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Early embryogenesis has been examined experimentally in four of the seven 

echinoderm and hemichordate classes.  Although these studies suggest that the 

mechanisms which underlie regional specification have been highly conserved within the 

echinoderm + hemichordate clade, nothing is known about these mechanisms within the 

other echinoderm classes, including the Ophiuroidea.  In this study, early embryogenesis 

was examined in the ophiuroid Ophiopholis aculeata.  Several aspects of early 

development in this ophiuroid differ from those of other echinoderms and hemichordates.  

In O. aculeata, the first two cleavage planes do not coincide with the animal-vegetal axis 

but rather form approximately 45 degrees off this axis.  Fate maps of 2-, 4- and 8-cell 

embryos were constructed using microinjected lineage tracers and indicate that ectoderm, 

endoderm, and mesoderm segregate unequally at first cleavage.  The distribution of 
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developmental potential in the embryo was examined by isolating different regions of the 

early embryo and indicate that endomesodermal developmental potential segregates 

unequally at first, second, and third cleavage.  In other echinoderm and hemichordate 

embryos, similar unequal segregations of larval fates and developmental potential 

typically do not occur until third cleavage.  These results indicate that there has been an 

evolutionary shift in the orientation of the early cleavage program in O. aculeata with 

respect to the distribution of larval fates and developmental potential. 

Experiments were also performed to gain insight into the molecular mechanisms 

which underlie axial specification in O. aculeata.  Evidence for a role of nuclear β-

catenin was assessed by examining its localization and by perturbing its activity.  β-

catenin localization was observed during gastrula-stages when it was seen in adherens 

junctions of epithelial cells; there was no indication of any nuclear localization of β-

catenin throughout embryogenesis.  Treatment of embryos with LiCl (an inhibitor of β-

catenin degradation) produced results largely inconsistent with its role in 

endomesodermal specification.  Dorsal-ventral patterning mechanisms were investigated 

by treating embryos with NiCl2 (which radialize echinoid embryos, potentially by 

disrupting TGFβ signaling).  Nickel-treatment disrupted ectodermal development but 

never radialized embryos completely.  These results suggest that the molecular 

mechanisms of axial specification in O. aculeata may differ from those of echinoid 

embryos. 
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Chapter 1: General Introduction 

 

Regional and cell-fate specification, the processes by which different cells or 

regions of a developing embryo acquire their developmental fates, have been subjects of 

biological research since the late 19th century.  Investigations in embryological and 

developmental genetic model systems have taught us a great deal about the cellular, 

molecular, and genetic basis for these processes.  Comparisons between these systems 

have uncovered several themes regarding the evolution of developmental mechanisms 

(Gerhart and Kirschner, 1997; Raff, 1996).  One major finding of these comparisons is 

that a hypothetical ‘developmental toolbox’ appears to exist in which numerous 

developmental tools reside.  Many of these tools, which include various diffusible 

signaling molecules, intracellular signaling pathways and transcriptional regulators, have 

clearly been used multiple times during the course of metazoan evolution to mediate a 

plethora of developmental functions within and between animal taxa. 

The use of non-model systems has also contributed to our understanding of the 

interface between development and evolution.  A great deal of work has focused on 

comparisons made between closely related groups (i.e. at the level of genus or species).  

These studies have taught us a great deal about developmental changes that occur at the 

micro-evolutionary scale.  Despite this, very little is known about how specification 

mechanisms associated with early embryogenesis evolve at the level of class and phylum.  

To gain insight into the evolution of developmental mechanisms at the class level, I have 
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examined embryogenesis in one class of echinoderms and compared that to 

embryogenesis in other closely related classes.  Echinoderms represent an ideal system 

with which to examine the evolution of regional specification between classes for a 

number of reasons:  1) Because echinoid embryos have been a model system for 

developmental studies, a great deal is already known about the mechanisms that underlie 

early development and regional specification in this group (Angerer and Angerer, 2003; 

Davidson et al., 2002; Ettensohn and Sweet, 2000).  2) Paleontological and molecular 

phylogenetic data have revealed a great deal regarding the phylogenetic affinities of this 

group.  3) Members of each extant echinoderm classes develop indirectly via free-

swimming planktonic larvae.  4) Echinoderm embryos from all five extant classes are 

easy to obtain and most are amenable to experimental manipulation.  5) Because all five 

extant echinoderm classes were present by the Ordovician (Smith, 1988), these groups 

are potentially quite divergent. 

 

Phylogenetic affinities of echinoderm classes 

The phylum Echinodermata is composed of five extant classes: Echinoidea, 

Holothuroidea, Asteroidea, Ophiuroidea, and Crinoidea (Hyman, 1955).  Current 

molecular phylogenies indicate that the Echinodermata form a monophyletic clade with 

the Hemichordata; together, these two phyla contain all non-chordate deuterostomes 

(Cameron et al., 2000; Winchell et al., 2002).  Several class-level phylogenies of extant 

echinoderms have been constructed in the past 25 years.  The most recent and 

comprehensive of these analyses (which are based on morphological data, molecular 
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data, or a combination of both) strongly support a scenario in which the crinoids are the 

most basal members of the group (Fig. 1.1A) (Littlewood et al., 1997; Smith, 1997; 

Sumrall and Sprinkle, 1998).  Most analyses also suggest that the echinoids and 

holothuroids are sister taxa.  The placement of the asteroids and ophiuroids, based on 

these analyses, is less certain.  The following three hypotheses are all well supported: 1) 

the ophiuroids and asteroids form a clade which is a sister-group to the echinoid + 

holothuroid clade (Fig. 1.1B), 2) the ophiuroids are a sister-group to the echinoid + 

holothuroid clade (Fig. 1.1C), or 3) the asteroids are a sister-group to the echinoid + 

holothuroid clade (Fig. 1.1D).  Analyses using mitochondrial gene order have been 

unable to resolve this issue (Scouras and Smith, 2001; Scouras et al., 2004; Smith et al., 

1993). 

 

Echinoid embryogenesis and larval development 

Because much of what is known about the development of echinoderms is based 

on studies of echinoids, the development of a typical sea urchin echinopluteus larva will 

be briefly described.  In the sea urchin, fertilization is followed by an early period of cell 

divisions.  Early cell divisions are typically equal (Fig. 1.2A), but during the fourth round 

of cytokinesis, cells in the vegetal half of the embryo cleave unequally and produce 4 

small micromeres and 4 large macromeres (Fig. 1.2B); this is generally thought to be a 

derived feature since the 4th cleavage is equal in the all other extant echinoderm classes.  

Basal extant echinods such as Eucidaris may represent a transitional phase in the move 

from equal to unequal 4th cleavage since they typically only form 2-3 micromeres at 4th 
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EchinodermataHemichordata

Asteroidea EchinoideaCrinoidea HolothuroideaOphiuroideaEnteropneusta

A

Outgroup
Crinoid

Asteroid
Ophiuroid

Holothuroid
Echinoid

C

Outgroup
Crinoid
Ophiuroid
Asteroid
Holothuroid

Echinoid

D

Outgroup

Crinoid

Asteroid

Ophiuroid
Holothuroid
Echinoid

B

Fig. 1.1. Phylogenies of extant echinoderm classes. (A) Larval forms of extant echinoderm 
classes with an enteropneust hemichordate out-group. Echinoids and ophiuroids are the only 
groups which develop via the production of a pluteus larva (which bear long ciliated arms 
supported by a larval skeleton). (B-D) Three best-supported, fully-resolved phylogenies of 
extant echinoderm classes. Based on Littlewood et al., (1997) and Cameron et al., (2000). 
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cleavage and these cells are proportionately larger than normal micromeres (Schroeder, 

1981).  The initial period of cell divisions ultimately ends in the formation of a hollow 

blastula (Fig. 1.2C).  Next, the vegetal-most cells of the blastula elongate apico-basally to 

produce a thickened vegetal plate, from which several cells ingress into the blastocoel 

(Fig. 1.2D).  These ingressing cells, called primary mesenchyme cells (PMCs), are 

derived from the 4 micromeres produced at the 16-cell stage and will ultimately produce 

a larval skeleton.  Following PMC ingression, gastrulation commences as the cells of the 

floorplate invaginate to produce an archenteron (Fig. 1.2E-G).  The archenteron 

subsequently elongates and fuses with ectodermal cells, thereby forming a tri-partite 

larval through gut (Fig. 1.2H).  Simultaneous with archenteron elongation, several cells 

of the archenteron tip ingress into the blastocoel (Fig. 1.2E,F).  These cells, called 

secondary mesenchyme cells (SMCs), will give rise to pigment cells, muscle cells, and 

blastocoelar cells of the larvae.  Finally, a pair of coelomic pouches forms from the 

archenterons via enterocoely (Fig. 1.2 G).  A full-grown echinopluteus is bilaterally 

symmetrical, and typically has 8 or more long, heavily-ciliated feeding arms supported by 

a calcareous skeleton (Fig. 1.3A).  Food particles collected by these ciliated arms are 

transported to the mouth where they are ingested and enter a tripartite larval gut.  

Following a period of planktonic existence and larval growth, an echinopluteus will settle 

on a substrate and undergo metamorphosis to produce a pentamorously-symmetrical 

juvenile form. 
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Fig. 1.2. Overview of early development in the echinoid Dendraster excentricus. Embryos are 

oriented with the animal pole up and to the right unless otherwise stated. (A) Four-cell stage with 

pigmented jelly coat (orientation unclear). (B) Sixteen-cell stage (vegetal view) with micromeres 

in the foreground (jelly coat still present). (C) Early-blastula stage. (D) Mesenchyme-blastula 

stage with vegetal plate (vp) and ingressing primary mesenchyme cells (pmc). (E) Early gastrula 

stage with invaginating archenteron (arc) and ingressing secondary mesenchyme cells (smc). (F) 

Mid-gastrula stage. (G) Early-prism stage with forming coeloms (co). (H) Early-larva with larval 

skeleton (sk).
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Experimental analysis of echinoid development 

Experimental work conducted on sea urchins has broadly defined the mechanisms 

that underlie embryogenesis and larval developmental in the echinoderm class 

Echinoidea.  Fate maps indicate that ectodermal, endodermal and mesodermal fates are 

distributed along the animal-vegetal (A-V) axis of the early embryo such that ectodermal 

fates are at the animal pole and mesodermal fates are at the vegetal pole (Fig. 1.4) 

(Cameron and Davidson, 1991; Hörstadius, 1973).  Isolation and transplantation 

experiments have shown that proper specification of germ layers is dependent upon a 

gradient of factors which extend along the A-V axis and a number of intercellular 

signaling interactions (Hörstadius, 1973).  One of the major animalizing factors in the sea 

urchin embryo (factors involved in ectodermal specification) is SoxB1, which functions 

by antagonizing vegetalizing factors (Angerer et al., 2005; Kenny et al., 1999, 2003).  

Vegetalizing factors (factors involved in endodermal and mesodermal specification) 

appear to play a more influential role in patterning the early sea urchin embryo and thus 

have received more attention.  One of the earliest and perhaps most important 

vegetalizing factors in the sea urchin embryo is β-catenin.  Several experiments have 

shown that β-catenin and other components of the canonical Wnt signaling pathway play 

an instrumental role in the specification of endoderm and mesoderm (Emily-Fenouil et 

al., 1998; Logan et al., 1999; Wikramanayake et al., 1998).  In association with the 

transcriptional regulators Otx and TFC, β-catenin activates a well-defined 
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A B

Fig. 1.3. Echinoderm pluteus larvae with feeding arms supported by a larval skeleton. (A) An 

echinopluteus of Dendraster excentricus. (B) An ophioputeus of Ophiopholis aculeata.
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endomesodermal gene network (Davidson et al., 2002; Huang et al., 2000; Li et al., 

1999; Vonica et al., 2000). 

Intercellular signaling also plays a crucial role in the proper specification of cell 

fates during sea urchin embryogenesis.  Between the 4th and 5th cleavage an inductive 

signal derived from the micromeres is required for endodermal specification.  If the 

micromeres—which give rise to mesodermal derivatives—are removed before 5th 

cleavage, embryos with endodermal and mesodermal defects are produced; while these 

embryos often regulate and produce relatively normal larvae, PMCs are not produced and 

gastrulation is severely delayed and often incomplete (Ransick and Davidson, 1995).  

Transplantation of micromeres to the animal pole of a host embryo, on the other hand, 

results in the induction of an ectopic gut from the presumptive ectodermal host tissue 

(Ransick and Davidson, 1993).  The signaling molecule that mediates this inductive 

interaction is still unknown.  Latter signaling events involved in the specification of 

secondary mesenchyme cells (pigment and blastocoelar cells) and positioning of the 

endoderm-ectoderm boundary are mediated by the Notch-Delta signaling system and are 

endomesodermally-derived (Sherwood and McClay, 1999, 2001; Sweet and Ettensohn, 

1999, 2002). 

Specification of the dorsal-ventral (D-V) axis has also been examined in sea 

urchins, although much less is known about this process than A-V specification.  

Morphological signs of a secondary embryonic axis (i.e. the D-V axis) are not seen in sea 

urchin embryos until the gastrula stage when PMCs cluster in two vegetal-ventral patches 

and the oral ectoderm begins to flatten.  D-V asymmetries in respiratory activity and 
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Fig. 1.4. Schematic illustrating the distribution of presumptive larval fates in an echinoid egg.  

The animal axis (top) marks the site where the polar bodies will be given off.
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mitochondrial distribution can be seen in oocytes, however, and these factors are good 

predictors of the D-V axis in both unperturbed and experimentally altered embryos 

(Coffman and Davidson, 2001; Coffman et al., 2004).  Other experiments examining 

when the D-V axis is established have yielded contradictory results and interpretations.  

Although some lines of evidence suggest that the D-V axis is specified prior to first 

cleavage (Cameron et al., 1989; Hörstadius, 1973), other data suggest that this axis can 

be perturbed and in some cases reversed through late-cleavage stages (Driesch, 1892; 

Hörstadius, 1973).  Together these data indicate that while the D-V axis may be specified 

in the oocyte, this axis may not be committed until a later cleavage stage.  Very little is 

known about what molecules are involved in the specification of this axis, although 

goosecoid, BMP2/4, Nodal and Activin have recently been implicated (Angerer et al., 

2000, 2001; Duboc et al., 2004; Flowers et al., 2004). 

 

Investigating embryogenesis in an ophiuroid 

Despite the wealth of knowledge regarding the mechanisms of early development 

in echinoids, very little is known about the mechanisms which underlie embryogenesis in 

the other groups of the echinoderm-hemichordate clade.  Asteroids and enteropneust 

hemichordates have received some attention; for these groups, fate maps have been 

constructed, some experimental work has been conducted, and expression patterns for a 

limited number of genes have been produced.  What is known about the development of 

the three remaining extant echinoderms is purely descriptive in nature, and therefore 

limited in scope.  One possibility is that different extant echinoderm classes have evolved 
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different mechanisms of regional specification.  Conversely, it is possible that each of the 

extant echinoderm classes undergo regional specification the same way.  It seems quite 

possible that the mechanisms that underlie development in echinoids may be quite 

different from those that function in the other extant classes for two reasons: 1) most 

echinoids have a modified cleavage pattern in which small micromeres are produced at 

the 16-cell stage.  These micromeres, which are not present in the embryos of other 

extant classes, play a key role in the process of regional specification in this group.  2) 

The fossil record indicates that the echinoids went through a bottleneck during the 

Permian extinction where only one or two genera survived (Erwin, 1993).  Extant 

echinoid genera are therefore the product of a post-Permian radiation and may represent 

only a limited subset of the developmental patterns that existed prior to the Permian. 

The purpose of the research presented here is to determine whether the 

mechanisms which underlie regional specification in the ophiuroid are similar to or 

different from those which operate in echinoids, asteroids, and hemichordates.  An 

ophiuroid was chosen for this study primarily because many ophiuroids, like many 

echinoids, develop indirectly via the production of a pluteus larva (Fig. 1.3); no 

holothuroids, crinoids, or asteroids develop via a pluteus larva (Fig. 1.1A).  Moreover, 

cladistic analyses indicate that the pluteus larva may have arisen independently in these 

two classes through a process of convergent evolution (Littlewood et al., 1997; Smith, 

1988).  It is not known whether these two groups employ similar or divergent 

developmental mechanisms to construct a pluteus larva. 
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Several aspects of embryogenesis and larval development were examined in the 

ophiuroid Ophiopholis aculeata.  First, embryogenesis was reexamined on a descriptive 

level.  Next, a fate map was constructed of the early embryo through the 8-cell stage.  In 

addition, a series of experiments were performed to examine the distribution of 

developmental potential in the early embryo.  Finally, several attempts were made to 

uncover mechanisms involved in the specification of embryonic germ layers and the 

larval dorsal-ventral axis. 
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Chapter 2: Distribution of larval fates and developmental potential in 

the early embryo of the brittle star Ophiopholis aculeata*

 

Introduction 

The phylum Echinodermata is composed of five extant classes—Echinoidea, 

Holothuroidea, Asteroidea, Ophiuroidea, and Crinoidea—and is a sister-group to the 

phylum Hemichordata (Hyman, 1955; Cameron et al., 2000).  Many echinoderm and 

hemichordate species develop indirectly via free-swimming planktonic larvae (Fig. 2.1).  

Experimental work conducted on sea urchins has broadly defined the mechanisms that 

underlie embryogenesis and larval developmental in the echinoderm class Echinoidea 

(Hörstadius, 1973).  Recent investigations have built upon this knowledge by uncovering 

many of the molecular mechanisms that underlie early development in echinoids.  This 

work has led to the identification of several intracellular signaling pathways, cell-cell 

interactions and gene regulatory networks known to play fundamental roles in echinoid 

embryogenesis (for reviews see Ettensohn and Sweet, 2000; Davidson et al., 2002; 

Angerer and Angerer, 2003).  Despite the wealth of knowledge regarding the mechanisms 

of early development in echinoids, very little is known about the mechanisms which 

underlie embryogenesis in other groups of the echinoderm-hemichordate clade.  Much of 
                                                 
* Significant portions of this chapter have been accepted for publication as Developmental Biology, (in press), 
Primus, “Regional specification in the early embryo of the brittle star Ophiopholis aculeata”, with permission 
from Elsevier. 
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what is known about embryonic mechanisms in these other groups is from work 

examining blastomere fates and the distribution of developmental potential in early 

asteroid and hemichordate embryos. 

The larval fates of blastomeres have been examined in a number of species within 

the echinoderm-hemichordate clade.  Fate-mapping analyses have been conducted on the 

embryos of multiple echinoid species (Cameron and Davidson, 1991; Cameron et al., 

1987; Hörstadius, 1973; Wray and Raff, 1990; Henry et al., 1992), one asteroid species 

(Kominami, 1983), and two hemichordate species (Colwin and Colwin, 1951; Henry et 

al., 2001).  Comparative analyses of these fate maps indicate that some cell lineage-

specific features are variable between taxa; the orientation of the first embryonic cleavage 

plane with respect to the plane of larval bilateral symmetry is one such feature.  These 

analyses also suggest that other cell lineage-specific features appear to have been highly 

conserved throughout the evolution of the clade (Raff, 1999).  Conserved features include 

the distribution of larval cell fates along the animal-vegetal axis (A-V axis) and the 

orientation of the first three embryonic cleavage planes with respect to the A-V axis. 

The distribution of developmental potential has also been examined in the 

echinoderm-hemichordate clade.  If blastomeres are separated at the 2-cell stage in the 

indirect-developing echinoid Paracentrotus lividis or the asteroid Asterina pectinifera, 

both blastomeres are capable of producing a small but normal larva (Dan-Sohkawa and 

Satoh, 1978; Hörstadius, 1973).  Similar experiments in the hemichordates Saccoglossus 

kowalevskii and Ptychodera flava are consistent with these results (Colwin and Colwin, 

1950; Henry et al., 2001), indicating that in these three taxa the potential to form 
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EchinodermataHemichordata

Asteroidea EchinoideaCrinoidea HolothuroideaOphiuroideaEnteropneusta

Fig. 2.1. Larval forms of extant echinoderm classes with an enteropneust hemichordate out-
group. Crinoids represent the most basal extant echinoderms and echinoids and holothuroids are 
sister-taxa; placement of asteroids and ophiuroids within this group is less certain. Echinoids 
and ophiuroids are the only groups which develop via the production of a pluteus larva (which 
bear long ciliated arms supported by a larval skeleton). This and all ensuing phylogenies are 
based on Littlewood et al., (1997) and Cameron et al., (2000).
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ectoderm, endoderm, and mesoderm segregates equally into both daughter cells at first 

cleavage.  If the same experiment is conducted in the direct-developing echinoid 

Heliocidaris erythrogramma, on the other hand, one isolate gives rise to more 

endodermal and mesodermal derivatives than the other, indicating that the potential to 

form endoderm and mesoderm segregates unequally at first cleavage in this embryo 

(Henry and Raff, 1990). 

If blastomeres are separated along the third cleavage plane at the 8-cell stage in 

the echinoids P. lividis or H. erythrogramma or in the asteroid A. pectinifera, the vegetal 

half develops into a small but normal larva while the animal half produces an ectodermal 

vesicle (Henry and Raff, 1990; Hörstadius, 1973; Maruyama and Shinoda, 1990).  These 

results indicate that while the potential to form ectoderm is present in both the animal and 

vegetal halves of the embryo at the 8-cell stage, the potential to form endoderm and 

mesoderm segregate exclusively to the vegetal half of the embryo at third cleavage in 

these species.  These isolation experiments suggest that the distribution of developmental 

potential has also been highly conserved throughout the evolution of the echinoderm-

hemichordate clade; the only exception may be a consequence of a switch in 

developmental mode.  Without the appropriate data from the ophiuroids, holothuroids 

and crinoids, however, it is difficult to draw any firm conclusions on the matter. 

The purpose of this study was to determine whether the mechanisms which 

underlie regional specification in the ophiuroid O. aculeata are similar to or different 

from those which take place in echinoids, asteroids, and hemichordates.  An ophiuroid 

was chosen for this study primarily because many ophiuroids, like many echinoids, 
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develop indirectly via the production of a pluteus larva; no holothuroids, crinoids, or 

asteroids develop via a pluteus larva (Fig. 2.1).  Moreover, cladistic analyses indicate that 

the pluteus larva may have arisen independently in these two classes through a process of 

convergent evolution (Littlewood et al., 1997; Smith, 1988).  It is not known, however, 

whether these two groups employ similar or divergent developmental mechanisms to 

construct a pluteus larva.  Therefore, the embryonic axial properties and orientation of 

early cleavage planes were examined, a fate map of the early embryo was constructed, 

and a series of experiments were performed on the early O. aculeata embryo to elucidate 

the mechanisms which underlie the process of regional specification in this embryo.  This 

work represents the first piece of experimental embryology conducted on any member of 

the echinoderm class Ophiuroidea. 

 

Materials and methods 

Animals and embryos 

Ophiopholis aculeata adults were collected intertidally on San Juan Island, WA, 

and were maintained at 10-12˚ C in aquaria with running sea water.  To induce spawning, 

animals were exposed to a combination of bright light, heat and physical perturbation 

(shaking, swirling and/or inversion) for 1-2 hours.  Animals were then placed in filtered 

sea water (FSW) at 12˚ C in individual bowls; spawning took place within the next few 

hours.  Spawned oocytes were rinsed several times in FSW and fertilized with a dilute 

sperm concentration.  Following fertilization, these embryos were rinsed several times 
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and raised in pasteurized Jamarin artificial sea water (JSW; Jamarin Labs, Osaka, Japan).  

Spawned oocytes to be used for blastomere separation experiments were fertilized in 

FSW containing 10 mM para-aminobenzoic acid (PABA, Sigma), which prevents 

hardening of the fertilization envelope.  Following fertilization, these embryos were 

rinsed several times in both FSW containing 10mM PABA and JSW.  Embryos were 

subsequently pipetted up and down in a small-bore pipette to remove fertilization 

envelopes.  Prior to histochemical analysis, larvae were fixed overnight in 4% 

paraformaldehyde in JSW. 

 

Propidium iodide and phallacidin staining 

Because O. aculeata embryos are opaque, fluorescent dyes and confocal imaging 

were used to make cytological observations.  The fluorescent dyes used include 

propidium iodide (Sigma) and BIODIPY FL phallacidin (Molecular Probes), which are 

nucleic acid-specific and filamentous actin-specific, respectively.  Fixed embryos were 

rinsed in phosphate-buffered saline with 0.1% Triton X-100 (PBT), incubated in a PBT 

solution with 10 µg/ml propidium iodide and/or 5 units/ml phallacidin, rinsed, dehydrated 

and cleared in benzyl benzoate and benzyl alcohol (2:1).  Stained samples were imaged 

with a BioRad Radiance 2000 laser-scanning confocal microscope. 

 

Cleavage plane orientation analysis 

To analyze the orientation of the first two cleavage planes in O. aculeata, 

embryos fixed just before or after first or second cleavage were stained with propidium 
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iodide and imaged with a confocal microscope.  Embryonic material was treated with 

extreme care in these cases so as not to disrupt the positioning of polar bodies.  Only one 

measurement was made per embryo (on the position of either the first or second cleavage 

plane).  Confocal z-series stacks were geometrically transformed with ImageJ and the 

TransformJ plugin so that the polar bodies and two daughter nuclei of the cleavage of 

interest were in the same focal plane.  The angle between the polar bodies (which mark 

the animal pole) and the cleavage plane of interest (defined by either the cleavage plane 

itself, an initiating cleavage furrow, or a line equally bisecting segregating mitotic 

chromosomes) was then measured using ImageJ. 

 

Lineage-tracer injections and cell fate analysis 

Microinjections were performed in a Kiehart injection chamber (Kiehart, 1982).  

Embryos were incubated in a calcium-free, magnesium-depleted artificial sea water 

solution (394.5mM NaCl, 12.21mM MgCl2, 27.56mM Na2SO4, 8.63mM KCl, 2.3mM 

NaHCO3, 10mM Tris, 2.5mM disodium EGTA pH 8.0) shortly before and during the 

injection period to soften the hyaline layer of the embryos.  Individual blastomeres were 

pressure-injected with a 1:1 mixture of 50 mg/ml 10,000MW rhodamine-labeled dextran 

and biotinylated dextran (Molecular Probes) in a 0.2M KCl solution.  Following 

injection, embryos were returned to JSW and raised either alone or with a few siblings.  

Injected embryos were viewed regularly with a dissecting scope equipped with 

epifluorescence, and abnormal embryos were discarded.  Embryos were imaged between 

2-12 days post-fertilization with a confocal microscope (as above) and/or with Nomarski 
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optics following visualization of biotinylated-dextran.  Biotinylated-dextran was 

visualized by a streptavidin-horseradish peroxidase and diaminobenzadine staining 

procedure as described in Freeman and Martindale (2002), except that following the 

DAB reaction and rinses with PBS-Triton, larvae were immediately dehydrated and 

cleared in benzyl benzoate and benzyl alcohol (2:1).  Several injected larvae were imaged 

at two or more developmental stages.  

 

Operative methods 

Blastomere isolation experiments were conducted at the 2-, 4- and 8-cell stages in 

JSW on a substrate of 2% agar dissolved in JSW.  Fertilization envelops were removed 

prior to first cleavage as described above.  To separate blastomeres, or sets of 

blastomeres, a microfilament loop was tightened around the cleavage plane of interest as 

described in Freeman (1993).  Following operations, embryos were raised individually 

and monitored regularly.  At 6-7 days post-fertilization, larvae were assayed for the 

presence of spicules using a compound scope equipped with polarizing optics, and many 

larvae were assayed for the presence of gut tissue with a non-specific alkaline 

phosphatase reaction.  To identify the second cleavage plane at the 4-cell stage, one 

blastomere was marked laterally at the 2-cell stage using Nile blue and second cleavage 

was observed.  In all other cases, Nile blue marks were made at either the animal or 

vegetal pole just after polar body formation; the site of polar body expulsion defined the 

animal pole.  Identification of the third cleavage plane at the 8-cell stage was based on an 

observation of that cleavage and the position of the polar bodies or the position of a Nile 
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blue mark made on the zygote.  In a number of cases, Nile blue marks were used to 

indicate the embryonic origin of isolates produced at either the 2- or 8-cell stage.  Nile 

blue marks were applied by bringing the tip of a staining micropipette in contact with an 

embryo for 10-20 seconds using a Singer micromanipulator.  Staining micropipettes were 

filled with the vital dye Nile blue A in agar and pulled to a fine tip.  Nile blue marks 

persist for at least 4 days and embryos develop normally if not over-stained. 

 

Alkaline phosphatase histochemistry 

Samples were tested for the localization of alkaline phasphatase using a 

modification of an indoxyl-tetrazolium procedure developed by McGadey (1970).  

Recipes for the solutions used here are from Whittaker and Meedel (1989).  Following a 

1-2 hour staining period, materials were dehydrated and cleared in benzyl benzoate and 

benzyl alcohol (2:1). 

 

Results 

Embryogenesis and larval development 

Embryogenesis and larval development in O. aculeata have been previously 

described (Olsen, 1942).  This description is supplemented here with the results of a more 

detailed investigation of several embryonic features.  Comparison of these processes with 

those of a typical indirect-developing sea urchin (class Echinoidea), indicates that while 

many developmental features between the two groups are similar, several of these 

features differ significantly. 
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O. aculeata oocytes average 100-105µm in diameter when shed.  Polar bodies are 

produced between 30-60 minutes after spawning occurs in both fertilized and unfertilized 

eggs.  In most cases two polar bodies are produced within 5 µm of each other.  The first 

three embryonic cleavages in O. aculeata are equal (Fig. 2.2A-E).   In most sea urchins, 

the fourth cleavage is equal in the animal blastomeres but unequal in the vegetal 

blastomeres.  The unequal cleavages that occur in the 4 vegetal blastomeres give rise to 4 

large macromeres on top of 4 small micromeres.  The progeny of these micromeres 

divide more slowly than non-micromere lineages (Endo, 1966).   In contrast, all cells of 

the O. aculeata embryo divide equally at fourth cleavage and do not make micromeres or 

macromeres (Fig. 2.2F).  Moreover, observations of live and phallacidin/propidium 

iodide-stained embryos indicate that cell divisions do not become asynchronous in any 

cell lineage of the O. aculeata embryo through the 64-cell stage (data not shown). 

Cleavage in O. aculeata also differs from that of a normal sea urchin with regard 

to the spatial arrangement of blastomeres in early cleavage stage embryos.  Rather than 

being organized in orderly tiers as is the case in sea urchins, early cleavage-stage 

embryos are typically arranged in a more compact manner.  In these embryos, 

blastomeres are pushed between each other, so as to occupy the least amount of space 

(Olsen, 1942; personal observation).  For example, rather than forming a 4-cell stage in 

which all 4 blastomeres rest on a flat surface, ~70-80% of 4-cell stage O. aculeata 

embryos form a tetrahedral stage.  In this tetrahedral stage, the second cleavage plane 

produced by one blastomere at the 2-cell stage is often perpendicular to the second 

cleavage plane produced by the other blastomere of the 2-cell stage (Fig. 2.2B, 2.5B).  
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The arrangement of blastomeres in the remainder of 4-cell stage embryos more closely 

resembles those of a sea urchin (Fig. 2.2B,D).  It should be noted that very few embryos 

show a tetrahedral arrangement if the fertilization envelope has been removed prior to the 

4-cell stage; in these cases, many embryos show a blastomere arrangement intermediate 

to the two described above. 

Following a period of early cleavage, the O. aculeata embryo forms a hollow 

blastula, the vegetal end of which flattens to form a vegetal plate.  Prior to the onset of 

gastrulation, cells within the vegetal plate ingress into the blastocoel (Fig. 2.2G,H).  

Following invagination, mesenchyme cells continue to be produced but are now derived 

from the elongating archenteron.  During gastrulation, numerous mesenchyme cells 

become localized in two lateral clusters and produce tri-radiate calcareous spicules that 

ultimately become the larval skeleton (Fig. 2.2H,I).  Experiments in which Nile blue 

marks were made either at the animal (n=10) or vegetal pole (n=9) of the zygote just after 

polar body expulsion confirmed that the vegetal pole of the embryo is the site of vegetal 

plate formation and archenteron invagination (Fig. 2.3A,B).  These experiments also 

indicate that the site of gastrulation ultimately becomes the anus of the larva.  Coelom 

formation is enterocoelous and takes place near the end of gastrulation at the tip of the 

elongating archenteron.  By the fourth day of development, a pluteus larva with a 

tripartite gut, arms supported by calcareous spicules, and an oral field with a well defined 

ciliated band has formed.  At a morphological level, the features of O. aculeata 

development closely resemble those involved in the development of typical sea urchin 

larvae.  The rates of larval development in O. aculeata and the irregular echinoid 
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Fig. 2.2. Embryogenesis and larval development in O. aculeata. (A) 2-cell stage; animal pole is 

up. (B,C) 4-cell stages. Schematics of blastomere arrangements are presented as inserts. (B) 

Tetrahedral arrangement. Broken-lines indicate cell boundaries located behind blastomeres in a 

more-proximal focal plane. (C) Non-tetrahedral arrangement. (D) 8-cell stage. (E) 16-cell stage. 

(F) Mesenchyme blastula stage; anterior is upper-left. (G) Confocal section of mesenchyme-

blastula stage stained with propidium iodide; anterior is up. Mesenchyme cells (arrow) have 

already begun to ingress from the vegetal plate (arrowheads). (H,I) Anterior is upper-left. (H) 

Late-gastrula stage. Two lateral clusters of skeletogenic mesenchyme cells are present (arrows). 

The blastopore (arrowhead) has formed within the vegetal plate. (I) 4-day ophiopluteus larva. 

Scale bars 25µm in A-H; 100µm in I.
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Dendraster excentricus, with eggs of ~115µm in diameter, are similar.  In O. aculeata, 

fourth cleavage occurs at 6 hours post-fertilization (hpf), hatching occurs between 17-

19hpf, mesenchyme cell ingression begins between 22-28hpf, gastrulation is initiated 

between 27-30hpf, spiculogenesis begins between 36-38hpf and the first two larval arms 

begin to form between 60-65hpf.  In D. excentricus these same events occur at 5 hours 

and 15 minutes post-fertilization, 17-19hpf, 24-26hpf, 28-29hpf, 30-31hpf, and 55-60hpf, 

respectively. 

Multiple, often overlapping designations have been used to describe the different 

regions of echinoderm embryos and larvae (for examples, see Davidson et al., 1998; 

Hörstadius, 1973; Kühn, 1971).  The designations used here will most closely follow 

those used by Olsen, (1942) and Hörstadius, (1973).  Specifically, the ophiopluteus has 

three larval axes: an anterior-posterior (A-P) axis, a dorsal-ventral (D-V) axis, and a 

right-left (R-L) axis (Fig. 2.4).  The A-P and D-V axes run parallel to the plane of 

bilateral symmetry; the R-L axis runs perpendicular to this plane.  The A-P axis intersects 

the mouth (at the more anterior end) and the spot where the right and left spicules 

converge (at the more posterior end).  The larva swims along its A-P axis, leading with its 

anterior end.  The ophiopluteus is much thinner along its D-V axis than it is long or wide 

along its A-P or R-L axes, respectively.  Consequently, the most prominent surfaces of 

the larva are its dorsal and ventral surfaces.  These surfaces are bounded by the larva’s 

leading and trailing edges.  The ventral surface includes the mouth, anus, ciliated-band, 

oral ectoderm and aboral-ectoderm (Fig. 2.4). The dorsal surface contains mostly aboral-

ectoderm, but also contains ciliated band along the anterior edge. 
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Fig. 2.3. Axial properties of O. aculeata embryos and their relation to the first cleavage plane. 

Nile blue marks represented by grey shading. Injected lineage-tracer dye represented by 

diagonal lines. The small circles atop zygotes represent polar bodies (N, animal; G, vegetal; D, 

dorsal; V, ventral; bp, blastopore). The posterior pole of gastrulae is coincident with the 

blastopore. (A,B) Nile blue marks made at the animal (A) or vegetal (B) pole of a zygote just 

after polar body expulsion indicate axial properties mid-gastrula stage embryos. (C,D) 

Superimposition of labeling patterns created by lineage-tracer injection into either the dorsal- 

(C) or ventral-blastomere (D) at the two cell stage on mid-gastrula stage embryos that had been 

marked at the animal pole as a zygote (as in A). Mesenchyme cells are typically labeled by the 

lineage-tracer in D but not C.
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Orientation of early cleavage planes with respect to the A-V axis 

In echinoids, the first two cleavage planes are meridional (i.e. they intersect the 

A-V axis of the embryo), and the third cleavage plane is equatorial (i.e. it is perpendicular 

to the A-V axis) (Boveri, 1901).  In the original description of O. aculeata development, 

the only information that was given regarding the orientation of early embryonic cleavage 

planes was presented in a hand-drawn figure (Olsen, 1942).  This figure shows a 2-cell 

embryo in which the first cleavage plane does not intersect the polar bodies (which mark 

the animal pole).  While this suggested that the first cleavage plane may not coincide with 

the A-V axis of the embryo, the situation was left uncertain.  To address this matter more 

definitively, the orientations of the first two embryonic cleavage planes in O. aculeata 

were examined more closely by measuring the distance between each cleavage plane and 

the location of the polar bodies (which should mark the animal pole and define the A-V 

axis of the embryo).  Although rare, cases in which polar bodies were separated by more 

than 5 µm were excluded from the following analysis.  The distance between the first 

cleavage plane and the position of the polar bodies ranged from 25-65º with a mean of 

approximately 45º and a standard deviation of less than 11º (n=24; Fig. 2.5A,C).  In 

analyses of the second cleavage plane, distance was measured between the polar bodies 

and the cleavage plane that formed in the blastomere of 2-cell stage which was adjacent 

to the polar bodies (the more animal blastomere).  This distance ranged from 36-68º with 

a mean of approximately 45º and a standard deviation of less than 8º (n=20; Fig. 2.5B,D).  

These results indicate that neither the first nor the more animal of the two second 
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Fig. 2.4. Schematic of 7-day ophiopluteus from both a ventral and lateral view. Stippled regions 

indicate the ciliated-band and broken lines indicate the gut. Larval axes are indicated for each 

larva (A, anterior; P, posterior; R, right; L, left; V, ventral; D, dorsal).
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Fig. 2.5. Orientation of the first two cleavage planes with respect to the A-V axis. (A,B) 
Projections of confocal stacks illustrating propidium-iodide stained embryos just after first (A) 
and second (B) cleavage. Stained polar bodies can be seen at the tops of both images. (A) 2-cell 
stage. (B) 4-cell stage (tetrahedral arrangement). Second cleavage plane bisecting blastomeres 
derived from the more animal blastomere at 2-cell stage is indicated with an arrow; second 
cleavage plane bisecting the other blastomeres is coincident with plane of page. (C,D) 
Distribution of degrees measured between the polar bodies and the first (C) and second (D) 
cleavage plane. Scale bar 25µm.
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cleavage planes in the O. aculeata embryo coincide with the A-V axis of the oocyte.  

Instead, both cleavage planes are tilted roughly 45º from the A-V axis, as defined by the 

position of the polar bodies. 

 

Fate map of early embryo 

To establish the larval fates of cells that make up the early O. aculeata embryo, 

individual blastomeres were injected with lineage-tracers at the 2-, 4- and 8-cell stages 

(Table 2.1).  Injecting one blastomere at the 2-cell stage produced one of two 

characteristic distributions of labeled clones.  In approximately half of these cases, the 

injected blastomere gave rise to all of the mesoderm (including skeletogenic mesenchyme 

and coelomic vesicles), the ventral portion of the ciliated band (termed the ventral 

ciliated-band ectoderm) and most of the endoderm (Fig. 2.6A,A’).  The cell injected in 

these cases will be designated the ventral blastomere because it gave rise to the ventral 

ciliated band ectoderm.  In the remainder of cases, the injected blastomere gave rise to a 

small portion of the posterior-most dorsal endoderm and all of the ectoderm excluding 

the ventral ciliated-band ectoderm (Fig. 2.6B,B’).  This cell will be designated the dorsal 

blastomere and the ectoderm labeled in these cases will be referred to as the non-ventral 

ciliated-band ectoderm.  Superimposing either of these staining patterns as seen at the 

late-gastrula stage on late-gastrulae which had been marked at the animal pole just after 

polar body expulsion with Nile blue supports the earlier finding that the first cleavage 

plane in O. aculeata does not intersect the animal pole (Fig., 2.3C,D).  These results 

indicate that the first cleavage plane is perpendicular to the prospective larval D-V axis, 
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Table 2.1 
 Summary of lineage-tracer injections 

 Fates of Injected Ventral Blastomeres  Fates of Injected Dorsal Blastomeres  

Stage 
Injected 

VCB Ectoderm, 
Endoderm & 
Mesoderm 

Endoderm & 
Mesoderm 

VCB Ectoderm 
& Endoderm 

 
Non-VCB 

Ectoderm & 
Endoderm 

Non-VCB 
Ectoderm 

Total 
injections 

Multistage 
analysisa

2-cell 20 - -  16 - 36 5 

4-cell 16 - -  15 7 38 6 

8-cell 7 5 1   4 7 24 5 

Note: VCB Ectoderm = ventral-ciliated band ectoderm; Non-VCB Ectoderm = non-ventral-ciliated band ectoderm. 
a Indicates the number of injected embryos raised individually and documented at multiple time points. 

 

roughly dividing the ectoderm in to a more-dorsal and more-ventral territory; this has 

previously been referred to as a frontal cleavage plane (Henry and Raff, 1990). 

Although the labeled blastomere in each of these cases gave rise to one of two 

characteristic distribution patterns of labeled clones, the exact location of the boundaries 

of these labeled clones within the larva was variable between larvae.  This variability was 

most apparent in the posterior larval endoderm.  The total amount of endoderm derived 

from the dorsal blastomere in these injections varied from less than 10% to over 50% 

(Table 2.2).  This variability was limited, however, in that for over 90% of the cases less 

than 25% of the gut (always the most posterior-dorsal region of the gut) was derived from 

the dorsal blastomere.  These results indicate that while the fates of each blastomere at 

the 2-cell stage are highly reproducible, the exact fates of these blastomeres are not 

completely stereotypical. 

At the 4-cell stage, in just under half the cases, the injected blastomere gave rise 

to ventral ciliated band ectoderm, mesoderm and endoderm (Fig. 2.6C,C’,D,D’).  The 

injected blastomeres in these cases were daughters of the ventral blastomere.  In the 

remainder of the cases at the 4-cell stage, the injected blastomere either gave rise to non- 
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Fig. 2.6. Projections of confocal stacks illustrating larvae in which individual blastomeres have 

been injection-labeled at the 2-, 4-, or 8-cell stage. Red indicates the labeled clones derived from 

the injected blastomere and green indicates a silhouette of the injected larva. Anterior is to the 

upper left in all cases (except in K, where the animal pole is up). Each letter pair (for example, A 

and A'), represent two images of the same larva, each showing a different side of that larva 

(except in K, K', and K"). (A-J) Ventral views. (A'-J') Dorsal views. (A,B) Injection of a single 

blastomere at the 2-cell stage. (A,A') Injection of a ventral blastomere. (B,B') Injection of a 

dorsal blastomere. (C-F,C'-F') Injection of a single blastomere at the 4-cell stage. (C,C') Injection 

of a left ventral blastomere. (D,D') Injection of a right ventral blastomere. (E,E') Injection of a 

daughter-cell of a dorsal blastomere (a left dorsal blastomere in this case). (F,F') Injection of a 

daughter-cell of a dorsal blastomere (a right dorsal blastomere in this case). (G-K,G'-K',K") 

Injection of a single blastomere at the 8-cell stage. (G,G') Injection of an anterior ventral 

blastomere. (H,H') Injection of a posterior vegetal blastomere. (I,I') Injection of an anterior 

dorsal blastomere. (J,J') Injection of a posterior dorsal blastomere. (K,K',K") Injection of an 

anterior ventral blastomere (imaged at multiple time-points). (K) Late-blastula stage (48 hours). 

Dorsal view with archenteron extending upwards. Labeled derivatives of injected blastomere 

make up much of the left side and tip of archenteron, part of the ectoderm located near the 

blastopore, and some of the mesenchyme which is forming a ring around the archenteron in the 

vegetal region of the blastocoel. (K',K") Early-larval stage (5 days) of same embryo showing 

ventral (K') and dorsal (K") views. Injected blastomere results in labeling of ventral ciliary band 

ectoderm, gut, and mesoderm; note that what is seen on the left in K and K'' is shown on the 

right in K'. Scale bars 100µm. Scale bar in A applies to all images except K.
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Table 2.2 
Summary of variation following single-cell labeling at 2-cell stage 

 % endoderm derived from dorsal blastomere 

 ≤ 10% 10%-25% 25%-50% ≥ 50% 

Number of cases 19 (56%) 12 (35%) 2 (6%) 1 (3%) 

Based on cases where either the dorsal or ventral blastomere was injected. 
() indicate percentage of total cases. 

 

ventral ciliated band ectoderm (Fig. 2.6E,E’), or both non-ventral ciliated band ectoderm 

and posterior dorsal endoderm (Fig. 2.6F,F’).  The blastomeres injected in these cases 

were daughters of the dorsal blastomere.  The fact that the daughters of the dorsal 

blastomere gave rise to endoderm in well over half, but not all, of the cases, indicates that 

in some embryos both daughters of the dorsal blastomere gave rise to ectoderm and 

endoderm, whereas in other embryos one dorsal blastomere-daughter cell gave rise 

ectoderm and endoderm and the other gave rise to just ectoderm. 

In almost all of the dorsal-daughter blastomere injections at the 4-cell stage in 

which the angle of the boundary of labeled ectodermal clones could be clearly established 

(n=27), this boundary fell near a plane which is half way between the larval anterior-

posterior axis and the larval right-left axis (Fig. 2.6C-F,C’-F’) indicating that the second 

plane of cleavage in the dorsal blastomere corresponds to a plane approximately 45º off 

the plane of larval bilateral symmetry.  These results support our earlier findings that the 

second cleavage plane in the more animal blastomere (i.e. the dorsal blastomere) is 

approximately 45º off the A-V axis of the embryo, assuming that the larval plane of 

bilateral symmetry runs parallel to the A-V axis.  In addition, in almost half of these cases 

the boundary of labeled ectodermal clones fell 45º clockwise of the larval plane of 
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bilateral symmetry (n=13; Fig. 2.6E,E’,F,F’), and in the remainder of these cases the 

boundary of labeled ectodermal clones fell 45º counter-clockwise of the larval plane of 

bilateral symmetry (n=14).  Mesenchymal cells labeled from injections at the 4-cell stage 

were found throughout the larva (Fig. 2.6C,C’,D,D’), indicating that mesenchyme 

derived from one side of the vegetal plate migrates throughout the embryo during 

development.  The number of mesenchyme cells labeled from these injections was well 

over half of those labeled from injections at the 2-cell stage, indicating that these 

mesenchymal cells are somehow sharing cytoplasm, perhaps by forming syncytial 

mesenchymal clusters similar to those known to form in echinoid embryos (Hodor and 

Ettensohn, 1998).  Mesenchymal and endodermal cell migration prevented a more 

detailed analysis of the axial orientation of ventral-daughter blastomere clonal 

boundaries.  

At the 8-cell stage, in about half the cases the injected blastomere was a 

descendent of the ventral blastomere.  In these cases the labeled blastomere gave rise to 

ventral-ciliated ectoderm, endoderm, and mesoderm (Fig. 2.6G,G’), ventral ciliated band 

ectoderm and endoderm (data not shown), or endoderm and mesoderm (Fig. 2.6H,H’).  

The cases where the non-ventral ciliated band was labeled are thought to be the result of 

injecting one of the anterior ventral blastomeres and those that lack ectodermal staining 

are thought to be the result of injecting one of the posterior ventral blastomeres.  In the 

remaining cases at the 8-cell stage, the injected blastomere was a descendent of the dorsal 

blastomere.  These blastomeres gave rise to either anterior non-ventral ciliated band 

ectoderm (Fig. 2.6I,I’) or both posterior non-ventral ciliated band ectoderm and posterior 
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dorsal endoderm (Fig. 2.6J,J’).  Injected blastomeres which gave rise to only ectoderm 

are thought to have been anterior dorsal blastomeres and those which gave rise to both 

ectoderm and endoderm are thought to have been posterior dorsal blastomeres.  The exact 

location of the clonal boundaries of injected blastomeres in these cases varied slightly 

from embryo to embryo. 

To ensure that the labeled clones followed normal patterns of development, a 

number of embryos injected at each stage were raised individually and imaged at multiple 

time-points during development.  These embryos were observed regularly and typically 

imaged at both a late-gastrula and larval stage (Fig. 2.6K,K’,K”).  In each of these cases, 

the patterns of development of labeled clones was consistent with expectations based on 

normal development (i.e. labeled archenteron always gave rise to labeled endoderm, 

labeled ectoderm always gave rise to appropriately positioned labeled epidermis, etc.).  

These results are summarized in Fig. 2.7A,B.  Because the second cleavage plane appears 

to lie 45º clockwise or counterclockwise from the line of larval bilateral symmetry 

(depending on the embryo), larval fates are most likely not distributed symmetrically 

across the second cleavage plane as indicated in Fig. 2.7.  Rather than presenting two 

different fate maps (one with endomesodermal fates biased to the right and one with 

endomesoderm biased to the left), only one schematic fate map is presented for 

simplicity. 
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Distribution of developmental potential in the early embryo 

To establish the distribution of developmental potential in the early O. aculeata 

embryo, cleavage-stage embryos were separated along one of the first three cleavage 

planes.  First, embryonic fragments were separated along the first cleavage plane at the 2-

cell stage.  In 27 cases, both isolates were still alive at the time of analysis (Table 2.3).  In 

the majority of these cases (n=20), both blastomeres gastrulated and gave rise to 

ectodermal, endodermal, and mesodermal derivatives.  In all of these cases, however, 

although one member of the pair formed a small but phenotypically normal pluteus larva 

with appropriate amounts of ectodermal, endodermal, and mesodermal derivatives, the 

other formed a small, abnormal pluteus with a disproportionately-small gut and a reduced 

larval skeleton (Fig. 2.8A,A’).  Moreover, the timing of gut and skeleton formation in 

these cases was delayed.  In the remaining cases (n=7), one blastomere gastrulated and 

gave rise to a small but phenotypically-normal larva and the other did not gastrulate and 

gave rise to a hollow, ciliated ectodermal vesicle lacking mesodermally-derived 

skeletogenic mesenchyme and endodermally-derived gut tissue (Fig. 2.8B,B’). 

In 12 of the above cases, one of the blastomeres was marked with Nile blue at the 

2-cell stage (based on the position of the polar bodies) so that the embryonic origin (i.e. 

more animal half or more vegetal half) of the isolates could be identified at the time of 

analysis.  In each of these cases the more vegetally derived isolate gave rise to more 

endoderm and mesoderm, regardless of whether the mark was made on the more animal 

(n=6) or more vegetal half (n=6) of the embryo. 
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Table 2.3 
Results of partial-embryo separations where both isolates survived 

Fate of isolate 1  Fate of isolate 2 
Stage and location of 

separation Ecto, Endo 
& Meso  

 
Ecto, Endo 

& Meso 
Ecto, Endo & Meso 

(Endo- & Meso-deficient)a
Ecto & 
Meso 

Ecto 
Total 
pairs 

Isolate 
origins 

confirmedc

2-cell stage along 1st 
cleavage planeb 27 (7)  0 20 (7) 0 7 (5) 27 12 

4-cell stage along 2nd 
cleavage plane 

22 (9)  22 (9) 0 0 0 22 0 

8-cell stage along 3rd 
cleavage planeb 36 (18)  0 26 (18) 1 (1) 9 (8) 36 8 

Note: Ecto = ectoderm; Endo = endoderm; Meso = mesoderm. 
a These isolates clearly produced less endodermal and mesodermal derivatives than the other isolate in their pair. 
b Isolate 1 and isolate 2 are predicted to be derived from more animal and more vegetal embryonic regions, respectively.  These predictions are based 

on fate mapping results and confirmed in a number of cases (see Isolate origins confirmedc). 
c Number of cases where the embryonic origin of each isolate was determined with a Nile blue marking technique. 
() indicate the number of cases where the presence and/or absence of spicules and gut tissue were confirmed with polarized light and alkaline 

phosphatase staining, respectively. 

 

Next, embryonic fragments were separated along the second cleavage plane at the 

4-cell stage.  In 11 cases, both isolates were still alive at the time of analysis.  In each of  

these cases, both isolates gave rise to ectodermal, endodermal, and mesodermal 

derivatives, but in each case one isolate produced slightly more endodermal and 

mesodermal derivatives than the other (Fig. 2.8C,C’). 

Finally, embryonic fragments were separated along the third cleavage plane at the 

8-cell stage.  In 36 cases, both isolates were still alive at the time of analysis (Table 2.3).  

In 26 of these cases, both blastomeres gastrulated and gave rise to ectodermal, 

endodermal, and mesodermal derivatives, although one of the two isolates formed a 

significantly smaller gut than the other and a reduced larval skeleton (Fig. 2.8D,D’).  In 

these endomesodermally-deficient isolates, formation of endoderm and mesoderm was 

also delayed with respect to controls.  In 9 of these cases, one blastomere gastrulated and 

gave rise to a small but phenotypically normal larva while the other did not gastrulate and 
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gave rise to a hollow-ciliated ectodermal vesicle (Fig. 2.8E,E’).  In 1 pair one isolate 

gastrulated and gave rise to a small but phenotypically normal larva while the other did 

not gastrulate and gave rise to only ectoderm and skeletogenic mesenchyme.  In 8 of the 

cases in which both isolates survived until the time of analysis one of the isolates was 

marked with Nile blue at the 8-cell stage so that the embryonic origin of isolates could be 

determined at the time of analysis.  In each of these cases, the more vegetally-derived 

isolate gave rise to more endodermal and mesodermal derivatives, regardless of whether 

the animal (n=4) or vegetal (n=4) half of the embryo was originally labeled. 

 

Discussion 

Our knowledge of the developmental mechanisms that function in echinoderm 

embryos is largely based on work conducted on sea urchins.  Although some 

experimental work has also been conducted on asteroids, virtually nothing is known 

about the mechanistic basis of embryogenesis in other echinoderm classes.  This is the 

first experimental study conducted on any member of the echinoderm class Ophiuroidea. 

 

Cell lineage of larval fates in O. aculeata 

A fate map of the early O. aculeata embryo was produced through the 8-cell stage 

(summarized in Fig. 2.7A,B).  This fate map reveals how the early embryo is organized 

and becomes partitioned: (1) all of the mesoderm and most of the endoderm segregate 

from most of the ectoderm at first cleavage; (2) the orientation of the first cleavage plane 

is invariant and frontal (i.e. it is perpendicular to the presumptive larval D-V axis); (3) 
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Fig. 2.8. Partial-embryo isolates stained for alkaline phosphatase (black) after 6-7 days of 
development. Letter pairs (for example A and A') represent isolate pairs derived from a single 
bisected embryo. (A,A',B,B') Isolates produced by separation of sister blastomeres at the 2-cell 
stage. (A) Small, normal larva. (A') Small, abnormal larva with disproportionately-small gut 
(note decreased alkaline phosphatase staining compared to A), and reduced larval skeleton (note 
only one arm). (B) Small, normal larva. (B') Hollow, ciliated ectodermal vesicle lacking 
endodermally-derived gut tissue (note lack of alkaline phosphatase staining) and mesodermally-
derived skeletogenic mesenchyme (note lack of spicules). (C,C') Isolates produced by separation 
of embryonic-halves at the 4-cell stage along the second cleavage plane. Both isolates have 
produced a small larva with slightly reduced larval skeleton. One larva (C) appears to have 
produced slightly more skeletogenic- and gut-tissue than the other (C'). (D,D',E,E') Isolates 
produced by separation of embryonic-halves at the 8-cell stage along the third cleavage plane. 
(D) Small, normal larva. (D') Small, abnormal larva with disproportionately-small gut and 
reduced larval skeleton. (E) Small, normal larva. (E') Hollow, ciliated ectodermal vesicle lacking 
endodermally-derived gut tissue and mesodermally-derived skeletogenic mesenchyme. Scale bar 
100µm.
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neither the first nor the second cleavage plane which forms in the dorsal blastomere 

intersects the A-V axis of the embryo; (4) the second cleavage plane which forms in the 

dorsal blastomere is oblique to the larval plane of bilateral symmetry.  It should also be 

noted that the exact location of the boundary of injected clones for a specific cell lineage 

and the fates of some cells at the 4- and 8-cell stage vary slightly from embryo to embryo.  

Despite this variability, a pattern of cell fates clearly emerged from these studies. 

Although most fate mapping studies have not emphasized variability in their results, an 

investigation specifically addressing this issue in an echinoid found significant variation 

in the fates of specific cell lineages between embryos (Logan and McClay, 1997).  Such 

variability could be caused by variation in a number of different cytological factors, such 

as the placement or angle of cleavage planes or the distribution of localized maternal 

determinants; both have been observed here.  

 

Cell lineage in echinoderm and hemichordate embryos 

Before this study, fate maps had been produced for a number of non-chordate 

deuterostomes including multiple echinoids (Cameron and Davidson, 1991; Cameron et 

al., 1987; Hörstadius, 1973; Wray and Raff, 1990), an asteroid (Kominami, 1983), and 

two enteropneust hemichordates (Colwin and Colwin, 1951; Henry et al., 2001).  

Comparison of these fate maps indicates that they are all strikingly similar (Fig. 2.8C,D).  

The only major deviation from the typical echinoderm-hemichordate cell lineage that had 

previously been observed is in the direct-developing echinoid H. erythrogramma where 

the presumptive endodermal and mesodermal contributions to the dorsal vegetal 
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blastomeres at the 8-cell stage appear to have decreased slightly with respect to other 

echinoderms and hemichordates (Wray and Raff, 1989, 1990).  Minor differences within 

this clade may also include slight shifts of presumptive larval fates up and down the A-V 

axis (Henry et al., 2001; Logan and McClay, 1997).  Nevertheless, the similarity 

observed in echinoderm and hemichordate embryos previously examined has led some to 

believe that several cell lineage-specific features have been highly conserved within this 

group, perhaps as a consequence of developmental constraints (Raff, 1999).  The data 

presented in this study indicate that the fate map of O. aculeata, and therefore the 

distribution of presumptive larval cell fates in these embryos, differs significantly from 

the fate map of other species within the echinoderm-hemichordate clade (Fig. 2.7B-D). 

This study suggests that the novel cell lineage observed in O. aculeata is the 

consequence of an evolutionary shift in the orientation of first cleavage with respect to 

the A-V axis in these embryos.  Although it is possible that measurements of cleavage 

plane angles with respect to the A-V may have been distorted by polar body slippage 

along the embryonic surface prior to analysis, Nile blue marking experiments support the 

findings that the first two cleavage planes do not interest the A-V axis.  In these 

experiments, either the animal (A) or vegetal (V) pole was marked with Nile blue just 

after polar body expulsion; confidence in marking the A or V poles in these cases was 

very high.  Marked A poles consistently give rise to the front tip of swimming blastulae 

and gastrulae, and marked V poles consistently give rise to the trailing end (vegetal plate) 

of blastulae and gastrulae; marks in both cases are centered well along the line of bilateral 

symmetry and anterior-posterior (A-P) axis (Fig. 2.3).  While clonal boundaries of cells 
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injected at the 2-cell stage are typically bilaterally symmetrical, they never bisect Nile 

bile marked regions and are clearly oblique to the A-P axis indicating that the first 

cleavage plane is oblique to the A-V axis (Fig. 2.3C,D).  Clonal boundaries of injected 

dorsal-blastomere daughters at the 4-cell stage don’t bisect Nile blue marked regions and 

are clearly oblique to the line of bilateral symmetry indicating that the second cleavage 

plane (in the dorsal blastomere at least) is also oblique to the A-V axis. 

That cleavage planes may be uncoupled from embryonic axes without dramatic 

consequence in terms of the progress of normal development is also supported in the 

literature.  In echinoderm embryos, experimentally altering the orientation of early 

cleavage planes or the site of polar body expulsion does not alter embryonic axes; the site 

of gastrulation always corresponds to the vegetal pole of the oocyte (Morgan and 

Spooner, 1909; Shirai and Kanatani, 1980). Similar perturbations in Xenopus embryos 

produce similar results, and naturally occurring variation in these embryos between the 

orientation of first cleavage and embryonic axes demonstrate the pliability of early 

cleavage planes and the importance of the A-V axis as a determining factor in the 

establishment of embryonic polarity (Black and Vincent, 1988; Danilchik and Black, 

1988). 

 

Specification of larval fates in O. aculeata 

A series of partial-embryo isolation experiments were performed in 2-, 4-, and 8-

cell embryos.  These experiments indicate that the developmental potential to form 

endoderm and mesoderm segregates unequally at the first three cleavages; this is 
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especially true for the first and third cleavages.  Segregation of endodermal and 

mesodermal developmental potential, however, is not typically complete (i.e. both 

isolates form endoderm and mesoderm in over 74% and 72% of the cases for the first and 

third cleavages, respectively).  The isolate associated with higher levels of endodermal 

and mesodermal potential is always the isolate derived from a more vegetal position. 

In these experiments, many partial-embryo isolates followed their fate (i.e. they 

gave rise to what they would have given rise to in an unperturbed embryo, based on fate-

mapping studies presented here).  However, many partial-embryo isolates did not follow 

their fate.  For example, the more animal blastomere in the 2-cell embryo—the dorsal 

blastomere—is fated to become ectoderm and endoderm.  Dorsal blastomeres isolated at 

this stage gave rise to either ectoderm, endoderm and mesoderm or just ectoderm; in no 

cases did this isolate match its fate.  The extent to which endodermal and mesodermal 

cell types formed from dorsal blastomere isolates might be explained as follows. 

Fate mapping studies indicate that the dorsal blastomere should always receive 

some variable but limited amount of presumptive endoderm but never any presumptive 

mesoderm.  For cases in which the dorsal blastomere gave rise to ectoderm, endoderm, 

and mesoderm, it is proposed that some of the presumptive endoderm became mesoderm, 

and some of the presumptive ectoderm became endoderm and/or mesoderm.  Such trans-

fating events may occur in the absence of an inhibitory signal that is typically received by 

this embryonic region in the development of an unperturbed embryo.  For cases where 

the dorsal blastomere gave rise to just ectoderm, it is proposed that either a sub-threshold 

amount of endoderm was inherited by the dorsal blastomere or some inductive signal that 
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is typically received by this embryonic region during the development of an unperturbed 

embryo was not present in these cases.  These interpretations appear reasonable since 

work has shown that multiple intercellular signals (both inductive and inhibitory) 

emanating from the vegetal pole of the embryo play fundamental roles in the regional 

specification of echinoid embryos (Hörstadius, 1973; Ransick and Davidson, 1993, 1995; 

Sweet et al., 1999).  Because the notch-delta signaling pathway mediates two of these 

three early inductive signaling events in echinoids (Sherwood and McClay, 1997, 1999, 

2001; Sweet et al., 1999, 2002), it will be interesting to see if it plays a similar role in 

ophiuroids. 

 

Developmental potential in echinoderm and hemichordate embryos 

Isolation experiments similar to those conducted in this study have been 

conducted in two enteropneust hemichordates (Colwin and Colwin, 1951; Henry et al., 

2001), one asteroid (Dan-Sohkawa and Satoh, 1978) and two other echinoids (Hörstadius, 

1973) (Fig. 2.9).  Blastomeres isolated at the 2- or 4-cell stage embryos from each of 

these except H. erythrogramma exhibit regulative development, forming small but 

phenotypically normal larvae.  In contrast, only one of the blastomeres isolated at the 2-

cell stage in embryos of the ophiuroid O. aculeata and the direct-developing echinoid H. 

erythrogramma is able to make a small but phenotypically normal larva, while the other 

blastomere gives rise to an endomesodermally-compromised vesicle/larva (data presented 

here, Henry and Raff, 1990).  These results indicate that the potential to make endoderm 

and mesoderm segregate unequally at first cleavage in O. aculeata and H. 
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Fig. 2.9. Phylogenetic distribution of partial-embryo isolation experiments in early echinoderm 
embryos. Dots in H. erythrogramma represent pigment cells (mesodermally derived); 
endodermal derivatives not indicated for H. erythrogramma. (A) Blastomere isolations at the 2-
cell stage. In the case of O. aculeata, the isolate on the left was ventrally-derived and the isolate 
on the right was dorsally-derived. (B) Partial-embryo isolation at the 8-cell stage along the third 
cleavage plane. In each case, the isolate on the left was vegetally-derived and the isolate on the 
right was animally-derived. Results for the two echinoids and asteroid are based on Hörstadius, 
(1973), Henry and Raff, (1990), Dan-Sohkawa and Satoh, (1978), Maruyama and Shinoda, 
(1990).
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erythrogramma.  Similar conclusions can be drawn for isolations of partial embryos 

separated along the second cleavage plane in O. aculeata.  The inability of these two 

groups to fully regulate at these stages is likely a consequence of differences in larval fate 

contributions of early cell lineages rather than an indication that cell signaling plays a 

smaller role in these embryos.  Whether these groups have employed novel regional 

specification mechanisms requires further investigation.  At the 8-cell stage, vegetal 

halves isolated along the third cleavage plane develop into a small but normal larva and 

the corresponding animal halves develop into ciliated ectodermal vesicle in the asteroid 

and in both echinoid species (Henry and Raff, 1990; Hörstadius, 1973; Maruyama and 

Shinoda, 1990), indicating that in these embryos endomesodermal potential is retained in 

only the vegetal blastomeres at this stage.  These experiments have not been conducted in 

hemichordates; however, isolates made along the third cleavage plane in O. aculeata 

typically produce endodermal and mesodermal derivatives, indicating that both halves 

retain the potential to make mesendoderm. 

 

Embryological similarities between O. aculeata and H. erythrogramma 

As discussed above, the embryos of the indirect-developing ophiuroid O. aculeata 

and the direct developing echinoid H. erythrogramma share a number of features that are 

otherwise unique to the echinoderm-hemichordate clade.  These features include an 

unequal segregation of endodermal and mesodermal fates into the ventral blastomere at 

first cleavage (although this segregation is much more pronounced in O. aculeata), an 

unequal segregation of endodermal and mesodermal developmental potential into the 
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ventral blastomere at first cleavage, and a first cleavage plane that is invariantly frontal in 

orientation (Henry and Raff, 1990; Wray and Raff, 1989).  This last trait is also shared 

with the echinoid Holopneustes purpurescens (Morris, 1995). 

The presence of such similarities in these two disparate lineages within this clade 

is intriguing and leads one to ask a number of questions.  First, why might these unique 

developmental features have been acquired in these two groups?  One possibility is that 

these developmental features may have arisen because they are in some way selectively 

advantageous.  For example, these changes may be associated with a mechanism which 

accelerates the process of D-V axis specification (Henry and Raff, 1990; Wray and Raff, 

1990).  Although there are arguments to the contrary (Hörstadius and Wolsky, 1936; 

Cameron et al., 1989), there is evidence that the D-V axis is not established until after the 

4-cell stage in most echinoids (Pease, 1939; Hörstadius, 1973).  The fact that both O. 

aculeata and H. erythrogramma embryos have an unequal segregation of endodermal and 

mesodermal developmental potential at first cleavage but no significant segregation in 

developmental potential at second cleavage indicates that determination of the D-V axis 

occurs by the 4-cell stage at the latest in both these groups.  In fact, strong evidence 

indicates that the D-V axis is specified prior to first cleavage in H. erythrogramma 

(Henry et al, 1990).  Alternatively, these changes may have allowed for the production of 

a more robust mechanism of D-V axis specification. 

Second, how might these changes (particularly the changes in fate and 

developmental potential) have been mediated on a cellular level?  This shift in the axis of 

developmental potential or fate with respect to A-V axis in H. erythrogramma may be the 
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result of either a movement of morphogenetic factors within the oocyte or an alteration in 

the pattern of cleavage divisions (Henry and Raff, 1990; Wray and Raff, 1990).  In O. 

aculeata, it is shown here that the shift in developmental fates and potential in the 

embryo are the result of a shift in the cleavage program. 

 

Conclusions 

Recent comparative work on early embryogenesis in non-echinoid members of 

the echinoderm-hemichordate clade has produced a good deal of data suggesting that the 

mechanisms which underlie early development in this group are highly conserved.  This 

work has focused on cell lineage (Wray and Raff, 1989, 1990), intracellular-signaling 

pathways (Kominami, 1984; Miyawaki et al., 2003), gene expression (Hinman and 

Davidson, 2003a, 2003b; Hinman et al., 2003b), and gene regulatory networks (Hinman 

et al., 2003a).  The work reported here on the ophiuroid O. aculeata indicates that at least 

some processes of early development among echinoderms and hemichordates are subject 

to evolutionary change.  Future experiments will be necessary to determine whether the 

differences in early development that exist between O. aculeata and other members of the 

echinoderm-hemichordate clade are just spatial rearrangements of identical 

developmental genetic architecture, or if the gene regulatory networks that underlie 

embryogenesis in O. aculeata and other members of the clade have in fact undergone 

evolutionary modification. 

56



Appendix: Specification of germ layers and the dorsal-ventral axis in 

the early embryo of the brittle star Ophiopholis aculeata 

 

Introduction 

In most animal phyla at least one embryonic axis is defined prior to fertilization 

(Davidson, 1990; Melton, 1991).  Such ‘pre-specified’ axes are based on organizational 

features imposed on an egg during oogenesis and are typically manifested by the 

polarization of localized maternal determinants in the egg.  Embryonic axes that are not 

pre-specified are typically established via cell-cell interactions sometime after 

fertilization.  In echinoid embryos the animal-vegetal (A-V) axis is established prior to 

fertilization.  This has been demonstrated by cutting an echinoid oocyte into animal and 

vegetal halves.  When fertilized the animal half produces an ectodermal ball with an 

animal tuft while the vegetal half produces an ovoid larva with ectodermal, endodermal, 

and mesodermal derivatives (Hörstadius, 1935).  In echinoids the dorsal-ventral (D-V) 

axis (or oral-aboral axis) does not appear to be completed until sometime after the 8-cell 

stage in many echinoids, although this process may begin prior to 1st cleavage in these 

groups (Cameron et al., 1989; Hörstadius, 1973).  The mechanisms which underlie the 

establishment of the D-V axis and the specification of fates along the A-V axis are 

covered in more detail below. 
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Specification of fates along the A-V axis 

Specification of cell fates along the A-V axis (and thus the specification of the 

three embryonic germ layers) in echinoid embryos is largely dependent on the signaling 

activity of the micromeres.  Micromeres are produced at fourth cleavage by an unequal 

division of vegetal blastomeres.  These cells give rise to skeletogenic cells or primary 

mesechyme cells (PMCs) and are specified autonomously (Cameron and Davidson, 1991; 

Okazaki, 1975).  Micromeres recombined with animal halves of 8-cell stage embryos 

induced the animal halves to produce endoderm (Hörstadius, 1973).  In the absence of 

micromeres animal halves produce ectodermal vesicles without endodermal or 

mesodermal structures.  These experiments were interpreted to suggest that one of the 

roles of micromeres is to provide an inductive signal to the macromeres above them.  

These findings are supported by more recent experiments by Ransick and Davidson.  If 

micromeres are transplanted to the animal pole of an embryo, these micromeres induce 

the formation of a second gut and ectopic expression of endodermal markers (Ransick 

and Davidson, 1993).  Conversely, experiments where micromeres are removed shortly 

after they form demonstrate their importance for timely gut formation and the early 

expression of endodermal markers (Ransick and Davidson, 1995).  In other recent 

experiments, removal of micromeres led to the absence of secondary mesenchyme cell 

(SMC) derivatives, and transplantation of micromeres to the animal pole results in the 

induction of ectopic SMCs (Sweet et al., 1999).  Micromere-dependent signaling has 

been shown to be mediated by the notch-delta signaling system (Sherwood and McClay, 

1997, 1999; Sweet et al., 2002).  A third signal derived from the micromeres, also 
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mediated by notch and delta, also appears to play a role in positioning the endodermal-

ectodermal boundary (Sherwood and McClay, 2001). 

One of the first gene products to become asymmetrically distributed along the A-

V axis of echinoid embryos is β-catenin.  β-catenin becomes localized in the nuclei of the 

micromeres shortly after they are produced at 4th cleavage (Logan et al., 1999).  After 5th 

cleavage, β-catenin localizes to the nuclei of macromeres as well.  Over the next few cell 

divisions nuclear accumulation of β-catenin diminishes in the more-animal macromere 

lineages, but remains strong in the more-vegetal macromere progeny and micromere 

lineages.  By a hatching-blastula stage, nuclear β-catenin is restricted to presumptive 

endodermal and mesodermal cells of the embryo (Logan et al., 1999).  Nuclear 

accumulation of β-catenin in an asteroid is also restricted to vegetal blastomeres and 

follows a similar timeline (Miyawaki et al., 2003). 

Several studies have demonstrated that β-catenin plays a central role in micromere 

signaling and the specification of cell fates along the A-V axis.  Blocking nuclear 

localization of β-catenin throughout the embryo results in the formation of an 

‘animalized’ phenotype, in which embryos fail to gastrulate or form any endodermal or 

mesodermal derivatives (Logan et al., 1999; Wikramanayake et al., 1998).  Moreover, 

prevention of nuclear β-catenin accumulation in micromeres blocks both PMC 

differentiation (i.e. blastocoelar ingression and acquisition of skeletogenic capabilities) 

and the production of micromere derived signals (required for the production of 

endodermal-tissue and SMC formation) when grafted to an un-injected host (Logan et al., 

1999; McClay et al., 2000). Over-expressing β-catenin on the other hand produces a 
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‘vegetalized’ phenotype, in which the number of endodermal and mesodermal cells and 

magnitude of endomesodermal gene expression are increased (Davidson et al., 2002; 

Wikramanayake et al., 1998).  This vegetalized phenotype can be phenocopied by 

treating embryos with lithium chloride (LiCl) and is accompanied by an expanded 

domain of β-catenin nuclear localization (Hörstadius, 1973; Logan et al., 1999; Nocente-

McGrath et al., 1991).  In addition, animal-halves derived from embryos injected with a 

constitutively active form of β-catenin gastrulate and form endoderm whereas un-injected 

animal halves fail to gastrulate and form ectodermal spheres (Wikramanayake et al., 

1998).   

The localization of β-catenin in vegetal nuclei is regulated by components of the 

canonical Wnt signaling pathway.  During early cleavage, destabilization of a 

ubiquitously dispersed dishevelled (Dsh) protein in the animal pole of the embryo leads 

to the stabilization and nuclear localization of β-catenin in only the vegetal blastomeres 

of the embryo (Weitzel et al., 2004).  Dsh is thought to act by inhibiting glycogen 

synthase kinase-3β (GSK3β) which would otherwise phosphorylate β-catenin, targeting it 

for ubiquitination and protyolitic degradation (Cadigan and Nusse, 1997; Miller and 

Moon, 1996).  Results from experiments in which wild-type and dominant negative forms 

of GSK3β were over-expressed in echinoid embryos are consistent with these findings 

(Emily-Fenouil et al., 1998).  In addition, it has been shown that the effect of LiCl on this 

pathway is a consequence of GSK3β inhibition (Hedgepeth et al., 1997; Melton and 

Klein, 1996; Stambolic et al., 1996).  Although SpWnt8 signals reinforce and modify 

patterns of β-catenin nuclear localization during later cleavage stages, the initial pattern 
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appears to be regulated in a cell-autonomous manner (Davidson et al., 2002; Logan et al., 

1999; Wikramanayake et al., 2004).  In the nucleus, β-catenin functionally competes with 

the transcriptional-repressor LvGroucho for Tcf binding (Range et al., 2005).  In 

association with orthodenticle (Otx), β-catenin-bound Tcf transcriptionally initiates a 

well-characterized vegetal signaling cascade which results in the specification of 

endomesodermal fates (Davidson et al., 2002; Huang et al., 2000; Li et al., 1999; Vonica 

et al., 2000). 

Because β-catenin and the canonical Wnt signaling pathway play a role in axial 

specification and/or germ layer segregation in ascidians (Imai et al., 2000), vertebrates 

(see Miller and Moon, 1996), C. elegans (Rocheleau et al., 1997; Thorpe et al., 1997), 

and possibly a cnidarian (Wikramanayake et al., 2003), and because of its’ key role in 

endomesodermal specification in echinoids, the role that this pathway plays in O. 

aculeata was investigated.  To examine the potential role of β-catenin in O. aculeata 

embryogenesis, the distribution of β-catenin was examined using an antibody against a 

sea urchin β-catenin.  If β-catenin plays a role in endomesodermal specification in O. 

aculeata, one would expect it to accumulate selectively in the nuclei of presumptive 

endodermal and mesodermal cells.  The effect of LiCl on endomesodermal specification 

was also examined.  Lithium is a specific and potent inhibitor of β-catenin degradation so 

treatment with LiCl should up-regulate nuclear accumulation of this protein.  If β-catenin 

positively regulates endomesodermal specification in O. aculeata, lithium-treatment 

should increase the amount of endomesodermal tissues produced. 
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Establishment of the dorsal-ventral axis 

When the D-V axis is specified and/or established in echinoids has been a point of 

contention in the literature.  Several lines of evidence suggest that D-V specification in 

echinoids begins very early in embryogenesis, perhaps even before fertilization.  

Lineage-tracer injection of single blastomeres at the two-cell stage of Strongylocentrotus 

purpuratus have shown that in this species the oral-aboral axis almost always lies 45 

degrees clockwise to the first cleavage plane (Cameron et al., 1989).  This strongly 

nonrandom association suggests that the oral-aboral axis has been specified prior to the 

first cell division.  D-V asymmetries in respiratory activity and mitochondrial distribution 

can be seen in some echinoid oocytes and are good predictors of the D-V axis in both 

unperturbed and experimentally altered embryos (Coffman and Davidson, 2001; Coffman 

et al., 2004).  On the other hand, the orientation of the first cleavage plane with respect to 

the plane of larval bilateral symmetry is much more variable in some echinoid (Henry et 

al., 1992; Hörstadius and Wolsky, 1936), asteroid (Kominami, 1983), and hemichordate 

(Henry et al., 2001) species, which may suggest that specification of the D-V axis in 

these may not begin until some later time.  In addition, several lines of evidence indicate 

that establishment of the D-V axis is not completed until at least after the 8-cell stage.  

For example, individual blastomeres isolated from 4-cell embryos of multiple echinoid 

species give rise to small plutei with both oral and aboral parts (Driesch, 1892; 

Hörstadius, 1973). 
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Several approaches have been used to investigate the mechanistic basis of D-V 

specification in echinoids.  One approach has used nickel chloride (NiCl2), a potent 

inhibitor of D-V development in echinoids.  Lytechinus variegatus embryos treated with 

nickel fail to acquire any asymmetries along the D-V axis (Hardin et al., 1992).  Theses 

embryos appear morphologically normal through the early gastrula stage, but 

abnormalities begin to appear shortly thereafter.  The ectoderm of normal embryos form 

two ventrolateral thickenings on which PMCs cluster to initiate the formation of the two 

larval spicule centers.  In nickel-treated embryos, ventrolateral ectodermal thickenings 

become expanded to form a circumferential belt around the vegetal plate; PMCs form a 

ring along this ectodermal belt and initiate spiculogeneis in multiple centers in a radial 

pattern in the embryo.  In normal embryos, the elongating archenteron typically bends to 

contact a thick portion of the ectoderm just ventral to the animal pole called the 

stomodeal invagination; these ultimately fuse to form the mouth of the larva.  In nickel-

treated embryos, the archenteron elongates directly towards the animal pole to contact a 

stomodeal invagination that has expanded to become a circumferential thickening around 

the animal pole.  Immuno-fluorescence and in situ hybridization staining techniques 

indicate that the ciliated band is shifted to the vegetal margin of the embryo, the oral 

ectodermal domain is much larger and the aboral ectodermal domain is much smaller in 

nickel-treated embryos. 

Another approach used to understand the mechanistic basis of D-V establishment 

has been a more direct analysis of candidate gene function.  Analyses have identified a 

number of genes that are expressed in the ectoderm in a polarized manner along this axis 
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(Angerer et al., 2001; Croce et al., 2003; Gross and McClay, 2001).  Functional tests 

have shown that several of these genes, including nodal and BMP 2/4 (both members of 

the TGFβ superfamily), are required for establishment of the D-V axis (Angerer et al., 

2000, 2001; Croce et al., 2003; Duboc et al., 2004; Flowers et al., 2004).  Based on 

timing of expression and mis-expression analyses, nodal appears to be the most upstream 

of these.  Nodal over-expression results in the production of a phenotype quite similar to 

nickel-treated embryos (radialization, over-expression of oral markers, etc.), yet nodal 

expression is radialized by nickel-treatment suggesting that it is the earliest known 

effecter of D-V establishment (Flowers et al., 2004; Duboc et al., 2004).  Blocking BMP 

2/4 expression with anti-sense morpholino oligonucleotides also phenocopies nickel-

treatment suggesting that TGFβ signaling may be the target of nickel’s radicalizing effect 

in sea urchins (Duboc et al., 2004). 

Experiments in O. aculeata have shown: 1) that the first cleavage plane in this 

species is invariant and frontal (meaning that it is roughly perpendicular to a plane that 

divides dorsal from ventral), 2) that there is a major segregation of larval fates at first 

cleavage in this species such that one blastomere at the 2-cell stage gives rise to all the 

mesoderm, much of the endoderm, and a small potion of ventral ectoderm and the other 

blastomere gives rise to the remaining endoderm and ectoderm, and 3) that there is a 

major segregation of developmental potential at first cleavage in this species.  These 

findings suggest that the D-V axis may be specified prior to first cleavage in O. aculeata.  

To test this hypothesis and to examine whether the mechanisms which underlie D-V 

specification in O. aculeata is similar to those employed by echinoids, O. aculeata 

 

64



embryos were treated with NiCl2 during early development.  If D-V specification is 

mediated by similar proteins and/or signaling pathways, it is expected that treating O. 

aculeata embryos with LiCl will completely disrupt establishment of the D-V axis and 

radicalize embryos.  If lithium does not have this effect, it suggests that the mechanistic 

basis for D-V establishment in O. aculeata has changed mechanistically and perhaps 

temporally. 

 

Materials and Methods 

Animals and embryos 

O. aculeata adults were collected intertidally on San Juan Island, WA, and were 

maintained at 10-12 degrees C in aquaria with running sea water.  To induce spawning, 

animals were exposed to a combination of bright light, heat and physical perturbation 

(shaking, swirling and/or inversion) for 1-2 hours.  Animals were then placed in filtered 

sea water (FSW) at 12 degrees C in individual bowls; spawning took place within the 

next few hours.  Dendraster excentricus and Strongylocentrotus purpuratus adults were 

collected by G. von Dassow and Strongylocentrotus droebachiensis adults were collected 

with the assistance of K. Zigler in the San Juan Islands, WA.  Spawning was induced 

with an inter-coelomic injection of 0.55M KCl.  Spawned oocytes were rinsed several 

times in FSW and fertilized with a dilute sperm concentration.  Following fertilization 

embryos were rinsed several times and raised in either pasteurized Jamarin artificial sea 

water (JSW; Jamarin Labs, Osaka, Japan) or in filtered sea water (FSW).  FSW was used 

to prepare lithium- or nickel-sea water solutions.  In experiments with LiCl or NiCl2 at 
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least 100 embryos were placed in each treatment group.  In addition, each experiment 

was conducted on embryos from at least two different spawned females; some 

experiments were run 4-5 times. 

 

Propidium iodide and phallacidin staining 

Fluorescent dyes and confocal imaging were used to make cytological 

observations.  The fluorescent dyes used include propidium iodide (Sigma) and 

BIODIPY FL phallacidin (Molecular Probes), which are nucleic acid-specific and 

filamentous actin-specific, respectively.  Embryos were fixed overnight in 4% 

paraformaldehyde in JSW.  Embryos were then rinsed in phosphate-buffered saline with 

0.1% Triton X-100 (PBT), incubated in a PBT solution with 10 µg/ml propidium iodide 

and/or 5 units/ml phallacidin, rinsed, dehydrated and cleared in benzyl benzoate and 

benzyl alcohol (2:1).  Stained samples were imaged with a BioRad Radiance 2000 laser-

scanning confocal microscope. 

 

Immunocytochemistry 

Embryos at stages prior to hatching were fertilized in JSW which contained para-

aminobenzoic acid and pulled into a small-bored pipette several times some time after 

fertilization to remove their fertilization envelopes.  These embryos were then fixed in 

2.5% paraformaldehyde in JSW at room temperature (RT) for 20 minutes and 

permiablized in ice cold 100% methanol for 10 minutes.  Post-hatching stage embryos 

were fixed in ice cold 100% methanol or 10 minutes.  Embryos were then rinsed in PBT 
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with 1% bovine serum albumin and 5% normal goat serum and then 3 times in just PBT 

(rinses are for 5 minutes unless otherwise stated).  Embryos were then incubated with a 

primary antibody for 1.5-2 hours at RT, rinsed 3 times in PBT, incubated in a secondary 

antibody for 1.5-2 hours at RT, rinsed 3 times in PBT and 1-3 times in PBS.  Next 

embryos were deposited on poly-lysine coated slides, dehydrated in an ethanol series, 

cleared in a mixture of benzyl benzoate and benzyl alcohol (2:1) and mounted.  Stained 

embryos were imaged with a confocal microscope as above.  Primary antibodies included 

an affinity-purified anti-β-catenin polyclonal serum made against Lytechinus variegatus 

β-catenin as described previously (Miller and McClay, 1997) and an anti-β-catenin 

monoclonal antibody made against a chicken β-catenin (Sigma-Aldrich; C-7082).  

Secondary antibodies include an Alexa Fluor 568-conjugated goat anti-guinea pig IgG 

and an Alexa Fluor 488-conjugated donkey anti-mouse IgG (Molecular Probes; A11075 

and A21202). 

 

Quantitative analysis of cells 

 Embryos fixed and stained with propidium iodide and phallacidin were imaged 

with a laser-scanning confocal microscope as described above.  In Image J, the two 

scanned channels were merged into a single stack of images and the Cell Counter plug-in 

was used to count ectodermal and endomesodermal cells.  Cells were identified as 

‘ectodermal’ if they were positioned in the external layer of the embryo.  Cells were 

identified as ‘endomesodermal’ if they were positioned inside the blastocoel of these 

embryos.  Microsoft Excel was used for statistical analysis.   
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Results 

β-catenin Immunocytochemical Staining 

 Because β-catenin plays an important role in axial specification and germ layer 

segregation in a number of metazoan embryos including echinoids, the distribution of β-

catenin protein was examined in O. aculeata.  Prominent β-catenin staining was observed 

using the serum against L. variegatus β-catenin in gastrula stage embryos in adherens 

junctions, forming a ring in each epithelial cell at the boundary between the apical and 

lateral membrane domains (Fig. A.1 G-J).  Throughout gastrulation, staining was present 

in epithelial but not mesenchymal cells even though many mesenchymal cells should be 

present at this stage.  Many attempts were made to detect β-catenin protein in early 

cleavage and blastula stage embryos.  These efforts included several protocol 

modifications.  Attempts produced cleavage blastula and gastrula stage embryos that had 

a faint nuclear and/or cytoplasmic signal throughout the embryo, but in no case was this 

signal stronger than in negative controls (Fig. A.1 A-F).  The antibody against a chicken 

β-catenin never produced a signal that was not seen in controls. 

 

LiCl Treatment 

To investigate the role of β-catenin and the canonical Wnt signaling pathway in 

regional specification during embryogenesis of O. aculeata, embryos were treated with 

various concentrations of LiCl in FSW during early development.  Experiments in which 

embryos were treated with 50mM LiCl are discussed because higher concentrations 
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appeared to be toxic and lower concentrations produced very mild phenotypes.  The 

vegetalizing effects of lithium on L. variegatus are observed when embryos are treated 

with 30-50mM LiCl from 0-10h (Logan et al., 1999). 

In O. aculeata, lithium-treatment caused a number of developmental 

abnormalities.  Embryos treated with lithium from 30 minutes after fertilization until 18 

hours after fertilization (0-18h) developed much more slowly than controls did.  These 

embryos did not become dorso-ventrally flattened at an early gastrula stage as did 

controls but remained radially symmetrical well into gatrulation.  These embryos were 

also much shorter along the A-P axis during blastula and gastrula stages than controls and 

were broad and well-rounded at the animal pole through these stages (Fig. A.2 A,C).  

Embryos treated from 0-8h displayed a phenotype intermediate to controls and the longer 

treatment, both in timing and in shape.  These embryos became pear-shaped during 

gastrula stages, having a narrower animal pole than the embryos treated for a longer 

period (Fig. A.2 A,B).  Embryos in both of these treatment groups gastrulated and 

produced skeletogenic mesenchyme.  Archenterons produced during gastrulation were 

directed into the blastocoel (no cases of exogastrulation were observed) and spicules that 

formed typically elongated and often produced a larval skeleton which resembled that of 

controls in 0-8h embryos (Fig. A.2 D,E).  Embryos in the 0-18h treatment group also 

produced elongate spicules, although sometimes 4-6 spicule centers formed (Fig. A.2 D-

F).  These embryos also appeared to be compressed along the D-V axis.  All treated 

embryos formed ciliated-bands which ran along their mid-ventral surface and then 

anteriorly.  Although archenterons produced in embryos from the 0-8h treatment group 
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Fig. A.1. Expression of ß-catenin protein in O. aculeata embryos based on immunohistochemical 

localization with an anti-L. variegatus ß-catenin serum. (A,D,G,I) Single confocal sections. 

(B,C,E,F,H,J) Projections of confocal stacks. (A-C) 64-cell stage embryos. (D-F) 128-cell stage 

embryos. (G,H) Early-gastrula stage embryos. (I,J) Late-gastrula stage embryos. (C,F) Negative 

controls which were processed the same as stained embryos except they were not incubated with 

anti-L. variegatus ß-catenin serum. Scale bar indicates 25 µM.            
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Fig. A.2. Lithium-treated O. aculeata embryos. (A) Untreated controls at 42 hours had formed a 

mid-gastrula stage, had started producing spicules and were compressed along their D-V axis. 

(B) Embryos treated from 0-8h had begun gastrulation and spiculogenesis but were pear-shaped 

at 42 hours. (C) Embryos treated from 0-18h had not formed an archenteron and had not begun 

spicule production but did appear to contain mesenchyme cells by 42 hours. These embryos were 

also much shorter along the A-P axis than controls and completely radially symmetrical. (D) 

Untreated controls at 5 days had formed 2-armed plutei with a well developed skeleton, a 

tripartite thru-gut and ciliated band. (E) Embryos treated from 0-8h formed plutei similar to 

controls by 5 days, although they looked younger than controls and often showed R-L 

asymmetries. (F) At 5 days, embryos treated from 0-18h resembled much earlier controls that 

had more depth along the D-V axis.  These embryos often contained extra, stunted spicule 

centers.

72



Ventral view

Ventral view

Ventral view

Ventral view

Ventral view

Ventral view

Lateral View

Lateral View

Lateral View

Lateral View

A

B

C

D

E

F

73



gave rise to thru-guts, it is unclear whether the archenterons of embryos in the 0-18h 

treatment group fused with the ectoderm to form a mouth. 

 To see if there was an increase in the in the production of endomesoderm in 

lithium-treated embryos, the number of ectodermal and endomesodermal cells in 

embryos treated from 0-15h were counted.  Embryos were examined at a late-gastrula 

stage just after the two feeding arms began to form in controls (40 hours post-

fertilization).  This stage was ideal for such an analysis because a good deal of endoderm 

and mesoderm had already formed, the number of cells present in the embryo was still 

reasonable and cells were easily identifiable as ‘ectodermal’ or ‘endomesodermal’ at this 

stage.  The average number of cells/embryo and the percentage of cells in the 

presumptive endomesoderm differed between the control and treatment groups (Table 

A.1).  Specifically, the number of cells in lithium-treated embryos was lower than in 

controls.  These findings are consistent with a slightly delayed program of development 

in lithium-treated embryos, as was reported earlier.  More importantly, however, the 

proportion of endomesodermal cells in lithium-treated embryos was higher than in 

controls.  Although sample sizes were small, this difference was shown to be significant 

as measured by a one-tail t-test (t = 2.584; p = 0.025; df = 5).   

 

NiCl2-treatment 

Morphological indications of a secondary embryonic axis become apparent in O. 

aculeata at between 30-35 hours post-fertilization, shortly after gastrulation begins.  The 

first signs of a secondary axis are a flattening of the embryo along the D-V axis so that it  
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Table A.1 
Effect of LiCl-treatment on developmental rate and endomesodermal specification in O. aculeata 

 Number of cells in embryo  Percentage of cells in Endomesoderm 

 Average Range  Average Range 
Controls (n = 3) 722 635-790  21.5% 18.9-23.9% 
50mM LiCl (n = 4) 542 471-596  33.4% 22.7-40.2% 

 

becomes wider from left-to-right than it is thick from dorsal-to-ventral by a ratio of 

approximately 3:1.  The first clear D-V asymmetries include a dorsally-positioned 

archenteron and two ventral and lateral clusters of mesenchyme cells (see Fig. A.2 A).  

These mesenchymal clusters are the sites were spicules initially form.  Subsequently, the 

elongating archenteron will bend ventrally and contact the stomodeum on the ventral 

surface of the larva where the mouth will form (see Fig. 2.4).  Elongating spicules also 

create asymmetries along this axis as they start shaping the presumptive larva; most 

significantly, growing spicule rods underlie the formation of the laterally and ventrally 

projecting arms.  Spicules also extend posteriorly and ultimately bring the anus to a more 

ventral position than at earlier stages.  At the same time, the ciliated ectodermal-band 

begins to form which will roughly divide the dorsal and ventral surfaces along the 

anterior edge of the larva and the anterior and posterior halves of the larva on the ventral 

surface.  Once formed, the ciliated-band represents a boundary between the oral ectoderm 

(which surrounds the mouth and is located anteriorly on the ventral surface) and the 

aboral ectoderm (which covers the posterior part of the ventral surface and the entire 

dorsal surface of the larva) (see Fig. 2.4). 

To determine whether NiCl2 has any effect on the specification of the larval D-V axis 

in O. aculeata, embryos were grown in filtered sea water containing dissolved NiCl2 for 
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varying periods of time during early development.  Embryos were treated from 30 

minutes after fertilization until either 24 or 45 hours after fertilization (0-24h or 0-45h, 

respectively) or from 24-52h.  The concentration of NiCl2 in FSW was varied and ranged 

from 0.125-2.0mM.  Development of embryos in all treatment groups appeared normal 

morphologically through a mid-gastrula stage, although some of the treatment groups 

showed slight developmental delays. 

By 42 hours control embryos had become swimming mid- to late-gastrulae.  These 

embryos were flattened along the D-V axis and showed clear signs of asymmetry along 

this axis in the form of mesenchymal clusters and newly forming spicules positioned 

ventrally along the vegetal plate and the elongating archenteron positioned dorsally.  

Development in all nickel-treated embryos is delayed, although the extent of the delay is 

dependent on the amount of nickel exposure.  Embryos treated with concentrations of 

NiCl2 at 0.5mM or higher for 0-43h or concentrations of NiCl2 at 1.0mM or higher from 

0-24h were just beginning to gastrulate and had produced no spicules; embryos in all 

other treatment groups had begun to gastrulate and produce spicules, but to lesser extents 

than controls.  Embryos treated with 0.5mM NiCl2 from 0-24h or with lower 

concentrations of NiCl2 were flattened along the D-V axis and showed signs of 

asymmetry along this axis, although to a lesser extent than controls.  Embryos treated 

with 0.5mM NiCl2 from 0-45h or 24-52h or with higher concentrations of NiCl2, on the 

other hand, were radially symmetrical around the A-V axis. 

By 66 hours control embryos had formed tri-partite thru-guts and had begun to 

produce feeding-arms supported by elongating spicules.  A well formed ciliated band had 
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not formed at this point.  By 66 hours all nickel-treated embryos that were still alive were 

showing signs of asymmetry along the D-V axis.  Almost all embryos treated with 

0.125mM NiCl2 from 0-24h resembled slightly earlier stages of control embryos; these 

embryos had formed thru-guts and produced spicules which had started to elongate.  

Many embryos belonging to the other treatment groups also resembled earlier stages of 

controls.  These embryos had formed archenterons which continued to elongate and 

contained birefringent material.  None of the archenterons in these embryos had fused to 

form thru-guts nor had any of the birefringent masses become elongated spicules.  Some 

embryos in these other treatment groups, particularly in groups treated from 0-43h or 

with concentrations of NiCl2 exceeding 0.25mM, did not resemble controls at any stage 

particularly well; the proportion of abnormal development per treatment group increased 

with increasing NiCl2 concentration.  Abnormal embryos typically contained 

mesenchyme cells and an archenteron enclosed within an ectodermal sheet but was more 

pear-shaped than controls.  Most of the embryos treated with 2.0mM NiCl2 were either 

dead or extremely abnormal and falling apart at this stage.  It should be reiterated that all 

of the live and intact NiCl2-treated embryos observed at 66h had an asymmetric 

distribution of mesenchyme and birefringent material to one side of the vegetal plate of 

the embryo (presumable ventral) and an archenteron emerging from the other side of the 

vegetal plate (presumably dorsal).  In none of these cases were embryos radially 

symmetrical. 

At 4 days of development controls had reached an early larval stage with two feeding 

arms and a well-formed ciliated band.  The phenotypes of viable nickel-treated embryos 
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at this stage were variable both within and between treatment groups (Fig. A.3).  

Treatments at 0.5mM concentrations and higher are discussed more thoroughly below.  

Although nickel–treatment did not typically prevent the production of spicules, this 

treatment did severely affect the types of spicules that were produced.  Specifically, many 

spicules that did form did not elongate but rather become birefringent granules.  It was 

not uncommon to find more than 4-6 birefringent granules per embryo; this was also the 

case for 66h embryos.  Some spicules did elongate, but were severely truncated.   Nickel-

treatment also affected gut formation.  While well-defined archenterons were almost 

always present, they were often shorter than they were in controls (approximately two-

thirds to three-fourths the length of control archenterons at the time of fusion to the 

stomodeum), they did not bend ventrally, and they did not fuse with the stomodeum to 

form a mouth.  Nickel-treatment also affected the positioning of the ciliated band and it 

did so in a concentration-dependent manner.  These defects are all indicative of 

improperly patterned ectoderm.  Based on the position of the ciliated band, it appears that 

there may have been an expansion of the oral ectoderm in nickel-treated embryos.  

Despite these defects, asymmetries along a secondary embryonic axis were apparent in 

larvae of all treatment groups at this stage.  Even in the most abnormal larvae, 

mesenchyme and spicules were at one side of the vegetal plate while the archenteron 

emerged from the other.   

It was previously shown that nickel-treatment completely disrupts D-V specification 

in the embryo of the echinoid L. variegatus at concentrations as low as 0.5mM even if 

only applied from a hatching blastula to a late-gastrula stage (Hardin et al., 1992).  To 
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examine the effect of NiCl2 on D-V specification in other echinoids and the sensitivity of 

these embryos to NiCl2, the embryos of three previously unexamined echinoids (D. 

excentricus, S. droebachiensis and S. purpuratus) were treated with NiCl2 in a manner 

similar to O. aculeata above.  Although some minor phenotypic differences did exist 

between these echinoid species in response to nickel-treatment, embryos of each of these 

groups treated with 0.5mM NiCl2 from 0-24h showed a completely radialized phenotype.  

These results suggest that the effect of nickel on echinoids is not specific to L. variegatus 

and that NiCl2 is effective at concentrations as low as 0.5mM for 24 hour treatments. 

 

 

Discussion 

β-catenin and patterning along the animal-vegetal axis 

β-catenin has two distinct functions in metazoan cells; it can contribute to cell-cell 

adhesion by acting as a cytoskeletal linker molecule in the cytoplasm or it can function as 

a regulator of gene activity via direct interactions with DNA-binding transcription factors 

in the nucleus (for review see Cadigan and Nusse, 1997; Miller and Moon, 1996).  In 

fact, β-catenin clearly plays both roles in echinoid embryos.  Shortly after 5th cleavage β-

catenin localizes within the nuclei of vegetal blastomeres where it is thought to 

transcriptionaly activate an endomesodermal gene network (Davidson et al., 2002; Logan 

et al., 2001).  β-catenin also associates with lateral cell-cell contacts and accumulates at 

adherens junctions from early cleavage stages through embryogenesis where it is thought 

to mediate cell adhesion (Miller and McClay, 1997).  At gastrulation, changes in β-
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Fig. A.3. Phenotypic effects of NiCl2-treatmet on O. aculeata embryos at 4 days of development.  

Several different phenotypic classes have been defined (indicated with the numbers 1-5: 1 

represents a normal phenotype and 5 represents the most abnormal phenotype).  Although many 

larvae resemble intermediates between these defined groups, this classification scheme should 

allow a rough quantification of the phenotypes produced by different NiCl2-treatments.  The 

term 'larva' is used to describe all viable products of these treatments, although many of these 

products more closely resemble abnormal embryos.  Class 1 includes larvae which are similar to 

control embryos.  Class 2 includes larvae which closely resemble earlier stage control larvae 

with a well defined and properly positioned ciliated band, a tri-partite through-gut and arms 

supported by spicules; the arms of larvae in this class are less th an half the length of arms of 

controls.  Classes 3-5 include larvae which form archenterons which elongate but do not fuse 

with the stomodeum to form a mouth.  Larvae in classes 3-4 produce spicules  that elongate to 

support short larval arms occasionally on one side of the larva but not the other; the other side 

often produces spicule granules which do not elongate.  Larvae in these classes also have well-

formed ciliated bands.  The major difference between class 3 and class 4 larvae is the placement 

of the ciliated band.  Larvae in class 3 have a normally positioned ciliated band; part lies long the 

anterior edge of the larva separating dorsal from ventral and the remainder runs from left to right 

on the ventral surface half way between anterior and posterior ends of the larva.  The ciliated 

band in larvae of class 4 basically creates a ring around the larva half way between the anterior 

and posterior ends of the larva.  Class 5 larvae typically have poorly-formed ciliated bands that 

are positioned very close to the blastopore (at essentially the posterior end of the larva).  Larvae 

in this class often do produce spicule granules, but these granules never elongate.  The number 

of spicules initiated in an embryo was highly variable and did not correspond well to the class in 

which that embryo was placed.
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catenin localization accompany several morphogenetic events.  These include a complete 

loss of peripheral β-catenin in cells undergoing an epithelial-to-mesenchymal transition 

(in the formation of PMCs and SMCs) and a significant decrease in adherens junction-

associated β-catenin levels in epithelial cells of the archenteron as they undergo 

convergent-extension movements (Miller and McClay, 1997).  

Although nuclear localization of β-catenin was not detected in O. acuelata, β-

catenin protein was found to be localized along the cell-cell boundaries of epithelial cells 

in gastrula stage O. aculeata embryos.  β-catenin is probably functioning in these cells as 

a mediator of cell adhesion.  This hypothesis is supported by the fact that detectable 

levels of β-catenin were present in all epithelial cells but no mesenchymal cells of the 

embryo at this stage.  Since it is unclear from this analysis whether β-catenin was present 

in presumptive mesenchyme cells prior to their ingression, it can not be determined 

whether changes in β-catenin localization may have mediated this morphogenetic 

transition.  Changes in the intensity of β-catenin associated with convergent-extension 

movements of the archenteron were not observed in O. aculeata, which may indicate that 

significant changes in the process of archenteron elongation have taken place between 

echinoids and ophiuroids. 

The absence of β-catenin accumulation in adherens junctions prior to gastrulation 

suggests that β-catenin does not mediate cell adhesion by functioning in adherens 

junctions during cleavage and blastula stages. This idea is supported by the fact that cells 

in embryos of this species (and many other ophiuroid species) do not appear to adhere to 

each other tightly until some time near the beginning of gastrulation.  In several 

 

82



ophiuroids including O. aculeata, blastomeres are often very loosely associated and it is 

thought that these cells are essentially kept from falling apart by a very thick hyaline 

layer (Olsen, 1942).  Although it is not known when cadherin-catenin complexes begin to 

function in these embryos, these data suggest this may not occur until around 

gastrulation.  The absence of β-catenin accumulation in nuclei at any embryonic stage 

suggests that β-catenin does not mediate early specification events by acting as a nuclear 

transcriptional regulator in O. aculeata. 

 

Lithium-treatment in O. aculeata  

 Lithium-treatment produced a number of developmental abnormalities in O. 

aculeata embryos; development was delayed, gastrula stages were stouter along the A-V 

axis and less flat along the D-V axis than controls, spicules were sometimes truncated 

and a mouth did not always form.  Many aspects of development, however, proceeded in 

a normal (although delayed) manner; skeletogenic mesenchyme was produced, 

gastrulation took place, skeletal elements were properly patterned, and a ciliated band 

formed.  These finding are not indicative of any major patterning defects in O. aculeata 

in response to LiCl.  Moreover, the abnormalities observed in O. aculeata were largely 

inconsistent with the abnormalities seen in lithium-treated echinoid embryos.  Echinoid 

embryos treated with even lower concentrations of LiCl for similar amounts of time 

typically exogastrulate (presumably due to a production of excess endoderm), form 

severely truncated spicules (if any spicules form at all), do not form a ciliated band and 
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lack indications of ectodermal patterning along a D-V axis (Hörstadius,1973; Nocente-

McGrath et al., 1991, Wikramanayake et al., 1998). 

The only clear similarity between the lithium-treatment phenotypes of echinoids 

and O. aculeata is that both appear to produce an excess of endodermal and/or 

mesodermal cells, although the magnitude of this change is larger in echinoids.  In an 

asteroid, lithium-treatment also produces gastrulae with larger archenterons and fewer 

ectodermal cells than controls (Kominami, 1984).  However, these results are similar to 

the results in O. aculeata in that they could be explained by other mechanisms.  For 

example, it is possible that the increased proportion of endomesodermal cells in O. 

aculeata following LiCl-treatment was a function of lithium slowing down development 

if cell division in the ectoderm increases with developmental time. 

 The results of these experiments and the lack of nuclear β-catenin accumulation in 

O. aculeata embryos suggest that β-catenin does not play a role in endomesodermal 

specification in this group.  To more conclusively address the role of β-catenin in O. 

aculeata embryogenesis one would need to clone β-catenin from O. aculeata, establish 

the spatial and temporal expression of the β-catenin transcript throughout embryogenesis, 

over-express an activated form of β-catenin and block its’ nuclear accumulation (which 

would require cloning a cadherin gene).  Given the amount of time and effort that would 

be involved in this process, the data here indicate that a more thorough analysis of this 

situation may not be worthwhile. 
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Dorsal-ventral axis specification and nickel-treatment in O. aculeata 

 Nickel-chloride is a potent inhibitor of D-V establishment in echinoid embryos.  

Most of the observed abnormalities in nickel-treated echinoid embryos take place in, or 

are potentially a consequence of defects in ectodermal patterning: typically polarized 

ectodermal thickenings expand radially to become rings, the ciliated band becomes 

restricted to a circumferential vegetal region, the oral ectodermal domain expands, the 

aboral ectodermal domain contracts, PMCs become distributed radially and the 

archenteron extends directly toward the animal pole. 

Nickel-chloride also has a number of effects on embryogenesis in O. aculeata.  

Many of these defects may reflect abnormalities in ectodermal patterning.  Nickel-

treatment effects the placement of the ciliated band in a concentration dependent manner.  

At higher concentrations the ciliated band is restricted to a more vegetal, radialized 

position in the embryo, similar to the situation in nickel-treated echinoids.  The 

archenterons of nickel-treated embryos are slightly truncated, do not bend ventrally, and 

do not fuse with the stomodeum.  Because the final phase of archenteron elongation and 

thus archenteron-stomodeal fusion in echinoids appears to be dependent upon interactions 

between SMCs on the tip of the archenteron and a target ectodermal region near the 

animal pole (Hardin, 1988; Hardin and McClay, 1990), these findings could be explained 

by defects in either the SMCs or in the target ectoderm.  No clearly identifiable 

stomodeum was observed in nickel-treated embryos in these treatment groups.  However, 

because O. aculeata embryos are quite opaque, the stomodeum is not always readily 

apparent in normally developing embryos.  Nickel-treatment also affected the proper 
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production of a larval skeleton in O. aculeata.  Because there was no readily apparent 

decrease in the number of mesenchyme cells and birefringent material was almost always 

produced, the absence of normal skeleton formation was probably not because PMCs 

were not present.  Because interactions between PMCs and the ectoderm have been 

shown to play a crucial role in skeleton formation in echinoids (Wolpert and Gustafson, 

1961; Zito et al., 1998), a more viable explanation may be that certain ectodermal 

patterning cues that are necessary for skeletal development were either improperly 

expressed or not expressed at all. 

Despite the nickel-induced abnormalities present in O. aculeata embryos 

described above, nickel-treatment never completely radialized O. aculeata embryos.  

Even the most extreme treatments of NiCl2 that produced viable larvae did not prevent 

the formation of some signs of a secondary axis in O. aculeata.  The blastopore was 

always asymmetrically positioned on one side of the vegetal plate while mesenchyme 

cells and spicules were asymmetrically positioned on the other.  Several reasonable 

possibilities could account for this.  One possibility is that D-V development occurs at the 

same time and has the same mechanistic basis in echinoids and O. aculeata but that NiCl2 

does not have the same proximal molecular/biochemical effect in O. aculeata as it does 

on echinoids.  For example, perhaps NiCl2 specifically inhibits some gene product in 

echinoids that is involved in D-V development in both groups but the same gene product 

in O. aculeata is somehow resistant to inhibition by NiCl2.  Several lines of evidence, 

however, argue against this.  First, NiCl2–treatment radialized all four different echinoid 

species examined.  If genetic differences are to be the explanation of different phenotypic 
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differences between echinoids and O. aculeata, one might expect to see larger phenotypic 

differences between these genotypically divergent echinoid species.  Second, such a 

possibility does not account for some of the similar phenotypic effects that NiCl2 does 

have on these two different groups.  Alternatively, it is possible that some aspects of D-V 

development share a mechanistic basis between these two groups but that others do not.  

If those mechanisms that are sensitive to NiCl2 play a more significant role in echinoids, 

this might explain why a more severe phenotype is seen in this group.  This possibility 

would more reasonably account for similar phenotypic effects between the groups and 

would also explain the differences.  This possibility would also be consistent with a shift 

of at least some parts of the process of D-V specification to an earlier stage of 

development. 

To address the mechanisms which underlie D-V establishment in O. aculeata 

more conclusively, there are several genes that could be cloned (BMP 2/4, nodal, 

brachyury, etc.).  Once cloned spatial and temporal patterns of expression would need to 

be established and both over-expression and mis-expression assays would need to be 

performed.  In addition, to more aptly be able to describe abnormal phenotypes, 

molecular markers which can be used to identify different tissue types (such as oral 

ectoderm, aboral ectoderm, skeletogenic mesenchyme, endoderm, etc.) need to be 

produced and/or characterized. 
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