
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

4-19-2022 1:00 PM

The Past, Present, and Future Direction of Computer Science The Past, Present, and Future Direction of Computer Science

Curriculum in K-12 Education Curriculum in K-12 Education

Steven Floyd, The University of Western Ontario

Supervisor: Dr. George Gadanidis, The University of Western Ontario

A thesis submitted in partial fulfillment of the requirements for the Doctor of Philosophy degree

in Education

© Steven Floyd 2022

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Curriculum and Instruction Commons

Recommended Citation Recommended Citation
Floyd, Steven, "The Past, Present, and Future Direction of Computer Science Curriculum in K-12 Education"
(2022). Electronic Thesis and Dissertation Repository. 8463.
https://ir.lib.uwo.ca/etd/8463

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F8463&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/786?utm_source=ir.lib.uwo.ca%2Fetd%2F8463&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/8463?utm_source=ir.lib.uwo.ca%2Fetd%2F8463&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

ii

Abstract

This integrated article thesis provides an analysis of the past, present, and potential future

state of Computer Science (CS) in K-12 education. Once implemented in optional courses at

the secondary level, CS concepts and skills are now being integrated into other subject areas

such as mathematics, science, and technology and other grades including K-8. This new state

of K-12 CS education is explored through an analysis of 1) related theory reflected in the

literature, 2) historical secondary school CS curriculum, 3) enrolment data and important

issues related to equity, diversity, and inclusion, and 4) K-8 CS-related curriculum

approaches currently being implemented in educational jurisdictions across Canada. The four

articles in this dissertation employ a qualitative approach to research, drawing on a

constructivist epistemology. Thematic Analysis is used to examine the goals and rationale of

historical curriculum documents from Ontario and Document Analysis is used to compare

various K-8 curriculum documents from across Canada. Together, the chapters included in

this integrated article thesis provide a comprehensive analysis of K-12 CS education that

supports educators, policy makers, and researchers in the field during a transformative time.

Keywords

coding, computer science, computational thinking, computational literacy, K-12, education,

curriculum, technology

iii

Summary for Lay Audience

This integrated article dissertation explores the field of Computer Science (CS) education in

kindergarten to grade 12 (K-12), during a transformative time. In the past, CS concepts and

skills were introduced to students in optional courses at the high school level, but now these

concepts and skills are being introduced into other subject areas, such as mathematics,

science, and technology and other grades, such as K-8. This thesis explores this change by

analyzing theoretical perspectives from a variety of researchers as well as historical CS-

related curricula. Enrolment data in CS courses is also explored, and the important themes of

equity, diversity, and inclusivity in CS education are investigated, as well new CS-related

curricula in the K-8 grades. The goal of this dissertation is to develop an understanding of the

past, present, and future direction of CS in K-12 education.

iv

Dedication

To Lisa, Cohen, Maxwell, Charles and Elizabeth.

v

Acknowledgments

A heartfelt thank you to my wife Lisa, you have endured my early morning and late-night

exploratory speeches on all things coding, CS, and CT and you have shared with me quite a

few of your own. Since we both started teaching CS courses back in 2003, you have been an

inspiration and an honest and thought-provoking critical lens throughout. You encouraged

me to share my experiences in CS education with others, outside of my classroom, and

without your support this thesis would not have even begun. You also just happen to be a

wonderful wife and a wonderful mother to Cohen, Maxwell, Charles, and Elizabeth.

To Cohen, Maxwell, and Charles: thank you for testing out so many programming activities,

and for listening to so many conversations about curriculum. To Elizabeth, thank you in

advance for hopefully doing the same.

To Dr. George Gadanidis, supervisor extraordinaire. Thank you for your expertise and

guidance in personal and professional matters throughout the PhD process. I feel as though

you provided just what was needed, at each step along this journey.

To Dr. Immaculate Namukasa, thank you for your continued support throughout the last few

years, your feedback and perspectives have improved this work significantly. Also, thank

you to Beckett Smith, a student whom I will never forget and one who continues to motivate

me to share the power and wonder of technology with students.

To the educators at Mother Teresa Catholic Secondary School and at the LDCSB, those

involved in developing and writing e-learning courses for TELO, and all those at TVO and at

Ontario’s Ministry of Education: your insights and perspectives have helped shape my view

of learning, research, and teaching and I suspect, have also helped shape this thesis.

My journey in computers and education began in the 1980s when my father, Derek, would

bring home Pets, Commodores and programmable turtles. He introduced me to the idea that a

computer can be a transformative force in learning, teaching, and thinking. My mother,

Yvonne, was a kindergarten teacher and her approach to teaching in the younger grades

embodied critical thinking, 21st century learning, and independence, long before these

became popular topics. Thank you, I’m forever grateful to you both.

vi

Table of Contents

Abstract ... ii

Summary for Lay Audience ... iii

Dedication .. iv

Acknowledgments... v

Table of Contents ... vi

List of Tables .. xii

List of Figures .. xiii

List of Appendices ... xiv

Preface... xv

Chapter 1 ... 1

1 Introduction .. 1

1.1 Problem Description ... 1

1.2 Purpose of the Study ... 2

1.3 Research Questions ... 2

1.4 Terms and Definitions... 3

1.4.1 Curriculum .. 3

1.4.2 Computer Science Related Terms ... 4

1.5 Organization of the Study ... 5

1.6 Background and Positionality of the Researcher .. 5

1.7 Chapter References ... 7

Chapter 2 ... 10

2 Theoretical Perspectives Related to Computer Science in K-12 Education 10

2.1 Introduction ... 10

2.2 Wing’s Idea of Computational Thinking .. 11

vii

2.3 Papert and Constructionism .. 12

2.4 Resnick and Computational Fluency .. 14

2.5 Kafai and Computational Participation ... 17

2.6 diSessa and Computational Literacy ... 18

2.7 Denning, Aho, Wilkerson, Gadanidis and Modelling in Other Subject Areas 19

2.8 Grover, a Tale of Two CTs and Consolidating Theory .. 22

2.9 Conclusion .. 25

2.10 Chapter References ... 25

Chapter 3 ... 29

3 Historical Computer Science Curriculum: From 1966 to today 29

3.1 Introduction ... 30

3.2 Thematic Analysis .. 31

3.2.1 Background ... 31

3.2.2 Six-Phase Approach .. 32

3.3 Analyzing the Documents ... 34

3.4 Results ... 36

3.4.1 Implementation Timeframes and Courses of Study 36

3.4.2 Thematic Analysis and Curricula Preambles .. 39

3.5 Discussion ... 40

3.5.1 Curriculum Documents and Courses of Study.. 40

3.5.2 Focus of Preambles in CS-Related Curricula ... 42

3.6 Implications and Future Studies.. 49

3.7 Additional Dissertation Section – Grade 10 Curriculum Components 50

3.7.1 Courses and Main Concepts.. 50

3.7.2 Other Concepts.. 52

3.7.3 Pedagogical Approaches ... 53

viii

3.8 Conclusion .. 55

3.9 Chapter References ... 56

Chapter 4 ... 60

4 Enrolment and Underrepresented Groups in Computer Science Education 60

4.1 Research Rationale.. 61

4.2 The Broadening of CS Education ... 61

4.2.1 Ontario and Canada... 62

4.2.2 United States of America .. 65

4.2.3 England ... 67

4.2.4 An Important Note from the Author ... 68

4.3 Potential Impact and Missed Opportunities .. 69

4.4 Equity, Diversity, and Inclusivity in CS Education .. 71

4.5 Conceptual Frameworks ... 74

4.6 Enrolment in Ontario Secondary School Computer Studies................................. 77

4.6.1 Overall Enrolment ... 78

4.6.2 Diversity and Ontario Computer Studies .. 83

4.6.3 The Universal/Selective/Indicative Model and Systems Thinking Leverage

Points... 87

4.6.4 Margolis and the Clubhouse Today .. 89

4.7 Conclusion .. 91

4.8 Chapter References ... 92

Chapter 5 ... 99

5 Coding in K-8 Curriculum ... 99

5.1 Introduction ... 99

5.1.1 Arguments for Coding Curriculum in the Younger Grades 100

5.1.2 Theoretical Perspectives on Coding in the K-8 Grades 103

ix

5.2 Problem Description ... 109

5.3 Purpose and Research Questions .. 110

5.4 Theoretical Frameworks and Methodology .. 111

5.4.1 Constructivism .. 111

5.4.2 Methodology and Document Analysis.. 112

5.5 Findings... 113

5.5.1 British Columbia’s Elementary Coding Curricula 113

5.5.2 Goals of British Columbia’s Elementary Coding Curricula 114

5.5.3 Learning Orientations in British Columbia’s Elementary Coding Curricula

... 114

5.5.4 Alberta... 116

5.5.5 Alberta’s Elementary Coding Curricula ... 117

5.5.6 Goals of Alberta’s Elementary Coding Curricula 117

5.5.7 Learning Orientations in Alberta’s Elementary Coding Curricula 118

5.5.8 Saskatchewan .. 119

5.5.9 Manitoba ... 120

5.5.10 Ontario’s Elementary Coding Curricula ... 120

5.5.11 Goals of Ontario’s Elementary Coding Curricula 121

5.5.12 Learning Orientations in Ontario’s Elementary Coding Curricula 122

5.5.13 Quebec’s Elementary Coding Curricula ... 124

5.5.14 Goals of Quebec’s Elementary Coding Curricula 124

5.5.15 Learning Orientations in Quebec’s Elementary Coding Curricula 124

5.5.16 New Brunswick’s Elementary Coding Curricula 125

5.5.17 Goals of New Brunswick’s Elementary Coding Curricula 125

5.5.18 Learning Orientations in New Brunswick’s Elementary Coding Curricula

... 126

5.5.19 Nova Scotia’s Elementary Coding Curricula .. 126

x

5.5.20 Goals of Nova Scotia’s Elementary Coding Curricula 127

5.5.21 Learning Orientations in Nova Scotia’s Elementary Coding Curricula . 127

5.5.22 Prince Edward Island .. 128

5.5.23 Newfoundland and Labrador Elementary Coding Curricula 129

5.5.24 Goals of Newfoundland and Labrador Elementary Coding Curricula ... 129

5.5.25 Learning Orientations in Newfoundland and Labrador Elementary Coding

Curricula ... 129

5.6 Comparative Analysis and Discussion.. 130

5.6.1 Coding or Coding-Related? For Some or For All? 130

5.6.2 Coding on its Own or Integrated… Somewhere? 133

5.6.3 Connecting Theory and Curricula ... 135

5.7 Conclusion .. 140

5.8 Chapter References ... 141

Chapter 6 ... 148

6 Integrative Chapter ... 148

6.1 Overview of Chapters 2 to 5 ... 148

6.2 Broadening CS Education Beyond the Optional, Secondary Courses 150

6.3 Papert and the Integration of CS in Other Subjects .. 153

6.4 From the Technical, to the Personal, Social and Cultural................................... 156

6.5 From the Ethical to the Justice-Centered Curriculum... 158

6.6 The Future of Secondary CS Curricula ... 160

6.7 Towards the Development of a Literacy ... 162

6.7.1 Re-mediation ... 164

6.7.2 Re-formulation .. 164

6.7.3 Reorganization .. 165

6.7.4 Revitalization .. 166

xi

6.7.5 Computational Literacy and a Post-Secondary Example........................ 167

6.8 Broadening of CS Education Leading to New Actors and Influences 169

6.9 Research question answered ... 172

6.10 Limitations of the Research .. 174

6.11 Implications and Future Research ... 176

6.12 Conclusion .. 178

6.13 Chapter References ... 180

Appendices .. 184

Curriculum Vitae .. 193

xii

List of Tables

Table 1. Ten affordances of computational modelling (Gadanidis et al., 2019) 21

Table 2. Theoretical approaches to the broadening of CS K-12 education 23

Table 3. CS focussed courses of study in Ontario Curriculum (1966-Present) 38

Table 4. Appearance of themes in the preambles of CS-related curriculum 39

Table 5. Grade 10 introductory CS-related courses, from 1966 to present day 51

Table 6. Occurrence of verbs in the 2000 and 2008 grade 10, introductory CS courses 54

Table 7. Recent arguments and goals for coding in the younger grades 102

Table 8. Brennan and Resnick’s (2012) CT concepts, practices and perspectives and Grover

and Pea's (2018) concepts and practices ... 106

Table 9. Content within the Computational Thinking and Robotics modules in British

Columbia's ADST curriculum .. 115

Table 10. Computer Science guiding questions and learning outcomes in Alberta K-6

curriculum ... 119

Table 11. Overall and specific coding expectations found in Stand C- Algebra, of the

Ontario, Grades 1-8 Mathematic Curriculum ... 122

Table 12. Categories of implementation of coding expectations in Canadian K-8 curricula 131

Table 13. Theoretical perspectives reflected in provincial coding-related curricula 136

Table 14. Categories of implementation of coding expectations in Canadian K-8 curricula

from Chapter 5 .. 152

Table 15. Examples of diSessa's (2018) four Rs in CS K-12 education 162

xiii

List of Figures

Figure 1. Computer science related curriculum in Ontario ... 37

Figure 2. Total number of students enrolled in Ontario secondary Computer Studies courses

(2011-2018)... 79

Figure 3. Percentage of secondary students enrolled in Ontario secondary Computer Studies

courses... 80

Figure 4. Total number of students enrolled in Computer Studies courses in each grade 81

Figure 5. Total number of students enrolled in the five Computer Studies courses 82

Figure 6. Total number of female and male students enrolled in Computer Studies courses . 84

Figure 7. Percentage of female students enrolled in each of the five Computer Studies

courses, from 2011 to 2018. .. 85

Figure 8. K-8 coding curricula implementation examples from Canadian provinces 133

Figure 9. K-8 coding curricula implementation examples from Canadian provinces from

Chapter 5 ... 152

xiv

List of Appendices

Appendix A. Email from CTE 2020 Secretariat providing reprint permission. 184

Appendix B. Published paper from CTE 2020. .. 185

Appendix C. Initial codes from Thematic Analysis of preambles .. 189

Appendix D. Themes developed through Thematic Analysis of preambles. 191

Appendix E. Letter of permission to reprint contents in Chapter 4. 192

file:///C:/Users/S-PC/Desktop/---STEVE---Files---/PhDizzle/SFloyd-PhDThesis-Education-April2022-GTtoThematicAnalysis.docx%23_Toc101482874
file:///C:/Users/S-PC/Desktop/---STEVE---Files---/PhDizzle/SFloyd-PhDThesis-Education-April2022-GTtoThematicAnalysis.docx%23_Toc101482877

xv

Preface

This thesis has been developed as an integrated article dissertation that includes an

introduction, four main articles, and an integrated chapter connecting the main ideas and

findings. These sections are briefly described below.

Chapter 1 is an introductory chapter that presents the context for the study, including a

description of the problem being investigated, the purpose of the study, the research

questions, related terms and definitions, and background on the researcher.

Chapter 2 analyzes existing literature from the field and provides a summary of the

theoretical perspectives related to coding and computational thinking in K-12 education.

Parts of this chapter have been published in the Proceedings of International Conference on

Computational Thinking Education 2020. Appendix A includes a letter from the publisher,

granting permission to include published parts in this dissertation.

Chapter 3 employs Thematic Analysis to investigate historical computer science curriculum

implemented as an optional, isolated subject in secondary education. Preliminary work from

this chapter was presented at the Fields Institute for Research in Mathematical Sciences and

the Special Interest Group on Computer Science Education 2018 Conference. It was also

published, in part, in The Math Knowledge Network Quarterly. Much of this work has also

been accepted as a single-paper presentation at the Canadian Society for the Study of

Education 2022 conference.

Chapter 4 investigates enrolment data related to CS courses implemented as optional credits

in secondary schools in Ontario and explores important issues related to equity, diversity, and

inclusivity in CS K-12 education. Parts of this chapter were published as a book chapter in

the Handbook of Research on Equity in Computer Science in P-16 Education. Appendix C

includes a letter from the publisher, granting permission to include the chapter in this

dissertation. Preliminary work from this chapter was presented at the 2019 ACM Conference

on International Computing Education Research in Toronto, Ontario.

Chapter 5 uses document analysis to provide a comparative analysis of existing coding

curriculum in K-8 curricula from jurisdictions across Canada. This work has also been

xvi

accepted as a single-paper presentation at the Canadian Society for the Study of Education

2022 conference.

Chapter 6 integrates findings from the four preceding chapters and demonstrates how

intersecting themes from each chapter provide a picture of the current state of K-12 CS

education and considers its past, present and potential future direction.

Together, these articles provide an analysis of the CS landscape in K-12 education at a

transformational time. I am the sole author of all chapters, conference presentations, and

articles that have been included.

1

Chapter 1

1 Introduction

This chapter introduces the problem, purpose of study and research questions that frame

this integrated article dissertation. Relevant terms and definitions are also identified and

described for the reader, as well as the background and positionality of the researcher.

1.1 Problem Description

The impetus for research focusing on Computer Science (CS) curriculum is the increased

popularity of initiatives that attempt to broaden participation in CS education across the

K-12 grades. This trend is exemplified by the programs, established by governments in

the United States and Canada, to provide all students with an opportunity to learn to

program a computer. In the United States, the Computer Science for All initiative, which

was first announced in 2016 by then President Barack Obama, is intended to empower

American students from K-12 to learn CS (Smith, 2016). In Canada, $110 million was

allotted to the CanCode initiative which aims to engage over 2 million young people from

K-12 in coding and digital skills development (Department of Finance Canada, 2019).

These initiatives demonstrate a recognition, on behalf of governments, of the importance

of broadening participation in CS education and often reflect an economic argument

maintaining that the knowledge and skills related to CS will be critical in the workforce

of the future (Passey, 2017). Historical and contemporary theoretical perspectives from

the field; however, present several alternative motivations for the broadening of CS-

related education to all. In the 1970s, Seymour Papert introduced the K-12 education

field to the idea that a computer could fundamentally change education by serving as a

“tool to think with” (Papert, 1993). Decades later, in 2006, Jeanette Wing popularized a

different approach, that argued that all students should program a computer in order to

think like a computer scientist, through the development of Computational Thinking

(Wing, 2006). Since that time, a number of researchers have provided additional detail

and direction for Wing’s (2006) Computational Thinking, while others have proposed

other approaches that include Computational Action (Tissenbaum et al, 2019),

2

Computational Fluency (Resnick, 2018), Computational Literacy (diSessa, 2018), and

Computational Participation (Kafai, 2016).

Currently, this variety of perspectives is not well understood and even the general idea

that all students should learn to program a computer is contentious (Webb et al, 2020).

Considering the number of educational jurisdictions beginning to integrate CS-related

concepts and skills in other subjects and grades, it is important to analyze how this is

being done, what approaches and directions are being represented in new curriculum, and

how this new curriculum might impact the more traditional implementation of CS

education. In addition, as these concepts and skills are expanded to all learners, it is

important to develop an understanding of potential equity, diversity, and inclusivity

issues apparent in the traditional delivery model of CS education. This can help

determine what can be done to alleviate these concerns or ensure that they are not

reproduced as implementation models change.

1.2 Purpose of the Study

The purpose of this study is to develop an understanding of the current, evolving state of

K-12 CS education by providing: 1) an analysis of literature that reflects theoretical

perspectives in the field of CS K-12 education, 2) an understanding of the historically

optional nature of CS education in terms of its placement in curriculum, goals and

specific components, 3) an analysis of enrollment patterns and related issues including

those concerning equity, diversity, and inclusivity, and 4) a comparative analysis of

current approaches to CS curriculum in the K-8 grades that is based on the research

literature.

1.3 Research Questions

This integrated article dissertation will provide an analysis of K-12 CS education through

the lenses of theoretical perspectives, enrolment, and curriculum. To do so, the following

question will be answered:

1. What is the current, and potentially future, direction of CS in K-12 education?

3

This will be answered by focusing on the following sub-questions:

a. What are the theoretical approaches presented in the literature that relate

to the integration of CS concepts and skills in the K-12 grades?

b. What do curriculum documents reveal about the nature of historical CS K-

12 education in terms of goals, rationale, and implementation models?

c. What do enrolment patterns reveal about the nature of historical CS K-12

education in terms of equity, diversity, and inclusivity?

d. What are the CS-related concepts and skills currently found in Canadian,

K-8 provincial curricula and how do these reflect theoretical perspectives

and historical CS K-12 education goals and rationale?

1.4 Terms and Definitions

1.4.1 Curriculum

A key focus for this study is the analysis and discussion surrounding curriculum. The

term curriculum can have several different meanings, depending on the context or even

the jurisdiction in which it is used. For some, curriculum can mean the activities and

lesson plans developed for a class, while for others curriculum might mean the learning

expectations and standards that students must meet. Curriculum may also be classified in

terms of being either formal, that which is public and officially recognized, and actual,

that which is carried out in the classrooms (Portelli, 1993). The learned curriculum is

quite simply what students actually learn (Moercke & Eika, 2002) while critical

curriculum theorists often refer to the hidden curriculum, first identified by Philip

Jackson (1968), as one that is implicit and that rewards certain values, dispositions, and

social and behavioural expectations. A categorization that is useful in this study is

provided by Doyle (1992), who defines three levels of curriculum as either institutional,

programmatic, or classroom. The institutional curriculum is broad, general, and abstract

representing belief systems of an ideal educational experience while in contrast, the

classroom curriculum involves the learning experiences that arise as teachers engage with

4

students within the schools (Deng, 2010). Sometimes considered to be in the middle of

these two extremes is the programmatic curriculum, which involves formal

organizational structures such as school subjects and courses of study, and is enacted

through policy documents, syllabi, and textbooks (Deng, 2010). The emphasis of this

study is on the programmatic curriculum, with a specific focus on the policy documents

developed by educational jurisdictions to communicate the expectations and outcomes

related to CS concepts and skills.

1.4.2 Computer Science Related Terms

Like any field of study, the definitions of key terms within CS education are sometimes

contentious. This section of the introductory chapter does not aim to resolve these

disagreements, instead it is intended to explain the use of terms within this work.

Computer science, computer programming, coding, and computational thinking are

related terms that appear in the literature and curricula and it is difficult to make clear and

precise distinctions between them. For the sake of this dissertation, the broad term

“computer science” will be used extensively in order to capture a number of these related

concepts and skills. The term “coding” will be used in certain sections when referring to

specific CS-related concepts and skills arising in K-8 curricula, as this appears to be a

popular use of the term in policy documents (Government of Canada, 2019). The term

Computational Thinking is explored in depth in Chapter 2. When Computational

Thinking appears outside of Chapter 2, the definition in use is that of Aho’s (2012) which

states that “computational thinking is the thought processes involved in formulating

problems so their solutions can be represented as computational steps and algorithms” (p.

832). This definition is recommended by Denning (2017) as it “captures the spirit of

computational thinking expressed over 60 years of CS and 30 years of computational

science. It also captures the spirit of computational thinking in other fields such as

humanities, law, and medicine” (p. 35). Additionally, specific terms will be used when it

is important to represent how an organization or educational jurisdiction refers to specific

initiatives. As an example, in 2016, the Ontario Ministry of Education announced plans to

support elementary teachers in integrating “coding and computational thinking” skills

5

into their teaching (Ontario Ministry of Education, 2016). These terms were specifically

used in the government’s announcement, and this specificity is important to capture

within the dissertation.

1.5 Organization of the Study

This dissertation is written as an integrated article thesis that comprises this introductory

chapter, four main works (chapters 2, 3, 4 and 5) and a final integrated chapter that

connects the main works. Together these six chapters provide context for the study and

answer the research questions posed in the Research Questions section above.

1.6 Background and Positionality of the Researcher

Considering the qualitative nature of the work and the role of the researcher as a tool in

the investigation, how the researcher situates themselves within the study can potentially

impact data collection, data analysis and findings (Merriam & Tisdell, 2015). It is

therefore important to clearly state the positionality of the researcher, as well as their

experience in the chosen field of study.

I began taking university CS courses in September 1997, where I reached the conclusion

that this subject could be taught in a creative and engaging way and was something that

had the potential to appeal to all students. In 2003, I started my career as a CS teacher and

15 years later I was awarded the 2017 Computer Science Teachers Association Award for

Teaching Excellence, presented by Infosys Foundation USA, the Association for

Computing Machinery and the Computer Science Teachers Association. During my time

as a secondary CS and Computer Engineering teacher, I led action research projects

related to CS education with students and teachers in the elementary grades. I have

worked as an independent consultant in the area of CS integration, a high school CS

online course writer, a Bachelor of Education instructor in Computational Thinking in

Mathematics and Science Education, and I am currently an Education Officer with

Ontario’s Ministry of Education, working in the area of STEM curriculum and policy

development.

6

My interest in curriculum and policy began when completing a Masters in Educational

Policy. While I am aware that a number of factors impact student learning, including

specific resources, classroom activities, and teacher professional development, I believe

that what is and is not included in mandatory curriculum has a dramatic impact on the

learning of students, and can reveal important information related to the goals and

perspectives of policy makers and governments. I recognize the importance and power of

curriculum and educational policy and I appreciate the opportunity to have an impact in

this area.

This qualitative research has been approached from a constructivist epistemology, which

embodies underlining assumptions that include the following:

• we construct meanings for ourselves, as we interpret the world;

• we engage with and make sense of the world based on our historical and social

perspectives;

• the generation of findings and meaning is social, arising from interactions with, or

artifacts from, the human community (Crotty, 1998).

My teaching and classroom activities embody Papert’s Constructionist learning theory,

that shares Constructivism’s idea of building our own knowledge structures, but also

focuses attention on the importance of constructing a “public entity” (Harel & Papert,

1991). In my CS and computer engineering classes, these public entities often took the

form of software solutions and physical computing artifacts that connected learning to a

number of cross-curricular contexts. Examples include small software applications that

analyzed sports data, the development of small computer games, robotics projects, and

interactive, programmed art with LEDs and programmed musical tones. After years of

working at the intersection of education and technology, I see the computer, the

programming environments, and the physical computing devices in much the same way

that Seymour Papert saw his childhood physical gears and his famous Logo Turtle, as

“objects to think with” (Papert, 1993, p. 11).

Finally, and perhaps most importantly, I would like to acknowledge the themes of equity,

diversity, and inclusivity that appear within this thesis, and to explain my current and

7

continued allyship with related initiatives. The broadening of CS education to support

underrepresented groups has consistently been a goal of my work, and I have attempted

to ensure that my efforts are supported by research and best practices. The focus of this

research is on curriculum and a reason for this is my view that large scale, educational

policy has the power to positively influence equity, diversity, and inclusivity concerns in

CS education and to make this important area of learning more accessible to all students.

I am aware that I do not identify as a member of an underrepresented group in CS, and as

a result, I have been hesitant to take up space in this area, when perhaps it is not my voice

that needs to be heard. My wife Lisa does extensive work in the area of K-12 CS

education and research and I am grateful to be able to discuss with her these concerns,

and better understand my role as an ally. The recent birth of our daughter has also

provided me with a new experience and perspective, and I hope that these can also help

me better understand equity, diversity, and inclusivity issues and allyship. I have

discussed my role in researching and presenting equity, diversity, and inclusivity issues in

CS education with a number of professors at Western University, and was humbled to

have received the Canadian Research Centre on Inclusive Education Research Award in

2019. I continue to consider how I can help contribute positively to equity, diversity, and

inclusivity initiatives in CS education. I hope that this thesis can have an impact in

supporting positive changes in K-12 CS education.

1.7 Chapter References

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7),

832-835. https://doi.org/10.1093/comjnl/bxs074

Crotty, M. (1998). The foundations of social research: Meaning and perspective in the

research process. Sage.

Denning, P. J. (2017). Remaining trouble spots with computational thinking.

Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438

Department of Finance Canada. (2019). Investing in the middle class: Budget 2019.

https://www.budget.gc.ca/2019/docs/download-telecharger/index-en.html

diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers.

Mathematics Education, Mathematical Thinking and Learning, 20(1), 3-31.

https://doi.org/10.1080/10986065.2018.1403544

8

Deng Z (2010). Curriculum planning and systems change. In P. Peterson, E. Baker, & B.

McGaw (Eds.), International Encyclopedia of Education (pp. 384-389). Elsevier.

Doyle, W. (1992). Curriculum and pedagogy. In P. W. Jackson (Ed.), Handbook of

research on curriculum (pp. 486–516). Macmillan.

Government of Canada. (2019). CanCode.

https://www.ic.gc.ca/eic/site/121.nsf/eng/home

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.

Jackson, P. W. (1968). Life in classrooms. Holt, Reinhart & Winston.

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12

education. Communications of the ACM, 59(8), 26-27.

https://doi.org/10.1145/2955114

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and

implementation. John Wiley & Sons.

Moercke, A. M., & Eika, B. (2002). What are the clinical skills levels of newly graduated

physicians? Self‐assessment study of an intended curriculum identified by a Delphi

process. Medical education, 36(5), 472-478. https://doi.org/10.1046/j.1365-

2923.2002.01208.x

Ontario Ministry of Education. (2016, December 5). Ontario helping students learn to

code: New supports for coding and computational skills in Ontario schools. Ontario

Newsroom. https://news.ontario.ca/en/release/42956/ontario-helping-students-

learn-to-code

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic

Books.

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum:

Implications for future research. Education and Information Technologies, 22(2),

421-443. https://doi.org/10.1007/s10639-016-9475-z

Portelli, J. P. (1993). Exposing the hidden curriculum. Journal of curriculum studies,

25(4), 343-358. https://doi.org/10.1080/0022027930250404

Resnick, M. (2018, September 16). Computational Fluency. Medium.

https://mres.medium.com/computational-fluency-776143c8d725

Smith, M. (2016, January 3). Computer Science For All. The White House: President

Barack Obama. https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-

science-all

9

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to

computational action. Communications of the ACM, 62(3), 34-36.

https://doi.org/10.1145/3265747

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M.

M. (2017). Computer science in K-12 school curricula of the 2lst century: Why,

what and when?. Education and Information Technologies, 22(2), 445-468.

https://doi.org/10.1007/s10639-016-9493-x

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.

10

Chapter 2

2 Theoretical Perspectives Related to Computer Science
in K-12 Education

The integration of computer science (CS) related concepts and skills into areas outside of

the traditional, CS high school courses is becoming an integral part of educational

reforms in Ontario, across Canada, and internationally. In the spring of 2019, Canada’s

federal government announced an additional $60 million of funding for their CanCode

coding initiative (Department of Finance Canada, 2019) while in spring 2020, Ontario

released curriculum that included coding expectations in grades 1-8 Mathematics

(Ontario Ministry of Education, 2020). Across Canada, Alberta, British Columbia, New

Brunswick, and Nova Scotia have recently included CS concepts and skills in their

current or draft K-8 curricula while beyond Canada the integration of CS into K-8

education has become an international phenomenon (Gadanidis et al., 2017). As the

broadening of CS education continues, it is important to situate these initiatives within

the research literature and theory related to CS education in the K-12 grades.

2.1 Introduction

It has been argued that the understanding of CS concepts contributes to the development

of important technical skills that form the basis of a number of lucrative, high-status and

flexible careers within the continually growing field of technology (Information and

Communications Technology Council, 2017). In addition, CS concepts and the thought

processes involved in Computational Thinking (CT) are discussed as being valuable for

all students to learn (Wing, 2006) as they are applicable to a wide range of careers.

Coding skills have also been recognized as a new type of literacy (diSessa, 2018), a form

of personal expression (Brennan & Resnick, 2012) and a critical part of being an

educated, 21st century citizen (Margolis et al., 2012). What follows is a literature review

of these and other theoretical perspectives related to the broadening of CS education and

the potential for integration of CS concepts and skills outside of the traditional, high

school CS classroom. The analysis begins with an introduction to Wing’s idea of CT and

then presents perspectives from other researchers, including their concerns with Wing’s

11

approach. This chapter is meant to provide an understanding of foundational, theoretical

approaches to situate the rest of this thesis and to provide context for contemporary

approaches to the broadening of CS in K-12 education.

2.2 Wing’s Idea of Computational Thinking

In March of 2006, the Communications of the ACM published an article by Wing entitled

Computational Thinking. At the time of publishing, Wing was the head of the Computer

Science Department at Carnegie Mellon University and was seeking to expand the scope

of CS education beyond the post-secondary levels. In Computational Thinking, Wing

articulated the characteristics and importance of a “universally applicable attitude and

skill set” (p. 33) called Computational Thinking (CT), that goes beyond simply coding a

computer and instead involves thinking like a computer scientist. She also encouraged the

CS community to inspire the public’s interest in the field of CS and expose all K-12

students to computational methods and models in an effort to make CT commonplace.

Wing initially defined CT as “solving problems, designing systems, and understanding

human behavior, by drawing on the concepts fundamental to computer science” (Wing,

2006, p. 33). Later, in 2011, she refined her definition to the “thought processes involved

in formulating problems and their solutions so that the solutions are represented in a form

that can be effectively carried out by an information-processing agent” (p. 20).

While researchers and educators have discussed Wing’s initial definition at length, they

have also criticized her focus on problem-solving and thinking like a computer scientist.

Lorena Barba (2016) explains that Wing’s view fails to acknowledge CT as “a source of

power to do something and figure things out, in a dance between the computer and our

thoughts”. Barba goes on to explain that viewing the computer as a formal tool to

understand, and then apply to a problem later, takes away its power:

The operational aspect of making problems computable is essential, but not

aspirational. Most people don’t want to be a computer scientist, but everyone can

use computers as an extension of our minds, to experience the world and create

things that matter to us. (para. 23)

12

Barba was attempting to move discussions away from a CS-centric CT and move towards

an idea of computational learning that would allow students to use computing as a means

to create new knowledge in a broad number of domains. diSessa (2018) shares similar

views, as he notes that Wing’s position appears firmly entrenched in the discipline of CS,

but for something to have as broad of aspirations as CT, it cannot belong to one

discipline. He also notes that Wing’s CT view fails to recognize foundational literature in

the field, including work from Papert, who like himself, aimed to bring computational

ideas to the wider population “for general intellectual purposes” (diSessa, 2018, p. 27).

These computational ideas and the general theory for the broadening of CS will be further

explored, beginning with the historical and foundational work from Papert.

2.3 Papert and Constructionism

Described as the father of educational computing (Stager, 2016), Papert and his ideas

were foundational in terms of considering the learning and teaching that takes place with

computers (Kafai & Burke, 2014). With a bachelor’s degree in philosophy and a PhD in

mathematics, Papert became a research associate at MIT in 1964 and a professor in 1969.

Before arriving at MIT, Papert worked closely with Piaget, whose theory of cognitive

development heavily influenced Papert’s work: “I take from Jean Piaget a model of

children as builders of their own intellectual structures” (Papert, 1993, p. 7). Papert built

on Piaget’s theory of constructivism by developing his own theory of learning that he

called constructionism (Stager, 2016). Both theories focus on learning being an active

process of constructing knowledge and both include the idea that children learn new

concepts by relating them to things that they already know (Ames, 2018). Where they

differ; however, is how Papert acknowledges the importance of culture as the source of

the materials that students will use to build their knowledge (Papert, 1993). Papert

believed that in some cases the culture provides the learning materials in abundance,

which facilitates Piagetian learning. In other cases, however, where there is a slower

development of a particular concept, Piaget attributed this to greater complexity or

formality, whereas Papert saw the critical factor as “the relative poverty of the culture in

those materials that would make the concepts simple and concrete” (Papert, 1993, p. 7).

13

It was for this reason that Papert was so enamored with the computer as a learning tool.

He felt that the relative poverty of a culture, school or classroom could be cured by a

computer, which he called the Proteus of machines, that can “take on a thousand forms

and can serve a thousand functions” (Papert, 1993, p. xxi). Papert’s research agenda at

MIT was shaped by two major themes surrounding the computer and education: 1)

children are capable of learning to use computers in masterful ways, and 2) learning to

use computers can change the way that children learn other things (Papert, 1993). While

the computer played a central role in his work with children, his focus was always on the

mind and the way in which technology could provide children with new possibilities for

learning, thinking and growing, both cognitively and emotionally (Papert, 1993).

At MIT, Papert developed the Logo computer programming language, which he felt

could alter the relationship that students had with computers. Rather than having students

be programmed by a computer (through computer-based exercises, computer-based

feedback or by having the computer dispense information), the Logo programming

environment reversed this relationship by having the student program the computer itself,

which essentially meant teaching the computer how to think. Papert felt that in teaching

the computer how to think, the student would begin to consider how they themselves

think: “The experience can be heady: Thinking about thinking turns the child into an

epistemologist, an experience not even shared by most adults” (Papert, 1993, p. 19).

When further describing the epistemological nature of children’s work with Logo, Papert

comes very close to describing a modern form of CT:

I have invented new ways to take educational advantage of the opportunities to

master the art of deliberately thinking like a computer, according, for example, to

the stereotype of a computer program that proceeds in a step-by-step, literal,

mechanical fashion. There are situations where this style of thinking is

appropriate and useful. Some children’s difficulties in learning formal subjects

such as grammar or mathematics derive from their inability to see the point of

such a style. (Papert, 1993, p. 27)

14

Papert uses the term “mechanical thinking” (Papert, 1993, p. 27) to describe the type of

thinking that students are introduced to when programming in Logo. He emphasizes that

by introducing students to mechanical thinking, they suddenly become aware that there is

such a thing as a thinking style, and they begin to consider other thinking styles that

might exist, as well as how and why they might choose between styles. Papert first uses

the term “computational thinking” (p. 182) when he discusses how the visions of early

experiments were insufficiently developed, in terms of how to integrate this type of

thinking into everyday life:

In most cases, although the experiments have been interesting and exciting, they

have failed to make it because they were too primitive. Their computers simply

did not have the power needed for the most engaging and shareable kinds of

activities. Their visions of how to integrate computational thinking [emphasis

added] into everyday life was insufficiently developed. But there will be more

tries, and more and more. And eventually, somewhere, all the pieces will come

together and it will catch. One can be confident of this because such attempts will

not be isolated experiments operated by researchers who may run out of funds or

simply become disillusioned and quit. They will be manifestations of a social

movement of people interested in personal computation, interested in their own

children, and interested in education. (p. 182)

Papert’s work surrounding computers and education, and his development of the Logo

programming language, sowed the seeds of this educational movement. Resnick, a former

student of Papert’s, exclaimed that he would be happy to spend the rest of his life

nurturing these seeds (Resnick, 2020).

2.4 Resnick and Computational Fluency

Resnick is currently the LEGO Papert Professor of Learning Research at MIT Media Lab

and the director of the MIT Lifelong Kindergarten research group that developed Scratch,

the world’s leading coding platform for kids. Resnick explains that Scratch was deeply

inspired by Papert’s Logo programming language but “goes beyond Logo by making

programming more tinkerable, more meaningful, and more social” (Resnick, 2014, p.

15

14). While Resnick makes these claims, it is important to note specific distinctions

between the Logo and Scratch programming languages. Papert’s Logo remained simple

and focused specifically on mathematics, whereas Scratch has broader goals and many

additional features, including a wide variety of programmable characters (sprites) and

backgrounds and the ability to share projects online. While this has the potential to keep

students engaged, there is also the possibility that additional features can distract students

and possibly teachers from the learning of mathematics. Benton et al. (2016) explain that

with carefully designed activities and pedagogy, such as their ScratchMath program,

Scratch can be used effectively to support mathematics instruction.

In terms of Resnick’s approach to CT and its role in children’s education, he

acknowledges, with co-author Brennan, that there is little agreement about what CT

encompasses, and even less agreement about strategies for assessing CT (Brennan &

Resnick, 2012). In order to provide further depth and clarity, they propose a CT

framework that includes three key dimensions: computational thinking concepts,

computational thinking practices and computational thinking perspectives.

Resnick and Brennan’s CT framework includes the concepts that designers engage in as

they program. These include sequences, loops, parallelism, events, conditionals,

operators, and data. CT practices differ to CT concepts in that the practices describe the

processes of construction that student engage in while creating Scratch projects. The

practices include being incremental and iterative, testing and debugging, reusing and

remixing, and abstracting and modularizing. CT perspectives, which describe the

evolving understanding that students using Scratch exhibit about themselves, their

relationship to others, and the technological world include expressing, connecting, and

questioning. Together, the concepts, practices and perspectives provide a broader

understanding of CT. Resnick later articulated this broader understanding using his term

Computational Fluency (Resnick, 2017).

The impetus for Resnick’s Computational Fluency was an attempt to focus on children

developing as computational creators as well as computational thinkers (Resnick, 2017).

Computational Fluency goes beyond computational concepts and problem-solving

16

strategies of CT by including student’s creativity and expression with digital tools

(Resnick, 2017). When describing Computational Fluency, Resnick is quick to point out

his emphasis on projects rather than puzzles:

Most introductions to coding are based on puzzles. Kids are asked to create a

program to move a virtual character past some obstacles to reach a goal. With

Scratch, we focus on projects instead of puzzles. When we introduce kids to

Scratch, we encourage them to create their own interactive stories, games and

animations. (Resnick, 2017, p. 48)

Resnick (2017) acknowledges Wing’s view of CT and its impact on the development of

thinking skills, but claims that becoming fluent, either in traditional writing or in code,

helps a student to move beyond CT thinking skills by also developing a voice and an

identity. While carefully constructed puzzles may help with fostering CT skills, Resnick

(2017) believes that the broadening of CS education should allow students to develop

their voice by learning to express themselves in new ways and by incorporating coding

into everyday life. In terms of programming projects and their role in developing an

identity, Resnick (2017) shares the following:

In today’s society, digital technologies are a symbol of possibility and progress.

When children learn to use digital technologies to express themselves and share

their ideas through coding, they begin to see themselves in new ways. They begin

to see the possibility for contributing actively to society. They begin to see

themselves as part of the future. (p. 50)

Resnick’s emphasis on having students design digital artifacts is well grounded in

Papert’s constructionist approach to learning. He acknowledges the surge of interest in

coding “provides an opportunity for reinvigorating and revalidating the Constructionist

tradition in education” (Resnick, 2014, p. 7). Kafai, another one of Papert’s students,

acknowledges the importance of sharing and collaboration in the broadening of CS, and

these components are embodied in her extension of CT that she calls Computational

Participation (Kafai, 2016).

17

2.5 Kafai and Computational Participation

Kafai is currently the Lori and Michael Milken President's Distinguished Professor in the

Graduate School of Education at the University of Pennsylvania. Kafai attended graduate

school at Harvard University and was part of the team that, along with Resnick, helped

developed the Scratch programming language. Kafai’s work, while acknowledging the

technical and tool-oriented approaches to coding, focusses much more on the social and

participatory dimensions (Kafai et al., 2011; Kafai & Burke, 2013; Kafai et al., 2014).

Kafai, and co-author Burke, discuss coding in terms of four dimensions characteristic of

Papert’s Constructionist thought (social, personal, cultural, and tangible) and explain how

these dimensions have evolved resulting in a new form of programming whereby students

can create applications as part of a larger community (Kafai & Burke, 2014). These

shared applications are the “public entity” that Papert and Harel (2002) describe as the

important addition that Constructionism provides, as the building of knowledge structures

“happens especially felicitously in a context where the learner is consciously engaged in

constructing a public entity, whether it's a sand castle on the beach or a theory of the

universe” (p. 2). This programming, as a participatory process, differs from Wing’s CT

approach, in recognizing that “when code is created, it has both personal value and value

for sharing with others” (Kafai & Burke, 2014, p. 17). Kafai (2016) argues that CT needs

to be reframed as Computational Participation moving us “beyond tools and code to

community and context” (p. 27).

Computational Participation acknowledges that CT is a social practice with a broad

reach. Rather than an abstract discipline, programming is now a way to “make and be” in

the digital world (Kafai, 2016, p. 27). Digital technologies are used for functional,

political, and personal reasons and therefore all students should develop an understanding

of interfaces, technologies, and systems that they encounter on a daily basis. By

developing an understanding of these systems, students can fully participate in digital

activities and social practices.

Computational Participation takes a broad view of computing and acknowledges its

potential impact across a wide range of fields. This broad view shares some

18

characteristics with Computational Literacy (CL), an idea that was developed by diSessa

(2000) before Wing’s ideas about CT became popular.

2.6 diSessa and Computational Literacy

diSessa is the Corey Professor of Education at Berkeley’s Graduate School of Education

where he researches forms of knowledge in physics, as well as the use of computer

systems in teaching and learning. He started his work in computing education as a

member of Papert’s Logo group at the MIT Artificial Intelligence Laboratory and now

focusses on the idea that computers can be the basis for a new form of literacy that is

applicable to a wide variety of subjects, contexts, and domains (Weintrop et al., 2016).

diSessa (2018) imagines a world “in which computational knowledge – the prime

example is programming – is as widely practiced as reading newspapers and novels is

today” (Papert, 2006, p. 240). In presenting computing as a new form of literacy, diSessa

advocated for the broad use of computers in schools, and for educators to see computing

as means of transforming the teaching and learning of things that are hard for students to

learn (Papert, 2006). diSessa uses algebra as an example of an epistemological entity that

transformed complex and difficult ideas into a form “that is within the intellectual grasp

of every competent high school student” (Papert, 2006, p. 241). He suggests that CL

involves computing and computer programming concepts being integrated into school

subjects in much the same way that algebra has become a tool in science, mathematics,

and other subjects.

diSessa (2018) explains that his use of the term literacy goes beyond the idea of simply

having a casual acquaintance with something. Instead, literacy means the adoption, by a

broad group, or even a civilization, of a “particular infrastructural representational form

for supporting intellectual activities” (diSessa, 2018, p. 4). diSessa criticizes the

“computer science-centric” view in Wing’s CT by acknowledging that because literacy is

such a massive social and intellectual accomplishment, it can not belong to a single

professional discipline. diSessa adds to this by providing practical advice:

19

There is no single recipe for how computation changes a field or subfield. If your

pursuits take you in different directions, then I suggest here, that will enrich the

horizon for all of us. If they parallel or extend what I and others who are focused

on the big picture have already done, perhaps we can converge sooner than might

be expected. (diSessa, 2018, p. 28)

2.7 Denning, Aho, Wilkerson, Gadanidis and Modelling in
Other Subject Areas

Denning is a Distinguished Professor of Computer Science at the Naval Postgraduate

School in Monterey, California. He has worked extensively within the field of CS and CT

and has published numerous works on computers and computing education. Denning

(2017) explains that CT has been major component of CS since the 1950s and so has the

idea that CT can benefit people in a variety of fields. Denning claims that recent attempts

to make CT appealing to fields other than CS have led to “vague and confusing

definitions of CT” (p. 33). Denning’s two main criticisms of Wing’s definition of CT

include the absence of any mention of computational models as well as the suggestion

that any sequence of steps constitutes an algorithm. He prefers, instead, to accept a

definition of CT proposed by Alfred Aho (2012), which he claims better embodies the

notion of CT from CS, computational science, as well as other fields such as the

humanities, law, and medicine.

Aho is the Lawrence Gussman Professor Emeritus of Computer Science at Columbia

University. Aho (2012) defined CT quite succinctly as “the thought processes involved in

formulating problems so their solutions can be represented as computational steps and

algorithms” (p. 832). Aho explained that an important part of the CT thought processes

involves finding the appropriate models of computation, and if there are none, then

developing new ones. This view is exemplified in some of the mathematical modelling

work by Wilkerson (Wilkerson & Fenwick, 2017).

Wilkerson is an Assistant Professor in the Graduate School of Education at the University

of California, Berkeley and with co-author Fenwick, suggests that CS shares language

with mathematics that can be used to represent models resulting in a description of

20

patterns and processes that can make up scientific and engineered systems (Wilkerson &

Fenwick, 2017). Wilkerson and Fenwick (2017) note:

While mathematics focuses on quantities, computational thinking focuses on

processes. Students engaged in the practice of computational thinking break a

complex problem or process up into smaller steps in order to better understand,

describe, or explain it. It involves thinking about how computer tools and

algorithms – specific instructions for how something should be done – can be

used to make jobs like data collection and analysis or theory testing easier, more

manageable, or more powerful. (Wilkerson & Fenwick, 2017, p. 189)

Wilkerson provides opportunities for students to use or build computational models and

simulations in order to better understand scientific and engineered systems. An example

of this work includes an investigation into groups of sixth-grade girls generating models

of smell diffusion concepts using drawing, stop-motion animation, and computational

simulations (Wilkerson-Jerde et al., 2015). The authors observed two modelling cycles

that students engaged in, including a “messing about” modelling cycle, where ideas

related to the spread of smell were described and represented together, and a “digging in”

cycle where the computational simulation allowed the group to focus on testing and

revising specific mechanisms that underlie smell. The authors concluded that this

“digging in” cycle involved a more mechanistic focus that was facilitated by creating a

computational object that encapsulated ideas from the “digging in” cycle. An additional

example of this computational modelling and simulation work includes Wilkerson and

co-authors acknowledging that the building of computational models supports structuring

knowledge (e.g., mechanistic reasoning) and fostering reflection and refinement (e.g.,

modeling practices). An important caveat; however, was that that the modeling strategies

that students engaged in was important, as the modelling strategies must be aligned with

the modelling type that students are employing (Wilkerson et al., 2018).

Adding to the literature connecting CT, coding and mathematical modelling, is the work

done by Gadanidis, a Professor in the Faculty of Education at Western University, in

London, Canada. Gadanidis et al.’s (2019) research surrounding computational

21

modelling, mathematics education and elementary teacher education reframes CT with a

focus on what it can do (CT’s affordances), rather than what it is (CT’s definition). The

authors identify ten affordances that come into play when modelling mathematical

concepts and relationships with computational tools (Table 1) and explain that these

affordances and the use of coding tools can create scenarios in which students and

teachers can connect a variety of mathematical concepts together, in this case from

different strands of the curriculum.

Table 1. Ten affordances of computational modelling (Gadanidis et al., 2019)

1. Access: computational modelling tools for young students have a low floor & a high ceiling, allowing

use with minimum prerequisite knowledge and offering opportunities to investigate more complex

relationships and concepts

2. Agency: a low floor, high ceiling access allows students conceptual freedom to investigate ideas and

concepts of interest

3. Abstraction: the code used to develop computational models captures/abstracts essential

characteristics and processes of concepts and relationships

4. Tangible feel: abstractions in computational models have a tangible feel as they can become objects of

other code

5. Automation: computational models automate processes

6. Dynamic modelling: automation allows for dynamic modelling, where concepts and relationships can

be modelled at the click of a button

7. Surprise & insight: parameters and other aspects of the code can be edited and modified, to explore

other cases, and to offer opportunities for conceptual surprise and insight

8. Audience: computational models can easily be shared with others

9. Re-use/Re-mix: others can re-use shared computational models or re-mix them to create variations

10. Performance: digital media, inclusive of some coding environments are performative in their nature

and allow users to not only write code, but to also insert multimodal text and tell stories through

animation

These affordances and the use of coding tools can also promote the exploration of

multiple mathematical processes such as problem solving, reasoning and proving,

reflecting, computational strategies, representation and communication. In addition,

mathematics concepts that may appear outside of the curriculum expectations for certain

levels, can be explored as a result of the low floor, high ceiling nature of modelling with

code (Gadanidis et al., 2019). The authors provide an example of trigonometry,

22

previously introduced by Gadanidis (2012), where bar graphs reflecting the heights of

hours on a clock form trigonometric graphs. An additional example of students exploring

mathematics concepts that may appear outside of the curriculum expectations for certain

levels includes grade 1 students being able to explore the rudiments of the Binomial

Theorem through dynamic, computational modelling (Gadanidis et al., 2017).

The areas of investigation presented by Wilkerson and Gadanidis, related to

computational simulations and models in science and mathematics, represent Grover’s

(2018) classification of integrating CT in an effort to enable or enrich learning in other

disciplines.

2.8 Grover, a Tale of Two CTs and Consolidating Theory

Grover (2018), a computer scientist and learning sciences researcher based in Palo Alto,

California, argues that in order to make sense of CT in K-12 education we need to

distinguish between two main views. Grover’s first view of CT is that of CS thinking in

CS classrooms while her second is that of CT in other disciplines. She explains that

ideally, students will get a chance to experience CT in both settings during their K-12

schooling. Grover also presents a brief timeline of CT starting with the problem-solving

practices discussed by Forsythe (1967) and the elements of CS thinking discussed by

Knuth (1980). In regard to Wing, Grover (2018) credits her definition of CT for igniting

K-12 CS education and for calling attention to its role in other disciplines, but also

acknowledges that there should not be a focus on CT changing everyday behaviors.

Instead, CT should be viewed as playing a significant role in CS education and playing a

role in helping students understand concepts within a variety of fields and disciplines.

This idea of understanding concepts in a variety of fields and disciplines is extended

further in Table 2, as a means of organizing the theories within this chapter. Wing’s CS-

centric approach frames CS as a topic of study in and of itself, as students can think like a

computer scientist, and draw on the fundamental CS concepts to solve problems, design

systems, and understand human behaviour. Wing’s CS focused approach has value for

broadening the scope of the traditional CS classroom and encouraging participation in

these courses. While Wing’s initial work lacked description and depth, other researchers

23

such as Brennan and Resnick (2012) and Grover and Pea (2018) have provided a more

detailed description of CT components, which they call CT concepts, practices and

perspectives.

Table 2. Theoretical approaches to the broadening of CS K-12 education

Theoretical

Approach
Researcher Details

CS as a topic

of study in

and of itself

Wing
(2006, 2011)

Computational Thinking is a universally applicable skill set.

Important for students to learn to think like a computer scientist.

Solving problems, designing systems, and understanding human behaviour, by drawing

on the concepts fundamental to CS.

Studying CT is good for all students and allows them to be better thinkers.

CS-related

concepts and

skills as a

tool in

mathematics

and science

Papert
(1993)

Acknowledges students as builders of their own intellectual structures.

The computer is a “tool to think with”.

Coding can change the way students learn about other things.

The computer serves as the Proteus of machines, providing the culture and materials that
made the previous learning of concepts difficult.

diSessa

(2000, 2018)

Computational Literacy can transform the teaching and learning of things that are hard

for students to learn.

Like algebra, coding can be an epistemological entity that can transform complex and

difficult ideas into a form that is within our intellectual grasp.

Coding has the potential to be adopted as an infrastructural representational form for

supporting intellectual activities.

Barba

(2016)

Avoid viewing the computer as a formal tool to understand, then apply to a problem
later, as this takes away its power.

Not everyone wants to be a computer scientist, but everyone can use computers as an
extension of our minds.

Potential for creating knowledge in a broad number of domains.

Wilkerson et al.
(2018) and

Gadanidis et al.

(2019)

Focus on computational modelling of mathematics and scientific concepts.

Concepts are better understood through developing dynamic, computational

representations.

CS concepts

and skills for

the social,

personal,

and cultural

Kafai

(2016)

Computational Participation moves beyond tools and code, to community and context.

Highlights the four dimensions of social, personal, cultural, and tangible.

Coding as part of a participatory process and social practice, with a broad reach to a
larger community.

Code has personal value, and a value for sharing with others.

Resnick

(2017)

Computational Fluency highlights importance of children developing as creators, not just
thinkers.

Move away from puzzles and beyond concepts and problem solving, to creativity and
expression.

Focus on students creating a voice and identity.

Recognizes the potential to reinvigorate and revalidate the constructionist ideals in

schools.

24

The views of Papert (1993), Barba (2016), diSessa (2018), Wilkerson (Wilkerson et al.,

2018), Gadanidis (Gadanidis et al., 2019), Kafai (2016) and Resnick (2017), while still

appropriate in the CS classroom, are better suited than Wing’s when one considers the

disciplines outside of CS. These views embody a perspective of the computer as a tool

rather than as an object of study in and of itself. Papert (1993), diSessa (2018), Barba

(2016), Wilkerson (Wilkerson et al., 2018), and Gadanidis (Gadanidis et al., 2019)

highlight the computer as a tool within mathematics and science, while Kafai (2016) and

Resnick (2017) focus more on the social, personal and cultural affordances of programing

the computer.

Wilkerson and Gadanidis’s approach to having students use CS concepts and skills to

build computational models and simulations in order to better understand mathematical,

scientific and engineered systems is a powerful one for the mathematics and science

classrooms. It means re-envisioning data collection, analysis, and theory testing, making

it more manageable and providing younger students with the tools that experienced

scientists and mathematicians use on a daily basis. Expanding this idea and aiming for an

even greater impact, diSessa asks us to think big and orient ourselves to the best that can

be imagined by presenting a model of how coding can potentially become a literacy. His

idea of CL means a transformation in the way students learn mathematics, and he predicts

that CL can dramatically overshadow the type of algebra and calculus literacy that

students currently develop.

Kafai’s Computational Participation and Resnick’s Computational Fluency emphasize the

idea that programming a computer is a social practice with functional, political, and

personal value. This can provide meaningful context for programming projects, allowing

them to be more closely connected to student’s lives and communities. Most importantly,

these components could also be beneficial in a broadening of CS to other subject areas

and grades, as they include an emphasis on creativity and expression, which may invite

coding activities within the Arts, Languages, or other contexts. If mathematics and

science areas are the focus, however; it seems that Gadanidis, Wilkerson and diSessa’s

work would be most helpful as a starting point.

25

2.9 Conclusion

This analysis of the approaches to CS-related concepts and skills in K-12 education

provides a theoretical context for further exploration of themes within this thesis. In

Chapter 3, historical curriculum in Ontario is examined, and these theoretical frameworks

can help identify whether or not a change of focus has occurred in terms of the concepts

and skills included within secondary CS curricula. These frameworks will also prove

valuable as new CS-related curriculum within the K-8 grades is explored in Chapter 5, as

they can provide insight into the direction that various jurisdictions in Canada may have

pursued to broaden CS education. In terms of the issues addressed in Chapter 4, including

those of enrolment, equity, diversity, and inclusivity, the work within this chapter will

help shed light on why students may or may not be attracted to secondary courses in CS,

and may provide insight into how the broadening of CS could be made more or less

effective, with the adoption or emphasis of a particular direction or approach. This

foundational and theoretical chapter, in combination with the analysis of curriculum and

enrolment in further chapters, will help present an understanding of the current field of

CS and K-12 education, a field that was invigorated by Wing’s (2006) work, but that

includes many more substantial and comprehensive theories upon which to situate itself

in the coming years.

2.10 Chapter References

Aho, A. V. (2012). Computation and computational thinking. Computer Journal, 55(7),

832-835. https://doi.org/10.1093/comjnl/bxs074

Ames, M.G. (2018). Hackers, computers, and cooperation: A critical history of logo and

constructionist learning. Proceedings of the ACM on Human-Computer Interaction

2(CSCW), 1-19. https://doi.org/10.1145/3274287

Barba, L. (2016, March 15). Computational thinking: I do not think it means what you

think it means. Lorena A. Barba Group.

http://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-

you-think-it-means/.

Benton, L., Hoyles, C., Kalas, I., & Noss, R. (2016). Building mathematical knowledge

with programming: Insights from the ScratchMaths project. In A. Sipitakiat & N.

Tutiyaphunegprasert (Eds.), Proceedings of constructionism 2016 (pp. 25–32).

Suksapattana Foundation.

26

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. In: Proceedings of the 2012 Annual

Meeting of the American Educational Research Association, Vancouver, Canada.

Denning, P. J. (2017). Remaining trouble spots with computational thinking.

Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438

Department of Finance Canada. (2019). Investing in the middle class: Budget 2019.

https://www.budget.gc.ca/2019/docs/download-telecharger/index-en.html

diSessa, A. (2000). Changing minds. MIT Press.

diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers.

Mathematics Education, Mathematical Thinking and Learning, 20(1), 3-31.

https://doi.org/10.1080/10986065.2018.1403544

Forsythe, G. E. (1967). What to do till the computer scientist comes. The American

Mathematical Monthly, 75(5), 454-462.

Gadanidis, G. (2012). Trigonometry in grade 3? What Works? Research into Practice,

42, 1-4.

Gadanidis, G., Brodie, I., Minniti, L., & Silver, B. (2017). Computer coding in the K-8

mathematics curriculum? What works: Research into practice, 69, 1-4.

Gadanidis, G., Hughes, J. M., Minniti, L., & White, B. J. (2017). Computational thinking,

grade 1 students and the binomial theorem. Digital Experiences in Mathematics

Education, 3(2), 77-96. https://doi.org/10.1007/s40751-016-0019-3

Gadanidis, G., Hughes, J. M., Namukasa, I., & Scucuglia, R. (2019). Computational

modelling in elementary mathematics teacher education. In S. Llinares & O.

Chapman (Eds.), International Handbook of Mathematics Teacher Education:

Volume 2 (pp. 197-222). Brill Sense

Grover, S. (2018, November 5). A tale of two CTs (and a revised timeline for

computational thinking) [Blog Post]. Communications of the ACM.

https://cacm.acm.org/blogs/blog-cacm/232488-a-tale-of-two-cts-and-a-revised-

timeline-for-computational-thinking/fulltext.

Grover, S., & Pea, R. (2017). Computational thinking: A competency whose time has

come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science

education: Perspectives on teaching and learning (pp. 19–38). Bloomsbury

Academic. https://10.5040/9781350057142.ch-003

Government of Canada. (2019). CanCode.

https://www.ic.gc.ca/eic/site/121.nsf/eng/home

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.

27

Information and Communications Council. (2017). The next talent wave: Navigating the

digital shift. https://www.ictc-ctic.ca/wp-content/uploads/2017/04/ICTC_Outlook-

2021.pdf

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12

education. Communications of the ACM, 59(8), 26-27.

https://doi.org/10.1145/2955114

Kafai, Y. B., & Burke, Q. (2013). The social turn in K-12 programming: Moving from

computational thinking to computational participation. ACM, 603-608.

https://doi.org/10.1145/2445196.2445373

Kafai, Y.B., & Burke, Q. (2014). Connected code: Why children need to learn

programming. MIT Press.

Kafai, Y. B., Fields, D. A., & Searle, K. A. (2014). Electronic textiles as disruptive

designs: Supporting and challenging maker activities in schools. Harvard

Educational Review, 84(4), 532-563.

https://doi.org/10.17763/haer.84.4.46m7372370214783

Kafai, Y. B., Peppler, K. A., Lemke, J., & Warschauer, M. (2011). Youth, technology,

and DIY: Developing participatory competencies in creative media production.

Review of Research in Education, 35(1), 89-119.

https://doi.org/10.3102/0091732X10383211

Knuth, D.E. (1980). Algorithms in Modern Mathematics and Computer Science. Stanford

Department of Computer Science Report No. STAN-CS-80-786.

Margolis, J., Ryoo, J. J., Sandoval, C. D., Lee, C., Goode, J., & Chapman, G. (2012).

Beyond access: Broadening participation in high school computer science. ACM

Inroads, 3(4), 72-78. https://doi.org/10.1145/2381083.2381102

Ontario Ministry of Education. (2020). The Ontario curriculum grades 1-8: Mathematics.

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic

Books.

Papert, S. (2006). Minding change. Human Development, 49(4), 239-247.

https://doi.org/10.1159/000094373

Resnick, M. (2014). Give P’s a chance: Projects, peers, passion, play. In G. Futschek, &

C Kynigos (Eds), Proceedings of the 3rd international constructionism conference

2014 (pp. 13-20). Austrian Computer Society.

Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects,

passions, peers, and play. MIT Press.

28

Resnick, M. (2020, October 16). The seeds the Seymour Sowed. Medium.

https://mres.medium.com/the-seeds-that-seymour-sowed-c2860379617b

Stager, G. S. (2016). Seymour Papert (1928-2016). Nature, 537(7620), 308-308.

https://doi.org/10.1038/537308a

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky,

U. (2016). Defining computational thinking for mathematics and science

classrooms. Journal of Science Education and Technology, 25(1), 127–147.

https://doi.org/10.1007/s10956-015-9581-5

Wilkerson, M. H. & Fenwick, M. (2017). The practice of using mathematics and

computational thinking. In C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.),

Helping Students Make Sense of the World Using Next Generation Science and

Engineering Practices. National Science Teachers’ Association Press.

Wilkerson-Jerde, M. H, Gravel, B. E., & Macrander, C. (2015). Exploring shifts in

middle school learners’ modeling activity while generating drawings, animations,

and computational simulations of molecular diffusion. Journal of Science and

Educational Technology, 24(2-3), 396-415. https://doi.org/10.1007/s10956-014-

9497-5

Wilkerson, M. H., Shareff, R., Laina, V., & Gravel, B. (2018). Epistemic gameplay and

discovery in computational model-based inquiry activities. Instructional Science,

46(1), 35-60. https://doi.org/10.1007/s11251-017-9430-4

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.

https://doi.org/10.1145/1118178.1118215

Wing, J. (2011). Research notebook: Computational thinking—What and why. The link

magazine, 6, 20-23.

29

Chapter 3

3 Historical Computer Science Curriculum: From 1966 to
today

This chapter provides insight into the evolution and current state of secondary Computer

Science (CS) education through an analysis of eight Ontario Ministry of Education

documents that were released from 1966 to 2008. First, Thematic Analysis is used to

compare the preambles of each document, providing insight into the intended goals and

rationale for each curricula and how these have evolved over the years. After this

analysis, a second section investigates the specific concepts and skills included in

introductory, CS-related courses that have been implemented in Ontario. The results

indicate that CS courses appeared first in Ontario’s secondary education system within

the Business and Commerce curriculum, with close connections to the data processing

context. In addition, documents from as far back as 1966 and 1970 were clearly

acknowledging many of the themes evident in today’s discourse on the broadening of CS

education. These include the economic argument for increasing CS participation, the

impact of technology on society, and the importance of cross-curricular connections,

flexibility, and creativity inherent in CS education. Ethical issues and the appropriate use

of technology are themes that were not emphasized in the first two Ontario curriculum

documents, but both have been a focus in the six curriculum preambles since. The

analysis of specific concepts and skills included in the introductory courses shows that

some topics such as control structures and the input-storage-processing-output model of

the computer have been included in CS curricula for the last 55 years. Other topics and

themes, such as program and project design, creativity, expression, the sharing of end

products and historical and cultural contexts of CS, while sometimes apparent in the

preambles of documents, are noticeably absent in the outcomes and expectations of some

of the grade 10 courses.

Considering the growing number of educational jurisdictions beginning to broaden CS

concepts and skills in K-12 education, and considering the new CS-related knowledge

and skills that students will have developed in elementary school, before entering into

30

secondary CS courses, the results of this study provide an important historical context.

The evolution of CS-related courses in Ontario is revealed, encouraging educators,

researchers and policy makers to consider historical CS documents to inform effective

policy and practice, as well as future research in computing education.

3.1 Introduction

The impetus for research on historical CS curriculum is the increasingly popular trend of

integrating and adding CS concepts and skills to mandatory K-12 education around the

world. As of 2012, Israel, Russia, South Africa, New Zealand, and Australia had all

included CS concepts in their K-12 curriculum (Grover & Pea, 2013, p. 3). In 2016, then

President Barack Obama announced the Computer Science for All (CSForAll) initiative,

which was intended to expand the scope of CS education for American students in the K-

12 grades (Smith, 2016). In 2012, the United Kingdom’s Royal Society published Shut

Down or Restart? The Way Forward for Computing in UK Schools which paved the way

for the implementation of K-12 computing curriculum that includes a number of CS

concepts beginning as early as year 1 (age 5) (The Royal Society, 2017, p. 7).

In Canada, British Columbia has integrated CS concepts into their K-12 Applied Design,

Skills and Technologies curriculum (British Columbia Ministry of Education, 2016)

while Nova Scotia has developed coding curriculum components to be integrated into a

variety of subjects from K-8 (Nova Scotia Department of Education and Early Childhood

Development, 2015; Nova Scotia Department of Education and Early Childhood

Development, 2016). In Ontario, the Ministry of Education released coding expectations

in the 2020 Grades 1-8 Mathematics curriculum (Ontario Ministry of Education, 2020),

while in 2021 Alberta released draft CS-related expectations in Grades 1-6 Science

curriculum (Alberta Education, 2021)

As CS concepts continue to be included in the public education curriculum of younger

grades, it is important to note that the secondary CS curriculum of many educational

jurisdictions has a well-established history. In Ontario, Curriculum RP-33 Data

Processing (1966) was the first CS-related document released by the Ontario Department

of Education (now Ministry of Education). This was followed by seven updates and

31

additions resulting in the most recent Computer Studies curriculum released in 2008

(Ontario, 2008).

What follows is a description of the courses of study of eight Ontario CS curriculum

documents, as well as an in-depth analysis of their preambles (introduction, rationale,

goals, objectives, etc). Also included, as an additional section for this thesis, is an

analysis of specific outcomes and expectations in the four introductory, grade 10 courses

that have been implemented in Ontario secondary schools since 1966. This investigation

provides findings related to the philosophies, goals, and objectives of secondary CS

curriculum in Ontario, as well as a discussion on the potential impact of historic CS

documents on recent curriculum reform and CS initiatives.

3.2 Thematic Analysis

This study uses Thematic Analysis (TA) to examine the preambles of historical CS

curricula documents. TA offers a systematic way to identify, organize, and offer insight

into patterns of meaning or themes within data (Braun & Clarke, 2012). This is

appropriate for this study as it sets out to the identify the goals and rationale for a number

of historical curricula documents, as well as how the goals and rationale have changed or

evolved over the years.

3.2.1 Background

TA was originally developed by Braun and Clarke within the context of Psychology and

is now widely used in a number of areas of qualitive research (Braun & Clarke, 2012).

TA is useful in identifying patterns across data, and is recognized as being a flexible

method of analysis as it can be applied across a variety of theoretical and epistemological

frameworks, as well as to a variety of study questions, designs and sample sizes (Kiger &

Varpio, 2020).

TA can both describe and interpret data, as it selects and constructs themes through a

systematic process of coding data, searching and refining themes, and reporting findings.

Rather than examining unique experiences or phenomena, TA is appropriate when

searching for common or shared meanings amongst a number of data sets (Kiger &

32

Varpio, 2020). Within TA, data is not directly coded as themes. Instead, themes are

constructed as components of the data are identified, reframed, and connected. While TA

is often recognized as being similar to Grounded Theory (GT), which also involves a

systematic way to analyze data and generate themes, it’s important to note that TA does

not go as far as GT in terms of developing theory (Kiger & Varpio, 2020).

TA approaches can be primarily deductive (top-down) or primarily inductive (bottom-

up), but Braun and Clarke (2012) make it clear that all analysis will involve some

combination of the two. In a deductive approach, the researcher codes and interprets the

data using predefined concepts, ideas, or topics. Alternatively, in an inductive approach

the codes and themes come from the contents of the data.

In reality, coding and analysis often uses a combination of both approaches. It is

impossible to be purely inductive, as we always bring something to the data when

we analyze it, and we rarely completely ignore the semantic content of the data

when we code for a particular theoretical construct - at the very least, we have to

know whether it is worth coding the data for that construct. (Braun & Clarke,

2012)

In this study, the data is approached with the intent of identifying the goals and rationale

of the curriculum communicated in the documents; however, categories are not

predefined. In this way, the study uses a more inductive approach whereby the coding

and themes will be constructed from the data. This construction will take place using the

six-phase approach described by Braun and Clarke (2021).

3.2.2 Six-Phase Approach

The most widely used method of TA is Braun and Clarke’s (2012) six-phase approach

(Kiger & Varpio, 2020). It’s important to note that this approach is not linear, but instead

should be iterative, with various phases being revisited throughout the research process.

The six-phases are detailed below and include 1) familiarizing yourself with the data, 2)

generating initial codes, 3) searching for themes, 4) reviewing potential themes, 5)

defining and naming themes, and 6) producing the report.

33

The first phase involves the researcher familiarizing themselves with the data by reading

and re-reading, and by making notes. The process of making notes in this stage is causal

rather than systematic, but it is nonetheless important, as Braun and Clarke (2012) point

out that this ensures that reading of the data is active, analytical, and potentially critical.

By the end of the first-phase, the researcher should be intimately familiar with the data

and should be able to begin to identify ideas connected to the research question(s).

After familiarizing themselves with the data, the researcher will now begin generating

initial codes during phase two. Braun and Clarke (2012) describe the codes as the

individual bricks and tiles of an eventual house that is being built. Data that is relevant to

the research question is coded, and can be done using descriptive language, or some

interpretation can take place in this initial coding stage.

The third phase involves actively generating or constructing themes from the coded data.

Areas of similarity and overlap are identified in the codes, themes are developed, and also

connections between the themes begin to be considered. A miscellaneous theme can also

be used, to capture any codes that are not clearly connecting with others. This phase

concludes with the creation of a thematic map or table outlining potential themes (Braun

& Clarke, 2012).

Once the data has been coded and themes have been constructed, phase four involves the

recursive process that includes reviewing themes and possibly rearranging codes and

collapsing or splitting themes. New themes can be created at this stage, just as some

existing themes may be discarded. The phase ends when the themes “capture the most

important and relevant elements of the data, and the overall tone of the data, in relation to

your research question” (Braun & Clarke, 2012, p. 66).

Phase five involves defining themes, so that it is clear what is distinct and specific about

each theme. Braun and Clarke (2012) explain that well established themes will 1) have a

singular focus, 2) be related but not overlap, and 3) address the research question. This

phase also is the beginning of thematic analysis, which will continue during the sixth

phase.

34

The sixth phase involves producing the report, but should not necessarily begin after the

other phases are complete. The writing of various components of the report will most

likely occur throughout the process, as notes have been created and a story has begun to

emerge (Braun & Clarke, 2012, p. 66).

3.3 Analyzing the Documents

In this study, TA began with the collection of the following eight Ontario secondary

curriculum documents (listed in chronological order based on their year of publication):

• Curriculum RP-33, Data Processing (Ontario Department of Education,1966);

• Computer Science – Senior Division (Ontario Department of Education, 1970a);

• Elements of Computer Technology (Ontario Department of Education, 1970b);

• Informatics – Intermediate and Senior Division (Ontario Department of

Education, 1972);

• Computer Studies – Intermediate and Senior Division (Ontario Ministry of

Education, 1983);

• Computer Studies – Ontario Academic Course (Ontario Ministry of Education,

1987);

• The Ontario Curriculum Grade 11 and 12 - Technological Education (Ontario

Ministry of Education, 2000);

• The Ontario Curriculum Grade 10 to 12 – Computer Studies (Ontario Ministry of

Education, 2008).

These documents were identified and selected as the most relevant CS-related curriculum

by following a trail backwards from the 2008 curriculum document currently in use, as

each document lists the documents that it supersedes. As an example, page 2 of the 1983

document indicates “This document supersedes the following guidelines: Computer

Science, Senior Division, 1970; Data Processing RP. 33, 1966; Elements of Computer

Technology, Senior Division, 1970; Informatics, Intermediate and Senior Divisions,

1972”.

35

The 2008 Ontario Computer Studies curriculum document was retrieved online at the

Ontario Ministry of Education’s curriculum website. The remaining seven Ontario

curriculum documents were retrieved and scanned from the Ontario Historical Education

Collection at the Ontario Institute of Studies in Education library, as these were not

available online either through Ontario’s Ministry of Education website, or other online

repositories. The documents retrieved cover a wide scope of courses. Some, such as the

2008 Computer Studies document, include courses in grade 10, 11 and 12, while others,

such as the 1987 Computer Studies – Ontario Academic Course, include only one course.

A preliminary scan of these documents provided information related to the

implementation timeframes of each of these documents and the courses of study included

in each curricula. These timeframes and courses of study have been described in the

findings section.

After a scan of the courses of study was complete, in-depth reading and re-reading of the

documents took place, focusing on the preambles of each document, and notes were

taken. The preambles from each of the eight documents were then stored in their own

digital file to facilitate analysis and coding, which occurred using NVivo software. The

following list indicates the components of the preamble that were analyzed for each

document, as well as the number of words in each preamble section:

• Curriculum RP-33 - Data Processing (1966): Introduction (182 words) and

Foreword (273 words);

• Computer Science – Senior Division (1970): Introduction (536 words) and Scope

of the Course (247 words);

• Elements of Computer Technology – Senior Division (1970): Foreword (437

words) and Objectives (199 words);

• Informatics – Intermediate and Senior Division (1972): Introduction (270 words)

and Rationale (151 words) and Objectives (96 words);

• Computer Studies – Intermediate and Senior Division (1983): Introduction (276

words), Computers in Daily Life (178 words) and Aims for Computer Studies

(327 words);

36

• Computer Studies – Ontario Academic Course (1987): Rationale (105 words) and

Aims (43 words)

• The Ontario Curriculum Grade 11 and 12 - Technological Education (2000):

Computer Studies Description (55 words) and Overview (149 words);

• The Ontario Curriculum Grade 10 to 12 – Computer Studies (2008): Importance

of Computer Studies in the Curriculum (256 words), Goals of the Computer

Studies Program (144 words) and Four Critical Areas of Learning in Computer

Studies (71 words).

The coding process involved identifying sentence fragments, and occasionally entire

sentences, from the preambles of the eight curriculum documents that revealed

information related to the goals and rationale of the curriculum. This stage led to 78

codes, each identified using general education (e.g., student choice and differentiation or

how the curriculum was designed and structured) and CS-related terminology (e.g., the

use of computer for creative pursuits or the computer as an object of study). The initial

codes, as well as the location of references, can be found in Appendix C.

After these codes were identified, 31 themes were constructed by merging and

reorganizing codes. The predominant themes, as well as the locations of the coded

references, can be found in Appendix D. The process of merging and reorganizing

themes continued, with note taking supporting the analysis, and findings were identified

and storylines were developed.

3.4 Results

3.4.1 Implementation Timeframes and Courses of Study

Figure 1 indicates the various curriculum documents, and the point in time at which they

were superseded by more recent curricula.

37

Figure 1. Computer science related curriculum in Ontario

As indicated in Figure 1, from 1966 to 1983 four different CS-related curricula

documents were being implemented at the same time. These included Curriculum RP-33

- Data Processing (1966), Computer Science – Senior Division (1970), Elements of

Computer Technology – Senior Division (1970), and Informatics – Intermediate and

Senior Division (1972). In 1983, a major restructuring occurred whereby these four

documents were replaced by Computer Studies – Intermediate and Senior Division

(1983), and in 1987 an additional Ontario Academic Course (OAC) in Computer Studies

was added. In 2000, CS-related courses were included in the Technological Education

curriculum document and then in 2008, the courses returned to a document titled

Computer Studies, which includes courses for grades 10-12. The specific courses of study

in each of these documents are listed in Table 3.

38

Table 3. CS focussed courses of study in Ontario Curriculum (1966-Present)

CS

Courses of

study

1966-1983

Curriculum RP-33, Data

Processing (1966)

• Principles of Data

Processing

• Basic Programming

• Systems Design

• Computer

Fundamentals

• Business Systems

Programming

• Unit Record

Fundamentals

• Business Option

Computer Concepts

• Business Data

Processing

• Special Commercial

Data Processing

Elements of

Computer

Technology (1970)

• Computer

Science – Two

year course

Computer Science -

Senior Division

(1970)

• Elements of

Computer

Technology I

• Elements of

Computer

Technology II

• Elements of

Computer

Technology III

• Computer

Applications

• Computer Logic

• Computer

Circuitry

Informatics –

Intermediate and

Senior Division

(1972)

• Informatics

CS

Courses of

study

1983-2000

Computer Studies - Intermediate and Senior

Division (1983)

• Grade 10 Introductory Computer Studies

(Basic, General, Advanced)

• Grade 11 Computer Technology

• Grade 12 Computer Technology

• Grade 11 Data Processing

• Grade 12 Data Processing

• Grade 11 Computer Science and Technology

• Grade 12 Computer Science

• Grade 12 Computer Technology

• Grade 11 Data Processing Techniques

• Grade 12 Data Processing Systems Analysis

and Design

Computer Studies – Ontario Academic

Course (1987)

• Computer Studies

CS

Courses of

study

2000-2008

The Ontario Curriculum Grade 11 and 12 - Technological Education (2000)

• Grade 10 Computer and Information Science

• Grade 10 Computer Engineering Technology

• Grade 11 Computer and Information Science (C/U preparation)

• Grade 12 Computer and Information Science (C/U preparation)

• Grade 11 Computer Engineering (College/University preparation)

• Grade 11 Computer Engineering (Workplace preparation)

• Grade 12 Computer Engineering (College/University preparation)

• Grade 12 Computer Engineering (Workplace preparation)

CS

Courses of

study

2008-

Present

The Ontario Curriculum Grade 10 to 12 - Computer Studies (2008)

• Grade 10 Introduction to Computer Studies

• Grade 11 Introduction to Computer Science

• Grade 11 Introduction to Computer Programming

• Grade 12 Computer Science

• Grade 12 Computer Programming

39

3.4.2 Thematic Analysis and Curricula Preambles

The major themes reflecting the goals and rational in preambles of the eight curriculum

documents that resulted from Braun and Clarke’s (2012) six-phase TA process are

summarized in table 4.

Table 4. Appearance of themes in the preambles of CS-related curriculum

impact of

technology

on society

automate

tasks or

solve

problems

post-

secondary,

training, and

careers

cross-

curricular

connections

creativity

differentiation

and flexibility

based on

student needs

and interests

ethical issues

and

appropriate

use

Curriculum RP-33

- Data Processing

(1966)

Computer Science

– Senior Division

(1970)

Elements of

Computer

Technology

(1970);

Informatics –

Intermediate and

Senior Division

(1972);

Computer Studies

– Intermediate

and Senior

Division (1983)

Computer Studies

– Ontario

Academic Course

(1987);

The Ontario

Curriculum Grade

11 and 12 -

Technological

Education (2000)

The Ontario

Curriculum Grade

10 to 12 –

Computer Studies

(2008)

All curriculum document preambles indicate the significant impact that technology is

having on society and offers this as a rationale for courses to study this phenomenon. The

theme of students developing the ability to automate tasks and solve problems with

computers was included in all preambles except the initial 1966 Data Processing

curriculum. The importance of courses in preparing students for post-secondary and

potential careers was also evident, except in 1970. The potential for cross-curricular

connections in CS-related courses was evident in all but the 1966 curriculum preamble,

while the opportunity for student creativity appeared in all but three preambles. The

40

theme of differentiation and flexibility in course design and delivery was included in the

preambles of early documents, but in 1987 and afterwards, references to these themes

were not included. This is not to say that the courses did not embody these themes, but

just that these themes did not emerge in the initial preambles. Finally, issues surrounding

the ethical use of computers and related technologies did not appear in early preambles

but remained in documents after the mention first appeared in 1972.

3.5 Discussion

3.5.1 Curriculum Documents and Courses of Study

The location of CS-related courses in Ontario’s secondary curriculum is interesting when

analysed historically. The 1966 Curriculum RP-33, Data Processing document refers to

itself as a Business and Commerce document, and so it’s significant that it is within the

discipline of Business that CS concepts and skills first make their appearance in

secondary education in Ontario. The courses in this document include Basic

Programming and Computer Fundamentals, but even the more business focused courses

include what would be known as specific CS topics. As an example, the Principles of

Data Processing Grade 10 course includes the study of binary, octal and hexadecimal

number systems, topics that connect to important mathematics learning as well as CS

concepts.

After the 1966 document was released, three other documents followed (Computer

Science, Elements of Computer Technology, and Informatics), indicating that there must

have been a need to expand the offering of CS-related courses, beyond the Business and

Commerce document. The courses of studies in these three curricula were being

implemented in Ontario at the same time as the courses of study in the 1966 document,

which means that a total of 17 CS-related courses were made available for

implementation (see Table 3). The major reorganization, in 1983, of all CS-related course

within the Computer Studies document is significant. It meant that CS-related courses

now had a single and formal home and would be organized under the heading of

Computer Studies. Today, the secondary CS-related courses still find themselves within a

41

curriculum document entitled Computer Studies; however, from 2000-2008 these were

found within the Technological Education document.

This historical analysis of Ontario CS-related curriculum begs the question, where do CS-

related courses belong? Are CS concepts and skills fundamental to business or to

technological education, or do the CS-related courses need their own Computer Studies

curriculum document? A jurisdictional scan of current CS-related secondary courses

across Canada adds to this complexity. In British Columbia, grade 11 and 12 courses

such as Computer Information Systems and Computer Programming are found within the

Applied Design, Skills, and Technologies curriculum while grade 11 and grade 12 CS

courses are offered within the Mathematics curriculum (British Columbia Ministry of

Education, 2018a; British Columbia Ministry of Education, 2018b; British Columbia

Ministry of Education, 2018c; British Columbia Ministry of Education, 2018d; British

Columbia Ministry of Education, 2018e; British Columbia Ministry of Education, 2018f).

In Saskatchewan, grade 11 and grade 12 Computer Science courses are offered from

within the Science curriculum, providing an additional alternative (Saskatchewan

Ministry of Education, 2018a; Saskatchewan Ministry of Education, 2018b). This leaves

five different contemporary or historical homes for CS-related courses in Canadian

jurisdictions that include Business, Computer Studies, Mathematics, Science, and

Technological Education.

As the broadening of CS education continues, policy makers are left with a wide variety

of precedent setting options for the organization of CS-related courses. As an alternative,

some might even begin to conclude that if CS-related concepts and skills have

applications in all of these disciplines, then is it possible to integrate these courses,

concepts or skills within the different subjects and contexts, rather than in a separate,

isolated, CS-related document? If this question was explored, could it potentially lead to

the end of formal CS-related curriculum, as instead the concepts and skills would be

redistributed to other areas? Or is it possible that a redefinition of CS curriculum takes

place, one that involves a very narrow focus on the computer itself, while other subject

areas integrate relevant CS-related concepts and skills within their specific disciplines

and contexts? This research raises these questions as important for consideration as the

42

broadening of CS continues. It also raises these questions for other subject areas, such as

those included in the STEM (Science, Technology, Engineering and Mathematics) related

subjects, where there are potential advantages to a cross-curricular or cross-disciplinary

approach. How can these subject areas be organized in formal curriculum documents, if

the concepts and skills overlap extensively, or are applicable to several subject areas?

3.5.2 Focus of Preambles in CS-Related Curricula

Thematic Analysis revealed eight important goals and rationale related to the CS-related

curricula documents. These included:

• the impact of technology on society;

• automating tasks;

• solving problems;

• post-secondary and career preparation;

• cross-curricular connections;

• creativity;

• differentiation and flexibility based on student needs and interests; and

• ethical issues and appropriate use.

3.5.2.1 Impact of Technology, Automating Tasks, and Solving
Problems

It is no surprise that the impact of technology on society was discussed in all curriculum

documents, but what might be surprising is just how forward thinking the 1966 and 1970

documents were in this regard. The preamble of the 1966 document included six

references to the impact of technology on society. These references included a wide range

of areas impacted by technology including business, industrial, and government

organizations as well as other social institutions, management and economic production

and distribution patterns. The introduction and foreword of the 1966 document also

predicts rapid improvement in technology and more sophisticated methods of processing

data and acknowledged the importance of leveraging the resultant knowledge: “The more

effectively we use these new tools to produce and store information, and the more

43

skillfully we use the resultant knowledge, the greater the benefit to all society” (Ontario

Department of Education, 1966, p. iii).

The preamble of the 1970 document also included references to the impact of technology

on society and also appears quite forward thinking. The introduction of the document

begins with the following: “The influence of technology on our society is increasing

rapidly” (Ontario Department of Education, 1970a, p. 3) indicating that this area is a

major impetus for the development of these CS courses. The 1970 document also

highlights the relationship between humans and computers and how the computer is

allowing for human mental effort to be extended. This connects to the second major

theme that was introduced in all documents, which was the recognition and importance of

the computer as a tool to automate tasks and solve problems. All documents except the

initial 1966 documents make reference to these themes, and they are often referred to in

contemporary arguments for why students should learn to program a computer.

3.5.2.2 Post-Secondary and Career Preparation

Post-secondary and career preparation was included in all document preambles, which

speaks to the popular economic argument for the broadening of CS education. Passey

(2017) describes the economic argument as workforce centered, focusing on the idea that

curriculum should support future economies and should support students in developing

the skills needed to meet the needs of future careers. This argument is based on the idea

that specific CS-related concepts and skills will be valuable for future careers. This

argument, included in all eight curricula, continues to be used by governments in their

broadening of CS mandates. Canada’s CanCode initiative includes the economic

argument as the main principle of the program:

CanCode aims to equip Canadian youth, including traditionally underrepresented

groups, with the skills they need to be prepared for further studies, including

advanced digital skills and science, technology, engineering and math (STEM)

courses, leading to the jobs of the future. Canada's success in the digital economy

depends on leveraging our diverse talent and providing opportunity for all to

44

participate - investing in digital skills development will help to achieve this.

(Government of Canada, 2019)

Considering that these curriculum documents cover the secondary grades, it is not

surprising that the economic argument is included in curriculum preambles. What will be

interesting to see; however, is whether the economic argument becomes integrated into

potential CS-related curricula in the K-8 grades. This phenomenon has begun to occur in

educational jurisdictions in Canada, but there has not been research uncovering whether

or not the economic argument is outlined as a major impetus for this change to

curriculum.

3.5.2.3 Cross-curricular Connections, Creativity, Differentiation and
Flexibility

The cross-curricular nature of CS-related concepts and skills, as well as their potential for

creativity and the need for differentiation and flexibility in courses were all interesting

themes to uncover in the curriculum documents. The nature of secondary curriculum and

implementation is often siloed and isolated into specific disciplines, making cross-

curricular connections difficult. In addition, there is often a need for standardized and

aligned expectations and outcomes across a jurisdiction, which results in themes such as

creativity, differentiation, and flexibility being omitted. The fact that all of these themes

appear in many of the historical documents is perhaps a result of the inherent nature of

CS-related instruction and pedagogy. Over 50 years ago, the preamble of the 1970

Computer Science document captured these associated themes well:

The boundaries of the material are virtually limitless, largely because of its

emphasis on problem-solving. Thus, the student has an opportunity to pursue

problems in any subject area and to study the solutions to such problems to any

depth he desires. The flexibility inherent in the suggested approach permits

individual research projects, class research projects, and any other challenging

venture that either students or teachers may initiate.

45

The emphasis on problem-solving permits another flexibility: that is, the level at

which the course is studied. The number of levels is almost infinite, largely

because there is such a diversity of difficulty in the problems that can be solved

through the use of a computer. (Ontario Department of Education, 1970a, p. 4)

This excerpt also connects directly to theory in the CS education literature. Seymour

Papert, described by Stager (1996) as the father of computing education, discussed the

idea of coding as a low floor, high ceiling context (Papert, 1993), whereby students can

enter into the learning from a simple entry point (low floor), but can extend projects with

almost unlimited depth and sophistication (high ceilings). Gadanidis et al. (2017)

describe how the low floor, high ceiling concept connects to the themes of cross-

curricular connections, creativity, differentiation, and flexibility:

Coding in a low-floor and a high-ceiling environment also supports student

agency and gives students ownership of their learning. Students writing code to

model a pattern or a relationship are in control. There are many different ways to

solve a problem with code and students can use methods that personally make

sense. They can also deviate from the task to investigate related problems. (p. 3)

By investigating related problems, it is possible for students to make cross-curricular

connections, or for educators to point these out, while the different ways to solve

problems supports the expression and development of creativity. Meanwhile, providing

activities that facilitate both basic entry points (low floor) and the potential for added

depth and sophistication (high ceiling), activities are differentiated for students who come

to class with varying skills, knowledge and experiences in CS. As new and exciting CS-

related curriculum is developed in secondary, and potentially in the K-8 grades, it will be

interesting to see how educational jurisdictions integrate cross-curricular connections,

creativity, differentiation and flexibility in CS curriculum design. On the one hand, a

curriculum is often siloed and isolated in its own document and in its implementation, yet

historical curriculum and CS-related theory highlights the need for cross-curricular

connections. Additionally, curriculum making is often about standardizing expectations

and outcomes across a jurisdiction, yet historical curriculum and theory point to a need

46

for creativity on behalf of the students, and flexibility and differentiation on behalf of the

teacher. It is expected that these opposing forces will be important for policy makers to

consider and resolve as curriculum potentially expands beyond the isolated, secondary

CS-related curriculum documents.

3.5.2.4 Ethics and the Appropriate Use of Technology

Ethics as well as the appropriate use and the impacts of technology are becoming

important topics within recent CS curriculum reform, and it is encouraging to note that

these issues are well discussed in the preambles of CS curricula since 1972. The K-12

Computer Science Framework (K-12 Computer Science Framework Steering Committee,

2016), led by the Association for Computing Machinery, Code.org, Computer Science

Teachers Association, Cyber Innovation Center, and National Math and Science Initiative

includes the impacts of computing as one of five main, core concepts. This core concept

includes culture, social interactions, safety, law, and ethics as subcomponents. In Canada,

Canada Learning Code’s Pan-Canadian K-12 CS framework (Canada Learning Code,

2020) includes Technology and Society as one of five main focus areas. This focus area

also includes ethics, safety, and the law as one of six focus areas.

As jurisdictions update their secondary CS-related curricula or begin to integrate CS

concepts into other subjects and grades, ethical issues and the appropriate use of

technology will need to be an important component. This is especially true with the

emergence of new technologies, such as Artificial Intelligence (AI), that may be making

their way into CS curricula. The AI4K12 initiative, sponsored by the Advancement of

Artificial Intelligence and the Computer Science Teachers Association, identified five big

ideas of AI for students to learn, one of which includes the impact of AI on society

(Touretzky et al., 2019). This emphasizes the notion that while there is a need to teach the

concepts and skills required to understand, apply and leverage AI, Machine Learning

(ML), and associated concepts, there will also need to be room for the associated ethical

components. As jurisdictions consider the integration of ethics and appropriate use of

technology within the curriculum, age-appropriate expectations and outcomes, learning

progressions, and resources related to these important areas will need to be considered. It

47

should be noted that this work has begun by such groups as AI4K12, and researchers

such as Gadanidis and Hughes who have begun developing AI-related stories for young

students, such as AI Farm (Gadanidis & Hughes, 2019).

3.5.2.5 Preambles and Gender in CS Education

During the analysis of the preambles of historical CS curriculum in Ontario, it was

evident that the language used when referring to students had changed throughout the

years. In the 1970 Computer Science document, the language used indicates that there is

an underlying assumption that male students will be enrolled in the course:

The student of Computer Science should acquire this basic understanding of the

computer, and he should also learn how to make it work for him. In achieving

these objectives, he should not only learn of the tremendous power of and

capabilities of the computer but also of its limitations and its dependence on

human intelligence. He should appreciate that the computer extends the human

brain just as machines have extended human muscle power since the time of the

industrial revolution. (Ontario Department of Education, 1970b, p. 3)

This type of language continues throughout the preamble of the 1970 document, with

“he” and “his” pronouns appearing nine times, while “she” or “her” do not appear at all.

This is interesting, considering that within the same preamble, the document

acknowledges CS courses being open to all students: “The choice of enrolling in a

Computer Science class should, ideally be open to any students indicating an interest in

and enthusiasm for the study of computers and computing” (p. 4). It is also interesting

considering the importance of equity, diversity, and inclusivity in work being done to

broaden participation in CS education, specifically surrounding the under representation

of female students in CS fields and courses.

In 2002, Jane Margolis and Allan Fisher published their influential book Unlocking the

clubhouse: Women in computing, which presented computer education as a clubhouse for

boys that was resulting in women and girls being left out of CS. The authors discovered a

number of influences contributing to a gender gap in computing education, and they

48

referred to these influences as the doors, walls and windows of the computing clubhouse.

The use of only “he” in the preamble of the 1970 document is perhaps a very good

example of these doors, walls and windows, that fail to support female students accessing

or remaining in CS courses.

In order to further explore this direction of inquiry, the preambles and additional

components of the other curriculum documents were scanned, with the goal of

identifying the inclusion of different pronouns in the texts. This scan revealed the

following:

• The preamble of the 1970 Elements of Computer Technology document did not

use gender specific pronouns when referring to students; however, a brief analysis

of the course descriptions included in the document indicated that when referring

to students, “he” and “his” was used 10 times while “she” and “her” were not

used at all.

• The preamble of the 1972 Informatics document used “his” once, within the

objectives section, when referring to students, while “she” or “her” was never

used. In addition, within the Developing a Local Course section of the document,

the pronouns “he” and “his” were often used when referring to the teacher of the

course (“he” appeared five times, while “his” appeared six). The following is an

example:

In developing a course, the teacher must weigh several factors. Naturally he will

be strongly influenced by his own strengths and interests, but he should also be

mindful of the interests and preferences of his students. (Ontario Department of

Education, 1972, p. 7).

• In 1983, the pronoun “their” is used when referring to students, with no

appearance of “he”, “his”, “she” or “her”. This is true for all of the remaining CS-

related curricula documents that appear after 1983.

49

3.6 Implications and Future Studies

The results of this study on curriculum preambles are important when situated within

current educational policy and curriculum reform. A number of educational jurisdictions

are beginning to broaden participation in CS in K-12 education, but there is often a

feeling that CS in K-12 education is brand new, with little precedent. Acknowledging that

in Ontario, CS-related curriculum dates as far back as 1966, and that many of the

important themes in the broadening of CS discourse have been recognized in historical

documents, is important. Failure to acknowledge and learn from both the positive and

negative aspects of these documents would mean ignoring resources that can be used to

inform important policy-making practice and research.

In addition, the exploratory nature of this study raised interesting questions that can serve

as seeds of future studies that focus on historical CS curriculum to inform contemporary

curriculum. These include future investigations surrounding the connections between CS

concepts and skills and other subject areas. In Ontario, historical documents have

acknowledged the importance of cross curricular connections in CS curricula and the CS

courses themselves have been placed in Business, Computer Studies, Computer

Science/studies, Informatics, and Technological Education, while elsewhere we see

secondary CS courses being placed in Mathematics and Science curriculum documents.

What will the future placement of CS-related courses be? Is CS such an interdisciplinary

subject that there is the possibility for integrating CS courses in numerous or all subject

areas? Or is there a need to expand the secondary CS curriculum, by integrating the

various subject areas and disciplines into the CS courses themselves?

Finally, the identification of only the “he” and “his” pronouns appearing in early

curriculum documents, when referring to CS students and teachers, has important

implications when considering issues of underrepresentation in CS education. What was

the impact of the use of this language on enrolment in CS courses, and in the

representation of teachers? Are there more examples of this exclusionary language in

historical, or contemporary curriculum or resources and if so, what is the impact?

50

3.7 Additional Dissertation Section – Grade 10 Curriculum
Components

Chapter 3 was written with the goal of focusing specifically on the preambles of

historical curriculum documents in order to investigate the general approaches that have

been identified in CS education at the secondary level. In order to add depth and

understanding within the context of this larger dissertation, this additional section was

added, which looks specifically at the concepts and skills included in the historical, grade

10 CS courses in Ontario, as well as some of the pedagogical approaches represented in

the documents. The grade 10 course was selected for analysis as it is an introductory

course that teaches foundational CS concepts and skills. Introductory, secondary courses

will be greatly influenced by new CS concepts and skills that are being introduced in the

K-8 grades in a number of jurisdictions, and it is therefore an important course for

analysis and understanding.

3.7.1 Courses and Main Concepts

The initial analysis of the eight historical CS-related curriculum documents reveals that

there are four grade 10 courses implemented from 1966 to present day. These grade 10

courses represent the first introductory CS-related course available to students, as none of

the curriculum documents include a grade 9 course. As a result of these being from the

same jurisdictions (Ontario), and building upon each other, they represent an interesting

evolution of introductory CS courses.

Table 5, lists the names of the four courses from the curriculum documents, as well as the

main topics that are identified. The main topics do not appear in this order in the

documents, they have been reorganized in order to show the progression of each broad

category over the years. The main topics are those that are highlighted as either major

unit or concept headings, or are identified in overall expectations or more recent

documents.

51

Table 5. Grade 10 introductory CS-related courses, from 1966 to present day

 1966 -

Principles Of Data

Processing

Grade 10

1983 -

Introductory

Computer Studies

Grade 10

2000 -

Computer and

Information Science

Grade 10

2008 -

Introduction to

Computer Studies

Grade 10

Technology

and society

Man and His Environment

Important Uses of the
Computer in Today's

Society

Impact of microelectronic

technology on society

Impact of computers and

technologies

Social impact

Environmental

stewardship and
sustainability

Ethical issues

The computer

and its

operation

How the Computer Works
in its Simplest Form

Introduction to Electronic
Computers

Storage Devices: advantages
and disadvantages

Output Media and Data
Presentation

Central Processor

Computer Input Media

Operating the computer

Computer electronics

Hardware, interfaces, and

networking

Hardware components

Software products

Operating systems

Home Computer

Networking

Maintenance and
Security

Programming

Data Processing

Coding

Manual and Mechanical

Methods

Electro-mechanical Methods

Programming the

computer

Information Processing

Programming concepts

Programming concepts

Writing programs

Code maintenance

Careers and

post-

secondary

Forecast of vocational

opportunities in the data
processing field

Computer-related careers Related careers
Postsecondary

Opportunities

Historical

context

Development of Devices to

Improve Information

Processing

Evolution of programming
languages

Algorithms &

representation

Number Systems

Manipulation

Computer Science Logic

Problems and

Design

Summary, Review and
Application

 Problem solving and design

As indicated in Table 5, the main topics of technology and society, the computer and its

operation, programming, and career and post-secondary opportunities were included in

all four courses, from 1966 to present.

Topics surrounding the historical development of CS-related topics and technologies

were only present in the 1966 and 2000 documents, meaning that students did not learn

about the historical contexts or the evolution of technologies when enrolled in the 1983

course, nor do they learn about them presently, with the 2008 course. In the 2000

document, the extent of historical context in topics only includes students investigating

52

the evolution of computer programming languages. In 1966; however, a much more in-

depth exploration of historical context is included, as students were expected to learn

about all of the following:

• evolution of the computer;

• development of the accumulation and transfer of knowledge;

• development of methods of assembling, writing, and recording information

(records on stone, clay tablets, paper, disk, tape);

• development of systems to express specialized information (weights, measures,

money, maps, accounting);

• development of automation (sail, pump, gear, lever, wheel, thermostat, conveyor

belt, elevator, computer);

• development of devices to improve information processing (Abacus, Napier's

bones, Pascal's gears, slide rule, manual calculators, electro-mechanical

calculators, postage meters);

• history of electro-mechanical methods (Hollerith, Powers); and

• early storage devices (electrostatic, delay lines, electronic tubes).

Program and project design, like historical context, is only present in the 1966 and 2000

courses, but not included in the 1983 or 2008 courses. In terms of topics surrounding

algorithms and representation of data, the most recent 2008 grade 10 course does not

include this topic, while all three previous courses did.

3.7.2 Other Concepts

As the investigation of main topics took place (those that were unit headings or that were

included as overall expectations in the documents), it was clear that other, minor topics

were either apparent, or noticeably absent in some or all of the four documents.

The concepts of control structures in CS, which include such things as the sequencing

and repetition of instructions, as well as conditional statements (decisions), were included

in all grade 10 courses. As an example, the 1983 document includes an expectation that

students will “write simple routines that will illustrate the three basic operations involved

53

in the processing of information - sequencing, selection, and repetition” (Ontario

Ministry of Education, 1983, p.16). The model of the computer as an input, storage,

processing and output device was also included in all four courses. An example of how it

was included in the 1966 documents is as follows: “Block diagram of computer: explain

in terms of input, central processing, output and auxiliary storage. Trace typical path of

information processing through a computer using the block diagram as sectionalized

above” (Ontario Department of Education, 1966, p. 3). The inclusion of these two topics,

in all four courses since 1966, indicates that they are fundamental concepts required in

introductory CS courses. Like some of the main topics listed above, leaving these topics

out of new, future courses would require some careful thought and strong rationale.

Noticeably absent in all four of the CS courses were concepts that are apparent in some of

the contemporary discourse around the broadening of CS, including creativity,

expression, and the sharing of end products with others. Both Resnick (2017) and Kafai

(2016) write extensively about creativity, expression and the social aspects of

computation in their models of Computational Fluency and Computational Participation

respectively. None of the courses included outcomes or expectations that involved

students being creative or finding ways to express themselves and share projects with

others. Instead, the content appeared more technically based, focused on specific CS

skills and concepts.

3.7.3 Pedagogical Approaches

An analysis of the pedagogical approaches represented in the four grade 10 courses was

done by identifying and comparing the verbs used in the curriculum outcomes and

expectations. This analysis provides insight into what it is expected of students in terms

of how they engage with the content and skills listed in the course. Interestingly, the

earlier curriculum documents, from 1966 and 1983, appear to rely less heavily on verbs

to explain what students are expected to be doing in the course. The 1966 document reads

much more like a list of concepts, skills, or facts, but there is little guidance in terms of

how students are to engage with these components. The 1983 document includes the use

of specific verbs within the Operating a Computer and Programming a Computer

54

sections, but the other sections of the document are written much like the 1966 document,

indicating the concepts that “students should gain an understanding” of.

In contrast, all of the 45 specific expectations in the 2000 course, and all of the 48

specific expectations in the 2008 course, begin with a verb. This provides important

insight for the teacher, in terms of how the students will engage with the material. Table 6

shows the number of times that different verbs were used in the 2000 and 2008 grade 10,

introductory course (note that some expectations include more than one verb):

Table 6. Occurrence of verbs in the 2000 and 2008 grade 10, introductory CS

courses

Verb

2000

Computer and

Information Science

Grade 10

2008

Introduction to

Computer Studies

Grade 10

describe 8 19

use 10 8

identify 3 6

explain 5 6

write 5 5

research, demonstrate,

assess, understand
0 2

correct 1 1

contrast, compare 2 1

plan, determine 0 1

state, define 2 0

comply, find, design, solve,

verify, develop, maintain,

incorporate, trace, validate

1 0

It is interesting to note that the verb “describe” appeared 19 times in the current,

introductory CS course, more than twice as often as any other verb. While this 2008

document does not include any explicit mention of communication skills, it is clear that

communication will be important, as almost half of the curriculum expectations include

students “describing” concepts and/or skills. This observation has important

considerations for both classroom pedagogy and assessment as a focus on communicating

55

concepts and skills, rather than on demonstrating them, could potentially have an impact

on:

• The time spent by students planning, writing, executing and debugging programs

versus that time spent describing and communicating concepts;

• The potential hands-on, exploratory nature of CS learning and the constructionist

learning theory (Papert, 1993) often at the heart of CS education;

• The number of students who chose to enrol in the course and the engagement of

students once enrolled.

3.8 Conclusion

As this thesis moves on to explore enrolment, equity, diversity, and inclusivity in Chapter

4, and contemporary curriculum approaches in the K-8 grades in Chapter 5, the findings

from this historical analysis of secondary CS curriculum provide important context.

Current CS-related curriculum in Ontario is found in the 2008 secondary Computer

Studies document, and it will be interesting to explore both the student enrolment in these

courses, and whether or not female and male students are equally represented.

Historically, CS-related courses were also included in Business and Technological

Education curriculum documents, while in other jurisdictions CS courses are offered

within Mathematics and Science. These connections to other disciplines will be

interesting to consider as an analysis of the different approaches to CS-related curricula

in the K-8 grades is explored. In addition, this chapter revealed that curriculum content

related to technology and society, the computer and its operation, programming, and

related careers and post-secondary opportunities are well entrenched in Ontario CS

curricula, appearing in all courses since 1966. Other areas of focus such as creativity,

expression and the sharing of projects with others have been a part of preambles and

document introductions, but have not always been included in the lists of concepts and

skills to be taught. Whether or not the inclusion and exclusion of these topics is relevant

in terms of enrolment, equity, diversity, and inclusivity and whether or not these topics

appear in novel K-8 curriculum will be further explored.

56

3.9 Chapter References

Alberta Education. (2021). Draft Science Kindergarten to Grade 6 Curriculum.

https://cdn.learnalberta.ca/Resources/content/cda/draftPDF/media/Science/Science-

GrK-6-EN.pdf

Blumer, H. (1969). Symbolic interactionism: Perspective and method. University of

California Press.

Braun, V., & Clarke, V. (2012). Thematic analysis. In H. Cooper, P. M. Camic, D. L.

Long, A. T. Panter, D. Rindskopf, & K. J. Sher (Eds.) APA Handbook of Research

Methods in Psychology (pp. 57-71). American Psychology Association.

https://doi.org/10.1037/13620-004

British Columbia Ministry of Education. (2016). Applied Design, Skills and

Technologies.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_k-9_elab.pdf

British Columbia Ministry of Education. (2018). Applied Design, Skills and

Technologies.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_k-9_elab.pdf

British Columbia Ministry of Education. (2018a). Applied design, skills and

technologies: Computer information systems grade 11.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_11_computer-information-systems_elab.pdf

British Columbia Ministry of Education. (2018b). Applied design, skills and

technologies: Computer programming grade 11.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_11_computer-programming_elab.pdf

British Columbia Ministry of Education. (2018c). Applied design, skills and

technologies: Computer information systems grade 12.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_12_computer-information-systems_elab.pdf

British Columbia Ministry of Education. (2018d). Applied design, skills and

technologies: Computer programming grade 12.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_12_computer-programming_elab.pdf

British Columbia Ministry of Education. (2018e). Mathematics: Computer science grade

11.

57

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_11_computer-science_elab.pdf

British Columbia Ministry of Education. (2018f). Mathematics: Computer science grade

12.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_12_computer-science_elab.pdf

Canada Learning Code. (2020). Learning for the digital world: A pan-Canadian K-12

computer science education framework. https://k12csframework.ca/wp-

content/uploads/Learning-for-the-Digital-Future_Framework_Final.pdf

Cherryholmes, C.H. (1992). Notes on pragmatism and scientific realism. Educational

Researcher, 21(6), 13-17. https://doi.org/10.3102/0013189X021006013

Cohen, L., Manion, L., & Morrison, K. (2018). Research methods in education (eighth

edition). Abingdon, Oxon.

Creswell, J. W. (2012). Qualitative inquiry and research design: Choosing among five

approaches. Sage Publications.

Gadanidis, G., Brodie, I., Minniti, L., & Silver, B. (2017). Computer coding in the K-8

mathematics curriculum? What works: Research into practice.

http://www.edu.gov.on.ca/eng/literacynumeracy/inspire/research/Computer_Codin

g_K8_en.pdf

Gadanidis, G., & Hughes, J. M. (2019). AnImal farm. LearnX.

Government of Canada. (2019). CanCode.

https://www.ic.gc.ca/eic/site/121.nsf/eng/home

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of the

field. Educational Researcher, 42(1), 38-43.

https://doi.org10.3102/0013189X12463051

Herman, N. J., & Reynolds, L. T. (1994). Symbolic interaction: An introduction to social

psychology. General Hall.

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12

education. Communications of the ACM, 59(8), 26-27.

https://doi.org/10.1145/2955114

Kiger, M. E., & Varpio, L. (2020). Thematic analysis of qualitative data: AMEE Guide

No. 131. Medical teacher, 42(8), 846-854.

https://doi.org/10.1080/0142159X.2020.1755030

K-12 Computer Science Framework Steering Committee. (2016). K-12 Computer

Science Framework. https://k12cs.org/

58

LaRossa, R., & Reitzes, D. C. (1993). Symbolic interactionism and family studies. In P.

G. Boss, W. J. Doherty, R. LaRossa, W. R. Schumm, & S. K. Steinmetz (Eds.),

Sourcebook of family theories and methods: A contextual approach (pp. 135-163).

Springer Science. https://doi.org/10.1007/978-0-387-85764-0_6

Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing. MIT

press.

Musolf, G. R. (2009). The essentials of symbolic interactionism: A paper in honor of

Bernard N. Meltzer. Studies in symbolic interactionism. Emerald Group.

https://doi.org/0.1108/S0163-2396(2009)0000033021

Nova Scotia Department of Education and Early Childhood Development. (2015).

Information and communication technology – Essential learning outcomes 2015-

2016. https://www.ednet.ns.ca/files/curriculum/ITC-P-3ProgressionChart-

RevAug26-2015.pdf

Nova Scotia Department of Education and Early Childhood Development. (2016).

Information and communication technology/Coding 4-6 integration.

https://www.ednet.ns.ca/files/curriculum/infotech_coding_4-6_streamlined.pdf

Ontario Department of Education. (1966). Curriculum RP-33: Data processing.

Ontario Department of Education. (1970a). Computer science: Senior division.

Ontario Department of Education. (1970b). Elements of computer technology.

Ontario Department of Education. (1972). Informatics: Intermediate and senior division.

Ontario Ministry of Education. (1983). Computer studies: Intermediate and Senior

Division.

Ontario Ministry of Education. (1987). Computer studies: Ontario academic course.

Ontario Ministry of Education. (2000). The Ontario curriculum grade 11 to 12:

Technological education.

Ontario Ministry of Education. (2008). The Ontario curriculum grade 10 to 12:

Computer studies.

http://www.edu.gov.on.ca/eng/curriculum/secondary/computer10to12_2008.pdf

Ontario Ministry of Education. (2020). The Ontario curriculum grades 1-8: Mathematics.

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic

Books.

59

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum:

Implications for future research. Education and Information Technologies, 22(2),

421-443. https://doi.org/10.1007/s10639-016-9475-z

Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects,

passions, peers, and play. MIT Press.

The Royal Society. (2012). Shutdown or restart? The way forward for computing in UK

schools. https://royalsociety.org/-/media/education/computing-in-schools/2012-01-

12-computing-in-schools.pdf

The Royal Society. (2017). After the reboot: Computer education in schools.

https://royalsociety.org/~/media/policy/projects/computing-education/computing-

education-report.pdf

Saskatchewan Ministry of Education. (2018a). Computer Science 20.

https://www.edonline.sk.ca/webapps/moe-curriculum-

BB5f208b6da4613/CurriculumHome?id=446

Saskatchewan Ministry of Education. (2018b). Computer Science 30.

https://www.edonline.sk.ca/webapps/moe-curriculum-

BB5f208b6da4613/CurriculumHome?id=444

Smith, M. (2016, January 3). Computer Science For All. The White House: President

Barack Obama. https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-

science-all

Stager, G. S. (2016). Seymour Papert (1928-2016). Nature, 537(7620), 308-308.

https://doi.org/10.1038/537308a

Touretzky, D., Gardner-McCune, C., Martin, F., & Seehorn, D. (2019). Envisioning AI

for K-12: What should every child know about AI? In Proceedings of the AAAI

Conference on Artificial Intelligence, 33(1), 9795-9799.

https://doi.org/10.1609/aaai.v33i01.33019795

60

Chapter 4

4 Enrolment and Underrepresented Groups in Computer
Science Education

Current literature surrounding the broadening of CS concepts and skills indicates that

there are a number of underrepresented groups in CS K-12 Education. This chapter

focusses on the underrepresentation of female students in Ontario secondary CS courses.

The chapter reveals a significant gender gap in these courses, and also finds that overall

enrolment is lowest in the grade 11 and grade 12 College pathway courses. Considering

recent research (Pichette et al., 2020) and government initiatives (Alphonso, 2021)

related to de-streaming unequitable course designations and pathways (such as

Academic and Applied), it is felt that findings from this chapter related to the low

enrolment in College pathways can provide a starting point upon which to further

research the potential underrepresentation of other groups within these courses.

While Chapter 3 explored the traditional, optional secondary course implementation of

CS in the K-12 grades, this chapter builds upon this work by seeking to understand how

enrolment patterns in these courses have changed over time. The chapter explores overall

student enrolment in Ontario’s secondary CS courses, from 2011-2018, as well as the

important theme of equity, diversity, and inclusivity in CS by examining the enrolment of

female and male students. This theme is not only a major component of recent initiatives

meant to broaden CS education, including Canada’s CanCode (Government of Canada,

2019c) and the US’s CS For All initiative (Smith, 2016), it is also often discussed in K-12

CS education literature.

Almost twenty years ago, Margolis and Fisher (2002) presented computer education as a

clubhouse for boys where women and girls are left out of computer science (CS). While

the authors acknowledged that “women are surfing the web in equal proportion to men,

and women make up the majority of Internet consumers” (p. 2), women were not learning

to invent, create and design with computer technology, a concern that lead to missed

educational and economic opportunities. Through interviews, classroom observations,

conversations with faculty, and analysis of relevant data, the authors discovered a number

61

of influences contributing to a gender gap in computing education. They called these

influences the doors, walls and windows of the computing clubhouse.

Now, as computing technology becomes ubiquitous, as the expansion of CS education

takes place in a number of K-12 educational jurisdictions, and as the economic

opportunities resulting from computing education have expanded, it is important to

develop local and current perspectives on the issue.

4.1 Research Rationale

The impetus for this research centers on the fact that CS is becoming a nascent focus of

curriculum initiatives in Ontario, Canada and abroad. In Canada, the Ontario Ministry of

Education recently announced a strategy to revise secondary school CS curricula in an

effort to focus on developing job skills such as computational thinking and coding

(Ontario Ministry of Education, 2019), while Canada’s federal government announced an

additional $80 million of funding to their CanCode coding initiative (Department of

Finance Canada, 2021). In the K-8, grades British Columbia (British Columbia Ministry

of Education, 2016), Alberta (Alberta Education, 2021), Ontario (Ontario Ministry of

Education, 2020), New Brunswick (New Brunswick Department of Education and Early

Childhood Development, 2016) and Nova Scotia (Nova Scotia Department of Education

and Early Childhood Development, 2016) all include coding and CS concepts in their

current or draft K-8 curriculum while beyond Canada the integration of coding into K-8

education has become an international phenomenon (Gadanidis et al., 2017). Research

seeking to provide insight into enrolment in current CS courses, as well any existing

gender gaps in CS education, is critical considering the number of initiatives that have

been implemented to broaden CS education, and considering the potential impact and

missed opportunities that result from a CS student population and workforce lacking in

diversity.

4.2 The Broadening of CS Education

In recent years, increased attention has been given to the broadening of CS concepts and

skills in K-12 education. A number of theoretical approaches related to the broadening of

62

CS in K-12 education were presented in Chapter 2 of this thesis and are explored further,

in the specific context of K-8 curricula, in Chapter 5. While much of this theory has its

foundation in Papert’s (1993) work, it has also been recognized that Wing’s (2006)

Computational Thinking has been influential in broadening CS initiatives and in catching

the attention of the CS education community (Grover & Pea, 2013).

4.2.1 Ontario and Canada

In Ontario, the secondary Computer Studies curriculum, which was analyzed within its

historical context in Chapter 3, is currently undergoing revisions (Ontario Ministry of

Education, 2019) while in British Columbia secondary CS courses were revised in 2018

and situated within the Mathematics curricula (British Columbia Ministry of Education,

2018a; British Columbia Ministry of Education, 2018b). Likewise, in Saskatchewan,

secondary CS courses were revised in 2018; however, unlike British Columbia, these

courses are now included in the Science curriculum (Saskatchewan Ministry of

Education, 2018; Saskatchewan Ministry of Education, 2018b). In addition to curriculum

revisions in the secondary grades, new K-8 curriculum from a variety of provinces now

includes coding and computational thinking concepts and skills, the details of which will

be explored further in Chapter 5. While these curriculum updates and revisions have been

led by provincial Ministries of Education, there has also been a large federal initiative in

Canada, where money to broaden CS education was provided to non-profit organizations.

The CanCode initiative began in 2017 with an initial commitment, from the Canadian

federal government of $50 million (Department of Finance Canada, 2017). In 2019 and

2021, the federal budgets earmarked an additional $60 million (Department of Finance

Canada, 2019) and $80 million (Department of Finance Canada, 2021) respectively for

the program, resulting in provided or promised funding for the programming totaling

$190 million. The CanCode program was developed to help provide coding and digital

skills education to more young Canadians (Government of Canada, 2019c), and is listed

as part of an action item related to Canada's Digital Charter: Trust in a Digital World

(Government of Canada, 2021). In its first two years, the program had provided more

than 800,000 K-12 students and 40,000 teachers with opportunities to learn coding and

63

digital skills (Government of Canada, 2019a). These figures included 350,000 girls, over

68,000 Indigenous students, over 100,000 youth at risk, and 34,000 newcomers to

Canada (Government of Canada, 2019a).

One example of a non-profit organization that was provided with CanCode funding is

Canada Learning Code (CLC), whose vision is “a prosperous Canada in which all people

have the skills and confidence to harness the power of technology to create a better and

more inclusive future” (Canada Learning Code, 2021). Since 2011, CLC has offered over

10,500 educational events resulting in over 1.7 million hours spent coding, and

engagements with over 600,000 learners across Canada (Canada Learning Code, 2021).

The CanCode funding helped CLC develop Learning for the Digital Future: A Pan-

Canadian K-12 Computer Science Education Framework (Canada Learning Code, 2020).

The framework is meant to provide greater alignment in terms of what Canadian students

learn and promote more equitable access to high-quality CS education. The second page

of the framework presents the following, as a major rationale for the framework:

As digital technologies play ever-more important roles in our lives, it is critical

that all students, especially those who have been traditionally underrepresented in

tech—namely women, visible minorities, Indigenous people, and people living in

rural and remote areas—have the opportunity to learn foundational skills and

competencies to meet the needs of their time. It is essential that we empower all

students to harness the power of these new tools. (Canada Learning Code, 2020,

p. 2)

Included in CLC’s framework is a list of 27 other organizations that have been provided

with funding from the federal CanCode initiative. In considering the organizations that

were provided with this funding, and in considering the general approach used by the

federal government to broaden K-12 CS education in Canada, two important issues arise:

1) the provision of funds to non-profit organizations rather than to public education

authorities, and 2) the criteria used to assess the success of the initiatives.

To qualify for CanCode funding, organizations must be a not-for-profit organization

incorporated in Canada and must have a minimum of three years of experience in the

64

delivery of coding and digital skills programs to K-12 youth and/or teachers (Government

of Canada, 2019b). While it was encouraged that the organizations deliver content that

maps to provincial/territorial educational curricula, and while it was encouraged that the

organizations partner with groups such as public school boards, neither of these criteria

were mandatory. These distinctions are important as it signals that not-for-profit

organizations, rather than public institutions, were selected to obtain the financial

resources to lead CS education initiatives. An alternative approach would have been an

investment into the broadening of CS education through groups such as Universities,

Colleges, or K-12 Ministries of Education, school boards or schools. One reason why this

is so important is that not-for-profit and public educational organizations may embody

different approaches, philosophies and end goals related to the broadening of CS

education. Not-for-profit organization initiatives might embody an economic argument

for broadening CS education, which is workforce centered, focusing on the idea that

curriculum should support future economies and should support students in developing

the skills needed to meet the needs of future careers (Passey, 2017). Public education

organizations, on the other hand, might embody some of the theoretical approaches

explored in Chapter 2 of this thesis, such as encouraging Computational Fluency

(Resnick, 2017), Computational Participation (Kafai, 2016), or Computational Literacy

(diSessa, 2018). Referring back to Table 2, from Chapter 2 of this thesis, an in-depth

analysis of the approaches used by not-for-profit organizations associated with the

CanCode funding may reveal that their initiatives embody Wing’s CS as a topic of study

in and of itself, rather than embodying approaches that view CS-related concepts and

skills as a tool in mathematics and science, or one that embodies CS concepts and skills

for their social, personal, and cultural benefits. Although an in-depth analysis of goals

and underlying philosophy of the CanCode initiative is not a part of this chapter or thesis,

considering the large amount of federal money associated with the program, it introduces

an interesting topic of research centered around who is given the power, control, and

resources associated with large scale, CS education initiatives.

As discussed above, it has been reported that in its first two years, the CanCode program

had provided more than 800,000 K-12 students and 40,000 teachers with opportunities to

https://www.ic.gc.ca/eic/site/121.nsf/eng/00002.html

65

learn coding and related skills (Department of Finance Canada, 2019). These numbers

included 350,000 girls, over 68,000 Indigenous students, over 100,000 youth at risk, and

34,000 newcomers to Canada (Government of Canada, 2019a). It would be important to

investigate the extent of these opportunities and whether or not they involved in depth

and prolonged CS education experiences. Likewise, it would be worthwhile to determine

the details and extent of the 600,000 “engagements” reported by CLC, or the 1.7 million

hours of coding (Canada Learning Code, 2021). The CanCode initiative and the work of

the selected organizations can be a valuable means of broadening CS education in the K-

12 grades, but a further analysis could help identify the most and least successful

components, and whether or not the initiatives led to substantial and effective change.

This could help each organization better plan future initiatives, and it could help the

government determine criteria for future funding. It would also be interesting to explore

the specific grades or concepts and skills that were the focus of the implementation of the

CanCode programs, and whether or not these programs reflected curriculum in the

various jurisdictions.

4.2.2 United States of America

The broadening of CS education in the United States was exemplified in January 2016

when then President Barack Obama announced a national initiative called CS For All that

would “empower all American students from kindergarten through high school to learn

CS and be equipped with the computational thinking skills they need to be creators in the

digital economy” (Smith, 2016, para. 1). The CS For All initiative allocated $4 billion in

funding for states and $100 million for school districts that would allow for the expansion

of CS teacher training, access to high quality materials, and the development of regional

partnerships. The initiative also sought to involve more governors, mayors, and education

leaders to help boost CS education and mentions the states of Delaware, Hawaii,

Washington, and Arkansas as places where the effective expansion CS opportunities for

students had already taken place. The approach of the CS For All initiative, in contrast to

Canada’s CanCode project, appears to connect more directly to educational organizations

as states and school districts play a more central role. This ensures that educational

66

organizations and experts have more power, control, and potential funding to help shape

the direction of the initiatives.

In terms of the foundational goals of the program, the main impetus for the CS For All

initiative seems to have been a need to fill current and projected high-tech jobs, and to

ensure that all students have access to CS education. In September 2016, the White

House released a fact sheet that identified progress related to the CS For All initiative.

Thirty-one states were now allowing CS to count towards high school graduation and

over 100 organizations had pledged more than $250 million to support CS education.

Major support came from the Girl Scouts of the USA, which had the potential to

introduce 1.4 million girls per year to CS education, and Code.org which supported the

professional development of over 40,000 additional teachers (The White House President

Barack Obama, 2016). Also in September, 2016, the K-12 Computer Science Framework

(K-12 Computer Science Framework Steering Committee, 2016) was released, which

was developed by five different organizations (the Association for Computing

Machinery, Code.org, Computer Science Teachers Association, Cyber Innovation Center,

and National Math and Science Initiative) in an effort to provide guidance to States and

local education agencies as they adopt policies and key infrastructure surrounding CS

education. The inclusion of education organizations within the development of this

framework, such as the Computer Science Teachers Association and the National Math

and Science Initiative, is important to note, as it ensures strong representation from

education stakeholders. This recognizes the value that these organizations bring to the

broadening of CS education and provides them with more control and influence.

The K-12 Computer Science Framework organized a progression of learning, from

kindergarten to grade 12, that centered around five core concepts (computing systems,

networks and the internet, data and analysis, algorithms and programming, and impacts

of computing) and seven core practices (fostering an inclusive computing culture,

creating computational artifacts, collaborating around computing, testing and refining

computational artifacts, recognizing and defining computational problems,

communicating about computing, and developing and using abstractions).

67

The intention of the concepts and practices in the K-12 Computer Science Framework

was to “serve as a foundation from which all states, districts, and organizations can

develop CS education standards for K-12 students” (K-12 Computer Science Framework

Steering Committee, 2016, p. 125).

4.2.3 England

England provides an additional, international example of the broadening of CS concepts

and skills in K-12 education over the last few years. This approach focusses on

incorporating CS concepts and skills within revised curriculum in the public education

system, rather than on providing funds to organizations to deliver camps, workshops,

webinars or resources. In 2012, the UK’s Royal Society published Shut Down or Restart?

The Way Forward for Computing in UK Schools which concluded that the delivery of

computing education, through existing Information and Communication Technology

curricula, was unsatisfactory. Many students were not inspired by what they were taught

and were learning little more than basic digital literacy skills such as word-processing

and database management. The report identified a specific need to recognize CS as a

rigorous academic discipline that is of great importance to the future of all students. Two

years later, in 2014, England released a National Computing curriculum that allowed for

students, from the age of five, to learn about “the principles of information and

computation and how digital systems work” (The Royal Society, 2017, p. 17). The

National Computing curriculum includes three major strands: information technology,

digital literacy, and CS. The curriculum also identifies CT as a core component of the

curriculum and is mentioned in the very first sentence of the National Curriculum

document: “A high quality computing education equips pupils to use computational

thinking and creativity to understand and change the world” (United Kingdom

Department for Education, 2013, p. 1). Examples of subject content for key stage 1 (the

first two years of formal schooling, when students are approximately 5 to 7 years old)

include understanding what algorithms are and creating and debugging simple programs.

Examples of subject content for key stage 2 (years 3 to 6, when students are

approximately 7 to 11 years old) include creating programs with specific goals in mind,

68

using sequence, selection, repetition and variables in programs, and using logical

reasoning to explain how algorithms work.

A few years after the release of the National Computing Curriculum, the UK’s Royal

Society published After the Reboot: Computing Education in UK Schools (2017) that

provided a list of changes that had taken place since 2012, examined the impact of these

changes, and identified “urgent challenges that governments, industry and school leaders

need to address in order to safeguard our future efficacy in the digital world” (p. 7). One

of these five major challenges was improving the gender balance in computing.

4.2.4 An Important Note from the Author

Considering my experience as a CS teacher and the contemporary literature in the field, it

is clear that issues related to equity, diversity, and inclusivity are important to include in a

thesis that explores the broadening of CS education in the K-12 grades. While I do not fit

the description of a traditionally underrepresented individual in CS, I am committed to

furthering my understanding of the issues surrounding the underrepresentation of

individuals and groups in CS. With 18 years of experience in K-12 CS education, I

observed this lack of diversity in each class that I taught or supported, and was driven to

explore interventions, from the small to the large scale, from classroom activities to

provincial policy. As I continue my research in K-12 CS education, I have been fortunate

to listen to, and learn from, a number of passionate and talented researchers included in

this chapter, and I would suggest readers explore their work. I have also been hesitant to

take up space in this area, and I am grateful for the conversations I have with my wife

Lisa, who does extensive work in K-12 education and research, and with other members

of the University community. Since completing the research and analysis for this chapter,

I now have a daughter, and this has provided me with an additional perspective. Although

I recognize that I have much to learn, these conversations, experiences and perspectives

have helped me to better understand my potential allyship role and to continue to actively

work towards and support an equitable, diverse and inclusive landscape in CS education.

I am aware that the issue of underrepresented groups in CS goes beyond gender, that

complex historical, structural and systemic forces are at play, and that an understanding

69

of intersectionality can provide valuable insight into the analysis of equity, diversity, and

inclusivity concerns. There are a number of researchers and authors who have published,

and continue to publish, important work in these areas, and I am grateful to have read

some of their contributions and will continue to seek out additional voices, research and

learn from their lived experiences. In addition, the terminology used when investigating

these issues is important. This chapter makes reference to female and male students

several times. The rationale for terminology is for clarity and consistency, as these terms

are used in the enrolment data obtained from Ontario’s Ministry of Education.

Finally, before further exploring equity, diversity, and inclusivity issues and enrolment in

CS courses, it is important to identify and discourage a deficit perspective (Patitsas et al.,

2014; Vakil, 2018). When discussing underrepresented groups in specific subject areas

and disciplines, there is a danger of focusing on a need to “fix” what may be thought of

as deficiencies in attitudes, skills, practices, interests, or aspirations. This approach fails

to appropriately consider the social structures and systemic issues that may cause

inequalities in the first place.

4.3 Potential Impact and Missed Opportunities

A central and consistent theme to many of the programs meant to broaden CS K-12

education has been the concern surrounding underrepresented groups in CS education

and the field. Canada’s 2021 federal budget indicates that the CanCode initiative has a

“special focus on reaching young people who are traditionally underrepresented in

science, technology, engineering and mathematics, such as girls and Indigenous youth”

(Department of Finance Canada, 2021, p. 115) while the K-12 Computer Science

Framework recognizes the opportunity gap that exists when there is a disparity in access

to CS education, as often traditionally underrepresented students, who already face

educational inequities, are further marginalized (K-12 Computer Science Framework

Steering Committee, 2016). While the research proves that there are a number of diverse

and intersecting groups traditionally underrepresented in CS Education, this chapter

focuses specifically on the concern surrounding the underrepresentation of female

students.

70

There are three main concerns surrounding the underrepresentation of female students in

secondary school CS courses. The first involves the missed economic opportunities that

would be afforded to students if they chose CS as a field of study and career. Excluding

female students from CS education means excluding them from lucrative, high-status and

flexible careers within the continually growing field of technology (Information and

Communications Technology Council, 2017). In addition, CS concepts and the thought

processes involved in computational thinking are recognized as valuable for all students

to learn (Wing, 2006) as they are applicable to a wide range of careers. Scientists and

researchers in biology, chemistry, physics, astronomy and medicine use computers and

CS concepts for mathematical modelling in order to expand the frontiers of knowledge in

both research and innovation (Monroe, 2014) while CS-related, transformational

technology such as virtual and augmented reality, 5G mobile, 3D printing, blockchain

and artificial intelligence will lead to an increased demand for digital skill workers in

lucrative fields (Information and Communications Technology Council, 2017). The

second concern surrounding the underrepresentation of female students in CS involves

CS knowledge serving as a critical part of being an educated, 21st century citizen

(Margolis et al., 2012). Resnick (2017) explains:

In today’s society, digital technologies are a symbol of possibility and progress.

When children learn to use digital technologies to express themselves and share

their ideas through coding, they begin to see themselves in new ways. They begin

to see the possibility for contributing actively to society. They begin to see

themselves as part of the future. (p. 50-51)

Kafai’s (2016) concept of Computational Participation acknowledges that the thought

processes associated with CS are a social practice with a broad reach. Rather than an

abstract discipline, programming is now a way to make and be in the digital world (Kafai,

2016). Digital technologies are used for functional, political, and personal reasons and

therefore all students should develop an understanding of interfaces, technologies, and

systems that they encounter on a daily basis.

71

Finally, an underrepresentation of female students in CS leads to the field missing out on

the benefits that a diverse labour force can have on innovation. Computer scientists help

design tools that shape modern society and diversifying the field means a higher

likelihood of creating technologies that are appropriate for a broad population (Margolis

& Fisher, 2002). CS based technologies can also help solve economic, environmental,

political, and social problems and thus diverse perspectives in the field are needed in

order to develop diverse solutions. A lack of diversity in high school CS courses could

lead to a lack of diversity in the technology sector and therefore a lack of diversity in

solutions and technologies available for all.

Considering the above-mentioned impact and missed opportunities resulting from a lack

of diversity in CS education, it is important to develop an understanding of enrolment

patterns in Ontario Computer Studies courses while the numerous initiatives related to the

broadening of CS education have been taken place. It is also important to investigate,

specifically, whether or not a gender gap currently exists in Ontario’s high school CS

courses. Before doing so; however, a review of equity, diversity, and inclusivity issues in

CS is provided, as well as important and relevant conceptual frameworks related to

gender equity and CS education.

4.4 Equity, Diversity, and Inclusivity in CS Education

Before investigating enrolment data and analyzing Ontario’s secondary Computer Studies

courses, it is important to develop an understanding of the wide range of issues related to

gender, equity, diversity, and inclusivity in CS education that span historical, political,

psychological, and social domains. Acknowledging the complexity of these issues,

Patitsas et al. (2014) employed a historical sociology approach that argued that for

educators to understand the current situation and how to change it, they must understand

historical forces: “we cannot reduce the matter down to a few issues that, if fixed, would

change everything” (p. 111). As well as appreciating the complexity of the issues, several

authors also caution against the tendency to employ a deficit approach when discussing

the CS education gender gap.

72

Victores and Gil-Juárez (2017) explain that too often girls are portrayed as deficient and

lacking the “normal relationship” (p. 671) that boys and men have with computing.

Focusing on a need to “fix” the deficiencies of girls’ attitudes, skills, practices, interests,

and aspirations in computing fails to appropriately consider the social structures that may

cause these inequalities in the first place. Consideration of this deficit approach is

important, as interventions implemented to increase enrolment of female students in CS

courses should certainly avoid an approach that considers needing to fix attitudes or

aspirations. Gender differences in the attitude towards technology use has often been

cited as an important factor in explaining the underrepresentation of female students in

CS education, however; findings surrounding this issue have been inconsistent (Cai et al.,

2016).

Cheryan et al. (2015) emphasize the impact that stereotypes can have on signaling to girls

that CS is not an appropriate field for them. The authors explain that students have

stereotypes about the culture of CS and that girls face negative stereotypes about their

abilities in the field. These stereotypes include girls being steered away from CS by

parents and teachers who consider the field more appropriate for boys (Eccles et al.,

1990; Sadker & Sadker, 1994), as well the underrepresentation of female students in CS

perpetuating future underrepresentation (Murphy et al., 2007). In addition, the authors

note that girls underestimate their potential level of achievement in the field (Correll,

2001; Ehrlinger and Dunning, 2003) and they may anticipate greater work-family

conflicts in CS than they would in other fields (Ceci et al., 2009). The authors also

acknowledge the fact that there is gender discrimination in the CS field, reduced

opportunities for women, and social and professional penalties for women when

exhibiting competence and leadership qualities in CS-related occupations (Moss-Racusin

et al., 2012; Rudman, 1998). If interventions meant to reduce gender gaps in CS

education are to be effective, the general state of the field itself, and the work

environments associated with CS need to be considered. It is not enough to increase

young women’s participation in CS at the secondary level, only for these students to

eventually find gender discrimination in the field.

73

When exploring the psychological explanations for why girls avoid computer-related

subjects, Vitores and Gil-Juárez (2016) explain that girls have negative stereotypes of

computer scientists being geeky and the field being male dominated and oriented towards

working with machines rather than people. They also acknowledge that girls have poor

knowledge of CS as a discipline and career and that they often perceive CS as being

boring. While boys also share this negative view, Fisher and Margolis (2003) and Lang

(2010) indicate that this belief is more damaging for girls than boys. It is here that work

surrounding appropriate curriculum and pedagogy can potentially have an impact. There

are a number of approaches that can be taken towards K-12 CS education, many of which

were summarized in Chapter 2. A curriculum and related pedagogy that focuses on CS as

a topic of study in and of itself, such as one presented by Wing (2006), may be less

effective at engaging students from underrepresented groups. Instead, an approach that

recognizes the power of the computer as a tool, such as Papert (1993) or diSessa (2018),

or that incorporates the social, personal and cultural contexts, such as Kafai (2016) and

Resnick (2017) may be more effective.

Adding to the literature surrounding large scale initiatives meant to broaden CS education

participation, Vakil (2018) calls for a justice-centered approach to equity in CS:

With CS rapidly emerging as a distinct feature of K–12 public education in the

United States, calls to expand CS education are often linked to equity and

diversity concerns around expanding access to girls and historically

underrepresented students of color. Yet, unlike other critical traditions in

education research, equity-oriented CS research has largely failed to interrogate

the sociopolitical context of CS education. (p. 26)

Vakil’s (2018) justice-centered approach attempts to move away from what he calls the

dominant approach for broadening CS concepts and skills, which may be in the best

interests of multinational corporations, towards focusing on “the sociopolitical

implications, relevance, and, ultimately, liberatory possibilities of teaching and learning

CS” (p. 27). In the dominant approach, students are encouraged to be responsible digital

citizens, to potentially pursue career opportunities, and the role of student identity in

74

learning processes is undertheorized, “resulting in deficit lens on girls and students of

color” (p. 37). Alternatively, a justice-centered approach includes students moving

beyond being responsible digital citizens, to students engaging in critiquing unethical

abuses of technological power, while researchers consider learning environments that are

responsive to students’ multiple social identities. In a justice-centered approach, CS

learning is framed as being “important for the social and economic welfare of historically

nondominant students and their communities”, as students are encouraged to “pursue CS

as part of and connected to larger struggles for justice and liberation” (p. 37). Vakil’s

justice-centered approach uses critical pedagogy and critical race theory as conceptual

frameworks to situate his work. The conceptual frameworks for situating this chapter’s

analysis of enrolment follow.

4.5 Conceptual Frameworks

Gender has always been a central theme in the organization of education. Discourses

have often been informed by the meanings that have been given to identifying students as

either male or female, as well as the biological and hormonal differences between these

two categories (Pinar et al., 1995a). In the 1970s, the understanding of curriculum as a

gender text became an important form of analysis that was founded on feminist theories

developed during curriculum’s Reconceptualization period. The analysis below provides

an introductory look into feminist theory and its value in informing an investigation into

gender gaps and the underrepresentation of female students in high school CS.

In the late 1960s Joseph Schwab, a leading figure in the curriculum based educational

reform movement (Connelly, 2013), declared the state of curriculum studies ‘moribund’

and called for new principles and new methods of analysis (Deng, 2018). What followed

was a transition from an interest in the development of curriculum to a theoretical and

practical interest in understanding curriculum (Pinar et al., 1995b). Tyler’s Rationale,

which outlined a practical four step process of curriculum development that included

stating objectives, selecting experiences, organizing experiences, and evaluating

(Kliebard, 1970), had dominated as an approach to curriculum studies but it had now

reached the end of its utility. The Reconceptualization period of curriculum studies

75

involved moving away from what was considered an atheoretical, practical approach to

one of understanding that borrowed modes of inquiry that were historical, philosophical,

and literary and that were popular in humanity fields (Pinar, 1975). One of these modes

of inquiry that developed to inform curriculum studies was that of feminist theory.

Feminist theory focuses on analyzing gender inequality and socio-political structures. It

recognizes that what were once thought to be “humanly inclusive problematics, concepts,

theories, objective methodologies, and transcendental truths” (Harding, 1986, p. 15) are

instead, products of thought whose creators were marked by gender, class, race, and

culture. Sometimes referred to as an emancipatory epistemology, feminist theory

challenges conceptual frameworks in a wide variety of fields and seeks to ask questions

related to the influences and impact of androcentric points of view.

A feminist approach to research related to the underrepresentation of female students in

high school CS is appropriate, however; it is important to first develop an understanding

of some theoretical implications. Initially, the liberal feminism of the 70s and 80s was

focused on getting more women to enter the science and technology field and as a result

suggested that the gender gap could be fixed through socialization and equal opportunity

policies (Wajcman, 2007). It was believed, however; that his approach situated the

problem within women as they were being asked to change major aspects of their gender

identity and forsake their femininity. Later, socialist and radical feminists explored

further the gendered nature of technoscientific knowledge and culture and the gender

power relations that were embedded in the science and technology fields (Wajcman,

2007). Unfortunately, some of these approaches presented a negative image of women as

victims of a patriarchal technoscience and neglected to recognize the agency that women

had and the potential of redesigning technologies for gender equality. Presently,

researchers such as Vitores and Gil-Juárez (2016) warn against falling into these

theoretical traps. They caution against the paradox of reproducing dangerous assumptions

about computing and gender through research that hopes to identify and solve the

problem in the field. As a solution, they highlight the need for “different researchers’

eyes” that would allow for varied landscapes in the field of women in computing research

including acknowledging the limitations of gender binaries (Henwood, 2000) and the

76

black-boxing of gender (Grint & Gill, 1995). Two such sets of eyes include

technofeminism and material feminism.

Technofeminism borrows from feminist and technology studies and seeks to disrupt the

idea that technology is a product of “rational technical imperatives” (Wajcman, 2007)

and instead argues that it is a source and consequence of gender relations that are in

constant flux. A technofeminist approach recognizes that gender is understood as a

“performance or social achievement, constructed in interaction” (Wajcman, 2007, p. 294)

and that relationships between gender and technology are not fixed across time and

location. As an example, a smart phone may serve as a liberating extension of a Western

women’s body or as a tool that allows for her mother to keep track of her daughter. In

Bangladesh, however; the smart phone serves as a communication device allowing

women traders to run their business, and in Central Africa the smart phone is a source of

military conflict involving scarce minerals that affect women in the surrounding area.

“There is enormous variability in gendering by place, nationality, class, race, ethnicity,

sexuality and generation and thus women’s experience of ICTs (information

communication technologies) will be diverse” (Wajcman, 2007, p. 294).

Technofeminism’s central premise is that people and objects co-evolve, resulting in a

need for new perspectives on research surrounding women in computing education that

acknowledges the sociotechnical networks and systems at play. Similarly, material

feminism provides a valuable theoretical framework that sheds light on the complex

social dynamics involved in gender and technology research.

Material feminism arose as a result of concerns surrounding postmodern feminism’s

epistemology suggesting that the real and material is a product of language (Alaimo &

Hekman, 2008). While the associated linguistic and discursive turn of postmodernism

was productive, defining such things as materiality, the body and nature as products of

discourse failed to take the more-than-human world seriously (Alaimo & Hekman, 2008),

a fact that had important implications for the study of gender and science. Material

feminism, by contrast, acknowledges nature as more than a passive social construction

and instead, a force with agency that interacts with and potentially changes other

elements in a network, including humans. Material feminism resists returning to

77

modernism by avoiding the dichotomy between construction and reality and instead

acknowledges that while language does construct reality, it also interacts with other

elements in this construction (Hekman, 2008). Moving from an epistemological

perspective to an ontological one, Hekman (2008) explains that feminism requires an

understanding that concepts and theories have material consequences: “There is a world

out there that shapes and constrains the consequences of the concepts we employ to

understand it” (p. 109).

Considering the materials, objects and technology inherent in the field and education of

CS, both technofeminism and material feminism provide important conceptual

frameworks with which to approach the theme of equity, diversity, and inclusivity. This

theme will now be explored through an analysis of both general enrolment data from

secondary CS courses in Ontario, and through the enrolment data related specifically to

female and male students.

4.6 Enrolment in Ontario Secondary School Computer
Studies

In order to obtain a Secondary School Diploma in the province of Ontario, students must

earn 18 compulsory and 12 optional credits as well as pass the provincial literacy

requirement and perform a minimum of 40 hours of community involvement activities

(Ontario Ministry of Education, 2015). Of the 12 optional courses, at least one must come

from a group of subjects that include science (grade 11 or 12), technological education,

French as a second language, computer studies or cooperative education.

The current computer studies curriculum includes a total of five courses distributed over

grades 10, 11 and 12 (Ontario Ministry of Education, 2008). These courses include:

• ICS2O: Grade 10 Introduction to Computer Studies – Open;

• ICS3C: Grade 11 Introduction to Computer Programming – College;

• ICS3U: Grade 11 Introduction to Computer Science – University;

• ICS4C: Grade 12 Computer Programming – College; and

• ICS4U: Grade 12 Computer Science – University.

78

The courses are classified as either open, college preparation or university preparation.

The open courses are designed to broaden students’ knowledge and skills in computer

studies while the college preparation courses are designed to equip students with the

knowledge and skills to meet program requirements for college, apprenticeships, or other

training programs. The university preparation courses are designed to equip students with

the knowledge and skills required to meet university program requirements. Of the five

courses, only two require prerequisites: students must have obtained the ICS3C credit in

order to enroll in ICS4C and they must obtain the ICS3U credit in order to enroll in ICS

4U. The grade 10 ICS2O course is not a prerequisite for either the grade 11 ICS3C or

ICS3U course.

4.6.1 Overall Enrolment

Total student enrolment data for Ontario’s five secondary Computer Studies courses was

obtained online through Ontario’s Data Catalogue. The Ontario Data Catalogue includes

thousands of data sets including enrolment data for all of Ontario’s secondary school

courses. The course enrolment in secondary schools data includes the number of students

enrolled in ministry defined secondary school courses and includes the course code,

course description, grade, pathway or destination (such as College or University) and the

number of students enrolled for each course.

The data for the total number of students enrolled in Ontario’s five secondary Computer

Studies courses is shown in Figure 2.

79

Figure 2. Total number of students enrolled in Ontario secondary Computer Studies

courses (2011-2018)

The data reveals that enrolment has increased in Ontario’s secondary Computer Studies

courses each year, since the 2011-2012 school year. During the 2011-2012 school year

34,177 students were enrolled in secondary Computer Studies courses while in 2017-

2018, this number had increased to 49,358.

In addition to the number of students enrolled in Computer Studies courses, the total

number of students enrolled in Ontario secondary schools was also obtained from the

Ontario Data Catalogue. This data, in combination with the data related to the number of

students enrolled in Computer Studies courses, provides the percentage of secondary

students in Ontario who are enrolled in Computer Studies courses. This data is shown in

Figure 3.

80

Figure 3. Percentage of secondary students enrolled in Ontario secondary Computer

Studies courses

As shown in Figure 3, the percentage of students enrolled in secondary Ontario Computer

Studies courses increased each year, since the 2011-2012 school year. During the 2011-

2012 school year less than 5% of Ontario secondary school students were enrolled in

secondary Computer Studies courses while during the 2018-2019 school year, this

number had increased to almost 8%.

A more detailed breakdown of the data provides insight into the enrolment of students

within each of the specific Computer Studies courses. Figure 4 indicates the number of

students enrolled in the grade 10 ICS 2O course, the grade 11 ICS 3C and 3U courses,

and the grade 12 ICS 4C and 4U courses. Figure 5 breaks down the data even further,

showing enrollment data for each of the five individual Computer Studies courses.

81

Figure 4. Total number of students enrolled in Computer Studies courses in each

grade

It is clear that the grade with the largest number of students enrolled in Computer Studies

courses is grade 11, and then there is a significant drop off as much fewer students enroll

in the grade 12 courses. It is also clear that the majority of students enrolling in grade 11

or grade 12 courses are enrolled in the University pathway course, and not the College

pathway course. In addition, since 2011, there has been very little increase in the number

of students enrolling in the grade 11 or grade 12 College pathway courses. The increases

in enrollment, from year to year, for the grade 11 and grade 12 courses are related to the

increase in the University pathway courses.

82

Figure 5. Total number of students enrolled in the five Computer Studies courses

The following provides a summary of findings above, before moving on to specific data

related to female and male student enrolment in Computer Studies courses:

• enrolment has increased in Ontario’s secondary Computer Studies courses each

year, since the 2011-2012 school year;

• the percentage of students enrolled in secondary Ontario Computer Studies

courses increased each year, since the 2011-2012 school year;

• the grade with the largest number of students enrolled in Computer Studies

courses is grade 11;

• there is a significant decrease in enrolment after grade 11, as fewer students enroll

in the grade 12 courses;

• the majority of student enrolling in grade 11 or grade 12 courses are enrolled in

the University pathway course and not the College pathway course;

83

• there has been very little increase in the number of students enrolling in the grade

11 or grade 12 College pathway courses

• the increases in enrollment, from year to year, for the grade 11 and grade 12

courses is largely due to the increase in enrolment in the University pathway

courses.

4.6.2 Diversity and Ontario Computer Studies

The data used above was obtained from the Ontario Data Catalogue, which does not

provide information related to the enrolment of female and male students in the various

secondary courses. This specific data; however, was available under Ontario’s Freedom

of Information and Protection of Privacy Act and by making a formal request to Ontario’s

Ministry of Education. The data obtained includes male and female student enrolment in

all five courses at public and Roman Catholic schools since the 2009-2010 school year.

The data does not include enrolment from private schools and publicly funded hospital

and provincial schools, care, treatment, and correctional facilities. It also does not include

enrolment from summer, night, and adult continuing education day schools. Figure 6

shows the total number of female and male students enrolled in Computer Studies

courses in Ontario.

The data in Figure 6 reveals that there is a disproportionately low number of female

students enrolled in secondary Computer Studies courses in Ontario, indicating that a

significant gender gap exists. During the 2017-2018 school year, female students made

up only 21.5% of secondary school Computer Studies students. This means that there is

one female student for every four male students in an Ontario secondary school CS

classroom. Considering a class of 25 students, there would only be approximately 5

female students on average.

84

Figure 6. Total number of female and male students enrolled in Computer Studies

courses

While Figure 2 indicates that enrolment in CS courses has increased over the last few

years, Figure 6 shows that this increase is not equally represented by female and male

students. The enrolment of female students in Computer Studies courses, from 2011 to

2018, has increased by 76% while the enrolment of male students in Computer Studies

courses, during that same time frame, has increased by 34%.

Figure 7 reveals that female student enrolment in all five of the Computer Studies courses

has been increasing since 2010. The most significant increases are in the grade 10 ICS2O

and grade 11 ICS3U courses. The grade 12 ICS4U course shows a slight increase;

however, both College pathway courses (ICS3C and ICS4C) show little increase in

female student enrolment.

85

Figures 7 shows the percentage of enrolled female students, in each of the five Computer

Studies courses, and shows that the percentage of female students in the grade 10 ICS2O,

grade 11 ICS3U and grade 12 ICS4U courses have been increasing, while there has been

no decrease for the ICS3C and ICS4C courses.

Figure 7. Percentage of female students enrolled in each of the five Computer

Studies courses, from 2011 to 2018.

It is also apparent that the percentage of female students who make up the Computer

Studies courses decreases in the later grades. In 2017-2018, the percentage of female

students enrolled in each of the five courses, is:

• grade 10 ICS2O – 26.6%;

• grade 11 ICS3C – 14.1% and ICS3U – 21.4%;

• grade 12 ICS3C – 7.1% and ICS4U – 16.3%.

86

Considering the data above, it is clear that in Ontario’s secondary, Computer Studies

courses:

• there is a significant gender gap with female student enrolment accounting for

only 21.5% of secondary school Computer Studies students during the 2017-2018

school year;

• the gender gap has been decreasing since 2011, as female student enrolment has

increased by 76% while the enrolment of male students in Computer Studies

courses, during that same time frame, has increased by 34%;

• the gender gap is smallest in the grade 10 course, and then increases each year in

the subsequent grades;

• the gender gap is greatest in the grade 11 and grade 12 College pathway courses.

As shown in Figure 3, the percentage of students enrolled in secondary Ontario Computer

Studies courses has increased each year, since the 2011-2012 school year. During the

2011-2012 school year less than 5% of Ontario secondary school students were enrolled

in secondary Computer Studies courses while during the 2018-2019 school year, this

number had increased to almost 8%. It is clear that the College pathway courses have the

lowest enrolment, indicating a need to further understand the issues related to this

phenomenon. It is possible that fewer students choose the College courses when offered,

for a variety of potential reasons, but it will also be important to examine whether or not

all courses are offered at all schools. It will also be interesting to investigate why there is

a decrease in enrolment in the final grade 12 courses. It is possible that students enroll in

the grade 10 or 11 courses and then decide not to continue to pursue CS as a possible

career direction, but it is also possible that other factors play a role, such as the required

courses needed for high school graduation or the courses required for acceptance into

University programs.

In terms of data related to female and male student enrolment in Computer Studies

courses, it is clear that there is a significant gender gap in secondary CS education in

Ontario. Interestingly, the gender gap has been decreasing since 2011. Some of the

influences that contribute to a gender gap in CS education were included in earlier

sections of this chapter, in order to better understand the context of the study. What

87

follows is a discussion on some of the literature related to large scale frameworks that

seek to better understand interventions that have been used to address equity, diversity,

and inclusivity concerns in CS education and identify important leverage points that

could be used.

4.6.3 The Universal/Selective/Indicative Model and Systems
Thinking Leverage Points

The Universal/Selective/Indicated (USI) model, presented by Patitsas, Craig and

Easterbrook (2015), is a conceptual tool borrowed from public health’s suicide

prevention literature (Wasserman et al., 2009) that categorizes initiatives based on their

targeted audiences. Universal initiatives are those that are carried out without considering

the target groups of the population. Developing a student mentorship program within a

CS department, increasing paired (partnered) computer programming initiatives,

mandating that all students enroll in a CS course, admission changes or switching to blind

review for conference selection are all examples of universal diversity initiatives used in

post-secondary CS education that impact entire populations of students but that

disproportionally benefit underrepresented groups including women and minorities

(Patitsas et al., 2015). In terms of the Ontario context, a universal initiative might be a

revision of secondary Computer Studies, in an effort to incorporate broader CS content,

skills and connections that go beyond simply the study of the computer in and of itself.

This could include curriculum expectations that support cross-curricular projects,

creativity, and solving problems within local contexts and communities. Alternatively,

adding coding concepts and skills to the K-8 curriculum could also be seen as a universal

initiative, as it would impact all Ontario K-8 students, but would also ensure that coding

and CS-related concepts are introduced to underrepresented groups at an earlier age.

Selected initiatives include those that specifically target underrepresented groups within a

population. Examples of effective selected initiatives used in post-secondary CS include a

mentorship program for all female students, departmental women-in-CS clubs, outreach

initiatives for girls and scholarships for women in CS (Patitsas et al., 2015). Canada’s

federal CanCode project supports selected initiatives through its provision of funding to

organizations who support the broadening of CS education to specific, underrepresented

88

groups. Examples of these organizations include Black Boys Code, Hackergal and

Ulnooweg (Government of Canada, 2020). Black Boys Code focuses on introducing

digital literacy and programming skills to black boys ages 8 to 17 years old, while

Hackergal focuses on supporting girls between the ages of 11 and 14. Ulnooweg is an

Indigenous led initiative that supports Indigenous, First Nation & Metis students from

kindergarten to grade 12 (Government of Canada, 2020).

Finally, indicated initiatives are those that target specific individuals who are part of a

target group and who may require extra supports. Examples of indicated initiatives that

have been effective in post-secondary CS education include a mentorship program

developed specifically for students who have been flagged as requiring assistance or

when a teacher or adviser recognizes a student who is struggling and provides support or

encouragement (Patitsas et al., 2015).

In addition to considering the target groups of diversity initiatives, Patitsas et al. (2015)

also encourage educators to consider the leverage of these initiatives by asking: Does the

initiative lead to superficial or whole-sale system changes? The authors borrow and

simplify Donella Meadows’s (2008) leverage-point continuum and identify four

categories of leverage based on the Structure-Behaviour-Function Theory (Hmelo-Silver

& Pfeffer, 2004). These categories include, from smallest to greatest leverage: structural

changes, system behaviour change, function change, and paradigm change. Structural

changes that have proven to be effective in improving the number of female students in

post-secondary CS education include having the introductory course taught by a female

instructor, using female pronouns in assignment instructions, assigning groups based on

gender and providing multiple entry points into a CS major. System behaviour changes

that have proven to be effective in improving the number of female students in post-

secondary CS education include improved research opportunities, using meaningful

contexts for assignments, using blind reviews for scholarship applications, and removing

potential stereotypes (such as androcentric posters). Function changes that have proven to

be effective in improving the number of female students in post-secondary CS education

include outreach efforts, increased feedback to students, altering program entry

requirements, and new classroom rules such as calling on students randomly. Finally,

89

paradigm changes that lead to the greatest leverage in improving the number of female

students in post-secondary CS education include shifts in thinking that identify the

problem within the system rather than the individual, teaching in a way that empowers

the students, and viewing computing excellence as something that can be taught rather

than something that is connected to an individual’s innate ability.

The USI and leverage frameworks presented by Patitsas et al. (2015) serve as important

tools that allow researchers to zoom in on diversity initiatives and evaluate their

effectiveness within large educational systems. In contrast, educators, policy makers and

researchers also need to be able to zoom out, away from specific initiatives and

implementation models, towards relevant theoretical frameworks that are useful for

situating and informing this important and complex work within appropriate

epistemological and ontological grounds. The technofeminist and material feminist

frameworks presented earlier provide these grounds.

4.6.4 Margolis and the Clubhouse Today

A major impetus for this chapter began with Margolis and Fisher’s (2002) work, so it

seems appropriate to conclude with some updated and contemporary views of the issue

from Margolis herself, as well some of her co-authors and colleagues. In 2015, Margolis,

Goode and Chapman (2015) acknowledged that a number of education stakeholders in

the US, including nonprofits, industry partners, politicians, school districts and parents,

were beginning to raise concerns about the importance of access to K-12 CS education.

Based on their work with the Exploring Computer Science (ECS) program, the authors

warned, however; about the superficiality of numbers: “focusing on quantitative metrics

sometimes provides little more than a head-count of students enrolled in course. It does

not tell us if students are prepared, engaged, and challenged with computing, or

disengaged and marginalized” (p. 60). This is an important consideration for large

initiatives such as Canada’s CanCode and the US’s CS For All programs. Simply

recording “engagements” and “coding hours” does not provide any information related to

the depth and type of CS education experienced by students involved in the programs.

Nor does it capture data on the longer lasting impact of these initiatives, and whether or

90

not they lead to more students from underrepresented groups enrolling in CS courses, and

potentially following pathways leading to a career in the field.

A potential solution is a set of instruments developed through the ECS program that

assess student’s engagement, attitudes, interest, and ability to apply, evaluate and explain

what they are learning. In addition to acknowledging the importance of a program

evaluation tool that goes beyond simple enrollment numbers, the authors also provide

some lessons from scaling. These lessons explore the “tight but loose” tension, described

by Thompson and Wiliam (2017), that must be navigated when large scale initiatives

must remain faithful to an original model and true to original values (tight), while also

providing flexibility to meet the needs of local conditions (but loose). Some lessons from

scaling include the need for:

• teachers to promote cognitively challenging discussions;

• continuous professional development and professional community building for

teachers;

• continuous technical assistance and support for teachers; and

• ongoing relationship building, communication and advocacy amongst

stakeholders.

In addition to these lessons, the authors also warn against potential unintended

consequences of scaling initiatives, and they provide the example of how the expansion

of the ECS program lead to closer scrutiny of teacher certification regulations and a

stalling of initiative momentum.

Finally, considering the important contributions that Margolis and Fisher’s (2002)

seminal book made to the awareness of issues concerning female student enrollment in

CS courses, it is also important to expand the scope of investigation and consider other

underrepresented groups in CS education. In Stuck in the Shallow End: Education, Race,

and Computing, Margolis et al. (2008) investigate a lack of access to high school CS

courses based on influences associated with race and socioeconomic status. Much like

Unlocking the Clubhouse, Stuck in the Shallow End begins with an investigation

91

surrounding specific groups and CS access, but serves a much larger purpose as a

“treatise on the potential and reality of education to remove barriers and to support social

and economic equality” (p. vii).

4.7 Conclusion

An analysis of enrolment data from secondary Computer Studies courses in Ontario

indicates that overall student enrolment has increased since the 2011-2012 school year.

This increase has been primarily due to an increase in enrolment in the grade 10 ICS2O

course and the grade 11 and grade 12 University pathway courses. It is evident that

further research is required related to the College pathway courses, as these courses have

significantly lower enrolment than the others and there has been very little increase in

enrolment in these two courses over the seven years studied in this work. The data also

reveals a gender gap in Ontario secondary Computer Studies courses, as female students

make up only 26% of students enrolled in the grade 10 course, 21% of students enrolled

in the grade 11 courses, and 15.7% of the students enrolled in the grade 12 courses. From

2011-2018, female student enrolment in Ontario’s Computer Studies has increased at a

greater rate than male student enrolment, indicating that the gender gap is decreasing.

A precursory literature review shows that historically, a number of doors, walls, and

windows have been identified, that inhibit certain students from equal access and

participation to the computing clubhouse. Considering the number of initiatives and

money related to expanding CS education, including a proposed revision of high school

CS curriculum in Ontario and $80 million of additional CanCode money provided by the

federal government, a better understanding of the underrepresentation of female students

in high school CS is critical. Researchers within this field would be well advised to

explore a number of potential theories and approaches to their work, including a

technofeminist or material feminist approach, as these theoretical frameworks recognize

the importance of materials in their epistemologies and they provide valuable insight into

the ever-changing relationships between gender and technologies. A CS education can

provide economic and educational opportunities, allow students to create and participate

in a 21st century society, and help develop a diverse pool of technology talent resulting in

92

more diverse innovations, technologies and digital solutions. Finally, as CS initiatives

continue to expand to the K-8 grades, an understanding of equity, diversity, and

inclusivity issues in CS is critical as new curriculum is developed. The area of curriculum

within the K-8 grades will be further explored in the proceeding chapter.

4.8 Chapter References

Alaimo, S., & Hekman, S. (2008). Introduction: Emerging models of materiality in

feminist theory. In S. Alaimo & S. Hekman (Eds.), Material feminisms (pp. 1–19).

Indiana University Press.

Alphonso, C. (2021, November 11). Ontario to end streaming for all Grade 9 courses next

school year. The Globe and Mail.

https://www.theglobeandmail.com/canada/article-ontario-to-end-streaming-for-all-

grade-9-courses-next-school-year/

Alberta Education. (2021). Draft Science Kindergarten to Grade 6 Curriculum.

https://cdn.learnalberta.ca/Resources/content/cda/draftPDF/media/Science/Science-

GrK-6-EN.pdf

British Columbia Ministry of Education. (2016). Applied Design, Skills and

Technologies.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_k-9_elab.pdf

British Columbia Ministry of Education. (2018a). Mathematics: Computer science grade

11.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_11_computer-science_elab.pdf

British Columbia Ministry of Education. (2018b). Mathematics: Computer science grade

12.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_12_computer-science_elab.pdf

Cai, Z., Fan, X., & Du, J. (2017). Gender and attitudes toward technology use: A meta-

analysis. Computers & Education, 105, 1–13.

https://doi.org/10.1016/j.compedu.2016.11.003

Canada Learning Code. (2020). Learning for the digital world: A pan-Canadian K-12

computer science education framework. https://k12csframework.ca/wp-

content/uploads/Learning-for-the-Digital-Future_Framework_Final.pdf

Canada Learning Code. (2021). Canada Learning Code: About us.

https://www.canadalearningcode.ca/about-us/

93

Ceci, S. J., Williams, W. M., & Barnett, S. M. (2009). Women’s underrepresentation in

science: Sociocultural and biological considerations. Psychological Bulletin,

135(2), 218–261. https://10.1037/a0014412

Cheryan, S., Master, A., & Meltzoff, A. N. (2015). Cultural stereotypes as gatekeepers:

Increasing girls’ interest in computer science and engineering by diversifying

stereotypes. Frontiers in Psychology, 6(49), 1–8.

https://doi.org/10.3389/fpsyg.2015.00049

Connelly, F. M. (2013). Joseph Schwab, curriculum, curriculum studies and educational

reform. Journal of Curriculum Studies, 45(5), 622–639.

https://doi.org/10.1080/00220272.2013.798838

Correll, S. J. (2001). Gender and the career choice process: The role of biased self-

assessments. American Journal of Sociology, 106(6), 1691–1730.

https://doi.org/10.1086/321299

Deng, Z. (2018). Contemporary curriculum theorizing: Crisis and resolution. Journal of

Curriculum Studies, 50(6), 691–710.

https://doi.org/10.1080/00220272.2018.1537376

Department of Finance Canada. (2017). Building a strong middle class: #Budget2017.

https://www.budget.gc.ca/2017/docs/plan/budget-2017-en.pdf

Department of Finance Canada. (2019). Investing in the middle class: Budget 2019.

https://www.budget.gc.ca/2019/docs/download-telecharger/index-en.html

Department of Finance Canada. (2021). A recovery plan for jobs, growth, and resilience:

Budget 2021. https://www.budget.gc.ca/2021/home-accueil-en.html

diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers.

Mathematics Education, Mathematical Thinking and Learning, 20(1), 3-31.

https://doi.org/10.1080/10986065.2018.1403544

Eccles, J. S., Jacobs, J. E., & Harold, R. D. (1990). Gender role stereotypes, expectancy

effects, and parents’ socialization of gender differences. The Journal of Social

Issues, 46(2), 183–201. https://doi.org/10.1111/j.1540-4560.1990.tb01929.x

Ehrlinger, J., & Dunning, D. (2003). How chronic self-views influence (and potentially

mislead) estimates of performance. Journal of Personality and Social Psychology,

84(1), 5–17. https://doi.org/10.1037/0022-3514.84.1.5

Fisher, A., & Margolis, J. (2003). Unlocking the clubhouse: The Carnegie Mellon

experience. ACM SIGCSE Bulletin, 34(2), 79–83.

https://doi.org/10.1145/543812.543836

Gadanidis, G., Brodie, I., Minniti, L., & Silver, B. (2017). Computer coding in the K-8

mathematics curriculum? What works: Research into practice.

94

http://www.edu.gov.on.ca/eng/literacynumeracy/inspire/research/Computer_Codin

g_K8_en.pd

Government of Canada. (2019a, March 19). Budget 2019: Gender Equality Statement.

https://www.budget.gc.ca/2019/docs/plan/chap-05-en.html

Government of Canada. (2019b, May 6). CanCode assessment criteria.

https://www.ic.gc.ca/eic/site/121.nsf/eng/00002.html

Government of Canada. (2019c). CanCode.

https://www.ic.gc.ca/eic/site/121.nsf/eng/home

Government of Canada. (2020). Funded CanCode initiatives.

https://www.ic.gc.ca/eic/site/121.nsf/eng/00003.html

Government of Canada. (2021). Canada's Digital Charter: Trust in a digital world.

https://www.ic.gc.ca/eic/site/062.nsf/eng/h_00108.html

Grint, K., Gill, R., & Gill, R. M. (Eds.). (1995). The gender-technology relation:

Contemporary theory and research. Taylor & Francis.

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of the

field. Educational Researcher, 42(1), 38-43.

https://doi.org/10.3102/0013189X12463051

Harding, S. G. (1986). The science question in feminism. Cornell University Press.

Hekman, S. (2008). Constructing the ballast: An ontology for feminism. In S. Alaimo &

S. Hekman (Eds.), Material feminisms (pp. 85–119). Indiana University Press.

Henwood, F. (2000). From the woman question in technology to the technology question

in feminism: Rethinking gender equality in IT education. European Journal of

Women’s Studies, 7(2), 209–227. https://doi.org/10.1177/135050680000700209

Hmelo‐Silver, C. E., & Pfeffer, M. G. (2004). Comparing expert and novice

understanding of a complex system from the perspective of structures, behaviors,

and functions. Cognitive Science, 28(1), 127–138.

https://doi.org/10.1207/s15516709cog2801_7

Information and Communications Council. (2017). The next talent wave: Navigating the

digital shift. https://www.ictc-ctic.ca/wp-content/uploads/2017/04/ICTC_Outlook-

2021.pdf

K-12 Computer Science Framework Steering Committee. (2016). K-12 Computer

Science Framework. https://k12cs.org/

95

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12

education. Communications of the ACM, 59(8), 26-27.

https://doi.org/10.1145/2955114

Kliebard, H. M. (1970). The Tyler rationale. The School Review, 78(2), 259–272.

Lang, C. (2010). Happenstance and compromise: A gendered analysis of students’

computing degree course selection. Computer Science Education, 20(4), 317–345.

https://doi.org/10.1080/08993408.2010.527699

Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing. MIT

press.

Margolis, J., Ryoo, J. J., Sandoval, C. D., Lee, C., Goode, J., & Chapman, G. (2012).

Beyond access: Broadening participation in high school computer science. ACM

Inroads, 3(4), 72-78.

Margolis, J., Estrella, R., Goode, J., Holme, J. J., & Nao, K. (2008). Stuck in the shallow

end: Education, race, and computing. MIT press.

Margolis, J., Goode, J., & Chapman, G. (2015). An equity lens for scaling: A critical

juncture for exploring computer science. ACM Inroads, 6(3), 58-66.

Meadows, D. H. (2008). Thinking in systems: A primer. Earthscan.

Monroe, D. (2014). A New Type of Mathematics? Communications of the ACM, 57(2),

13 –15. https://doi.org/10.1145/2557446

Moss-Racusin, C. A., Dovidio, J. F., Brescoll, V. L., Graham, M. J., & Handelsman, J.

(2012). Science faculty’s subtle gender biases favor male students. Proceedings of

the National Academy of Sciences of the United States of America, 109(41), 16474–

16479. https://doi.org/10.1073/pnas.1211286109

Murphy, M. C., Steele, C. M., & Gross, J. J. (2007). Signaling threat: How situational

cues affect women in math, science, and engineering settings. Psychological

Science, 18(10), 879–885. https://doi.org/10.1111/j.1467-9280.2007.01995.x

New Brunswick Department of Education and Early Childhood Development. (2016).

Middle school technology education.

https://www2.gnb.ca/content/dam/gnb/Departments/ed/pdf/K12/curric/Technology

Vocational/Middle%20School%20Technology.pdf

Nova Scotia Department of Education and Early Childhood Development. (2016).

Information and communication technology/Coding 4-6 integration.

https://www.ednet.ns.ca/files/curriculum/infotech_coding_4-6_streamlined.pdf

96

Ontario Ministry of Education. (2008). The Ontario curriculum grade 10 to 12:

Computer studies.

http://www.edu.gov.on.ca/eng/curriculum/secondary/computer10to12_2008.pdf

Ontario Ministry of Education. (2015). What do you need to graduate from high school?

http://www.edu.gov.on.ca/extra/eng/ppm/graduate.pdf

Ontario Ministry of Education. (2019, March 15). Education that works for you -

Modernizing Learning: Province modernizing learning. Ontario Newsroom.

https://news.ontario.ca/en/backgrounder/51527/education-that-works-for-you-

modernizing-learning

Ontario Ministry of Education. (2020). The Ontario curriculum grades 1-8: Mathematics.

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic

Books.

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum:

Implications for future research. Education and Information Technologies, 22(2),

421-443. https://doi.org/10.1007/s10639-016-9475-z

Patitsas, E., Craig, M., & Easterbrook, S. (2014). A historical examination of the social

factors affecting female participation in computing. In Proceedings of the 2014

conference on innovation & technology in computer science education (pp. 111-

116). ACM.

Patitsas, E., Craig, M., & Easterbrook, S. (2015). Scaling up Women in Computing

Initiatives: What Can We Learn from a Public Policy Perspective? In Proceedings

of the eleventh annual International Conference on International Computing

Education Research (pp. 61-69). ACM. https://doi.org/10.1145/2591708.2591731

Pichette, J., Deller, F., & Colyar, J. (2020) Destreaming in Ontario: History, evidence and

educator reflections. Toronto: Higher Education Quality Council of Ontario.

https://heqco.ca/wp-content/uploads/2020/10/Destreaming-in-

Ontario_FORMATTED.pdf

Pinar, W. (Ed.). (1975). Curriculum theorizing: The reconceptualists. McCutchan

Publishing Corporation.

Pinar, W. F., Reynolds, W. M., Slattery, P., & Taubman, P. M. (1995a). Understanding

curriculum as gender text. In W. F. Pinar, W. M. Slattery, & P. M. Taubman (Eds.),

Understanding curriculum: An introduction to the study of historical and

contemporary curriculum discourses (pp. 358-403). Peter Lang Publishing.

Pinar, W. F., Reynolds, W. M., Slattery, P., & Taubman, P. M. (1995b). Understanding

curriculum as a historical text: The reconceptualization of the field 1970-1979. In

97

W. F. Pinar, W. M. Slattery, & P. M. Taubman (Eds.), Understanding curriculum:

An introduction to the study of historical and contemporary curriculum discourses

(pp. 69-123). Peter Lang Publishing, Inc.

Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects,

passions, peers, and play. MIT Press.

The Royal Society. (2012). Shutdown or restart? The way forward for computing in UK

schools. https://royalsociety.org/-/media/education/computing-in-schools/2012-01-

12-computing-in-schools.pdf

The Royal Society. (2017). After the reboot: Computer education in schools.

https://royalsociety.org/~/media/policy/projects/computing-education/computing-

education-report.pdf

Rudman, L. A. (1998). Self-promotion as a risk factor for women: The costs and benefits

of counter stereotypical impression management. Journal of Personality and Social

Psychology, 74(3), 629–645. https://doi.org/10.1037/0022-3514.74.3.629

Sadker, M., & Sadker, D. (1994). Failing at fairness: How America’s schools cheat girls.

Scribner.

Saskatchewan Ministry of Education. (2018a). Computer Science 20.

https://www.edonline.sk.ca/webapps/moe-curriculum-

BB5f208b6da4613/CurriculumHome?id=446

Saskatchewan Ministry of Education. (2018b). Computer Science 30.

https://www.edonline.sk.ca/webapps/moe-curriculum-

BB5f208b6da4613/CurriculumHome?id=444

Smith, M. (2016, January 3). Computer Science For All. The White House: President

Barack Obama. https://obamawhitehouse.archives.gov/blog/2016/01/30/computer-

science-all

Thompson, M., & Wiliam, D. (2007, April 9-13). Tight but loose: A conceptual

framework for scaling up school reforms [Paper presentation]. American

Educational Research Association, Chicago, IL.

United Kingdom Department for Education. (2013) National curriculum in England:

Computing programmes of study.

https://www.gov.uk/government/publications/national-curriculum-in-england-

computing-programmes-of-study/national-curriculum-in-england-computing-

programmes-of-study

Vakil, S. (2018). Ethics, identity, and political vision: Toward a justice-centered approach

to equity in computer science education. Harvard Educational Review, 88(1), 26-

52.

98

Vitores, A., & Gil-Juárez, A. (2016). The trouble with ‘women in computing’: A critical

examination of the deployment of research on the gender gap in computer science.

Journal of Gender Studies, 25(6), 666–680.

https://doi.org/10.1080/09589236.2015.1087309

Wajcman, J. (2007). From women and technology to gendered technoscience.

Information Communication and Society, 10(3), 287–298.

https://doi.org/10.1080/13691180701409770

Wasserman, D., Durkee, T., & Wasserman, C. (2009). Strategies in suicide prevention.

Oxford University Press.

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.

https://doi.org/10.1145/1118178.1118215

The White House President Barack Obama. (2016, September 14). Fact sheet: New

progress and momentum in support of President Obama’s Computer Science for All

Initiative. https://obamawhitehouse.archives.gov/the-press-office/2016/09/14/fact-

sheet-new-progress-and-momentum-support-president-obamas-computer

99

Chapter 5

5 Coding in K-8 Curriculum

Chapters 3 and 4 of this dissertation investigated the traditional implementation of CS-

related concepts and skills in K-12 education, which takes the form of optional courses at

the secondary level. Here in Chapter 5, the relatively new phenomenon of integrating CS-

related concepts and skills into the K-8 grades is analyzed through a comparative analysis

of related provincial curriculum initiatives in Canada. First, provincial K-8 curricula that

includes coding and related concepts and skills are identified, as well as the placement of

these components within the provincial policy documents. This is followed by a

comparative analysis of stated aims and objectives of the curriculum components, and an

analysis of the selected concepts and skills themselves. Throughout this analysis, context

is provided by theory in the field, as well as the general approaches from jurisdictions

outside of Canada, which have been found in the literature. What results is a comparative

analysis of this nascent curriculum topic as well as important insights for educators,

policy makers and researchers alike.

5.1 Introduction

Educational systems around the world have been undergoing reforms to ensure that their

policies and practices adequately prepare students to meet the changing needs of life and

work as school experiences do not align with the needs of a diverse, rapidly changing and

technologically sophisticated society (Milton, 2015).

Coding in the K-8 grades has become a component of these reforms. Coding, and

associated Computer Science (CS) concepts can form the basis of lucrative, high-status

and flexible careers (Information and Communications Technology Council, 2017), but

others argue that the integration of coding concepts and skills in the K-8 grades should be

motivated by more than simply economic goals.

A number of studies analyzing curricula from a variety of educational jurisdictions have

identified different goals and rationale for the integration of coding in the younger grades

(Webb et al., 2015; Passey, 2017; Vogel et al., 2017; Hubweiser et al., 2015). In addition,

100

the literature reveals a variety of theoretical perspectives (Kafai, 2016; diSessa, 2018;

Resnick, 2018; Tissenbaun et al., 2019). These goals, rationale, and perspectives will be

explored in the following two sections.

5.1.1 Arguments for Coding Curriculum in the Younger Grades

Before considering the placement of coding and related concepts and skills in K-8

provincial curricula, it is important to develop an understanding of the various goals

associated with younger students programming a computer. Passey (2017) identifies six

main reasons for the inclusion of CS curricula in the younger grades that include: the

economic argument, the organizational argument, the community argument, the

educational argument, the learning argument, and the learner argument. Passey’s (2017)

economic argument is workforce centered, focusing on the idea that curriculum should

support future economies and should support students in developing the skills needed to

meet the needs of future careers. This argument is based on the idea that specific coding-

related concepts and skills will be valuable for future careers. In contrast, Passey’s

organizational argument, while still connected to economic and workforce motivators, is

broader and recognizes the potential of coding curriculum leading to collaboration and

teamwork-related skills, which he states will also be in demand in future careers. Moving

beyond the workplace, the community argument recognizes the need for general

computing capabilities to support community groups and programs, such as a supporting

social bird watching and music groups or allowing older individuals leveraging

technology to maintain communication and connections with others. The educational

argument is focused on all individuals being provided with the opportunity to learn

important digital skills that all citizens should have, and about understanding the coding

and CS concepts that lay behind our ubiquitous technologies. Closely connected to the

educational argument is the learning argument, which recognizes the associated problem

solving, creativity and logical thinking skills sometimes associated with coding and CS

work. When discussing the learning argument, Passey introduces Seymour Papert’s work

on constructionism, which will be explored later in this article. Finally, Passey’s learner

argument puts the student at the centre of the curriculum, recognizing that students are

often motivated and engaged when programming a computer, and young students should

101

be provided with the opportunity to explore coding and CS concepts as a potential area of

interest and focus.

In addition to Passey’s six arguments, other works have identified differing goals and

rationale for coding curriculum in the younger grades. These goals and rationale

sometimes overlap with Passey’s arguments, but also add important insights and direction

that Passey left out. Vogel et al. (2017) identified seven areas of impact present in

arguments for universal CS education, including 1) economic and workforce

development, 2) equity and social justice, 3) competencies and literacies, 4) citizenship

and civic life, 5) scientific, technological and social innovation, 6) school improvement

and reform and 7) fun, fulfillment and personal agency. While many of these share ideas

from Passey’s arguments, the equity and social justice perspective and the motivation for

scientific and technological innovation perspective add new dimensions and

considerations that Passey did not emphasize. Equity and social justice perspectives often

relate to the need for citizens to be active and critical users of technology, and are

associated with related concepts such as privacy or safety (Fluck et al., 2016), as well as

equity issues surrounding gender equality, and underrepresented groups in CS education,

or the CS field in general. Arguments surrounding scientific and technological innovation

recognize coding and CS concepts as a critical component of a cross-curricular, STEM

education.

Also left out of Passey’s arguments and identified by Webb et al. (2015), are the cultural

reasons for the inclusion of coding concepts and skills in curriculum. These cultural

reasons are associated with empowerment, and the recognition of coding and CS

concepts and skills as “enabling people to be the drivers of cultural change, rather than

having change imposed by technological developments” (Webb et al., 2017, p. 446).

Table 7 outlines a general organization of recent arguments for the inclusion of coding

concepts and skills in the curricula of the younger grades. Webb et al.’s (2015) broad

categories are included first, then Passey’s (2017) and Vogel, Santo and Ching’s (2017)

detailed areas of focus. Also included are the detailed categories of goals identified by

Hubweiser et al. (2015). In A Global Snapshot of Computer Science Education in K-12

102

Schools, Hubweisser et al. analyzed and summarized 14 articles, published in two special

issues of Computer Science Education in (K-12) Schools, that included information

related to K-12 CS education from 12 countries or states from around the world. Through

the analysis of these articles, the authors identified 19 categories of addressed goals,

many of which fit into Webb et al.’s (2015) general categories, but add specificity and

detail.

Table 7. Recent arguments and goals for coding in the younger grades

Webb et al.

(2015)

Passey (2017) Vogel et al., (2017) Hubweiser et al. (2015)

• economic

• social

• cultural

• economic

argument

• organizational

argument

• community

argument

• educational

argument

• learning

argument

• learner

argument

• economic and workforce

development

• equity and social justice

• competencies and

literacies

• citizenship and civic life

• scientific, technological

and social innovation

• school improvement and

reform

• fun, fulfillment, and

personal agency

• digital literacy

• computational thinking

• problem solving

• understanding basic concepts

of CS and IT

• career preparation and choice

• support awareness of social,

ethical, legal and privacy

issues and impact of CS

• general education to

participate in society

responsibly

• prepare for university

• student development

• attract and motivate more

female and male students

• create IT

• holistic view

• connecting to real world

contexts

• creative use of IT

• limits and risks of CS

• support communication about

IT

• support maths and science

• apply IT in other subjects

• deeper knowledge of CS

• growth of knowledge society

• modern and relevant

curriculum

• picture of CS and

programming in society

• representing thinking

processes

• rise and discover talent and

attitude towards CS

103

5.1.2 Theoretical Perspectives on Coding in the K-8 Grades

When investigating theoretical approaches to coding in the younger grades, one often

begins with the work of Seymour Papert, who developed the Logo programming

language and the learning theory of constructionism in the 1980s. More recently, a

number of theoretical approaches have been developed including Computational

Thinking (Wing, 2006; Grover & Pea, 2013; Grover and Pea, 2018), Fluency (Resnick,

2018), Participation (Kafai, 2016), Literacy (diSessa, 2000, diSessa, 2018), and Action

(Tissenbaum et al., 2019). In combination with the arguments for coding in the K-12

grades (listed above in Table 7), an understanding of the similarities and differences of

these theoretical approaches is important in order to inform analysis of coding curricula.

5.1.2.1 Constructionism

Harel & Papert (1991) explain that the learning theory of constructionism can be over-

simplified and thought of as “learning-by-making”, however, it is much more

multifaceted than this, and has much deeper implications. Constructionism arose from the

work of Jean Piaget, with whom Papert had worked, and who articulated the theory of

cognitive development called Constructivism. Ames (2018) explains that both

Constructivism and Constructionism focus on learning being an active process of

constructing knowledge, and both support the idea that children learn new concepts by

relating them to things that they already know. An important distinction between the two,

however; is that Constructionism includes the idea that this can happen felicitously when

the learner is constructing something that others might see (Harel & Papert, 1991).

Speaking specifically about mathematics education, the authors indicate that having

students work with “cybernetic construction kits”, which essentially combined Papert’s

Logo coding software with physical, robotics-like LEGO kits, changes the context of

learning and holds the attention of students for much longer (Harel & Papert, 1991).

While Papert acknowledged the construction of a public entity might not require a

computer, it could be a soap-sculpture or even a knot-tying project, he does emphasize

that the computer can serve as a Proteus of machines, taking on a thousand forms and

serving a thousand functions (Papert, 1993). In this way, the computer can help relieve

what he calls the potential poverty of a classroom culture, which might lack the needed

104

resources and materials to support a wide range of learning opportunities for students. As

a result, the computer played a central role in Papert’s work with children, and his focus

was always on the mind and the way in which technology could provide children with

new possibilities for learning, thinking, and growing, both cognitively and emotionally

(Papert, 1993). A thorough description of Papert’s views related to coding and

mathematics can be found in his book Mindstorms (1993), where he describes a

mechanical thinking process that students undergo when programming a computer (p.

27), and also describes a term called computational thinking (p. 182). Thirteen years after

the release of Mindstorms, Wing (2006) used the term Computational Thinking, albeit in

a different way, and captured the interest of educators and researchers in K-12 education

from around the world (Grover & Pea, 2013).

5.1.2.2 Computational Thinking

Jeanette Wing’s 2006 article, titled simply Computational Thinking, defined a

“universally applicable attitude and skill set everyone, not just computer scientists, would

be eager to learn and use” (p. 33). Wing identifies solving problems, system design, and

understanding human behavior as key components of her definition of CT. She explains

that CT is a fundamental skill that every human must know to function in society. In

addition to being for everyone, everywhere, Wing states that CT involves

conceptualization, rather than programming, and involves ideas, rather than artifacts. Her

article was a call for the inclusion of CT not only in post-secondary programs outside of

CS, but also in pre-college education where younger students could be exposed to

computational methods and models: “Computational thinking is a grand vision to guide

CS educators, researchers, and practitioners as we act to change society’s image of the

field” (p. 35).

While most researchers agree on the profound impact that Wing’s 2006 article had on the

field of K-12 education (as of February, 2022 this article has been cited 8893 times), not

all agree on the appropriateness of her definition, or on her suggestion that thinking like a

computer scientist is a suitable goal for all students. Denning (2017) claims that recent

attempts to make CT appealing to fields other than CS have led to “vague and confusing

105

definitions of CT” (p. 33), and that Wing’s definition lacks any mention of computational

models, and incorrectly suggests that any sequence of steps constitutes an algorithm. In

Computational Thinking: A Competency Whose Time Has Come, Grover and Pea (2018)

describe Wing’s definition as somewhat opaque. They attempt to rectify this concern by

providing a specific, and much needed, list of CT concepts and practices that describe the

type of thinking that computer scientists activate when engaged in problem solving.

Grover and Pea’s key CT concepts include logic and logical thinking, algorithms and

algorithmic thinking, patterns and pattern recognition, abstraction and generalization,

evaluation, and automation. Their key CT concepts include problem decomposition,

creating computational artefacts, testing, and debugging, iterative refinement, and

collaboration and creativity. Similarly, Brennan and Resnick (2012) gave more detail to

CT by identifying and describing specific concepts, practices, and perspectives, while

Resnick (2018) also describes an alternative theoretical approach that he terms

Computational Fluency.

5.1.2.3 Computational Fluency

Mirroring and expanding upon Papert’s work at MIT and his development of the Logo

programming language, Mitch Resnick is the director of the Lifelong Kindergarten

research group that developed Scratch, currently the world’s leading coding platform for

kids. In New Frameworks for Studying and Assessing the Development of Computational

Thinking, Brennan and Resnick (2012) acknowledge the disagreements surrounding the

components of CT, and the issues surrounding strategies for CT assessment. Like Grover

and Pea (2018), Resnick and Brennan provide the specific detail that was lacking in

Wing’s original definition of CT, and introduce their own CT concepts, practices, and

perspectives. These concepts, practices and perspectives are listed in Table 8, along with

Grover and Pea’s concepts and practices.

In addition to the CT concepts, practices and perspectives presented with Brennan, in

2018 Resnick also introduced his concept of Computational Fluency, which expands

upon computation concepts and problem-solving strategies, in order to also include

student’s creativity and expression of digital tools (Resnick, 2018). While Resnick

106

acknowledges the value of self-contained “coding puzzles” and their potential

development of thinking skills, he argues that students should move towards developing a

voice and an identity within the area of coding, and can do so by incorporating coding

into their daily life, and by emphasizing the development of artifacts and projects

(Resnick, 2018). This development of artifacts and projects connects closely to aspects of

design and engineering that sometimes appear in curriculum, and Computational Fluency

could serve as a valuable context for learning within these areas.

Table 8. Brennan and Resnick’s (2012) CT concepts, practices and perspectives and

Grover and Pea's (2018) concepts and practices

Brennan and Resnick (2012) Grover and Pea (2018)

Concepts that students engage in when

developing coding projects:

• sequences;

• loops;

• parallelism;

• events;

• conditionals;

• operators; and

• data.

Concepts:

• logic and logical thinking;

• algorithms and algorithmic

thinking;

• patterns and pattern recognition;

• abstraction and generalization; and

• evaluation, and automation.

Practices that describe the processes of

construction that student engage in while

developing coding projects:

• being incremental and iterative;

• testing and debugging;

• reusing and remixing; and

• abstracting and modularizing.

Practices that outline approaches that

computer scientists often use when they

engage in computational problem solving:

• problem decomposition;

• creating computational artefacts;

• testing and debugging;

• iterative refinement; and

• collaboration and creativity.

Perspectives that describe the evolving

understanding that students exhibit about

themselves, their relationship to others,

and the technological world when

developing coding projects:

• expressing;

• connecting;

• and questioning.

107

5.1.2.4 Computational Participation

Sharing Resnick’s belief in the importance of students moving beyond coding puzzles to

creating their own artifacts, Kafai goes one step further to highlight the importance of

students being able to share coding projects that they have designed themselves, with

others, moving beyond the tools, to focus on how the artifacts of coding can connect to

community and context (Kafai, 2016). Kafai’s Computational Participation recognizes

the importance of digital technologies being used for functional, political, and personal

reasons, and acknowledges coding as a participatory process that has a personal value,

and value for sharing with others (Kafai 2016). “Computational thinking and

programming are social, creative practices. They offer a context for making applications

of significance for others, communities in which design, sharing, and collaboration with

others are paramount” (Kafai, 2016, p. 26). Kafai describes some of the do-it-yourself

coding tools available to students today to design, create and share projects online, and

identifies three new pathways that are afforded through these tools. The first pathway

includes moving from simply building code to developing shareable applications, which

puts the emphasis on putting newfound coding skills to use, rather than coding for the

sake of coding. The second pathway includes moving from solitary coding to the

development of communities, where coding languages and environments are enhanced by

having online communities that connect users and provide audiences for projects. The

final pathway includes having students remix existing projects, rather than beginning

writing a program from scratch, which in the spirit of the open source movement, allows

for students to understand how projects can evolve and lead to innovative new contexts.

5.1.2.5 Computational Action

Computational Action was first described by Tissenbaum et al. (2019) and like Resnick’s

Computational Fluency and Kafai’s Computational Participation, highlights the

importance of the artifact being produced, and its potential influence outside of the

individual student, or school context. Recognizing the impact that computing can have on

the lives of the students and their communities, the authors present the two key

dimensions of computational identity and computational empowerment as means to make

computing more inclusive, motivating, and empowering. Computational Action attempts

108

to provide an alternative to the “fundamentals approach” that begins with a focus on

coding or CT concepts and processes, by ensuring that students can immediately begin to

code projects that connect to their lives, and that can help them develop a “critical

consciousness of the role they can play in affecting their communities through computing

and empower them to move beyond simply learning to code” (Tissenbaum et al., 2019, p.

34).

In order to support the student in developing a computational identity, the authors

indicate that students must feel responsible for designing their own solutions, rather than

working towards a single, predetermined correct answer. In terms of supporting students

as they work towards digital empowerment, the authors encourage educators to find

authentic and personally relevant contexts for the students to code within, and to ensure

that these contexts have the potential to impact their lives and the lives of those in their

communities.

5.1.2.6 Computational Literacy

Before Wing (2006), diSessa published his book Changing Minds: Computers, Learning,

and Literacy (2000) in which he describes his grand vision of computers and coding in

schools as Computational Literacy (CL). Unlike computer literacy, which may involve

turning on a computer or using a keyboard or mouse for basic software operation,

diSessa’s CL involves “infrastructural” changes in schools and in society as it is used in

diverse scientific, humanistic, and expressive forms: “a computational literacy will allow

civilization to think and do things that will be new to us in the same way that the modern

literate society would be almost incomprehensible to preliterate cultures.” (p. 5).

In 2018, diSessa continued to explain this big picture view of CL, specifically in the

context of science, technology, engineering, and mathematics (STEM) education: “I view

computation as, potentially, providing a new, deep, and profoundly influential literacy -

computational literacy - that will impact all STEM disciplines at their very core, but most

especially in terms of learning” (diSessa, 2018, p. 4).

109

An important dimension of diSessa’s CL, and specifically its connection to the subjects

of mathematics and science, highlights the education argument for coding, and is

sometimes communicated as “coding to learn”, rather “than learning to code” (Popat &

Starkey, 2019). When coding to learn, students program a computer in order to learn

concepts and skills associated with the context of the program. Rather than a focus on the

final artifact that results from the code (the running program), the educator’s focus is on

the concepts and skills developed as the students engage in the development of the

artifact. In Computer Coding in the K–8 Mathematics Curriculum?, Gadanidis et al.

(2017) highlight how the integration of coding in mathematics creates pedagogical

opportunities such as 1) making abstraction tangible, 2) automating processes and making

dynamic models, and 3) creating educational contexts that allow for differentiated

instruction and student agency. The value of automating processes and making dynamic

models is highlighted in work by Wilkerson (Wilkerson-Jerde et al., 2015; Wilkerson et

al., 2018) and Gadanidis (Gadanidis et al., 2017; Gadanidis et al., 2019), where students

use or build computational models and simulations in order to better understand

mathematical, scientific and engineered systems. Wilkerson & Fenwick (2017) believe

that CS shares language with mathematics that can be used to represent models using

precise language resulting in a description of patterns and processes.

5.2 Problem Description

Considering the theoretical approaches to coding in K-8 education discussed by leading

researchers in the field, and considering the various goals and rationale for coding from

jurisdictions outside of Canada, it is important to identify, and develop an understanding

of, the components of coding curriculum in Canadian jurisdictions. Without an in-depth

analysis of recent curriculum initiatives, educators, researchers, and policy makers will

lack clarity terms of:

• the placement of coding-related concepts and skills in existing curricula;

• the goals and rationale of coding curricula; and the

• the theoretical perspectives underpinning the various curricula.

110

Recently, two studies have been conducted that explore CT in K-12, Canadian education.

Hennessey et al. (2017) analyzed Ontario elementary school curriculum, searching for

CT-related terms described by Brennan and Resnick (2012), and concluded that “while

CT terms appeared mostly in mathematics, and concepts and perspectives were more

frequently cited than practices, related terms appeared across almost all disciplines

and grades” (p. 79). Additionally, Gannon and Buteau (2018) provide an effective,

initial description of the integration of CT in Canadian provinces and conclude that there

is a wide variety of integration models being implemented in the various provinces. The

authors also conclude that there are a number of provinces that have begun curriculum

revisions, or that have begun supporting the development of programs and resources

related to CS.

Considering these findings, this paper intends to provide further analysis of Canadian

curriculum, with an emphasis on not only CT concepts and skills, but with an emphasis

on all coding-related contexts. It also hopes to add to the works of Hennessey et al.

(2017) and Gannon and Buteau (2018) by investigating the goals and rationale, as well

as the supported arguments or orientations, for learning coding represented in the

various curricula in Canada.

5.3 Purpose and Research Questions

The purpose of this chapter is to provide a comparative analysis of coding-related

curricula in the K-8 grades from various provinces. In order to do so, the article will

answer the following research questions:

1) Where are coding, CT and computer science concepts and skills currently found

in Canadian, K-8 provincial curricula?

2) What are the expressed goals and rationale for the inclusion of coding, CT and

computer science concepts and skills within Canadian, K-8 provincial curricula?

3) What are the learning arguments or orientations reflected in the coding, CT and

computer science components in Canadian, K-8 provincial curricula?

111

By answering these questions, this chapter will provide educators, policy makers and

researchers with an analysis of current coding, CT, and CS curriculum initiatives in the

K-8 grades and will add an important Canadian perspective to existing international

studies. It will also provide groundwork for potential, future curriculum development as

well as foundational knowledge to help research and policy surrounding the

implementation of this curricula.

5.4 Theoretical Frameworks and Methodology

This study will employ comparative document analysis implemented within the

theoretical framework of constructivism that views learning as an interpretive and

iterative process of building, done by active learners interacting with the world (Fosnot,

1996).

5.4.1 Constructivism

This chapter employs constructivism as its foundational theoretical framework, which

involves epistemological beliefs whereby individuals develop subjective meanings of

their experiences, resulting in knowledge being built, rather than found (Creswell, &

Creswell, 2013; Merriam & Tisdell, 2015). A constructivist approach considers

knowledge as something that is constructed in the mind of the learner, and that “fits” with

reality (Bodner, 1986). Constructivism is a popular worldview or approach to qualitative

research, and includes the following assumptions, identified by Crotty (1998):

1) human beings construct meanings as they engage with the world they are

interpreting;

2) humans engage with their world and make sense of it based on their historical

and social perspectives, which has implications when one considers both those

being researched (perhaps students, or educators), as well as the individual

conducting the research themselves;

3) the basic generation of meaning is always social, arising in and out of

interaction with a human community.

112

Constructivism is a popular framework for qualitative research, and one that is

appropriate for this type of study considering the subjective nature of the document

analysis. An alternative approach and research design might involve a more quantitative

methodology employing a positivistic perspective. This might include the counting of

coding categories as they develop, or some type of numerical weighting. Considering the

small number of documents involved in this study, and the relative size of each, it is

believed that the counting or weighting of categories, while providing objective and

quantifiable data, would not provide better understanding or improved insights related to

the curriculum documents in question.

5.4.2 Methodology and Document Analysis

In order to effectively answer the research questions in this study, the methodology

employed will involve an initial analysis of K-8 curriculum from all Canadian provinces,

with the intention of identifying where coding concepts and skills have been included.

Curricula from Yukon, North West Territories, and Nunavut were not included in this

analysis as they implement curricula from various provinces including British Columbia,

Alberta, Saskatchewan and Manitoba (Government of Yukon, 2022; Government of

Northwest Territories, 2021; Nunavut Department of Education, 2019).

Once this initial list of documents has been identified, a more in-depth analysis will take

place involving the identification and analysis of all explicitly stated goals and rationale

of this curriculum. Following this identification of curriculum, and the analysis of stated

goals and objectives, document analysis will provide insight into the teaching and

learning orientations of the various curricula documents.

Document analysis involves systematic procedures for reviewing and evaluating

documents in order to elicit meaning, gain understanding, and develop empirical

knowledge (Bowen, 2009; Corbin & Strauss, 2008). It is an iterative process that includes

finding, selecting, appraising and synthesizing data contained in documents, and is often

combined with content and thematic analysis (Bowen, 2009). The content analysis aspect

of the study will involve preliminary coding, which is the organizing of information from

the documents into categories related to the central questions of the research (Bowen,

113

2009). This includes where explicit goals and rationale of the curriculum are identified,

as well where learning outcomes or expectations are expressed.

In this study, the curriculum policy documents from Canadian provinces are analyzed,

which are all organized in a similar fashion, with grade levels and specific subject areas

identified. As stated, a preliminary scan of these documents, related to the K-8 grades, is

conducted, identifying documents that include coding, CT and CS concepts. These

documents can then be selected for content and thematic analysis, which will involve

thorough and repeated analysis of the documents, the coding of categories, the

redefinition and organization of these categories, and the development of emerging

themes. The coding process and the development of themes is influenced by the

theoretical approaches and arguments for coding presented earlier in this chapter.

5.5 Findings

The findings for each of the provinces have been organized according to the placement of

coding, CT, and CS concepts in the K-8 curricula, the explicitly stated goals and

rationale, and the learning orientations. The provinces are listed below, from West to

East, as they would be presented on a map.

5.5.1 British Columbia’s Elementary Coding Curricula

In British Columbia, coding-related concepts and skills are found in the Applied Design,

Skills, and Technologies (ADST) grades 6-8 curriculum (British Columbia Ministry of

Education, 2016a). While the ADST curriculum begins in grade 1, specific content for

the 1-5 grades is not listed and instead, teachers are meant to draw content from other

areas of learning, in a cross-curricular fashion. In grades 6-8 specific content is listed in

the form of 12 different modules (some of which include coding-related concepts and

skills). In grades 6-7, teachers select a minimum of three content modules from the list of

12. In grade 8 schools can select one, or several modules, to make up the equivalent of a

full year course in ADST.

The coding-related modules that may be selected include Computational Thinking and

Robotics. Other modules, such as Computers and Communications Devices and Digital

114

Literacy, while related to computers and technology, do not include concepts and skills

specific to coding, CT or CS. In grade 8, schools are meant to provide students with a

full-year course in ADST that can be made up of one or more of the 12 modules. Schools

also have the choice of developing their own modules, that include locally developed

content, and that can be used instead of, or in addition to, the modules provided.

5.5.2 Goals of British Columbia’s Elementary Coding Curricula

The stated goals and rationale for British Columbia’s Applied Design, Skills, and

Technologies curriculum highlight a very practical and applied focus. The curriculum is

meant to “foster the development of skills and knowledge to support students in

developing practical, creative, and innovative responses to everyday needs and

challenges” (British Columbia Ministry of Education, 2016b). The learning opportunities

are designed to allow students to discover their interests in practical and purposeful

experiences and is built upon the assumption that students have a desire to create and

work in practical ways.

The ADST curriculum acknowledges students as having natural curiosity, inventiveness,

and a desire to create and work in practical ways. Design and creation are at the forefront

of the ADST curriculum, in addition to a focus on experiential, hands-on learning, which

reflects a constructionist approach to “learning by making”.

A key component to the ADST curriculum is flexibility and choice, as students and

teachers can personalize learning by making choices about what students “design and

make, and the depth and breadth to which both teachers and students choose to pursue a

particular topic, based on students’ interests and passions”.

5.5.3 Learning Orientations in British Columbia’s Elementary
Coding Curricula

The specific content and skills that students are expected to know in grades 6-8, within

the Computational Thinking and Robotics modules, are listed in Table 9. The CT

modules indicate that students will be provided with the opportunity to learn visual

programming in grades 6 and 7 (such as a block-based language like Scratch), as well as

115

text-based programming in grade 8. In terms of the specific subject matter, the CT

module includes learning and teaching related to algorithms, sequential instructions,

programming, debugging, and the visual representations of problems and data, which all

connect to the literature in terms of associated CT concepts or skills. Grades 6-7 subject

matter also includes students using visual programming, which could be taught using the

Scratch programming language, as it has been identified as an effective way to help

students engage in CT activities (Zhang & Nouri, 2019).

Table 9. Content within the Computational Thinking and Robotics modules in

British Columbia's ADST curriculum

Grade 6-7 Grade 8

Computational Thinking

• simple algorithms that reflect

computational thinking

• visual representations of problems

and data

• evolution of programming

languages

• visual programming

Computational Thinking

• software programs as specific and

sequential instructions with algorithms

that can be reliably repeated by others

• debugging algorithms and programs by

breaking problems down into a series of

sub-problems

• binary number system (1s and 0s) to

represent data

• programming languages, including

visual programming in relation to text-

based programming and programming

modular component

Robotics

• a robot is a machine capable of

carrying out a complex series of

actions automatically

• uses of robotics

• main components of robots: sensors,

control systems, and effectors

• various ways that objects can move

• programming and logic for robotics

components

• various platforms for robotics

Robotics

• uses of robotics in local contexts

• types of sensors

• user and autonomous control systems

• uses and applications of end effectors

• movement- and sensor-based responses

• program flow

• interpretation and use of schematics for

assembling circuits

• identification and applications of

components

• various platforms for robotics

programming

While the stated goals and rationale highlight a belief in the very practical outcomes of

coding, all of the specific concepts and skills in the CT modules for grades 6-7, and

116

Grade 8, do not appear to be consistent with this approach. The CT module for grade 6-7

include students knowing about the evolution of computer programming languages and

perspectives, from punch cards and Ada Lovelace to Alan Turing and the Enigma

machine, while in grade 8 students learn about binary number systems. This historical

and computer systems design content seems better placed as context within a CS-based

curriculum, rather than as CT concepts in a curriculum meant to be designed for practical

and applied making and design. Neither Wing’s definition and explanation of CT, nor the

definition and explanation included in other CT perspectives, incorporates an

understanding of the history and evolution of computer programming languages. In

addition, while Wing acknowledges CT as “interpreting code as data and data as code”

(Wing, 2006, p. 33), an understanding of binary systems is not recognized as a CT

component that lends itself to the intended practical and applied nature of the curriculum.

Considering this, it is surprising that the British Columbia curriculum includes modules

identified as CT, when perhaps coding and computer programming would have been

ideas that would have been a more appropriate fit, as Wing herself states that CT is

conceptualizing, rather than programming, and that it is ideas, rather than artifacts.

The robotics modules, for both grades 6-7 and 8, represent the stated application based

and practical nature of the curriculum goals. As an example, the historical development

of robotics and automation, as well as the impact of robotics and automation and society

are not included. Instead, all of the content appears to directly relate to the application

and creation of robotics and automated systems. It is interesting to note that in grade 8

students will learn about robotics in local contexts, which could provide students with the

opportunity to connect their learning to their world and community, conjuring images of

projects that could well reflect Computational Participation and Computational Action

perspectives.

5.5.4 Alberta

The elementary curriculum currently being implemented in Alberta does not include

explicit coding-related concepts and skills; however, in the spring of 2021 the

government released draft curriculum that included K-6 science expectations related to

117

coding. While this is a draft document, it has been included in this analysis as it has the

potential to be implemented and can provide valuable insight related to a potential

direction taken to elementary coding curricula.

5.5.5 Alberta’s Elementary Coding Curricula

Computational Thinking is listed as one of the major changes to Alberta’s K-6 Science

curricula (Alberta Education, 2021). The draft curricula website acknowledges that the

old curricula did not have any references to problem solving with coding, whereas the

new curricula includes “clear expectations for students to learn problem solving that

includes coding and algorithms” (Alberta Education, 2021). Computer Science plays a

prominent role in the curricula, as the document’s overview includes the discipline

alongside physics, chemistry, biology, Earth science and astronomy. The overview

reflects a desire for students to develop critical thinking and problem solving skills and

encourages students to use their curiosity, creativity and perseverance. The overview also

acknowledges that studying science can enable students to evaluate information they

encounter every day and can lead to careers in research, medicine, CS, geology,

engineering, astronomy, agriculture and more.

5.5.6 Goals of Alberta’s Elementary Coding Curricula

Computer Science has a large footprint in the draft K-8 Science curricula. The content in

the document is grouped into the following five main categories, with CS appearing

alongside more traditional scientific areas of study.

• Matter

• Energy

• Earth Systems

• Living Systems; and

• Computer Science.

This makes it clear that the learning of CS concepts and skills is an important goal of this

curricula. As previously stated, critical thinking and problem solving skills appear to be

important goals of the curriculum, and the learning surrounding CS in the document is

focussed on these areas.

118

Organizing ideas help structure the curriculum document, and for CS the organizing idea

that spans across all grades, from K-6, is: “Problem solving and scientific inquiry are

developed through the knowledgeable application of creativity, design, and

computational thinking” (Alberta Education, 2021). A goal, therefore, of the coding

curricula is to help students develop the ability to apply computational thinking in order

to solve problems and perform scientific inquiries. Design and creativity also appear to be

closely tied to the learning of CS concepts, and it appears that a major role of the coding-

related concepts is to connect to, and provide context for, creativity and design.

5.5.7 Learning Orientations in Alberta’s Elementary Coding
Curricula

Each grade in the K-6 Alberta Science curricula includes a single guiding question and

learning outcome for the category of CS. These are listed in Table 10. It is clear that the

themes of instructions, creativity, design, and abstraction are key components of the

learning outcomes. In Kindergarten and grade 1, students learn about following, creating,

and the influence of, instructions. In grade 2, students consider the use of creativity in

instructions and in grade 3 they investigate the relationship between creativity and CT. In

grades 4 and 5, the focus shifts to design in order to resolve problems and achieve

specific outcomes or purposes. Finally, in grade 6 students consider the CT concept of

abstraction.

In addition to the guiding questions and learning outcomes, the Alberta draft curriculum

document also includes Knowledge, Understanding, and Skills and Processes examples

for all of the guiding questions and learning outcomes for each grade. These examples

provide more depth and insight into what is expected of students. The examples provided

in Kindergarten to grade 2 are interesting in that their focus is on instructions and

creativity, but they are written in such a way that the use of a computer is never

mentioned and potentially not necessary. In grade 3, the examples highlight CT

components including breaking tasks into smaller chunks, finding patterns, and

identifying important details and in grade 4, the examples highlight the theme of design

by presenting a six-step design process and suggesting that students can collaborate with

119

others to design an algorithm to solve a problem. Much like the Kindergarten to grade 2

examples, the examples in grades 3 and 4 do not use language that require a computer. It

is only in grade 5 and 6 where the wording of the curriculum components make it clear

that a computer must be used in order to meet the learning outcomes. A grade 5 example

includes “Translate a given algorithm to block-based code” (Alberta Education, 2021, p.

49) while in grade 6 the learning outcome itself states that students will create and refine

a computational artifact (Alberta Education, 2021).

Table 10. Computer Science guiding questions and learning outcomes in Alberta K-

6 curriculum

 Guiding Question Learning Outcome

Kindergarten What are instructions? Children interpret instructions in

the learning environment.
Grade 1 How can we follow and create

instructions?

Students investigate instructions

and their influence on actions and

outcomes.

Grade 2 How can creativity be used to

ensure that instructions lead to

the desired outcome?

Students apply creativity when

designing instructions to achieve a

desired outcome.

Grade 3 To what extent is creativity

related to contributions in

science?

Students investigate creativity and

its relationship to computational

thinking.

Grade 4 How can design resolve a

problem?

Students investigate and apply

design in the context of CS and

technology

Grade 5 In what ways can design be

used to help achieve desired

outcomes or purposes?

Students create and justify a design

that could be used by a human or

machine to address a challenge.

Grade 6 How is design and abstraction

used in computational

thinking?

Students create and refine

computational artifacts through the

use of design and abstraction

5.5.8 Saskatchewan

In Saskatchewan a pilot project currently exists that is teaching robotics courses to grade

7-12 students; however, there is no formal mandated curriculum that has been

implemented for all schools in the province. As a result, Saskatchewan curricula will not

be a part of this analysis. Perhaps important to note; however, is that like British

120

Columbia, the term computational fluency, as well as the term computation, do appear in

the Saskatchewan elementary mathematics curriculum. Their use does not relate to

coding-related concepts and skills, and like the appearance of the term computation in the

British Columbia mathematics curriculum, refers to mathematics facts and skills.

5.5.9 Manitoba

The province of Manitoba does not include any explicit, coding-related concepts and

skills in any of its elementary curricula. Much like British Columbia and Saskatchewan,

Manitoba’s elementary mathematics curriculum discusses the importance of

computational fluency and computation, but this refers to the computation taking place in

the student’s mind. The curriculum also includes a general learning outcome in grade 8

that reads “Approximate the square root of a number that is not a perfect square using

technology (e.g., calculator, computer)” (Manitoba Education, 2013, p. 138), which

would allow for coding to be used by students as an option. It is also perhaps important

to note, that within the Conceptual Framework section of the curricula, technology is

listed as a mathematical process. Within this section, there is a recognition that

technology can be used to explore and demonstrate mathematical relationships and

patterns, decrease the time spent on computations when other mathematical learning is

the focus, develop personal procedures for mathematical operations, create geometric

displays, and simulate situations (Manitoba Education, 2013). These are all situations in

which coding may be appropriate.

5.5.10 Ontario’s Elementary Coding Curricula

In 2020, Ontario released new Grades 1-8 Mathematics curriculum that is the first, and

only Ontario elementary curriculum document to include explicit coding-related concepts

and skills (Ontario Ministry of Education, 2020). The curriculum document is divided

into six distinct, but related strands including Social-Emotional Learning (SEL) Skills in

Mathematics and the Mathematical Processes, Number, Algebra, Data, Spatial Sense, and

Financial Literacy. The curriculum includes both overall and specific curriculum

expectations. The 13 overall expectations, which are common for each grade, “describe

in general terms the knowledge, concepts, and skills that students are expected to

121

demonstrate by the end of each grade”. The specific expectations, which are different in

each grade, “describe the expected knowledge, concepts, and skills in greater detail”

(Ontario Ministry of Education, 2020, p. 18). The coding expectations are found in

Strand C – Algebra, but important to note, is that the accompanying curriculum context

document indicates that the coding expectations can be applied across all strands, and is

meant to provide students with opportunities to apply and extend their math thinking,

reasoning, and communicating (Ontario Ministry of Education, 2020). In addition to the

coding expectations, the curriculum also includes one overall expectation that is related

to mathematical modelling. This overall expectation is the only one in the curriculum

document without accompanying specific expectations, and like coding, it is meant to be

applied to various contexts within other strands. The Mathematical modelling expectation

reads as follows “Overall expectation C4. apply the process of mathematical modelling to

represent, analyse, make predictions, and provide insight into real-life situations”

(Ontario Ministry of Education, 2020, p.4).

5.5.11 Goals of Ontario’s Elementary Coding Curricula

The vision of the Ontario Mathematics 1-8 curriculum is to help students develop a

positive identity as skilled mathematics learners, to support them as they use mathematics

to make sense of the world, and to enable them to use mathematics to make sound

decisions (Ontario Ministry of Education, 2020). The curriculum context document

recognizes that technology has changed how “we access information and how students

interact with mathematics” (Ontario Ministry of Education, 2020, p. 62), and an

understanding that students should be able to “think critically and creatively to see

connections to other disciplines beyond mathematics, such as other STEM disciplines”

(Ontario Ministry of Education, 2020, p.6). Coding is mentioned as a means for students

to develop algebraic reasoning, and also to provide students with opportunities to “apply

and extend their math thinking, reasoning and communicating” (Ontario Ministry of

Education, 2020, p. 34). This reflects Papert, diSessa, Wilkerson and Gadanidis’s view of

coding or CT as being an important component in mathematics education, and as a tool

that can allow students to not only solve mathematical problems, but to experience and

engage with mathematical concepts.

122

5.5.12 Learning Orientations in Ontario’s Elementary Coding
Curricula

The overall and specific expectations related to coding concepts and skills are presented

in Table 11, taken directly from the Ontario curriculum document:

Table 11. Overall and specific coding expectations found in Stand C- Algebra, of the

Ontario, Grades 1-8 Mathematic Curriculum

Overall Expectation C3: solve problems and create computational representations of mathematical situations using coding concepts and skills

Specific Expectations:

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5 Grade 6 Grade 7 Grade 8

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
code,

including code
that involves

sequential

events

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
code,

including code
that involves

sequential and

concurrent
events

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
code,

including code
that involves

sequential,

concurrent,

and repeating

events

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
code,

including code
that involves

sequential,

concurrent,

repeating, and

nested events

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
code,

including code
that involves

conditional

statements and

other control

structures

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
efficient code,

including code
that involves

conditional

statements and

other control

structures

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
efficient code,

including code
that involves

events

influenced by

a defined

count and/or

sub-program
and other

control

structures

C3.1 solve
problems and

create

computational
representations

of

mathematical
situations by

writing and

executing
code,

including code
that involves

the analysis of

data in order
to inform and

communicate

decisions

C3.2 read and
alter existing

code,

including code
that involves

sequential

events, and
describe how

changes to the

code affect the
outcomes

C3.2 read and
alter existing

code,

including code
that involves

sequential and

concurrent
events, and

describe how

changes to the
code affect the

outcomes

C3.2 read and
alter existing

code,

including code
that involves

sequential,

concurrent,
and repeating

events, and

describe how
changes to the

code affect the

outcomes

C3.2 read and
alter existing

code,

including code
that involves

sequential,

concurrent,
repeating, and

nested events,

and describe
how changes

to the code

affect the
outcomes

C3.2 read and
alter existing

code,

including code
that involves

conditional

statements and
other control

structures, and

describe how
changes to the

code affect the

outcomes

C3.2 read and
alter existing

code,

including code
that involves

conditional

statements and
other control

structures, and

describe how
changes to the

code affect the

outcomes and
the efficiency

of the code

C3.2 read and
alter existing

code,

including code
that involves

events

influenced by
a defined

count and/or

sub-program
and other

control

structures, and
describe how

changes to the
code affect the

outcomes and

the efficiency
of the code

C3.2 read and
alter existing

code involving

the analysis of
data in order

to inform and

communicate
decisions, and

describe how

changes to the
code affect the

outcomes and

the efficiency
of the code

The coding expectations in Ontario’s grade 1-8 Mathematics curriculum emphasize that

students will be writing, executing, reading and altering code, which hints at a very

action-oriented type of learning, where students can potentially learn mathematics by

coding. The overall curriculum expectation, which spans grades 1-8, involves using

123

coding concepts and skills to solve problems and create computational representations of

mathematical situations. This expectation is interesting as it does not indicate what types

of mathematical situations are meant to be solved or created. Considering that coding is

meant to be applied across various strands, as indicated in the curriculum context, one is

to assume that the mathematical context for these problems and representations can be

drawn from the rest of the curriculum.

In addition to the overall expectations, each grade from 1-8 includes two specific

expectations related to coding that involve students writing code, as well as reading and

altering code. This emphasis on reading, altering, writing and executing code is similar to

the pattern of engagement for novice computer programmers called Use-Modify-Create,

which was first described by Lee et al. (2011) in Computational Thinking for Youth in

Practice.

Like the overall expectations, the specific expectations do not provide mathematical

context for the problems and computational representations to be solved and created, but

they do include specific coding concepts and skills. These coding concepts include, from

grade 1 to grade 5, sequential, concurrent, repeating, nested and conditional events.

Students from grade 1 to 5 are also expected to describe how changes to code affect

outcomes. This prediction component is similar to the first step in the Predict, Run,

Investigate, Modify and Make framework developed by Sentence et al. (2019). In grade

6, the concept of efficient code is added to the expectations, and in grade 7 students are

asked to work with subprograms. These expectations, from 1-7, include specific coding

concepts and CS concepts (control structures, subprograms, and efficiency), but they also

lend themselves to CT concepts that have been discussed by Wing (2006), Brennan and

Resnick (2012), and Grover and Pea (2018). Finally, in grade 8 the coding curriculum

expectations refer to students using code for the analysis of data and in order to inform

and communicate decisions. The specific context and source of this data is not provided,

which could potentially allow teachers and students to work with data that might connect

to the lives and interests of the students, or to the school and local community, which

conjures images of projects that could well reflect Computational Participation and

Computational Action perspectives.

124

5.5.13 Quebec’s Elementary Coding Curricula

In Quebec, the only coding-related curriculum in the K-8 grades appears in the

elementary Science and Technology curriculum where there is essential knowledge

related to students recognizing robotic structures that use servomechanisms (grade 5 and

6), as well as recognizing the impact of electric appliances, where microprocessors and

computers are listed in brackets as examples (grade 3, 4, 5 and 6) (Québec Ministère de

l’Éducation, 2009).

Within the Quebec mathematics curriculum, mental and written computation are also

included within the arithmetic section, but like other provinces this does not refer to

computation with technology.

5.5.14 Goals of Quebec’s Elementary Coding Curricula

With very little coding-related curriculum concepts in the K-8 grades, the Quebec

curriculum does not explicitly state any aims or goals related to the use of coding. The

main Quebec Education Program document does state, however; that two characteristics

of the Quebec Education Program are the development of competencies and recognizing

that learning is an active process (Québec Ministère de l’Éducation, 2001).

5.5.15 Learning Orientations in Quebec’s Elementary Coding
Curricula

The curricula components related to students recognizing robotic structures that use

servomechanisms (grade 5 and 6) and impact of electric appliances, where

microprocessors and computers are listed in brackets as examples, could allow for

teachers to include coding concepts and skills in their instruction; however, it is also

possible for this not to occur and still have students meet the requirements of the

curricula. This is surprising considering the stated characteristic of the Quebec Education

Program being the development of competencies and recognizing that learning is an

active process.

125

5.5.16 New Brunswick’s Elementary Coding Curricula

The New Brunswick elementary curriculum includes a 2016 pilot document where

coding plays a predominant role. In Middle School Technology Education, coding is

listed as one of three main subject areas for grade 6-8 technology instruction, alongside

Computer operations and Projects work (New Brunswick Department of Education and

Early Childhood Development, 2016). The Conceptual Framework Divisions section of

the document lists a number of digital technology skills for students to learn (including

file management, coding/programming, computer aided drafting, video and audio

production, and digital citizenship), and indicates that coding should take up a minimum

of 10% of each of the grades 6,7 and 8 years. The General Curriculum Outcomes (GCOs)

and Specific Curriculum Outcomes (SCOs) span across the three grades (6, 7 and 8) and

include three main areas: 1) technological operations and concepts; 2) critical thinking

and problem-solving skills; and 3) responsible citizenship. The second main area, critical

thinking and problem-solving skills, is where coding and related concepts and content are

found. This section, which again, is meant to span across grade 6, 7 and 8, includes the

following two specific outcomes: “2.2 Students will examine data to draw conclusions

and recommend solutions to improve performance” (New Brunswick Department of

Education and Early Childhood Development, 2016, p. 15) and “2.5 Students will

understand and demonstrate computer coding/programming concepts and terminology”

(New Brunswick Department of Education and Early Childhood Development, 2016, p.

15). Coding is listed in the concepts and content section of SCO 2.2, while app

development, robotics, game development and electronics are all listed in the concept and

content section for SCO 2.5. As previously mentioned, this document is labelled as a

pilot, and therefore the scope of implementation is not yet clear, however; the document

is a part of the main New Brunswick curriculum page, with a link that is found under

Middle School – Technology Education.

5.5.17 Goals of New Brunswick’s Elementary Coding Curricula

The Middle School Technology Education document reflects the economic argument for

coding as it indicates that grade 6 to 8 students require a wide variety of practical skills in

technology in order to prepare for life and the career choices required in a modern

126

economy. The document indicates that the coding area of study, often seen as “the

mysterious side of technology usage” (New Brunswick Department of Education and

Early Childhood Development, 2016, p. 4), is recognized as strengthening logical

thinking and problem solving skills, which connect to CT concepts, even though CT

concepts and practices are not mentioned further in the document.

5.5.18 Learning Orientations in New Brunswick’s Elementary
Coding Curricula

New Brunswick’s specific outcomes related to coding include using code to examine data

and draw conclusions, and having students “understand and demonstrate computer

coding/programming concepts and terminology” (New Brunswick Department of

Education and Early Childhood Development, 2016, p. 15). The terminology used in the

outcomes indicates that students will be both actively programming a computer or

physical digital device, as well as demonstrating knowledge surrounding related

terminology. In addition, app development, robotics, game development and electronics

are all mentioned as concepts and content, which ensures that students will be focused on

actively creating projects or artifacts with code. The connection of coding to data would

potentially require a cross-curricular approach, in which mathematics concepts

appropriate to the grade may be used, in order to draw relevant conclusions.

5.5.19 Nova Scotia’s Elementary Coding Curricula

In Nova Scotia, a key initiative of the province’s 2015 Action Plan for Education

document was to “provide all students with an introduction to the basics of coding,

technology, and design” (Nova Scotia Department of Education and Early Childhood

Development, 2015b, p. 23). In December 2020, coding was listed as one of three main

education priorities, alongside literacy and mathematics, on the province’s Education

Action Plan website (Nova Scotia Department of Education and Early Childhood

Development, 2021). The province currently has two Information and Communication

Technology curriculum documents, one for primary to grade 3 (P-3) and one for grades 4

to 6. The P-3 document lists essential learning outcomes and performance indicators

related to digital citizenship and productivity, but coding-related concepts and skills are

127

never explicitly mentioned. In the grade 4-6 document coding is listed as an explicit

outcome, where students will understand and apply the basic concepts of CS, including

algorithms, abstraction, and computational thinking (Nova Scotia Department of

Education and Early Childhood Development, 2016a).

5.5.20 Goals of Nova Scotia’s Elementary Coding Curricula

In Nova Scotia’s 2016 Action Plan for Education Annual Report coding was

acknowledged as promoting skills such as problem-solving and innovation, which were

both linked to growth industries like “computer programming, marine industries, and

manufacturing” (Nova Scotia Department of Education and Early Childhood

Development, 2016b, p. 4). As previously mentioned, coding is not explicitly mentioned

in formal P-3 curriculum and so these educational and economic goals are not reflected in

these grades. Instead, technology operations and concepts are included, with specific

reference to the safe operation of computers and grade appropriate digital devices, which

reflects a more general, digital literacy goal. In the 4-6 grades, the coding outcomes better

reflect the economic and educational goals, as robotics controls, gaming, problem

solving, communication and specific computer programming concepts are all listed as

grade specific strategies and skills.

5.5.21 Learning Orientations in Nova Scotia’s Elementary Coding
Curricula

Students in grades P-3 may code a computer in class, however; the curriculum does not

explicitly make this a mandatory proposition. The curriculum documents make reference

to the safe operation of computer and digital devices, however; this could just as easily

include digital presentation or spreadsheet software, or even effectively carrying out

internet searches. In the 4-6 grades, the learning orientations related to coding are clear,

as in each grade, students will “understand and apply the basic concepts of CS, including

algorithms, abstraction, and computational thinking” (Nova Scotia Department of

Education and Early Childhood Development, 2016a). This outcome highlights the need

for students to understand specific CS and programming concepts (such as conditional

statements, loops, variables, and programming languages), as well as CT concepts (such

128

as pattern recognition, sequencing, debugging, efficiency and abstraction). In addition,

the control of robotics, gaming, and real-world situations are also highlighted, allowing

for a variety of contexts where students can learn and apply the CS and CT concepts

(Nova Scotia Department of Education and Early Childhood Development, 2016a).

5.5.22 Prince Edward Island

The PEI Journey On documents provide specific curriculum outcomes related to

communication and information technology (CIT) literacy for the K-12 grades, however;

these documents do not include any formal, mandatory coding-related concepts and

skills. The document explains that CIT “differs from other technologies because of its

vast and far reaching applications in all disciplines” (Prince Edward Island Department of

Education, 2006a, p.1), and the document highlights the importance of integrating CIT

into other subject areas, rather than treating it as a subject in and of itself. Within the

document there are learning outcome examples that relate to coding for webpages

(hypertext mark-up language or html), but often these involve students developing a

webpage using webpage development software, and then exporting the resulting design to

an html version, thereby not actually coding the page itself. As an example, a grade 4

prompt suggest students can use software that will generate “required HTML coding for

the layout of a particular Web page” (Prince Edward Island Department of Education,

2005a). It is also important to note that this type of HTML coding differs from computer

programming coding, in that the html code is a mark-up language, rather than a

programming language that is written and executed, and that automates processes.

The outcomes that do appear in the curriculum are meant to be integrated into other

subject areas of the curriculum, rather than making up a stand-alone subject, and they

should be used as a tool to achieve existing curricular learning outcomes within the

context of other subject areas (Prince Edward Island Department of Education, 2006a).

This approach is more focused on the use, rather than the development, of software tools.

The document outlines the advantages of this approach which include the recognition that

technology should be a tool, rather than a curriculum subject of it is own, and that the use

of technology in other subject areas increase motivation and engagement, promotes the

129

development of creative and critical thinking skills, and supports contemporary approach

to education such as constructivism (Prince Edward Island Department of Education,

2006a).

5.5.23 Newfoundland and Labrador Elementary Coding Curricula

Within the area of Technology Education, Newfoundland and Labrador K-8 curriculum

includes a grade 7 Communications Technology Module that makes reference to students

identifying examples of technologies encoding and decoding information (Newfoundland

and Labrador Department of Education, 2002), however; coding in terms of

programming a computer is not explicitly mentioned. In grade 8, a Control Technology

Module exists that includes coding-related concepts and skills (Newfoundland and

Labrador Department of Education, 2006). Students must complete the grade 7

Communications Technology Module and a Grade 8 Production Module before

progressing to the grade 8 Control Technology Modules.

5.5.24 Goals of Newfoundland and Labrador Elementary Coding
Curricula

As indicated in the front matter of the curriculum Control Technology Document, the

focus of the curriculum is the development of student’s technological literacy, capability

and responsibility: “Students will be exposed to many facets of technology and will gain

literacy through active participation in knowledge acquiring and skill developing

activities presented throughout the implementation of the Grade 8 Control Technology

Module” (Newfoundland and Labrador Department of Education, 2006). The active

process of learning is emphasized throughout the document, as is a focus on coding being

used as a practical skill to control systems and devices.

5.5.25 Learning Orientations in Newfoundland and Labrador
Elementary Coding Curricula

The curriculum outcomes themselves are written in a way that may lead to students

discussing programming rather than actually programming a computer (ex: 1.17 define

programming in terms of communications within control technology systems, 1.18

130

describe the function of specific simple programs). The document, however; provided

added information for teachers, in terms of organization and presentation, which includes

the following explanation:

[p]rogramming in the Grade 8 Control Technology Module is of an introductory

nature and is meant to provide students with a basic communications system that

can enable them to construct functional control technology systems. Students

need to understand that programming is a means of developing a set of operations

that specify what a particular mechanism or system should accomplish.

(Newfoundland and Labrador Department of Education, 2006)

This description confirms that students will be programming a computer within the

context of a controls or robotics system, however; it is one of the only references

whereby it is clearly stated that students will code, rather than simply discuss or identify

code components and applications.

5.6 Comparative Analysis and Discussion

5.6.1 Coding or Coding-Related? For Some or For All?

After analyzing the location and type of implementation of coding expectations in K-8

curricula from the various provinces in Canada, it is apparent that four main categories

are represented. These are expressed in Table 12. A fifth category, number 2, has been

added in Table 12, and while there are no provinces that make up this category, it has

been added as a possible category that fits within this framework.

Category 2 includes jurisdictions where curriculum expectations might be found in an

optional component or module, and where the expectations are written in such a way that

could allow for a teacher or student to program a computer, but this may not be explicitly

stated. An example might be a jurisdiction that includes expectations surrounding an

awareness of how computer algorithms work, and then includes this expectation in a

module that is not mandatory across the jurisdiction. Some students may be offered this

module, but not all, and some students who are offered this module might program a

computer to learn about this concept, but it is possible that they do not.

131

Table 12. Categories of implementation of coding expectations in Canadian K-8

curricula

1) jurisdictions that do not include any coding-

related expectations

• Saskatchewan

• Manitoba

• Prince Edward Island

2) jurisdictions that include coding-related

expectations that could potentially lead to coding

experiences for some students

none identified

3) jurisdictions that include coding-related

expectations that could potentially lead to coding

experiences for all students

• Quebec

• Newfoundland and Labrador

4) jurisdictions that include coding-related

expectations that guarantee coding experiences for

some students

• British Columbia

5) jurisdictions that include coding-related

expectations that guarantee coding experiences for

all students

• Alberta (draft)

• Ontario

• New Brunswick

• Nova Scotia

Category 3 is similar to category 2, in that the curriculum expectations could allow for a

teacher or student to program a computer, but this may not be explicitly stated. The

difference between category 2 and category 3 is that in category 3 all students will

experience the curriculum expectations, as they are part of mandatory learning for all

students.

Category 4 includes jurisdictions where the expectations or outcomes are written in a way

that guarantees that students will be programming a computer, but the expectation

appears in an optional component of the curriculum. An example of this might be British

Columbia’s Computational Thinking module that appears in the ADST curriculum. This

module is one of 13 optional modules, so not all schools or teachers will select the

module, but once selected, the module includes students learning visual programming,

which explicitly states that students will program a computer.

Finally, category 5 involves curriculum expectations that are written in a way that ensure

that students will program a computer in order to meet the expectations, and they are

found in part of the curriculum that is taught to all students. An example of this would be

the expectations found in Ontario’s mathematics curriculum and the draft expectations in

132

Alberta’s Science curriculum. These curricula are mandatory for all students to learn, and

the wording clearly indicates that students will be required to program a computer in

order to meet the expectations.

The reason for the importance of these categories is for policy makers to understand the

impact of potential coding curriculum, and to consider implementation. This paper began

by presenting Webb et al. (2017), Passey (2017), Vogel et al. (2017), and Hubweiser et

al.’s (2015) arguments for coding in the younger grades, but if one is to believe that these

arguments are valid and important for all, then implementation should represent category

five of Table 12, where coding-related expectations guarantee coding experiences for all

students. Developing coding expectations that may or may not be experienced by all

students or developing coding-related expectations that may or may not lead to students

experiencing the power of programming a computer would not suffice. Likewise, the

theoretical approaches presented at the beginning of the paper make it clear that the

coding concepts and skills have value for all students, whether from a Computational

Thinking, Fluency, Participation, Literacy or Action perspective, which is why the

classification of category 5 is so important, as it ensures that all students in a jurisdiction

will experience programming a computer.

If a goal for a policy maker is for students to program a computer, then the expectations

and outcomes should be written in clear language that signals to educators the students

will program a computer, rather than discuss programming a computer. Likewise, if the

goal is for all students to be provided with the opportunity to program a computer, then

policymakers need to ensure that expectations and outcomes are placed in curriculum

documents that include mandatory learning, rather than optional modules or courses. If

modules or courses are optional, then it is possible that a number of students miss out on

the opportunity to be exposed to coding concepts and skills.

Another way to consider categories 2, 3, 4 and 5 is presented in Figure 8.

133

Figure 8. K-8 coding curricula implementation examples from Canadian

provinces

5.6.2 Coding on its Own or Integrated… Somewhere?

Document analysis reveals that coding expectations in the K-8 curriculum from Canadian

provinces appear to be integrated in four different ways:

1) As a component in technology curriculum (British Columbia, Quebec, New

Brunswick, and Newfoundland and Labrador)

2) As a component in Information and Communications Technology curriculum

(Nova Scotia)

3) As a component in Science curriculum (Alberta draft)

4) As a component in Mathematics curriculum (Ontario)

134

While there perhaps is not a “correct” location to place coding-related concepts and skills

in K-8 curriculum, what has become clear in this study is that the placement (and

wording) of the expectations and outcomes should honour the subject area in which they

are placed, as well as the stated goals. This point can be illustrated by comparing British

Columbia’s Computational Thinking module from the ADST curriculum to Ontario’s

coding expectations in the Algebra Strand of mathematics.

A major goal of the ADST curriculum involves supporting students as they develop

practical, creative, and innovative responses to everyday needs and challenges (British

Columbia Ministry of Education, 2016a), yet the Computational Thinking components of

the curriculum include the evolution of programming languages, as well as the study of

binary number systems. While these may be appropriate concepts for students to learn,

they do not speak to the applied nature of the curriculum, and they may prove difficult in

providing context for the Applied Design stages of the curriculum competencies. In

contrast, the coding expectations within the Algebra strand of the Ontario Mathematics

curriculum demonstrate clearly that students are coding within the context of the specific

subject, by solving problems and creating computational representations of mathematical

situations (Ontario Ministry of Education, 2020). This wording, and the specific concepts

involved in each grade, also connect to the goals of the curriculum that include providing

students with the skills to “think critically and creatively and see connections to other

disciplines beyond mathematics, such as other STEM disciplines” (Ontario Ministry of

Education, 2020).

Another example that speaks to the need to honour the subject area in which the coding

expectations are placed is Alberta’s draft science curriculum. Weintrop et al. (2016) have

presented a framework for the integration of CT that includes the science classroom, and

Gravel and Wilkerson (2017) have presented a specific example of grade 5 students using

computational artifacts to explore physics concepts. Both these approaches recognize the

value of computational artifacts to learn about and explore science concepts, yet

interestingly the Alberta grade K-6 draft curriculum does not capture this affordance

within its CS components. A major organizing idea of the curriculum is “Problem solving

and scientific inquiry are developed through the knowledgeable application of creativity,

135

design and computational thinking” (Alberta Education, 2016, p. 13) yet the examples do

not connect the development of computational artifacts to science concepts and skills.

While students learn about CS in terms of instructions, creativity, design and

abstractions, the learning outcomes and examples do not connect to science concepts that

are included in other areas of the curriculum. This is a missed opportunity as the design

and coding of computational artifacts present a valuable opportunity to learn science

concepts (Sengupta et al., 2013).

In addition to honouring the subject area in which the coding expectations are placed, as

well as the stated goals of the curriculum, coding expectations and outcomes should

clearly reflect well-defined arguments for the inclusion of coding in the younger grades.

If policy makers embody the economic argument for coding, then it follows that coding

expectations and outcomes be placed in curriculum in a manner that connects coding to

potential careers, such as within technology curriculum documents. If, on the other hand,

policy makers embody the educational, “coding to learn” argument then expectations and

outcomes should be written in a way that allow other components of the curriculum

(whether it be mathematics or science) to provide the context for the coding work.

Interestingly, the manner in which the CT modules was placed in BC’s ADST curriculum

introduces the idea that coding expectations and outcomes might have a value in

supporting the stages of a design process. This connection of coding to the design

processes has not been discussed extensively in literature, especially within the K-8

grades.

5.6.3 Connecting Theory and Curricula

This article began with a description of theory in the field of K-12 CS-related education

exploring Papert’s foundational learning theory of Constructionism, as well as the various

perspectives of Computational Thinking, Fluency, Participation, Action, and Literacy.

While answering the indicated research questions laid out, the document analysis process

also provided insight into how these differing approaches were reflected in the K-8

coding curriculum of Canadian provinces. Table 13 lists, and briefly describes, the

theoretical perspectives introduced in this chapter, as well as the components of the

136

various coding curricula from Canadian provinces that reflect these approaches. Grover

and Pea’s (2018) CT was used in combination with Wing’s (2006), as Grover and Pea

provide additional depth that Wing’s CT was lacking. Components of the Quebec and

Newfoundland and Labrador curricula that relate to coding were not included in Table 13

as these components were very technical in nature, relating specifically to robotics and

controls, and these components were not explicit in having students program a computer.

Table 13. Theoretical perspectives reflected in provincial coding-related curricula

Theoretical Perspectives Curriculum

Constructionism (Harel & Papert, 1991;

Papert, 1993)

• building knowledge structures, like

constructivism, but doing so through the

“construction” of a public entity

• using objects to think with

• recognizing the computer as the “Proteus of

machines” to support the culture of the

classroom that may be missing

BC:

• applied design is at the heart of the BC curriculum,

with CT being implemented within the context of an

experiential, hands-on program of learning through

design and creation

• curriculum rationale states that the ADST curriculum

harnesses the power of learning by doing

• introduction states that applied learning is part of all

of the ADST curricula, through the Curricular

Competencies that make-up the “doing” part of the

curricula

Alberta:

• a central, organizing idea of curriculum is that

problem solving and scientific inquiry are developed

through the knowledgeable application of creativity,

design, and computational thinking

Ontario:

• technology is recognized as having changed how

students can interact with mathematics

• coding provides students with the opportunity to apply

and extend math thinking, reasoning and

communicating

Computational Thinking (Wing, 2006; Grover

& Pea, 2018)

• solving problems using concepts and

strategies related to CS

• includes CT concepts such as logical

thinking, algorithms, patterns, abstraction,

evaluation and automation

• includes practices such as decomposing a

problem, creating computational artifacts,

testing and debugging, iteration,

collaboration and creativity

BC:

• Module title is Computational Thinking

• Simple algorithms that reflect CT (grade 6-7)

• Visual representations of problems and data (grade 6-

7)

• debugging algorithms and programs by breaking

problems down into a series of sub-problems (grade 8)

Alberta:

• the components and importance of instructions are

analyzed in early grades (K-3)

• computational thinking components and the term itself

are included in grade 3

• concept of abstraction is included in grade 6 and

applied within the design context

137

Ontario:

• concepts such as sequencing, concurrent events,

repetition, conditional statements and efficiency

reflect components of the CT concepts

• students read and alter code and predict potential

outcomes which reflect testing, debugging, and

iteration included in the CT practices

New Brunswick:

• coding recognized as strengthening logical thinking

and problem solving skills.

Nova Scotia:

• the learning outcome for grades 4-6 includes

understanding and applying the basic concepts of CS,

including algorithms, abstraction, and computational

thinking

• performance and assessment indicators related to the

outcome include organizing a sequence of events,

debugging and predicting outcomes

Computational Fluency (Resnick, 2018)

• includes student creativity and expression

with digital tools

• students develop a voice and an identity

through coding

• digital technologies are a symbol of

possibility and progress and as students

design and code they see themselves as part

of the future

BC

• curriculum goals include students developing a sense

of efficacy and personal agency about their ability to

participate as inventors and innovators, reflecting

social advantages of learning to code

Alberta

• creativity serves as a major component of the

curriculum, however; this creativity is in the context

of problem solving rather than in the form of personal

expression, or the social advantages of developing

personal voice and identity

Computational Participation (Kafai, 2016)

• includes a focus on coding as a social

practice

• includes collaboration, sharing of projects

and the development of communities

• moves from building code to creating

sharable applications

Alberta

• in grade 5 students learn about and engage in

collaborative processes in CS and the value of sharing

ideas for effective design

Computational Action (Tissenbaum et al.,

2019)

• an alternative to a fundamentals approach,

that instead focusses on project connecting

to student’s lives

• focussed on key dimensions of student

identity and empowerment

• strives for the development of a critical

consciousness as students create projects

for their communities

BC

• curriculum goals include students becoming agents of

change able to address practical challenges in a

rapidly changing world

Computational Literacy (diSessa, 2018)

• a big picture view of a change in STEM

education (especially mathematics and

science) with a new form of literacy

Ontario

• curriculum documents indicate that coding can be

incorporated across all strands and provides students

138

• literacy means that a representational form

for supporting intellectual activities is

adopted by a broad cultural group

with opportunities to apply and extend their math

thinking, reasoning, and communicating

• curriculum documents indicate that as students

progress through the grades, their coding experiences

also progress, from representing movements on a grid,

to solving problems involving optimization, to

manipulating models to find which one best fits the

data they are working with in order to make

predictions

• the overall expectations include solving problems and

creating computational representations of

mathematical situations using coding concepts and

skills

• the specific expectations includes a progression of

coding concepts such as repetition, conditional

statements, and subprograms

• the coding expectations take on the representational

form, the associated learning in the grade takes on the

intellectual activities, and the broad cultural group are

the Ontario students and educators themselves

Analysing these curricula through the theoretical lenses indicates that:

• the theoretical approach of CT is reflected in five major coding curricula in

Canadian provinces, with BC, Alberta and Nova Scotia using this term explicitly;

• Computational Fluency, Participation, and Action are not significantly reflected in

the coding curricula of Canadian provinces;

• Alberta curriculum is primarily CT focused, but there are small components in

grades 5 and 6 that reflect Computational Fluency, Participation, and Action; and

• while Ontario curriculum reflects some CT components, the coding expectations

and description in the curriculum context reflect a Computational Literacy

perspective. It is evident that students are learning to code within the context of

mathematics, and that the coding concepts in the expectations of each grade serve

the role of the representational form that diSessa (2018) states is required for a

literacy.

Computational Thinking is reflected in BC, Alberta, and Nova Scotia, with all three

jurisdictions using the term and providing related expectations, outcomes or references to

specific concepts and skills. In Ontario the mathematic coding expectations refer to

Computational Thinking related concepts including sequential, concurrent, repeating,

conditional and nested events, however; their use seems to reflect a CS focused approach,

139

rather than one that embodies Computational Thinking specifically. In addition, the term

Computational Thinking is not used in the Ontario 1-8 mathematics curriculum

document. What is reflected in Ontario’s curriculum, however; is diSessa’s

Computational Literacy whereby coding is integrated into school subjects in much the

same way that algebra has become a tool in science, mathematics and other subjects.

Alberta’s draft coding outcomes in the K-6 Science document emphasizes a CS and CT

focused approach, but does not explicitly leverage the development of computational

artifacts to learn related science concepts. The Alberta draft curriculum does; however,

reflect Computational Fluency, Participation, and Action, albeit with a small footprint

and not as explicitly as CT.

In British Columbia ADST curricula’s reflects an emphasis on “constructionism”, and the

design and creation of an artifact can provide educators with a valuable opportunity to

promote Computational Fluency, Participation, and Action in their pedagogy. Likewise,

British Columbia’s inclusion of “uses of robotics in local contexts” within the robotics

module provides educators with valuable opportunities to connect coding to the lives and

communities of students.

Nova Scotia’s ICT curriculum clearly outlines the purpose of the coding outcome as

connecting to real world situations which, like British Columbia, could provide educators

with an opportunity to have their pedagogy and selected projects reflect Computational

Fluency, Participation and Action. In New Brunswick, the Middle School Technology

Curriculum emphasizes project based learning that includes real world connections and

that is student driven. Like in British Columbia and Nova Scotia, this allows educators to

select pedagogy and projects that could embody the creativity, collaboration, sharing and

social change that is reflected in Computational Fluency, Participation, and Action.

As previously mentioned, in Quebec and Newfoundland and Labrador, the coding

curriculum expectations and outcomes are situated within a robotics context and are more

technically focused. This is not to say, however; that a creative and motivated educator

could not have the robotics projects reflect the Computational Fluency, Participation, and

Action approaches.

140

5.7 Conclusion

This chapter set out to determine the location of coding-related concepts and skills in

Canadian, K-8 provincial curricula, as well as the goals and learning orientations of the

expectations and outcomes. Document analysis reveals that coding expectations appear in

Canadian, K-8 curriculum in four ways: as a component in technology curriculum, as a

component in ICT curriculum, as a component in science curriculum, and as a component

in mathematics curriculum. In terms of the specifics of the implementation, five main

categories appear that range from jurisdictions with no expectations and outcomes, to

those with expectations or outcomes that guarantee coding experiences for all students. In

between these two extremes are categories that include expectations and outcomes that

could potentially lead to students programming a computer, and expectations and

outcomes that were optional and would have to be selected by a board, school or teacher.

In terms of the goals of coding curriculum, it is clear that the economic and learning

argument for coding are most reflected in the curriculum from the various provinces, with

only some referring to the social advantages of learning to program a computer. Learning

orientations were focused primarily on Computational Thinking concepts as these are

explicitly mentioned in three provinces, while Computational Fluency, Computational

Participation and Computational Action are not explicitly mentioned, but can provide

valuable context for pedagogy and projects within several jurisdictions. Computational

Literacy is reflected in one jurisdiction, as coding appears explicitly in K-8 mathematics

curriculum not with the infrastructural change that diSessa said was required, but perhaps

signaling a trend in this direction.

Together, these findings present a clear picture of the current landscape of coding-related

concepts and skills in K-8 curriculum of Canadian jurisdictions, providing a foundational

understanding of the organization, goals, and orientations of curricula upon which to

further study the novel and popular phenomenon of broadening exposure to CS-related

concepts and skills.

141

5.8 Chapter References

Alberta Education. (2021). Draft Science Kindergarten to Grade 6 Curriculum.

https://cdn.learnalberta.ca/Resources/content/cda/draftPDF/media/Science/Science-

GrK-6-EN.pdf

Ames, M.G. (2018). Hackers, computers, and cooperation: A critical history of logo and

constructionist learning. Proceedings of the ACM on Human-Computer Interaction

2(CSCW), 1-19. https://doi.org/10.1145/3274287

Ansari, A. (2017, November 21). Saskatchewan including coding in curriculum to

address labour shortage. betakit. https://betakit.com/saskatchewan-including-

coding-in-curriculum-to-address-labour-shortage/

Bodner, G. M. (1986). Constructivism: A theory of knowledge. Journal of Chemical

Education, 63(10), 873-878. https://doi.org/10.1021/ed063p873

Bowen, G. (2009). Document analysis as a qualitative research method. Qualitative

Research Journal, 9(2), 27-40. https://doi.org/10.3316/QRJ0902027

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. In Proceedings of the 2012 Annual

Meeting of the American Educational Research Association, Vancouver, Canada.

British Columbia Ministry of Education. (2016a). Applied Design, Skills and

Technologies.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/adst/en_ad

st_k-9_elab.pdf

British Columbia Ministry of Education. (2016b). Applied Design, Skills, and

Technologies - Goals and Rationale.

https://curriculum.gov.bc.ca/curriculum/adst/goals-and-rationale

Corbin, J., & Strauss, A. (2008). Basics of qualitative research: Techniques and

procedures for developing grounded theory (3rd ed.). Sage.

Creswell, J. W., & Creswell, J. D. (2013). Research design: Qualitative, quantitative, and

mixed methods approaches. Sage publications.

Crotty,M. (1998).The foundations of social research: Meaning and perspective in the

research process. Sage Publications

Merriam, S. B., & Tisdell, E. J. (2015). Qualitative research: A guide to design and

implementation. John Wiley & Sons.

142

Nunavut Department of Education. (2019). 2019 – 2020 Nunavut Approved Curriculum

and Teaching Resources. https://gov.nu.ca/sites/default/files/2019-

20_nunavut_approved_curriculum_and_teaching_resources.pdf

Denning, P. J. (2017). Remaining trouble spots with computational thinking.

Communications of the ACM, 60(6), 33-39. https://doi.org/10.1145/2998438

diSessa, A. (2000). Changing minds. MIT Press.

diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers.

Mathematics Education, Mathematical Thinking and Learning, 20(1), 3-31.

https://doi.org/10.1080/10986065.2018.1403544

Fluck, A., Webb, M., Cox, M., Angeli, C., Malyn-Smith, J., Voogt, J., & Zagami, J.

(2016). Arguing for computer science in the school curriculum. Journal of

Educational Technology & Society, 19(3), 38-46.

Fosnot, C. T. (1996). Constructivism: Theory, perspectives, and practice. Teachers

College Press.

Gadanidis, G., Brodie, I., Minniti, L., & Silver, B. (2017). Computer coding in the K-8

mathematics curriculum? What works: Research into practice, 69, 1-4.

Gadanidis, G., Hughes, J. M., Minniti, L., & White, B. J. (2017). Computational thinking,

grade 1 students and the binomial theorem. Digital Experiences in Mathematics

Education, 3(2), 77-96. https://10.1007/s40751-016-0019-3

Gadanidis, G., Hughes, J. M., Namukasa, I., & Scucuglia, R. (2019). Computational

modelling in elementary mathematics teacher education. In S. Llinares & O.

Chapman (Eds.), International Handbook of Mathematics Teacher Education:

Volume 2 (pp. 197-222). Brill Sense.

Gannon, S., & Buteau, C. (2018). Integration of Computational thinking in Canadian

provinces. In Online Proceedings of the Computational Thinking in Mathematics

Education Symposium.

Government of Northwest Territories. (2021). Frequently asked questions: NWT

partnering with British Columbia for JK-12 school curriculum.

https://www.ece.gov.nt.ca/sites/ece/files/resources/2021-11_-_faq_-

_nwt_to_adopt_bcs_jk-12_curriculum_-_english_-_final.pdf

Government of Yukon. (2022). Learn about the Yukon’s school curriculum.

https://yukon.ca/en/school-curriculum

Gravel, B. E., & Wilkerson, M. H. (2017). Integrating computational artifacts into the

multi-representational toolkit of physics education. In R. Duit, D. Treagust, & H.

Fischer (Eds.), Multiple Representations in Physics Education (pp. 47-70).

Springer. https://doi.org/10.1007/978-3-319-58914-5_3

143

Grover, S. & Pea, R. (2013). Computational thinking in K-12: A review of the state of the

field. Educational Researcher, 42(1), 38-43.

https://doi.org/10.3102/0013189X12463051

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has

come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science

education: Perspectives on teaching and learning (pp. 19–38). Bloomsbury

Academic. https://10.5040/9781350057142.ch-003

Harel, I. E., & Papert, S. E. (1991). Constructionism. Ablex Publishing.

Hennessey, E.J.V.,, Mueller, J., Beckett, D., & Fisher, P.A. (2017). Hiding in plain sight:

Identifying computational thinking in the Ontario elementary school curriculum.

Journal of Curriculum and Teaching 6(1), 79-96.

https://doi.org/10.5430/jct.v6n1p79

Hubwieser, P., Giannakos, M. N., Berges, M., Brinda, T., Diethelm, I., Magenheim, J., ...

& Jasute, E. (2015). A global snapshot of computer science education in K-12

schools. In Proceedings of the 2015 ITiCSE on working group reports (pp. 65-83).

ACM. https://10.1145/2858796.2858799

Information and Communications Council. (2017). The next talent wave: Navigating the

digital shift. https://www.ictc-ctic.ca/wp-content/uploads/2017/04/ICTC_Outlook-

2021.pdf

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12

education. Communications of the ACM, 59(8), 26-27.

https://doi.org/10.1145/2955114

Lee, I., Martin, F., Denner, J., Coulter, B., Allan, W., Erickson, J., ... & Werner, L.

(2011). Computational thinking for youth in practice. ACM Inroads, 2(1), 32-37.

https://doi.org/10.1145/1929887.1929902

Manitoba Education. (2013). Kindergarten to Grade 8 Mathematics: Manitoba

Curriculum Framework of Outcomes.

https://www.edu.gov.mb.ca/k12/cur/math/framework_k-8/full_doc.pdf

Milton, P. (2015). Shifting Minds 3.0: Redefining the Learning Landscape in Canada.

C21 Canada.

New Brunswick Department of Education and Early Childhood Development. (2016).

Middle School Technology Education.

https://www2.gnb.ca/content/dam/gnb/Departments/ed/pdf/K12/curric/Technology

Vocational/Middle%20School%20Technology.pdf

Newfoundland and Labrador Department of Education. (2002). Technology education:

Communications technology module grade 7.

144

https://www.gov.nl.ca/education/files/k12_curriculum_guides_teched_gr7_g7_com

m-module_june2002.pdf

Newfoundland and Labrador Department of Education. (2006). Technology education:

Control technology module 8.

https://www.gov.nl.ca/education/files/k12_curriculum_guides_teched_gr8ctrltech_

g8control.pdf

Nova Scotia Department of Education and Early Childhood Development. (2015a).

Information and communication technology – Essential learning outcomes 2015-

2016. https://www.ednet.ns.ca/files/curriculum/ITC-P-3ProgressionChart-

RevAug26-2015.pdf

Nova Scotia Department of Education and Early Childhood Development. (2015b). The

3Rs: Renew, refocus, rebuild - Nova Scotia’s action plan for education.

https://www.ednet.ns.ca/docs/educationactionplan2015en.pdf

Nova Scotia Department of Education and Early Childhood Development. (2016a).

Information and communication technology/Coding 4-6 integration.

https://www.ednet.ns.ca/files/curriculum/infotech_coding_4-6_streamlined.pdf

Nova Scotia Department of Education and Early Childhood Development. (2016b). Nova

Scotia’s action plan for education: Annual report 2016.

https://www.ednet.ns.ca/docs/actionplan-annualreport-2016.pdf

Nova Scotia Department of Education and Early Childhood Development. (2021). Nova

Scotia's Education Action Plan. https://novascotia.ca/educationactionplan/

Ontario Ministry of Education. (2020). The Ontario curriculum grades 1-8: Mathematics.

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic

Books.

Passey, D. (2017). Computer science (CS) in the compulsory education curriculum:

Implications for future research. Education and Information Technologies, 22(2),

421-443. https://doi.org/10.1007/s10639-016-9475-z

Popat, S., & Starkey, L. (2019). Learning to code or coding to learn? A systematic

review. Computers & Education, 128, 365-376.

https://doi.org/10.1016/j.compedu.2018.10.005

Prince Edward Island Department of Education. (2005a). Journey on: Working toward

communication and information technology literacy grade 4.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_4.

pdf

145

Prince Edward Island Department of Education. (2005b). Journey on: Working toward

communication and information technology literacy grade 7.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_7.

pdf

Prince Edward Island Department of Education. (2006a). Journey on: Working toward

communication and information technology literacy grade 1.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_1.

pdf

Prince Edward Island Department of Education. (2006b). Journey on: Working toward

communication and information technology literacy grade 2.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_2.

pdf

Prince Edward Island Department of Education. (2006c). Journey on: Working toward

communication and information technology literacy grade 5.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_5.

pdf

Prince Edward Island Department of Education. (2006d). Journey on: Working toward

communication and information technology literacy grade 8.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_8.

pdf

Prince Edward Island Department of Education. (2007a). Journey on: Working toward

communication and information technology literacy grade 3.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_3.

pdf

Prince Edward Island Department of Education. (2007b). Journey on: Working toward

communication and information technology literacy grade 6.

https://www.princeedwardisland.ca/sites/default/files/publications/eelc_comm_it_6.

pdf

Québec Ministère de l’Éducation. (2001). Québec education program: Preschool

education, elementary education.

http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/p

feq/PFEQ_presentation-primaire_EN.pdf

Québec Ministère de l’Éducation. (2009). Progression of learning: Science and

technology.

http://www.education.gouv.qc.ca/fileadmin/site_web/documents/education/jeunes/p

feq/PDA_PFEQ_science-technologie-primaire_2009_EN.pdf

Resnick, M. (2018, September 16). Computational Fluency. Medium.

https://mres.medium.com/computational-fluency-776143c8d725

146

Sengupta, P., Kinnebrew, J. S., Basu, S., Biswas, G., & Clark, D. (2013). Integrating

computational thinking with K-12 science education using agent-based

computation: A theoretical framework. Education and Information Technologies,

18(2), 351-380. https://doi.org/10.1007/s10639-012-9240-x

Sentance, S., Waite, J., & Kallia, M. (2019). Teaching computer programming with

PRIMM: a sociocultural perspective. Computer Science Education, 29(2-3), 136-

176. https://doi.org/10.1080/08993408.2019.1608781

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to

computational action. Communications of the ACM, 62(3), 34-36.

https://doi.org/10.1145/3265747

Vogel, S., Santo, R., & Ching, D. (2017). Visions of computer science education:

Unpacking arguments for and projected impacts of CS4All initiatives. In

Proceedings of the 2017 ACM SIGCSE Technical Symposium on Computer Science

Education (pp. 609-614). ACM. https://doi.org/10.1145/3017680.3017755

Webb, M. E., Cox, M. J., Fluck, A., Angeli-Valanides, C., Malyn-Smith, J., & Voogt, J.

(2015). Thematic working group 9: curriculum-advancing understanding of the

roles of computer science/informatics in the curriculum. In Summary Report:

Technology Advance Quality Learning for All (pp. 60-69). EDUSummit.

Webb, M., Davis, N., Bell, T., Katz, Y. J., Reynolds, N., Chambers, D. P., & Sysło, M.

M. (2017). Computer science in K-12 school curricula of the 2lst century: Why,

what and when? Education and Information Technologies, 22(2), 445-468.

https://doi.org/10.1007/s10639-016-9493-x

Weintrop, D., Beheshti, E., Horn, M., Orton, K., Jona, K., Trouille, L., & Wilensky,

U. (2016). Defining computational thinking for mathematics and science

classrooms. Journal of Science Education and Technology, 25(1), 127–147.

https://doi.org/10.1007/s10956-015-9581-5

Wilkerson, M. H. & Fenwick, M. (2017). The practice of using mathematics and

computational thinking. In C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.),

Helping Students Make Sense of the World Using Next Generation Science and

Engineering Practices. National Science Teachers’ Association Press.

Wilkerson-Jerde, M. H, Gravel, B. E., & Macrander, C. (2015). Exploring shifts in

middle school learners’ modeling activity while generating drawings, animations,

and computational simulations of molecular diffusion. Journal of Science and

Educational Technology, 24 (2-3), 396-415. https://doi.org/10.1007/s10956-014-

9497-5

Wilkerson, M. H., Shareff, R., Laina, V., & Gravel, B. (2018). Epistemic gameplay and

discovery in computational model-based inquiry activities. Instructional Science,

46(1), 35-60. https://doi.org/10.1007/s11251-017-9430-4

147

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

Zhang, L., & Nouri, J. (2019). A systematic review of learning computational thinking

through Scratch in K-9. Computers in Education, 141.

https://doi.org/10.1016/j.compedu.2019.103607

148

Chapter 6

6 Integrative Chapter

This integrated article dissertation set out to answer the following research question:

What is the current, and potentially future, direction of Computer Science (CS) in

K-12 education?

While this may be a broad focus, chapters 2 to 5 decomposed this large scope into

specific sections that answered the following sub-questions:

a. What are the theoretical approaches presented in the literature that relate

to the integration of CS concepts and skills in the K-12 grades?

b. What do curriculum documents reveal about the nature of historical CS K-

12 education in terms of goals, rationale and implementation models?

c. What do enrolment patterns reveal about the nature of historical CS K-12

education in terms of equity, diversity, and inclusivity?

d. What are the CS-related concepts and skills currently found in Canadian,

K-8 provincial curricula and in what ways do these reflect theoretical

perspectives and historical CS K-12 education goals and rationale?

This final chapter connects the answers to these sub-questions, indicating how they

intersect, and provides insights into the current and future landscape of CS in K-12

education.

6.1 Overview of Chapters 2 to 5

In Chapter 2, a review of the theoretical approaches in the field was provided. Wing’s

(2006) operational Computational Thinking (CT), that aims to help students make

problems computable (Barba, 2016), was contrasted with other perspectives that view

CS-related concepts and skills as tools that can be used to learn concepts and skills within

other domains, such as mathematics and science (Papert, 1993; diSessa, 2000, 2018;

149

Barba, 2016), and as a means of supporting students in social, personal, and cultural

endeavours (Kafai, 2016; Resnick, 2017). This analysis of the theoretical perspectives

provided a foundation upon which to investigate themes in the chapters that followed.

Chapter 3 analyzed the historical CS curriculum implementation model, where CS

concepts and skills have been taught in Ontario within optional courses at the secondary

level since 1966. This analysis showed that many of the themes included in the preambles

of recent curriculum have also been included in historical curriculum, including

curriculum developed over 50 years ago. The chapter also revealed that in Ontario,

historical documents have acknowledged the importance of cross-curricular connections

in CS curricula and the CS courses themselves have been placed in Business, Computer

Studies, Computer Science, Informatics, and Technological Education, while elsewhere

we see secondary CS courses being placed in Mathematics and Science curriculum

documents. With an understanding of the curriculum offered through the optional,

secondary course model of implementation, it was important to consider recent enrolment

within these courses.

Chapter 4 analyzed secondary, CS course enrolment data from Ontario, indicating that

student enrolment has increased since the 2011-2012 school year. This increase has been

primarily due to an increase in enrolment in the grade 10 ICS2O course and the grade 11

and grade 12 University pathway courses. The data also revealed a gender gap in Ontario

secondary Computer Studies courses, as female students make up only 26% of students

enrolled in the grade 10 course, 21% of students enrolled in the grade 11 courses, and

15.7% of the students enrolled in the grade 12 courses. From 2011-2018, female student

enrolment in Ontario’s Computer Studies has increased at a greater rate than male student

enrolment, indicating that the gender gap is decreasing as female student enrolment has

increased by 76% while the enrolment of male students in Computer Studies courses,

during that same time frame, has increased by 34%.

Finally, after considering theoretical perspectives, historical and contemporary

curriculum within the optional, secondary CS courses, as well as the accompanying

enrolment patterns, Chapter 5 provided evidence that the implementation of CS-related

150

concepts and skills is expanding, beyond the optional secondary CS class and into the

elementary grades in a variety of ways. Through document analysis, we can conclude that

coding expectations appear in Canadian, K-8 curriculum in four ways: as a component in

technology curriculum, as a component in ICT curriculum, as a component in science

curriculum, and as a component in mathematics curriculum. In terms of the specifics of

the implementation, five main categories appeared that ranged from jurisdictions with no

expectations and outcomes, to those with expectations or outcomes that guarantee coding

experiences for all students. In terms of the goals of coding curriculum, it was clear that

coding in order to develop job skills, as well as using coding as a tool to learn about

concepts and skills related to mathematics, science, or design, were most reflected in the

curriculum from the various provinces. Alternatively, perspectives related to the benefits

of coding as a social practice, which might include collaboration and sharing of projects,

as highlighted in Kafai’s (2016) Computational Participation, were not well reflected.

Learning orientations were often focused on components related to Grover and Pea’s

(2018) Computational Thinking concepts and practices, including abstraction, algorithms,

debugging, and decomposition, while the term Computational Thinking itself appeared as

a module name in BC, and was referred to in curriculum in Alberta and Nova Scotia.

Computational Fluency, Computational Participation and Computational Action were not

explicitly mentioned in curriculum documents. A unique integration of coding related

concepts appeared in Ontario, where grades 1-8 and grade 9 Mathematics curriculum

reflect components of diSessa’s (2018) Computational Literacy, which will be discussed

further below.

In the current chapter, the findings from these separate sections are integrated, connecting

the themes uncovered in this thesis with potential future directions for K-12 CS

education.

6.2 Broadening CS Education Beyond the Optional,
Secondary Courses

Chapter 3 shows that there is a history of CS-related concepts and skills being

implemented as isolated and optional secondary courses. A more recent trend, revealed

151

through the document analysis performed in Chapter 5, involves jurisdictions integrating

CS-related concepts and skills into subject areas other than CS, and into the elementary

grades. This contemporary implementation allows for the broadening of CS education, as

more students could potentially be exposed to the CS concepts and skills, even those who

would not normally select to enroll in the secondary, optional CS courses.

Chapter 4 revealed a significant gender gap in the isolated and optional secondary CS

courses. While the chapter did not conclude the cause of this specific gender gap,

research indicates a number of doors, walls and windows that contribute to the

marginalization of female students from the computing clubhouse (Margolis & Fisher,

2002). By integrating CS-related concepts and skills into learning in the elementary

grades, or into other mandatory subjects in the secondary grades, jurisdictions can

broaden the reach of CS concepts and skills as they will no longer only be taught to those

who select the optional, secondary CS course, and will now become something that is

potentially taught to all students. However, it is important to recognize the categories of

implementation that were identified in Chapter 5, as expectations may be integrated as

either optional or mandatory courses, and as either requiring a computer or not.

The analysis of jurisdictional coding curriculum from across Canada in Chapter 5

indicates a continuum that exists in terms of whether or not all students will be exposed

to CS-related learning (see Table 14), and whether or not the learning guarantees that

students will be programming a computer (see Figure 9).

The distinctions between the categories in Table 14 and Figure 9 are important when one

considers implementing CS-related expectations within the elementary grades, or in other

mandatory subjects in secondary, as an equity, diversity, and inclusivity initiative. If a

jurisdiction integrates coding expectations in a way that does not guarantee that all

students will experience the expectations, or in a way that does not guarantee explicit

programming activities on a computer, then it means that a great number of students may

still have to wait until secondary school to be exposed to CS-related concepts and skills,

and will then only be exposed to these if they select the optional CS courses.

152

Table 14. Categories of implementation of coding expectations in Canadian K-8

curricula from Chapter 5

1) jurisdictions that do not include any coding-

related expectations

• Saskatchewan

• Manitoba

• Prince Edward Island

2) jurisdictions that include coding-related

expectations that could potentially lead to coding

experiences for some students

none identified

3) jurisdictions that include coding-related

expectations that could potentially lead to coding

experiences for all students

• Quebec

• Newfoundland and Labrador

4) jurisdictions that include coding-related

expectations that guarantee coding experiences for

some students

• British Columbia

5) jurisdictions that include coding-related

expectations that guarantee coding experiences for

all students

• Alberta (draft)

• Ontario

• New Brunswick

• Nova Scotia

Figure 9. K-8 coding curricula implementation examples from Canadian provinces

from Chapter 5

153

The distinctions between these categories are also important for curriculum planning. As

a result of the way that CS-related concepts and skills have been integrated into Ontario,

New Brunswick, Nova Scotia, and potentially Alberta if the draft curriculum is approved,

other course curriculum may be written to build upon the concepts learned in the younger

grades. Other jurisdictions will not be able to do this, as their CS-related expectations are

integrated as optional and can be potentially implemented without computers, and

therefore only some students will have experienced these expectations through actual

coding on a computer.

As more jurisdictions integrate CS-related expectations in the elementary grades or in

other subject areas in high school, the categories of implementation from Chapter 5

should be carefully considered if a goal is to maximize the equity, diversity, and

inclusivity benefits, and as curriculum is developed in other courses.

6.3 Papert and the Integration of CS in Other Subjects

Chapter 2 revealed a number of theoretical perspectives related to CS concepts and skills

in K-12 education. Perspectives from diSessa (2000, 2018), Barba (2016), Kafai (2016),

Resnick (2017), Wilkerson (Wilkerson & Fenwick, 2017) and Gadanidis (Gadanidis et

al., 2019) all acknowledge and reflect Papert’s Constructionism and the idea of the

computer as a tool, for either understanding a specific subject (diSessa, Barba, Wilkerson,

Gadanidis) or for social, personal, or cultural endeavours (Resnick and Kafai).

Alternatively, Wing’s (2006) CT stood apart in terms of how it did not acknowledge

Papert’s previous work, and how it did not reflect Papert’s Constructionism. Instead,

Wing’s (2006) CT viewed CS and the computer as a topic for study in and of itself.

Considering the findings from Chapter 5 and the current trend of CS-related concepts and

skills being integrated in curriculum from outside the isolated, high school CS discipline,

perspectives that embody Papert’s Constructionism and the idea of a computer as a “tool

to make and do something with” are perhaps best suited as a foundation for the

broadening of CS concepts and skills, and the implementation of these things in other

subject areas. Papert’s perspective acknowledges the computer as a tool to think with,

and treats coding as something that can change the way students learn about other things.

154

This perspective is appropriate when CS concepts and skills are integrated into other

subject areas, including mathematics and science, as the coding and computer work

should serve the discipline’s concepts and skills, rather than being an object of study in

itself. It is also appropriate considering how CS-related concepts and skills are used

within specific fields, where the focus is on the specific fields themselves, with coding as

a tool to investigate, model and make progress. Having students engage with CS concepts

and skills to support the learning of mathematics, or science, is appropriate considering

CS concepts and skills are used within these disciplines in real life. This integrated

approach therefore reflects a real-world application of CS concepts and skills, and

supports students beyond simply CS specific educational and career pathways.

For examples of this effective integration, one could look to Ontario grades 1-8 and grade

9 mathematics curricula, as Chapter 5 findings show that within these curriculum

documents, technology is recognized as having changed how students can interact with

mathematics, and coding is recognized as providing students with the opportunity to

apply and extend math thinking, reasoning, and communicating. In addition, Chapter 5

reveals that the coding expectations are written in a way that supports the learning of

other mathematical concepts found in the curriculum. This implementation of coding, to

support the learning of non-CS concepts and skills, is consistent with Papert’s views, and

the views of others presented in Chapter 2 including diSessa, Kafai, Barba, Wilkerson

and Gadanidis.

In Mindstorms (1993), Papert discusses Mathland, as well as provinces of Mathland that

he calls microworlds. He claims that these metaphorical places are where “certain kinds

of mathematical thinking could hatch and grow with particular ease” (p. 125), much like

an individual learning French by being embedded in the language while living in France.

He suggests a Mathland or microworlds could be developed to serve as incubators of

something like Newtonian physics, that has its own rules and structures. Students can

inhabit the Newtonian physics microworld by programming various events and

simulations, and these events and simulations would be impacted by the rules and

structures of the particular microworld. In this way, the Newtonian physics microworld

155

serves as a “growing place for a specific species of powerful ideas or intellectual

structures” (p. 125).

With the integration of coding-related expectations in subject like mathematics in Ontario

grades 1-9, the potential for Mathland or microworld experiences in schools is facilitated

and supported, allowing for these intellectual incubators to be potentially experienced by

a large number of students. The curriculum itself embeds coding expectations within the

mathematics curriculum, and expects educators to connect these CS-related concepts and

skills to mathematics concepts in the grade, effectively facilitating the learning

environments that represent Mathland or microworlds for students. Papert claims that

these learning experiences can reflect Piagetian learning, as they allow for learning to be

deeply embedded in other activities. This is in contract to dissociated learning, which

Papert claims is a symptom of mathematics learning, whereby “learning takes place in

relative separation from other kinds of activities” (p. 48). This integration of coding in the

curriculum, therefore, is more than simply an addition of concepts. It is instead,

potentially paving the way for the development of Mathland and microworlds throughout

the province in elementary mathematics classrooms, effectively facilitating integrated,

rather than dissociated, experiences for students.

While CS-related curriculum may embody Papert’s approach of coding to change the

way students learn about other things, resources and activities should reflect this

integrated approach. In Ontario, it will be fascinating to see whether or not, over the

coming years, resources and classroom activities are focused primarily on the dissociated

CS concepts, or if they support the learning of associated mathematics concepts and

skills. While this thesis did not investigate the tools being used or the implementation

activities, considering the number of jurisdictions with new CS-related concepts and

skills in their curriculum, this could serve as an interesting and necessary area of study.

It will also be fascinating to see if the integration of coding concepts in this way impacts

the approaches that both educators and student take towards knowledge, learning, and

potentially school in general. In discussing Mathlands, Papert claimed that “Mathland is

the first step in a larger argument about how the computer presence can change not only

156

the way we teach children mathematics, but, much more fundamentally, the way in which

our culture as a whole thinks about knowledge and learning” (p.39). This begs the

question whether or not the integration of coding can extend beyond reinventing

mathematics activities, towards changing larger perspectives of school itself, and

potentially using the computer in a wide variety of subject areas in a fashion that moves

away from dissociated learning, towards richer connections and mutual support between

different subject areas or concepts and skills.

As more jurisdictions integrate CS-related expectations in the elementary grades or in

other subject areas in secondary school curriculum, careful consideration should be made

to the theoretical perspectives from Chapter 3 and the goals of the curriculum revision

initiative. Some theoretical perspectives support a CS-centric approach, and those such as

Wing’s CT may be most appropriate for the CS classroom, or when the computer itself is

the object of study. However, if the integration of CS-related concepts and skills is meant

to support the learning of, and activities within, other, non-CS subject areas, then there

are other theoretical perspectives that would better serve students and better serve the

goals of the curriculum.

6.4 From the Technical, to the Personal, Social and Cultural

Chapter 3 demonstrated how historical CS curriculum was focused on a technical

approach, with even the most recent 2008 curriculum in Ontario stating that “Computer

studies is about how computers compute. It is not about learning how to use the

computer, and it is much more than computer programming. Computer studies is the

study of ways of representing objects and processes” (Ontario Ministry of Education,

2008, p. 3). Enrolment data presented in Chapter 4 revealed the potential implications of

this approach, as the courses implemented in an optional, isolated fashion with a focus on

the technical have low enrolment and are subject to large gender gaps. While Chapter 2

demonstrated that Wing’s popular CT approach embodies this CS-centric approach, other

theory from the field, presented in Chapter 2 and 4, provide alternative perspectives that

include personal, social, and cultural goals.

157

Wing’s (2006) CT, while certainly a computer-centric approach, focused on students

learning broader CS-related concepts and skills with the intent of solving problems and

understanding the world around them. diSessa (2018) challenges this idea, arguing that

Wing’s CT does not address how one solves problems in general, but only a very

specialized group of problems, and that her version of CT draws heavily on what he

refers to as the “the siren call of higher order thinking skills” (diSessa, 2018, p. 28). He

explains that Wing’s CT does not provide any filters, for what CS concepts or skills

should become common knowledge, nor does it provide principles for lift, or how one

abstracts specific concepts and skills from CS to make them useful in broader, more

general contexts. Finally, diSessa states that Wing’s CT is also lacking principles of

embedding, or how “one places abstracted elements of computation thinking in the

destination disciplines so as to make them important to mathematicians, physicists, or

engineers” (diSessa, 2018, p. 26).

Brennan and Resnick (2012) and Grover and Pea (2018) provided much needed details

and specific components in their alternative CT concepts, practices and perspectives, and

these approaches provided additional opportunities to connect CS concepts to other

subject areas in school. Resnick’s (2018) Computational Fluency focused on personal

expression and creativity, while Kafai’s (2016) Computational Participation emphasizes

the cultural and social significance of coding for a purpose. diSessa (2018) provides a

bigger picture perspective on the issue, as he articulates his model of computation as a

new literacy that will impact the core of the STEM disciplines. Finally, in Chapter 5,

Computational Action (Tissenbaum et al., 2019) was added to these approaches, where

dimensions of computational identity and computational empowerment are included, as a

means of making computing more inclusive, motivating, and empowering.

These approaches, while varied, place the student and the student’s community at the

center of the learning through personal, social, and cultural connections. This is much

different than a CS-centric approach that focuses on the CS concepts and skills. New

curriculum meant to broaden CS participation, whether in the secondary or elementary

grades, will have to reflect this focus on the personal, the social, and the cultural

158

otherwise it will not align with contemporary perspectives in the field such as those of

Resnick (2018) and Kafai (2016).

Chapter 5 reveals that this shift has begun to occur in the development of coding

curriculum in the K-8 grades. In British Columbia, coding curriculum is placed within an

applied design context, where a key component is flexibility and choice, as students and

teachers can personalize learning by making choices about what students “design and

make, and the depth and breadth to which both teachers and students choose to pursue a

particular topic, based on students’ interests and passions” (British Columbia Ministry of

Education, 2016). In Alberta, a CS-centric CT is embodied within the new draft Science

curriculum but some of the learning outcomes highlight creativity as a key component of

intended goals (Alberta Education, 2021). Finally, in Ontario, the grade 1-8 mathematics

curriculum focuses on leveraging coding to understand mathematical concepts. While

specific coding-related concepts such as sequential and repeating events were included in

the expectations, the focus was on solving problems and creating computational

representations of mathematical situations (Ontario Ministry of Education, 2020). This is

a good example of a curriculum placing the student’s personal understanding of broader

learning at the forefront of coding expectations.

6.5 From the Ethical to the Justice-Centered Curriculum

Chapter 4 revealed a gender gap in high school CS courses and introduced the

perspective of a justice-centered approach to equity, diversity, and inclusivity in CS

education. A justice-centered approach focuses on “the sociopolitical implications,

relevance, and, ultimately, liberatory possibilities of teaching and learning CS” (Vakil,

2018, p. 27). While chapter 3 provided evidence that Ontario secondary curriculum

dating back as far as 1966 effectively communicated the importance of ethical

considerations and digital citizenship, a justice-centered approach moves beyond

developing responsible digital citizens, to students engaging in critiquing unethical

abuses of technological power. In a justice-centered approach, CS learning is framed as

being “important for the social and economic welfare of historically nondominant

students and their communities”, as students are encouraged to “pursue CS as part of and

159

connected to larger struggles for justice and liberation” (p. 37). New K-8 coding

curriculum from various provinces explored in chapter 5 did not include this justice-

centered approach, but it is worth noting that within Ontario’s grade 9 mathematics

curriculum, a Human Rights, Equity, and Inclusive Education in Mathematics section

appears in the front matter, or curriculum context. This section includes the following

paragraph which approaches some of the sociopolitical issues related to a justice-centered

approach:

Research indicates that there are groups of students (for example, Indigenous

students, Black students, students experiencing homelessness, students living in

poverty, students with LGBTQ+ identities, and students with special education

needs and disabilities) who continue to experience systemic barriers to accessing

high-level instruction in and support with learning mathematics. Systemic

barriers, such as racism, implicit bias, and other forms of discrimination, can

result in inequitable academic and life outcomes, such as low confidence in one’s

ability to learn mathematics, reduced rates of credit completion, and leaving the

secondary school system prior to earning a diploma. Achieving equitable

outcomes in mathematics for all students requires educators to be aware of and

identify these barriers, as well as the ways in which they can overlap and

intersect, which can compound their effect on student well-being, student success,

and students’ experiences in the classroom and in the school. Educators must not

only know about these barriers, they must work actively and with urgency to

address and remove them. (Ontario Ministry of Education, 2021, para. 16)

While the expectations of the curriculum do not include similar language, it is important

to note that this section is included to inform educators as they deliver the grade 9

mathematics course that includes coding expectations. It is also important to note that the

section did include language related to an anti-racist and decolonial approach to

mathematics education, but this was removed from the section after release. The deleted

text included the following:

160

…mathematics has been used to normalize racism and marginalization of non-

Eurocentric mathematical knowledges, and a decolonial, anti-racist approach to

mathematics education makes visible its historical roots and social constructions.

(Jones, 2021, para. 3)

Admittedly, this thesis does not explore the rationale for removal of the text, nor does it

explore the implications of including or removing wording that acknowledges

sociopolitical contexts and who has and does not have power in CS-related education and

the field. This thesis does, however; acknowledge the importance of this area of study

and provides a foundational analysis of what is and is not included in both historical and

novel CS-related curriculum, as well as important equity, diversity, and inclusivity

concerns surrounding existing gender gaps in CS education.

6.6 The Future of Secondary CS Curricula

Chapter 5 provided evidence of how the implementation of CS education is being

broadened into the K-8 grades and into subject areas such as mathematics, science, and

technology. Considering this phenomena, it is important to ask what the impact of this

expansion will be on the secondary, optional CS courses that were explored in chapters 3

and 4.

As more students are exposed to CS concepts and skills in the younger grades, will they

be motivated to enroll in CS courses at the secondary level, as their interests have been

piqued, or as they have gained confidence through early exposure to concepts and skills?

Is it possible that this increased interest and confidence leads to increased enrolment in

secondary CS courses? Or, having experienced CS concepts and skills in the K-8 grades

and possibly in secondary courses outside of CS, such as mathematics in grade 9 in

Ontario, will students and parents feel as though foundational CS concepts and skills

have already been integrated enough into other subject areas, and therefore there is no

need to enroll in specialized CS courses? Extending these questions further, if CS

concepts and skills have such applicability in other subject areas, is it possible that the

integration of CS into other subjects leads to the demise of specialized, secondary CS

courses?

161

At the very least, the changes taking place in K-12 CS education point towards a need to

now carefully consider the goals of, and rationale for, CS-specialized courses in

secondary schools, as well as the concepts and skills being taught in these courses.

Beginning with the theoretical perspectives from Chapter 2, some may consider having

the secondary CS courses reflect a more CS-centric approach, embodying Wing’s (2006)

CT or embodying an economic argument for CS education, that prepares secondary

students for post-secondary programs related to CS, as well as related jobs in the field.

Unfortunately, this could possibly leave out important social, cultural, and personal

connections that may not be able to be adequately explored if students only learn CS

concepts and skills in other subject areas.

In terms of specific concepts and skills, Ontario provides a good example of how

secondary CS courses will need to be altered to reflect changes in elementary curricula.

Chapter 3 revealed that concepts of control structures in CS, which include the

sequencing and repetition of instructions, as well as conditional statements (decisions),

were included in all grade 10 courses over the last 55 years. As an example, the 1983

document includes an expectation that students will “write simple routines that will

illustrate the three basic operations involved in the processing of information -

sequencing, selection, and repetition” (Ontario Ministry of Education, 1983, p.16), while

the current grade 10 Computer Studies course in Ontario includes expectations where

students “write programs that includes a decision structure for two or more choices” and

“write programs that use looping structures effectively” (Ontario Ministry of Education,

2008, p. 36). How will curriculum expectations such as these, in introductory, secondary

CS courses, need to be altered if, referring to the findings from Chapter 5, all students in

Ontario are now writing, executing, reading, and altering code that includes sequential,

concurrent, and repeating events, and conditional statements in grades 1, 2, 3 and 4

respectively (Ontario Ministry of Education, 2020)?

The broadening of CS concepts and skills into other K-12 subject areas and grades

presents an exciting opportunity for a greater number of students to be exposed to CS, but

this will inevitably lead to changes needed in the traditional delivery model of the

secondary, optional CS courses. Researchers and policy makers involved in secondary

162

CS education are well-advised to play close attention to curriculum changes in the K-8

grades and to carefully consider the potentially changing underlying goals and rationale

for optional, secondary CS courses, and the concept and skills taught within these courses

as students arrive to these courses with greater CS experience than in the past.

6.7 Towards the Development of a Literacy

An evident shift in K-12 CS education involves the transition from a narrow perspective

of students learning CS concepts and skills in order to pursue a related post-secondary

program or career, to the broader perspective of CS-related concepts and skills potentially

supporting the development of a new form of literacy. Chapter 2 and 5 highlighted the

theoretical foundation of this perspective, through an analysis of diSessa’s Computational

Literacy (2018) which involves the adoption, by a broad group, or even a civilization, of

a “particular infrastructural representational form for supporting intellectual activities”

(diSessa, 2018, p. 4). diSessa presents four new Rs that provide detail and focus for his

literacy agenda and all four of these Rs are reflected within the various findings from the

chapters in this thesis and presented in Table 15, but are most evident in the integration of

coding expectations in Ontario’s grades 1-8 and grade 9 mathematics curriculum,

discussed in Chapter 5.

Table 15. Examples of diSessa's (2018) four Rs in CS K-12 education

diSessa’s (2018) description of

potential change
Examples

Re-mediation • the computer has significantly

altered the representational

infrastructure of our civilization

• dynamic and interactive

representations are now easy

and quick to create

• any representational system is

better adapted for some things

than others

• Ontario’s grade 1-8

Mathematics curriculum

includes expectations related

to CS concepts and skills that

support the solving of

problems and the

representation of

mathematical situations

(Ontario, 2020)

• British Columbia’s secondary

CS courses are found within

the Mathematics course of

study where communicating

and representing is one of

163

four main curricular

competencies (British

Columbia Ministry of

Education, 2018a; 2018b)

Reformulation • the computer can lead to

substantial change in what,

when and how we teach subject

matter

• an understanding of the

different foundational ways of

thinking within different

domains will be important

• British Columbia’s ADST

curriculum leverages the

application of coding

concepts and skills to help

students design and prototype

(British Columbia Ministry of

Education, 2016)

• Ontario’s grade 1-8

Mathematics indicates that

coding can be incorporated

across all strands and

provides students with

opportunities to apply and

extend their math thinking,

reasoning, and

communicating (Ontario,

2020)

Reorganizing • the intellectual terrain is

changed

• teaching and learning is altered

significantly

• New K-8 curriculum that

includes coding is apparent in

a number of educational

jurisdictions across Canada

and the world

• Ontario grades 1-8

Mathematics includes new

learning expectations in the

early grades that involve

variables and inequalities,

which are new, topics that

can be well represented with

the coding expectations

within these grades (Ontario,

2020)

Revitalizing • the ecology of learning

activities is broadened

• engagement, interest and equity

is facilitated

• Papert’s Constructionism is at

the core of new curriculum

as expectations and outcomes

explicitly state that students

will be programming a

computer

• Alberta draft curriculum

includes computational

artifact examples that range

164

from medical research to

automotive control and online

shopping (Alberta Education,

2021)

6.7.1 Re-mediation

diSessa’s re-mediation is reflected in findings from Chapter 5, where it was found that

coding concepts and skills have been included in Ontario’s grade 1-8 and 9 mathematics

to support the representation of mathematical situations and in Chapter 3, where it was

found that British Columbia’s secondary CS curriculum is located within the

mathematics discipline, and where communicating and representing form a major

competency. This communicating and representing competency provides good examples

of what diSessa (2018) terms a new representational infrastructure that can allow for

cognitive simplicities. These include, in grade 11, students:

• explaining and justifying mathematical ideas and decisions in many ways;

• representing CS ideas in concrete, pictorial, symbolic, and pseudocode forms; and

• using CS and mathematical vocabulary and language to contribute to discussions

in the classroom (British Columbia Ministry of Education, 2018a).

This type of integration of CS concepts and skills, as a new form of representational

infrastructure, allows for other curriculum expectations, within the same mathematics or

grade, to be learned in dynamic and interactive ways. As an example, in Ontario, a

curriculum expectation in grade 3 that involves students creating and translating patterns

that have repeating elements, movements, or operations can be combined with coding

expectations where students are creating create computational representations of

mathematical situations by writing and executing code that involves repeating events

(Ontario Ministry of Education, 2020). In this case, the coding environment and the use

of loops can re-mediate how students learn about and understand patters with repeating

elements, movements, or operations.

6.7.2 Re-formulation

In terms of reformulation, Chapter 5 revealed students coding a computer to help support

designing and prototyping in British Columbia’s ADST curriculum, while in Ontario

165

coding concepts and skills support the learning across all other strands in the mathematics

curriculum and is meant to help students extend their math thinking, reasoning and

communicating. These findings, in addition to the fact that Alberta includes draft coding-

related curriculum in K-8 Science and that Ontario first included coding-related concepts

and skills in Business data processing documents, reflects diSessa’s reformulation criteria

that the computer leads to changes in what when and how we teach subject matter, and

that there will be an understanding of the different ways of thinking within the different

domains. As an example, Ontario’s mathematics curriculum includes students in grade 4

identifying and using symbols as variables in expressions and equations, an area where

the coding environment and the storage of data in variables may alter when students can

become familiar with such a concept, as well as potentially impact the depth of their

understanding.

In contrast, Newfoundland and Labrador include coding expectations in Grade 8 Control

Technology Module, as students define programming in terms of communications within

control technology systems and as they describe the function of specific simple programs

(Newfoundland and Labrador Department of Education, 2006). These types of

expectations do not substantially change how subject matter is taught, or promote an

understanding of foundational ways of thinking within different domains. The focus is on

control systems and communication with coding used as a practical skill to control

systems and devices.

6.7.3 Reorganization

diSessa’s reorganization of the intellectual terrain is apparent from findings in Chapter 5,

which demonstrated the breadth and depth of curriculum revisions taking place related to

coding. Since 2016, British Columbia, Alberta, Ontario, Nova Scotia and New Brunswick

have all made curriculum revisions that include coding concepts and skills in their

elementary curriculum. In some jurisdictions, the teaching and learning of various

subjects have been changed in Canada as a result of these reforms, leading to a significant

reorganization. This has changed who gets to do what, and when, as coding is potentially

disruptive and alters the learning of other things.

166

A specific example of this is how in mathematics in Ontario, students in the early grades

learn about inequalities, a topic that can be well represented with the coding expectations

related to conditional statements (Ontario Ministry of Education, 2020). The intellectual

terrain related to mathematical inequalities can be potentially altered by using the

computer, and the computer programming code, as an object to think with. Inequalities

can be represented and explored using conditional statements in code, and students may

develop a deeper appreciation and understanding of the topic, and its importance and

application.

In the near future, it will be fascinating to see just how much of an impact these coding

expectations will have on the learning of mathematics in Ontario, and perhaps in other

jurisdictions, as there is the potential for coding to “lower the floor” of some bigger

mathematical concepts, and provide students with a representational infrastructure with

which to wrestle with more sophisticated concepts. If this occurs, then it’s possible that

mathematics curriculum is reorganized, as some concepts once thought to belong in a

specific grade, may be able to be moved to a younger grade. This reorganization reflects

diSessa’s description of how the intellectual terrain within the domain of uniform motion

was re-mediated, from textual to algebraic reasoning, and therefore reorganized allowing

high school students to access this learning through some inferences and the single,

intuitive equation d = rt (diSessa, 2018). Just as algebra reorganized the concept of

uniform motion, coding may continue to reorganize mathematic, scientific, or other

concepts.

In contrast, the implementation of coding-related expectations with a specific technology

focus, such as in New Brunswick’s Middle School Technology Education document,

while supporting exciting areas of app development, robotics and electronics, may not

lead to the reorganization of the intellectual terrain, and has the potential to have less of

an impact on the learning within other domains.

6.7.4 Revitalization

In terms of the revitalizing of the learning ecology, this is reflected through the

integration of Papert’s Constructionism in many of the new coding curriculum from

167

Chapter 5. Many jurisdictions now include wording in their expectations that ensure that

students will be programming a computer and in doing so, learning about related topics

while having an “object to think with” (Papert, 1993). The broadening of this ecology and

the engagement and interest is also evident in some of the examples provided in

documents, including in the draft Alberta science curriculum, where computational

artifacts related to automotive control and online shopping are included. This

revitalization is also a key component of 21st century learning to which digital

technologies and coding specifically, have been tied.

Before concluding the discussion on the shift towards a potential Computational Literacy,

it should be pointed out that diSessa (2018) describes CL as “the adoption by a broad

cultural group - perhaps an entire civilization - of a particular infrastructural

representational form for supporting intellectual activities” (p. 4). Considering the

broadening of CS-related concepts and skills in K-12 education presented in this thesis,

including newly revised, explicit and mandatory coding curriculum in a number of

jurisdictions in the K-8 grades, it is possible that this adoption by a broad cultural group

could occur sooner than expected, as a significant number of Canadian K-8 students will

be learning coding concepts and skills to support their learning in a number of different

curriculum areas. While this thesis focused on the curriculum policy documents and not

the actual implementation of coding expectations within the various classrooms, there is

evidence of how diSessa’s CL is reflected in classrooms where coding is used to support

learning.

6.7.5 Computational Literacy and a Post-Secondary Example

In Investigating an Approach to Integrating Computational Thinking into an

Undergraduate Calculus Course, Clements (2020) analyzes the impact of integrating

coding activities into a calculus course for undergraduate Life Sciences students. The

study involved developing a set of mathematical coding activities to “supplement and

enhance mathematical problem solving, as well as promote a richer understanding of the

course content, while taking advantage of the unique affordances computational thinking

can offer to enhance educational experiences” (p. 88). The goal was not to simply

168

integrate technology into the course, but instead to enrich and transform how the

mathematics in the course was done.

Through an analysis of questions and prompts that allowed students to reflect on their

experiences with the activities, Clements (2020) observed three central themes: modified

perceptions of mathematics, enhanced mathematics learning experiences, and unique

coding affordances. Clements went on to analyze the findings through diSessa’s (2018)

Computational Literacy framework, and determined that calculus concepts in the courses

were re-mediated with coding serving as a new computational representation system. The

concepts, problems and processes related to investigations in the class were reformulated,

sometimes from an algebraic to a computational representation, which required

abstraction and automation, two CT concepts, and which also required “an in-depth

conceptual understanding of all aspects of a problem, and a strong enough familiarity

with both formulations that one can effectively translate between two representational

systems” (p. 73). This re-mediation and reformulation resulted in a reorganization of

course concepts, as “exploring calculus concepts with computer code enabled students to

effectively investigate meaningful, authentic, interdisciplinary applications, which were

formerly inaccessible (and thus omitted from the course) due to overwhelming, technical

complexities” (p. 79). Clements (2020) concludes that the learning trajectories for

students changed, and the intellectual domain of calculus was effectively reorganized,

with students attributing this to the unique affordances of coding. Through remediation,

reformulation and reorganization, Clements (2020) observed a revitalization of learning

within the course, as students indicated that the coding activities:

• provided a fresh, modern approach to mathematical problem solving;

• made the material feel more interesting;

• increased their enjoyment of their learning;

• opened up a creative space in mathematics that they had never experienced in

other problem-solving situations;

• allowed for flexibility in terms of the opportunities available to them, and the

options available for problem-solving strategies;

169

• provided consistent and immediate feedback that helped them to shape and

reinforce their;

• improved their confidence with their answers and overall conceptual

understanding of the material;

• provided differentiated learning opportunities, which supported a variety of

learning styles;

• allowed them to be free to experiment with the code in ways that were personally

meaningful for them; and

• stimulated peer collaborations, resulting in fruitful discussions and sharing of

ideas.

In addition to a revitalization of the learning, Clements was surprised to observe a

revitalization of teaching, as the capabilities afforded by computation dramatically

expanded the range of interdisciplinary applications that could be incorporated into the

course, and expanded the capacity with which to investigate them. Clements also found

that the mathematical material that was being taught could be more meaningfully and

authentically engaged with, and the value of the material more convincingly illustrated.

As the coding-related expectations in Ontario mathematics, and in other subjects

jurisdictions, is further implemented, it will be interesting to see if the re-mediation,

reformulation, reorganization and revitalization observed by Clements in the

undergraduate calculus course is also observed in the larger K-12 school system.

6.8 Broadening of CS Education Leading to New Actors
and Influences

With the broadening of CS concepts and skills in K-12 education, it is likely that new

actors, outside of publicly funded ministries of education, boards or schools, will become

involved in the development of curriculum, the delivery of instruction, and the provision

of resources and materials. An example of this is discussed in Chapter 4. Canada’s

CanCode initiative begun in 2017 with an initial commitment from the Canadian federal

government of $50 million (Department of Finance Canada, 2017). The program is listed

as an action item related to Canada’s Digital Charter: Trust in a Digital World

170

(Government of Canada, 2021) and federal budgets from 2019 and 2021earmarked an

additional $60 million (Department of Finance Canada, 2019) and $80 million

(Department of Finance Canada, 2021) respectively for the program, resulting in

provided or promised funding for the programming totaling $190 million. As discussed in

Chapter 4, the CanCode program was developed to help provide coding and digital skills

education to more young Canadians (Government of Canada, 2019c) and the government

reports that in its first two years, had provided more than 800,000 K-12 students and

40,000 teachers with opportunities to learn these important skills (Government of

Canada, 2019a).These numbers included 350,000 girls, over 68,000 Indigenous students,

over 100,000 youth at risk, and 34,000 newcomers to Canada (Government of Canada,

2019a).

The funding model of this initiative is a good example of how actors outside of ministries

of education, boards, and schools are involved in the development and provision of CS

education for students in K-12 grades, and how this phenomena is likely to continue. To

qualify for CanCode funding, groups must be a not-for-profit organization incorporated

in Canada and must have a minimum of three years experience in the delivery of coding

and digital skills programs to K-12 youth and/or teachers (Government of Canada,

2019b). While it was encouraged that the organizations deliver content that maps to

provincial/territorial educational curricula, and while it was encouraged that the

organizations partner with groups such as public school boards, neither of these criteria

were mandatory. These distinctions are important as they signal that not-for-profit

organizations, rather than public institutions, were selected to obtain the financial

resources to lead CS education initiatives. An alternative approach would have been an

investment into the broadening of CS education through groups such as Universities,

Colleges, or K-12 Ministries of Education, school boards or schools.

With new CS-related curriculum being developed and implemented in the K-8 grades,

and with CS expanding into other secondary subject areas, there will be a need for

educational resources for students and professional development for teachers, as well as

the potential purchasing of computers or other related technologies such as robotics or

microcontroller kits. While this support can come from publicly funded school system

https://www.ic.gc.ca/eic/site/121.nsf/eng/00002.html

171

groups, it’s also likely that actors from outside of the publicly funded school system, such

as private STEM and coding organizations, will continue to play a role.

As this trend continues, it is important that all organizations involved in CS education in

K-12 grades consider the specific goals and expectations within the jurisdictions they are

supporting. Chapter 2 and 5 discussed a number of theoretical perspectives related to the

integration of CS concepts and skills, it is important that organizations consider how

these perspectives should be reflected in the activities, supports and technology provided

to students and educators. Activities, educator professional development, pedagogical

approaches and the equipment and software used to support curriculum related to the

economic argument for coding will differ greatly from those used to help students learn

mathematics or science concepts, or to support cultural and social endeavors.

In addition to ensuring that organizations consider the goals and expectations of the

curriculum within the jurisdiction that they are supporting, it’s also important that the

motivation for involvement in this work is carefully considered. With educational

jurisdictions implementing CS-related concepts and skills that require a computer, or

other technologies, it’s possible that some technology or educational organizations may

become involved in supporting this learning for reasons that are beyond the education of

students. Companies may want to sell computers and related components, or they may

want to obtain student data that can be obtained when students sign in to tools or resource

websites. While there are a number of organizations whose motivations may align with

the motivations of educational jurisdictions, educators should be aware of this potential

concern.

A final note related to these large-scale initiatives from outside of the public school

system involves carefully considering the ways in which the success of these initiatives

will be measured. As organizations develop resources and implement webinars and

camps for students and educators, is it enough to count attendance at events or downloads

of support documents? Should some type of follow-up occur, or some type of longer-

range success criteria be established in order to determine whether or not initiatives had a

lasting impact on broadening CS concepts and skills?

172

Chapter 5 discussed the various ways in which coding concepts and skills have been

incorporated into the K-8 grades in different provinces, including how they have been

integrated into different subjects. Organizations supporting students and educators should

ensure that their activities, supports, and technology are closely tied to the specific

implementation of coding in each jurisdiction, and the motivation for this involvement

should be considered by educators. Making the optional criteria from the CanCode

program mandatory, which encourages that organizations deliver content that maps to

provincial/territorial educational curricula, and encourages that the organizations partner

with groups such as public school boards, may be a way to facilitate this as partnerships

between not-for-profit and publicly funded educational organizations can leverage the

expertise that each organizations provides. In addition, success criteria for these

initiatives should be carefully considered in order to ensure that students and educators

are experiencing rich and impactful exposure to CS concepts and skills.

6.9 Research question answered

This integrated article dissertation set out to answer the following research question:

What is the current, and potentially future, direction of CS in K-12 education?

Findings from the four preceding chapters reveal that CS in K-12 education is undergoing

significant change. An analysis of related theoretical approaches shows that while Wing’s

(2006) operational CT, which aims to help students make problems computable (Barba,

2016), remains popular, other perspectives are being widely discussed and reflected in

new curriculum revisions. These perspectives present CS-related concepts and skills as

tools that can be used to learn concepts and skills within other domains, such as

mathematics and science (Papert, 1993; diSessa, 2000, 2018; Barba, 2016), and as a

means of supporting students in social, personal, and cultural endeavours (Kafai, 2016;

Resnick, 2017).

In terms of implementation models, the delivery of CS concepts and skills as optional

courses at the secondary level has been occurring for over 50 years, but new models are

emerging. In Ontario, optional secondary CS-related courses have been placed in

173

Business, Computer Studies, Computer Science, Informatics, and Technology and

enrolment data reveals that within this current, optional secondary course implementation

model, less than 10% of students are enrolling in these courses. During the 2011-2012

school year, only 5% of Ontario secondary school students were enrolled in secondary

Computer Studies courses. Since that time, enrolment has increased slightly, as this

number reached 8% during the 2017-2018 school year. Enrolment data also showed a

gender gap in Ontario secondary Computer Studies courses, but fortunately this gender

gap is decreasing, as female student enrolment in Ontario’s Computer Studies has

increased at a greater rate than male student enrolment. From 2011 to 2018, female

student enrolment has increased by 76% while the enrolment of male students in

Computer Studies courses, during that same time frame, has increased by 34%.

An analysis of contemporary curriculum reveals the implementation of CS-related

concepts and skills in curriculum is expanding, beyond the optional secondary CS

courses, and into other subject areas and into the elementary grades. At the high school

level, CS-related concepts and skills are expanding into mathematics and science

programs, and within the elementary grades, coding expectations appear in Canadian, K-

8 curriculum in four ways: as a component in technology curriculum, as a component in

ICT curriculum, as a component in science curriculum, and as a component in

mathematics curriculum. In terms of the goals of CS-related curriculum, it is clear that

coding in order to develop job skills, as well as using coding as a tool to learn about

concepts and skills related to design, mathematics, and science were most reflected in the

curriculum from the various provinces. British Columbia includes coding expectations

that connect closely to design, which could support, and provide valuable contexts for,

activities that embody Resnick’s (2018) Computational Fluency and Kafai’s (2016)

Computational Participation perspectives. A unique integration of coding-related

concepts appeared in Ontario, where grades 1-8 and grade 9 Mathematics curriculum

reflect components of diSessa’s Computational Literacy (2018).

Considering these findings, and the themes discussed within this integrated chapter, it is

evident that a potential future direction of CS in K-12 education will include a continued

broadening of skills and concepts, beyond the traditional secondary CS class, and into

174

other grades and disciplines. Papert’s view of using coding as a tool with which to learn

about other things may well be the most appropriate theoretical perspective to support

this work, as it serves to support the learning of concepts and skills in other disciplines,

and it supports students learning how coding and computing is used in various fields. It

will also be fascinating to continue to consider diSessa’s (2018) big picture,

Computational Literacy framework as CS-related concepts and skills are introduced to

more and more students.

In terms of secondary CS courses themselves, in some jurisdictions students will be

entering into these having had experience with CS-related concepts and skills in the K-8

grades, and these courses will therefore require careful considerations and revisions.

While the historical gender gap within the courses remains a concern, it will be

interesting to see if newer implementation models help to narrow this gap.

As a result of the findings from the various chapters, it is clear that curriculum and

implementation initiatives involving CS-related concepts and skills in K-12 are

undergoing significant change. Once delivered within optional, secondary courses, the

current and potentially future direction of CS in K-12 education includes a reorganization

of curriculum involving CS concepts and skills expanding into other subject areas, and

into the younger grades. Concerns related to equity, diversity, and inclusivity play an

important role in this broadening of CS education, as do big picture, theoretical

perspectives related to Computational Thinking and of coding as a form of

Computational Literacy. While a focus on the computer as an object of study and on the

development of job ready skills remains, newer curriculum reveals the importance of the

educational and social advantages of understanding and being able to apply CS-related

concepts and skills. Together, these components present an exciting, and transformative

time for CS education in the K-12 grades.

6.10 Limitations of the Research

This research provided an analysis of issues surrounding CS-related concepts and skills in

K-12 education. An important limitation that should be addressed first is the potentially

narrow scope of underrepresented groups presented in Chapter 4. The topic of

175

underrepresentation in CS education, and the field itself, is critical and also complex.

Chapter 4 only covers one concern, the underrepresentation of female students in

secondary Computer Studies courses, and while every attempt was made to provide as

much detail as possible, the complexity of such an important topic was difficult to fully

represent in a single chapter. In order to assuage these concerns, an attempt was made to

reference as many researchers and works as possible. A thesis on CS education would not

be complete without addressing this area, which is why it was important to the author to

include Chapter 4. Furthermore, it should be re-emphasized that educators, policy

makers, and researchers should certainly avoid the tendency to employ a deficit approach

when discussing underrepresented groups in CS education. Margolis and Fisher presented

the doors, walls and windows of the computing clubhouse back in 2002, and these

lessons of systemic barriers should continue to be heeded today. Additionally, the binary

classification of students as female and male, in Chapter 4, was in order to stay consistent

with the classifications in the data provided by the Ministry of Education.

A second limitation to the research is that the main focus of the various chapters was on

the aims and goals, and expectations and outcomes, of coding curriculum policy

documents rather than the implementation or pedagogy related to the curriculum, and the

work being done in the classrooms. This thesis would have been strongly supported by an

analysis of areas such as the coding arguments and approaches reflected when educators

integrate the identified curriculum, or some type of evaluation of the success of

curriculum in achieving stated aims and goals. It was felt, however; that considering the

novel nature of coding expectations in the K-8 grades, and the recent explosion of interest

in integrating coding in the younger grades, that an analysis of curriculum policy was

critical at this stage. This study also provides insights for researchers and policy makers,

as they continue to consider and develop coding curriculum that will support the

important implementation stages executed by educators. It is also hoped that this study

provides a foundation upon which researchers can build, in order to develop studies that

provide valuable insight into implementation stages and associated pedagogy.

Finally, an acknowledged and important limitation of this research is that an assessment

and evaluation lens was never used when considering the arguments and approaches for

176

coding in the younger grades, the historical Computer Studies curriculum in Ontario, the

K-8 coding curriculum from Canadian provinces, or the issues of underrepresented

groups in CS education. This assessment and evaluation lens is an important one as

researchers and policymakers continue to develop novel coding curriculum, and as

educators continue to implement coding expectations and outcomes. As new coding

curriculum is developed, researchers and policy makers need to be aware of assessment

and evaluation policies and practices within their jurisdictions, to ensure that coding

expectations and outcomes are appropriately written and aligned, and that educators can

effectively assess and evaluate student work.

6.11 Implications and Future Research

As indicated in the limitations of research section, the findings from this study provide

researchers with foundational understandings upon which to build. Chapter 2 provides

scholars new to the field with a clear and cohesive description and comparison of

theoretical approaches to coding, CS, and CT in K-12 education. This description and

comparison of approaches and directions could form the basis, or serve as a framework,

for a number of studies analyzing teacher or parent perspectives on coding or evaluating

the orientations of pedagogy and classroom activities implemented by teachers.

The findings from Chapter 3, related to historical Computer Studies curriculum, provide

evidence that while coding-related concepts and skills in the K-8 grades may be new, in

some jurisdictions coding in secondary curriculum dates back as far as 1966. The chapter

also provides evidence that many of the aims and objectives of historical curriculum are

shared with modern approaches. This has significance for policy makers, as it

demonstrates that historical curriculum could be a source of insight for the development

of new curriculum, especially if studies are done comparing the implementation,

pedagogy or classroom activities related to historical curriculum, with the

implementation, pedagogy or classroom activities related to the curriculum of today.

There is also potential to compare historical CS curriculum from other jurisdictions, and

from post-secondary institutions, in order to evaluate the evolution and innovation, or

lack of evolution and innovation, within the curriculum over the years. This could shed

177

light on whether or not the field of CS curriculum is one that evolves and improves, or

one that stagnates or remains the same.

Chapter 4 raises a number of issues related to the underrepresentation of specific groups

in CS education and the field, and could serve as a starting point for a critical analysis of

curriculum, pedagogy, or classroom activities in CS education. The area of equity,

diversity, and inclusivity are of upmost importance in CS education, as is the recognition

and acknowledgement of bias. Awareness of these concerns could serve as a positive first

step, that could be followed by research that goes beyond superficialities, and instead

dive into the potential systemic issues at play. In addition, culturally responsive, anti-

racist, and anti-colonialist curriculum and pedagogy are areas in which research can be

done to support much needed change in CS education, and in education in general.

Chapter 5’s findings, related to Canadian provincial coding curriculum in the K-8 grades,

can hopefully add to the research from other jurisdictions, and can serve as an additional

perspective as researchers continue to investigate new approaches to coding in the

younger grades. Internationally, it would be interesting to compare the aims and goals of

Canadian provincial coding curriculum to those of other jurisdictions and countries.

Within Canada, it would be interesting to study how the implementation of coding

curriculum differs in the various provinces, while considering the different ways in which

the coding curriculum was written. The five categories of curriculum integration and the

three subject areas identified could also serve as the foundation for a framework with

which to analyze other K-8 coding curricula.

In addition to the findings from this work, it is hoped that the methods and frameworks

employed can help inform or frame future studies. Document analysis and Thematic

Analysis could be useful for researchers investigating coding in K-8 education, as these

lend themselves to the analysis of documents and policy that continues to be developed in

the field. Chapter 4 concludes by introducing a number of frameworks and perspectives,

including justice-centered CS education, technofeminism and material feminism, that if

employed in the CS education context, could provide valuable and much needed

178

perspectives in a field that is historically androcentric. These types of theoretical

frameworks should be seen as powerful tools for positive change.

Throughout this work, a number of contemporary approaches and programs are identified

and described. This work, therefore serves as a timestamp, identifying what exists now, at

this current time, within the area of CS K-12 education. This timestamp may be of value

to future researchers, as they compare new initiatives to those of the past, and as they

consider the journey of CS K-12 education.

Finally, this work provides an analysis of the current state of CS K-12 education during a

transformative time. It identifies new and exciting themes and programs related to the

broadening of CS concepts and skills, including federal programs such as CanCode and

CSForAll, as well as new coding curriculum in the K-8 grades from various provinces. At

the same time, this work provides evidence that while the field of CS K-12 education is

being influenced by new perspectives and programs, CS education in the K-12 grades has

a past that includes research, theoretical perspectives, and curriculum. It’s important that

educators, policy makers, and researchers acknowledge and learn from contemporary and

historical research, curriculum, and programs in order to help shape a successful future

for CS K-12 education.

6.12 Conclusion

This integrated article dissertation provides an in-depth analysis of the current state of K-

12 CS education through the lenses of theory in the field, historical and novel curricula,

and student enrolment and equity, diversity, and inclusivity. Chapter 2 presented

theoretical approaches and directions taken by leading researchers in the field, including

Computational Thinking, Computational Fluency, Computational Participation,

Computational Action, Computational Modeling and Computational Literacy. Chapter 3

provided evidence that while many coding initiatives in the K-8 grades are new, historical

secondary CS curriculum exists, and is worth investigating as a means of supporting new

curriculum initiatives. Chapter 4 analyzed enrolment data related to the isolated and

optional implementation model of CS courses in secondary and confirmed a significant

gender gap. This chapter also presented a vital look at initiatives, frameworks, and

179

perspectives that could help CS educators, policy makers and researchers tackle

important equity, diversity, and inclusivity concerns in the field. Finally, Chapter 5

presented various arguments for coding in the younger grades, including those related to

economics, education, culture, and society. The chapter also provided an analysis of the

placement, goals, and learning orientations of coding expectations and outcomes in

Canadian provincial, K-8 curriculum. The categories developed through this document

analysis could serve as a valuable starting point for policymakers and researchers

engaging in coding and curriculum work.

While all of these findings present important pieces of the CS K-12 education puzzle, it is

important to remind ourselves of the big picture. The big picture of CS education often

involves a student and a computer, and the magic that can take place when these two

interact. It therefore seems appropriate that a PhD dissertation related to computers,

coding, and education should end with a final thought from Seymour Papert, the father of

computing education (Stager, 2016). In Let’s Tie the Digital Knot, Papert (1998)

discusses a number of topics related to wholesale, educational reform. He points out the

absurdity of the term “Computers in Education”, by highlighting the fact that we do not

hold conferences called “The World Congress on Paper-Based Education”, and we do not

publish papers in the “Journal of Computer-Free Schooling”. He explains that educators,

researchers, and policy makers should be technologically fluent individuals who have

absorbed computational ideas into their culture, and who desire to see changes in learning

that others cannot even imagine. He calls us to have “more chutzpah” in order to replace

the use of technology to improve education, with a call to invent new visions of education

in the context of this digital world. Such grand visions of education reform such as this

are daunting, but Papert offers a prescription: “simply spend time doing it – the muscle of

the mind will grow through exercise” (p. 2).

If you are reading this dissertation then I assume you are engaged in this work, you are

exercising the muscles of your mind, and you are a part of a grand vision of education

reform, that focusses on improving education for ALL students in this digital world. A

concluding thought, therefore, which bolstered, and continues to bolster, this author

180

through his work, and which may help the reader in theirs, is to consider the following

from Papert:

In my trademark caricature of this situation, a nineteenth-century transportation

engineer invents a jet engine and attaches it to a stagecoach to assist the horses.

But the transformative contribution of the jet engine to transportation did not

come from improving already existing vehicles. It came through the invention of

a radically new kind of vehicle - the jet plane. (Papert, 1998, p. 2)

The computer represents an engine that can provide thrust to a form of education that

affords our students with new, engaging, rich, and valuable learning experiences never

thought possible. It could also potentially lead to altered representational infrastructure,

substantial change in what, when, and how we teach subject matter, a change in the

overall intellectual terrain as teaching and learning is altered, and in the overall

broadening of the ecology of learning (diSessa, 2018). In short, it could lead to a potential

new literacy, but a key component to all of this is the development of effective

curriculum that is appropriate for, and experienced by, all of our students.

This thesis identifies the approaches, arguments, directions, philosophies, aims,

objectives, challenges, and goals related to CS education in the K-12 grades. It is meant

to help educators, researchers and policy makers better understand the historical, current,

and potential future state of K-12 CS education. It is also meant to help us better support

students as they learn the concepts and skills needed to design, build, and pilot their own

jet plane and to assume their unique and rightful place amongst the stars.

6.13 Chapter References

Alberta Education. (2021). Draft Science Kindergarten to Grade 6 Curriculum.

https://cdn.learnalberta.ca/Resources/content/cda/draftPDF/media/Science/Science-

GrK-6-EN.pdf

Barba, L. (2016, March 15). Computational thinking: I do not think it means what you

think it means. Lorena A. Barba Group.

http://lorenabarba.com/blog/computational-thinking-i-do-not-think-it-means-what-

you-think-it-means/.

181

Brennan, K., & Resnick, M. (2012). New frameworks for studying and assessing the

development of computational thinking. In Proceedings of the 2012 Annual

Meeting of the American Educational Research Association, Vancouver, Canada.

British Columbia Ministry of Education. (2016). Applied design, skills and technologies:

Goals and rationale. https://curriculum.gov.bc.ca/curriculum/adst/goals-and-

rationale

British Columbia Ministry of Education. (2018a). Mathematics: Computer science grade

11.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_11_computer-science_elab.pdf

British Columbia Ministry of Education. (2018b). Mathematics: Computer science grade

12.

https://curriculum.gov.bc.ca/sites/curriculum.gov.bc.ca/files/curriculum/mathemati

cs/en_mathematics_12_computer-science_elab.pdf

Clements, E. (2020). Investigating an approach to integrating Computational Thinking

into an undergraduate calculus course [Doctoral dissertation, Western University].

Electronic Thesis and Dissertation Repository.

Department of Finance Canada. (2017). Building a strong middle class: #Budget2017.

https://www.budget.gc.ca/2017/docs/plan/budget-2017-en.pdf

Department of Finance Canada. (2019). Investing in the middle class: Budget 2019.

https://www.budget.gc.ca/2019/docs/download-telecharger/index-en.html

diSessa, A. (2000). Changing minds. MIT Press.

diSessa, A. (2018). Computational literacy and “The Big Picture” concerning computers.

Mathematics Education, Mathematical Thinking and Learning, 20(1), 3-31.

https://doi.org/10.1080/10986065.2018.1403544

Gadanidis, G., Hughes, J. M., Namukasa, I., & Scucuglia, R. (2019). Computational

modelling in elementary mathematics teacher education. In S. Llinares & O.

Chapman (Eds.), International Handbook of Mathematics Teacher Education:

Volume 2 (pp. 197-222). Brill Sense

Government of Canada. (2019a, March 19). Budget 2019: Gender Equality Statement.

https://www.budget.gc.ca/2019/docs/plan/chap-05-en.html

Government of Canada. (2019b, May 6). CanCode assessment criteria.

https://www.ic.gc.ca/eic/site/121.nsf/eng/00002.html

Government of Canada. (2019c). CanCode.

https://www.ic.gc.ca/eic/site/121.nsf/eng/home

182

Government of Canada. (2020). Funded CanCode initiatives.

https://www.ic.gc.ca/eic/site/121.nsf/eng/00003.html

Government of Canada. (2021). Canada's Digital Charter: Trust in a digital world.

https://www.ic.gc.ca/eic/site/062.nsf/eng/h_00108.html

Grover, S., & Pea, R. (2018). Computational thinking: A competency whose time has

come. In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science

education: Perspectives on teaching and learning (pp. 19–38). Bloomsbury

Academic. https://doi.org/0.5040/9781350057142.ch-003

Jones, A. (2021, July 14). Ontario removes anti-racism language from math curriculum

preamble. Toronto Star. https://www.thestar.com/news/gta/2021/07/14/ontario-

removes-anti-racism-text-from-math-curriculum-preamble.html

Kafai, Y. B. (2016). From computational thinking to computational participation in K-12

education. Communications of the ACM, 59(8), 26-27.

https://doi.org/10.1145/2955114

Margolis, J., & Fisher, A. (2002). Unlocking the clubhouse: Women in computing. MIT

press.

Newfoundland and Labrador Department of Education. (2006). Technology education:

Control technology module 8.

https://www.gov.nl.ca/education/files/k12_curriculum_guides_teched_gr8ctrltech_

g8control.pdf

Ontario Ministry of Education. (1983). Computer studies: Intermediate and Senior

Division.

Ontario Ministry of Education. (2008). The Ontario curriculum grade 10 to 12:

Computer studies.

http://www.edu.gov.on.ca/eng/curriculum/secondary/computer10to12_2008.pdf

Ontario Ministry of Education. (2020). The Ontario curriculum grades 1-8: Mathematics.

https://www.dcp.edu.gov.on.ca/en/curriculum/elementary-mathematics/downloads

Papert, S. (1993). Mindstorms: Children, computers, and powerful ideas (2nd ed.). Basic

Books.

Papert, S. (1998). Let’s tie the digital knot. TECHNOS Quarterly for Education and

Technology, 7(4). http://dailypapert.com/wp-content/uploads/2018/06/Papert-Lets-

Tie-the-Digital-Knot.pdf

Resnick, M. (2017). Lifelong kindergarten: Cultivating creativity through projects,

passions, peers, and play. MIT Press.

183

Resnick, M. (2018, September 16). Computational Fluency. Medium.

https://mres.medium.com/computational-fluency-776143c8d725

Stager, G. S. (2016). Seymour Papert (1928-2016). Nature, 537(7620), 308-308.

https://doi.org/10.1038/537308a

Tissenbaum, M., Sheldon, J., & Abelson, H. (2019). From computational thinking to

computational action. Communications of the ACM, 62(3), 34-36.

https://doi.org/10.1145/3265747

Vakil, S. (2018). Ethics, identity, and political vision: Toward a justice-centered approach

to equity in computer science education. Harvard Educational Review, 88(1), 26-

52.

Wilkerson, M. H. & Fenwick, M. (2017). The practice of using mathematics and

computational thinking. In C. V. Schwarz, C. Passmore, & B. J. Reiser (Eds.),

Helping Students Make Sense of the World Using Next Generation Science and

Engineering Practices. National Science Teachers’ Association Press.

Wing, J. (2006). Computational Thinking. Communications of the ACM, 49(3), 33-35.
https://doi.org/10.1145/1118178.1118215

184

Appendices

Appendix A. Email from CTE 2020 Secretariat providing reprint permission.

185

Appendix B. Published paper from CTE 2020.

186

187

188

189

Appendix C. Initial codes from Thematic Analysis of preambles

Curriculum

RP-33, Data

Processing

(1966)

Computer

Science -

Senior

Division

(1970)

Elements

of

Computer

Technolog

y (1970);

Informatics

–

Intermediat

e and

Senior

Division

(1972);

Computer

Studies -

Intermediate

and Senior

Division

(1983)

Computer

Studies –

Ontario

Academic

Course

(1987);

The Ontario

Curriculum

Grade 11 and

12 -

Technological

Education

(2000)

The Ontario

Curriculum

Grade 10 to

12 -

Computer

Studies

(2008)

Impact of

technology on
society

(22 references)

1 3 1 2 9 2 1 3

How curriculum
document was

designed/created

(15 references)

0 1 4 7 2 0 1 0

Problem solving
(12 references)

0 2 1 1 2 0 3 3

Training for future

career
(11 references)

1 0 5 1 0 0 1 3

How to teach the

course(s)
(9 references)

0 0 4 5 0 0 0 0

Student choice

and differentiation
in terms of depth

(8 references)

0 3 1 2 2 0 0 0

Everyone needs a
basic

understanding of

concepts

(8 references)

0 1 3 0 2 0 1 1

Other courses and

credits
(7 references)

0 0 3 4 0 0 0 0

Post-secondary

preparation
(7 references)

0 0 0 2 0 1 0 4

New tools in
society to store

information

(7 references)

1 0 0 2 3 0 1 0

Use of computer
for creative

pursuits

(6 references)

0 0 0 1 3 0 1 1

Students need to

be computer

literate
(6 references)

0 0 0 3 2 1 0 0

Only guidelines

are provided

(6 references)

1 1 0 4 0 0 0 0

Very technical

aspects of
Computer

(5 references)

0 0 4 1 0 0 0 0

Computer as an

object of study
(5 references)

0 0 1 0 0 1 1 2

Cross-curricular
and other subjects

(5 references)

0 1 1 1 0 1 0 1

190

Students enjoy

this work
(5 references)

1 2 0 0 0 0 1 1

Other skills that

can be developed
(4 references)

0 0 1 0 0 0 1 3

How courses were
developed

(4 references)

1 0 0 2 1 0 0 0

Development of

transferable skills

(4 references)

0 0 0 0 0 0 2 2

Computer
programming and

large program

design concepts

(4 references)

0 0 0 0 0 0 1 3

How the computer
represents objects

(4 references)

0 0 0 0 0 0 3 1

Ethics and

appropriate use of
technology

(4 references)

0 0 0 0 3 0 0 1

Computational
Thinking and

explaining the

problem to the
computer

(4 references)

0 1 0 0 1 1 1 0

Changed how we

think about

problems and how

to solve them

(4 references)

0 2 1 0 0 1 0 0

Computers can

extend human

capabilities
(4 references)

0 2 0 0 1 1 0 0

Consider

local/student
needs before

implementing

course
(4 references)

0 2 1 0 0 1 0 0

Need for

experimentation

to establish best

pedagogical

practice

(4 references)

3 1 0 0 0 0 0 0

191

Appendix D. Themes developed through Thematic Analysis of preambles.

Curriculum

RP-33,

Data

Processing

(1966)

Computer

Science -

Senior

Division

(1970)

Elements

of

Computer

Technology

(1970);

Informatics

–

Intermediate

and Senior

Division

(1972);

Computer

Studies -

Intermediate

and Senior

Division

(1983)

Computer

Studies –

Ontario

Academic

Course

(1987);

The Ontario

Curriculum

Grade 11 and

12 -

Technological

Education

(2000)

The

Ontario

Curriculum

Grade 10 to

12 -

Computer

Studies

(2008)

Use computers to

automate tasks or
solve problems

(31 references)

0 9 4 2 3 2 4 7

Post-secondary,

training and
careers

(21 references)

3 1 3 4 2 1 1 6

Impact of
technology on

society

(19 references)

4 1 1 1 7 2 1 2

Dynamic nature of
technology in

society and

education
(16 references)

1 2 0 7 4 1 0 1

How the course is

structured
(15 references)

0 2 2 4 4 0 1 2

Computer as an

object of study
(13 references)

0 0 3 2 0 0 4 5

Differentiate for

needs of students

(13 references)
1 4 2 2 4 0 0 0

Teacher flexibility

& experimentation

(9 references)

2 1 1 5 0 0 0 0

Content simply a
guide for

educators

(8 references)

1 2 2 3 0 0 0 0

learn basic

understanding of

computers
(8 references)

0 2 3 2 0 0 0 0

Ethics
(8 references)

0 0 0 2 4 0 0 2

Student enjoyment

and interest
(7 references)

1 2 0 1 0 0 2 1

Creativity
(7 references)

0 0 0 1 4 0 1 1

How the course
was developed

(6 references)

1 0 4 0 1 0 0 0

Cross curricular
connections

(6 references)

0 1 2 1 0 1 0 1

General computer

literacy for all
(6 references)

0 0 0 2 3 0 1 1

Developing

programs
(6 references)

0
0 0 0 0 0 1 5

192

Appendix E. Letter of permission to reprint contents in Chapter 4.

193

Curriculum Vitae

Name: Steven Paul Floyd

Post-secondary Western University

Education and London, Ontario, Canada

Degrees: 1997-2001 Bachelor of Arts (Honours)

The University of Western Ontario

London, Ontario, Canada

2002-2003 Bachelor of Education

The University of Western Ontario

London, Ontario, Canada

2004-2009 Master of Education

The University of Western Ontario

London, Ontario, Canada

2018-2022 Doctor of Philosophy

Honours and Dean’s Honor List, Graduate with Distinction

Awards: 1998-2003

Infosys Foundation USA, the Association for Computing

Machinery and the Computer Science Teachers Association Award

for Teaching Excellence in Computer Science

2017

ICER ’19 International Computing Education Research

Conference Doctoral Consortium Grants

2019

Centre for Inclusive Education Research Award

2019

Scholarship Programme - International Conference on

Computational Thinking Education 2020

2020

Province of Ontario Graduate Scholarship

 2021-2022

194

Related Work Education Officer – Ontario Ministry of Education

Experience 2020-Present

Instructor – Computational Modelling in Mathematics and Science

Education (B.Ed. course 5467)

2021-2022, 2019-2020

e-learning course writer, reviewer, editor, technological pedagogy

expert – Ontario Ministry of Education

2008-2018

Secondary Teacher – London District Catholic School Board

2003-2018

Publications:

Gadanidis, G., Scucuglia, R. Hughes, J., Namukasa, I., & Floyd, S. (In Press).

Computational literacy and mathematics education [Special Issue]. ZDM, ?(3), ??-

??.

Floyd. S. (2021). Female enrollment in high school computer studies courses. In J.

Keengwe & Y. Tran (Eds.), Handbook of research on equity in computer science in

P-16 education (pp. 31-43). IGI Global.

Floyd, S. (2020). Computational thinkers: Contemporary Approaches and directions in

computational thinking for K-12 education. In Proceedings of International

Conference on Computational Thinking Education 2020 (pp. 27-32). Hong Kong:

The Education University of Hong Kong.

Grover, S., & Floyd, S. (2020). Questions and inquiry. In S. Grover (Ed.), Computer

science in K-12: An a to z guide on teaching programming (pp. 180-188). Edfinity.

Floyd, S. (2019). Doors, walls and windows? The gender gap in Ontario high school

computer science. In Proceedings of the 2019 ACM Conference on International

Computing Education Research (pp. 301-301). ACM.

Floyd, S. (2019). A qualitative content analysis of K-8 coding curriculum. In Proceedings

of the 2019 ACM Conference on International Computing Education Research (pp.

329-330). ACM.

Floyd, S. P. (2019, February). Historical high school computer science curriculum and

current K-12 initiatives. In Proceedings of the 50th ACM Technical Symposium on

Computer Science Education (pp. 1287-1287). ACM.

195

Floyd, S. P., & Sorbara, L. (2019, February). Sports analytics as a context for

computational thinking in K-12 education. In Proceedings of the 50th ACM

Technical Symposium on Computer Science Education (pp. 1282-1282). ACM.

	The Past, Present, and Future Direction of Computer Science Curriculum in K-12 Education
	Recommended Citation

	ETD word template

