for listening to so many conversations about curriculum. To Elizabeth, thank you in 

advance for hopefully doing the same. 

To Dr. George Gadanidis, supervisor extraordinaire. Thank you for your expertise and 

guidance in personal and professional matters throughout the PhD process. I feel as though 

you provided just what was needed, at each step along this journey. 

To Dr. Immaculate Namukasa, thank you for your continued support throughout the last few 

years, your feedback and perspectives have improved this work significantly. Also, thank 

you to Beckett Smith, a student whom I will never forget and one who continues to motivate 

me to share the power and wonder of technology with students. 

To the educators at Mother Teresa Catholic Secondary School and at the LDCSB, those 

involved in developing and writing e-learning courses for TELO, and all those at TVO and at 

Ontario’s Ministry of Education: your insights and perspectives have helped shape my view 

of learning, research, and teaching and I suspect, have also helped shape this thesis. 

My journey in computers and education began in the 1980s when my father, Derek, would 

bring home Pets, Commodores and programmable turtles. He introduced me to the idea that a 

computer can be a transformative force in learning, teaching, and thinking. My mother, 

Yvonne, was a kindergarten teacher and her approach to teaching in the younger grades 

embodied critical thinking, 21st century learning, and independence, long before these 

became popular topics. Thank you, I’m forever grateful to you both. 



 

vi 

 

Table of Contents 

Abstract ............................................................................................................................... ii 

Summary for Lay Audience ............................................................................................... iii 

Dedication .......................................................................................................................... iv 

Acknowledgments............................................................................................................... v 

Table of Contents ............................................................................................................... vi 

List of Tables .................................................................................................................... xii 

List of Figures .................................................................................................................. xiii 

List of Appendices ........................................................................................................... xiv 

Preface............................................................................................................................... xv 

Chapter 1 ............................................................................................................................. 1 

1 Introduction .................................................................................................................... 1 

1.1 Problem Description ............................................................................................... 1 

1.2 Purpose of the Study ............................................................................................... 2 

1.3 Research Questions ................................................................................................. 2 

1.4 Terms and Definitions............................................................................................. 3 

1.4.1 Curriculum .................................................................................................. 3 

1.4.2 Computer Science Related Terms ............................................................... 4 

1.5 Organization of the Study ....................................................................................... 5 

1.6 Background and Positionality of the Researcher .................................................... 5 

1.7 Chapter References ................................................................................................. 7 

Chapter 2 ........................................................................................................................... 10 

2 Theoretical Perspectives Related to Computer Science in K-12 Education ................ 10 

2.1 Introduction ........................................................................................................... 10 

2.2 Wing’s Idea of Computational Thinking .............................................................. 11 



 

vii 

 

2.3 Papert and Constructionism .................................................................................. 12 

2.4 Resnick and Computational Fluency .................................................................... 14 

2.5 Kafai and Computational Participation ................................................................. 17 

2.6 diSessa and Computational Literacy ..................................................................... 18 

2.7 Denning, Aho, Wilkerson, Gadanidis and Modelling in Other Subject Areas ..... 19 

2.8 Grover, a Tale of Two CTs and Consolidating Theory ........................................ 22 

2.9 Conclusion ............................................................................................................ 25 

2.10 Chapter References ............................................................................................... 25 

Chapter 3 ........................................................................................................................... 29 

3 Historical Computer Science Curriculum: From 1966 to today .................................. 29 

3.1 Introduction ........................................................................................................... 30 

3.2 Thematic Analysis ................................................................................................ 31 

3.2.1 Background ............................................................................................... 31 

3.2.2 Six-Phase Approach .................................................................................. 32 

3.3 Analyzing the Documents ..................................................................................... 34 

3.4 Results ................................................................................................................... 36 

3.4.1 Implementation Timeframes and Courses of Study .................................. 36 

3.4.2 Thematic Analysis and Curricula Preambles ............................................ 39 

3.5 Discussion ............................................................................................................. 40 

3.5.1 Curriculum Documents and Courses of Study.......................................... 40 

3.5.2 Focus of Preambles in CS-Related Curricula ........................................... 42 

3.6 Implications and Future Studies............................................................................ 49 

3.7 Additional Dissertation Section – Grade 10 Curriculum Components ................. 50 

3.7.1 Courses and Main Concepts...................................................................... 50 

3.7.2 Other Concepts.......................................................................................... 52 

3.7.3 Pedagogical Approaches ........................................................................... 53 



 

viii 

 

3.8 Conclusion ............................................................................................................ 55 

3.9 Chapter References ............................................................................................... 56 

Chapter 4 ........................................................................................................................... 60 

4 Enrolment and Underrepresented Groups in Computer Science Education ................ 60 

4.1 Research Rationale................................................................................................ 61 

4.2 The Broadening of CS Education ......................................................................... 61 

4.2.1 Ontario and Canada................................................................................... 62 

4.2.2 United States of America .......................................................................... 65 

4.2.3 England ..................................................................................................... 67 

4.2.4 An Important Note from the Author ......................................................... 68 

4.3 Potential Impact and Missed Opportunities .......................................................... 69 

4.4 Equity, Diversity, and Inclusivity in CS Education .............................................. 71 

4.5 Conceptual Frameworks ....................................................................................... 74 

4.6 Enrolment in Ontario Secondary School Computer Studies................................. 77 

4.6.1 Overall Enrolment ..................................................................................... 78 

4.6.2 Diversity and Ontario Computer Studies .................................................. 83 

4.6.3 The Universal/Selective/Indicative Model and Systems Thinking Leverage 

Points......................................................................................................... 87 

4.6.4 Margolis and the Clubhouse Today .......................................................... 89 

4.7 Conclusion ............................................................................................................ 91 

4.8 Chapter References ............................................................................................... 92 

Chapter 5 ........................................................................................................................... 99 

5 Coding in K-8 Curriculum ........................................................................................... 99 

5.1 Introduction ........................................................................................................... 99 

5.1.1 Arguments for Coding Curriculum in the Younger Grades .................... 100 

5.1.2 Theoretical Perspectives on Coding in the K-8 Grades .......................... 103 



 

ix 

 

5.2 Problem Description ........................................................................................... 109 

5.3 Purpose and Research Questions ........................................................................ 110 

5.4 Theoretical Frameworks and Methodology ........................................................ 111 

5.4.1 Constructivism ........................................................................................ 111 

5.4.2 Methodology and Document Analysis.................................................... 112 

5.5 Findings............................................................................................................... 113 

5.5.1 British Columbia’s Elementary Coding Curricula .................................. 113 

5.5.2 Goals of British Columbia’s Elementary Coding Curricula ................... 114 

5.5.3 Learning Orientations in British Columbia’s Elementary Coding Curricula

................................................................................................................. 114 

5.5.4 Alberta..................................................................................................... 116 

5.5.5 Alberta’s Elementary Coding Curricula ................................................. 117 

5.5.6 Goals of Alberta’s Elementary Coding Curricula ................................... 117 

5.5.7 Learning Orientations in Alberta’s Elementary Coding Curricula ......... 118 

5.5.8 Saskatchewan .......................................................................................... 119 

5.5.9 Manitoba ................................................................................................. 120 

5.5.10 Ontario’s Elementary Coding Curricula ................................................. 120 

5.5.11 Goals of Ontario’s Elementary Coding Curricula .................................. 121 

5.5.12 Learning Orientations in Ontario’s Elementary Coding Curricula ......... 122 

5.5.13 Quebec’s Elementary Coding Curricula ................................................. 124 

5.5.14 Goals of Quebec’s Elementary Coding Curricula .................................. 124 

5.5.15 Learning Orientations in Quebec’s Elementary Coding Curricula ......... 124 

5.5.16 New Brunswick’s Elementary Coding Curricula ................................... 125 

5.5.17 Goals of New Brunswick’s Elementary Coding Curricula ..................... 125 

5.5.18 Learning Orientations in New Brunswick’s Elementary Coding Curricula

................................................................................................................. 126 

5.5.19 Nova Scotia’s Elementary Coding Curricula .......................................... 126 



 

x 

 

5.5.20 Goals of Nova Scotia’s Elementary Coding Curricula ........................... 127 

5.5.21 Learning Orientations in Nova Scotia’s Elementary Coding Curricula . 127 

5.5.22 Prince Edward Island .............................................................................. 128 

5.5.23 Newfoundland and Labrador Elementary Coding Curricula .................. 129 

5.5.24 Goals of Newfoundland and Labrador Elementary Coding Curricula ... 129 

5.5.25 Learning Orientations in Newfoundland and Labrador Elementary Coding 

Curricula ................................................................................................. 129 

5.6 Comparative Analysis and Discussion................................................................ 130 

5.6.1 Coding or Coding-Related? For Some or For All? ................................. 130 

5.6.2 Coding on its Own or Integrated… Somewhere? ................................... 133 

5.6.3 Connecting Theory and Curricula ........................................................... 135 

5.7 Conclusion .......................................................................................................... 140 

5.8 Chapter References ............................................................................................. 141 

Chapter 6 ......................................................................................................................... 148 

6 Integrative Chapter ..................................................................................................... 148 

6.1 Overview of Chapters 2 to 5 ............................................................................... 148 

6.2 Broadening CS Education Beyond the Optional, Secondary Courses ................ 150 

6.3 Papert and the Integration of CS in Other Subjects ............................................ 153 

6.4 From the Technical, to the Personal, Social and Cultural................................... 156 

6.5 From the Ethical to the Justice-Centered Curriculum......................................... 158 

6.6 The Future of Secondary CS Curricula ............................................................... 160 

6.7 Towards the Development of a Literacy ............................................................. 162 

6.7.1 Re-mediation ........................................................................................... 164 

6.7.2 Re-formulation ........................................................................................ 164 

6.7.3 Reorganization ........................................................................................ 165 

6.7.4 Revitalization .......................................................................................... 166 



 

xi 

 

6.7.5 Computational Literacy and a Post-Secondary Example........................ 167 

6.8 Broadening of CS Education Leading to New Actors and Influences ................ 169 

6.9 Research question answered ............................................................................... 172 

6.10 Limitations of the Research ................................................................................ 174 

6.11 Implications and Future Research ....................................................................... 176 

6.12 Conclusion .......................................................................................................... 178 

6.13 Chapter References ............................................................................................. 180 

Appendices ...................................................................................................................... 184 

Curriculum Vitae ............................................................................................................ 193 



 

xii 

 

List of Tables 

Table 1. Ten affordances of computational modelling (Gadanidis et al., 2019) .................... 21 

Table 2. Theoretical approaches to the broadening of CS K-12 education ............................ 23 

Table 3. CS focussed courses of study in Ontario Curriculum (1966-Present) ...................... 38 

Table 4. Appearance of themes in the preambles of CS-related curriculum .......................... 39 

Table 5. Grade 10 introductory CS-related courses, from 1966 to present day ...................... 51 

Table 6. Occurrence of verbs in the 2000 and 2008 grade 10, introductory CS courses ........ 54 

Table 7. Recent arguments and goals for coding in the younger grades .............................. 102 

Table 8. Brennan and Resnick’s (2012) CT concepts, practices and perspectives and Grover 

and Pea's (2018) concepts and practices ............................................................................... 106 

Table 9. Content within the Computational Thinking and Robotics modules in British 

Columbia's ADST curriculum .............................................................................................. 115 

Table 10. Computer Science guiding questions and learning outcomes in Alberta K-6 

curriculum ............................................................................................................................. 119 

Table 11. Overall and specific coding expectations found in Stand C- Algebra, of the 

Ontario, Grades 1-8 Mathematic Curriculum ....................................................................... 122 

Table 12. Categories of implementation of coding expectations in Canadian K-8 curricula 131 

Table 13. Theoretical perspectives reflected in provincial coding-related curricula ............ 136 

Table 14. Categories of implementation of coding expectations in Canadian K-8 curricula 

from Chapter 5 ...................................................................................................................... 152 

Table 15. Examples of diSessa's (2018) four Rs in CS K-12 education ............................... 162 



 

xiii 

 

List of Figures 

Figure 1. Computer science related curriculum in Ontario ..................................................... 37 

Figure 2. Total number of students enrolled in Ontario secondary Computer Studies courses 

(2011-2018)............................................................................................................................. 79 

Figure 3. Percentage of secondary students enrolled in Ontario secondary Computer Studies 

courses..................................................................................................................................... 80 

Figure 4. Total number of students enrolled in Computer Studies courses in each grade ...... 81 

Figure 5. Total number of students enrolled in the five Computer Studies courses ............... 82 

Figure 6. Total number of female and male students enrolled in Computer Studies courses . 84 

Figure 7. Percentage of female students enrolled in each of the five Computer Studies 

courses, from 2011 to 2018. .................................................................................................... 85 

Figure 8. K-8 coding curricula implementation examples from Canadian provinces .......... 133 

Figure 9. K-8 coding curricula implementation examples from Canadian provinces from 

Chapter 5 ............................................................................................................................... 152 

  

 



 

xiv 

 

List of Appendices 

Appendix A. Email from CTE 2020 Secretariat providing reprint permission. ................... 184 

Appendix B. Published paper from CTE 2020. .................................................................... 185 

Appendix C. Initial codes from Thematic Analysis of preambles ........................................ 189 

Appendix D. Themes developed through Thematic Analysis of preambles. ....................... 191 

Appendix E. Letter of permission to reprint contents in Chapter 4. ..................................... 192 

 

file:///C:/Users/S-PC/Desktop/---STEVE---Files---/PhDizzle/SFloyd-PhDThesis-Education-April2022-GTtoThematicAnalysis.docx%23_Toc101482874
file:///C:/Users/S-PC/Desktop/---STEVE---Files---/PhDizzle/SFloyd-PhDThesis-Education-April2022-GTtoThematicAnalysis.docx%23_Toc101482877


 

xv 

 

Preface 

This thesis has been developed as an integrated article dissertation that includes an 

introduction, four main articles, and an integrated chapter connecting the main ideas and 

findings. These sections are briefly described below. 

Chapter 1 is an introductory chapter that presents the context for the study, including a 

description of the problem being investigated, the purpose of the study, the research 

questions, related terms and definitions, and background on the researcher. 

Chapter 2 analyzes existing literature from the field and provides a summary of the 

theoretical perspectives related to coding and computational thinking in K-12 education. 

Parts of this chapter have been published in the Proceedings of International Conference on 

Computational Thinking Education 2020. Appendix A includes a letter from the publisher, 

granting permission to include published parts in this dissertation. 

Chapter 3 employs Thematic Analysis to investigate historical computer science curriculum 

implemented as an optional, isolated subject in secondary education. Preliminary work from 

this chapter was presented at the Fields Institute for Research in Mathematical Sciences and 

the Special Interest Group on Computer Science Education 2018 Conference. It was also 

published, in part, in The Math Knowledge Network Quarterly. Much of this work has also 

been accepted as a single-paper presentation at the Canadian Society for the Study of 

Education 2022 conference. 

Chapter 4 investigates enrolment data related to CS courses implemented as optional credits 

in secondary schools in Ontario and explores important issues related to equity, diversity, and 

inclusivity in CS K-12 education. Parts of this chapter were published as a book chapter in 

the Handbook of Research on Equity in Computer Science in P-16 Education. Appendix C 

includes a letter from the publisher, granting permission to include the chapter in this 

dissertation. Preliminary work from this chapter was presented at the 2019 ACM Conference 

on International Computing Education Research in Toronto, Ontario. 

Chapter 5 uses document analysis to provide a comparative analysis of existing coding 

curriculum in K-8 curricula from jurisdictions across Canada. This work has also been 
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accepted as a single-paper presentation at the Canadian Society for the Study of Education 

2022 conference. 

Chapter 6 integrates findings from the four preceding chapters and demonstrates how 

intersecting themes from each chapter provide a picture of the current state of K-12 CS 

education and considers its past, present and potential future direction.   

Together, these articles provide an analysis of the CS landscape in K-12 education at a 

transformational time. I am the sole author of all chapters, conference presentations, and 

articles that have been included.
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Chapter 1  

1 Introduction 

This chapter introduces the problem, purpose of study and research questions that frame 

this integrated article dissertation. Relevant terms and definitions are also identified and 

described for the reader, as well as the background and positionality of the researcher. 

1.1 Problem Description 

The impetus for research focusing on Computer Science (CS) curriculum is the increased 

popularity of initiatives that attempt to broaden participation in CS education across the 

K-12 grades. This trend is exemplified by the programs, established by governments in 

the United States and Canada, to provide all students with an opportunity to learn to 

program a computer. In the United States, the Computer Science for All initiative, which 

was first announced in 2016 by then President Barack Obama, is intended to empower 

American students from K-12 to learn CS (Smith, 2016). In Canada, $110 million was 

allotted to the CanCode initiative which aims to engage over 2 million young people from 

K-12 in coding and digital skills development (Department of Finance Canada, 2019). 

These initiatives demonstrate a recognition, on behalf of governments, of the importance 

of broadening participation in CS education and often reflect an economic argument 

maintaining that the knowledge and skills related to CS will be critical in the workforce 

of the future (Passey, 2017). Historical and contemporary theoretical perspectives from 

the field; however, present several alternative motivations for the broadening of CS-

related education to all. In the 1970s, Seymour Papert introduced the K-12 education 

field to the idea that a computer could fundamentally change education by serving as a 

“tool to think with” (Papert, 1993). Decades later, in 2006, Jeanette Wing popularized a 

different approach, that argued that all students should program a computer in order to 

think like a computer scientist, through the development of Computational Thinking 

(Wing, 2006). Since that time, a number of researchers have provided additional detail 

and direction for Wing’s (2006) Computational Thinking, while others have proposed 

other approaches that include Computational Action (Tissenbaum et al, 2019), 
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Computational Fluency (Resnick, 2018), Computational Literacy (diSessa, 2018), and 

Computational Participation (Kafai, 2016). 

Currently, this variety of perspectives is not well understood and even the general idea 

that all students should learn to program a computer is contentious (Webb et al, 2020). 

Considering the number of educational jurisdictions beginning to integrate CS-related 

concepts and skills in other subjects and grades, it is important to analyze how this is 

being done, what approaches and directions are being represented in new curriculum, and 

how this new curriculum might impact the more traditional implementation of CS 

education. In addition, as these concepts and skills are expanded to all learners, it is 

important to develop an understanding of potential equity, diversity, and inclusivity 

issues apparent in the traditional delivery model of CS education. This can help 

determine what can be done to alleviate these concerns or ensure that they are not 

reproduced as implementation models change. 

1.2 Purpose of the Study 

The purpose of this study is to develop an understanding of the current, evolving state of 

K-12 CS education by providing: 1) an analysis of literature that reflects theoretical 

perspectives in the field of CS K-12 education, 2) an understanding of the historically 

optional nature of CS education in terms of its placement in curriculum, goals and 

specific components, 3) an analysis of enrollment patterns and related issues including 

those concerning equity, diversity, and inclusivity, and 4) a comparative analysis of 

current approaches to CS curriculum in the K-8 grades that is based on the research 

literature. 

1.3 Research Questions 

This integrated article dissertation will provide an analysis of K-12 CS education through 

the lenses of theoretical perspectives, enrolment, and curriculum. To do so, the following 

question will be answered:  

1. What is the current, and potentially future, direction of CS in K-12 education? 
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This will be answered by focusing on the following sub-questions: 

a. What are the theoretical approaches presented in the literature that relate 

to the integration of CS concepts and skills in the K-12 grades? 

b. What do curriculum documents reveal about the nature of historical CS K-

12 education in terms of goals, rationale, and implementation models? 

c. What do enrolment patterns reveal about the nature of historical CS K-12 

education in terms of equity, diversity, and inclusivity? 

d. What are the CS-related concepts and skills currently found in Canadian, 

K-8 provincial curricula and how do these reflect theoretical perspectives 

and historical CS K-12 education goals and rationale? 

1.4 Terms and Definitions 

1.4.1 Curriculum 

A key focus for this study is the analysis and discussion surrounding curriculum. The 

term curriculum can have several different meanings, depending on the context or even 

the jurisdiction in which it is used. For some, curriculum can mean the activities and 

lesson plans developed for a class, while for others curriculum might mean the learning 

expectations and standards that students must meet. Curriculum may also be classified in 

terms of being either formal, that which is public and officially recognized, and actual, 

that which is carried out in the classrooms (Portelli, 1993). The learned curriculum is 

quite simply what students actually learn (Moercke & Eika, 2002) while critical 

curriculum theorists often refer to the hidden curriculum, first identified by Philip 

Jackson (1968), as one that is implicit and that rewards certain values, dispositions, and 

social and behavioural expectations. A categorization that is useful in this study is 

provided by Doyle (1992), who defines three levels of curriculum as either institutional, 

programmatic, or classroom. The institutional curriculum is broad, general, and abstract 

representing belief systems of an ideal educational experience while in contrast, the 

classroom curriculum involves the learning experiences that arise as teachers engage with 
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students within the schools (Deng, 2010). Sometimes considered to be in the middle of 

these two extremes is the programmatic curriculum, which involves formal 

organizational structures such as school subjects and courses of study, and is enacted 

through policy documents, syllabi, and textbooks (Deng, 2010). The emphasis of this 

study is on the programmatic curriculum, with a specific focus on the policy documents 

developed by educational jurisdictions to communicate the expectations and outcomes 

related to CS concepts and skills. 

1.4.2 Computer Science Related Terms 

Like any field of study, the definitions of key terms within CS education are sometimes 

contentious. This section of the introductory chapter does not aim to resolve these 

disagreements, instead it is intended to explain the use of terms within this work. 

Computer science, computer programming, coding, and computational thinking are 

related terms that appear in the literature and curricula and it is difficult to make clear and 

precise distinctions between them. For the sake of this dissertation, the broad term 

“computer science” will be used extensively in order to capture a number of these related 

concepts and skills. The term “coding” will be used in certain sections when referring to 

specific CS-related concepts and skills arising in K-8 curricula, as this appears to be a 

popular use of the term in policy documents (Government of Canada, 2019). The term 

Computational Thinking is explored in depth in Chapter 2. When Computational 

Thinking appears outside of Chapter 2, the definition in use is that of Aho’s (2012) which 

states that “computational thinking is the  thought processes involved in formulating 

problems so their solutions can be represented as computational steps and algorithms” (p. 

832). This definition is recommended by Denning (2017) as it “captures the spirit of 

computational thinking expressed over 60 years of CS and 30 years of computational 

science. It also captures the spirit of computational thinking in other fields such as 

humanities, law, and medicine” (p. 35). Additionally, specific terms will be used when it 

is important to represent how an organization or educational jurisdiction refers to specific 

initiatives. As an example, in 2016, the Ontario Ministry of Education announced plans to 

support elementary teachers in integrating “coding and computational thinking” skills 
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into their teaching (Ontario Ministry of Education, 2016). These terms were specifically 

used in the government’s announcement, and this specificity is important to capture 

within the dissertation. 

1.5 Organization of the Study 

This dissertation is written as an integrated article thesis that comprises this introductory 

chapter, four main works (chapters 2, 3, 4 and 5) and a final integrated chapter that 

connects the main works. Together these six chapters provide context for the study and 

answer the research questions posed in the Research Questions section above. 

1.6 Background and Positionality of the Researcher 

Considering the qualitative nature of the work and the role of the researcher as a tool in 

the investigation, how the researcher situates themselves within the study can potentially 

impact data collection, data analysis and findings (Merriam & Tisdell, 2015). It is 

therefore important to clearly state the positionality of the researcher, as well as their 

experience in the chosen field of study. 

I began taking university CS courses in September 1997, where I reached the conclusion 

that this subject could be taught in a creative and engaging way and was something that 

had the potential to appeal to all students. In 2003, I started my career as a CS teacher and 

15 years later I was awarded the 2017 Computer Science Teachers Association Award for 

Teaching Excellence, presented by Infosys Foundation USA, the Association for 

Computing Machinery and the Computer Science Teachers Association. During my time 

as a secondary CS and Computer Engineering teacher, I led action research projects 

related to CS education with students and teachers in the elementary grades. I have 

worked as an independent consultant in the area of CS integration, a high school CS 

online course writer, a Bachelor of Education instructor in Computational Thinking in 

Mathematics and Science Education, and I am currently an Education Officer with 

Ontario’s Ministry of Education, working in the area of STEM curriculum and policy 

development. 
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My interest in curriculum and policy began when completing a Masters in Educational 

Policy. While I am aware that a number of factors impact student learning, including 

specific resources, classroom activities, and teacher professional development, I believe 

that what is and is not included in mandatory curriculum has a dramatic impact on the 

learning of students, and can reveal important information related to the goals and 

perspectives of policy makers and governments. I recognize the importance and power of 

curriculum and educational policy and I appreciate the opportunity to have an impact in 

this area. 

This qualitative research has been approached from a constructivist epistemology, which 

embodies underlining assumptions that include the following: 

• we construct meanings for ourselves, as we interpret the world; 

• we engage with and make sense of the world based on our historical and social 

perspectives; 

• the generation of findings and meaning is social, arising from interactions with, or 

artifacts from, the human community (Crotty, 1998). 

My teaching and classroom activities embody Papert’s Constructionist learning theory, 

that shares Constructivism’s idea of building our own knowledge structures, but also 

focuses attention on the importance of constructing a “public entity” (Harel & Papert, 

1991). In my CS and computer engineering classes, these public entities often took the 

form of software solutions and physical computing artifacts that connected learning to a 

number of cross-curricular contexts. Examples include small software applications that 

analyzed sports data, the development of small computer games, robotics projects, and 

interactive, programmed art with LEDs and programmed musical tones. After years of 

working at the intersection of education and technology, I see the computer, the 

programming environments, and the physical computing devices in much the same way 

that Seymour Papert saw his childhood physical gears and his famous Logo Turtle, as 

“objects to think with” (Papert, 1993, p. 11). 

Finally, and perhaps most importantly, I would like to acknowledge the themes of equity, 

diversity, and inclusivity that appear within this thesis, and to explain my current and 
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continued allyship with related initiatives. The broadening of CS education to support 

underrepresented groups has consistently been a goal of my work, and I have attempted 

to ensure that my efforts are supported by research and best practices. The focus of this 

research is on curriculum and a reason for this is my view that large scale, educational 

policy has the power to positively influence equity, diversity, and inclusivity concerns in 

CS education and to make this important area of learning more accessible to all students. 

I am aware that I do not identify as a member of an underrepresented group in CS, and as 

a result, I have been hesitant to take up space in this area, when perhaps it is not my voice 

that needs to be heard. My wife Lisa does extensive work in the area of K-12 CS 

education and research and I am grateful to be able to discuss with her these concerns, 

and better understand my role as an ally. The recent birth of our daughter has also 

provided me with a new experience and perspective, and I hope that these can also help 

me better understand equity, diversity, and inclusivity issues and allyship. I have 

discussed my role in researching and presenting equity, diversity, and inclusivity issues in 

CS education with a number of professors at Western University, and was humbled to 

have received the Canadian Research Centre on Inclusive Education Research Award in 

2019. I continue to consider how I can help contribute positively to equity, diversity, and 

inclusivity initiatives in CS education. I hope that this thesis can have an impact in 

supporting positive changes in K-12 CS education. 
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Chapter 2  

2 Theoretical Perspectives Related to Computer Science 
in K-12 Education 

The integration of computer science (CS) related concepts and skills into areas outside of 

the traditional, CS high school courses is becoming an integral part of educational 

reforms in Ontario, across Canada, and internationally. In the spring of 2019, Canada’s 

federal government announced an additional $60 million of funding for their CanCode 

coding initiative (Department of Finance Canada, 2019) while in spring 2020, Ontario 

released curriculum that included coding expectations in grades 1-8 Mathematics 

(Ontario Ministry of Education, 2020). Across Canada, Alberta, British Columbia, New 

Brunswick, and Nova Scotia have recently included CS concepts and skills in their 

current or draft K-8 curricula while beyond Canada the integration of CS into K-8 

education has become an international phenomenon (Gadanidis et al., 2017). As the 

broadening of CS education continues, it is important to situate these initiatives within 

the research literature and theory related to CS education in the K-12 grades. 

2.1 Introduction 

It has been argued that the understanding of CS concepts contributes to the development 

of important technical skills that form the basis of a number of lucrative, high-status and 

flexible careers within the continually growing field of technology (Information and 

Communications Technology Council, 2017). In addition, CS concepts and the thought 

processes involved in Computational Thinking (CT) are discussed as being valuable for 

all students to learn (Wing, 2006) as they are applicable to a wide range of careers. 

Coding skills have also been recognized as a new type of literacy (diSessa, 2018), a form 

of personal expression (Brennan & Resnick, 2012) and a critical part of being an 

educated, 21st century citizen (Margolis et al., 2012). What follows is a literature review 

of these and other theoretical perspectives related to the broadening of CS education and 

the potential for integration of CS concepts and skills outside of the traditional, high 

school CS classroom. The analysis begins with an introduction to Wing’s idea of CT and 

then presents perspectives from other researchers, including their concerns with Wing’s 



11 

 

approach. This chapter is meant to provide an understanding of foundational, theoretical 

approaches to situate the rest of this thesis and to provide context for contemporary 

approaches to the broadening of CS in K-12 education. 

2.2 Wing’s Idea of Computational Thinking 

In March of 2006, the Communications of the ACM published an article by Wing entitled 

Computational Thinking. At the time of publishing, Wing was the head of the Computer 

Science Department at Carnegie Mellon University and was seeking to expand the scope 

of CS education beyond the post-secondary levels. In Computational Thinking, Wing 

articulated the characteristics and importance of a “universally applicable attitude and 

skill set” (p. 33) called Computational Thinking (CT), that goes beyond simply coding a 

computer and instead involves thinking like a computer scientist. She also encouraged the 

CS community to inspire the public’s interest in the field of CS and expose all K-12 

students to computational methods and models in an effort to make CT commonplace. 

Wing initially defined CT as “solving problems, designing systems, and understanding 

human behavior, by drawing on the concepts fundamental to computer science” (Wing, 

2006, p. 33). Later, in 2011, she refined her definition to the “thought processes involved 

in formulating problems and their solutions so that the solutions are represented in a form 

that can be effectively carried out by an information-processing agent” (p. 20). 

While researchers and educators have discussed Wing’s initial definition at length, they 

have also criticized her focus on problem-solving and thinking like a computer scientist. 

Lorena Barba (2016) explains that Wing’s view fails to acknowledge CT as “a source of 

power to do something and figure things out, in a dance between the computer and our 

thoughts”. Barba goes on to explain that viewing the computer as a formal tool to 

understand, and then apply to a problem later, takes away its power: 

The operational aspect of making problems computable is essential, but not 

aspirational. Most people don’t want to be a computer scientist, but everyone can 

use computers as an extension of our minds, to experience the world and create 

things that matter to us. (para. 23) 
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Barba was attempting to move discussions away from a CS-centric CT and move towards 

an idea of computational learning that would allow students to use computing as a means 

to create new knowledge in a broad number of domains. diSessa (2018) shares similar 

views, as he notes that Wing’s position appears firmly entrenched in the discipline of CS, 

but for something to have as broad of aspirations as CT, it cannot belong to one 

discipline. He also notes that Wing’s CT view fails to recognize foundational literature in 

the field, including work from Papert, who like himself, aimed to bring computational 

ideas to the wider population “for general intellectual purposes” (diSessa, 2018, p. 27). 

These computational ideas and the general theory for the broadening of CS will be further 

explored, beginning with the historical and foundational work from Papert. 

2.3 Papert and Constructionism 

Described as the father of educational computing (Stager, 2016), Papert and his ideas 

were foundational in terms of considering the learning and teaching that takes place with 

computers (Kafai & Burke, 2014). With a bachelor’s degree in philosophy and a PhD in 

mathematics, Papert became a research associate at MIT in 1964 and a professor in 1969. 

Before arriving at MIT, Papert worked closely with Piaget, whose theory of cognitive 

development heavily influenced Papert’s work: “I take from Jean Piaget a model of 

children as builders of their own intellectual structures” (Papert, 1993, p. 7). Papert built 

on Piaget’s theory of constructivism by developing his own theory of learning that he 

called constructionism (Stager, 2016). Both theories focus on learning being an active 

process of constructing knowledge and both include the idea that children learn new 

concepts by relating them to things that they already know (Ames, 2018). Where they 

differ; however, is how Papert acknowledges the importance of culture as the source of 

the materials that students will use to build their knowledge (Papert, 1993). Papert 

believed that in some cases the culture provides the learning materials in abundance, 

which facilitates Piagetian learning. In other cases, however, where there is a slower 

development of a particular concept, Piaget attributed this to greater complexity or 

formality, whereas Papert saw the critical factor as “the relative poverty of the culture in 

those materials that would make the concepts simple and concrete” (Papert, 1993, p. 7). 
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It was for this reason that Papert was so enamored with the computer as a learning tool. 

He felt that the relative poverty of a culture, school or classroom could be cured by a 

computer, which he called the Proteus of machines, that can “take on a thousand forms 

and can serve a thousand functions” (Papert, 1993, p. xxi). Papert’s research agenda at 

MIT was shaped by two major themes surrounding the computer and education: 1) 

children are capable of learning to use computers in masterful ways, and 2) learning to 

use computers can change the way that children learn other things (Papert, 1993). While 

the computer played a central role in his work with children, his focus was always on the 

mind and the way in which technology could provide children with new possibilities for 

learning, thinking and growing, both cognitively and emotionally (Papert, 1993). 

At MIT, Papert developed the Logo computer programming language, which he felt 

could alter the relationship that students had with computers. Rather than having students 

be programmed by a computer (through computer-based exercises, computer-based 

feedback or by having the computer dispense information), the Logo programming 

environment reversed this relationship by having the student program the computer itself, 

which essentially meant teaching the computer how to think. Papert felt that in teaching 

the computer how to think, the student would begin to consider how they themselves 

think: “The experience can be heady: Thinking about thinking turns the child into an 

epistemologist, an experience not even shared by most adults” (Papert, 1993, p. 19). 

When further describing the epistemological nature of children’s work with Logo, Papert 

comes very close to describing a modern form of CT: 

I have invented new ways to take educational advantage of the opportunities to 

master the art of deliberately thinking like a computer, according, for example, to 

the stereotype of a computer program that proceeds in a step-by-step, literal, 

mechanical fashion. There are situations where this style of thinking is 

appropriate and useful. Some children’s difficulties in learning formal subjects 

such as grammar or mathematics derive from their inability to see the point of 

such a style. (Papert, 1993, p. 27) 



14 

 

Papert uses the term “mechanical thinking” (Papert, 1993, p. 27) to describe the type of 

thinking that students are introduced to when programming in Logo. He emphasizes that 

by introducing students to mechanical thinking, they suddenly become aware that there is 

such a thing as a thinking style, and they begin to consider other thinking styles that 

might exist, as well as how and why they might choose between styles. Papert first uses 

the term “computational thinking” (p. 182) when he discusses how the visions of early 

experiments were insufficiently developed, in terms of how to integrate this type of 

thinking into everyday life: 

In most cases, although the experiments have been interesting and exciting, they 

have failed to make it because they were too primitive. Their computers simply 

did not have the power needed for the most engaging and shareable kinds of 

activities. Their visions of how to integrate computational thinking [emphasis 

added] into everyday life was insufficiently developed. But there will be more 

tries, and more and more. And eventually, somewhere, all the pieces will come 

together and it will catch. One can be confident of this because such attempts will 

not be isolated experiments operated by researchers who may run out of funds or 

simply become disillusioned and quit. They will be manifestations of a social 

movement of people interested in personal computation, interested in their own 

children, and interested in education. (p. 182) 

Papert’s work surrounding computers and education, and his development of the Logo 

programming language, sowed the seeds of this educational movement. Resnick, a former 

student of Papert’s, exclaimed that he would be happy to spend the rest of his life 

nurturing these seeds (Resnick, 2020).  

2.4 Resnick and Computational Fluency 

Resnick is currently the LEGO Papert Professor of Learning Research at MIT Media Lab 

and the director of the MIT Lifelong Kindergarten research group that developed Scratch, 

the world’s leading coding platform for kids. Resnick explains that Scratch was deeply 

inspired by Papert’s Logo programming language but “goes beyond Logo by making 

programming more tinkerable, more meaningful, and more social” (Resnick, 2014, p. 
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14). While Resnick makes these claims, it is important to note specific distinctions 

between the Logo and Scratch programming languages. Papert’s Logo remained simple 

and focused specifically on mathematics, whereas Scratch has broader goals and many 

additional features, including a wide variety of programmable characters (sprites) and 

backgrounds and the ability to share projects online. While this has the potential to keep 

students engaged, there is also the possibility that additional features can distract students 

and possibly teachers from the learning of mathematics. Benton et al. (2016) explain that 

with carefully designed activities and pedagogy, such as their ScratchMath program, 

Scratch can be used effectively to support mathematics instruction. 

In terms of Resnick’s approach to CT and its role in children’s education, he 

acknowledges, with co-author Brennan, that there is little agreement about what CT 

encompasses, and even less agreement about strategies for assessing CT (Brennan & 

Resnick, 2012). In order to provide further depth and clarity, they propose a CT 

framework that includes three key dimensions: computational thinking concepts, 

computational thinking practices and computational thinking perspectives.  

Resnick and Brennan’s CT framework includes the concepts that designers engage in as 

they program. These include sequences, loops, parallelism, events, conditionals, 

operators, and data. CT practices differ to CT concepts in that the practices describe the 

processes of construction that student engage in while creating Scratch projects. The 

practices include being incremental and iterative, testing and debugging, reusing and 

remixing, and abstracting and modularizing. CT perspectives, which describe the 

evolving understanding that students using Scratch exhibit about themselves, their 

relationship to others, and the technological world include expressing, connecting, and 

questioning. Together, the concepts, practices and perspectives provide a broader 

understanding of CT. Resnick later articulated this broader understanding using his term 

Computational Fluency (Resnick, 2017). 

The impetus for Resnick’s Computational Fluency was an attempt to focus on children 

developing as computational creators as well as computational thinkers (Resnick, 2017). 

Computational Fluency goes beyond computational concepts and problem-solving 
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strategies of CT by including student’s creativity and expression with digital tools 

(Resnick, 2017). When describing Computational Fluency, Resnick is quick to point out 

his emphasis on projects rather than puzzles: 

Most introductions to coding are based on puzzles. Kids are asked to create a 

program to move a virtual character past some obstacles to reach a goal. With 

Scratch, we focus on projects instead of puzzles. When we introduce kids to 

Scratch, we encourage them to create their own interactive stories, games and 

animations. (Resnick, 2017, p. 48) 

Resnick (2017) acknowledges Wing’s view of CT and its impact on the development of 

thinking skills, but claims that becoming fluent, either in traditional writing or in code, 

helps a student to move beyond CT thinking skills by also developing a voice and an 

identity. While carefully constructed puzzles may help with fostering CT skills, Resnick 

(2017) believes that the broadening of CS education should allow students to develop 

their voice by learning to express themselves in new ways and by incorporating coding 

into everyday life. In terms of programming projects and their role in developing an 

identity, Resnick (2017) shares the following: 

In today’s society, digital technologies are a symbol of possibility and progress. 

When children learn to use digital technologies to express themselves and share 

their ideas through coding, they begin to see themselves in new ways. They begin 

to see the possibility for contributing actively to society. They begin to see 

themselves as part of the future. (p. 50) 

Resnick’s emphasis on having students design digital artifacts is well grounded in 

Papert’s constructionist approach to learning. He acknowledges the surge of interest in 

coding “provides an opportunity for reinvigorating and revalidating the Constructionist 

tradition in education” (Resnick, 2014, p. 7). Kafai, another one of Papert’s students, 

acknowledges the importance of sharing and collaboration in the broadening of CS, and 

these components are embodied in her extension of CT that she calls Computational 

Participation (Kafai, 2016). 
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2.5 Kafai and Computational Participation 

Kafai is currently the Lori and Michael Milken President's Distinguished Professor in the 

Graduate School of Education at the University of Pennsylvania. Kafai attended graduate 

school at Harvard University and was part of the team that, along with Resnick, helped 

developed the Scratch programming language. Kafai’s work, while acknowledging the 

technical and tool-oriented approaches to coding, focusses much more on the social and 

participatory dimensions (Kafai et al., 2011; Kafai & Burke, 2013; Kafai et al., 2014). 

Kafai, and co-author Burke, discuss coding in terms of four dimensions characteristic of 

Papert’s Constructionist thought (social, personal, cultural, and tangible) and explain how 

these dimensions have evolved resulting in a new form of programming whereby students 

can create applications as part of a larger community (Kafai & Burke, 2014). These 

shared applications are the “public entity” that Papert and Harel (2002) describe as the 

important addition that Constructionism provides, as the building of knowledge structures 

“happens especially felicitously in a context where the learner is consciously engaged in 

constructing a public entity, whether it's a sand castle on the beach or a theory of the 

universe” (p. 2). This programming, as a participatory process, differs from Wing’s CT 

approach, in recognizing that “when code is created, it has both personal value and value 

for sharing with others” (Kafai & Burke, 2014, p. 17). Kafai (2016) argues that CT needs 

to be reframed as Computational Participation moving us “beyond tools and code to 

community and context” (p. 27).  

Computational Participation acknowledges that CT is a social practice with a broad 

reach. Rather than an abstract discipline, programming is now a way to “make and be” in 

the digital world (Kafai, 2016, p. 27). Digital technologies are used for functional, 

political, and personal reasons and therefore all students should develop an understanding 

of interfaces, technologies, and systems that they encounter on a daily basis. By 

developing an understanding of these systems, students can fully participate in digital 

activities and social practices.  

Computational Participation takes a broad view of computing and acknowledges its 

potential impact across a wide range of fields. This broad view shares some 
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characteristics with Computational Literacy (CL), an idea that was developed by diSessa 

(2000) before Wing’s ideas about CT became popular. 

2.6 diSessa and Computational Literacy 

diSessa is the Corey Professor of Education at Berkeley’s Graduate School of Education 

where he researches forms of knowledge in physics, as well as the use of computer 

systems in teaching and learning. He started his work in computing education as a 

member of Papert’s Logo group at the MIT Artificial Intelligence Laboratory and now 

focusses on the idea that computers can be the basis for a new form of literacy that is 

applicable to a wide variety of subjects, contexts, and domains (Weintrop et al., 2016). 

diSessa (2018) imagines a world “in which computational knowledge – the prime 

example is programming – is as widely practiced as reading newspapers and novels is 

today” (Papert, 2006, p. 240). In presenting computing as a new form of literacy, diSessa 

advocated for the broad use of computers in schools, and for educators to see computing 

as means of transforming the teaching and learning of things that are hard for students to 

learn (Papert, 2006). diSessa uses algebra as an example of an epistemological entity that 

transformed complex and difficult ideas into a form “that is within the intellectual grasp 

of every competent high school student” (Papert, 2006, p. 241). He suggests that CL 

involves computing and computer programming concepts being integrated into school 

subjects in much the same way that algebra has become a tool in science, mathematics, 

and other subjects. 

diSessa (2018) explains that his use of the term literacy goes beyond the idea of simply 

having a casual acquaintance with something. Instead, literacy means the adoption, by a 

broad group, or even a civilization, of a “particular infrastructural representational form 

for supporting intellectual activities” (diSessa, 2018, p. 4). diSessa criticizes the 

“computer science-centric” view in Wing’s CT by acknowledging that because literacy is 

such a massive social and intellectual accomplishment, it can not belong to a single 

professional discipline. diSessa adds to this by providing practical advice: 



19 

 

There is no single recipe for how computation changes a field or subfield. If your 

pursuits take you in different directions, then I suggest here, that will enrich the 

horizon for all of us. If they parallel or extend what I and others who are focused 

on the big picture have already done, perhaps we can converge sooner than might 

be expected. (diSessa, 2018, p. 28) 

2.7 Denning, Aho, Wilkerson, Gadanidis and Modelling in 
Other Subject Areas 

Denning is a Distinguished Professor of Computer Science at the Naval Postgraduate 

School in Monterey, California. He has worked extensively within the field of CS and CT 

and has published numerous works on computers and computing education. Denning 

(2017) explains that CT has been major component of CS since the 1950s and so has the 

idea that CT can benefit people in a variety of fields. Denning claims that recent attempts 

to make CT appealing to fields other than CS have led to “vague and confusing 

definitions of CT” (p. 33). Denning’s two main criticisms of Wing’s definition of CT 

include the absence of any mention of computational models as well as the suggestion 

that any sequence of steps constitutes an algorithm. He prefers, instead, to accept a 

definition of CT proposed by Alfred Aho (2012), which he claims better embodies the 

notion of CT from CS, computational science, as well as other fields such as the 

humanities, law, and medicine. 

Aho is the Lawrence Gussman Professor Emeritus of Computer Science at Columbia 

University. Aho (2012) defined CT quite succinctly as “the thought processes involved in 

formulating problems so their solutions can be represented as computational steps and 

algorithms” (p. 832). Aho explained that an important part of the CT thought processes 

involves finding the appropriate models of computation, and if there are none, then 

developing new ones. This view is exemplified in some of the mathematical modelling 

work by Wilkerson (Wilkerson & Fenwick, 2017). 

Wilkerson is an Assistant Professor in the Graduate School of Education at the University 

of California, Berkeley and with co-author Fenwick, suggests that CS shares language 

with mathematics that can be used to represent models resulting in a description of 
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patterns and processes that can make up scientific and engineered systems (Wilkerson & 

Fenwick, 2017). Wilkerson and Fenwick (2017) note: 

While mathematics focuses on quantities, computational thinking focuses on 

processes. Students engaged in the practice of computational thinking break a 

complex problem or process up into smaller steps in order to better understand, 

describe, or explain it. It involves thinking about how computer tools and 

algorithms – specific instructions for how something should be done – can be 

used to make jobs like data collection and analysis or theory testing easier, more 

manageable, or more powerful. (Wilkerson & Fenwick, 2017, p. 189) 

Wilkerson provides opportunities for students to use or build computational models and 

simulations in order to better understand scientific and engineered systems. An example 

of this work includes an investigation into groups of sixth-grade girls generating models 

of smell diffusion concepts using drawing, stop-motion animation, and computational 

simulations (Wilkerson-Jerde et al., 2015). The authors observed two modelling cycles 

that students engaged in, including a “messing about” modelling cycle, where ideas 

related to the spread of smell were described and represented together, and a “digging in” 

cycle where the computational simulation allowed the group to focus on testing and 

revising specific mechanisms that underlie smell. The authors concluded that this 

“digging in” cycle involved a more mechanistic focus that was facilitated by creating a 

computational object that encapsulated ideas from the “digging in” cycle. An additional 

example of this computational modelling and simulation work includes Wilkerson and 

co-authors acknowledging that the building of computational models supports structuring 

knowledge (e.g., mechanistic reasoning) and fostering reflection and refinement (e.g., 

modeling practices). An important caveat; however, was that that the modeling strategies 

that students engaged in was important, as the modelling strategies must be aligned with 

the modelling type that students are employing (Wilkerson et al., 2018). 

Adding to the literature connecting CT, coding and mathematical modelling, is the work 

done by Gadanidis, a Professor in the Faculty of Education at Western University, in 

London, Canada. Gadanidis et al.’s (2019) research surrounding computational 
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modelling, mathematics education and elementary teacher education reframes CT with a 

focus on what it can do (CT’s affordances), rather than what it is (CT’s definition). The 

authors identify ten affordances that come into play when modelling mathematical 

concepts and relationships with computational tools (Table 1) and explain that these 

affordances and the use of coding tools can create scenarios in which students and 

teachers can connect a variety of mathematical concepts together, in this case from 

different strands of the curriculum.  

Table 1. Ten affordances of computational modelling (Gadanidis et al., 2019) 

 

1. Access: computational modelling tools for young students have a low floor & a high ceiling, allowing 

use with minimum prerequisite knowledge and offering opportunities to investigate more complex 

relationships and concepts 

 

2. Agency: a low floor, high ceiling access allows students conceptual freedom to investigate ideas and 

concepts of interest 

 

3. Abstraction: the code used to develop computational models captures/abstracts essential 

characteristics and processes of concepts and relationships  

 

4. Tangible feel: abstractions in computational models have a tangible feel as they can become objects of 

other code 

 

5. Automation: computational models automate processes  

 

6. Dynamic modelling: automation allows for dynamic modelling, where concepts and relationships can 

be modelled at the click of a button 

 

7. Surprise & insight: parameters and other aspects of the code can be edited and modified, to explore 

other cases, and to offer opportunities for conceptual surprise and insight 

 

8. Audience: computational models can easily be shared with others 

 

9. Re-use/Re-mix: others can re-use shared computational models or re-mix them to create variations  

 

10. Performance: digital media, inclusive of some coding environments are performative in their nature 

and allow users to not only write code, but to also insert multimodal text and tell stories through 

animation 

These affordances and the use of coding tools can also promote the exploration of 

multiple mathematical processes such as problem solving, reasoning and proving, 

reflecting, computational strategies, representation and communication. In addition, 

mathematics concepts that may appear outside of the curriculum expectations for certain 

levels, can be explored as a result of the low floor, high ceiling nature of modelling with 

code (Gadanidis et al., 2019). The authors provide an example of trigonometry, 
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previously introduced by Gadanidis (2012), where bar graphs reflecting the heights of 

hours on a clock form trigonometric graphs. An additional example of students exploring 

mathematics concepts that may appear outside of the curriculum expectations for certain 

levels includes grade 1 students being able to explore the rudiments of the Binomial 

Theorem through dynamic, computational modelling (Gadanidis et al., 2017). 

The areas of investigation presented by Wilkerson and Gadanidis, related to 

computational simulations and models in science and mathematics, represent Grover’s 

(2018) classification of integrating CT in an effort to enable or enrich learning in other 

disciplines. 

2.8 Grover, a Tale of Two CTs and Consolidating Theory 

Grover (2018), a computer scientist and learning sciences researcher based in Palo Alto, 

California, argues that in order to make sense of CT in K-12 education we need to 

distinguish between two main views. Grover’s first view of CT is that of CS thinking in 

CS classrooms while her second is that of CT in other disciplines. She explains that 

ideally, students will get a chance to experience CT in both settings during their K-12 

schooling. Grover also presents a brief timeline of CT starting with the problem-solving 

practices discussed by Forsythe (1967) and the elements of CS thinking discussed by 

Knuth (1980). In regard to Wing, Grover (2018) credits her definition of CT for igniting 

K-12 CS education and for calling attention to its role in other disciplines, but also 

acknowledges that there should not be a focus on CT changing everyday behaviors. 

Instead, CT should be viewed as playing a significant role in CS education and playing a 

role in helping students understand concepts within a variety of fields and disciplines. 

This idea of understanding concepts in a variety of fields and disciplines is extended 

further in Table 2, as a means of organizing the theories within this chapter. Wing’s CS-

centric approach frames CS as a topic of study in and of itself, as students can think like a 

computer scientist, and draw on the fundamental CS concepts to solve problems, design 

systems, and understand human behaviour. Wing’s CS focused approach has value for 

broadening the scope of the traditional CS classroom and encouraging participation in 

these courses. While Wing’s initial work lacked description and depth, other researchers 
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such as Brennan and Resnick (2012) and Grover and Pea (2018) have provided a more 

detailed description of CT components, which they call CT concepts, practices and 

perspectives. 

Table 2. Theoretical approaches to the broadening of CS K-12 education 

Theoretical 

Approach 
Researcher Details 

CS as a topic 

of study in 

and of itself 

Wing 
(2006, 2011) 

Computational Thinking is a universally applicable skill set. 
 

Important for students to learn to think like a computer scientist. 

 
Solving problems, designing systems, and understanding human behaviour, by drawing 

on the concepts fundamental to CS. 

 
Studying CT is good for all students and allows them to be better thinkers. 

CS-related 

concepts and 

skills as a 

tool in 

mathematics 

and science 

Papert 
(1993) 

Acknowledges students as builders of their own intellectual structures. 
 

The computer is a “tool to think with”. 

 
Coding can change the way students learn about other things. 

 

The computer serves as the Proteus of machines, providing the culture and materials that 
made the previous learning of concepts difficult. 

diSessa 

(2000, 2018) 

Computational Literacy can transform the teaching and learning of things that are hard 

for students to learn. 

 
Like algebra, coding can be an epistemological entity that can transform complex and 

difficult ideas into a form that is within our intellectual grasp. 

 
Coding has the potential to be adopted as an infrastructural representational form for 

supporting intellectual activities. 

Barba 

(2016) 

Avoid viewing the computer as a formal tool to understand, then apply to a problem 
later, as this takes away its power. 

 

Not everyone wants to be a computer scientist, but everyone can use computers as an 
extension of our minds. 

 

Potential for creating knowledge in a broad number of domains. 

Wilkerson et al.  
(2018) and 

Gadanidis et al.  

(2019) 

Focus on computational modelling of mathematics and scientific concepts. 
 

Concepts are better understood through developing dynamic, computational  

representations. 

CS concepts 

and skills for 

the social, 

personal, 

and cultural 

 

Kafai 

(2016) 

Computational Participation moves beyond tools and code, to community and context. 

 
Highlights the four dimensions of social, personal, cultural, and tangible. 

 

Coding as part of a participatory process and social practice, with a broad reach to a 
larger community. 

 

Code has personal value, and a value for sharing with others. 

Resnick 

(2017) 

Computational Fluency highlights importance of children developing as creators, not just 
thinkers. 

 

Move away from puzzles and beyond concepts and problem solving, to creativity and 
expression. 

 

Focus on students creating a voice and identity. 
 

Recognizes the potential to  reinvigorate and revalidate the constructionist ideals in 

schools. 
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The views of Papert (1993), Barba (2016), diSessa (2018), Wilkerson (Wilkerson et al., 

2018), Gadanidis (Gadanidis et al., 2019), Kafai (2016) and Resnick (2017), while still 

appropriate in the CS classroom, are better suited than Wing’s when one considers the 

disciplines outside of CS. These views embody a perspective of the computer as a tool 

rather than as an object of study in and of itself. Papert (1993), diSessa (2018), Barba 

(2016), Wilkerson (Wilkerson et al., 2018), and Gadanidis (Gadanidis et al., 2019) 

highlight the computer as a tool within mathematics and science, while Kafai (2016) and 

Resnick (2017) focus more on the social, personal and cultural affordances of programing 

the computer. 

Wilkerson and Gadanidis’s approach to having students use CS concepts and skills to 

build computational models and simulations in order to better understand mathematical, 

scientific and engineered systems is a powerful one for the mathematics and science 

classrooms. It means re-envisioning data collection, analysis, and theory testing, making 

it more manageable and providing younger students with the tools that experienced 

scientists and mathematicians use on a daily basis. Expanding this idea and aiming for an 

even greater impact, diSessa asks us to think big and orient ourselves to the best that can 

be imagined by presenting a model of how coding can potentially become a literacy. His 

idea of CL means a transformation in the way students learn mathematics, and he predicts 

that CL can dramatically overshadow the type of algebra and calculus literacy that 

students currently develop. 

Kafai’s Computational Participation and Resnick’s Computational Fluency emphasize the 

idea that programming a computer is a social practice with functional, political, and 

personal value. This can provide meaningful context for programming projects, allowing 

them to be more closely connected to student’s lives and communities. Most importantly, 

these components could also be beneficial in a broadening of CS to other subject areas 

and grades, as they include an emphasis on creativity and expression, which may invite 

coding activities within the Arts, Languages, or other contexts. If mathematics and 

science areas are the focus, however; it seems that Gadanidis, Wilkerson and diSessa’s 

work would be most helpful as a starting point. 
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2.9 Conclusion 

This analysis of the approaches to CS-related concepts and skills in K-12 education 

provides a theoretical context for further exploration of themes within this thesis. In 

Chapter 3, historical curriculum in Ontario is examined, and these theoretical frameworks 

can help identify whether or not a change of focus has occurred in terms of the concepts 

and skills included within secondary CS curricula. These frameworks will also prove 

valuable as new CS-related curriculum within the K-8 grades is explored in Chapter 5, as 

they can provide insight into the direction that various jurisdictions in Canada may have 

pursued to broaden CS education. In terms of the issues addressed in Chapter 4, including 

those of enrolment, equity, diversity, and inclusivity, the work within this chapter will 

help shed light on why students may or may not be attracted to secondary courses in CS, 

and may provide insight into how the broadening of CS could be made more or less 

effective, with the adoption or emphasis of a particular direction or approach. This 

foundational and theoretical chapter, in combination with the analysis of curriculum and 

enrolment in further chapters, will help present an understanding of the current field of 

CS and K-12 education, a field that was invigorated by Wing’s (2006) work, but that 

includes many more substantial and comprehensive theories upon which to situate itself 

in the coming years. 
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Chapter 3  

3 Historical Computer Science Curriculum: From 1966 to 
today 

This chapter provides insight into the evolution and current state of secondary Computer 

Science (CS) education through an analysis of eight Ontario Ministry of Education 

documents that were released from 1966 to 2008. First, Thematic Analysis is used to 

compare the preambles of each document, providing insight into the intended goals and 

rationale for each curricula and how these have evolved over the years. After this 

analysis, a second section investigates the specific concepts and skills included in 

introductory, CS-related courses that have been implemented in Ontario. The results 

indicate that CS courses appeared first in Ontario’s secondary education system within 

the Business and Commerce curriculum, with close connections to the data processing 

context. In addition, documents from as far back as 1966 and 1970 were clearly 

acknowledging many of the themes evident in today’s discourse on the broadening of CS 

education. These include the economic argument for increasing CS participation, the 

impact of technology on society, and the importance of cross-curricular connections, 

flexibility, and creativity inherent in CS education. Ethical issues and the appropriate use 

of technology are themes that were not emphasized in the first two Ontario curriculum 

documents, but both have been a focus in the six curriculum preambles since. The 

analysis of specific concepts and skills included in the introductory courses shows that 

some topics such as control structures and the input-storage-processing-output model of 

the computer have been included in CS curricula for the last 55 years. Other topics and 

themes, such as program and project design, creativity, expression, the sharing of end 

products and historical and cultural contexts of CS, while sometimes apparent in the 

preambles of documents, are noticeably absent in the outcomes and expectations of some 

of the grade 10 courses. 

Considering the growing number of educational jurisdictions beginning to broaden CS 

concepts and skills in K-12 education, and considering the new CS-related knowledge 

and skills that students will have developed in elementary school, before entering into 
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secondary CS courses, the results of this study provide an important historical context. 

The evolution of CS-related courses in Ontario is revealed, encouraging educators, 

researchers and policy makers to consider historical CS documents to inform effective 

policy and practice, as well as future research in computing education. 

3.1 Introduction 

The impetus for research on historical CS curriculum is the increasingly popular trend of 

integrating and adding CS concepts and skills to mandatory K-12 education around the 

world. As of 2012, Israel, Russia, South Africa, New Zealand, and Australia had all 

included CS concepts in their K-12 curriculum (Grover & Pea, 2013, p. 3). In 2016, then 

President Barack Obama announced the Computer Science for All (CSForAll) initiative, 

which was intended to expand the scope of CS education for American students in the K-

12 grades (Smith, 2016). In 2012, the United Kingdom’s Royal Society published Shut 

Down or Restart? The Way Forward for Computing in UK Schools which paved the way 

for the implementation of K-12 computing curriculum that includes a number of CS 

concepts beginning as early as year 1 (age 5) (The Royal Society, 2017, p. 7). 

In Canada, British Columbia has integrated CS concepts into their K-12 Applied Design, 

Skills and Technologies curriculum (British Columbia Ministry of Education, 2016) 

while Nova Scotia has developed coding curriculum components to be integrated into a 

variety of subjects from K-8 (Nova Scotia Department of Education and Early Childhood 

Development, 2015; Nova Scotia Department of Education and Early Childhood 

Development, 2016). In Ontario, the Ministry of Education released coding expectations 

in the 2020 Grades 1-8 Mathematics curriculum (Ontario Ministry of Education, 2020), 

while in 2021 Alberta released draft CS-related expectations in Grades 1-6 Science 

curriculum (Alberta Education, 2021) 

As CS concepts continue to be included in the public education curriculum of younger 

grades, it is important to note that the secondary CS curriculum of many educational 

jurisdictions has a well-established history. In Ontario, Curriculum RP-33 Data 

Processing (1966) was the first CS-related document released by the Ontario Department 

of Education (now Ministry of Education). This was followed by seven updates and 
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additions resulting in the most recent Computer Studies curriculum released in 2008 

(Ontario, 2008). 

What follows is a description of the courses of study of eight Ontario CS curriculum 

documents, as well as an in-depth analysis of their preambles (introduction, rationale, 

goals, objectives, etc). Also included, as an additional section for this thesis, is an 

analysis of specific outcomes and expectations in the four introductory, grade 10 courses 

that have been implemented in Ontario secondary schools since 1966. This investigation 

provides findings related to the philosophies, goals, and objectives of secondary CS 

curriculum in Ontario, as well as a discussion on the potential impact of historic CS 

documents on recent curriculum reform and CS initiatives.  

3.2 Thematic Analysis 

This study uses Thematic Analysis (TA) to examine the preambles of historical CS 

curricula documents. TA offers a systematic way to identify, organize, and offer insight 

into patterns of meaning or themes within data (Braun & Clarke, 2012). This is 

appropriate for this study as it sets out to the identify the goals and rationale for a number 

of historical curricula documents, as well as how the goals and rationale have changed or 

evolved over the years. 

3.2.1 Background 

TA was originally developed by Braun and Clarke within the context of Psychology and 

is now widely used in a number of areas of qualitive research (Braun & Clarke, 2012). 

TA is useful in identifying patterns across data, and is recognized as being a flexible 

method of analysis as it can be applied across a variety of theoretical and epistemological 

frameworks, as well as to a variety of study questions, designs and sample sizes (Kiger & 

Varpio, 2020). 

TA can both describe and interpret data, as it selects and constructs themes through a 

systematic process of coding data, searching and refining themes, and reporting findings. 

Rather than examining unique experiences or phenomena, TA is appropriate when 

searching for common or shared meanings amongst a number of data sets (Kiger & 
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Varpio, 2020). Within TA, data is not directly coded as themes. Instead, themes are 

constructed as components of the data are identified, reframed, and connected. While TA 

is often recognized as being similar to Grounded Theory (GT), which also involves a 

systematic way to analyze data and generate themes, it’s important to note that TA does 

not go as far as GT in terms of developing theory (Kiger & Varpio, 2020). 

TA approaches can be primarily deductive (top-down) or primarily inductive (bottom-

up), but Braun and Clarke (2012) make it clear that all analysis will involve some 

combination of the two. In a deductive approach, the researcher codes and interprets the 

data using predefined concepts, ideas, or topics. Alternatively, in an inductive approach 

the codes and themes come from the contents of the data. 

In reality, coding and analysis often uses a combination of both approaches. It is 

impossible to be purely inductive, as we always bring something to the data when 

we analyze it, and we rarely completely ignore the semantic content of the data 

when we code for a particular theoretical construct - at the very least, we have to 

know whether it is worth coding the data for that construct. (Braun & Clarke, 

2012) 

In this study, the data is approached with the intent of identifying the goals and rationale 

of the curriculum communicated in the documents; however, categories are not 

predefined. In this way, the study uses a more inductive approach whereby the coding 

and themes will be constructed from the data. This construction will take place using the 

six-phase approach described by Braun and Clarke (2021). 

3.2.2 Six-Phase Approach 

The most widely used method of TA is Braun and Clarke’s (2012) six-phase approach 

(Kiger & Varpio, 2020). It’s important to note that this approach is not linear, but instead 

should be iterative, with various phases being revisited throughout the research process. 

The six-phases are detailed below and include 1) familiarizing yourself with the data, 2) 

generating initial codes, 3) searching for themes, 4) reviewing potential themes, 5) 

defining and naming themes, and 6) producing the report. 
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The first phase involves the researcher familiarizing themselves with the data by reading 

and re-reading, and by making notes. The process of making notes in this stage is causal 

rather than systematic, but it is nonetheless important, as Braun and Clarke (2012) point 

out that this ensures that reading of the data is active, analytical, and potentially critical. 

By the end of the first-phase, the researcher should be intimately familiar with the data 

and should be able to begin to identify ideas connected to the research question(s). 

After familiarizing themselves with the data, the researcher will now begin generating 

initial codes during phase two. Braun and Clarke (2012) describe the codes as the 

individual bricks and tiles of an eventual house that is being built. Data that is relevant to 

the research question is coded, and can be done using descriptive language, or some 

interpretation can take place in this initial coding stage. 

The third phase involves actively generating or constructing themes from the coded data. 

Areas of similarity and overlap are identified in the codes, themes are developed, and also 

connections between the themes begin to be considered. A miscellaneous theme can also 

be used, to capture any codes that are not clearly connecting with others. This phase 

concludes with the creation of a thematic map or table outlining potential themes (Braun 

& Clarke, 2012). 

Once the data has been coded and themes have been constructed, phase four involves the 

recursive process that includes reviewing themes and possibly rearranging codes and 

collapsing or splitting themes. New themes can be created at this stage, just as some 

existing themes may be discarded. The phase ends when the themes “capture the most 

important and relevant elements of the data, and the overall tone of the data, in relation to 

your research question” (Braun & Clarke, 2012, p. 66). 

Phase five involves defining themes, so that it is clear what is distinct and specific about 

each theme. Braun and Clarke (2012) explain that well established themes will 1) have a 

singular focus, 2) be related but not overlap, and 3) address the research question. This 

phase also is the beginning of thematic analysis, which will continue during the sixth 

phase.   
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The sixth phase involves producing the report, but should not necessarily begin after the 

other phases are complete. The writing of various components of the report will most 

likely occur throughout the process, as notes have been created and a story has begun to 

emerge (Braun & Clarke, 2012, p. 66). 

3.3 Analyzing the Documents 

In this study, TA began with the collection of the following eight Ontario secondary 

curriculum documents (listed in chronological order based on their year of publication): 

• Curriculum RP-33, Data Processing (Ontario Department of Education,1966); 

• Computer Science – Senior Division (Ontario Department of Education, 1970a); 

• Elements of Computer Technology (Ontario Department of Education, 1970b); 

• Informatics – Intermediate and Senior Division (Ontario Department of 

Education, 1972);  

• Computer Studies – Intermediate and Senior Division (Ontario Ministry of 

Education, 1983); 

• Computer Studies – Ontario Academic Course (Ontario Ministry of Education, 

1987); 

• The Ontario Curriculum Grade 11 and 12 - Technological Education (Ontario 

Ministry of Education, 2000); 

• The Ontario Curriculum Grade 10 to 12 – Computer Studies (Ontario Ministry of 

Education, 2008). 

These documents were identified and selected as the most relevant CS-related curriculum 

by following a trail backwards from the 2008 curriculum document currently in use, as 

each document lists the documents that it supersedes. As an example, page 2 of the 1983 

document indicates “This document supersedes the following guidelines: Computer 

Science, Senior Division, 1970; Data Processing RP. 33, 1966; Elements of Computer 

Technology, Senior Division, 1970; Informatics, Intermediate and Senior Divisions, 

1972”. 
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The 2008 Ontario Computer Studies curriculum document was retrieved online at the 

Ontario Ministry of Education’s curriculum website. The remaining seven Ontario 

curriculum documents were retrieved and scanned from the Ontario Historical Education 

Collection at the Ontario Institute of Studies in Education library, as these were not 

available online either through Ontario’s Ministry of Education website, or other online 

repositories. The documents retrieved cover a wide scope of courses. Some, such as the 

2008 Computer Studies document, include courses in grade 10, 11 and 12, while others, 

such as the 1987 Computer Studies – Ontario Academic Course, include only one course. 

A preliminary scan of these documents provided information related to the 

implementation timeframes of each of these documents and the courses of study included 

in each curricula. These timeframes and courses of study have been described in the 

findings section. 

After a scan of the courses of study was complete, in-depth reading and re-reading of the 

documents took place, focusing on the preambles of each document, and notes were 

taken. The preambles from each of the eight documents were then stored in their own 

digital file to facilitate analysis and coding, which occurred using NVivo software. The 

following list indicates the components of the preamble that were analyzed for each 

document, as well as the number of words in each preamble section: 

• Curriculum RP-33 - Data Processing (1966): Introduction (182 words) and 

Foreword (273 words); 

• Computer Science – Senior Division (1970): Introduction (536 words) and Scope 

of the Course (247 words); 

• Elements of Computer Technology – Senior Division (1970): Foreword (437 

words) and Objectives (199 words); 

• Informatics – Intermediate and Senior Division (1972): Introduction (270 words) 

and Rationale (151 words) and Objectives (96 words); 

• Computer Studies – Intermediate and Senior Division (1983): Introduction (276 

words), Computers in Daily Life (178 words) and Aims for Computer Studies 

(327 words); 
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• Computer Studies – Ontario Academic Course (1987): Rationale (105 words) and 

Aims (43 words) 

• The Ontario Curriculum Grade 11 and 12 - Technological Education (2000): 

Computer Studies Description (55 words) and Overview (149 words); 

• The Ontario Curriculum Grade 10 to 12 – Computer Studies (2008):  Importance 

of Computer Studies in the Curriculum (256 words), Goals of the Computer 

Studies Program (144 words) and Four Critical Areas of Learning in Computer 

Studies (71 words). 

The coding process involved identifying sentence fragments, and occasionally entire 

sentences, from the preambles of the eight curriculum documents that revealed 

information related to the goals and rationale of the curriculum. This stage led to 78 

codes, each identified using general education (e.g., student choice and differentiation or 

how the curriculum was designed and structured) and CS-related terminology (e.g., the 

use of computer for creative pursuits or the computer as an object of study). The initial 

codes, as well as the location of references, can be found in Appendix C. 

After these codes were identified, 31 themes were constructed by merging and 

reorganizing codes. The predominant themes, as well as the locations of the coded 

references, can be found in Appendix D. The process of merging and reorganizing 

themes continued, with note taking supporting the analysis, and findings were identified 

and storylines were developed. 

3.4 Results 

3.4.1 Implementation Timeframes and Courses of Study 

Figure 1 indicates the various curriculum documents, and the point in time at which they 

were superseded by more recent curricula. 
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Figure 1. Computer science related curriculum in Ontario 

As indicated in Figure 1, from 1966 to 1983 four different CS-related curricula 

documents were being implemented at the same time. These included Curriculum RP-33 

- Data Processing (1966), Computer Science – Senior Division (1970), Elements of 

Computer Technology – Senior Division (1970), and Informatics – Intermediate and 

Senior Division (1972). In 1983, a major restructuring occurred whereby these four 

documents were replaced by Computer Studies – Intermediate and Senior Division 

(1983), and in 1987 an additional Ontario Academic Course (OAC) in Computer Studies 

was added. In 2000, CS-related courses were included in the Technological Education 

curriculum document and then in 2008, the courses returned to a document titled 

Computer Studies, which includes courses for grades 10-12. The specific courses of study 

in each of these documents are listed in Table 3. 
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Table 3. CS focussed courses of study in Ontario Curriculum (1966-Present) 

CS 

Courses of 

study 

1966-1983 

Curriculum RP-33, Data 

Processing (1966) 

• Principles of Data 

Processing 

• Basic Programming 

• Systems Design 

• Computer 

Fundamentals 

• Business Systems 

Programming 

• Unit Record 

Fundamentals 

• Business Option 

Computer Concepts 

• Business Data 

Processing 

• Special Commercial 

Data Processing 

Elements of 

Computer 

Technology (1970) 

• Computer 

Science – Two 

year course 

Computer Science - 

Senior Division 

(1970) 

• Elements of 

Computer 

Technology I 

• Elements of 

Computer 

Technology II 

• Elements of 

Computer 

Technology III 

• Computer 

Applications 

• Computer Logic 

• Computer 

Circuitry 

Informatics – 

Intermediate and 

Senior Division 

(1972) 

• Informatics 

 

 

CS 

Courses of 

study 

1983-2000 

Computer Studies - Intermediate and Senior 

Division (1983) 

• Grade 10 Introductory Computer Studies 

(Basic, General, Advanced) 

• Grade 11 Computer Technology 

• Grade 12 Computer Technology 

• Grade 11 Data Processing 

• Grade 12 Data Processing 

• Grade 11 Computer Science and Technology 

• Grade 12 Computer Science 

• Grade 12 Computer Technology 

• Grade 11 Data Processing Techniques 

• Grade 12 Data Processing Systems Analysis 

and Design 

Computer Studies – Ontario Academic 

Course (1987) 

• Computer Studies 

CS 

Courses of 

study 

2000-2008 

The Ontario Curriculum Grade 11 and 12 - Technological Education (2000) 

• Grade 10 Computer and Information Science 

• Grade 10 Computer Engineering Technology 

• Grade 11 Computer and Information Science (C/U preparation) 

• Grade 12 Computer and Information Science (C/U preparation) 

• Grade 11 Computer Engineering (College/University preparation) 

• Grade 11 Computer Engineering (Workplace preparation) 

• Grade 12 Computer Engineering (College/University preparation) 

• Grade 12 Computer Engineering (Workplace preparation) 

CS 

Courses of 

study 

2008-

Present 

The Ontario Curriculum Grade 10 to 12 - Computer Studies (2008) 

• Grade 10 Introduction to Computer Studies 

• Grade 11 Introduction to Computer Science 

• Grade 11 Introduction to Computer Programming 

• Grade 12 Computer Science 

• Grade 12 Computer Programming 
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3.4.2 Thematic Analysis and Curricula Preambles 

The major themes reflecting the goals and rational in preambles of the eight curriculum 

documents that resulted from Braun and Clarke’s (2012) six-phase TA process are 

summarized in table 4.  

Table 4. Appearance of themes in the preambles of CS-related curriculum 

 

impact of 

technology 

on society 

automate 

tasks or 

solve 

problems 

post-

secondary, 

training, and 

careers 

cross-

curricular 

connections 

creativity 

differentiation 

and flexibility 

based on 

student needs 

and interests 

ethical issues 

and 

appropriate 

use 

Curriculum RP-33 

- Data Processing 

(1966)        

Computer Science 

– Senior Division 

(1970)        

Elements of 

Computer 

Technology 

(1970); 
       

Informatics – 

Intermediate and 

Senior Division 

(1972); 
       

Computer Studies 

– Intermediate 

and Senior 

Division (1983) 
       

Computer Studies 

– Ontario 

Academic Course 

(1987); 
       

The Ontario 

Curriculum Grade 

11 and 12 - 

Technological 

Education (2000) 

       

The Ontario 

Curriculum Grade 

10 to 12 – 

Computer Studies 

(2008) 

       

All curriculum document preambles indicate the significant impact that technology is 

having on society and offers this as a rationale for courses to study this phenomenon. The 

theme of students developing the ability to automate tasks and solve problems with 

computers was included in all preambles except the initial 1966 Data Processing 

curriculum. The importance of courses in preparing students for post-secondary and 

potential careers was also evident, except in 1970. The potential for cross-curricular 

connections in CS-related courses was evident in all but the 1966 curriculum preamble, 

while the opportunity for student creativity appeared in all but three preambles. The 
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theme of differentiation and flexibility in course design and delivery was included in the 

preambles of early documents, but in 1987 and afterwards, references to these themes 

were not included. This is not to say that the courses did not embody these themes, but 

just that these themes did not emerge in the initial preambles. Finally, issues surrounding 

the ethical use of computers and related technologies did not appear in early preambles 

but remained in documents after the mention first appeared in 1972. 

3.5 Discussion 

3.5.1 Curriculum Documents and Courses of Study 

The location of CS-related courses in Ontario’s secondary curriculum is interesting when 

analysed historically. The 1966 Curriculum RP-33, Data Processing document refers to 

itself as a Business and Commerce document, and so it’s significant that it is within the 

discipline of Business that CS concepts and skills first make their appearance in 

secondary education in Ontario. The courses in this document include Basic 

Programming and Computer Fundamentals, but even the more business focused courses 

include what would be known as specific CS topics. As an example, the Principles of 

Data Processing Grade 10 course includes the study of binary, octal and hexadecimal 

number systems, topics that connect to important mathematics learning as well as CS 

concepts. 

After the 1966 document was released, three other documents followed (Computer 

Science, Elements of Computer Technology, and Informatics), indicating that there must 

have been a need to expand the offering of CS-related courses, beyond the Business and 

Commerce document. The courses of studies in these three curricula were being 

implemented in Ontario at the same time as the courses of study in the 1966 document, 

which means that a total of 17 CS-related courses were made available for 

implementation (see Table 3). The major reorganization, in 1983, of all CS-related course 

within the Computer Studies document is significant. It meant that CS-related courses 

now had a single and formal home and would be organized under the heading of 

Computer Studies. Today, the secondary CS-related courses still find themselves within a 
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curriculum document entitled Computer Studies; however, from 2000-2008 these were 

found within the Technological Education document. 

This historical analysis of Ontario CS-related curriculum begs the question, where do CS-

related courses belong? Are CS concepts and skills fundamental to business or to 

technological education, or do the CS-related courses need their own Computer Studies 

curriculum document? A jurisdictional scan of current CS-related secondary courses 

across Canada adds to this complexity. In British Columbia, grade 11 and 12 courses 

such as Computer Information Systems and Computer Programming are found within the 

Applied Design, Skills, and Technologies curriculum while grade 11 and grade 12 CS 

courses are offered within the Mathematics curriculum (British Columbia Ministry of 

Education, 2018a; British Columbia Ministry of Education, 2018b; British Columbia 

Ministry of Education, 2018c; British Columbia Ministry of Education, 2018d; British 

Columbia Ministry of Education, 2018e; British Columbia Ministry of Education, 2018f). 

In Saskatchewan, grade 11 and grade 12 Computer Science courses are offered from 

within the Science curriculum, providing an additional alternative (Saskatchewan 

Ministry of Education, 2018a; Saskatchewan Ministry of Education, 2018b). This leaves 

five different contemporary or historical homes for CS-related courses in Canadian 

jurisdictions that include Business, Computer Studies, Mathematics, Science, and 

Technological Education. 

As the broadening of CS education continues, policy makers are left with a wide variety 

of precedent setting options for the organization of CS-related courses. As an alternative, 

some might even begin to conclude that if CS-related concepts and skills have 

applications in all of these disciplines, then is it possible to integrate these courses, 

concepts or skills within the different subjects and contexts, rather than in a separate, 

isolated, CS-related document? If this question was explored, could it potentially lead to 

the end of formal CS-related curriculum, as instead the concepts and skills would be 

redistributed to other areas? Or is it possible that a redefinition of CS curriculum takes 

place, one that involves a very narrow focus on the computer itself, while other subject 

areas integrate relevant CS-related concepts and skills within their specific disciplines 

and contexts? This research raises these questions as important for consideration as the 
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broadening of CS continues. It also raises these questions for other subject areas, such as 

those included in the STEM (Science, Technology, Engineering and Mathematics) related 

subjects, where there are potential advantages to a cross-curricular or cross-disciplinary 

approach. How can these subject areas be organized in formal curriculum documents, if 

the concepts and skills overlap extensively, or are applicable to several subject areas? 

3.5.2 Focus of Preambles in CS-Related Curricula 

Thematic Analysis revealed eight important goals and rationale related to the CS-related 

curricula documents. These included: 

• the impact of technology on society; 

• automating tasks; 

• solving problems; 

• post-secondary and career preparation; 

• cross-curricular connections; 

• creativity; 

• differentiation and flexibility based on student needs and interests; and 

• ethical issues and appropriate use. 

3.5.2.1 Impact of Technology, Automating Tasks, and Solving 
Problems 

It is no surprise that the impact of technology on society was discussed in all curriculum 

documents, but what might be surprising is just how forward thinking the 1966 and 1970 

documents were in this regard. The preamble of the 1966 document included six 

references to the impact of technology on society. These references included a wide range 

of areas impacted by technology including business, industrial, and government 

organizations as well as other social institutions, management and economic production 

and distribution patterns. The introduction and foreword of the 1966 document also 

predicts rapid improvement in technology and more sophisticated methods of processing 

data and acknowledged the importance of leveraging the resultant knowledge: “The more 

effectively we use these new tools to produce and store information, and the more 
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skillfully we use the resultant knowledge, the greater the benefit to all society” (Ontario 

Department of Education, 1966, p. iii). 

The preamble of the 1970 document also included references to the impact of technology 

on society and also appears quite forward thinking. The introduction of the document 

begins with the following: “The influence of technology on our society is increasing 

rapidly” (Ontario Department of Education, 1970a, p. 3) indicating that this area is a 

major impetus for the development of these CS courses. The 1970 document also 

highlights the relationship between humans and computers and how the computer is 

allowing for human mental effort to be extended. This connects to the second major 

theme that was introduced in all documents, which was the recognition and importance of 

the computer as a tool to automate tasks and solve problems. All documents except the 

initial 1966 documents make reference to these themes, and they are often referred to in 

contemporary arguments for why students should learn to program a computer. 

3.5.2.2 Post-Secondary and Career Preparation 

Post-secondary and career preparation was included in all document preambles, which 

speaks to the popular economic argument for the broadening of CS education. Passey 

(2017) describes the economic argument as workforce centered, focusing on the idea that 

curriculum should support future economies and should support students in developing 

the skills needed to meet the needs of future careers. This argument is based on the idea 

that specific CS-related concepts and skills will be valuable for future careers. This 

argument, included in all eight curricula, continues to be used by governments in their 

broadening of CS mandates. Canada’s CanCode initiative includes the economic 

argument as the main principle of the program: 

CanCode aims to equip Canadian youth, including traditionally underrepresented 

groups, with the skills they need to be prepared for further studies, including 

advanced digital skills and science, technology, engineering and math (STEM) 

courses, leading to the jobs of the future. Canada's success in the digital economy 

depends on leveraging our diverse talent and providing opportunity for all to 
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participate - investing in digital skills development will help to achieve this. 

(Government of Canada, 2019) 

Considering that these curriculum documents cover the secondary grades, it is not 

surprising that the economic argument is included in curriculum preambles. What will be 

interesting to see; however, is whether the economic argument becomes integrated into 

potential CS-related curricula in the K-8 grades. This phenomenon has begun to occur in 

educational jurisdictions in Canada, but there has not been research uncovering whether 

or not the economic argument is outlined as a major impetus for this change to 

curriculum. 

3.5.2.3 Cross-curricular Connections, Creativity, Differentiation and 
Flexibility 

The cross-curricular nature of CS-related concepts and skills, as well as their potential for 

creativity and the need for differentiation and flexibility in courses were all interesting 

themes to uncover in the curriculum documents. The nature of secondary curriculum and 

implementation is often siloed and isolated into specific disciplines, making cross-

curricular connections difficult. In addition, there is often a need for standardized and 

aligned expectations and outcomes across a jurisdiction, which results in themes such as 

creativity, differentiation, and flexibility being omitted. The fact that all of these themes 

appear in many of the historical documents is perhaps a result of the inherent nature of 

CS-related instruction and pedagogy. Over 50 years ago, the preamble of the 1970 

Computer Science document captured these associated themes well: 

The boundaries of the material are virtually limitless, largely because of its 

emphasis on problem-solving. Thus, the student has an opportunity to pursue 

problems in any subject area and to study the solutions to such problems to any 

depth he desires. The flexibility inherent in the suggested approach permits 

individual research projects, class research projects, and any other challenging 

venture that either students or teachers may initiate. 
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The emphasis on problem-solving permits another flexibility: that is, the level at 

which the course is studied. The number of levels is almost infinite, largely 

because there is such a diversity of difficulty in the problems that can be solved 

through the use of a computer. (Ontario Department of Education, 1970a, p. 4) 

This excerpt also connects directly to theory in the CS education literature. Seymour 

Papert, described by Stager (1996) as the father of computing education, discussed the 

idea of coding as a low floor, high ceiling context (Papert, 1993), whereby students can 

enter into the learning from a simple entry point (low floor), but can extend projects with 

almost unlimited depth and sophistication (high ceilings). Gadanidis et al. (2017) 

describe how the low floor, high ceiling concept connects to the themes of cross-

curricular connections, creativity, differentiation, and flexibility:  

Coding in a low-floor and a high-ceiling environment also supports student 

agency and gives students ownership of their learning. Students writing code to 

model a pattern or a relationship are in control. There are many different ways to 

solve a problem with code and students can use methods that personally make 

sense. They can also deviate from the task to investigate related problems. (p. 3) 

By investigating related problems, it is possible for students to make cross-curricular 

connections, or for educators to point these out, while the different ways to solve 

problems supports the expression and development of creativity. Meanwhile, providing 

activities that facilitate both basic entry points (low floor) and the potential for added 

depth and sophistication (high ceiling), activities are differentiated for students who come 

to class with varying skills, knowledge and experiences in CS. As new and exciting CS-

related curriculum is developed in secondary, and potentially in the K-8 grades, it will be 

interesting to see how educational jurisdictions integrate cross-curricular connections, 

creativity, differentiation and flexibility in CS curriculum design. On the one hand, a 

curriculum is often siloed and isolated in its own document and in its implementation, yet 

historical curriculum and CS-related theory highlights the need for cross-curricular 

connections. Additionally, curriculum making is often about standardizing expectations 

and outcomes across a jurisdiction, yet historical curriculum and theory point to a need 
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for creativity on behalf of the students, and flexibility and differentiation on behalf of the 

teacher. It is expected that these opposing forces will be important for policy makers to 

consider and resolve as curriculum potentially expands beyond the isolated, secondary 

CS-related curriculum documents. 

3.5.2.4 Ethics and the Appropriate Use of Technology 

Ethics as well as the appropriate use and the impacts of technology are becoming 

important topics within recent CS curriculum reform, and it is encouraging to note that 

these issues are well discussed in the preambles of CS curricula since 1972. The K-12 

Computer Science Framework (K-12 Computer Science Framework Steering Committee, 

2016), led by the Association for Computing Machinery, Code.org, Computer Science 

Teachers Association, Cyber Innovation Center, and National Math and Science Initiative 

includes the impacts of computing as one of five main, core concepts. This core concept 

includes culture, social interactions, safety, law, and ethics as subcomponents. In Canada, 

Canada Learning Code’s Pan-Canadian K-12 CS framework (Canada Learning Code, 

2020) includes Technology and Society as one of five main focus areas. This focus area 

also includes ethics, safety, and the law as one of six focus areas. 

As jurisdictions update their secondary CS-related curricula or begin to integrate CS 

concepts into other subjects and grades, ethical issues and the appropriate use of 

technology will need to be an important component. This is especially true with the 

emergence of new technologies, such as Artificial Intelligence (AI), that may be making 

their way into CS curricula. The AI4K12 initiative, sponsored by the Advancement of 

Artificial Intelligence and the Computer Science Teachers Association, identified five big 

ideas of AI for students to learn, one of which includes the impact of AI on society 

(Touretzky et al., 2019). This emphasizes the notion that while there is a need to teach the 

concepts and skills required to understand, apply and leverage AI, Machine Learning 

(ML), and associated concepts, there will also need to be room for the associated ethical 

components. As jurisdictions consider the integration of ethics and appropriate use of 

technology within the curriculum, age-appropriate expectations and outcomes, learning 

progressions, and resources related to these important areas will need to be considered. It 
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should be noted that this work has begun by such groups as AI4K12, and researchers 

such as Gadanidis and Hughes who have begun developing AI-related stories for young 

students, such as AI Farm (Gadanidis & Hughes, 2019). 

3.5.2.5 Preambles and Gender in CS Education 

During the analysis of the preambles of historical CS curriculum in Ontario, it was 

evident that the language used when referring to students had changed throughout the 

years. In the 1970 Computer Science document, the language used indicates that there is 

an underlying assumption that male students will be enrolled in the course:  

The student of Computer Science should acquire this basic understanding of the 

computer, and he should also learn how to make it work for him. In achieving 

these objectives, he should not only learn of the tremendous power of and 

capabilities of the computer but also of its limitations and its dependence on 

human intelligence. He should appreciate that the computer extends the human 

brain just as machines have extended human muscle power since the time of the 

industrial revolution. (Ontario Department of Education, 1970b, p. 3) 

This type of language continues throughout the preamble of the 1970 document, with 

“he” and “his” pronouns appearing nine times, while “she” or “her” do not appear at all. 

This is interesting, considering that within the same preamble, the document 

acknowledges CS courses being open to all students: “The choice of enrolling in a 

Computer Science class should, ideally be open to any students indicating an interest in 

and enthusiasm for the study of computers and computing” (p. 4). It is also interesting 

considering the importance of equity, diversity, and inclusivity in work being done to 

broaden participation in CS education, specifically surrounding the under representation 

of female students in CS fields and courses. 

In 2002, Jane Margolis and Allan Fisher published their influential book Unlocking the 

clubhouse: Women in computing, which presented computer education as a clubhouse for 

boys that was resulting in women and girls being left out of CS. The authors discovered a 

number of influences contributing to a gender gap in computing education, and they 
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referred to these influences as the doors, walls and windows of the computing clubhouse. 

The use of only “he” in the preamble of the 1970 document is perhaps a very good 

example of these doors, walls and windows, that fail to support female students accessing 

or remaining in CS courses. 

In order to further explore this direction of inquiry, the preambles and additional 

components of the other curriculum documents were scanned, with the goal of 

identifying the inclusion of different pronouns in the texts. This scan revealed the 

following: 

• The preamble of the 1970 Elements of Computer Technology document did not 

use gender specific pronouns when referring to students; however, a brief analysis 

of the course descriptions included in the document indicated that when referring 

to students, “he” and “his” was used 10 times while “she” and “her” were not 

used at all. 

• The preamble of the 1972 Informatics document used “his” once, within the 

objectives section, when referring to students, while “she” or “her” was never 

used. In addition, within the Developing a Local Course section of the document, 

the pronouns “he” and “his” were often used when referring to the teacher of the 

course (“he” appeared five times, while “his” appeared six). The following is an 

example:  

In developing a course, the teacher must weigh several factors. Naturally he will 

be strongly influenced by his own strengths and interests, but he should also be 

mindful of the interests and preferences of his students. (Ontario Department of 

Education, 1972, p. 7). 

• In 1983, the pronoun “their” is used when referring to students, with no 

appearance of “he”, “his”, “she” or “her”. This is true for all of the remaining CS-

related curricula documents that appear after 1983. 
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3.6 Implications and Future Studies 

The results of this study on curriculum preambles are important when situated within 

current educational policy and curriculum reform. A number of educational jurisdictions 

are beginning to broaden participation in CS in K-12 education, but there is often a 

feeling that CS in K-12 education is brand new, with little precedent. Acknowledging that 

in Ontario, CS-related curriculum dates as far back as 1966, and that many of the 

important themes in the broadening of CS discourse have been recognized in historical 

documents, is important. Failure to acknowledge and learn from both the positive and 

negative aspects of these documents would mean ignoring resources that can be used to 

inform important policy-making practice and research. 

In addition, the exploratory nature of this study raised interesting questions that can serve 

as seeds of future studies that focus on historical CS curriculum to inform contemporary 

curriculum. These include future investigations surrounding the connections between CS 

concepts and skills and other subject areas. In Ontario, historical documents have 

acknowledged the importance of cross curricular connections in CS curricula and the CS 

courses themselves have been placed in Business, Computer Studies, Computer 

Science/studies, Informatics, and Technological Education, while elsewhere we see 

secondary CS courses being placed in Mathematics and Science curriculum documents. 

What will the future placement of CS-related courses be? Is CS such an interdisciplinary 

subject that there is the possibility for integrating CS courses in numerous or all subject 

areas? Or is there a need to expand the secondary CS curriculum, by integrating the 

various subject areas and disciplines into the CS courses themselves? 

Finally, the identification of only the “he” and “his” pronouns appearing in early 

curriculum documents, when referring to CS students and teachers, has important 

implications when considering issues of underrepresentation in CS education. What was 

the impact of the use of this language on enrolment in CS courses, and in the 

representation of teachers? Are there more examples of this exclusionary language in 

historical, or contemporary curriculum or resources and if so, what is the impact? 
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3.7 Additional Dissertation Section – Grade 10 Curriculum 
Components 

Chapter 3 was written with the goal of focusing specifically on the preambles of 

historical curriculum documents in order to investigate the general approaches that have 

been identified in CS education at the secondary level. In order to add depth and 

understanding within the context of this larger dissertation, this additional section was 

added, which looks specifically at the concepts and skills included in the historical, grade 

10 CS courses in Ontario, as well as some of the pedagogical approaches represented in 

the documents. The grade 10 course was selected for analysis as it is an introductory 

course that teaches foundational CS concepts and skills. Introductory, secondary courses 

will be greatly influenced by new CS concepts and skills that are being introduced in the 

K-8 grades in a number of jurisdictions, and it is therefore an important course for 

analysis and understanding. 

3.7.1 Courses and Main Concepts 

The initial analysis of the eight historical CS-related curriculum documents reveals that 

there are four grade 10 courses implemented from 1966 to present day. These grade 10 

courses represent the first introductory CS-related course available to students, as none of 

the curriculum documents include a grade 9 course. As a result of these being from the 

same jurisdictions (Ontario), and building upon each other, they represent an interesting 

evolution of introductory CS courses.  

Table 5, lists the names of the four courses from the curriculum documents, as well as the 

main topics that are identified. The main topics do not appear in this order in the 

documents, they have been reorganized in order to show the progression of each broad 

category over the years. The main topics are those that are highlighted as either major 

unit or concept headings, or are identified in overall expectations or more recent 

documents. 
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Table 5. Grade 10 introductory CS-related courses, from 1966 to present day 

 1966 -  

Principles Of Data 

Processing  

Grade 10 

1983 -  

Introductory 

Computer Studies 

Grade 10 

2000 -  

Computer and 

Information Science 

Grade 10 

2008 -

Introduction to 

Computer Studies 

Grade 10 

Technology 

and society 

Man and His Environment 

 

Important Uses of the 
Computer in Today's 

Society 

Impact of microelectronic 

technology on society 

Impact of computers and 

technologies 

Social impact 
 

Environmental 

stewardship and 
sustainability 

 

Ethical issues 

The computer 

and its 

operation 

How the Computer Works 
in its Simplest Form 

 

Introduction to Electronic 
Computers 

 

Storage Devices: advantages 
and disadvantages 

 

Output Media and Data 
Presentation 

 
Central Processor 

 

Computer Input Media 

Operating the computer 
 

Computer electronics 

Hardware, interfaces, and 

networking 

Hardware components 

 
Software products 

 

Operating systems 
 

Home Computer 

Networking 
 

Maintenance and 
Security 

Programming 

Data Processing 
 

Coding 

 

Manual and Mechanical 

Methods 

 
Electro-mechanical Methods 

Programming the 

computer 

 

Information Processing 

Programming concepts 

Programming concepts 

 

Writing programs 

 

Code maintenance 

 

Careers and 

post-

secondary 

Forecast of vocational 

opportunities in the data 
processing field 

Computer-related careers Related careers 
Postsecondary 

Opportunities 

Historical 

context 

Development of Devices to 

Improve Information 

Processing 

 
Evolution of programming 
languages 

 

Algorithms & 

representation 

Number Systems 

 

Manipulation 

Computer Science Logic  

Problems and 

Design 

Summary, Review and 
Application 

 Problem solving and design  

As indicated in Table 5, the main topics of technology and society, the computer and its 

operation, programming, and career and post-secondary opportunities were included in 

all four courses, from 1966 to present. 

Topics surrounding the historical development of CS-related topics and technologies 

were only present in the 1966 and 2000 documents, meaning that students did not learn 

about the historical contexts or the evolution of technologies when enrolled in the 1983 

course, nor do they learn about them presently, with the 2008 course. In the 2000 

document, the extent of historical context in topics only includes students investigating 
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the evolution of computer programming languages. In 1966; however, a much more in-

depth exploration of historical context is included, as students were expected to learn 

about all of the following: 

• evolution of the computer; 

• development of the accumulation and transfer of knowledge; 

• development of methods of assembling, writing, and recording information 

(records on stone, clay tablets, paper, disk, tape); 

• development of systems to express specialized information (weights, measures, 

money, maps, accounting); 

• development of automation (sail, pump, gear, lever, wheel, thermostat, conveyor 

belt, elevator, computer); 

• development of devices to improve information processing (Abacus, Napier's 

bones, Pascal's gears, slide rule, manual calculators, electro-mechanical 

calculators, postage meters); 

• history of electro-mechanical methods (Hollerith, Powers); and 

• early storage devices (electrostatic,  delay lines, electronic tubes). 

Program and project design, like historical context, is only present in the 1966 and 2000 

courses, but not included in the 1983 or 2008 courses. In terms of topics surrounding 

algorithms and representation of data, the most recent 2008 grade 10 course does not 

include this topic, while all three previous courses did. 

3.7.2 Other Concepts  

As the investigation of main topics took place (those that were unit headings or that were 

included as overall expectations in the documents), it was clear that other, minor topics 

were either apparent, or noticeably absent in some or all of the four documents. 

The concepts of control structures in CS, which include such things as the sequencing 

and repetition of instructions, as well as conditional statements (decisions), were included 

in all grade 10 courses. As an example, the 1983 document includes an expectation that 

students will “write simple routines that will illustrate the three basic operations involved 
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in the processing of information - sequencing, selection, and repetition” (Ontario 

Ministry of Education, 1983, p.16). The model of the computer as an input, storage, 

processing and output device was also included in all four courses. An example of how it 

was included in the 1966 documents is as follows: “Block diagram of computer: explain 

in terms of input, central processing, output and auxiliary storage. Trace typical path of 

information processing through a computer using the block diagram as sectionalized 

above” (Ontario Department of Education, 1966, p. 3). The inclusion of these two topics, 

in all four courses since 1966, indicates that they are fundamental concepts required in 

introductory CS courses. Like some of the main topics listed above, leaving these topics 

out of new, future courses would require some careful thought and strong rationale. 

Noticeably absent in all four of the CS courses were concepts that are apparent in some of 

the contemporary discourse around the broadening of CS, including creativity, 

expression, and the sharing of end products with others. Both Resnick (2017) and Kafai 

(2016) write extensively about creativity, expression and the social aspects of 

computation in their models of Computational Fluency and Computational Participation 

respectively. None of the courses included outcomes or expectations that involved 

students being creative or finding ways to express themselves and share projects with 

others. Instead, the content appeared more technically based, focused on specific CS 

skills and concepts. 

3.7.3 Pedagogical Approaches 

An analysis of the pedagogical approaches represented in the four grade 10 courses was 

done by identifying and comparing the verbs used in the curriculum outcomes and 

expectations. This analysis provides insight into what it is expected of students in terms 

of how they engage with the content and skills listed in the course. Interestingly, the 

earlier curriculum documents, from 1966 and 1983, appear to rely less heavily on verbs 

to explain what students are expected to be doing in the course. The 1966 document reads 

much more like a list of concepts, skills, or facts, but there is little guidance in terms of 

how students are to engage with these components. The 1983 document includes the use 

of specific verbs within the Operating a Computer and Programming a Computer 
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sections, but the other sections of the document are written much like the 1966 document, 

indicating the concepts that “students should gain an understanding” of.  

In contrast, all of the 45 specific expectations in the 2000 course, and all of the 48 

specific expectations in the 2008 course, begin with a verb. This provides important 

insight for the teacher, in terms of how the students will engage with the material. Table 6 

shows the number of times that different verbs were used in the 2000 and 2008 grade 10, 

introductory course (note that some expectations include more than one verb): 

Table 6. Occurrence of verbs in the 2000 and 2008 grade 10, introductory CS 

courses 

Verb 

2000 

Computer and 

Information Science 

Grade 10 

2008 

Introduction to 

Computer Studies 

Grade 10 

describe 8 19 

use 10 8 

identify 3 6 

explain 5 6 

write 5 5 

research, demonstrate, 

assess, understand 
0 2 

correct 1 1 

contrast, compare 2 1 

plan, determine 0 1 

state, define 2 0 

comply, find, design, solve, 

verify, develop, maintain, 

incorporate, trace, validate 

1 0 

It is interesting to note that the verb “describe” appeared 19 times in the current, 

introductory CS course, more than twice as often as any other verb. While this 2008 

document does not include any explicit mention of communication skills, it is clear that 

communication will be important, as almost half of the curriculum expectations include 

students “describing” concepts and/or skills. This observation has important 

considerations for both classroom pedagogy and assessment as a focus on communicating 
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concepts and skills, rather than on demonstrating them, could potentially have an impact 

on: 

• The time spent by students planning, writing, executing and debugging programs 

versus that time spent describing and communicating concepts; 

• The potential hands-on, exploratory nature of CS learning and the constructionist 

learning theory (Papert, 1993) often at the heart of CS education; 

• The number of students who chose to enrol in the course and the engagement of 

students once enrolled. 

3.8 Conclusion 

As this thesis moves on to explore enrolment, equity, diversity, and inclusivity in Chapter 

4, and contemporary curriculum approaches in the K-8 grades in Chapter 5, the findings 

from this historical analysis of secondary CS curriculum provide important context. 

Current CS-related curriculum in Ontario is found in the 2008 secondary Computer 

Studies document, and it will be interesting to explore both the student enrolment in these 

courses, and whether or not female and male students are equally represented. 

Historically, CS-related courses were also included in Business and Technological 

Education curriculum documents, while in other jurisdictions CS courses are offered 

within Mathematics and Science. These connections to other disciplines will be 

interesting to consider as an analysis of the different approaches to CS-related curricula 

in the K-8 grades is explored. In addition, this chapter revealed that curriculum content 

related to technology and society, the computer and its operation, programming, and 

related careers and post-secondary opportunities are well entrenched in Ontario CS 

curricula, appearing in all courses since 1966. Other areas of focus such as creativity, 

expression and the sharing of projects with others have been a part of preambles and 

document introductions, but have not always been included in the lists of concepts and 

skills to be taught. Whether or not the inclusion and exclusion of these topics is relevant 

in terms of enrolment, equity, diversity, and inclusivity and whether or not these topics 

appear in novel K-8 curriculum will be further explored. 
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Chapter 4  

4 Enrolment and Underrepresented Groups in Computer 
Science Education 

Current literature surrounding the broadening of CS concepts and skills indicates that 

there are a number of underrepresented groups in CS K-12 Education. This chapter 

focusses on the underrepresentation of female students in Ontario secondary CS courses. 

The chapter reveals a significant gender gap in these courses, and also finds that overall 

enrolment is lowest in the grade 11 and grade 12 College pathway courses. Considering 

recent research (Pichette et al., 2020) and government initiatives (Alphonso, 2021) 

related to de-streaming unequitable course designations and pathways (such as 

Academic and Applied), it is felt that findings from this chapter related to the low 

enrolment in College pathways can provide a starting point upon which to further 

research the potential underrepresentation of other groups within these courses. 

While Chapter 3 explored the traditional, optional secondary course implementation of 

CS in the K-12 grades, this chapter builds upon this work by seeking to understand how 

enrolment patterns in these courses have changed over time. The chapter explores overall 

student enrolment in Ontario’s secondary CS courses, from 2011-2018, as well as the 

important theme of equity, diversity, and inclusivity in CS by examining the enrolment of 

female and male students. This theme is not only a major component of recent initiatives 

meant to broaden CS education, including Canada’s CanCode (Government of Canada, 

2019c) and the US’s CS For All initiative (Smith, 2016), it is also often discussed in K-12 

CS education literature. 

Almost twenty years ago, Margolis and Fisher (2002) presented computer education as a 

clubhouse for boys where women and girls are left out of computer science (CS). While 

the authors acknowledged that “women are surfing the web in equal proportion to men, 

and women make up the majority of Internet consumers” (p. 2), women were not learning 

to invent, create and design with computer technology, a concern that lead to missed 

educational and economic opportunities. Through interviews, classroom observations, 

conversations with faculty, and analysis of relevant data, the authors discovered a number 
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of influences contributing to a gender gap in computing education. They called these 

influences the doors, walls and windows of the computing clubhouse. 

Now, as computing technology becomes ubiquitous, as the expansion of CS education 

takes place in a number of K-12 educational jurisdictions, and as the economic 

opportunities resulting from computing education have expanded, it is important to 

develop local and current perspectives on the issue.  

4.1 Research Rationale 

The impetus for this research centers on the fact that CS is becoming a nascent focus of 

curriculum initiatives in Ontario, Canada and abroad. In Canada, the Ontario Ministry of 

Education recently announced a strategy to revise secondary school CS curricula in an 

effort to focus on developing job skills such as computational thinking and coding 

(Ontario Ministry of Education, 2019), while Canada’s federal government announced an 

additional $80 million of funding to their CanCode coding initiative (Department of 

Finance Canada, 2021). In the K-8, grades British Columbia (British Columbia Ministry 

of Education, 2016), Alberta (Alberta Education, 2021), Ontario (Ontario Ministry of 

Education, 2020), New Brunswick (New Brunswick Department of Education and Early 

Childhood Development, 2016) and Nova Scotia (Nova Scotia Department of Education 

and Early Childhood Development, 2016) all include coding and CS concepts in their 

current or draft K-8 curriculum while beyond Canada the integration of coding into K-8 

education has become an international phenomenon (Gadanidis et al., 2017). Research 

seeking to provide insight into enrolment in current CS courses, as well any existing 

gender gaps in CS education, is critical considering the number of initiatives that have 

been implemented to broaden CS education, and considering the potential impact and 

missed opportunities that result from a CS student population and workforce lacking in 

diversity. 

4.2 The Broadening of CS Education 

In recent years, increased attention has been given to the broadening of CS concepts and 

skills in K-12 education. A number of theoretical approaches related to the broadening of 
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CS in K-12 education were presented in Chapter 2 of this thesis and are explored further, 

in the specific context of K-8 curricula, in Chapter 5. While much of this theory has its 

foundation in Papert’s (1993) work, it has also been recognized that Wing’s (2006) 

Computational Thinking has been influential in broadening CS initiatives and in catching 

the attention of the CS education community (Grover & Pea, 2013). 

4.2.1 Ontario and Canada 

In Ontario, the secondary Computer Studies curriculum, which was analyzed within its 

historical context in Chapter 3, is currently undergoing revisions (Ontario Ministry of 

Education, 2019) while in British Columbia secondary CS courses were revised in 2018 

and situated within the Mathematics curricula (British Columbia Ministry of Education, 

2018a; British Columbia Ministry of Education, 2018b). Likewise, in Saskatchewan, 

secondary CS courses were revised in 2018; however, unlike British Columbia, these 

courses are now included in the Science curriculum (Saskatchewan Ministry of 

Education, 2018; Saskatchewan Ministry of Education, 2018b). In addition to curriculum 

revisions in the secondary grades, new K-8 curriculum from a variety of provinces now 

includes coding and computational thinking concepts and skills, the details of which will 

be explored further in Chapter 5. While these curriculum updates and revisions have been 

led by provincial Ministries of Education, there has also been a large federal initiative in 

Canada, where money to broaden CS education was provided to non-profit organizations. 

The CanCode initiative began in 2017 with an initial commitment, from the Canadian 

federal government of $50 million (Department of Finance Canada, 2017). In 2019 and 

2021, the federal budgets earmarked an additional $60 million (Department of Finance 

Canada, 2019) and $80 million (Department of Finance Canada, 2021) respectively for 

the program, resulting in provided or promised funding for the programming totaling 

$190 million. The CanCode program was developed to help provide coding and digital 

skills education to more young Canadians (Government of Canada, 2019c), and is listed 

as part of an action item related to Canada's Digital Charter: Trust in a Digital World 

(Government of Canada, 2021). In its first two years, the program had provided more 

than 800,000 K-12 students and 40,000 teachers with opportunities to learn coding and 
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digital skills (Government of Canada, 2019a). These figures included 350,000 girls, over 

68,000 Indigenous students, over 100,000 youth at risk, and 34,000 newcomers to 

Canada (Government of Canada, 2019a). 

One example of a non-profit organization that was provided with CanCode funding is 

Canada Learning Code (CLC), whose vision is “a prosperous Canada in which all people 

have the skills and confidence to harness the power of technology to create a better and 

more inclusive future” (Canada Learning Code, 2021). Since 2011, CLC has offered over 

10,500 educational events resulting in over 1.7 million hours spent coding, and 

engagements with over 600,000 learners across Canada (Canada Learning Code, 2021). 

The CanCode funding helped CLC develop Learning for the Digital Future: A Pan-

Canadian K-12 Computer Science Education Framework (Canada Learning Code, 2020). 

The framework is meant to provide greater alignment in terms of what Canadian students 

learn and promote more equitable access to high-quality CS education. The second page 

of the framework presents the following, as a major rationale for the framework: 

As digital technologies play ever-more important roles in our lives, it is critical 

that all students, especially those who have been traditionally underrepresented in 

tech—namely women, visible minorities, Indigenous people, and people living in 

rural and remote areas—have the opportunity to learn foundational skills and 

competencies to meet the needs of their time. It is essential that we empower all 

students to harness the power of these new tools. (Canada Learning Code, 2020, 

p. 2) 

Included in CLC’s framework is a list of 27 other organizations that have been provided 

with funding from the federal CanCode initiative. In considering the organizations that 

were provided with this funding, and in considering the general approach used by the 

federal government to broaden K-12 CS education in Canada, two important issues arise: 

1) the provision of funds to non-profit organizations rather than to public education 

authorities, and 2) the criteria used to assess the success of the initiatives. 

To qualify for CanCode funding, organizations must be a not-for-profit organization 

incorporated in Canada and must have a minimum of three years of experience in the 
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delivery of coding and digital skills programs to K-12 youth and/or teachers (Government 

of Canada, 2019b). While it was encouraged that the organizations deliver content that 

maps to provincial/territorial educational curricula, and while it was encouraged that the 

organizations partner with groups such as public school boards, neither of these criteria 

were mandatory. These distinctions are important as it signals that not-for-profit 

organizations, rather than public institutions, were selected to obtain the financial 

resources to lead CS education initiatives. An alternative approach would have been an 

investment into the broadening of CS education through groups such as Universities, 

Colleges, or K-12 Ministries of Education, school boards or schools. One reason why this 

is so important is that not-for-profit and public educational organizations may embody 

different approaches, philosophies and end goals related to the broadening of CS 

education. Not-for-profit organization initiatives might embody an economic argument 

for broadening CS education, which is workforce centered, focusing on the idea that 

curriculum should support future economies and should support students in developing 

the skills needed to meet the needs of future careers (Passey, 2017). Public education 

organizations, on the other hand, might embody some of the theoretical approaches 

explored in Chapter 2 of this thesis, such as encouraging Computational Fluency 

(Resnick, 2017), Computational Participation (Kafai, 2016), or Computational Literacy 

(diSessa, 2018). Referring back to Table 2, from Chapter 2 of this thesis, an in-depth 

analysis of the approaches used by not-for-profit organizations associated with the 

CanCode funding may reveal that their initiatives embody Wing’s CS as a topic of study 

in and of itself, rather than embodying approaches that view CS-related concepts and 

skills as a tool in mathematics and science, or one that embodies CS concepts and skills 

for their social, personal, and cultural benefits. Although an in-depth analysis of goals 

and underlying philosophy of the CanCode initiative is not a part of this chapter or thesis, 

considering the large amount of federal money associated with the program, it introduces 

an interesting topic of research centered around who is given the power, control, and 

resources associated with large scale, CS education initiatives.  

As discussed above, it has been reported that in its first two years, the CanCode program 

had provided more than 800,000 K-12 students and 40,000 teachers with opportunities to 

https://www.ic.gc.ca/eic/site/121.nsf/eng/00002.html
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learn coding and related skills (Department of Finance Canada, 2019). These numbers 

included 350,000 girls, over 68,000 Indigenous students, over 100,000 youth at risk, and 

34,000 newcomers to Canada (Government of Canada, 2019a). It would be important to 

investigate the extent of these opportunities and whether or not they involved in depth 

and prolonged CS education experiences. Likewise, it would be worthwhile to determine 

the details and extent of the 600,000 “engagements” reported by CLC, or the 1.7 million 

hours of coding (Canada Learning Code, 2021). The CanCode initiative and the work of 

the selected organizations can be a valuable means of broadening CS education in the K-

12 grades, but a further analysis could help identify the most and least successful 

components, and whether or not the initiatives led to substantial and effective change. 

This could help each organization better plan future initiatives, and it could help the 

government determine criteria for future funding. It would also be interesting to explore 

the specific grades or concepts and skills that were the focus of the implementation of the 

CanCode programs, and whether or not these programs reflected curriculum in the 

various jurisdictions. 

4.2.2 United States of America 

The broadening of CS education in the United States was exemplified in January 2016 

when then President Barack Obama announced a national initiative called CS For All that 

would “empower all American students from kindergarten through high school to learn 

CS and be equipped with the computational thinking skills they need to be creators in the 

digital economy” (Smith, 2016, para. 1). The CS For All initiative allocated $4 billion in 

funding for states and $100 million for school districts that would allow for the expansion 

of CS teacher training, access to high quality materials, and the development of regional 

partnerships. The initiative also sought to involve more governors, mayors, and education 

leaders to help boost CS education and mentions the states of Delaware, Hawaii, 

Washington, and Arkansas as places where the effective expansion CS opportunities for 

students had already taken place. The approach of the CS For All initiative, in contrast to 

Canada’s CanCode project, appears to connect more directly to educational organizations 

as states and school districts play a more central role. This ensures that educational 
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organizations and experts have more power, control, and potential funding to help shape 

the direction of the initiatives. 

In terms of the foundational goals of the program, the main impetus for the CS For All 

initiative seems to have been a need to fill current and projected high-tech jobs, and to 

ensure that all students have access to CS education. In September 2016, the White 

House released a fact sheet that identified progress related to the CS For All initiative. 

Thirty-one states were now allowing CS to count towards high school graduation and 

over 100 organizations had pledged more than $250 million to support CS education. 

Major support came from the Girl Scouts of the USA, which had the potential to 

introduce 1.4 million girls per year to CS education, and Code.org which supported the 

professional development of over 40,000 additional teachers (The White House President 

Barack Obama, 2016). Also in September, 2016, the K-12 Computer Science Framework 

(K-12 Computer Science Framework Steering Committee, 2016) was released, which 

was  developed by five different organizations (the Association for Computing 

Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center, 

and National Math and Science Initiative) in an effort to provide guidance to States and 

local education agencies as they adopt policies and key infrastructure surrounding CS 

education. The inclusion of education organizations within the development of this 

framework, such as the Computer Science Teachers Association and the National Math 

and Science Initiative, is important to note, as it ensures strong representation from 

education stakeholders. This recognizes the value that these organizations bring to the 

broadening of CS education and provides them with more control and influence. 

The K-12 Computer Science Framework organized a progression of learning, from 

kindergarten to grade 12, that centered around five core concepts (computing systems, 

networks and the internet, data and analysis, algorithms and programming, and impacts 

of computing) and seven core practices (fostering an inclusive computing culture, 

creating computational artifacts, collaborating around computing, testing and refining 

computational artifacts, recognizing and defining computational problems, 

communicating about computing, and developing and using abstractions).  
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The intention of the concepts and practices in the K-12 Computer Science Framework 

was to “serve as a foundation from which all states, districts, and organizations can 

develop CS education standards for K-12 students” (K-12 Computer Science Framework 

Steering Committee, 2016, p. 125). 

4.2.3 England 

England provides an additional, international example of the broadening of CS concepts 

and skills in K-12 education over the last few years. This approach focusses on  

incorporating CS concepts and skills within revised curriculum in the public education 

system, rather than on providing funds to organizations to deliver camps, workshops, 

webinars or resources. In 2012, the UK’s Royal Society published Shut Down or Restart? 

The Way Forward for Computing in UK Schools which concluded that the delivery of 

computing education, through existing Information and Communication Technology 

curricula, was unsatisfactory. Many students were not inspired by what they were taught 

and were learning little more than basic digital literacy skills such as word-processing 

and database management. The report identified a specific need to recognize CS as a 

rigorous academic discipline that is of great importance to the future of all students. Two 

years later, in 2014, England released a National Computing curriculum that allowed for 

students, from the age of five, to learn about “the principles of information and 

computation and how digital systems work” (The Royal Society, 2017, p. 17). The 

National Computing curriculum includes three major strands: information technology, 

digital literacy, and CS. The curriculum also identifies CT as a core component of the 

curriculum and is mentioned in the very first sentence of the National Curriculum 

document: “A high quality computing education equips pupils to use computational 

thinking and creativity to understand and change the world” (United Kingdom 

Department for Education, 2013, p. 1). Examples of subject content for key stage 1 (the 

first two years of formal schooling, when students are approximately 5 to 7 years old) 

include understanding what algorithms are and creating and debugging simple programs. 

Examples of subject content for key stage 2 (years 3 to 6, when students are 

approximately 7 to 11 years old) include creating programs with specific goals in mind, 
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using sequence, selection, repetition and variables in programs, and using logical 

reasoning to explain how algorithms work. 

A few years after the release of the National Computing Curriculum, the UK’s Royal 

Society published After the Reboot: Computing Education in UK Schools (2017) that 

provided a list of changes that had taken place since 2012, examined the impact of these 

changes, and identified “urgent challenges that governments, industry and school leaders 

need to address in order to safeguard our future efficacy in the digital world” (p. 7). One 

of these five major challenges was improving the gender balance in computing. 

4.2.4 An Important Note from the Author 

Considering my experience as a CS teacher and the contemporary literature in the field, it 

is clear that issues related to equity, diversity, and inclusivity are important to include in a 

thesis that explores the broadening of CS education in the K-12 grades. While I do not fit 

the description of a traditionally underrepresented individual in CS, I am committed to 

furthering my understanding of the issues surrounding the underrepresentation of 

individuals and groups in CS. With 18 years of experience in K-12 CS education, I 

observed this lack of diversity in each class that I taught or supported, and was driven to 

explore interventions, from the small to the large scale, from classroom activities to 

provincial policy. As I continue my research in K-12 CS education, I have been fortunate 

to listen to, and learn from, a number of passionate and talented researchers included in 

this chapter, and I would suggest readers explore their work. I have also been hesitant to 

take up space in this area, and I am grateful for the conversations I have with my wife 

Lisa, who does extensive work in K-12 education and research, and with other members 

of the University community. Since completing the research and analysis for this chapter, 

I now have a daughter, and this has provided me with an additional perspective. Although 

I recognize that I have much to learn, these conversations, experiences and perspectives 

have helped me to better understand my potential allyship role and to continue to actively 

work towards and support an equitable, diverse and inclusive landscape in CS education. 

I am aware that the issue of underrepresented groups in CS goes beyond gender, that 

complex historical, structural and systemic forces are at play, and that an understanding 
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of intersectionality can provide valuable insight into the analysis of equity, diversity, and 

inclusivity concerns. There are a number of researchers and authors who have published, 

and continue to publish, important work in these areas, and I am grateful to have read 

some of their contributions and will continue to seek out additional voices, research and 

learn from their lived experiences. In addition, the terminology used when investigating 

these issues is important. This chapter makes reference to female and male students 

several times. The rationale for terminology is for clarity and consistency, as these terms 

are used in the enrolment data obtained from Ontario’s Ministry of Education. 

Finally, before further exploring equity, diversity, and inclusivity issues and enrolment in 

CS courses, it is important to identify and discourage a deficit perspective (Patitsas et al., 

2014; Vakil, 2018). When discussing underrepresented groups in specific subject areas 

and disciplines, there is a danger of focusing on a need to “fix” what may be thought of 

as deficiencies in attitudes, skills, practices, interests, or aspirations. This approach fails 

to appropriately consider the social structures and systemic issues that may cause 

inequalities in the first place. 

4.3 Potential Impact and Missed Opportunities 

A central and consistent theme to many of the programs meant to broaden CS K-12 

education has been the concern surrounding underrepresented groups in CS education 

and the field. Canada’s 2021 federal budget indicates that the CanCode initiative has a 

“special focus on reaching young people who are traditionally underrepresented in 

science, technology, engineering and mathematics, such as girls and Indigenous youth” 

(Department of Finance Canada, 2021, p. 115) while the K-12 Computer Science 

Framework recognizes the opportunity gap that exists when there is a disparity in access 

to CS education, as often traditionally underrepresented students, who already face 

educational inequities, are further marginalized (K-12 Computer Science Framework 

Steering Committee, 2016). While the research proves that there are a number of diverse 

and intersecting groups traditionally underrepresented in CS Education, this chapter 

focuses specifically on the concern surrounding the underrepresentation of female 

students. 
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There are three main concerns surrounding the underrepresentation of female students in 

secondary school CS courses. The first involves the missed economic opportunities that 

would be afforded to students if they chose CS as a field of study and career. Excluding 

female students from CS education means excluding them from lucrative, high-status and 

flexible careers within the continually growing field of technology (Information and 

Communications Technology Council, 2017). In addition, CS concepts and the thought 

processes involved in computational thinking are recognized as valuable for all students 

to learn (Wing, 2006) as they are applicable to a wide range of careers. Scientists and 

researchers in biology, chemistry, physics, astronomy and medicine use computers and 

CS concepts for mathematical modelling in order to expand the frontiers of knowledge in 

both research and innovation (Monroe, 2014) while CS-related, transformational 

technology such as virtual and augmented reality, 5G mobile, 3D printing, blockchain 

and artificial intelligence will lead to an increased demand for digital skill workers in 

lucrative fields (Information and Communications Technology Council, 2017). The 

second concern surrounding the underrepresentation of female students in CS involves 

CS knowledge serving as a critical part of being an educated, 21st century citizen 

(Margolis et al., 2012). Resnick (2017) explains: 

In today’s society, digital technologies are a symbol of possibility and progress. 

When children learn to use digital technologies to express themselves and share 

their ideas through coding, they begin to see themselves in new ways. They begin 

to see the possibility for contributing actively to society. They begin to see 

themselves as part of the future. (p. 50-51) 

Kafai’s (2016) concept of Computational Participation acknowledges that the thought 

processes associated with CS are a social practice with a broad reach. Rather than an 

abstract discipline, programming is now a way to make and be in the digital world (Kafai, 

2016). Digital technologies are used for functional, political, and personal reasons and 

therefore all students should develop an understanding of interfaces, technologies, and 

systems that they encounter on a daily basis. 
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Finally, an underrepresentation of female students in CS leads to the field missing out on 

the benefits that a diverse labour force can have on innovation. Computer scientists help 

design tools that shape modern society and diversifying the field means a higher 

likelihood of creating technologies that are appropriate for a broad population (Margolis 

& Fisher, 2002). CS based technologies can also help solve economic, environmental, 

political, and social problems and thus diverse perspectives in the field are needed in 

order to develop diverse solutions. A lack of diversity in high school CS courses could 

lead to a lack of diversity in the technology sector and therefore a lack of diversity in 

solutions and technologies available for all. 

Considering the above-mentioned impact and missed opportunities resulting from a lack 

of diversity in CS education, it is important to develop an understanding of enrolment 

patterns in Ontario Computer Studies courses while the numerous initiatives related to the 

broadening of CS education have been taken place. It is also important to investigate, 

specifically, whether or not a gender gap currently exists in Ontario’s high school CS 

courses. Before doing so; however, a review of equity, diversity, and inclusivity issues in 

CS is provided, as well as important and relevant conceptual frameworks related to 

gender equity and CS education. 

4.4 Equity, Diversity, and Inclusivity in CS Education 

Before investigating enrolment data and analyzing Ontario’s secondary Computer Studies 

courses, it is important to develop an understanding of the wide range of issues related to 

gender, equity, diversity, and inclusivity in CS education that span historical, political, 

psychological, and social domains. Acknowledging the complexity of these issues, 

Patitsas et al. (2014) employed a historical sociology approach that argued that for 

educators to understand the current situation and how to change it, they must understand 

historical forces: “we cannot reduce the matter down to a few issues that, if fixed, would 

change everything” (p. 111). As well as appreciating the complexity of the issues, several 

authors also caution against the tendency to employ a deficit approach when discussing 

the CS education gender gap. 
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Victores and Gil-Juárez (2017) explain that too often girls are portrayed as deficient and 

lacking the “normal relationship” (p. 671) that boys and men have with computing. 

Focusing on a need to “fix” the deficiencies of girls’ attitudes, skills, practices, interests, 

and aspirations in computing fails to appropriately consider the social structures that may 

cause these inequalities in the first place. Consideration of this deficit approach is 

important, as interventions implemented to increase enrolment of female students in CS 

courses should certainly avoid an approach that considers needing to fix attitudes or 

aspirations. Gender differences in the attitude towards technology use has often been 

cited as an important factor in explaining the underrepresentation of female students in 

CS education, however; findings surrounding this issue have been inconsistent (Cai et al., 

2016). 

Cheryan et al. (2015) emphasize the impact that stereotypes can have on signaling to girls 

that CS is not an appropriate field for them. The authors explain that students have 

stereotypes about the culture of CS and that girls face negative stereotypes about their 

abilities in the field. These stereotypes include girls being steered away from CS by 

parents and teachers who consider the field more appropriate for boys (Eccles et al., 

1990; Sadker & Sadker, 1994), as well the underrepresentation of female students in CS 

perpetuating future underrepresentation (Murphy et al., 2007). In addition, the authors 

note that girls underestimate their potential level of achievement in the field (Correll, 

2001; Ehrlinger and Dunning, 2003) and they may anticipate greater work-family 

conflicts in CS than they would in other fields (Ceci et al., 2009). The authors also 

acknowledge the fact that there is gender discrimination in the CS field, reduced 

opportunities for women, and social and professional penalties for women when 

exhibiting competence and leadership qualities in CS-related occupations (Moss-Racusin 

et al., 2012; Rudman, 1998). If interventions meant to reduce gender gaps in CS 

education are to be effective, the general state of the field itself, and the work 

environments associated with CS need to be considered. It is not enough to increase 

young women’s participation in CS at the secondary level, only for these students to 

eventually find gender discrimination in the field. 
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When exploring the psychological explanations for why girls avoid computer-related 

subjects, Vitores and Gil-Juárez (2016) explain that girls have negative stereotypes of 

computer scientists being geeky and the field being male dominated and oriented towards 

working with machines rather than people. They also acknowledge that girls have poor 

knowledge of CS as a discipline and career and that they often perceive CS as being 

boring. While boys also share this negative view, Fisher and Margolis (2003) and Lang 

(2010) indicate that this belief is more damaging for girls than boys. It is here that work 

surrounding appropriate curriculum and pedagogy can potentially have an impact. There 

are a number of approaches that can be taken towards K-12 CS education, many of which 

were summarized in Chapter 2. A curriculum and related pedagogy that focuses on CS as 

a topic of study in and of itself, such as one presented by Wing (2006), may be less 

effective at engaging students from underrepresented groups. Instead, an approach that 

recognizes the power of the computer as a tool, such as Papert (1993) or diSessa (2018), 

or that incorporates the social, personal and cultural contexts, such as Kafai (2016) and 

Resnick (2017) may be more effective. 

Adding to the literature surrounding large scale initiatives meant to broaden CS education 

participation, Vakil (2018) calls for a justice-centered approach to equity in CS: 

With CS rapidly emerging as a distinct feature of K–12 public education in the 

United States, calls to expand CS education are often linked to equity and 

diversity concerns around expanding access to girls and historically 

underrepresented students of color. Yet, unlike other critical traditions in 

education research, equity-oriented CS research has largely failed to interrogate 

the sociopolitical context of CS education. (p. 26) 

Vakil’s (2018) justice-centered approach attempts to move away from what he calls the 

dominant approach for broadening CS concepts and skills, which may be in the best 

interests of multinational corporations, towards focusing on “the sociopolitical 

implications, relevance, and, ultimately, liberatory possibilities of teaching and learning 

CS” (p. 27). In the dominant approach, students are encouraged to be responsible digital 

citizens, to potentially pursue career opportunities, and the role of student identity in 
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learning processes is undertheorized, “resulting in deficit lens on girls and students of 

color” (p. 37). Alternatively, a justice-centered approach includes students moving 

beyond being responsible digital citizens, to students engaging in critiquing unethical 

abuses of technological power, while researchers consider learning environments that are 

responsive to students’ multiple social identities. In a justice-centered approach, CS 

learning is framed as being “important for the social and economic welfare of historically 

nondominant students and their communities”, as students are encouraged to “pursue CS 

as part of and connected to larger struggles for justice and liberation” (p. 37). Vakil’s 

justice-centered approach uses critical pedagogy and critical race theory as conceptual 

frameworks to situate his work. The conceptual frameworks for situating this chapter’s 

analysis of enrolment follow. 

4.5 Conceptual Frameworks 

Gender has always been a central theme in the organization of education. Discourses 

have often been informed by the meanings that have been given to identifying students as 

either male or female, as well as the biological and hormonal differences between these 

two categories (Pinar et al., 1995a). In the 1970s, the understanding of curriculum as a 

gender text became an important form of analysis that was founded on feminist theories 

developed during curriculum’s Reconceptualization period. The analysis below provides 

an introductory look into feminist theory and its value in informing an investigation into 

gender gaps and the underrepresentation of female students in high school CS. 

In the late 1960s Joseph Schwab, a leading figure in the curriculum based educational 

reform movement (Connelly, 2013), declared the state of curriculum studies ‘moribund’ 

and called for new principles and new methods of analysis (Deng, 2018). What followed 

was a transition from an interest in the development of curriculum to a theoretical and 

practical interest in understanding curriculum (Pinar et al., 1995b). Tyler’s Rationale, 

which outlined a practical four step process of curriculum development that included 

stating objectives, selecting experiences, organizing experiences, and evaluating 

(Kliebard, 1970), had dominated as an approach to curriculum studies but it had now 

reached the end of its utility. The Reconceptualization period of curriculum studies 
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involved moving away from what was considered an atheoretical, practical approach to 

one of understanding that borrowed modes of inquiry that were historical, philosophical, 

and literary and that were popular in humanity fields (Pinar, 1975). One of these modes 

of inquiry that developed to inform curriculum studies was that of feminist theory. 

Feminist theory focuses on analyzing gender inequality and socio-political structures. It 

recognizes that what were once thought to be “humanly inclusive problematics, concepts, 

theories, objective methodologies, and transcendental truths” (Harding, 1986, p. 15) are 

instead, products of thought whose creators were marked by gender, class, race, and 

culture. Sometimes referred to as an emancipatory epistemology, feminist theory 

challenges conceptual frameworks in a wide variety of fields and seeks to ask questions 

related to the influences and impact of androcentric points of view. 

A feminist approach to research related to the underrepresentation of female students in 

high school CS is appropriate, however; it is important to first develop an understanding 

of some theoretical implications. Initially, the liberal feminism of the 70s and 80s was 

focused on getting more women to enter the science and technology field and as a result 

suggested that the gender gap could be fixed through socialization and equal opportunity 

policies (Wajcman, 2007). It was believed, however; that his approach situated the 

problem within women as they were being asked to change major aspects of their gender 

identity and forsake their femininity. Later, socialist and radical feminists explored 

further the gendered nature of technoscientific knowledge and culture and the gender 

power relations that were embedded in the science and technology fields (Wajcman, 

2007). Unfortunately, some of these approaches presented a negative image of women as 

victims of a patriarchal technoscience and neglected to recognize the agency that women 

had and the potential of redesigning technologies for gender equality. Presently,  

researchers such as Vitores and Gil-Juárez (2016) warn against falling into these 

theoretical traps. They caution against the paradox of reproducing dangerous assumptions 

about computing and gender through research that hopes to identify and solve the 

problem in the field. As a solution, they highlight the need for “different researchers’ 

eyes” that would allow for varied landscapes in the field of women in computing research 

including acknowledging the limitations of gender binaries (Henwood, 2000) and the 
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black-boxing of gender (Grint & Gill, 1995). Two such sets of eyes include 

technofeminism and material feminism. 

Technofeminism borrows from feminist and technology studies and seeks to disrupt the 

idea that technology is a product of “rational technical imperatives” (Wajcman, 2007) 

and instead argues that it is a source and consequence of gender relations that are in 

constant flux. A technofeminist approach recognizes that gender is understood as a 

“performance or social achievement, constructed in interaction” (Wajcman, 2007, p. 294) 

and that relationships between gender and technology are not fixed across time and 

location. As an example, a smart phone may serve as a liberating extension of a Western 

women’s body or as a tool that allows for her mother to keep track of her daughter. In 

Bangladesh, however; the smart phone serves as a communication device allowing 

women traders to run their business, and in Central Africa the smart phone is a source of 

military conflict involving scarce minerals that affect women in the surrounding area. 

“There is enormous variability in gendering by place, nationality, class, race, ethnicity, 

sexuality and generation and thus women’s experience of ICTs (information 

communication technologies) will be diverse” (Wajcman, 2007, p. 294). 

Technofeminism’s central premise is that people and objects co-evolve, resulting in a 

need for new perspectives on research surrounding women in computing education that 

acknowledges the sociotechnical networks and systems at play. Similarly, material 

feminism provides a valuable theoretical framework that sheds light on the complex 

social dynamics involved in gender and technology research. 

Material feminism arose as a result of concerns surrounding postmodern feminism’s 

epistemology suggesting that the real and material is a product of language (Alaimo & 

Hekman, 2008). While the associated linguistic and discursive turn of postmodernism 

was productive, defining such things as materiality, the body and nature as products of 

discourse failed to take the more-than-human world seriously (Alaimo & Hekman, 2008), 

a fact that had important implications for the study of gender and science. Material 

feminism, by contrast, acknowledges nature as more than a passive social construction 

and instead, a force with agency that interacts with and potentially changes other 

elements in a network, including humans. Material feminism resists returning to 
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modernism by avoiding the dichotomy between construction and reality and instead 

acknowledges that while language does construct reality, it also interacts with other 

elements in this construction (Hekman, 2008). Moving from an epistemological 

perspective to an ontological one, Hekman (2008) explains that feminism requires an 

understanding that concepts and theories have material consequences: “There is a world 

out there that shapes and constrains the consequences of the concepts we employ to 

understand it” (p. 109).  

Considering the materials, objects and technology inherent in the field and education of 

CS, both technofeminism and material feminism provide important conceptual 

frameworks with which to approach the theme of equity, diversity, and inclusivity. This 

theme will now be explored through an analysis of both general enrolment data from 

secondary CS courses in Ontario, and through the enrolment data related specifically to 

female and male students. 

4.6 Enrolment in Ontario Secondary School Computer 
Studies  

In order to obtain a Secondary School Diploma in the province of Ontario, students must 

earn 18 compulsory and 12 optional credits as well as pass the provincial literacy 

requirement and perform a minimum of 40 hours of community involvement activities 

(Ontario Ministry of Education, 2015). Of the 12 optional courses, at least one must come 

from a group of subjects that include science (grade 11 or 12), technological education, 

French as a second language, computer studies or cooperative education.  

The current computer studies curriculum includes a total of five courses distributed over 

grades 10, 11 and 12 (Ontario Ministry of Education, 2008). These courses include: 

• ICS2O: Grade 10 Introduction to Computer Studies – Open; 

• ICS3C: Grade 11 Introduction to Computer Programming – College; 

• ICS3U: Grade 11 Introduction to Computer Science – University; 

• ICS4C: Grade 12 Computer Programming – College; and 

• ICS4U: Grade 12 Computer Science – University. 



78 

 

The courses are classified as either open, college preparation or university preparation. 

The open courses are designed to broaden students’ knowledge and skills in computer 

studies while the college preparation courses are designed to equip students with the 

knowledge and skills to meet program requirements for college, apprenticeships, or other 

training programs. The university preparation courses are designed to equip students with 

the knowledge and skills required to meet university program requirements. Of the five 

courses, only two require prerequisites: students must have obtained the ICS3C credit in 

order to enroll in ICS4C and they must obtain the ICS3U credit in order to enroll in ICS 

4U. The grade 10 ICS2O course is not a prerequisite for either the grade 11 ICS3C or 

ICS3U course. 

4.6.1 Overall Enrolment 

Total student enrolment data for Ontario’s five secondary Computer Studies courses was 

obtained online through Ontario’s Data Catalogue. The Ontario Data Catalogue includes 

thousands of data sets including enrolment data for all of Ontario’s secondary school 

courses. The course enrolment in secondary schools data includes the number of students 

enrolled in ministry defined secondary school courses and includes the course code, 

course description, grade, pathway or destination (such as College or University) and the 

number of students enrolled for each course. 

The data for the total number of students enrolled in Ontario’s five secondary Computer 

Studies courses is shown in Figure 2. 
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Figure 2. Total number of students enrolled in Ontario secondary Computer Studies 

courses (2011-2018) 

The data reveals that enrolment has increased in Ontario’s secondary Computer Studies 

courses each year, since the 2011-2012 school year. During the 2011-2012 school year 

34,177 students were enrolled in secondary Computer Studies courses while in 2017-

2018, this number had increased to 49,358. 

In addition to the number of students enrolled in Computer Studies courses, the total 

number of students enrolled in Ontario secondary schools was also obtained from the 

Ontario Data Catalogue. This data, in combination with the data related to the number of 

students enrolled in Computer Studies courses, provides the percentage of secondary 

students in Ontario who are enrolled in Computer Studies courses. This data is shown in 

Figure 3. 
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Figure 3. Percentage of secondary students enrolled in Ontario secondary Computer 

Studies courses 

As shown in Figure 3, the percentage of students enrolled in secondary Ontario Computer 

Studies courses increased each year, since the 2011-2012 school year. During the 2011-

2012 school year less than 5% of Ontario secondary school students were enrolled in 

secondary Computer Studies courses while during the 2018-2019 school year, this 

number had increased to almost 8%. 

A more detailed breakdown of the data provides insight into the enrolment of students 

within each of the specific Computer Studies courses. Figure 4 indicates the number of 

students enrolled in the grade 10 ICS 2O course, the grade 11 ICS 3C and 3U courses, 

and the grade 12 ICS 4C and 4U courses. Figure 5 breaks down the data even further, 

showing enrollment data for each of the five individual Computer Studies courses.  
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Figure 4. Total number of students enrolled in Computer Studies courses in each 

grade 

It is clear that the grade with the largest number of students enrolled in Computer Studies 

courses is grade 11, and then there is a significant drop off as much fewer students enroll 

in the grade 12 courses. It is also clear that the majority of students enrolling in grade 11 

or grade 12 courses are enrolled in the University pathway course, and not the College 

pathway course. In addition, since 2011, there has been very little increase in the number 

of students enrolling in the grade 11 or grade 12 College pathway courses. The increases 

in enrollment, from year to year, for the grade 11 and grade 12 courses are related to the 

increase in the University pathway courses. 
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Figure 5. Total number of students enrolled in the five Computer Studies courses 

The following provides a summary of findings above, before moving on to specific data 

related to female and male student enrolment in Computer Studies courses:  

• enrolment has increased in Ontario’s secondary Computer Studies courses each 

year, since the 2011-2012 school year; 

• the percentage of students enrolled in secondary Ontario Computer Studies 

courses increased each year, since the 2011-2012 school year; 

• the grade with the largest number of students enrolled in Computer Studies 

courses is grade 11; 

• there is a significant decrease in enrolment after grade 11, as fewer students enroll 

in the grade 12 courses; 

• the majority of student enrolling in grade 11 or grade 12 courses are enrolled in 

the University pathway course and not the College pathway course; 
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• there has been very little increase in the number of students enrolling in the grade 

11 or grade 12 College pathway courses 

• the increases in enrollment, from year to year, for the grade 11 and grade 12 

courses is largely due to the increase in enrolment in the University pathway 

courses. 

4.6.2 Diversity and Ontario Computer Studies 

The data used above was obtained from the Ontario Data Catalogue, which does not 

provide information related to the enrolment of female and male students in the various 

secondary courses. This specific data; however, was available under Ontario’s Freedom 

of Information and Protection of Privacy Act and by making a formal request to Ontario’s 

Ministry of Education. The data obtained includes male and female student enrolment in 

all five courses at public and Roman Catholic schools since the 2009-2010 school year. 

The data does not include enrolment from private schools and publicly funded hospital 

and provincial schools, care, treatment, and correctional facilities. It also does not include 

enrolment from summer, night, and adult continuing education day schools. Figure 6 

shows the total number of female and male students enrolled in Computer Studies 

courses in Ontario. 

The data in Figure 6 reveals that there is a disproportionately low number of female 

students enrolled in secondary Computer Studies courses in Ontario, indicating that a 

significant gender gap exists. During the 2017-2018 school year, female students made 

up only 21.5% of secondary school Computer Studies students. This means that there is 

one female student for every four male students in an Ontario secondary school CS 

classroom. Considering a class of 25 students, there would only be approximately 5 

female students on average. 
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Figure 6. Total number of female and male students enrolled in Computer Studies 

courses 

While Figure 2 indicates that enrolment in CS courses has increased over the last few 

years, Figure 6 shows that this increase is not equally represented by female and male 

students. The enrolment of female students in Computer Studies courses, from 2011 to 

2018, has increased by 76% while the enrolment of male students in Computer Studies 

courses, during that same time frame, has increased by 34%. 

Figure 7 reveals that female student enrolment in all five of the Computer Studies courses 

has been increasing since 2010. The most significant increases are in the grade 10 ICS2O 

and grade 11 ICS3U courses. The grade 12 ICS4U course shows a slight increase; 

however, both College pathway courses (ICS3C and ICS4C) show little increase in 

female student enrolment. 
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Figures 7 shows the percentage of enrolled female students, in each of the five Computer 

Studies courses, and shows that the percentage of female students in the grade 10 ICS2O, 

grade 11 ICS3U and grade 12 ICS4U courses have been increasing, while there has been 

no decrease for the ICS3C and ICS4C courses. 

 

Figure 7. Percentage of female students enrolled in each of the five Computer 

Studies courses, from 2011 to 2018. 

It is also apparent that the percentage of female students who make up the Computer 

Studies courses decreases in the later grades. In 2017-2018, the percentage of female 

students enrolled in each of the five courses, is: 

• grade 10 ICS2O – 26.6%; 

• grade 11 ICS3C – 14.1% and ICS3U – 21.4%; 

• grade 12 ICS3C – 7.1% and ICS4U – 16.3%. 
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Considering the data above, it is clear that in Ontario’s secondary, Computer Studies 

courses: 

• there is a significant gender gap with female student enrolment accounting for 

only 21.5% of secondary school Computer Studies students during the 2017-2018 

school year; 

• the gender gap has been decreasing since 2011, as female student enrolment has 

increased by 76% while the enrolment of male students in Computer Studies 

courses, during that same time frame, has increased by 34%; 

• the gender gap is smallest in the grade 10 course, and then increases each year in 

the subsequent grades; 

• the gender gap is greatest in the grade 11 and grade 12 College pathway courses. 

As shown in Figure 3, the percentage of students enrolled in secondary Ontario Computer 

Studies courses has increased each year, since the 2011-2012 school year. During the 

2011-2012 school year less than 5% of Ontario secondary school students were enrolled 

in secondary Computer Studies courses while during the 2018-2019 school year, this 

number had increased to almost 8%. It is clear that the College pathway courses have the 

lowest enrolment, indicating a need to further understand the issues related to this 

phenomenon. It is possible that fewer students choose the College courses when offered, 

for a variety of potential reasons, but it will also be important to examine whether or not 

all courses are offered at all schools. It will also be interesting to investigate why there is 

a decrease in enrolment in the final grade 12 courses. It is possible that students enroll in 

the grade 10 or 11 courses and then decide not to continue to pursue CS as a possible 

career direction, but it is also possible that other factors play a role, such as the required 

courses needed for high school graduation or the courses required for acceptance into 

University programs. 

In terms of data related to female and male student enrolment in Computer Studies 

courses, it is clear that there is a significant gender gap in secondary CS education in 

Ontario. Interestingly, the gender gap has been decreasing since 2011. Some of the 

influences that contribute to a gender gap in CS education were included in earlier 

sections of this chapter, in order to better understand the context of the study. What 
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follows is a discussion on some of the literature related to large scale frameworks that 

seek to better understand interventions that have been used to address equity, diversity, 

and inclusivity concerns in CS education and identify important leverage points that 

could be used. 

4.6.3 The Universal/Selective/Indicative Model and Systems 
Thinking Leverage Points 

The Universal/Selective/Indicated (USI) model, presented by Patitsas, Craig and 

Easterbrook (2015), is a conceptual tool borrowed from public health’s suicide 

prevention literature (Wasserman et al., 2009) that categorizes initiatives based on their 

targeted audiences. Universal initiatives are those that are carried out without considering 

the target groups of the population. Developing a student mentorship program within a 

CS department, increasing paired (partnered) computer programming initiatives, 

mandating that all students enroll in a CS course, admission changes or switching to blind 

review for conference selection are all examples of universal diversity initiatives used in 

post-secondary CS education that impact entire populations of students but that 

disproportionally benefit underrepresented groups including women and minorities 

(Patitsas et al., 2015). In terms of the Ontario context, a universal initiative might be a 

revision of secondary Computer Studies, in an effort to incorporate broader CS content, 

skills and connections that go beyond simply the study of the computer in and of itself. 

This could include curriculum expectations that support cross-curricular projects, 

creativity, and solving problems within local contexts and communities. Alternatively, 

adding coding concepts and skills to the K-8 curriculum could also be seen as a universal 

initiative, as it would impact all Ontario K-8 students, but would also ensure that coding 

and CS-related concepts are introduced to underrepresented groups at an earlier age. 

Selected initiatives include those that specifically target underrepresented groups within a 

population. Examples of effective selected initiatives used in post-secondary CS include a 

mentorship program for all female students, departmental women-in-CS clubs, outreach 

initiatives for girls and scholarships for women in CS (Patitsas et al., 2015). Canada’s 

federal CanCode project supports selected initiatives through its provision of funding to 

organizations who support the broadening of CS education to specific, underrepresented 
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groups. Examples of these organizations include Black Boys Code, Hackergal and 

Ulnooweg (Government of Canada, 2020). Black Boys Code focuses on introducing 

digital literacy and programming skills to black boys ages 8 to 17 years old, while 

Hackergal focuses on supporting girls between the ages of 11 and 14. Ulnooweg is an 

Indigenous led initiative that supports Indigenous, First Nation & Metis students from 

kindergarten to grade 12 (Government of Canada, 2020). 

Finally, indicated initiatives are those that target specific individuals who are part of a 

target group and who may require extra supports. Examples of indicated initiatives that 

have been effective in post-secondary CS education include a mentorship program 

developed specifically for students who have been flagged as requiring assistance or 

when a teacher or adviser recognizes a student who is struggling and provides support or 

encouragement (Patitsas et al., 2015). 

In addition to considering the target groups of diversity initiatives, Patitsas et al. (2015) 

also encourage educators to consider the leverage of these initiatives by asking: Does the 

initiative lead to superficial or whole-sale system changes? The authors borrow and 

simplify Donella Meadows’s (2008) leverage-point continuum and identify four 

categories of leverage based on the Structure-Behaviour-Function Theory (Hmelo-Silver 

& Pfeffer, 2004). These categories include, from smallest to greatest leverage: structural 

changes, system behaviour change, function change, and paradigm change. Structural 

changes that have proven to be effective in improving the number of female students in 

post-secondary CS education include having the introductory course taught by a female 

instructor, using female pronouns in assignment instructions, assigning groups based on 

gender and providing multiple entry points into a CS major. System behaviour changes 

that have proven to be effective in improving the number of female students in post-

secondary CS education include improved research opportunities, using meaningful 

contexts for assignments, using blind reviews for scholarship applications, and removing 

potential stereotypes (such as androcentric posters). Function changes that have proven to 

be effective in improving the number of female students in post-secondary CS education 

include outreach efforts, increased feedback to students, altering program entry 

requirements, and new classroom rules such as calling on students randomly. Finally, 
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paradigm changes that lead to the greatest leverage in improving the number of female 

students in post-secondary CS education include shifts in thinking that identify the 

problem within the system rather than the individual, teaching in a way that empowers 

the students, and viewing computing excellence as something that can be taught rather 

than something that is connected to an individual’s innate ability. 

The USI and leverage frameworks presented by Patitsas et al. (2015) serve as important 

tools that allow researchers to zoom in on diversity initiatives and evaluate their 

effectiveness within large educational systems. In contrast, educators, policy makers and 

researchers also need to be able to zoom out, away from specific initiatives and 

implementation models, towards relevant theoretical frameworks that are useful for 

situating and informing this important and complex work within appropriate 

epistemological and ontological grounds. The technofeminist and material feminist 

frameworks presented earlier provide these grounds. 

4.6.4 Margolis and the Clubhouse Today 

A major impetus for this chapter began with Margolis and Fisher’s (2002) work, so it 

seems appropriate to conclude with some updated and contemporary views of the issue 

from Margolis herself, as well some of her co-authors and colleagues. In 2015, Margolis, 

Goode and Chapman (2015) acknowledged that a number of education stakeholders in 

the US, including nonprofits, industry partners, politicians, school districts and parents, 

were beginning to raise concerns about the importance of access to K-12 CS education. 

Based on their work with the Exploring Computer Science (ECS) program, the authors 

warned, however; about the superficiality of numbers: “focusing on quantitative metrics 

sometimes provides little more than a head-count of students enrolled in course. It does 

not tell us if students are prepared, engaged, and challenged with computing, or 

disengaged and marginalized” (p. 60). This is an important consideration for large 

initiatives such as Canada’s CanCode and the US’s CS For All programs. Simply 

recording “engagements” and “coding hours” does not provide any information related to 

the depth and type of CS education experienced by students involved in the programs. 

Nor does it capture data on the longer lasting impact of these initiatives, and whether or 
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not they lead to more students from underrepresented groups enrolling in CS courses, and 

potentially following pathways leading to a career in the field. 

A potential solution is a set of instruments developed through the ECS program that 

assess student’s engagement, attitudes, interest, and ability to apply, evaluate and explain 

what they are learning. In addition to acknowledging the importance of a program 

evaluation tool that goes beyond simple enrollment numbers, the authors also provide 

some lessons from scaling. These lessons explore the “tight but loose” tension, described 

by Thompson and Wiliam (2017), that must be navigated when large scale initiatives 

must remain faithful to an original model and true to original values (tight), while also 

providing flexibility to meet the needs of local conditions (but loose). Some lessons from 

scaling include the need for: 

• teachers to promote cognitively challenging discussions; 

• continuous professional development and professional community building for 

teachers; 

• continuous technical assistance and support for teachers; and 

• ongoing relationship building, communication and advocacy amongst 

stakeholders. 

In addition to these lessons, the authors also warn against potential unintended 

consequences of scaling initiatives, and they provide the example of how the expansion 

of the ECS program lead to closer scrutiny of teacher certification regulations and a 

stalling of initiative momentum. 

Finally, considering the important contributions that Margolis and Fisher’s (2002) 

seminal book made to the awareness of issues concerning female student enrollment in 

CS courses, it is also important to expand the scope of investigation and consider other 

underrepresented groups in CS education. In Stuck in the Shallow End: Education, Race, 

and Computing, Margolis et al. (2008) investigate a lack of access to high school CS 

courses based on influences associated with race and socioeconomic status. Much like 

Unlocking the Clubhouse, Stuck in the Shallow End begins with an investigation 
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surrounding specific groups and CS access, but serves a much larger purpose as a 

“treatise on the potential and reality of education to remove barriers and to support social 

and economic equality” (p. vii). 

4.7 Conclusion 

An analysis of enrolment data from secondary Computer Studies courses in Ontario 

indicates that overall student enrolment has increased since the 2011-2012 school year. 

This increase has been primarily due to an increase in enrolment in the grade 10 ICS2O 

course and the grade 11 and grade 12 University pathway courses. It is evident that 

further research is required related to the College pathway courses, as these courses have 

significantly lower enrolment than the others and there has been very little increase in 

enrolment in these two courses over the seven years studied in this work. The data also 

reveals a gender gap in Ontario secondary Computer Studies courses, as female students 

make up only 26% of students enrolled in the grade 10 course, 21% of students enrolled 

in the grade 11 courses, and 15.7% of the students enrolled in the grade 12 courses. From 

2011-2018, female student enrolment in Ontario’s Computer Studies has increased at a 

greater rate than male student enrolment, indicating that the gender gap is decreasing. 

A precursory literature review shows that historically, a number of doors, walls, and 

windows have been identified, that inhibit certain students from equal access and 

participation to the computing clubhouse. Considering the number of initiatives and 

money related to expanding CS education, including a proposed revision of high school 

CS curriculum in Ontario and $80 million of additional CanCode money provided by the 

federal government, a better understanding of the underrepresentation of female students 

in high school CS is critical. Researchers within this field would be well advised to 

explore a number of potential theories and approaches to their work, including a 

technofeminist or material feminist approach, as these theoretical frameworks recognize 

the importance of materials in their epistemologies and they provide valuable insight into 

the ever-changing relationships between gender and technologies. A CS education can 

provide economic and educational opportunities, allow students to create and participate 

in a 21st century society, and help develop a diverse pool of technology talent resulting in 
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more diverse innovations, technologies and digital solutions. Finally, as CS initiatives 

continue to expand to the K-8 grades, an understanding of equity, diversity, and 

inclusivity issues in CS is critical as new curriculum is developed. The area of curriculum 

within the K-8 grades will be further explored in the proceeding chapter. 

4.8 Chapter References 

Alaimo, S., & Hekman, S. (2008). Introduction: Emerging models of materiality in 

feminist theory. In S. Alaimo & S. Hekman (Eds.), Material feminisms (pp. 1–19). 

Indiana University Press. 

Alphonso, C. (2021, November 11). Ontario to end streaming for all Grade 9 courses next 

school year. The Globe and Mail. 

https://www.theglobeandmail.com/canada/article-ontario-to-end-streaming-for-all-

grade-9-courses-next-school-year/ 

Alberta Education. (2021). Draft Science Kindergarten to Grade 6 Curriculum. 

https://cdn.learnalberta.ca/Resources/content/cda/draftPDF/media/Science/Science-

GrK-6-EN.pdf 

British Columbia Ministry of Education. (2016). Applied Design, Skills and 

Technologies. 

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_k-9_elab.pdf 

British Columbia Ministry of Education. (2018a). Mathematics: Computer science grade 

11. 

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_11_computer-science_elab.pdf 

British Columbia Ministry of Education. (2018b). Mathematics: Computer science grade 

12. 

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_12_computer-science_elab.pdf 

Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-

analysis. Computers & Education, 105, 1–13. 

https://doi.org/10.1016/j.compedu.2016.11.003 

Canada Learning Code. (2020). Learning for the digital world:  A pan-Canadian K-12 

computer science education framework. https://k12csframework.ca/wp-

content/uploads/Learning-for-the-Digital-Future_Framework_Final.pdf 

Canada Learning Code. (2021). Canada Learning Code: About us. 

https://www.canadalearningcode.ca/about-us/ 



93 

 

Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in 

science: Sociocultural and biological considerations. Psychological Bulletin, 

135(2), 218–261. https://10.1037/a0014412  

Cheryan, S., Master, A., & Meltzoff, A. N. (2015). Cultural stereotypes as gatekeepers: 

Increasing girls’ interest in computer science and engineering by diversifying 

stereotypes. Frontiers in Psychology, 6(49), 1–8. 

https://doi.org/10.3389/fpsyg.2015.00049 

Connelly, F. M. (2013). Joseph Schwab, curriculum, curriculum studies and educational 

reform. Journal of Curriculum Studies, 45(5), 622–639. 

https://doi.org/10.1080/00220272.2013.798838 

Correll, S. J. (2001). Gender and the career choice process: The role of biased self-

assessments. American Journal of Sociology, 106(6), 1691–1730. 

https://doi.org/10.1086/321299 

Deng, Z. (2018). Contemporary curriculum theorizing: Crisis and resolution. Journal of 

Curriculum Studies, 50(6), 691–710. 

https://doi.org/10.1080/00220272.2018.1537376 

Department of Finance Canada. (2017). Building a strong middle class: #Budget2017. 

https://www.budget.gc.ca/2017/docs/plan/budget-2017-en.pdf 

Department of Finance Canada. (2019). Investing in the middle class: Budget 2019. 

https://www.budget.gc.ca/2019/docs/download-telecharger/index-en.html 

Department of Finance Canada. (2021). A recovery plan for jobs, growth, and resilience: 

Budget 2021. https://www.budget.gc.ca/2021/home-accueil-en.html 

diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers. 

Mathematics Education, Mathematical Thinking and Learning, 20(1), 3-31. 

https://doi.org/10.1080/10986065.2018.1403544 

Eccles, J. S., Jacobs, J. E., & Harold, R. D. (1990). Gender role stereotypes, expectancy 

effects, and parents’ socialization of gender differences. The Journal of Social 

Issues, 46(2), 183–201. https://doi.org/10.1111/j.1540-4560.1990.tb01929.x 

Ehrlinger, J., & Dunning, D. (2003). How chronic self-views influence (and potentially 

mislead) estimates of performance. Journal of Personality and Social Psychology, 

84(1), 5–17. https://doi.org/10.1037/0022-3514.84.1.5 

Fisher, A., & Margolis, J. (2003). Unlocking the clubhouse: The Carnegie Mellon 

experience. ACM SIGCSE Bulletin, 34(2), 79–83. 

https://doi.org/10.1145/543812.543836 

Gadanidis, G., Brodie, I., Minniti, L., & Silver, B. (2017). Computer coding in the K-8 

mathematics curriculum? What works: Research into practice. 



94 

 

http://www.edu.gov.on.ca/eng/literacynumeracy/inspire/research/Computer_Codin

g_K8_en.pd 

Government of Canada. (2019a, March 19). Budget 2019: Gender Equality Statement. 

https://www.budget.gc.ca/2019/docs/plan/chap-05-en.html 

Government of Canada. (2019b, May 6). CanCode assessment criteria. 

https://www.ic.gc.ca/eic/site/121.nsf/eng/00002.html 

Government of Canada. (2019c). CanCode. 

https://www.ic.gc.ca/eic/site/121.nsf/eng/home 

Government of Canada. (2020). Funded CanCode initiatives. 

https://www.ic.gc.ca/eic/site/121.nsf/eng/00003.html 

Government of Canada. (2021). Canada's Digital Charter: Trust in a digital world. 

https://www.ic.gc.ca/eic/site/062.nsf/eng/h_00108.html 

Grint, K., Gill, R., & Gill, R. M. (Eds.). (1995). The gender-technology relation: 

Contemporary theory and research. Taylor & Francis. 

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of the 

field. Educational Researcher, 42(1), 38-43. 

https://doi.org/10.3102/0013189X12463051 

Harding, S. G. (1986). The science question in feminism. Cornell University Press. 

Hekman, S. (2008). Constructing the ballast: An ontology for feminism. In S. Alaimo & 

S. Hekman (Eds.), Material feminisms (pp. 85–119). Indiana University Press. 

Henwood, F. (2000). From the woman question in technology to the technology question 

in feminism: Rethinking gender equality in IT education. European Journal of 

Women’s Studies, 7(2), 209–227. https://doi.org/10.1177/135050680000700209 

Hmelo‐Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice 

understanding of a complex system from the perspective of structures, behaviors, 

and functions. Cognitive Science, 28(1), 127–138. 

https://doi.org/10.1207/s15516709cog2801_7 

Information and Communications Council. (2017). The next talent wave: Navigating the 

digital shift. https://www.ictc-ctic.ca/wp-content/uploads/2017/04/ICTC_Outlook-

2021.pdf 

K-12 Computer Science Framework Steering Committee. (2016). K-12 Computer 

Science Framework. https://k12cs.org/ 



95 

 

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12 

education. Communications of the ACM, 59(8), 26-27. 

https://doi.org/10.1145/2955114 

Kliebard, H. M. (1970). The Tyler rationale. The School Review, 78(2), 259–272.  

Lang, C. (2010). Happenstance and compromise: A gendered analysis of students’ 

computing degree course selection. Computer Science Education, 20(4), 317–345. 

https://doi.org/10.1080/08993408.2010.527699 

Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing. MIT 

press. 

Margolis, J., Ryoo, J. J., Sandoval, C. D., Lee, C., Goode, J., & Chapman, G. (2012). 

Beyond access: Broadening participation in high school computer science. ACM 

Inroads, 3(4), 72-78. 

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2008). Stuck in the shallow 

end: Education, race, and computing. MIT press. 

Margolis, J., Goode, J., & Chapman, G. (2015). An equity lens for scaling: A critical 

juncture for exploring computer science. ACM Inroads, 6(3), 58-66. 

Meadows, D. H. (2008). Thinking in systems: A primer. Earthscan. 

Monroe, D. (2014). A New Type of Mathematics? Communications of the ACM, 57(2), 

13 –15. https://doi.org/10.1145/2557446 

Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J. 

(2012). Science faculty’s subtle gender biases favor male students. Proceedings of 

the National Academy of Sciences of the United States of America, 109(41), 16474–

16479. https://doi.org/10.1073/pnas.1211286109 

Murphy, M. C., Steele, C. M., & Gross, J. J. (2007). Signaling threat: How situational 

cues affect women in math, science, and engineering settings. Psychological 

Science, 18(10), 879–885. https://doi.org/10.1111/j.1467-9280.2007.01995.x 

New Brunswick Department of Education and Early Childhood Development. (2016). 

Middle school technology education. 

https://www2.gnb.ca/content/dam/gnb/Departments/ed/pdf/K12/curric/Technology

Vocational/Middle%20School%20Technology.pdf 

Nova Scotia Department of Education and Early Childhood Development. (2016). 

Information and communication technology/Coding 4-6 integration. 

https://www.ednet.ns.ca/files/curriculum/infotech_coding_4-6_streamlined.pdf 



96 

 

Ontario Ministry of Education. (2008). The Ontario curriculum grade 10 to 12: 

Computer studies. 

http://www.edu.gov.on.ca/eng/curriculum/secondary/computer10to12_2008.pdf 

Ontario Ministry of Education. (2015). What do you need to graduate from high school? 

http://www.edu.gov.on.ca/extra/eng/ppm/graduate.pdf 

Ontario Ministry of Education. (2019, March 15). Education that works for you - 

Modernizing Learning: Province modernizing learning. Ontario Newsroom.  

https://news.ontario.ca/en/backgrounder/51527/education-that-works-for-you-

modernizing-learning 

Ontario Ministry of Education. (2020). The Ontario curriculum grades 1-8: Mathematics. 

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads 

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic 

Books. 

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum: 

Implications for future research. Education and Information Technologies, 22(2), 

421-443. https://doi.org/10.1007/s10639-016-9475-z 

Patitsas, E., Craig, M., & Easterbrook, S. (2014). A historical examination of the social 

factors affecting female participation in computing. In Proceedings of the 2014 

conference on innovation & technology in computer science education (pp. 111-

116). ACM.  

Patitsas, E., Craig, M., & Easterbrook, S. (2015). Scaling up Women in Computing 

Initiatives: What Can We Learn from a Public Policy Perspective? In Proceedings 

of the eleventh annual International Conference on International Computing 

Education Research (pp. 61-69). ACM. https://doi.org/10.1145/2591708.2591731 

Pichette, J., Deller, F., & Colyar, J. (2020) Destreaming in Ontario: History, evidence and 

educator reflections. Toronto: Higher Education Quality Council of Ontario. 

https://heqco.ca/wp-content/uploads/2020/10/Destreaming-in-

Ontario_FORMATTED.pdf 

Pinar, W. (Ed.). (1975). Curriculum theorizing: The reconceptualists. McCutchan 

Publishing Corporation. 

Pinar, W. F., Reynolds, W. M., Slattery, P., & Taubman, P. M. (1995a). Understanding 

curriculum as gender text. In W. F. Pinar, W. M. Slattery, & P. M. Taubman (Eds.), 

Understanding curriculum: An introduction to the study of historical and 

contemporary curriculum discourses (pp. 358-403). Peter Lang Publishing. 

Pinar, W. F., Reynolds, W. M., Slattery, P., & Taubman, P. M. (1995b). Understanding 

curriculum as a historical text: The reconceptualization of the field 1970-1979. In 



97 

 

W. F. Pinar, W. M. Slattery, & P. M. Taubman (Eds.), Understanding curriculum: 

An introduction to the study of historical and contemporary curriculum discourses 

(pp. 69-123). Peter Lang Publishing, Inc. 

Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects, 

passions, peers, and play. MIT Press. 

The Royal Society. (2012). Shutdown or restart? The way forward for computing in UK 

schools. https://royalsociety.org/-/media/education/computing-in-schools/2012-01-

12-computing-in-schools.pdf 

The Royal Society. (2017). After the reboot: Computer education in schools. 

https://royalsociety.org/~/media/policy/projects/computing-education/computing-

education-report.pdf 

Rudman, L. A. (1998). Self-promotion as a risk factor for women: The costs and benefits 

of counter stereotypical impression management. Journal of Personality and Social 

Psychology, 74(3), 629–645. https://doi.org/10.1037/0022-3514.74.3.629 

Sadker, M., & Sadker, D. (1994). Failing at fairness: How America’s schools cheat girls. 

Scribner. 

Saskatchewan Ministry of Education. (2018a). Computer Science 20. 

https://www.edonline.sk.ca/webapps/moe-curriculum-

BB5f208b6da4613/CurriculumHome?id=446 

Saskatchewan Ministry of Education. (2018b). Computer Science 30. 

https://www.edonline.sk.ca/webapps/moe-curriculum-

BB5f208b6da4613/CurriculumHome?id=444 

Smith, M. (2016, January 3). Computer Science For All. The White House: President 

Barack Obama. https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-

science-all 

Thompson, M., & Wiliam, D. (2007, April 9-13). Tight but loose: A conceptual 

framework for scaling up school reforms [Paper presentation]. American 

Educational Research Association, Chicago, IL. 

United Kingdom Department for Education. (2013) National curriculum in England: 

Computing programmes of study. 

https://www.gov.uk/government/publications/national-curriculum-in-england-

computing-programmes-of-study/national-curriculum-in-england-computing-

programmes-of-study 

Vakil, S. (2018). Ethics, identity, and political vision: Toward a justice-centered approach 

to equity in computer science education. Harvard Educational Review, 88(1), 26-

52. 



98 

 

Vitores, A., & Gil-Juárez, A. (2016). The trouble with ‘women in computing’: A critical 

examination of the deployment of research on the gender gap in computer science. 

Journal of Gender Studies, 25(6), 666–680. 

https://doi.org/10.1080/09589236.2015.1087309 

Wajcman, J. (2007). From women and technology to gendered technoscience. 

Information Communication and Society, 10(3), 287–298. 

https://doi.org/10.1080/13691180701409770 

Wasserman, D., Durkee, T., & Wasserman, C. (2009). Strategies in suicide prevention. 

Oxford University Press. 

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35. 

https://doi.org/10.1145/1118178.1118215 

The White House President Barack Obama. (2016, September 14). Fact sheet: New 

progress and momentum in support of President Obama’s Computer Science for All 

Initiative. https://obamawhitehouse.archives.gov/the-press-office/2016/09/14/fact-

sheet-new-progress-and-momentum-support-president-obamas-computer 



99 

 

Chapter 5  

5 Coding in K-8 Curriculum 

Chapters 3 and 4 of this dissertation investigated the traditional implementation of CS-

related concepts and skills in K-12 education, which takes the form of optional courses at 

the secondary level. Here in Chapter 5, the relatively new phenomenon of integrating CS-

related concepts and skills into the K-8 grades is analyzed through a comparative analysis 

of related provincial curriculum initiatives in Canada. First, provincial K-8 curricula that 

includes coding and related concepts and skills are identified, as well as the placement of 

these components within the provincial policy documents. This is followed by a 

comparative analysis of stated aims and objectives of the curriculum components, and an 

analysis of the selected concepts and skills themselves. Throughout this analysis, context 

is provided by theory in the field, as well as the general approaches from jurisdictions 

outside of Canada, which have been found in the literature. What results is a comparative 

analysis of this nascent curriculum topic as well as important insights for educators, 

policy makers and researchers alike. 

5.1 Introduction 

Educational systems around the world have been undergoing reforms to ensure that their 

policies and practices adequately prepare students to meet the changing needs of life and 

work as school experiences do not align with the needs of a diverse, rapidly changing and 

technologically sophisticated society (Milton, 2015). 

Coding in the K-8 grades has become a component of these reforms. Coding, and 

associated Computer Science (CS) concepts can form the basis of lucrative, high-status 

and flexible careers (Information and Communications Technology Council, 2017), but 

others argue that the integration of coding concepts and skills in the K-8 grades should be 

motivated by more than simply economic goals. 

A number of studies analyzing curricula from a variety of educational jurisdictions have 

identified different goals and rationale for the integration of coding in the younger grades 

(Webb et al., 2015; Passey, 2017; Vogel et al., 2017; Hubweiser et al., 2015). In addition, 
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the literature reveals a variety of theoretical perspectives (Kafai, 2016; diSessa, 2018; 

Resnick, 2018; Tissenbaun et al., 2019). These goals, rationale, and perspectives will be 

explored in the following two sections. 

5.1.1 Arguments for Coding Curriculum in the Younger Grades 

Before considering the placement of coding and related concepts and skills in K-8 

provincial curricula, it is important to develop an understanding of the various goals 

associated with younger students programming a computer. Passey (2017) identifies six 

main reasons for the inclusion of CS curricula in the younger grades that include: the 

economic argument, the organizational argument, the community argument, the 

educational argument, the learning argument, and the learner argument. Passey’s (2017) 

economic argument is workforce centered, focusing on the idea that curriculum should 

support future economies and should support students in developing the skills needed to 

meet the needs of future careers. This argument is based on the idea that specific coding-

related concepts and skills will be valuable for future careers. In contrast, Passey’s 

organizational argument, while still connected to economic and workforce motivators, is 

broader and recognizes the potential of coding curriculum leading to collaboration and 

teamwork-related skills, which he states will also be in demand in future careers. Moving 

beyond the workplace, the community argument recognizes the need for general 

computing capabilities to support community groups and programs, such as a supporting 

social bird watching and music groups or allowing older individuals leveraging 

technology to maintain communication and connections with others. The educational 

argument is focused on all individuals being provided with the opportunity to learn 

important digital skills that all citizens should have, and about understanding the coding 

and CS concepts that lay behind our ubiquitous technologies. Closely connected to the 

educational argument is the learning argument, which recognizes the associated problem 

solving, creativity and logical thinking skills sometimes associated with coding and CS 

work. When discussing the learning argument, Passey introduces Seymour Papert’s work 

on constructionism, which will be explored later in this article. Finally, Passey’s learner 

argument puts the student at the centre of the curriculum, recognizing that students are 

often motivated and engaged when programming a computer, and young students should 
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be provided with the opportunity to explore coding and CS concepts as a potential area of 

interest and focus. 

In addition to Passey’s six arguments, other works have identified differing goals and 

rationale for coding curriculum in the younger grades. These goals and rationale 

sometimes overlap with Passey’s arguments, but also add important insights and direction 

that Passey left out. Vogel et al. (2017) identified seven areas of impact present in 

arguments for universal CS education, including 1) economic and workforce 

development, 2) equity and social justice, 3) competencies and literacies, 4) citizenship 

and civic life, 5) scientific, technological and social innovation, 6) school improvement 

and reform and 7) fun, fulfillment and personal agency. While many of these share ideas 

from Passey’s arguments, the equity and social justice perspective and the motivation for 

scientific and technological innovation perspective add new dimensions and 

considerations that Passey did not emphasize. Equity and social justice perspectives often 

relate to the need for citizens to be active and critical users of technology, and are 

associated with related concepts such as privacy or safety (Fluck et al., 2016), as well as 

equity issues surrounding gender equality, and underrepresented groups in CS education, 

or the CS field in general. Arguments surrounding scientific and technological innovation 

recognize coding and CS concepts as a critical component of a cross-curricular, STEM 

education. 

Also left out of Passey’s arguments and identified by Webb et al. (2015), are the cultural 

reasons for the inclusion of coding concepts and skills in curriculum. These cultural 

reasons are associated with empowerment, and the recognition of coding and CS 

concepts and skills as “enabling people to be the drivers of cultural change, rather than 

having change imposed by technological developments” (Webb et al., 2017, p. 446). 

Table 7 outlines a general organization of recent arguments for the inclusion of coding 

concepts and skills in the curricula of the younger grades. Webb et al.’s (2015) broad 

categories are included first, then Passey’s (2017) and Vogel, Santo and Ching’s (2017) 

detailed areas of focus. Also included are the detailed categories of goals identified by 

Hubweiser et al. (2015). In A Global Snapshot of Computer Science Education in K-12 
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Schools, Hubweisser et al. analyzed and summarized 14 articles, published in two special 

issues of Computer Science Education in (K-12) Schools, that included information 

related to K-12 CS education from 12 countries or states from around the world. Through 

the analysis of these articles, the authors identified 19 categories of addressed goals, 

many of which fit into Webb et al.’s (2015) general categories, but add specificity and 

detail. 

Table 7. Recent arguments and goals for coding in the younger grades 

Webb et al. 

(2015) 

Passey (2017) Vogel et al.,  (2017) Hubweiser et al. (2015) 

• economic 

• social  

• cultural 

• economic 

argument 

• organizational 

argument 

• community 

argument 

• educational 

argument 

• learning 

argument 

• learner 

argument 

• economic and workforce 

development 

• equity and social justice 

• competencies and 

literacies 

• citizenship and civic life 

• scientific, technological 

and social innovation 

• school improvement and 

reform 

• fun, fulfillment, and 

personal agency 

• digital literacy 

• computational thinking 

• problem solving 

• understanding basic concepts 

of CS and IT 

• career preparation and choice 

• support awareness of social, 

ethical, legal and privacy 

issues and impact of CS 

• general education to 

participate in society 

responsibly 

• prepare for university 

• student development 

• attract and motivate more 

female and male students 

• create IT 

• holistic view 

• connecting to real world 

contexts 

• creative use of IT 

• limits and risks of CS 

• support communication about 

IT 

• support maths and science 

• apply IT in other subjects 

• deeper knowledge of CS 

• growth of knowledge society 

• modern and relevant 

curriculum 

• picture of CS and 

programming in society 

• representing thinking 

processes 

• rise and discover talent and 

attitude towards CS 
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5.1.2 Theoretical Perspectives on Coding in the K-8 Grades 

When investigating theoretical approaches to coding in the younger grades, one often 

begins with the work of Seymour Papert, who developed the Logo programming 

language and the learning theory of constructionism in the 1980s. More recently, a 

number of theoretical approaches have been developed including Computational 

Thinking (Wing, 2006; Grover & Pea, 2013; Grover and Pea, 2018), Fluency (Resnick, 

2018), Participation (Kafai, 2016), Literacy (diSessa, 2000, diSessa, 2018), and Action 

(Tissenbaum et al., 2019). In combination with the arguments for coding in the K-12 

grades (listed above in Table 7), an understanding of the similarities and differences of 

these theoretical approaches is important in order to inform analysis of coding curricula. 

5.1.2.1 Constructionism 

Harel & Papert (1991) explain that the learning theory of constructionism can be over-

simplified and thought of as “learning-by-making”, however, it is much more 

multifaceted than this, and has much deeper implications. Constructionism arose from the 

work of Jean Piaget, with whom Papert had worked, and who articulated the theory of 

cognitive development called Constructivism. Ames (2018) explains that both 

Constructivism and Constructionism focus on learning being an active process of 

constructing knowledge, and both support the idea that children learn new concepts by 

relating them to things that they already know. An important distinction between the two, 

however; is that Constructionism includes the idea that this can happen felicitously when 

the learner is constructing something that others might see (Harel & Papert, 1991). 

Speaking specifically about mathematics education, the authors indicate that having 

students work with “cybernetic construction kits”, which essentially combined Papert’s 

Logo coding software with physical, robotics-like LEGO kits, changes the context of 

learning and holds the attention of students for much longer (Harel & Papert, 1991). 

While Papert acknowledged the construction of a public entity might not require a 

computer, it could be a soap-sculpture or even a knot-tying project, he does emphasize 

that the computer can serve as a Proteus of machines, taking on a thousand forms and 

serving a thousand functions (Papert, 1993). In this way, the computer can help relieve 

what he calls the potential poverty of a classroom culture, which might lack the needed 
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resources and materials to support a wide range of learning opportunities for students. As 

a result, the computer played a central role in Papert’s work with children, and his focus 

was always on the mind and the way in which technology could provide children with 

new possibilities for learning, thinking, and growing, both cognitively and emotionally 

(Papert, 1993). A thorough description of Papert’s views related to coding and 

mathematics can be found in his book Mindstorms (1993), where he describes a 

mechanical thinking process that students undergo when programming a computer (p. 

27), and also describes a term called computational thinking (p. 182). Thirteen years after 

the release of Mindstorms, Wing (2006) used the term Computational Thinking, albeit in 

a different way, and captured the interest of educators and researchers in K-12 education 

from around the world (Grover & Pea, 2013). 

5.1.2.2 Computational Thinking 

Jeanette Wing’s 2006 article, titled simply Computational Thinking, defined a 

“universally applicable attitude and skill set everyone, not just computer scientists, would 

be eager to learn and use” (p. 33). Wing identifies solving problems, system design, and 

understanding human behavior as key components of her definition of CT. She explains 

that CT is a fundamental skill that every human must know to function in society. In 

addition to being for everyone, everywhere, Wing states that CT involves 

conceptualization, rather than programming, and involves ideas, rather than artifacts. Her 

article was a call for the inclusion of CT not only in post-secondary programs outside of 

CS, but also in pre-college education where younger students could be exposed to 

computational methods and models: “Computational thinking is a grand vision to guide 

CS educators, researchers, and practitioners as we act to change society’s image of the 

field” (p. 35).  

While most researchers agree on the profound impact that Wing’s 2006 article had on the 

field of K-12 education (as of February, 2022 this article has been cited 8893 times), not 

all agree on the appropriateness of her definition, or on her suggestion that thinking like a 

computer scientist is a suitable goal for all students. Denning (2017) claims that recent 

attempts to make CT appealing to fields other than CS have led to “vague and confusing 
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definitions of CT” (p. 33), and that Wing’s definition lacks any mention of computational 

models, and incorrectly suggests that any sequence of steps constitutes an algorithm. In 

Computational Thinking: A Competency Whose Time Has Come, Grover and Pea (2018) 

describe Wing’s definition as somewhat opaque. They attempt to rectify this concern by 

providing a specific, and much needed, list of CT concepts and practices that describe the 

type of thinking that computer scientists activate when engaged in problem solving. 

Grover and Pea’s key CT concepts include logic and logical thinking, algorithms and 

algorithmic thinking, patterns and pattern recognition, abstraction and generalization, 

evaluation, and automation. Their key CT concepts include problem decomposition, 

creating computational artefacts, testing, and debugging, iterative refinement, and 

collaboration and creativity. Similarly, Brennan and Resnick (2012) gave more detail to 

CT by identifying and describing specific concepts, practices, and perspectives, while 

Resnick (2018) also describes an alternative theoretical approach that he terms 

Computational Fluency. 

5.1.2.3 Computational Fluency 

Mirroring and expanding upon Papert’s work at MIT and his development of the Logo 

programming language, Mitch Resnick is the director of the Lifelong Kindergarten 

research group that developed Scratch, currently the world’s leading coding platform for 

kids. In New Frameworks for Studying and Assessing the Development of Computational 

Thinking, Brennan and Resnick (2012) acknowledge the disagreements surrounding the 

components of CT, and the issues surrounding strategies for CT assessment. Like Grover 

and Pea (2018), Resnick and Brennan provide the specific detail that was lacking in 

Wing’s original definition of CT, and introduce their own CT concepts, practices, and 

perspectives. These concepts, practices and perspectives are listed in Table 8, along with 

Grover and Pea’s concepts and practices. 

In addition to the CT concepts, practices and perspectives presented with Brennan, in 

2018 Resnick also introduced his concept of Computational Fluency, which expands 

upon computation concepts and problem-solving strategies, in order to also include 

student’s creativity and expression of digital tools (Resnick, 2018). While Resnick 
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acknowledges the value of self-contained “coding puzzles” and their potential 

development of thinking skills, he argues that students should move towards developing a 

voice and an identity within the area of coding, and can do so by incorporating coding 

into their daily life, and by emphasizing the development of artifacts and projects 

(Resnick, 2018). This development of artifacts and projects connects closely to aspects of 

design and engineering that sometimes appear in curriculum, and Computational Fluency 

could serve as a valuable context for learning within these areas. 

Table 8. Brennan and Resnick’s (2012) CT concepts, practices and perspectives and 

Grover and Pea's (2018) concepts and practices 

Brennan and Resnick (2012) Grover and Pea (2018) 

Concepts that students engage in when 

developing coding projects: 

• sequences; 

• loops; 

• parallelism; 

• events; 

• conditionals; 

• operators; and 

• data. 

Concepts: 

• logic and logical thinking; 

• algorithms and algorithmic 

thinking; 

• patterns and pattern recognition; 

• abstraction and generalization; and 

• evaluation, and automation.  

Practices that describe the processes of 

construction that student engage in while 

developing coding projects: 

• being incremental and iterative; 

• testing and debugging; 

• reusing and remixing; and 

• abstracting and modularizing. 

 

 

Practices that outline approaches that 

computer scientists often use when they 

engage in computational problem solving: 

• problem decomposition; 

• creating computational artefacts; 

• testing and debugging; 

• iterative refinement; and 

• collaboration and creativity. 

Perspectives that describe the evolving 

understanding that students exhibit about 

themselves, their relationship to others, 

and the technological world when 

developing coding projects: 

• expressing; 

• connecting; 

• and questioning. 
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5.1.2.4 Computational Participation 

Sharing Resnick’s belief in the importance of students moving beyond coding puzzles to 

creating their own artifacts, Kafai goes one step further to highlight the importance of 

students being able to share coding projects that they have designed themselves, with 

others, moving beyond the tools, to focus on how the artifacts of coding can connect to 

community and context (Kafai, 2016). Kafai’s Computational Participation recognizes 

the importance of digital technologies being used for functional, political, and personal 

reasons, and acknowledges coding as a participatory process that has a personal value, 

and value for sharing with others (Kafai 2016). “Computational thinking and 

programming are social, creative practices. They offer a context for making applications 

of significance for others, communities in which design, sharing, and collaboration with 

others are paramount” (Kafai, 2016, p. 26). Kafai describes some of the do-it-yourself 

coding tools available to students today to design, create and share projects online, and 

identifies three new pathways that are afforded through these tools. The first pathway 

includes moving from simply building code to developing shareable applications, which 

puts the emphasis on putting newfound coding skills to use, rather than coding for the 

sake of coding. The second pathway includes moving from solitary coding to the 

development of communities, where coding languages and environments are enhanced by 

having online communities that connect users and provide audiences for projects. The 

final pathway includes having students remix existing projects, rather than beginning 

writing a program from scratch, which in the spirit of the open source movement, allows 

for students to understand how projects can evolve and lead to innovative new contexts. 

5.1.2.5 Computational Action 

Computational Action was first described by Tissenbaum et al. (2019) and like Resnick’s 

Computational Fluency and Kafai’s Computational Participation, highlights the 

importance of the artifact being produced, and its potential influence outside of the 

individual student, or school context. Recognizing the impact that computing can have on 

the lives of the students and their communities, the authors present the two key 

dimensions of computational identity and computational empowerment as means to make 

computing more inclusive, motivating, and empowering. Computational Action attempts 
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to provide an alternative to the “fundamentals approach” that begins with a focus on 

coding or CT concepts and processes, by ensuring that students can immediately begin to 

code projects that connect to their lives, and that can help them develop a “critical 

consciousness of the role they can play in affecting their communities through computing 

and empower them to move beyond simply learning to code” (Tissenbaum et al., 2019, p. 

34). 

In order to support the student in developing a computational identity, the authors 

indicate that students must feel responsible for designing their own solutions, rather than 

working towards a single, predetermined correct answer. In terms of supporting students 

as they work towards digital empowerment, the authors encourage educators to find 

authentic and personally relevant contexts for the students to code within, and to ensure 

that these contexts have the potential to impact their lives and the lives of those in their 

communities. 

5.1.2.6 Computational Literacy 

Before Wing (2006), diSessa published his book Changing Minds: Computers, Learning, 

and Literacy (2000) in which he describes his grand vision of computers and coding in 

schools as Computational Literacy (CL). Unlike computer literacy, which may involve 

turning on a computer or using a keyboard or mouse for basic software operation, 

diSessa’s CL involves “infrastructural” changes in schools and in society as it is used in 

diverse scientific, humanistic, and expressive forms: “a computational literacy will allow 

civilization to think and do things that will be new to us in the same way that the modern 

literate society would be almost incomprehensible to preliterate cultures.” (p. 5).  

In 2018, diSessa continued to explain this big picture view of CL, specifically in the 

context of science, technology, engineering, and mathematics (STEM) education: “I view 

computation as, potentially, providing a new, deep, and profoundly influential literacy - 

computational literacy - that will impact all STEM disciplines at their very core, but most 

especially in terms of learning” (diSessa, 2018, p. 4). 
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An important dimension of diSessa’s CL, and specifically its connection to the subjects 

of mathematics and science, highlights the education argument for coding, and is 

sometimes communicated as “coding to learn”, rather “than learning to code” (Popat & 

Starkey, 2019). When coding to learn, students program a computer in order to learn 

concepts and skills associated with the context of the program. Rather than a focus on the 

final artifact that results from the code (the running program), the educator’s focus is on 

the concepts and skills developed as the students engage in the development of the 

artifact. In Computer Coding in the K–8 Mathematics Curriculum?, Gadanidis et al. 

(2017) highlight how the integration of coding in mathematics creates pedagogical 

opportunities such as 1) making abstraction tangible, 2) automating processes and making 

dynamic models, and 3) creating educational contexts that allow for differentiated 

instruction and student agency. The value of automating processes and making dynamic 

models is highlighted in work by Wilkerson (Wilkerson-Jerde et al., 2015; Wilkerson et 

al., 2018) and Gadanidis (Gadanidis et al., 2017; Gadanidis et al., 2019), where students 

use or build computational models and simulations in order to better understand 

mathematical, scientific and engineered systems. Wilkerson & Fenwick (2017) believe 

that CS shares language with mathematics that can be used to represent models using 

precise language resulting in a description of patterns and processes. 

5.2 Problem Description 

Considering the theoretical approaches to coding in K-8 education discussed by leading 

researchers in the field, and considering the various goals and rationale for coding from 

jurisdictions outside of Canada, it is important to identify, and develop an understanding 

of, the components of coding curriculum in Canadian jurisdictions. Without an in-depth 

analysis of recent curriculum initiatives, educators, researchers, and policy makers will 

lack clarity terms of: 

• the placement of coding-related concepts and skills in existing curricula; 

• the goals and rationale of coding curricula; and the 

• the theoretical perspectives underpinning the various curricula. 



110 

 

Recently, two studies have been conducted that explore CT in K-12, Canadian education. 

Hennessey et al. (2017) analyzed Ontario elementary school curriculum, searching for 

CT-related terms described by Brennan and Resnick (2012), and concluded that “while 

CT terms appeared mostly in mathematics, and concepts and perspectives were more 

frequently cited than practices, related terms appeared across almost all disciplines 

and grades” (p. 79). Additionally, Gannon and Buteau (2018) provide an effective, 

initial description of the integration of CT in Canadian provinces and conclude that there 

is a wide variety of integration models being implemented in the various provinces. The 

authors also conclude that there are a number of provinces that have begun curriculum 

revisions, or that have begun supporting the development of programs and resources 

related to CS.  

Considering these findings, this paper intends to provide further analysis of Canadian 

curriculum, with an emphasis on not only CT concepts and skills, but with an emphasis 

on all coding-related contexts. It also hopes to add to the works of Hennessey et al. 

(2017) and Gannon and Buteau (2018) by investigating the goals and rationale, as well 

as the supported arguments or orientations, for learning coding represented in the 

various curricula in Canada.  

5.3 Purpose and Research Questions 

The purpose of this chapter is to provide a comparative analysis of coding-related 

curricula in the K-8 grades from various provinces. In order to do so, the article will 

answer the following research questions: 

1) Where are coding, CT and computer science concepts and skills currently found 

in Canadian, K-8 provincial curricula? 

2) What are the expressed goals and rationale for the inclusion of coding, CT and 

computer science concepts and skills within Canadian, K-8 provincial curricula? 

3) What are the learning arguments or orientations reflected in the coding, CT and 

computer science components in Canadian, K-8 provincial curricula? 
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By answering these questions, this chapter will provide educators, policy makers and 

researchers with an analysis of current coding, CT, and CS curriculum initiatives in the 

K-8 grades and will add an important Canadian perspective to existing international 

studies. It will also provide groundwork for potential, future curriculum development as 

well as foundational knowledge to help research and policy surrounding the 

implementation of this curricula. 

5.4 Theoretical Frameworks and Methodology 

This study will employ comparative document analysis implemented within the 

theoretical framework of constructivism that views learning as an interpretive and 

iterative process of building, done by active learners interacting with the world (Fosnot, 

1996). 

5.4.1 Constructivism  

This chapter employs constructivism as its foundational theoretical framework, which 

involves epistemological beliefs whereby individuals develop subjective meanings of 

their experiences, resulting in knowledge being built, rather than found (Creswell, & 

Creswell, 2013; Merriam & Tisdell, 2015). A constructivist approach considers 

knowledge as something that is constructed in the mind of the learner, and that “fits” with 

reality (Bodner, 1986). Constructivism is a popular worldview or approach to qualitative 

research, and includes the following assumptions, identified by Crotty (1998): 

1) human beings construct meanings as they engage with the world they are 

interpreting; 

2) humans engage with their world and make sense of it based on their historical 

and social perspectives, which has implications when one considers both those 

being researched (perhaps students, or educators), as well as the individual 

conducting the research themselves; 

3) the basic generation of meaning is always social, arising in and out of 

interaction with a human community. 
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Constructivism is a popular framework for qualitative research, and one that is 

appropriate for this type of study considering the subjective nature of the document 

analysis. An alternative approach and research design might involve a more quantitative 

methodology employing a positivistic perspective. This might include the counting of 

coding categories as they develop, or some type of numerical weighting. Considering the 

small number of documents involved in this study, and the relative size of each, it is 

believed that the counting or weighting of categories, while providing objective and 

quantifiable data, would not provide better understanding or improved insights related to 

the curriculum documents in question. 

5.4.2 Methodology and Document Analysis 

In order to effectively answer the research questions in this study, the methodology 

employed will involve an initial analysis of K-8 curriculum from all Canadian provinces, 

with the intention of identifying where coding concepts and skills have been included. 

Curricula from Yukon, North West Territories, and Nunavut were not included in this 

analysis as they implement curricula from various provinces including British Columbia, 

Alberta, Saskatchewan and Manitoba (Government of Yukon, 2022; Government of 

Northwest Territories, 2021; Nunavut Department of Education, 2019).  

Once this initial list of documents has been identified, a more in-depth analysis will take 

place involving the identification and analysis of all explicitly stated goals and rationale 

of this curriculum. Following this identification of curriculum, and the analysis of stated 

goals and objectives, document analysis will provide insight into the teaching and 

learning orientations of the various curricula documents.  

Document analysis involves systematic procedures for reviewing and evaluating 

documents in order to elicit meaning, gain understanding, and develop empirical 

knowledge (Bowen, 2009; Corbin & Strauss, 2008). It is an iterative process that includes 

finding, selecting, appraising and synthesizing data contained in documents, and is often 

combined with content and thematic analysis (Bowen, 2009). The content analysis aspect 

of the study will involve preliminary coding, which is the organizing of information from 

the documents into categories related to the central questions of the research (Bowen, 
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2009). This includes where explicit goals and rationale of the curriculum are identified, 

as well where learning outcomes or expectations are expressed. 

In this study, the curriculum policy documents from Canadian provinces are analyzed, 

which are all organized in a similar fashion, with grade levels and specific subject areas 

identified. As stated, a preliminary scan of these documents, related to the K-8 grades, is 

conducted, identifying documents that include coding, CT and CS concepts. These 

documents can then be selected for content and thematic analysis, which will involve 

thorough and repeated analysis of the documents, the coding of categories, the 

redefinition and organization of these categories, and the development of emerging 

themes. The coding process and the development of themes is influenced by the 

theoretical approaches and arguments for coding presented earlier in this chapter.  

5.5 Findings 

The findings for each of the provinces have been organized according to the placement of 

coding, CT, and CS concepts in the K-8 curricula, the explicitly stated goals and 

rationale, and the learning orientations. The provinces are listed below, from West to 

East, as they would be presented on a map. 

5.5.1 British Columbia’s Elementary Coding Curricula 

In British Columbia, coding-related concepts and skills are found in the Applied Design, 

Skills, and Technologies (ADST) grades 6-8 curriculum (British Columbia Ministry of 

Education, 2016a). While the ADST curriculum begins in grade 1, specific content for 

the 1-5 grades is not listed and instead, teachers are meant to draw content from other 

areas of learning, in a cross-curricular fashion. In grades 6-8 specific content is listed in 

the form of 12 different modules (some of which include coding-related concepts and 

skills). In grades 6-7, teachers select a minimum of three content modules from the list of 

12. In grade 8 schools can select one, or several modules, to make up the equivalent of a 

full year course in ADST. 

The coding-related modules that may be selected include Computational Thinking and 

Robotics. Other modules, such as Computers and Communications Devices and Digital 



114 

 

Literacy, while related to computers and technology, do not include concepts and skills 

specific to coding, CT or CS. In grade 8, schools are meant to provide students with a 

full-year course in ADST that can be made up of one or more of the 12 modules. Schools 

also have the choice of developing their own modules, that include locally developed 

content, and that can be used instead of, or in addition to, the modules provided. 

5.5.2 Goals of British Columbia’s Elementary Coding Curricula 

The stated goals and rationale for British Columbia’s Applied Design, Skills, and 

Technologies curriculum highlight a very practical and applied focus. The curriculum is 

meant to “foster the development of skills and knowledge to support students in 

developing practical, creative, and innovative responses to everyday needs and 

challenges” (British Columbia Ministry of Education, 2016b). The learning opportunities 

are designed to allow students to discover their interests in practical and purposeful 

experiences and is built upon the assumption that students have a desire to create and 

work in practical ways. 

The ADST curriculum acknowledges students as having natural curiosity, inventiveness, 

and a desire to create and work in practical ways. Design and creation are at the forefront 

of the ADST curriculum, in addition to a focus on experiential, hands-on learning, which 

reflects a constructionist approach to “learning by making”. 

A key component to the ADST curriculum is flexibility and choice, as students and 

teachers can personalize learning by making choices about what students “design and 

make, and the depth and breadth to which both teachers and students choose to pursue a 

particular topic, based on students’ interests and passions”. 

5.5.3 Learning Orientations in British Columbia’s Elementary 
Coding Curricula 

The specific content and skills that students are expected to know in grades 6-8, within 

the Computational Thinking and Robotics modules, are listed in Table 9. The CT 

modules indicate that students will be provided with the opportunity to learn visual 

programming in grades 6 and 7 (such as a block-based language like Scratch), as well as 
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text-based programming in grade 8. In terms of the specific subject matter, the CT 

module includes learning and teaching related to algorithms, sequential instructions, 

programming, debugging, and the visual representations of problems and data, which all 

connect to the literature in terms of associated CT concepts or skills. Grades 6-7 subject 

matter also includes students using visual programming, which could be taught using the  

Scratch programming language, as it has been identified as an effective way to help 

students engage in CT activities (Zhang & Nouri, 2019). 

Table 9. Content within the Computational Thinking and Robotics modules in 

British Columbia's ADST curriculum 

Grade 6-7 Grade 8 

Computational Thinking  

• simple algorithms that reflect 

computational thinking  

• visual representations of problems 

and data 

• evolution of programming 

languages 

• visual programming 

Computational Thinking  

• software programs as specific and 

sequential instructions with algorithms 

that can be reliably repeated by others 

• debugging algorithms and programs by 

breaking problems down into a series of 

sub-problems 

• binary number system (1s and 0s) to 

represent data  

• programming languages, including 

visual programming in relation to text-

based programming and programming 

modular component 

Robotics  

• a robot is a machine capable of 

carrying out a complex series of 

actions automatically 

• uses of robotics 

• main components of robots: sensors, 

control systems, and effectors 

• various ways that objects can move 

• programming and logic for robotics 

components 

• various platforms for robotics 

Robotics 

• uses of robotics in local contexts 

• types of sensors 

• user and autonomous control systems 

• uses and applications of end effectors 

• movement- and sensor-based responses 

• program flow 

• interpretation and use of schematics for 

assembling circuits 

• identification and applications of 

components 

• various platforms for robotics 

programming 

While the stated goals and rationale highlight a belief in the very practical outcomes of 

coding, all of the specific concepts and skills in the CT modules for grades 6-7, and 
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Grade 8, do not appear to be consistent with this approach. The CT module for grade 6-7 

include students knowing about the evolution of computer programming languages and 

perspectives, from punch cards and Ada Lovelace to Alan Turing and the Enigma 

machine, while in grade 8 students learn about binary number systems. This historical 

and computer systems design content seems better placed as context within a CS-based 

curriculum, rather than as CT concepts in a curriculum meant to be designed for practical 

and applied making and design. Neither Wing’s definition and explanation of CT, nor the 

definition and explanation included in other CT perspectives, incorporates an 

understanding of the history and evolution of computer programming languages. In 

addition, while Wing acknowledges CT as “interpreting code as data and data as code” 

(Wing, 2006, p. 33), an understanding of binary systems is not recognized as a CT 

component that lends itself to the intended practical and applied nature of the curriculum. 

Considering this, it is surprising that the British Columbia curriculum includes modules 

identified as CT, when perhaps coding and computer programming would have been 

ideas that would have been a more appropriate fit, as Wing herself states that CT is 

conceptualizing, rather than programming, and that it is ideas, rather than artifacts. 

The robotics modules, for both grades 6-7 and 8, represent the stated application based 

and practical nature of the curriculum goals. As an example, the historical development 

of robotics and automation, as well as the impact of robotics and automation and society 

are not included. Instead, all of the content appears to directly relate to the application 

and creation of robotics and automated systems. It is interesting to note that in grade 8 

students will learn about robotics in local contexts, which could provide students with the 

opportunity to connect their learning to their world and community, conjuring images of 

projects that could well reflect Computational Participation and Computational Action 

perspectives. 

5.5.4 Alberta 

The elementary curriculum currently being implemented in Alberta does not include 

explicit coding-related concepts and skills; however, in the spring of 2021 the 

government released draft curriculum that included K-6 science expectations related to 
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coding. While this is a draft document, it has been included in this analysis as it has the 

potential to be implemented and can provide valuable insight related to a potential 

direction taken to elementary coding curricula. 

5.5.5 Alberta’s Elementary Coding Curricula 

Computational Thinking is listed as one of the major changes to Alberta’s K-6 Science 

curricula (Alberta Education, 2021). The draft curricula website acknowledges that the 

old curricula did not have any references to problem solving with coding, whereas the 

new curricula includes “clear expectations for students to learn problem solving that 

includes coding and algorithms” (Alberta Education, 2021). Computer Science plays a 

prominent role in the curricula, as the document’s overview includes the discipline 

alongside physics, chemistry, biology, Earth science and astronomy. The overview 

reflects a desire for students to develop critical thinking and problem solving skills and 

encourages students to use their curiosity, creativity and perseverance. The overview also 

acknowledges that studying science can enable students to evaluate information they 

encounter every day and can lead to careers in research, medicine, CS, geology, 

engineering, astronomy, agriculture and more. 

5.5.6 Goals of Alberta’s Elementary Coding Curricula 

Computer Science has a large footprint in the draft K-8 Science curricula. The content in 

the document is grouped into the following five main categories, with CS appearing 

alongside more traditional scientific areas of study. 

• Matter 

• Energy 

• Earth Systems 

• Living Systems; and 

• Computer Science. 

This makes it clear that the learning of CS concepts and skills is an important goal of this 

curricula. As previously stated, critical thinking and problem solving skills appear to be 

important goals of the curriculum, and the learning surrounding CS in the document is 

focussed on these areas. 
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Organizing ideas help structure the curriculum document, and for CS the organizing idea 

that spans across all grades, from K-6, is: “Problem solving and scientific inquiry are 

developed through the knowledgeable application of creativity, design, and 

computational thinking” (Alberta Education, 2021). A goal, therefore, of the coding 

curricula is to help students develop the ability to apply computational thinking in order 

to solve problems and perform scientific inquiries. Design and creativity also appear to be 

closely tied to the learning of CS concepts, and it appears that a major role of the coding-

related concepts is to connect to, and provide context for, creativity and design.  

5.5.7 Learning Orientations in Alberta’s Elementary Coding 
Curricula 

Each grade in the K-6 Alberta Science curricula includes a single guiding question and 

learning outcome for the category of CS. These are listed in Table 10. It is clear that the 

themes of instructions, creativity, design, and abstraction are key components of the 

learning outcomes. In Kindergarten and grade 1, students learn about following, creating, 

and the influence of, instructions. In grade 2, students consider the use of creativity in 

instructions and in grade 3 they investigate the relationship between creativity and CT. In 

grades 4 and 5, the focus shifts to design in order to resolve problems and achieve 

specific outcomes or purposes. Finally, in grade 6 students consider the CT concept of 

abstraction. 

 

In addition to the guiding questions and learning outcomes, the Alberta draft curriculum 

document also includes Knowledge, Understanding, and Skills and Processes examples 

for all of the guiding questions and learning outcomes for each grade. These examples 

provide more depth and insight into what is expected of students. The examples provided 

in Kindergarten to grade 2 are interesting in that their focus is on instructions and 

creativity, but they are written in such a way that the use of a computer is never 

mentioned and potentially not necessary. In grade 3, the examples highlight CT 

components including breaking tasks into smaller chunks, finding patterns, and 

identifying important details and in grade 4, the examples highlight the theme of design 

by presenting a six-step design process and suggesting that students can collaborate with 
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others to design an algorithm to solve a problem. Much like the Kindergarten to grade 2 

examples, the examples in grades 3 and 4 do not use language that require a computer. It 

is only in grade 5 and 6 where the wording of the curriculum components make it clear 

that a computer must be used in order to meet the learning outcomes. A grade 5 example 

includes “Translate a given algorithm to block-based code” (Alberta Education, 2021, p. 

49) while in grade 6 the learning outcome itself states that students will create and refine 

a computational artifact (Alberta Education, 2021). 

Table 10. Computer Science guiding questions and learning outcomes in Alberta K-

6 curriculum 

 Guiding Question Learning Outcome 

Kindergarten What are instructions? Children interpret instructions in 

the learning environment.  
Grade 1 How can we follow and create 

instructions? 

Students investigate instructions 

and their influence on actions and 

outcomes. 

Grade 2 How can creativity be used to 

ensure that instructions lead to 

the desired outcome? 

Students apply creativity when 

designing instructions to achieve a 

desired outcome. 

Grade 3 To what extent is creativity 

related to contributions in 

science?  

Students investigate creativity and 

its relationship to computational 

thinking. 

Grade 4 How can design resolve a 

problem? 

Students investigate and apply 

design in the context of CS and 

technology 

Grade 5 In what ways can design be 

used to help achieve desired 

outcomes or purposes? 

Students create and justify a design 

that could be used by a human or 

machine to address a challenge. 

Grade 6 How is design and abstraction 

used in computational 

thinking? 

Students create and refine 

computational artifacts through the 

use of design and abstraction 

 

5.5.8 Saskatchewan 

In Saskatchewan a pilot project currently exists that is teaching robotics courses to grade 

7-12 students; however, there is no formal mandated curriculum that has been 

implemented for all schools in the province. As a result, Saskatchewan curricula will not 

be a part of this analysis. Perhaps important to note; however, is that like British 
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Columbia, the term computational fluency, as well as the term computation, do appear in 

the Saskatchewan elementary mathematics curriculum. Their use does not relate to 

coding-related concepts and skills, and like the appearance of the term computation in the 

British Columbia mathematics curriculum, refers to mathematics facts and skills. 

5.5.9 Manitoba 

The province of Manitoba does not include any explicit, coding-related concepts and 

skills in any of its elementary curricula. Much like British Columbia and Saskatchewan, 

Manitoba’s elementary mathematics curriculum discusses the importance of 

computational fluency and computation, but this refers to the computation taking place in 

the student’s mind. The curriculum also includes a general learning outcome in grade 8 

that reads “Approximate the square root of a number that is not a perfect square using 

technology (e.g., calculator, computer)” (Manitoba Education, 2013, p. 138), which 

would allow for coding to be used by students as an option.  It is also perhaps important 

to note, that within the Conceptual Framework section of the curricula, technology is 

listed as a mathematical process. Within this section, there is a recognition that 

technology can be used to explore and demonstrate mathematical relationships and 

patterns, decrease the time spent on computations when other mathematical learning is 

the focus, develop personal procedures for mathematical operations, create geometric 

displays, and simulate situations (Manitoba Education, 2013). These are all situations in 

which coding may be appropriate. 

5.5.10 Ontario’s Elementary Coding Curricula 

In 2020, Ontario released new Grades 1-8 Mathematics curriculum that is the first, and 

only Ontario elementary curriculum document to include explicit coding-related concepts 

and skills (Ontario Ministry of Education, 2020). The curriculum document is divided 

into six distinct, but related strands including Social-Emotional Learning (SEL) Skills in 

Mathematics and the Mathematical Processes, Number, Algebra, Data, Spatial Sense, and 

Financial Literacy. The curriculum includes both overall and specific curriculum 

expectations. The 13 overall expectations, which are common for each grade, “describe 

in general terms the knowledge, concepts, and skills that students are expected to 
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demonstrate by the end of each grade”. The specific expectations, which are different in 

each grade, “describe the expected knowledge, concepts, and skills in greater detail” 

(Ontario Ministry of Education, 2020, p. 18). The coding expectations are found in 

Strand C – Algebra, but important to note, is that the accompanying curriculum context 

document indicates that the coding expectations can be applied across all strands, and is 

meant to provide students with opportunities to apply and extend their math thinking, 

reasoning, and communicating (Ontario Ministry of Education, 2020). In addition to the 

coding expectations, the curriculum also includes one overall expectation that is related 

to mathematical modelling. This overall expectation is the only one in the curriculum 

document without accompanying specific expectations, and like coding, it is meant to be 

applied to various contexts within other strands. The Mathematical modelling expectation 

reads as follows “Overall expectation C4. apply the process of mathematical modelling to 

represent, analyse, make predictions, and provide insight into real-life situations” 

(Ontario Ministry of Education, 2020, p.4). 

5.5.11 Goals of Ontario’s Elementary Coding Curricula 

The vision of the Ontario Mathematics 1-8 curriculum is to help students develop a 

positive identity as skilled mathematics learners, to support them as they use mathematics 

to make sense of the world, and to enable them to use mathematics to make sound 

decisions (Ontario Ministry of Education, 2020). The curriculum context document 

recognizes that technology has changed how “we access information and how students 

interact with mathematics” (Ontario Ministry of Education, 2020, p. 62), and an 

understanding that students should be able to “think critically and creatively to see 

connections to other disciplines beyond mathematics, such as other STEM disciplines” 

(Ontario Ministry of Education, 2020, p.6). Coding is mentioned as a means for students 

to develop algebraic reasoning, and also to provide students with opportunities to “apply 

and extend their math thinking, reasoning and communicating” (Ontario Ministry of 

Education, 2020, p. 34). This reflects Papert, diSessa, Wilkerson and Gadanidis’s view of 

coding or CT as being an important component in mathematics education, and as a tool 

that can allow students to not only solve mathematical problems, but to experience and 

engage with mathematical concepts. 
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5.5.12 Learning Orientations in Ontario’s Elementary Coding 
Curricula 

The overall and specific expectations related to coding concepts and skills are presented 

in Table 11, taken directly from the Ontario curriculum document: 

Table 11. Overall and specific coding expectations found in Stand C- Algebra, of the 

Ontario, Grades 1-8 Mathematic Curriculum 

Overall Expectation C3: solve problems and create computational representations of mathematical situations using coding concepts and skills 

Specific Expectations: 

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
code, 

including code 
that involves 

sequential 

events 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
code, 

including code 
that involves 

sequential and 

concurrent 
events 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
code, 

including code 
that involves 

sequential, 

concurrent, 

and repeating 

events 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
code, 

including code 
that involves 

sequential, 

concurrent, 

repeating, and 

nested events 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
code, 

including code 
that involves 

conditional 

statements and 

other control 

structures 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
efficient code, 

including code 
that involves 

conditional 

statements and 

other control 

structures 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
efficient code, 

including code 
that involves 

events 

influenced by 

a defined 

count and/or 

sub-program 
and other 

control 

structures 

C3.1 solve 
problems and 

create 

computational 
representations 

of 

mathematical 
situations by 

writing and 

executing 
code, 

including code 
that involves 

the analysis of 

data in order 
to inform and 

communicate 

decisions 

C3.2 read and 
alter existing 

code, 

including code 
that involves 

sequential 

events, and 
describe how 

changes to the 

code affect the 
outcomes 

C3.2 read and 
alter existing 

code, 

including code 
that involves 

sequential and 

concurrent 
events, and 

describe how 

changes to the 
code affect the 

outcomes 

C3.2 read and 
alter existing 

code, 

including code 
that involves 

sequential, 

concurrent, 
and repeating 

events, and 

describe how 
changes to the 

code affect the 

outcomes 

C3.2 read and 
alter existing 

code, 

including code 
that involves 

sequential, 

concurrent, 
repeating, and 

nested events, 

and describe 
how changes 

to the code 

affect the 
outcomes 

C3.2 read and 
alter existing 

code, 

including code 
that involves 

conditional 

statements and 
other control 

structures, and 

describe how 
changes to the 

code affect the 

outcomes 

C3.2 read and 
alter existing 

code, 

including code 
that involves 

conditional 

statements and 
other control 

structures, and 

describe how 
changes to the 

code affect the 

outcomes and 
the efficiency 

of the code 

C3.2 read and 
alter existing 

code, 

including code 
that involves 

events 

influenced by 
a defined 

count and/or 

sub-program 
and other 

control 

structures, and 
describe how 

changes to the 
code affect the 

outcomes and 

the efficiency 
of the code 

C3.2 read and 
alter existing 

code involving 

the analysis of 
data in order 

to inform and 

communicate 
decisions, and 

describe how 

changes to the 
code affect the 

outcomes and 

the efficiency 
of the code 

The coding expectations in Ontario’s grade 1-8 Mathematics curriculum emphasize that 

students will be writing, executing, reading and altering code, which hints at a very 

action-oriented type of learning, where students can potentially learn mathematics by 

coding. The overall curriculum expectation, which spans grades 1-8, involves using 
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coding concepts and skills to solve problems and create computational representations of 

mathematical situations. This expectation is interesting as it does not indicate what types 

of mathematical situations are meant to be solved or created. Considering that coding is 

meant to be applied across various strands, as indicated in the curriculum context, one is 

to assume that the mathematical context for these problems and representations can be 

drawn from the rest of the curriculum. 

In addition to the overall expectations, each grade from 1-8 includes two specific 

expectations related to coding that involve students writing code, as well as reading and 

altering code. This emphasis on reading, altering, writing and executing code is similar to 

the pattern of engagement for novice computer programmers called Use-Modify-Create, 

which was first described by Lee et al. (2011) in Computational Thinking for Youth in 

Practice. 

Like the overall expectations, the specific expectations do not provide mathematical 

context for the problems and computational representations to be solved and created, but 

they do include specific coding concepts and skills. These coding concepts include, from 

grade 1 to grade 5, sequential, concurrent, repeating, nested and conditional events. 

Students from grade 1 to 5 are also expected to describe how changes to code affect 

outcomes. This prediction component is similar to the first step in the Predict, Run, 

Investigate, Modify and Make framework developed by Sentence et al. (2019). In grade 

6, the concept of efficient code is added to the expectations, and in grade 7 students are 

asked to work with subprograms. These expectations, from 1-7, include specific coding 

concepts and CS concepts (control structures, subprograms, and efficiency), but they also 

lend themselves to CT concepts that have been discussed by Wing (2006), Brennan and 

Resnick (2012), and Grover and Pea (2018). Finally, in grade 8 the coding curriculum 

expectations refer to students using code for the analysis of data and in order to inform 

and communicate decisions. The specific context and source of this data is not provided, 

which could potentially allow teachers and students to work with data that might connect 

to the lives and interests of the students, or to the school and local community, which 

conjures images of projects that could well reflect Computational Participation and 

Computational Action perspectives. 
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5.5.13 Quebec’s Elementary Coding Curricula 

In Quebec, the only coding-related curriculum in the K-8 grades appears in the 

elementary Science and Technology curriculum where there is essential knowledge 

related to students recognizing robotic structures that use servomechanisms (grade 5 and 

6), as well as recognizing the impact of electric appliances, where microprocessors and 

computers are listed in brackets as examples (grade 3, 4, 5 and 6) (Québec Ministère de 

l’Éducation, 2009). 

Within the Quebec mathematics curriculum, mental and written computation are also 

included within the arithmetic section, but like other provinces this does not refer to 

computation with technology. 

5.5.14 Goals of Quebec’s Elementary Coding Curricula 

With very little coding-related curriculum concepts in the K-8 grades, the Quebec 

curriculum does not explicitly state any aims or goals related to the use of coding. The 

main Quebec Education Program document does state, however; that two characteristics 

of the Quebec Education Program are the development of competencies and recognizing 

that learning is an active process (Québec Ministère de l’Éducation, 2001). 

5.5.15 Learning Orientations in Quebec’s Elementary Coding 
Curricula 

The curricula components related to students recognizing robotic structures that use 

servomechanisms (grade 5 and 6) and impact of electric appliances, where 

microprocessors and computers are listed in brackets as examples, could allow for 

teachers to include coding concepts and skills in their instruction; however, it is also 

possible for this not to occur and still have students meet the requirements of the 

curricula. This is surprising considering the stated characteristic of the Quebec Education 

Program being the development of competencies and recognizing that learning is an 

active process. 
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5.5.16 New Brunswick’s Elementary Coding Curricula 

The New Brunswick elementary curriculum includes a 2016 pilot document where 

coding plays a predominant role. In Middle School Technology Education, coding is 

listed as one of three main subject areas for grade 6-8 technology instruction, alongside 

Computer operations and Projects work (New Brunswick Department of Education and 

Early Childhood Development, 2016). The Conceptual Framework Divisions section of 

the document lists a number of digital technology skills for students to learn (including 

file management, coding/programming, computer aided drafting, video and audio 

production, and digital citizenship), and indicates that coding should take up a minimum 

of 10% of each of the grades 6,7 and 8 years. The General Curriculum Outcomes (GCOs) 

and Specific Curriculum Outcomes (SCOs) span across the three grades (6, 7 and 8) and 

include three main areas: 1) technological operations and concepts; 2) critical thinking 

and problem-solving skills; and 3) responsible citizenship. The second main area, critical 

thinking and problem-solving skills, is where coding and related concepts and content are 

found. This section, which again, is meant to span across grade 6, 7 and 8, includes the 

following two specific outcomes: “2.2 Students will examine data to draw conclusions 

and recommend solutions to improve performance” (New Brunswick Department of 

Education and Early Childhood Development, 2016, p. 15) and “2.5 Students will 

understand and demonstrate computer coding/programming concepts and terminology” 

(New Brunswick Department of Education and Early Childhood Development, 2016, p. 

15). Coding is listed in the concepts and content section of SCO 2.2, while app 

development, robotics, game development and electronics are all listed in the concept and 

content section for SCO 2.5. As previously mentioned, this document is labelled as a 

pilot, and therefore the scope of implementation is not yet clear, however; the document 

is a part of the main New Brunswick curriculum page, with a link that is found under 

Middle School – Technology Education. 

5.5.17 Goals of New Brunswick’s Elementary Coding Curricula 

The Middle School Technology Education document reflects the economic argument for 

coding as it indicates that grade 6 to 8 students require a wide variety of practical skills in 

technology in order to prepare for life and the career choices required in a modern 
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economy. The document indicates that the coding area of study, often seen as “the 

mysterious side of technology usage” (New Brunswick Department of Education and 

Early Childhood Development, 2016, p. 4), is recognized as strengthening logical 

thinking and problem solving skills, which connect to CT concepts, even though CT 

concepts and practices are not mentioned further in the document. 

5.5.18 Learning Orientations in New Brunswick’s Elementary 
Coding Curricula 

New Brunswick’s specific outcomes related to coding include using code to examine data 

and draw conclusions, and having students “understand and demonstrate computer 

coding/programming concepts and terminology” (New Brunswick Department of 

Education and Early Childhood Development, 2016, p. 15). The terminology used in the 

outcomes indicates that students will be both actively programming a computer or 

physical digital device, as well as demonstrating knowledge surrounding related 

terminology. In addition, app development, robotics, game development and electronics 

are all mentioned as concepts and content, which ensures that students will be focused on 

actively creating projects or artifacts with code. The connection of coding to data would 

potentially require a cross-curricular approach, in which mathematics concepts 

appropriate to the grade may be used, in order to draw relevant conclusions. 

5.5.19 Nova Scotia’s Elementary Coding Curricula 

In Nova Scotia, a key initiative of the province’s 2015 Action Plan for Education 

document was to “provide all students with an introduction to the basics of coding, 

technology, and design” (Nova Scotia Department of Education and Early Childhood 

Development, 2015b, p. 23).  In December 2020, coding was listed as one of three main 

education priorities, alongside literacy and mathematics, on the province’s Education 

Action Plan website (Nova Scotia Department of Education and Early Childhood 

Development, 2021). The province currently has two Information and Communication 

Technology curriculum documents, one for primary to grade 3 (P-3) and one for grades 4 

to 6.  The P-3 document lists essential learning outcomes and performance indicators 

related to digital citizenship and productivity, but coding-related concepts and skills are 
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never explicitly mentioned. In the grade 4-6 document coding is listed as an explicit 

outcome, where students will understand and apply the basic concepts of CS, including 

algorithms, abstraction, and computational thinking (Nova Scotia Department of 

Education and Early Childhood Development, 2016a). 

5.5.20 Goals of Nova Scotia’s Elementary Coding Curricula 

In Nova Scotia’s 2016 Action Plan for Education Annual Report coding was 

acknowledged as promoting skills such as problem-solving and innovation, which were 

both linked to growth industries like “computer programming, marine industries, and 

manufacturing” (Nova Scotia Department of Education and Early Childhood 

Development, 2016b, p. 4). As previously mentioned, coding is not explicitly mentioned 

in formal P-3 curriculum and so these educational and economic goals are not reflected in 

these grades. Instead, technology operations and concepts are included, with specific 

reference to the safe operation of computers and grade appropriate digital devices, which 

reflects a more general, digital literacy goal. In the 4-6 grades, the coding outcomes better 

reflect the economic and educational goals, as robotics controls, gaming, problem 

solving, communication and specific computer programming concepts are all listed as 

grade specific strategies and skills. 

5.5.21 Learning Orientations in Nova Scotia’s Elementary Coding 
Curricula 

Students in grades P-3 may code a computer in class, however; the curriculum does not 

explicitly make this a mandatory proposition. The curriculum documents make reference 

to the safe operation of computer and digital devices, however; this could just as easily 

include digital presentation or spreadsheet software, or even effectively carrying out 

internet searches. In the 4-6 grades, the learning orientations related to coding are clear, 

as in each grade, students will “understand and apply the basic concepts of CS, including 

algorithms, abstraction, and computational thinking” (Nova Scotia Department of 

Education and Early Childhood Development, 2016a). This outcome highlights the need 

for students to understand specific CS and programming concepts (such as conditional 

statements, loops, variables, and programming languages), as well as CT concepts (such 
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as pattern recognition, sequencing, debugging, efficiency and abstraction). In addition, 

the control of robotics, gaming, and real-world situations are also highlighted, allowing 

for a variety of contexts where students can learn and apply the CS and CT concepts 

(Nova Scotia Department of Education and Early Childhood Development, 2016a).  

5.5.22 Prince Edward Island 

The PEI Journey On documents provide specific curriculum outcomes related to 

communication and information technology (CIT) literacy for the K-12 grades, however; 

these documents do not include any formal, mandatory coding-related concepts and 

skills. The document explains that CIT “differs from other technologies because of its 

vast and far reaching applications in all disciplines” (Prince Edward Island Department of 

Education, 2006a, p.1), and the document highlights the importance of integrating CIT 

into other subject areas, rather than treating it as a subject in and of itself. Within the 

document there are learning outcome examples that relate to coding for webpages 

(hypertext mark-up language or html), but often these involve students developing a 

webpage using webpage development software, and then exporting the resulting design to 

an html version, thereby not actually coding the page itself. As an example, a grade 4 

prompt suggest students can use software that will generate “required HTML coding for 

the layout of a particular Web page” (Prince Edward Island Department of Education, 

2005a). It is also important to note that this type of HTML coding differs from computer 

programming coding, in that the html code is a mark-up language, rather than a 

programming language that is written and executed, and that automates processes.  

The outcomes that do appear in the curriculum are meant to be integrated into other 

subject areas of the curriculum, rather than making up a stand-alone subject, and they 

should be used as a tool to achieve existing curricular learning outcomes within the 

context of other subject areas (Prince Edward Island Department of Education, 2006a). 

This approach is more focused on the use, rather than the development, of software tools. 

The document outlines the advantages of this approach which include the recognition that 

technology should be a tool, rather than a curriculum subject of it is own, and that the use 

of technology in other subject areas increase motivation and engagement, promotes the 
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development of creative and critical thinking skills, and supports contemporary approach 

to education such as constructivism (Prince Edward Island Department of Education, 

2006a). 

5.5.23 Newfoundland and Labrador Elementary Coding Curricula 

Within the area of Technology Education, Newfoundland and Labrador K-8 curriculum 

includes a grade 7 Communications Technology Module that makes reference to students 

identifying examples of technologies encoding and decoding information (Newfoundland 

and Labrador Department of Education, 2002), however; coding in terms of 

programming a computer is not explicitly mentioned. In grade 8, a Control Technology 

Module exists that includes coding-related concepts and skills (Newfoundland and 

Labrador Department of Education, 2006). Students must complete the grade 7 

Communications Technology Module and a Grade 8 Production Module before 

progressing to the grade 8 Control Technology Modules. 

5.5.24 Goals of Newfoundland and Labrador Elementary Coding 
Curricula 

As indicated in the front matter of the curriculum Control Technology Document, the 

focus of the curriculum is the development of student’s technological literacy, capability 

and responsibility: “Students will be exposed to many facets of technology and will gain 

literacy through active participation in knowledge acquiring and skill developing 

activities presented throughout the implementation of the Grade 8 Control Technology 

Module” (Newfoundland and Labrador Department of Education, 2006). The active 

process of learning is emphasized throughout the document, as is a focus on coding being 

used as a practical skill to control systems and devices.  

5.5.25 Learning Orientations in Newfoundland and Labrador 
Elementary Coding Curricula 

The curriculum outcomes themselves are written in a way that may lead to students 

discussing programming rather than actually programming a computer (ex: 1.17 define 

programming in terms of communications within control technology systems, 1.18 
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describe the function of specific simple programs). The document, however; provided 

added information for teachers, in terms of organization and presentation, which includes 

the following explanation: 

[p]rogramming in the Grade 8 Control Technology Module is of an introductory 

nature and is meant to provide students with a basic communications system that 

can enable them to construct functional control technology systems. Students 

need to understand that programming is a means of developing a set of operations 

that specify what a particular mechanism or system should accomplish. 

(Newfoundland and Labrador Department of Education, 2006) 

This description confirms that students will be programming a computer within the 

context of a controls or robotics system, however; it is one of the only references 

whereby it is clearly stated that students will code, rather than simply discuss or identify 

code components and applications. 

5.6 Comparative Analysis and Discussion 

5.6.1 Coding or Coding-Related? For Some or For All? 

After analyzing the location and type of implementation of coding expectations in K-8 

curricula from the various provinces in Canada, it is apparent that four main categories 

are represented. These are expressed in Table 12. A fifth category, number 2, has been 

added in Table 12, and while there are no provinces that make up this category, it has 

been added as a possible category that fits within this framework. 

Category 2 includes jurisdictions where curriculum expectations might be found in an 

optional component or module, and where the expectations are written in such a way that 

could allow for a teacher or student to program a computer, but this may not be explicitly 

stated. An example might be a jurisdiction that includes expectations surrounding an 

awareness of how computer algorithms work, and then includes this expectation in a 

module that is not mandatory across the jurisdiction. Some students may be offered this 

module, but not all, and some students who are offered this module might program a 

computer to learn about this concept, but it is possible that they do not.  
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Table 12. Categories of implementation of coding expectations in Canadian K-8 

curricula 

1) jurisdictions that do not include any coding-

related expectations 

• Saskatchewan 

• Manitoba 

• Prince Edward Island 

2) jurisdictions that include coding-related 

expectations that could potentially lead to coding 

experiences for some students 

none identified 

3) jurisdictions that include coding-related 

expectations that could potentially lead to coding 

experiences for all students 

• Quebec 

• Newfoundland and Labrador 

4) jurisdictions that include coding-related 

expectations that guarantee coding experiences for 

some students 

• British Columbia 

5) jurisdictions that include coding-related 

expectations that guarantee coding experiences for 

all students 

• Alberta (draft) 

• Ontario 

• New Brunswick 

• Nova Scotia 

Category 3 is similar to category 2, in that the curriculum expectations could allow for a 

teacher or student to program a computer, but this may not be explicitly stated. The 

difference between category 2 and category 3 is that in category 3 all students will 

experience the curriculum expectations, as they are part of mandatory learning for all 

students. 

Category 4 includes jurisdictions where the expectations or outcomes are written in a way 

that guarantees that students will be programming a computer, but the expectation 

appears in an optional component of the curriculum. An example of this might be British 

Columbia’s Computational Thinking module that appears in the ADST curriculum. This 

module is one of 13 optional modules, so not all schools or teachers will select the 

module, but once selected, the module includes students learning visual programming, 

which explicitly states that students will program a computer. 

Finally, category 5 involves curriculum expectations that are written in a way that ensure 

that students will program a computer in order to meet the expectations, and they are 

found in part of the curriculum that is taught to all students. An example of this would be 

the expectations found in Ontario’s mathematics curriculum and the draft expectations in 
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Alberta’s Science curriculum. These curricula are mandatory for all students to learn, and 

the wording clearly indicates that students will be required to program a computer in 

order to meet the expectations. 

The reason for the importance of these categories is for policy makers to understand the 

impact of potential coding curriculum, and to consider implementation. This paper began 

by presenting Webb et al. (2017), Passey (2017), Vogel et al. (2017), and Hubweiser et 

al.’s (2015) arguments for coding in the younger grades, but if one is to believe that these 

arguments are valid and important for all, then implementation should represent category 

five of Table 12, where coding-related expectations guarantee coding experiences for all 

students. Developing coding expectations that may or may not be experienced by all 

students or developing coding-related expectations that may or may not lead to students 

experiencing the power of programming a computer would not suffice. Likewise, the 

theoretical approaches presented at the beginning of the paper make it clear that the 

coding concepts and skills have value for all students, whether from a Computational 

Thinking, Fluency, Participation, Literacy or Action perspective, which is why the 

classification of category 5 is so important, as it ensures that all students in a jurisdiction 

will experience programming a computer.  

If a goal for a policy maker is for students to program a computer, then the expectations 

and outcomes should be written in clear language that signals to educators the students 

will program a computer, rather than discuss programming a computer. Likewise, if the 

goal is for all students to be provided with the opportunity to program a computer, then 

policymakers need to ensure that expectations and outcomes are placed in curriculum 

documents that include mandatory learning, rather than optional modules or courses. If 

modules or courses are optional, then it is possible that a number of students miss out on 

the opportunity to be exposed to coding concepts and skills. 

Another way to consider categories 2, 3, 4 and 5 is presented in Figure 8.  
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Figure 8. K-8 coding curricula implementation examples from Canadian 

provinces 

5.6.2 Coding on its Own or Integrated… Somewhere? 

Document analysis reveals that coding expectations in the K-8 curriculum from Canadian 

provinces appear to be integrated in four different ways: 

1) As a component in technology curriculum (British Columbia, Quebec, New 

Brunswick, and Newfoundland and Labrador) 

2) As a component in Information and Communications Technology curriculum 

(Nova Scotia) 

3) As a component in Science curriculum (Alberta draft) 

4) As a component in Mathematics curriculum (Ontario) 
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While there perhaps is not a “correct” location to place coding-related concepts and skills 

in K-8 curriculum, what has become clear in this study is that the placement (and 

wording) of the expectations and outcomes should honour the subject area in which they 

are placed, as well as the stated goals. This point can be illustrated by comparing British 

Columbia’s Computational Thinking module from the ADST curriculum to Ontario’s 

coding expectations in the Algebra Strand of mathematics. 

A major goal of the ADST curriculum involves supporting students as they develop 

practical, creative, and innovative responses to everyday needs and challenges (British 

Columbia Ministry of Education, 2016a), yet the Computational Thinking components of 

the curriculum include the evolution of programming languages, as well as the study of 

binary number systems. While these may be appropriate concepts for students to learn, 

they do not speak to the applied nature of the curriculum, and they may prove difficult in 

providing context for the Applied Design stages of the curriculum competencies. In 

contrast, the coding expectations within the Algebra strand of the Ontario Mathematics 

curriculum demonstrate clearly that students are coding within the context of the specific 

subject, by solving problems and creating computational representations of mathematical 

situations (Ontario Ministry of Education, 2020). This wording, and the specific concepts 

involved in each grade, also connect to the goals of the curriculum that include providing 

students with the skills to “think critically and creatively and see connections to other 

disciplines beyond mathematics, such as other STEM disciplines” (Ontario Ministry of 

Education, 2020). 

Another example that speaks to the need to honour the subject area in which the coding 

expectations are placed is Alberta’s draft science curriculum. Weintrop et al. (2016) have 

presented a framework for the integration of CT that includes the science classroom, and 

Gravel and Wilkerson (2017) have presented a specific example of grade 5 students using 

computational artifacts to explore physics concepts.  Both these approaches recognize the 

value of computational artifacts to learn about and explore science concepts, yet 

interestingly the Alberta grade K-6 draft curriculum does not capture this affordance 

within its CS components. A major organizing idea of the curriculum is “Problem solving 

and scientific inquiry are developed through the knowledgeable application of creativity, 
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design and computational thinking” (Alberta Education, 2016, p. 13) yet the examples do 

not connect the development of computational artifacts to science concepts and skills. 

While students learn about CS in terms of instructions, creativity, design and 

abstractions, the learning outcomes and examples do not connect to science concepts that 

are included in other areas of the curriculum. This is a missed opportunity as the design 

and coding of computational artifacts present a valuable opportunity to learn science 

concepts (Sengupta et al., 2013). 

In addition to honouring the subject area in which the coding expectations are placed, as 

well as the stated goals of the curriculum, coding expectations and outcomes should 

clearly reflect well-defined arguments for the inclusion of coding in the younger grades. 

If policy makers embody the economic argument for coding, then it follows that coding 

expectations and outcomes be placed in curriculum in a manner that connects coding to 

potential careers, such as within technology curriculum documents. If, on the other hand, 

policy makers embody the educational, “coding to learn” argument then expectations and 

outcomes should be written in a way that allow other components of the curriculum 

(whether it be mathematics or science) to provide the context for the coding work. 

Interestingly, the manner in which the CT modules was placed in BC’s ADST curriculum 

introduces the idea that coding expectations and outcomes might have a value in 

supporting the stages of a design process. This connection of coding to the design 

processes has not been discussed extensively in literature, especially within the K-8 

grades. 

5.6.3 Connecting Theory and Curricula 

This article began with a description of theory in the field of K-12 CS-related education 

exploring Papert’s foundational learning theory of Constructionism, as well as the various 

perspectives of Computational Thinking, Fluency, Participation, Action, and Literacy. 

While answering the indicated research questions laid out, the document analysis process 

also provided insight into how these differing approaches were reflected in the K-8 

coding curriculum of Canadian provinces. Table 13 lists, and briefly describes, the 

theoretical perspectives introduced in this chapter, as well as the components of the 
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various coding curricula from Canadian provinces that reflect these approaches. Grover 

and Pea’s (2018) CT was used in combination with Wing’s (2006), as Grover and Pea 

provide additional depth that Wing’s CT was lacking. Components of the Quebec and 

Newfoundland and Labrador curricula that relate to coding were not included in Table 13 

as these components were very technical in nature, relating specifically to robotics and 

controls, and these components were not explicit in having students program a computer.  

Table 13. Theoretical perspectives reflected in provincial coding-related curricula 

Theoretical Perspectives Curriculum 

Constructionism (Harel & Papert, 1991; 

Papert, 1993) 

 

• building knowledge structures, like 

constructivism, but doing so through the 

“construction” of a public entity 

• using objects to think with 

• recognizing the computer as the “Proteus of 

machines” to support the culture of the 

classroom that may be missing 

BC: 

• applied design is at the heart of the BC curriculum, 

with CT being implemented within the context of an 

experiential, hands-on program of learning through 

design and creation 

• curriculum rationale states that the ADST curriculum 

harnesses the power of learning by doing 

• introduction states that applied learning is part of all 

of the ADST curricula, through the Curricular 

Competencies that make-up the “doing” part of the 

curricula 

 

Alberta: 

• a central, organizing idea of curriculum is that 

problem solving and scientific inquiry are developed 

through the knowledgeable application of creativity, 

design, and computational thinking 

 

Ontario: 

• technology is recognized as having changed how 

students can interact with mathematics 

• coding provides students with the opportunity to apply 

and extend math thinking, reasoning and 

communicating 

Computational Thinking (Wing, 2006; Grover 

& Pea, 2018) 

• solving problems using concepts and 

strategies related to CS 

• includes CT concepts such as logical 

thinking, algorithms, patterns, abstraction, 

evaluation and automation 

• includes practices such as decomposing a 

problem, creating computational artifacts, 

testing and debugging, iteration, 

collaboration and creativity 

 

 

BC: 

• Module title is Computational Thinking 

• Simple algorithms that reflect CT (grade 6-7) 

• Visual representations of problems and data (grade 6-

7) 

• debugging algorithms and programs by breaking 

problems down into a series of sub-problems (grade 8) 

 

Alberta:  

• the components and importance of instructions are 

analyzed in early grades (K-3) 

• computational thinking components and the term itself 

are included in grade 3 

• concept of abstraction is included in grade 6 and 

applied within the design context 
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Ontario:  

• concepts such as sequencing, concurrent events, 

repetition, conditional statements and efficiency 

reflect components of the CT concepts 

• students read and alter code and predict potential 

outcomes which reflect testing, debugging, and 

iteration included in the CT practices 

 

New Brunswick: 

• coding recognized as strengthening logical thinking 

and problem solving skills. 

 

Nova Scotia: 

• the learning outcome for grades 4-6 includes 

understanding and applying the basic concepts of CS, 

including algorithms, abstraction, and computational 

thinking 

• performance and assessment indicators related to the 

outcome include organizing a sequence of events, 

debugging and predicting outcomes 

Computational Fluency (Resnick, 2018) 

• includes student creativity and expression 

with digital tools 

• students develop a voice and an identity 

through coding 

• digital technologies are a symbol of 

possibility and progress and as students 

design and code they see themselves as part 

of the future 

BC 

• curriculum goals include students developing a sense 

of efficacy and personal agency about their ability to 

participate as inventors and innovators, reflecting 

social advantages of learning to code 

 

Alberta 

• creativity serves as a major component of the 

curriculum, however; this creativity is in the context 

of problem solving rather than in the form of personal 

expression, or the social advantages of developing 

personal voice and identity 

Computational Participation (Kafai, 2016) 

• includes a focus on coding as a social 

practice 

• includes collaboration, sharing of projects 

and the development of communities 

• moves from building code to creating 

sharable applications 

Alberta 

• in grade 5 students learn about and engage in 

collaborative processes in CS and the value of sharing 

ideas for effective design 

 

Computational Action (Tissenbaum et al., 

2019) 

• an alternative to a fundamentals approach, 

that instead focusses on project connecting 

to student’s lives 

• focussed on key dimensions of student 

identity and empowerment 

• strives for the development of a critical 

consciousness as students create projects 

for their communities 

 

BC 

• curriculum goals include students becoming agents of 

change able to address practical challenges in a 

rapidly changing world 

 

Computational Literacy (diSessa, 2018) 

• a big picture view of a change in STEM 

education (especially mathematics and 

science) with a new form of literacy 

Ontario 

• curriculum documents indicate that coding can be 

incorporated across all strands and provides students 
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• literacy means that a representational form 

for supporting intellectual activities is 

adopted by a broad cultural group 

with opportunities to apply and extend their math 

thinking, reasoning, and communicating 

• curriculum documents indicate that as students 

progress through the grades, their coding experiences 

also progress, from representing movements on a grid, 

to solving problems involving optimization, to 

manipulating models to find which one best fits the 

data they are working with in order to make 

predictions 

• the overall expectations include solving problems and 

creating computational representations of 

mathematical situations using coding concepts and 

skills 

• the specific expectations includes a progression of 

coding concepts such as repetition, conditional 

statements, and subprograms 

• the coding expectations take on the representational 

form, the associated learning in the grade takes on the 

intellectual activities, and the broad cultural group are 

the Ontario students and educators themselves 

Analysing these curricula through the theoretical lenses indicates that: 

• the theoretical approach of CT is reflected in five major coding curricula in 

Canadian provinces, with BC, Alberta and Nova Scotia using this term explicitly; 

• Computational Fluency, Participation, and Action are not significantly reflected in 

the coding curricula of Canadian provinces; 

• Alberta curriculum is primarily CT focused, but there are small components in 

grades 5 and 6 that reflect Computational Fluency, Participation, and Action; and 

• while Ontario curriculum reflects some CT components, the coding expectations 

and description in the curriculum context reflect a Computational Literacy 

perspective. It is evident that students are learning to code within the context of 

mathematics, and that the coding concepts in the expectations of each grade serve 

the role of the representational form that diSessa (2018) states is required for a 

literacy. 

Computational Thinking is reflected in BC, Alberta, and Nova Scotia, with all three 

jurisdictions using the term and providing related expectations, outcomes or references to 

specific concepts and skills. In Ontario the mathematic coding expectations refer to 

Computational Thinking related concepts including sequential, concurrent, repeating, 

conditional and nested events, however; their use seems to reflect a CS focused approach, 
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rather than one that embodies Computational Thinking specifically. In addition, the term 

Computational Thinking is not used in the Ontario 1-8 mathematics curriculum 

document. What is reflected in Ontario’s curriculum, however; is diSessa’s 

Computational Literacy whereby coding is integrated into school subjects in much the 

same way that algebra has become a tool in science, mathematics and other subjects. 

Alberta’s draft coding outcomes in the K-6 Science document emphasizes a CS and CT 

focused approach, but does not explicitly leverage the development of computational 

artifacts to learn related science concepts. The Alberta draft curriculum does; however, 

reflect Computational Fluency, Participation, and Action, albeit with a small footprint 

and not as explicitly as CT. 

In British Columbia ADST curricula’s reflects an emphasis on “constructionism”, and the 

design and creation of an artifact can provide educators with a valuable opportunity to 

promote Computational Fluency, Participation, and Action in their pedagogy. Likewise, 

British Columbia’s inclusion of “uses of robotics in local contexts” within the robotics 

module provides educators with valuable opportunities to connect coding to the lives and 

communities of students. 

Nova Scotia’s ICT curriculum clearly outlines the purpose of the coding outcome as 

connecting to real world situations which, like British Columbia, could provide educators 

with an opportunity to have their pedagogy and selected projects reflect Computational 

Fluency, Participation and Action. In New Brunswick, the Middle School Technology 

Curriculum emphasizes project based learning that includes real world connections and 

that is student driven. Like in British Columbia and Nova Scotia, this allows educators to 

select pedagogy and projects that could embody the creativity, collaboration, sharing and 

social change that is reflected in Computational Fluency, Participation, and Action. 

As previously mentioned, in Quebec and Newfoundland and Labrador, the coding 

curriculum expectations and outcomes are situated within a robotics context and are more 

technically focused. This is not to say, however; that a creative and motivated educator 

could not have the robotics projects reflect the Computational Fluency, Participation, and 

Action approaches. 
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5.7 Conclusion 

This chapter set out to determine the location of coding-related concepts and skills in 

Canadian, K-8 provincial curricula, as well as the goals and learning orientations of the 

expectations and outcomes. Document analysis reveals that coding expectations appear in 

Canadian, K-8 curriculum in four ways: as a component in technology curriculum, as a 

component in ICT curriculum, as a component in science curriculum, and as a component 

in mathematics curriculum. In terms of the specifics of the implementation, five main 

categories appear that range from jurisdictions with no expectations and outcomes, to 

those with expectations or outcomes that guarantee coding experiences for all students. In 

between these two extremes are categories that include expectations and outcomes that 

could potentially lead to students programming a computer, and expectations and 

outcomes that were optional and would have to be selected by a board, school or teacher. 

In terms of the goals of coding curriculum, it is clear that the economic and learning 

argument for coding are most reflected in the curriculum from the various provinces, with 

only some referring to the social advantages of learning to program a computer. Learning 

orientations were focused primarily on Computational Thinking concepts as these are 

explicitly mentioned in three provinces, while Computational Fluency, Computational 

Participation and Computational Action are not explicitly mentioned, but can provide 

valuable context for pedagogy and projects within several jurisdictions. Computational 

Literacy is reflected in one jurisdiction, as coding appears explicitly in K-8 mathematics 

curriculum not with the infrastructural change that diSessa said was required, but perhaps 

signaling a trend in this direction. 

Together, these findings present a clear picture of the current landscape of coding-related 

concepts and skills in K-8 curriculum of Canadian jurisdictions, providing a foundational 

understanding of the organization, goals, and orientations of curricula upon which to 

further study the novel and popular phenomenon of broadening exposure to CS-related 

concepts and skills. 
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Chapter 6  

6 Integrative Chapter 

This integrated article dissertation set out to answer the following research question: 

What is the current, and potentially future, direction of Computer Science (CS) in 

K-12 education? 

While this may be a broad focus, chapters 2 to 5 decomposed this large scope into 

specific sections that answered the following sub-questions: 

a. What are the theoretical approaches presented in the literature that relate 

to the integration of CS concepts and skills in the K-12 grades? 

b. What do curriculum documents reveal about the nature of historical CS K-

12 education in terms of goals, rationale and implementation models? 

c. What do enrolment patterns reveal about the nature of historical CS K-12 

education in terms of equity, diversity, and inclusivity? 

d. What are the CS-related concepts and skills currently found in Canadian, 

K-8 provincial curricula and in what ways do these reflect theoretical 

perspectives and historical CS K-12 education goals and rationale? 

This final chapter connects the answers to these sub-questions, indicating how they 

intersect, and provides insights into the current and future landscape of CS in K-12 

education. 

6.1 Overview of Chapters 2 to 5 

In Chapter 2, a review of the theoretical approaches in the field was provided. Wing’s 

(2006) operational Computational Thinking (CT), that aims to help students make 

problems computable (Barba, 2016), was contrasted with other perspectives that view 

CS-related concepts and skills as tools that can be used to learn concepts and skills within 

other domains, such as mathematics and science (Papert, 1993; diSessa, 2000, 2018; 
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Barba, 2016), and as a means of supporting students in social, personal, and cultural 

endeavours (Kafai, 2016; Resnick, 2017). This analysis of the theoretical perspectives 

provided a foundation upon which to investigate themes in the chapters that followed. 

Chapter 3 analyzed the historical CS curriculum implementation model, where CS 

concepts and skills have been taught in Ontario within optional courses at the secondary 

level since 1966. This analysis showed that many of the themes included in the preambles 

of recent curriculum have also been included in historical curriculum, including 

curriculum developed over 50 years ago. The chapter also revealed that in Ontario, 

historical documents have acknowledged the importance of cross-curricular connections 

in CS curricula and the CS courses themselves have been placed in Business, Computer 

Studies, Computer Science, Informatics, and Technological Education, while elsewhere 

we see secondary CS courses being placed in Mathematics and Science curriculum 

documents. With an understanding of the curriculum offered through the optional, 

secondary course model of implementation, it was important to consider recent enrolment 

within these courses. 

Chapter 4 analyzed secondary, CS course enrolment data from Ontario, indicating that 

student enrolment has increased since the 2011-2012 school year. This increase has been 

primarily due to an increase in enrolment in the grade 10 ICS2O course and the grade 11 

and grade 12 University pathway courses. The data also revealed a gender gap in Ontario 

secondary Computer Studies courses, as female students make up only 26% of students 

enrolled in the grade 10 course, 21% of students enrolled in the grade 11 courses, and 

15.7% of the students enrolled in the grade 12 courses. From 2011-2018, female student 

enrolment in Ontario’s Computer Studies has increased at a greater rate than male student 

enrolment, indicating that the gender gap is decreasing as female student enrolment has 

increased by 76% while the enrolment of male students in Computer Studies courses, 

during that same time frame, has increased by 34%. 

Finally, after considering theoretical perspectives, historical and contemporary 

curriculum within the optional, secondary CS courses, as well as the accompanying 

enrolment patterns, Chapter 5 provided evidence that the implementation of CS-related 
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concepts and skills is expanding, beyond the optional secondary CS class and into the 

elementary grades in a variety of ways. Through document analysis, we can conclude that 

coding expectations appear in Canadian, K-8 curriculum in four ways: as a component in 

technology curriculum, as a component in ICT curriculum, as a component in science 

curriculum, and as a component in mathematics curriculum. In terms of the specifics of 

the implementation, five main categories appeared that ranged from jurisdictions with no 

expectations and outcomes, to those with expectations or outcomes that guarantee coding 

experiences for all students. In terms of the goals of coding curriculum, it was clear that 

coding in order to develop job skills, as well as using coding as a tool to learn about 

concepts and skills related to mathematics, science, or design, were most reflected in the 

curriculum from the various provinces. Alternatively, perspectives related to the benefits 

of coding as a social practice, which might include collaboration and sharing of projects, 

as highlighted in Kafai’s (2016) Computational Participation, were not well reflected. 

Learning orientations were often focused on components related to Grover and Pea’s 

(2018) Computational Thinking concepts and practices, including abstraction, algorithms, 

debugging, and decomposition, while the term Computational Thinking itself appeared as 

a module name in BC, and was referred to in curriculum in Alberta and Nova Scotia. 

Computational Fluency, Computational Participation and Computational Action were not 

explicitly mentioned in curriculum documents. A unique integration of coding related 

concepts appeared in Ontario, where grades 1-8 and grade 9 Mathematics curriculum 

reflect components of diSessa’s (2018) Computational Literacy, which will be discussed 

further below. 

In the current chapter, the findings from these separate sections are integrated, connecting 

the themes uncovered in this thesis with potential future directions for K-12 CS 

education. 

6.2 Broadening CS Education Beyond the Optional, 
Secondary Courses 

Chapter 3 shows that there is a history of CS-related concepts and skills being 

implemented as isolated and optional secondary courses. A more recent trend, revealed 
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through the document analysis performed in Chapter 5, involves jurisdictions integrating 

CS-related concepts and skills into subject areas other than CS, and into the elementary 

grades. This contemporary implementation allows for the broadening of CS education, as 

more students could potentially be exposed to the CS concepts and skills, even those who 

would not normally select to enroll in the secondary, optional CS courses. 

Chapter 4 revealed a significant gender gap in the isolated and optional secondary CS 

courses. While the chapter did not conclude the cause of this specific gender gap, 

research indicates a number of doors, walls and windows that contribute to the 

marginalization of female students from the computing clubhouse (Margolis & Fisher, 

2002). By integrating CS-related concepts and skills into learning in the elementary 

grades, or into other mandatory subjects in the secondary grades, jurisdictions can 

broaden the reach of CS concepts and skills as they will no longer only be taught to those 

who select the optional, secondary CS course, and will now become something that is 

potentially taught to all students. However, it is important to recognize the categories of 

implementation that were identified in Chapter 5, as expectations may be integrated as 

either optional or mandatory courses, and as either requiring a computer or not.  

The analysis of jurisdictional coding curriculum from across Canada in Chapter 5 

indicates a continuum that exists in terms of whether or not all students will be exposed 

to CS-related learning (see Table 14), and whether or not the learning guarantees that 

students will be programming a computer (see Figure 9). 

The distinctions between the categories in Table 14 and Figure 9 are important when one 

considers implementing CS-related expectations within the elementary grades, or in other 

mandatory subjects in secondary, as an equity, diversity, and inclusivity initiative. If a 

jurisdiction integrates coding expectations in a way that does not guarantee that all 

students will experience the expectations, or in a way that does not guarantee explicit 

programming activities on a computer, then it means that a great number of students may 

still have to wait until secondary school to be exposed to CS-related concepts and skills, 

and will then only be exposed to these if they select the optional CS courses. 
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Table 14. Categories of implementation of coding expectations in Canadian K-8 

curricula from Chapter 5 

1) jurisdictions that do not include any coding-

related expectations 

• Saskatchewan 

• Manitoba 

• Prince Edward Island 

2) jurisdictions that include coding-related 

expectations that could potentially lead to coding 

experiences for some students 

none identified 

3) jurisdictions that include coding-related 

expectations that could potentially lead to coding 

experiences for all students 

• Quebec 

• Newfoundland and Labrador 

4) jurisdictions that include coding-related 

expectations that guarantee coding experiences for 

some students 

• British Columbia 

5) jurisdictions that include coding-related 

expectations that guarantee coding experiences for 

all students 

• Alberta (draft) 

• Ontario 

• New Brunswick 

• Nova Scotia 

 

Figure 9. K-8 coding curricula implementation examples from Canadian provinces 

from Chapter 5 
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The distinctions between these categories are also important for curriculum planning. As 

a result of the way that CS-related concepts and skills have been integrated into Ontario, 

New Brunswick, Nova Scotia, and potentially Alberta if the draft curriculum is approved, 

other course curriculum may be written to build upon the concepts learned in the younger 

grades. Other jurisdictions will not be able to do this, as their CS-related expectations are 

integrated as optional and can be potentially implemented without computers, and 

therefore only some students will have experienced these expectations through actual 

coding on a computer. 

As more jurisdictions integrate CS-related expectations in the elementary grades or in 

other subject areas in high school, the categories of implementation from Chapter 5 

should be carefully considered if a goal is to maximize the equity, diversity, and 

inclusivity benefits, and as curriculum is developed in other courses. 

6.3 Papert and the Integration of CS in Other Subjects 

Chapter 2 revealed a number of theoretical perspectives related to CS concepts and skills 

in K-12 education. Perspectives from diSessa (2000, 2018), Barba (2016), Kafai (2016), 

Resnick (2017), Wilkerson (Wilkerson & Fenwick, 2017) and Gadanidis (Gadanidis et 

al., 2019) all acknowledge and reflect Papert’s Constructionism and the idea of the 

computer as a tool, for either understanding a specific subject (diSessa, Barba, Wilkerson, 

Gadanidis) or for social, personal, or cultural endeavours (Resnick and Kafai). 

Alternatively, Wing’s (2006) CT stood apart in terms of how it did not acknowledge 

Papert’s previous work, and how it did not reflect Papert’s Constructionism. Instead, 

Wing’s (2006) CT viewed CS and the computer as a topic for study in and of itself. 

Considering the findings from Chapter 5 and the current trend of CS-related concepts and 

skills being integrated in curriculum from outside the isolated, high school CS discipline, 

perspectives that embody Papert’s Constructionism and the idea of a computer as a “tool 

to make and do something with” are perhaps best suited as a foundation for the 

broadening of CS concepts and skills, and the implementation of these things in other 

subject areas. Papert’s perspective acknowledges the computer as a tool to think with, 

and treats coding as something that can change the way students learn about other things. 
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This perspective is appropriate when CS concepts and skills are integrated into other 

subject areas, including mathematics and science, as the coding and computer work 

should serve the discipline’s concepts and skills, rather than being an object of study in 

itself. It is also appropriate considering how CS-related concepts and skills are used 

within specific fields, where the focus is on the specific fields themselves, with coding as 

a tool to investigate, model and make progress. Having students engage with CS concepts 

and skills to support the learning of mathematics, or science, is appropriate considering 

CS concepts and skills are used within these disciplines in real life. This integrated 

approach therefore reflects a real-world application of CS concepts and skills, and 

supports students beyond simply CS specific educational and career pathways. 

For examples of this effective integration, one could look to Ontario grades 1-8 and grade 

9 mathematics curricula, as Chapter 5 findings show that within these curriculum 

documents, technology is recognized as having changed how students can interact with 

mathematics, and coding is recognized as providing students with the opportunity to 

apply and extend math thinking, reasoning, and communicating. In addition, Chapter 5 

reveals that the coding expectations are written in a way that supports the learning of 

other mathematical concepts found in the curriculum. This implementation of coding, to 

support the learning of non-CS concepts and skills, is consistent with Papert’s views, and 

the views of others presented in Chapter 2 including diSessa, Kafai, Barba, Wilkerson 

and Gadanidis. 

In Mindstorms (1993), Papert discusses Mathland, as well as provinces of Mathland that 

he calls microworlds. He claims that these metaphorical places are where “certain kinds 

of mathematical thinking could hatch and grow with particular ease” (p. 125), much like 

an individual learning French by being embedded in the language while living in France. 

He suggests a Mathland or microworlds could be developed to serve as incubators of 

something like Newtonian physics, that has its own rules and structures. Students can 

inhabit the Newtonian physics microworld by programming various events and 

simulations, and these events and simulations would be impacted by the rules and 

structures of the particular microworld. In this way, the Newtonian physics microworld 
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serves as a “growing place for a specific species of powerful ideas or intellectual 

structures” (p. 125). 

With the integration of coding-related expectations in subject like mathematics in Ontario 

grades 1-9, the potential for Mathland or microworld experiences in schools is facilitated 

and supported, allowing for these intellectual incubators to be potentially experienced by 

a large number of students. The curriculum itself embeds coding expectations within the 

mathematics curriculum, and expects educators to connect these CS-related concepts and 

skills to mathematics concepts in the grade, effectively facilitating the learning 

environments that represent Mathland or microworlds for students. Papert claims that 

these learning experiences can reflect Piagetian learning, as they allow for learning to be 

deeply embedded in other activities. This is in contract to dissociated learning, which 

Papert claims is a symptom of mathematics learning, whereby “learning takes place in 

relative separation from other kinds of activities” (p. 48). This integration of coding in the 

curriculum, therefore, is more than simply an addition of concepts. It is instead, 

potentially paving the way for the development of Mathland and microworlds throughout 

the province in elementary mathematics classrooms, effectively facilitating integrated, 

rather than dissociated, experiences for students. 

While CS-related curriculum may embody Papert’s approach of coding to change the 

way students learn about other things, resources and activities should reflect this 

integrated approach. In Ontario, it will be fascinating to see whether or not, over the 

coming years, resources and classroom activities are focused primarily on the dissociated 

CS concepts, or if they support the learning of associated mathematics concepts and 

skills. While this thesis did not investigate the tools being used or the implementation 

activities, considering the number of jurisdictions with new CS-related concepts and 

skills in their curriculum, this could serve as an interesting and necessary area of study.  

It will also be fascinating to see if the integration of coding concepts in this way impacts 

the approaches that both educators and student take towards knowledge, learning, and 

potentially school in general. In discussing Mathlands, Papert claimed that “Mathland is 

the first step in a larger argument about how the computer presence can change not only 
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the way we teach children mathematics, but, much more fundamentally, the way in which 

our culture as a whole thinks about knowledge and learning” (p.39). This begs the 

question whether or not the integration of coding can extend beyond reinventing 

mathematics activities, towards changing larger perspectives of school itself, and 

potentially using the computer in a wide variety of subject areas in a fashion that moves 

away from dissociated learning, towards richer connections and mutual support between 

different subject areas or concepts and skills. 

As more jurisdictions integrate CS-related expectations in the elementary grades or in 

other subject areas in secondary school curriculum, careful consideration should be made 

to the theoretical perspectives from Chapter 3 and the goals of the curriculum revision 

initiative. Some theoretical perspectives support a CS-centric approach, and those such as 

Wing’s CT may be most appropriate for the CS classroom, or when the computer itself is 

the object of study. However, if the integration of CS-related concepts and skills is meant 

to support the learning of, and activities within, other, non-CS subject areas, then there 

are other theoretical perspectives that would better serve students and better serve the 

goals of the curriculum. 

6.4 From the Technical, to the Personal, Social and Cultural 

Chapter 3 demonstrated how historical CS curriculum was focused on a technical 

approach, with even the most recent 2008 curriculum in Ontario stating that “Computer 

studies is about how computers compute. It is not about learning how to use the 

computer, and it is much more than computer programming. Computer studies is the 

study of ways of representing objects and processes” (Ontario Ministry of Education, 

2008, p. 3). Enrolment data presented in Chapter 4 revealed the potential implications of 

this approach, as the courses implemented in an optional, isolated fashion with a focus on 

the technical have low enrolment and are subject to large gender gaps. While Chapter 2 

demonstrated that Wing’s popular CT approach embodies this CS-centric approach, other 

theory from the field, presented in Chapter 2 and 4, provide alternative perspectives that 

include personal, social, and cultural goals. 
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Wing’s (2006) CT, while certainly a computer-centric approach, focused on students 

learning broader CS-related concepts and skills with the intent of solving problems and 

understanding the world around them. diSessa (2018) challenges this idea, arguing that 

Wing’s CT does not address how one solves problems in general, but only a very 

specialized group of problems, and that her version of CT draws heavily on what he 

refers to as the “the siren call of higher order thinking skills” (diSessa, 2018, p. 28). He 

explains that Wing’s CT does not provide any filters, for what CS concepts or skills 

should become common knowledge, nor does it provide principles for lift, or how one 

abstracts specific concepts and skills from CS to make them useful in broader, more 

general contexts. Finally, diSessa states that Wing’s CT is also lacking principles of  

embedding, or how “one places abstracted elements of computation thinking in the 

destination disciplines so as to make them important to mathematicians, physicists, or 

engineers” (diSessa, 2018, p. 26).  

Brennan and Resnick (2012) and Grover and Pea (2018) provided much needed details 

and specific components in their alternative CT concepts, practices and perspectives, and 

these approaches provided additional opportunities to connect CS concepts to other 

subject areas in school. Resnick’s (2018) Computational Fluency focused on personal 

expression and creativity, while Kafai’s (2016) Computational Participation emphasizes 

the cultural and social significance of coding for a purpose. diSessa (2018) provides a 

bigger picture perspective on the issue, as he articulates his model of computation as a 

new literacy that will impact the core of the STEM disciplines. Finally, in Chapter 5, 

Computational Action (Tissenbaum et al., 2019) was added to these approaches, where 

dimensions of computational identity and computational empowerment are included, as a 

means of making computing more inclusive, motivating, and empowering. 

These approaches, while varied, place the student and the student’s community at the 

center of the learning through personal, social, and cultural connections. This is much 

different than a CS-centric approach that focuses on the CS concepts and skills. New 

curriculum meant to broaden CS participation, whether in the secondary or elementary 

grades, will have to reflect this focus on the personal, the social, and the cultural 
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otherwise it will not align with contemporary perspectives in the field such as those of 

Resnick (2018) and Kafai (2016). 

Chapter 5 reveals that this shift has begun to occur in the development of coding 

curriculum in the K-8 grades. In British Columbia, coding curriculum is placed within an 

applied design context, where a key component is flexibility and choice, as students and 

teachers can personalize learning by making choices about what students “design and 

make, and the depth and breadth to which both teachers and students choose to pursue a 

particular topic, based on students’ interests and passions” (British Columbia Ministry of 

Education, 2016). In Alberta, a CS-centric CT is embodied within the new draft Science 

curriculum but some of the learning outcomes highlight creativity as a key component of 

intended goals (Alberta Education, 2021). Finally, in Ontario, the grade 1-8 mathematics 

curriculum focuses on leveraging coding to understand mathematical concepts. While 

specific coding-related concepts such as sequential and repeating events were included in 

the expectations, the focus was on solving problems and creating computational 

representations of mathematical situations (Ontario Ministry of Education, 2020). This is 

a good example of a curriculum placing the student’s personal understanding of broader 

learning at the forefront of coding expectations. 

6.5 From the Ethical to the Justice-Centered Curriculum 

Chapter 4 revealed a gender gap in high school CS courses and introduced the 

perspective of a justice-centered approach to equity, diversity, and inclusivity in CS 

education. A justice-centered approach focuses on “the sociopolitical implications, 

relevance, and, ultimately, liberatory possibilities of teaching and learning CS” (Vakil, 

2018, p. 27). While chapter 3 provided evidence that Ontario secondary curriculum 

dating back as far as 1966 effectively communicated the importance of ethical 

considerations and digital citizenship, a justice-centered approach moves beyond 

developing responsible digital citizens, to students engaging in critiquing unethical 

abuses of technological power. In a justice-centered approach, CS learning is framed as 

being “important for the social and economic welfare of historically nondominant 

students and their communities”, as students are encouraged to “pursue CS as part of and 
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connected to larger struggles for justice and liberation” (p. 37). New K-8 coding 

curriculum from various provinces explored in chapter 5 did not include this justice-

centered approach, but it is worth noting that within Ontario’s grade 9 mathematics 

curriculum, a Human Rights, Equity, and Inclusive Education in Mathematics section 

appears in the front matter, or curriculum context. This section includes the following 

paragraph which approaches some of the sociopolitical issues related to a justice-centered 

approach: 

Research indicates that there are groups of students (for example, Indigenous 

students, Black students, students experiencing homelessness, students living in 

poverty, students with LGBTQ+ identities, and students with special education 

needs and disabilities) who continue to experience systemic barriers to accessing 

high-level instruction in and support with learning mathematics. Systemic 

barriers, such as racism, implicit bias, and other forms of discrimination, can 

result in inequitable academic and life outcomes, such as low confidence in one’s 

ability to learn mathematics, reduced rates of credit completion, and leaving the 

secondary school system prior to earning a diploma. Achieving equitable 

outcomes in mathematics for all students requires educators to be aware of and 

identify these barriers, as well as the ways in which they can overlap and 

intersect, which can compound their effect on student well-being, student success, 

and students’ experiences in the classroom and in the school. Educators must not 

only know about these barriers, they must work actively and with urgency to 

address and remove them. (Ontario Ministry of Education, 2021, para. 16)  

While the expectations of the curriculum do not include similar language, it is important 

to note that this section is included to inform educators as they deliver the grade 9 

mathematics course that includes coding expectations. It is also important to note that the 

section did include language related to an anti-racist and decolonial approach to 

mathematics education, but this was removed from the section after release. The deleted 

text included the following: 
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…mathematics has been used to normalize racism and marginalization of non-

Eurocentric mathematical knowledges, and a decolonial, anti-racist approach to 

mathematics education makes visible its historical roots and social constructions.  

(Jones, 2021, para. 3) 

Admittedly, this thesis does not explore the rationale for removal of the text, nor does it 

explore the implications of including or removing wording that acknowledges 

sociopolitical contexts and who has and does not have power in CS-related education and 

the field. This thesis does, however; acknowledge the importance of this area of study 

and provides a foundational analysis of what is and is not included in both historical and 

novel CS-related curriculum, as well as important equity, diversity, and inclusivity 

concerns surrounding existing gender gaps in CS education. 

6.6 The Future of Secondary CS Curricula 

Chapter 5 provided evidence of how the implementation of CS education is being 

broadened into the K-8 grades and into subject areas such as mathematics, science, and 

technology. Considering this phenomena, it is important to ask what the impact of this 

expansion will be on the secondary, optional CS courses that were explored in chapters 3 

and 4. 

As more students are exposed to CS concepts and skills in the younger grades, will they 

be motivated to enroll in CS courses at the secondary level, as their interests have been 

piqued, or as they have gained confidence through early exposure to concepts and skills? 

Is it possible that this increased interest and confidence leads to increased enrolment in 

secondary CS courses? Or, having experienced CS concepts and skills in the K-8 grades 

and possibly in secondary courses outside of CS, such as mathematics in grade 9 in 

Ontario, will students and parents feel as though foundational CS concepts and skills 

have already been integrated enough into other subject areas, and therefore there is no 

need to enroll in specialized CS courses? Extending these questions further, if CS 

concepts and skills have such applicability in other subject areas, is it possible that the 

integration of CS into other subjects leads to the demise of specialized, secondary CS 

courses? 
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At the very least, the changes taking place in K-12 CS education point towards a need to 

now carefully consider the goals of, and rationale for, CS-specialized courses in 

secondary schools, as well as the concepts and skills being taught in these courses. 

Beginning with the theoretical perspectives from Chapter 2, some may consider having 

the secondary CS courses reflect a more CS-centric approach, embodying Wing’s (2006) 

CT or embodying an economic argument for CS education, that prepares secondary 

students for post-secondary programs related to CS, as well as related jobs in the field. 

Unfortunately, this could possibly leave out important social, cultural, and personal 

connections that may not be able to be adequately explored if students only learn CS 

concepts and skills in other subject areas. 

In terms of specific concepts and skills, Ontario provides a good example of how 

secondary CS courses will need to be altered to reflect changes in elementary curricula. 

Chapter 3 revealed that concepts of control structures in CS, which include the 

sequencing and repetition of instructions, as well as conditional statements (decisions), 

were included in all grade 10 courses over the last 55 years. As an example, the 1983 

document includes an expectation that students will “write simple routines that will 

illustrate the three basic operations involved in the processing of information - 

sequencing, selection, and repetition” (Ontario Ministry of Education, 1983, p.16), while 

the current grade 10 Computer Studies course in Ontario includes expectations where 

students “write programs that includes a decision structure for two or more choices” and 

“write programs that use looping structures effectively” (Ontario Ministry of Education, 

2008, p. 36). How will curriculum expectations such as these, in introductory, secondary 

CS courses, need to be altered if, referring to the findings from Chapter 5, all students in 

Ontario are now writing, executing, reading, and altering code that includes sequential, 

concurrent, and repeating events, and conditional statements in grades 1, 2, 3 and 4 

respectively (Ontario Ministry of Education, 2020)? 

The broadening of CS concepts and skills into other K-12 subject areas and grades 

presents an exciting opportunity for a greater number of students to be exposed to CS, but 

this will inevitably lead to changes needed in the traditional delivery model of the 

secondary, optional CS courses. Researchers and policy makers involved in secondary 
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CS education are well-advised to play close attention to curriculum changes in the K-8 

grades and to carefully consider the potentially changing underlying goals and rationale 

for optional, secondary CS courses, and the concept and skills taught within these courses 

as students arrive to these courses with greater CS experience than in the past. 

6.7 Towards the Development of a Literacy 

An evident shift in K-12 CS education involves the transition from a narrow perspective 

of students learning CS concepts and skills in order to pursue a related post-secondary 

program or career, to the broader perspective of CS-related concepts and skills potentially 

supporting the development of a new form of literacy. Chapter 2 and 5 highlighted the 

theoretical foundation of this perspective, through an analysis of diSessa’s Computational 

Literacy (2018) which involves the adoption, by a broad group, or even a civilization, of 

a “particular infrastructural representational form for supporting intellectual activities” 

(diSessa, 2018, p. 4). diSessa presents four new Rs that provide detail and focus for his 

literacy agenda and all four of these Rs are reflected within the various findings from the 

chapters in this thesis and presented in Table 15, but are most evident in the integration of 

coding expectations in Ontario’s grades 1-8 and grade 9 mathematics curriculum, 

discussed in Chapter 5. 

Table 15. Examples of diSessa's (2018) four Rs in CS K-12 education 

 
diSessa’s (2018) description of 

potential change 
Examples 

Re-mediation • the computer has significantly 

altered the representational 

infrastructure of our civilization 

 

• dynamic and interactive 

representations are now easy 

and quick to create 

 

• any representational system is 

better adapted for some things 

than others 

• Ontario’s grade 1-8 

Mathematics curriculum 

includes expectations related 

to CS concepts and skills that 

support the solving of 

problems and the 

representation of 

mathematical situations 

(Ontario, 2020) 

• British Columbia’s secondary 

CS courses are found within 

the Mathematics course of 

study where communicating 

and representing is one of 
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four main curricular 

competencies (British 

Columbia Ministry of 

Education, 2018a; 2018b) 

Reformulation • the computer can lead to 

substantial change in what, 

when and how we teach subject 

matter 

 

• an understanding of the 

different foundational ways of 

thinking within different 

domains will be important 

• British Columbia’s ADST 

curriculum leverages the 

application of coding 

concepts and skills to help 

students design and prototype 

(British Columbia Ministry of 

Education, 2016) 

• Ontario’s grade 1-8 

Mathematics indicates that 

coding can be incorporated 

across all strands and 

provides students with 

opportunities to apply and 

extend their math thinking, 

reasoning, and 

communicating (Ontario, 

2020) 

Reorganizing  • the intellectual terrain is 

changed 

 

• teaching and learning is altered 

significantly 

• New K-8 curriculum that 

includes coding is apparent in 

a number of educational 

jurisdictions across Canada 

and the world 

• Ontario grades 1-8 

Mathematics includes new 

learning expectations in the 

early grades that involve 

variables and inequalities, 

which are new, topics that 

can be well represented with 

the coding expectations 

within these grades (Ontario, 

2020) 

Revitalizing • the ecology of learning 

activities is broadened 

 

• engagement, interest and equity 

is facilitated 

• Papert’s Constructionism is at 

the core of new curriculum  

as expectations and outcomes 

explicitly state that students 

will be programming a 

computer 

• Alberta draft curriculum 

includes computational 

artifact examples that range 
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from medical research to 

automotive control and online 

shopping (Alberta Education, 

2021) 

6.7.1 Re-mediation 

diSessa’s re-mediation is reflected in findings from Chapter 5, where it was found that 

coding concepts and skills have been included in Ontario’s grade 1-8 and 9 mathematics 

to support the representation of mathematical situations and in Chapter 3, where it was 

found that British Columbia’s secondary CS curriculum is located within the 

mathematics discipline, and where communicating and representing form a major 

competency. This communicating and representing competency provides good examples 

of what diSessa (2018) terms a new representational infrastructure that can allow for 

cognitive simplicities. These include, in grade 11, students: 

• explaining and justifying mathematical ideas and decisions in many ways; 

• representing CS ideas in concrete, pictorial, symbolic, and pseudocode forms; and 

• using CS and mathematical vocabulary and language to contribute to discussions 

in the classroom (British Columbia Ministry of Education, 2018a). 

This type of integration of CS concepts and skills, as a new form of representational 

infrastructure, allows for other curriculum expectations, within the same mathematics or 

grade, to be learned in dynamic and interactive ways. As an example, in Ontario, a 

curriculum expectation in grade 3 that involves students creating and translating patterns 

that have repeating elements, movements, or operations can be combined with coding 

expectations where students are creating create computational representations of 

mathematical situations by writing and executing code that involves repeating events 

(Ontario Ministry of Education, 2020). In this case, the coding environment and the use 

of loops can re-mediate how students learn about and understand patters with repeating 

elements, movements, or operations. 

6.7.2 Re-formulation 

In terms of reformulation, Chapter 5 revealed students coding a computer to help support 

designing and prototyping in British Columbia’s ADST curriculum, while in Ontario 
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coding concepts and skills support the learning across all other strands in the mathematics 

curriculum and is meant to help students extend their math thinking, reasoning and 

communicating. These findings, in addition to the fact that Alberta includes draft coding-

related curriculum in K-8 Science and that Ontario first included coding-related concepts 

and skills in Business data processing documents, reflects diSessa’s reformulation criteria 

that the computer leads to changes in what when and how we teach subject matter, and 

that there will be an understanding of the different ways of thinking within the different 

domains. As an example, Ontario’s mathematics curriculum includes students in grade 4 

identifying and using symbols as variables in expressions and equations, an area where 

the coding environment and the storage of data in variables may alter when students can 

become familiar with such a concept, as well as potentially impact the depth of their 

understanding. 

In contrast, Newfoundland and Labrador include coding expectations in Grade 8 Control 

Technology Module, as students define programming in terms of communications within 

control technology systems and as they describe the function of specific simple programs  

(Newfoundland and Labrador Department of Education, 2006). These types of 

expectations do not substantially change how subject matter is taught, or promote an 

understanding of foundational ways of thinking within different domains. The focus is on 

control systems and communication with coding used as a practical skill to control 

systems and devices.  

6.7.3 Reorganization 

diSessa’s reorganization of the intellectual terrain is apparent from findings in Chapter 5, 

which demonstrated the breadth and depth of curriculum revisions taking place related to 

coding. Since 2016, British Columbia, Alberta, Ontario, Nova Scotia and New Brunswick 

have all made curriculum revisions that include coding concepts and skills in their 

elementary curriculum. In some jurisdictions, the teaching and learning of various 

subjects have been changed in Canada as a result of these reforms, leading to a significant 

reorganization. This has changed who gets to do what, and when, as coding is potentially 

disruptive and alters the learning of other things. 



166 

 

A specific example of this is how in mathematics in Ontario, students in the early grades 

learn about inequalities, a topic that can be well represented with the coding expectations 

related to conditional statements (Ontario Ministry of Education, 2020). The intellectual 

terrain related to mathematical inequalities can be potentially altered by using the 

computer, and the computer programming code, as an object to think with. Inequalities 

can be represented and explored using conditional statements in code, and students may 

develop a deeper appreciation and understanding of the topic, and its importance and 

application. 

In the near future, it will be fascinating to see just how much of an impact these coding 

expectations will have on the learning of mathematics in Ontario, and perhaps in other 

jurisdictions, as there is the potential for coding to “lower the floor” of some bigger 

mathematical concepts, and provide students with a representational infrastructure with 

which to wrestle with more sophisticated concepts. If this occurs, then it’s possible that 

mathematics curriculum is reorganized, as some concepts once thought to belong in a 

specific grade, may be able to be moved to a younger grade. This reorganization reflects 

diSessa’s description of how the intellectual terrain within the domain of uniform motion 

was re-mediated, from textual to algebraic reasoning, and therefore reorganized allowing 

high school students to access this learning through some inferences and the single, 

intuitive equation d = rt (diSessa, 2018). Just as algebra reorganized the concept of 

uniform motion, coding may continue to reorganize mathematic, scientific, or other 

concepts. 

In contrast, the implementation of coding-related expectations with a specific technology 

focus, such as in New Brunswick’s Middle School Technology Education document, 

while supporting exciting areas of app development, robotics and electronics, may not 

lead to the reorganization of the intellectual terrain, and has the potential to have less of 

an impact on the learning within other domains.  

6.7.4 Revitalization 

In terms of the revitalizing of the learning ecology, this is reflected through the 

integration of Papert’s Constructionism in many of the new coding curriculum from 
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Chapter 5. Many jurisdictions now include wording in their expectations that ensure that 

students will be programming a computer and in doing so, learning about related topics 

while having an “object to think with” (Papert, 1993). The broadening of this ecology and 

the engagement and interest is also evident in some of the examples provided in 

documents, including in the draft Alberta science curriculum, where computational 

artifacts related to automotive control and online shopping are included. This 

revitalization is also a key component of 21st century learning to which digital 

technologies and coding specifically, have been tied. 

Before concluding the discussion on the shift towards a potential Computational Literacy, 

it should be pointed out that diSessa (2018) describes CL as “the adoption by a broad 

cultural group - perhaps an entire civilization - of a particular infrastructural 

representational form for supporting intellectual activities” (p. 4). Considering the 

broadening of CS-related concepts and skills in K-12 education presented in this thesis, 

including newly revised, explicit and mandatory coding curriculum in a number of 

jurisdictions in the K-8 grades, it is possible that this adoption by a broad cultural group 

could occur sooner than expected, as a significant number of Canadian K-8 students will 

be learning coding concepts and skills to support their learning in a number of different 

curriculum areas. While this thesis focused on the curriculum policy documents and not 

the actual implementation of coding expectations within the various classrooms, there is 

evidence of how diSessa’s CL is reflected in classrooms where coding is used to support 

learning. 

6.7.5 Computational Literacy and a Post-Secondary Example 

In Investigating an Approach to Integrating Computational Thinking into an 

Undergraduate Calculus Course, Clements (2020) analyzes the impact of integrating 

coding activities into a calculus course for undergraduate Life Sciences students. The 

study involved developing a set of mathematical coding activities to “supplement and 

enhance mathematical problem solving, as well as promote a richer understanding of the 

course content, while taking advantage of the unique affordances computational thinking 

can offer to enhance educational experiences” (p. 88). The goal was not to simply 
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integrate technology into the course, but instead to enrich and transform how the 

mathematics in the course was done.  

Through an analysis of questions and prompts that allowed students to reflect on their 

experiences with the activities, Clements (2020) observed three central themes: modified 

perceptions of mathematics, enhanced mathematics learning experiences, and unique 

coding affordances. Clements went on to analyze the findings through diSessa’s (2018) 

Computational Literacy framework, and determined that calculus concepts in the courses 

were re-mediated with coding serving as a new computational representation system. The 

concepts, problems and processes related to investigations in the class were reformulated, 

sometimes from an algebraic to a computational representation, which required 

abstraction and automation, two CT concepts, and which also required “an in-depth 

conceptual understanding of all aspects of a problem, and a strong enough familiarity 

with both formulations that one can effectively translate between two representational 

systems” (p. 73). This re-mediation and reformulation resulted in a reorganization of 

course concepts, as “exploring calculus concepts with computer code enabled students to 

effectively investigate meaningful, authentic, interdisciplinary applications, which were 

formerly inaccessible (and thus omitted from the course) due to overwhelming, technical 

complexities” (p. 79). Clements (2020) concludes that the learning trajectories for 

students changed, and the intellectual domain of calculus was effectively reorganized, 

with students attributing this to the unique affordances of coding. Through remediation, 

reformulation and reorganization, Clements (2020) observed a revitalization of learning 

within the course, as students indicated that the coding activities: 

• provided a fresh, modern approach to mathematical problem solving; 

• made the material feel more interesting; 

• increased their enjoyment of their learning; 

• opened up a creative space in mathematics that they had never experienced in 

other problem-solving situations; 

• allowed for flexibility in terms of the opportunities available to them, and the 

options available for problem-solving strategies; 
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• provided consistent and immediate feedback that helped them to shape and 

reinforce their; 

• improved their confidence with their answers and overall conceptual 

understanding of the material; 

• provided differentiated learning opportunities, which supported a variety of 

learning styles; 

• allowed them to be free to experiment with the code in ways that were personally 

meaningful for them; and 

• stimulated peer collaborations, resulting in fruitful discussions and sharing of 

ideas. 

In addition to a revitalization of the learning, Clements was surprised to observe a 

revitalization of teaching, as the capabilities afforded by computation dramatically 

expanded the range of interdisciplinary applications that could be incorporated into the 

course, and expanded the capacity with which to investigate them. Clements also found 

that the mathematical material that was being taught could be more meaningfully and 

authentically engaged with, and the value of the material more convincingly illustrated. 

As the coding-related expectations in Ontario mathematics, and in other subjects 

jurisdictions, is further implemented, it will be interesting to see if the re-mediation, 

reformulation, reorganization and revitalization observed by Clements in the 

undergraduate calculus course is also observed in the larger K-12 school system. 

6.8 Broadening of CS Education Leading to New Actors 
and Influences 

With the broadening of CS concepts and skills in K-12 education, it is likely that new 

actors, outside of publicly funded ministries of education, boards or schools, will become 

involved in the development of curriculum, the delivery of instruction, and the provision 

of resources and materials. An example of this is discussed in Chapter 4. Canada’s 

CanCode initiative begun in 2017 with an initial commitment from the Canadian federal 

government of $50 million (Department of Finance Canada, 2017). The program is listed 

as an action item related to Canada’s Digital Charter: Trust in a Digital World 
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(Government of Canada, 2021) and federal budgets from 2019 and 2021earmarked an 

additional $60 million (Department of Finance Canada, 2019) and $80 million 

(Department of Finance Canada, 2021) respectively for the program, resulting in 

provided or promised funding for the programming totaling $190 million. As discussed in 

Chapter 4, the CanCode program was developed to help provide coding and digital skills 

education to more young Canadians (Government of Canada, 2019c) and the government 

reports that in its first two years, had provided more than 800,000 K-12 students and 

40,000 teachers with opportunities to learn these important skills (Government of 

Canada, 2019a).These numbers included 350,000 girls, over 68,000 Indigenous students, 

over 100,000 youth at risk, and 34,000 newcomers to Canada (Government of Canada, 

2019a). 

The funding model of this initiative is a good example of how actors outside of ministries 

of education, boards, and schools are involved in the development and provision of CS 

education for students in K-12 grades, and how this phenomena is likely to continue. To 

qualify for CanCode funding, groups must be a not-for-profit organization incorporated 

in Canada and must have a minimum of three years experience in the delivery of coding 

and digital skills programs to K-12 youth and/or teachers (Government of Canada, 

2019b). While it was encouraged that the organizations deliver content that maps to 

provincial/territorial educational curricula, and while it was encouraged that the 

organizations partner with groups such as public school boards, neither of these criteria 

were mandatory. These distinctions are important as they signal that not-for-profit 

organizations, rather than public institutions, were selected to obtain the financial 

resources to lead CS education initiatives. An alternative approach would have been an 

investment into the broadening of CS education through groups such as Universities, 

Colleges, or K-12 Ministries of Education, school boards or schools.  

With new CS-related curriculum being developed and implemented in the K-8 grades, 

and with CS expanding into other secondary subject areas, there will be a need for 

educational resources for students and professional development for teachers, as well as 

the potential purchasing of computers or other related technologies such as robotics or 

microcontroller kits. While this support can come from publicly funded school system 

https://www.ic.gc.ca/eic/site/121.nsf/eng/00002.html
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groups, it’s also likely that actors from outside of the publicly funded school system, such 

as private STEM and coding organizations, will continue to play a role.  

As this trend continues, it is important that all organizations involved in CS education in 

K-12 grades consider the specific goals and expectations within the jurisdictions they are 

supporting. Chapter 2 and 5 discussed a number of theoretical perspectives related to the 

integration of CS concepts and skills, it is important that organizations consider how 

these perspectives should be reflected in the activities, supports and technology provided 

to students and educators. Activities, educator professional development, pedagogical 

approaches and the equipment and software used to support curriculum related to the 

economic argument for coding will differ greatly from those used to help students learn 

mathematics or science concepts, or to support cultural and social endeavors.  

In addition to ensuring that organizations consider the goals and expectations of the 

curriculum within the jurisdiction that they are supporting, it’s also important that the 

motivation for involvement in this work is carefully considered. With educational 

jurisdictions implementing CS-related concepts and skills that require a computer, or 

other technologies, it’s possible that some technology or educational organizations may 

become involved in supporting this learning for reasons that are beyond the education of 

students. Companies may want to sell computers and related components, or they may 

want to obtain student data that can be obtained when students sign in to tools or resource 

websites. While there are a number of organizations whose motivations may align with 

the motivations of educational jurisdictions, educators should be aware of this potential 

concern. 

A final note related to these large-scale initiatives from outside of the public school 

system involves carefully considering the ways in which the success of these initiatives 

will be measured. As organizations develop resources and implement webinars and 

camps for students and educators, is it enough to count attendance at events or downloads 

of support documents? Should some type of follow-up occur, or some type of longer-

range success criteria be established in order to determine whether or not initiatives had a 

lasting impact on broadening CS concepts and skills? 
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Chapter 5 discussed the various ways in which coding concepts and skills have been 

incorporated into the K-8 grades in different provinces, including how they have been 

integrated into different subjects. Organizations supporting students and educators should 

ensure that their activities, supports, and technology are closely tied to the specific 

implementation of coding in each jurisdiction, and the motivation for this involvement 

should be considered by educators. Making the optional criteria from the CanCode 

program mandatory, which encourages that organizations deliver content that maps to 

provincial/territorial educational curricula, and encourages that the organizations partner 

with groups such as public school boards, may be a way to facilitate this as partnerships 

between not-for-profit and publicly funded educational organizations can leverage the 

expertise that each organizations provides. In addition, success criteria for these 

initiatives should be carefully considered in order to ensure that students and educators 

are experiencing rich and impactful exposure to CS concepts and skills. 

6.9 Research question answered 

This integrated article dissertation set out to answer the following research question: 

What is the current, and potentially future, direction of CS in K-12 education? 

Findings from the four preceding chapters reveal that CS in K-12 education is undergoing 

significant change. An analysis of related theoretical approaches shows that while Wing’s 

(2006) operational CT, which aims to help students make problems computable (Barba, 

2016), remains popular, other perspectives are being widely discussed and reflected in 

new curriculum revisions. These perspectives present CS-related concepts and skills as 

tools that can be used to learn concepts and skills within other domains, such as 

mathematics and science (Papert, 1993; diSessa, 2000, 2018; Barba, 2016), and as a 

means of supporting students in social, personal, and cultural endeavours (Kafai, 2016; 

Resnick, 2017). 

In terms of implementation models, the delivery of CS concepts and skills as optional 

courses at the secondary level has been occurring for over 50 years, but new models are 

emerging. In Ontario, optional secondary CS-related courses have been placed in 
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Business, Computer Studies, Computer Science, Informatics, and Technology and 

enrolment data reveals that within this current, optional secondary course implementation 

model, less than 10% of students are enrolling in these courses. During the 2011-2012 

school year, only 5% of Ontario secondary school students were enrolled in secondary 

Computer Studies courses. Since that time, enrolment has increased slightly, as this 

number reached 8% during the 2017-2018 school year. Enrolment data also showed a 

gender gap in Ontario secondary Computer Studies courses, but fortunately this gender 

gap is decreasing, as female student enrolment in Ontario’s Computer Studies has 

increased at a greater rate than male student enrolment. From 2011 to 2018, female 

student enrolment has increased by 76% while the enrolment of male students in 

Computer Studies courses, during that same time frame, has increased by 34%. 

An analysis of contemporary curriculum reveals the implementation of CS-related 

concepts and skills in curriculum is expanding, beyond the optional secondary CS 

courses, and into other subject areas and into the elementary grades. At the high school 

level, CS-related concepts and skills are expanding into mathematics and science 

programs, and within the elementary grades, coding expectations appear in Canadian, K-

8 curriculum in four ways: as a component in technology curriculum, as a component in 

ICT curriculum, as a component in science curriculum, and as a component in 

mathematics curriculum. In terms of the goals of CS-related curriculum, it is clear that 

coding in order to develop job skills, as well as using coding as a tool to learn about 

concepts and skills related to design, mathematics, and science were most reflected in the 

curriculum from the various provinces. British Columbia includes coding expectations 

that connect closely to design, which could support, and provide valuable contexts for, 

activities that embody Resnick’s (2018) Computational Fluency and Kafai’s (2016) 

Computational Participation perspectives. A unique integration of coding-related 

concepts appeared in Ontario, where grades 1-8 and grade 9 Mathematics curriculum 

reflect components of diSessa’s Computational Literacy (2018). 

Considering these findings, and the themes discussed within this integrated chapter, it is 

evident that a potential future direction of CS in K-12 education will include a continued 

broadening of skills and concepts, beyond the traditional secondary CS class, and into 
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other grades and disciplines. Papert’s view of using coding as a tool with which to learn 

about other things may well be the most appropriate theoretical perspective to support 

this work, as it serves to support the learning of concepts and skills in other disciplines, 

and it supports students learning how coding and computing is used in various fields. It 

will also be fascinating to continue to consider diSessa’s (2018) big picture, 

Computational Literacy framework as CS-related concepts and skills are introduced to 

more and more students. 

In terms of secondary CS courses themselves, in some jurisdictions students will be 

entering into these having had experience with CS-related concepts and skills in the K-8 

grades, and these courses will therefore require careful considerations and revisions. 

While the historical gender gap within the courses remains a concern, it will be 

interesting to see if newer implementation models help to narrow this gap. 

As a result of the findings from the various chapters, it is clear that curriculum and 

implementation initiatives involving CS-related concepts and skills in K-12 are 

undergoing significant change. Once delivered within optional, secondary courses, the 

current and potentially future direction of CS in K-12 education includes a reorganization 

of curriculum involving CS concepts and skills expanding into other subject areas, and 

into the younger grades. Concerns related to equity, diversity, and inclusivity play an 

important role in this broadening of CS education, as do big picture, theoretical 

perspectives related to Computational Thinking and of coding as a form of 

Computational Literacy. While a focus on the computer as an object of study and on the 

development of job ready skills remains, newer curriculum reveals the importance of the 

educational and social advantages of understanding and being able to apply CS-related 

concepts and skills. Together, these components present an exciting, and transformative 

time for CS education in the K-12 grades. 

6.10 Limitations of the Research 

This research provided an analysis of issues surrounding CS-related concepts and skills in 

K-12 education. An important limitation that should be addressed first is the potentially 

narrow scope of underrepresented groups presented in Chapter 4. The topic of 
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underrepresentation in CS education, and the field itself, is critical and also complex. 

Chapter 4 only covers one concern, the underrepresentation of female students in 

secondary Computer Studies courses, and while every attempt was made to provide as 

much detail as possible, the complexity of such an important topic was difficult to fully 

represent in a single chapter. In order to assuage these concerns, an attempt was made to 

reference as many researchers and works as possible. A thesis on CS education would not 

be complete without addressing this area, which is why it was important to the author to 

include Chapter 4. Furthermore, it should be re-emphasized that educators, policy 

makers, and researchers should certainly avoid the tendency to employ a deficit approach 

when discussing underrepresented groups in CS education. Margolis and Fisher presented 

the doors, walls and windows of the computing clubhouse back in 2002, and these 

lessons of systemic barriers should continue to be heeded today. Additionally, the binary 

classification of students as female and male, in Chapter 4, was in order to stay consistent 

with the classifications in the data provided by the Ministry of Education. 

A second limitation to the research is that the main focus of the various chapters was on 

the aims and goals, and expectations and outcomes, of coding curriculum policy 

documents rather than the implementation or pedagogy related to the curriculum, and the 

work being done in the classrooms. This thesis would have been strongly supported by an 

analysis of areas such as the coding arguments and approaches reflected when educators 

integrate the identified curriculum, or some type of evaluation of the success of 

curriculum in achieving stated aims and goals. It was felt, however; that considering the 

novel nature of coding expectations in the K-8 grades, and the recent explosion of interest 

in integrating coding in the younger grades, that an analysis of curriculum policy was 

critical at this stage. This study also provides insights for researchers and policy makers, 

as they continue to consider and develop coding curriculum that will support the 

important implementation stages executed by educators. It is also hoped that this study 

provides a foundation upon which researchers can build, in order to develop studies that 

provide valuable insight into implementation stages and associated pedagogy. 

Finally, an acknowledged and important limitation of this research is that an assessment 

and evaluation lens was never used when considering the arguments and approaches for 
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coding in the younger grades, the historical Computer Studies curriculum in Ontario, the 

K-8 coding curriculum from Canadian provinces, or the issues of underrepresented 

groups in CS education. This assessment and evaluation lens is an important one as 

researchers and policymakers continue to develop novel coding curriculum, and as 

educators continue to implement coding expectations and outcomes. As new coding 

curriculum is developed, researchers and policy makers need to be aware of assessment 

and evaluation policies and practices within their jurisdictions, to ensure that coding 

expectations and outcomes are appropriately written and aligned, and that educators can 

effectively assess and evaluate student work.  

6.11 Implications and Future Research 

As indicated in the limitations of research section, the findings from this study provide 

researchers with foundational understandings upon which to build. Chapter 2 provides 

scholars new to the field with a clear and cohesive description and comparison of 

theoretical approaches to coding, CS, and CT in K-12 education. This description and 

comparison of approaches and directions could form the basis, or serve as a framework, 

for a number of studies analyzing teacher or parent perspectives on coding or evaluating 

the orientations of pedagogy and classroom activities implemented by teachers. 

The findings from Chapter 3, related to historical Computer Studies curriculum, provide 

evidence that while coding-related concepts and skills in the K-8 grades may be new, in 

some jurisdictions coding in secondary curriculum dates back as far as 1966. The chapter 

also provides evidence that many of the aims and objectives of historical curriculum are 

shared with modern approaches. This has significance for policy makers, as it 

demonstrates that historical curriculum could be a source of insight for the development 

of new curriculum, especially if studies are done comparing the implementation, 

pedagogy or classroom activities related to historical curriculum, with the 

implementation, pedagogy or classroom activities related to the curriculum of today. 

There is also potential to compare historical CS curriculum from other jurisdictions, and 

from post-secondary institutions, in order to evaluate the evolution and innovation, or 

lack of evolution and innovation, within the curriculum over the years. This could shed 
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light on whether or not the field of CS curriculum is one that evolves and improves, or 

one that stagnates or remains the same. 

Chapter 4 raises a number of issues related to the underrepresentation of specific groups 

in CS education and the field, and could serve as a starting point for a critical analysis of 

curriculum, pedagogy, or classroom activities in CS education. The area of equity, 

diversity, and inclusivity are of upmost importance in CS education, as is the recognition 

and acknowledgement of bias. Awareness of these concerns could serve as a positive first 

step, that could be followed by research that goes beyond superficialities, and instead 

dive into the potential systemic issues at play. In addition, culturally responsive, anti-

racist, and anti-colonialist curriculum and pedagogy are areas in which research can be 

done to support much needed change in CS education, and in education in general. 

Chapter 5’s findings, related to Canadian provincial coding curriculum in the K-8 grades, 

can hopefully add to the research from other jurisdictions, and can serve as an additional 

perspective as researchers continue to investigate new approaches to coding in the 

younger grades. Internationally, it would be interesting to compare the aims and goals of 

Canadian provincial coding curriculum to those of other jurisdictions and countries. 

Within Canada, it would be interesting to study how the implementation of coding 

curriculum differs in the various provinces, while considering the different ways in which 

the coding curriculum was written. The five categories of curriculum integration and the 

three subject areas identified could also serve as the foundation for a framework with 

which to analyze other K-8 coding curricula. 

In addition to the findings from this work, it is hoped that the methods and frameworks 

employed can help inform or frame future studies. Document analysis and Thematic 

Analysis could be useful for researchers investigating coding in K-8 education, as these 

lend themselves to the analysis of documents and policy that continues to be developed in 

the field. Chapter 4 concludes by introducing a number of frameworks and perspectives, 

including justice-centered CS education, technofeminism and material feminism, that if 

employed in the CS education context, could provide valuable and much needed 
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perspectives in a field that is historically androcentric. These types of theoretical 

frameworks should be seen as powerful tools for positive change. 

Throughout this work, a number of contemporary approaches and programs are identified 

and described. This work, therefore serves as a timestamp, identifying what exists now, at 

this current time, within the area of CS K-12 education. This timestamp may be of value 

to future researchers, as they compare new initiatives to those of the past, and as they 

consider the journey of CS K-12 education. 

Finally, this work provides an analysis of the current state of CS K-12 education during a 

transformative time. It identifies new and exciting themes and programs related to the 

broadening of CS concepts and skills, including federal programs such as CanCode and 

CSForAll, as well as new coding curriculum in the K-8 grades from various provinces. At 

the same time, this work provides evidence that while the field of CS K-12 education is 

being influenced by new perspectives and programs, CS education in the K-12 grades has 

a past that includes research, theoretical perspectives, and curriculum. It’s important that 

educators, policy makers, and researchers acknowledge and learn from contemporary and 

historical research, curriculum, and programs in order to help shape a successful future 

for CS K-12 education. 

6.12 Conclusion 

This integrated article dissertation provides an in-depth analysis of the current state of K-

12 CS education through the lenses of theory in the field, historical and novel curricula, 

and student enrolment and equity, diversity, and inclusivity. Chapter 2 presented 

theoretical approaches and directions taken by leading researchers in the field, including 

Computational Thinking, Computational Fluency, Computational Participation, 

Computational Action, Computational Modeling and Computational Literacy. Chapter 3 

provided evidence that while many coding initiatives in the K-8 grades are new, historical 

secondary CS curriculum exists, and is worth investigating as a means of supporting new 

curriculum initiatives. Chapter 4 analyzed enrolment data related to the isolated and 

optional implementation model of CS courses in secondary and confirmed a significant 

gender gap. This chapter also presented a vital look at initiatives, frameworks, and 
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perspectives that could help CS educators, policy makers and researchers tackle 

important equity, diversity, and inclusivity concerns in the field. Finally, Chapter 5 

presented various arguments for coding in the younger grades, including those related to 

economics, education, culture, and society. The chapter also provided an analysis of the 

placement, goals, and learning orientations of coding expectations and outcomes in 

Canadian provincial, K-8 curriculum. The categories developed through this document 

analysis could serve as a valuable starting point for policymakers and researchers 

engaging in coding and curriculum work. 

While all of these findings present important pieces of the CS K-12 education puzzle, it is 

important to remind ourselves of the big picture. The big picture of CS education often 

involves a student and a computer, and the magic that can take place when these two 

interact. It therefore seems appropriate that a PhD dissertation related to computers, 

coding, and education should end with a final thought from Seymour Papert, the father of 

computing education (Stager, 2016). In Let’s Tie the Digital Knot, Papert (1998) 

discusses a number of topics related to wholesale, educational reform. He points out the 

absurdity of the term “Computers in Education”, by highlighting the fact that we do not 

hold conferences called “The World Congress on Paper-Based Education”, and we do not 

publish papers in the “Journal of Computer-Free Schooling”. He explains that educators, 

researchers, and policy makers should be technologically fluent individuals who have 

absorbed computational ideas into their culture, and who desire to see changes in learning 

that others cannot even imagine. He calls us to have “more chutzpah” in order to replace 

the use of technology to improve education, with a call to invent new visions of education 

in the context of this digital world. Such grand visions of education reform such as this 

are daunting, but Papert offers a prescription: “simply spend time doing it – the muscle of 

the mind will grow through exercise” (p. 2). 

If you are reading this dissertation then I assume you are engaged in this work, you are 

exercising the muscles of your mind, and you are a part of a grand vision of education 

reform, that focusses on improving education for ALL students in this digital world. A 

concluding thought, therefore, which bolstered, and continues to bolster, this author 
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through his work, and which may help the reader in theirs, is to consider the following 

from Papert: 

In my trademark caricature of this situation, a nineteenth-century transportation 

engineer invents a jet engine and attaches it to a stagecoach to assist the horses. 

But the transformative contribution of the jet engine to transportation did not 

come from improving already existing vehicles. It came through the invention of 

a radically new kind of vehicle - the jet plane. (Papert, 1998, p. 2) 

The computer represents an engine that can provide thrust to a form of education that 

affords our students with new, engaging, rich, and valuable learning experiences never 

thought possible. It could also potentially lead to altered representational infrastructure, 

substantial change in what, when, and how we teach subject matter, a change in the 

overall intellectual terrain as teaching and learning is altered, and in the overall 

broadening of the ecology of learning (diSessa, 2018). In short, it could lead to a potential 

new literacy, but a key component to all of this is the development of effective 

curriculum that is appropriate for, and experienced by, all of our students.  

This thesis identifies the approaches, arguments, directions, philosophies, aims, 

objectives, challenges, and goals related to CS education in the K-12 grades. It is meant 

to help educators, researchers and policy makers better understand the historical, current, 

and potential future state of K-12 CS education. It is also meant to help us better support 

students as they learn the concepts and skills needed to design, build, and pilot their own 

jet plane and to assume their unique and rightful place amongst the stars. 
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Appendix C. Initial codes from Thematic Analysis of preambles 

 

Curriculum 

RP-33, Data 

Processing 

(1966) 

Computer 

Science - 

Senior 

Division 

(1970) 

Elements 

of 

Computer 

Technolog

y (1970); 

Informatics 

– 

Intermediat

e and 

Senior 

Division 

(1972); 

Computer 

Studies - 

Intermediate 

and Senior 

Division 

(1983) 

Computer 

Studies – 

Ontario 

Academic 

Course 

(1987); 

The Ontario 

Curriculum 

Grade 11 and 

12 - 

Technological 

Education 

(2000) 

The Ontario 

Curriculum 

Grade 10 to 

12 - 

Computer 

Studies 

(2008) 

Impact of 

technology on 
society  

(22 references) 

1 3 1 2 9 2 1 3 

How curriculum 
document was 

designed/created 

(15 references) 

0 1 4 7 2 0 1 0 

Problem solving 
(12 references) 

0 2 1 1 2 0 3 3 

Training for future 

career 
(11 references) 

1 0 5 1 0 0 1 3 

How to teach the 

course(s) 
(9 references) 

0 0 4 5 0 0 0 0 

Student choice 

and differentiation 
in terms of depth  

(8 references) 

0 3 1 2 2 0 0 0 

Everyone needs a 
basic 

understanding of 

concepts  

(8 references) 

0 1 3 0 2 0 1 1 

Other courses and 

credits 
(7 references) 

0 0 3 4 0 0 0 0 

Post-secondary 

preparation 
(7 references) 

0 0 0 2 0 1 0 4 

New tools in 
society to store 

information 

(7 references) 

1 0 0 2 3 0 1 0 

Use of computer 
for creative 

pursuits  

(6 references) 

0 0 0 1 3 0 1 1 

Students need to 

be computer 

literate 
(6 references) 

0 0 0 3 2 1 0 0 

Only guidelines 

are provided 

(6 references) 

1 1 0 4 0 0 0 0 

Very technical 

aspects of 
Computer 

(5 references) 

0 0 4 1 0 0 0 0 

Computer as an 

object of study 
(5 references) 

0 0 1 0 0 1 1 2 

Cross-curricular 
and other subjects 

(5 references) 

0 1 1 1 0 1 0 1 
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Students enjoy 

this work  
(5 references) 

1 2 0 0 0 0 1 1 

Other skills that 

can be developed 
(4 references) 

0 0 1 0 0 0 1 3 

How courses were 
developed 

(4 references) 

1 0 0 2 1 0 0 0 

Development of 

transferable skills 

(4 references) 

0 0 0 0 0 0 2 2 

Computer 
programming and 

large program 

design concepts 

(4 references) 

0 0 0 0 0 0 1 3 

How the computer 
represents objects 

(4 references) 

0 0 0 0 0 0 3 1 

Ethics and 

appropriate use of 
technology 

(4 references) 

0 0 0 0 3 0 0 1 

Computational 
Thinking and 

explaining the 

problem to the 
computer  

(4 references) 

0 1 0 0 1 1 1 0 

Changed how we 

think about 

problems and how 

to solve them 

(4 references) 

0 2 1 0 0 1 0 0 

Computers can 

extend human 

capabilities 
(4 references) 

0 2 0 0 1 1 0 0 

Consider 

local/student 
needs before 

implementing 

course  
(4 references) 

0 2 1 0 0 1 0 0 

Need for 

experimentation 

to establish best 

pedagogical 

practice  

(4 references) 

3 1 0 0 0 0 0 0 
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Appendix D. Themes developed through Thematic Analysis of preambles. 

 

Curriculum 

RP-33, 

Data 

Processing 

(1966) 

Computer 

Science - 

Senior 

Division 

(1970) 

Elements 

of 

Computer 

Technology 

(1970); 

Informatics 

– 

Intermediate 

and Senior 

Division 

(1972); 

Computer 

Studies - 

Intermediate 

and Senior 

Division 

(1983) 

Computer 

Studies – 

Ontario 

Academic 

Course 

(1987); 

The Ontario 

Curriculum 

Grade 11 and 

12 - 

Technological 

Education 

(2000) 

The 

Ontario 

Curriculum 

Grade 10 to 

12 - 

Computer 

Studies 

(2008) 

Use computers to 

automate tasks or 
solve problems 

(31 references) 

0 9 4 2 3 2 4 7 

Post-secondary, 

training and 
careers 

(21 references) 

3 1 3 4 2 1 1 6 

Impact of 
technology on 

society 

(19 references) 

4 1 1 1 7 2 1 2 

Dynamic nature of 
technology in 

society and 

education 
(16 references) 

1 2 0 7 4 1 0 1 

How the course is 

structured 
(15 references) 

0 2 2 4 4 0 1 2 

Computer as an 

object of study 
(13 references) 

0 0 3 2 0 0 4 5 

Differentiate for 

needs of students 

(13 references) 
1 4 2 2 4 0 0 0 

Teacher flexibility 

& experimentation 

(9 references) 

2 1 1 5 0 0 0 0 

Content simply a 
guide for 

educators 

(8 references) 

1 2 2 3 0 0 0 0 

learn basic 

understanding of 

computers 
(8 references) 

0 2 3 2 0 0 0 0 

Ethics 
(8 references) 

0 0 0 2 4 0 0 2 

Student enjoyment 

and interest 
(7 references) 

1 2 0 1 0 0 2 1 

Creativity 
(7 references) 

0 0 0 1 4 0 1 1 

How the course 
was developed 

(6 references) 

1 0 4 0 1 0 0 0 

Cross curricular 
connections 

(6 references) 

0 1 2 1 0 1 0 1 

General computer 

literacy for all 
(6 references) 

0 0 0 2 3 0 1 1 

Developing 

programs 
(6 references) 

 

0 
0 0 0 0 0 1 5 
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