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The deployment of broadband wireless data networks, e.g., wireless local area

networks (WLANs) [29], experienced tremendous growth in the last several

years, and this trend is continuously gaining momentum. In fact, WLAN is

becoming an indispensable component of the modern telecommunication in-

frastructure. Despite this optimistic outlook, however, little is known about

the impact of the wireless channel on the characteristics of WLAN traffic.

This dissertation characterizes the correlation structures of WLAN channel

with traffic statistics from a cross-layer point of view, and provides new mea-

surement methodologies and statistical models for WLAN networks.

Currently WLAN standards are designed within the paradigm of the

layered network architecture. For example, the architecture of IEEE 802.11
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is almost identical to the Ethernet. However, wireless networks are funda-

mentally different from their wired peers due to the shift of transmission me-

dia from cables to over-the-air radio waves. This transition exposes wireless

systems to the influence of radio propagation, and more importantly, to the

temporal and spacial fluctuations of the radio channel that can actually be

propagated up to upper layers. However, the current WLAN architecture iso-

lates network layers, and largely ignores this impact. Therefore, we believe

that a cross-layer based approach is necessary to understand and reflect this

underlying impact of the channel to the upper layers of the network, especially

in relation to WLAN traffic behavior.

Measurement is one of the fundamental tools used to quantify radio

propagation. As part of this dissertation, a complete framework for a mea-

surement methodology, including hardware, software, and measurement proce-

dures, is established. Characteristics of the propagation channel are estimated

from measurement data, and the channel knowledge is applied to the upper

layers for more realistic and accurate modeling.

In WLAN environments, knowledge of the traffic characteristics is es-

sential for proper network provisioning, and for improving the performance

of the IEEE 802.11 standard and network devices, e.g., to design improved

MAC schemes, or to build better buffer scheduling algorithms with channel

knowledge, etc. Built upon extensive WLAN traffic traces, this dissertation

work presents cross-layer models for WLAN throughput predictions, traffic

statistics, and link layer characteristics.
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The main goal of this dissertation work is to experiment with and de-

velop new methods for identifying channel characteristics. Thereby utilizing

this knowledge, we show how to predict and improve WLAN performance.

Within the framework of the developed cross-layer measurement methodol-

ogy, we conducted extensive measurements in different physical environments

and different settings such as office buildings and stores, and (1) show that

the impact of the propagation channel can be quantified by using simple large

scale channel metric (throughput over longer period of time), and (2) also

present the existence of a Doppler effect within today’s WLAN packet traffic

at sub-second time scales. We also show the real-world WLAN usage pattern

from our measurement results. From this data, we conclude that the key issues

to study WLAN networks include accurate site-specific propagation channel

modeling and real-time autonomous traffic control.
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Chapter 1

Introduction

1.1 Objectives

There has been intense interest in the worldwide deployment of wireless local

area networks (WLANs) during the past few years. WLANs that provide

high-speed data services to the general public are becoming popular at public

sites such as university campuses, hotels, business buildings, and restaurants.

Moreover, WLAN technology will start to play an incrementally critical role in

the home networking arena. Along with WLAN deployment, the WLAN user

base is also expected to expand dramatically. Therefore, it is evident that

WLAN will be an important component in next generation communication

infrastructure.

Despite this phenomenal growth and optimistic outlook, however, there

are surprisingly few research works that address the issues appearing in the

1



the deployment and design of WLANs, in particular, from the WLAN packet

traffic point of view. This dissertation work takes a cross-layer point of view

and provides characterizations of WLAN traffic across a broad spectrum, from

the data link layer up to the application layer, and from millisecond observation

intervals up to weekly timescales.

The complexity of modeling and analyzing WLAN traffic originates

from the unique position of WLAN, which combines characteristics of both

cellular communications and computer networks. Compared to cellular sys-

tems, WLANs support higher data-rate packet traffic in a random-access fash-

ion, therefore packets are more often delayed or corrupted. Compared to

the Ethernet, however, WLANs operate over radio environments and have

to propagate through radio propagation channels with abundant fading and

interference. Therefore, while WLAN technology gains ground by providing

broadband connections and tether-less convenience to end users at low cost, it

remains a difficult task to thoroughly model WLAN traffic characteristics and

therefore reliably predict WLAN performance.

The fundamental difference between wired networks and wireless net-

works is the radio transmission media. Therefore, it is essential to study the

channel for understanding the modeling issues which appear at higher layers

in WLAN traffic studies. Historically, measurement has been an extremely

valuable tool to quantify and model propagation characteristics of the radio

media. This approach has been proved to be effective and productive [50].

Even though WLAN is different from most previous wireless systems, espe-
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cially regarding the media access control (MAC) mechanism, the fundamental

radio propagation laws still hold and continues to influence WLAN packet

transmission. Thus, channel measurements are necessary to model WLAN

environments.

In WLAN environments, knowledge of the traffic characteristics is es-

sential for proper network provisioning, and for improving the performance

of the IEEE 802.11 standard and network devices, e.g., to design improved

MAC schemes, or to build better buffer scheduling algorithms with channel

knowledge, etc. Built upon extensive WLAN traffic traces, this dissertation

work presents cross-layer models for WLAN throughput predictions and traffic

statistics.

On the other hand, it is well-known that channel state information, if

available, can be intelligently exploited to improve system performance [7, 38].

By utilizing actual traffic to estimate channel parameters, not only could we

reduce the overhead involved in some algorithms, but also yield better site-

specific channel estimation. This dissertation work also suggests that WLAN

traffic can be used to intelligently estimate radio channel by revealing rela-

tionship between the Doppler shifts to the correlation variations at the link

layer.

3



1.2 Organization

This dissertation is organized in 6 chapters. The structure of this dissertation is

as follows. Chapter 1 provides an overview of the objectives and organizations

of this dissertation work, and outlines the main contributions.

Chapter 2 presents measurement results, i.e., (1) typical traffic statis-

tics, and (2) application-level throughput prediction models, of real-world

WLANs. The measured traffic statistics and throughput prediction models

can benefit and guide future WLAN deployment.

Chapter 3 details the analysis of captured WLAN packet traffic and

presents the sub-second scale characteristics of WLAN traffic. The resulting

traffic correlation structure differs from existing wired traffic results, which

inspires subsequent study in Chapter 4.

Chapter 4 demonstrates that the correlation structure of IEEE 802.11b

channel is influenced by Doppler shifts, especially when the SNR level is at

the critical level. The time scales of such influence in typical 802.11b networks

are located at the sub-second regime. This chapter shows the promising out-

look of better channel predictions and time scale correlations for IEEE 802.11

networks with adequate site-specific knowledge.

Chapter 5 presents the measurement methodologies used throughout

this work, including choices of hardware and software tools, and procedures to

conduct measurements in different environments.

Finally, Chapter 6 reviews the contributions of the dissertation and
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suggests directions for future research.

1.3 Contributions

The contributions of the dissertation work are as follows:

1. We develop a suite of cross-layer measurement methodologies that take

into account the requirement of conducting measurements of channel and

the upper network layers simultaneously (Chapter 5). The measurement

frame work was thoroughly verified through our extensive measurement

campaigns (Chapter 2, 3, and 4).

2. Two application layer throughput models are established through mea-

surements and are verified through blind tests (Chapter 2. The models

capture the channel characteristics by measuring the average signal-to-

noise ratio (SNR), which quantifies the large-scale fading characteristics

of radio channels. Blind test results show that both models are very ac-

curate in quantifying achievable throughput with measured or predicted

SNR values, and can be used in conjunction with channel prediction tools

to predict network performance prior to WLAN deployment (Chapter 2).

3. Hotspot traffic statistics are measured at three commercial hotspots. To

the best of our knowledge, this is the first published work on hotspot

traffic statistics in the literature. This result provides insights into the

required provisioning for PWLANs and autonomous control approaches
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for future broadband wireless access and real-time wireless voice/video

services (Chapter 2).

4. We conducted extensive measurements in different environments under

various settings, and show that the impact of the propagation channel

can be quantified not only at large scales (throughput over longer peri-

ods of time), but also over small sub-second time scales. The impact of

the channel on WLAN packet traffic at sub-second time scales is identi-

fied and modeled, and is attributed mostly to Doppler shifts caused by

relative movements during radio propagation. This result complements

out previous results, i.e., that application level throughput correlates to

SNR over larger time scales. More importantly, this result may lead to

link-layer channel models that consider the physical characteristics of

the channel, such as Doppler shifts and multipath propagation (Chapter

3 and 4).

Publications that resulted from this dissertation include [46, 42, 45, 43,

44].
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Chapter 2

WLAN Traffic Statistics: Large

Scale Behavior

2.1 Introduction

Application-level performance perceived by users dictates the user experience.

For WLAN users, even though the highest transmission rate specified in IEEE

802.11b is 11 Mbps, the throughput perceived by users, i.e., the amount of

data transmitted from transmitting applications to receiving applications in

a certain period, is significantly lower than this specified transmission rate in

practice. Besides factors such as the MAC mechanism, hostile radio channels

play key roles in inducing the performance loss. Temporal and spatial radio

channel variations [50] are caused by the site-specific physical environment

which degrades WLAN transmission performance and hence the throughput

7



perceived by end users.

This chapter presents measurement results on two critical aspects that

are important in deploying and provisioning WLANs: (1) typical traffic statis-

tics, and (2) application-level throughput performance as experienced by an

end user. As part of this dissertation, traffic statistics and coverage/throughput

models were developed using data measured from real-world hotspots in the

summer of 2003 [46, 42, 14]. The traffic measurement campaign involved

over 14,400 minutes of hotspot traffic and 15,983,748 packets measured at two

Schlotzsky’s restaurants. The throughput measurement campaign included

measurements at 33 locations in and around three Schlotzsky’s restaurants,

with a total of 792 different throughput and signal-to-noise ratio (SNR) mea-

surements. This measurement campaign gave insight into user behavior and

traffic models at actual hotspots, and provided a baseline of performance mod-

eling.

Our traffic study showed that:

• As of the summer of 2003, most WLAN traffic loads are highly asymmet-

ric, with much higher inbound traffic (from the Internet to the WLAN).

The ratio of outbound to inbound traffic load measured was found to be

about 1:5 on average and 1:6 during busy hours.

• Traffic volume is dominated by the presence of a small number of users,

e.g., users downloading large files or using peer-to-peer (P2P) applica-

tions.
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• The majority of the users use “traditional” Internet services. For exam-

ple, web browsing and newsgroup reading were the two most frequently

used protocols observed from this measurement campaign.

• The most commonly visited Internet sites include web-based email ser-

vices, on-line auction services, on-line gaming sites, and Usenet news

reading.

Our throughput measurement results showed that:

• WLAN performance varies with many factors, such as user locations,

building layouts, and surrounding environments outside of the building.

• The application-level throughput in an IEEE 802.11b network is closely

correlated with the perceived SNR, as measured by the client. Further-

more, empirical models were established to model application through-

put to provide accurate throughput predictions for new environments.

This chapter is organized as follows. In section 2.3, we explain the tools

and procedures used in this measurement campaign. Section 2.4 presents

obtained hotspot traffic statistics in two restaurants. Section 2.5 shows the

measurement results of single-user throughput data in three restaurants. Also,

two empirical models are presented that accurately model application-level

throughput with SNR in IEEE 802.11b WLANs. In section 2.6, we conclude

this chapter. The work documented in this chapter was funded by Schlotzsky’s

Deli and the National Science Fundation, and also supported the M.S. thesis

of Jeremy K. Chen.
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2.2 Literature Background

Kotz and Essien [39] reported their measurement results that spanned 3 months

on the Dartmouth college campus in 2001. These results are helpful in provi-

sioning WLANs, as they provided typical number of users, typical session time

per user, and user behaviors. The measurement data presented in [39] may be

used to estimate future system capacity requests, or to calibrate user activity

distribution parameters. For example, [39] reported that network backup and

file sharing applications produced almost 30 percent of the traffic on the net-

work. Also, measurement data in [39] confirmed the need for better roaming

support in WLAN. However, [39] did not address the coverage and throughput

performance of various applications on WLANs. Moreover, the traffic statis-

tics were more relevant to WLANs deployed in university campuses, and not

typical of a restaurant chain in an urban setting.

Tang and Baker [57] measured the WLAN traffic in the building of the

Stanford Computer Science Department during the 1999 fall quarter. Their

results represent the traffic statistics of typical university buildings occupied

by computer science professionals with commonly seen applications in 1999.

In [57], the authors observed a ratio of 1:3 between outbound and inbound

traffic, while our 2003 results show a ratio of 1:5. In addition, [57] reported

that 70% of packets were smaller than 200 bytes, while we observed 60% of

the packets are smaller than 200 bytes. However, [57] presented several similar

findings to our results, e.g., HTTP remains to be the most popular protocol.
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Balachandran et. al. [4] examined 195 IEEE 802.11b users during an

ACM meeting in an auditorium at U.C. San Diego in August 2001. In [4],

traffic load could be correlated to the conference schedule, which is similar

to the results presented here. However, [4] did not delve into the impact of

traffic statistics on WLAN performance, which is an important objective in

this dissertation work.

Balazinska and Castro [5] studied user mobility patterns in a large cor-

porate environment. They relied on periodical queries from access points

(APs) to collect network statistics, which is different from the packet-by-packet

measurement methodology used in this study. However, the work in [5] corrob-

orates our finding that WLAN traffic load is influenced more by the aggressive

users than the number of users in the network.

In summary, the above literature shows that the perceived application-

level throughput by individual WLAN users is profoundly influenced by radio

frequency (RF) propagation, as well as the type of applications used by the

user community. However, most of the past research works have focused on in-

dividual layers, e.g., the application layer, the MAC layer or the physical layer,

and have ignored the interactions among layers. To the best of our knowledge,

Henty and Rappaport [27] first systematically studied the correlation between

application-level throughput and physical layer propagation properties in the

IEEE 802.11b environment.

Work in [27] presents the WLAN measurement results in an engineering

building at Virginia Tech. The authors conducted a series of measurements
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at various locations in the building with one and two laptop computers. The

measurement data were used to derive empirical models that represents the

correlation between throughput and signal-to-noise ratio. The work in [27] re-

lated signal-to-noise ratio to throughput and yielded throughput models based

on intuitive, simple, yet accurate empirical modeling. The work presented in

this chapter expands on [27] for realistic WLAN environments with a vast

number of measurement points and diversified applications.

2.3 Measurement Setup

In this section, we describe the network structures, configurations of hardware

platforms, and software utilities used in this measurement campaign.

2.3.1 Description of Measurement Sites

Schlotzsky’s deli provides free Internet service in and around the premises of

their restaurants using IEEE 802.11b equipment. Four Schlotzsky’s restau-

rants in Austin, Texas were chosen as measurement sites. These sites are

named Guadalupe, Parmer, Northcross, and Lamar. Each of the four restau-

rants is a stand-alone structure with a parking lot, and each, except Parmer,

is located in an urban area in downtown Austin.

The Lamar restaurant is located at a busy intersection and near a

recreation area. It has the highest WLAN traffic load among the four mea-

surement sites.
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The Guadalupe restaurant is located three blocks away from a large

dormitory building near the University of Texas at Austin and hence accom-

modates more college-aged customers.

The Parmer restaurant has a large number of customers from the

high-tech industry, as it is very close to several offices of Dell Computer Cor-

poration and Samsung Austin Semiconductor.

The Northcross restaurant is located in a shopping mall area. It is

the smallest among the four restaurant sites and sees the lowest WLAN traffic

load.

Several desk-mounted Apple iMac computers are also conveniently pro-

vided for customers in each restaurant, and while they are desk-mounted, they

are also wirelessly connected to the WLAN network. In addition, users may

bring in or use in the parking lot their own IEEE 802.11b enabled equipment

at anytime for use with the WLAN.

Among the four restaurants, average traffic volume is highest at the

Lamar restaurant and is lowest at the Northcross measurement site. For ex-

ample, the average hourly bi-directional throughput during busy hours was

about 10 MB at the Lamar restaurant, but the Northcross measurement site

experienced less than 2.4 MB. Thus, these two sites may represent two dis-

parate, yet representative, hotspots. Therefore, Lamar and Northcross were

the selected sites for detailed traffic statistics studies, while the Guadalupe,

Parmer, and Northcross restaurants were used as throughput measurement

sites.
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Figure 2.1: The typical network structure in Schlotzsky’s restaurants during
measurement periods

2.3.2 Measurement Site WLAN Infrastructure

Each of the four restaurants is equipped with a Colubris Networks CN-3000

AP, which connects to the Internet via a T1 link. Fig. 2.1 shows the WLAN

structure of a typical measurement site. The CN-3000 AP is IEEE 802.11b

compliant with a built-in antenna. However, one or more external antennas

may be attached to the AP. All CN-3000 APs are configured such that no RTS

(request to send) and CTS (clear to send) [30] handshake packets is exchanged

prior to data transmission at the MAC layer to reduce traffic overhead.

2.3.3 Measurement Hardware/Software Tools

This section describes hardware and software tools used in the Schlotzsky’s

measurement campaign.
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Measurement Hardware

In this measurement campaign, one Compaq Evo N600c laptop computer was

connected together with the CN-3000 AP to a Netgear DS-104 Ethernet hub,

as shown in Fig. 2.1. This laptop computer served as both an application

server for the throughput measurements and a packet sniffer in the traffic

capturing processes.

During throughput measurements, a Dell Latitude C640 laptop com-

puter was configured as a client machine. Two different IEEE 802.11b PCM-

CIA wireless network interface cards (NICs), the Cisco Aironet 350 and ORiNOCO

Gold, were used equally with the Dell client laptop during measurements. Be-

cause of different algorithms and design choices made internally by each ven-

dor, the main objective of using NICs from two representative vendors was to

identify and aggregate the performance difference between two different NICs,

as would be seen in most WLANs with walk-in traffic.

Traffic Capturing Environment

During the traffic capturing process, the program tcpdump 3.7.2 was run on

the Compaq laptop, which was installed with the Debian Linux 3.0 operating

system (OS) to capture WLAN traffic. Because the CN-3000 AP, the Internet

router, and this sniffing computer were all connected to the same hub, as

shown in Fig. 2.1, any packet sent to and from the WLAN was captured and

saved by tcpdump for processing.
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Table 2.1: Throughput Measurement Tools

Client Server

Computer Dell C640 Compaq N600c

OS Windows XP Windows XP

NIC Cisco/ORiNOCO N/A

FTP Wget IIS

LANFielder LANFielder Client LANFielder Server

Iperf Iperf Client Iperf Server

SNR LANFielder/netstumbler N/A

Throughput Measurement Environment

During throughput measurement campaigns, three applications, LANFielder

7.0.2 from Wireless Valley Communication, Inc., Iperf 1.7.0, and FTP, were

selected to benchmark WLAN performance. The characteristics of these three

applications are described subsequently.The server components of the appli-

cations operated on the Compaq laptop, while the corresponding clients ran

on the portable Dell laptop. The servers and clients communicated wire-

lessly. To record signal-to-noise ratios of the client side, netstumbler 0.3.30

and LANFielder were used. Due to hardware/firmware implementation differ-

ences of Aironet and ORiNOCO wireless cards, netstumbler was used upon the

ORiNOCO card and LANFielder was used with the Cisco 350 card to record

correct SNRs. Table 2.1 summarizes the tools used in throughput measure-

ments.
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2.3.4 Considerations in Designing Measurement Proce-

dures

Two seperated measurements were conducted in Schlotzsky’s measurement

campaign. The first measurement was to quantify the actually hotspot traffic

statistics while the other was to evaluate the correlation between the channel

and application layer throughput. Several experimental design considerations

were made to ensure different applications provided realistic hotspot traffic

measurements, throughput measurements, and performance metrics represen-

tative of WLANs.

Traffic Capturing

A key consideration in measuring traffic statistics was to ensure very little

artificial traffic would be generated by measurement systems. Two specific

measures were taken to guarantee this criterion. First, tcpdump was launched

in a non-intrusive manner such that no packet would be generated by tcpdump.

Second, integrity checking processes1 were conducted during 1:00 to 1:15 a.m.

each day during the seven-day measurement campaign when the network ex-

perienced virtually no user traffic. In fact, only a low overhead remote shell

was opened during the late-night integrity check operation. Hence, any artifi-

cially generated traffic could be eliminated off-line by identifying timestamps

and protocols.

1Integrity checks are required to ensure measurement software and hardware are func-
tioning properly.
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As designed, the AP handled all internal traffic between users and

shielded the sniffing computer from logging traffic between users in the restau-

rant. However, because most users were strangers to one another, and used

the public Apple iMac computers or their own laptops, the likelihood of such

internal communications was thought to be very rare.

Throughput Measurement Considerations

SNR at each mobile client was chosen as the primary metric to measure radio

channel conditions. IEEE 802.11b WLAN is designed to transmit wide-band

modulated digital symbols over RF channels [30]. Hence, 802.11b symbols

shall experience frequency-selective fading, which implies little fluctuations of

received signal strength at the receiver side [50] for each symbol transmission.

Therefore, the major difference between two distinct transmissions is the re-

ceived SNR levels. Thus, SNR is one of the most important parameters, if

not the most important one, to characterize RF channel conditions in IEEE

802.11b WLANs.

It is well known that interference as specified by the signal-to-interference

(SIR) ratio, is the primary limiting factor for attaining high throughput in cel-

lular wireless communication systems, and [27] considered throughput models

based on SIR as well as SNR. However, the work presented in this chapter fo-

cuses on studying the achievable throughput of a typical WLAN environment,

which, in most cases, is a single “cell” covered by a “base station”, i.e., the

AP, with limited coverage area. The CSMA/CA mechanism in IEEE 802.11 is
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designed to mitigate interference through carrier sensing, and it is especially

effective within the WLAN setting. Thus, while SIR is a factor in cellular reuse

schemes, the CSMA/CA multiple access technique used in the IEEE 802.11

networks avoids any substantial SIR in a WLAN setting. Moreover, as de-

scribed subsequently, the throughput measurement procedure was performed

in the absence of other interfering wireless systems, e.g., other 802.11b AP or

Bluetooth devices. Therefore, SIR is not considered in this dissertation work.

Several environmental factors may affect throughput measurement re-

sults. For example, wireless channels vary as objects in the vicinity of transmis-

sion, such as customers, vehicles, etc. move throughout the premises, thereby

creating multipath and Doppler effects [50]. To keep interference from people

and vehicles around measurement sites at a minimum, throughput measure-

ments were conducted late at night or early in the morning, outside normal

business hours.

For each of the three restaurants studied, eleven locations were chosen

in and around the restaurant to measure SNR and throughput values. The

eleven locations represent common points from which wireless users connect to

the WLAN service. Moreover, these locations yielded a wide range of received

signal levels. At each location, both the Cisco and the ORiNOCO NICs were

used with three different applications for throughput measurements. Each

measured data set was recorded by sending ten seconds of data using each

of the three applications, and each data set consisted of three averaged mea-

surement values: received signal strength intensity (RSSI), noise level, and
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application throughput. Furthermore, throughput measurements were made

with the client laptop positioned successively toward the four cardinal direc-

tions: north, east, south, and west. In total, 264 data sets were measured

at each restaurant, with each data set being decided by a combination of 11

locations, 2 NICs, 3 applications, and 4 directions.

Descriptions of Applications Used in Throughput Measurement

Each of the three applications, LANFielder, Iperf, and wget, operates differ-

ently. LANFielder repeatedly sends a single packet back and forth between the

server and the client, and reports throughput as the ratio of successfully re-

ceived packet size to time length. Iperf tunes the optimal TCP sliding-window

size, which determines the amount of data that exist in the network, and then

reports throughput as the maximum TCP bandwidth. Wget, as a standard

FTP client, reports throughput as the rate at which a file is retrieved from an

FTP server. On the other hand, both Iperf and Wget report application-level

throughput using the TCP protocol. However, Iperf reports throughput values

by using optimal TCP sliding-window sizes estimated by Iperf, and Wget, as

a a standard FTP client, reports throughput values using the default TCP

implementation provided by operating systems.

We expected that the three applications would yield very different

throughput values due to their operational distinctions. LANFielder works

similar to the real-time applications/protocols such as Voice of IP (VoIP),

which wget represents typical web browsing or file downloading activities. Iperf
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should report the highest throughput among the three tools because it tries to

benchmark the maximum available bandwidth. FTP protocol also utilizes the

TCP sliding-window mechanism to send successive packets, and is primarily

one-way transmission. Hence, throughput that FTP reports should be higher

than that of LANFielder as LANFielder does not pipeline transmissions.

LANFielder supports three transport protocols: TCP, TCP Flood, and

UDP, and has a wide range of acknowledgment options, which is useful for em-

ulating a vast array of possible applications, such as real-time video or audio.

Because both Iperf and wget use TCP, we selected UDP and a two-way trans-

mission of the original packets to diversify the choice of applications and to

allow LANFielder to emulate a heart-beat or repeater application. Moreover,

in this work, the packet size in LANFielder was set to be the maximum, 1472

bytes UDP payload data, in order to experience the widest range of measured

throughput variations due to channel conditions (e.g., we used the longest

transmission time) and lowest protocol overhead.

Iperf and wget were used in the default manner. To accelerate the FTP

file transfer process, the FTP server shared two files with sizes 300 KB and 3

MB. The smaller file and the larger one were selected in low and high SNR

conditions, respectively. The two file sizes were chosen empirically for the

downloading process to finish in approximately ten seconds.

2.3.5 Traffic Measurement Procedure

Hotspot traffic was captured as follows:
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• The CN-3000 AP and the sniffer laptop were connected to the common

hub (see Fig. 2.1).

• Tcpdump was initiated on the sniffer laptop to record the first 68 bytes

of each packet to and from the WLAN.

• At 1:00 a.m. every day during the week of measurement, the traffic

trace file on the sniffer laptop computer was remotely inspected to ensure

integrity.

• After finishing one week of continuous measurements, the sniffer laptop

and the hub were removed from the restaurant.

2.3.6 Throughput Measurement Procedure

The throughput and SNR measurement procedure is as follows:

• The Compaq server was connected to the CN-3000 AP via a hub.

• Three non-conflicting software packages, LANFielder, Iperf, and FTP

Server, were started on the server laptop one at a time.

• The client computer was booted with Aironet 350 or ORiNOCO cards.

• The corresponding client software, LANFielder, Iperf, and wget, were

executed on the client laptop to measure WLAN throughput.

• SNR values were recorded by LANFielder/netstumbler.
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2.3.7 Definitions

Before we present the measurement results, several definitions are necessary.

Inbound traffic: traffic sent from the Internet to the AP.

Outbound traffic: traffic sent to the Internet by the AP.

Busy hours: the period during which more than 90% of the daily traffic

is generated. In this measurement campaign, the hours from 10:00 a.m.

to 10:00 p.m. were calibrated as the busy hours.

Signal-to-noise ratio (SNR): The perceived SNR by WLAN clients.

2.4 Measured Hotspot Traffic Statistics

During this traffic measurement campaign, the Lamar restaurant offered the

largest user base and traffic load. Hence, a one-week traffic trace from 10:00

a.m., June 30, 2003 to 10:00 a.m., July 7, 2003 at the Lamar restaurant is

presented in this section to illustrate the traffic statistics of a popular WLAN.

The trace captured 6,000,957 outbound and 7,223,654 inbound packets.

2.4.1 Traffic Time-series

Fig. 2.2 is a one-week time-series plot of the captured WLAN traffic at the

Lamar restaurant.
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Figure 2.2: Weekly traffic (10:00 a.m., June 30, 2003 to 10:00 a.m., July 7,
2003) from the Lamar restaurant

As observed from this figure, the traffic load followed the store business

hours closely, which are 7:00 a.m. - 10:00 p.m. Monday through Thursday,

7:00 a.m. - 11:00 p.m. Friday, 8:00 a.m. - 11:00 p.m. Saturday, and 8:00 a.m. -

10:00 p.m. Sunday. Traffic load increased rapidly when the restaurant opened

and dropped dramatically when the store closed. Throughput spikes shown

in Fig. 2.2 represent periods of high throughput demand. The continuous

traffic load during business hours suggests that this WLAN service did attract

customers to visit the restaurant.

An hourly time-series plot is shown in Fig. 2.3. Because there was

little overnight traffic, as presented in Fig. 2.2, this plot only presents traffic

during the busy hours. Fig. 2.3 shows that the distribution of hourly network
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Figure 2.3: Hourly traffic volume at Schlotzsky’s Lamar store (10:00 a.m.,
June 30, 2003 to 10:00 a.m., July 7, 2003)

usage varied from day to day. For example, the hourly traffic peaked between

11:00 a.m. and 12:00 p.m. on Wednesday but between 4:00 p.m. and 5:00

p.m. on Friday. The reason for this phenomenon is that this hotspot serves a

limited number of users, as most hotspots do, and therefore one individual’s

usage behavior could have considerable impact on the total traffic load. This

explanation, in turn, implies that the total traffic load might not be necessarily

proportional to the number of WLAN users presented.

Probably the most intriguing observation in Fig. 2.3 is the considerably

large amount of traffic generated between 3:00 p.m. and 5:00 p.m. on Tues-

day afternoon. Closer study shows that this spike was mainly caused by one

point-to-point (P2P) application and further strengthened by an aggressive

downloading program. This issue will further be addressed in Section 2.4.4. It

is worthwhile, however, to point out that the fluctuations of hourly throughput
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during busy hours were relatively small, except for this anomalous period on

Tuesday afternoon.

2.4.2 Packet Size Distribution

The ratio of outbound traffic volume to inbound traffic volume was roughly

1:5, as shown in Table 2.2.

Table 2.2: Total traffic volume from 10:00 a.m., June 30, 2003 to 10:00 a.m.,
July 7, 2003 in the Lamar restaurant

Byte (GB) (%) Packets (%)

Total 6.3 100 13,224,611 100

Outbound 1.0 16 6,000,957 45.4

Inbound 5.3 85 7,223,654 54.6

Actually, the ratio was 1:6 during busy hours. Because the ratio of

outbound to inbound packets was almost 1:1, as observed from Table 2.2,

outbound packets should be small compared to inbound packets on average.

This observation is demonstrated in Fig. 2.4 and Fig. 2.5, which show the

cumulative distribution function (CDF) of packet sizes and traffic volume.

One intuitive explanation is that very likely, most outbound packets

were “request” packets, which are generally smaller than inbound “respond”

packets. Therefore, most users in this hotspot were ”conventional” Internet

users, who generate smaller request packets and wait for larger response pack-

ets. Such characteristics are typical for web browsing, news groups reading,
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restaurant: Outbound direction
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and email services.

Observe Fig. 2.4 and Fig. 2.5, small packets (smaller than 100 bytes),

and large packets (larger than 1470 bytes) dominate traffic over the measured

WLAN. Eighty percent of outbound packets were smaller than 100 bytes, and

inbound packets were for the most part smaller than 100 bytes or larger than

1470 bytes.

The measured inbound and outbound packet size distributions, as shown

in Fig. 2.4 and Fig. 2.5, suggest several possible optimization procedures. For

example, APs installed in WLAN areas should be optimized to send small

packets and large packets on downlink. This procedure is obvious because

these two groups account for approximately 40% each of the total number of

downlink packets. On the other hand, APs should be optimized for receiving

small packets because 80% of uplink packets are smaller than 100 bytes, ac-

cording to Fig. 2.5. Similarly, because most packets originating from WLAN

clients are small, WLAN client devices should be optimized to send small pack-

ets. On the other hand, WLAN access points can benifit from balanced design

because small packets and large packets each accounts for 40% of traffic.

2.4.3 Typical Applications Used by Hotspot Users

Table 2.3 presents the distribution of TCP/UDP traffic load by users of the

WLAN in the Lamar resaturant.

The small amount of measured UDP traffic almost completely elim-

inated the likelihood of the presence of real-time video/audio applications.
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Table 2.3: IP traffic distributions from 10:00 a.m., June 30, 2003 to 10:00 a.m.,
July 7, 2003 in the Lamar restaurant

Data TCP UDP ICMP Other

Total 6.3 GB 6.1 GB 156.6 MB 1.6 MB 561.2 KB

Outbound 1.0 GB 1.0 GB 17.8 MB 732.5 KB 241.2 KB

Inbound 5.3 GB 5.1 GB 138.8 MB 901.3 KB 320.0 KB

Therefore, communication delay was not critical at the time of this measure-

ment. However, with the fast growth of real-time video/audio applications,

especially voice over IP (VoIP), there might be requests from users such that

hotspots need to be provisioned to satisfy certain delay requirements.

Fig. 2.6 details the traffic load generated by several well-known appli-

cations/protocols. Each application/protocol is identified by TCP/UDP port

mapping. Clearly, HTTP dominated this hotspot network usage. Network

News Transport Protocol (NNTP) also shared a small portion of observed

traffic load. It is important to point out that this usage pattern closely de-

pends on the presence of certain user groups. For example, no NNTP traffic

was observed from the Northcross traffic trace. However, the Northcross trace

did confirm the predominant position of HTTP protocol.

In Fig. 2.6, one GB of traffic, about one sixth of the total data traffic, is

labeled as “unidentified” that could not be recognized as any commonly seen

application/protocol. To identify this portion of traffic, longer packet headers

must be captured, and more application-level protocols have to be addressed.
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However, it is very likely that this portion of traffic was generated by programs

that dynamically establish connections via arbitrary ports, as exemplified by

P2P applications.

2.4.4 Changes of Network Usage Patterns

After we carefully studied the abnormal period on Tuesday afternoon during

when a large amount of traffic load was generated, it shows that one P2P

application and one NNTP downloading activity were consuming most of the

bandwidth during that period. This result proves that P2P applications and

other applications with high upload and download traffic, e.g., FTP, could

dominate network resources by excess occupation of bandwidth and affected

WLAN performance. Thus, even a small number of such applications, e.g.,
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one or two, may overwhelm the hotspot over a period of time. Therefore, it is

important to have an autonomous control mechanism that adapts to WLAN

dynamics and allocates resources fairly.

Interestingly enough, among the top sites with high inbound or out-

bound traffic volume, a non-trivial portion of them were not registered for

commercial use. Our traffic trace data show that the emerging mechanisms

that dynamically support direct communications between any two comput-

ers on the Internet, e.g., P2P protocols, played important roles in generating

traffic among these computers. Besides this portion of unregistered sites, web-

based email, on-line auction, on-line gaming, and NNTP news reading sites

were among the mostly visited Internet places by users from this hotspot.

We believe it is important to realize that the Internet is gradually

changing. First, more applications are moving away from the traditional

client/server architecture, in which a small amount of centralized servers serve

a large amount of clients. Nowadays, service models are more distributed.

Any computer connected to the Internet could easily provide services, e.g.,

file sharing, to the others. Second, more real-time applications will appear,

which request lower delay and/or higher throughput. WLANs, as convenient

extensions of the Internet, inevitably will experience both changes. Therefore,

WLAN traffic statistics will definitely change accordingly. Further, distinct

from wired networks, in which the communication media are relatively reli-

able and almost static, WLAN operates on less reliable RF channels that are

inherently shared and time varying [50, 34]. Hence, WLAN traffic statistics
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would further be affected by the RF transmission characteristics. This influ-

ence needs to be addressed as well. So, WLAN traffic statistics will continue

being an interesting topic to study.

2.5 Achievable Throughput Measurements

This section focuses on the relationship between application-level throughput

and signal-to-noise ratio (SNR) in IEEE 802.11b based WLANs. A WLAN

user experiences different levels of SNR and throughput as he or she moves

from place to place.

2.5.1 Empirical IEEE 802.11b Throughput Models

The empirical model in [52] can predict SNR at a WLAN receiver based on

site-specific information, such as building layouts, obstacles, and antenna char-

acteristics. Similar models have been widely used in the cellular industry for

propagation predictions. However, in order to predict throughput, a model to

map SNR to throughput is needed.

In [27], Henty used a single software tool LANFielder to obtain SNR

and throughput. He was the first to establish an SNR-throughput mapping

model. A general trend of the measured data is that throughput increases as

SNR increases. The measured data also shows that throughput reaches some

saturation level when SNR goes beyond a critical threshold. Henty proposed

two reasonable models, exponential and piecewise models, to fit the measured
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data. Two such models, exponential and piecewise models, were proposed in

[27].

The piecewise model is:

T =


Tmax , SNR > SNRc

Ap × (SNR− SNR0) , SNR ≤ SNRc

(2.1)

The two lines of (2.1) intersect at SNRc, which can be obtained using

(2.2).

SNRc =
Tmax
Ap

+ SNR0 (2.2)

The exponential model could be expressed as:

T = Tmax
(
1− e−Ae×(SNR−SNR0)

)
(2.3)

T is throughput. Tmax, SNR0, SNRc, and Ap/Ae are constants that are vendor

and application specific. Tmax is the throughput saturation level which results

from the SNR going beyond the critical threshold SNRc. SNR0 is the SNR

where throughput is zero. In the piecewise model of (2.1), Ap is the slope of

the line when SNR ≤ SNRc. In the exponential model of (2.3), Ae describes

the rate at which the throughput reaches saturation. In ideal, i.e., high SNR,

circumstances, Tmax is the throughput that the WLAN system will provide.

In circumstances in which SNR is low, SNRc, SNR0, and Ap/Ae are used to

predict throughput. Models (2.1) and (2.3) both have three constants2, which

can be determined by applying minimum mean square error (MMSE) curve-

fitting algorithm on measured data, as introduced in the following subsection.

2There are four constants in the piecewise model, but one of them is linearly dependent
on the other three.
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2.5.2 Curve-fitting Algorithm

This subsection describes the algorithm used in this chapter to fit (2.1) and

(2.3) to 792 measurements. First, the algorithm is performed over the 264

measurements from each of the three restaurants. Second, all 792 measure-

ments are fed into the curve-fitting algorithm. The algorithm takes inputs

from an array of SNR and throughput measurements, and outputs three pa-

rameters, Tmax, SNRc, and SNR0 for the piecewise model of (2.1), and Tmax,

Ae, and SNR0 for the exponential model of (2.3). The steps to calculate the

three parameters are different in each case, as explained below.

Piecewise

A wireless link with strong SNR should be highly reliable. The measured

data show that the throughput values measured at strong SNR are high with

little fluctuation. Thus, we averaged the strongest 15% of all measurements3

to determine the saturation level Tmax. Over the lower 85% of the measured

data, we ran a MATLAB function polyfit. This function uses a line to fit data

using MMSE and reports the slope Ap and the x-intercept SNR0. Finally,

SNRc can be obtained using (2.2).

3 Fifteen percent was chosen so that a statistically obvious decline of throughput exists
between the higher 15% and the lower 85% of data, as quantified by the variation coefficient.
Variation coefficient, ranging from 0 to 1, is a widely-used statistical figure to gauge the
fluctuation degree of a data set, and is defined as Sx/x, where Sx is the standard deviation
of a set of throughput, and x its mean. An upper bracket of more than 15% produces a
variation coefficient rapidly exceeding 0.1, and thus indicates a throughput drop.
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Exponential

The MATLAB function nlinfit estimates the coefficients of a nonlinear function

using MMSE; therefore it is suitable for fitting the exponential model. We ran

nlinfit to determine the three parameters Tmax, Ae, and SNR0. Occasionally,

nlinfit makes SNR0 a large negative number (e.g. −10 ∼ −15). Such a

negative value violates the intuition that throughput is small when SNR is

below zero. In the case that nlinfit generates SNR0 ≤ −5 (The number ’-

5’ was chosen by trial and error), the parameter SNR0 should be set as the

value obtained from the piecewise model. Then, Tmax and Ae are determined

by nlinfit based on the fixed SNR0.

2.5.3 Measurement Results and Fit Curves

The work in this section builds upon early results from [27] and includes stud-

ies that are much more extensive in nature. The throughput-measurement

software programs, Iperf, wget, and LANFielder, constitute a diverse collec-

tion of applications, serving as measurement tools and application types to

explore user traffic characteristics, thus providing a better understanding of

network performance. Though models proposed in [27] were only based on

data from LANFielder, we found it to be extendable to Iperf and FTP. This

extension is a major contribution of this section.

Fig. 2.7 and 2.8 show the measured data from the Guadalupe, Parmer,

and Northcross restaurants with piecewise and exponential curve-fitting, where
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Cisco and ORiNOCO cards are used respectively in the two figures. In each

figure, part (d) puts together the measurement data of all three restaurants.

Table 2.6 and Table 2.7 show the statistics of the two models shown in

(2.1) and (2.3), whereas Table 2.4 and Table 2.5 show their parameters. Both

models were evaluated by mean error µ, standard deviation σ, and correlation

coefficient R. Both models produce curves with correlation coefficients over

80% in two restaurants and over 70% in the other, which indicates the high

integrity of the curve-fitting algorithm.

As can be seen from Fig. 2.7 and Fig. 2.8, the spatially-averaged data

have stronger correlations than the un-averaged data. That is because spatial

averaging is essentially a low-pass filter and eliminates deviated data points.

Therefore, This technique may be used to estimate throughput before deploy-

ment.

2.5.4 A Summary of Measured Data Trends

The data analysis fits (2.1) and (2.3) to model the measured data, as well as the

error between measurements and the model. Below are several measurement-

based observations that summarize throughput studies for IEEE 802.11b sys-

tems.

Saturation Level Tmax of (2.1) and (2.3)

In most cases, the Cisco card has a higher saturation level Tmax than the

ORiNOCO card. This hardware-specific characteristic may be caused by the

36



0 20 40 60
0

1

2

3

4

5

6

SNR (dB)

Th
ro

ug
hp

ut
 (M

bp
s)

SNR (dB)SNR (dB)SNR (dB)

IPERF ⋅

SNR (dB)

FTP ×

SNR (dB)

LANFielder +

(a) Guadalupe

0 20 40 60
0

1

2

3

4

5

6

SNR (dB)
Th

ro
ug

hp
ut

 (M
bp

s)
SNR (dB)SNR (dB)SNR (dB)

IPERF ⋅

SNR (dB)

FTP ×

SNR (dB)

LANFielder +

(b) Parmer

0 20 40 60
0

1

2

3

4

5

6

SNR (dB)

Th
ro

ug
hp

ut
 (M

bp
s)

SNR (dB)SNR (dB)SNR (dB)

IPERF ⋅

SNR (dB)

FTP ×

SNR (dB)

LANFielder +

(c) Northcross

0 20 40 60
0

1

2

3

4

5

6

SNR (dB)

Th
ro

ug
hp

ut
 (M

bp
s)

SNR (dB)SNR (dB)SNR (dB)

IPERF ⋅

SNR (dB)

FTP ×

SNR (dB)

LANFielder +

(d) All three restaurants

Figure 2.7: Measurement results at Schlotzsky’s restaurants using Cisco card
(dotted line: piecewise model; solid line: exponential model)
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Figure 2.8: Measurement results at Schlotzsky’s restaurants using ORiNOCO
card (dotted line: piecewise model; solid line: exponential model)
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Table 2.4: Parameters of the piecewise models. (’C’ and ’O’ stand for Cisco
and ORiNOCO cards, respectively. ’Gua’, ’Par’, ’Nor’, and ’All’ stand for the
Guadalupe, Parmer, Northcross, and all three restaurants, respectively.)

Tmax (Mbps) SNRc (dB) SNR0 (dB)
C O C O C O

Iperf Gua 4.67 4.33 17.0 29.0 5.92 0.523
Par 4.73 4.32 26.6 36.2 6.16 -4.02
Nor 4.61 4.48 23.1 24.9 9.99 6.00
All 4.66 4.27 23.2 27.4 4.75 2.13

FTP Gua 3.69 3.64 21.5 22.6 10.3 4.06
Par 3.96 3.46 31.2 29.6 8.86 -6.61
Nor 3.92 3.58 26.6 23.2 12.0 6.79
All 3.84 3.50 26.4 21.9 10.2 4.46

LANFielder Gua 1.55 1.35 20.0 17.7 6.93 -0.13
Par 1.49 1.29 24.0 16.1 -0.9 4.43
Nor 1.99 1.94 22.5 24.0 13.3 4.25
All 1.61 1.37 22.6 26.7 6.84 -10.1

different designs of the two cards. However, the ORiNOCO card did per-

form well in environments with low SNR. One can not conclude Cisco cards

outperform ORiNOCO cards based on Tmax value alone.

Tmax is also application-specific because each application uses differ-

ent protocols (such as FTP, TCP, and UDP). However, Tmax may not be

site-specific because Table 2.4 shows similar Tmax values at several distinct

measuring sites. This observation partially proves that SNR is an important

factor to characterize channel conditions for IEEE 802.11b WLAN systems,

regardless of location.
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Table 2.5: Parameters of the exponential models. (’C’ and ’O’ stand for Cisco
and ORiNOCO cards, respectively. ’Gua’, ’Par’, ’Nor’, and ’All’ stand for the
Guadalupe, Parmer, Northcross, and all three restaurants, respectively.)

Tmax (Mbps) SNRc (dB) SNR0 (dB)
C O C O C O

Iperf Gua 5.31 4.35 0.138 0.0975 7.11 5.61
Par 4.90 4.58 0.110 0.0509 9.90 0
Nor 4.82 4.78 0.110 0.0782 9.99 6.00
All 5.16 5.07 0.084 0.0596 6.15 4.64

FTP Gua 3.96 4.45 0.156 0.0722 10.3 5.34
Par 4.33 3.53 0.078 0.110 11.3 4.73
Nor 4.06 3.80 0.106 0.0879 11.9 6.79
All 4.55 3.89 0.076 0.0833 10.3 5.37

LANFielder Gua 1.78 1.40 0.133 0.151 8.56 3.88
Par 1.56 1.37 0.169 0.111 9.04 4.53
Nor 2.26 1.96 0.156 0.0781 13.5 4.25
All 1.78 1.61 0.140 0.0835 9.33 2.64

Critical Threshold SNRc of (2.2)

SNRc is only used in the piecewise model. Throughput reaches the maximum

Tmax when SNR is above SNRc. Table 2.4 shows that this parameter is on

the order of 20 dB. Based on empirical observations, an SNR of 20 dB can be

easily achieved within 10 m of the AP. Therefore, users inside a Schlotzsky’s

restaurant can usually enjoy high transmission rates.

Cutoff Parameter SNR0 of (2.1) and (2.3), and Slope Ap of (2.1)

SNR0 ranges between -6 and 13 dB, and Ap ranges from 0.06 to 0.42. These

two parameters together describe the behavior when SNR is less than SNRc.
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Table 2.6: Statistics of the piecewise models. (‘C’ and ‘O’ stand for Cisco
and ORiNOCO cards, respectively. ’Gua’, ’Par’, ’Nor’, and ’All’ stand for the
Guadalupe, Parmer, Northcross, and all three restaurants, respectively.)

µ (Mbps) σ (Mbps) R (%)

C O C O C O

Iperf Gua -0.074 0.007 0.859 1.14 81.0 71.9

Par 0 0.006 0.621 0.747 85.4 86.2

Nor -0.247 0.003 0.967 0.939 82.7 82.7

All -0.085 0.001 0.99 0.981 76.0 79.0

FTP Gua -0.030 -0.005 0.730 0.876 90.1 79.4

Par -0.015 0.017 0.698 0.565 85.1 84.6

Nor -0.099 0 0.609 0.625 92.0 86.7

All 0.009 -0.026 0.748 0.718 88.6 82.6

LANFielder Gua -0.003 -0.006 0.321 0.254 83.5 78.6

Par 0.050 -0.011 0.138 0.149 84.8 91.5

Nor -0.002 -0.017 0.267 0.268 92.3 90.6

All 0.051 0.046 0.336 0.321 82.8 77.7

2.5.5 To Model Other Applications

We observed that the Tmax ratio of Iperf, FTP, and LANFielder is about

2.9 : 2.4 : 1 when all Cisco-card data are applied to the piecewise model of

(2.1). The ratio is similar in other scenarios (e.g., ORiNOCO-card data, the

exponential model of (2.3), etc.). This indicates that there may exist a rule to

relate throughput of different applications. To estimate the throughput of a

new application, one can measure its Tmax in an ideal benchtest and find the

Tmax ratio with respect to Iperf, FTP, and LANFielder. Then, the piecewise

and exponential models for this new application can be derived by performing
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Table 2.7: Statistics of the exponetial models. (‘C’ and ‘O’ stand for Cisco
and ORiNOCO cards, respectively. ’Gua’, ’Par’, ’Nor’, and ’All’ stand for the
Guadalupe, Parmer, Northcross, and all three restaurants, respectively.)

µ (Mbps) σ (Mbps) R (%)

C O C O C O

Iperf Gua 0 0 0.847 1.06 81.5 76.3

Par 0 -0.045 0.633 0.817 84.8 85.0

Nor 0.02 -0.015 1.05 1.08 78.8 76.7

All 0 0 0.998 0.984 75.4 78.9

FTP Gua -0.1 0 0.795 0.870 88.2 79.8

Par 0 0 0.720 0.521 84.0 87.0

Nor 0.06 0.041 0.891 0.742 82.9 81.3

All 0 0 0.793 0.747 87.1 81.0

LANFielder Gua 0 0 0.325 0.247 83.0 79.9

Par 0 0 0.141 0.124 84.0 94.2

Nor 0 0.029 0.306 0.352 89.7 83.0

All 0 0 0.364 0.295 78.9 79.2

extrapolations or interpolations on the known results of the three software

tools. The obtained equations can serve as approximate throughput models

of the new application, and could be further verified by measurements.

2.6 Conclusion

In this chapter, measured WLAN traffic statistics and IEEE 802.11b through-

put prediction models are reported. The measurement campaign was con-

ducted on an operational IEEE 802.11b WLAN supported by Schlotzsky’s
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Inc., in Austin, Texas in the summer of 2003. Out measurements showed that:

1. The measured WLAN traffic was highly asymmetric with high inbound

traffic, with a ratio of about 1 to 5.

2. On the network usage side, although file downloading and P2P appli-

cations sometimes generated high network demands, the majority of

WLAN users used HTTP protocol. However, real-time autonomous con-

trol of networks is necessary with growing usage of P2P applications.

3. Inbound packets and outbound packets sizes distributed very differently,

which is a result of the dominating usage of HTTP protocol.

4. Measurement data also showed that throughputs of IEEE 802.11b net-

works are well modeled by SNR. Two empirical models given by (2.1)

and (2.3) were derived from extensive field measurement data, and are

presented here as well. Both models are easy to formulate and provide

accurate throughput predictions.

We believe that the four measured WLANs presented here are repre-

sentative of modern hotspots, and that the traffic statistics and throughput

prediction models presented here could be applied to similar environments

and further extended for future WLANs. The throughput prediction mod-

els showed that a key to future WLAN deployment may be to use accurate

site-specific propagation algorithms for design
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Chapter 3

WLAN Traffic Statistics:

Sub-second Time Scale Behavior

3.1 Introduction

The terminology “network traffic” has different meanings in different contexts.

For example, at the network layer and higher layers, traffic is often synony-

mous with throughput; at the link layer, traffic is typically mapped to link

layer packet flows. In spite of these various definitions, network traffic can be

represented by a random process which depends upon the end users, appli-

cations, protocols, and channels and generally presents an extremely complex

statistical structure.

Since the landmark paper [40] detailing the statistical characteristics of

Ethernet traffic, self-similarity (SS) and long-range dependency (LRD) have
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been widely accepted in the literature to describe traffic statistical properties

over large time scales (above 1 second). SS/LRD shows that network traffic is

correlated over extended time of periods ranging up to several hours.

Despite the seemingly ubiquitous existence of SS/LRD observed in LAN

[40], WLAN [49], and WWW [15] traffic, a complete framework that is capable

of systematically estimating, verifying and demonstrating the significance of

SS/LRD from measured traffic traces has not been established [1], mostly

due to the lack of physical modeling [15, 64]. The lack of such a framework

[1] results in much debate about estimation and detection of LRD [35], and

about queueing performance with SS/LRD traffic [19, 26]. Nonetheless, the

concerned time scale of network traffic is well-established from measurements

[40], which ranges from several seconds up to several hours.

It has been shown that network traffic exhibits more complex statistical

structure at small time scales (generally are observation intervals of less than

1 second, sometimes called sub-second time scales). Feldmann et al. [20, 22]

first reported the small scale effects and suggested that network traffic might

possess a multifractal correlation structure at this small scale range from WAN

traffic traces. The multifractal structure was subsequently confirmed in [51].

The significance of this structure to network performance was investigated in

[18]. More recent work, however, argues that as traffic load increases, network

traffic is fairly uncorrelated or even Poisson-like at small scales [12, 67, 36].

Nonetheless, it is clear that the small scale correlation structure of network

traffic is vastly different from that at large scales.
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Empirical studies [21] show that the transition from large scale to small

scale scaling in network traffic happens around the round trip time (RTT) of

TCP protocol. Because TCP can account for more than 90% of network traffic

load, as shown in Fig. 4 of [46], the characteristics of TCP are very likely to

dominates the factors affecting traffic structures. It is well known that TCP is

a close-loop protocol in which acknowledge packets are exchanged. Figueiredo

et al. [23] shows that TCP does not change traffic correlation structure below

one RTT period simply because the feedback delay is at least one RTT, and

therefore TCP sessions do not react to network changes below this time scale.

Recent traffic measurements [54] show that current TCP RTT on the Internet

is around the sub-second area. Therefore, it is reasonable to assume that

network traffic may be modeled using “small scale” scaling over the sub-second

observation interval.

In the process of modeling and analyzing network traffic, various math-

ematical tools have been developed. During the past several year, however,

wavelet based multi-resolution analysis (MRA) has become one of the most

popular and reliable tools in detecting and analyzing scaling effects at both

large and small time scales because wavelets are capable of “zooming” in on

both the time and frequency domain and revealing interesting characteristics

in the data. Abry and Veitch [3, 59] first used the wavelet spectrum to detect

SS/LRD in large scales. Recently, Zhang [67] and Jiang [33] proposed us-

ing wavelet spectrum to measure burstiness of network traffic at small scales.

Another compelling feature of wavelets is that the wavelet spectrum shares a
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natural tie with power spectral density (PSD). In fact, the wavelet spectrum

could be used to estimate PSD [2], which also happens to be one of the central

elements in areas such as channel modeling. Therefore, because of the rich

literature of wavelets in network traffic research, and because of the direct

physical meaning associated between wavelet spectrum and PSD, we adopt

wavelet spectrum as the analyzing tool in this research.

[20], is decided by the well-known self-similar scaling law. The goal of

this chapter is to verify the WLAN traffic large scale properties, and more

importantly, to identify sub-second scale characteristics of WLAN traffic. The

chapter is organized as follows. Section 3.2 introduces background of mathe-

matical tools, especially wavelet analysis, and the relationship between wavelet-

based spectrum analysis and classic power spectrum density. Section 3.3

describes the measurement setup. Section 3.4 presents wavelet-based IEEE

802.11b traffic analysis results in small time scales.

3.2 Spectrum Analysis and Wavelets

This section describes spectrum analysis and wavelet transforms, and their

applications in traffic and channel characterizations.

3.2.1 Classic Spectrum Estimation

Autocorrelation in the time domain or power spectral density in the frequency

domain, reveal second-order statistics of random processes, and play impor-
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tant roles in analyzing and modeling physical phenomena, e.g., communication

system analysis and radio signal processing. Therefore, efficient and accurate

estimation of second-order statistics is extremely important in practice Clas-

sical estimation approaches of second-order statistics include:

1. Time domain estimation

2. Frequency domain estimation

3. Parametric model based estimation

The last approach, the parametric estimation approach, generally assumes

system models in prior and estimates model coefficients using system identi-

fication techniques. For our network traffic and wireless channel applications,

however, it is desirable to fully understand traffic and channel properties both

in time and frequency domains. Therefore, the first two approaches are chosen

in this research. In the following discussion, we also assume that the random

processes (time series) involved are wide-sense stationary (WSS) processes.

Time Domain Estimation

Blackman and Tukey [11] proposed time domain spectrum estimation. This

classical approach estimates power spectrum and cross-spectrum via the Fourier

transformation of autocorrelation and cross-correlation functions, respectively.

Although several variations of the method have been proposed, the basic idea,

especially in regards to the bias and convergence of estimations, remains the

same.
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Let Ĉx(τ) and Ĉxy(τ), τ ∈ {−T,−T + 1, . . . , 0, . . . , T − 1, T}, be the

estimated second-order auto and cross moments of a discrete time series x(t)

and y(t). By the definition of power spectrum density, the estimated spectra

of the time series of interest are:

Ŝx(ω) =
T∑

τ=−T

Ĉx(τ) e
jωτ (3.1)

Ŝxy(ω) =
T∑

τ=−T

Ĉxy(τ) e
jωτ (3.2)

where Ŝx and Ŝxy are the estimated power spectrum and cross power spectrum

of the time series.

Now assume that the true autocorrelation and cross-correlation of the

time series are Cx(τ) and Cxy(τ). Given a windowing function w(τ):

w(τ) =


1,−T ≤ τ ≤ T

0, otherwise

(3.3)

The estimated spectra can be rewritten as:

Ŝx(ω) =
∞∑

τ=−∞

w(τ)Cx(τ) e
jωτ (3.4)

Ŝxy(ω) =
∞∑

τ=−∞

w(τ)Cxy(τ) e
jωτ (3.5)

Clearly in the frequency domain, the estimated power spectrum is given by

multiply the actual power spectrum by the transfer function of the windowing
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function:

Ŝx(ω) = W (ω) ∗ Sx(ω) (3.6)

Ŝxy(ω) = W (ω) ∗ Sxy(ω) (3.7)

where Sx(ω) and Sxy(ω) are the true power spectrum and cross power spectrum

of the time sequences, and W (ω) is the Fourier transform of the windowing

function w(τ). This expression reveals the bias due to the convolution opera-

tion of the estimated spectrum.

In practice, there are only limit number of samples in the discrete time

series. Therefore, only a limited number of samples can be used to estimate the

correlation. Let M denote the number of different sequences used to estimate

Ĉx and Ĉxy. Clearly, the length of the correlation period T depends on the

value of M as well. Naidu [47] shows that the quality of the time domain

spectrum estimators, i.e., the mean and the variance of the estimators, is

determined by M and T :

E[Ŝx(ω)] =
M−1∑
k=0

W (
2πk

M
)Sx(ω −

2πk

M
) (3.8)

E[Ŝxy(ω)] =
M−1∑
k=0

W (
2πk

M
)Sxy(ω −

2πk

M
) (3.9)

and the variances:

Var[Ŝx(ω)] =
M−1∑
k=0

W 2(
2πk

M
)S2

x(ω −
2πk

M
) (3.10)

Var[Ŝxy(ω)] =
M−1∑
k=0

W 2(
2πk

M
)S2

xy(ω −
2πk

M
) (3.11)
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In the ideal case, the estimation is unbiased if the windowing function has

infinite length. If both the true spectrum of the time series and the spectrum

of the windowing function are smooth, however, the spectrum estimation can

still be high quality. For example, let us assume Sx(ω) and Sxy(ω) are two flat

functions, and let us further suppose W (2πk
M

) = 1
M
, k ∈ {0, . . . ,M − 1}. Given

limited number of samples, the variances are [47]:

VarŜx(ω) =
T

M
S2
x(ω) (3.12)

VarŜxy(ω) =
T

M
S2
xy(ω) (3.13)

Clearly, the variances are inversely proportional to the value of M , the number

of sequences to calculate the ensemble averages, and proportional to the length

of the windowing function. Hence, there is always a trade-off in choosing M

and T in practice to use the time domain spectrum estimation efficiently.

Frequency Domain Estimation

Welch [62] contributed a framework of frequency domain estimation, and sub-

sequently, frequency domain estimation methods became very popular because

of the discovery of fast Fourier transform (FFT). In the frequency domain, the

power spectrum and cross spectrum are estimated by [62]:

Ŝx(k) = lim
T→∞

1

T
E[X̂(k)X̂∗(k)] (3.14)

Ŝxy(k) = lim
T→∞

1

T
E[X̂(k)Ŷ ∗(k)] (3.15)

where X̂(k) represents the Fourier transform of the time series x(t). Similar

to windowing operation in the time domain approach, The mean and variance
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of the estimated power spectrum can be represented by [47]

E[Ŝx(
2πk

T
)] =

1

2π

∫ π

−π
Sx(

2πk

N
− ω)

W 2(ω)

N
dω (3.16)

E[Ŝxy(
2πk

T
)] =

1

2π

∫ π

−π
Sxy(

2πk

N
− ω)

W 2(ω)

N
dω (3.17)

and for the variance:

Var[Ŝx(
2πk

T
)] ≈ 1

2π

∫ π

−π

S2
x(ω)

M

W 4(2πk
N
− ω)

N2
dω (3.18)

Var[Ŝxy(
2πk

T
)] ≈ 1

2π

∫ π

−π

S2
xy(ω)

M

W 4(2πk
N
− ω)

N2
dω (3.19)

Welch [62] showed that frequency domain estimations are capable of achieving

similar results as the time domain approach. However, since the discovery

of the Fast Fourier Transform, the frequency domain approach became more

popular.

3.2.2 Wavelet Transforms and Wavelet Spectrum

In wavelet domain, the wavelet spectrum is the metric to analyze the cor-

relation structure of time series [41]. Similar to the Fourier transform that

decomposes signals into weighted sums of sinusoid basis functions, the wavelet

transform dissects signals into combinations of “little waves”, i.e., wavelets

[16]. By dilating and shifting the wavelet, wavelet transforms can localize the

analyzed signal both at time and frequency domains, which is often a much

desired feature. Moreover, with properly selected wavelets, wavelet trans-

forms are very effective in eliminating deterministic trend that often occurs
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in network traffic traces [2]. Because of the desirable properties of wavelets,

the wavelet transform and wavelet spectrum have become the most widely

used tool in network traffic literature [1]. Therefore, it is advantageous to

use wavelets analyzing WLAN traffic using in order to compare with previous

traffic study results.

3.2.3 A Brief Introduction of Wavelets

Let a real-valued function ψ(t) ∈ L2(t), i.e., ||ψ||2 =
∫ +∞
−∞ |ψ(t)|2 dt < ∞, be

the analyzing wavelet that satisfies the admissibility condition

Cψ = 2π

∫ +∞

−∞

|Ψ(ω)|2

ω
<∞ (3.20)

where Ψ(ω) is the Fourier transform of ψ(t). From the admissibility condition,

it is obvious that
∫ +∞
−∞ ψ(t) = 0, and therefore, ψ(t) oscillates, i.e., that ψ(t) is

a little wave, or wavelet. Consider the function family generated by dilating

and shifting of the wavelet ψ(t):

ψa,b(t) = |a|−1/2ψ

(
t− b

a

)
(3.21)

ψa,b(t), a, b ∈ R are defined such that their energy is constant for all. Moreover,

from properties of the Fourier transform,

Ψ(ω) =
a√
|a|
e−jωbΨ(ω) (3.22)

The continuous wavelet transform for a finite energy signal f(t) ∈ L2(t) is now

defined as:

Wa,b =

∫ +∞

−∞
f(t)ψa,b dt (3.23)
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and f(t) may be reconstructed by:

f(t) = C−1
ψ

∫ +∞

−∞

∫ +∞

−∞
Wa,b ψa,b(t) da db (3.24)

One intuitive way to relate the wavelet transform to the Fourier transform is

to assume that the wavelet φ(t) and its Fourier transform Ψ(ω) have finite

central moments t̄ and ω̄,

t̄ =
1

||ψ||2

∫ +∞

−∞
t|ψ(t)|2 dt (3.25)

ω̄ =
1

||Ψ||2

∫ +∞

−∞
ω|Ψ(ω)|2 dω (3.26)

Therefore, by shifting and dilating, the wavelet coefficients Wa,b mostly repre-

sent information about signal f(t) at time instant at̄+ b and frequency ω̄/a.

The variance of the wavelet coefficients indexed by the scale parameter

b is defined as wavelet spectrum Ia:

Ia = E
[
|Wa,b|2

]
∀b (3.27)

It has been shown [41] that the wavelet spectrum uniquely characterizes the

second-order statistics, e.g., auto-covariance function (ACF) in the time do-

main or power spectral density (PSD) in the frequency domain, of stationary

or long-memory random processes at different scales in the way that the clas-

sic Fourier analysis does at different frequencies. Moreover, as illustrated in

(3.25) and (3.26), the corresponding relationship between dilation scales and

frequencies are clearly identified and intuitive from an engineering point of

54



view. In fact, Abry and Veitch [3] shows that the wavelet spectrum defined in

(3.27) is a useful PSD estimator, and this estimator has been widely used in

network traffic study since 1998.

It is worth noting that the wavelet spectral estimator still suffers from a

convolutional bias due to the wavelet windowing effect, similar to the windowed

spectrum estimators in time domain or frequency domain. However, because

of the localization properties of the wavelet ψ(t) in both time and frequency

domains, the intuition brought forth by wavelets analysis is far more helpful

in understanding the signals or time series under study.

3.2.4 Scaling Analysis of Network Traffic Using Wavelets

The notations used in this section follow the definitions used in [3].

A random process that fully captures characteristics of network traffic

traces needs to be defined in continuous time as a general random process

Xt, t ∈ R+. A discrete version of the general traffic Wδ,n, n ∈ Z+ is also

defined and δn is the digitizing granularity. Similar processes can be defined

on the packet level. For example, if the random process Pt, t ∈ R+ is defined as

the frame arrival process, the corresponding discrete packet counting process

can be defined as Cδ,n.

The above defined processes are correlated but by no means equivalent.

They present different aspects of the captured traffic. For example, the paper

[3] shows that the discretized processes preserve statistic properties of original

processes over time scales beyond the aggregation unit δ. Therefore, it is
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adequate to conduct analysis on the discrete processes so long as the time

granularity δ chosen to be smaller than the time scales.

Large Time Scale Scaling: SS/LRD

Recently pioneered by Leland et. al. [40], researchers have started to study the

statistical characteristics of network traffic, e.g., Ethernet, Internet backbone,

and web server traffic. Leland, Taqqu, Willinger and Wilson showed [40] that

aggregated Ethernet traffic is self-similar at different time scales. We now give

a brief introduction to the so called self-similar property.

Let x = (x(t) : t = 0, 1, . . .) be a discrete wide-sense stationary stochas-

tic process with constant mean µ = E[x] and finite variance σ2 = E[(x− µ)2].

Let r(k), k = 0, 1, 2, . . . be its autocorrelation function:

r(k) = E[(x(t)− µ)(x(t+ k)− µ)]/E[(x(t)− µ)2], (k = 0, 1, 2, . . .) (3.28)

If random process x is long-range dependent, the autocorrelation func-

tion r(k) decays slowly as k → ∞. Since the second-order statistic r(k)

captures the variance or burstiness of a stochastic process, an intuitive expla-

nation is that the burstiness is preserved at different time scale of a self-similar

stochastic process.

Following this ground-breaking work [40], researchers further investi-

gated traffic statistics at various network layers and showed the existence of

self-similarity in network traffic at almost every layer[63]. It is worth noting

that most network traffic research, i.e. [3], focused primarily on scaling be-
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havior of the traffic process over a range of time scales typically from 1 second

and above.

Small Scale Scaling: Burstiness

The wavelet spectrum technique was used primarily for identifying LRD pro-

cesses at large time scales [3]. However, the complex nature of traffic at small

time scales requires more complete revealing of underlining multi-scale prop-

erties, and the wavelet spectrum could be easily extended to accommodate

the request. As introduced before, the wavelet spectrum reveals second-order

properties of random processes at all scales. Therefore, the wavelet spectrum

technique can be applied directly to detect details of traffic at small time scales

[32].

3.3 Measurement Setup in a Campus Building

In this section, we describe the network structures, hardware configurations,

and software utilities used in measurements conducted in a campus building

at the University of Texas at Austin (UT-Austin).

3.3.1 Description of Measurement Sites

The ENS building in the UT-Austin campus is the home of the Electrical

and Computer Engineering Department. The ENS network provides wired

(Ethernet) and wireless (IEEE 802.11b) network services to faculty, staff, and
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Figure 3.1: The network structure in UT-Austin’s ENS building

students.

Fig. 3.1 shows the network structure in the ENS building. As shown

in the figure, the core networking device of the ENS network is a Cisco 6505

switch, which carries all the network traffic from this building, including all

the wireless traffic.

Measurement Hardware Configurations and Software Utilities

An Intel Pentium III desktop computer was used to capture network packets

in the ENS network. This sniffer computer is pre-installed with Debian Linux

3.0r2 operation system and equipped with two Ethernet interfaces:

• Interface 1: 100 Mbps Ethernet interface for maintenance

• Interface 2: 1 Gbps Optical Ethernet Interface for network traffic sniffing

In order to capture the traffic, tcpdump 3.7.2 was enabled on the optical inter-

face to capture the packet traffic in the ENS network.
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On the Cisco switch side, Virtual Local Area Network (VLAN) [31]

technology is adopted for the ENS network. By design, the ENS network is

divided into several VLANs. In particular, all the WLAN traffic is grouped to

a single VLAN, while the Ethernet traffic is tagged into other VLANs.

The Switched Port Analyzer (SPAN) feature supported by the Cisco

switch enables a flexible and easy way to capture network traffic going through

the switch. During the traffic measurement campaign, the SPAN feature was

engaged on VLANs. Therefore every packet from one particular VLAN is

mirrored to the gigabit optical Ethernet port to which the sniffer computer

was attached. This measurement procedure is depicted in Fig. 3.1.

Combining the SPAN and VLAN techniques together, all the WLAN

traffic carried on the ENS network was mirrored packet-by-packet to the optical

interface of the sniffer computer. Therefore, tcpdump could capture all the

WLAN packets. Throughout this measurement, no WLAN packet was lost as

reported by tcpdump.

Considerations in Designing Measurement Procedures

The primary concern in capturing high-volume packet traffic on high-speed

links, i.e., gigabit Ethernet, is the limited processing speed of the sniffer com-

puter compared to the transmission rate of the traffic. It is very likely that

the sniffer device may not be able to handle the traffic, especially during peak

periods, and therefore dropping packets. In order to avoid the described situ-

ations from happening, we limited the capturing size of each Ethernet packet

59



to just include IP header information. The reduced capturing size increased

the capacity of the sniffer computer, and resulted zero packet loss during the

measurements as reported by tcpdump.

3.4 Scaling Analysis of ENS 802.11b Traffic

In this section, we apply the theory of wavelets in the analysis of IEEE 802.11b

traffic traces. Our approach is to identify the burstiness from the traffic traces,

and further compare it with the spectrum of the propagation channel. The

objective is to conduct physical modeling of WLAN traffic.

3.4.1 802.11b Traffic Traces Pre-processing

As seen from Fig. 3.1, all traffic traces were collected at the Ethernet links

between the APs and the Internet. Therefore, neither IEEE 802.11 control

messages, e.g., RTS/CTS, nor corrupted packets, e.g., dropped packets due to

collision, appear in the traces. To compare the spectra of the channel and the

WLAN traffic, only outbound traffic (from WLAN to the Internet) is studied

in order to identify impact that the radio channel has on traffic statistics.

Our traffic was captured in 2004 on the Internet. At the same period,

Shakkottai et. al. [54] showed that RTT distributions on the Internet are

almost exclusively concentrated above 10 ms time scales and peak around

100 ms and change very little. Based on the RTT range given in [54], the

discretized traffic traces used a 5 ms time window and should preserve almost
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Figure 3.2: Wavelet Spectrum of UT-ECE WLAN Traces

all sub-RTT traffic correlation structure.

3.4.2 Burstiness of WLAN Traffic at Sub-second Scales

Fig. 3.2 shows the wavelet spectrum of a 20-minute traffic trace collected from

12:00 p.m. to 12:20 p.m. in ENS building. The resulting scaling properties of

this trace is similar to traces collected during other time periods in the ENS

building.

In Fig. 3.2, the wavelet spectrum figure shows a flat pattern when time

scale is larger than 30 ms, which is similar to the pattern shown in [20, 33].

This flat pattern demonstrates that similar small scale scaling appearing in

weird traffic traces also shows in the ENS WLAN traffic. Therefore, despite

the difference in the physical transmission media, the ENS WLAN traffic and

wired network traffic share similar statistical properties at time scales larger

than 30 ms.

However, at time scales around 15 ms, Fig. 3.2 presents clear patterns
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of fluctuations. For example, the wavelet spectrum of the ENS WLAN traffic

peaks around 13 ms and 18 ms while dips at 15 ms time scale. Similar phe-

nomena appear in all WLAN traffic traces collected from ENS building which

have not been reported in wired traffic study literature before. Hence, it is

very likely that the fluctuations in this range are peculiar to the ENS WLAN

networks.

It is interesting to realize that Doppler shifts cause radio channels fluc-

tuating around the sub-second time scales. Moreover, typical PSD of Doppler

shifts has very similar shape as the fluctuations observed from Fig. 3.2. Con-

sidering the intuitive mapping relation between wavelet spectrum and PSD, it

is very clear that Doppler shifts might be the mostly likely source of impact

that generates the fluctuations in Fig. 3.2.

Fig. 3.2 also shows that identifying time scales is the key to the con-

jecture. Communication networks, WLAN networks in particular, are very

complex systems, in which many factors, i.e., radio propagations, MAC, and

network protocols, combine together and influence the traffic traces. However,

each of these machineries has its own influential time scales and very likely

makes its impact apparent at certain time scales. From Fig. 3.2, we suspect

that the time scales around 15 ms might be the range in which the Doppler

shifts during radio transmission can be identified from traffic traces. Because

Doppler shifts are highly site-specific and motion sensitive, We design a new

measurement campaign in a controlled environment to verify this conjecture.

This portion of work is documented in next chapter.
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3.5 Conclusions

In this chapter, we introduced the progress achieved in traffic studies with

focuses on corresponding analyzing tools. In particular, wavelet spectrum is

introduced and its relationship to PSD is established “intuitively”. By fol-

lowing the common practice in the traffic study literature, the captured ENS

WLAN traffic is analyzed by wavelet spectrum. The results reveal unusual

fluctuations in a specific time scales around 15 ms. By relating wavelet spec-

trum to PSD, we conjecture that the observed fluctuations around this time

scale might mainly be the result of Doppler shifts caused by motion during

radio transmissions. This observation has not been reported in previous traffic

or channel studies. Motivated by the observation, we further investigated the

impact of Doppler shifts during radio transmission to the upper networking

layers in the following chapter.
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Chapter 4

Channel Characteristics:

Sub-second Time Scales

4.1 Introduction

In radio communications, modeling propagation channel has long been a cen-

tral part of research for developing PHY and MAC. Generally speaking, radio

propagations are hostile due to the combined effects of multipath propagations,

Doppler shifts, and intricate interactions between signals and environments

[50]. Because of the difficulties in modeling propagation phenomena, analysis

at the higher layers, e.g., the network layer and layers above, usually assumes

the wireless channel to be in “ideal”, less realistic states. In most cases, such

assumptions also allow simple mathematical modeling or computational feasi-

ble simulations of wireless communication systems. In Chapter 3 we identified
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the unusual fluctuations in WLAN traffic traces at sub-second time scales. It

is interesting to further investigate the causes, which may be helpful in better

understanding the radio channel.

In the 1960s, Gilbert [25] pioneered the use of a Markov process to

model the generic communication channel and initiated the search for link layer

channel models. Essentially, Markov channel models provide a probability

value indicating the success rate of each data packet. Elliott [17] further

refined Gilbert’s Markov models and established the so called Gilbert-Elliott

channel models. Fritchman [24] extended the Gilbert-Elliott model to a more

general partitioned Markov framework.

Considerable effort has been made in the literature to verify, estimate or

improve the link layer channel model within the framework of Gilbert-Elliott

Markov models. A large portion of Markov channel models [60, 61, 58, 66]

are directly derived from analytical channel models, especially the Rayleigh

channel model [34]. However, Tan and Beaulieu [56] argued that first-order

Markov models have difficulty in matching radio propagation correlations even

from the analytical models. Also, analytical models such as Rayleigh models

should not be applied blindly to all wireless environments, as they do not

consider temporal correlations, and they do not properly describe the less

severe fadings in wideband channels. Therefore, a better approach is to build

the link layer models from site-specific channel measurements or models.

Swarts and Ferreira [55] verified the effectiveness of Markov character-

izations of digital fading mobile VHF channels via measurements. They used
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an FM transmitter to transmit four digitally modulated signals, FSK @ 300

baud, DPSK @ 1200 baud, QPSK @ 1200 baud and 8-PSK @ 1600 baud, with

RF carrier frequency of 145.2 MHz. The estimated Fritchman Markov channel

models worked well with 8-PSK but had large discrepancies with FSK mod-

ulation. Clearly, this result indicates that it is very important to be cautious

when using link-layer channel models.

It is not a coincidence that constructing link layer channel models is

difficult and confusing. The complex channel propagation phenomena require

us to carefully study and understand the channel before starting to model it.

For example, flat-fading channel models, e.g. Rayleigh and Rayleigh-based

Markov models, should not be blindly used in frequency-selective fading envi-

ronments. Therefore, a thorough study of the temporal correlation structure at

the link layer from a generic radio propagation model is necessary for building

link layer channel models.

Multipath is a key factor that contributes to channel variations. The

time scales of multipath time dispersion is highly site-specific. For example,

typical indoor environments exhibit time dispersions (or echoes) on the order

of 10 ns to 1000 ns, while typical outdoor environments might have values up

to tens of microsecond [50]. Depending on environmental factors and trans-

mission characteristics, multipath can induce perceivable temporal correlation

structure for packet traffic.

Induced by relative movement of transmitters, receivers, or reflectors

in the physical channel, Doppler shift also generates channel fluctuations, but

66



typically at a much larger scale than typical multipath time dispersions. Chan-

nel coherence time is inversely proportional to Doppler shifts. Depending on

carrier frequencies and relative velocities, Doppler shifts are typical in the

range of tens to hundreds Hertz in current broadband networks. Therefore,

coherence time is on the order of ten to several hundreds of millisecond [50].

It is interesting to observe the fact that channel coherence time is lo-

cated in the range of time scales that exhibit complex scaling in traffic analysis,

as documented in Chapter 3. Because of this apparent overlap between channel

variations and traffic fluctuations, a cross-layer [53] approach that considers

traffic and channel simultaneously follows naturally. By analyzing statistical

properties at time scales critical to channel fluctuation and packet traffic, we

expect to reveal characteristics of both propagation channel and packet traffic.

Leveraging upon tools and results in small scale traffic research works,

we show in this chapter that WLAN traffic is influenced by the channel cor-

relation structure at time scales that are coincident with Doppler shift. This

result sheds light on physical modeling of wireless traffic at sub-second scales.

On the other hand, our work also shows that it is possible to provide or im-

prove site-specific channel estimation from observed traffic variations. It is

well-known that channel state information, if available, can be intelligently

exploited to improve system performance [7, 38]. By utilizing actual traffic to

estimate channel parameters, not only could we reduce the overhead involved

in some algorithms, but also yield better site-specific channel estimation.

We would like to point out that our objective is not to provide new
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channel models or traffic models. The initial approach in this research may

be somewhat similar to that in [37] which used a traffic trace analysis algo-

rithm to construct link layer Markov models for GSM systems. However, our

study is primarily focusing on channel and traffic interactions instead of a new

link layer channel model. Specifically, we are interested in understanding and

modeling both channel and network traffic over a range of coinciding time

scales over which they interact with each other. Although modeling the traffic

correlation structure or predicting channel conditions is difficult in itself, we

claim that traffic-assisted channel prediction or channel-assisted traffic estima-

tion are viable approaches to control and manage wireless networking systems.

This has never been done to date, but clearly if end uses can reveal channel

condition by relating received traffic flows to clearly identified environmental

changes, e.g., Doppler by movements, it becomes possible to adapt and control

MAC and PHY on the fly.

This chapter is organized as follows. Section 4.2 explains the wide-band

channel experienced by 802.11b systems and its correlation structure due to

Doppler shifts. Section 4.3 establishes the connection between the measured

packet traffic and channel fluctuations due to Doppler effects. A systematic

cross-layer approach is presented in section 4.4 examining the interactions of

traffic and channel. Section 4.4 also proposes future research directions. We

conclude this chapter in section 4.5.

68



4.2 Correlation Structure of Wideband Chan-

nel

Bello [6] established the theoritical foundations for modeling general wide-

band channels as experienced by IEEE 802.11 digital symbols. In [6], random

time-variant linear systems are proposed to model radio transmission channels

because of their influence on the communication signals. Several canonical

channel models as represented by the Wide-Sense Stationary Uncorrelated

Scattering Channel (WSSUC) are also proposed and widely used thereafter.

According to linear system theory, each linear system can be described

by its impulse response function h(t). In practice, the observed channel im-

pulse function h(t) often is the result of superposition of waveforms. Most

likely, h(t) is the result of the combination of very slow fluctuations and more

rapid fluctuations.

When digital signals are transmitted over radio channels, the channel

may show time or frequency selectivity [50] when the duration and bandwidths

of the superposition waveforms are greater than these of the signals. In this

case, the combined results of the rapid changing waveforms can be modeled

as WSSUC.

The slow waveforms, however, typical can not be modeled by wide-sense

stationary processes. However, as Bello asserts in [6], most slow waveforms

do show quasi-stationary behavior, which makes mathematical modeling of

radio channels from measurements feasible. Therefore, a complete general
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description of many wide-band radio channels can be achieved by identifying

the correlation structure of the channel at its stationary and quasi-stationary

time scales, respectively. The final impact of the channel to transmitted signal

is the combination both.

There are two major factors that affect channel properties [50]: multi-

path propagation and Doppler shift. In typical transmission environments, the

rapid changing waveforms are the result of the constructive and destructive

combination of multipath components. On the other hand, Doppler shifts gen-

erally cause slow fluctuations, which attribute to the slow waveforms. Hence,

it is feasible to measure the correlation structures of multipath propagation

and Doppler shifts separately while still providing a complete description of

radio channels.

It is worth noting that most channel modeling efforts model the rapid

fluctuating stationary channel. The slow fluctuations caused by Doppler shifts

are almost forgotten. While it is understandable that most channel models are

used by modem designers to whom the time scales of rapid channel fluctua-

tions are of interests, Doppler shifts can actually impact packet transmission

directly because of the coincide time scales in high-speed packet networks, e.g.

WLANs. Therefore, it is time to model the slow fluctuations structure of radio

channels.
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Figure 4.1: Measurement locations on the fourth floor of ENS building with
IEEE 802.11b at channel 1

4.3 Effects of Doppler Shifts on Packet Traffic

To demonstrate the effect of Doppler shifts on channel variations at the in-

terested sub-second time scales, comparison measurements were conducted in

ENS building under controlled conditions. The objective of this measurement

campaign is twofold. First, it is highly desirable to identify the conditions

under which the sub-second channel correlation structures may affect upper

layers. One the other hand, the characteristics of the channel correlation struc-

ture, if been identified, are key elements for intelligently system optimizations.

As shown in [42], one key metric to quantify IEEE 802.11b channel quality is

the average signal-to-noise ratio (SNR). Therefore, SNR and Doppler effects

were the two selected metrics to be controlled in the measurements.

4.3.1 Description of the Measurement Environment

The partial floor plan of ENS building’s 4th floor is shown in Fig. 4.1. The
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transceivers, as indicated by the letters “A” through “E”, were positioned

approximately 1 meter high. Both the transmitters and the receivers (T-R)

were stationary during measurements. However, Doppler shifts were created

during one measurement by moving a metal board (1.5 m x 2 m x 1 cm)

between point “D” and “E” with fixed speed of approximately 1.5 m/s.

All WLAN measurements were made with ORiNOCO 802.11b cards

working on channel 1 with modulation rate at 11 Mbps. Besides the trans-

mitter and the receiver, a third computer was setup to passively monitor the

radio environment (from channel 1 to channel 5) throughout the experiment-

ing periods. Because the surveillance computer reported no interfering radio

activities in the interested bands, it is reasonable to assume that the only dif-

ference among the measurements was the injected Doppler variations and T-R

separations.

A constant UDP packet flow was generated for 20 minutes during each

measurement. Each UDP packet contains 12 bytes payload data. Besides

WLAN measurements, an identical measurement was conduct over a 10 Mbps

Ethernet link as well. The analysis would based on successfully received UDP

packet series. Table 4.1 summarizes the measurement setups. It is worth

noting that the SNR value at the Static and Motion case is chosen such that

it falls into the range of “critical” SNR values [42].

The traffic traces were discretized to estimated wavelet spectrum. Be-

cause all the packets are of the same size, only the number of packets were

counted without loss of generality. The UDP packet counts were aggregated
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Table 4.1: Summary of measurement environment in ENS 4th floor

Label Tx Rx Dist. (m) Avg. SNR (dB) Doppler

Back-to-Back A B 0 70 No

5-Meter A C 5 45 No

15-Meter A D 15 30 No

Static A E 25 20 No

Motion A E 25 20 Yes

Ethernet N/A N/A N/A N/A N/A

over 10 ms period before estimating wavelet spectrum. As discussed in 4.3,

sampling at 10 ms is adequate because it is at least twice as fast as the expected

channel variation caused by Doppler.

4.3.2 The Impact of SNR to WLAN Traffic Structure

Following the notation used in network traffic modeling community, Fig. 4.2

shows the estimated energy of the discretized traffic traces over larger time

scales. From the figure, the relationship between the wavelet energy [3] and

time scales is clearly linear at this log-log plot over large time scales (over 1

second). Moreover, the slopes of log-log plot are approximately equal at large

time scales. This observation demonstrates that these traffic traces present

similar scaling behavior over larger scales irrespective of channel variations at

smaller time scales, which is a direct result of the same traffic source used

across all measurements.

73



-35
-30
-25
-20
-15
-10
-5
 0
 5

 10

1010.1

E
ne

rg
y 

pl
ot

, l
og

10
(p

ow
er

)

Time, second

Motion
Static

15-Meters
5-Meter

Back-to-Back
Ethernet

Figure 4.2: Energy plot of traffic time-series captured in controlled environ-
ments over large time scales

Although the slopes in log-log plots are equal at large time scales, the

absolute values of the “energy” are different under different settings. For

example, it is evident that the energy plot of the Ethernet traffic trace is

smaller than that of the other traffic traces at almost every time scales. Jiang

and Dovrolis [33] propose the idea of using energy values in energy plots to

quantify relative burstiness of the studied traffic to Poisson traffic. Using the

same argument, it is clear that channel changes the “relative burstiness” of

the same traffic source although the scaling behavior, i.e., the slope in Fig.

4.2, remains the same.

Fig. 4.2 also reveals that the key first-order statistics of propagation

channels, i.e., SNR, does not change the scaling effect of the network traffic at

large scale, i.e., the slopes of the curves in Fig. 4.2 at large scales are similar

. However, SNR does change the “relative burstiness” of the WLAN traffic.

This observation is evident from the “Motion” and “Static” curves in Fig. 4.2.
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Figure 4.3: Power spectrum density (energy plot) of traffic time-series captured
in controlled environments at sub-second time scales

Further discussions continue at next section.

4.3.3 WLAN Traffic Characteristics at Small Scales

At small time scales, e.g., around and below the knee-point at 0.1 seconds,

however, in addition to the differences of energy levels, the slopes are no longer

constant and therefore present more complex characteristics. Fig. 4.3 shows

the power spectrum density (PSD) of the traffic traces at the sub-second time

scales. Because the energy plot commonly used in network traffic research

community, e.g. Fig. 4.2, is directly related to PSD as illustrated by (3.25)

and (3.26), no information is lost during this conversion process.

Because the PSD of a random process represents the second-order cor-

relation structure of the process, the difference between energy levels among

these traffic traces actually quantifies the correlation structure of the channel

at the corresponding time scales. For example, in the frequency range of 10 Hz
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to 15 Hz, Fig 4.3 demonstrates that the Motion trace has higher correlation

degree than the Static trace. In other words, the channel correlation structure

in this time scales has changed. Because the only difference between these two

traffic measurements is the injected Doppler shifts, it is evident that the chan-

nel variations caused by the movement is concentrated within this frequency

range.

4.4 A Systematic View of Traffic, the MAC,

and the Channel

4.4.1 Interactions Between Traffic Study and Wireless

Channel

In traffic study, physical modeling of traffic, i.e., relating traffic properties to

physics that generates actual traffic, is the key to comprehend and understand

the characteristics of traffic[48]. Physical modeling enables theoritical expla-

nations of observed traffic in concrete physical causes, and provides insights

into the dynamic nature of traffic.

It has been shown empirically [36] that the complex scaling characteris-

tics of network traffic are usually associated with the round-trip time. On the

other hand, traffic variations and channel fluctuations are closed correlated in

WLAN environments as well. Hence, proper selection of relevant time scales

is important in analyzing traffic characteristics.
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Our results show that the selection of time scales is a direct result

of the channel fluctuations and the traffic variations. Both of them present

strong physical modeling implications. Therefore, it is clearly physically that

the traffic and channel time scales can be divided into three regimes: rapid

fluctuations, slow fluctuations, and scales above TCP round-trip times. For

MAC layer simulation and design, the sub-second time scales discussed in this

dissertation work is the key.

4.4.2 Interactions Between the Channel and the IEEE

802.11 MAC

To make the channel more accessible to upper layers, researchers has been

working on packet level channel models for several decades [25, 24]. As ex-

plained in Section 4.2, most existing channel models are not suitable for mod-

eling the channel characteristics due to Doppler shifts. Therefore, they should

not be applied directly to packet data traffic.

Regardless, there are still attempts to convert the existing channel mod-

els to link-layer models. However, even converting from existing propagation

models to link layer models is not a straightforward process. Most conver-

sions are ad hoc and error-prone [56]. On the other hand, although complex

higher-order Markovian models, which are typical for the converted models,

might be able to model channel measurements closely, the extensive usage of

the two-state Clarke-Elliot Markov channel model shows the importance of a
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simpler model. It will be interest to leverage on the results obtained from this

dissertation work and construct a packet level channel model from physical

modeling.

4.4.3 Examples

We present two examples of the possible applications of our results and the

future link-layer channel models in this section.

Performance Anomaly of 802.11

Martin Heusse etc. al. [28] analyzes the performance losses in IEEE 802.11b

environment caused by a phenomenon they named as Performance Anomaly.

Performance anomaly is caused by the adaptive switch of modulation scheme

from one modulation mode to another according to the changing signal strength.

For a single host in a 802.11b cell, suppose the propagation time is

negligible. the overall transmission time is:

T = ttr + tov (4.1)

where ttr is the packet transmission time and is dictated by the frame length,

and tov is the overhead associated with the packet:

tov = DIFS + tpr + SIFS + tpr + tACK (4.2)

tpr is the transmission time of Physical Layer Convergence Protocol (PLCP)

preamble. Clearly the overall transmission time T depends on the bit rate
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used by the node for the transmission because both ttr and tov change by the

modulation rate.

Suppose there are N competing nodes. Obviously collision and expo-

nential back-off mechanism will decrease the rate from one host to the access

point. Let use tcont(N) to model the overhead. Now the overall transmission

time for one packet is:

T = ttr + tov + tcont(N) (4.3)

tcont(N) is related to the collision probability Pc(N). The performance degra-

dation due to competition it is obvious.

It is well known that the IEEE 802.11 MAC is designed to ensure long-

term fairness for nodes to access the channel. Therefore, each node has ap-

proximately similar chance to access the channel. Hence overall all hosts must

achieve the same throughput.

On the other hand, wireless nodes typically experience different signal

levels due to T-R distance, fading, or Doppler shifts. Hence some nodes may

operate at speeds lower then the others. Considering the fairness design of

MAC, slower node essentially wastes spectrum resources since faster nodes

need to wait for channel access. Therefore, no wireless node can achieve long-

term throughput higher then the worse node. Therefore, The MAC protocol

and channel fluctuations entangle together causing this unfortunate result.

Predicting channel fluctuations at the time scales of packet transmission and

channel accessing may help improve MAC protocol to avoid this performance
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anomaly.

Measurement of MAC Metrics

It is relatively simple to design a plan to measure, simulate and analyze WLAN

traffic and channel on a peer-to-peer link with unidirectional traffic. However,

in a networked environment with bi-directional traffic, the situation becomes

more involved. For example, it is no longer obvious regarding the throughput

at the network level due to impacts from the MAC and higher layers with

mostly highly interactive applications.

One possible approach to attack this system level issue is conduct sys-

tem level optimization by combining the measured packet-lee channel results

at the physical layer together with measured MAC layer metrics. For example,

it is very likely that the packet collision probability Pc(N) can be measured in

real-time, which could yield very interesting scheduling results.

Each wireless host is an autonomous system. Traditional wisdom is

to measure achievable performance one wireless node can attain and con-

duct optimization based on those measurement. However, wireless environ-

ments changes because of channel changes and mobility. It is necessary that

wireless nodes to measure surrounding environment and adjust operation au-

tonomously.

Throughput performance of IEEE 802.11 is sensitive to the number of

competing terminals. An accurate estimation of the number of competing

terminals n could be used by the host to estimate a reasonable throughput
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it would expect. This throughput estimation could be further used by higher

level applications for QoS purposes. On the other hand, this number could be

used to optimize the MAC protocol performance. For example, it has been

shown that 802.11 system performance could be greatly improved if associating

the back-off mechanism adaptively to the number of competing terminals, as

proposed by IEEE 802.11e working group. The estimated value of n could

also be used in existing 802.11 networks for optimizing RTS threshold, load

balance, etc.

Bianchi [9] uses a different approach: estimating the number of com-

peting terminals at each host based on the collision information it observes.

Suppose a wireless network has n contending terminals. Each terminal op-

erates under saturated conditions. By convention, we will use W and m

representing the exponential back-off mechanism, where W = CWmin and

CWmax = 2mCWmin.

Let p be the conditional collision probability that a packet collides. Let

τ be the probability that a terminal decides to transmit in a randomly selected

time slot. Then [8]:

τ =
2(1− 2p)

(1− 2−)(W + 1) + pW (1− (2p)m)
(4.4)

p = 1− (1− τ)n−1 (4.5)

Simplifying the above two equation yields:

n = f(p) = 1 +
log(1− p)

log
(
1− 2(1−2p)

(1−2p)(W+1)+pW (1−(2p)m)

) (4.6)
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From this formula, the value of contending terminals n can be calcu-

lated by estimating conditional collision probability p. This environmental

information could be passed to other layers for reference or performance opti-

mization.

4.5 Conclusion

In this chapter, we show that the correlation structure of IEEE 802.11b chan-

nel is influenced by Doppler shifts, especially when the SNR level is at the

critical level. This result is demonstrated by exercising a 802.11b peer-to-peer

link with constant packet rate traffic. The time scales of such influence in

typical 802.11b networks are located at the sub-second regime that is above

packet transmission time while below the effective region of LRD phenomenon.

This result also demonstrates that with adequate site-specific knowledge, i.e.,

building layout, T-R separation, and typical moving speed in the environment,

it is possible to better model channel behavior and time scale correlations for

IEEE 802.11 networks.
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Chapter 5

Measurement Tools and

Procedures

5.1 Introduction

Measurements are the key to achieve the proposed research goals in this disser-

tation work. At small time scales, the objective of our measurement campaigns

include:

• Characterizing aggregated WLAN traffic properties

• Modeling WLAN channel from packet data input

• Capturing and analyzing/optimizing WLAN MAC mechanism

And at large time scales, the measurements should enable:

• Network usage analysis
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• Backbone network usage provisioning

• Access point optimization

In order to fulfill the above requirements for WLAN traffic study, a

suite of measurement methodology is established, including choices of hard-

ware and software tools, and procedures to conduct measurements in different

environments. This chapter presents the measurement framework in details.

The common practices and tools used in network traffic research is introduced

section 5.2. Section 5.3 presents a literature survey of WLAN traffic measure-

ment study with focuses on measurement platforms. Section 5.4 documents

some of the measurement procedures used this dissertation work.

5.2 Common Practices and Tools Used in LAN/WAN

Environments

Measurement has been one of the most important approaches for monitoring,

analyzing and eventually improving performance of data networks. There have

been tremendous research activities in this area. However, WLAN traffic is

still largely unknown. Fortunately, because TCP/IP protocol suites dominates

modern networks, and because most of the deployed WLANs support TCP/IP

from the very beginning of design, a large amount of tools and procedures from

the similar measurements can be applied directly in the proposed WLAN traffic

research.

84



This section introduces the procedures and tools for packet (or IP)

based, networks. Because data collecting involves privacy issues, techniques

such as hashing 1 for protecting this information has been available. In this

research, these techniques will be enforced. No sensitive information that

could be used to trace to individual user network usage, including visited IP

addresses, used applications, etc., will be disclose from this research. However,

certain information as defined in the contract will be confidentially provided

to the sponsor.

It is worth-noting that there emerge some excellent tools from the open-

source software community. Actually, most of them relate to research projects

from universities. Open source software, which shows the most fundamen-

tal concepts and valuable implementation details from the publicly available

source codes, plays a wonderful role for research projects like this one.

5.2.1 Common Practices

Data networks, as diverse as it could possibly be, are almost impossible to be

fully monitored and measured by a single technique or a single software tool.

Instead, measurements are taken at every layer for serving specific monitoring

or performance benchmarking purposes. In this report, considering the status

of the currently deployed WLANs, these measurement approaches are divided

into two classes: microscope and macroscopic measurements. Both approaches

could find their positions in this research work.

1Mapping one identify, e.g., each IP address, into a “random” number
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Microscopic Measurement and Analysis

By microscopic, we emphasis that the small scale properties of traffic, irre-

spective of the layers at where the measurement is been taken, is of primary

interests. For example, in WLAN networks, each MAC packet is scheduled

to transmit based on long term fairness criteria. The enforcing mechanism is

carrier sense multiple access and collision avoidance (CSMA/CD). However,

a WLAN with fair resource allocation is not necessarily optimum if network

level throughput is concerned. To improve the current scheme requires un-

derstanding the traffic properties, for example, how one packet experiences

the radio channel, how two packets from different origins compete or interfere

with each other. Understandings similar to this example have to be learned

from microscopic measurements and further be verified by microscopic mea-

surements. Device manufacturers and scheduling algorithm designers tend to

take this measurement approach.

Macroscopic Measurement and Analysis

Very detailed traffic traces have to be captured in microscopic measurements.

One the other hand, there is another class of users, who are providing the

network service and would like to monitor the networks and evaluate perfor-

mance over a longer period of time. Macroscopic measurements are conducted

for these purposes. Unlike microscopic measurements which often take places

at one single point, macroscopic measurements general span over a fairly large
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amount of points, most of which are networking devices.

The most commonly used protocol for macroscopic measurements is

simple network management protocol (SNMP). By simple it means the pro-

tocol itself is simple, which could roughly summarized by “reading statistics

from one device” or “setting parameters for one device”. To the contrary,

the definitions of the values that could be get set are voluminous, and often

different from devices to devices, vendors to vendors.

5.2.2 Traffic Capturing in LAN Environments

Different data link medium provides different data packaging. Theoretically,

traffic data capturing and analyzing techniques should be applicable as long

as the information been transmitted is packet data. For example, An ATM

link should share the same traffic capturing and analyzing framework/tool set

from that of a Ethernet LAN. However, implementation details often impose

various practical difficulties.

In this research, fortunately, traffic is going to be captured in Ethernet

or Ethernet-like LAN environments with no exceptions. Partially it is the

result of the widely usage of Ethernet as a common inter-connecting technique.

Also, it attributes to the designers of WLAN, who intentionally mimic the

design of Ethernet.

Hardware requirements are relatively simple. A commonly seen (portable)

personal computer with Ethernet and/or WLAN interfaces would be adequate.

However, during the capturing process, even only the Ethernet packet header
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(the first 68 bytes of each packet in our measurements) is been captured, the

amount of data to be stored is still an issue. Especially during peak time,

hard drive access time will be critical to keep track of network transmission.

Thus, faster hard drive and larger memory are more important than faster

CPU clock frequency for packet capturing purpose.

All the microscopic measurement tools used in this research project are

non-intrusive in order to avoid artifacts. Sometimes, a unidirectional Ethernet

cable is used to physically guarantee passive measurements.

Tcpdump

Tcpdump is used throughout our measurement campaign as the primary packet

capturing utility. It is a classical traffic capturing and analyzing tool designed

and actively maintained by UC-Berkeley. It primarily works on Unix platform

as a light-weighted command-line utility and is perfect for traffic capturing in

this research.

In most of our measurements, the first 68 bytes of each Ethernet packet

is captured. This choice is made by taking privacy protection, information

needed for this research and laptop PC hardware capacity into account. The

first 68 bytes contain information up to layers based on TCP/UDP, which is

adequate for this project.

Tcpdump also stores a time-stamp for each captured packet. The reso-

lution of the time-stamp depends on operation systems. In our measurement

setup, it is 10−6 second.
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5.2.3 Tools for Traffic Data Interpretation and Analysis

Because microscopic network packet capturing is a network / hard drive in-

tensive task, real-time processing is not applicable for most commonly seen

personal computers. Thus, our approach is to capture raw packets and save

them for off-line processing.

5.3 WLAN Packet Traffic Measurement in the

Literature

This section reviews several papers in the area of wireless data traffic measure-

ments, in particular, WLAN traffic. The primary objective of this literature

survey is to study the pros and cons of other WLAN measurement setups

5.3.1 TCP and UDP Performance over a Wireless LAN

The paper[65] focuses on single hop interference-free performance measure-

ment for WLAN environment. Their experiments compare the performance

difference between bidirectional data traffic (TCP) and unidirectional traffic

(UDP).

One computer installed with Linux operation system with kernel 2.0.32

consists of the basic measurement platform. To eliminate interfering factors

during traffic measurements, all the irrelevant tasks are all terminated. Several

slightly modified standard tools and wireless LAN card driver are adopted in
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the measurement. The tools includes:

• Modified wireless LAN driver (with packet statistics and percentage of

signal and noise levels recording capability).

• Modified ttcp for sending and receiving TCP and UDP packets.

• netstat for monitoring measurement computers activities.

• tcpdump for logging of packet sending/receiving activities.

The major weakness of the measurement environment includes:

• Unable to detect accurate value of physical layer signal strength. This

is a common problem in WLAN measurement mainly due to the lack of

openness and support from WLAN model manufacturers.

• MAC layer monitoring functionality is very weak. For example, there is

no ability to directly detect MAC layer collisions.

Their basic measurement procedures are as follows:

1. Record initial states of wireless link interface with netstat.

2. Start tcpdump to monitor wireless link transmissions.

3. Use ttcp to send 10,000 packets with size 500, 1000 and 1500 bytes re-

spectively.
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In this measure campaign, physical signal strength is collected only at

the beginning of measurements. However, because measurement is conducted

under high signal strength environment. it is not a serious issue for the purpose

of this paper.

There are several interesting observations from this paper:

• Packet loss increases with increased packet sizes

• UDP throughput increases with increased packet size while TCP through-

put decreases, which is mainly due to fact that the relative high-rate

packet loss is introduced into the feedback loop of TCP protocol.

• UDP testing software can easily overflow network implementation soft-

ware, and introduce measurement errors. Therefore, some form of empir-

ical flow control is necessary to ensure the correctness of WLAN traffic

measurement results. Also, matching the sender and receiver by their

processing power helps reducing over-flows.

The measurement results [65] show that unidirectional traffic is different

from bidirectional traffic. Also, it is evident that physical layer, MAC layer

and higher layers change WLAN characteristics together. Thus, this paper

[65] quests for further studies to understand the impact of each mechanism on

the measured traffic.

91



5.3.2 Measure Performance of the IEEE 802.11 LAN

Bing [10] conducts measurements of IEEE 802.11 WLAN traffic at the MAC

layer, and examines the effect of delay caused by different packet sizes.

The measurement setup in [10] consists of one mobile and one AP.

Both nodes are intentionally positioned close to each other to ensure strong

signal levels. This setup helps to identify the impact of WLAN equipment

in measurements, i.e., buffering at the access point and delay. An Ethernet

connection is used in parallel between the AP and the mobile to benchmark

the performance. One separate network analyzers are used for MAC packet

profiling to quantify those two factors.

Bing’s measurement results show that buffering effect appears when

traffic is saturated. Consequently, packet delay is almost a constant mainly due

to the larger queueing delay than that of the channel’s. This paper reminds

the importance of eliminating queueing effect in order to measure channel

characteristics from packet traffic.

5.3.3 Measured Performance of 802.11a at 5 GHz

Chen [13] conducted IEEE 802.11a traffic measurements at Atheros’s Sunny-

vale office in California. The measurement environment is a typical office of

area 265 foot by 115 foot. They use two Atheros 802.11a PC reference design

cards for the measurement.

At each position, the measurement is conducted by collecting 1000 uni-
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directional packets. Broadcast packets are sent because they require no ac-

knowledge packets from the peers. The packet error rate is calculated for each

rate and the optimal rate is selected as the data link rate and throughput is

calculated accordingly.

Chen [13] shows that data link transmission rate changes due to mod-

ulation scheme switching is directly correlated to the T-R separation between

the transmitter and the receiver. What is more, both 802.11a and 802.11b

share the same rule: the longer the distance, the lower the data link would

be. For 802.11a, the switching points are roughly at 24 foot, 36 foot, 80 foot,

85 foot, 130 foot and 170 foot. The data link rates decrease from 54 Mbps to

6 Mbps. For 802.11b, the distances are roughly located at 110 foot and 180

foot.

The measurement results in [13] suggest that there exist a possibility of

modeling 802.11a and 802.11b throughput within the same framework despite

different modulation techniques in the two standards.

5.4 Measurement Methodology

This dissertation work involves several measurement campaigns as presented

in Chapter 2, 3, and 4. Each campaign requires different measurement plans

to fulfill the requirements. However, there are several general guidelines that

are applicable across these campaigns. The establishment of the guidelines is

a process of learning from measurement experiments and from the literature.
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This section describe these guidelines.

• Radio environment survey: several measurement campaigns require ac-

tive measurements, i.e., network traffic has to be generated in a con-

trolled fashion to excise the network. Because of the popularity of

WLANs, it is very likely that there are interferences around the area.

Moreover, sometime it is difficult to identify and gain access to the in-

terfering sources. Therefore, site survey becomes extremely important

to ensure the measurement results to be valid.

During our measurement campaigns, the goal of the site survey of to

identify the frequency range of the interfering sources in order to avoid

these bands. To ensure measurement quality across the measurement

period, the site survey should be conduct throughout the measurement

period.

In WLAN measurements, typically a separate computer is used for the

site survey purpose. However, some monitoring applications, including

the popular NetStumbler, send probing packets in a frequency-hopping

fashion to actively search for nearby wireless devices. Obviously, the

probing packets generate interferences and disturb the control traffic.

Therefore, it is important to choose tools that do not cause the site

survey computer to generate interference. Kismet is one of such passive

WLAN monitors and was used successfully in our measurement.

• Configurations of sniffer computer: network traffic capturing is a del-
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icate process both for the hardware and the software. High quality

traffic traces demands a properly configured hardware and software sys-

tem. It has been documented extensively in the literature about the

design and implementation of sniffers. In the earlier days [40], special

hardware devices were developed in order to ensure adequate speed to

capture Ethernet traffic. However, since the progress of both the hard-

ware and software on personal computer, traffic capturing on Ethernet

or Ethernet-like networks has become simpler. However, there are still

areas requiring attentions.

On the hardware site, the storage device needs to be fast with enough

storage space. In our measurement, high-speed hard disks are used when-

ever possible. Also, it is advised to use computers with similar configu-

rations, as pointed out in [65, 10].

Tcpdump is used exclusively in this research to capture network traffic.

However, our experience proves that tcpdump can be very useful in pre-

processing the captured traffic. In fact, it is more reliable and robust to

use tcpdump than other customized tools for the pre-processing.

We also used tools donated by Wireless Valley Communications Inc.

measuring WLAN throughput with unidirectional and bidirectional traf-

fic during our measurement campaigns.

• Networking equipment: because of the fast-paced development of WLAN

technology, WLAN modems experience fast changes as well. Although
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the progressive changes consistently improve the transmission capacity of

WLAN in general, it is not trivial to conduct WLAN traffic measurement

mostly due to undisclosed hardware and firmware information, as well as

lingering development of device drivers. At the time we conducted our

measurements, IEEE 802.11b was chosen as the primary measurement

platform because of its relative mature status and wide support. Also,

the choice of vendors, i.e., Cisco and ORiNOCO, also was decided mostly

by the openness of their 802.11b products.

IEEE 802.11 cards and access points are also factors need to take into

account. To avoid discrepancies, standard PCMCIA WLAN modem

cards are used in all measurements. It is also helpful in selecting WLAN

cards and access points, and also potentially possibilities of changing

physical setups such a antenna.

The above guidelines are adopted across the measurement campaigns to

devise measurement plans that are suitable for different tasks. Certainly there

are differences in each plan. However, the above methodology has proved to

be very effective and constructive in guiding through the plans that presented

in the previous chapters.
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Chapter 6

Conclusions

6.1 Summary

Comprehensive measurement results of IEEE 802.11b WLAN traffic statistics

and channel correlation structures are presented in this dissertation. This dis-

sertation work, as mainly an experimental work, strives to present new traffic

statistics and develop new methods for identifying channel characteristics. We

believe that the results obtained in this dissertation work are going to be funda-

mental building blocks for comprehensive WLAN simulation and performance

evaluation environments.

Chapter 2 presents two empirical models to predict IEEE 802.11B appli-

cation layer throughput from measured SNR values that quantifies the large-

scale fading characteristics of radio channels. Moreover, we show the traffic

statistics measured at three commercial hotspots. With the knowhow of the
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traffic statistics and the throughput prediction models, it is possible to better

design and deploy public WLAN service infrastructure from the physical layer

up to the application layer.

Inspired by the traffic statistics from Chapter 2 and some recent results

from the network traffic study literature [1], we further discuss the WLAN

traffic scaling properties in Chapter 3 with emphasis on small-scale burstiness

analysis. Our result indicates that WLAN traffic exhibits rapid fluctuations in

over the frequency range of Doppler shifts typically seen for a 2.4 GHz carrier

communication system.

The results in Chapter 2 and 3 prompt the study of characteristics of

WLAN channels in the time scales that are observable by packet data while

statistically intact from influences by the higher layers. In Chapter 4, we

extend the traffic analysis further to the WLAN channel, in which the chan-

nel is exercised by controlled packet traffic. Motivated by channel sounder

techniques [50], we argue that it is a plausible approach to estimate channel

conditions given intelligent selection of time scales. From comparison obtained

from controlled measurements, we observe clear “burstiness” in the same fre-

quency range as seen in Chapter 3, which according to the measurement design

clearly is due to the Doppler shifts injected during the measurement.

In Chapter 5, the measurement methodology adopted throughout the

dissertation work is summarized. In the foreseeable future, empirical measure-

ment will continue be an important part of performance evaluation and design

validation tool in wireless environments. Therefore, we hope this chapter to
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serve as a general guideline in designing WLAN and other packet network

measurement.

6.2 Future work

In this dissertation work, we conducted a series of measurements and analy-

sis to model WLAN performance from a cross-layer point of view. Because

of the complexity of radio propagations and the intricate interactions among

layered network protocols, however, this dissertation work is a beginning of

the cross-layer approach to study WLAN. Future work should further validate

the measure-based cross-layer framework and investigate WLAN performance

as deployment and standard work evolve. In particular, improved models with

interference considerations, better comprehending of the interaction between

link layer traffic and channel variations in networked environment, and intel-

ligent channel estimations adapting to site-specific information are perhaps

among the most interesting topics to be studied within the methodology es-

tablished in this dissertation work.

Radio interference has become one of the most limiting factors. Without

a paradigm shift, e.g., changes of frequency allocation policies, it is apparent

that issues associated with interference are inevitable and only become worse

as denser deployments of a diverse range of wireless networks appear.

During the measurement campaign, careful site surveys were conducted

to ensure interference-free environments. Therefore, the proposed throughput
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prediction models in Chapter 2 do not consider the effect of interference. We

have not seen in the literature discussions of the influence of interference on

achievable throughput. Therefore, it would be interesting to take interference

into account for more general throughput models.

During the measurement campaign of validating the effect of Doppler

shifts, interference also was monitored and avoided. Therefore, although the

measurement results validated the existence of Doppler “fluctuations” at the

link layer, it could not show how interference would influence the link layer

traffic flows, let alone the combined effect of Doppler and interference.

There are other factors that influence the link layer besides interference.

Among them, the MAC protocol is probably the most important mechanism.

Unfortunately, the IEEE 802.11 MAC is very difficult to model. On the other

hand, our emphasis in this dissertation work is on the physical layer. Therefore,

peer-to-peer links were adopted to validate and quantify the effect of Doppler

at the link layer. It is going to be a very meaningful while challenging task

to improve upon the existing results to develop more comprehensive link layer

models that consider radio propagation, the PHY, and the MAC in networked

environments.

On key contribution of this dissertation work is the observation and

validation of the effect of Doppler shifts at the link layer. It would be an

interesting follow-up work to use site-specific knowledge to estimate Doppler

shifts. During radio propagations, the Doppler shifts depend heavily on the

angles-of-arrival (AOA) [50], which is entirely site-specific knowledge. One ap-
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proach to streamline WLAN deployment is to integrate site-specific knowledge

into the estimation of the link layer and to the throughput. Further study of

the accuracy of this approach should be performed.

Finally, it is worth nothing that the methodology and basic cross-layer

principles are not limited to WLAN systems. For example, one very inter-

esting topic is how Doppler affects other data networks with larger coverage

area. Examples of such wireless data networks include the commercialized 3G

cellular networks and the emerging IEEE 802.16 networks. Mobility is much

more prevalent in such networks and environment settings tend to be more

complex. Therefore, in principle, the range of Doppler shifts should enlarge

and the strength of Doppler may become stronger. The methods presented in

this dissertation can provide a good starting point in verifying and therefore

utilizing such phenomenon.
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