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Deployment of Intelligent Transportation Systems (ITS) is providing 

researchers and practitioners with an unprecedented amount of valuable on-line and 

archived traffic data. To date, ITS data have been used primarily to support real-time 

operational applications, while other potential uses of these data have been largely 

ignored.  

 

In this research, the effort to extract knowledge from the on-line or archived 

data gathered by Advanced Transportation Management Systems (ATMS) is focused 

on the estimation of dynamic origin-destination (OD) flows using optimization 

methods. In addition to their use for planning purposes, time-dependent OD flows can 
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be used as an input to Dynamic Traffic Assignment (DTA) systems. However, 

gathering OD demand flow information directly by conducting surveys is very costly 

and time consuming.  

 

To estimate the OD flows, a methodology is developed to minimize an overall 

measure of the deviation of estimated link-flows from the time-varying link-flow 

observations, subject to a set of constraints. The set of constraints could include non-

negativity constraints, initial condition constraints, cordon line counts and the user’s 

route-choice behavior or traffic assignment rules.  The traffic assignment solution, 

itself, is often obtained by optimizing an objective function. This objective function 

can explicitly be included in the constraints of the main or upper minimization 

problem. This formulation results in a bi-level optimization or theoretical game 

problem.  

 

 In this dissertation, the upper-level problem is formulated alternatively as 

linear and non-linear optimization problems. To solve the lower-level traffic 

assignment problem, a DTA simulation program, namely DYNASMART-P, is used 

to find the equilibrium flows. The suggested algorithm iterates between the upper-

level and the lower-level optimization problems for a pre-specified number of times 

or until convergence in terms of the estimated OD flows or the simulated link flows is 

achieved.  

 

To integrate the a priori information on OD demand flows with the 

information extracted from the link flow observations, adoption of the Bayesian 

inference method is proposed. If such information on OD flows is available, Bayesian 

inference treats the old information as the target values to update the estimated OD 

flows from the sample of the link flow observations. 
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CHAPTER 1. INTRODUCTION 

1.1.  Research Motivation and Objectives 

Deployment of Intelligent Transportation Systems (ITS) is providing 

researchers and practitioners with unprecedented amount of valuable on-line and 

archived traffic data. These data can be used in different applications such as traffic 

simulation, traffic control and Advanced Traveler Information Systems (ATIS). To 

date, however, ITS data have been used primarily to support real-time operational 

applications, while other potential uses of these data have been largely ignored. On-

line or archived data carry useful information that can be extracted to improve the 

theoretical and empirical basis of the models and procedures used in the analysis, 

design and operation of transportation systems. 

 

Real-time or archived data can be used in various transportation engineering 

applications such as Advanced Commercial Vehicle Systems (ACVS), Advanced 

Public Transportation Systems (APTS), Advanced Traveler Information Systems 

(ATIS), Advanced Traffic Control Systems (ATCS), transportation safety studies and 

traffic simulation. 

 

In this research, the effort in extracting knowledge from the on-line or 

archived data is focused on the estimation of dynamic origin-destination (OD) flows 

using optimization methods from the information gathered by Advanced 

Transportation Management Systems (ATMS). In addition to their use for planning 

purposes, time-dependent origin-destination (OD) flows may be used as input to 

Dynamic Traffic Assignment (DTA) models, and to improve the external consistency 

of DTA systems. The method presented in this research is implemented in 

DYNASMART-P, which is the planning version of a Dynamic Traffic Assignment 
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(DTA) simulation program developed at the University of Texas at Austin 

(Mahmassani et al., 2000). Two versions of this DTA system are now developed, 

with one targeted at applications in transportation planning, and the other 

(DYNASMART-X) intended for real-time control applications, ATCS and ATIS in 

the realm of Intelligent Transportation Systems (ITS). 

 

Time-dependent origin-destination flows constitute an essential input to DTA 

systems.  However, gathering OD demand flow information directly by conducting 

surveys is very costly and time consuming, and the required detailed information in a 

DTA system makes its collection and frequent update impractical if conventional 

methods are used.  

 

The method presented for OD-flow estimation can also be used internally in a 

DTA system to improve the consistency of the results with real world observations by 

reducing the overall errors due to assignment assumptions, flow propagation 

inconsistencies, etc. Doan, Ziliaskopoulos and Mahmassani (1999) have classified the 

sources of errors in a real-time dynamic traffic assignment system into the following: 

1) demand estimation errors, 2) path estimation errors, 3) traffic propagation errors, 

4) internal traffic model structure errors, and 5) on-line data observation errors. In this 

context, the state of a traffic network is specified by the path that every vehicle 

follows; if we know the exact spatio-temporal path of every vehicle in the network, 

the network state can be uniquely defined.  

 

Though continuing advances in wireless technologies have made it possible to 

track each suitably equipped or electronically tagged vehicle, widespread adoption is 

not likely in the near future. More importantly, concerns over privacy issues make the 

widespread adoption of this technology, except in emergency cases, improbable. 

Therefore, in a DTA system, the state of the system is usually estimated by 
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attempting to replicate the time-varying traffic flows in the network. Errors, then, are 

discrepancies between the observed link-level flows and the corresponding DTA 

model estimates. 

 

In practice, it is not possible to isolate errors caused by different sources as 

they are confounded in the observed error. The methods presented in this research to 

estimate dynamic OD flows rely on the results of the DTA simulation program. In 

these methods, the system-wide deviation of the simulated flows from the observed 

traffic flows are minimized, thereby reducing the combined errors arising from all 

different sources. 

 

The objective of this research is to propose efficient methods to estimate 

dynamic origin-destination demand flows from time-dependent traffic flows using 

well-established optimization methods, with the flexibility to incorporate in the 

formulation information that might be obtained from other sources. In this research, 

the DTA simulation program is used to assign traffic to the network and to estimate 

the values of the parameters required for estimation of OD flows. The proposed 

methods are such that once the estimated OD matrix is assigned to the network, the 

observed flows would be as close as possible to the measured time-varying traffic 

volumes. Thus, the estimation process can be used to improve the external 

consistency of the DTA simulation program. The estimated time-dependent OD 

matrix will also provide an essential input required to run a DTA simulation program 

to deliver route-guidance to drivers and to assess ITS-related traffic control and 

planning strategies. 

 

The problem addressed in this research is as follows: Given the observations 

of the time-varying traffic flow on the links in a network, we seek to estimate the 
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time-dependent origin-destination flows, which, when assigned to the network, result 

in traffic volumes that are as close as possible to the measured link volumes.  

 

The general conceptual optimization problem for estimation of dynamic 

origin-destination flows from dynamic traffic flows can be written as follows: 

 

)),,,(ˆ,(* PFRDCCD Zmin arg=    (1.1) 

subject to: 

set of constraints 

 

where Z is a general function of links’ measured traffic volume, C, and the estimated 

link flows, Ĉ, which in turn is an implicit function of OD demand flows, D, users’ 

route-choice behavior, R, flow propagation rules, F, and set of control policies, P, 

among others. Function Z should be of a form to represent the errors in estimation. 

 

The set of constraints depends on the application of the problem as well as the 

desired level of accuracy, and it can include non-negativity constraints, initial 

condition constraints, fixed OD demand values (if information on some OD flows is 

known with certainty), cordon line counts, etc. On the other hand, users’ route-choice 

or traffic assignment rules are often obtained by optimizing an objective function, 

which can be explicitly included in the set of constraints. This formulation results in a 

bi-level optimization or theoretical game problem (Bard, 1998).  

 

In this research we seek to estimate OD demand values by minimizing the 

sum of squared errors in estimation of time-varying traffic volumes. Therefore, the 

above conceptual objective function can be more explicitly written as: 
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[ 2
),(),(

* ˆminarg ∑∑ −=
l t

tltl ccD ]     (1.2) 

subject to:  

set of constraints 

 

where c and ĉ represent the observed and estimated (simulated) traffic volumes 

respectively, l denotes sequential link numbers that have traffic volume data, and t 

denotes sequential observation interval numbers. A complete formulation is provided 

in Chapter 3. 

 

In general, the deviation in observed flows and estimated flows can be due to 

different sources of errors. 

 

UPFR ΕΕΕΕΕ +++++= DCC ˆ + interaction error terms      (1.3) 

where  

C is the vector of time-varying link flow observations 

Ĉ is the vector of time-varying traffic volumes on links resulting  

 from simulation  

DE  is the vector of errors due to using the ‘estimated’ OD flows as the 

input 

RE  is the vector of errors due to inconsistencies in traffic assignment  

assumptions 

FE  is the vector of errors due to inconsistencies in flow propagation  

assumptions 

PE  is the vector of errors due to inconsistencies in traffic control 

assumptions 
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UE  is the vector of errors due to unknown or other sources including  

 traffic volume measurement errors (sensor errors)  

 

We combine all sources of errors and denote it by Ε, that is 

Ε+= CC ˆ       (1.3) 

 

Equation (1.3) coupled with the relation among simulated link flows, link-

flow proportions and OD demand flows (as stated below) constitute the basic 

formulation for estimation of dynamic OD flows from traffic data. 

 

DPC .ˆˆ =       (1.4) 

or 

Ε+= DPC .ˆ       (1.5) 

 

where P̂ denotes the link-flow proportion matrix, which consists of elements 

denoting fraction of vehicular demand flows from i to j, starting their trips during 

departure interval τ, that are observed on link l during observation interval t. In a two 

dimensional representation of link-flow proportions, (l,t) denotes the rows and (τ,i,j) 

represent the columns (the elements of matrix are shown in Chapter 3) . 

),,)(,( jitlp τ

 

Minimization of equation (1.2) produces estimates of the optimal time-

dependent OD flows that minimize the overall sum of squared errors. As mentioned 

before, the key point is to estimate time-dependent OD flows, which, when assigned 

to the network, result in time-varying link flows that are as close as possible to the 

measured link volumes.  
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1.2.   Overview of Proposed Methods 

To solve the optimization problem stated in (1.3), researchers have adopted 

different methods, which are reviewed in more detail in the second chapter of this 

dissertation.  

 

The methods proposed in this research are based on the generalized least-

squares (GLS) estimation technique. In the formulation of the problem in a 

transportation network, link-flow proportions play a key role. In a dynamic traffic 

assignment, particularly when the network is congested, the values of these variables 

are not constant and depend on the (unknown) OD demand flow values, though their 

dependence on OD flows is often ignored. 

 

To address this problem in the static case, some researchers have adopted a bi-

level optimization formulation. By solving a traffic assignment problem in the lower-

level optimization, the dependency of link-flow proportions on demand flows is 

incorporated in the solution. The first approach presented in this research adopts the 

same method and extends it to the dynamic case. In the upper-level, we treat equation 

(1.5) as a quasi-linear equation and obtain the conventional generalized least-squares 

estimate of the time-dependent demand flows. In the lower-level, we use the DTA 

simulation program, DYNASMART-P, to find the equilibrium flows and link-flow 

proportions. We iterate between the upper-level and lower-level optimization 

problems for a pre-specified number of times or until convergence in terms of 

estimated OD values or simulated link flows is achieved. We name this approach Bi-

Level Generalized Least-Squares Estimation Method (Bi-GLS). This formulation is 

akin to a theoretical game with upper-level and lower-level players or groups of 

players.  
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In the second proposed method in this research, the problem is formulated as a 

non-linear optimization problem. To find the optimal OD flows, we explicitly include 

the derivative of link-flow proportions with respect to demand flows in the derivation 

of the optimality conditions. As presented in Chapter 3, the solution to this approach 

results in a fixed-point problem formulation that can be decomposed into a set of 

simultaneous quadratic equations. Finding the derivatives of link-flow proportions 

with respect to demand flows is the challenging issue in this approach, particularly in 

a dynamic traffic assignment environment 

 

Because an analytical relation cannot be established between link-flow 

proportions and dynamic demand flows in a transportation network, the DTA 

simulation program is used to estimate the derivatives numerically. As the values of 

the derivatives might change with the (unknown) OD flow values, we may still need 

to use the bi-level (non-linear) optimization formulation (Bi-NLP); in this case the 

upper-level is formulated as a non-linear optimization problem, while the lower-level 

is an equilibrium dynamic traffic assignment problem, solution to which results in the 

estimated values of link-flow proportions and their derivatives. 

 

For clarity, the derivation of the non-linear optimization formulation is 

presented in two stages: first it is assumed that the error terms are independently and 

identically distributed (i.i.d); due to similarity of this assumption to the assumptions 

made in ordinary least-squares estimation, we call this formulation as Ordinary Non-

Linear Optimization formulation. This formulation is then extended to the cases 

where there are (known) correlations among error terms; we call this approach a 

Generalized Non-Linear Optimization Formulation. 

 

To incorporate a priori information on OD demand values with the 

information extracted from the link flow observations, implementation of Bayesian 
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inference method is proposed. If such information on OD flows exists, Bayesian 

inference treats the old information as the target value and updates the outdated or 

recent OD flow values with the information obtained from the link flow 

measurements. It is shown that using the Bayesian inference method results in OD 

demand flows as if the target OD demand flows are directly incorporated in the 

generalized least-squares estimation. The former method is preferable, because the 

existing past information can be combined with the estimated OD demand flows, 

irrespective of the estimation method.  

1.3.   Dissertation Overview 

In the next chapter, the background on estimation of OD flows from traffic 

counts is reviewed. In this review, special attention is paid to methods pertaining to 

generalized least-squares estimation of demand flows. In Chapter 3, the formulation 

of the proposed methods is presented, first the existing generalized least-squares 

estimation is extended to a bi-level optimization problem to estimate the time-

dependent OD flows and then, the bi-level non-linear optimization formulation is 

presented. The formulation of the problem is further extended to rolling-horizon 

instances. In Chapter 4, Bayesian inference method is reviewed and its applications to 

the estimation of dynamic origin-destination are discussed. In Chapter 5, issues 

regarding implementation of the proposed methods as an integral part of 

DYNASMART-P simulation program are discussed. In Chapter 6, the performance of 

the proposed methods is examined by testing hypothesis and conducting pertaining 

experiments.  In Chapter 7, future research and possible extensions are discussed. The 

pseudo-codes of the added algorithm to DYNASMART-P system for each of the 

proposed methods are described in Appendices A to E. 
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CHAPTER 2. BACKGROUND ON OD-FLOW ESTIMATION FROM TRAFFIC 

COUNTS 

2.1.  Introduction 

In general, there are three different categories of methods for OD estimation. 

The most traditional and the costliest method is to conduct surveys for the direct 

sample estimation of the OD matrix. Many types of surveys such as home or 

destination interviews, roadside interviews or a combination of those may be used 

(Cochran, 1963; Yates, 1981). 

 

A second commonly used method can be defined as model estimation. The 

OD matrix is estimated by applying a system of models that give the number of 

journeys made during a certain period of time. In this method the demand models are 

used as a relation between the OD matrix (to be estimated) and other variables such 

as socio-economic, geographic and transportation supply characteristics. Model 

specification and parameter estimation can be performed based on the results of the 

surveys carried out in the study area, or other models calibrated in similar areas. 

 

Finally, the third method is estimation of the OD matrix from traffic flows. 

This method is more recent than the other two methods. Approaches for estimation of 

OD matrices from traffic counts have been motivated primarily by the practical 

realities of limited data availability, and relative ease of obtaining link traffic counts 

compared to more elaborate survey procedures. The approximate nature of this 

approach is offset by its practicality and affordability. Furthermore, with increasing 

deployment of ITS in recent years, traffic flow data are collected continuously and at 
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no extra cost; therefore, the time-dependent OD can be updated as frequently as 

desired, which is not practical with conventional household surveys. 

 

Review of the previous works on estimation of OD flows from traffic counts 

is presented in two sections. The first section provides a general and historical 

presentation of different approaches for estimation of OD flows from traffic counts. 

In the second section, some of the works that are closely related to the proposed 

methods in this dissertation are discussed in more detail. 

 

2.2.   General Review of Estimation of OD Flows from Traffic Counts 

Up to the late 1980’s, most OD estimation methods using traffic counts dealt 

with “static” estimation problems, which seek to estimate average OD flow rates that 

are assumed to be constant over a significant period of time, given average link traffic 

flow measurements over the same period. Robillard’s works (1973, 1975) represent 

the first major effort in this area. He solved a linear regression problem to determine 

the total originating and terminating trips for each zone. A generalized gravity model 

was then used to determine the trip table. Willumsen (1978) and Nguyen (1982) 

provide extensive bibliographies. 

 

In the static case, the problem is generally under-specified, that is the number 

of links with aggregated traffic flow data in the network is less than the number of 

unknowns (OD matrix cells). Therefore, prior beliefs about the OD matrix must be 

incorporated to allow a unique solution.  

 

The estimation process tries to minimize a measure of distance, “entropic” or 

Euclidian, from a “target” matrix given by a model or by an old direct estimate, 

taking into account the traffic flow measurements on the links, in such a way that if 
 11



the estimated OD matrix is assigned to the network, the observed flows would be as 

close as possible to the measured flows (Gur et al., 1980).  

 

The early works used the closely related principles of minimal information 

and maximum entropy, as the entropic distance, to formulate the problem as an 

optimization problem. Willumsen (1981) gives a useful general description of the 

method. Methods for producing trip matrices in this way have been proposed by 

Robillard (1975), Willumsen (1982), Van Zuylen and Willumsen (1980), using the 

assumption of proportional assignment, and by Nguyen (1977) and LeBlanc and 

Farhangian (1982) using equilibrium assignment. 

 

The problem of estimating turning flows at an intersection from traffic counts 

on the inflows and outflows are of the same form and work by Jeffreys and Norman 

(1977), Mekky (1979), Van Zuylen (1979) and Cremer and Keller (1981) has been 

directed toward solving this problem.  

 

Later some statistical aspects of the estimation were considered. Bell (1983) 

expressed the variance-covariance matrix of the maximum entropy estimator and 

Maher (1983) proposed a Bayesian estimator for the OD table in which a multivariate 

normal distribution was hypothesized for both the trip matrix prior distribution and 

the observed flows. 

 

Cascetta (1984) used generalized least-squares (GLS) estimators to combine 

direct estimates, as the “target” table, with the traffic counts on some network links 

by means of an assignment model. The presence of measurement errors and temporal 

variability in the observed flows were explicitly considered. Bell (1984) showed that 

the GLS approach approximates the entropy approach originally propounded by Van 

Zuylen and Willumsen (1980) when the link flows are known to a high level of 
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accuracy. Bell (1991) incorporated inequality (non-negativity) constraints in 

estimation of the static OD matrices using the generalized least squares method. Like 

many other authors, he assumed that link choice proportions are proportional to the 

demand level and are known with certainty. 

 

The earliest reported works to estimate “time dependent” OD matrices are by 

Cremer and Keller (1981, 1984, 1987) and Cremer (1983) who developed four 

methods for identification of dynamic origin-destination flows in interchanges. They 

proposed the following methods: an ordinary least-squares estimator involving cross-

correlation matrices, a constrained optimization method, a simple recursive 

estimation formula and estimation by Kalman filtering. At interchanges and 

intersections, traffic counts provide the total generation and attractions at the entry 

and exit points, and the estimator should estimate the distribution (the split ratios) of 

demand among different entrance and exit points. It is mentioned that in an 

intersection, enough information can be obtained from the traffic counts to make the 

problem over-specified in order to obtain a unique and biased-free estimates for the 

unknown OD flows without further a priori information. In these implementations, it 

was assumed that travel times from all origins to all destinations were known a priori. 

 

It should be noted that the estimation of dynamic OD flows for an interchange 

is different in nature from estimation of demand flows in a network because users do 

not have the option to take different paths from origin to their destinations. Therefore, 

there is no need to deal with any traffic assignment assumptions in estimation of OD 

flows in an interchange.  

 

Willumsen (1984) addressed the estimation of time-dependent trip matrices. 

Keller and Ploss (1987) used entropy maximization method to estimate OD’s at 
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intersections to provide better strategies for on-line signal control. Okutani (1987) 

used the Kalman filtering approach to estimate dynamic OD matrices.  

 

Since the early 1990’s, more attention has been accorded to the problem of 

“dynamic” OD estimation. The European Community program ‘DRIVE I’ founded 

the research project ODIN to assess the role of OD information in traffic control 

problems (Inaudi et al., 1991).  

 

A study by Cascetta, Inaudi and Marquis (1993) can be considered a 

milestone in estimation of dynamic OD flows from traffic counts in a network using 

the generalized least-squares method. This study is described in more detail in the 

second section of this chapter. 

 

Other approaches for estimation of dynamic OD flows include the works by 

Chang and Tao (1995), and Xu and Chan (1993). In those works, OD flows are 

estimated (without a priori information) by introducing numerous dynamic screen-

lines and assuming that travel times between origin and destinations and screen-lines 

are known.  

 

Ding, Mirchandani and Nobe (1999) have revisited the static OD estimation 

problem. They have presented one non-iterative (open-loop) method and one iterative 

(closed-loop) algorithm. In both methods, it is assumed that link-flow proportions are 

known with certainty. The non-iterative method is very similar to the Bayesian 

inference implementation proposed by Maher (1983). In the closed-loop method, 

algorithm iterates based on the computed OD matrix and finds the incremental 

difference in OD demand mean values and their variances. It is claimed that by using 

the incremental difference, one can forecast the traffic volume in near future and it 

can be used in real time for estimation of traffic volumes in short time intervals, but 
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still most of the formulation and specifically link-flow proportions are specified for 

the static case. Furthermore, in the implementation, in the first iteration the sum of 

squares of differences in observed flows and computed flows are minimized, while in 

the subsequent iterations the sum of the absolute differences are minimized. 

 

Dixon and Rilett (2000) have incorporated Automatic Vehicle Identification 

(AVI) data to estimate the OD demand flows. They compare four different estimation 

methods, two of them are Generalized Least Squares estimation methods and the 

other two are based on Kalman filtering techniques. The methods were used to 

estimate OD flows on twenty kilometers (12.5 miles) of a freeway stretch in Houston. 

AVI data were used to provide link volumes, link-flow proportions as well as 

observed OD flows.  

 

Ashok (1996) and Kang (1999), in their dissertations used the Kalman 

filtering techniques for estimation of OD flows. Ashok used Kalman filtering to 

estimate OD demand values directly, and Kang introduced the concept of polynomial 

(third degree) variation of OD demand values within each estimation period to reduce 

the degrees of  under-specification of the problem. He used Kalman filtering to 

estimate the coefficients of the polynomial functions. 

 

2.3.   Detailed Review of More Related Research Works  

Cascetta, Inaudi and Marquis (1993) generalized the statistical framework 

proposed for the “static” problem and extended it to the dynamic OD estimation case. 

Another contribution was related to the formulation of the estimation problem for a 

general network making use of the notation and modeling results in the field of 

Dynamic Traffic Assignment. They used the notation of “flow proportions” as the 

fraction of OD flow that contributes to the flow on a link in a time interval. As their 
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work is very similar to the estimation method proposed in this dissertation, it is 

explored in more detail. 

 

Two types of estimators were proposed: simultaneous estimators which 

produce joint estimates of the whole set of OD matrices, and sequential estimators 

which produce a sequence of OD estimates for successive time slices. They used the 

Generalized Least- Squares (GLS) method, which combined traffic counts with other 

available information on OD flows such as earlier matrices and surveys.  

 

The objective function in the optimization process consisted of the sum of two 

functions: 1) a function of deviation of time dependent OD from an old or assumed 

OD matrix, and 2) a function of deviation of traffic counts and link flows obtained by 

assigning the old demand matrix. Specifically, 
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where 

hs   is the current value of the demand vector departing at time interval h,  

hd̂  is the estimated or target value of demand departing at time interval h. 

It is mentioned that the number of stochastic equations in observed 

flows (nl.nh) is usually smaller than the number of unknown OD 

demand flows (nr.nh), therefore existence of a target matrix is needed 

to make the problem over-specified. (nh is the number of observation 

or departure intervals, nl is the number of links with observed flows, nr 

is the number of OD pairs.) 
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hv̂   is the counted traffic flows on links at time interval h. It is the estimate 

of the flow due to the errors in measuring the actual flows. 

htP̂   is the matrix of elements , the fraction of OD flow  contributing 

to the flow on link l in interval h. This matrix is calculated based on 

the current demand matrix, s

rt
lhp̂ rtd

t. It is mentioned that these values can be 

obtained through path choice and Dynamic Network Loading (DNL) 

models. 

Vh  is the variance-covariance matrix of the vector of sampling errors 

affecting the estimate of d . h
ˆ

Wh  is the variance-covariance matrix of the combined assignment and 

measurements errors. 

 

The authors also proposed a sequential estimator, in which a demand vector 

for a single interval h is estimated at each time interval:  

The main idea in this approach is that of expressing the counts 
of a period h as a linear (stochastic) function of the unknown 
demand of the same period only. This is achieved by equating 
the demand relative to previous periods to the already-
computed estimates d . *

t
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It is suggested that if Bayesian inference is used, the estimated OD flows in 

the previous period be used as an initial value for the current period ( d ). hh d̂*
1 =−

 

The authors further modified the formulation to compute the average demand 

over an aggregated time interval based on aggregated traffic counts. In this case, the 

actual demand between OD pair r leaving in period t, drt, is broken into two 

components, that is 

 

 rtrrt dd ε+=  

 

or in matrix form, 

 

 tdd ε+=t  

 

where 

rd  is the average value of demand (of OD pair r) over the entire observation 

period H, i.e. ∑=
t

rthr dn )/1(  d

rtε   is the residual (deviation from the average value of OD pair r) at time interval 

t. 

 

Consequently, 
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Therefore, an overall GLS or multivariate normal (MVN) Bayesian estimator is 

obtained: 
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A particular case of the estimator is obtained when the number of independent 

equations from traffic counts (nh.nl) is larger than the number of unknown OD 

demand cells (nr), in which no sampling or a priori information is needed (infinite 

variance of the prior distribution of rd ). In this case the average OD demand 

estimator is: 
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Despite the authors’ significant contributions to the estimation of dynamic OD 

matrix, their assumptions and implementations have several shortcomings: 

 

• In the sequential estimation of demand (consecutive estimation 

periods), OD demand values for only time interval h is computed. 

Though this method might work well for a very small network 

(freeway links) or for an intersection, it is not suitable in a large 

network where long trips that are initiated in time interval h might not 

have reached their destination by the end of this time interval. If the 

time interval h is assumed to be long enough, the problem will tend 

toward the static case. In addition, vehicles that start their trip toward 

the end of the time interval h, mostly will not reach their destination by 
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the end of the estimation interval. Therefore, in both cases, there may 

be a bias or high variance in the estimation of OD flows. It is not clear 

how the interval should be set to circumvent this problem. 

 

• In the formulation, it is assumed that traffic volume on a link is 

linearly proportional to the demand (proportional assignment). In other 

words, in that formulation, like many other published works, the 

dependence of link-flow proportions on the demand is not explicitly 

included in the solution procedure. This dependency and non-linearity 

in link-flow proportions can be significant in a dynamic traffic 

assignment and particularly in congested networks. 

 

To validate the models empirically, the authors implemented the method to 

estimate OD flows in a section of a freeway 140 km (87 miles) long, with 19 origins 

and 19 destinations, 171 one way OD pairs, and with 54 links. The authors had access 

to information on origin, destination, entrance, and exit time of each reported vehicle 

with the precision to the minute. The following points in those experiments are 

noteworthy: 

 

• The authors knew the desired OD flows. Traffic counts were not 

measured, but they were computed “numerically” from the known OD 

flows. In addition, the link-flow proportions were computed coherently 

such that they would reproduce exactly the computed flows, given the 

exact demand. (The authors have acknowledged that this will 

overestimate the statistical performance of the tested methods.) 

• When demand for an OD pair and a departure interval was low, the 

estimate had relatively large errors, therefore in the measure of 

performance, demands less than ten vehicles were not included. 
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• The problem was solved for the case that disturbances had constant 

variance and were not autocorrelated, that is V and W . I=−1
h I=−1

h

• The simultaneous estimation was done on a two-hour time period. 

Three different departure intervals were considered: two hours, half an 

hour and 15 minutes. As an example, the estimation reduced the 

RMSE of the initial guess from 19 to 15 vehicles per departure interval 

when departure interval was two hours and from 7.6 to 5.7 vehicles per 

departure interval when departure intervals were 15 minutes. As 

mentioned, RMSEs were computed only for the demands greater than 

10 vehicles per departure interval. 

• The authors also tried different weights for the two functions in the 

objective functions (2.2). Interestingly, the best result was obtained 

when the weight for the first term (sum of squares of deviation from a 

priori demand) was the smallest, i.e. 0.2, showing that the link flow 

observations carried the most information. This fact could be expected, 

especially in the designed experiments where link-flow proportions 

and traffic counts would exactly replicate the demand flows. 

• The sequential estimation method was also empirically validated. The 

18-hour period was divided into 72 intervals of 15 minutes. The 

estimation was conducted for each 15-minute interval, but the required 

information for the estimation of OD in each 15-minute interval was 

contained in a rolling horizon of the past two hours. In other words, it 

was assumed that all journeys would reach their destinations in two 

hours. Therefore, in each two-hour rolling horizon, the estimated 

demands of the first seven 15-minute departure intervals were assumed 

to contribute to the flows in the current estimation interval. 
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• Two different assumptions were made as a priori information. First, 

the estimation for the previous time interval was used as the a priori, 



and second the average daily demand flows, corrected for the flow 

volume in the current time interval, was used as the a priori. 

• Again, different weights were considered for the two functions in the 

objective function. This time when the weight for the a priori 

information was higher, the estimation had a better performance.  

• The problem with sequential estimation is that the vehicles that have 

just started their trips in the current estimation interval most likely 

have not reached their destination by the end of the estimation time 

interval. That is why when the weight for the a prior information was 

higher, the estimation performed better, because the traffic flow in 15-

minute time intervals cannot produce enough information for 

estimation of OD flows in a large network. 

 

Similar to the above work, most of the research work using optimization or 

generalized least squares methods has assumed proportional traffic assignment, that is 

it is assumed that the traffic assigned to a path or a link is linearly proportional to the 

demand values. This implies that link-flow proportions are treated as constant values. 

This assumption can be valid only in static and uncongested situations. 

 

Nguyen (1977) was among the first researchers to incorporate traffic 

assignment rule into the OD flow estimation process. He presented an approach to 

estimate an OD matrix based on the assumption that observed link flows represent 

network equilibrium in the sense of satisfying Wardrop’s first principle. He suggested 

solving the following nonlinear programming problem: 
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where 

fa      = observed flow on link a 

ta(x) = impedance function for link a 

jû    = observed OD impedance for interchange j 

Tj     = trips for interchange j 
k
jh    = number of trips from interchange j using path k, and 

k
jad   = 1 if link a is in path k for interchange j, and  

            0 otherwise. 

 

The decision variables (or unknowns) are the Tj’s and hj
k’s. The above 

optimization problem is very similar to an equilibrium traffic assignment problem and 

a few iterative solution algorithms, very similar to the user equilibrium traffic 

assignment problem, were introduced by Nguyen (1977) and Turnquist and Gur 

(1979). 

 

Yang et al. (1992) and Yang, Iida and Sasaki (1994) addressed the 

shortcoming of the assumptions that users route choice are independent of the OD 

demand in the static case. Oh (1992) examined the simultaneous estimation of OD 

matrices and proposed three different solution methods: penalty function method, 
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extrapolation method, and perturbation method. Florian and Chen (1994) presented a 

bi-level programming formulation for the OD matrix estimation problem in congested 

networks and developed a coordinate descent solution method. Yang (1994) extended 

this approach, still in the static case, and developed more general methods and 

heuristic algorithms to solve the problem in situations where link flow interactions 

cannot be ignored.   

 

In the static bi-level OD matrix estimation problem, the generalized least-

squares estimation model has been coupled with an equilibrium traffic assignment in 

the form of two simultaneous optimization problems. The upper-level problem seeks 

to minimize the sum of squared error of traffic volumes plus the sum of squared 

errors of a target OD matrix, whereas the lower-level problem represents a network 

equilibrium assignment that guarantees that the estimated OD matrix and 

corresponding link flows satisfy the user-equilibrium conditions. The problem is 

presented in the form of a bi-level programming problem with variational inequality 

constraints.  

 

The proposed bi-level optimization model has the following form: 

 

)()()()()(min 11 vvVvvttUtt −−+−−= −− TTtF  

subject to 

t ≥ 0, 

where v(t) solves 

0).( ≥− vevc T)(  for all e∈Ω(t) 

 

The variables U and V are weighting factors (or they could be variance-covariance 

matrices), t is a vector representing a target OD matrix, v is a vector representing 
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observed link flows and v denotes the link-flow estimates obtained by loading an 

estimate of OD matrix t, onto the network.  

 

Yang (1994) proposed two heuristic methods to solve the problem. In both 

methods, the lower-level network equilibrium problem is solved first based on an 

initial demand matrix. Then some influence factors, Z’s, are calculated as follows. 

 

In one of the methods, called iterative estimation-assignment (IEA) algorithm, 

the influence factors are defined as the link usage proportions, Z=[paw] (which are the 

same as link-flow proportion terms used in this research). In the other method, called 

sensitivity-analysis based algorithm (SAB), the influence factors are defined as the 

derivatives of link flows with respect to OD demands, Z=[qaw], where: 
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where A is the set of links, and W the set of OD pairs. 

 

The derivatives are obtained by performing a sensitivity analysis for a given 

solution of the network equilibrium problem. The sensitivity analysis method for 

equilibrium network flows has been developed by Tobin and Friesz (1988). 

 

Based on the calculated influence factors and the nonlinear reaction function, 

link flows (v) are linearly approximated as: 
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where (t*, v(t*)) is the current solution and t is the OD matrix which is estimated in the 

next iteration (t* is shown by tk and t by tk+1 in the following formulation). The upper 

level problem, then, is approximated as a quadratic programming problem. 

 

In the IEA implementation, where link proportions are taken as the influence 

factors, v(t)=Zt, where Z is the link proportions obtained in the last main iteration. If 

the non-negativity constraint is omitted, the least squares estimate of demand will be 

the typical GLS estimate:  
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The above equation is indeed the same as Bayesian inference with MVN distribution 

for the target demand matrix. 

 

In the SAB implementation, v(t) is linearized using Taylor’s expansion and 

the GLS solution to the upper-level optimization is slightly different: 

 

))(()( )()()(1)(11)(1)(1)1( kkkTkkTkk tZvvVZtUZVZUt +−++= −−−−−+  

  

In these iterative bi-level estimation algorithms, the reaction of the follower 

(the lower-level optimization) to the leader’s decision (upper-level problem) is 

explicitly taken into account. Therefore, the author claims that, both algorithms are a 

close representation of the actual decision-making in terms of a Stackelberg game. 
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Practically, the difference between the two proposed methods is as follows. In 

the IEA algorithm, the lower-level optimization problem is first solved and, then, 

based on the estimated demand matrix, a new set of link flow proportions, Z, is 

calculated. The calculated Z values are replaced in the upper-level equation to find a 

new set of OD flows. In contrast, in the SAB algorithm, the anticipated change of the 

traffic flows due to the change in demand flows is explicitly included in the upper-

level solution. The drawback of the latter method is that the derivatives of link flows 

with respect to OD flows should be computed in every iteration of the algorithm. 

 

Yang (1995) claimed that the two heuristic algorithms provide a close 

representation of solutions to a Stackelberg game, because for each estimated OD 

flow in the upper-level problem, t, the lower-level decision variables, v, are not 

assumed to be constant, but are updated based on the new estimated values of the OD 

flows using the relation v(t)=v(t*)+Z(t-t*). However, an iterative optimization-

assignment algorithm is an exact and efficient algorithm for solving Cournot-Nash 

games.  

 

In the next chapter of this dissertation, it will be shown that the first heuristic 

algorithm proposed by Yang, i.e. IEA, is still a solution to the Cournot-Nash game, 

because in the upper-level optimization, the dependence of link-flow proportions on 

the OD flows and their derivatives are ignored. In the bi-level nonlinear optimization 

formulation of dynamic networks, which is presented in this dissertation, the 

derivatives of link-flow proportions with respect to the dynamic demand flows are 

explicitly included in the estimation procedure. Therefore, it is expected that the 

solution will be closer to a Stackelberg game solution.  

 

The experiments by Yang (1995) on a few sample small networks indicate 

that, in general, both algorithms have similar performance. In terms of RMSE or 
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value of the objective function, both algorithms have comparable results after almost 

the same number of iterations. But if convergence is defined in terms of maximum 

difference between OD values, the SAB algorithm reaches convergence in fewer 

iterations, which indicates that this approach is more stable. The experiment results 

also confirm the need for scaling the target demand matrix based on the total 

observed OD flows, introduced originally by Ortuzar and Willumsen (1990). 

 

2.4.  Summary 

In this chapter, different methods for estimating OD flows from traffic counts 

in the static and dynamic cases were reviewed. Special attention was paid to several 

essential research works by Yang, Cascetta, Inaudi and Marquis whose approaches 

are similar to the methods presented in this dissertation. A detailed and critical review 

of each method is presented and the distinctions of the methods adopted in this 

dissertation are pointed out. In this dissertation, by adopting an iterative bi-level 

optimization method in the dynamic case, the simplifying assumption of the 

proportional assignment is dropped. By explicitly including the derivatives of link-

flow proportions with respect to demand, a Stackelberg solution to the theoretical 

game problem is sought. To exploit the a priori information on the OD flows, Bayes’ 

theorem is used. Furthermore, in the case of the sequential (or rolling-horizon) 

estimation of OD flows, a new formulation is presented. The formulation is different 

from the previous works due to the assumptions made on the initial state of the 

system at the beginning of each estimation stage.  
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CHAPTER 3. PROBLEM FORMULATION 

3.1.  Introduction 

In this chapter, the general formulation of the problem, the underlying 

assumptions and the methods to solve the problem are presented. As explained 

before, the objective of this research is to estimate time-dependent OD flows in a 

dynamic transportation network, which when assigned to the network produce link 

volumes that are as close as possible to the observed values. DYNASMART-P, which 

is a simulation-based Dynamic Traffic Assignment (DTA) program developed at the 

University of Texas at Austin, is used for the simulation of flow and assignment of 

the estimated OD-flows to the network. The parameters employed in the optimization 

problem, namely the link-flow proportions, are themselves a function of the unknown 

OD demand. Therefore, given an OD flow matrix, the DTA program is used to 

estimate the link-flow proportions. The assignment problem can be formulated as an 

optimization problem, which may be included in the set of constraints to the main 

optimization problem, resulting in a bi-level optimization formulation.  

  

First, the notation used throughout the chapter is introduced and the relevant 

time intervals are defined. In Section 3.3, the common unconstrained problem, i.e. the 

upper-level problem, is formulated and the associated error terms are described. The 

assumptions used to make the problem over-specified are also explained. In the same 

section, the ordinary and generalized least-squares solutions to the upper-level 

optimization problem are discussed. In Section 3.4, the algorithm for the iterative bi-

level generalized least-square (Bi-GLS) optimization for a quasi-linear formulation is 

described.   
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In Section 3.5, the link-flow derivatives are introduced in the optimization 

problem solution. The problem is first solved by using the ordinary non-linear 

optimization formulation, and then extended to the generalized non-linear cases. In 

section 3.7, the formulation of the bi-level non-linear problem (Bi-NLP) is 

introduced. In section 3.8, the characteristics of the bi-level optimization problem in 

the context of theoretical games are reviewed. 

 

The constrained optimization problems are discussed separately. Section 3.9 

deals with constrained optimization in the single-horizon case. The problem is further 

extended to the context of dynamic traffic assignment where OD flows should be 

estimated over rolling-horizon windows. Two scenarios are considered. 1) fixed 

initial point where the initial condition in each estimation period is dictated by the 

results of the previous estimation periods, and 2) free-initial point where the initial 

condition is not fixed and is governed by the instantaneous state of the system in the 

real network at the start of each estimation period.  In closing, a summary of the 

chapter is presented.  

 

3.2.  Definitions 

In the following list of variables, the capital bold letters represent matrices and 

the lowercase letters denote the elements of the matrices or scalar variables. This 

convention is followed throughout the text unless explicitly mentioned otherwise. 

 

t index for the observation or reporting intervals, during which the 

traffic volume is accumulated and reported, t = 1,…,T. 

s index for short departure intervals (the same size as observation 

intervals).  

l index number for links with traffic flow measurements, l=1,…,L.  
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τ (tau) index for aggregation intervals, τ=1,…,Γ. Each aggregation 

interval encompasses one or several departure intervals. 

nτ number of observation intervals in aggregation interval τ (assumed 

equal for all aggregation intervals).  

i  denotes the origin zone number, i=1,…,I. 

j   denotes the destination zone number,  j=1,…,J. 

T number of observation intervals in the estimation period.  

L number of links in the network that have flow measurements. 

Γ  (Gamma) number of aggregation intervals in the estimation period. 

I  number of origin zones in the network. 

J   number of destination zones in the network. 

),( tlv   actual traffic volume on link l, during observation interval t. 

),( tlc  measured or “sensed” traffic volume on link l, during observation 

interval t. 

),,( jisd  unknown demand volume in number of vehicles originating their trip 

at zone i during departure interval s with destination zone j. 

),,( jid τ  aggregated demand volume in number of vehicles with destination in 

zone j, originating their trip at zone i during aggregation interval τ.  

),,(
*

jid τ   optimal estimate of the aggregated demand volume. 

),,),(,( jistlp   link-flow proportions, that is the proportion of demand d(s,i,j) that flows 

onto link l during observation interval t; (l,t) denotes the index for the 

rows and (s,i,j) is the index for the columns of the matrix. 

),,(),,( jitlp τ   aggregated link-flow proportions, that is the proportion of aggregated 

demand flow d(τ,i,j) that flows onto link l during observation interval t,. 

),,(),,(ˆ jitlp τ  estimate of aggregated link-flow proportions resulting from the 

simulator.  
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),( tlω   (omega) is the error in traffic flow measurements on link l during 

observation interval t due to equipment, environment or other sources. 

),,)(,( jistlη  (eta) errors due to substitution of estimated link-flow proportion,  

, obtained from simulation for actual values of . ),,(),,(ˆ jistlp ),,(),,( jistlp

),,( jisζ  (zeta) is the deviation of demand flow d(s,i,j), from the average demand 

flow departing during aggregation interval τ that encompasses s. 

),( tlε   (epsilon) is the combined error terms in estimation of traffic volume 

on link l during observation interval t (this is the overall effect of ω, η, 

and ζ and their interactions). 

e(l,t) observed error (residual) which is an estimate of ),( tlε . 

Ε (Epsilon) the vector of combined error terms 

E  the vector of combined residuals (estimates of errors) 

V  vector of actual flows on the links. 

C   vector of measured flows on the links. 

D   vector of aggregated OD demand flows consisting of elements d(τ,i,j). 
*D   optimal estimate of vector of aggregated OD flows. 

P̂  matrix of estimated link-flow proportions (obtained from simulation) 

with L.T number of rows and Γ.I.J number of columns.  

W  variance-covariance matrix of the combined error terms ε(l,t). 

 

 

Figure 3.1 depicts the definition of the time intervals used in the formulations. 

The estimation period (stage) consists of T observation intervals. Several observation 

intervals t collectively make up an aggregate departure interval τ. The objective is to 

estimate the OD flows departing during aggregate departure intervals τ, given the 

traffic flow values during observation intervals t. 
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Figure 3.1. Definition of time intervals and OD-flow estimation stage 
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 Link-flow proportions are presented in a two-dimensional matrix as shown 

below. For clarity here is denoted by , where OD pair k is substituted 

for OD pair (i,j). 
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The OD flow matrix is a column matrix of the form: 
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Link flow observations are represented in a column matrix of the form: 
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With the above definitions, equation (1.5) can be rewritten in the following 

form.  
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It will be shown that in the upper-level optimization problem, the demand 

flows can be estimated by finding the least-squares estimate to the above over-

specified set of simultaneous equations.   

 
Next, we formulate the upper-level optimization problem with no constraints. 

  

3.3.  Formulation of Unconstrained Problem 

First, the actual traffic volume observed on link l during time interval t is 

related to the OD volumes of interest using the link-flow proportions, resulting in the 

following definitional equation: 
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Since true values of link-flow proportions are difficult to find, we substitute 

them with their estimate resulting from a dynamic assignment simulation program.  

Hence, some errors are introduced, that is:  

  

 ),,)(,(),,)(,(),,)(,( ˆ jistljistljistl pp η+=     (3.2) 

 

Substituting equation (3.2) in (3.1): 
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There are also some errors in traffic volume measurements, i.e. 

 

 ),(),(),( tltltl vc ω+=       (3.4) 

 

From (3.3) and (3.4), one obtains 
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 (3.5) 

 

To make the problem over-specified, we will estimate the aggregated demand 

flows over longer departure intervals than observation intervals. In general, there are 

Γ.I.J unknowns, while there are L.T equations. If there are not enough links with flow 

measurements in the network, we increase the length of departure intervals such that 
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JI

L
T ×

≤
Γ        

 

In other words, the ratio of the lengths of departure intervals to observation 

intervals should be greater than (I×J)/L, that is: 

 

 
L

JI
t

×
≥

τ
     (3.6) 

 

where |τ| denotes the length of departure intervals, say, in minutes, and |t| represents 

the length of observation intervals in the same time unit.  

 

Indeed, deployment of Intelligent Transportation Systems (ITS) can alleviate 

the under-specification of the problem. For example, if there are 2500 origin-

destination pairs in a network, flow measurements are reported in 30-second 

intervals, and data are collected on 250 links, the shortest departure interval that 

makes the problem over-specified is 5 minutes. In general, it is recommended to 

choose longer departure intervals to increase the over-specification of the problem 

and to reduce errors due to short-term variation and inherent randomness in the 

system. 

 

It should be noted that in considering the links with measurements, we ignore 

the measurements from detector sites between which there are no points of entry or 

exit of traffic. That is, if two detector sites are located on a link with no intermediate 

intersections or entry/exit ramps, traffic measurements at the two sites would be 

highly correlated and would not provide any extra information or equation. 

 

 38



Aggregating demand over longer time intervals also introduces some errors. 

Demand flow in each observation interval is equal to the average demand flow during 

departure interval τ, plus a random perturbation, that is 
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    (3.7) 

where s∈τ denotes the departure intervals contained in the aggregate departure 

interval τ.  

 

In equation (3.7),  is replaced by , and ∑
∈τs

jisd ),,( )j,i,(d τ ),,( jisζ denotes the 

deviation of demand flow generated during departure interval s  from its mean value 

during the aggregate interval τ as shown in Figure 3.2.   
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Figure 3.2. Induced errors due to aggregation of departure intervals 
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By substituting equation (3.7) in (3.5), one obtains  
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where 
τ

τ
τ n

p
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∑
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),,)(,(

),,)(,(

ˆ
ˆ , and tτ  is the index of the aggregate departure 

interval which encompasses the observation interval t. 

 

 

Equation (3.8) represents the general non-linear relation between traffic 

volume counts and the unknown demand flow including the confounded error terms. 

This relation shows that due to non-linearity, the combined error is not white noise. 

We assume that the sum of error terms and the interaction terms has a normal 

distribution with zero mean and unknown variance, but we will keep in mind that the 

existing interactions in the error terms are ignored, introducing a possible limitation 

on the performance of the estimation methods. Moreover, since we are ignoring the 

existence of the interaction terms, the estimator may not be efficient (by definition an 

estimator is efficient if it has the lowest variance among all unbiased estimators). 

 

We denote the combined error term by ε(l,t),  
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Therefore, the combined error term, is a non-linear combination of the errors 

due to the following sources: 
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- Substituting the estimated link-flow proportions. This error includes the 

errors due to: 1) inconsistencies in traffic assignment assumptions, 2) 

inconsistencies in flow-propagation assumptions, and 3) inconsistencies in 

traffic control assumptions. 

- Substituting the average aggregated demand flows for the varying demand 

flows within each departure interval. 

- Measurement of traffic volumes (sensor errors). 

  

Therefore, in the unconstrained formulation of the problem, we seek to find 

the demand flows that minimize the sum of squared errors in equation (3.9), or 

conventionally, the least-squares estimator of the set of equations:  
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Equation (3.9) can be represented in matrix form as  

 

    (3.10)      Ε+= DPC .ˆ

 

 

3.3.1. Ordinary Least-Squares Estimation 

 

We consider the following assumptions for the error terms Ε in equation 

(3.10) 

 E(Ε)=0 

 E(Ε ΕΤ)=σ2I       (3.11) 
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where E(.) denotes the expected value of any variable, I is the identity matrix of size 

L.T×L.T, and σ2 is the variance which is a known scalar value.  

 

Under the assumptions on error terms in (3.11), the least-squares estimates of 

the demand flows (computed below) will be unbiased with the smallest variance 

(known as an efficient estimator).  

  

To solve the unconstrained problem, we minimize the sum of squared 

residuals; i.e. we seek the optimum demand value D* that solves the following 

optimization problem. To avoid notational confusion, because of using the estimate of 

the link-flow proportion obtained from simulation ( P̂ ), we will use D to denote the 

estimate of demand as well as its true value. 

    (3.12) 
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which follows from noting that  is a scalar and thus equal to its transpose 

.  

CPD TT ˆ

DPC T ˆ

 

To find a closed-form solution to the above unconstrained optimization 

problem, we assume that the link-flow proportions are constant. Therefore, to find the 

value of D that minimizes the sum of squared residuals we differentiate (3.12) with 

respect to D and equate it to zero (Johnston, 1972). This will yield the conventional 

least-squares estimate of OD flows in equation (3.10). 

 

 0ˆˆ2ˆ2)( =+−=
∂
∂ DPPCPEE
D

TTT  
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If the rank of P̂  is greater than the number of unknown demand flows, then 

  

( ) ( )CPPPD TT ˆˆˆ 1* −
=      (3.13) 

 

 

3.3.2. Generalized Least-Squares Estimation  

 

Now we relax one of the constraints assumed for the error terms Ε, that is 

 

E(Ε)=0 

E(Ε ΕΤ)=σ2W       (3.14) 

 

where W is a known symmetric, positive-definite matrix of size L.T×L.T. 

 

Any positive definite matrix can be expressed in the form of F.FT, where F is 

nonsingular. So we can write (Johnston, 1972): 

 
TFFW .=         

so that 

IFWF T =−− 11 ..       (3.15) 

 

Pre-multiplying the model  by FΕ+= DPC .ˆ -1 gives 

Ε ′+′=′ DPC .ˆ       (3.16) 

where 

,ˆ.ˆ,. 11 PFPCFC −− =′=′     and       (3.17) ΕΕ .1−=′ F
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Using (3.14), (3.15) and (3.17), it is easily seen that 



 

IT 2).(E σ=′′ ΕΕ       

 

Therefore, equation (3.16) satisfies all the assumptions required for the 

ordinary least-squares estimation mentioned in equation (3.11). By substituting the 

transformations (3.17) in equation (3.13), we get: 

 

 ( ) ( )CWPPWPD TT 111* ˆˆˆ −−−=     (3.18) 

 

3.4.  Iterative Bi-level Generalized Least-Squares Estimation (Bi-GLS) 

As mentioned in the previous sections, to find the least-squares estimates of 

the demand flows, link-flow proportions should be calculated, but in a dynamic 

assignment and particularly in congested networks, the link-flow proportions are not 

constant, and are themselves a function of unknown time-dependent demand flows.  

 

To address this problem, link-flow proportions should be estimated 

analytically, or numerically by use of a dynamic simulation program, for a given 

demand flow. Then, given the link-flow proportions, the generalized least-squares 

estimates of the demand flows are found. The process is repeated for a pre-specified 

number of times or until a convergence criterion is met. 

 

To find the link-flow proportions, in each iteration, the presumed demand 

should be assigned onto the network. To assign the traffic to the network, users’ path 

choices should be replicated as closely as possible. There are several assignment rules 

(Sheffi, 1985) but there is no evidence that users’ actual path choice conforms to any 

of them. Furthermore, in the context of providing real-time information and route 

 44



guidance to drivers, there likely exist multiple user classes (MUC) that have varying 

degrees of information availability (Peeta and Mahmassani, 1995a).  

 

Peeta and Mahmassani (1995b) have formulated the user-equilibrium (UE) 

and system-optimal (SO) time-dependent traffic assignment problems. UE and SO 

procedures are integral components of DYNASMART-P, which is used as a tool in 

this research to solve the lower-level assignment problem resulting in time-varying 

link flows and link-flow proportions, given the demand flows. 

  

The resulting bi-level formulation is similar to a game with two (groups of) 

players, each trying to optimize its own objective function (Fisk, 1984). The 

equilibrium solution is the point at which optimality conditions for both lower and 

upper level problems are satisfied simultaneously. In user-equilibrium assignment, 

the lower player itself consists of a group of players each trying to minimize his own 

travel time; while in system optimal the supplier/manager of the transportation 

network assigns the traffic in a way to minimize the total travel time in the network.  

 

The schematic flow chart of the proposed process is shown in Figure 2. If a 

historical OD table is available, it could be incorporated in the formulation (Cascetta 

et al., 1993), or used as a priori information in a Bayesian inference scheme (Maher, 

1983). We prefer the separate Bayesian inference implementation, because it can be 

implemented independently from the OD-flow estimation method. 
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Initial guess of demand
(stored historical OD or link-flow proportions):

D(0) or P(0)

Calculate link-flow proportions, P(i),
by running the DTA given D(i)

Find the least-squares estimate of demand by solving
for D(i+1):

P(i) x D(i+1) = OBS

i=0

i=i+1

Convergence?

No

Yes

OD Estimation

Convergence criterion can be either in
terms of RMSE of link flows or pre-specified

number of iterations.

If initial link-flow
proportions were

given

D(i+1) = [D(i+1) + D(i) . (i+1)] / [i+2]

Bayesian inference

Figure 3.3. Flow-chart of the proposed bi-level optimization OD-flow estimation 
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3.5.  Ordinary Non-Linear Optimization Formulation 

This formulation is used in the upper-level problem and is an extension to the 

least-squares estimation method. However, in this formulation, the dependency of 

link-flow proportions on the demand is explicitly considered in taking derivatives to 

solve the upper-level optimization problem. Since we cannot find the derivative of 

link-flow proportions analytically, we use the simulation program to approximate the 

derivatives numerically.  

 

On the other hand, the value of the derivative of link-flow proportions with 

respect to the OD demand is dependent on demand values. Moreover, link-flow 

proportions are not a continuous function of demand. Thus, we should still solve the 

problem in two levels: minimizing the deviation of flows in the upper level, and 

finding link-flow proportions and its derivatives with respect to demand in the lower 

level.  

 

We repeat here equation (3.10): 

 

Ε+= DPC .ˆ       

 

and assume the following for the error terms Ε:  

 

 E(Ε)=0         

  E(Ε ΕΤ)=σ2IL.T      
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Since these assumptions are similar to the ordinary least-squares assumptions, 

we call the formulation that will be introduced as ordinary bi-level non-linear 

optimization formulation. 

  

We need to minimize the sum of squared residuals, that is to find D in (3.10) 

that minimizes the sum of squares of errors: 

 

  
).ˆ().ˆ(

)(
.

1

2

DPCDPC

EEeDZMin

T

T
TL

k
k

−−=

== ∑
=

 

We differentiate the above equation with respect to D, this time taking into 

account that link-flow proportions are a function of demand flows. Setting the 

derivative equal to zero:    

 

[ ] d)o,,(0.ˆˆˆ2)(
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∂
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do

T
TT

do

T

do

 

         (3.19) 

 

It should be noted that for each (ν,o,d) equation (3.19) results in a scalar value 

which is quadratic in terms of time dependent demand flows.  

 

In equation (3.19), 
),,( do

T

d
D

ν∂
∂  is a row vector of zero elements, except the entry 

pertaining to the demand flow from o to d departing during departure interval ν, 
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which is equal to one. Therefore T

do

T

P
d

D ˆ
),,(ν∂

∂ is a row vector (1×L.T) denoting the 

proportions of demand flow d(ν,o,d) on all links during each observation interval.  

 

A term ignored in most of the previous studies is 
),,(

ˆ

do

T
T

d
PD
ν∂

∂ . As mentioned 

before, the link-flow proportions are not constant and are themselves a function of the 

(unknown) demand flows and users’ route-choice behavior. In congested dynamic 

networks, a change in any demand flow, d(ν,o,d), can change the route choice of other 

users, who have started their trips before or even after departure interval ν. Since 

finding a closed-form relation between link-flows, and consequently link-flow 

proportions, and demand flows in a dynamic network is not feasible, we will use a 

simulation program to estimate the partial derivatives of the link-flow proportions 

with respect to demand. Estimation of derivatives in a large network is very time 

consuming since they should be recomputed at different demand levels and for each 

OD pair and departure interval. 

 

If the above term is included in the equations, it will result in a set of L.T 

simultaneous quadratic equations. Numerical methods can be used to solve this set of 

equations. By using the following notational definition 

 

 T

do

T
T

do P
d

DP ˆˆ
),,(

),,(
ν

ν ∂
∂

=      (a row vector of size 1×L.T) 

 
),,(

),,(
ˆˆ

do

T

do
T

d
PP
ν

ν
∂

∂
=∇       (a matrix of size Γ.I.J×L.T) 

 

one can rewrite the equation (3.19) as 
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[ ][ ] 0ˆˆˆ
),,(),,( =−∇+ CDPPDP T

do
TT

do νν  

 

or  

 

[ ] CPDPPPCDPPD T
do

T
dodo

TT
do

T
),,(),,(),,(),,(

ˆˆˆˆˆˆ
νννν +−∇=∇  ∀ (ν,o,d) 

         (3.20) 

 

Note that the above equation results in a scalar quadratic relation in terms of 

unknown OD values (as shown below). If the following notation is used: 

 

    (a Γ.I.J × Γ.I.J matrix) PPA T
do

do ˆˆ
),,(

),,(
ν

ν ∇=

 [ ]PPPCB T
oddo

Tdo ˆˆ
),(),,(

),,(
νν

ν −∇=  (a 1 × Γ.I.J matrix) 

    (a scalar value) CPg T
do

do
),,(

),,( ˆ
ν

ν =

 

we can rewrite equation (3.20) as: 

 
),,(),,(),,( dododoT gDBDAD ννν +=   ∀ (ν,o,d)  (3.21) 

 

For simplicity of notation, we use a sequential number for each element of the 

time dependent OD pair, that is, if: 

 

),,( jim τ=   

and  

),,( ′= jin τ  
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then, equation (3.21) can be written in a scalar form: 

 

),,(

1

),,(

1 1

),,( do
IJ

m
m

do
m

IJ

m

IJ

n
nm

do
mn gdbdda ννν += ∑∑∑

== =

ΓΓ Γ

  ∀(ν,o,d)         (3.22)  

  

where  and  are the elements of matrices ),,( do
mna ν ),,( do

mb ν ),,( doA ν  and  

respectively.        

),,( doB ν

 

The set of equations in (3.20) can be written in the general form of a fixed-

point problem, . )(DfD =

  

If one ignores that the link-flow proportions are a function of the demand, say 

in a static case and in uncongested conditions, the conventional least-squares 

estimator of demand will be obtained. The resulting equation is the same as the 

conventional ordinary least-squares estimation of demand flow from traffic counts 

shown in (3.13). That is, if one assumes∇ , equation (3.18) is simplified to: 0ˆ
),,( =T

doPν

 

 ( ) ( )  CPPPD TT .ˆˆ.ˆ 1* −
=

    

3.6.  Generalized Non-Linear Optimization Formulation 

In the general case, if there is some correlation in the observed data, we can 

relax some of the assumptions on the error terms and assume the following relations:  
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 E(Ε)=0 

 E(Ε ΕT)=σ2W      (3.23)  

    

where W is a known symmetric, positive-definite matrix.  

 

It should be pointed out again that Ε denotes the combined effect of residuals 

due to errors in measurement, errors in estimation of link-flow proportions, and 

residuals due to aggregation of demand flows over several short departure intervals. 

 

Any positive definite matrix can be expressed in the form of F.FT, where F is 

nonsingular. So we can write 

 
TFFW .=        (3.24) 

so that 

IFWF T =−− 11 ..       (3.25) 

 

Pre-multiplying the model  by FΕ+= DPC .ˆ -1 gives 

Ε ′+′=′ DPC .ˆ       (3.26) 

where 

,ˆ.ˆ,. 11 PFPCFC −− =′=′     and       (3.27) ΕΕ .1−=′ F

 

Using (3.25) and (3.23), it is easily seen that 

 

      (3.28) IT 2).(E σ=′′ ΕΕ
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Therefore, equation (3.26) satisfies all the assumptions required for the 

ordinary non-linear optimization formulation mentioned in the previous section. By 

substituting transformations (3.27) in equation (3.19), we get 

 

[ 0.ˆˆˆ2)( 111

),,(

1

),,(),,(

=−







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
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∂
−=

∂
∂ −−−− DPFCFF

D
PDFP

D
D

D
DZ T

do

T
TTT

do

T

do ννν

]  ∀(ν,o,d)     

(3.29) 

       

and equation (3.20) becomes 

 

[ ] CFFPDPFFPPFFCDPFFPD TT
do

TT
do

T
do

TTTT
do

T 11
),,(

11
),,(),,(

1111
),,(

ˆˆˆˆˆˆ −−−−−−−− +−∇=∇ νννν

        ∀(ν,o,d)      (3.30) 

 

From equation (3.23) 

 

       (3.31) 111 . −−− = FFW T

 

Therefore, using the following notation: 

 

PWPA T
do

do ˆˆ 1
),,(

),,( −∇= ν
ν    (a Γ.I.J × Γ.I.J matrix) 

[ ]PWPPWCB T
oddo

Tdo ˆˆ 1
),(),,(

1),,( −− −∇= νν
ν  (a 1 × Γ.I.J matrix)    (3.32) 

CWPg T
do

do 1
),,(

),,( ˆ −= ν
ν     (a scalar value) 

 

we can rewrite equation (3.30) as: 

 
),,(),,(),,( dododoT gDBDAD ννν +=    ∀ (ν,o,d) (3.33) 
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If we use sequential numbering for elements of time dependent OD pairs, that is: 

 

),,( jim τ=   

and  

),,( ′= jin τ  

 

then equation (3.19) can be written in scalar form: 

 

),,(

1

),,(

1 1

),,( do
IJ

m
m

do
m

IJ

m

IJ

n
nm

do
mn gdbdda ννν += ∑∑∑

== =

ΓΓ Γ

  ∀(ν,o,d) (3.34) 

 

where  and  are the elements of matrices ),,( do
mna ν ),,( do

mb ν ),,( doA ν  and  

respectively. 

),,( doB ν

 

The set of equations in (3.33) or (3.34) can be written in the form of a fixed-

point problem, . )(DfD =

 

If we ignore the partial derivative of link-flow proportions with respect to 

demand flows, that is if we assume that∇ , the conventional generalized 

least-squares estimate is obtained: 

0ˆ
),,( =T

doPν

 

 ( ) ( )CWPPWPD TT 111 −−−= ˆˆˆ*     (3.35) 
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3.7.  Iterative Bi-Level Non-Linear Optimization (Bi-NLP)  

As mentioned in the previous sections, to find the least-squares estimates of 

the demand flows, we need to calculate the values of link-flow proportions and their 

partial derivatives with respect to the demand terms. Unfortunately, in general, and 

especially in dynamic networks, there is no closed-form equation for the partial 

derivative terms. Particularly, in a congested network, in both static and dynamic 

cases, this problem becomes more critical as drivers are more likely to switch to new 

paths. Path switching might cause some kinks in the value of link-flow proportions 

that will cause the derivatives to become discontinuous. 

 

To overcome this problem, both link-flow proportions and their derivatives 

should be estimated numerically by the use of a dynamic simulation program. Since 

the value of link-flow proportions and their partial derivatives are dependent on 

demand values, themselves unknown, an iterative procedure is needed to find link-

flow proportions and their partial derivatives, given a set of demand flows. Given the 

link-flow proportions and their partial derivatives we can find a generalized linear or 

non-linear least-squares estimate of demand flows and can then repeat the process a 

pre-specified number of times or until a convergence criterion is met. 

 

On the other hand, to find the link-flow proportions we should assign the 

presumed demand in each iteration to the network. For traffic assignment, we should 

try to mimic users behavior as closely as possible. Researchers have proposed several 

assignment rules, of which not any one in particular is followed by the users. 

Furthermore, in the context of providing real-time information and route guidance to 

drivers, we might encounter multiple user classes (MUC) in terms of access to the 

information and adhering to the provided information (Peeta and Mahmassani, 

1995a). In the context of this research, notwithstanding lack of generality, we will 
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assume user equilibrium assignment rules, consistently with most of the 

transportation science literature. 

 

In user equilibrium assignment, or any other method, the users or the supplier 

agency tries to optimize an objective function. In user equilibrium, each user tries to 

minimize his own travel time. According to Wardrop’s first principle, at equilibrium, 

no user can reduce his travel time by unilaterally changing his path. In the dynamic 

context, the mathematical formulation for this optimization is suggested as follows. 
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or alternatively, with the notation used in the formulation of OD-flow estimation, the 

above constraints can be rewritten as: 
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   (3.38) 

where 

(.)),( tlf is an (implicit) cost function of travel along link l at time t. If time is 

discretized the integration over time can be approximated by  

summation over observation intervals. 

 56



Kij is the set of paths between origin i and destination j. 
k

jiq ),,(τ  is the demand flow between origin i and destination j, departing at τ 

which takes the kth path between i and j.  
),,(
),,(

tlk
jiτδ  is the proportion of demand flow along path k, ,which traverses 

on link l in observation interval t. Unlike its static counterpart, path-

link incident variable which could only take values of zero or one, this 

variable has fractional values between zero and one.    

k
jiq ),,(τ

    

Alternatively, Dafermos (1980) has shown that the nonlinear optimization 

formulation for user equilibrium assignment in the static case can be represented by a 

variational inequality. If one extends the notation of his formulation to the dynamic 

case, one may obtain 

 

 Find V*∈X such that f(l,t)(V*)(V-V*)≥0 ∀ V∈X (3.39) 

 

where X is the feasible region that satisfies the flow conservation constraints and the 

non-negativity restrictions expressed in the first and second constraints in the set of 

equations (3.37). 

 

We will adopt the variational inequality notation to denote the user 

equilibrium assignment, as it is more compact. Therefore, the bi-level optimization 

program can be formulated as follows: 

  

Min   (3.40) ).ˆ().ˆ()( ** DPVDPVDZ T −−=

where V(D) solves  

 f(l,t)(V*)(V-V*)≥0 ∀ V∈X    (3.41) 
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As mentioned in the literature review, some authors have tackled the problem 

when route choice proportions are themselves the output of a congested assignment 

model (Oh, 1992; Florian and Chen, 1994; Yang et al., 1992). Yang (1995), as 

mentioned in more detail in Section 2.3, has proposed two heuristics to solve this bi-

level optimization problem. He claimed that his proposed algorithms are a close 

representation of the actual decision-making in terms of the Stackelberg game. In the 

solution of the upper level optimization, Yang ignored that link-flow proportions are 

dependent on demand flows and has found the traditional generalized least-squares 

estimate of demand, similar to equation (3.34). In the following section, by referring 

to a paper by Fisk (1984), we will explore why the Nash, and not the Stackelberg, 

solution is achieved if the partial derivative terms in the upper level optimization are 

not included.     

3.8.  Bi-level Optimization Based on Game Theory 

Bard (1988) provides a valuable theoretical and practical reference source for 

bi-level optimization problems and formulations. Fisk (1984) gives a good discussion 

of the basic assumptions and application of game theory in transportation systems 

modeling. In this discussion, we refer extensively to her work and adapt the examples 

presented in her paper to our case. 

 

Equations (3.40) and (3.41) can be viewed as a game with two players, each 

one trying to optimize his own objective function, upper and lower level objective 

functions. We denote the upper level performance function for estimating the 

optimum demand by Z1(D, P),  and the lower level for assigning the demand to 

network by Z2(D, P). We have used link-flow proportions as a surrogate variable for 

link volumes.    
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In a Nash non-cooperative game, the equilibrium state is characterized by the 

property that neither player can improve his objective by unilaterally changing his 

decision. For a given strategy of the other player, i’s optimal strategy is found by 

solving 

 

      (3.42) ),(min PDZii

where D and P are demand and link-flow proportion matrices. 

 

The equilibrium solution is the point at which the optimality conditions for 

(3.42) are satisfied simultaneously. Suppose we have the following simple equations 

for Z1 and Z2: 

 

     (3.43) 1
2
111

2
11 2 dppddZ ++−=

      (3.44) 2
111

2
12 2 ppddZ +−=

then 

  012 11
1

1 =+−=
∂
∂ pd

d
Z    (3.45) 

  02 11
1

2 =+−=
∂
∂ pd

p
Z     (3.46) 

 

Note that in the above derivatives we have ignored that p1 itself is a function 

of d1. Solving equations (3.45) and (3.46) simultaneously produces 

 

  22209232 11 .* −=−=−= Zd   (3.47) 

  77709731 21 .* ==−= Zp   (3.48) 

 

This is the result of the Nash non-cooperative game. 
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In the Stackelberg game, one player (the leader) knows how the other player 

(the follower) will respond to any decision he may make. If the player 1 (demand 

flow optimizer) is the leader and )( DhP = is the response of player 2 (traffic 

assignment optimizer) to decision D, then for any strategy D, the optimal reaction for 

the follower h(D) is obtained by solving 

  ),(min PDZ
P 2     (3.49) 

 

The leader’s optimal strategy is found by solving  

     (3.50) ))(,(min DhDZ
D 1

or equivalently 

   (3.51) 
),(min),(..

),(min

22
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PDZPDZts

PDZ

P

PD

=

 

In the above example, from (3.46) 2111 ddhp == )(  so that 

     1
2
1111 ddphdZ +=))(,(

and  

 012 1
1

1 =+=
∂
∂ d

d
Z      

Therefore 

 2504121 11 .,* −=−=−= Zd   (3.52)  

 44.0167,41 2
*
1 ==−= Zp   (3.53) 

 

Comparing the results of the above with those of (3.47) and (3.48), one can 

conclude that in the Stackelberg game, where the leader is aware of the response of 

the follower, the former can play in such a way as to improve the value of his 
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objective function. This improvement is not necessarily compensated by the 

deterioration of the follower’s objective function. In the above example, for instance, 

the objective function of the follower has improved too. 

 

In mathematical notation, the difference between solving the two theoretical 

games lies in the manner in which the derivative of the upper level optimization is 

obtained. In the Nash non-cooperative game, the fact that P is a function of D is 

ignored, while in Stackelberg game, this relation is taken into account. In other 

words, in minimizing (3.50) one will have 
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= .),( 111    (3.54) 

 

Equation (3.54) is equivalent to substituting h(D) for P and computing 

D
DhDZ

∂
∂ ))(,(1  . 

 

Since the relation stated in equation (3.54) is used in the derivation of 

equation (3.29) the result of the non-linear bi-level optimization to estimate demand 

is the solution to the Stackelberg game. Whereas, if the conventional least-squares 

estimate mentioned in (3.18) is used, the solution to the Nash game is achieved. It is 

worth noting that so far, in all the proposed methods, equations similar to (3.18) are 

used. Therefore, contrary to previous claims, the solution to the bi-level conventional 

least-squares optimization is the Nash solution, unless the partial derivative of link-

flow proportions with respect to demand is included in the formulations.     

 

Fisk (1984) continues by referring to an iterative multi-period Nash non-

cooperative game where each player tries to minimize his performance function 
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without prior knowledge of the other player’s function. In this case, in a given period, 

each player’s strategy is based on the other player’s strategy in the previous period. 

Thus in period k the solution ( is found by solving ), kk PD

  

),(min

),(min

PDZ

PDZ

k

x

k

x

1
2

1
1

2

1

−

−

    (3.55) 

 

This is equivalent to the iterative bi-level least-squares estimation procedure 

mentioned before. The principal difference between the Nash non-cooperative 

solution and the Stackelberg game is that in the former the upper level objective 

function is optimized only with respect to D.  

 

In dynamic transportation systems, finding a closed form equation for 

is not possible and it is suggested that an equivalent Stackelberg solution be 

sought by substituting  in the upper level objective function and 

optimizing it with respect to both variables, i.e. taking the partial derivatives with 

respect to both variables, as is done in derivation of equation (3.29). 

)(DhP =

)( 11 ++ = kk DhP

 

3.9.  Constrained Optimization for Single-Horizon Estimation 

So far in solving the upper level optimization problem, we did not include any 

explicit constraints except the lower-level optimization problem. We first introduce 

non-negativity constraints in a single-horizon estimation. From now on, the objective 

function is denoted by Z(D, h(D)) to indicate that in the optimization of the upper-

level, link flows, and subsequently link-flow proportions, are a function of the 

demand. 
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In single-horizon estimation, we findtime-dependent demand flows over a 

long continuous period of time. We include non-negativity constraints in the 

formulation. We can use archived traffic observations to estimate the demand 

matrices. The results can be used in short-term planning, such as work zone 

management, for on-line control applications, or can be archived for long-term 

planning studies. Definition of the time intervals and the estimation period are the 

same as depicted in Figure 3.1. 

 

The mathematical formulation of the upper-level optimization is as follows. 
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The first order conditions for the above problem can be stated as (Sheffi, 

1985): 
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         (3.56) 

 

As in equation (3.29), two conditions can be written as 
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and 
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As equations (3.18) and (3.33) show, the solution to  

 

do
D

DhDZ

do

,,))(,(

),,(

ν
ν

∀=
∂

∂ 0    

provides a set of linear or quadratic simultaneous equations in terms of demand flows. 

One heuristic solution to the set of equations (3.57) and (3.58) is to solve the set of 

simultaneous equations (3.33), and if d(ν,o,d) is negative, set it equal to zero. 

 

The following example shows why the above heuristic might result in non-

optimal solutions.   

 

Say, we want to solve the following constrained optimization problem 

 

  
0

422

21

2121
2
2

2
1

≥
−−++=

ddTS
ddddddDZ

,..
)(min

 

The first order conditions (3.56) can be written as 

 
0442and0)442(

0122and0)122(

21212

21211

≥−+=−+
≥−+=−+

ddddd
ddddd

  (3.59) 

 

The Hessian matrix is 

  







42
12
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which is positive definite, because both its first leading minor, 2, and its second 

leading minor (i.e. its determinant), 6, are positive. Therefore is strictly 

convex. Therefore, the solution to (3.59) will minimize the objective function. 

),( 21 ddZ

 

To solve the above set of equations, we should consider all combinations of 

possible solutions, i.e.  





=−+=
=−+=

0442or0
and ,0122or0

212

211

ddd
ddd

 

 

We should then check to see if the solutions will meet the non-negativity 

conditions of the variables and the partial derivatives. That is, to check if the 

inequality conditions in (3.59) are satisfied. It is clear that finding the optimal 

solution in this way for a large network can become combinatorial and non-efficient.  

 

Let us now consider the heuristic-solution case where we solve the non-

constrained problem, and set the negative results equal to zero, that is 

 

       (3.60) 
0442
0122

21

21

=−+
=−+

dd
dd

 

We will get 

 , and  Z(D) =  − 2.5   (3.61) 511 21 ., =−= dd

 

Since d1 is negative, we set it equal to zero. If we do not re-solve the set of 

equations (3.59) with d1 = 0, we will have 

 5.1)(,5.1,0 21 −=== DZdd     (3.62) 
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Though the above solution satisfies the inequality conditions in equation 

(3.59), it does not satisfy the condition  0442 212 =−+ )( ddd . Letting d1=0 in this 

equation, we find: 

 0)(,0,0 21 === DZdd     (3.63) 

or 

 2)(,1,0 21 −=== DZdd     (3.64) 

 

The possible solutions to the set of equations in (3.59) are summarized in the 

following table. 

 

Equation 1 Equation 2 d1 d2 Z(D) Feasibility 

2d1+2d2-1=0 2d1+4d2-4=0 -1 1.5 -2.5 N 

Setting  d1 in the above to zero 0 1.5 -1.5 Y 

d1=0 d2=0 0 0 0 Y 

2d1+2d2-1=0 d2=0 0.5 0 -.25 Y 

d1=0 2d1+4d2-4=0 0 1 -2 OPTIMAL 

 

 

As the results in the above table show, to obtain the optimal solution, we 

cannot simply substitute the resulting negative demand flows with zero, without re-

solving the equations. 

 

Therefore, one brute force approach is to set the negative demand flows equal 

to zero, one by one, and solve the set of generalized least-squares equations again, 

repeating the process for each negative demand flow. Another approach, especially 

justified in real-time applications, is to ignore the likely minor decrease in the 

objective function and not re-solve the set of equations. 
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One of the advantages of estimating OD-flows using a bi-level iterative 

method is that by setting the negative demand equal to zero (or any small number), 

we have to re-solve the lower-level problem (finding the link-flow proportions), and 

then return to the upper level to find the new set of demand flows based on the 

resulting link-flow proportions. Therefore, re-solving the problem with the 

constrained set of variables would be practically accomplished.  

 

3.9.1. Examining the Heuristic Proposed by Bell 

 

Bell (1991) has discussed the addition of non-negativity constraints and has 

proposed a heuristic algorithm for the problem, particularly for the conventional GLS 

formulation in static cases. He has also assumed that link-flow proportions are known 

with certainty and do not change, i.e. “the congestion effects are neglected.”  

 

As explained hereafter, implementation of the algorithm to the non-linear 

optimization case is not feasible. We also discuss why the implementation of the 

heuristic might not be as efficient as it seems. Thus, assessment of the efficiency of 

the algorithm will require further investigation.  

 

The problem can be formulated and solved as follows  

 

BDTS

DPCDPCeeeDhDZMin TT
TL

k
k

≥

−−=== ∑
=

..

)ˆ().ˆ())(,( **
.

1

2

 (3.65)  
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where B is the matrix of lower bounds for demand flows. In many cases the lower 

bound is zero. The algorithm can be modified to accommodate cases where the 

constraints impose upper bounds on feasible values. 

 

The problem is solved by forming the Lagrangian equation  

)())(,(),( DBDhDZDL T −+= ΛΛ    (3.66) 

 

where (Lambda) is a vector of Lagrange multipliers, that is in dynamic case λ . 

Since the objective function is convex and the constraints are concave, the necessary 

and sufficient conditions for a solution are given by 

Λ ),,( jiτ

 

0=∇ ),( ΛDLD  , and the complementary slackness conditions (3.67) 

0),(,0),( ≤∇=∇ ΛΛΛ ΛΛ DLDL  and  0≥Λ    (3.68) 

 

That is, we must minimize the Lagrangian function (3.66) with respect to D, 

and maximize it with respect to Λ, subject to Λ≥ 0. This is like finding the local 

minimum in a saddle shape surface. 

 

Condition (3.67) results in an equation similar to (3.28), but including the 

Lagrange multipliers: 

 

[ ] [ ] 01 =−−∇+ − TTTT DPCWPDP Λ** .ˆˆˆ     (3.69) 

 

 

The fixed-point formulation of the above equation, similar to equation (3.31), 

is: 
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[ ] [ ] *** ˆˆˆˆˆˆ DCWPDPWPDPWPPWC TTTTTT =+−∇−∇ −−−−− Λ11111    (3.70) 

 

If we ignore the terms denoting the partial derivatives of link-flow proportions 

with respect to demand, TP̂∇ , or in other words, if we accept the Nash solution to the 

bi-level optimization, we obtain the following equation 

 

 ( ) ( )Λ+= −−− CWPPWPD TT 111 ˆˆˆ*    (3.71) 

 

This is similar to the derivation by Bell (1991), except he included a target or 

historical matrix in the least-squares formulation. We will incorporate the historical 

demand data using Bayesian inference, as presented in Chapter 4. 

 

Application of the heuristic algorithm introduced by Bell (1991) to the non-

linear optimization case is not possible. Therefore, we will continue with the 

traditional GLS estimate presented in equation (3.71).  

 

Now the problem is to find Λ such that the second set of conditions stated in 

equations (3.68) is satisfied. For the sake of notational convenience, we define F as 

follows 

 

 ( )PWPF T ˆˆ 1−=      (3.72) 

 

Therefore, from equation (3.71) 

 

 1−=
∂
∂

=∇ FDD
ΛΛ      (3.73) 
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Since F, and therefore F-1, are positive semi-definite  

 

 0≥=
∂

∂
),,(

),,(

),,(
ji

ji

ji f
d

τ
τ

τ

λ
     (3.74) 

where is a term on the principal diagonal of F),,( jif τ
-1. 

 

Also from equation (3.66), at the solution 

 

 0≤−=
∂

∂
),,(),,(

),,(
jiji

ji

dbL
ττ

τλ
    (3.75) 

 

By extending the procedure proposed by Bell (1991), we can use the 

following algorithm for time-dependent OD estimation using traditional GLS method: 
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Conventional GLS estimate with non-negativity constraints 

Step 1 (Initialization) 

 set Λ = 0 (unconstrained estimation) 

Step 2 (Iteration) 

 repeat  

  for τ = 1, Γ ; i=1, I and j=1, J 

   calculate d(τ,i,j) from (3.71)  

   if d(τ,i,j) < b(τ,i,j) then  

set λ(τ,i,j)  = λ(τ,i,j)  + (b(τ,i,j) − d(τ,i,j))/f(τ,i,j) 

   if d(τ,i,j) > b(τ,i,j) then  

set λ(τ,i,j)  = max(0, λ(τ,i,j)  + (b(τ,i,j) - d(τ,i,j))/f(τ,i,j)) 

 until convergence. 

End of Algorithm 

 

Bell (1991) further discusses the convergence of the above algorithm (in the 

static case). Extending his discussion to the dynamic case follows. In accord with the 

Saddle Point theorem (Sheffi, 1985), we seek to maximize L*(Λ) with respect to Λ, 

where L*(Λ) is the minimum value of L with respect to D for given Λ. In step 2 of the 

algorithm, if after solving (3.71) we find that d(τ,i,j) < b(τ,i,j), we know from (3.75) that 

L*(Λ) can be increased by increasing λ(τ,i,j) . From (3.74) we see that increasing λ(τ,i,j) 

also increases d(τ,i,j) , so we should continue increasing λ(τ,i,j) until d(τ,i,j) = b(τ,i,j) . Hence 

in accord with (3.74), λ(τ,i,j) should be increased by (b(τ,i,j) − d(τ,i,j))/f(τ,i,j).  

 

Conversely, if after solving (3.71) we find that d(τ,i,j) > b(τ,i,j) , we know from 

(3.75) that L*(Λ) can be increased by reducing λ(τ,i,j) until d(τ,i,j) = b(τ,i,j) or λ(τ,i,j) = 0. 

This can be achieved by reducing by (b(τ,i,j)−d(τ,i,j))/f(τ,i,j), unless this would result in a 

number less than 0, in which case  λ(τ,i,j)  should be set to 0. Bell, further mentions 
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that, hence, each time λ(τ,i,j) is modified in step 2 of the algorithm, L*(Λ) increases. 

When no further modifications are possible, the algorithm terminates.   

 

A key point that is overlooked in the above discussion is the possibility of the 

existence of covariance terms. That is, the matrix ( )PWPF T ˆˆ 1−=  is guaranteed to be 

diagonal only if W-1 = I. Therefore in general, we will have  

 

 ),,(),,(0
),,(

),,( jido
d

ji

do τν
λ τ

ν ≠∃≠
∂
∂

  (3.76) 

 

It should be noted that because the link-flow proportions,  are all 

positive, the above term will have a positive value, unless some of the terms in W

),,(ˆ jip τ

-1 

are negative.  

 

The inequality (3.76) means that, in the general case, the increase or decrease 

in λ(τ,i,j), has unknown effects on other demand terms aside from d(τ,i,j) . Therefore, we 

are not necessarily increasing L*(Λ) every time we update the values of λ(τ,i,j) . So the 

convergence of the algorithm, in the general case, both in static and time-dependent 

OD estimation, is not guaranteed. However, as mentioned earlier, the practical 

implementation of the method is plausible and its practical convergence needs to be 

further investigated. 
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3.10.  Rolling Horizon OD-Flow Estimation—Implementation in the 

Realm of Dynamic Traffic Assignment  

We extend the bi-level optimization method presented earlier so that it can be 

implemented in a rolling horizon framework in conjunction with a dynamic traffic 

assignment model. In a rolling horizon application, the demand flow is estimated for 

shorter time intervals, say 15 to 30 minutes, which in this context define an estimation 

stage. Consecutive estimation stages may either overlap or be disjoint. We suggest 

that two consecutive stages have some overlap, as usually the estimated demand flow 

at the end of each stage is less accurate and has high variance. The lower accuracy is 

because at the end of each stage, the vehicles that have just started their trips may not 

have reached their destinations. Consequently, the estimated demand toward the end 

of each stage has high variance. Hence, the size of the estimation stage and the 

proportion of reliable estimates are determined in accordance with the size of the 

network and its congestion levels. For instance, consider a case where it takes, say, 15 

minutes to travel between the farthest away origin-destination zones under the 

prevailing traffic conditions. If the estimated stage is 20 minutes, only demand flow 

during the first five minutes can be efficiently estimated, but if the stage length is 30 

minutes, demand flows during the first 15 minutes can be estimated more reliably. It 

is noteworthy that this issue has not been addressed in any of the previous studies.  

 

The uncertainty in estimating the destination of incomplete trips is aggravated 

in real-time OD-flow estimation where methods like Kalman filtering may be used. In 

Kalman filtering, the state of the system (vector of time-dependent demand flows) is 

updated after one or several observation intervals. The errors due to uncertainty in 

demand flows in each estimation period (stage) could propagate to the next time 

intervals, which could increase the error and variance of the estimation significantly.  
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The advantage of breaking down the estimation period into smaller estimation 

stages is that we can deal with smaller matrices and make computation faster. The 

downside to this breaking down is the discontinuities introduced at the beginning or 

end of the estimation intervals.  

 

We will introduce two different formulations for rolling horizon OD-flow 

estimation. The difference between the two formulations is in the assumptions made 

regarding the initial boundary conditions in rolling from one stage to the other. We 

treat the initial conditions in two ways:  

1) The terminating condition at the end of the previous estimation 

stage will be recognized as the initial condition of the next stage, 

and  

2) The initial condition in each stage is re-estimated along with the 

demand flow during that estimation stage.  

 

We will call the former fixed-initial-point estimation and the latter free-initial-

point estimation. 

 

3.10.1. Fixed Initial-Point Estimation 

 

In this formulation, the demand flow at the end of the previous estimation 

stage is taken as the starting point in the next estimation stage. Since we are using a 

dynamic traffic assignment simulation program to estimate the link-flow proportions, 

the above assumption means that, at the end of each estimation stage, we take a 

snapshot of the simulation results and continue to simulate and assign vehicles onto 

the paths based on their last estimated destination in the previous estimation stage.  
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To set up the formulation for rolling horizon estimation, we should modify 

some of the equations presented earlier. We modify the basic equation (3.9), which 

was obtained for single-horizon estimation as follows 
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       l=1,…L ; t=1,…,TK     (3.77) 

where 

tτ  is the index of the aggregate departure interval which encompasses the 

observation interval t. 

ΓP is the maximum number of aggregate departure intervals (before the start of 

the current stage) whose demand flows contribute to traffic flows in the 

network during the current stage. In other words, we assume that vehicles 

departing before these departure intervals have already exited the network. PΓ  

can be estimated by dividing the maximum estimated travel time in the 

network between any OD pairs by the length of the departure interval. Interval 

zero denotes the last departure interval before the start of the current stage. 

TK is the number of observation intervals in the current estimation stage K. 

ΓK is the number of aggregate departure intervals in the current estimation stage 

K. 
*

),,( jid τ   is the optimal estimate of demand flow going from origin i to destination j that  

have started their trip in departure interval τ≤0, i.e. intervals before the start of 

the current estimation stage. 

 

The rest of the terms are as defined previously. Figure 3.4 depicts the 

definition of these time intervals and the schematic transfer of constraints from one 

estimation stage to another. 
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The first term on the right hand side (RHS) of equation (3.77), represents the 

link flows due to the demand flows that originated before the current estimation stage. 

We denote this term by . We use the ‘^’ sign to show that this partial flow is an 

estimate, since it is obtained by loading the estimated demand flow  in the 

previous estimation stages. 

0≤τ
),(ˆ tlc

*
),,( jid τ
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Figure 3.4. Fixed initial-point formulation--time intervals and schematic transfer 
of initial conditions in the rolling-horizon OD-flow estimation  
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The demand flow in the current estimation stage should make up for the 

“remainder” of the observed flow on the links. We denote the remainder of observed 

flow by . It is worth noting that though the estimated OD-flow in the previous 

stage is assumed to be final and fixed, the estimated link flows originated from those 

OD-flows, i.e. , are not fixed and might change in the iterative procedure of 

assigning the estimated OD-flow onto the network (lower level optimization). Based 

on the definition of  one can write 

),(̂ tlr

0
),(ˆ

≤τ
tlc

r̂ ),( tl

 

       (3.78) 0
),(),(),( ˆˆ ≤−= τ

tltltl ccr

where  is the estimate of link-flows obtained from the OD-flows that have started 

before the current estimation stage. 

0
),(ˆ

≤τ
tlc

 

On the other hand, the unknown OD flows in the current estimation stage 

should make up for the remaining traffic flows on the links. That is 
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where e are the observed residuals. ),( tl

 

Therefore, equation (3.12) can be re-written as  
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      (3.80) 

where the subscript K denotes that the matrices and their elements correspond to the 

current estimation stage, and  is the vector of elements . KR̂ ),(̂ tlr
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The non-linear optimization solution to equation (3.80) is 

 

[ ] [ ] *** ˆˆˆˆˆˆ
K
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KKK
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T
K DRWPDPWPDPWPPWR =−∇−∇ −−−−− 11111       (3.81) 

 

As before, if we ignore the partial derivatives of the link-flow proportions 

with respect to demand flows, that is if we assume that 0=∇ T
KP̂ , the conventional 

generalized least-squares estimate will be obtained: 

 

 ( ) ( )K
T
KK

T
KK RWPPWPD ˆˆˆˆ* 111 −−−=    (3.82) 

 

As explained in detail in Sections (3.4) and (3.7), equations (3.81) and (3.82) 

are the solution to the upper-level optimization, and in each iteration the values of 

KK PR ˆ,ˆ  and KP̂∇ should be re-estimated by solving the lower-level problem. 

 

In the case of constrained least-squares optimization, we should solve the 

following mathematical programming formulation 

 

   (3.83) 
),,(0..

)ˆˆ()ˆˆ())(,(

),,( jidTS
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ji

KKK
T

KKK

ττ ∀≥
−−=

 

The discussion presented in the single-horizon constrained estimation case 

(Section 3.9) applies here too, with the exception that the “remainder” traffic volume 

in the current stage, KR̂ , should be substituted for the traffic counts, C.  

 

In summary, we should solve equations (3.81) or (3.82) and set the obtained 

negative demand flows equal to zero and re-solve the problem. As a heuristic, we can 
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ignore the negative estimated values, if any, in the intermediate iterations or in the 

final results.  

 

3.10.2. Free Initial-Point Estimation 

 

In a rolling horizon implementation of dynamic traffic assignment models, at 

the beginning of each estimation stage, the state of the system in the real world might 

be different from the estimated state obtained from the simulator (Peeta and 

Mahmassani, 1995a). To address this problem, we introduce a new set of constraints 

to the OD-flow optimization problem. We assume that the information on the number 

of vehicles on all links is available. If some links do not have detectors, we can use 

the simulator’s results from the last estimation/prediction stage as the estimated flows 

on those links.  

 

In the free initial-point estimation approach, we take a snapshot of the 

vehicles in the real network and pass it to the estimation process.  Figure 3.5 

illustrates the definition of time intervals and schematic transfer of initial-state 

constraints to the estimation process from the real-world system observations. 
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Figure 3.5. Free initial-point estimation--time intervals and schematic transfer of 
initial conditions in the rolling-horizon OD-flow estimation 
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At the beginning of each estimation  number of vehicles residing on 

the links located in each origin zone is adde

considered as the originating demand valu

estimation stage. We assume a virtual de

departure interval of these vehicles. The 

unknown which should be estimated along 

The mathematical formulation for this proble
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where: 

c(l,0)  is the vehicle count on link l a

d(0,i,j)  is the unknown demand flow

beginning of the estimation st

Li  is the number of links that res

0KΓ  is the number of aggregate de

stage plus the initial virtual de

K0 denotes the augmented curren

departure interval zero added.

 

The first constraint in the formulation

the estimation stage based on the state of the
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stage, the
d up. The resulting number of vehicles is 

e for the zone at the beginning of the 

parture interval numbered zero as the 

destination zones of these vehicles are 

with the OD-flows at the current stage. 

m is as follows: 
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  (3.84) 

t the beginning of the estimation stage 

 between origin i and destination j at the 

age. 

ide in origin zone i. 

parture intervals in the current estimation 

parture interval zero. 

t estimation stage with the initial virtual 

 

 (3.84) represents the initial condition of 

 system in the real world. 



The Lagrange multipliers, ui, should be introduced to solve the above 

constrained optimization problem, that is 
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where U is the vector of Lagrange multipliers ui. 

 

To find the optimal solution to the above formulation, we should find D* such 

that the following set of conditions are met (Sheffi, 1985):  
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First order conditions can be written as: 
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Equation (3.87) transforms to 
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Condition (3.89) can be satisfied in two ways: 

 

1) ,        (3.90a) 0),,( =dovd

or  

2) [ ] iK
T

doKK
T

do
T

do
T
KKK

T
do

T
K uCPDPPPCDPPD τνννν δ2

1
),,(),,(),,(),,( 0000000

ˆˆˆˆˆˆ ++−∇=∇

),,( do        ν∀  (3.90b) 

 

The second condition can be rewritten as: 

 

[ ][ ]{ } 0ˆˆˆ
2
1

),,(),,( ≥−−∇+ iKKK
T

do
T
K

T
do uCDPPDP τνν δ  ),,( doν∀  (3.91) 

 

The non-negativity condition of (3.91) should be checked if condition (3.90a) 

is binding, that is when .  0),,( =dod ν
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The third condition transforms to: 
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We should also include the non-negativity constraints, that is 

 

      (3.93) ),,(0),,( jid ji ττ ∀≥

 

The two sets of equations (3.90) and (3.92) provide ‘Γ.I.J+I’ equations to 

solve for ‘Γ.I.J’ unknown demands, , and ‘I’ unknown Lagrange multipliers, 

u

),,( dod ν

i.  

 

In summary, as a heuristic approach, one can solve the following sets of 

simultaneous equations: 
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  (3.94) 

If  was negative, set it to zero, i.e.  and solve the lower-level 

problem with the estimated values of OD-flows.  

),,( dod ν 0),,( =dod ν
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3.10.3. Analogy of Single-Horizon and Rolling-Horizon Estimation with 

Linear Regression  

 

To illustrate the differences between the estimation frameworks, they are 

compared to piecewise linear regression models. In the single-horizon estimation, we 

concurrently include all observations over the estimation period and estimate the 

parameters of the model (optimal OD-flows) such that the dependent variables (link 

flows) would best fit the observed link-flow data. In a simple linear regression model, 

the parameters of the model, the slope and the intercept of the line, are estimated such 

that the corresponding line would best fit the whole dataset.  Figure 3.6 depicts this 

concept when a single regression line is fitted over the whole set of an arbitrary time 

series dataset. 
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Figure 3.6. Analogy of single-horizon OD-flow estimation to simple linear 
regression 
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In the rolling-horizon estimation, we divide the estimation period into stages 

and fit separate models to each estimation stage. In the fixed initial-point 

implementation of rolling- horizon estimation, the terminal condition of one stage is 

the initial condition of the next. Figure 3.7 shows a similar concept in fitting a 

“piecewise” regression line to an arbitrary set of time-series data points. For instance, 

a line is fit to the data from time zero to 60. The estimation stage, then, is rolled by, 

say, 20 intervals and a new line is fit to the data from interval 20 to 80.  

 

In the fixed initial-point estimation, the initial condition of the estimation 

stage is fixed at the value estimated in the preceding stage. In the example of 

piecewise regression line, this is equivalent to fixing the starting point of the line at 

interval 20 to its estimated value in the previous estimation stage and estimate the 

slope of the regression line which is fitted to the data points from interval 20 to 80.  

 

 88



 

 

 

 

 

 

Rolling-Horizon--Fixed-Initia l-Point Estim ation

40.0

50.0

60.0

70.0

80.0

90.0

100.0

110.0

120.0

0 20 40 60 80 10

Tim e

D
at

a

0

Figure 3.7. Analogy of fixed initial-point rolling-horizon OD-flow estimation to 
piecewise linear regression 
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In the free initial-point formulation of rolling-horizon OD-flow estimation, we re-

estimate the initial conditions in each estimation stage. Therefore, there are more 

degrees of freedom in the estimation process. This formulation is similar to a 

piecewise linear regression where both the slope and the intercept are estimated for 

each piece independent of the previous estimates. In our example (Figure 3.8), it 

means that a line is fitted to the data from interval zero to, say, 60. After rolling the 

estimation stage for, say, 20 intervals, a new line is fitted to the observed data from 

interval 20 to 80 and the process is repeated every time the estimation stage is rolled 

ahead.  
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Figure 3.8. Analogy of free initial-point rolling-horizon OD-flow estimation to 
piecewise linear regression 
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3.11.  Summary 

In this chapter, detailed formulations of the time-dependent OD-flow 

estimation problem from the link-flow measurements were presented. First, the 

problem was formulated for the unconstrained case, which constitutes the upper-level 

problem. The ordinary least-squares and generalized least-squares estimation methods 

were presented. The bi-level optimization solution to the problem was then discussed. 

The problem was also formulated as a non-linear optimization and its ordinary and 

generalized solutions were explored. The Bi-level optimization was also explained in 

the context of a theoretical game and the conditions to obtain the Stackelberg or Nash 

solutions were discussed. The solution to the constrained optimization formulation 

was presented. In this context, the problem was formulated in a rolling horizon 

framework with specific application to the real-time implementation of Dynamic 

Traffic Assignment models.   

 

The next chapter examines how available prior information on the OD flows 

may be incorporated in the estimation process. Application of Bayesian inference 

models for this purpose is suggested and discussed in more detail.   
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CHAPTER 4. BAYESIAN INFERENCE 

4.1.   Introduction 

Bayesian inference provides a statistical method to update prior beliefs on OD 

flows by the evidence obtained from the time-varying traffic flows. Prior information 

on OD demand flows could be obtained from other methods, such as direct surveys or 

modeling techniques, or it could be the result of recent estimation using traffic counts 

for similar past time intervals.   

 

As mentioned before, several previous methods have included a target OD-

flow matrix in the formulation of the least-squares objective function. This approach 

is adopted particularly in static formulations, where the number of unknowns is far 

greater than the number of equations obtained from link flow observations. As 

discussed before, in the dynamic case, the availability of more information on link 

flows usually results in an over-specified problem or one that could be converted to 

an over-specified problem by increasing the length of the departure intervals. It has 

also been shown that the solution to the formulation including the target matrix is a 

special case of the Bayesian approach in the static case (Maher, 1983).   

 

 In this research, we adopt the Bayesian inference method because it can be 

used to fuse the prior OD-flow information with the (archived or real-time) sample 

link-flow observations, independent of the utilized demand estimation method. This 

gives us the flexibility to use any method, such as generalized least-squares or non-

linear optimization to estimate the OD-flows (or in Bayesian terminology, to infer the 

likelihood information) from the sample of link-flow observations. We can then 

combine the estimated demand flows (likelihood function) with the historical 

information (a priori distribution) using the Bayesian inference method. In this 
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research, we realize the formulation where demand flows are assumed to follow a 

multivariate normal distribution and are estimated by the generalized least-squares 

method. However, the method could be generalized to the cases where OD-flows are 

estimated by non-linear optimization or where other distributions are assumed for 

OD-flows. 

 

4.2.   Problem Statement 

Consider the following general quasi-linear model (the notation used in this 

chapter is the same as introduced at the beginning of Chapter 3 unless explicitly noted 

otherwise): 

 

Ε+= DPC .ˆ      (4.1) 

 

where, as mentioned before,   

D   is the vector of demand values of size Γ.I.J×1,  

C   is the vector of observations, L.T×1    

P  is a L.T×Γ.I.J matrix of link-flow proportions which is assumed to be 

known (or is estimated) for any given demand, and 

Ε   is a L.T×1 vector of error terms. 

 

The residuals are assumed to be normal i.i.d (identically and independently 

normally distributed), that is . The precision matrix of ε is γI),0(~ .
1

TLIN −γε L.T, and 

σ2IL.T is variance-covariance matrix of ε , that is is an unknown scalar. 

I

012 >= −γσ

L.T is a L.T×L.T identity matrix. 

 

The objective is to provide inferences for D and γ when observing:  
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C = {c(l,t)| l=1…L; t=1…T} (observation on link l at observation interval t).  

 

The word inference implies a procedure that extracts information about D 

from the sample C. 

 

4.3.  Bayes’ Theorem 

Suppose one’s prior information about D is represented by a probability 

density function ξ(D,γ), , γ >0 (gamma), then Bayes’ theorem combines 

this information with the information contained in the sample of observations. The 

likelihood function L(D,γ) for D and γ is given by (Broemeling, 1985) 

)JI,Γ,(ℜ∈D

 
)ˆ()ˆ(

22/L.T),(
DPCDPC T

eDL
−−−

∝
γ

γγ    (4.2) 

 

where ∝ means proportional to. The likelihood function is our sample information 

about the parameters and is the conditional density function of the sample random 

variables given D and γ. 

 

Bayes’ theorem gives the conditional density of D and γ given C 

 

),()|,()|,(* γξγγξ DCDLCD ∝     (4.3) 

 

The posterior density of D is ξ*(D,γ |C) (pronounced xi) which represents our 

knowledge of D and γ after observing the sample C. On the other hand, our 

information about D and γ before C is observed is contained in the prior density. 
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Note that the posterior density (4.3) is written with a proportionality symbol 

and ξ is used to denote the prior and ξ* the posterior densities. If in equation (4.3) we 

use an equality sign, the posterior density is 

 

),()|,(K)|,(* γγγ DCDLCD ξξ =       

 

where K is the normalizing constant and is given by 

 

∫ ∫
∞

− =
0

1

)JI,Γ,(

),()|,(K
R

ddDDCDL γγγ ξ      

 

which is the marginal probability density of ξ. (In the case of discrete demand flow 

values, the integration will be substituted with summation sign.)  

 

4.4.   Prior Information 

 

4.4.1. Normal-Gamma Density 

 

If  ξ(D,γ) follows a normal-gamma prior density function then  

  

)()|(),( 21 γγγ ξξξ DD =      (4.4) 

 

where 

)()(
2Γ.I.J

1 )|(
µDµD T

eD
−−−

∝
Ψ

ξ
γ

γγ     (4.5) 
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In the OD-flow estimation problem under consideration, µ (mu) is a Γ.I.J×1 

given mean vector of OD flows and Ψ (psi) is a known Γ.I.J×Γ.I.J positive definite 

matrix representing the variance-covariance matrix of the OD flows (The matrix W, 

introduced in Chapter 3, is the variance-covariance matrix of the link flow 

observations). Thus, ξ1 is the conditional density of D given γ and is normal with 

mean vector µ and precision matrix γΨ. (Dispersion matrix is the inverse of variance-

covariance matrix). 

 

The marginal prior density of γ is gamma with parameters α>0 and β>0. 

 

 0      (4.6) ,)( 1
2 >∝ −− γγγ βγα eξ

 

Since (4.4) is the prior density of D and γ, the marginal density of D is found 

by integrating (4.5) with respect to γ. Substituting equations (4.6) and (4.5) in (4.4) 

and integrating, the marginal density of D can be obtained as (Broemeling, 1985) 

 

[ ] 2)2Γ.I.J(

0
1 )()(2),()( α

βγγ
+−

∞

−−+∝∝ ∫ µΨµξξ DDdDD T   (4.7) 

 

which is a t density function with 2α degrees of freedom, location vector µ and 

precision matrix (2α)(2β)-1Ψ. 

 

By using the normal-gamma density function as a prior for the parameters, we 

cannot stipulate the prior information about D separately from that of γ. The 

parameters of the marginal distribution of D involve α and β, which are parameters of 

the prior distribution of γ, but the marginal prior density of γ does not involve 

parameters of the marginal density of D. 
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The parameter vector µ is our prior mean for D, while our opinion of the 

correlation between the components of D is given by 11 )22)(2( −− −αβΨ , which is 

the marginal prior dispersion matrix of D. Since this involves α and β, the marginal 

prior information about γ depends on the choice of the dispersion or precision matrix 

of D. 

 

With regard to the information about γ, it is convenient to think of γ as the 

inverse of the residual variance σ2, that is 

 

1,)1()( 11 >−= −− ααβγE       (4.8) 

2,)2()1()var( 1221 >−−= −−− αααβγ     (4.9) 

or 

βαγ /)(E =   and  . 2/)var( βαγ =

 

These two equations together with 

  

µ=)(E D         (4.10) 

and 
11 )22TL.)(2()(S −− −+= αβΨD      (4.11) 

 

which are the prior mean vector and prior dispersion matrix of D, will assist us in 

choosing the four hyperparameters, α, β, µ and Ψ, for the prior distribution of D and 

γ.  
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The normal-gamma prior density function is a member of a conjugate class of 

distributions, that is the posterior density )|,( CD γξ is also a normal-gamma density. 

Conjugate families have the advantage that one has a scale by which to judge the 

amount of information added by the sample, beyond the amount given a priori. 

 

4.4.2. Non-Informative Density 

 

Based on another early work suggested by Jeffreys (1977), we can use a 

“vague” non-informative prior density for OD flows, that is: 

 

 γγ /1),( ∝Dξ       (4.12) 

 

The Jeffreys’ prior implies that, a priori, D and γ are independent and that D 

has a constant density over ℜ and that the marginal prior density of γ is 

ξ

)JI,Γ,(

2(γ)∝1/γ, γ >0. The Jeffreys prior density, although improper (not having the same 

prior and posterior density function distribution), produces a normal-gamma posterior 

density for D and γ. 

 

4.5.   Posterior Analysis 

 
4.5.1. Normal-Gamma Prior Density 

 

Using Bayes’ theorem given by (4.3) and using the normal-gamma prior 

density (4.7), the posterior density of D and γ is obtained as (Broemeling, 1985) 
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)]()()()(2[
21)2/)Γ.I.J2L.T((* )|,(

DPCDPCDD TT

eCD
−−+−−+−−++∝

µµβγ
αγγ

Ψ
ξ  (4.13) 

 

That is the joint posterior density of D and γ, ξ*(D,γ |C), is a normal-gamma density. 

The marginal posterior density of γ is gamma with parameters 

 

)2L.T( α+  and 
2

)()()( 1 µΨΨµΨ +++−
+

− CPPPCPCC TTTTT

β  (4.14) 

 

The marginal posterior density of D, ξ*
1(D|C), is found by integrating (4.13) 

with respect to γ. Doing so results that marginal posterior density of D is a Γ.I.J-

dimensional t density with L.T+2α degrees of freedom, and location vector 

 

 )     (4.15) ()( 1* µΨΨµ ++= − CPPP TT

 

Therefore, the posterior analysis of the general linear model reveals that the 

joint posterior distribution of D and γ is a normal-gamma distribution, the marginal 

distribution of D is a multivariate t, and the marginal of γ is a gamma if the prior of 

the parameters is a normal-gamma. 

 

 

4.5.2. Non-informative Prior Density 

 

The analysis in the second case, where Jeffreys’ improper density, ξ(D,γ)∝1/γ, 

is used as the prior information, shows that the posterior density of D and γ is normal-

gamma where the marginal posterior density of γ is gamma with parameters 
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2/)Γ.I.JL.T( −  and [ ] 21 /)( CPPPPCCC TTTT −−  

 

The conditional posterior density of D given γ is normal with mean vector 

 

CPPP TT 1−)(  

 

and precision matrix . PP Tγ

 

The marginal posterior density of D is a Γ.I.J-dimensional t distribution with 

(L.T − Γ.I.J) degrees of freedom and location vector 

  

CPPPCD TT 1)()|(E −=  

 

The above equation shows that the results in this case are similar to ordinary 

least-squares estimates of OD flows (in the upper-level problem of bi-level 

optimization).  

 

It is worth noting that if we use the normal-gamma density as a prior for D 

and γ, as in (4.15), PTP may be singular and OD flows can still be estimated. 

However, if we use Jeffreys’ improper prior, PTP must be nonsingular, otherwise the 

posterior density of D and γ is improper.  

 

As mentioned in Chapter 2, the majority of previous studies have included a 

target matrix in the formulation of the OD-flow estimation problem to overcome the 

under-specification of the problem. Adding a target matrix results in equations similar 

to (4.15), which prevents degeneracy of the problem due to singularity of link-flow 

matrices.  

 101



 

4.6.   Point Estimation of OD and Precision Parameter 

As previously mentioned, the joint posterior distribution of D and γ is also 

normal-gamma with parameters 

 

)()(
)(

2
)()()(2

2/)2L.T(

1*

*

1
*

*

ΨµCPΨPPµ
ΨPPΨ

ΨµCPΨPPΨµCPCC

TT

T

TTTTT

++=

+=

+++−+
=

+=

−

−

γ

ββ

α

  (4.16) 

 

There is no unique solution when D and γ are estimated jointly, but since D is 

a normal random variable with mean µ* which does not depend on γ, and since α* and 

β* do not depend on D, it seems that [µ*, β*(α*-1)-1] is a reasonable choice for a joint 

estimate of [D, γ-1].  

 

The marginal distribution of γ is G[α*, β*], hence the mean of γ-1 is 

 
1**1 )1()|(E −− −= αβγ C  

 

and its mode is 

 
1**1 )1()|(M −− += αβγ C  

 

Since the gamma distribution is asymmetric, whether one takes the mean or 

mode to estimate γ-1 is a matter of personal choice. 
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4.7.   Determining Hyperparameters for the Prior Information 

The difficulty in using the conjugate class in Bayesian inference is that the 

hyperparameters in the prior distribution, i.e. the set of parameters (µ, β, ψ, γ) in 

equations (4.16), need to be specified. Consider that we have a set of historical 

observations for the same time interval. These observations can be for the same time 

interval the day before, the same weekday the week before or, in the case of annual 

events, the same day a year before. (Of course, this problem only exists when we are 

estimating the posterior distribution for the first time; after that the last estimated 

hyperparameters can be used directly and updated every time). 

 

Assume we have a set of former observations, which would fit in our basic 

quasi-linear equation (the subscript ‘o’ is added to the variables to show they belong 

to an older observation): 

 

      (4.17) oooo DPC Ε+= .ˆ

 

where Co is Lo.To×1, is LoP̂ o.To×Γo.Io.Jo, Do is Γo.Io.Jo×1, and .  ),0(~ 1
ooTLoo IE −γ

 

To set the values of the hyperparameters, notice that the usual estimators, i.e. the non-

informative prior estimates, of Do and of (4.17) are 1−
oγ

 

o
T

oo
T

oo CPPPD ˆ)ˆˆ( 1−=       (4.18) 

and 
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 Since the prior mean of Do is µ, we choose 

 

 µ = Do       (4.20) 

 

In the same way, since the prior mean of γo
-1 is β/(α-1), we choose α and β 

such that 

 

 γo
-1 = β / (α - 1)  ,      α >1    (4.21) 

 

Of course, the choice of α and β is not unique. The prior dispersion of D is 

βΨ(α-1)-1, thus we choose Ψ such that , or we let 111 )ˆ( −−− = o
T

ooo PPγγ Ψ

 
1)( −= o

T
o PPΨ        (4.22)  

 

Therefore, we have determined the values of the hyperparameters from a 

former observation, though the choice of α and β is not unique. 

 

4.8.   Summary 

In this research, the Bayesian inference method is used to direct the estimated 

OD-flows toward a target matrix. In this chapter, the use of this method to combine 

the prior information on OD-flows with the information obtained from the sample of 

link flow observations was discussed.  As the experiments conducted in Chapter 5 

indicate, if reliable a priori information on OD-flows is available, Bayesian inference 
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can significantly improve the quality of the estimation. The improvement is more 

significant, when due to the congestion in the network, the link-flow observations do 

not provide enough evidence for reliable OD-flow estimation or when due to 

inconsistencies in the traffic assignment assumption, the effect of the other sources of 

error is significant.   
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CHAPTER 5. ALGORITHM IMPLEMENTATION ASPECTS 

5.1.   Introduction 

In Chapter 3, several methods for estimating dynamic OD-flows from time-

dependent traffic count data were presented. The two major methods presented are 

the generalized least-squares estimation and the non-linear (least-squares) 

optimization method.  

 

Based on the estimation period, two principal variations to the methods are 

considered: 

• Single-horizon formulation, primarily for planning applications, and  

• Rolling-horizon formulation, with primary application to real-time 

network traffic management.  

 

The Rolling-horizon case is formulated in two different ways:  

• Fixed initial-point formulation, and 

• Free initial-point formulation. 

 

In Chapter 4, a Bayesian inference method was adapted to systematically 

incorporate a priori information on OD-flows with the estimated OD-flows from 

traffic counts. 

 

The procedures for the estimation of OD flows from traffic counts are 

implemented as an integral part of the DYNASMART-P simulation program. 

Between the two options presented for formulation of the rolling-horizon OD-flow 

estimation, the first alternative, i.e. fixed initial-point formulation, is implemented. 
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Issues pertaining to the implementation of the proposed methods are discussed 

in this chapter. In the next section, the major algorithmic steps for estimation of OD 

flows using linear and non-linear optimization methods and Bayes’ theorem are 

presented. In Section 5.3, the issues relating to the rolling-horizon implementation of 

the estimation methods are discussed.  The method of successive averaging of the 

consecutive estimated OD flows are explained in Section 5.4. In Section 5.5, the 

numerical method adopted for solving the set of simultaneous quadratic equations 

entailed in the bi-level non-linear optimization formulation is described and its 

convergence issues are discussed. In Section 5.6, the concluding remarks are 

presented.   

5.2.   Procedural Steps of OD-Flow Estimation 

Figure 5.1 illustrates the main algorithmic steps of the methods presented in 

this dissertation for the estimation of OD flows from traffic flow observations. The 

algorithm includes bi-level linear generalized least-squares estimation, bi-level non-

linear least-square estimation and Bayes’ inference method. The functions, set of 

variables, input/output files and pseudo codes for each of the modules in the 

algorithm are presented in appendices to this dissertation. The modules used in the 

Dynamic Traffic Assignment program (DYNASMART-P) are explained in its user’s 

guide (Mahmassani et al., 2000).  
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Step 0.  Initialize all arrays. 

Step 1.  Read the link flow observations. 

Step 2.  Read the initial estimates of the OD flow matrix, 0D̂ . 

Step 3.    Initialize the iteration counter, i=0. 

Step 4.  Solve the lower-level optimization problem by assigning 
iD̂  to the network using a dynamic traffic assignment 

simulation program (DYNASMART-P).  

Step 5.   Calculate the link-flow proportions, P̂ .  

Step 6.  Calculate the statistics of the estimate, i.e. the errors in the 

link flow estimation and, in the case of conducting 

experiments where OD demand matrix is presumed, the 

errors in the estimated demand values. 

Step 7. Increment the iteration counter, i=i+1.  

Step 8.  If i is less than the required number of iterations, or if i is 

equal to the required number of iterations and the non-

linear estimation flag is OFF, go to Step 9. 

If i is equal to the required number of iterations and the 

non-linear estimation flag is ON, go to Step 10.  

If i is equal to the required number of iterations plus one 

and Bayes flag is OFF, go to Step 11. 

If i is equal to the required number of iterations plus one 

and Bayes flag is ON, go to Step 12. 

Otherwise, go to Step 14. 

 

Figure 5.1. The OD-flow estimation algorithm   
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Step 9.  Find the generalized least-square estimates of the OD 

flows, D̂ , from the identity equation C  using 

equations (3.13) or (3.18), and go to Step 13. 

EDP +×= ˆˆ

Step 10.  Compute D̂  from the identity equation  

using equations (3.22) or (3.34), and go to Step 13. 

EDPC +×= ˆˆ

Step 11. Compute the hyperparameters of the prior information 

using equations (4.19) to (4.22), and go to Step 14. 

Step 12. Compute iD̂  by updating the prior information with the 

information obtained from the link-flow observations using 

equation (4.16), and go to Step 14.  

Step 13.  Optionally find the weighted average of the estimated OD     

flow values, i.e. , or simply let )1/()ˆˆ(ˆ 1 +×+= − iiDDD ii

DDi ˆˆ = . Go to Step 4. 

Step 14.  Save the results and STOP.  

 

Figure 5.1. continued 
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In Step 0, the arrays and the variables used in the OD-flow estimation and 

DTA modules are initialized. The link-flow observations, which are the essential 

input for the estimation method, are read in Step 1. It should be noted that the 

algorithm is implemented in a way that link flow observations need not be reported 

on sequential links or in sequential observation intervals. In the implementation, a 

procedure is used to record the links and the observation intervals with flow 

measurements (see Section B.5.2 in Appendix B).   

 

The initial guess of the OD flows are read in Step 2. The closer these initial 

values are to the actual OD flows, the fewer iterations would typically be needed for 

obtaining the solution. On the other hand, if the initial guess is too far away from the 

actual demand flows, the algorithm might converge to other locally optimal solutions. 

If no information on OD flows are available, a uniform initial demand table may be 

assumed.   

 

In Step 3, the iteration counter is initialized. In Steps 4 and 5 , using the DTA 

simulation program, the lower-level optimization problem is numerically solved to 

find the estimates of link-flow proportions, i.e. 
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τ
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where  is the estimate of link-flow proportions pertinent to link l, 

observation interval t, aggregate departure interval τ and OD pair i-j, as defined in 

Section 3.2. The variable  is the initial guess or, in the subsequent iterations, the 

current estimate of OD flows between OD pair i-j that depart during aggregate 

departure interval τ. The estimate of the partial link flows observed on link l and 

),,(),(ˆ jitlp τ

),,(
ˆ

jid τ
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observation interval t that is generated by any OD flow  is denoted by . 

The partial link flow values, which are the output of Step 4 of the algorithm, are 

estimated in the simulation/assignment program by tracing each vehicle temporally 

and spatially in the network. The simulation/assignment program emulates the users’ 

presumed route choice behavior and may iterate several times until convergence in 

terms of the assigned paths of the vehicles is obtained.  

),,(
ˆ

jid τ ),,)(,(̂ jitlf τ

 

In Step 6, the resulting link flows are compared with the actual link flow 

observations. In the experiments performed in this dissertation, where the actual OD 

flows are presumed to produce the “ground-truth” link flows, the OD flow estimates 

are also compared to the assumed actual OD flow values. The Root Mean Squares of 

Errors (as defined in Section 6.2) along with other statistics may be used for this 

purpose. 

 

In Step 7, the iteration counter is incremented. In the Bi-GLS estimation 

method, the algorithm continues in Step 9. In this Step, using the obtained link-flow 

proportions from Step 5 and the actual link-flow observations from Step 1, the OD 

flow estimates are updated using equations (3.13) or (3.18).  Optionally in Step 13, 

the OD flows obtained are averaged with the estimated OD flows in the previous 

iterations. As an alternative, one may ignore the averaging procedure and use the 

values obtained in Step 9 as the final estimate of the OD flows in the current iteration. 

The procedures mentioned in Steps 4, 5, 6, 7 and 9 are repeated several times as pre-

specified by the ‘required number of iterations’ parameter.   

 

In the last iteration of the algorithm and after Step 7, if the non-linear 

optimization is requested, the algorithm continues in Step 10. In this step, based on 

the latest estimated link-flow proportions (Step 5) and the actual link flow values 

(Step 1), the OD flows are updated by using equations (3.22) or (3.44). The numerical 
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solution to the set of simultaneous quadratic equations is described in Section 5.5. 

Optionally, the method of successive averages may be used (Step 13), and Steps 4, 5, 

6 and 7 are repeated.  

 

In Step 11, after the last iteration of the algorithm, the parameters of the prior 

distribution are computed according to Bayes’ theorem. These parameters can be used 

in the subsequent OD-flow estimation as a priori information for similar estimation 

periods. If Bayesian inference is desired and the prior parameters are known, the 

posterior OD flows and distribution parameters are computed in Step 12.   

 

For a more detailed description of each step of the algorithm, readers are 

referred to appendices A through E. 

 

5.3.  Implementing Rolling Horizon OD-Flow Estimation 

Between the two formulations presented in Sections 3.10 and 3.11 for the 

rolling-horizon OD-flow estimation, the former, i.e. the fixed initial-point estimation, 

is implemented. As explained in this section, the implemented single-horizon OD 

flow estimation method can be easily adapted to the fixed initial-point estimation 

case. However, the free initial-point estimation method needs an explicit 

implementation that is substantially different from the single-horizon implementation. 

The implementation of the free initial-point estimation method is left for future work. 

 

In the fixed initial-point estimation, the simulation period is divided into two 

parts: loading and estimation periods (Figure 5.2). The demand flows in the loading 

period are assumed equal to their estimates in the previous estimation periods. It 

should be noted that the estimated OD-flows toward the end of each estimation period 

have high variance because some of the vehicles may not have reached their 
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destination. Therefore, it is highly recommended that the rolling windows have 

temporal overlap in consecutive estimation periods, as illustrated in Figure 5.2. 
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Estimation Period

Observation Intervals
 1 2  3   .    .    .    .   .  .  t  .   .    .    .   .   T

Departure Intervals

Start Time End Time
Start of
Loading

Loading Period

Estimation PeriodLoading Period

Roll Period

   1        2         .         .         τ          .         .     Γ

 1 2  3   .    .    .    .   .  .  t  .   .    .    .   .   T

   1        2         .         .         τ          .         .     Γ

D1 D2

D2D1

RP

 
Figure 5.2. Definition of time intervals in the rolling-horizon implementation 
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In this implementation, the link-flow proportion matrix and the OD-flow 

vector are accordingly divided into loading and estimation periods. Figure 5.3 

illustrates the partitioning of the link-flow proportion matrix and the OD-flow vector. 

As a reminder, the rows of the link-flow proportion represent the combination of link 

and observation intervals and the columns represent the combination of departure 

intervals and the OD pairs.  

 
tl
kpl ,

,τ ′  is the loading period link-flow proportion element pertaining to link l, 

observation interval t, aggregate departure interval τ’ (within the 

loading period) and the kth OD pair (OD pair ij). 
tl
kpe ,

,τ  is the same as above except for the link-flow proportion element 

within the estimation period. 

kdl ,τ ′  is the demand departing during the aggregate departure interval τ’ in 

the loading period and between OD-pair k. 

kde ,τ  is the same as above except for the demand departing during the 

aggregate departure interval τ in the estimation period. 

tlc ,  is the link-flow observation on link l and in observation interval t 

within the estimation period. 

 

It should be noted that in the above notation the observation interval t in all 

cases is within the estimation period and not the loading period. 

 

The example shown in Figure 5.3, without loss of generality, depicts a case 

where the loading period has one aggregate departure interval, consisting of ten 

observation intervals. In this example, there are K OD pairs, Γ departure intervals, L 
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links with flow observations and T observation intervals.  It should be noted that the 

rows of the link-flow proportion matrix and the observation vector only include the 

elements pertaining to the estimation period (i.e. in the example, the rows start from 

the observation interval 11), while in the link-flow proportion matrix, the columns 

include the elements pertaining to the loading period and the estimation period. The 

previously estimated OD-flows are augmented at the top of the OD-flow vector  

(loading period OD-flows). 
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Figure 5.3. Partitioning of matrices in a rolling horizon implementation 
 

 

 

The (unknown) OD-flows during the estimation period should generate a net 

flow, as computed below: 

 

Net flow = total flow – (link-flow proportion)×(loading-period demand flows)  

 

That is, the estimate of the net flow is calculated from the following equation:  
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where 

tlcn ,ˆ   is the estimate of the net flow on link l during observation 

interval t. 

cl,t          is the observed link flow on link l during observation interval t. 
tl
klp ,

,ˆ τ  is the estimate of link-flow proportion pertinent to link l, 

observation interval t, OD pair k and departure interval τ in the 

loading period.  

kld ,
ˆ

τ  is the estimate of OD-flow between OD pair k during aggregate 

departure interval τ in the loading period. The estimated value 

in the previous rolling-horizon estimation period can be used 

for this variable. 

K is the total number of OD pairs (equivalent to I.J). 

 

If  and  respectively denote the link-flow proportion matrix and 

the OD-flow vector of the loading period, equation (5.2) can be rewritten in the 

matrix form: 

loadingP̂ loadingD̂

 

loadingloading DPCCN ˆ.ˆˆ −=      

 

5.4.   Method of Successive Averages to Estimate OD-Flows 

To address the convergence issues and to make the OD-flow estimation 

procedure more stable, the method of successive averages (MSA) is used in the 
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consecutive iterations of the algorithm to avoid jumping from one local optimal 

region to another. As mentioned in Step 13 of Figure 5.1: 
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where 
r

kd *
),(

ˆ
τ  is the estimated OD-flow between OD pair k departing in the 

aggregate departure interval τ. This value is the direct result of the 

estimation process in its rth iteration. 

 
r

kd ),(
ˆ

τ  is the modified value of the estimated OD-flow between OD pair k 

departing in the aggregate departure interval τ. This variable may be 

used as the estimate of the OD-flow  in the r),( kd τ
th iteration of the 

algorithm.  

r is the iteration number. 

 

It should be noted that the use of successive averaging in the implemented 

algorithm is optional. 

 

The convergence issues in the bi-level formulation of the problem, in some 

aspects may be similar to the Expectation-Maximization (EM) algorithms mostly 

used as a numerical technique for the evaluation of maximum likelihood estimates of 

the parameters describing incomplete data sets (Dempster, Laird and Rubin, 1977). 

Researchers have applied this method in transportation modeling applications (Bhat, 
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1997) and there have been several discussions on the convergence of the algorithm 

and on the theorems initially proposed by Dempster et al. (Wu, 1983; Boyles 1983).  

 

It should be noted that the formulated optimization problem for estimation of 

OD flows in a dynamic system is not well behaved. Though the quadratic 

optimization problem in the upper level is convex, the dynamic traffic assignment 

problem in the lower level inherently does not have unique solution. Therefore, there 

is no theoretical proof that the iterative bi-level GLS estimation described in Section 

3.4 or the algorithmic steps depicted in Figure 5.1 for either Bi-GLS or Bi-NLP 

estimation will converge. The issue is discussed in detail in the next section where the 

more general non-linear optimization method is used in the upper-level problem.  

  

5.5.   Estimation of OD-Flows by Non-Linear Optimization 

As explained in Sections 3.5 and 3.6, the non-linear optimization formulation 

for the OD-flow estimation entails solution of a set of simultaneous quadratic 

equations. In the following two subsections, the numerical method used to solve the 

set of equations and the issues regarding the convergence of the solution are 

discussed. 

 

5.5.1. Numerical Solution of the Set of Simultaneous Quadratic Equations 

 

When the derivatives of the link-flow proportion with respect to demand are 

included in the formulation, a set of simultaneous quadratic equations, shown in 

equation (3.34), should be solved. The set of equations are rewritten as follows: 
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         (5.4) 

where m and n are sequential index numbers for each time-dependent OD pair. 

 

An iterative procedure is used to solve the above set of Γ.I.J equations. In 

each iteration of the algorithm, the equations are linearized using Taylor series 

expansion (expanded only up to the first degree derivatives). The set of linearized 

equations to be solved in iteration r is:  
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        (5.5) 

where 

 is the derivative of the pth equation in (5.4) with respect to the qth 

l OD-flow in iteration r-1.  

dn 

 

All functions  and their derivatives are evaluated at the current value 

In each iteration r, the linearized equations (5.5) are solved for the unknowns 
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qdpf )(

sequential time-dependent OD pair. 

is the estimated value of nth sequentia1ˆ −r
nd  

is the (unknown) OD-flow value of the nth sequential time-dependent 

OD pair. 

 pf
qdpf )(

of the demand flow, which is estimated in the previous iteration r-1, i.e. 1ˆ −rd . 

 

n

)1−r
n . These unknown values should be added to the estimated OD flows in the 

ration, 1ˆ −rd , to obtain an improved estimate of the OD flows dn. In other 

words: 
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 The iteration is repeated until the amount of incremental correction becomes 

small or a pre-specified number of iterations are performed. For more detailed 

implementation aspects of this method, readers are referred to Appendix C. 

 

5.5.2. Convergence Issues 

 

In practice, it is not always possible to find a solution to the set of equations in 

(5.5). Consider a hypothetical case with one departure interval and only two unknown 

demand flows. A typical solution is illustrated graphically in Figure 5.4.  

 

In each iteration, each surface is approximated by planes tangent to the 

surface at the current solution point. Although in Figure 5.5 the process is shown by 

fitting a tangent line to the two curves at an arbitrary solution point d1, in reality each 

function fi (d1,d2) represents a surface where the height from the zero-height plane 

(the plane containing the coordinate axes d1 and d2) is equal to the value of the 

function fi at the point (d1,d2). Therefore, the algorithm computes the equations of the 

tangent planes to the surfaces (first-degree Taylor expansion of the function) at each 

point (d1,d2). If we call the approximated function representing the tangent plane  

),( 21 ddfi , the equation of the intersection line along the two tangent planes can be 

represented by: 

 

 ),(),( 212211 ddfddf = .      (5.7) 

 

The coordinates of the point where this line intersects the zero-height surface 

is the solution to the set of linearized equations at the current iteration. In other 

words, this point is the solution to the set of equations: 
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 0),(),( 212211 == ddfddf       (5.8) 

 

As depicted in Figure 5.4, there may exist multiple solutions to a set of 

quadratic simultaneous equations. If one starts from a point close enough to A (if the 

process converges), the solution will collapse at A, and if the starting point is close to 

B, the solution will collapse at B. If the starting point is away from A or B, the 

iterative procedure might never converge. Furthermore, there might not exist any 

solution to the set of equations. 

 

Bard (1998) has presented the required conditions for the uniqueness of the 

solution to a bi-level non-linear optimization problem. If in the lower-level problem, 

the follower’s rational reaction set, as defined below, is not single-valued, the leader 

in the upper-level problem may not achieve its minimum objective value. The 

follower’s rational set, P(d), is the set of values that the follower takes to minimize 

his objective function, for any selected value by the leader in the upper-level problem 

(Bard, 1998). 

 

In the context of OD-flow estimation, the follower’s rational set is the set of 

link-flow proportion matrices obtained from optimization in the lower-level problem, 

given the optimal demand obtained in the upper level. Though the problem in the 

upper level is convex, the dynamic traffic assignment problem in the lower level is 

not well behaved and does not have a unique optimal solution. Therefore, since the 

follower’s rational reaction set is not single-valued, the upper-level problem may not 

obtain a unique optimal value. This implies that the iterative procedure for solving the 

problem may not converge to a unique solution. 
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    In the realm of dynamic OD-flow estimation, the problem of convergence 

aggravates as the number of unknowns increases. In order to converge to the expected 

solution, the implemented algorithm described in Section 5.2 is designed such that the 

process is iterated a predefined number of times using only the GLS OD-flow 

estimation method. When the solution converges in the neighborhood of its local 

optimum, a single run of the non-linear optimization method is executed. As shown in 

Section 6.5.7, the amount of improvement in the estimation’s performance might not 

be significant. If the procedure is executed before GLS estimation converges, the 

process may not converge at all.  

 

5.6.   Summary 

In this chapter, the procedural steps for estimation of dynamic OD flows from 

traffic counts using bi-level generalized least-squares, non-linear programming and 

Bayes’ inference methods were presented. Furthermore, the implementation aspects 

of the rolling-horizon estimation method were elaborated. As mentioned, the method 

of successive averages was adopted to obtain a more stable solution in consecutive 

estimation iterations.  In closing, the numerical algorithm for solving the non-linear 

optimization method was presented and the issues regarding the convergence of 

algorithm were discussed. The reader is referred to the appendices for more detailed 

implementation aspects of the proposed algorithms. 
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CHAPTER 6. EXPERIMENTS 

6.1.   Introduction and Objectives 

As mentioned in Chapter 1, we have two main objectives in estimating the OD 

flows: 

 

1) Estimate the time-dependent OD-flow values as close as possible to 

their true values.  

2) Improve the external consistency of the DTA simulation program in 

terms of the estimated flows on links, that is when the estimated 

OD flows are assigned to the network, the estimated time-varying 

traffic volumes would be as close as possible to the observed flows. 

 

Unfortunately, no real time-dependent OD-flow table was available to 

measure the actual performance of the proposed methods in terms of the first 

objective. Therefore, in all the experiments, it is assumed that the true time-dependent 

OD-flow table is known. The assumed demand is then loaded onto the network using 

DYNASMART-P as a simulator program. The resulting simulated flows are 

considered the ground-truth observations on the network links. The OD-flow 

estimation process requires an initial estimate of the demand table as its starting point. 

Therefore, an initial guess of the OD-flow table is assumed and the proposed iterative 

procedures are then executed. 

 

To evaluate the performance of the proposed methods in fulfilling the main 

objectives of the study, several experiments have been designed. The experimental 

objectives are to evaluate the following aspects: 
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- Performance of different algorithms in terms of the quality of the 

solution 

- Convergence of proposed algorithms  

- Computational performance  

- Sensitivity of algorithms to various endogenous parameters and 

exogenous factors  

 

In Section 6.2, we describe the adopted measures of performance for 

evaluating each objective.  In Section 6.3, the endogenous parameters and the 

exogenous factors considered in the experiments are addressed. The networks used in 

the experiments are presented in Section 6.4. In Section 6.5, the design of 

experiments and their numerical results are discussed in detail. Concluding remarks 

are presented in Section 6.6. 

6.2.    Measure of Performance 

The two main research objectives are improvement in the quality of the OD-

flow estimation and improvement in the external consistency of the DTA system. To 

quantify the performance of the estimation method or to examine the effect of the 

experimental factors, the Root Mean Square of Errors of OD-flow estimates and 

traffic flows are used. These measures of performance specify the quality of solution 

in terms of the main two research objectives.   
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where 

  is the root mean square of errors of the estimated OD flows. dRMSE

vRMSE  is the root mean square of errors of the estimated link flows.  

),,( jid τ  is the actual demand departing in the aggregate departure 

interval τ going from zone i to zone j.  

),,(
ˆ

jid τ  is the estimated demand departing in the aggregate departure 

interval τ going from zone i to zone j.  

),( tlv  is the link flow in observation interval t on link l. 

),(ˆ tlv   is the estimated link flow in observation interval t on link l. 

I is the number of origin zones. 

J is the number of destination zones. 

L is the number of links with flow observations in the network. 

Γ is the number of aggregate departure intervals. 

 

Convergence of the algorithms is measured by the amount and the direction of 

change in the above variables, in consecutive iterations. For this purpose, the RMSEs 

of estimates in each iteration are illustrated graphically for each of the conducted 

experiments. 

 

The computational performance has not been measured directly. However, its 

order of magnitude in the comparison between different algorithms is discussed 

wherever applicable. 
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Sensitivity of the algorithms to different endogenous and exogenous factors is 

measured in terms of the mentioned RMSE variables and the rate of convergence in 

the solution. 

 

It should be noted that in all the experiments it is assumed that the error terms, 

ε, are independently and identically distributed (i.i.d.), that is the variance-covariance 

matrix, W, presented in the previous chapters, is substituted by the identity matrix I. 

 

6.3.   Experimental Factors   

As mentioned in Section 6.1, the experiments are intended to examine the 

performance of the proposed estimation methods and their sensitivity to different 

endogenous and exogenous factors.  Specifically, the effects of the following factors 

are investigated. 

  

6.3.1. Congestion Level 

 

The performance of the estimation methods is examined under different OD-

flow levels. The network is loaded at different congestion levels referred to as 

uncongested, congested and over-congested.  
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6.3.2. Route-Choice Assumptions 

 

As mentioned in Chapter 3, in solving the lower-level problem, a traffic 

assignment model should be presumed. The need for this assumption is not specific to 

the methods presented in this research, but generally, in transportation planning or in 

the estimation of static demand flows from traffic counts, some assumptions 

regarding user behavior or the link cost functions must be made. The more realistic 

these assumptions are, the more consistent the estimated flows on the links will be. 

 

The errors due to the estimation of OD-flows and traffic assignment are 

confounded (Sections 1.1 and 3.3). To investigate the effect of the trip-maker’s route-

choice on the quality of the OD-flow estimation, experiments are conducted by  

simulating different route-choice behaviors for real-world observations.  

 

6.3.3. Effect of Imposing Upper Limits on Estimated OD Flows 

 

As a heuristic solution to a constrained optimization problem in the 

implemented algorithms, one can set the upper and lower limits on the estimated OD. 

These limits emulate the constraints of the optimization problem. The lower limit 

assures the non-negativity of the results, however setting it to a small positive value 

makes adjustments to the estimated OD-flows in consecutive iterations possible. 

More specifically, say in the Bi-GLS method, if an OD-flow value is zero, solving the 

lower-level problem results in zero values in the corresponding column of the link-

flow proportion matrix. Therefore, the estimated OD-flow in the next iteration, 

regardless of the link-flow values, will remain zero—refer to Equations (3.13) or 

(3.18). If there are more than one dynamic OD flows with zero values, the link-flow 

proportion matrix becomes singular and the solution degenerates. 
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The upper limit may be chosen based on experience. This limit can expedite 

the convergence of the process and may prevent assigning unacceptable values to OD 

flows, especially when the estimation process degenerates due to the singularity in the 

link-flow proportion matrix. To investigate the effect of this upper value on the 

quality of the solution and its convergence, a set of experiments are designed and 

conducted.  

 

6.3.4. Network Size Effect 

 

As explained in Chapter 3, a large number of parameters and unknown 

variables emerge in the estimation of dynamic OD flows. This property might make 

the application of the proposed methods to a large network infeasible.  To investigate 

whether the proposed bi-level GLS OD-flow estimation method can be implemented 

in large networks, two experiments are conducted on a large network.  

 

6.3.5. Effect of Observation Intervals and Departure Intervals Sizes   

 

The ratio of departure interval size to observation interval size determines the 

degree of over-specification of the problem (Section 3.3). To investigate the effect of 

these parameters on the performance of OD-flow estimation and the external 

consistency of the simulation program, a set of experiments with varying observation 

intervals and departure interval sizes are designed and conducted.  

 

6.3.6. Non-Linear vs. Linear Optimization Algorithms  

 

The performance of the non-linear optimization method in the estimation of 

OD flows is investigated by implementing it on a small network with a limited 
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number of departure intervals. The practical problems involved in implementing this 

method on large networks are explained in Chapter 5. 

 

6.3.7. Effect of a Priori Information on Estimation Quality  

 

As explained in Chapter 4, the Bayesian inference method is proposed to 

incorporate a priori information in the estimation process. To examine how the 

existing information on OD flows can improve the quality of the solution, several 

experiments are designed assuming that a priori information on OD flows is 

available.  

 

6.4.   Test Networks 

The experiments are conducted on one real and two hypothetical test 

networks. The first test network, ‘Network A’, is a small network and consists of only 

two origin and destination zones (Figure 6.1). There are 14 links including one 

freeway segment, six nodes, inclusive of the origin and destination nodes. All the 

intersections are controlled by STOP signs. This network, except for a few reported 

experiments, was used primarily for test and development purposes.  

 

The second network, ‘Network B’ is a medium-sized network consisting of 22 

nodes, 68 links and six origin and destination zones (Figure 6.2). Fourteen 

intersections are controlled by pre-timed signals, and the remaining eight do not have 

any control. Most of the experiments are conducted on this network. 

 

The large ‘FW Network’ represents the south central corridor in Fort Worth, 

Texas (Figure 6.3). This network consists of 13 origin and destination zones, 178 

nodes and 441 links. It includes a major freeway section (IH-35) between I-20 and I-
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30. Sixty-one of the intersections are controlled by pretimed signals, thirty-one by 

STOP signs, twenty-four by YIELD signs and sixty-two have no control. 
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Figure 6.1 Test Network A 
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Figure 6.2 Test Network B
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Figure 6.3 Fort Worth Network 
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6.5.   Experiment Design and Numerical Results 

To examine the objectives described in Section 6.2, different experiments are 

designed and conducted. In the following subsections the design of each experiment 

and the associated numerical results are explained.  

 

6.5.1. Congestion Level 

 

6.5.1.1 Experiment Design 

 

The performance of the bi-level generalized least-squares (Bi-GLS) OD-flow 

estimation procedure, as explained in Section 3.4, is examined under different OD-

flow levels. Network B is used for this experiment and is loaded at different 

congestion levels referred to as uncongested, congested and over-congested. The 

uncongested scenario is referred to as the “base case”. The numbers of vehicles 

loaded onto the network and the average speed of vehicles in the network are shown 

in Table 6.1. The last column of the table shows the percent of vehicles that have not 

yet reached their destinations by the end of the estimation period. As explained later, 

it is not viable to consider the origin-destination estimates of these vehicles since their 

estimator has a high variance.  
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Table 6.1. Factor levels in congestion-level experiments 
Congestion level No. of vehicles 

loaded 

Avg. 

speed 

% not reached 

their destination 

Uncongested* 10,000 vph 30 mph 21% 

Congested 17,500 vph 25 mph 30% 

Over-congested 25,000 vph 17 mph 50% 

        * Base case scenario 

 

The simulated flows on the links resulting from the above loadings are 

assumed as the ground-truth link-flow observations. However, in all the pertinent 

experiments, the same initial guess of the demand table is input to the solution 

process.  

 

The estimation is performed for a 30-minute interval. The sizes of the 

observation and aggregate departure intervals in these experiments are one and five 

minutes, respectively. It is assumed that in the real world, users choose their paths 

according to user-equilibrium assignment. The UE assignment rule is also used in the 

lower-level optimization for estimating link-flow proportions.  In addition, it is 

assumed that the network is under free flow conditions at the start of the estimation 

stage. In the estimation of OD flows in consecutive iterations, the method of 

successive averages, as explained in Section 5.4, is used. 
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6.5.1.2 Results and discussion 

 

The results are described for each loading level separately. 

 

a) Uncongested Network 

This case is considered as the “base case”. Figure 6.4 depicts the RMSE of the 

estimated OD and the simulated link flows when the network is moderately loaded.  

Referring to this figure, the following points are noteworthy: 

 

• When the network is uncongested, the algorithm converges in three to four 

iterations, beyond which only minor reduction in RMSE is achieved.  

 

• Results of the conventional one-level OD-flow estimation, in which link-flow 

proportions are considered constant, are not optimal. This case corresponds to 

the first iteration point in Figure 6.4. 

 

• The estimated demands of the departure intervals near the end of the 

estimation period (departure intervals five and six) are not stable, with the 

RMSE of the estimated demand increasing in consecutive iterations, as shown 

in the upper part of Figure 6.4. This behavior occurs because vehicles that 

have begun their trips toward the end of the estimation stage may not have 

reached their destination by the end of the estimation stage (21% of loaded 

vehicles as stated in the above table), therefore the estimation of their origin 

and destination has a high variance. This is an important aspect in real-time 

rolling-horizon applications where only demand for the first part of the 

estimation stage should be considered “final”. The length of this period 

depends on the size and congestion level of the network. 
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The above observation emphasizes an important point that appears to be 

overlooked in the estimation of dynamic origin-destination flows--regardless of the 

estimation method used. To obtain a reliable estimate of demand flows, the estimation 

stage should include several more departure intervals such that the trips initiated 

during the departure intervals of interest are allowed to be completed. This issue is of 

particular concern in OD-flow estimation using the Kalman filtering technique, where 

the estimated OD flow is updated “on the fly” and at the end of each short 

observation interval. Appropriate safeguards should be introduced to prevent the 

accumulation of errors and the production of high estimation variance (Kang, 1999).  

 

The estimation for the first departure interval has a lower RMSE, because the 

network is under free-flow condition at the beginning of the estimation stage; 

therefore, there are no residual link flows from previous departure intervals to 

adversely affect the quality of the solution.  
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Figure 6.4. Estimation performance—uncongested network 
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b) Congested Network 

Figure 6.5 presents the RMSE of estimation in a  congested network. Demand 

values are increased by 75 percent as compared to the base case. The results are 

comparable to the uncongested network results, but the instability in the estimation of 

demand generated toward the end of the estimation stage is more noticeable. In 

particular, the demand flows that do not reach their destination by the end of the 

estimation stage may cause identical link-flow proportions, making two or more rows 

of the link-flow proportion matrix identical and causing singularity in the matrix. 

 142



 

RMSE of OD-Flow Estimation
Congested Network

0

10

20

30

40

50

60

0 1 2 3 4 5 6 7 8 9 10

Iteration No.

R
M

SE

Dep. Int. 1
Dep. Int. 2
Dep. Int. 3
Dep. Int. 4
Dep. Int. 5
Dep. Int. 6
Overall

RMSE of Estimated Link Flows
Congested Network

0

2

4

6

8

10

12

0 1 2 3 4 5 6 7 8 9 10

Iteration No.

R
M

SE

Dep. Int. 1
Dep. Int. 2
Dep. Int. 3
Dep. Int. 4
Dep. Int. 5
Dep. Int. 6
Overall

 143 143

Figure 6.5. Estimation performance—congested network 



 
 

c) Over-Congested Network 

In this case, 2.5 times the demand in the base case is loaded onto the network. 

As depicted in Figure 6.6, even though the estimation of demand does not converge, 

the bi-level solution process tends to reduce the errors in the estimated link flow 

volumes. In this experiment, only 50 percent of the generated vehicles were able to 

reach their destination by the end of the estimation stage; hence, there is not sufficient 

evidence to trace the origin and destination of the vehicles in the network. Despite 

this fact, the procedure increases the consistency of the simulation in terms of flows 

on the links. As mentioned before, link flows cannot explain the state of the system 

uniquely (Doan et al., 1999), or in other words, different OD demand flows can 

produce the same time-varying link flows. This problem is aggravated when the 

network is over-congested because of insufficient capacity. In this case, low flow 

volumes on the links are not representative of the actual existing demand. Therefore, 

in over-congested networks—situations like peak rush hours in downtowns—the use 

of hybrid models that minimize the deviation of traffic flows and densities on 

network links may be viable. Furthermore, in these cases, usage of substantially 

larger aggregate intervals may be justified so that the effect of over-congestion in the 

network fades out.       
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Figure 6.6. Estimation performance—over-congested network 
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6.5.2. Effect of Inconsistencies in Traffic Assignment Assumptions 

 

6.5.2.1 Experiment Design 

 

To investigate the effect of inconsistent assumptions on the trip-maker’s 

route-choice, the experimental factors shown in Table 6.2 are considered. The 

experiments are conducted assuming different route-choice behavior in obtaining the 

ground-truth results. To examine the interaction between assignment assumptions and 

congestion level on the quality of the solution, some of the experiments are run at two 

different congestion levels. In all scenarios, user equilibrium assignment is used to 

estimate the link-flow proportions in the lower-level optimization problem.  

 

Table 6.2. Factor levels considered in route-choice experiments 
Scenario 

no. 

Congestion 

level 

Real-world route-choice 

behavior 

Assumed assignment 

rule 

1a* Uncongested 

1b Congested 
User Equilibrium User Equilibrium 

2a Uncongested 

2b Congested 
System Optimal User Equilibrium 

3 Uncongested 50% SO-50% UE User Equilibrium 

4 Congested Imperfect UE User Equilibrium 

* Base case  

 

 

In case number 1, it is assumed that users in the real world follow the user 
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equilibrium rule for their route choice. This assumption in the conducted experiments 

is enforced by running the DTA simulation program by assuming UE assignment in 



obtaining the ground-truth link flow observations and in OD-flow estimation runs. 

This ca ongested 

and congested as defined in Section 6.2. Scenario 1a constitutes the base scenario.  

ase number 2 assumes users in the real world are guided based on the 

system

ongested 

conditions. 

 

e im ssig se

rout ased on th ortest paths, bu ause users don’t h omplete 

info tion, th partial e this case s 

more likely to happen under the congested condition, the test is conducted only under 

cong d cond

hese re perf k B, as e 

observation intervals and five-minute ag re interva

.5.2.2 Results and discussion

se is run under two assumptions regarding the congestion level, unc

 

C

-optimal assignment rule; however, in the estimation of OD-flows, a user 

equilibrium assignment is assumed.  Based on the congestion level, this case is also 

divided into two separate scenarios. 

   

In the third case, it is assumed that not all of the users in their route choice 

follow the same rules, i.e. half of the users pursue the UE assignment and the other 

half follow the SO assignment rules. This case is only examined under unc

In th

es b

perfect UE a

eir sh

nment, it is assumed that u

t, say bec

rs tend to choose their 

ave c

rma e system is in quilibrium. Since  in the real world i

este itions. 

 

T experiments a ormed on Networ suming one-minut

gregate departu ls. 

  

6  

 

Scenarios 1a and 1b of the first case are implemented and discussed in Section 

6.5.1 (Figures 6.4 and 6.5) and will not be repeated here.  
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In the second case, it is assumed that users in the real world follow SO 

assignment rules, but UE assignment is used in OD-flow estimation. Figure 6.7 

depicts the results of the uncongested network. The iterative process reduces errors in 

link flow estimation. The OD-flow estimation also converges, but the final residual is 

higher 

s. Consequently, the algorithm minimizes the combined errors due to 

loading the “estimated” demand, traffic assignment assumptions, control strategies, 

etc. If 

 demand flows, assumptions made on link cost functions and 

traffic assignment often cause similar inconsistencies. 

than in the case where assignment assumptions were consistent, as shown in 

the lower part of Figure 6.4. This observation confirms that when the load on the 

network is not very high, UE and SO solutions are not significantly different (Peeta 

and Mahmassani, 1995b). 

 

In congested networks, the procedure reduces the errors in the estimated link 

flows, but OD-flow estimation does not converge (Figure 6.8). As mentioned before, 

the procedure estimates the OD-flows by minimizing the inconsistencies in estimation 

of link flow

any of the contributing factors is not consistent with the real world, the 

accuracy of the estimation degrades. It should be emphasized that this problem is not 

specific to the algorithm presented nor is it due to the usage of the simulation 

program to find the link-flow proportions. In the static case or in the one-level 

estimation of dynamic
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Figure 6.7. Estimation performance—uncongested network, inconsistent 
assignment assumptions, SO assignment for the real world and UE assignment 

for OD-flow estimation 

 

RMSE of Estimated Link Flows
Real World: SO -- Estimation: UE

Uncongested Network

0
2
4
6
8

10
12
14

0 1 2 3 4 5 6 7 8 9 10

Iteration No.

R
M

SE

Dep. Int. 1
Dep. Int. 2
Dep. Int. 3
Dep. Int. 4
Dep. Int. 5
Dep. Int. 6
Overall



RMSE of OD-Flow Estimation
Real World: SO--Estimation: UE

Congested Network

0
5

10
15
20
25
30
35
40

0 1 2 3 4 5 6 7 8 9 10

Iteration No.

R
M

SE

Dep. Int. 1
Dep. Int. 2
Dep. Int. 3
Dep. Int. 4
Dep. Int. 5
Dep. Int. 6
Overall

 

 

RMSE of Estimated Link Flows
Real World:SO --Estimation: UE

Congested Network

0
2
4
6
8

10
12
14

0 1 2 3 4 5 6 7 8 9 10

Iteration No.

R
M

SE

Dep. Int. 1
Dep. Int. 2
Dep. Int. 3
Dep. Int. 4
Dep. Int. 5
Dep. Int. 6
Overall

Figure 6.8. Estimation performance—congested network, inconsistent 
assignment assumptions, SO assignment for the real world and UE assignment 

for OD-flow estimation 
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In the third case, a mix of half SO and half UE assignment is assumed for 

users’ route choice behavior in a real-world, uncongested network. The results are 

illustrated in Figure 6.9. The solutions of both OD flows and link flows converge. 

The errors, as expected, are something between consistent assignment assumptions, 

case 1, and case 2 where users were following complete SO assignment rule. 

 

However, in the real world, at least until when a mature traveler route 

guidance system is not in place, users are not aware of and do not follow an SO 

assignment solution. But based on their knowledge or perception, they tend to take 

the perceived shortest paths. This behavior implies that the route-choice behavior of 

tripmakers would be close to the user equilibrium traffic assignment. However, due to 
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scenario. The results again emphasize the effect of consistent assignment assumptions 

o

a lack of complete information, tripmakers may not exactly follow the shortest paths 

as in the results of the simulation. This discussion leads to the fourth case in this set 

of experiments.  

 

As explained, to implement the fourth case, the DTA simulation program is 

iterated three times and stopped before reaching the required assignment 

convergence. While in the OD-flow estimation, the simulator is iterated five times to 

result in a more stable solution. This scenario is applied to congested loading 

conditions as stated in Section 6.5.1.   

 

As illustrated in Figure 6.10, the algorithm in terms of link flows exhibits 

favorable performance and reduces the errors significantly within five iterations. In 

terms of the OD-flows, the algorithm reduces the error as well, especially in the first 

and the second departure intervals. The final RMSE is comparable to the third case 

 

n the quality of the OD-flow estimation. 



Nevertheless, it should be noted that if a reliable a priori OD-flow table is 

available, one can improve the quality of the OD-flow estimation. This issue is 

discussed when examining the application of the Bayesian inference method.    
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Figure 6.9. Estimation performance—uncongested network, inconsistent 
assignment assumptions, 50% SO-50%UE assignment for the real world and UE 

assignment for OD-flow estimation 
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Figure 6.10. Estimation performance—congested network, inconsistent 
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6.5.3. Effect of Size of Aggregate Departure Interval 

 

6.5.3.1 Experiment Design 

 

In these experiments the observation interval is fixed at one minute, but 

aggregate departure intervals are chosen between one and fifteen minutes. The chosen 

aggregate departure intervals for this experiment are as follows: 

- 2 minutes 

- 5 minutes 

- 8 minutes 

- 10 minutes, and 

- 15 minutes 

 

The tests are conducted on Network B under uncongested loading. 

 

6.5.3.2 Results and discussion 

 

The estimation results for five-minute departure intervals, the base scenario, 

are already shown in Figure 6.4. The results of the experiments when the aggregate 

departure interval is fifteen minutes are illustrated in Figure 6.11, and Figure 6.12 

depicts the summary of the results. To compare the solutions of different runs, the 

RMSEs of the OD-flow estimation, shown in Figure 6.12, are divided by the length of 

the aggregate departure intervals in minutes. 

 

In general, choosing smaller aggregate departure intervals increases the 

complexity of the problem in terms of the size of the matrices, particularly the link-

flow proportion matrix, and increases the number of unknowns and reduces the over-
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specification of the problem. On the other hand, if the departure intervals are too 

large, the problem becomes more or less like the static case.  

 

Furthermore, If the size of the departure interval is too small, the number of 

vehicles departing at each interval becomes too small and the error in terms of the 

percentage of demand values increases.  Short departure intervals will also make the 

effect of other sources of errors such as traffic signals and flow propagation more 

significant. In addition, in this case since only a small number of vehicles can depart 

in each departure interval, the likelihood of obtaining a singular link-flow proportion 

matrix increases. The small number of vehicles generated in a departure interval may 

not contribute to the flows on any link, especially when the network is congested, and 

may cause degeneration in the solution.  

 

Figure 6.12 illustrates that the optimal aggregation size for these experiments 

is eight minutes. Obviously, this result is not conclusive and the optimal aggregation 

size depends on the size of the network, the number of unknown OD-flows and 

congestion levels in the network, among others. 
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Figure 6.11. Sensitivity of estimation to departure-interval aggregation size; 
observation interval: 1 min., departure interval: 2 min. 
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size—summary 
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6.5.4. Effect of Observation Interval Size 

 

To investigate the effect of observation interval size on the performance of 

OD-flow estimation and the external consistency of the simulation program, a set of 

experiments are conducted. In these experiments, the size of the observation intervals 

is varied between one and ten minutes, that is 

- one minute 

- two minutes 

- five minutes, and  

- ten minutes. 

 

In all runs, the departure interval was fixed at ten minutes. The experiments 

are performed on Network B under an uncongested condition. 

 

6.5.4.1 Results and Discussion 

 

The estimation results for all departure intervals in the estimation period are 

summarized and shown in Figure 6.13. The RMSEs of the estimated link-flows are 

divided by the observation interval size in order to make the results comparable. 
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Interestingly, the size of observation intervals does not have a significant 

effect on the accuracy of the estimated link flows, as shown in the lower part of 

Figure 6.13. However, as the ratio of sizes of the aggregate departure intervals to 

observation intervals increases, the error in the estimation of OD flows decreases. As 

mentioned before, this improvement is due to an increase in the degree of over-

specification in the problem. The jump in the RMSE of the OD-flow estimation, 

when the observation interval is equal to the departure interval of ten minutes, is 

attributed to the singularity in the link-flow proportion matrix, and consequently, 

degeneracy of the estimation process. 
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6.5.5. Effect of Upper Limit on OD-Flow Estimation 

 

6.5.5.1 Experiment Design 

 

The upper limit value (the parameter od_max in the implementation, as 

defined in Section A.2 in the appendices) can be chosen subjectively based on the 

maximum possible or probable vehicular demand flows generated from each origin to 

each destination during a departure interval. This parameter can expedite the 

convergence of the procedure and prevent assigning unacceptable values to OD flows 

especially when the estimation process degenerates. The sensitivity of OD-flow 

estimation to the value of od_max is tested by setting it to 50 and 100 in test Network 

B when the network is uncongested. The observation intervals are one minute and 

aggregate departure intervals are set to two minutes. The lower limit is set to one and 

is not included as a factor in the experiments. 

 

As illustrated in Figures 6.14 and 6.15, setting a lower value for od_max 

results in a smoother estimate of OD-flows and faster convergence of the algorithm. 

However, the change of od_max, if not set to very small values, does not affect the 

quality of the solution in terms of the link-flow estimates (external consistency).   
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Figure 6.14. Sensitivity of OD-fl tion to the maximum allowable 
demand value—od_max=100 
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Figure 6.15. Sensitivity of OD-flow estimation to the maximum allowable 
demand value—od_max = 50 
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6.5.6. OD-Flow Estimation in Large Networks 

 

6.5.6.1 Experiment Design 

 

To investigate whether the proposed bi-level GLS OD-flow estimation 

method can be implemented in large networks, two experiments are conducted on the 

FW Network. The assumed actual demand flow pertains to a peak morning scenario. 

The estimation period consists of three departure intervals of ten minutes. 

Observation intervals are set to one minute. The network is loaded with about 19,000 

vehicles per hour. The average travel speed over the entire network is about 36 miles 

per hour and the stopping delay time is about five percent of the average travel time. 

 

The solution quality in terms of OD-flow estimation and improvement in 

external consistency is tested by assuming two different initial OD-flow tables as 

input to the estimation algorithm.  

 

The first initial OD-flow table assumes there is no information on the OD-

flow pattern in the network, hence it assumes equal values for all OD flows in all 

departure intervals.  In the second experiment, it is assumed that information on 

general OD-flow pattern in the network exists. The assumed actual OD flow values 

are halved and are input as the initial guess of OD flows to the Bi-GLS estimation 

program. The improvement in OD-flow estimates and consistency checking can be 

compared to the base case of Section 6.5.1. 
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6.5.6.2 Results and Discussion 

 

Figure 6.16 depicts the results of the first experiment where a uniform OD-

flow table was assumed as the starting point of the estimation process. As it is seen, 

the RMSE of OD-flow estimation improves rather significantly in the first iteration 

but subsequently the improvements are not as significant (about one vehicle per 

departure interval or five percent). However, the improvement in the RMSE of the 

estimated link flows is more significant in consecutive iterations.  

 

The results of the second experiment are illustrated in Figure 6.17. In this case 

the initial demand is assumed to be 50% of the actual values. The first iteration of the 

estimation process has improved the RMSE of OD flows by about 20 percent, but in 

the second iteration, no improvement is obtained and even slight divergence is 

observed. However, with regard to the external consistency of the system in terms of 

the observed link flows, an improvement of 40 percent is witnessed in just two 

iterations.    

 

The behavior of the estimation method observed in both cases, as mentioned 

in detail in Chapter 3, occurs because the objective in the upper-level optimization 

problem is to minimize errors in the estimated link flows. If there existed an a priori 

OD-flow table, the estimated OD-flows would further improve by the use of the 

Bayesian inference method, as explained in Section 6.5.7.   
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Figure 6.16. Bi-level GLS OD-flow estimation for FW network; 
uniform initial demand 
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Figure 6.17. Bi-level GLS OD-flow estimation for FW network; 
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6.5.7. Non-Linear Optimization Method 

 

6.5.7.1 Experiment Design 

 

The performance of this estimation method, presented in Sections 3.5 to 3.7,  

is investigated by its implementation on a small network (Network A, Figure 6.1) 

with a limited number of departure intervals. The practical problems involved in 

implementing this method in large networks are explained in Chapter 5. 

 
The network is loaded with a demand of about 700 vehicles per hour. The 

estimation period consists of two departure intervals of five minutes. Average travel 

speed in the network is about 40 miles per hour, which indicates that the network is 

not congested. Considering that there are only two origin and destination pairs and 

two departure intervals, the problem consists of four unknown OD-flow entries. 

 

As explained in Chapter 5, in the first few iterations the problem is solved by 

using the bi-level GLS method, and in the final iteration, the non-linear optimization 

method is used.  

 

6.5.7.2 Results and Discussion 

 

The results are illustrated in Figure 6.18. In the first three iterations, the bi-

level GLS method significantly reduces the RMSE of OD flows. In the fourth 

iteration, when the non-linear optimization method is used, since the estimated OD 

flows have already approached the vicinity of the solution, the improvement in the 

RMSE of OD-flow estimation is not significant (about 14 percent). As mentioned 

before, in  bi-level 

optimization should be close lution. As such, we cannot 

 order to achieve convergence, the initial guess of OD flows in the

 enough to the desired so
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expect much improvement in the RMSE of the estimation. If the initial point is not 

close enough to the desired solution, the process may not converge or, in other words, 

may diverge toward other solutions. For instance, the non-linear optimization method 

was utilized after the first iteration, but the RMSE of OD-flow estimation increased 

(the results are not shown here). 

 

In large networks, the divergence problem is aggravated by an increase in the 

number of unknowns. In general, the obtained improvement in OD-flow estimation is 

often too subtle to warrant the computational overhead of using the non-linear 

optimization method for OD-flow estimation in practice. 
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Figure 6.18. Non-linear optimization method to estimate OD flows—small 
network, two departure intervals 
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6.5.8. Effect of a Priori Information 

 

6.5.8.1 Experiment Design 

 

As explained in Chapter 4, the Bayesian inference method is adopted to 

incorpo

obal optimum, which is an 

inherent property of the problem. The use of the Bayesian inference method directs 

the estimated OD-flow values toward the desired target matrix. In the experiments 

presented in this section, we examine how the existence of an a priori OD-flow table 

improves the quality of the solution in terms of OD and link flows.  

 

As explained in Section 5.2 and Appendix D, if Bayesian inference is invoked 

in the OD-estimation process, the resulting estimate in the last iteration of Bi-GLS or 

Bi-NLP methods are fused with a priori OD-flow estimates.  

 

Several experiments are designed to examine the effect of a priori information 

on the quality of the solution. In these experiments, the scenarios considered are those 

in which the Bi-GLS method did not exhibit satisfactory performance, or where the 

OD-flow estimates were diverging from the presumed solution. 

 

Experiment 1. The first experiment is conducted on Network B under 

congested loading, with one-minute observation intervals and five-minute aggregate 

departure intervals. The results of this experiment can be compared to the case in 

Section 6.5.1 (Figure 6.5) under the same experimental condition but without the 

rate the a priori OD-flow information or a target matrix, if available, with the 

estimates resulting from the flow observations. Use of a priori information may 

overcome the divergence problems that have been observed in some of the 

experiments. Such divergence is due to the lack of a gl
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Bayesian inference method. In this test, it is assumed that the a priori OD flows (the 

target matrix elements) are 90 percent of the actual OD-flow values.   

 

Experiment 2. This experiment is designed to examine the quality of the 

solution in terms of estimated OD flows, where inconsistent route choice assumptions 

are made. In this experiment on Network B under congested conditions, the real-

world route choice is assumed to be an imperfect UE, but UE assignment is used for 

the OD-flow estimation. Observation intervals and aggregate departure intervals in 

this case are one and five minutes, and the results can be compared with experiment 4 

in Section 6.5.2. 

 

Experiment 3. In this experiment on Network B, both the observation and 

departure intervals are ten minutes. The a priori OD flows are 90 percent of the 

assume  actual values. The results of this experiment are comparable to the results in 

Section 6.5.4 and Figure 6.13. 

 

Experiment 4. In all of the previous experiments, the estimation process was 

initiated with an arbitrary (mostly uniform) initial time-dependent OD-flow table. If 

the Bayesian inference was used, the resulting estimate in the last iteration was fused 

with a priori OD-flows. In this experiment, we will investigate whether or not the 

information obtained from the sample of observations improves the performance of 

OD-flow estimation when the process is initiated with the a priori OD flow table 

instead of an arbitrary one. It is assumed that the a priori OD flows are 80 percent of 

the actual ones. This experiment is conducted on Network B with uncongested 

loading. The chosen observation and departure intervals are two and ten minutes, 

respectively. The results can be compared to those of the experiments in Section 6.5.4 

(Fig

 

d

ure 6.13). 
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6.5.8.2 Results and Discussion 

a) Experiment 1. 

igure 6.19 shows the effect of using the Bayesian inference in the last 

iteratio

tes, meaning the 

solution has changed substantially while the RMSE of the estimated traffic flows on 

the link

bined with a priori 

inform ssignment assumptions are not completely 

consist

 

 

F

n of the OD-flow estimation when the network is congested, as described in 

Section 6.5.1.  

 

The results indicate that there is significant improvement in the quality of the 

solution in terms of estimated OD flows if a reliable a priori OD-flow table is 

incorporated into the estimation process. Furthermore, comparing the RMSEs of the 

estimated OD and link flows in iterations nine and ten underline that the optimization 

problem does not have a unique solution in terms of the OD flows. As illustrated, 

there is a considerable change in the RMSE of OD-flow estima

s has not changed significantly. 

 

b) Experiment 2. 

 

Figure 6.20 shows that by using the Bayesian inference method RMSEs of 

estimation in terms of estimated OD flows improve significantly. It is assumed that 

the a priori OD-flow table was underestimating the actual demand values by 10 

percent. The results emphasize that the estimation method com

ation is robust, even if the a

ent with the users’ route choice.   
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c) Experiment 3. 

 

Experiments in Section 6.5.4 on the effects of observation interval size 

showed

-flow estimation. Even though the amount of change in RMSE of 

estimated link flows is less significant, the relative improvement is more than 55 

percen

his experiment is conducted by assuming that the a priori OD-flow table 

functio

 that when both observation intervals and departure intervals are ten minutes, 

there is degeneration in the solution and the quality of OD-flow estimation in 

consecutive iterations does not improve. Figure 6.21 depicts that we can overcome 

this problem if a relatively consistent a priori OD-flow table exists. During this 

experiment, after four iterations of GLS estimation, the resulting estimated OD-flow 

is fused with the a priori information. In this case, there is 72 percent improvement in 

the RMSE of OD

t. 

 
d) Experiment 4. 

 

T

ns both as the initial estimate of OD-flow (the input to the estimation 

algorithm) and as the Bayesian inference prior information in the last estimation 

iteration. Figure 6.22 illustrates that in the consecutive Bi-GLS estimation iterations, 

the estimates of the OD flows do not improve while there are improvements in the 

estimated link flows. However, in the last iteration, when the estimated OD-flow in 

the previous iteration is combined with the a priori OD-table by means of Bayesian 

inference, there is a significant improvement in the estimated OD-flows. Although, 

there is a slight increase in the RMSE of link flow estimates due to the application of 

the Bayesian inference, the errors in the link flows are not being minimized.  
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Comparing the RMSE of OD-flow estimation at the initial condition against 

the results in the fifth iteration shows that even if the a priori OD-flow values were 

rather clos t of the demand values), the information 

obtained from traffic counts improves the estimation of the OD flows. It should, 

howeve

e to the actual demand (80 percen

r, be noted that this improvement might not always occur.  

 

 176



Bayesian Inference

Congested Network

0

5

Iteration No.

6

8

10

12

Iteration No.

R
M

SE Dep. Int. 2

RMSE of Estimated OD Flows

10

15

20

25

0 1 2 3 4 5 6 7 8 9 10

R
M

SE

Dep. Int. 1
Dep. Int. 2
Dep. Int. 3

Bayesian Inference
RMSE of Estimated Traffic Flows

Congested Network

0

2

4

0 1 2 3 4 5 6 7 8 9 10

Dep. Int. 1

Dep. Int. 3

 177

Figure 6.19. Effect of Bayesian inference on OD-flow estimation 
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Figure 6.20. Effect of inconsistency in assignment assumptions; quasi-UE in the 
real-world and UE in OD-flow estimation 



Figure 6.21. Effect of Bayesian inference on improving the OD-flow estimation; 
ten-minute observation intervals and ten-minute departure intervals 
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Figure 6.22. Effec  the initial guess  
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6.6.   Summary 

In this chapter, several experiments were designed and performed and their 

results were discussed. In summary, the following points are noteworthy. 

• The Bi-level GLS OD-flow estimation method exhibits a good 

performance in estimating OD-flows and especially in improving the 

external consistency of the Dynamic Traffic Assignment simulation 

program. 

• Since the methods presented in this dissertation estimates OD flows 

based on the traffic flow in the network, it does not provide a good 

estimate of OD flows, as expected, when the traffic flow in the system 

is impeded due to, say, congestion. In these situations, the use of a 

hybrid model that estimates the OD flows based on both traffic flow 

and density is recommended. Another possible solution in these 

situations would be to choose larger aggregate departure intervals or to 

combine the estimates with a priori OD-flow information.  

• In several experiments, the effects of inconsistencies in traffic 

assignment assumptions are examined. Since the error terms due to 

different sources are confounded, the closer the assumptions in the 

methodology are to the real world, the better the results of the 

estimation. Nevertheless, in most of the experiments, the Bi-GLS 

method was robust in the estimation of OD flows, especially when 

fused with prior OD-flow information. 

• The ratio of the size of the aggregate departure intervals to the size of 

the observation intervals has a significant effect on the quality of the 

come 

under-specified (depending on the number of unknown OD-flow 

values and number of observation flow volumes). On the other hand, if 

solution.  If this ratio is not large enough, the problem may be
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the chosen ratio is too large, though the effect of the undesirable 

randomness in the system is alleviated, the problem becomes similar to 

the static case. In general, the optimum value for this ratio depends on 

the topology of the network, the observation intervals of the available 

traffic flow data and the desired detail level of the estimated OD flows.   

• The experiments indicate that the Bi-GLS method shows satisfactory 

performance in the estimation of OD flows in actual, large networks. 

The computational time of the algorithm depends on the time 

necessary to run the simulation by the DTA and the preferred number 

of iterations. As a rule of thumb, the upper-level optimization takes 

less than one tenth of the simulation run time (the lower-level 

optimization). 

• Considering that the lower-level optimization problem is not well 

behaved, the non-linear optimization algorithm, though theoretically 

valuable, does not appear to improve meaningfully the quality of 

estimation obtained by the Bi-GLS method in practice. 

• Availability of reliable a prior information on OD flows can 

significantly improve the performance of the estimation process, 

especially in terms of OD flows. Considering that the formulated bi-

level optimization problem does not have a unique solution, fusion of 

the prior information and the evidence obtained from time-varying 

traffic flows directs the solution to the desired (local) optimal point.   
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C LUSIONS AND FUTURE EXTENSIONS 

In this research, several formulations for the problem of estimating dynamic 

OD flows from time varying traffic flow observations are presented. In these 

formulations, it is sought to minimize the sum of squared errors in traffic volumes 

estimated by a dynamic traffic assignment (DTA) simulation program to which the 

estimated OD flows are input. There are several sources of error in the estimation of 

link flows. In the methods presented, the combined effect of errors from all sources is 

minimized. In this way, the estimation process can be used to improve the external 

consistency of the simulation-assignment program. It should be noted that if one 

could reduce the errors due to other sources, such as users’ route-choice behavior, one 

would obtain a more accurate estimate of the OD flows.  

 

In the presented bi-level generalized least-squares formulation (Bi-GLS), the 

relation between traffic flow volumes and OD flows is considered as quasi-linear, that 

is in each iteration link-flow proportions are assumed to be constant. Using this 

approach in e

estimated by s

level optimization problem, the DTA simulation program is used to assign the 

estimated OD flows in the previous iteration onto the network. The iterations are 

repeated a pre-

 

In the 

upper-level is 

between link f

flow proportio

HAPTER 7. CONC

7.1.  Overall Conclusion 

ach iteration of the algorithm, a new set of link-flow proportions is 

eeking the user equilibrium assignment solution. In solving the lower-

specified number of times or until convergence criteria are met. 

bi-level non-linear optimization (Bi-NLP) formulation, in which the 

a non-linear generalized least-squares problem, the non-linear relation 

lows and OD flows is taken into account and the derivatives of link-

ns with respect to OD flows are explicitly included in the formulation. 

 183



This approach

upper-level op

numerically by

is shown that

generalized lea

the GLS formu

  

Both m

estimation pro

for the initial c

 

- oint and  

 

In the 

used as the ini et according to 

the stat f the

 

Finally

priori informa

time-varying t

obtained from  

previous estimation periods, the day, or the week before. In the case of annual events 

like holidays or special events, the a priori information could be the estimated OD 

flows during suitable periods in the previous years.  

 

The procedures for the estimation of OD flows from traffic counts are 

implemented as an integral part of DYNASMART-P, the planning version of the 

 results in a set of simultaneous quadratic equations for solving the 

timization problem. In each iteration, the derivatives can be obtained 

 solving the lower-level problem using the DTA simulation program. It 

 the non-linear optimization formulation is an inclusive form of the 

st-squares estimation method, and with some simplifying assumptions, 

lation is obtained.  

ethods presented can be used in a single-horizon or a rolling-horizon 

cess. In the rolling-horizon estimation, based on the assumptions made 

onditions, two approaches are proposed:  

fixed initial-p

- free initial-point estimation 

former, the information from the previous rolling estimation stage is 

tial condition, and in the latter, the initial condition is s

e o  network in the real world at the beginning of each estimation stage.      

, the Bayesian inference method is presented to combine existing a 

tion on OD flows with the OD flows estimated from the sample of 

raffic flow counts. The a priori information can be historical data 

 surveys or can be the OD flows estimated from traffic counts in the

 184



Dyna  University 

of Texas at Austin. For the rolling-horizon OD-flow estimation, the first alternative, 

i.e. fixe a implemented. 

 

Deployment of Intelligent Transportation Systems is providing a large amount 

of valuable on-line and archived data. These data carry valuable information; 

however, so far they have mostly been used in real-time operational applications. This 

research has focused to extract information and build knowledge from on-line or 

archived data estimation of OD flows and external consistency checking of DTA 

systems. This information can be used in both transportation planning and on-line 

traffic control applications. Furthermore, the proposed methods are implemented in a 

DTA system in a way that may be used to improve the external consistency of the 

system with the real world. 

 

Gathering time-dependent OD flow information directly by conducting 

surveys is very costly and time consuming. Therefore, researchers have attempted to 

use other methods to estimate the OD flows, one of which is to use the available and 

relatively inexpensive traffic volume counts.  

 

In previous existing work on the estimation of dynamic OD flows from traffic 

counts, the effect of congestion in the estimation of dynamic OD flows is often 

ignored. Particularly, when trip makers have access to real-time traffic or route-

guidance information, they are able to choose new paths, which adds to the dynamic 

characteristics of the transportation system.  

 

mic Traffic Assignment (DTA) simulation program developed at the

d initi l-point formulation, is 

7.2.    Research Contribution 
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In this research, the effects of congestion are addressed by considering that 

link-flow proportions are not constant, but are an implicit function of the unknown 

OD demand values. Considering this aspect, several methods for the estimation of 

dynamic OD flows from time-dependent traffic counts are presented. It should be 

noted that there are several sources of errors in the estimation of link flows. One of 

the characteristics of the presented methods is that the problem is formulated and 

implem ted in a way that the combined effect of errors from all sources is 

minimi

ror are, the more reliable the 

estimated OD flows will be.  

stimation of OD flows and improvement 

of consistency of the DTA system are proposed. These methods are based on 

establis

in the f ulation. 

el problem. 

 Bi-NLP, in which the upper-level problem is formulated as a non-

en

zed. In this way, the estimation process can be used to improve the external 

consistency of the simulation-assignment procedure, bearing in mind that the more 

accurate the estimates of other factors contributing to er

 

In this research several methods for e

hed optimization methods and are formulated in a way that the availability of 

other information from, say, cordon line counts, known OD flow values, probe 

vehicles and/or Advanced Vehicle Identification (AVI) systems can be incorporated 

orm

 

The methods formulated in this research are as follows: 

• Unconstrained generalized least-squares estimation method. 

• Bi-GLS, a bi-level generalized least-squares estimation method. The 

assignment problem is formulated as a constraint to the main problem 

and constitutes the lower-level optimization problem. DYNASMART-

P has been used to solve the lower-lev

•

linear optimization problem. In the solution to the problem, the 
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derivatives of OD-flows with respect to link flows and link flow 

proportions are explicitly included. 

• Extension of the problem to on-line DTA application by formulating in 

a rolling horizon framework. The case has been formulated in two 

scenarios, fixed-initial point and free-initial point situation. The 

athem h scenarios are obtained and the 

flow estimation does not appear to have been formulated 

or implemented in a dynamic transportation network. Its static 

d proportional assignment. That is, the 

need to update the link-flow proportion values by solving the 

sed a similar formulation in the bi-level 

non-linear optimization of static cases, though he has used a linearized 

m atical solutions to bot

algorithm to the former scenario has been implemented.   

• To use any available prior information or to direct the solution to a 

desired target matrix, usage of the Bayesian inference method has been 

suggested and formulated. 

 

 The distinction of the proposed methods as compared to the existing works in 

the literature can be summarized as follows. 

 

• Bi-level OD-

formulation with some variations has been presented by Yang  et al. 

(1994). 

• Similar dynamic OD flow estimation has been formulated by Cascetta 

et al. (1993), but they have use

optimization problem at the lower level was ignored. 

• A closed form solution to the upper-level non-linear optimization 

problem was derived in this research. The resulting formulation is a 

fixed-point problem format to which a numerical solution has been 

presented. Yang (1995) has u
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influence function and has not reported attempts to obtain the solution 

mathematically.  

• It is shown that the non-linear optimization formulation is an inclusive 

form of the generalized least-squares estimation method, and with 

some simplifying assumptions, the GLS formulation is obtained. 

• Formulation of the problem in a rolling horizon application with free-

initial point assumptions. In this formulation, one can explicitly 

include the real-world state of the system at the start of each rolling 

estimation period. This property prevents the propagation of 

estimation errors from one estimation period to another and provides a 

mechanism for consistency checking of the system at the beginning of 

each rolling period. 

.3.    Future Extensions  

The following extensions can be considered imminent to the presented 

methods. In the non-linear optimization approach, to obtain better results, the 

following imp

 

• Using a more stable method to estimate the derivatives of link-flow 

proportions with respect to demand. In static cases and in small 

networks the derivatives might be found analytically. In dynamic cases 

• In this research, the Bayesian inference method has been proposed to 

incorporate the a priori OD-flow information in the solution of the 

problem. Usage of the Bayesian method in the estimation of OD flows 

for the static case has already been suggested by Maher (1983), but its 

application in dynamic OD-flow estimation has not been reported. 

7

rovements in the solution process are suggested: 

the simulation can be run several times and with different seeds for the 
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random number generator to find the mean of link-flow proportion 

derivatives. 

• Utilizing a more robust method to solve the set of simultaneous 

quadratic equations. Finding the solution to the set of simultaneous 

quadratic equations is one of the drawbacks of the non-linear 

approach, although finding the mean of the link-flow proportion 

derivatives, as suggested above, might alleviate the problem. As an 

ently. 

 Considering alternative approaches in dealing with probable singular 

singular, the associated row that 

causes the singularity is skipped. The resulting value of estimated OD-

.  

nvergence of the 

different random number generation seeds and finding the mean of the 

alternative, the estimation process could be linked to commercial 

software packages to find the solution to the set of simultaneous non-

linear equations more effici

•

link-flow proportion matrices. In the existing implementation, when 

the link-flow proportion matrix is 

flows are then compared against the predetermined upper and lower 

limits on OD flows. Other alternatives might be to set the value to its 

estimate in the previous run or to substitute it with OD-flows of similar 

OD pairs

• In both the quasi-linear and non-linear formulations, the properties of 

the DTA simulation program used to compute the link-flow 

proportions (and their derivatives with respect to demand, in the latter 

case) could also contribute to a slowdown in the co

results or may cause a jump in the solution from one local optimum to 

another. In addition to non-linearity, non-convexity and non-continuity 

of the dynamic traffic assignment, the existence of randomness in 

some aspects of the simulation-assignment program may contribute to 

jumping between local optimal solutions.  Running the simulator with 
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link-flow proportions in several runs might smooth out the process.  

With this provision, the simulation-assignment process should iterate 

ltiple 

• 

tion is implemented. When the data for a real-

 

7.4.    Future Research 

When the required real-world information is available, the proposed methods 

should 

he performance of the 

presented methods can also be measured in terms of the estimated OD flows. The 

perform ce o

as conventiona

 

The es

information. Link-based formulation brings up the possibility of having multiple OD-

several times in the lower level within a bigger loop of iterations of the 

bi-level OD-flow estimation. Besides, each run of the simulation itself 

consists of several iterations in order to find the equilibrium mu

user class assignment (RHMUC procedure). However, it should be 

noted that multiple executions of the simulation-assignment program 

in finding the mean link-flow proportions and their derivatives is a 

burden on the complexity of the problem in terms of the computation 

time.   

As mentioned in the rolling-horizon OD-flow estimation only the fixed 

initial-point formula

world network becomes available, the free initial-point formulation 

can be implemented. This method could prevent propagation of the 

estimation error from one estimation stage to the next. 

be applied to a real network so the performance of the estimation method in 

terms of replicating the time-dependent traffic volumes on links can be measured. If 

an estimate of the actual OD flows in the network is available, t

an f the method can also be compared with other estimation methods, such 

l GLS estimation and the Kalman filtering technique. 

timation OD flows proposed in this research are drawn from link-based 
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flow solutions

systems and Global Positioning Systems (GPS) and technological advances in 

locating irel

By using the 

flow informati

 

In this 

non-linear opt

(theoretical) a

solution to tho

From a

in other fields 

industries. In 

while in realit

willing to pay 

. More common utilization of Advanced Vehicle Identification (AVI) 

 w ess phones will provide (partial) OD-flow or path-based information. 

presented Bayesian inference method, the route-based or partial OD-

on can be combined with the estimated OD flows from traffic counts. 

research we proposed the use of the bi-level GLS method and bi-level 

imization to solve the obtained equation in (3.5) or (3.8). Another 

pproach is to use Maximum Likelihood Estimation methods to find a 

se equations.  

 

 broader perspective, the bi-level optimization method has applications 

such as revenue management and scheduling in the airline and trucking 

practice fleet scheduling and pricing are usually done independently, 

y scheduling has direct impact on users’ choice and the price they are 

to use the service. 
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Appendices 



APPENDIX A.  IMPLEMENTATION OF ALGORITHMS 

A.1.   Pseudo-code of the main program 

The pseudo code of the estimation process within the main DYNASMART-P 

program rative procedure for OD-flow estimation is 

implem

o estimate the OD-flows using the generalized least-

squares (GLS) method. 

: to find the statistics of OD-flow estimation by any 

of the above methods. 

 

To use the memory efficiently, the above subroutines allocate the required 

arrays to the memory and de-allocate them after returning to the main program, 

except for the global arrays, which are also used in other modules of the simulation 

program or the OD-flow estimation procedures. For instance, to avoid time-

consuming I/O access, the link-flow proportion and the link flow observation arrays 

are stored in memory and are accessed when needed.  

 is shown in Figure A.1.  The ite

ented in the outer loop of the main rolling horizon multiple user class 

(rhmucmain) program. The main added procedures are: 

 

- OD_main(): t

- Deriv_main(): to estimate the OD-flows using non-linear optimization 

with inclusion of the derivative of link-flow proportions with respect 

to demand. 

- Bayes_main(): to implement the Bayesian inference procedures. 

- STAT_OD_main()
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Read System.dat  /*The file containing the execution parameters*/ 

all OBS_read() /* To read the link flow observations */ 

d_iter=0  /* In the first iteration, only the simulator is executed 

(and not the OD-flow estimation). The input demand is 

the initial guess of OD-flows to find the statistics of the 

initial guess */ 

o while( 0 ≤ od_iter ≤ od_iter_max +1)       

If od_iter < od_iter_max 

Call OD_main ()  /*to estimate OD-flows using GLS method */ 

Endif 

If od_iter = od_iter_max    /* in the last iteration*/ 

If deriv_flag = 1   /* optimization including derivatives*/ 

   Call De

  Else   /* GLS estimation*/ 

   Call OD_Main () 

  Endif 

 Endif 

 If od_iter = od_iter_max + 1   /* after the last iteration */ 

If (odest_flag = 1)  then /* If OD-flow estimation*/ 

Call Bayes_main () /* to calculate the a prior 

parameters, or the posterior OD 

flows if the Bayes_flag is ON */ 

  Else 

   END 

  Endif  

 Endif  (continued in the next page) 

Figure A.1. Pseudo code of DYNASMART-P main program including the OD-
flow estimation procedures 

C

O

D

 

 

 

riv_Main () 
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/* Start of simulator procedures */ 

find the initial shortest paths 

*/ 

 maxintervals) /* Run the simulator */ 

 ulation run (rhmuc) */ 

flow estimation */ 

nddo   /* End of OD-flow estimation loop*/ 

muc_iter=0   /* Iteration counter for multiple user class dynamic  

traffic assignment*/ 

Call dynasmart (maxintervals)       /* To set up the initial conditions 

and 

Do while muc_iter < muc_iter_max 

 Call dynasmart (

  muc_iter = muc_iter + 1 

Enddo 

/* End of sim

 

Call STAT_OD_main () /* To compute the statistics of the OD-

E

 

END 

 

  Figure A.1. Continued form previous page 
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Figure A.2 illustrates the organization of different modules and subroutines of 

the DYNASMART-P simula low estimation 

module descriptio

program, readers are referred

al., 2000). The added module

Appendices B to E.  

tion program after integration of OD-f

s. For the n of the modules used in the simulator/assignment 

 to the DYNASMART-P user’s guide (Mahmassani et 

s for OD-flow estimation are explained in more detail in 
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rhmucmain

OBS_read()

if OD_flag = 1

allocate_OD()

OD_Main() see the
subroutine

deallocate_OD()

if OD_iter<OD_iter_max

allocate_OD()

OD_Main()

deallocate_OD()

if OD_iter = OD_iter_max

if Deriv_flag = 0

if Deriv_flag = 1
allocate_OD()

Deriv_Main()

deallocate_OD()

allocate_Deriv()

deallocate_Deriv()

allocate_OD()

Bayes_Main()

deallocate_OD()

if OD_iter = OD_iter_max + 1
and OD_flag = 1

Continued on next page

if OD_iter <= OD_iter_max + 1

see the
subroutine

see the
subroutine

Definition of variables:

OD_iter:             OD-flow  estimation iteration number

MUC_iter:            Simulation run iteration numbers

OD_flag = 1         OD-flow  estimation run
 0          simulation run

Deriv_flag = 1      Including derivatives in OD-flow estimation
                    0      otherwise

OD_iter = 0

Legend:
Process or subroutine without
calling any other subroutines.

Process or subroutine that calls
other subroutines.

OD_iter > 0 Yes

No

Figure A.2. Flow of DYNASMART-P simulation program 
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openfile

dynasmart
(maxintervals)

deallocate_dyna

deallocate_ksp1if MUC_iter = 0

if MUC-iter < MUC_iter_max

deallocate_ksp2
allocate_ksp(dy_muc)

deallocate_ksp2

deallocate_ksp1

if hov_veh>0

closefile

somarginal

kspso_main

deallocate_ksp1

deallocate_ksp2

openfile
dynasmart

(maxintervals)

ksp_main(dy_muc)

ksp_Init

ksp_calculate

ksp_integrate

ksp_priorities

ksp_Init

ksp_calculate

ksp_integrate

soassign_hov

soassign_lov

random_number
(uniform)

random_number
(uniform)

ueassign_hov

ueassign_lov

rhmucmain

Continued from previous page

reset_japth()

MUC_iter = 0

MUC_iter ++

MUC iteration

Figure A.2. continued 
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closefile

write_vehicle

STAT_OD_main

deallocate_dyna

deallocate_ksp1

deallocate_ksp2

deallocate_others

closefile

if MUC_iter = 0

if MUC_iter==0

rhmucmain

Continued from previous page

print_vehicle

allocate_OD ()

deallocate_OD ()

if OD_flag = 1

deallocate jpath if OD_iter <> OD_iter_max
or  Deriv_flag = 0

OD iteration

END

OD_iter ++

 

Figure A.2. continued 
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Init()

Read_Signals()

Prepare_Network()

allocate_dyna()

allocate_muc()
if MUC_iter = 0

allocate_ksp(dy-muc)

premix()
if stagest > 0

title()

read_vehicles()
MUC_iter = 0 & realdm = 0

link_pricing()

network_check()

summa
(maxintervals)

final_statistics
(maxintervals)

outputmuc

loop
(start_l ,end_l &
maxintervals)

Input()

dynasmart
(maxintervals)

See loop
sub.

ksp_Init

ksp_calculate

ksp_integrate

ksp_priorities

ksp-main(dy-muc)

if MUC_iter = 0

for rolling-horizon

if MUC_iter = 0

if MUC_iter = 0

if MUC_iter = 0

Variable definitions:

realdm  = 1 if reading from demand file
0 if reading from vehicle files

stagest : start time of the OD estimation period
or the start time in rolling horizon

Return
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Figure A.2. continued 
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Figure A.2. continued 

loop
(start_l, end_l, maxintervals)

gui_stat(l)

read_signals() If signal setting changes

penalty_calculation(l)
if MUC_iter = 0

link_pricing

ksp_main(dy_muc)

ksp_Init

ksp_calculate

ksp_integrate

ksp_priorities
inci_check(l*tii)

inci_add(i)

inci_effect(i)

inci_remove(i)

inci_restore
(ilink,seve)

If there are any incidents

penalty calculation(l)
if L = 1

intersection_control

get_link_capacity

no_control

yield_control

stop_control

pretimed_control

actuated_control

get_left_capacity

adjust_saturation

link_pricing

ksp_main(dy_muc)

ksp_init

ksp_calculate

ksp_integrate

ksp_priorities

build_mucpath_lov
(soindex)

Every assignment int. (tad)

build_mucpath_hov
(soindex)

Continued o

every display interval

display_results ()

if MUC_iter = 0

if MUC_iter = 0

if MUC_iter = 0
every KSP-cal. intervals

every KSP update intervals

ksp_update (itmp)

every KSP-cal. intervals

Every assignment int. (tad)

if L < end_l

if MUC_iter = 0 &
MUC_iter_max>0

L = start_ l

n next page



loop
(start_l, end_l, maxintervals)

demand_generation(L)

vehicle_simulation
(L, t_start)

Continued from previous page

getlink(t,j,i)

get_veh_stat(i,j,t)

bus_impact
(i,j,xpos,xposold,imbus)

get_veh_path(j,i,0)

vehicle_generation(t,i,j)

bus_generation(i,t)

link_performance
(L,t,tend)

vehicle_transfer
(L,t,tend)

vehicle_moving(t,tend)

vehicle_loading(t)

penalty_calculation(L)

calavg(L)

Continued on next page

hot_lane_choice(j)

printlinkprop(L)
last MUC iteration or if converged

if odest_flag = 0

if MUC_iter = 0 &
realdm = 0

every aggregation
intervals

 

Figure A.2. continued 
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Deriv_main()

Deriv_save_org ()

Deriv_dist_paths ()

for each OD pair

Deriv_gen_veh ()

Deriv_insert_veh
(jj_org)

This is a copy of simualor

with realdm = 0
(reading from vehicle file)

Deriv_calculate (jcol)

Deriv_simulate ()

Next OD pair

Deriv_mult ()

Deriv_QSE ()

Deriv_QSE_coeff ()

Deriv_solve_LSE ()

odwrite ()

odclose_file ()

Inputs:                                  I/O unit
    latest estimated-OD:   output/fort.4242                      42
    or the initial guess:      input/initial_demand.42          42

Intermittent input/output
    vehicle file:         output/fort.97                        97
    path file:         output/fort.98      98

Output :
    ouput/fort.4242                                                    4242

Return

Figure A.2. continued 
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Figure A.2. continued 

 

Bayes_main()

Bayes_open_files()

Bayes_close_files()

Bayes_postr_disp ()

odinput ()

Bayes_prior_disp

Inputs: I/O unit
input/prior_demand.42     42
input/prior_disp.dat    601
input/prior_abg.dat    602

Output :
    posterior OD: output/fort.4242   4242
    post. dispersion matrix: input/posterior_disp.dat    701
    post. alpha, beta, gamma input/posterior_abg.dat    702

if Byes_flag = 0

if Byes_flag = 1

Return
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A.2.  Input file “System.dat” 

The control parameters of the simulation program and the OD-flow estimation 

procedures are included in the “System.dat”. A sample content of the file is shown in 

Figure A.3. The first three lines contain the parameters used in the rolling horizon 

implementation of the DTA system. For description of these variables, readers are 

referred to DYNASMART-P users’ manual (Mahmassani et al, 2000). The main 

variables added for OD-flow estimation are as follows: 

 

odest_flag:  1 if OD-flow estimation run, 

    0 otherwise (simulation or assignment run only). 

iter_od_max: The required number of iterations (in the outer loop) for 

OD-flow estimation. 

msa_flag: 1 if method of successive averages is used to average 

the estimated OD-flows in successive iterations; 

   0 otherwise.  

rload_period:  The period used for loading of the network before the 

start of the estimation stage (rolling horizon 

implementation). 

w_r: (window_ratio) the fraction of stage-length that OD 

estimation is considered final (used in calculating the 

estimation statistics). 

deriv_flag:  1 if the derivatives are included in the formulation 

(non-linear optimization problem); 
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              0 otherwise (GLS OD-flow estimation). 



iter_deriv_sim: number of simulation runs in OD-flow estimation when 

derivatives are included (to calculate the derivatives). 

veh_add_path: number of vehicles added per distinct path in 

calculation of derivatives of link-flow proportions with 

respect to demand. 

precision: the required precision in terms of RMSR (Root Mean 

Squares of Residuals) in consecutive iterations in 

solving the set of quadratic simultaneous equations in 

non-linear OD-flow estimation. 

max_deriv_iter: maximum number of iterations in solving the set of 

simultaneous quadratic equations if precision is not 

achieved. 

od_min: The minimum number of vehicular trips between any 

OD pairs during each aggregate departure interval. It is 

recommended that this parameter be set to a positive 

number (at least one), thus the OD estimation procedure 

can update the pertinent estimates in the following  

iteration. 

od_max: The maximum number of vehicular trips between any 

OD pairs. This value can be chosen subjectively based 

on the length of the aggregate departure intervals. This 

value is useful especially if the link-flow proportion 

matrix becomes singular (due to the uncompleted trips 

initiated toward the end of the estimation period). 

bs_interval:   the length of link-flow observation intervals in minutes. 

od_interval:  the l rture intervals in minutes. 

This variable is specified here for the cases where 

realdm=0 (reading from the vehicle file). The value of 

n

o

ength of aggregate depa
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od_interval should be consistent with the values 

specified in demand files, if provided (i.e. when 

 realdm=1).

Bayes_flag:  1 if Bayes inference posterior variables should be 

computed; 

0 otherwise (if odest_flag is ON, the prior variables for 

future estimation runs will be calculated).  
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  30.0   30.0   30.0   0
   0      0      1     3     50 
  10     50      0.5   1
   0    0
   0 
   1     300   
  10.0   10.0 
  1      0  

 
roll h tagelength
ireroute itedex realdm nu_ksp ksp_agg_cap 
ftr tad muc_diff no_via 
odest_flag  iter_od_max 
deriv_flag iter_deriv_si
max_deriv_iter  
od_min  od_max 
obs_interval  od_interva
Bayes_prior_flag  Bayes_postr_flag 

 

 

  

.0 

50 
    5      1   .0   1.0 
    0      2     0.5   100 

orizon s  stagest 

 msa_flag load_period  w_r 
m nveh_add_path  precision 

l 

Figure A.3. A sample content of file “System.dat” 
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The OD-estimation p

simulation and assignment pr rocess is designed such that in an OD-flow 

estimation run the GLS estim

times.  

 

If non-linear OD-flow  the process 

will be executed once at the end of GLS OD-flow estimation. In this case the vehicle 

files (fort.97 and fort.98 resulting from the simulation) generated in the last run of 

GLS estimation will be used as the vehicular demand input files (instead of OD table 

files).  To find the derivatives of link-flow proportions with respect to demand flows, 

the estimated time-dependent OD-flow values in the last GLS OD-flow estimation 

run, is augmented incrementally one cell (OD pair) at a time. The number of added 

vehicles depends on the number of distinct paths between the pertaining time-

dependent OD pairs and it is equal to the number of existing distinct paths in the 

simulation multiplied by the variable ‘nveh_add_path’, as specified in “System.dat” 

file (recommended to be a small number in the range of two to five). The number of 

simulation runs to find the equilibrium assignment solution with augmented vehicle 

files is controlled by variable ‘iter_deriv_sim’ in “System.dat” file. To avoid jumping 

from one solution region to another, a value of zero or one is recommended for this 

variable.    

 

To control the lower and upper bound of the estimated demand values, 

particularly when some of the vehicles cannot reach their destinations by the end of 

the estimation period (causing singularity in the link-flow proportion matrix), two 

variables, ‘od_min’ and ‘od_max’, are specified in the “System.dat” file. The units of 

these variables are the number of vehicles per departure interval.  

 

rocedures are added to the outer loop of the main 

ogram. The p

ation procedure is iterated for ‘iter-od-max’ number of 

 estimation is set active (deriv_flag = 1),
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The non-negativity condition insinuates the use of a value of zero for 

‘od_min’. However, setting ‘od_min’ to zero, will cause all the entries in the 

pertaining column of the link-flow proportion matrix to become zero, generating a 

singular matrix. Moreover, the OD-flow values of zero could not be updated in the 

consecutive iterations.   

ased on the above discussion, a small positive value is suggested for 

alue of one is chosen for ‘od_min’. The value of 

 on the prevailing network characteristics. Unless 

xperiments, since real-world link-flow observations do not exist, a 

ed and DYNASMART-P was run to find 

variable ‘obs_interval’ in the 

hich the vehicle flow 

ed. The variable ‘od_interval’ is the aggregate departure interval 

e time intervals specified in the demand 

input files. 

 

he variable “Bayes_flag” specifies if Bayesian inference process should be 

activated at the end of the OD-flow estimation process. If the value of this parameter 

is set to one, the Bayesian inference will be run and the posterior demand values and 

the pertaining parameter values will be calculated. However, if in an OD-flow 

estimation run (odest_flag=1), Bayes_flag is set to zero, the Bayes_main procedure 

will be invoked but only the prior Bayesian parameters (alpha, beta and gamma 

variables and dispersion matrix) are calculated.  

 

 

B

‘od_min’. In the experiments, a v

‘od_max’ should be chosen based

otherwise stated, a value of 100 is used. 

 

In the e

time-dependent OD-flow table was presum

the ‘ground-truth’ link flows. In this case, the 

“System.dat” determines the length of the time interval during w

atvolume is accumul

length and should be equal to the departur

T
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To make the OD-flow estimation procedure more stable and prevent from 

jumpin

e, the MSA method as shown in equation (5.3) will be used. However, by 

setting this variable to zero, the estimated OD-flow values in each iteration are treated 

indepe

matrix multiplication in the code. That is, all the entries in the matrix, 

g from one local optimal region to another, the method of successive averages 

(MSA) is used in consecutive iterations (see Section 5.4). The MSA method can be 

activated by setting the value of variable ‘msa_flag’ in the file “System.dat” to one. In 

this cas

ndently from the values obtained in the previous iterations. This is achieved by 

setting the value of i (the variable ‘weight’ in the code) to zero. 

 

A.3.  Multiplication of link-flow proportion matrices 

 

The characteristics of link-flow proportion matrix are utilized to speed up 
tl
k

,
τ

the observation interval t is prior to the start of the aggregate departure interval τ. 

That is, vehicles departing at any time interval τ cannot contribute to flows observed 

before the start of τ.  

 

The above feature of the link-flow proportion matrix causes all non-zero cells 

to reside in 

p , , are zero if 

a step-like part of the link-flow proportion matrix as shown in Figure A.4. 

In the code, the number of non-zero rows for each departure interval is calculated and 

used in the multiplication of matrices when appropriate. 
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Figure A.4. Non-zero entries in link-flow proportion matrix 

DYNASMART-P simulator program is used to find the derivatives of link-

flow proportions. To find the derivatives of link-flow proportions with respect to any 

OD flow element of the time-dependent OD-flow table, an incremental number of 

vehicles are added to that particular demand flow element. For each obtained 

 

 

A.4.  Finding derivatives of link-flow proportions with respect to OD 

flows 
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augmented OD-flow table, the simulation program is run and a new matrix of link-

flow proportions are calculated. The derivatives of link-flow proportions are then 

computed as follows: 

 

),,(

12

),,(
),,(

dodo
do d

PP
d

PP
νν

ν ∆
−

≈
∂

∂
=∇      (A.1) 

 

where P  is the matrix of link-flow proportions and ∆d is the induced increment in the 

OD flow . 

To minimize the effect of inherent randomness in the simulation, the 

algorithm keeps track of the vehicles’ paths, stores it in a vehicle file and in the 

subsequ

nodes to destination zones (as opposed to origin-destination zones). Therefore, to 

compute the total number of incremental vehicles that should be added to each OD 

pair, the number of distinct paths between each origin node and each destination zone 

in the simulation is counted. For each distinct path to a destination, a set of new 

vehicles are generated and augmented to the vehicle file. The number of generated 

vehicles is obtained according to the following equation (the variable nveh_add_path 

is specified in the System.dat file). 

 

 

∆d(ν,o,d)= (nveh_add_path) × (no. of distinct paths)(ν,o,d)  (A.2) 

 

),,( dod τ

 

ent runs of the simulation, it assigns the vehicles based on vehicles’ initial 

paths stored in that file (the vehicle files fort.97 and fort.98 in DYNASMART-P) . In 

DYNASMART-P, vehicles are generated on links and are simulated from origin 
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The process is repeated for each entry in the time-dependent OD table to 

compute the derivatives of link-flow proportion matrix with respect to all OD flows. 
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APPENDIX B. PROGRAMMER’S GUIDE FOR OD ESTIMATION 

USING GENERALIZED LEAST-SQUARES METHOD  

 

B.1.  List of subroutines  

in su outine OD_main ( ) 

Subroutine odinput ( ) 

Subroutine odread ( ) 

Subroutine odwrite ( ) 

Subroutine odclose_files ( ) 

 

The following subroutines are used as auxiliary functions: 

 

 Subroutine od_convert (jcol, nod, noz, idep, norg, ndest) 

 Subroutine od_convert_rev (jcol, nod, noz, idep, norg, ndest)  

 

 

 

Ma br
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B.2.  List of input files: 

 

STATE_OBS.888: File containing the real-world traffic flow observations.  

System.DAT: File containing parameters controlling the execution of 

the program. 

Actual_demand.42 File containing the actual demand, in case it exists. In 

the experiments, this file will be used to find the 

measure of performance of the OD-estimation method. 

Initial_demand.42 Initial guess of time-dependent OD table. 

Fort.4242 Intermittent values of estimated OD table, used for 

successive averaging. 

 

(Link-flow proportion values are calculated in the simulator and passed as an 

array) 

 

B.3.  List of output files: 

Fort.4242 File containing the final values of the estimated time-dependent 

OD flow values. 

 

B.4.  Parameters:    

no_of_origins:  Number of origin zones 

no_of_destinations: Number of destination zones 

nod:    Number of  OD pairs in the network. 
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de

obs_interval: The length of observation intervals during which the 

orted 

no_obs_dep: Number of observation intervals in each aggregate 

departure interval 

parture time intervals in an OD-

estimation period 

iobs_max: Number of observation intervals in an OD-estimation 

umber of links which have flow measurements 

ber of OD flow entries that should be 

timated (nth_od_max * nod) 

network before the start of the estimation period 

riod (before the 

estimation period). This variable is equal to ‘stagest’ in 

mulator.  

ndtime:  The end of the estimation period. 

load_length:  The length of the loading period 

w_r: Window ratio, the fraction of the estimation period that 

the estimated OD is deemed to be final. It is only used 

in computing the statistics of the estimation.  

od_min: The minimum number of vehicular trips between any 

OD pairs during each aggregate departure interval. 

od_max: The maximum number of vehicular trips between any 

OD pairs.  

part_interval: The length of aggregate departure intervals in minutes 

traffic volume on links are accumulated and rep

nth_od_max: Number of aggregate de

n

period 

nlink_w_detector: N

igammaj: Total num

es

nints_load: Number of aggregate intervals used for loading the 

startload: Starting time of the loading pe

the rolling horizon implementation of the si

starttime:  The starting time of the estimation period. 

e

r
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odest_flag:  1 if the run is for OD estimation, 

erwise (simulation or planning run). 

eriv_flag: 1 if non-linear OD flow estimation  

itedex: 

stimation. 

B.5.  Primary arra

Allocatable arrays

   0 oth

d

   0 otherwise. 

bayes_flag: 1 if Bayesian inference is used to incorporate the a 

priori information,  

   0 otherwise. 

The maximum number of simulation iteration to find 

the assignment (UE, SO, etc.) solution 

iter_od_max:  The required number of iterations for OD e

 

ys: 

  

B.5.1.  

link_prop_lt (i, j): Two dimensional link-flow proportion matrix, that is 

portion of demand flows between OD pair (o, d) 

s to flows on link l, during observation 

interval t. The row i represents (l,t) combination and the 

column j represents the (τ, o, d) combination. 

he link-flow proportion matrix associated with flows 

departing in τ in the loading period but observed on 

links during the observation interval t in the estimation 

period. 

 

the pro

which start their trip at departure interval τ which 

contribute

link_prop_load (i, j): T
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odvec(i): A column vector of time-dependent OD flows (to be 

odvec_load(i): nt 

odarr(i, j, k): e-dependent OD flows, i is the 

e. 

j, k): 

arture interval number, j is the origin zone and k 

(i, j, k): 

horizon implementation 

ination 

flow_diff(i): 

he 

s. 

nt arra

estimated). 

A column vector of time-dependent OD flows pertine

to the loading period. 

The estimated tim

departure interval number, j is the origin zone and k is 

the destination zon

odarr_old(i, The previous estimated time-dependent OD flows, i is 

the dep

is the destination zone. 

odarr_load The estimated time-dependent OD flows pertaining to 

the loading period (for rolling-

or non-zero initial conditions), i is the departure interval 

number, j is the origin zone and k is the dest

zone. 

Difference between the link-flow observations and 

estimated link flow volumes obtained from t

simulation based on the estimated OD flow

 

B.5.2. Permane ys: 

 

Vector of observed time-dependent link flows. 

Vector of estimated time-dependent net link 

observation_org(i):  

observation(i):  flows that 

): 

tion vector. 

is due to OD flows departing during the estimation 

period. 

jlink(irow The link number associated with row number irow in 

the observa
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jobst(irow): The observation interval associa ted with row number 

jlink and jobst are used for 

ble flow measurements. Therefore, 

bservation intervals with flow 

link_flow(i): n the estimated 

ow_minus(i): The estimate of the portion of link volume that is due to 

the OD flows initiated during the loading period. This is 

ucted from the observed volumes to estimate the 

portion of flow due to the OD flows departing during 

stimation period. 

irow in the observation vector. 

  

The two vectors 

bookkeeping to keep track of the links and observation 

intervals with availa

the links and o

measurements are not required to be sequential. 

Estimated link flow volumes based o

OD flows obtained from the simulation. 

fl

ded

the e
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B.6.  Main subroutine OD_Main ( ): 

 

main 

the time dependent OD flow f

Generalized Least-Squares m  observations are read separately 

in the O  o

 

 

Start of OD_main 

Call odopen_f

Call odinput  

Call odread  /* to read the arrays from the pertaining files */ 

cal  

Call odwrite  

Call odclose_f

nd of OD_main 

Function: This subroutine calls other subroutines in order to estimate 

rom the real-world traffic flow measurements  using the 

ethod. The real-world

BS_read subroutine r are fed to the system by a data broker. 

Pseudo Code: 

iles  /* to open the files */ 

 /* to calculate the required variables */ 

 

Call od  /* to calculate the OD demand flows */ 

 /* to write the output arrays to output files */ 

iles  /*to close the files */ 

E
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B.7.  Subroutine od

Function: To open th

input/initial_demand.42 file.

estimated OD flow table from

 

Pseudo Code: 

_files 

Check if outpu

  otherw

End of odopen_files 

 

open_files ( ) 

 

e input data files. In the first iteration, it reads the given 

 After the first iteration, it opens the intermittent 

 output/fort.4242 file.  

Start of odopen

t/fort.4242 exists, 

  If yes, open it as unit #4242, 

ise, open input/initial_demand.42 as unit #4242 
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B.8.  Subroutine odinput() 

 

unction: To calculate and assign the variables used in the OD-estimation 

procedu

Read the length of aggregate departure intervals from I/O unit 4242 

(initial or estimated OD file). 

te and store the variables. 

F

res.  

 

Pseudo Code: 

Start of odinput 

Compu

End of odinput 
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B.9.  Subroutine odread() 

 

Function: This subroutine reads and stores the estimated OD flows in the last 

iteration of the estimation process (or their initial guess) in a vector. 

 

Pseudo Code: 

 

tants of demand file I/O unit 4242 (initial or estimated 

ead O ing period. 

teration 

Multiply the demand values by the multiplication factor (multi). 

Convert the loading OD matrix into a vector (od_load). 

End of odread 

 

Start of odread

Read the cons

OD file). 

 R D flows pertaining to the load

Read the initial or the OD demand flows estimated in the last i

(odarr_old).  
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B.10. Subroutine odcal()  

s during the estimation period, checks if two columns of link-flow 

proportion matrix are identical (a cause of singular matrix), and finds the least-

squares D flows in the equation LP*OD=C by solving the set of 

simultaneous equations (LPT*LP)*OD=LPT*C 

Where 

 ion matrix 

 -flow proportion matrix. 

 the vector of link-flow observations 

 OD is the vector of time-dependent OD demand flows. 

 

It stores the estimated demand flows in odvec vector. 

 

Pseudo Code: 

Start of odcal 

Compute the portion of the flow on links that are associated with flows 

initiated during the loading period (flow_minus) based on the estimate 

of link-flow proportions from the simulator (link_prop_load). 

Find (the estimate of) the net flow (observation) that is associated 

with the OD demand flow in the estimation period.   

Calculate the sum of the elements in each column (OD pair) of link-

flow proportion matrix. 

 

Function: This subroutine finds the (estimated) net flow to be generated by 

the OD flow

 estimate of O

LP is the link-flow proport

LPT is the transpose of the link

 C is
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Do icol = 1, total number of columns in the link-flow proportion 

aj) 

If  sum of elements in a column is zero, write the error prompt 

Check if all entries in column icol and icomp of link-

flow proportion are equal. 

If they are all equal, prompt the user, exit the do loop 

  Enddo 

 

nk-flow proportion matrix by its transpose and store the 

 vector and 

q_prime matrix. 

Write some temporary test files (optional). 

Solve the set of simultaneous equations c_prime*OD = q_prime for 

OD using elimination method. 

Store the results in odvec vector. 

Write odvec in “output/od_vector.temp” file 

End of odcal 

 matrix (igamm

and go to the next column. 

Do icomp = icol+1 , igammaj 

and continue the process. 

Enddo 

 

Multiply the li

results in c_prime matrix. 

Multiply the link-flow proportion matrix by observation

store the results in 
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B.11.  Subroutine odwrite() 

odwrite 

 or rval for each row of the 

th

Take the weighted average of the estimated OD flows with the 

 (or the initial guess of 

OD flows) using the method of successive averages. 

and 

 file to the demand intermittent file (“outpur/fort.4242). 

o the output file 

End of

 

Function: This subroutine averages the successive estimates of OD flow 

values, checks them against the pre-specified minimum and maximum values and 

writes the results to output files.  

 

Pseudo Code: 

Start of 

Find igin, destination and departure inte

 odvec vector. 

 Store e odvec vector in the odarr matrix. 

 Set the intra-zonal OD flows to zero. 

estimated OD flow in the last iteration

Increment the iteration counter and write the constants of the dem

Check the averaged OD flow values against minimum and maximum 

acceptable demand flows. If it is out of bound, set it to the 

boundary value and make a note in the error file. 

Write the OD flow values pertaining to the loading period and the 

Estimated values of the estimation period t

“output/fort.4242.” 

 odwrite 
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B.12.  Subrou

 

Function: This subroutine reads and stores the initial guess of OD demand 

flows or the estimates of OD flows obtained in the last iteration in a vector. 

 

Pseudo Code: 

Start of odread 

Read the const t 4242 (initial or estimated 

 ading period OD demand flows. 

e initial or the OD flows estimated in the last iteration 

 by the multiplication factor (multi). 

End of odread 

 

tine odread() 

ants of demand file I/O uni

 OD file). 

Read lo

Read th

 (odarr_old).  

Multiply the demand values

Convert the loading OD flow matrix into a vector (od_load). 
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B.13.  Subroutine odclose_files ( ) 

B.14.  

 

 different subroutines to 

calculate the departure interval, origin and destination zone numbers given the 

consecutive tim

 

 Given 

 

jcol: is the c

nod: 

noz: number

idep:  departu

norg: 

ndest: destinat

 

 

Function: To close all the files associated with the OD-flow estimation 

modules. 

 

 

 Subroutine od_convert (jcol, nod, noz, idep, norg, ndest) 

Function: This is an auxiliary function called from

e-dependent OD pair number, that is: 

jcol compute (idep, norg, ndest) 

onsecutive time-dependent OD pair number 

number of OD pairs in the network 

 of origin zones in the network 

re time interval 

origin zone number 

ion zone number 
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B.15.  Subroutine od_convert_rev (jcol, nod, noz, idep, norg, ndest) 

ines. This 

subroutine does the reverse function of od_convert, that is it calculates the 

consec ndent OD pair number given the departure interval, the origin 

and des s: 

 

 

vert. 

 

 

 

Function: This is an auxiliary function called from different subrout

utive time-depe

tination number

Given (idep, norg, ndest) compute jcol 

The set of input variables are the same as od_con
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APPENDIX C.  ESTIMATION USING NON-LINEAR OPTIMIZATION 

OD  

the link-flow proportions are included in 

the formulation (the bi-level non-linear optimization method, Bi-NLP). This process 

is activated when ‘deriv_flag’ in the ‘System.dat’ file is set to one and is run after the 

last iterative run of OD- flow estimation using the bi-level Generalized Least-Squares 

(Bi-GLS) method.  

C.1.  List of subroutines  

l) 

h (jj_org) 

ubroutine Deriv_calculate (jcol) 

ubroutine Deriv_mult ( ) 

METH

 

The set of Deriv subroutines are developed to estimate the time-dependent 

OD demand flows when the derivatives of 

 

Several of the I/O files and arrays and variables are used jointly in GLS and 

NLP OD-flow estimation. 

 

 

Main subroutine Deriv_main ( ) 

Subroutine Deriv_save_org ( ) 

Subroutine Deriv_dist_path ( ) 

Subroutine Deriv_gen_veh (jco

Subroutine Deriv_insert_ve

Subroutine Deriv_simulate ( ) 

S

S
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Subroutine Deriv_QSE ( ) 

 Subroutine Deriv_QSE_coeff (a, b, g, d, f, df, isize, IGJ) 

 of odwrite and odclose_file see the description of Bi-GLS 

OD-flow estim

.2.  List of input files: 

 

STATE_OBS.888: File containing the real-world traffic flow observations.  

System.DAT: File containing parameters controlling the execution of 

the program and the OD-flow estimation procedure. 

Fort.4242 The last estimated time-dependent OD demand table by 

the Bi-GLS estimation method. 

 

(Link-flow proportion values are calculated in the simulator and passed as an 

array) 

 

 

 Subroutine Deriv_solve_LSE (a, b, x, isize, IGJ) 

 

Subroutine odwrite ( ) 

Subroutine odclose_files ( ) 

 

For the description

ation modules in Appendix B. 

 

 

C
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C.3.  List of output files: 

Fort.4242 File containing the final values of the estimated time-dependent 

OD flow values. 

These files function both as input and as output in the process. 

 

Fort.97 Vehicles trip attributes file used as the input to the simulator. 

Fort.98 Vehicles path information file used as the input to the 

simulator. 

 

.5.  Parameters:    

nveh_add_path: Incremental number of vehicles added to any distinct 

path between every time-dependent OD pair (TD-OD 

pair) for calculating the derivative of link-flow 

proportions with respect to demand. This variable is set 

in System.dat file. 

nveh_add_od: The number of vehicles added to each TD-OD pair and 

is equal to nveh_add_path multiplied by the number of 

distinct paths between that TD-OD pair. 

 

itedex_org: The original number of iterations in the simulator 

(rhmuc). 

 

C.4.  List of intermittent input/output files: 

C
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iter_deriv_sim: Number of iterative simulation runs with augmented 

of link-flow 

. This variable is set 

in the System.dat file. 

he accuracy required for convergence in solving the 

uadratic simultaneous equations. This variable is 

set in the System.dat file.  

achieved earlier. This variable is set in the System.dat 

file. 

no_of_origins:  Number of origin zones. 

er of destination zones. 

od:    Number of  OD pairs in the network. 

. 

: 

th_od_max: Number of aggregate departure time intervals in an OD-

ax: Number of observation intervals in an OD-flow 

estimation period. 

link_w_detector: Number of links which have detectors (with flow 

measurements).    

igammaj: Total number of OD flow elements that should be 

estimated (nth_od_max * nod). 

vehicle files to calculate the derivatives 

proportions with respect to demand

precision: T

set of q

max_iter: Maximum number of iterations in solving the set of 

quadratic simultaneous equations if precision is not 

no_of_destinations: Numb

n

depart_interval: The length of aggregate departure intervals in minutes. 

obs_interval: The length of the observation intervals during which the 

traffic volumes on links are accumulated and reported

no_obs_dep Number of observation intervals in each aggregate 

departure interval. 

n

flow estimation period. 

niobs_m

n
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nints_load: Number of loading period aggregate departure intervals 

before the start of the estimation period. 

is variable is equal to stagest in the rolling 

horizon implementation of the simulator.  

tion period. 

endtime:  End of the estimation period. 

d_min: Minimum number of vehicular trips between any OD 

 pairs during each aggregate departure interval. 

eriv_flag: 1 if the link-flow proportion derivatives w.r.t. demand 

are included in the OD estimation formulation (bi-level 

LP estimation), 

0 otherwise. 

startload: Starting time of the loading period before the estimation 

period. Th

starttime:  Starting time of the estima

rload_length:  Length of the loading period. 

o

pairs during each aggregate departure interval. 

od_max: The maximum number of vehicular trips between any 

OD

d

N
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C.6.  Primary arrays: 

ays

  

C.6.1. Allocatable arr  

 

 k): Derivative of link-flow proportion with respect 

to demand flows. The inde

deriv_link_prop (i, j,

x i is the consecutive time-

no_dist_path (j): er of distinct paths between each time-dependent 

s between each TD-OD 

 k):  
th

rep_veh (j, k):  
th

cum_freq (k): ncy distribution of number of 

sed on their trip start time and 

icle es). 

dependent OD pair with respect to which the derivate is 

obtained. The other indices represent the element at row 

j and column k of the link-flow proportion matrix.   

Numb

OD (TD-OD) pair j. 

tot_vol (j): Total number of vehicular flow

pair j. 

vol_path_dist (j, Vehicular volume between each TD-OD pair j, using

the k  distinct path. 

The representative vehicle (in the vehicle file) taking

the k  distinct path between TD-OD pair j. 

Cumulative freque

vehicles traversing each distinct path k  between any 

TD-OD pair. 

rank (i): The rank of the newly generated vehicle i among the 

vehicles sorted ba

generation link (the sorting is required to add the 

vehicle to the veh fil  
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isec_org (j): Matrix to save the original isec matrix from the last 

GLS OD-flow estimation run befor

 

e incremental 

org j):  last GLS OD-

 j. 

 (j):  

jpath_org (j):  

i, j, k): 

j): 

Deriv_g (i): trix to store the results of matrix 

nk_prop_lt (i, j): Two dimensional link-flow proportion matrix, that is 

the proportion of demand flow between OD pair (o, d) 

starting its trip at departure interval τ which contribute 

to flows on link l, during observation interval t. The 

row i represents (l,t) combination and the column j 

represents the (τ, o, d) combination. 

link_prop_org (i, j): The matrix to save the original link-flow proportion 

matrix from the last GLS OD-estimation run before 

incremental change of demand flows to find the 

derivatives. 

change of demand flows for calculating the derivatives. 

This vector represents the link number on which vehicle 

j starts its trip. 

veh_class_  ( The original class of vehicle j in the

estimation run. 

jdest_org (j):  Original destination of vehicle

stime_org Trip start time of vehicle j. 

The original path of vehicle j. 

Deriv_A ( An auxiliary matrix to store the results of matrix 

multiplication.  

Deriv_B (i, An auxiliary matrix to store the results of matrix 

multiplication. 

An auxiliary ma

multiplication. 

li
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link_prop_load (i, j): The link-flow proportion matrix associated with flows 

observed on links during the estimation period but  

having departed during loading period. 

lumn vector of time-dependent OD flows (to be 

estimated). 

odarr(i, j, k): 

 number, j is the origin zone and k 

odarr_load(i, j, k): timated time-dependent OD flows pertaining to 

n nditions), i is the departure interval 

 

OD flows. 

 

 odvec(i): A co

odvec_load(i): A column vector of time-dependent OD flows 

pertaining to the loading period. 

The estimated time-dependent OD flows, i is the 

departure interval number, j is the origin zone and k is 

the destination zone. 

odarr_old(i, j, k): The previous estimated time-dependent OD flows, i is 

the departure interval

is the destination zone. 

The es

the loading period (for rolling-horizon implementation 

or no -zero initial co

number, j is the origin zone and k is the destination 

zone.

flow_diff(i): Difference between the link-flow observations and the 

estimated link flow volumes from simulations based on 

the estimated 
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C.6.2. Perman ys:ent arra  

Vector of observed time-dependent link flow volumes. 

Vector of estimated time-dependent link flow 

observations th

 

observation_org(i):  

observation(i):  

at is due to the OD flows departing 

jlink(irow): r associated with row number irow in 

ssociated with row number 

 

rs jlink and jobst are used for 

vailable flow measurements. Therefore, 

re not required to be sequential. 

link_flow(i): 

flow_minus(i): 

es to estimate the 

 

within the estimation period. 

The link numbe

the observation vector. 

jobst(irow): The observation interval a

irow in the observation vector.

  

The two vecto

bookkeeping to keep track of the links and observation 

intervals with a

the links and observation intervals with flow 

measurements a

 

Estimated link flow volumes based on the estimated 

OD flows resulting from the simulation run. 

The estimate of the portion of link volume that is due to 

the OD flows initiated during the loading period. This is 

deducted from the observed volum

portion of flow due to the OD flows departing during 

the estimation period. 
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ine Deriv_Main ( ): C.7.  Main subrout

Function: This subroutine calls the pertaining subroutines for OD-flow 

estimat ativ

included in the formulation o  Bi-NLP, estimation). 

Pseudo Code: 

Start of Deriv_main 

Store the origi
last GLS OD-e

Set itedex equ
simulation in B

Set realdm equal to zero (reading from vehicle files in the 
simulator) 

 Call Deriv_sav

 Call Deriv_dis

Do jcol = 1, igammaj (total number of Time-Dependent OD pairs) 

 Call Deriv_gen_veh (jcol) 

If no vehicle is added (there was no distinct path between the 

two TD-OD pairs), next TD-OD pair  

  else 

Call Deriv_insert_veh (jj_org) 

Call Deriv_simulate ( ) 

 

ion when the deriv es of link-flow proportion with respect to OD flows are 

f the problem (bi-level non-linear,

 

nal number of vehicles in the network (from the 
stimation run) in jj_org. 

Store the original number of iteration runs for MUC simulation 
in itedex_org 

al to iter_deriv_sim (the number of iteration of 
i-NLP estimation).  

e_org ( ) 

t_paths ( ) 
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Call Deriv_calculate (jcol) 

 Endif 

 Call Deriv_QS

 Call odwrite (

 Set realdm bac  demand file in the simulator) 

value. 

 

 Enddo 

 Call Deriv_mult ( ) 

E ( ) 

 ) 

 Call odclose_files ( ) 

k to 1 (reading from OD

Set itedex (the number of iteration in the simulator) back to its original 

End of Deriv_main 
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C.8.  Subroutine Deriv_save_org () 

 

Function: This subroutine saves the original matrices and vectors from the 

last GLS OD-flow estimation run and reads the last estimated time-dependent OD 

flow values. 

 

Pseudo Code: 

Start of Deriv_save_org 

 

 . 

 link, 

e, starting time and path of the vehicle. 

use it 

initial 

, if it is the first run). 

rtaining to the estimation period. 

e loading period and the last estimated OD 

odvec a

End of Deriv_

Initialize Deriv_link_prop matrix. 

Save the latest link-flow proportions in link_prop_org

For all vehicles in the network, save the original starting

destination zon

De-allocate jpath (path of vehicles) from memory to be able to 

in the simulation runs. 

Open the estimated OD flow file in the last iteration (or the 

demand file

Compute the variables pe

Read the OD flows of th

flows of the estimation period. 

Convert the time-dependent OD matrix into a vector and save it in 

nd odvec_load. 

save_org 
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.9.  tine Deriv_dist_paths () 

nds the number of existing distinct paths between 

each t -OD) pair and computes the number of vehicles 

traversing each path and the total number of vehicles between each TD-OD pair. 

Local a

 

The ID of the path of vehicle j. The path ID is 

calculated by: 

     

id_path_dist(i, k): The ID of kth distinct path between TD-OD pair i 

 

Pseudo Code: 

Start of Deriv_dist_paths 

 Initialize the arrays for all TD-OD pairs 

Do i = 1 To number of all vehicles in the network (in the last run of 

GLS estimation) 

Find vehicle i’s consecutive TD-OD pair number according to 

its departure time, origin and destination 

  Find path ID of vehicle i using the relation  

path_ID = SUM (k ×  number of kth node along the vehicle 

path) 

   

C Subrou

 

Function: This subroutine fi

ime-dependent OD (TD

 

rrays:  

id_path (j): 

∑
=

×=
paththeinnodesofno

k

pathknodekpathid
.

1

),(_
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If  similar path for this TD-OD pair is already marked (stored 

in the id_path_dist array) then 

ffic volume between the TD-OD pair 

which uses this distinct path by one  

 otherwise 

Increment the number of distinct paths between the TD-

OD pair, no_dist_path, by one 

rement the total traffic volume between the TD-OD 

. 

distinct path, 

f distinct paths’ 

the representative vehicle number for this 

 

 

 

End of

Increment the tra

Increment the total traffic volume between the TD-OD 

pair by one check the next vehicle (in the do loop) 

 

Inc

pairs, tot_vol, by one

Increment the traffic volume along the 

vol_path_dist, by one 

Store the path’s ID number in the list o

ID numbers for this TD-OD pair 

Record 

distinct path 

 endif 

enddo (next vehicle) 

  

 Deriv_dist_paths 
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C.10.  Subroutine Deriv_gen_veh (jcol) 

Function: This subroutine is called within a loop for each TD-OD pair. It 

assigns the attributes of the newly generated vehicles randomly (proportional to the 

frequen

ions 

with respect to demand. 

seudo Code: 

 Initialize jpath s for newly generated vehicles. 

Set total number of vehicles that should be added to the flow between 

the TD-OD pair. 

equal 

to zero), exit and assume the derivatives are equal to zero. 

 cumulative frequency distribution, cum_freq, of number of 

 each path. 

rtionally to the frequency of usage of each distinct 

le the same as the 

e path for this TD-

e destination zone, and vehicle class and path of the 

the same as the representative vehicle. 

cy of utilization of each path) and prepares them to be inserted into the vehicle 

files by sorting them according to their trip starting time and generation link. The 

newly generated vehicles are used to find the derivatives of link-flow proport

 

P

Start of Deriv_gen_veh 

_new, the path

If there was no distinct path between this TD-OD pair (volume 

Set the

vehicles traversing

Do jveh = 1, number of added vehicles 

Assign the path of newly generated vehicle (jveh) randomly 

and propo

path. 

Set the generation link of the vehic

generation link of the vehicle representing th

OD pair. 

Set th

vehicle 
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Set the trip start time of the vehicle randomly. (The starting 

time should be within the departure time of the TD-OD pair, 

but sho

say 0.1

Sort th

and st sort 

vehicle

End of Deriv_gen_veh

uld be specified in finer units of the simulation interval, 

 minute.)  

e newly generated vehicles based on their starting time 

arting link number using the modified bubble 

algorithm. (Instead of swapping all the attributes of the 

s, the ranks of the vehicles are swapped.)  
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C.11.  Subroutine Deriv_insert_veh (jj_org) 

 

(from the last GLS estimation run) and their 

 generation 

. 

ibutes from the original arrays 

 Enddo 

 

Write 

output/

End of Deriv_insert_veh 

 

Function: This subroutine is called for each TD-OD pair within the main loop 

of Deriv_main subroutine. It inserts the newly generated vehicles into the array of 

original vehicles, obtained in the last GLS estimation run according to their trip start 

time and generation link and writes the augmented vehicle attributes to the vehicle 

and path files. 

 

Pseudo Code: 

Start of Deriv_insert_veh

Do nveh = 1, total number of added vehicles 

Scan through the start time array, stime_org, of original 

vehicles 

generation link array, start_link. 

Insert the new vehicle based on its start time and

link in the array of vehicles attributes: isec, vehclass, jdest, 

stime, xpar, jpath_tmp

For other vehicles, copy the attr

of attributes. 

the augmented vehicles’ attributes to vehicle and path files, 

fort.97 and output/fort.98. 
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C.12.  Subrou

 

Function: Thi

within the main loop o

zero, in the Deriv_m

augmented vehicle and

 

of link-flow proportion matrix that is 

used to calculate the derivative of link-flow proportions with respect to demand. 

 

Pseudo Code:  

  

Pseudo code of this subroutine is identical to the main rhmuc_main 

subroutine explained in DYNASMART-P user’s guide. 

 

tine Deriv_simulate () 

s subroutine simulates the vehicles in the network and is called 

f Deriv_main for each TD-OD pair. By setting realdm equal to 

ain subroutine, the simulator reads the information from the 

 path files with the newly generated vehicles.  

The output of the simulator is a new set 
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C.13.  Subroutine Deriv_calculate () 

 

Function: This subroutine is called from Deriv_main for each TD-OD pair 

and computes the derivative of link-flow proportion with respect to the change in the 

pertaining TD-OD pair flow. 

 

Pseudo Code: 

tart of Deriv_calculate 

1, last row of link-flow proportion matrix (no. of obs. × no. of 

roportion matrix (no. of 

ulting from simulating the 

augmented vehicles and store the 

  Enddo 

nd of Deriv_calculate 

S

Do i = 

links) 

Do j = 1, last column of link-flow p

TD-OD pairs) 

Subtract the original link-flow proportion from the new 

link-flow proportion (res

augmented vehicle file). 

Divide the difference in link-flow proportion by the 

total number of 

results in Deriv_link_prop array. 

 Enddo   

E
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C.14.  Subroutine Deriv_mult () 

 

Function: This subroutine is used for matrix multiplication by preparing a set 

of auxiliary matrices used in Bi-NLP estimation. 

 

Pseudo Code: 

Start of Deriv_mult 

Find the net flow by deducting the flow_minus from the observed 

the links and store the results in observation vector. 

e the auxiliary arrays Deriv_A, Deriv_B and Deriv_g. 

) – 

(link_prop_lt)T× (link_prop_lt))] 

 Compute Deriv_g as [(link_prop_lt)T× (observation)] 

End of Deriv_mult 

Find the estimate of traffic flows due to the OD flows departing during 

the loading period and store it in the flow_minus array. 

flow on 

Initializ

Compute Deriv_A as ((Deriv_link_prop)T × link_prop_lt)) 

Compute Deriv_B as [((observation)T× (Deriv_link_prop
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C.15.  Subroutine Deriv_QSE () 

 

Function: This subroutine is the main module for solving the set of 

simultaneous quadratic equations. It calls two subroutines, Deriv_QSE_coeff and 

Deriv_solve_LSE, and saves the best results based on the minimum value of the root 

mean square of corrections in consecutive runs.  

Start of

e last vector of estimated OD by GLS method in the odvec_org 

vector. 

Do ico _deriv_iter (max. number of iterations to solve 

the QSE) 

Call D

Deriv_  and results in q_prime and 

c_prim

equatio

Call D olves a set of linear 

quations. It solves for the amount of adjustment 

estimated values of unknowns and stores them in 

For all TD-OD pairs, make the adjustment to the assumed 

values as: 

(od_vec = od_vec + tmp_res). 

 

Pseudo Code: 

 Deriv_QSE 

Save th

unter = 1, max

eriv_QSE_coeff. This subroutine takes Deriv_A, 

B and Deriv_g as inputs

e (the coefficients of a set of linearized simultaneous 

ns) as output.  

eriv_solve_LSE. This subroutine s

simultaneous e

to the 

tmp_res.  

 251



Compute the total root mean square of corrections (RMSC1) 

 linearized set of quadratic simultaneous 

equations. 

 from its initial values when starting 

the Bi-NLP method (the last run of GLS estimation method). 

Find the best solution in terms of the minimum achieved 

1 and RMSC2. 

 

 

End of

made in solving the

Compute RMSC2, which is the difference in the computed OD 

flow values in this iteration

RMSC

If RMSC1 or RMSC2 is less than the required ‘precision’ exit 

the do loop. 

Enddo 

Substitute the results in odvec vector. 

 Deriv_QSE 
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C.16. Subroutine Deriv_QSE_coeff (a, b, g, d, f, df, isize, IGJ) 

he set of simultaneous quadratic equations to be solved is: 

  

 

Using the Taylor series expansion, the above set of quadratic equations is 

converted to a set o e

deviation from the cur

 

The negative mand vector comprises the right-hand 

side (RHS) constants 

 

The partial de

left-hand side (LHS) coefficients of the set of linearized simultaneous equations: 

  

 

Function: This subroutine computes the RHS coefficients and the LHS 

constants of a set of quadratic simultaneous equations that are linearized using Taylor 

series expansion around the OD-flow values in the current iteration.  

 

T
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of the set of linearized simultaneous equations. 
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where  

a is the a iv_A matrix 

b is the a

g  is the a

d  is the g

f is the 

equatio

df is the m

equatio

aximum number of TD-OD pairs 

J oblem (the same as igammaj)  

Pseudo Code: 

Start of Deriv_QSE_coeff 

Compute the RHS coefficients of the linearized set of simultaneous 

equations, df(m,i) for all m and i as the combinations of all TD-OD 

pairs. 

Compute the LHS constants of the linearized set of simultaneous 

equations, f(m) for all TD-OD pairs (m).  

End of Deriv_QSE_coeff 

 

uxiliary Der

uxiliary Deriv_B matrix 

uxiliary Deriv_g vector 

iven OD flow values in this iteration (odvec) 

vector of RHS values of the set of linearized simultaneous 

ns 

atrix of LHS coefficients of the set of linearized simultaneous 

ns 

isize is the m

IG is the number of TD-OD pairs in the pr
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C.17.  Subroutine Deriv_solve_LSE (a, b, x, isize, IGJ) 

 

Function: This subroutine solves a set of linear simultaneous equations using 

the Gaussian elimination method. The result is the last column of the transformed 

RHS matrix. 

 

The arguments of the subroutine are defined below: 

a The vector of RHS coefficients to the set of linearized simultaneous 

equations 

b  The matrix of LHS coefficients of the set of linearized simultaneous 

coefficients 

 The solution to the set of linearized simultaneous equations, which 

ize The maximum number of TD-OD pairs used to size the arrays 

seudo Code: 

 Gauss method to inverse the matrix a (making the diagonal 

elements equal to one). 

The solution to the linearized set of equations, x, is the last colum  of 

the transformed matrix a.   

nd of Deriv_solve_LSE 

x

consists of the vector of deviation from the current estimate of OD 

flows or the amount of adjustment that should be applied to the current 

solution. 

is

IGJ The number of TD-OD pairs in the problem (the same as igammaj)  

 

P

Start of Deriv_solve_LSE 

 Augment vector b to the last column of matrix a. 

Use the

n

E
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APPENDIX D.  BAYESIAN INFERENCE 

rporate the estimated OD flows from 

traffic nts D tables or OD flows information 

obtained from other sources such as household surveys. The structure of the module 

is as fo

 

 

Main subroutine Bayes_main ( ) 

Subroutine Bayes_open_files ( ) 

Subroutine odinput ( ) 

Subroutine odread ( ) 

Subroutine Bayes_prior_disp ( ) 

Subroutine Bayes_postr_disp ( ) 

Subroutine Bayes_close_files ( ) 

 

 

For the description of subroutines odinput, odread, od_conver and 

od_convert_rev see the GLS estimation module.  

 

 

 

 

 

The Bayesian inference is used to inco

cou with the available historical O

llows. 

 

D.1.  List of subroutines  
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D.2.  List of input files: 

execution of the program. 

utput/fort.4242 The last estimated OD demand table, by GLS or 

on module. 

Input/prior_disp.dat  The a priori dispersion matrix of OD values. 

and gamma. 

The tra

 

ort.4242   Posterior OD demand flow values. 

isp.dat The a priori dispersion matrix, if this is the first 

run and a priori information does not exist. 

atrix, if this is the 

Ouput e posterior dispersion matrix. 

Outpu

nd gamma. 

 

SYSTEM.DAT: File containing parameters controlling the 

O

non-linear OD-estimati

Input/prior_demand.42 The a priori information on OD demand table. 

Input/prior_abg.dat The a priori distribution parameters: alpha, beta 

 

ffic flow observations (C) are read from the memory. 

D.3.  List of output files: 

 

F

Input/prior_d

Input/prior_abg.dat The a priori distribution m

first run and a priori information does not exist. 

/posterior_disp.701 Th

t/posterior_abg.702 The posterior distribution parameters: alpha, 

beta a
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D.4.  Para

 

alpha:   A priori parameter of OD-flow distribution 

betta:   A priori parameter of OD-flow distribution 

gamma:  A priori parameter of OD-flow distribution 

alpha_postr:  Posterior alpha 

beta_postr:  Posterior beta 

gamma_postr:  Posterior gamma  

no_of_origins:  Number of origin zones 

nod:    Number of  OD pairs in the network (I × J). 

epart_interval: The length of aggregate departure intervals in minutes 

of observation intervals during which the 

s are accumulated and reported 

umber of observation intervals in each aggregate 

aggregate departure intervals in an OD-

eriod (Γ) 

observation intervals in an estimation period 

ammaj: Total number of OD flow elements that should be 

estimated (nth_od_max × nod or Γ×I×J) 

before the start of the estimation 

period 

artload: Start time of the loading period before the estimation 

period. This variable is equal to stagest in rolling 

horizon implementation of the simulator.  

meters:    

no_of_destinations: Number of destination zones 

d

obs_interval: The length 

flow on link

no_obs_dep: N

departure interval 

nth_od_max: Number of 

estimation p

niobs_max: Number of 

ig

nints_load: Number of aggregate departure intervals used for 

loading the network 

st

 258



starttime:  Start time of the estimation period. 

endtime:  End of the estimation period. 

n inimum number of vehicular trips between any 

OD pairs during each aggregate departure interval. 

The m

OD pairs during each aggregate departure interval. 

1 if Bay

   0 other

  

.5.1. Allocatable arrays

od_mi : The m

od_max: aximum number of vehicular trips between any 

bayes_flag: esian inference method is used,  

wise. 

 

D.5.  Primary arrays: 

D  

SI (i, j):  Prior dispersion matrix (Ψ). 

PSI_postr (i, j): Posterior dispersion matrix (Ψ*). 

link_prop_lt (i, j): Two dimensional link-flow proportion matrix, that is 

the proportion of demand flow between OD pair (o, d) 

at st al τ which 

t. The r mn 

j repres

 

ted with flows 

during od. 

dvec(i):  A column vector of time-dependent OD flows (µ). 

 

P

th art their trip at departure interv

contribute to flows on link l, during observation interval 

ow i represents (l,t) combination and the colu

ents the (τ, o, d) combination (P). 

link_prop_load (i, j): The link-flow proportion matrix associa

departing during loading period but observed on links 

the estimation peri

o
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odvec_load(i): A column vector of time-dependent OD flows 

pertaining to the loading period. 

darr(i, j, k): The estimated time-dependent OD flows, i is the 

ne and k is 

 flows, i is 

val number, j is the origin zone and k 

ne. 

 k): e-dependent OD flows pertaining to 

olling-horizon implementation 

, i is the departure interval 

destination 

D.5.2. Permanent arra

o

departure interval number, j is the origin zo

the destination zone. 

odarr_old(i, j, k): The previous estimated time-dependent OD

the departure inter

is the destinationzo

odarr_load(i, j, The estimated tim

the loading period (for r

or non-zero initial conditions)

number, j is the origin zone and k is the 

zone. 

 

ys: 

 

Number of observno_row_dep (j): ations (rows) in aggregate departure 

eparture intervals.) 

_org(i):  

(i):  

lows departing 

jlink(irow): 

tion vector. 

): 

 

interval j. (due to detector failure, they might be 

different in different d

observation Vector of observed time-dependent link flow volumes. 

observation Vector of estimated time-dependent link flow 

observations that is due to OD demand f

during estimation period (C). 

Link number associated with row number irow in the 

observa

 260

jobst(irow The observation interval associated with row number 

irow in the observation vector. 

 



The two vectors jlink and jobst are used for 

the links and observation 

low 

 estimated OD 

 the simulation run. 

ow_minus(i): The estimate of the portion of link volume that is due to 

the OD flows initiated during the loading period. This is 

ucted from the observed volumes to estimate the 

portion of flow due to the OD flows departing during 

stimation period. 

bookkeeping to keep track of 

intervals with available flow measurements. Therefore, 

the links and observation intervals with f

measurements are not required to be sequential. 

 

link_flow(i): Estimated link flow volumes given the 

flows obtained from

fl

ded

the e
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D.6.  Main subrout

Function: This is the

different subroutines according to the control settings in the system.dat file. 

Pseudo Code: 

Start of Bayes_main 

Call odinput (

Call odread (

memory 

Compute the e e of the net traffic volume of the observed flow 

that are supposedly due to the OD flows during the estimation period.  

Call Bayes_prior_disp ( ). That is, if it is not a 

Bayesian inference run, calculate the a priori parameters and matrices.       

Bayesian infer

sample inform

in 

 

For description of odi estimation module. 

ine Bayes_main ( ) 

 

 main subroutine of Bayesian inference module. It calls 

 

Call Bayes_open_files ( ) to open needed files.  

 )  to read and calculate the constant values. 

 ) to read odvec_load with link_prop_load already in 

stimat

If Bayes_flag = 0, 

If Bayes_flag = 1, Call Bayes_postr_disp ( ). That is, if it is a 

ence run, update the a priori information based on the 

ation from the link observation. 

Call Bayes_close_files ( ) to close the open files. 

End of Bayes_ma

nput and odread refer to GLS 
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D.7.  Subroutine B

 

Function: This subro

the settings in system.dat file.

 

Start of Bayes_open_f

If Bayesian inf

Open th

  “input/

Open “output/posterior_disp.701” as unit number 701 and 

 “output/posterior_abg” as unit number 702 as the output files. 

Open “input/prior_disp.dat” as I/O unit number 601 containing 

the a priori dispersion matrix as input. 

Open “input/prior_abg.dat” as I/O unit number 602 containing 

the a priori distribution parameters as input. 

 Else    (that is if not a Bayesian inference run) 

  Open “input/prior_disp.dat” as I/O unit number 601 as output.  

  Open “input/prior_abg.dat” as I/O unit number 601 as output.  

(If it is not a Bayesian inference run, the above files will be 

used as output to write the prior parameters that can be used in 

subsequent Bayesian inference runs.) 

 Endif 

End of Bayes_open_files 

ayes_open_files ( ) 

utine opens the required input and output files based on 

 

Pseudo Code: 

iles 

Open output/fort.4242 as I/O unit 4242 for input and output 

erence run then 

e historical data (a priori information file) 

prior_demand.42” as I/O unit number 42 as input. 
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D.8.  Subroutine Bayes_prior_disp ( ) 

 

Function: This subroutine computes dispersion matrix, alpha, beta and 

gamma as the a priori parameters when a priori information does not exist. 

 

Pseudo Code: 

Start of Bayes_prior_disp 

proportion matrix for 

observation 

link-flow proportion matrix and its transpose. Save in PT_P 

Compute the number of zero rows in link-flow 

each departure interval (link-flow proportion is zero where 

time is before the departure time).  

Multiply 

matrix. 

Invert PT_P matrix. 

Save prior dispersion matrix (inverted PT_P) in “input/prior_disp.dat” 

file. 

Compute inverse of gamma as 

)Γ.I.JL.T(
)( *1******

*1

−
− −

− CPPPPCCC TTTT

)γ( =  

Set alpha as (L.T + 2)/2.  (L.T is the total number of observation 

Set beta as (alpha – 1)/gamma 

End of Bayes_prior_disp 

rows.) 

 

 Output alpha, beta and gamma to “input/prior_abg.dat” file. 
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D.9.  Subroutine Bayes_postr_disp ( ) 

 

Function: This subroutine computes the posterior dispersion matrix, alpha, 

beta and gamma. It also updates the a priori OD demand table based on the estimated 

OD dem nd flows from traffic flow observations. 

Start of

ation (of the loading period and the 

estimat

Read th ”. 

 

to the 

matrix)

Set alp

Compu

  

 Write t

Write the posterior alpha, beta and gamma to 

t/posterior_abg.702”. 

ensional TD-OD array. 

a

 

Pseudo Code: 

 Bayes_postr_disp 

Read a priori demand inform

ion period) from file “input/prior_demand.42”. 

Convert the OD demand matrix into OD demand vector (odvec). 

e a priori alpha, beta and gamma from “input/prior_abg.dat

Read from file “input/prior_disp.dat”. Determine the rows pertaining

OD-estimation period and assign it to PSI matrix (dispersion 

. 

ha_postr = (total number of observations + 2)/2  

te posterior dispersion matrix as 

γ)(* ΨPPΨ T +=  

 Find the inverse of PT P + Ψ. 

 Find the posterior OD demand flows (µ*) as 

 µ* = (PT P + Ψ)-1 (PT C + Ψ µ). 

he posterior dispersion matrix to “output/posterior_disp.701”. 

“outpu

 Convert the odvec array to a three-dim
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Open the output /fort.4242 file (since it is closed in odread subroutine, 

Check the posterior OD flow values against the maximum and 

nd of Bayes_postr_disp 

in Bayes_main) 

minimum bounds. 

 Write the TD-OD pairs to “output/fort.4242” file. 

E
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APPE F OD-FLOWS ESTIMATION 

E.1.  List of subroutines  

ain subroutine STAT_OD_main ( ) 

T_open_files ( ) 

) 

Subrou

Subrou

Subrou

 

 

NDIX E.  FINDING THE STATISTICS O

 

 

M

Subroutine STA

Subroutine STAT_input ( 

tine STAT_read ( ) 

tine STAT_cal ( ) 

tine STAT_close_files ( ) 
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E.2.  s: 

 

STATE containing the real world traffic flow observations.  

if it exists. It will be 

 to find the measure of performance of OD-

estimation method. 

Initial_demand.42 Initial guess of time-dependent OD table (for the first 

iteration of OD-flow estimation). 

Fort.4242  The estimated OD table in each iteration. 

 

 

E.3.  List of output files: 

 

Fort.555 File containing the statistics of OD-flow estimation of each 

iteration.  

 

 

E.4.  Parameters:    

 

no_of_origins:  Number of origin zones. 

no_of_destinations: Number of destination zones. 

nod:    Number of  OD pairs in the network. 

depart_interval: Length of aggregate departure intervals in minutes. 

List of input file

_OBS.888: File 

Actual_demand.42 File containing the actual demand, 

used
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obs_interval: Length of observation intervals during which the flow 

on links are accumulated and reported. 

o_obs_dep: Number of observation intervals in each aggregate 

departure interval. 

estimation period. 

niobs_max: Number of observation intervals in an estimation 

period. 

nlink_w_detector: Number of links which have detectors (with link flow 

measurements). 

igammaj: Total number of OD flow cells that should be estimated 

(nth_od_max × nod). 

nints_load: Number of aggregate departure intervals used for 

loading the network before the start of the estimation 

period. 

startload: Start of the loading period before the estimation period. 

This variable is equal to stagest in rolling horizon 

implementation of the simulator.  

starttime:  Start time of the estimation period. 

endtime:  End of the estimation period. 

rload_length:  The length of the loading period. 

w_r: Window ratio, the fraction of estimation period that the 

estimated OD is deemed to be final, recommended to be 

one. 

odest_flag:  1 if the run is for OD estimation, 

   0 otherwise (simulation or planning run). 

n

nth_od_max: Number of aggregate departure intervals in an 

 269



amsq_od_n: Root mean square error in the estimated OD-flows for 

aggregate departure interval (if an assumed actual 

time-dependent demand table exists). 

 

E.5.  Primary arra

  

rr

each 

fmsq_od_n: Root mean square error in the estimated time-varying 

flows for each aggregate departure interval. 

ys: 

E.5.1. Allocatable a ays 

 

odvec_load(i): A column vector of time-dependent OD flows 

pertaining to the loading period. 

stimated time-dependent OD flows, i is the 

departure interval number, j is the origin zone and k is 

odarr_old(i, j  previous estimated time-dependent OD flows, i is 

the departure interval number, j is the origin zone and k 

is the destination zone. 

odarr_load(i, j, k): The estimated time-dependent OD flows pertaining to 

e loading period (for rolling-horizon implementation 

or non-zero initial conditions), i is the departure interval 

number, j is the origin zone and k is the destination 

low observations and the 

ained from the 

odarr(i, j, k): The e

the destination. 

, k): The

th

zone. 

flow_diff(i): Difference between the link-f

estimated link flow volumes obt

simulation given the estimated OD flows. 
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odo (i, j, k): The (assumed) actual OD flow for departure time i, 

from origin j to destination k. This matrix is only used 

for hypothetical cases and for testing of the OD-flow 

estimation method.    

): 

 interval i, origin j and destination k. 

 

rn_ck(i):  stimated OD flow values. 

no_row_dep(i)  observations (number of rows in 

rn_flow(j): m of the estimated link-flows on the links that 

fmsq(j):  

 

manent arra

anumber (i, j, k The difference in the actual and estimated demand 

value for departure

amsq(j): Sum square-error of OD flow values. 

Sum of e

rn_od(i):  Sum of actual OD flow values. 

Number of flow

observation matrix) in each aggregate departure 

interval. 

rn_obs(j): Total sum of observed (measured and reported) flows 

on the links. 

Total su

have flow measurement sensors. 

Sum square-error of link-flow estimation. 

E.5.2. Per ys: 

 

observation_or Vector of observed time-dependeng(i):  t link flow volumes. 

vation(i):  

timation period. 

  row number irow in 

jobst(irow): The observation interval associated with row number 

irow in the observation vector. 

obser Vector of estimated time-dependent link flow 

observations that is due to OD flows departing during 

the es

jlink(irow): The link number associated with

the observation vector. 
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The two vectors jlink and jobst are used for 

bookkeeping to keep track of the links and observation 

with flow 

measurements are not required to be sequential. 

 

mated link flow volumes given the estimated OD 

flows. 

estimate of the portion of link volume that is due to 

the OD flows initiated during the loading period. This is 

lows departing during 

 

  

intervals with available flow measurements. Therefore, 

the links and observation intervals 

link_flow(i): Esti

flow_minus(i): The 

deducted from the observed volumes to estimate the 

portion of flow due to the OD f

the estimation period. 
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ine STAT_OD_main ( ): E.6.  Main subrout

 

statistics of OD-flow estima

method

de: 

D_m

Call STAT_op

statistics calcu

 STAT_in

and the OD- fl  period. 

STAT_r

pertaining files

ll ST T_ca w estimation. 

Call STAT_close_files ( ) to close the files. 

Function: This subroutine calls the pertaining subroutines for calculating the 

tion in the Bi-GLS, Bi-NLP and Bayesian inference 

. 

 

Pseudo Co

Start of STAT_O ain 

en_files ( ) to open files needed for OD-flow estimation 

lation. 

Call put ( ) to calculate the basic constants of the network 

ow estimation

Call ead ( ) to read the required information from the 

.   

Ca A l ( ) to calculate the statistics of the OD-flo

End of STAT_OD_main 
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E.7.  Subroutine ST

 

Function: This subro

 

Pseudo Code: 

Start of STAT_open_files 

exists. If it does, open it as I/O unit number 424. 

does, open it. O

the initial gue

either one as I/

Open “output/fort.555”, which is the file containing the statistics of the 

estimation in each iteration, as I/O unit number 555. 

Open the error messages output file (“output/fort.911) as I/O unit 

number 911. 

End of STAT_open_files 

AT_open_files ( ): 

utine opens the pertaining input and output files. 

Check if an assumed actual OD-flow file (“input/actual_demand.42”) 

Check if the estimated OD-flow file (“output/fort.42”) exists. If it 

therwise, it is the first run and open the file containing 

ss of OD-flow table (“input/initial_demand.42”). Open 

O unit number 42. 

 274



E.8.  Subroutine STAT_input ( ): 

 

unction: This subroutine calculates the constants of the estimation period 

and the

eudo Code: 

tart of STAT_input 

values for the start and end of the estimation period. 

 of the estimated or the initial demand file. 

End of

F

 relevant network characteristics. 

 

Ps

S

 Set the 

 Read the constants

Calculate other pertaining constants of the network characteristics and 

the estimation period. 

 STAT_input 
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E.9.  Subroutine STAT_read ( ): 

 

Function: This subroutine reads the assumed actual-demand OD table and the 

current estimated OD-flow table. 

Start of

stants and the actual 

he loading period (odarr_load) or 

d link flows for 

End of

 

Pseudo Code: 

 STAT_read 

If the assumed actual demand exists, read the con

OD-flows for the loading period and the estimation period (odo) from 

the actual demand file. 

Read the current estimated OD-flows or, in the first run, the initial 

guess of demand flows during t

estimation period (odarr). 

(Optionally, write the observation and the estimate

comparison to a temporary file (“output/link_flow.temp”).   

 STAT_read 
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E.10. Subroutine STAT_cal ( ):  

 link-flow values and OD-flow values (if an 

assume  OD flow table exists) and writes the results to the output file 

“output

rence between the actual OD flow and the 

anumber array. 

Find the sum of squares of errors in demand, sum of actual 

demand and the estimated demand flow values.  

 Endif 

  

Store the original link-flow observation vector in observation. 

Find the sum of link-flow observations, simulated flows and errors in 

link-flow estimates for each aggregate departure interval and for the 

whole estimation period. 

  

If the actual demand file exists 

Calculate the sum of the actual OD-flow values, the estimated 

values, and the sum square errors for each departure interval 

and over the whole estimation period. 

Endif 

 

Function: This subroutine calculates the statistics of the OD-flow estimation 

in terms of the root mean square error in

d

/fort.555”. 

 

Pseudo Code: 

Start of STAT_cal 

If the actual demand file exists 

Find the diffe

estimated values and store it in 
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D-flow estimation to the output file 

(“output/fort.555”). 

Write the statistics of the O

End of STAT_cal 
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E.11.  Subroutine STAT_close_files ( ): 

T_close_files 

Close all the input and output files. 

close_files 

 

 

Function: This subroutine closes all pertaining files. 

 

Pseudo Code: 

Start of STA

 

End of STAT_
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