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The development of system identification and fault diagnosis theory is

of great practical significance. Systems are concerned with a broad spectrum

of human-made machinery, including industrial production facilities (power

plants, chemical plants, oil refinery, semiconductor fabrication plants, steel

mills, paper mills, etc.), transportation vehicles (ships, airplanes, automobiles)

and household appliances (heating/air conditioning equipment, refrigerators,

washing machines, etc.). This dissertation is focused on subspace identification

algorithms and optimal structured residuals approach for processes modeling

and diagnosis.

Main contributions of this work include:

1. Novel subspace identification methods (SIMs) with enforced causal mod-

els are implemented. It has been shown that proposed algorithm has
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lower estimation variance compared to traditional SIMs. Meanwhile the

rigorous analysis shows that the proposed algorithms are consistent un-

der certain assumptions.

2. The feasibility of closed-loop subspace identification is investigated. Novel

closed-loop subspace identification methods with innovation estimation

are proposed. The new algorithms are shown to be consistent under

closed-loop conditions, while the traditional SIMs fail to provide consis-

tent estimates.

3. A new optimal structured residuals (OSR) approach for unidirectional

fault diagnosis is proposed. The necessary and sufficient conditions for

unidirectional fault isolability with OSR approach are introduced.

4. The OSR for unidirectional fault diagnosis is extended to multidimen-

sional fault diagnosis. The sufficient condition for deterministic multidi-

mensional fault isolability is investigated.
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Chapter 1

Introduction and Dissertation Outline

The development of system identification and fault diagnosis theory is

of great practical significance. Systems are concerned with a broad spectrum

of human-made machinery, including industrial production facilities (power

plants, chemical plants, oil refinery, semiconductor fabrication plants, steel

mills, paper mills, etc.), transportation vehicles (ships, airplanes, automobiles)

and household appliances (heating/air conditioning equipment, refrigerators,

washing machines, etc.).

System identification deals with the problem of building systems mod-

els based on observed data from the system. Two landmark papers [3, 26] gave

birth to the Prediction Error Identification framework and the Subspace Iden-

tification framework, respectively. The advantage of prediction error methods

(PEMs) is that the convergence and asymptotic variance results are available

[43], which are important for ”identification for control” applications [25]. The

disadvantage of PEMs is that a complicated parametrization step is involved

for MIMO systems, which makes them difficult to apply in practice.

The motivation of circumventing the complicated parametrization of

PEMs, especially for the MIMO identification, leads to tremendous interest
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in subspace identification methods (SIMs). Most SIMs fall into the unifying

theorem proposed by Van Overschee and De Moor [64], among which are

canonical variate analysis (CVA) [37], N4SID [63], subspace fitting [30], and

MOESP [68]. Based on the unifying theorem, all these algorithms can be

interpreted as a singular value decomposition of a weighted matrix.

SIMs have many advantages as an alternative to the more traditional

prediction error method or maximum likelihood (ML) approach and they are

very good for delivering initial estimates to PEM. A few drawbacks have been

experienced with SIMs:

1. The estimation accuracy in general is not as good as the PEM in terms

of the variance of the estimates.

2. The application of SIMs to closed-loop data typically gives biased esti-

mates, even though the data satisfy identifiability conditions for tradi-

tional methods such as PEMs.

In this work, we are concerned with the reasons why subspace identifi-

cation approaches exhibit these drawbacks and propose new SIMs which use

fewer estimated parameters (i.e., more parsimonious).

On the other hand, fault diagnosis involves early detection and iso-

lation of faults, which is critical in avoiding product quality deterioration,

performance degradation, major damage to the equipment and hazard to hu-

man health or even loss of lives. The traditional approaches to fault detection
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and diagnosis involve limit checking of some key variables or the application

of redundant sensors (physical redundancy). Over the last two decades, fault

detection and diagnosis have gained increasing consideration world-wide. This

development was mainly stimulated by the trend of automation towards more

complexity and the growing demand for higher security of control systems.

Advanced methods can be divided into two categories as qualitative

model (knowledge model) based approach and quantitative model based ap-

proach. The objective of qualitative model based approach is to identify the

symptoms corresponding to the observations of the process that can be used

for a fault decision on the basis of the knowledge redundancy, such as neural

networks, expert systems and fuzzy logic. In the field of the quantitative

model based approach, a strong impetus comes from the side of modern con-

trol theory that has brought forth mathematical modeling, state estimation

and parameter identification that have been made feasible by the progress of

modern computer technology.

The model based approach can be related to chemical process engineer-

ing, where the traditional material and energy balance calculations evolved

into systematic data reconciliation and the detection of gross errors. The

work in this area is reviewed thoroughly by Crowe [13]. Another root can

be traced to aerospace related research, which leads to the fundamental for-

mulation of parity relation concepts [12, 47]. An important related activity is

due to Gertler and coworkers [20, 21], who try to diagnose faults by designing

structured residuals that are insensitive to a particular subset of faults. In par-
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allel, and partially overlapping with the above efforts, several researchers were

looking into the possibility of applying Kalman filters [33, 41] and diagnostic

observers [18, 19, 49] to fault detection and isolation problem. In the area of

fault detection and isolation by parameter estimation, substantial work has

been done by Isermann and colleagues [28]. An important related activity is

due to Basseville and coworkers, concerning the detection of small parametric

faults by the statistical analysis of residuals obtained over extended sets of

observations [4, 5].

Motivated by early work by Gertler [20] and Qin and Li [55], we propose

a new optimal structured residuals approach for improved fault diagnosis. To

maximize fault isolation ability, a matrix of optimal structured residuals are

designed. Each of them is insensitive to one subset of faults while being most

sensitive to one of remaining ones. The maximum of all structured residuals in

each row is then selected as the optimal one for fault isolation. Through this

approach, optimal structured residual directions with maximum fault isolation

ability are obtained.

The dissertation is organized as follows:

In Chapter 2, a novel subspace identification approach is proposed to

enforce the casuality of high order ARX models. The key idea is to avoid

the estimation of parameters that are known to be zero. This means that

a lower triangular structure of an estimated matrix must be enforced which

leads to somewhat more complicated calculations. The new algorithms, which

fall into the subspace fitting framework, are shown to be consistent under mild
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assumptions and applicable to a general state space model structure.

Chapter 3 investigates the reason why traditional SIMs can not handle

data under closed-loop condition. In the chapter, we show that the closed-

loop consistency with SIMs can be achieved through innovation estimation.

Based on this analysis, a new SIM with parsimonious formulation is proposed

to handle data collected under feedback.

In Chapter 4, the possibility of misidentification of faults with tradi-

tional structured residuals approaches is investigated. Based on this analysis

a new optimal structured residuals (OSR) design criterion for unidirectional

fault isolation is proposed. To maximize fault isolation ability, a matrix of

optimal structured directions are designed. Each of them is insensitive to one

particular fault while being most sensitive to one of the remaining ones.

Chapter 5 extends the optimal structured residuals (OSR) approach to

multidimensional fault cases. Faults occurred in dynamic systems can be con-

sidered as well using the extended state space model or the dynamic principal

component model.

Chapter 6 summarizes the present research results and provides future

research possibilities in these areas.
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Chapter 2

A Novel Subspace Identification Approach

with Enforced Causal Models

In this chapter, we are concerned with the reasons why subspace iden-

tification approaches exhibit large estimation variance and propose new SIMs

which use fewer estimated parameters (i.e., more parsimonious) for open loop

applications. First of all, we start with the analysis of existing subspace for-

mulation using the linear regression formulation [31, 34]. This means that

essentially several ARX models are estimated directly from data with differ-

ent prediction intervals. From this analysis we reveal that the typical SIM

algorithms use extra terms in the model that appear to be non-causal. These

terms, although conveniently included for performing subspace projections,

are the causes for inflated variance in the estimates and partially responsible

for the loss of closed-loop identifiability. Peternell et al. [51] observe this point

as well and use constrained least squares to improve the estimate.

The rest of the chapter is organized as follows. In Section 2.1, we

analyze the existing SIMs and point out the non-causal projection. Based on

this observation, novel SIM formulations with only causal terms are presented

in detail in Section 2.2. Numerical implementation of proposed algorithms is

6



introduced in Section 2.3. In Section 2.4, numerical simulations are given to

show the efficiency of the proposed algorithm. Section 3.5 summarizes the

chapter.

2.1 Analysis of subspace formulation

2.1.1 Problem formulation and assumptions

We assume that the system to be identified can be written in an inno-

vation form as

xk+1 = Axk + Buk + Kek (2.1a)

yk = Cxk + Duk + ek (2.1b)

where yk ∈ Rny , xk ∈ Rn, uk ∈ Rnu , and ek ∈ Rny are the system output, state,

input, and innovation, respectively. A, B, C and D are system matrices with

appropriate dimensions. K is the Kalman filter gain. To establish statistical

consistency of the SIM, we introduce following assumptions:

A1 : The eigenvalues of A−KC are strictly inside the unit circle.

A2 : The system is minimal in the sense that (A,C) is observable and

(A, [B, K]) is controllable.

A3 : The innovation sequence ek is a stationary, zero mean, white noise

process with ergodic second order moments

E(eie
T
j ) = Rδij

where δij is the Kronecker delta.
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A4 : The input uk and innovation sequence ej are uncorrelated for ∀k and

∀j, i.e., the system operates in open loop.

A5 : The input signal is quasi-stationary [45] and is persistently exciting of

order f+p, where f and p stand for future and past horizons, respectively,

to be defined later.

The identification problem is: given a set of input/output measure-

ments, estimate the system matrices (A,B,C,D), Kalman filter gain K up to

within a similarity transformation and the innovation covariance matrix R.

Based on the state space description in (2.1), an extended state space

model can be formulated as

Yf = ΓfXk + HfUf + GfEf (2.2a)

Yp = ΓpXk−p + HpUp + GpEp (2.2b)

where the subscripts f and p denote future and past horizons, respectively.

The extended observability matrix is

Γf =




C
CA
...

CAf−1


 (2.3)
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and Hf and Gf are Toeplitz matrices:

Hf =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D


 (2.4a)

Gf =




I 0 · · · 0
CK I · · · 0

...
...

. . .
...

CAf−2K CAf−3K · · · I


 (2.4b)

The input and output data are arranged in the following Hankel form:

Uf =




uk uk+1 · · · uk+N−1

uk+1 uk+2 · · · uk+N
...

...
. . .

...
uk+f−1 uk+f · · · uk+f+N−2


 (2.5a)

∆
=

[
uf (k) uf (k + 1) · · · uf (k + N − 1)

]
(2.5b)

Up =




uk−p uk−p+1 · · · uk−p+N−1

uk−p+1 uk−p+2 · · · uk−p+N
...

...
. . .

...
uk−1 uk · · · uk+N−2


 (2.5c)

∆
=

[
up(k − p) up(k − p + 1) · · · up(k − p + N − 1)

]
(2.5d)

Similar formulations are made for Yf , Yp, Ef , and Ep. The state sequences are

defined as:

Xk = [xk, xk+1, · · · , xk+N−1] (2.6a)

Xk−p = [xk−p, xk−p+1, · · · , xk−p+N−1] (2.6b)

Subspace identification consists of estimating the extended observability ma-

trix first and then the model parameters.
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2.1.2 Analysis of conventional SIMs

As the first step, subspace identification methods minimize the follow-
ing objective function [65],

[ L̂1 L̂2 L̂3 ] = arg min{∥∥Yf − L1Yp − L2Up − L3Uf

∥∥2

F
} (2.7)

= arg min{
N−1∑

j=0

∥∥∥∥∥∥
yf (k + j)− [

L1 L2 L3
]



yp(k − p + j)
up(k − p + j)

uf (k + j)




∥∥∥∥∥∥

2

}

where uf , up, yf , and yp are defined in (2.5b) and (2.5d) as columns of the

corresponding data matrices.

Denoting

L1 =




L1
11 L1

12 · · · L1
1p

L1
21 L1

22 · · · L1
2p

...
. . .

L1
f1 L1

f1 L1
fp




∆
=




L1
1

L1
2
...

L1
f


 (2.8a)

L2 =




L2
11 L2

12 · · · L2
1p

L2
21 L2

22 · · · L2
2p

...
. . .

L2
f1 L2

f1 L2
fp




∆
=




L2
1

L2
2
...

L2
f


 (2.8b)

L3 =




L3
11 L3

12 · · · L3
1f

L3
21 L3

22 · · · L3
2f

...
. . .

L3
f1 L3

f1 L3
ff




∆
=




L3
1

L3
2
...

L3
f


 (2.8c)

the above problem is equivalent to f separate sub-problems:
[

L̂1
i L̂2

i L̂3
i

]
=

arg min{
N−1∑
j=0

∥∥∥∥∥∥
yk+j+i−1 −

[
L1

i L2
i L3

i

]



yp(k − p + j)
up(k − p + j)

uf (k + j)




∥∥∥∥∥∥

2

} (2.9)

for i = 1, . . . , f , this is to say that f different ARX models are estimated

from data. Consider the ith subproblem and spell out the nature of the term

10



L3
i uf (k + j). This subproblem corresponds to the model

yk+i−1 =
[
L1

i L2
i

] [
yp(k − p)
up(k − p)

]
+ L3

i uf (k) + vk

=
[
L1

i L2
i

] [
yp(k − p)
up(k − p)

]
+ L3

i1uk + L3
i2uk+1 + . . . L3

iiuk+i−1

+

f∑
j=i+1

L3
ijuk+j−1 + vk (2.10)

Note that the summation in (2.10) represents a non-causal relation from u

to y. That is, L3
ij are estimated even though it is known that L3

ij = 0 for

j > i. The matrix L3 is, in other words, block lower triangular. However, this

information is not normally taken care of in (2.7), as pointed out in [61]. While

there is no problem from a consistency point of view given proper excitation

of the input, known parameters are estimated from data. Therefore, we can

make the following statements about the typical SIM formulation in general.

1. The model format used in SIM during the projection step is non-causal.

This would result in non-causal models in the projection step. Although

the non-causal terms are ignored at the step to estimate B, D, all the

model parameters estimate have inflated variance due to the fact that

extra and unnecessary terms are included in the model.

2. Because of the extra terms that turn out to be ‘future’ inputs relative

to the output, SIMs in general have problems with closed-loop data

using direct identification methods. Most SIMs usually project out Uf

as follows:

YfΠ
⊥
Uf

= ΓfXkΠ
⊥
Uf

+ GfEfΠ
⊥
Uf

(2.11)
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where Π⊥
Uf

= I − UT
f (UfU

T
f )−1Uf . Because of the non-causal terms in

the model, 1
N

EfU
T
f 6= 0 as N → ∞ for closed-loop data. As a conse-

quence, many SIMs fail to work on closed loop data, except for a few

SIM algorithms that avoid this projection [11, 69].

3. Because Uf contains extra rows due to the extra terms, the projection

in (2.11) tends to reduce the information content unnecessarily even for

open-loop data, leading to inefficient use of the data.

4. These non-causal terms will have negligible coefficients only when the

number of data is very large and process is well excited. For a limited

number of samples or non-white input signals, SIM algorithms tend to

have large estimation errors.

To avoid these problems the SIM model must not include these non-

causal terms, Peternell et al. [51] propose a few methods to exclude these

extra terms. Specially, they recommend a two steps procedure; (i) use a

conventional (unconstrained) SIM to estimate the deterministic Markov pa-

rameters CAi−1B; and (ii) form Hf with these Markov parameters to ensure

that it is lower triangular and then estimate the extended observability matrix.

We propose a parallel and a sequential implementation of a causal subspace

identification method (PARSIM) which remove these non-causal terms by en-

forcing a lower triangular structure in L3 and hence of Hf at every step of

the SIM procedure. By enforcing a lower-triangular structure, we reduce the

number of estimated parameters in this stage by f(f − 1)/2. The parallel

12



PARSIM (PARSIM-P) method involves a bank of least squares (LS) problems

in parallel, while the sequential PARSIM (PARSIM-S) involves a bank of LS

problems sequentially. Optimal weighting is derived for the PARSIM algo-

rithms. An optimal estimate of the B, D matrices is given using the Kalman

filter structure.

2.2 Subspace identification avoiding non-causal terms

The key idea in the proposed method is to exclude the non-causal terms

of Uf mentioned in Section 2.1. To accomplish this we partition the extended

state space model row-wise as follows:

Yf =




Yf1

Yf2
...

Yff


 ; Yi

∆
=




Yf1

Yf2
...

Yfi


 ; i = 1, 2, . . . , f (2.12)

where Yfi =
[
yk+i−1 yk+i · · · yk+N+i−2

]
. Partition Uf and Ef in a similar

way to define Ufi, Ui, Efi, and Ei, respectively, for i = 1, 2, . . . , f . Denote

further

Γf =




Γf1

Γf2
...

Γff


 (2.13a)

Hfi
∆
=

[
CAi−2B · · · CB D

]
(2.13b)

∆
=

[
Hi−1 · · · H1 H0

]
(2.13c)

Gfi
∆
=

[
CAi−2K · · · CK I

]
(2.13d)

∆
=

[
Gi−1 · · · G1 G0

]
(2.13e)
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where Γfi = CAi−1, and Hi and Gi are the Markov parameters for the deter-

ministic input and innovation sequence, respectively. We have the following

equations by partitioning (2.2a),

Yfi = ΓfiXk + HfiUi + GfiEi (2.14)

for i = 1, 2, · · · , f . Note that each of the above equations is guaranteed causal.

2.2.1 PARSIM algorithms

By eliminating e(k) in the innovation model through iteration, it is

straightforward to derive the following relation [34],

Xk = LzZp + Ap
KXk−p (2.15)

where

Lz
∆
=

[
∆p(AK , K) ∆p(AK , BK)

]
(2.16a)

∆p(A,B)
∆
=

[
Ap−1B · · · AB B

]
(2.16b)

AK
∆
= A−KC (2.16c)

BK
∆
= B −KD (2.16d)

Zp
∆
=

[
Y T

p UT
p

]T
(2.16e)

Substituting this equation into (2.14), we obtain

Yfi = ΓfiLzZp + ΓfiA
p
KXk−p + HfiUi + GfiEi (2.17)
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for i = 1, 2, · · · , f . Note the second term on the RHS of (2.17) tends to zero as

p tends to infinity under Assumption A1. Now we have the following parallel

PARSIM algorithm to estimate Γfi and Hfi.

[Algorithm 1] Parallel PARSIM (PARSIM-P)

1. Perform the following LS estimates, for i = 1, 2, · · · , f ,

[
Γ̂fiLz Ĥfi

]
= Yfi

[
Zp

Ui

]†
(2.18)

where [·]† stands for the Moore-Penrose pseudo-inversion. Stack Γ̂fiLz

together to obtain Γ̂fLz as




Γ̂f1Lz

Γ̂f2Lz
...

Γ̂ffLz


 = Γ̂fLz (2.19)

2. Perform SVD for the following weighted matrix

W1(Γ̂fLz)W2 = UnSnV T
n + ε (2.20)

where W1 is nonsingular and LzW2 does not lose rank. Un, Sn and Vn

are associated to the first n largest singular value. The residual term

ε stands for the product of the remaining singular vectors and singular

values. We choose

Γ̂f = W−1
1 UnS

1/2
n (2.21)

from which the estimate of A and C can be obtained [67].
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3. The estimate of B and D is discussed in the next section using a Kalman

filter formulation.

Notice that the proposed parallel PARSIM gives consistent estimates

for Γf and Hi−1, ∀i = 1, 2, · · · , f under the assumptions stated in Section 2.1.

To rationalize the statement, it is sufficient to show that as N →∞,

[
Γ̂fiLz Ĥfi

] → [
ΓfiLz Hfi

]

where
[

Γ̂fiLz Ĥfi

]
is calculated according to (2.18). Assumption A1 implies

that the initial state has negligible effect on the estimate with sufficient large

p, as shown in (2.17). From A4 we have 1
N

EiZ
T
p → 0 and 1

N
EiU

T
i → 0 as N →

∞. Substituting (2.17) with p →∞ into (2.18) leads to

[
Γ̂fiLz Ĥfi

]
=

[
ΓfiLz Hfi

] [
Zp

Ui

] [
Zp

Ui

]†
+ GfiEi

[
Zp

Ui

]†

=
[

ΓfiLz Hfi

]
+ Gfi(

1

N
Ei

[
Zp

Ui

]T

)(
1

N

[
Zp

Ui

] [
Zp

Ui

]T

)−1

→ [
ΓfiLz Hfi

]

as N →∞. Assumption A5 guarantees that all system modes are sufficiently

excited so that the matrix inverse in the above equation exists. It has been

shown in [34] that A2 is needed for Lz to have full row rank and Γf to have full

column rank. Therefore, the SVD step in the PARSIM-P algorithm guarantee

that Γ̂f and Γf have the same column space asymptotically.

The PARSIM-P algorithm estimates the model parameters in parallel

which re-estimate some of the Markov parameters in Hfi repeatedly. To avoid
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this we rewrite (2.17) by ignoring the Ap
K term

Yfi = ΓfiLzZp + Hi−1Uf1 + Hf(i−1)

[
UT

f2 · · · UT
fi

]T
+ GfiEi

where Hi−1 is defined in (2.13c). If we perform the above projections sequen-

tially for i = 1, 2, · · · , f , Hf(i−1) is estimated in the (i − 1)th step. Γfi and

Hi−1 are the only unknown at the ith step.

[Algorithm 2] Sequential PARSIM (PARSIM-S)

1. Perform the following LS for i = 1,

[
Γ̂f1Lz Ĥf1

]
= Yf1

[
Zp

Uf1

]†
(2.23)

2. Perform the following causal projection for i = 2, · · · , f

[
Γ̂fi Ĥi−1

]
= (Yfi − Ĥf(i−1))

[
UT

f2 · · · UT
fi

]T
[

Zp

Uf1

]†
(2.24)

Stack Γ̂fiLz together as equation (2.19).

3. Same as the Step 2 in Algorithm 1.

The sequential PARSIM gives consistent estimates for Γf and Hi−1,∀i =

1, 2, · · · , f under the assumptions stated in Section 2.1. The proof is similar

to that of PARSIM-P, therefore we omit it in the paper.

[Remark 1] For finite past horizon p the algorithm is biased, but the

bias decays to zero exponentially with p. If p is too large in practice, however,

large variance is expected for the estimates. Therefore, it is necessary in
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practice to use a finite p for the best trade-off. Cross-validation can be used

to select an optimal p.

[Remark 2] The parallel PARSIM requires that no correlation exists

between future uk and past ek to be consistent, which is only valid under open

loop condition, therefore the PARSIM-P algorithms are biased for direct closed

loop identification. To make it applicable to closed-loop data, an innovation

estimation approach is proposed in [58].

[Remark 3] The Markov parameters, Hi−1, ∀i = 1, 2, · · · , f , can be

estimated directly from the SIMs without the knowledge of system matrices,

(A,B,C,D). Meanwhile the low triangular structure of the Toeplitz matrix,

Hf , is conserved.

2.2.2 Improved variance of PARSIM algorithms

After presenting the PARSIM algorithms, we analyze the variance of

the PARSIM estimates relative to that of conventional SIM algorithms. For

conventional SIMs the asymptotic variance of the model estimates is derived

in [6–8]. These analyses provide insight into what contribute to the variance

of the estimates.

In this subsection we provide a covariance equality for PARSIM esti-

mates by interpreting the subspace projections in the generalized least squares

(GLS) framework [48]. For the ith block-row we explained that conventional

SIMs use model (2.10) but the process is actually (2.17). By comparing (2.10)
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with (2.17) when p is large we have,

[
L1

i L2
i

]
= ΓfiLz

L3
i =

[
Hfi

... 0 · · · 0

]

vk =
i∑

j=1

Gi−jek+j−1

Note that vk is auto-correlated, therefore the SIM projections do not fit into

the maximum likelihood framework. Denoting

cov[vk] = Σv

Vfi = GfiEi

and

Vi,N = vec(V T
fi )

where vec() of a matrix forms a long column vector by stacking the columns

of that matrix, we have

cov(Vi,N) = Σv ⊗ IN

With this notation we can convert the PARSIM equation (2.17) into

Yi,N = X1,Nθ1 + Vi,N (2.25)

where

Yi,N = vec(Y T
fi )

X1,N = I ⊗ [
ZT

p UT
i

]

θ1 = vec(
[
ΓfiLz Hfi

]T
)
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Similarly, the conventional SIM equation for the ith block row (2.10) can be

converted to

Yi,N = X1,Nθ1 + X2,Nθ2 + Vi,N (2.26)

where

X2,N = I ⊗ [
UT

f(i+1) UT
f(i+2) · · · UT

ff

]

is the matrix of non-causal input data and

θ2 = vec(
[
L3

i(i+1) L3
i(i+2) · · · L3

if

]T
)

is the vector of extra parameters in conventional SIMs. Now we state that the

least squares solutions (2.17) for PARSIMs and (2.10) for conventional SIMs

are identical to the GLS solution to (2.25) and (2.26), respectively [48]. The

estimates from both conventional SIMs and PARSIMs are consistent, which is

not concerned here. The question is whether PARSIM estimates have smaller

variance than conventional SIMs regardless of the data length N .

From [48] we know that the GLS interpretation of PARSIM estimates

leads to

cov(θ̂1,N) = (XT
1,N(Σv ⊗ IN)−1X1,N)−1

where θ̂1,N is the PARSIM estimate for θ1 and

cov

([
θ̂′1,N

θ̂′2,N

])
=

([
X1,N X2,N

]T
(Σv ⊗ IN)−1

[
X1,N X2,N

])−1

where θ̂′1,N is the conventional SIM estimate for θ1.
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To simplify the notation, we denote

Sij,N = Xi,N(Σv ⊗ IN)−1Xj,N (2.27)

for i, j = 1, 2. Then the covariance expressions become

cov(θ̂1,N) = S−1
11,N

cov

([
θ̂′1,N

θ̂′2,N

])
=

[
S11,N S12,N

ST
12,N S22,N

]−1

=

[
Φ11,N Φ12,N

ΦT
12,N Φ22,N

]

from which it is easy to show that

cov(θ̂′1,N) = Φ11,N = S−1
11,N + S−1

11,NS12,NΦ22,NST
12,NS−1

11,N

Therefore

cov(θ̂′1,N)− cov(θ̂1,N) = S−1
11,NS12,NΦ22,NST

12,NS−1
11,N (2.28)

Noticing that Φ22,N is strictly positive definite due to the inverse of the covari-

ance matrix, we have

cov(θ̂′1,N) > cov(θ̂1,N) (2.29)

regardless of N and the equality holds only if S12,N = 0. It is noted further

that S−1
11,NS12,N in (2.28) is the regression coefficient matrix of X2,N on X1,N ,

which is not zero for colored inputs. We can only compare the variance of

θ̂1 rigorously as shown above. For Γ̂f estimate from θ̂1 we can only say that

PARSIM estimate likely leads to a better estimate of the true observability

subspace, but we cannot compare the variance since it depends on the basis.

Similarly we cannot compare the variance of the system matrices such as C

and A.
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A reduced variance in estimating the observability matrix will likely

lead to better estimates for A and C later. The Monte-Carlo study in Section

2.4 provides strong indications that this indeed is the case.

2.2.3 Determination of observability matrix

In the conventional SIM formulation under open-loop conditions,

EfΠ
⊥
Uf
→ Ef as N →∞ (2.30)

since Ef is uncorrelated with Uf . Therefore, for large N (2.11) becomes:

YfΠ
⊥
Uf
≈ ΓfXkΠ

⊥
Uf

+ GfEf (2.31)

Post-multiplying ZT
p to (2.31) eliminate the noise term for large N ,

YfΠ
⊥
Uf

ZT
p ≈ ΓfXkΠ

⊥
Uf

ZT
p (2.32)

Van Overschee and De Moor [64] show that all SIM methods perform SVD on

the following weighted matrix:

WrYfΠ
⊥
Uf

ZT
p Wc = WrΓfXkΠ

⊥
Uf

ZT
p Wc (2.33)

where Wr and Wc are the row and column weighting matrices, respectively. In

CVA Wr = (YfΠ
⊥
Uf

Y T
f )−1/2 which basically normalizes the output variables.

Gustafsson [23] shows that an approximately optimal weighting for Wc is

Wc = (ZpZ
T
p − ZpU

T
f (UfU

T
f )UfZ

T
p )−1/2

= (ZpΠ
⊥
Uf

ZT
p )−1/2 (2.34)
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which is used in CVA and MOESP. Substituting (2.34) into (2.33), and re-

placing Xk with LzZp as instrumental variables, we obtain,

WrYfΠ
⊥
Uf

ZT
p Wc = WrΓfLzZpΠ

⊥
Uf

ZT
p (ZpΠ

T
Uf

ZT
p )−1/2

= WrΓfLz(ZpΠ
⊥
Uf

ZT
p )1/2 (2.35)

Comparing (2.35) with (2.20), the equivalent weighings for the PARSIMs al-

gorithm are

W1 = Wr (2.36)

W2 = (ZpΠ
⊥
Uf

ZT
p )1/2 (2.37)

Gustafsson and Rao [24] show that the row-weighting W1 has no influence on

the asymptotic accuracy of the estimated observability matrix. Our simula-

tion experience shows that W1 has negligible influence on the accuracy of the

estimated system matrices as well. Therefore, we suggest to use W1 = I in the

PARSIM algorithms.

2.3 Numerical implementation of PARSIMs

Since the projections in the PARSIM algorithms bear similarity to the

standard SIMs such as MOESP, it is straightforward to implement these par-

allel or sequential projections using QR decomposition [59]. In this section, a

new approach to calculate the B, D matrices is derived by prewhitening the

equation error of the general state space model.
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2.3.1 QR implementation for K

Once Γ̂f is known, the Kalman filter gain K can be estimated [14].

With a large p, substituting (2.15) into (2.2) leads to:

Yf = ΓfLzZp + HfUf + GfEf (2.38)

Therefore,

YfΠ
⊥�
Zp

Uf

� = GfEfΠ
⊥�
Zp

Uf

� = GfEf (2.39)

since Ef is not correlated with Zp and Uf in open-loop. Performing QR de-

composition,



Zp

Uf

Yf


 =




R11

R21 R22

R31 R32 R33







Q1

Q2

Q3


 (2.40)

then

R33Q3 = GfEf (2.41)

Denoting ek = Fe∗k such that cov(e∗k) = I, from Assumption A3 we

have FF T = R. Using this notation we have

GfEf = G∗
fE

∗
f (2.42)

where

G∗
f =




F 0 · · · 0
CKF F · · · 0

...
...

. . .
...

CAf−2KF CAf−3KF · · · F


 ∈ <

nyf×nyf

(2.43)
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From equation (2.41) and (2.42) and using the fact that Q3 is an orthonormal

matrix, we choose

Ê∗
f = Q3 (2.44a)

Ĝ∗
f = R33 (2.44b)

Therefore,

F̂ = R33(1 : ny, 1 : ny) (2.45)

and K can be calculated from G∗
f using Γf .

2.3.2 Determination of B,D

With A and C estimates, Section 10.6 in [45] gives an effective approach

to estimate B and D with an output error formulation. Note that there is a

choice whether or not to prewhiten the residuals, as discussed, e.g., in [44].

This choice also corresponds to whether ’focus’ is set to ’simulation’ or

’prediction’ (default) in the N4SID function of the System Identification

Toolbox. Here we give a modified approach to estimating B, D and the initial

state optimally using A, C, K and F for the general innovation form. Since

the initial state is estimated this step does not introduce a bias for finite p.

From the innovation form of the system we have:

xk+1 = AK xk + BK uk + K yk (2.46)

where Ak and Bk are defined in (2.16). The process output can be represented
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as

yk = C(qI − AK)−1x0 + [C(qI − AK)−1BK + D]uk

+C(qI − AK)−1Kyk + ek (2.47)

or:

[I − C(qI − AK)−1K]yk = C(qI − AK)−1x0

+[C(qI − AK)−1BK + D]uk + ek (2.48)

using ek = Fe∗k where e∗k has an identity covariance matrix, and defining

ỹk = F−1[I − C(qI − AK)−1K]yk (2.49a)

G(q) = F−1C(qI − AK)−1 (2.49b)

D∗ = F−1D (2.49c)

we obtain,

ỹk = G(q)BKuk + D∗uk + G(q)x0δk + e∗k

= G(q)⊗ uT
k vec(BK) + Iny ⊗ uT

k vec(D∗)

+ G(q)x0δk + e∗k (2.50)

where vec(BK) and vec(D∗) are vectorized BK and D∗ matrices along the

rows. δk is the Kronecker delta function. Now vec(BK), vec(D∗) and x0 can

be estimated using least squares from the above equation. The B, D matrices

can be backed out as:

D̂ = FD̂∗ (2.51a)

B̂ = B̂K + KD̂ (2.51b)
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2.4 Simulation and industrial case studies

In this section, the results of two simulation cases and an industrial

case are reported to demonstrate the efficiency of proposed PARSIMs with

comparison to N4SID in the System Identification Toolbox (Version 5.0) of

Matlab. The first simulation is a second order single input and single output

(SISO) counter example from [31]. The second is a Monte-Carlo simulation

study over randomly chosen fourth order systems with two inputs and two

outputs. The industrial case study is a 3× 3 four-stage evaporator from [65].

2.4.1 Simulation example 1

The counter-example proposed in [31] is used here to test the effective-

ness of the proposed parallel PARSIM methods.

xk+1 =

[
2γ −γ2

1 0

]
xk +

[
1
−2

]
uk +

[
k1

k2

]
ek (2.52a)

yk =
[

2 −1
]
xk + ek (2.52b)

where the variance of the noise process var(ek) = 217.1, γ = 0.9184, k1 =

−0.21 and k2 = −0.559 are used here. The system input is a high pass filter

with unit white Gaussian noise as input.

uk = (1− γq−1)2(1 + γq−1)2εk

For comparison we use the N4SID routine in Matlab, which actually

implemented the CVA weighting, as the standard SIM algorithm. PEM im-

plemented as the ARMAX routine in Matlab’s System Identification Toolbox
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Figure 2.1: Asymptotic pole estimation results of the SISO counter example

is used as a benchmark. The performance of the methods is investigated with

two indices, the standard deviation of the pole estimation errors and that of

the zero estimation errors,

P (N) =
1

M

M∑

k=1

‖P̂ k
N − P0‖2 (2.53a)

Z(N) =
1

M

M∑

k=1

‖Ẑk
N − Z0‖2 (2.53b)

where M = 200 is the number of independent simulations. P̂ k
N and Ẑk

N are

the estimated poles and zeros with N samples at kth simulation, respectively.
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Figure 2.2: Asymptotic zero estimation results of the SISO counter example

P0 and Z0 are the true poles and zeros of the system, respectively. We choose

p = 7, f = 5 for PARSIMs. The results of the simulations are shown in

Fig. 2.1 and Fig. 2.2, which show the asymptotical performance of different

algorithms. The results show that the PARSIMs outperform N4SID for both

pole and zero estimation, and the zero estimates of PARSIMs are very close

to those of PEM.
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2.4.2 Simulation example 2

To study the potential benefits of the causal parameterization in PAR-

SIMs, we perform a Monte-Carlo study over randomly chosen fourth order

systems with two inputs and two outputs, estimated with the different meth-

ods. Since the motivation for the causal parameterization is to provide a better

estimate of the observability matrix, we concentrate on the estimates of the

A-matrix, viz. its eigenvalues. The input was chosen as a random binary

signal with power up to 0.1 of the Nyquist frequency, and normal white noise

with 0.1 times the unit covariance matrix was added to the output.

The system and the input/output data were generated by Matlab as

follows

m0 = idss(drss(4,2,2));

m0.d = zeros(2,2);

m0.b = 5*randn(4,2);

u = idinput([400,2],’rbs’,[0 0.1]);

y = sim(m0,u) + 0.1*randn(400,2);

For each data set a model was estimated using Matlab’s standard

N4SID/CVA routine as well as using PARSIM-S and PARSIM-P. The future

horizon (f) was chosen as 20 and the past horizon (p) was chosen as 10 in all

cases.

For each method the standard deviations (absolute values) of each of
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Figure 2.3: The value r defined by (2.54) for the 100 randomly chosen systems
as defined in the text. The number of realizations for each system, M , was 25.
(The value for system 31 is 4.46 and out of range.) PARSIM-P is better than
N4SID/CVA in 84 of the 100 cases. The average excess of standard deviation
for N4SID/CVA is 9.1%.

the four eigenvalues were estimated over the M realizations in the usual way:

σ̂CVA
i , σ̂PARSIM−P

i , i = 1, 2, 3, 4

As PARSIM-S and PARSIM-P gave nearly the same results, we only compare

the performance of N4SID/CVA and PARSIM-P. The mean of the ratios of
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the accuracy of the methods was computed

r =
1

4

4∑
i=1

σ̂CVA
i

σ̂i
PARSIM−P

(2.54)

as a measure of the relative accuracy of the two methods in estimating the

poles/eigenvalues. A plot of r over the 100 different systems with M = 25

is given in Figure 2.3. It is seen that the enforcement of the causal model

when estimating the observability matrix gives a noticeable improvement in

the standard deviation of the eigenvalue estimates.

2.4.3 Industrial case study

In this subsection, the experimental data from a four-stage evaporator

are analyzed [65]. The three inputs are feed flow, vapor flow to the first evap-

orator stage and cooling water flow. The three outputs are the dry matter

content, the flow and temperature of the outcoming product. The time series

plot of the data indicates that the inputs are PRBS. There are 6305 experi-

mental data points, we use the first 3152 points for estimation and the rest

of them for validation. We choose p = 30, f = 20 for PARSIMs and N4SID.

By using the Akaike information criterion (AIC) and examining the singular

values an 11th order system is chosen.

The coefficient of determination

R2 = (1− Σi[yk(i)− ŷk(i)]
2

Σi[yk(i)− ȳk]2
)× 100 (2.55)

of validation data is used as the metric for comparing different SIMs, where yk,

ŷk and ȳk are the measured output, simulated or predicted model output and
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the mean of the output for the kth output variables, respectively. The result

of simulation and various horizons of prediction for different SIMs is shown in

Table 2.1.

From the result, we can see that all methods work well for one-step

ahead predictions. As the prediction horizon increases, the prediction accuracy

decreases, as expected. In general the PARSIM algorithms outperform the

N4SID on long term predictions. For simulation error N4SID failed on y3.

While the N4SID results are almost the same as the PARSIM results for 1 and

20 steps ahead predictions, the PARSIMs produce better results for 100 steps

ahead prediction and simulation.

2.5 Summary

In this chapter, a novel subspace identification approach is proposed

to enforce the casuality of high order ARX models. The key idea is to avoid

the estimation of parameters that are known to be zero. This means that a

lower triangular structure of an estimated matrix must be enforced which leads

to somewhat more complicated calculations. Also other authors have noted

the potential problems that arise from these non-causal elements. Ljung and

McKelvey [46] have noted that the problems with closed loop data have their

roots in these non-causal terms. They suggest to use explicitly computed k-

step ahead predictions from a single causal ARX-model. This is very different

from the algorithm suggested in this paper, and apparently it does not make

the best use of the observed data. The new algorithms, which fall into the

33



subspace fitting framework, are shown to be consistent under mild assumptions

and applicable to a general state space model structure.

1 step ahead 20 steps ahead 100 steps ahead Simulation
y1 74.79 60.16 49.64 44.35 N4SID

74.65 61.20 54.14 51.24 PARSIM-P
74.52 60.75 53.87 48.16 PARSIM-S

y2 62.12 60.27 60.12 58.15 N4SID
61.62 60.07 60.28 59.97 PARSIM-P
61.43 60.43 60.01 59.55 PARSIM-S

y3 84.50 57.27 14.27 − N4SID
84.47 60.60 42.06 30.35 PARSIM-P
84.47 60.64 34.49 15.35 PARSIM-S

Table 2.1: The model fit as measured by R2 in (2.55) of identified models for
simulation and prediction of validation data for the evaporator. (R2 less than
zero is indicated by ’−’.)

We have shown that the variance of the observability matrix estimates

is in general smaller if the non-causal terms are omitted. It is difficult to make

further comparison about the variance of the system matrices because they

depend on the basis. Simulation tests are conducted to compare the variance of

the eigenvalues of the A matrix. We have indeed seen improved behavior in the

reported tests. The simulation studies indicate that the proposed algorithms

are superior to SIMs with CVA weighting, which are considered optimal.
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Chapter 3

Closed-loop Subspace Identification with

Innovation Estimation

3.1 Introduction

The closed-loop identification is of special interest for a large number

of engineering applications. For safety reasons and quality restrictions, it is

desirable that identification experiments are carried out under the closed-loop

or partial closed-loop condition. As pointed out by many researchers [45, 62],

the fundamental problem with closed-loop data is the correlation between

the unmeasurable noise and the input. Traditional closed-loop identification

approaches fall into the prediction error methods (PEMs) framework. A com-

prehensive study in this area is provided by Forssell and Ljung [17]. Based on

their analysis, the closed-loop identification methods can be categorized into

three main groups: the direct approach, the indirect approach, and the joint

input-output approach.

Contrary to the open loop SIMs, the traditional SIMs (e.g., CVA,

N4SID and MOESP) are biased under closed-loop condition. Verhaegen [66]

proposed a closed-loop SIM via the identification of an overall open-loop state

space model followed by a model reduction step to obtain state space represen-
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tations of the plant and controller. The disadvantages of the approach is that

a high order overall system has to be identified, which introduces extra compu-

tational burden. Ljung and McKelvey [46] investigated the SIM through the

classical realization path and proposed a recursive approach based on ARX

model as a feasible closed-loop SIM. The drawback of the approach is that

the ARX parametrization is not applicable for the generic system. Recently,

Chiuso and Picci [10] analyzed SIMs with feedback through stochastic real-

ization theory and provided a theoretical analysis to construct the geometric

state based on an oblique predictor space. Nevertheless, they did not provide

any algorithm in detail.

Formulated in an errors-in-variables (EIV) framework, Chou and Ver-

haegen [11] proposed a new SIM that can be applied to closed-loop data. The

algorithm is nevertheless very complex which has to treat the case of white

input from non-white input differently. Wang and Qin [69] proposed the use of

parity space and principal component analysis (PCA) for EIV and closed-loop

identification which is applicable to correlated input excitation. Huang, Ding

and Qin [27] analyzed the reason why these methods cannot be applied to

white input directly and proposed a revised instrumental variables approach.

To the best of our knowledge, the possibility of closed-loop identification

with SIMs has not been thoroughly analyzed. The main purpose of this chapter

is to reveal the feasibility of the consistent estimation with SIMs under the

closed-loop operation. It is shown that the consistency of closed-loop SIMs

can be achieved through innovation estimation.
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The rest of the chapter is organized as follows. In Section 3.2, we

analyze feasibility of closed-loop SIMs through innovation estimation. The

consistency of closed-loop SIMs is also presented in this section. Based on

this analysis, two feasible closed-loop SIMs are presented in detail in Section

3.3. In Section 3.4, we compare the ”innovation estimation” approach with

the ”whitening filter” approach. The similarity and difference between them

are investigated in detail. Section 3.5 concludes the chapter.

3.2 Analysis of subspace identification under closed-loop
condition

3.2.1 Problem formulation and assumptions

In this work, we assume that the system to be identified can be written

in innovations form as

xk+1 = Axk + Buk + Kek (3.1a)

yk = Cxk + Duk + ek (3.1b)

where yk ∈ <ny , xk ∈ <n, uk ∈ <nu , and ek ∈ <ny are the system output, state,

input, and innovation, respectively. A, B, C and D are system matrices with

appropriate dimensions. K is the Kalman filter gain. The system described

by (3.1) can also be presented as

yk = G(q)uk + H(q)ek (3.2a)
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where G(q) = C(qI − A)−1B + D, and H(q) = C(qI − A)−1K + I. We shall

assume that the input is determined through feedback as

uk = −F (q)yk + rk (3.3)

where rk is the reference signal, and F (q) is the filter standing for the feedback

mechanism.

To establish the statistical consistency of the SIM under closed-loop

condition, we introduce following assumptions:

A1 : The eigenvalues of A−KC are strictly inside the unit circle.

A2 : The system is minimal in the sense that (C, A) is observable and

(A, [B, K]) is controllable.

A3 : The innovation sequences ek is a stationary, zero mean, white noise

process with the second order moments

E(eie
T
j ) = Rδij

where δij is the Kronecker delta.

A4 : The input u(k) and innovation sequence e(j) are uncorrelated for ∀j ≥
k, which implies that either the system or the controller contains a delay.

A5 : The reference signal and innovation sequence are uncorrelated to each

other, and the reference signal is persistently exciting of a sufficient order.

A6 : The closed-loop subsystem from r and e to y are asymptotically stable.
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A7 : Either the past horizon p →∞ or A−KC is nilpotent.

The closed-loop identification problem is: given a set of input/output

measurements and reference measurements, estimate the system matrices,

Kalman filter gain K up to within a similarity transformation, and the in-

novation covariance matrix R. The exact knowledge of the controller is not

required for the closed-loop identification approach proposed in this work.

Based on state space description in (3.1), an extended state space model

can be formulated as

Yf = ΓfXk + HfUf + GfEf (3.4a)

Yp = ΓpXk−p + HpUp + GpEp (3.4b)

where the subscripts f and p denote future and past horizons, respectively.

The extended observability matrix is

Γf =




C
CA
...

CAf−1


 (3.5)

and Hf and Gf are Toeplitz matrices:

Hf =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D


 (3.6a)

Gf =




I 0 · · · 0
CK I · · · 0

...
...

. . .
...

CAf−2K CAf−3K · · · I


 (3.6b)
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The input and output data are arranged in the following Hankel form:

Uf =




uk uk+1 · · · uk+N−1

uk+1 uk+2 · · · uk+N
...

...
. . .

...
uk+f−1 uk+f · · · uk+f+N−2


 (3.7a)

Up =




uk−p uk−p+1 · · · uk−p+N−1

uk−p+1 uk−p+2 · · · uk−p+N
...

...
. . .

...
uk−1 uk · · · uk+N−2


 (3.7b)

The state sequences are defined as:

Xk = [xk, xk+1, · · · , xk+N−1] (3.8a)

Xk−p = [xk−p, xk−p+1, · · · , xk−p+N−1] (3.8b)

Similar formulations are made for Yf , Yp, Ef , and Ep. Subspace identification

consists of estimating the extended observability matrix first and then the

model parameters.

3.2.2 Analysis of the closed-loop SIM

The main purpose of the subsection is to explore the feasibility of closed-

loop SIMs with innovation estimation. We can partition the extended state

space model in (3.4) row-wise as follows:

Yf =




Yf1

Yf2
...

Yff


 ; Yi

∆
=




Yf1

Yf2
...

Yfi


 ; i = 1, 2, . . . , f (3.9)
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Partition Uf and Ef in a similar way to define Ufi, Ui, Efi, and Ei, respectively,

for i = 1, 2, . . . , f . Denote further

Γf =




Γf1

Γf2
...

Γff


 (3.10a)

Hfi
∆
=

[
CAi−2B · · · CB D

]
(3.10b)

∆
=

[
Hi−1 · · · H1 H0

]
(3.10c)

Gfi
∆
=

[
CAi−2K · · · CK I

]
(3.10d)

∆
=

[
Gi−1 · · · G1 G0

]
(3.10e)

where Hi and Gi are the Markov parameters for the deterministic input and

innovation sequence, respectively. We have the following partitioned equa-

tions:

Yfi = ΓfiXk + HfiUi + GfiEi (3.11)

for i = 1, 2, · · · , f . Denote further,

H−
fi

∆
=

[
Hi−1 · · · H1

]
(3.12a)

G−
fi

∆
=

[
Gi−1 · · · G1

]
(3.12b)

The partitioned Yfi in (3.11) is equal to

Yfi = ΓfiXk + H−
fiUi−1 + Hf1U1 + G−

fiEi−1 + Efi (3.13)
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By eliminating ek in the innovation model (3.1) through iteration, it is

straightforward to derive the following relation,

Xk = LzZp + Ap
KXk−p (3.14)

where

Lz
∆
=

[
∆p(AK , K) ∆p(AK , BK)

]
(3.15a)

∆p(A,B)
∆
=

[
Ap−1B · · · AB B

]
(3.15b)

AK
∆
= A−KC (3.15c)

BK
∆
= B −KD (3.15d)

Zp
∆
=

[
Y T

p UT
p

]T
(3.15e)

Substituting this equation into (3.13), we obtain

Yfi = ΓfiLzZp + ΓfiA
p
KXk−p + H−

fiUi−1 + Hf1U1 + G−
fiEi−1 + Efi (3.16)

for i = 1, 2, · · · , f . Note that the second term in the right hand side (RHS) of

(3.16) tends to zero as p tends to infinity under assumption A1. To facilitate

the derivation of the main results, we assume that, in this subsection, the

process described by (3.1) does not contain the direct term, i.e., Hf1 = 0.

Therefore, (3.16) reduced to

Yfi = ΓfiLzZp + H−
fiUi−1 + G−

fiEi−1 + Efi (3.17)

Since the future innovation, Efi, is uncorrelated with Zp, Ui−1 and Ei−1 in

(3.17) under closed-loop condition. If the Ef is already known, the coefficient
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matrices can be estimated through a straightforward linear regression as:

[
Γ̂fiLz Ĥ−

fi Ĝ−
fi

]
= Yfi




Zp

Ui−1

Ei−1



†

(3.18)

where † stands for pseudo-inverse operation. A remaining question is whether

this approach gives us a consistent estimate of ΓfiLz, H−
fi and G−

fi. Here we

formulate the results as follows.

Lemma 3.2.1. Under the assumptions stated in Subsection 2.1, the joint

input-output signal, χk =

[
yk

uk

]
, is persistently exciting of any order.

[Proof] See Appendix A10.1 in [62].

Theorem 3.2.2. The estimates of ΓfiLz, H−
fi and G−

fi in (3.18) are consistent

for ∀i = 1, 2, · · · , f if and only if the joint input-output signal, χk =

[
yk

uk

]
,

is persistently exciting to the order of p+ f − 1, where p and f denote the past

and the future horizons, respectively.

[Proof] See Appendix A.

[Remark 1] The analysis of consistency for the case of D 6= 0 is similar

to that presented in this subsection with the help of the assumption A4, while

it requires χk to be consistently exciting to the order of f + p. The proof is

similar to the one provided in Appendix A through a minor modification.

[Remark 2] From the derivation in Appendix A, we can see that the

key is to maintain the full row rank of
[

ZT
p UT

i−1 ET
i−1

]T
, which is the

assumption for the existence of the oblique predict space in Chiuso and Picci’s

[10] analysis.
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3.3 Closed-loop subspace identification methods with
innovation estimation

From the analysis in Section 3.2, we can conclude that, under certain

assumptions, the consistency estimation with SIMs can be achieved if the in-

novation sequence is already known. The only challenge left now is how to

estimate the innovation signal. Qin and Ljung [58] provided an algorithm for

closed-loop SIM with innovation estimation method (PARSIM-E). In this sec-

tion, we introduce the algorithm in more detail and provide another variation

of it (PARSIM-E1).

3.3.1 Algorithm 1: PARSIM-E

In this subsection, we present a closed-loop SIM algorithm with inno-

vation estimation. Similar to Subsection 3.2.2, in this subsection, we assume

that D = 0 in (3.1). By ignoring the second term on the RHS of (3.16) and

set i = 1, we have

Yf1 = Γf1LzZp + E1 (3.19)

Therefore, a least squares estimate of the innovation process is:

Ê1 = Yf1 − Γ̂f1LzZp (3.20)

where

Γ̂f1Lz = Yf1Z
†
p (3.21)
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Now return to (3.17) for a general i = 2, 3, . . . , f . Noting that

Ei =




Ef1

Ef2
...

Efi


 =

[
Ei−1

Efi

]
(3.22)

and replacing Ei−1 with Êi−1, (3.17) becomes

Yfi =
[

ΓfiLz H−
fi G−

fi

]



Zp

Ui−1

Êi−1


 + Efi (3.23)

The least squares estimate

[
Γ̂fiLz Ĥ−

fi Ĝ−
fi

]
= Yfi




Zp

Ui−1

Êi−1



†

(3.24)

With the least squares estimates of ΓfiLz from (3.21) and (3.34), we obtain

Γ̂fLz =




Γ̂f1Lz

Γ̂f2Lz
...

Γ̂ffLz




The observability matrix, Γf , can be estimated similarly to the PARSIM-E

procedures given in [59].

Γ̂f = W−1
1 US1/2 (3.25)

where

W1(Γ̂fLz)W2 = USV T
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and the weighting matrices

W1 = I (3.26a)

W2 = (ZpΠ
⊥
Uf

ZT
p )1/2 (3.26b)

Theorem 3.3.1. The estimate of Γ̂f from PARSIM-E is consistent under the

assumptions A1 to A7 stated in Section 3.2.

[Proof] To prove the consistency of Γ̂f from PARSIM-E, it is sufficient

to show that as N →∞
[

Γ̂fiLz Ĥ−
fi Ĝ−

fi

]
→ [

ΓfiLz H−
fi G−

fi

]

Note that if the innovation sequence is already known it has been proven in

Theorem 3.2.2. Therefore, Theorem 3.3.2 is valid if

Êi−1 → Ei−1

as N →∞, which can be proven recursively with the help of Theorem 3.2.2.

[Remark 1] After obtaining the consistent estimate of the extended

observability matrix, the A and C matrices can be estimated as in [67].

[Remark 2] For D 6= 0 case, the PARSIM-E is consistent as well if

there is a delay in the controller.

3.3.2 Algorithm 2: PARSIM-E1

In this subsection, we present another closed-loop SIM algorithm with

innovation estimation.
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By ignoring the second term on the RHS of (3.16) and set i = 1, we

have

Yf1 = Γf1LzZp + E1 (3.27)

Furthermore, if we set the future horizon, f = 1,

Y11 = Γ11LzZp + E11 (3.28)

where Y11 is defined in (3.9) and E11 is defined in a similar way. Γ11 is defined

in (3.10a).

Therefore, a least squares estimate of the innovation process is:

Ê11 = Y11 − Γ̂11LzZp (3.29)

where

Γ̂11Lz = Y11Z
†
p (3.30)

After obtaining estimates of the innovation sequence, it is straightforward to

construct Êf based on

Êf =




êk êk+1 · · · êk+N−1

êk+1 êk+2 · · · êk+N
...

...
. . .

...
êk+f−1 êk+f · · · êk+f+N−2


 (3.31)

Now return to (3.17) for a general i = 1, 2, . . . , f . Noting that

Ei =




Ef1

Ef2
...

Efi


 =

[
Ei−1

Efi

]
(3.32)
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and replacing Ei−1 with Êi−1, (3.17) becomes

Yfi =
[

ΓfiLz H−
fi G−

fi

]



Zp

Ui−1

Êi−1


 + Efi (3.33)

The least squares estimate

[
Γ̂fiLz Ĥ−

fi Ĝ−
fi

]
= Yfi




Zp

Ui−1

Êi−1



†

(3.34)

With the least squares estimates of ΓfiLz from (3.34), we obtain

Γ̂fLz =




Γ̂f1Lz

Γ̂f2Lz
...

Γ̂ffLz


 (3.35)

The observability matrix, Γf , can be estimated similarly to PARSIM-E.

Theorem 3.3.2. The estimate of Γ̂f from PARSIM-E1 is consistent under

the assumptions A1 to A7 stated in Section 3.2.

[Proof] To prove the consistency of Γ̂f from PARSIM-E1, it is sufficient

to show that as N →∞
[

Γ̂fiLz Ĥ−
fi Ĝ−

fi

]
→ [

ΓfiLz H−
fi G−

fi

]

Note that if the innovation sequence is already known it has been proven in

Theorem 3.2.2. Therefore, Theorem 3.3.2 is valid if

Ê11 → E11

as N →∞, which is straightforward for a sufficient large past horizon.
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3.3.3 K estimation under closed-loop condition

De Ruscio [14] introduced a method to identify the Kalman filter gain

with QR implementation for open loop data. It requires that Ef is uncorrelated

to Zp and Uf , which is invalid under closed-loop condition. In this subsection,

we provide a new way to calculate K with closed-loop data.

After the determination of the system order through the Akaike infor-

mation criterion, we can obtain the estimate of the innovation sequence ek,

which can be used to construct Êf . Substituting the Xk in the extended state

space model (3.4) with (3.14), we obtain

Yf = ΓfLzZp + ΓfA
p
KXk−p + HfUf + GfEf (3.36)

Omitting the second term for a sufficient large p, and replacing ΓfLz with

Γ̂fLz, (3.36) becomes

Ỹf = HfUf + GfEf (3.37)

where

Ỹf = Yf − Γ̂fLzZp

We can partition Ỹf row-wise as follows:

Ỹfi = HfiUi + G−
fiEi−1 + Efi; i = 1, 2, . . . , f (3.38)

Again, replacing Ei−1 with Êi−1, the least squares estimation

[
Ĥfi Ĝ−

fi

]
= Ỹfi

[
Ui

Êi−1

]†
; i = 2, 3, . . . , f (3.39)
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With the definition of G−
fi in (3.52c),

Ĝfi =
[

Ĝ−
fi I

]
; i = 2, 3, . . . , f (3.40)

where Ĝfi is the estimation of Gfi in (3.10d).

Therefore, the estimate of Gf can be obtained based on (3.6b), which

is lower triangular but is not exactly Toeplitz due to estimation error. Af-

ter taking the average of the diagonal block components of Ĝf , the Toeplitz

structure of Ĝf can be preserve as,

Ĝf =




I 0 · · · 0

Ĝ1 I · · · 0
...

...
. . .

...

Ĝf−1 Ĝf−2 · · · I


 (3.41)

Furthermore, notice that



G1

G2
...

Gf−1


 =




C
CA
...

CAf−2


 K = Γf−1K

The Kalman gain, K, can be calculated as

K̂ = Γ̂†f−1




Ĝ1

Ĝ2
...

Ĝf−1


 (3.42)

where Γ̂†f−1 can be obtained as discussed in Subsection 3.3.1. To make the

eigenvalue of the predictor A − KC lie strictly inside the unit circle, the K̂

can be further refined by solving the steady state algebraic Riccati equation

[2].
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After calculating the estimates of K, the B and D matrices can be

estimated optimally using the estimates of A, C, K and F [59].

3.3.4 Simulation studies

In this subsection, two simulated case studies are reported under closed-

loop condition. For comparison we use the N4SID routine in the System

Identification Toolbox (Version 5.0) of Matlab, which actually implemented the

canonical variate analysis (CVA) weighting, as the standard SIM algorithm.

3.3.4.1 Simulation example: a SISO process

We simulate the following single input and single output (SISO) process

yk + ayk−1 = buk−1 + ek + cek−1 (3.43)

where a = −0.9, b = 1, and c = 0.5. The feedback controller is

uk = −Kyk + rk (3.44)

The reference signal, rk, and innovation sequence, ek, are white noise with

cov(rk) = 2, and cov(ek) = 1, respectively. Open-loop experiments are simu-

lated with K = 0 and closed-loop experiments with K = 0.6. In both cases,

we choose p = 9, f = 3 for PARSIM-Es, and run 20 independent Monte Carlo

simulations. The sampling size for each experiment is 4000. The identification

results from PEM implemented using the ARMAX routine in Matlab’s System

Identification Toolbox are used here as as a benchmark.
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The pole estimation results for both open-loop and closed-loop exper-

iments are shown in Fig. 3.1. From the results, we can conclude that the

performances of all three methods are excellent in the open-loop case. For

the close-loop identification, the estimate from PARSIM-E is comparable with

that from PEM, while the traditional SIM with the CVA weighting fail to

provide consistent estimates.

The results of frequency response estimations for the closed-loop simu-

lation are shown in Fig. 3.2, Fig. 3.3, Fig. 3.4 and Fig. 3.5. From the results

we can see that the estimate of frequency response from N4SID is biased. The

identification results from PARSIM-E is very close to those from PEM.

3.3.4.2 Simulation example: a MIMO process

In this subsection, we simulate the following 2×2 linear dynamic system

xk+1 =




0.67 0.67 0 0
−0.67 0.67 0 0

0 0 −0.67 −0.67
0 0 0.67 −0.67


 xk (3.45a)

+




0.6598 −0.5256
1.9698 0.4845
4.3171 −0.4879
−2.6436 −0.3416


 uk

+




−0.6968 −0.1474
0.1722 0.5646
0.6484 −0.4660
−0.9400 0.1032


 ek

yk =

[ −0.3749 0.0751 −0.5225 0.5830
−0.8977 0.7543 0.1159 0.0982

]
xk + ek (3.45b)
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The output feedback controller is

uk = rk + Fbyk (3.46)

where rk is the reference signal and Fb is the feedback gain matrix. In the ex-

periment, we use the pseudo-random binary signals (PRBS) with clock period

of 5 samples as the reference sequences. 4000 samples of the input and output

data are generated to identify the model with

cov(ek) =

[
1 0
0 1

]

and

Fb =

[ −0.25 0
0 −0.25

]

We choose p = 9, f = 5 for PARSIM-Es, and run 10 independent Monte Carlo

simulations.

The pole estimation results for the closed-loop experiments are shown

in Fig. 3.6, Fig. 3.7 and Fig. 3.8. From the results we can see that the

PARSIM-Es provide consistent estimates, while the N4SID subroutine with

CVA weighting results in biased estimates.

The estimates of the frequency response for the closed-loop simulations

are shown in Fig. 3.9, Fig. 3.10 and Fig. 3.11. We can see that the estimated

frequency responses from PARSIM-Es match well with that of the real system.

The traditional SIM fails to provide the consistent frequency responses.
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3.4 Comparisons of closed-loop subspace identification
methods

In this section, we introduce another closed-loop SIM denotes as ”whiten-

ing filter” approach and investigate the similarity and difference of the ap-

proach and the ”innovation estimation” approach.

Notice that the system described by (3.1) can also be represented as

xk+1 = AKxk + BKuk + Kyk (3.47a)

yk = Cxk + Duk + ek (3.47b)

where yk ∈ <ny , xk ∈ <n, uk ∈ <nu and ek ∈ <ny are the system output,

state, input and innovation respectively. A and C are system matrices with

appropriate dimensions. K is the Kalman filter gain. AK = A − KC, and

BK = B−KD. We refer to (3.47) as the state space model in predictor form.

The system represented by (3.1) and the represented by (3.47) are

equivalent, but system (3.1) uses the original process A matrix while system

(3.47) uses the predictor AK matrix. If the process to be identified is unsta-

ble, the predictor Ak matrix can still be stable. The closed-loop identification

problem is: given a set of input/output and reference measurements under

closed-loop, estimate the system matrices (A,B,C,D) and Kalman filter gain

K up to a similarity transformation.
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3.4.1 Closed-loop Subspace Identification Methods

3.4.1.1 Overview of closed-loop SIMs

Based on state space description in (3.1), an extended state space model

can be formulated as (3.4)

Yf = ΓfXk + HfUf + GfEf

Solving xk by iterating (3.47), it is straightforward to derive the follow-

ing relation as (3.14),

Xk = LzZp + Ap
KXk−p

Substituting (3.14) into (3.4), we obtain

Yf = ΓfA
p
KXk−p + ΓfLzZp + HfUf + GfEf (3.48)

If the past horizon p is large enough, the first term on the RHS tends to zero for

stable AK . The last two terms of the RHS of (3.48) are correlated for closed-

loop systems. Therefore, most of the closed-loop SIMs try to decouple these

two terms. The SIMPCA methods proposed in [69] and a later modification in

[27] move HfUf to the LHS and use principal component analysis on the joint

input/output data simultaneously. We refer to these approaches as one-step

approaches since no pre-estimation is needed. Another approach that falls in

the one-step approach category is the observer/Kalman filter ID (OKID) by

[52] .

Since equation (3.48) is actually composed of f block rows in each term

and the first block row gives an estimate of the innovation, Qin and Ljung [58]
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propose an innovation estimation method (PARSIM-E) that partition (3.48)

into f block rows and use the estimated innovation from previous block rows

to further estimate model parameters of the next block row sequentially. An

alternative method known as PARSIM-E1 [40] estimates the innovation from

the first block row and then treats êk as known to estimate other model para-

meters. The SSARX approach proposed in [29] uses the predictor form (3.47)

and pre-estimate a high order ARX model parameter to decouple the cor-

relation between Uf and Ef . The well known CVA algorithm proposed by

Larimore [37] actually pre-estimate Hf using a high order ARX and the move

ĤfUf to the LHS of (3.48). Shi and MacGragor [61] also use this technique.

These approaches are referred to as two-step approaches in which a pre-

estimation step is needed to decouple the noise and control input. The pre-

estimation step is usually done by a high-order ARX; only different information

is used to carry out the main step.

Inspired from the SSARX approach, Chiuso and Picci [9] give a vari-

ation known as the whitening filter approach that uses the predictor model

form and carry out multi-stage projections row by row. In each block row

projection causality is strictly enforced, similar to [57]. No pre-estimation is

involved but the projections have to be done block-row wise to decouple noise

from control input. We refer to these approaches as multi-stage projection

approaches.
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3.4.1.2 Whitening Filter Approach

Based on state space description in (3.47), an alternative extended state

space model can be formulated as

Yf = Γ̄fXk + H̄fUf + ḠfYf + Ef (3.49)

The modified extended observability matrix is

Γ̄f =




C
CAK

...

CAf−1
K


 (3.50)

and H̄f and Ḡf are:

H̄f =




D 0 · · · 0
CBK D · · · 0

...
...

. . .
...

CAf−2
K BK CAf−3

K BK · · · D


 (3.51a)

Ḡf =




0 0 · · · 0
CK 0 · · · 0

...
...

. . .
...

CAf−2
K K CAf−3

K K · · · 0


 (3.51b)

Similar to the innovation estimation method, one can substitute (3.14) into

(3.49) and partition the resulting equation row-wise as

Yfi = Γ̄fiLzZp + Γ̄fiA
p
KXk−p + H̄fiUi + ḠfiYi + Efi

where

Γ̄fi = CAi−1
K (3.52a)

H̄fi
∆
=

[
CAi−2

K BK · · · CBK D
]

(3.52b)

Ḡfi
∆
=

[
CAi−2

K K · · · CK 0
]

(3.52c)
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Therefore, through a multi-stage least squares similar to the innovation es-

timation method, one can estimate Γ̄fLz, H̄f and Ḡf . Γ̄f can be estimated

through a weighted SVD. It is well known that AK , C, D, BK , and K can be

obtained through the estimates of Γ̄f , H̄f and Ḡf . After that A and B can be

backed out through the definition of AK and BK .

[Remark 1] The above analysis clearly illustrates the similarity be-

tween the innovation estimation method and the whitening filter approach.

They all partition the extended state space row-wise and utilize multi-stage

least square method to estimate system matrices. The innovation estimation

method starts from a state space model in innovations form, while the whiten-

ing filter approach is based on a state space model in predictor form.

[Remark 2] There is another implementation of the whitening filter

approach [29]. One can estimate the Markov parameters through the high

order ARX, and subtracting the effect of future inputs and outputs.

[Remark 3] As pointed out by Chiuso and Picci [9], both approaches

require that eigenvalues of AK lie strictly inside the unit circle. For a finite

past horizon, they are biased due to Ap
KXk−p 6= 0.

[Remark 4] For finite data the predictor model form is time varying

due to a time varying Kalman filter, even though the system is time-invariant.

This may complicate the rank condition of Γ̄f and the subsequent extraction

of Ak and C from Γ̄f . From this point the PARSIM-E is superior to SSARX

or the ”whitening filter” approach.
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[Remark 5] The innovation estimation method uses the process A ma-

trix to form the observability matrix, while the whitening filter approach uses

the predictor matrix AK . For open loop unstable systems the whitening filter

approach can be numerically advantageous, as demonstrated in [9]. However,

for bounded systems such as stable or integrating systems, this advantage dis-

appears. In the next section we compare these methods using the closed-loop

example given in [50] which has one integrating pole and four stable poles.

The simulation results seems to favor the innovation estimation method.

3.4.2 Simulation Study

The example in [50] is adopted here for comparison. The model of the

plant is given in a state space form:

A =




4.40 1 0 0 0
−8.09 0 1 0 0
7.83 0 0 1 0
−4.00 0 0 0 1
0.86 0 0 0 0




, B =




0.00098
0.01299
0.01859
0.0033
−0.00002




CT =




1
0
0
0
0




, K =




2.3
−6.64
7.515
−4.0146
0.86336




, D = 0

The feedback mechanism is

uk = −F (q)yk + rk

where

F (q) =
(0.61q4 − 2.03q3 + 2.76q2 − 1.83q + 0.49)

q4 − 2.65q3 + 3.11q2 − 1.75q + 0.39
(3.54)
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and rk is a zero-mean white noise sequence with standard deviation 1. We

take the number of data points j = 1200 and generate 100 data sets, each

one with the same reference input rk but with different noise sequence ek.

We choose f = p = 20 for innovation estimation methodes, and f = p = 30

for whitening filter approaches. In our simulation, we observe that to obtain

unbiased estimation the whitening filter approach needs larger f and p than

the innovation estimation method. The pole estimation results for the closed-

loop experiments are shown in Figs. 3.13, 3.15, 3.17 and 3.19. From the results

we can see that all the methods can provide consistent estimates, while the

whitening filter approach produce the worst results.

The estimates of the frequency response for the closed-loop simulations

are shown in Figs. 3.12, 3.14, 3.16 and 3.18. We can see that the estimated

frequency responses from all the methods match well with that of the real

system at low frequency, but they all show bias at high frequency.

3.5 Summary

In this chapter, the feasibility of the closed-loop subspace identification

is established. It is shown that SIMs are feasible for closed-loop data with

roughly the same identifiability requirements as more traditional methods such

as PEMs. The key idea is that the consistent identification can be achieved

through innovation estimation. The new algorithm is shown to be consistent

under certain assumptions. The simulation studies show that the proposed

algorithm is consistent under closed-loop conditions, while the traditional SIMs
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with CVA weighting fail to provide consistent estimates.

We also analyze another recently proposed closed-loop SIM referred

to as the whitening filter approach. The similarity and difference of them

are investigated in detail. Both approach partition the extended state space

model into block rows and use the information estimated from the first block

row further estimate model parameters in the remaining rows. Through this

partition the correlation between the process input and innovation due to

feedback is decoupled. It turns out that although they are based on different

representations of state space models all of them can be implemented through

multi-stage least squares. All closed-loop SIMs can be classified into one-step,

two-step and multi-stage approaches and each of them seems to have its own

advantages.
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Figure 3.1: Pole estimates for the SISO simulation example
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Figure 3.2: The estimates of the frequency response from PEM for SISO closed-
loop simulations
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Figure 3.3: The estimates of the frequency response from PARSIM-E SISO
closed-loop simulations
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Figure 3.4: The estimates of the frequency response from PARSIM-E1 SISO
closed-loop simulations
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Figure 3.5: The estimates of the frequency response from N4SID for SISO
closed-loop simulations
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Figure 3.6: The N4SID pole estimation for 10 Monte-Carlo closed-loop simu-
lations: × estimated pole, + system pole
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Figure 3.7: The PARSIM-E pole estimation for 10 Monte-Carlo closed-loop
simulations: × estimated pole, + system pole
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simulations: × estimated pole, + system pole

69



Bode Diagram

Frequency (rad/sec)

P
ha

se
 (

de
g)

; M
ag

ni
tu

de
 (

dB
)

−50

0

50
From: U(1)

T
o:

 Y
(1

)

true
N4SID

−720

−360

0

360

T
o:

 Y
(1

)

−50

0

50

T
o:

 Y
(2

)

10
−2

10
−1

10
0

−720

−360

0

360

T
o:

 Y
(2

)

From: U(2)

10
−2

10
−1

10
0

Figure 3.9: The estimates of the frequency response from N4SID for MIMO
closed-loop simulations
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Figure 3.10: The estimates of the frequency response from PARSIM-E for
MIMO closed-loop simulations
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Figure 3.11: The estimates of the frequency response from PARSIM-E1 for
MIMO closed-loop simulations
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Figure 3.13: The eigenvalues of estimated A matrix from PARSIM-E: × esti-
mated pole, + system pole.
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Figure 3.14: The Bode magnitude plot of PARSIM-E1 for SISO closed-loop
simulations.
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Figure 3.15: The eigenvalues of estimated A matrix from PARSIM-E1: ×
estimated pole, + system pole.
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Figure 3.16: The Bode magnitude plot of Jansson’s approach for SISO closed-
loop simulations.
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Figure 3.17: The eigenvalues of estimated A matrix from SSARX: × estimated
pole, + system pole.
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Figure 3.18: The Bode magnitude plot of ”whitening filter” approach for SISO
closed-loop simulations.
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Figure 3.19: The eigenvalues of estimated A matrix from ”whitening filter”
approach: × estimated pole, + system pole.
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Chapter 4

An Optimal Structured Residual Approach for

Unidirectional Faulty Sensor Diagnosis

4.1 Introduction

Measurements in chemical processes, such as temperature, flow rate,

and pressure, are subjected not only to random and systematic errors, but

also to process and sensor faults. We cannot expect that a set of measure-

ments will exactly obey the physical and chemical principles governing the

process when faults occur. In the case of sensor faults, the control system will

operate the process based on incorrect information, which will result in prod-

uct quality variation or even off-specification products. Sensor validation, as

an important step in ensuring process integrity and reducing product quality

variation, involves detecting and identifying faulty sensors. Once faulty sen-

sors are identified, the validation algorithm should estimate fault magnitudes

and replace the faulty measurements with reconstructed values. Therefore the

control system can be maintained on-line even though some sensors are faulty.

Much of the early work related to sensor validation falls into the model

based approach. The actual behavior of the plant is compared with that pre-

dicted on the basis of the mathematical model, which can be obtained by
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material and energy balances [13], neural networks [35], principal component

analysis (PCA) [16], and subspace identification [56]. Residuals are generated

as the difference between actual outputs and those predicted by the model.

They are composed of noise, faults, disturbances, and modeling errors. Early

efforts to sensor validation can be traced back to data reconciliation in chem-

ical engineering and fault detection in aerospace applications. In chemical

engineering applications, usually material and energy balance equations serve

as the residuals generating model. Data reconciliation involves optimally ad-

justing measurements based on model constraints. The work in this area

is reviewed thoroughly by Crowe [13]. In aerospace applications, Chow and

Willsky [12] have proposed a systematic mechanism to generate analytical

redundancy for fault detection and isolation.

While there is an extensive literature in the process monitoring and

fault detection area using various approaches, there is relatively little litera-

ture dealing with the fault identification issue. Serth and Heenan [60] have

proposed a modified iterative measurement test to identify gross errors. They

serially eliminated the most suspect measurement to see whether the statisti-

cal test violation is removed after the reconciliation. Dunia et al. [16] have

proposed a sensor validation index to identify the faulty sensor by reconstruct-

ing each sensor in turn based on the PCA model. Yoon and MacGregor [70]

have isolated faults through the contribution plot based on the analysis of

historical data with PCA and partial least square (PLS). By designing struc-

tured residuals that are insensitive to a particular subset of faults, Gertler and
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Singer [21] have proposed a structural residuals framework for fault detection

and isolation based on the parity equation. Recently, Qin and Li [55, 56] have

proposed a structured residuals approach which makes one structured resid-

ual insensitive to one subset faults while with maximized sensitivity to other

faults.

In this chapter, we propose a new optimal structured residuals approach

for unidirectional fault identification. To maximize fault isolation ability, a

matrix of optimal structured residuals are designed. Each of them is insensitive

to one of faults while being most sensitive to one of remaining ones. The

maximum of all structured residuals in each row is then selected as the optimal

one for fault isolation. Through this approach, optimal structured residual

directions with maximum fault isolation ability are obtained.

The rest of this chapter is organized as follows. In the next section,

the fault representation based on the quasi-steady state model is briefly intro-

duced. Our main result, the proposed optimal structured residuals approach is

discussed in Section 4.3. Necessary and sufficient conditions for fault isolation

are investigated in Section 4.4. A maximum likelihood algorithm for data re-

construction is introduced in Section 4.5. The utility of the proposed approach

is illustrated in Section 4.6 using data from an industrial boiler, followed by

concluding remarks in Section 4.7.
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4.2 Model and fault representation

A quasi-steady state process model can be obtained as follow from first

principles or data based approaches,

Bx∗(t) = e∗(t) (4.1)

where x∗ ∈ <n is a vector of normal sensor measurements, B ∈ <m×n is the

model matrix, and e∗ ∈ <m is the model residual which contains measurement

noise, process noise, and possible model mismatch. Under normal conditions

the residual vector e∗ can be assumed to be zero mean white noise. One

should notice that B can be easily obtained from statistical approaches such

as principal component analysis and partial least squares.

When sensor faults occur, the measurement can be represented as:

x(t) = x∗(t) + Ξifi(t) (4.2)

where fi(t) ∈ <li is a vector of the fault magnitude, Ξi ∈ <n×li is a matrix

of fault directions, and li is the dimension of the fault. The following relation

represents the model residual under faulty measurements,

e(t) = Bx(t) = Bx∗(t) + BΞifi(t) = e∗(t) + BΞifi(t) (4.3)

The objective of sensor validation is to detect the onset of the fault, identify

fault direction matrix, Ξi, and estimate the fault magnitude, fi(t), from faulty

measurements.
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In order to detect the occurrence of the fault, Qin and Li [55] define a

fault detection index as

d(t) = eT (t)R−1
e e(t) (4.4)

where Re ≡ E{e∗(t)e∗T (t)} is the covariance matrix of e∗(t) and can be es-

timated from normal process data. Without sensor faults the fault detection

index follows a Chi-square distribution with m degrees of freedom [1].

d(t) = e∗T (t)R−1
e e∗(t) ∼ χ2(m) (4.5)

As a result, sensor faults can be detected with a certain control limit dα =

χ2
α(m), where α is the level of significance. To reduce the effect of tran-

sients and noise in measured data, an exponentially weighted moving average

(EWMA) filter can be applied to e(t) [55].

4.3 Fault identification with optimal structured residu-
als

After the detection of faults, it is desirable to identify faulty sensors

subsequently. In this section, the structured residual approach is briefly re-

viewed. The drawback of the traditional approach is illustrated and a new

optimal structured residual criterion is introduced in detail.
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4.3.1 Review of structured residual approaches

The structured residual approach is introduced by Gerlter and Singer

[21]. In their work, the structured residual, ri(t), is defined as

ri(t) = wT
i e∗(t) + wT

i BΞifi(t) (4.6)

such that

wT
i BΞi = 0

where wi is the structured residual direction, BΞi is the representation of the

ith fault direction as defined in (4.3). With this design criterion, the structured

residual is insensitive to the ith fault.

As point out by Qin and Li [55], the structured residual approach does

not maximize the fault isolation ability. Based on this analysis, they proposed

an optimal structured residual approach with maximized sensitivity (SRAMS).

The SRAMS direction, wi, is defined as

wi = arg max
‖wi‖=1

‖wT
i [B◦Ξ1, · · · , B◦Ξn]‖2 (4.7)

such that

wT
i B◦Ξi = 0

where B◦ = [b◦1 · · · b◦n] contains normalized columns of B. With the SRAMS

approach, the structured residual defined in (4.6) is insensitive to one of faults

but has maximized sensitivity to other faults.

Here we analyze the approach in more detail and point out the possi-

bility of misidentifying faults. For the single fault case, the SRAMS criterion
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is equivalent to

wi = arg max
‖wi‖=1

‖wT
i B◦‖2 s.t. wT

i b◦i = 0

Geometrically, it makes wi orthogonal to b◦i and
∑

j 6=i cos
2θij maximum, where

θij is the angle between wi and b◦j . However, it could happen that wi maxi-

mizes the objective function and is orthogonal or nearly orthogonal to another

fault, i.e., b◦j(j 6= i). The geometric interpretation is illustrated in Figure 4.1,

where w1 designed to be orthogonal to b1 based on (4.7) happens to be nearly

orthogonal to b4. In that case the structure residual (4.6) will be not only

insensitive to the 1st fault but also to the 4th fault, which makes them not

isolable. To formulate the analysis, we provide a theorem as follows

Theorem 4.3.1. For a given set of fault direction matrices {Ξ1, · · · , Ξn},
wi designed from the SRAMS in (4.7), which is orthogonal to BΞi, is also

orthogonal to BΞj(j 6= i) if and only if w′
i = wi, where

w′
i = arg max

‖w′i‖=1
‖w′T

i [B◦Ξ1, · · · , B◦Ξj−1, B
◦Ξj+1, · · ·B◦Ξn]‖2 s.t. w′T

i B◦Ξi = 0

Under this condition, faults Ξi and Ξj (j 6= i) are not isolable using the SRAMS

method.

Proof: See Appendix B.

4.3.2 The design of optimal structured residuals

In this subsection we propose a new optimal structured residuals (OSR)

criterion for fault diagnosis. The optimal structured directions can be obtained
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as follows:

wj
i = arg max

‖wj
i ‖=1

wjT
i b◦j j = 1, · · · , i− 1, i + 1, · · · , n (4.8)

such that

wjT
i b◦i = 0 (4.9)

Geometrically, as shown in Figure 4.1, wj
i is the projection of b◦j onto the plane

orthogonal to b◦i . To derive an explicit expression of wj
i , we choose wj

i as

wj
i = (I − b◦i b

◦T
i )zj

i (4.10)

such that (4.9) is satisfied, where zj
i is a vector with appropriate dimension.

After introducing a Lagrange multiplier, the objective function can be defined

as

J = zjT
i (I − b◦i b

◦T
i )b◦j +

1

2
λ(1− ‖(I − b◦i b

◦T
i )zj

i ‖2)

Differentiating the objective function with respect to zj
i and with the help of

(4.10), we can obtain

(I − b◦i b
◦T
i )b◦j = λ(I − b◦i b

◦T
i )zj

i = λwj
i

since ‖wj
i ‖ = 1, we have

λ = ‖(I − b◦i b
◦T
i )b◦j‖ (4.11)

wj
i =

(I − b◦i b
◦T
i )b◦j

‖(I − b◦i b
◦T
i )b◦j‖

(4.12)

Similar to SRAMS [55, 56], the proposed optimal structured residuals approach

can be extended to multidimensional faults.
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After obtaining the structured direction, the structured residual can be

defined as:

rj
i (t) = wjT

i e(t) = wjT
i [e∗(t) + bkfk(t)] j = 1, · · · , i− 1, i + 1, · · · , n (4.13)

From the definition, we can see that if i = k, the corresponding structured

residuals will be wjT
i e∗(t), which is the same as the fault free case, but other

residuals rj
i (t) for i 6= k will be large. We can formulate the statement as

rj
i (t) =

{
wjT

i e∗(t) i = k,

wjT
i e∗(t) + wjT

i bkfk(t) i 6= k.
(4.14)

From (4.13), we can obtain a structured residuals matrix as

R(t) =




− r2
1(t) r3

1(t) · · · rn
1 (t)

r1
2(t) − r3

2(t) · · · rn
2 (t)

...
...

. . .
...

...
r1
n−1(t) · · · rn−2

n−1(t) − rn
n−1(t)

r1
n(t) r2

n(t) · · · rn−1
n (t) −




(4.15)

We choose the one with maximum absolute value among each row of R(t) for

fault diagnosis.

ri(t) = max
j 6=i

|rj
i (t)| for i = 1, · · · , n (4.16)

If fault k occurs, rk
i (t) is maximized for the ith row expect for i = k. Therefore,

eq 4.16 picks the kth column of R(t) which is the largest, that is,

ri(t) = rk
i (t) = wkT

i [e∗(t) + bkfk(t)] (4.17)
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4.3.3 Fault identification indices

After constructing structured residuals, one needs to design appropriate

statistical inference for fault diagnosis. In this subsection, we discuss the

deterministic fault and the stochastic fault separately along with identification

indices defined by Qin and Li [55].

For deterministic faults, such as bias or drifting, the distribution of

rj
i (t) in (4.14) is

rj
i (t) ∼

{
N(0, wjT

i Rew
j
i ) i = k,

N(wjT
i bkf̄k, w

jT
i Rew

j
i ) i 6= k.

(4.18)

where f̄k is the bias of the fault, and Re is the covariance matrix of normal

measurements. After picking up the kth column of R(t) with (4.17), with no

fault we have

r2
i (t)

wkT
i Rewk

i

∼ χ2(1),

or

r2
i (t)

wkT
i Rewk

i

≤ χ2
α(1)

with confidence level α. Therefore, one can define a structured fault identifi-

cation index as

I i
SR(t) =

r2
i (t)

wkT
i Rewk

i χ
2
α(1)

. (4.19)

Under normal conditions I i
SR < 1; if there is a fault in the kth sensor I i

SR > 1

except for i = k. One can also apply an EWMA filter to structured residuals

to obtain a filtered structured residual index (I i
FSR) [55].
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For stochastic faults, such as precision degradation, the distribution of

rj
i (t) in (4.14) is

rj
i (t) ∼

{
N(0, wjT

i Rew
j
i ) i = k,

N(0, wjT
i Rdw

j
i ) i 6= k.

where Rd is the covariance matrix of degraded measurements. Assuming that

the stochastic fault is independent of e∗(t), the covariance Rd can be derived

from (4.17) as follows

Rd = Re + σ2
fk

bkb
T
k (4.20)

where σ2
fk

is the variance of the fault. As proposed by Qin and Li [55], one

can apply cumulative variance (Vsum) index to identify variance change.

V i
sum(t) =

t∑

l=t−T

(ri(l)− µ̂i)
2

such that

µ̂i =

∑t
l=t−T ri(l)

T + 1

where T is the moving window size. After picking up the kth column of R(t)

with (4.17), with no fault we have,

V i
sum(t)

wkT
i Rewk

i

∼ χ2(T )

Therefore one can define a Vsum index as

I i
Vsum

(t) =
V i

sum(t)

wkT
i Rewk

i χ
2
α(T )

(4.21)

If I i
Vsum

> 1 for all i but i = k, the kth sensor has a variance fault.

After detecting the occurrence of faults, a faulty sensor can be identified

as follows
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1. Based on the process model matrix B, calculate optimal structured di-

rections wj
i off-line.

2. From the process residual e(t), calculate optimal structured residuals

ri(t), and corresponding identification indices.

3. If the ith index is less one while other indices are greater than one, the

ith sensor is faulty.

4.4 Fault isolability

The fault isolability issue with structured residuals is discussed by

Gertler [20] in the transfer matrix form. Here we investigate the issue and

discuss how to deal with it for the OSR method.

As we can see, if two columns of B, i.e., bi and bj, are exactly collinear,

the ith fault and the jth fault are not isolable. Therefore, the necessary con-

dition for the ith and the jth faults to be isolable is that bi and bj are not

collinear. When two fault directions are nearly collinear, they are difficult to

isolate, unless the fault magnitude is sufficiently large.

If a variable has very small coefficients in (4.1), i.e., bk has a very small

norm, the kth sensor faults is difficult to detect or identify. This can happen to

models derived from first principles or from data based methods such as PCA

[54]. For a PCA model B = P̃ T [55], where P̃ is the residual loading matrix

corresponding to the smallest singular values. The matrix P̃ T can have a near

zero column if the corresponding principal loading matrix P T has a column
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with a norm close to one. In this case the sensor fault corresponding to this

column is hard to detect or identify.

To measure the collinearity between two columns bi and bk, we denote

the angle between them as βik, and the angel between bk and wk
i as θik. It is

easy to show that

θik =

{
90◦ − βik βik ≤ 90◦,
βik − 90◦ βik > 90◦.

since wk
i⊥bi. If bi and bk are nearly collinear, βik is close to 0◦, making θik

close to 90◦. For a bias type of fault the mean shift due to the fault is derived

from (4.17) as

E[ri(t)] = wkT
i bkf̄k = ‖bk‖f̄kcosθik

Therefore, if θik is close to 90◦, the impact of the fault can hardly be observed.

We can discuss the sufficient condition for fault isolability, which is how

large the fault magnitude should be to guarantee fault isolability. When fault

k occurs, from (4.17) and (4.18) we have

ri(t) = rk
i (t) ∼

{
N(0, wkT

i Rew
k
i ) i = k,

N(wkT
i bkf̄k, w

kT
i Rew

k
i ) i 6= k.

(4.22)

Therefore, we can obtain [32]

Yi(t) =
r2
i (t)

wkT
i Rewk

i

∼
{

χ2(1) i = k,
χ2(1, λi) i 6= k.

(4.23)

where χ2(1, λi) is the the non-central χ2 with one degree of freedom and non-

centrality

λi =
(wkT

i bkf̄k)
2

wkT
i Rewk

i
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To guarantee that the ith fault is isolated from the kth fault with some confi-

dence level β, we must have

P{I i
SR(t) =

Yi(t)

χ2
α(1)

> 1} = 1− P [Yi(t) ≤ χ2
α(1)] = β

or P [Yi(t) ≤ χ2
α(1)] = 1− β. From (4.23) we know that

P [Yi ≤ χ2
1−β] = 1− β

Therefore, if we find a critical value, λic, such that

χ2
1−β(1, λic) = χ2

α(1),

then I i
SR(t) > 1 with confidence level β for λi > λic.

With the help of (4.23), we can derive the sufficient condition for de-

terministic fault isolability as

|f̄k| > [wkT
i Rew

k
i λic]

1
2

wkT
i bk

=
[wkT

i Rew
k
i λic]

1
2

‖bk‖cosθik

, (4.24)

From the above equation, we can see that two important factors are ‖bk‖ and

θik.

The sufficient isolability condition for the variance type of fault can be

derived as follows. When fault k occurs and i = k we know that

P{ V i
sum(t)

wkT
i Rewk

i

≤ χ2
α(T )} = α

or

P{V i
sum ≤ wkT

i Rew
k
i χ

2
α(T )} = α
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For another sensor i (i 6= k),

V i
sum(t)

wkT
i Rdwk

i

∼ χ2(T ) for all i 6= k

Therefore

P{ V i
sum(t)

wkT
i Rdwk

i

≥ χ2
1−β(T )} = β

or

P{I i
Vsum

(t) =
V i

sum(t)

wkT
i Rewk

i χ
2
α(T )

≥ wkT
i Rdw

k
i χ

2
1−β(T )

wkT
i Rewk

i χ
2
α(T )

} = β, for i 6= k

To guarantee the I i
Vsum

(t) > 1 with some confidence level β, we require

wkT
i Rdw

k
i χ

2
1−β(T ) > wkT

i Rew
k
i χ

2
α(T )

Using the result of (4.20) we obtain

σ2
fk

>
wkT

i Rew
k
i [χ

2
α(T )− χ2

1−β(T )]

wkT
i bkbT

k wk
i χ

2
1−β(T )

=
wkT

i Rew
k
i [χ

2
α(T )− χ2

1−β(T )]

χ2
1−β(T )‖bk‖2cos2θik

(4.25)

Again ‖bk‖ and θik play an important role in the isolation of the kth fault from

the ith fault.

From a practical point of view, in order to make B matrix satisfy fault

isolability conditions, once B matrix is obtained, it is always a good practice

to check the angles between every two columns and the norm of the columns.

It will provide information about the degree of difficulty for fault isolation.
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4.5 Reconstruction of normal measurements

After identifying the faulty sensor, it is important to determine the

necessary adjustment and to bring the measurement back to normal. Dunia

and Qin [15] proposed a least-squares solution to estimate the fault magni-

tude and investigated the reconstructability issue for the model obtained from

PCA. In this section, the maximum likelihood estimation of fault magnitude

is proposed for the general linear model.

If there are sensor faults, the mean of actual residual e(t) will increase

according to (4.3) as

e(t) = e∗(t) + BΞifi(t) ∼ N(BΞifi(t), Re) (4.26)

where Re is the covariance matrix of e∗(t). Since the fault direction matrix, Ξi,

has been identified, the fault magnitude can be obtained through maximum

likelihood estimation

f̂i(t) = arg min
f̂i

‖Q[BΞifi(t)− e(t)]‖2 (4.27)

where QT Q = R−1
e is the Choleskey factorization of R−1

e . It is straightforward

that if BΞi is full column rank, the estimate of the fault magnitude is the

maximum likelihood estimation

f̂i(t) = (ΞT
i BT R−1

e BΞi)
−1ΞT

i BT R−1
e e(t) (4.28)

If BΞi is not full column rank, the estimate of the fault magnitude is the

minimum 2-norm solution [22] of (4.27)

f̂i(t) = V1Σ
−1
r UT

1 Qe(t) (4.29)
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where

QBΞi = [U1 U2]

[
Σr 0
0 0

] [
V T

1

V T
2

]

is the singular value decomposition of QBΞi. According to (4.2), the recon-

structed measurements are

x̂∗(t) = x(t)− Ξif̂i(t) (4.30)

4.6 An industrial boiler case study

The proposed fault identification and reconstruction scheme are applied

to an industrial boiler described in Qin and Li [55] with seven measured vari-

ables. Over 630 data points are collected at a five-minute sampling interval.

The seven variables considered are list in Table 4.1. The data are scaled to

zero mean and unit variance, and then the process model is built using PCA.

The number of principal components is determined based on the best recon-

struction criterion [54] and the identified process model, B, is derived as in

[55].

Variable name Sensor no. Minimum Maximum Mean Std
Air flow 1 215.88 415.74 314.98 44.84
Fuel flow 2 10.48 20.13 16.43 2.11

Steam flow 3 150.98 300.62 244.12 33.14
Economizer temperature 4 622.66 737.81 699.53 23.67

Stack pressure 5 2.02 10.79 7.11 1.93
Wind-box pressure 6 2.69 11.30 7.52 2.00

Feed water flow 7 172.97 308.18 253.58 31.14

Table 4.1: The process variables for the boiler process
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B =




−0.1466 −0.0950 −0.1198 −0.1282 −0.3028 −0.1012 0.9147
−0.1017 −0.0788 0.1813 0.8058 −0.3142 −0.4481 −0.0414

0.0967 0.6896 0.3149 −0.2982 −0.5361 −0.1660 −0.1093
−0.1522 0.1498 0.2087 −0.2053 0.5983 −0.7062 0.1097
−0.7627 0.4782 −0.2731 0.1977 0.1347 0.2403 −0.0094
−0.4570 −0.3376 0.7684 −0.1486 −0.0553 0.2473 −0.0194



(4.31)

In this work, two kinds of faults are simulated: bias and precision

degradation, which can be represented as

fi(t) = C1 (4.32)

fi(t) ∼ N(0, C2) (4.33)

where C1 and C2 are constants for different faults, and fi is the fault mag-

nitude. Bias and precision degradation faults represent changes in mean and

variance, which are suitable for EWMA filters and cumulative variance indices.

Drift and complete failure considered in Qin and Li [55] affect both the mean

and variance, which can be identified by both EWMA and cumulative vari-

ance indices. For this reason we consider bias and precision degradation only

in this paper. In order to compare the fault identification ability of different

approaches, single sensor faults with different fault magnitudes are introduced

at the 200th sample (4.2). As our purpose is not to compare fault detection

ability of different approaches, we assume that the fault is detected at the

220th sample.

To compare the fault identification ability of OSR and SRAMS, two

kinds of fault identification indices are investigated, the filtered structured
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Faulty Sensor
1 2 3 4 5 6 7

O/S O/S O/S O/S O/S O/S O/S
0.5 % -/- -/- -/- -/- -/- -/- -/-
1.5 %

√
/- -/- -/-

√
/- -/- -/- -/-

2.5 %
√

/-
√

/-
√

/-
√

/- -/- -/- -/-
3.5 %

√
/-

√
/-

√
/-

√
/- -/- -/- -/-

4.5 %
√

/
√ √

/-
√

/-
√

/- -/- -/-
√

/-
7.5 %

√
/
√ √

/-
√

/
√ √

/-
√

/- -/-
√

/-
8.5 %

√
/
√ √

/-
√

/
√ √

/-
√

/-
√

/-
√

/-

Table 4.2: Fault identification results for the single biased sensor with IFSR

through OSR (O) and SRAMS (S) approaches.
√

means the faulty sensor can
be correctly identified, while − means the faulty sensor cannot be identified.

residuals index (IFSR) with EWMA filter coefficient 0.65, and the cumulative

variance index (IVsum) with a moving window size of 20 are used in this work.

They are applied to identify bias and precision degradation, respectively.

Faulty Sensor
1 2 3 4 5 6 7

2.7% 4.0% 3.5% 1.6% 11.8% 10.6% 7.6%

Table 4.3: The minimum bias fault required by fault isolability condition with
α = 0.95 and β = 0.90, which is calculated as the percentage of the mean of
the corresponding sensor.

With the process model matrix defined in (4.31), the optimal structured

residual matrix can be calculated as

R(t) =




− r2
1(t) r3

1(t) r4
1(t) r5

1(t) r6
1(t) r7

1(t)
r1
2(t) − r3

2(t) r4
2(t) r5

2(t) r6
2(t) r7

2(t)
r1
3(t) r2

3(t) − r4
3(t) r5

3(t) r6
3(t) r7

3(t)
r1
4(t) r2

4(t) r3
4(t) − r5

4(t) r6
4(t) r7

4(t)
r1
5(t) r2

5(t) r3
5(t) r4

5(t) − r6
5(t) r7

5(t)
r1
6(t) r2

6(t) r3
6(t) r4

6(t) r5
6(t) − r7

6(t)
r1
7(t) r2

7(t) r3
7(t) r4

7(t) r5
7(t) r6

7(t) −



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where

rj
i (t) = wj

i e(t)

and

wj
i =

(I − bo
i b

oT
i )bo

j

‖(I − bo
i b

oT
i )bo

j‖
i = 1 . . . 7; j = 1, · · · , i− 1, i + 1, · · · , 7

We then pick up the maximum of each row as ri(t) according to (4.16) and

the corresponding fault identification indices, the single faulty sensor can be

identified as discussed at the end of Section 4.3.

Faulty Sensor
1 2 3 4 5 6 7

O/S O/S O/S O/S O/S O/S O/S
5 % -/- -/- -/- -/- -/- -/- -/-
10 %

√
/
√

-/-
√

/- -/- -/- -/- -/-
15 %

√
/
√ √

/-
√

/- -/- -/- -/- -/-
20 %

√
/
√ √

/-
√

/
√

-/-
√

/-
√

/- -/-
25 %

√
/
√ √

/-
√

/
√ √

/-
√

/-
√

/- -/-
30 %

√
/
√ √

/-
√

/
√ √

/-
√

/-
√

/-
√

/-

Table 4.4: Fault identification results for the single precision degraded sensor
with IVsum through OSR(O) and SRAMS (S) approaches.

√
means the faulty

sensor can be correctly identified, while − means the faulty sensor cannot be
identified.
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Faulty Sensor
1 2 3 4 5 6 7

11.8% 18.0% 13.6% 25.1% 22.5% 19.3% 36.2%

Table 4.5: The minimum precision degradation fault required by fault isolabil-
ity condition with α = 0.95 and β = 0.90, which is calculated as the percentage
of the standard deviation of the corresponding sensor.

The fault identification results for a single biased sensor fault with OSR

and SRAMS are shown in Table 4.2. Fault magnitudes are calculated as the

percentage of the mean of corresponding sensor measurements. As we can

see that OSR can identify biased sensors with smaller fault magnitude than

SRAMS does. Compared with the minimum bias required for fault isolability

list in Table 4.3, we can see that the simulation results match approximately

with the theoretical calculation from (4.24).

Table 4.4 illustrates identification results for the precision degraded

sensor with OSR and SRAMS, respectively. Fault magnitudes in this case are

the percentage of stand deviation of the corresponding sensor measurements.

We can conclude that the OSR outperforms SRAMS on identifying the preci-

sion degraded sensor as well. Comparing with the minimum sensor precision

degradation required by fault isolability condition (4.25) listed in Table 4.5, we

can see that the simulation results match approximately with the theoretical

calculation.

In our simulation, we notice that even as the fault magnitude increases,

SRAMS cannot identify the 7th sensor fault. Here we investigate the problem
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in more detail. After calculating the following matrix

{θij} =




90.0◦ 113.3◦ 18.4◦ 95.5◦ 98.2◦ 106.6◦ 91.9◦

34.6◦ 90.0◦ 134.3◦ 91.4◦ 92.0◦ 93.3◦ 90.5◦

17.4◦ 112.1◦ 90.0◦ 96.1◦ 98.9◦ 106.6◦ 92.2◦

147.4◦ 85.9◦ 47.8◦ 90.0◦ 88.1◦ 86.7◦ 89.5◦

146.9◦ 85.9◦ 47.4◦ 88.6◦ 90.0◦ 86.7◦ 89.5◦

145.9◦ 85.9◦ 46.4◦ 88.6◦ 88.0◦ 90.0◦ 89.5◦

148.0◦ 85.9◦ 48.4◦ 88.6◦ 88.1◦ 86.7◦ 90.0◦




where θij is the angle between wi and b◦j , and wi is the ith structured direction

[55]. We can see that b◦7 is almost orthogonal to every structured residual

direction. Therefore when the 7th sensor is faulty, all structured residuals are

statistically insignificant, which makes the 7th fault not isolable from others.

As illustrated in (4.28) in Section 4, the fault estimation algorithm is

independent of the fault types. To compare the performance of different re-

construction algorithms, we define the reconstructed mean square error (MSE)

as

MSE =
1

N − tf + 1

N∑
t=tf

[x̂∗i (t)− x∗i (t)]
2

where x̂∗i (t) is the reconstructed normal measurement and x∗i is the normal

measurement for the ith faulty sensor. N is the sample size, and tf is the fault

detection time, respectively.

Faulty Sensor
1 2 3 4 5 6 7

ML estimates 0.0017 0.0079 0.0028 0.0161 0.0127 0.0065 0.1002
LS estimates 0.0053 0.0168 0.0068 0.0279 0.0168 0.0137 0.1006

Table 4.6: The mean square error of reconstructed measurements with maxi-
mum likelihood (ML) and least squares (LS), respectively.
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The MSE of the maximum likelihood (ML) estimate and the least

squares (LS) estimate is illustrated in Table 4.6. As we can see that ML

outperforms LS on reconstructing normal measurements.

4.7 Summary

In this chapter, a new design criterion known as optimal structured

residuals for single faulty sensor identification is proposed. To maximize fault

isolation ability, a set of optimal structured directions is designed. Each of

them is insensitive to one of faults while being most sensitive to one of re-

maining ones. Fault isolability analysis shows that the column norms of the

model matrix and the angles between two columns of the model matrix play

a vital role in fault isolability. After identifying the faulty sensor, normal

measurements are reconstructed through the maximum likelihood estimation.

The application to an industrial boiler process demonstrates that the proposed

OSR approach has superior fault identification ability.
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Figure 4.1: wj
i (j = 2, 3, 4) is the projection of corresponding bj (j = 2, 3, 4)

to Sw1 , while w1 may be orthogonal or nearly orthogonal to b4.
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Chapter 5

An Optimal Structured Residuals Approach

for Multidimensional Faulty Sensor Diagnosis

5.1 Introduction

Fault detection and isolation (FDI) in engineering systems are of great

practical significance. The systems concerned encompass a broad spectrum of

human made machinery, including industrial production facilities and house-

hold appliances. The early detection and diagnosis of faults are critical in

avoiding product deterioration, performance degradation, major damage to

the equipment and damage to human health or even loss of lives. The tradi-

tional approaches to fault detection and diagnosis involve the limit checking

of some key variables or the application of redundant sensors (physical redun-

dancy). Over the last two decades, fault detection and diagnosis have gained

increasing consideration world-wide. This development was mainly stimulated

by the trend of automation towards more complexity and the growing demand

for higher security of control systems.

Advanced methods can be divided into two categories as qualitative

model (knowledge model) based approach and quantitative model based ap-

proach. The objective of qualitative model based approach is to identify the
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symptoms corresponding to the observations of the process that can be used

for a fault decision on the basis of the knowledge redundancy, such as neural

network, expert system and fuzzy logic. In the field of the quantitative model

based approach, a strong impetus comes from the side of modern control the-

ory that has brought forth mathematical modeling, state estimation and pa-

rameter identification that have been made feasible by the progress of modern

computer technology.

The model based approach can be traced to chemical process control,

where the traditional material and energy balance calculations evolved into

systematic data reconciliation and the detection of gross errors. The work in

this area is reviewed thoroughly in Crowe [13]. Another root can be traced to

aerospace related research, this effort leads to the fundamental formulation of

parity relation concepts [12]. An important related activity is due to Gertler

and coworkers [20, 21], who try to diagnose faults by designing structured

residuals that are insensitive to a particular subset of faults. In parallel to the

above efforts, several researchers were looking into the possibility of applying

Kalman filters [33, 41] and diagnostic observers [19, 49] to fault detection and

isolation problem. In the area of fault detection and isolation by parameter

estimation, substantial work has been done by Isermann and colleagues [28].

An important related activity is due to Basseville and coworkers, concerning

the detection of small parametric faults by the statistical analysis of residuals

obtained over extended sets of observations [4].

In this chapter, we extend the optimal structured residuals (OSR) ap-
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proach in Chapter 4 to the multidimensional fault case. To maximize fault

fault isolation ability, a matrix of optimal structured residuals have been de-

signed. Each of them is insensitive to one subset of faults while being most

sensitive to one of the remaining ones. The maximum of all structured residu-

als in each row is then selected for fault isolation. Faults occurred in dynamic

systems can be considered as well using an extended state space model or

dynamic principal component analysis.

The rest of this chapter is organized as follows. In Section 5.2, the

fault detection and isolation problem for dynamic systems is briefly introduced.

Multidimensional fault diagnosis with optimal structured residuals is presented

in detail in Section 5.3. Necessary and sufficient conditions for fault isolation

are investigated in Section 5.4. In Section 5.5, the utility of the proposed

algorithm is illustrated using data from a 4 × 4 dynamic system. Section 5.6

conclude the chapter.

5.2 Fault diagnosis for dynamic systems

5.2.1 Problem formulation

In this chapter, we assume that the system can be written in innovations

form as

xk+1 = Axk + Buk + Kek (5.1a)

yk = Cxk + Duk + ek (5.1b)
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where yk ∈ Rny , xk ∈ Rn, uk ∈ Rnu , and ek ∈ Rny are the system output, state,

input, and innovation, respectively. A, B, C and D are system matrices with

appropriate dimensions. K is the Kalman filter gain. The system described

by (5.1) can also be presented as

yk = G(q)uk + H(q)ek (5.2)

where G(q) = C(qI − A)−1B + D, and H(q) = C(qI − A)−1K + I.

Based on the state space description in (5.1), we can obtain

Yf = ΓfXk + HfUf + GfEf (5.3)

where the subscripts f denote future horizon. The extended observability

matrix is

Γf =




C
CA
...

CAf−1


 ∈ <

nyf×n (5.4)

and Hf and Gf are Toeplitz matrices:

Hf =




D 0 · · · 0
CB D · · · 0
...

...
. . .

...
CAf−2B CAf−3B · · · D


 ∈ <

nyf×nuf

Gf =




I 0 · · · 0
CK I · · · 0

...
...

. . .
...

CAf−2K CAf−3K · · · I


 ∈ <

nyf×nyf
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The input and output data are arranged in the following Hankel form:

Uf =




uk uk+1 · · · uk+N−1

uk+1 uk+2 · · · uk+N
...

...
. . .

...
uk+f−1 uk+f · · · uk+f+N−2


 ∈ <

nuf×N

Yf =




yk yk+1 · · · yk+N−1

yk+1 yk+2 · · · yk+N
...

...
. . .

...
yk+f−1 yk+f · · · yk+f+N−2


 ∈ <

nyf×N

Defining

Zf =

[
Yf

Uf

]
∈ <(ny+nu)f×N (5.5)

we can rewrite (5.3) as

[
I −Hf

]
Zf = ΓfXk + GfEf (5.6)

We denote Γ⊥f ∈ <nyf×(nyf−n) as the orthogonal complement of Γf such

that

(Γ⊥f )T Γf = 0 (5.7)

Pre-multiplying (5.6) by (Γ⊥f )T leads to

(Γ⊥f )T
[

I −Hf

]
Zf = (Γ⊥f )T GfEf (5.8)

After defining

Bf ≡ (Γ⊥f )T
[

I −Hf

] ∈ <(nyf−n)×(ny+nu)f (5.9)

Vf ≡ (Γ⊥f )T GfEf ∈ <(nyf−n)×N (5.10)
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we obtain

BfZf = Vf (5.11)

Equation (5.11) can also be presented as

Bfzf (t) = vf (t) (5.12)

where zf (t) and vf (t) are column vectors of Zf and Vf respectively.

If the faulty input/output data are represented as

zf (t) = z∗f (t) + Ξifi(t) (5.13)

we can obtain

vf (t) = Bfz
∗
f (t) + BfΞifi(t) = v∗f (t) + Φifi(t) (5.14)

where fi(t) ∈ <ls×1 is the vector of the fault magnitude, ls is the dimension of

the fault and Ξi ∈ <(ny+nu)f×ls is the matrix of fault directions with appropri-

ate dimensions. Φi = BfΞi is the fault direction matrix on the model residual

vf (t). Vectors z∗f (t) and v∗f (t) stand for measurements and model residuals

under normal condition, respectively. The objective of fault detection and iso-

lation is to detect the onset of the fault, identify fault direction matrix, Ξi, and

estimate the fault magnitude, fi(t), from faulty measurements. One shall no-

tice that with this formulation even a single sensor fault is multi-dimensional.
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5.2.2 Temporal redundancy and its relationship with dynamic PCA

Equations (5.11) and (5.12) can be regarded as the parity relation-

ships based on temporal redundancy. On the other hand, principal compo-

nent analysis (PCA) has been widely used in process monitoring applications

[53]. The steady-state PCA approach can be extended to dynamic principal

component analysis (DPCA) [36] for data from dynamic systems. The rela-

tionship between PCA and static redundancy has been discussed in [55]. In

this section, we discuss the relationship between temporal redundancy and

DPCA following [38].

The DPCA can be regarded as performing PCA of the following Hankel

matrix

ZT
l =




zT
k zT

k+1 · · · zT
k+l−1

zT
k+1 zT

k+2 · · · zT
k+l

...
...

. . .
...

zT
k+N−1 zT

k+N · · · zT
k+l+N−2


 (5.15)

where ZT
l ∈ <N×(ny+nu)l, zk is the process measurement and l is the number

of lags in DPCA.

After PCA decomposition of ZT
l , we obtain

ZT
l = T̂ P̂ T + T̃ P̃ T (5.16)

where T̂ is the score matrix and P̂ is the loading matrix. The decomposi-

tion is made such that
[

T̂ T̃
]

is orthogonal and
[

P̂ P̃
]

is orthonormal.

Multiplying P̃ on the right hand side of (5.16), we obtain

ZT
l P̃ = T̃ (5.17)
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Transposing the above matrix, we obtain

P̃ T Zl = T̃ T (5.18)

Comparing (5.18) with (5.11), we have following observations:

1. P̃ T is similar to (Γ⊥f )T
[

I −Hf

]
.

2. l in DPCA is equivalent to f in extended state space model.

From the above analysis, we can see that the temporary redundancy

can be established not only from the extended state space model but also

from DPCA as well. However, to achieve consistent estimate of Bf from P̃ ,

the direct DPCA approach in (5.16) has to be modified. Li and Qin [38]

have proposed an indirect DPCA approach that uses instrumental variables

to achieve consistency.

5.3 Multidimensional faults diagnosis with optimal struc-
tured residuals

5.3.1 Optimal structured residuals approach

The structured residual approach is introduced by Gerlter and Singer

[21]. In their work, the structured residual, ri(t), is defined as

ri(t) = wT
i v∗f (t) + wT

i Φifi(t) (5.19)

subject to

wT
i Φi = 0
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where wi is the structured residual direction. Φi is assumed to have unit

column norm without loss of generality. With this design criterion, the struc-

tured residual is insensitive to the ith fault. As pointed out by Qin and Li

[55], the structured residual approach does not maximize the fault isolation

ability. Based on this analysis, they propose structured residual approach with

maximized sensitivity (SRAMS).

In our recent work [39], we analyze the SRAMS approach in detail and

point out the possibility of misidentifying faults. We also propose a new opti-

mal structured residuals (OSR) criterion for fault diagnosis. For the multidi-

mensional fault, the optimal structured directions can be extended as follows:

wj
i = max

‖wj
i ‖=1

‖ΦT
j wj

i ‖2 (5.20)

i = 1, 2, · · · , nf

j = 1, 2, · · · , (i− 1), (i + 1), · · · , nf

subject to

wjT
i Φi = 0 (5.21)

where nf is the number of faults under consideration.

To derive an explicit expression of wj
i , we choose wj

i as

wj
i = Π⊥

Φi
zj

i (5.22)

such that (5.21) is satisfied, where zj
i is a vector with appropriate dimension.

Π⊥
Φi

is the projection matrix on the orthogonal complement of Φi.
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After introducing a Lagrange multiplier, the objective function can be

defined as

J = ‖ΦT
j Π⊥

Φi
zj

i ‖2 + λ(1− ‖Π⊥
Φi

zj
i ‖2)

Differentiating the objective function with respect to zj
i and with the help of

(5.22), we can obtain

Π⊥
Φi

ΦjΦ
T
j Π⊥

Φi
zj

i = λΠ⊥
Φi

zj
i

or

Π⊥
Φi

ΦjΦ
T
j Π⊥

Φi
wj

i = λwj
i

Therefore, wj
i is the eigenvector of Π⊥

Φi
ΦjΦ

T
j Π⊥

Φi
corresponding to the largest

eigenvalue. Equivalently, wj
i is the left singular vector of Π⊥

Φi
Φj corresponding

to the largest singular value.

After obtaining the structured direction, the structured residual for

faulty data can be defined as:

rj
i (t) = wjT

i vf (t) = wjT
i [v∗f (t) + Φgfg(t)] (5.23)

From the definition of the structured residual, we can see that

rj
i (t) =

{
wjT

i v∗f (t) i = g,

wjT
i v∗f (t) + wjT

i Φgfg(t) i 6= g.
(5.24)

From (5.24), we can obtain a structured residuals matrix R(t) ∈ <nf×nf .

R(t) =




− r2
1(t) r3

1(t) · · · r
nf

1 (t)
r1
2(t) − r3

2(t) · · · r
nf

2 (t)
...

...
. . .

...
...

r1
nf−1(t) · · · r

nf−2
nf−1(t) − r

nf

nf−1(t)

r1
nf

(t) r2
nf

(t) · · · r
nf−1
nf (t) −




(5.25)
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We choose the one with maximum absolute value among each row of R(t) for

fault diagnosis:

ri(t) = max
j
|rj

i (t)| i = 1, · · · , nf (5.26)

If fault g occurs, Equation (5.26) picks the one with maximum absolute

value among each row of R(t) as

ri(t) = rg
i (t) = wgT

i [v∗f (t) + Φgfg(t))] (5.27)

5.3.2 Fault identification indices

After obtaining structured residuals as defined in (5.26), one needs to

design appropriate statistical inference for fault diagnosis. In this subsection,

we discuss the deterministic fault and the stochastic fault separately along

with identification indices defined by Qin and Li [55].

For deterministic faults, such as bias or drifting, the distribution of

rj
i (t) in (5.24) is

rj
i (t) ∼

{
N(0, wjT

i Rew
j
i ) i = g,

N(wjT
i Φgf̄g, w

jT
i Rew

j
i ) i 6= g.

(5.28)

where f̄k is the bias of the fault, and Re is the covariance matrix of normal

residuals v∗f (t). After picking up ri(t) with (5.26), under normal measurements

we have

r2
i (t)

wkT
i Rewk

i

∼ χ2(1),
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or

r2
i (t)

wkT
i Rewk

i

≤ χ2
α(1)

with confidence level α. Therefore, one can define a structured fault identifi-

cation index as

I i
SR(t) =

r2
i (t)

wkT
i Rewk

i χ
2
α(1)

. (5.29)

Under normal conditions I i
SR < 1; if there is a fault in the gth sensor I i

SR > 1

except for i = g. One can also apply an EWMA filter to structured residuals

to obtain a filtered structured residual index (I i
FSR) [55].

For stochastic faults, such as precision degradation, the distribution of

rj
i (t) in (5.24) is

rj
i (t) ∼

{
N(0, wjT

i Rew
j
i ) i = g,

N(0, wjT
i Rdw

j
i ) i 6= g.

where Rd is the covariance matrix of degraded measurements. Assuming that

the stochastic fault is independent of v∗f (t), the covariance Rd can be derived

from (5.14) as follows

Rd = Re + ΦiRvΦ
T
i (5.30)

where Rv is the covariance of the fault. As proposed by Qin and Li [55], one

can apply cumulative variance (Vsum) index to identify variance change.

V i
sum(t) =

t∑

l=t−T

(ri(l)− µ̂i)
2
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such that

µ̂i =

∑t
l=t−T ri(l)

T + 1

where T is the moving window size. After picking up ri(t) with (5.26), with

no fault we have,

V i
sum(t)

wkT
i Rewk

i

∼ χ2(T )

Therefore one can define a Vsum index as

I i
Vsum

(t) =
V i

sum(t)

wkT
i Rewk

i χ
2
α(T )

(5.31)

If I i
Vsum

(t) > 1 for all i but i = g, the gth sensor has a variance fault with

confidence level α.

After detecting the occurrence of faults, a faulty sensor can be identified

as follows.

1. Based on the process model matrix Bf , design optimal structured direc-

tions wj
i off-line.

2. From the process residual vf (t), calculate optimal structured residuals

ri(t) and corresponding identification indices.

3. If the ith index is less one while all other indices are greater than one,

the ith sensor is faulty.

5.4 Fault isolability

The fault isolability issue for quasi-steady-state process has been dis-

cussed by Lin and Qin [39]. Here we extend our analysis to the multidimen-
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sional case. As we can see, for multidimensional faults, if the range space of

Φi and the range space of Φj are totally overlapped, the ith fault and the jth

fault are not isolable. Therefore the necessary condition for the ith fault to be

isolable from the jth is that the range space of Φi and the range space of Φj

are not totally overlapped. However when the range spaces of ith fault and jth

fault are very closed to each other, say principal angles [65] between two of

them are close to zero, they are difficult to isolate, unless the fault magnitude

is sufficient large.

We can discuss the sufficient condition for the multidimensional fault

isolability, which is how large the fault magnitude should be to guarantee

fault isolability. In this section, we investigate the sufficient condition for

multidimensional deterministic faults isolability. When the gth fault occurs,

from (5.27) and (5.4) we have

ri(t) = rg
i (t) ∼

{
N(0, wgT

i Rew
g
i ) i = g,

N(wgT
i Φgf̄g, w

gT
i Rew

g
i ) i 6= g.

Therefore, we can obtain [32],

Yi(t) =
r2
i (t)

wgT
i Rew

g
i

∼
{

χ2(1) i = g,
χ2(1, λi) i 6= g.

(5.32)

where χ2(1, λi) is the the non-central χ2 with one degree of freedom and non-

centrality

λi =
(wgT

i Φgf̄g)
2

wgT
i Rew

g
i

To guarantee that the ith fault is isolable form the gth fault with some
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confidence level β, we should have

P{I i
SR(t) =

Yi(t)

χ2
α(1)

> 1} = 1− P [Yi(t) ≤ χ2
α(1)] = β

Therefore, if we find a critical value, λic, such that

χ2
1−β(1, λic) = χ2

α(1),

then I i
SR(t) > 1 with confidence level β for λi > λic. Therefore, from (5.32)

we can derive the sufficient condition for deterministic fault isolability as

‖f̄g‖ ≥ (wgT
i Rewg

i λic)
1
2

‖ΦT
g ‖cosγ

(5.33)

where γ is the angle between f̄g and wgT
i Φg. From the above equation, we can

see that two important factors are ‖ΦT
g ‖ and γ.
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5.5 Simulation example: a 4× 4 dynamic process

To test the effectiveness of the proposed method we simulate a second

order 4× 4 dynamic process. The system matrices are:

xk+1 =

[
0.67 0.67
−0.67 0.67

]
xk (5.34a)

+

[ −0.4326 0.1253 −1.1465 1.1892
−1.6656 0.2877 1.1909 −0.0376

]
uk

+

[
0.0654 0.0836 −0.0465 0.1727
−0.1147 0.0593 0.0426 −0.1858

]
ek

yk =




0.3273 −0.5883
0.1746 2.1832
−0.1867 −0.1364
0.7258 0.1139


 xk

+




1.0668 0.2944 −0.6918 −1.4410
−0.0593 −1.3362 0.8580 0.5711
−0.0956 0.7143 1.2540 −0.3999
−0.8323 1.6236 −1.5937 0.6900


 uk

+ ek (5.34b)

The process inputs are Gaussian white noise sequence with identity covariance

matrix, the measure noises are Gaussian white noise sequence as well with

identity covariance matrix. 500 samples of the input and output data are

collected. The basic statistics of the data are listed in Table 5.1. The data

are scaled to zero mean and unit variance, and the process model Bf is built

using DPCA with l = 4. The number of principal components is determined

by the best reconstruction criterion [54]. The process model Bf is a 14 × 32

matrix.

In this work, two kinds of faults are simulated: bias and precision
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Sensor No. Minimum Maximum Mean Stand Deviation

1 -11.07 11.91 0.2467 3.7788
2 -35.51 32.20 -0.4773 10.798
3 -5.839 6.008 0.1201 2.0616
4 -13.36 11.58 -0.0247 4.2254

Table 5.1: Basic statistics for the outputs of the 4× 4 process

degradation, which can be represented as

fi(t) = C1 (5.35)

fi(t) ∼ N(0, C2) (5.36)

where C1 and C2 are constants for different faults, and fi is the fault mag-

nitude. Bias and precision degradation faults represent changes in mean and

variance, which are suitable for EWMA filtered structured residual index and

cumulative variance index respectively. To demonstrate the fault identifica-

tion ability, single sensor faults with different fault magnitudes are introduced

as the 200th sample. Since the purpose of this work is not to demonstrate

the fault detection ability, we assume that the fault is detected at the 250th

sample.

To identify faults, the filtered structured residuals index (IFSR) with

EWMA filter coefficient 0.98 and the cumulative variance index (IVsum) with a

moving window size of 20 are used in this work. They are applied to identify

bias and precision degradation, respectively.

With the process model Bf ∈ <14×32, the structured residuals matrix
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R(t) is a 8× 8 matrix. Every element of R(t) is calculated with (5.23).

We then pick up ri(t) according to (5.26) and calculate the correspond-

ing fault identification indices. The single sensor for the dynamic system can

be identified as discuss at the end of Subsection 5.3.2.

The fault identification results for a single biased sensor fault with OSR

are shown in Table 5.2. Fault magnitudes are calculated as percentage of the

standard deviation of the corresponding sensor measurements. Normal sensor

measurements and faulty measurements with a bias fault at the 4th sensor

with fault magnitude as 40% of the standard deviation of the corresponding

measurements are shown in Fig. 5.1, the average IFSR and IV sum for the same

case are shown in Fig. 5.2. From the results we can see the OSR approach can

correctly identify the biased sensor at small fault magnitudes, which cannot

be identified by direct visualization.

Faulty Sensor
1 2 3 4

0.65% − − − −
3.0%

√ − − −
7.0%

√ √ √ −
40.0%

√ √ √ √

Table 5.2: Fault identification results for the single biased sensor with IFSR

through OSR approach.
√

means the faulty sensor can be correctly identified,
while − means the faulty sensor cannot be identified.

The fault identification results for a single precision degradation sen-

sor with OSR are shown in Table 5.3. Fault magnitudes are calculated as
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the percentage of the standard deviation of the corresponding sensor measure-

ments. Normal sensor measurements and faulty measurements with a precision

degradation at the 1st sensor with the fault magnitude as 25.0% of the stan-

dard deviation of the corresponding measurements are shown in Fig. 5.3, the

average IFSR and IV sum for the same case are shown in Fig. 5.4. From the

results we can see the OSR approach can correctly identify the faulty sensor

at small fault magnitude, which can not be identified by direct visualization.

Faulty Sensor
1 2 3 4

9.0% − − − −
17.0% − √ − −
25.0%

√ √ √ √

Table 5.3: Fault identification results for the single precision degraded sensor
with Vsum through OSR approach.

√
means the faulty sensor can be correctly

identified, while − means the faulty sensor cannot be identified.

5.6 Summary

In this chapter, an optimal structured residuals (OSR) approach for

multidimensional fault diagnosis is proposed. Faults in dynamic processes

can be handled with the extended state space model or dynamic PCA. The

relationship between temporary redundancy and dynamic PCA allows us to

use a dynamic PCA model for fault detection and diagnosis. A multi-input-

multi-output simulation study shows that the proposed approach can identify

faulty sensors with small fault magnitudes.
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Figure 5.1: The output measurement for bias fault at the 4th sensor with fault
magnitude as 40% of the standard deviation of the corresponding measure-
ments
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Figure 5.2: The average IFSR and IVsum for bias fault at the 4th sensor with
fault magnitude as 40% of the standard deviation of the corresponding mea-
surements
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Figure 5.3: The output measurement for precision degradation fault at the
1th sensor with fault magnitude as 25.0% of the standard deviation of the
corresponding measurements
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Figure 5.4: The average IFSR and IVsum for precision degradation fault at the
1th sensor with fault magnitude as 25.0% percentage of the standard deviation
of the corresponding measurements
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Chapter 6

Conclusions and Future Research Suggestions

The main purpose of this work is to investigate disadvantages of tradi-

tional subspace identification algorithms and structured residuals approaches

for process modeling and diagnosis. The contributions of present work are

listed in Section 6.1, while suggestions for future research effort are presented

in Section 6.2.

6.1 Contributions

The contributions of this research are listed below.

1. Novel subspace identification methods (SIMs) with enforced causal mod-

els are implemented. It has been shown that proposed algorithm has

lower estimation variance comparing to traditional SIMs. Meanwhile the

consistency analysis shows that the proposed algorithms are consistent

under certain assumptions.

2. The feasibility of closed-loop subspace identification is investigated. Novel

closed-loop subspace identification methods with innovation estimation

are proposed. The new algorithms are shown to be consistent under

128



closed-loop condition, while the traditional SIMs fail to provide consis-

tent estimates.

3. In this work, another closed-loop SIM referred to as the ”whitening fil-

ter approach” is analyzed. The similarity and difference between the

”whitening filter approach” and the ”innovation estimation approach”

are investigated. It turns out that although they are based on different

representations of state space model. Both of them can be implemented

through multi-stage least squares.

4. A new optimal structured residuals (OSR) approach for unidirectional

faults diagnosis is proposed. To maximize fault identification ability, a

set of optimal structured residuals have been designed. Each of them

is insensitive to one of the faults while being most sensitive to one of

the remaining ones. The fault isolability analysis shows that the column

norms of the model matrix and the angles between two columns play a

vital role in fault isolability.

5. The OSR for unidirectional fault diagnosis is extended to multidimen-

sional fault diagnosis. A set of optimal structured residuals have been

designed. Each of them is insensitive to one subset of faults while be-

ing most sensitive to one of the remaining ones. The fault isolability

analysis shows that the 2-norm of the fault direction matrix and the an-

gle between fault magnitude vector and certain linear transformation of

structured residuals are important for fault isolability.
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6.2 Future research suggestions

In this section, we point out some future research directions for sub-

space identification algorithms as well as the optimal structured residuals ap-

proach with applications in process modeling and diagnosis areas.

1. Closed-loop subspace identification algorithms are very attractive from a

practical point of view. In this work we have proposed closed-loop SIMs

with innovation estimation. As there are other closed-loop identification

algorithms available, the advantage and disadvantage of them are worth

further investigation from both theoretical and engineering perspectives.

2. The work in this dissertation focuses on subspace identification for linear

time invariant systems, while in practice a lot of systems have either time

variant or nonlinear characteristics. How to characterize such properties

from data and identify a model for systems with such characteristics are

very interesting topics.

3. The optimal structured residuals approach proposed in this work only

deals with the sensor fault. How to apply the approach to more com-

plicated situations such as closed-loop faults diagnosis is worth further

investigation.
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Appendix A

Proof of Theorem 3.2.2

From (3.17) we can conclude that,




Zp

Ui−1

Ei−1



†

=




Zp

Ui−1

Ei−1




T






Zp

Ui−1

Ei−1







Zp

Ui−1

Ei−1




T



−1

in (3.18). Therefore, the estimate of ΓfiLz, H−
fi and G−

fi is consistent if and

only if

1. Efi is uncorrelated with Zp, Ui−1 and Ei−1 in (3.16).

2.




Zp

Ui−1

Ei−1


 has full row rank (f.r.r.).

The first condition is satisfied as mentioned in Subsection 3.2.2. Here we

provide a proof for the second condition by induction.

For i = 2, we can obtain Ef1 from (3.16) as

Ef1 = Yf1 − Γf1LzZp

Therefore, 


Zp

U1

E1


 =




I 0 0
0 I 0

M1 0 I







Zp

U1

Y1



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where M1 = −Γf1Lz. From the results of Lemma 1, we know that χk is persis-

tently exciting of any order. Therefore, we can conclude that
[

ZT
p UT

1 ET
1

]T

has f.r.r. Now we assume that, for i = k + 1,




Zp

Uk

Ek


 =




I 0 0
0 I 0

Mk Nk I







Zp

Uk

Yk




where Mk and Nk are matrices with appropriate dimensions. Then for i = k+2,

from (3.17), we obtain

Ef(k+1) = Yf(k+1) − Γf(k+1)LzZp −H−
f(k+1)Uk −G−

f(k+1)Ek

= Yf(k+1) − (Γf(k+1)Lz + G−
f(k+1)Mk)Zp

− (H−
f(k+1) + G−

f(k+1)Nk)Uk −G−
f(k+1)Yk

Therefore,




Zp

Uk

Uf(k+1)

Ek

Ef(k+1)




=




I 0 0 0 0
0 I 0 0 0
0 0 I 0 0

Mk Nk 0 I 0
Mk+1 N1(k+1) 0 N2(k+1) I







Zp

Uk

Uf(k+1)

Yk

Yf(k+1)




where

Mk+1 = −(Γf(k+1)Lz + G−
f(k+1)Mk)

N1(k+1) = −(H−
f(k+1) + G−

f(k+1)Nk)

N2(k+1) = −G−
f(k+1)

Then from Lemma 3.2.1, we conclude that the RHS of the above equation is

f.r.r..
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Appendix B

Proof of Theorem 4.3.1

For the single fault case, wi designed by SRAMS that is insensitive to

the ith fault is:

B◦
i B

◦T
i wi = λwi

where B◦
i = (I − bo

i b
oT
i )B◦, and wi is the eigenvector of B◦

i B
◦T
i corresponding

to the largest eigenvalue.

Let B′ = [BΞ1, · · · , BΞj−1, BΞj+1, · · · , BΞn], w′
i designed by SRAMS

that is also insensitive to the ith fault is

B̃◦
i B̃

◦T
i w′

i = λw′
i

where B̃◦
i = (I − bo

i b
oT
i )B′◦ and w′

i is the eigenvector of B̃◦
i B̃

◦T
i corresponding

to the largest eigenvalue. It is obvious that

B◦
i B

◦T
i wi = B̃◦

i B̃
◦T
i wi + (I − bo

i b
oT
i )BoΞjΞ

T
j BoT (I − bo

i b
oT
i )wi

Noticing that wi is orthogonal to b◦i , therefore

(I − bo
i b

oT
i )wi = wi

So w′
i = wi if and if only

(I − bo
i b

oT
i )BoΞjΞ

T
j BoT wi = 0 for ∀wi
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which is equivalent to ΞT
j BoT wi = 0, or wi is orthogonal to the jth fault as

well. Therefore fault BΞi and BΞj are not isolable with each other.
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