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Latent growth modeling (LGM) of composites of multiple items (for example, 

means or sums of items) has been frequently used to analyze the growth of latent 

constructs. However, composites are only equivalent to latent constructs if the items’ 

factor loadings are equal to one and there is no measurement error (Bollen & Lennox, 

1991). In this study, the adequacy of using univariate LGM to model composites of 

multiple items, as well three other alternative methods were evaluated through a Monte 

Carlo simulation study. The four methods evaluated in this study were the univariate 

LGM, the univariate LGM with fixed error variances, the univariate LGM with the 

correction for attenuation, and the curve-of-factors model (McArdle, 1988; Tisak and 

Meredith, 1990). 
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This simulation study manipulated the number of items per construct, the number 

of measurement times, the sample size, the reliability of the composites, the invariance of 

item parameters, and whether the items were essentially tau-equivalent or essentially 

congeneric. One thousand datasets were simulated for each of the conditions.  

The results indicate that using univariate LGM with composites of multiple items 

only produces unbiased parameter estimates and standard errors if the items are 

essentially tau-equivalent. The univariate LGM with fixed error variances performed 

identically to the univariate LGM. The univariate LGM with the correction for 

attenuation produced unbiased parameter estimates when the items were essentially tau-

equivalent, but produced negatively biased estimates of standard errors.  

The curve-of-factors model was found to be the most appropriate method to 

analyze the growth of latent constructs measured by multiple items. The curve-of-factors 

model was able to provide unbiased parameter estimates and standard errors under all 

conditions evaluated in this study. However, with sample sizes of 100 or 200, a large 

percentage of chi-square statistics were positively biased and the fit indices indicated 

inadequate model fit.  

This study’s recommendation is that the curve-of-factors model should be 

preferred to analyze the growth of latent variables measured by multiple items, but the 

use of sample sizes larger than 200 is strongly recommended to help ensure that adequate 

fit statistics and fit indices are obtained for appropriate models.  
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Chapter I: Introduction 

 

The study of human change across time can be a major concern not only of 

researchers, but of society as a whole. For example, educational accountability systems of 

school districts and states are required by federal law to show that there is change in the 

student’s educational performance from grade to grade (U.S. Department of Education, 

2003). Because the assessment of change is very important in our society, longitudinal 

data have been frequently collected by research institutions such as the National Center 

for Education Statistics and the National Science Foundation. For example, the data of 

the National Education Longitudinal Study (NELS) collected by the National Center for 

Education Statistics have been used in longitudinal studies about the effects of parental  

involvement (Fan, 2001), teacher education (Hill, 2003), and high school employment 

(Quirk, Keith, & Quirk, 2001) on student educational achievement. 

There are several methods to study longitudinal data, such as repeated measures 

analysis of variance (Maxwell & Delaney, 1990), hierarchical linear models (Raudenbush 

& Bryk, 2002), and autoregressive models (Curran & Bollen, 2001; Hertzog & 

Nesselroade, 2003; Lawrence & Hancock, 1998). These techniques provide useful 

information about growth across time, but each of them have limitations (Hancock, Kuo, 

& Lawrence, 2001) that make them appropriate for certain types of research questions but 

not for others. For example, autoregressive models are indifferent to the functional form 

of change over time (Hertzog & Nesselroade, 2003), and repeated measures ANOVA 

cannot handle heterocedasticity and dependence between measurement errors (Raykov & 
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Marcoulides, 2000; Willett & Sayer, 1994). Latent growth modeling (LGM) has recently 

emerged as a very general method of investigating longitudinal data. The generality of 

this method comes from the fact that it can analyze longitudinal changes in means, 

variances, and covariances at both individual and group levels, and it can handle complex 

covariance structures, heterocedasticity and correlated errors (Holt & Stuckey, 2004; 

McArdle & Epstein, 1987; Raykov & Marcoulides, 2000). Because of its ability to fit 

complex models, LGM has been increasingly used by researchers. A search in Academic 

Search Premier, ERIC, and PsycInfo for the words “latent growth” in the literature 

published from January 2000 to December 2004 resulted in 187 articles, demonstrating 

that LGM has become a popular method of longitudinal data analysis. From these 

articles, 38 were methodological, and the other 149 were applications. 

Large longitudinal surveys usually contain data on multiple indicators that can be 

used to model the development of latent constructs (Muthén, B. O. & Khoo, 1998). For 

example, the NELS contains several variables that can be used as indicators of student 

motivation (Singh, Granville, & Dika, 2002), parental involvement (Fan, 2001) and self-

concept (Brown, 1999). MacCallum, Kim, Malarkey, and Kiecolt-Glaser (1997) pointed 

out that conventional methods of longitudinal analysis and the vast majority of published 

longitudinal analyses have focused on a single outcome variable, which has also been the 

case in the applied literature employing LGM. Several of the applied studies identified in 

the literature search mentioned above had collected longitudinal data about a latent 

construct using multiple indicators. However, many of these studies fitted a univariate 

LGM to their data, despite the latent nature of the variable of interest. Using univariate 
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LGM implies that the outcome variable is an observed variable, which may be adequate 

for variables such as cigarette use (Hser, 2001), that may have small and probably 

negligible measurement error. However, several of these studies assessed change in a 

latent construct, as measured by a multiple-item scale, and used univariate LGM  to 

analyze composite scores based on the scales’ items (Baer & Schmitz, 2000; Crawford, 

Cohen, Johnson, Sneed, & Brook, 2004; DuBois et al., 2002).  The most common 

composite scores found in the literature were the means of the scales’ items (Buist, 

Dekovi Cacute, Meeus, & van Aken, 2002; Johnson, 2002; Li, F. et al., 2001; Mason, 

2001; Roth, Haley, Owen, Clay, & Goode, 2001; Willett & Keiley, 2000). The sum of the 

item scores was also used (Chan, Ramey, Ramey, & Schmitt, 2000; Meeus, Branje, & 

Overbeek, 2004). The problem of this common practice of using univariate LGM with 

composites of multiple indicators is that it ignores the measurement errors of the 

indicators. Although most studies reviewed reported reliability estimates for the scales 

being used, alternative models that control for measurement error such as adjusting the 

variance/covariance matrix for unreliability (Fan, 2003b; Lomax, 1986; Muchinsky, 

1996) or fixing the composite’s error variance using its reliability estimate (Bollen, 1989) 

were not employed.  

The issue of measurement error in longitudinal analysis of multiple-item scales 

can also be addressed by using a multivariate extension of LGM known as the curve-of-

factors model (McArdle, 1988), or second-order LGM (Hancock et al., 2001; Sayer & 

Cumsille, 2001). This model controls for measurement error by simultaneously 
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estimating the measurement model across different measurement times and identifying 

longitudinal changes in the latent variable. 

An additional limitation of univariate LGM that has been ignored in the applied 

literature is that univariate LGM of multiple-item composites assumes strict factorial 

invariance, which means that the factor loadings, error variances, and intercepts of the 

items are equivalent at different times of measurement (Hertzog & Nesselroade, 2003; 

Meredith, 1993). This is a very restrictive assumption that may not be true in the data 

being analyzed. When this assumption is not met, bias in the parameter estimates may 

arise because univariate LGM of multiple-item composites does not distinguish between 

changes in the scale measuring the construct and true longitudinal changes in the 

construct (Sayer & Cumsille, 2001).  

The curve-of-factors model has the advantage over univariate LGM of being able 

to freely estimate the indicators’ factor loadings (with the exception of one loading which 

is fixed to identify the model), error variances and intercepts, which allows that changes 

in the latent construct within measurement times be examined separately from changes 

across measurement times. Because the curve-of-factors model allows the estimation of 

the item-level parameters, statistical tests of factorial invariance can be performed. 

Despite the potential advantages of the curve-of-factors model for LGM of multiple-

indicator composites, the literature search conducted revealed that the curve-of-factors 

model has only been used in a couple of applied studies (Duncan, S. C. & Duncan, 1996; 

Hancock et al., 2001). Furthermore, guidelines with respect to the situations in which it 
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should be preferred over univariate LGM and the samples sizes needed for parameter 

estimation have not been established yet. 

This study compares the performance of different methods of fitting latent growth 

models in the analysis of multiple-item longitudinal data. More specifically, it compares 

three methods of univariate LGM (composite scores, composite scores corrected for 

unreliability, composite scores with fixed error variances) and the curve-of-factors model. 

The major interest is determining in which conditions each of these methods performs 

adequately in the presence of measurement error. The effect of measurement non-

invariance over time on the estimates from each of these methods will also be 

investigated, as well as sample sizes necessary for estimation. It is hoped that the results 

of this study will inform applied researchers who are considering the use of LGM about 

the adequacy of each model for their longitudinal data. 

  



 

 
 

6

Chapter II: Literature Review 

 

This study investigates two problems that can interfere with the quality of 

inferences made through the use of latent growth models with data from instruments 

containing multiple indicators: measurement error and construct non-invariance over 

time. This chapter first introduces the latent growth model and describes its 

characteristics and limitations. Second, the problem of measurement error and the 

solutions that will be attempted in this study are described. Third, the assumption of 

measurement invariance in longitudinal research is explained, as well as the difficulties 

that arise when testing it statistically. Finally, because parameter estimation and 

assessment of fit in latent growth models depend on sample size, the issue of determining 

a sufficient sample size is reviewed. 

Latent growth models 

Latent growth models analyze longitudinal changes in means, variances, and 

covariances of variables. These statistics are summarized and used in the analysis in the 

form of a covariance-mean (Raykov & Marcoulides, 2000) or moment matrix (McArdle, 

1988). This matrix is created by attaching a row and a column vector of means to the 

variance/covariance matrix between k variables (McArdle, 1988). A constant equal to one 

is added at the intersection of this row and column, which increases the order of the k x k 

covariance matrix to (k + 1 x k + 1). The matrix M presented below is an example of 

moment matrix between four observed variables: 
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In latent growth modeling, the longitudinal changes for a group of individuals are 

explained by three latent variables: level, shape and error (McArdle & Hamagami, 1991). 

The level factor presents the status of the individuals in the observed variables at any 

point of the development chosen as a reference. The point of reference is defined through 

the coding of the loadings of the shape factor (Biesanz, Deeb-Sossa, Papadakis, Bollen, 

& Curran, 2004). Further details about ways of coding the loadings will be given later in 

this section. If the first measurement time is used as the reference point of development, 

the level can be interpreted as an intercept (Muthén, B. O. & Khoo, 1998). In this case, 

the intercept is interpreted as attained status on the trait due to previous experiences. If 

the researcher prefers to specify as the reference point a measurement occasion other than 

the first (e.g. the last measurement time), the level is interpreted as the status of the 

individuals at that specific measurement time. Each individual has a level score that is 

constant across all measurement times (McArdle & Hamagami, 1991). 

The shape factor  indicates individual differences in the trajectory of growth 

(Rovine & Molenaar, 1998). If the growth is linear, the shape variable can be more easily 

interpreted as the slope, which is the rate of change of individuals across time (Duncan, 

T. E., Duncan, Strycker, Li, & Alpert, 1999; McArdle & Hamagami, 1991; Muthén, B. 

1) (
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O. & Khoo, 1998). Each individual’s shape score represents the amount of the individual 

is expected to change between measurement times (McArdle & Hamagami, 1991). 

The error variable represents variability not related to the latent trait being 

measured. It is a combination of random measurement error and systematic unique 

factors. The measurement error scores are assumed to have a mean of zero and zero 

correlations with the other variables over time (McArdle & Hamagami, 1991), while the 

unique factor scores may be correlated over time. The error variables at each 

measurement time may be allowed to correlate with each other, which accounts for 

change in the unique factors across time. A latent growth model with three measurement 

times is presented in figure 1. The dotted lines indicate that the model can be expanded to 

include more measurement times and correlated error variables. 
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Figure 1. Latent growth model with no predictors 

 

The univariate LGM is similar to a common factor model. The measurement part 

of the model can be expressed as (Singer & Willett, 2003): 

εη +Λ= yy  2) (
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where y is a vector of observed scores for individual i on measurement times one to j, 

yΛ is a j x 2 matrix containing a column of level coefficients and a column of shape 

coefficients for j measurement times, η  is a 2 x 1 vector containing latent scores for the 

level factor, iα , and shape factor, iβ , and ε  is a vector of errors in each of the j 

measurement occasions. 

In matrix format, this model can be expressed as: 
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In this model, yΛ is equivalent to a matrix of factor loadings in a common factor 

model. The column of ones corresponds to the loadings of the level factor. The column 

jλλ ...1  contains the factor loadings of the shape factor. In order to estimate this two 

factor model, two of the factor loadings of the shape factor need to be fixed (McArdle & 

Hamagami, 1991). Fixing one of the shape’s factor loadings at zero defines its 

correspondent occasion of measurement as a reference (Rovine & Molenaar, 1998). As a 

consequence, latent means of the level and shape factors will be the expected values of 

these factors at the measurement time whose loading was fixed to zero. It is necessary to 

fix another factor loading to a non-zero value to set the scale of the shape factor. It is 

3) (
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possible to freely estimate the other factor loadings of the shape factor, as long as the 

model remains identified, or fix them to any value. The differences between the shape’s 

factor loadings can be interpreted as the number of units of change that occur between 

two occasions of measurement (McArdle & Hamagami, 1991).  

The error vector ε  is distributed with zero mean vector and covariance matrix 

εΘ . Some methods for longitudinal analysis, such as repeated measures analysis of 

variance, require the assumption of homocedasticity and independence of errors. In the 

context of univariate LGM, homocedasticity means that error variances are equal across 

testing times. Independence of errors means that correlations between errors across 

testing times is zero. In LGM, the assumption of homocedasticity can be relaxed by 

estimating freely the error variances. For example, the variance/covariance matrix of 

errors εΘ  for a model with six measurement times allowing heterocedasticity is: 
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⎥
⎥
⎥
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where 2
jσ is the error variance of the observed variable at measurement time j. 

 In LGM, the researcher has the option of assuming homocedasticity by 

constraining the variances to be identical. If homocedasticity is assumed, the variances 

along the diagonal of the error matrix above will be equivalent. 
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Furthermore, the assumption of independence of residuals can be relaxed by 

allowing correlated errors. Modeling correlated errors implies a hypothesis that there is 

part of the error variability that is non-random, and that is not accounted for by the latent 

factors. For example, the variance/covariance matrix of error for a model with six 

measurement times allowing errors adjacent in time to correlate is: 

⎥
⎥
⎥
⎥
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⎥
⎥
⎥
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⎢
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1
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σσσ
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ε  

Specific hypotheses about the shape of the growth can be tested by fitting models 

where all the shape’s factor loadings are fixed. For example, the researcher can choose to 

fix all the shape’s loadings to be equal to the difference between the real measurement 

times, and this corresponds to hypothesizing a linear growth shape. This is demonstrated 

in the model below, which assumes linear growth across the four equally-spaced 

measurement times: 
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In the model above, fixing the first loading at zero determines that the estimated 

mean and variance of the level should be interpreted as the mean and variance of variable 

at the first measurement time. In this case, the level factor is an intercept. Other coding 
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schemes can be used to hypothesize the same linear growth shape, resulting in identical 

fit statistics and estimated variance of the shape, but with different estimates of the mean 

and variance of the level, mean of the shape, and unique variances (Biesanz et al., 2004). 

The interpretation of the parameters of the level (i.e. mean and variance) will also 

change, because the level would not be interpreted as an intercept. This is demonstrated 

in the model bellow, which is mathematically equivalent to the model presented above: 
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 Latent growth models with different loading patterns will be equivalent only if 

the loading pattern of one model can be obtained by a linear transformation of the 

loadings of the other model (Biesanz et al., 2004). If this condition is satisfied, the 

parameter estimates that would be obtained if another pattern of loadings had been used 

can be determined analytically as a function of the pattern of loadings chosen (Biesanz et 

al., 2004): 

ηη µµ 1

11

−

−−

=

Φ=Φ

T
TT '*

 

where an asterisk indicates the transformed model and no asterisk indicates the original 

model, Φ  is the variance/covariance matrix of the level and slope, ηµ is a vector 

containing the estimated mean of the level and slope, 1−T  is a transformation matrix 

defined by ,*'*)*'( yyyyT ΛΛΛΛ= −− 11  and *Λ is the factor loading matrix with the new 
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loadings. This transformation allows a researcher to examine what the parameters would 

be if a different measurement occasion had been used as a reference, without having to 

re-run the analysis. Although models obtained through linear transformations of the 

loading pattern are equivalent, each loading pattern requires a different interpretation of 

the mean and variance of the level and shape factors.  

 A model with fixed loadings is nested within a model with free loadings. 

Therefore, a chi-square difference test can be performed to test the adequacy of the 

hypothesis established by the fixed loadings (Meredith & Tisak, 1990). A researcher may 

want to test a specific hypothesis about the growth shape, and if the model with fixed 

loadings has adequate fit, the researcher may want to perform a chi-square difference test 

between this constrained model and the model where the loadings are freely estimated, to 

verify whether the fixed loadings do not significantly reduce model fit. If there is no 

significant difference between the constrained and unconstrained model, the researcher 

finds support for the model hypothesized by the fixed loadings. This chi-square test will 

be described in more detail later in the section about invariance. 

 The measurement part of univariate LGM provides information about whether the 

variance/covariance matrix of the observed variable across measurement occasions fits 

the growth trajectory specified by the model. The structural part of the model 

complements the measurement model by providing information about the means, 

variances and covariance of the level and shape factors.  

In order to estimate the means of the level and shape factors, they are regressed on 

a scalar equal to one. The means 
i1η

µ and 
i2η

µ of the level and shape factors, respectively, 
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are the path coefficients from the unit indicator to these factors. Because the level and 

shape factors are regressed on a constant, their variances become residual variances 

represented by the disturbances 
i1η

ζ and
i2η

ζ , respectively. The covariance between these 

disturbances 
ii 21 ηη ζζσ  is the covariance between the level and shape factors. 

The structural part of a univariate LGM without predictors is: 

ζµη +=  

where the term µ is a 2 x 1 vector containing the means 
ii βα µµ , of the level and shape 

factors, respectively. The mean of the level,
iα

µ , represents the average status of the 

observed variable at the reference occasion of measurement. The mean shape,
iβ

µ , 

represents an average trajectory of growth across all the population. The term 

ζ represents a 2 x 1 vector of disturbances. The disturbances 
iα

ζ and 
iβ

ζ  are the 

deviations of the individual level iα and shape iβ  parameters from their population 

means 
iα

µ and 
iβ

µ  respectively. 

In matrix format, this model is: 
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The matrix Ψ is the variance/covariance matrix between the disturbances: 

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
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iii
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(10)
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where 2
iαζ

σ is the variance of the level factor, 2
iβζ

σ is the variance of the shape factor, and 

ii βα ζζσ  is the covariance between level and shape. The variances of the disturbances are 

equal to the variances of the factors because this model is unconditional, which means 

that the only predictor is a constant added to allow the estimation of means. If predictors 

are added to the model, the variances of these disturbances becomes residual variances, 

which represent the variability remaining in the level and shape factor scores after 

removing the effect of the predictor. 

 There are five important parameters estimated in the structural part of the 

univariate LGM: the means and variances of the level and shape factors, and their 

covariance. The mean of the level indicates the average of the observed variable at the 

measurement time chosen as reference. The variance of the level reveals whether 

individuals differ from each other on the observed variable at the reference time of 

measurement. The mean of the shape indicates the average growth trajectory. If growth is 

linear, the mean of the shape is equivalent to the growth rate of the individuals on the 

observed variable. A positive mean shape indicates that individuals increase in the 

observed variable with time, while a negative shape indicates a decrease in the observed 

variable. The variance of the shape provides information on whether individuals differ on 

growth trajectory. If the variances of the level and shape are statistically significant, then 

it is interesting to attempt to account for this variability by including predictors in the 

model (Willett & Keiley, 2000). The covariance between level and shape indicates 
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whether there is a relationship between the status of the individuals on the outcome 

variable at the reference time of measurement and their growth trajectory. 

The measurement and structural parts of the univariate LGM describe growth at 

the individual and group level, respectively. The same models can be expressed in terms 

of describing the variance/covariance matrix between observations across individuals 

across time and the vector of means of the observed variable at each measurement time 

(Biesanz et al., 2004). These two different formulations of the latent growth model are 

equivalent (MacCallum et al., 1997; Singer & Willett, 2003; Willett & Keiley, 2000; 

Willett & Sayer, 1994, 1996). The latent growth model in terms of describing the 

observed variance/covariance matrix and vector of means is (Biesanz et al., 2004; Bollen, 

1989; MacCallum et al., 1997): 

εΘ+ΦΛΛ=Σ '
yyyy  

µµ yy Λ=  

where yyΣ is the j x j variance/covariance matrix of the observed variable measured in j 

occasions, yΛ  is a j x 2 matrix of factor loadings,Φ is the 2 x 2 variance/covariance 

matrix of the level and shape factors, εΘ is a j x j variance/covariance matrix of errors of 

measurement, and yµ  is a column vector of j observed means, and µ is a 2 x 1 vector 

containing the means 
iα

µ and 
iβ

µ of the level and shape factors, respectively. 

Conditional latent growth models 

14) (

13) (
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The LGM model presented above was unconditional in the sense that no 

predictors of growth were included in the model. However, if there is individual 

variability in the level and shape of growth, predictors of this variability can be sought. In 

LGM, two types of predictors can be included in the model: time-invariant and time-

varying (Willett & Keiley, 2000). Time-invariant predictors are measured only once, and 

their relationship with the outcome variable is evaluated at a single measurement 

occasion. Time-varying predictors are measured multiple times and this enables the 

investigation of how the growth in the predictor affects growth in the outcome variable. 

Time-varying predictors must be assessed in the same measurement occasions the 

outcome variable was measured. Figure 2 presents an example of a latent growth model 

with three measurement times and one time-invariant predictor. 
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Figure 2. Latent growth model with one time-invariant predictor. 

 Predictors are inserted in the structural part of the LGM model, because the goal 

of the analysis is to evaluate the relationship of the predictors with the level and shape 

factors. LGM allows a lot of flexibility in the specification of predictors. For example, 

predictors may have their own measurement model, or may relate to the outcome variable 

through the mediation of a third variable. The structural part of a univariate LGM model 

where a single time-invariant predictor was included is presented below: 



 

 
 

20

ζξµη +Γ+=  

where Γ  is a 2 x 1 vector of regression coefficients relating the predictor to the level and 

shape factors, and ξ is the score on the predictor. The predictor can be either an observed 

variable or a latent variable. 

The equation above in expanded format is: 
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where 
iα

γ is the regression coefficient between the predictor and the level parameter and 

iβ
γ is the regression coefficient between the predictor and the shape parameter. 

 In the conditional model, the interpretation of the parameters estimated in the 

structural model changes. The disturbances,ζ , become the residual variability not 

accounted for by the predictor. The matrix Ψ becomes the variance/covariance matrix of 

the level and shape parameters controlling for the relationship with the predictor (Willett 

& Keiley, 2000). More specifically, the variance of the level and shape parameters 

become residual variances after removing the part accounted for by the predictor. The 

covariance between level and shape becomes a partial covariance where the relationship 

with the predictor is removed.  

In the structural part of the univariate LGM of one predictor, the two regression 

coefficients that indicate the relationship between the predictor and the level and shape 

parameters are estimated. The interpretation of these coefficients depends on whether the 

predictor is continuous or dichotomous. If the predictor is continuous, the coefficients 

15) (

16) (
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indicate the average amount of change in the level and shape parameters that is expected 

with a unit change in the predictor. If the predictor is dichotomous, the coefficients are 

the expected difference in level and shape of the outcome between the two groups 

defined by the predictor variable. 

Stoel, van den Wittenboer and Hox (2004) proposed that an alternative to include 

time-invariant covariates in an univariate LGM model is to regress the predictor directly 

on the observed indicators. They argue that when predictors are regressed on the level 

and shape factors, an assumption of full mediation is being made, which means that the 

direct effect of the predictor on the indicators is assumed to be zero. The authors 

recommend that when a researcher believes that there are direct effects of the predictor 

on the indicators, it is preferable to include predictors regressed directly on the observed 

indicators, or else the researcher may obtain poor model fit. Another advantage of this 

approach is that the effects of the predictors on the indicators do not need to follow the 

trajectory of growth hypothesized in the loadings of the shape factor. However, when the 

assumption of full mediation is tenable, regressing predictors on the level and shape 

parameters has the advantage of allowing an easy interpretation of the effects of the 

predictor on growth, and the calculation of the proportion of variance of the level and 

shape factors explained by the predictor. Stoel, van den Wittenboer and Hox (2004) 

model is illustrated in the figure below: 
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Figure 3. Alternative specification of latent growth model with one 

time-invariant predictor. 

 To include a time-varying predictor in the LGM model, it is necessary to establish 

a growth model for both the predictor and outcome variables. The measurement part of 

the LGM of the predictor is (Willett & Keiley, 2000): 

δξ +Λ= xx  
17) (
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where x is a vector of observed scores on the predictor variable for individual i on times 

one to j, xΛ is a j x 2 matrix containing a column of level coefficients and a column of 

shape coefficients for j measurement times, ξ  is a 2 x 1 vector containing latent scores 

for the level factor 
iξ

α  and shape factor 
iξ

β , and δ  is a vector of errors in each of the j 

measurement occasions. In matrix format, this model is: 
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 Once the measurement model of the predictor is established, the structural model 

defines the level and shape parameters of the predictor as explaining the level and shape 

parameters of the outcome. In other words, a common structural model states the 

hypothesized relationship between the predictor and the outcome. In the case of a time-

varying predictor, both the level and shape parameters of the predictor are hypothesized 

to account for variability in the level and shape parameters of the outcome. The structural 

model is: 

ζξµη +Γ+=  
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where Γ  is a 2 x 2 matrix of regression coefficients relating the level and shape 

parameters of the predictor ξ  to the level and shape parameters of the outcome η . In 

matrix format this model is: 
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where 
ii ξααγ , 

ii ξαβ
γ , 

ii ξβαγ , 
ii ξββγ  are the regression coefficients between the level of the 

predictor and the level of the outcome, the level of the predictor and the shape of the 

outcome, the shape of the predictor and the level of the outcome, and the shape of the 

predictor and the shape of the outcome, respectively. The conditional latent growth model 

with one time-varying predictor is illustrated in figure 4. 
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Figure 4. Latent growth model with one time-varying predictor 
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The coefficients in the Γmatrix are interesting theoretically to interpret, because 

they summarize the longitudinal relationship between the level and shape factors of the 

observed variable and the predictor. The
ii ξααγ coefficient indicates the extent that the level 

of the predictor affects the level of the outcome. If the first time of measurement is the 

reference, this parameter reveals whether the initial status of the outcome variable can be 

explained by the initial status of the predictor. The
ii ξαβ

γ coefficient indicates whether the 

level of the predictor explains the growth shape of the outcome. For example, in the case 

of a linear model where the first measurement time is the reference, a positive 

ii ξαβ
γ would indicate that higher initial status on the predictor corresponds to faster growth 

of the outcome. The 
ii ξβαγ coefficient reveals the extent that the shape of the predictor 

affects the level of the outcome. For example, if the last measurement time is defined as 

the reference, a positive 
ii ξβαγ  would indicate that individuals who growth faster on the 

predictor have a higher status on the outcome at the last measurement time. Finally, the 

ii ξββγ  coefficient indicates the effect of the shape of the predictor on the shape of the 

outcome. For example, in a linear model where this coefficient is positive, individuals 

with a higher growth rate in the predictor would be expected to have higher growth rate 

in the outcome. 

 In the conditional model with a time-varying predictor, the estimated variances of 

the level and shape are residual variances after the relationship with the predictor is 

accounted for, and the partial covariance controls for the predictor. This interpretation of 
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the residual variance/covariance matrix in the conditional model remains the same if 

more time-invariant or time-varying predictors are included in the model. In a model with 

more predictors, each regression coefficient should be interpreted taking into account 

whether the coefficient is statistically significant, its sign, and the scale of measurement 

of the predictor. 

Relationship between latent growth models and hierarchical linear models 

 The latent growth models presented in this study are within the structural 

equation modeling framework. Growth modeling can also be performed in the 

hierarchical linear modeling (HLM) framework, which consists in viewing repeated 

observations as nested within individuals (Raudenbush & Bryk, 2002).  In the HLM 

framework, the level 1 (i.e.within-person) model represents the growth of each 

individual, and it is equivalent to the measurement part of the univariate LGM model 

because it allows the evaluation of whether the shape of growth implied by the model 

matches well the individual growth trajectories (Singer & Willett, 2003; Willett & 

Keiley, 2000; Willett & Sayer, 1994). The level 1 unconditional model for linear growth 

is presented in the equation bellow, using the notation defined by Raudenbush and Bryk 

(2002): 

jijiiiji eay ++= 10 ππ  

Where the observed score for person i at time j is a function of the person’s initial 

status i0π , growth rate i1π , time of measurement jia , and error jie . The parameters 

(21)
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i0π and i1π correspond to the individual’s level and shape, respectively, with the SEM 

framework. 

 The level 2 model represents the mean and variability in initial status and 

growth rate across individuals. It is equivalent to the structural part of the univariate 

LGM model (Singer & Willett, 2003; Willett & Keiley, 2000; Willett & Sayer, 1994). 

The level 2 unconditional model is presented in equations 21 and 23. 
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r
r

1101

0000

+=

+=

βπ
βπ

 

Where 00β are the mean intercept (i.e. level) and 10β is the mean growth rate (i.e. shape). 

The variances of the random effects ir0 and ir1 are the variances of the level and shape 

respectively, and the covariance between ir0 and ir1  is the covariance between level and 

shape. 

In modeling growth with HLM, time-varying predictors are included in the level 1 

model, while time-invariant predictors are included in the level 2 model. A model with 

one time-varying predictor and one time-invariant predictor is shown bellow. 

Level 1 model:  

jijiijiiiji eaay +++= 22110 πππ  

Where jia1  is the time of measurement, and jia2 is a time-varying predictor, which has a 

regression coefficient equal to i2π . 

Level 2 model: 

(23)
(22)

(24)
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Where iX1 is a time-invariant predictor, which has a regression coefficient of 01β  on the 

individual level and a regression coefficient of 11β on the individual shape. 

In the growth modeling context, Raudenbush and Bryrk (2002) argue that the 

dissimilarities between HLM and SEM are a matter of limitations of current software 

rather than real differences between the models. For example, when there are correlated 

errors, Raudenbush and Bryrk (2002) recommend using SEM software because they 

allow easy specification and estimation of correlations between errors. Little, Schnabel, 

and Baumert (2000) point out that, although it is possible to model correlated 

measurement errors within the HLM framework, it would require a difficult setup.  

 

Assumptions and limitations of latent growth models 

The latent growth models presented in this study assume an equal number and 

spacing of assessments for all individuals and that there is no missing data (Duncan, T. E. 

et al., 1999). Some researchers argue that LGM analysis must always involve these 

assumptions and that they are serious limitations of this method (e.g.Willett & Sayer, 

1994). However, MacCallum et al. (1997) argue that these limitations are no longer true 

because of the development of full-information maximum likelihood estimation and 

software that can implement it. In the simple situation where individuals who were tested 

in different measurement times (or that have the same missing data pattern) can be 

grouped into a small number of sets, multiple-group latent growth modeling can be used 

(25)
(26)
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to accommodate these irregularities. If irregularities in the measurement times and 

missing data patterns are complex, estimation of the LGM model can still be 

accomplished by using full-information maximum likelihood, which defines the 

likelihood function in terms of individual scores on observed variables, instead of the 

variance/covariance matrix (MacCallum et al., 1997).  

Analyzing latent growth models requires some of the same assumptions of 

structural equation models, which can be relaxed if different estimation methods are used. 

For example, if maximum likelihood estimation is used, there is an assumption that the 

outcome variables are measured on a continuous scale and are multivariate normally 

distributed (Byrne & Crombie, 2003). However, if the outcome variables are categorical 

and non-normally distributed, other estimators can be used such as weighted least squares 

with corrected means and variances (WLSMV) (Muthén, L. K. & Muthén, 1998) or the 

Satorra-Bentler robust maximum likelihood estimator (Bentler, 1995).  

The most serious assumption of LGM, which cannot be relaxed with current 

methods, is that  it assumes that all individuals have the same functional form of 

development (e.g. linear, quadratic) (Hertzog & Nesselroade, 2003; Lawrence & 

Hancock, 1998).The loadings of the shape factor determine the functional form of 

development, which is also known as the basis function (Hertzog & Nesselroade, 2003) 

of development. In LGM, individuals can vary in the amount of change, as long as the 

form of development specified by the loadings of the shape factor fits all individuals. The 

assumption of a single basis function for all individuals can be violated if the dataset 

contains individuals from two populations with different forms of development. For 



 

 
 

31

example, a longitudinal dataset about the effects of a medicine for a terminal disease (e.g. 

cancer) may contain a group of individuals for whom the use of the medicine causes 

improvement with time, and another for whom the use of the medicine has no effect, and 

they present continuous health decline with time. If the two different groups can be 

identified, multi-group analysis can be performed specifying a different form of 

development for each group. 

The LGM method presented above is univariate, because it modeled a single 

observed variable measured across multiple times. However, if the researcher is 

interested in studying the growth of several variables that jointly assess a latent construct 

(e.g. several test items measuring a single trait), aggregating the individuals’ scores of 

these variables into composites of equally weighted items (e.g. using the mean or sum of 

the scores) and using univariate LGM to analyze the growth of the composite scores may 

fail to provide parameter estimates that correctly represent the growth of the latent 

variable. The reason is that univariate LGM of composites of multiple items treats the 

composites as if they were latent variables. In other words, it is assumed that all the 

variance in the composite is common variance from the multiple items, but the 

composites’ variance may also contain the items’ error variance and specific variance 

(Lomax, 1986), which are not related to the latent construct of interest. Under the factor 

analysis perspective, error variance is due to random measurement error and specific 

variance is due to systematic and reliable factors that are not part of the latent construct. 

The error variance and specific variance combined form the unique variance of an item 

(Lomax, 1986). 
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Measurement error and systematic factors may affect the variance/covariance 

matrix of the composites, leading latent growth analyses of these composites to yield 

biased parameter estimates. First, the variances of the composites measured at multiple 

times may be larger than the variances of the corresponding latent construct, because the 

total variance of a composite variable may contain not only the common variance of the 

items but also their unique variance. Second, with respect to the covariances between the 

composite variables, Fan (2003b) found, through a simulation study, that correlation 

coefficients between composites uncorrected for the items’ measurement error are 

systematically biased downward. He also found that this bias is inversely related to the 

composites’ reliability: the lower the reliability, the higher the bias will be.  

Considering that biased parameter estimates may invalidate conclusions obtained 

from statistical analyzes, it is very important to choose a LGM method that effectively 

addresses the measurement error in analyses of latent variables measured by multiple 

indicators. The review of the LGM literature indicates that alternatives to perform LGM 

of multiple indicators measured with error have never been compared. In this dissertation, 

four different alternatives will be compared. These alternatives are to use univariate LGM 

to analyze the unadjusted variance/covariance matrix between composites, to correct the 

variance/covariance matrix for attenuation before fitting the univariate LGM, to estimate 

the error variance of the composite at each measurement time and perform univariate 

LGM with fixed error variances, and to use the curve-of-factors model. Each of these 

methods will be explained in detail in the next section. 

Latent growth models of multiple indicators 
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The first alternative is to perform a univariate LGM analysis of a composite 

variable formed by equally weighted indicators of the latent variable (e.g. mean, sum). 

The review of the LGM applied literature indicates that this approach has been 

researchers’ most common choice. For example, Mason (2001) used LGM to analyze the 

growth of self-esteem in adolescents and its relationship with delinquency. In his study, 

the self-esteem variable modeled was the average of individuals’ scores on 10 items 

pooled from two different self-esteem scales. In another study, Chan et al. (2000) used 

LGM to investigate children’s social skills, and obtained the outcome variable by 

summing the scores of  38 items of the parent version of the scale and 30 items of the 

teacher version of the scale. In the path diagram shown in figure 3, composites c1…cj are 

the average or sum of the scores of each individual in k items at measurement times 1…j. 
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Figure 5. Univariate LGM of composites of multiple indicators 

Bollen and Lennox (1991) demonstrated how the individuals’ scores on a 

composite variable can differ from their scores on the latent variable, depending on the 

magnitude of the factor loadings of the indicators on the latent variable and the amount of 

measurement error: Consider a model with four indicators y1, y2, y3, y4, which are related 

to a single latent variable η  through the factor loadings 4321 ,,, λλλλ . The measurement 

errors of the indicators are 4321 εεεε ,,, . If a researcher uses the sum c1 of the indicators to 

model growth, this implies that: 
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This shows that the composite c1 will differ from the latent variableη , unless the 

sum of the factor loadings is equal to one and there is no measurement error. The 

reliability '
jjCCρ  of a composite is related to the factor loadings, the variance of the 

measurement errors, and the number of items in the composite through the formula 

(DeShon, 1998; Reuterberg & Gustafsson, 1992):  
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where kλ is the factor loading of indicator k on a latent factor with K indicators, and 2
kε

σ is 

the error variance of indicator k. 

The formula above indicates that the composite will be equivalent to the latent 

variable only if it has perfect reliability and that the reliability of the composite increases 

as the number of indicators increases. Researchers who perform univariate LGM of 

composite variables typically report a high estimate of the instrument’s reliability, which 

may indicate that the measurement error is negligible and this approach yields acceptable 

results. Among the applied studies using LGM that were reviewed, the coefficient alpha 

estimates of the scales’ reliability were typically between 0.7 and 0.9. 

(27)

(28)

(29)
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A second alternative to address measurement error in LGM is to correct the input 

variance/covariance matrix of the composites for attenuation (i.e. unreliability) before 

model fitting. A correction for attenuation estimates the correlation between the true 

scores of two variables. Because observed scores are, according to classical test theory, 

the sum of true scores and measurement error, the correction for attenuation estimates the 

correlation removing the effect of measurement error. In other words, the correction for 

attenuation estimates what the relationship between two variables would be if they were 

measured with perfect reliability (Muchinsky, 1996). The following formula for the 

correction for attenuation was proposed by Spearman (1904), and it has been frequently 

used in test construction (Crocker & Algina, 1986; Fan, 2003b; Lomax, 1986; 

Muchinsky, 1996): 

'' yyxx

xy
txty ρρ

ρ
ρ =  

where txtyρ  is the correlation between true scores of two variables, xyρ  is the observed 

correlation coefficient between variables x and y, and 'xxρ  , 'yyρ are the reliability 

estimates of x and y, respectively.  

Fan (2003b) demonstrated that correcting the correlation between composite 

variables using the correction for attenuation formula with Cronbach’s alpha provides 

similar results to using confirmatory factor analysis to model the correlation between the 

underlying latent variables. Through a Monte Carlo simulation study, Fan compared the 

correlation corrected for attenuation between two composites of multiple items and the 

correlation between the latent factors measured by the same items, estimated with a 

(30)
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confirmatory factor analysis model. He simulated conditions with either four or eight 

items per factor, five inter-item correlations (.81, .64, .49, .36, and .25), two inter-factor 

correlations (0.4 and 0.6), and four sample sizes (50,100,200, and 400). The reliabilities 

of the composites resulting from the specification of the inter-item correlations were .57, 

.69, .79, .88, and .94 for the four-item composites and .72, .82, .88, .93, .97 for the eight-

item composites. Fan found that the correlation between uncorrected composites was 

systematically biased downward, and that the bias increases as the reliability of the 

composites decreases. On the other hand, the estimates obtained with both the correction 

for attenuation and confirmatory factor analysis were unbiased. Furthermore, the standard 

errors of these inter-factor correlation estimates decreased as the sample size increased.  

He also found out that the standard error of the correlation between composites 

uncorrected for measurement error does not change with reliability. However, with the 

correction for attenuation and confirmatory factor analysis, increases in the reliability of 

the composites correspond to decreases in the standard error of the correlation between 

factors, resulting in more power to detect this correlation. There were no differences 

between the conditions with four items per factor and eight items per factor.  He points 

out that the major advantage of using the correction for attenuation formula is its 

simplicity of implementation and recommends that the correction of attenuation should 

be performed whenever reliability coefficients are available. 

There is a certain consensus in the literature that the type of reliability estimate  

employed in corrections for attenuation should be an internal consistency coefficient  

(Muchinsky, 1996; Osburn, 2000) because it assesses the degree of interrelatedness 
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among the items administered in a given testing occasion (Cortina, 1993), and addresses 

the fact that the items used to form the composite are only a sample of possible items that 

measure the construct (Muchinsky, 1996). Using test-retest reliabilities would not be 

logical because the objective of LGM is to assess change across time, and this change 

should not be considered a source of error.   

Cronbach’s alpha is the most used internal consistency reliability estimate, and 

also the one that has been studied the most. Cortina (1993) reviewed the Social Sciences 

Citation Index for citations of Cronbach’s alpha from 1966 to 1990 and found that it had 

been cited about 60 times per year in 278 different journals. Because the majority of the 

articles reviewed in the applied literature using LGM reported a Cronbach’s alpha 

reliability estimate, this study will implement the correction for attenuation using this 

reliability coefficient. The formula for the Cronbach’s alpha is:  
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where K is the number of indicators combined to form each composite, 2
kσ̂ is the 

observed variance of each indicator k, and 2
cσ̂  is the variance of the composite. Although 

the coefficient alpha is traditionally represented asα , in LGM α  has been used to 

represent the shape factor. To avoid confusion between the reliability coefficient and the 

shape factor, the term '
jjCCα  will be used here to refer to Cronbach’s alpha reliability 

(31)
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estimate. Derivations of the formula of Cronbach’s alpha can be found in Lord and 

Novick (1968) and Crocker and Algina (1986). 

Although Cronbach’s alpha has been extensively used,  there have been several 

studies showing that it underestimates reliability if the items of a test are congeneric 

(Komaroff, 1997; Osburn, 2000; Raykov, 1997, 1998, 2001). Given the classical test 

theory model ikikik ex +=τ , where xik is an observed score on item k for individual i, ikτ  

is the true score, and eik is measurement error, two items are congeneric if for the same 

individual they produce different true scores ikτ  and different error variances 2
ikeσ (Lord 

& Novick, 1968). Two items are tau-equivalent if they produce the same true scores for 

each individual but different error variances. The most restrictive condition is of parallel 

measures, which requires that two items produce the same true score and the same 

measurement error for each individual. For Cronbach’s alpha to yield unbiased reliability 

estimates, the items need to be essentially tau-equivalent, which means that the error 

variances are allowed to differ, but the true scores can only differ by a constant c (i.e. 

22 ii c ττ += ) (Lord & Novick, 1968; Raykov, 2001). Cronbach’s alpha becomes more 

robust to violations of tau-equivalence as the number of items increases (Osburn, 2000).  

In structural equation modeling terms, congeneric indicators have different factor 

loadings and error variances, tau-equivalent indicators have equal factor loadings but 

different error variances, and parallel indicators have equal factor loadings and error 

variances (Reuterberg & Gustafsson, 1992). In the case where the latent variable is an 

endogenous variable, it is necessary to fix one of the factor loadings to one in order to set 
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the scale of the factor. In this case, tau-equivalence requires that all the factor loadings of 

the indicators are equal to one (Bollen, 1989; Millsap & Everson, 1991). An additional 

level of classification of items into essentially parallel, essentially tau-equivalent, and 

essentially congeneric is only needed in the SEM framework if the latent means are being 

modeled (Millsap & Everson, 1991).These three types of items differ from parallel, tau-

equivalent, and congeneric items because they allow items to have different intercepts, 

and consequently are less restrictive (Millsap & Everson, 1991). 

 Other methods to estimate reliability coefficients have been proposed such as 

Coefficient Theta (Bentler, 1972), the Maximized Lambda4 (Calender & Osburn, 1977), 

and Maximal Reliability (Li, H., Rosenthal, & Rubin, 1996). Although these methods are 

able to estimate the reliability of congeneric items, they have the disadvantage of being 

considerably more difficult to compute than Cronbach’s alpha, which complicates their 

use in applied settings. 

In univariate LGM modeling, the formula proposed by Spearman (1904) could be 

applied to correct the correlations between the composites using a reliability estimate of 

each composite. However, unreliability in the indicators affects not only the correlation 

between the composites but also inflates the composite’s variance. It is possible to correct 

the variance of the composites for attenuation. The derivation of this correction comes 

directly from the definition of reliability in classical test theory: The reliability of a test is 

a measure of the degree of true score variation relative to observed score variation (Lord 

& Novick, 1968, p. 61). This definition is presented in the equation bellow: 
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Where '
jjCCρ is the reliability of the composite, 2

iTσ is the variance of the true scores and 

2
iCσ is the total variance of the composite. Conceptually, equation 32 is identical to 

equation 29, but equation 29 is presented in terms of item factor loadings and error 

variances. By re-arranging the terms of equation 32, the formula for the variance of the 

composite corrected for attenuation is obtained: 

)('
22

ijji CCCT σρσ =  

 After both the correlations and variances of the composites are corrected for 

attenuation, the correlation matrix would then be transformed to a variance/covariance 

matrix, the vector of composite means would be added, and the resulting moment matrix 

could be used in the LGM analysis. To transform the corrected correlation of composites 

x and y into a covariance, it should be multiplied by the square root of the corrected 

variances of x and y. The mean of the composite can be calculated by either taking the 

average of the total individual scores on the composite or by summing the means of each 

item. According to classical test theory, it is not necessary to introduce any correction to 

the means because the population means of the observed scores are equal to the means of 

the true scores (Crocker & Algina, 1986), and the means of the observed scores are 

estimates of their population means. 

The correction for attenuation assumes that all the measurement error in the 

multiple indicators is random, which implies that there is no systematic error and, 

(32)

(33)
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consequently, the correlation between measurement errors from different testing 

occasions is zero (Crocker & Algina, 1986). However, as shown previously, with 

longitudinal data the error term may contain unique factors representing systematic 

variation in the indicators across time. If this is the case, using the correction for 

attenuation when there is systematic error may result in poor model fit. Another 

limitation of the correction for attenuation formula is that it is possible to obtain corrected 

values of the correlation coefficient larger than 1.0, which are theoretically impossible 

(Muchinsky, 1996).  However, in cases where the assumption of independent errors is 

tenable, the correction for attenuation employed with latent growth models of composites 

may be advantageous because it is very simple to implement. 

A third possible method to control for measurement error in LGM is to use the 

internal consistency reliability of the composite (i.e. Cronbach’s alpha) to estimate the 

error variance of the composite. The error variance is estimated through the 

multiplication of )( '
jjCCρ−1 , which is the proportion of the variance in the composite due 

to measurement error, by the total variance of the composite 2
jCσ (Bollen, 1989). This is 

shown in the formula bellow:  

22 1
jjjj CCC σρσ ε )( '−=  

where 2
iε

σ  is the estimated error variance of the composite at measurement time j, '
jjCCρ is 

the reliability coefficient of the composite, and 2
jCσ  is the variance of the composite. 

(34)
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Once the error variances of the composites at each measurement time are 

estimated, they can be used in the latent growth model by setting all the error variances of 

the model equal to the estimated error variances. Consequently, the error variances are 

not free parameters, but are previously estimated and fixed in the model. Instead of error 

variances, the model estimates disturbance variances jζ , which are the reliable variances 

of the composites. The factors jη  are the reliable part of the composites at each testing 

occasion. A path diagram of this method is shown in figure 4. 
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Figure 6. Univariate LGM with fixed error variances of the composites 
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This method has the advantage of being very easy to implement in LGM. It has 

been recommended in the manual of the LISREL 8 software (Jöreskog & Sörbom, 1996, 

p.196) and has been successfully used with structural equation modeling in applied 

studies. For example, Bandalos, Yates and Thorndike-Christ (1995) tested a model for 

statistics test anxiety where they used the reliability coefficient of the scales to estimate 

and fix the error variance of each of the latent variables. The same strategy to estimate 

the error variance of the latent variables was also employed by McWhirter, Hackett and 

Bandalos (1998)  and Bandalos, Finney and Geske (2003). 

A fourth way to control for measurement error is to estimate a measurement 

model for the latent variable together with the growth model. In LGM, this method can 

be implemented with the curves-of-factors model proposed by McArdle (1988) and Tisak 

and Meredith (1990). This is a second order latent growth model where the first order 

factors are latent variables measured multiple times, and the second order factors are the 

level and shape factors (Sayer & Cumsille, 2001). McArdle (1988) names this model the 

curve-of-factors model to contrast with the factor-of-curves model, which is also a 

second order LGM, but does not model the observed variables as indicators of a single 

latent variable. The factor-of-curves model (McArdle, 1988) is a second order model 

where an univariate LGM is specified for each indicator separately and then a common 

level and common shape are specified as second order factors. The level and shape 

factors of each indicator in the first order univariate LGM load on the second order 

common level and shape factors. The factor-of-curves model does not address the growth 

of a single latent contruct measured by multiple indicators, but the common growth of 
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multiple observed variables.  McArdle’s terminology will be adopted in this study 

because it is more precise than the general term second order latent growth model. 

Hancock et al. (2001) pointed out that the curve-of-factors model has the 

advantage of creating a theoretically error-free construct for growth modeling, instead of 

using composites of observed variables, which are contaminated by measurement error. 

The use of composites of indicators to model change in latent variables implies that the 

measurement error of each individual variable can be ignored. Furthermore, if the 

composite weights the variables equally, which is the case of the mean or sum of the 

variables, it is assumed that every indicator assesses the latent construct equally well 

(Sayer & Cumsille, 2001). The curve-of-factors model is presented in figure 2. 
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Figure 7. Curve-of-factors model 

The curve-of-factors model is a combination of a common factor model and a 

latent growth model. The common factor part of the curve-of-factors model determines 

how well the indicators assess the latent variable in each time of measurement. The latent 

growth part determines the characteristics of the level and shape of the latent variable 

across time. The common factor part is (Bollen, 1989): 

εητ +Λ+=y  (35)
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where y is a vector containing a set of raw scores for indicator k  at each time j, τ is a 

vector of intercepts, Λ is a matrix of loadings, η is a vector of factor scores, and ε  is a 

vector of random errors. 

The estimation of a vector of intercepts,τ , is necessary because the expected 

value of y depends on the intercepts as shown below (Hancock et al., 2001): 

τη +ΛΕ=Ε ][][y  

To estimate the vector of intercepts,τ , the indicators are regressed on a scalar 

equal to one (Hancock et al., 2001).  In order to set the scale of measurement of the latent 

variables, it is necessary to select an indicator and fix its loading to one and its intercept 

to zero in each measurement occasion (Bollen, 1989; Hancock et al., 2001). This is 

exemplified in the model below, which has four indicators per factor and three 

measurement times: 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

43

33

23

13

42

32

22

12

41

31

21

11

3

2

1

43

33

23

42

32

22

41

31

21

43

33

23

42

32

22

41

31

21

43

33

23

13

42

32

22

12

41

31

21

11

00
00
00

100
00
00
00
010
00
00
00
001

0

0

0

ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε
ε

η
η
η

λ
λ
λ

λ
λ
λ

λ
λ
λ

τ
τ
τ

τ
τ
τ

τ
τ
τ

i

i

i

y
y
y
y
y
y
y
y
y
y
y
y

 

(36)



 

 
 

48

The matrix Λ specifies the factor loadings of the indicators on the latent variable 

in each measurement time. The factor loadings of the indicators at a given measurement 

are equal to kjλ , but are equal to zero at the other measurement times, because any 

correlation between indicators across measurement times is explained by either the latent 

growth part of the model or by unique factors included in the error term. 

In the common factor part of the curve-of-factors model, the variance of the 

indicators is divided into common variance and unique variance. The unique variance 

contains error variance and specific variance. The curve-of-factors model can either 

assume no specific factors for each indicator, or imply the existence of specific factors by 

allowing the measurement errors of the indicators to correlate across testing times. The 

difference between modeling correlated measurement error in univariate LGM and in the 

curve-of-factors model is that in univariate LGM the errors of the composites may be 

allowed to correlate, while in the curve-of-factors model the errors of the indicators may 

be allowed to correlate. Correlated errors of composites have a different meaning of 

correlated errors of indicators. Correlated errors of composites represent the part of the 

total variance of the composites not accounted by the level and shape factors but that 

varies with time. Correlated errors of indicators represent the part of the indicator not 

accounted by the common factor (i.e. the specific factor) that varies meaningfully with 

time.  

As an illustration of the flexibility of the curve-of-factors model with respect to 

the unique part of each indicator, the variance/covariance matrix of errors for a model 

with three indicators and two measurement times allowing heteroscedasticity and 
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correlated errors across measurement times (but not within measurement times) is 

presented below: 
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Once the common factor part of the indicators is specified, the growth of the 

latent variable uncontaminated by measurement error is addressed by the specification of 

the latent growth part of the curve-of-factors model, which includes the level and shape 

factors as second order factors. This part of the model is (Hancock et al., 2001): 

ζξη +Γ=  

where η  is a vector of factor scores, Γ is a matrix of second-order factor loadings 

reflecting the growth pattern of the latent variable, ξ is a vector of latent scores capturing 

the level,α , and shape,β , parameters of the latent variable, and ζ  is a vector of random 

normal disturbances. 

In matrix form, the latent growth part of the curve-of-factors model is: 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⎥

⎦

⎤
⎢
⎣

⎡

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

3

2

1

3

2

1

3

2

1

1
1
1

i

i

i

i

i

i

i

i

ζ
ζ
ζ

β
α

λ
λ
λ

η
η
η

 

This part of the curve-of-factors model is identical to a univariate LGM model, 

except that the outcome variables are latent variables, not observed variables. Therefore, 

(37)

(38)

(39)
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the loadings of the latent growth part of the curve-of-factors model can be fixed to values 

that reflect a specific hypothesis about the shape of growth, or be free to estimate an 

unspecified growth curve. In the same way as undertaken for the univariate LGM, fixing 

one loading of the shape parameter equal to zero defines the corresponding measurement 

time as a reference for the interpretation of the latent means of the level and shape 

parameters. The model for these latent means, which corresponds to the structural part of 

univariate LGM, is: 

ζµξ +=  

where ξ  is a vector containing the level and shape parameters for each individual i, µ  is 

the vector of latent means βα µµ ,  of the level and shape, respectively, for all individuals, 

and ζ is a vector of disturbances.  

In matrix format, this part of the curve-of-factors model is: 
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The variances and the covariance of the disturbances are also estimated because 

they correspond to the variances and covariance of the level and shape factors. The 

matrix Ψ is the variance/covariance matrix between the disturbances: 
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where 2
αζ

σ is the variance of the level factor, 2
βζ

σ is the variance of the shape factor, and 

βαζζσ  is the covariance between level and shape. 

(40)

(41)

(42)
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In the curve-of-factors model, typically the parameters of interest are the first-

order factor loadings jλ , the mean αµ of the level factor and its variance 2
αζ

σ , the mean 

βµ of the shape factor and its variance 2
βζ

σ , and the covariance 
βαζζσ between the level 

and shape factor. If any of the second order factor loadings in the matrix Γ  is also freely 

estimated, this coefficient also needs to be interpreted. Furthermore, the intercepts, jkτ , of 

the observed variables are estimated, but usually they are not of theoretical interest 

(Hancock et al., 2001).  

Even if measurement error is adequately accounted for by the measurement model 

at each testing time, parameter estimates may still be biased because of measurement 

non- invariance across testing times. Horn and McArdle (1992) and Meredith and Horn 

(2001) emphasize that measurement invariance is essential to scientific inference because 

if there is no evidence that one instrument applied to different conditions is measuring the 

same construct, any differences in group parameter estimates (e.g. means, variances, 

correlations) could be due to the fact that two different constructs were measured. The 

next section provides details about the issue of measurement invariance in structural 

equation modeling and latent growth modeling. 

Measurement Invariance 

 Measurement invariance concerns whether the same instrument under different 

conditions (e.g. different groups of examinees, different occasions) yields measures of the 

same attribute (Horn & McArdle, 1992). In structural equation modeling, the term 

measurement invariance is used to refer to stability of parameters across populations and 
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across conditions. For example, if the instrument is administered to two groups of 

elementary school students, one from low income families and the other from high 

income families, the instrument will be invariant if the item parameters are equivalent 

across groups. In the context of growth modeling, an instrument is invariant if the item 

parameters are constant regardless of whether the instrument was administered to 

students in fourth, fifth or sixth grade.  

Horn, McArdle and Mason (1983) and later Horn and McArdle (1992) classified 

invariance conditions into metric invariance and configural invariance. They defined 

metric invariance as equality of factor loadings across two conditions. According to the 

authors, metric invariance provides a basis for inference that the same construct is being 

measured in different conditions. Configural invariance was defined as the stability of the 

configuration of zero and non-zero factor loadings (Horn & McArdle, 1992). This 

definition means that if an instrument has configural invariance, all the items that have 

non-zero loadings on a latent factor at one condition will also have non-zero loadings on 

the same factor in a different condition, but the actual value of the loadings may differ 

between conditions. This implies that instruments which only have configural invariance 

do not allow comparisons of constructs across conditions, because different values of 

factor loadings across conditions may indicate that the nature of the construct being 

measured has changed from one condition to the other. 

Meredith (1993) developed a more detailed measurement invariance taxonomy, 

which defines four types of invariance. These types of invariance are progressively less 

restrictive. The most restrictive type is strict factorial invariance, which requires that the 
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loadings, error variances, and intercepts are the same across multiple conditions. Strong 

factorial invariance, on the other hand, requires that the loadings and the intercepts are 

constant across conditions, but it does not require constant error variances. Next, weak 

factorial invariance only requires the loadings to be equivalent across conditions. The 

least restrictive condition is configural invariance, which expands the definition presented 

by Horn and McArdle (1992). Meredith (1993) defines configural invariance as a 

situation where not only the pattern of zero and non-zero loadings of the items is constant 

across conditions, but also the sign of the non-zero loadings is the same for all the 

conditions examined. This definition implies that the items of an instrument which have 

positive loadings on the latent construct at one condition (e.g. the examinees are sixth 

grade Hispanic students) must also have positive loadings on the construct at a different 

condition (e.g. the examinees are seventh grade white students), and none of the loadings 

that are non-zero in the first condition can become zero on the second condition, or vice 

versa. 

Meredith’s taxonomy considers that both the covariance and mean structure are 

being modeled. In structural equation modeling, sometimes only the covariance structure 

is being investigated, and invariance of intercepts is not required to be addressed.  

Horn and McArdle’s (1992) argue that metric invariance is necessary for a 

researcher to be able to infer that the same construct is being measured at two different 

conditions, which is equivalent to weak factorial invariance in Meredith’s (1993) 

taxonomy. If this minimum requirement is not met, the measurement is considered to be 

non-invariant across conditions, and comparisons cannot be made. Non-invariance 
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includes configural invariance, but also includes situations where loadings have different 

signs in each measurement condition or the pattern of zero/non-zero loadings changes.  

Using univariate LGM to model composites of multiple indicators may result in 

both biased parameter estimates and poor model fit if there is non-invariance. This may 

happen because, in univariate LGM of composites, the loadings, error variances and 

intercepts of the items are not estimated, which corresponds to assuming that they are 

invariant across measurement occasions (i.e. there is strict factorial invariance). Poor 

model fit or biased parameter estimates could arise as a consequence of this assumption 

not being met.  

To demonstrate why latent growth modeling of composites of multiple indicators 

could result in poor fit or biased parameter estimates, consider an univariate LGM model 

of a composite variable collected at four measurement times: 
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The composites are the sum of four indicators: 

jjjjj yyyyc 4321 +++=  

Given that kjkjkjy εηλ += , from factor analysis, the univariate LGM model can be re-

written as: 

 

(43)

(44)
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Suppose that there is strict factorial invariance, which means that the factor 

loadings and errors remain constant across time. Suppose that the indicators’ loadings are 

equal to 0.5 and their error variances are 0.25. Replacing the factor loadings and error 

variances in the previous equation: 
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The matrix equation can be converted into a series of linear equations presenting 

the latent factors as a function of the level and shape scores: 
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Because there is strict factorial invariance, the linear model hypothesized by the 

loadings of the shape factor (i.e. 0, 1, 2, 3) can be tested. The loadings of the indicators 

are a multiplicative constant and the error variances are an additive constant across 

measurement times, so they have no effect on the estimation of the level and shape 

factors. 

(45)

(46)
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However, suppose there is configural invariance. Suppose the loadings of the 

indicators at the first measurement and last measurement time are 0.5 and the error 

variances are 0.25, while the loadings at the second and third measurement times are 0.75 

and the error variances are 0.5.  
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Solving for the latent factors as a function of the level and shape factors produces 

the following equations: 
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In this situation, the loadings and error variances have different multiplicative and 

additive effects on the equations at each measurement time, creating the appearance of  

curvilinear growth. However, the hypothesis being tested, which is specified by the 

loadings of the shape factor, is that the growth is linear. Consequently, this model would 

fit the data poorly and the parameter estimates would be biased, although the differences 

between the latent factors  1η … 4η  could be truly linear. 

The curve-of-factors model allows the examination of whether invariance holds 

across measurement times, because item level parameters are estimated. With the curve-

of-factors model, the invariance assumption may be tested using only the measurement 

(47)

(48)
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model, without specifying the second-order model. McArdle (1988) points out that the 

minimum requirement for the curve-of-factors model to meaningfully assess longitudinal 

change in the latent variable is that there is weak factorial invariance. If there is non-

invariance, the estimates of the means and variances of the level and shape, and of the 

covariance between level and shape may be biased. This bias may happen as a 

consequence of the need to set the scale of the factors at each measurement time, which is 

done by fixing the loading of an indicator of each factor to one. Where there is non-

invariance, bias may arise because fixing the loading of an indicator to one on each 

measurement time is equivalent to assuming that a unit change in the indicator fixed to 

one on the first measurement time means the same thing as a unit change in the indicator 

fixed to one on the other measurement time. This assumption will affect the estimates of 

the means and variances of the level and shape and their covariances, leading to biased 

estimates, because in reality the population loadings of the indicators whose loadings 

were fixed to one are different.  

The test of invariance of the loadings (i.e. metric or weak factorial invariance) 

provides support for the hypothesis that the same indicators used at different situations 

measure the latent construct in the same way (Meredith & Horn, 2001). Testing for the 

invariance of both factor loadings and error variances is equivalent to testing for equal 

reliabilities across testing times (Raju, Laffitte, & Byrne, 2002). A researcher may test for 

all types of invariance in Meredith’s taxonomy. There has been debate about whether a 

researcher should test strict factorial invariance first and if it does not hold, test less 
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restrictive forms of invariance, or start with weak factorial invariance, then strong and 

last strict factorial invariance (Byrne, Shavelson, & Muthén, 1989; Raju et al., 2002).  

Little (1997) argues that two different rationales can be used to test invariance: 

the statistical or the modeling rationales. A test for invariance according to the statistical 

rationale consists in placing equality constraints on each parameter hypothesized to be 

invariant across measurement occasions and comparing the fit of the constrained model 

with the fit of the unconstrained model. The constrained model is nested within the 

unconstrained model, and therefore a chi-square difference test can be used to evaluate 

the loss of fit introduced by the constraints (Sayer & Cumsille, 2001). This test is 

performed by taking the difference between the chi-square fit statistics of the constrained 

and unconstrained model (i.e. 222
uc χχχ −=∆ , where 2χ∆  is the difference between the 

chi-squares, 2
cχ  and 2

uχ are the chi-squares of the constrained and unconstrained model, 

respectively). The difference 2χ∆  can be tested for significance with df∆   degrees of 

freedom, where df∆ is the difference between the degrees of freedom of the constrained 

model cdf  and the unconstrained model udf . The null hypothesis for this test is that there 

is invariance of the constrained parameters. If the researcher fails to reject the null 

hypothesis, it can be concluded that the constraints do not significantly reduce model fit, 

and the measurement invariance of the constrained parameters is supported. If the 

researcher rejects the null hypothesis, it means that the constraints over-simplify the 

model (Kline, 1998), and measurement invariance of the constrained parameters is not 

supported.  
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The modeling rationale for invariance testing consists in placing constraints in all 

parameters hypothesized to be invariant and evaluating the overall fit of the model. In 

this case, both global model fit indices (e.g. 2χ , NFI, CFI, TLI, RMSE) and indices of 

local misfit (e.g. Lagrange multiplier tests, residuals) should be inspected to establish a 

condition of invariance. The statistical rationale is more flexible than the modeling 

rationale, and it is especially useful to test a hypothesis about the invariance of a specific 

parameter. The modeling rationale is useful for large models with numerous constrained 

parameters, because the chi-square difference test is overly sensitive to model misfit with 

many parameters and large sample sizes (Little, 1997). 

A serious limitation of current invariance tests is that because the loading of one 

indicator is usually fixed to one, this loading cannot be tested for invariance.  Cheung and 

Rensvold (1999) proposed to perform the invariance test as many times as there are 

indicators, and switch the loading being fixed to one at each time. Invariance would only 

be assumed if none of these tests resulted in a significant chi-square difference test. 

However, Hancock, Stapleton, and Arnold-Berkovits (2004) argue that fixing the loading 

for an indicator to one not only assumes that this specific indicator is invariant across 

populations but also shifts the values of the other parameters in a compensatory way in 

order to result in the same observed variance-covariance matrix. They have demonstrated 

that tests of invariance will only yield adequate results if the assumption of invariance 

being made when fixing to one the loading of an indicator at each measurement time is 

adequate.  
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Although the issues presented above indicate a need for more research about tests 

of invariance, the focus of this dissertation is on consequences of different types of 

invariance on the parameter estimates and model fit of latent growth models of multiple 

indicators. In this dissertation, Meredith’s (1993) taxonomy will be used as a guide to 

create different invariance conditions and observe whether the methods of latent growth 

modeling can produce adequate estimates under these conditions. 

Besides measurement error and measurement invariance in LGM of multiple-

indicators, this dissertation will also address the sample size necessary for estimating 

latent growth models. Although there is a vast literature about sample size requirements 

for SEM, the sample size necessary for estimating latent growth models has received 

little attention.  The goal of this dissertation is to provide some guidance about which 

sample size is large enough to ensure stable and unbiased parameter estimates, adequate 

fit indices, and adequate power, for each of the four LGM methods for multiple 

indicators. The section below presents some of the guidelines that have been provided to 

choose an adequate sample size in SEM, and reviews the few studies that have been 

published about sample size in LGM. 

Sample-size necessary for fitting latent growth models 

Parameter estimation in latent growth modeling, as well as in structural equation 

modeling in general, depends on sample size. The importance of sample size comes from 

the fact that the larger the sample size, the better the efficiency of parameter estimation. 

Efficiency refers to the size of the variance of the sampling distribution of the estimate. 

An estimator will be relatively more efficient than another if the variance of the sampling 
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distribution of estimates is smaller (Wackerly, Mendenhall, & Scheaffer, 1996). A 

smaller variance of the sampling distribution corresponds to a smaller standard error, 

which in turn leads to increased power to detect significant effects. Furthermore, because 

parameter estimation in SEM is usually performed in an iterative process, a smaller 

variance of the sample statistics obtained with using a large sample size will result in 

better convergence rates. Also, estimates obtained with larger sample sizes will tend to 

cross-validate better.  

With respect to the assessment of fit in SEM, increases in sample size correspond 

to increases in the chi-square statistic associated with the model. Sample size also affects 

fit indices by either influencing the sampling distribution of the fit index (e.g. NFI, GFI, 

AFGI) or by entering directly into the calculation of the fit index (e.g. TLI, IFI) (Bollen, 

1990). The fit indices whose sampling distributions are influenced by sample size 

increase as sample size increases, while the ones that include sample size in their formula 

keep their expected value constant regardless of sample size (Bollen, 1990).  

A variety of guidelines have been proposed to determine adequate sample sizes 

for estimating structural equation models, but these recommendations have not converged 

to a common agreement yet. The lack of agreement with respect to sample sizes is due to 

the fact that the necessary sample size depends on several different conditions, such as 

the complexity of the model, number of parameters being estimated, number of indicators 

per latent variable, distribution and reliability of the observed variables, strength of 

association between the indicators and the latent variables, estimation method, and 
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amount of missing data (Hamilton, Gagne, & Hancock, 2003; Jackson, 2003; Muthén, L. 

K. & Muthén, 2002).  

As a consequence of the many conditions that can affect the sample size 

necessary for estimating a structural equation model, several different criteria to 

determine minimum sample sizes have been recommended. One of these criteria is 

absolute sample size. For example, for maximum likelihood estimation of SEM models, a 

minimum of 150 (Anderson & Gerbing, 1988) or 200 (Jackson, 2003) observations has 

been recommended. However, other estimation methods such as the asymptotically 

distribution free (ADF) method may require more than 500 observations (Anderson & 

Gerbing, 1988). Another criterion for determining necessary sample size is based on the 

number of subjects (N) per parameter estimated in the model (q). For example, Kline 

(1998) recommends a minimum N:q ratio of 10:1 and ideally 20:1, while Bentler (1995) 

argues that with normally distributed data, a ratio of 5:1 could suffice. Jackson (2003) 

found that for a correctly specified model, an increase in the N:q ratio has a substantial 

effect on fit indices. For example, as the N:q ratio increases, the CFI approaches 1.00 and 

the RMSEA approaches 0.00. However, he found that the absolute sample size has a 

much larger effect on fit indices than the N:q ratio. Besides the several rules of thumb 

that have been suggested, such as the ones presented above, some researchers have 

proposed methods for choosing a sample size based on the power it would provide to test 

a specific model (Kaplan, 1989, 1995; Lei, 2002; MacCallum, Browne, & Sugawara, 

1996; Satorra, 1989; Satorra & Saris, 1985). For example, MacCallum et al. (1996) 

provides a method to determine  sample size as a function of estimated effect size, 
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degrees of freedom of the model, and desired power. He defines effect size in terms of 

the difference between the RMSEA value associated with the null hypothesis and any 

other specified RMSEA, and provides tables that associate sample size and power, given 

the effect size and degrees of freedom. Hancock and Freeman (2001) extended the tables 

provided by MacCallum et al. to several other combinations of values. 

  The issue of determining an adequate sample size for estimating latent growth 

models has not received much attention in the literature yet. Only a couple of very recent 

studies have tried to investigate how sample size affects the estimation of LGM. 

Hamilton et al. (2003) investigated the effect of sample size on convergence rates, chi-

square statistic, fit indices, and parameter estimates. They found that the rate of 

convergence of a univariate LGM model with five measurement times is very high even 

with small sample sizes such as 50 and 100. With a sample size of 100, all conditions 

resulted in a convergence rate higher than 90%. Their results also showed that the relative 

bias of the chi-square values was consistently lower than 0.05 when the sample size 

reached 200. The researchers evaluated the effect of sample size on the comparative fit 

index (CFI) by looking at its mean across replications, which has an expected value of 

1.00 because the model is correctly specified. CFI was higher than .99 with all conditions 

with sample size of 50. The effect of sample size on the standardized root mean squared 

residual (SRMR) and root mean squared error of approximation (RMSEA) were 

evaluated by comparing the means of these fit indices across replications with their 

expected value (0.00) for a correctly specified model. The average value of the SRMR 

decreased as sample size increased, and was below 0.05 with all conditions when sample 
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sized reached 200. The RMSEA was found to decrease quicker than the SRMR and the 

mean RMSEA was below 0.05 in all conditions with the sample size of 50. The authors 

also investigated how sample size affects the relative bias of the parameters estimates. 

They found that the size of the sample does not bias the intercept, slope and covariance 

between intercept and slope. These estimates had mean relative bias across replications 

close to zero even with sample sizes as low as 50. The parameter estimate that presented 

the highest bias was the covariance between intercept and slope with sample size of 25. 

The variability of the parameter estimates reduced consistently as the sample size 

increased. Finally, sample size was found not to affect the standard errors of the 

parameter estimates. The authors concluded that for adequate estimation of correctly 

specified LGM models, a sample size of at least 100 is recommended. However, if there 

is some misspecification in the model, larger sample sizes may be needed. 

 Another study about sample size requirements in LGM was executed by Fan 

(2003a), who also compared LGM with repeated measures ANOVA with respect to 

power to detect group differences in intercept and slope. Fan modeled the group 

differences by including a dummy coded indicator in the LGM. The model studied was 

linear with five measurement times and eleven sample sizes (i.e. 50, 100, 200, 300, 400, 

500, 600, 700, 800, 900, 1000). Fan simulated conditions where the groups were different 

with respect to the intercept only, slope only, and both intercept and slope. He also 

simulated conditions with interactions between group membership, intercept and slope. 

The standardized mean difference between groups in intercept and slope simulated were 

small (d = 0.2), medium (d = 0.5), large (d = 0.8) and no difference (d = 0.0). 
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Fan (2003a) found that the convergence rate of the LGM models was higher than 

90% with sample sizes of 50 and higher than 99% with sample sizes of 100 or larger. 

With respect to type I error when there is no group difference, Fan found that both LGM 

and repeated measures ANOVA retain a type I error rate lower than 0.06 in all 

conditions. With respect to differences in slope, the author found that LGM shows more 

power than repeated measures ANOVA to detect group differences in slope, even with 

sample sizes as low as 50. However, the power of LGM to detect small group differences 

in slope only reaches 0.8 with sample sizes of 800. Sample sizes of 200 and 50 are 

needed for LGM to detect medium and large differences, respectively. LGM requires a 

sample size from one half to two thirds of the sample size required in repeated measures 

ANOVA to detect the same difference in the slope. Repeated measures ANOVA showed 

more power than LGM to detect differences in intercept if the differences are small. If the 

differences are medium and large and the sample size is larger than 300, there was no 

difference in power between the two methods. LGM was found to need sample sizes of 

900, 200, and 50 to detect small, medium, and large differences of intercepts, 

respectively. When there was an interaction between the group membership and intercept 

and slope, the author found that LGM provides more power than repeated measures 

ANOVA to detect slope differences, with either small, medium or large differences. 

Repeated measures ANOVA could not be used to estimate differences in intercept when 

there was an interaction with group membership. With LGM, Fan found that sample sizes 

of 500 were needed to detect medium differences in slope when there was an interaction 

and a sample size of 700 was needed to detect differences in intercept.  
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No studies have been published investigating sample size requirements for the 

curve-of-factors model. However, the few applied studies found in the literature used 

moderate to large sample sizes. For example, Duncan and Duncan (1996) used a sample 

size of  321 individuals to fit a curve-of-factors model with a single factor measured at 

four time points with three indicators per factor and one predictor. Hancock, Kuo and 

Lawrence (2001) used a sample of 791 subjects to fit a model with three time points and 

three indicators per factor. 

Statement of the problem 

The literature review presented above has shown that modeling a composite of 

multiple indicators is not equivalent to modeling a latent variable, and ignoring the 

measurement error of the indicators in LGM of latent constructs may produce biased 

parameter estimates. Furthermore, it has been pointed out that univariate LGM assumes 

strict measurement invariance, and that the presence of other types of invariance or non-

invariance may also introduce bias in the parameter estimates. In the previous sections, 

four methods a researcher can select to perform LGM of multiple indicators have been 

described: univariate LGM of composites of items, of composites whose 

variance/covariance matrix is corrected for attenuation, of composites with fixed error 

variances, and multivariate LGM with the curve-of-factors model. 

The previous sections have also shown that there have not been many studies 

about sample size requirements for LGM in the literature. Furthermore, the SEM 

literature has provided mixed guidelines with respect to sample size and a consensual 

recommendation has not been reached yet.  
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In the context of analyzing the growth of latent variables measured by multiple 

indicators, this dissertation aims to evaluate the four LGM methods presented with 

respect to sample size requirements and the ability of these methods to provide unbiased 

estimates of the growth parameters (i.e. means and variances of the level and shape, and 

the covariance between level and shape) given the presence of measurement error and 

different invariance conditions. In order to accomplish this goal, samples of different 

sizes will be simulated, mimicking conditions that could be found with real data. Because 

the focus is on the effects of measurement error and measurement invariance in LGM, the 

population parameters that will be manipulated are the ones in the measurement model of 

the latent factors. These parameters are the factor loadings, measurement errors and 

intercepts of the indicators at each measurement time. However, an applied researcher 

who uses LGM is usually more interested in the parameters of the structural part of the 

model. Consequently, the main criteria to evaluate the performance of the four LGM 

methods studied in this dissertation will be whether these methods produce unbiased 

estimates of the means, variances and covariance of the level and shape factors and their 

corresponding standard errors. Furthermore, because information about the fit of 

hypothesized models is a very important part of applied research, the four methods will 

also be compared with respect to whether the fit indices resulting from the analyses with 

each method would lead to the retention or rejection of the model. 

The research question that will be addressed in this dissertation with respect to 

measurement error is: How does the amount of measurement error in the indicators affect 

the results of the four methods of LGM? The research question about measurement 
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invariance is: How does non-invariance and different types of measurement invariance 

affect the results the four methods of LGM? Finally, the research question about sample 

size is: Do the results from the four LGM methods differ with respect to sample size? 

The questions about invariance are closely related to the ones about measurement 

error because strict factorial invariance assumes equal measurement errors across testing 

occasions, and strong, weak, and configural invariance relax this assumption. This means 

that a LGM method which fails to account for differences in measurement error across 

testing times may only produce unbiased parameter estimates if strict factorial invariance 

holds. This project does not address methods to test invariance, only the consequences of 

assuming a certain type of invariance when it does not exist. This information may be 

useful to inform researchers about which method is most appropriate for their 

longitudinal analysis of latent constructs. 

It is hypothesized that univariate LGM of composites will only produce unbiased 

parameter estimates when there is strict factorial invariance and the reliability of the 

composites is high. It is also hypothesized that LGM of composites with the correction 

for attenuation, LGM of composites with fixed error variances, and the curve-of-factors 

model will provide unbiased parameter estimates in the conditions where the indicators 

have low reliability and there is strict or weak factorial invariance.  

The information obtained in this dissertation about the effectiveness of different 

LGM methods to analyze longitudinal data from multiple indicators containing 

measurement error and varied degrees of invariance may guide applied researchers to 

choose the appropriate LGM method for their analysis. The section below details the 
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conditions included in this study, the method to be used to simulate data, and the criteria 

to be used to evaluate the outcomes of the LGM methods. 
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Chapter III: Method 

 

In this study, the effect of measurement error, different types of invariance, and 

sample sizes on the growth parameters of LGM of multiple indicators was evaluated. 

This was accomplished through a Monte Carlo simulation study where one thousand 

samples were created according to each condition. The conditions were designed to 

mimic situations encountered in applied studies, where researchers have to analyze data 

with different reliabilities, construct invariance, number of measurement occasions, 

number of indicators and sample sizes. In this section, first the conditions that were 

manipulated in this study are described, then the procedure chosen for data simulation 

and analysis is specified, and finally the method that was employed to evaluate the results 

is presented. 

Methods of LGM analysis 

The following alternatives for LGM of latent constructs measured by multiple items were 

evaluated: 

1. LGM of item means: This is the method most commonly used in applied research. 

To implement this method, the means of all the items hypothesized to assess each 

latent construct were calculated for every individual, and a univariate LGM model 

was fit to the moment matrix of the means. 

2. LGM of item means, with a correction for attenuation: In this method, the item 

means were calculated, and their correlation matrix was obtained. Cronbach’s 

alpha reliability estimates were calculated for each group of items assessing the 
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latent construct at each measurement time. These reliability estimates were used 

to disattenuate the correlations (see equation 30) and variances (see equation 33) 

of the composites. The correlation matrix was transformed into a moment matrix 

by multiplying the dissatenuated correlation matrix by the square root of the 

dissatenuated variances of the composites and adding a vector of means. The 

resulting moment matrix was analyzed with univariate LGM. 

3. LGM of item means, fixing the error variances: Reliability estimates 
jjCCρ  of the 

composites at each measurement occasion were calculated using the Cronbach’s 

alpha formula. Next, the variances 2
jCσ  of the composites at each measurement 

time were calculated. Then, the estimates of the error variances of the composites 

(i.e. 21
jjj CCC σρ )( −  ) were calculated. A univariate LGM model was fit to the 

moment matrix of composites, with error variances fixed at 21
jjj CCC σρ )( − . 

4. The Curve-of-factors model: This model was fit to the moment matrix of the 

indicators. All factor loadings, error variances and intercepts of the indicators in 

the measurement model were freely estimated, with the exception of the loading 

and intercept of the first indicator at each measurement time, which were fixed to 

one and zero, respectively.  

Population parameters 

The five parameters of interest in latent growth modeling are the means and 

variances of the level and shape, and the covariance between level and shape. In this 

simulation, the means of the level and the shape were set to 1. The variance of the level 
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was set to 0.5 and the variance of the shape was set to 0.1. Muthén and Muthén (2002) 

argue that a ratio between variance of the level and variance of the shape of 5 to 1 is 

commonly found in the applied literature. The correlation between the level and shape 

factors was set to 0.4. 

A linear growth trajectory with equally spaced measurement occasions was 

specified for all conditions. To accomplish this, the loadings of the shape factor were 

fixed at increasing values starting from zero on the first measurement occasion, with 

increments of one. The loadings of the level factor were all fixed at one.  

 The parameters of the measurement part of the population model (i.e. factor 

loadings, error variances, and intercepts) were specified depending on the reliability, type 

of items and invariance conditions, which will be described in a subsequent section. In 

the population model, the variances of the latent factors at each measurement occasion 

(which in the curve-of-factors model are represented by the disturbances of the latent 

factors) were set to 0.2. 

Sample size 

The sample sizes simulated in this study were 100, 200, 500, and 1000. A sample 

size between 100 and 200 is the minimum recommended by Hamilton (2003) and Fan 

(2003a) for parameter estimation in univariate LGM. The ratio recommended by Kline 

(1998) of 10 observation for each parameter estimated (i.e. 10:1 ratio) was also used as a 

criterion to determine sample sizes. The smallest model (i.e. univariate LGM with three 

measurement times and with error variances constrained to ( 21
jjj CCC σρ )( − ) has 8 

parameters to be estimated, so the minimum required sample size would be 80. The 
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largest model (i.e. curve-of-factors model with five measurement times and fifteen 

indicators per factor) has 90 parameters, so the minimum recommended sample size 

would be 900. Therefore, the sample sizes of 100 and 1000 were used to satisfy the 

criterion of 10 observations for each parameter to be estimated for the smallest and 

largest model, respectively. Fan (2003a) indicated that to detect small differences in 

means and variances of level and shape between two groups with a power of 0.8, a 

sample size of at least 500 is required, so a sample size of 500 was also simulated. 

Number of items per factor 

The number of items per factor affects the degrees of freedom, the power to detect 

a model misspecification, and the number of iterations necessary for convergence. Fan 

(Fan, 2003a) showed that with the same sample size, models with more items per factor 

converge more quickly. Furthermore, the reliability of the scores increases as the number 

of items increase. However, in this study the values of the reliabilities were fixed 

independently of the number of items, so that the effect of reliability and of the number 

of items could be analyzed separately. 

 In this study, latent factors with five, ten and fifteen indicators were used. This 

range of values aims to reflect three scenarios encountered in applied studies with respect 

to how a researcher might select indicators to measure a latent construct: In the first 

scenario, a researcher may use only some items to measure a single construct from a 

larger survey measuring several different constructs (e.g. the NELS is a large survey 

containing a few items measuring different latent constructs, such as motivation and 

parental involvement). In this scenario, the number of items selected is typically small 



 

 
 

74

(e.g. Fan, 2001). In the second scenario, a researcher chooses parts of an existing scale to 

measure the same latent construct measured by the entire scale  (e.g. Mason, 2001). In the 

third scenario, the researcher uses an entire scale previously constructed or builds a scale 

specifically for the longitudinal study (e.g. Li, F. et al., 2001). Although these scenarios 

(more typically the second and third) can have a large number of items measuring a 

construct, this study included a maximum of fifteen items due to the difficulty of 

manipulating large variance/covariance matrices of items. 

Type of items 

Two types of items were simulated: essentially tau-equivalent and essentially 

congeneric. The objective of simulating these two types of items relates to the fact that 

Cronbach’s alpha reliability estimates are used in two of the methods reviewed in this 

study (the correction for attenuation and LGM method with fixed error variances). 

Cronbach’s alpha assumes that the items are essentially tau-equivalent (Lord & Novick, 

1968) and has been shown to underestimate reliability if the items are congeneric 

(Komaroff, 1997; Osburn, 2000; Raykov, 1997, 1998, 2001).  

In order to thoroughly investigate the performance of the two methods that are 

based on Cronbach’s alpha, datasets were simulated with either essentially tau-equivalent 

or essentially congeneric items. The difference between tau-equivalent and essentially 

tau-equivalent is that in the latter the items have different intercepts. Although the term 

essentially tau-equivalent has been in use for some decades (Lord & Novick, 1968), the 

term essentially congeneric was proposed more recently by Millsap and Everson (1991) 

to describe a condition where items have different factor loadings, error variances, and 
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intercepts. This study simulated essentially congeneric items instead of congeneric ones 

because it is a more general condition. 

The classification of items into parallel, essentially parallel, tau-equivalent, 

essentially tau-equivalent, congeneric, and essentially congeneric (Millsap & Everson, 

1991) refers  to the similarity of the characteristics (i.e. factor loadings, error variances, 

and intercepts) of different items that measure the same construct at a single testing 

occasion. This classification is only meaningful if the construct is measured by at least 

two items, which can be compared to each other within a testing occasion. On the other 

hand, measurement invariance refers to the stability of the characteristics of each 

individual item measuring a construct at a single testing occasion as compared with the 

same item in another testing occasion. Consequently, it is possible to talk about the 

invariance of a single item. 

In the essentially tau-equivalent condition, all the population loadings of the 

indicators in every measurement time were set to one, but the error variances were set to 

different values. The population values of the loadings, intercepts, and error variances for 

all conditions are presented at the appendix. The existence of tau-equivalent items also 

has implications with respect to invariance. If the items are tau-equivalent in every testing 

occasion, the condition of weak factorial invariance is also met.  Consequently, it is not 

possible to have items that are both essentially tau-equivalent and non-invariant. 

In the essentially congeneric condition, the items had different loadings on the 

latent factor. Because the effect of a specific choice of factor loadings is not of interest in 

this study, different values of population factor loadings for each indicator were 
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randomly chosen from a uniform distribution within a range of values that could be found 

in applied research. In this simulation, factor loadings were drawn within the range of 0.5 

to 1, rounded to two decimal places. The mean factor loading was 0.75 and the standard 

deviation was 0.14. This randomization of factor loadings averaged any effect that the 

choice of factor loadings could have had in the results. In order to guarantee that the 

essentially congeneric condition was created, the factor loadings randomly drawn were 

examined to verify that they differed from each other. Whether the loadings randomly 

chosen for the set of indicators of one latent variable varied across measurement times 

depended on the invariance conditions simulated. The process of fixing or varying the 

loadings to reflect different invariance conditions will be described in a later section. The 

population loadings for all conditions included in this study are presented in appendix C. 

The population intercepts of the indicators of each factor in both the essentially 

tau-equivalent and essentially congeneric conditions were defined by randomly sampling 

a number from a uniform distribution with a minimum of 1, maximum of 10, mean of 

5.5, and standard deviation of 2.6. The reason to choose intercepts randomly in a limited 

range of numbers is to keep them in a scale similar to the population means of the level 

and shape factors, but at the same time create random variability of the intercepts across 

conditions. Whether the values chosen for the intercepts at a testing occasion varied 

across time depended on the invariance condition simulated. The population intercepts 

for all conditions are reported in appendix C. 

Both essentially tau-equivalent and essentially congeneric items have unequal 

error variances. The error variances of each indicator were also randomly chosen, but 
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with the constraints that given the number of items and the factor loadings chosen, the 

measurement errors produced the desired composite reliability values. More details about 

the specification of measurement errors will be given in the section about reliability.  

Reliability 

 One of the focuses of this study is on the effects of measurement error. 

Measurement errors of the indicators forming a composite were specified through the 

composites’ reliabilities because reliability coefficients are commonly reported in the 

literature, and could be used to provide realistic reference values for the simulation. 

Many reliability generalization studies have been recently published in the literature, and 

these studies provide the mean reliability coefficient across several studies about a 

specific latent construct. For example, reliability generalization studies have reported that 

the mean Cronbach’s alpha of scales to measure social desirability bias (Beretvas, 

Meyers, & Leite, 2002), geriatric depression (Kieffer & Reese, 2002), state anxiety and 

trait anxiety (Barnes, Harp, & Jung, 2002), and life satisfaction (Wallace & Wheeler, 

2002) were .72, .84, .91, .89, and .79, respectively.  In this study, the reliability of the 

composites simulated was set to 0.7 and 0.9, which correspond to low and high values of 

mean reliability coefficients found in the reliability generalization studies reviewed.  

The reliability '
jjCCρ  of a composite is a function of the error variances, the factor 

loadings and the number of indicators of each factor, according to the formula below, 

which was presented previously in the discussion about measurement error:  



 

 
 

78

∑∑

∑

==

=

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

=
K

k

K

k
k

K

k
k

CC

k

jj

1

2
2

1

2

1

εσλ

λ
ρ '  

where kλ is the factor loading of indicator k on a latent factor with K indicators, and 2
kε

σ is 

the error variance of indicator k. 

In order to obtain the indicators’ error variances that correspond to each 

composite’s reliability, the formula above was used to solve for the sum of the error 

variances∑
=

K

k
k

1

2
εσ  as a function of each reliability value and the randomly chosen factor 

loadings. Because both essentially tau-equivalent and essentially congeneric items have 

different error variances, the sum of error variances was divided unequally among the 

items of each latent factor. This division was accomplished by randomly selecting k real 

numbers in the 0 to 10 range, where k is the number of indicators of each factor, then 

dividing each number selected by the sum of k numbers, and multiplying the fractions 

obtained by the sum of error variances. This method gave to each indicator a randomly 

chosen part of the sum of error variances, and guaranteed that the composite reliability 

was equal to the value specified. 

Whether the error variances calculated for the indicators of a latent factor at one 

testing occasion varied on the other testing occasions depended on the invariance 

condition simulated. Details on how measurement errors, factor loadings and intercepts 

are specified to reflect each invariance condition are given in the next section. 

(49)
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Invariance 

Three invariance conditions were simulated: strict factorial invariance, weak 

factorial invariance, and configural invariance.  

In the strict factorial invariance condition, the population factor loadings, error 

variances, and intercepts were set to be the same across testing times. This was 

accomplished by first choosing the factor loadings, error variances, and intercepts for the 

first measurement time using the methods described in the previous sections, according to 

the type of item (i.e. essentially tau-equivalent or essentially congeneric) and construct 

reliability. Then, strict factorial invariance was obtained by specifying the same 

population item parameters of the first measurement time for the other measurement 

times. 

In the weak factorial invariance condition, only the population factor loadings were 

identical across testing times. The population factor loadings chosen for the first 

measurement time were set to the same values in the other measurement times. The 

population error variances and intercepts of each item were set to different values across 

conditions. 

Configural invariance was modeled by setting the population factor loadings, error 

variances and intercepts to different values across testing times, but the signs of the factor 

loadings remained the same. Configural invariance was simulated because it is a more 

realistic type of non-invariance than the condition where the signs of the loadings 

changes across testing times or some of the loadings become zero. 
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Number of measurement times 

The number of waves of data collection has a important role in LGM because the 

precision of parameter estimates tends to increase along with the number of observations 

for each individual (Duncan, T. E. et al., 1999). Also, more measurement times allow 

more flexibility in modeling the growth shape. The collection of data in just two waves 

allows only for linear change, while if multiple waves of data are collected, other growth 

shapes can be estimated. In this study, data was simulated with three and five 

measurement occasions. 

Study design overview 

Data for this study were simulated with four sample sizes (100, 200, 500, 1000), 

three invariance conditions (strict, strong and configural invariance), two reliability 

values (0.7 and 0.9), two levels of number of measurement occasions (3 and 5), and with 

5, 10 or 15 items per factor which were either essentially tau-equivalent and essentially 

congeneric. The conditions were not completely crossed because the condition with 

essentially tau-equivalent items implies at least weak factorial invariance. Consequently, 

there were no conditions with essentially tau-equivalent items and configural invariance. 

This simulation study had 144 conditions with essentially congeneric items and 94 

conditions with essentially tau-equivalent items, which sums to 240 conditions.  

In addition to the conditions mentioned above, some “ideal” conditions were 

created where the reliability was perfect (i.e. measurement error was zero), the items 

were parallel (i.e. equal loadings, intercepts and zero error variances) and there was strict 

factorial invariance. There were only 24 of these conditions, reflecting combinations of 
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number of items (i.e. 5, 10, and 15), number of measurement times (i.e. 3 and 5) and 

sample size (i.e. 100, 200, 500, and 1000). These conditions were created to serve as a 

baseline to compare the LGM methods, because all of them should perform well under 

these “ideal” conditions. 

Four methods (LGM of item means, LGM of item means with the correction for 

attenuation, LGM of item means with fixed error variances, and the curve-of-factors 

model) were used to analyze datasets generated under each of the conditions. A summary 

of the conditions included in this study can be found in Appendix A. A summary of the 

ideal conditions can be found in Appendix B. The population values of all the parameters 

used in the simulation can be found in Appendix C. 

Data generation 

 First, the matrix equations of the curve-of-factors model were filled with the 

population values of the growth parameters (i.e. means and variances of level and shape, 

covariance between level and shape, and disturbances of latent factors) and the 

measurement parameters (factor loadings, measurement errors, and intercepts). The 

matrix equations of the curve-of-factors model were used to generate data because this 

model contains all the parameters, and the univariate LGM models are simplifications of 

it.  For each condition, the matrix equations of the curve-of-factors model with the 

parameters filled in were solved with the software R 2.0.1 (R Development Core Team, 

2004) to obtain the population variance/covariance matrix of the items and the vector of 

item means.  
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 In the next step, the population variance/covariance matrix of the items and the 

vector of item means for each condition were used in a R 2.0.1 function to generate 

multivariate normally distributed random numbers representing the scores of all 

individuals on each item. Each dataset contained scores that were random and normally 

distributed deviates of the population values specified in the variance/covariance matrix 

and vector of means of the items. One thousand datasets was generated for each of the 

264 conditions, with a different random seed for each condition. 

Once the 264,000 datasets were created, they were saved to the disk, and R 2.0.1 

was used to perform the first steps of the latent growth analyzes.  Because two of the 

LGM methods that were evaluated in this study use reliability estimates, the first step was 

to calculate Cronbach’s alpha reliability estimates of the set of items within each testing 

time.  

Because the three univariate LGM methods evaluated in this study are based on 

the analysis of composites (i.e. means) instead of individual item scores, R 2.0.1 was used 

to calculate the means of the items for each subject within each testing time, and the 

composites’ variance/covariance matrix and vector of means. For the univariate LGM 

method with the correction for attenuation, R 2.0.1 was used to calculate correlation 

matrices instead of variance/covariance matrices, which were disattenuated using the 

estimated Cronbach’s alpha coefficients for each composite. After disattenuation, these 

correlation matrices were multiplied by the square root of the disattenuated variances of 

the composites to obtain the composites’ variance/covariance matrices. 
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In order to implement the curve-of-factors model, R 2.0.1 was used to calculate 

the variance/covariance matrix of the items, and their vector of means for each dataset.  

After all the input matrices for the four LGM methods were created, these 

matrices were saved to the disk and the analysis proceeded to the model fitting stage. 

The software Mplus 3.11 and the Runall utility (Muthén & Muthén, 2004) was 

used to fit the univariate LGM models and the curve-of-factors model to every 

variance/covariance matrix and vector of means. The Runall utility allows Mplus to 

repeatedly fit SEM models to data that were generated outside of Mplus. 

In every model, the factor loadings of the level were fixed to one and the factor 

loadings of the shape were fixed to values increasing by one unit starting at zero. Also, 

the growth parameters (means and variances of the level and shape, and their covariance) 

were freely estimated in all the models. In the LGM of item means and LGM of item 

means with the correction for attenuation the error variances of the composites were 

freely estimated. In the LGM of item means with the error variances fixed at 

21
jjj

CCC σρ )( '− , the disturbances of the latent factors at each measurement time were 

freely estimated. This disturbance corresponds to the reliable variance of the composite. 

The reliability coefficient, '
jjCCρ , was the sample Cronbach’s alpha calculated with R 

2.0.1 for each composite at each measurement time. In the curve-of-factor models, the 

factor loadings, error variances, and intercepts of each item were freely estimated, in 

addition to the growth parameters. However, the first loading of each factor was 

constrained to one in order to set the scale of the factors. 
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The four LGM models were fit to the 1,000 datasets of each of the 264 conditions, 

and the convergence rates and percentages of inadmissible solutions were recorded. The 

initial set of datasets was analyzed without removing the inadmissible solutions. Next, 

inadmissible solutions were removed and additional datasets were simulated until 1,000 

admissible solutions were obtained for each condition with each method. The reason for 

obtaining 1,000 sets of results for each condition with each method is that the LGM 

methods were compared with respect to the means and standard deviations of the 

parameter estimates and fit indices obtained across replications. In order to fairly 

compare the LGM methods, the means and standard deviations of the parameter 

estimates and fit indices should be obtained from the same number of observations (i.e. 

replications). 

After fitting the different LGM models, Mplus outputs the parameter estimates, 

standard errors of parameter estimates, and fit statistics. These results were saved to the 

disk so they could be used in the data analysis stage to compare the LGM methods. 

Data analysis 

The first step in comparing the performance of the four LGM methods was to 

look at their convergence rates. The convergence rate of each LGM method was 

evaluated by comparing the number of analyses (from a total of 1000) that converged to a 

solution. The average convergence rate across replications for each method with each 

condition was reported.  

The next step was to compare the four LGM methods with respect to the bias in 

the parameter estimates. Bias in the following five parameter estimates was considered: 
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mean of the level, mean of the shape, variance of the level, variance of the shape, and 

covariance between level and shape. The comparison of the LGM methods was 

performed using estimates of relative bias (Hoogland & Boomsma, 1998) averaged 

across replications. This evaluation of the LGM methods is based on the concept that if a 

method is unbiased, the expected value of the difference between the estimate and the 

population parameter is zero. The relative bias is the difference between the parameter 

estimate rcθ̂ for each replication r in each condition c and the generating population 

parameter θ ,  divided by the population parameter. In other words, the relative bias is the 

ratio of the bias and the population parameter. The formula for the relative bias is: 

θ
θθθ −

= rc
rcB

ˆ
)ˆ(  

The relative bias is considered acceptable if its magnitude is less than .05 

(Hoogland & Boomsma, 1998). The one thousand relative bias estimates for each 

condition were used in a quantitative analysis investigating the effect of the conditions on 

the magnitude of the relative bias. This quantitative analysis was performed through 

several ANOVAs, one for each of the five parameter estimates and for each of the four 

methods of latent growth modeling. In these six-way ANOVAs, the dependent variable 

was the relative bias of a parameter estimate for all conditions with each LGM method, 

and the independent variables were invariance condition, type of item, sample size, 

reliability, number of items per factor, and number of measurement times. 

The effect sizes of the conditions included in the ANOVAs was examined using 

the partial Eta-squared. The partial Eta-squared is an index of effect size obtained by 

(50)
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dividing the sum of squares of an effect by the sum of squares error plus the sum of 

squares of the effect (i.e. )( effecterroreffect SSSSSS + ). The partial Eta-squared differs from 

the Eta-squared because the latter is the ratio of the sum of squares of an effect and the 

sum of squares total. With the Eta-squared, if the same experiment is repeated with some 

extra predictors, the value of Eta-squared of each predictor will be different from the 

previous experiment, because the sum of squares total will change. The partial Eta-

squared has the advantage over the Eta-squared of staying constant for one predictor 

across two different studies. The partial Eta-squared is similar to the partial correlation in 

the sense that it is a index where for each predictor, the effects of the other variables are 

removed (Cohen, 1973). The Eta-squared does have one advantage over the partial Eta-

squared: Within an experiment, the Eta-squared of the predictors sum to one. However, 

as Cohen (1973) emphasizes, it is a trade-off for the property of the partial Eta-squared of 

being useful to compare effect sizes across studies. Because this study is based on 

simulations, it is desirable to report an effect size index which can be used to make 

comparisons with future replications and expansions of the study. Only partial Eta-

squared coefficients equal or larger than 0.05 were reported. 

Because the standard errors of the parameter estimates are essential to test 

hypotheses about the parameter estimates, and to calculate their confidence intervals, the 

four methods of LGM were also compared with respect to relative bias of standard error 

estimates. The relative bias of the standard errors was evaluated for means and variances 

of the level and shape, and the covariance between level and shape. The relative bias of 

standard errors can be calculated with the formula (Hoogland & Boomsma, 1998): 
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where rces θˆ is the estimated standard error of a parameter in replication r of condition c, 

and csθˆ is the standard deviation of the one thousand parameter estimates of condition c, 

which is an estimate of the population standard error. The bias of the standard error 

estimates is considered acceptable if its magnitude is less than 0.1 (Hoogland & 

Boomsma, 1998). The same six-way ANOVAs that were conducted with the bias of the 

parameter estimates were also performed with the bias of the standard errors. 

In structural equation modeling, a fundamental issue that needs to be investigated 

before interpreting any estimated parameter is whether the model fits the data. In the 

SEM framework, model fit means whether the implied variance/covariance matrix is 

close to the observed variance/covariance matrix (Bollen, 1989). Assessment of model fit 

is also an important part of latent growth modeling. In this project, the four LGM 

methods were evaluated with respect to whether they produced unbiased fit statistics (i.e. 

Chi-square fit statistic) and fit indices that indicated an acceptable fit of the model. 

Overall model fit indices were used, because they evaluate the model as a whole. The 

three overall model fit indexes used in this study were the comparative fit index (CFI), 

the Tucker-Lewis index (TLI), and the root mean-square error of approximation 

(RMSEA), because they are commonly used to determine the acceptability of models in 

applied studies, and criteria about which values of the CFI, TLI, and RMSEA correspond 

to well-fitting models have been well established (see Hu & Bentler, 1999). 

(51)
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The adequacy of the chi-square statistics provided by each LGM method was 

evaluated by calculating its relative bias. The relative bias of the chi-square is equal to the 

difference between the chi-square statistic, 2
rcχ , of each replication r of condition c and 

the expected chi-square ][ 2
cE χ  of condition c, divided by the expected chi-square. For a 

correctly specified model, the expected chi-square is equal to the degrees of freedom of 

the model. 

][
][)( 2

22
2

c

crc
rc E

EB
χ

χχχ −
=  

The relative bias of the chi-square has been considered acceptable if its magnitude 

is less than 0.05 (Hamilton et al., 2003).  This study evaluated the performance of the 

methods with respect to the chi-square statistic by computing its relative bias instead of 

computing the percentage of replications where the model would be retained based on the 

chi-square statistics, because the chi-square statistic is a very strict criterion of fit (i.e. it 

indicates exact fit), and is very sensitive to small degrees of misfit. Furthermore, six-way 

ANOVAs were conducted to examine the effect of the conditions included in this study 

on the relative bias of the chi-square statistic. 

The adequacy of the CFI, TLI, and RMSEA produced by the four LGM methods 

was evaluated by looking at the percentage of replications whose CFI, TLI and RMSEA 

would indicate acceptable fit. Values of CFI and TLI equal or higher than 0.95 and values 

of RMSEA equal or lower than 0.05, are considered to indicate acceptable fit (Hu & 

Bentler, 1999).  

(52)
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The relationship between the conditions manipulated in this study and the CFI, 

TLI and RMSEA was quantified by calculating the Cramer’s V coefficient for each pair 

of variables formed by a condition (i.e. number of items, number of measurement times, 

sample size, reliability, invariance, and type of item) and a dummy coded variable 

indicating whether or not the CFI, TLI and RMSEA support acceptable model fit. For 

contingency tables, the chi-square statistic allows a test of the null hypothesis that the 

frequencies of two variables are independent, but does not provide information about the 

strength of association between the variables (Acock & Stavig, 1979; Agresti, 1996). The 

Cramer’s V, however, provides a measure of the strength of the relationship between two 

categorical variables (Acock & Stavig, 1979; Argyrous, 2000; Hays, 1973). The 

Cramer’s V is calculated based on the chi-squared statistic: 

2

2

  V sCramer'
maxχ
χ

=  

Where 2χ is the chi-square statistic obtained from a contingency table and 2
maxχ is the 

maximum value of the chi-square statistic when the variables are completely dependent. 

The value of 2
maxχ  is )],([ 11 −− crMINn , where ),( 11 −− crMIN refers to the smaller of 

either the number of rows r or the number of columns c. Cramer’s V has the advantage of 

being constrained between zero and one and having a clear proportional interpretation 

(Acock & Stavig, 1979): 

ceindependen from departure Maximum
ceindependen from departure Obtained  V sCramer' =  

(53)
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Because the number of replications simulated in this study was very large, even 

small relationships between variables would be statistically significant. Therefore, only 

conditions that produced a Cramer’s V equal or larger than 0.1 were reported. 
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Chapter IV: Results 

 This chapter presents the results of the simulation study performed to compare 

four methods of growth modeling of latent constructs measured by multiple indicators. 

The results chapter is divided into six sections. In the first four sections, the results of the 

curve-of-factors model, univariate LGM, univariate LGM with fixed error variances, and 

univariate LGM with correction for attenuation are presented, in this order. The fifth 

section compares the results of the four methods. The sixth section provides the results of 

the four methods with conditions where reliability was perfect (i.e. measurement error 

was zero), there was strict factorial invariance and the items were parallel. There are 

twenty four of these “ideal” conditions, because the only factors manipulated were 

sample size (i.e. 100, 200, 500, and 1000), number of items (i.e. 5, 10, and 15), and 

number of measurement times (i.e. 3 and 5), while reliability, invariance and type of item 

were kept constant. The results for these ideal conditions are reported separately from the 

other results because they would make the design not completely crossed.  

 The four methods were compared with respect to convergence rates, relative bias 

of the estimates of the means, variances and covariance of level and shape, and their 

standard errors, relative bias of the chi-square statistic, and percentage of fit statistics (i.e. 

CFI, TLI and RMSEA) that would lead to retention of the model.  

The results of the ANOVAs of the relative biases are presented for conditions for 

which the ANOVAs indicated effect sizes larger than 0.05 (as assessed by partial Eta-

squared). For each method, this chapter indicates whether the relative biases were 

acceptable under the combination of conditions, and whether the relative biases were 
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consistent across conditions or a particular combination of conditions presented larger 

relative biases than the others. Tables of relative bias are displayed according to 

combinations of conditions that showed differences in the acceptability of the relative 

bias, collapsing across the conditions which did not show any difference in the 

acceptability of relative bias. 

 

The curve-of-factors model 

 The curve-of-factors model presented few problems of convergence, even with 

sample sizes as low as one hundred. From the analyses of the 240,000 datasets simulated 

(240 conditions with 1,000 datasets each) where the curve-of-factors model was fit to the 

data, only 27 analyses did not converge, which corresponds to a 99.99% convergence 

rate.  

 Although non-convergence was not a problem, many conditions resulted in 

estimated variance/covariance matrices of the level and shape that were non-positive 

definite. The non-positive definite matrices were due to either a negative estimate of the 

variance of level or shape, or an estimated correlation between level and shape outside of 

the -1 to 1 range. Because the maximum likelihood estimator used in structural equation 

modeling programs produces unbounded estimates (Wothke, 1993), the estimated 

variances and covariances may be inadmissible. The overall percentage of inadmissible 

solutions was 21.3% with three measurement times, but only 0.3% with five 

measurement times. Furthermore, the percentage of inadmissible solutions decreased as 
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the sample size increased, as shown in Table 1. More details about the reasons for these 

inadmissible solutions are presented in a later section.  

Table 1 
Percentage of inadmissible solutions with the curve-of-factors model 
Sample size Times Total
 3 5  
100 32.4% 0.9% 16.7%
200 25.2% 0.1% 12.7%
500 14.9% 0% 7.5% 
1000 8.9% 0% 4.4% 

 

Because removing the inadmissible solutions changes the distribution of the 

parameter estimates, in order to provide a complete picture of the ability of each method 

to produce unbiased parameter estimates, the relative bias of all parameter estimates was 

calculated twice: The relative bias was calculated once without removing the 

inadmissible solutions. Then, the relative bias was computed a second time after 

removing the inadmissible solutions.  

In this study, the removal of inadmissible solutions affected more strongly the 

distributions of the variances of level and shape. However, the relative bias with and 

without removing admissible solutions will be reported for all parameter estimates, to 

allow their comparison. After the inadmissible solutions were removed, extra datasets 

were simulated to obtain one thousand admissible solutions for each condition. 

When the relative biases of the variances of the level and shape are computed 

without removing the inadmissible solutions, the distribution of the variances has two 

tails, as shown in Figure 8. However, when the inadmissible solutions are removed, the 
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distribution of the variances loses its left tail, as shown in Figure 9, because all estimates 

of variance smaller than zero are eliminated.  
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Figure 8. Distribution of the variance of the shape factor with three 

measurement times, including inadmissible solutions. 
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Figure 9. Distribution of the variance of the shape factor with three 

measurement times, excluding inadmissible solutions. 

 

The definition of an unbiased estimator is one where the expected value of the 

distribution of estimates is equal to the parameter estimated (i.e. θθ =)ˆ(E ) (Wackerly et 

al., 1996). This definition requires that, in calculating the relative bias of the parameter 

estimates, the entire distribution of parameters is considered (i.e. the distribution 

containing both tails).  
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For the curve-of-factors model, when the relative biases were calculated without 

removing the inadmissible solutions, the relative biases of the estimates of the means and 

variances of the level and shape, as well as the relative biases of their estimated standard 

errors were acceptable under all conditions. The ANOVA results indicated that none of 

the conditions had an effect on the relative bias of the estimates and on the relative bias 

of the estimated standard errors with a partial Eta-squared greater than 0.05. The relative 

bias of the estimate of correlation between level and shape cannot be calculated without 

removing the inadmissible solutions, because it is not possible to transform the estimated 

covariances into correlations when the variance estimates are negative. The relative bias 

of the estimate of the covariance between level and shape was reported instead of the 

relative bias of the estimate of the correlation. The relative bias of the covariance 

estimate was acceptable under all conditions with the exception of the condition when the 

number of measurement times was five, the number of items was fifteen and the sample 

size was one hundred. None of the conditions were associated with a partial Eta-squared 

value greater than 0.05 for either the estimate of the covariance or the estimate of the 

standard error of the covariance between level and shape.  The relative biases of 

parameter estimates, without removing inadmissible solutions, are presented in table 2. 

The relative biases of standard errors, without removing inadmissible solutions, are 

presented in table 3. 
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Table 2 
Mean relative bias of parameter estimates with the curve-of-factors 
model, without removing the inadmissible solutions, collapsing across 
reliability, type of item, and invariance conditions. 

Times Items Sample 
size 

Mean 
level 

Mean 
shape 

Variance 
level 

Variance 
shape 

Cov. 
level 
shape 

3 5 100 .003 -.001 -.013 -.028 .006 
  200 .000 .000 -.006 -.016 .004 
  500 -.001 .000 -.006 -.013 .007 
  1000 .000 .000 .000 .000 -.005 
 10 100 .000 .000 -.012 -.006 .002 
  200 .001 .000 .001 .011 -.019 
  500 .000 .000 -.002 -.008 .004 
  1000 .000 .000 .001 .008 -.007 
 15 100 .002 .000 -.011 -.017 -.007 
  200 .001 .000 -.006 -.004 -.010 
  500 -.002 .001 -.005 -.004 .006 
  1000 .000 .000 -.002 .004 .000 
        
5 5 100 .001 -.001 .002 .000 -.027 
  200 -.001 .001 -.001 .003 -.014 
  500 .000 .000 -.002 .000 .000 
  1000 .000 .000 -.001 .000 -.001 
 10 100 -.001 .000 .010 .004 -.039 
  200 .000 .000 .003 .004 -.023 
  500 -.001 .000 .003 .001 -.012 
  1000 -.001 .000 .002 .002 -.005 
 15 100 .000 -.001 .009 .014 -.061 
  200 -.001 .001 .004 .013 -.031 
  500 .001 -.001 .002 .004 -.008 
  1000 -.001 .000 .003 .001 -.006 
Note. Cov. =  covariance 
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Table 3 
Mean relative bias of the estimates of the standard errors with the 
curve-of-factors model, without removing the inadmissible solutions, 
collapsing across reliability, type of item, and invariance conditions. 

Times Items Sample 
size 

Mean 
level 

Mean 
shape 

Variance 
level 

Variance 
shape 

Cov. 
level 
shape 

3 5 100 -.010 -.010 -.026 -.026 -.020 
  200 -.004 -.005 -.011 -.010 -.013 
  500 .000 .005 -.005 .001 -.001 
  1000 -.004 .007 .002 -.001 -.013 
 10 100 -.019 -.005 -.014 -.028 -.018 
  200 .005 -.001 -.021 -.011 -.008 
  500 .004 -.009 -.001 -.006 -.007 
  1000 .004 .009 -.012 -.012 -.008 
 15 100 .001 -.013 -.026 -.018 -.019 
  200 -.018 -.006 -.011 -.005 -.014 
  500 -.008 .007 .000 .010 -.002 
  1000 .001 .007 -.009 -.022 -.002 
        
5 5 100 -.018 -.018 -.022 -.024 -.033 
  200 .004 -.005 -.009 -.020 -.017 
  500 .004 -.004 -.013 -.013 -.004 
  1000 -.003 .011 .008 -.003 -.002 
 10 100 -.009 -.007 -.023 -.031 -.038 
  200 -.012 -.007 -.012 -.003 -.017 
  500 -.011 -.006 -.005 -.008 .001 
  1000 -.006 -.008 -.005 .000 -.007 
 15 100 -.016 -.002 -.028 -.036 -.030 
  200 -.011 -.016 -.007 -.013 -.007 
  500 .014 .000 -.002 -.010 -.013 
  1000 -.007 -.003 -.018 .010 -.003 
Note. Cov. =  covariance 

When the inadmissible solutions were removed, the curve-of-factors model 

produced unbiased estimates of the mean of the level and of the mean of the shape under 

all conditions (see Table 4). In the ANOVA results, none of the Eta-squared values were 

greater than 0.05. Under selected conditions, however, there was bias in the estimates of 

the remaining three parameters of interest: variance of the level, variance of the shape, 

and correlation of the level and shape.  There was no bias in these three estimates under 
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the condition of five measurement times, but there was substantial bias in these estimates 

when data included only three measurement times.  Although under selected 

combinations of conditions the relative bias was unacceptable, none of the conditions had 

an effect on the relative bias of the variance of the level associated with a partial Eta-

squared greater than 0.05. For the variance of the level, bias was largest (the parameter 

estimate was 21% too large) when there were only three measurement times, a small 

sample size (i.e. 100) and many items (i.e. 15).  There was little substantial bias when 

sample sizes were 500 or 1,000 regardless of the number of items.  For the estimates of 

the variance of the shape, bias depended on measurement time (partial 2η  = 0.1), sample 

size (partial 2η  = 0.55), and the interactions of those effects (partial 2η  = 0.61).  The 

estimates of the variance of the shape were positively biased by as much as 92% when 

there were only three measurement times, a small sample size (i.e. 100) and many items 

(i.e. 15).  Under the three measurement time condition, the only situation that resulted in 

a lack of bias in the estimates of the variance of the shape was with a sample size of 

1,000 and only five items per construct. Finally, for the estimate of the correlation of the 

shape and level, bias depended only on the number of measurement times (partial 2η  = 

0.57).  The estimate of the correlation of the level and shape was negatively biased by as 

much as 72% when there were only three measurement times, a small sample size (100) 

and many items (15).  Under the three measurement time condition, the only situations 

that resulted in a lack of bias in the estimate of the correlation of the level and shape was 

with a sample size of 1,000 or with a sample size of 500 and fewer items (5 or 10).  
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Table 4 
Mean relative bias of parameter estimates across conditions with the 
curve-of-factors model, with the inadmissible solutions removed, 
collapsing across reliability, type of item, and invariance conditions 

Times Items Sample 
size 

Mean 
level 

Mean 
Shape 

Variance 
level 

Variance 
shape 

Cor. 
level 
shape 

3 5 100 0.002 -0.001 0.115 0.510 -0.440 
  200 0 0 0.079 0.331 -0.270 
  500 -0.001 0 0.021 0.102 -0.036 
  1000 0 0 0.008 0.036 0.022 
 10 100 -0.001 0 0.183 0.794 -0.615 
  200 0.001 0 0.099 0.418 -0.357 
  500 0 0 0.032 0.144 -0.084 
  1000 0 0 0.023 0.108 -0.040 
 15 100 0.001 -0.001 0.214 0.915 -0.717 
  200 0.001 0 0.118 0.507 -0.426 
  500 -0.002 0.002 0.064 0.270 -0.191 
  1000 0 0 0.031 0.133 -0.053 
        
5 5 100 0.001 -0.001 0.004 0.002 0.021 
  200 -0.001 0 -0.001 0.003 0.013 
  500 0 0 -0.001 -0.001 0.011 
  1000 0 0 -0.001 0 0.005 
 10 100 -0.001 0 0.012 0.006 0.008 
  200 0 0 0.002 0.004 0.007 
  500 0 0 0.002 0 0 
  1000 -0.001 0 0.002 0.002 0 
 15 100 -0.001 0 0.011 0.016 -0.008 
  200 -0.001 0.001 0.004 0.011 0.002 
  500 0.001 -0.001 0.001 0.003 0.004 
  1000 -0.001 0 0.003 0.001 0 
Note. Cor. = correlation 
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When the inadmissible solutions were removed, the relative biases of the 

estimates of the standard errors obtained with the curve-of-factors model followed the 

same pattern as the relative biases of the parameter estimates, with the exception that, 

with three measurement times, the estimates of the standard errors of the variance of the 

shape and of the correlation between level and shape were only acceptable with 1,000 

observations and five items (see Table 5).  Given that relative biases of standard errors 

are considered acceptable if they are equal to or smaller than 0.1 (Hoogland & Boomsma, 

1998), the curve-of-factors model produced unbiased estimates of the standard errors of 

the mean of the level and of the mean of the shape under all conditions (see Table 5). 

None of the conditions had an effect on the estimates of the standard errors of the means 

of the level and shape with an effect size higher than 0.05. Under selected conditions, 

however, there was bias in the estimates of the standard errors of the remaining three 

parameters of interest: variance of the level, variance of the shape, and correlation of the 

level and shape.  There was no bias in these three standard error estimates under the 

condition of five measurement times, but there was some positive bias in these estimates 

when data included only three measurement times.  For the estimate of the standard error 

of the variance of the level, the bias depended only on the number of measurement times 

(partial 2η  = 0.087). Bias was around 11% when there were only three measurement 

times and small to moderate sample sizes (i.e. 100, 200, 500).  With sample sizes of 

1000, the bias of the estimate mean of the level was acceptable. This pattern of bias was 

consistent across number of items. For the estimate of the standard error of the variance 

of the shape, the bias depended on measurement time (partial 2η  = 0.386) and the 
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interaction between number of measurement times and sample size (partial 2η  = 0.087).  

The estimate of the standard error of the variance of the shape was positively biased by as 

much as 38% when there were only three measurement times, a small sample size 

(i.e.100) and many items (i.e.15).  Under the three measurement time condition, the only 

situation that resulted in a lack of bias in the estimate of the standard error of the variance 

of the shape was with a sample size of 1,000 and only five items per construct. Finally, 

for the estimate of the standard error of the covariance of the shape and level, the bias 

depended on number of measurement times (partial 2η  = 0.318) and the interaction 

between number of measurement times and sample size (partial 2η  = 0.057). The 

estimate of the standard error of the covariance of the level and shape was positively 

biased by as much as 32% when there were only three measurement times, a small 

sample size (i.e.100) and many items (i.e.15).  Under the condition with three 

measurement times, the only situation that resulted in a lack of bias in the estimate of the 

correlation of the level and shape was with a sample size of 1,000 and only five items.  
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Table 5 
Mean relative bias of the standard errors across conditions with the 
curve-of-factors model, with the inadmissible solutions removed, 
collapsing across reliability, type of item, and invariance conditions 

Times Items sample 
size 

Mean 
level 

Mean 
Shape 

Variance 
level 

Variance 
shape 

Cov. 
level 
shape 

3 5 100 -0.005 -0.016 0.115 0.319 0.280 
  200 -0.010 0.003 0.124 0.297 0.267 
  500 -0.003 0.002 0.054 0.174 0.156 
  1000 -0.005 0.008 0.036 0.083 0.070 
 10 100 -0.017 -0.010 0.117 0.369 0.307 
  200 0.002 -0.009 0.080 0.281 0.244 
  500 -0.010 -0.030 0.087 0.203 0.186 
  1000 -0.001 0 0.040 0.131 0.115 
 15 100 0.002 -0.012 0.112 0.377 0.316 
  200 -0.023 -0.008 0.127 0.344 0.288 
  500 -0.020 -0.004 0.104 0.262 0.224 
  1000 0.008 -0.005 0.059 0.153 0.137 
        
5 5 100 -0.018 -0.013 -0.020 -0.019 -0.021 
  200 0.002 -0.004 -0.008 -0.017 -0.013 
  500 0.006 -0.004 -0.011 -0.011 -0.006 
  1000 -0.005 0.010 0.011 -0.004 0 
 10 100 -0.013 -0.009 -0.022 -0.022 -0.026 
  200 -0.006 -0.008 -0.012 -0.003 -0.011 
  500 -0.012 -0.006 -0.003 -0.008 0.004 
  1000 -0.006 -0.009 -0.007 -0.004 -0.004 
 15 100 -0.017 -0.010 -0.023 -0.036 -0.010 
  200 -0.007 -0.014 -0.005 -0.013 -0.003 
  500 0.013 -0.001 -0.001 -0.003 -0.009 
  1000 -0.008 -0.004 -0.018 0.008 -0.002 
Note. Cov. = covariance 

 

The results of the curve-of-factors model with respect to the relative bias of the 

chi-square statistic and the percentage of fit indices (i.e. CFI, TLI, RMSEA) indicating 

acceptable fit were almost identical regardless of whether the inadmissible solutions were 

removed (i.e. the difference in relative bias of chi-square was below 0.01 and the 

differences in percentage of CFI, TLI, and RMSEA indicating acceptable models was 
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below 1%). Therefore, the results will be reported after removing the inadmissible 

solutions. The comparisons were based on a set of 1,000 admissible solutions for each 

condition. 

The chi-square statistic obtained with the curve-of-factors model was affected by 

the sample size (partial 2η = 0.41), the number of items (partial 2η = 0.14), the number of 

measurement times (partial 2η = 0.06), the interactions between the number of items and 

sample size (partial 2η = 0.17), and the interaction between the number of measurement 

times and sample size (partial 2η = 0.08), but not by reliability or type of item. The 

relative biases of the chi-square statistic by items, sample size, and measurement times 

are reported in Table 6. With sample sizes of 100 and 200, the chi-square statistics were 

positively biased, and Table 6 shows that the amount of bias increases as the number of 

items increases but decreases as sample size increases.  The relative bias of the chi-square 

was positively biased by as much as 49% with 15 items and sample size of 100. 

Considering the relative bias of chi-square acceptable if it is smaller than 0.05, the 

relative bias of the chi-square was only consistently acceptable if the sample size was 

higher than 500, as shown in Table 6. 
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Table 6 
Relative bias of the Chi-square statistic with the curve-of-factors 
model, collapsing across reliability, type of item, and invariance 
conditions 
Items Sample size Relative bias of chi-square statistic 

  3 times 5 times 
5 100 0.082 0.125 
  200 0.038 0.058 
  500 0.015 0.023 
  1000 0.008 0.011 
10 100 0.150 0.265 
  200 0.069 0.110 
  500 0.025 0.040 
  1000 0.013 0.020 
15 100 0.233 0.487 
  200 0.100 0.172 
  500 0.037 0.060 
  1000 0.018 0.028 

 

For each fit index, the relationship between each condition and whether the fit 

index was acceptable was evaluated using the Cramer’s V coefficient. This coefficient 

ranges between zero and one, with one indicating a perfect relationship. Because of the 

large sample size, effects associated with Cramer’s V as low as 0.014 were found to be 

statistically significant. Therefore, only Cramer’s V coefficients larger than 0.1 will be 

reported.  

The comparative fit index (CFI) depended on sample size (Cramer’s V = 0.611), 

number of items (Cramer’s V = 0.36), reliability (Cramer’s V = 0.154), and number of 

measurement times (Cramer’s V = 0.129).  

The Tucker-Lewis index (TLI) depended on sample size (Cramer’s V = 0.619), 

number of items (Cramer’s V = 0.35), reliability (Cramer’s V = 0.158), and number of 

measurement times (Cramer’s V = 0.129).  
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The percentages of CFI and TLI that would suggest adequate fit of the model (i.e. 

CFI ≥ 0.95, TLI ≥ 0.95) (Hu & Bentler, 1999) for each condition were similar. The 

percentage of replications in which the CFI and TLI would suggest an adequate fit of the 

model increased as sample and reliability increased, but decreased as the number of items 

increased (see Table 7).  With reliability equal to 0.7, five measurement times, sample 

size of 100 and 15 items, 0% of the models would be considered acceptable based on 

either the CFI or TLI. With sample sizes of 500 or 1000, at least 97% of the CFI and TLI 

would suggest the retention of the model, regardless of reliability, number of items and 

measurement times.  

The root mean square error of approximation (RMSEA) depended on the sample 

size (Cramer’s V = 0.569), number of items (Cramer’s V = 0.194), and number of 

measurement times (Cramer’s V = 0.149). Differently from the CFI and TLI, the RMSEA 

did not depend on the composite’s reliability. The RMSEA tended to suggest the 

retention of the model more frequently with smaller sample sizes than the CFI or TLI. 

With a sample size of 200, at least 97.7% of the RMSEA were acceptable, regardless of 

the other conditions (see Table 7). However, with a sample size of 100, five measurement 

times and 15 items, 0% of the analyses produced values for CFI, TLI or RMSEA that 

would support the adequate fit of the model.  

The fit of the models was also evaluated based on the combination of CFI, TLI 

and RMSEA suggested by Hu and Bentler (1999). These authors suggested that the fit of 

a model could be considered acceptable if CFI ≥ 0.95, TLI ≥ 0.95 and RMSEA ≤ 0.05. 

The fit of the model based on the combined criterion depended on sample size (Cramer’s 
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V = 0.635), number of items (Cramer’s V = 0.323), reliability (Cramer’s V = 0.166), and 

number of measurement times (Cramer’s V = 0.122). The percentage of replications in 

which the fit of the model would be considered acceptable based on the combined 

criterion was at least 97% with sample sizes of 500 or 1000, regardless of the other 

conditions. On the other hand, the percentage of replications resulting in acceptable 

models according to the combined criterion was as low as 0% when the sample size was 

100 and the number of items per construct was fifteen. 



 

 
 

108

Table 7  
Percentage of replications in which the fit indices would lead to model 
retention with the curve-of-factors model, collapsing across 
measurement times, type of item, and invariance conditions. 
Times Items Sample CFI TLI RMSEA Combined 
   Reliability 
   0.7 0.9 0.7 0.9 0.7 0.9 0.7 0.9 
3 5 100 84.9% 99.9% 79.3% 99.7% 85.5% 84.7% 79.0% 84.7%
  200 99.4% 100% 98.3% 100% 99.7% 99.7% 98.3% 99.7%
  500 100% 100% 100% 100% 100% 100% 100% 100% 
  1000 100% 100% 100% 100% 100% 100% 100% 100% 
 10 100 17.2% 86.2% 15.3% 81.7% 89.5% 88.1% 15.3% 81.2%
  200 86.6% 100% 82.8% 100% 100% 100% 82.8% 100% 
  500 100% 100% 100% 100% 100% 100% 100% 100% 
  1000 100% 100% 100% 100% 100% 100% 100% 100% 
 15 100 0.1% 3.1% 0% 2.2% 62.0% 62.7% 0% 2.2% 
  200 29.5% 99.4% 27.4% 99.0% 100% 100% 27.4% 99.0%
  500 99.6% 100% 99.4% 100% 100% 100% 99.4% 100% 
  1000 100% 100% 100% 100% 100% 100% 100% 100% 
5 5 100 67.4% 99.8% 62.6% 99.6% 90.4% 89.6% 62.6% 89.6%
  200 99.7% 100% 99.4% 100% 100% 100% 99.4% 100% 
  500 100% 100% 100% 100% 100% 100% 100% 100% 
  1000 100% 100% 100% 100% 100% 100% 100% 100% 
 10 100 0% 2.2% 0% 1.7% 40% 39.7% 0% 1.7% 
  200 43.3% 100% 39.3% 100% 100% 100% 39.3% 100% 
  500 100% 100% 100% 100% 100% 100% 100% 100% 
  1000 100% 100% 100% 100% 100% 100% 100% 100% 
 15 100 0% 0% 0% 0% 0% 0% 0% 0% 
  200 0% 39.7% 0% 34.6% 100% 100% 0% 34.6%
  500 98.2% 100% 97.6% 100% 100% 100% 97.6% 100% 
  1000 100% 100% 100% 100% 100% 100% 100% 100% 
Note. Criteria for model retention used to calculate the percentages:  

CFI ≥ 0.95, TLI ≥ 0.95, RMSEA ≤ 0.05, 
Combined = Criterion of acceptable fit based on the combination of CFI ≥ 0.95, 
TLI ≥ 0.95 and RMSEA ≤ 0.05 (Hu & Bentler, 1999) 
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Univariate LGM of item means 

The analyses fitting the univariate latent growth model resulted in 100% of the 

models reaching convergence. However, like the curve-of-factors model, this model also 

produced a large number of non-positive variance/covariance matrices of the estimates. 

The number of inadmissible solutions was substantially larger with three measurement 

times than five measurement times (see Table 8). With three measurement times and 100 

observations, the percentage of non-positive definite solutions was as high as 31%. 

Table 8  
Percentage of inadmissible solutions with the univariate latent growth 
model 
Sample size Times Total
 3 5  
100 30.7% 2.4% 16.6%
200 23.3% 0.4% 11.9%
500 14.8% 0% 7.4% 
1000 10.0% 0% 5.0% 

 

Because removing the inadmissible solutions results in the truncation of the 

distributions of the estimates of the variances of level and shape and of the covariance 

between level and shape, the results with respect to relative bias will be presented both 

with and without removing the inadmissible solutions. 

Without removing the inadmissible solutions, the univariate latent growth model 

produced positively biased estimates of the mean of the level in all conditions (see Table 

9). For the estimates of the mean of the level, the relative bias depended on the type of 

item (partial 2η = 0.847), invariance (partial 2η = 0.181), number of measurement times 

(partial 2η = 0.069), and the interaction between number of measurement times and 
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invariance (partial 2η = 0.089). The average bias of the estimate of mean of the level was 

positive and around 0.5 with tau-equivalent items (see Table 9) and 0.25 with congeneric 

items (see Table 9). The smaller bias resulting with the congeneric conditions as 

compared with the tau-equivalent conditions is because the loadings of the congeneric 

conditions are lower than one. These loadings weight less the estimates of the mean of 

the level than loadings equal one.  

The relative bias of the mean of the level that has been found in this study is a 

consequence of summing items with different intercepts to form each composite. The 

mean 
iyµ of each item yi at the first measurement time is the sum of the mean of the latent 

factor ηµ  multiplied by the item’s factor loading 
iyλ , and the item’s intercept

iyτ : 

iii yyy τµλµ η +=  

While the curve-of-factors model evaluates the growth of the latent factor, the 

three univariate latent growth models evaluated in this study are designed to analyze the 

composite c. The mean of the composite, cµ , formed by k items at the first measurement 

time is: 
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Defining the average of the factor loadings as 
k

k

i
i∑

== 1
λ

µλ  and the intercepts 

as
k

k

i
yi∑

== 1

τ
µτ   

Then τηλ µµµµ +=c . 

 Considering that the mean of the composites cµ  is the mean of the latent 

factor ηµ weighted by the average of the factor loadings λµ plus the average of the 

intercepts τµ , the mean of the level estimated with univariate latent growth models will 

be different from the mean of the level of the latent factor, unless the loadings sum to one 

and the intercepts are zero. Because the scale of measurement of the composites is 

arbitrary, this shift of the mean of the level may not affect the interpretation of the results. 

This difference between the estimate of the mean of the level and the population mean of 

the level will not change the interpretation of the results if a single group is being studied, 

unless the researcher attempts to interpret the mean of the shape as the percentage of 

change with respect to the mean of the level. For example, in this study the population 

values of the mean of the level and mean of the shape were set to 1. These values indicate 

that, between two measurement times, individuals present an average growth equal to  

100% of the mean of level. However, if the mean of the level is estimated to be 1.5, 

which corresponds to a relative bias of 0.5, the interpretation of the percentage of growth 

with respect to the mean of the level would change to 66%.  If the mean of the level is 

used to compare two groups with respect to their status at a given time, both groups will 

(58)
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have their estimated mean of the level shifted by the same amount and the difference 

between groups will remain the same if there is strict factorial invariance. However, if the 

items have different loadings and/or intercepts across groups, the estimated mean of the 

level of the groups will be shifted by different amounts from their population means, 

resulting in different estimates of the mean of the level even if the groups have the same 

population mean of the level.  

The relative bias of the estimates of the mean of the shape with the univariate 

latent growth model depended on the type of item (partial 2η = 0.944), invariance (partial 

2η = 0.646), number of measurement times (partial 2η = 0.342), number of items (partial 

2η = 0.322), the interaction between number of measurement times and invariance 

(partial 2η = 0.327), the interaction between the number of items and invariance (partial 

2η = 0.212), and the interaction between number of items and  number of measurement 

times  (partial 2η = 0.112). The univariate latent growth model yielded unbiased 

estimates of the mean of the shape when the items were essentially tau-equivalent and 

there was either strict factorial invariance or weak factorial invariance with five 

measurement times (see Table 9). With tau-equivalent items, weak factorial invariance, 

and three measurement times, the estimates of the mean of the shape were negatively 

biased by as much as 19%. The estimates of the mean of the shape were negatively 

biased by as much as 49% with congeneric items, weak factorial invariance, three 

measurement times and sample size of 100. The overall mean relative bias of the mean of 

the shape with essentially congeneric items was -0.288.  
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 The bias of the estimates of the variances of the level and shape depended only 

on the type of item (partial 2η = 0.674 for the estimate of the variance of the level and 

partial 2η = 0.252 for the estimate of the variance of the shape). The estimates of the 

variances of the level and shape had acceptable bias in the conditions with essentially tau-

equivalent items and large negative biases in the conditions with essentially congeneric 

items (see Table 9).  The mean relative bias of the variances of the level and shape for the 

conditions with essentially congeneric items, collapsing across all other conditions, was   

-0.48. 

The relative bias of the estimate of the covariance between level and shape 

depended on the type of item (partial 2η = 0.208) and on invariance (partial 2η = 0.059). 

The estimate of the covariance between level and shape was unbiased if the items were 

tau-equivalent and the number of measurement times was three (see Table 9). With five 

measurement times, the estimate of the covariance also had acceptable bias when the 

items were tau-equivalent and there was strict factorial invariance. With five 

measurement times and weak factorial invariance, the covariance was unbiased if the 

number of items per construct was either 10 or 15 and the sample size was higher than 

100. The estimate of the covariance between level and shape had negative bias when the 

items were essentially congeneric (see Table 9). The estimate of the covariance between 

level and shape was negatively biased as much as 51% with essentially congeneric items, 

three times, five items, and strict factorial invariance.  The mean relative bias of the 

estimate of the covariance between level and shape with essentially congeneric items, 
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collapsing across all other conditions, was -0.363. 

The univariate latent growth model produced unbiased estimates of the standard 

errors in all conditions, as shown in Table 10. The relative bias of the standard errors did 

not show dependence on any of the conditions included in the study. 
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Table 9 
Mean relative bias of parameter estimates across conditions with the 
univariate latent growth model, without removing the inadmissible 
solutions, collapsing across sample size and reliability. 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
Shape 

Cov. 
level 
shape 

Tau Eq.        
Strict 3 5 0.560 -0.001 -0.011 -0.034 0.023 

  10 0.520 0.000 -0.005 -0.010 0.005 
  15 0.534 0.000 -0.011 -0.027 0.021 
 5 5 0.560 0.000 -0.007 -0.006 0.003 
  10 0.520 0.000 -0.007 -0.009 0.002 
  15 0.533 0.000 -0.009 -0.012 -0.002 

Weak 3 5 0.545 -0.193 -0.014 -0.034 0.028 
  10 0.512 -0.101 -0.011 -0.014 0.010 
  15 0.517 -0.065 -0.012 -0.024 0.024 
 5 5 0.432 -0.047 -0.050 -0.059 0.110 
  10 0.443 -0.013 -0.024 -0.028 0.043 
  15 0.482 -0.016 -0.015 -0.014 0.017 

Congeneric        
Strict 3 5 0.260 -0.300 -0.513 -0.513 -0.510 

  10 0.270 -0.250 -0.442 -0.445 -0.438 
  15 0.259 -0.273 -0.477 -0.481 -0.472 
 5 5 0.260 -0.300 -0.514 -0.513 -0.508 
  10 0.271 -0.250 -0.439 -0.442 -0.437 
  15 0.260 -0.273 -0.475 -0.475 -0.471 

Weak 3 5 0.246 -0.492 -0.516 -0.524 -0.500 
  10 0.260 -0.351 -0.441 -0.446 -0.424 
  15 0.243 -0.339 -0.479 -0.491 -0.460 
 5 5 0.131 -0.349 -0.553 -0.562 -0.418 
  10 0.192 -0.264 -0.456 -0.461 -0.399 
  15 0.209 -0.290 -0.484 -0.482 -0.456 

Configural 3 5 0.243 -0.316 -0.502 -0.219 -0.225 
  10 0.202 -0.265 -0.583 -0.818 0.207 
  15 0.217 -0.230 -0.539 -0.548 -0.058 
 5 5 0.194 -0.249 -0.477 -0.376 -0.308 
  10 0.166 -0.180 -0.486 -0.333 -0.283 
  15 0.233 -0.228 -0.457 -0.383 -0.366 

Note. Tau Eq. = Essentially tau-equivalent, Congeneric = Essentially 
congeneric, Var. = Variance, Cov. = Covariance 
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Table 10 

Mean relative bias of the estimates of standard errors across 
conditions with the univariate latent growth model, without removing 
the inadmissible solutions, collapsing across sample size and 
reliability. 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
Shape 

Cov. 
level 
shape 

Tau Eq.        
Strict 3 5 0.007 -0.005 0.001 -0.006 -0.002 

  10 -0.003 -0.002 -0.016 -0.009 -0.018 
  15 -0.003 -0.003 -0.016 -0.001 -0.006 
 5 5 -0.001 -0.002 -0.005 -0.026 -0.012 
  10 -0.012 -0.012 -0.015 -0.014 -0.006 
  15 -0.001 -0.012 0.014 0 -0.005 

Weak 3 5 0.003 -0.003 -0.002 -0.016 -0.007 
  10 -0.008 -0.007 -0.016 -0.011 -0.012 
  15 -0.002 -0.008 -0.001 -0.001 -0.006 
 5 5 -0.023 -0.011 0.002 0.006 0.007 
  10 -0.005 -0.005 0 0.008 0.006 
  15 -0.015 -0.012 -0.006 0.012 0.006 

Congeneric        
Strict 3 5 -0.010 -0.017 0.001 -0.017 -0.017 

  10 -0.013 -0.009 -0.005 -0.006 -0.007 
  15 -0.010 -0.016 -0.007 -0.017 0.001 
 5 5 0.002 0.002 0.002 -0.014 0.004 
  10 0.001 -0.005 -0.013 -0.004 -0.008 
  15 -0.010 0.007 -0.012 -0.013 -0.005 

Weak 3 5 -0.010 -0.017 -0.008 -0.001 -0.003 
  10 -0.012 -0.021 -0.006 -0.012 -0.006 
  15 -0.004 -0.015 -0.020 -0.022 -0.019 
 5 5 -0.069 -0.085 0.005 -0.016 0.004 
  10 -0.034 -0.035 -0.016 0.006 0.010 
  15 -0.011 0 -0.009 -0.015 -0.016 

Configural 3 5 -0.021 -0.006 -0.006 -0.009 -0.010 
  10 -0.055 -0.052 -0.018 -0.014 -0.031 
  15 -0.042 -0.038 -0.011 -0.027 -0.015 
 5 5 -0.023 -0.051 0.017 0.003 -0.025 
  10 -0.043 -0.026 -0.013 -0.003 -0.013 
  15 -0.021 -0.025 -0.007 0.003 -0.008 

Note. Tau Eq. = Essentially tau-equivalent, Congeneric = Essentially 
congeneric, Var. = Variance, Cov. = Covariance 
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The results obtained from the univariate latent growth model removing the 

inadmissible solutions indicate that this model results in positive relative bias of the 

estimates of the mean of the level in all conditions (see Table 11). The relative bias of the 

estimate of the mean of the level depended on type of item (partial 2η = 0.846), 

invariance (partial 2η = 0.174) and the number of measurement times (partial 2η = 

0.078).  The overall mean of the relative bias of the estimate of the mean of the level for 

conditions with tau-equivalent items was 0.5. For the conditions with congeneric items, 

the mean relative bias was 0.2.  

The relative bias of the estimate of the mean of the shape depended on the type of 

item (partial 2η = 0.944), invariance (partial 2η = 0.646), number of measurement times 

(partial 2η = 0.340), number of items (partial 2η = 0.322), the interaction between the 

number of measurement times and invariance (partial 2η = 0.327), the interaction 

between the number of items and invariance (partial 2η = 0.212), the interaction between 

the number of items and the number of measurement times (partial 2η = 0.111), and the 

interaction between type of item and number of items (partial 2η = 0.086). The bias of the 

estimate of the mean of the shape was acceptable in the conditions with essentially tau-

equivalent items, with the exception of the conditions with weak factorial invariance and 

three measurement times, where the bias was negative (see Table 11). For the conditions 

with essentially tau-equivalent items, the mean relative bias of the estimate of the mean 

of the shape was -0.036. The relative bias of the estimate of the mean of the shape was 

unacceptable and negative in all conditions with essentially congeneric items (see Table 
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11). The relative biased tended to decrease as the number of items increased. For the 

conditions with congeneric items, the mean relative bias was -0.289.  

The relative bias of the estimate of the variance of the level depended on the type 

of item (partial 2η = 0.722). The relative bias of the estimate of the variance of the level 

were acceptable on the conditions with essentially tau-equivalent items but unacceptable 

on the conditions with essentially congeneric items (see table 11). The overall mean of 

the relative bias of the estimate of the variance of the level for the conditions with 

essentially congeneric items was -0.47. The relative bias for the conditions with 

essentially congeneric items was consistent across reliability, number of measurement 

times, number of items, and invariance conditions. 

The relative bias of the estimate of the variance of the shape depended on type of 

item (partial 2η = 0.411), and the number of measurement times (partial 2η = 0.05). The 

relative bias was only acceptable in conditions with essentially tau-equivalent items and 

five measurement times. The conditions with essentially tau-equivalent items and three 

measurement times presented positive bias consistently around 0.17. The conditions with 

essentially congeneric items presented negative bias. The bias was consistent across all 

the other conditions. The overall mean of the relative bias of the estimate of the variance 

of the shape with essentially congeneric items was -0.397.  

With respect to the relative bias of the estimates of the correlation between level 

and shape, none of the conditions had an effect size higher than 0.05. Although the 

ANOVA results indicated that there is no practical difference between the conditions 

included in this study with respect to the relative bias of the estimates of the correlation, 
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most of the estimates presented unacceptable relative biases. The relative bias of the 

correlation was only consistently acceptable in the condition with strict factorial 

invariance and five measurement times (see Table 11). In the conditions with weak 

factorial invariance and five measurement times, the bias was only acceptable when the 

number of items was fifteen. In the conditions with three measurement times, the bias of 

the correlation tended to be acceptable in conditions where the sample size was 500 or 

above, with either strict or weak factorial invariance. Conditions with strict factorial 

invariance and three measurement times presented consistent negative bias, around -0.12. 

Conditions with configural invariance always presented positive bias of the estimate of 

the correlation between level and shape, regardless of the sample size and number of 

measurement times. The estimate of the correlation between level and shape was 

positively biased by as much as 55% with configural invariance, essentially congeneric 

items, 3 measurement times and 15 items per construct. 
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Table 11 
Mean relative bias of parameter estimates across conditions with the 
univariate latent growth model, after removing the inadmissible 
solutions, collapsing across sample size and reliability. 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
Shape 

Cor. 
level 
shape 

Tau Eq.        
Strict 3 5 0.561 0 0.041 0.169 -0.113 

  10 0.519 0 0.042 0.178 -0.120 
  15 0.534 0 0.043 0.178 -0.121 
 5 5 0.560 0 -0.005 -0.004 0.031 
  10 0.520 0 -0.005 -0.007 0.032 
  15 0.533 0 -0.007 -0.010 0.028 

Weak 3 5 0.545 -0.192 0.040 0.176 -0.127 
  10 0.513 -0.102 0.039 0.173 -0.110 
  15 0.517 -0.065 0.039 0.176 -0.109 
 5 5 0.432 -0.047 -0.047 -0.056 0.193 
  10 0.442 -0.013 -0.021 -0.026 0.088 
  15 0.482 -0.016 -0.013 -0.012 0.052 

Congeneric        
Strict 3 5 0.261 -0.300 -0.491 -0.422 -0.111 

  10 0.270 -0.250 -0.415 -0.339 -0.116 
  15 0.260 -0.274 -0.451 -0.379 -0.123 
 5 5 0.260 -0.300 -0.513 -0.512 0.033 
  10 0.270 -0.250 -0.438 -0.441 0.027 
  15 0.260 -0.273 -0.474 -0.474 0.029 

Weak 3 5 0.247 -0.492 -0.492 -0.425 -0.111 
  10 0.260 -0.351 -0.414 -0.333 -0.121 
  15 0.245 -0.339 -0.451 -0.383 -0.112 
 5 5 0.131 -0.349 -0.551 -0.559 0.329 
  10 0.193 -0.264 -0.455 -0.460 0.130 
  15 0.209 -0.290 -0.483 -0.481 0.072 

Configural 3 5 0.178 -0.301 -0.496 -0.500 0.177 
  10 0.244 -0.316 -0.472 -0.110 0.084 
  15 0.213 -0.264 -0.491 -0.415 0.558 
 5 5 0.222 -0.229 -0.485 -0.330 0.362 
  10 0.194 -0.249 -0.475 -0.374 0.224 
  15 0.167 -0.180 -0.484 -0.331 0.239 

Note. Tau-eq. = Essentially tau-equivalent, Congeneric = Essentially 
congeneric, Var. = variance, Cor. = correlation 
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The relative biases of the estimated standard errors of the means of the level and 

shape did not depend on any of the conditions included in the study (see Table 12). 

Furthermore, the relative bias of the estimate of the standard error of the mean of the 

level was acceptable in all of the conditions. The relative bias of the estimated standard 

error of the mean of the shape was acceptable in the conditions with either strict or weak 

factorial invariance. In the condition with configural invariance and five measurement 

times, the relative bias of the estimated standard error of the mean of the shape was also 

acceptable. However, in the conditions with configural invariance and three measurement 

times, the bias was unacceptable and positive, with a magnitude as large as 0.27.   

The relative bias of the estimate of the standard error of variance of the level 

depended on the number of measurement times (partial 2η = 0.249). The relative bias of 

the estimate of the standard error of the variance of the level was marginally acceptable 

in the conditions with essentially tau-equivalent items (see Table 12). In the conditions 

with essentially congeneric items, the bias of the estimate of the standard error of the 

variance of the level was acceptable when the number of measurement times was five 

(see Table 12).  With essentially congeneric items and three measurement times, the bias 

of the estimate of the standard error of the variance of the level was positive. The 

estimate of the standard error of the variance of the level was positively biased by as 

much as 67% in conditions with essentially congeneric items, configural invariance, three 

measurement times and 10 items. 

The relative bias of the estimate of the standard error of the variance of the shape 

depended on number of measurement times (partial 2η = 0.578), sample size (partial 2η = 
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0.85), number of items (partial 2η = 0.077), the interaction between number of 

measurement times and sample size (partial 2η = 0.123), the interaction between number 

of items and invariance (partial 2η = 0.109) and the interaction between number of 

measurement times and invariance (partial 2η = 0.108). The relative bias of the estimate 

of the standard error of the variance of the shape only had acceptable bias when the 

number of measurement times was five. When the number of measurement times was 

three, the estimate of the standard error of the variance of the shape was positively biased 

under all conditions. The estimate was biased by around 20%, however the bias was as 

large as 65% in conditions with essentially congeneric items, configural invariance, three 

measurement times and 10 items. 

The relative bias of the estimate of the standard error of the covariance between 

the level and shape depended on the number of measurement times (partial 2η = 0.609), 

invariance (partial 2η = 0.143), sample size (partial 2η = 0.102), number of items (partial 

2η = 0.083), reliability (partial 2η = 0.077), the interaction between number of times and 

invariance (partial 2η = 0.178), the interaction between number of items and invariance 

(partial 2η = 0.133), and the interaction between number of times and sample size (partial 

2η = 0.124). The estimate had acceptable bias when the items were essentially tau-

equivalent and the number of measurement times was five. Additionally, the estimate had 

acceptable bias in all conditions with essentially congeneric items (see Table 12). When 

the items were essentially tau-equivalent and the number of measurement times was 
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three, the relative bias was positive and the magnitude was around 0.18 (see Table 12). 

Table 12 
Mean relative bias of the estimates of standard errors across 
conditions with the univariate latent growth model, after removing the 
inadmissible solutions, collapsing across sample size and reliability. 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
shape 

Cov. 
level 
shape 

Tau Eq.        
Strict 3 5 0.008 -0.006 0.104 0.203 0.189 

  10 -0.003 0.012 0.082 0.199 0.174 
  15 0.000 0.002 0.076 0.200 0.189 
 5 5 -0.001 -0.001 0.003 -0.020 -0.002 
  10 -0.011 -0.011 -0.007 -0.009 0.004 
  15 -0.001 -0.011 0.022 0.003 0.002 

Weak 3 5 -0.023 -0.005 0.104 0.217 0.209 
  10 -0.007 -0.001 0.098 0.208 0.190 
  15 -0.016 -0.002 0.085 0.216 0.182 
 5 5 -0.044 -0.032 0.009 0.004 0.018 
  10 -0.017 -0.033 0.012 0.002 0.000 
  15 -0.006 -0.012 -0.008 0.001 0.005 

Congeneric        
Strict 3 5 -0.002 0.089 0.191 0.161 -0.002 

  10 -0.005 0.082 0.200 0.178 -0.005 
  15 -0.009 0.083 0.191 0.181 -0.009 
 5 5 0.003 0.008 -0.009 0.010 0.003 
  10 -0.003 -0.007 0.003 0.003 -0.003 
  15 0.006 -0.007 -0.007 0.005 0.006 

Weak 3 5 -0.015 0.075 0.230 0.193 -0.015 
  10 -0.016 0.090 0.211 0.200 -0.016 
  15 -0.013 0.096 0.201 0.196 -0.013 
 5 5 -0.082 0.019 0.003 0.030 -0.082 
  10 -0.035 -0.010 0.013 0.020 -0.035 
  15 0.000 -0.004 -0.009 -0.008 0.000 

Configural 3 5 -0.009 0.109 0.173 0.179 -0.009 
  10 -0.034 0.273 0.674 0.650 -0.034 
  15 -0.038 0.187 0.390 0.384 -0.038 
 5 5 -0.050 0.028 0.010 -0.015 -0.050 
  10 -0.025 -0.002 0.004 0.000 -0.025 
  15 -0.023 -0.001 0.009 -0.001 -0.023 

Note. Tau-eq. = Essentially tau-equivalent, Congeneric = Essentially 
congeneric, Var. = variance, Cor. = correlation 
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Because the relative bias of the chi-square statistic was similar regardless of 

whether the inadmissible solutions were removed or not, the analyses of the chi-square 

statistic and fit indices were performed after removing the inadmissible solutions. The 

relative bias of the chi-square statistic depended on invariance (partial 2η = 0.335), 

sample size (partial 2η = 0.285), number of measurement times (partial 2η = 0.069), 

reliability (partial 2η = 0.062),  the interaction between sample size and invariance 

(partial 2η = 0.235), the interaction between number of measurement times and 

invariance (partial 2η = 0.192), the interaction between number of items and invariance 

(partial 2η = 0.171) and the interaction between number of items and number of times 

(partial 2η = 0.078). 

The relative bias of the chi-square statistic was acceptable in conditions with strict 

factorial invariance (see Table 13), regardless of sample size, reliability, number of 

measurement times, type of item and number of items. With either weak or configural 

invariance, the relative bias of the chi-square statistic was positive and increased as 

sample size increased. Table 14 displays the average chi-square statistic grouped 

according to invariance, reliability, number of measurement times and sample size. In 

Table 14, it possible to notice that the chi-square values stay close to the degrees of 

freedom when there is strict factorial invariance, but become larger than the degrees of 

freedom when there is weak or configural invariance. 
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Table 13 
Relative bias of the chi-square with the univariate latent growth 
model, collapsing across type of item and number of items. 
Reliability Times Sample Invariance 
   Strict Weak Configural 
0.70 3 100 0.0195 0.380 3.584 
   200 0.014 0.728 7.104 
   500 0.002 1.955 18.072 
   1000 0.011 3.809 35.936 
  5 100 0.024 0.922 1.106 
   200 0.007 1.799 2.171 
   500 -0.001 4.459 5.422 
   1000 0.003 8.902 10.797 
0.90 3 100 -0.005 0.744 6.656 
   200 -0.015 1.461 13.272 
   500 -0.003 3.727 33.567 
   1000 0.009 7.320 67.847 
  5 100 0.029 1.851 2.262 
   200 0.017 3.640 4.485 
   500 0.010 9.058 11.072 
   1000 0.004 18.122 22.187 

 
Table 14 
Average Chi-square statistics with the univariate latent growth model, 
collapsing across type of item and number of items. 
Reliability Times Sample Invariance 
   Strict Weak Configural 
0.70 3 100 1.019 1.380 4.584 
   200 1.014 1.728 8.104 
   500 1.002 2.955 19.072 
   1000 1.011 4.809 36.936 
  5 100 10.243 19.215 21.059 
   200 10.072 27.988 31.713 
   500 9.991 54.588 64.218 
   1000 10.031 99.022 117.972 
0.90 3 100 0.995 1.744 7.656 
   200 0.985 2.461 14.272 
   500 0.997 4.727 34.567 
   1000 1.009 8.320 68.847 
  5 100 10.293 28.513 32.616 
   200 10.169 46.399 54.846 
   500 10.102 100.585 120.723 
   1000 10.044 191.219 231.865 
Note. df = 1 for 3 measurement times, df = 10 for 5 measurement times 
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With the univariate latent growth model, the CFI depended on invariance 

(Cramer’s V = 0.452), type of item (Cramer’s V = 0.211), number of measurement times 

(Cramer’s V = 0.185), and number of items (Cramer’s V = 0.136). The TLI depended on 

invariance (Cramer’s V = 0.521), type of item (Cramer’s V = 0.249), and number of 

items (Cramer’s V = 0.103). The percentages of CFI and TLI which would indicate the 

adequate fit of the model were similar. If there was strict factorial invariance, at least 

99.6% of the CFI and 96.6% of the TLI would indicate adequate model fit, regardless of 

the other conditions. However, with weak or strict factorial invariance, the percentage of 

CFI and TLI equal or above 0.95 depended on the combination of the other conditions 

(see Table 15). With weak factorial invariance, essentially tau-equivalent items, five 

measurement times and five items, only 33% of the CFI and TLI were equal or above 

0.95. With weak factorial invariance, essentially congeneric items, five measurement 

times and five items, the proportion of CFI and TLI equal or above 0.95 was 1.6%. In the 

conditions with configural invariance and congeneric items, the percentages of CFI and 

TLI equal or above 0.95 tended to be lower than in the other conditions (see Table 15). 

The RMSEA depended on invariance (Cramer’s V = 0.630), type of item 

(Cramer’s V = 234), and number of times (Cramer’s V = 0.119). The percentage of 

RMSEA which would indicate an acceptable model was consistently lower than the CFI 

and TLI in all conditions (see Table 15). With strict factorial invariance, the percentage 

of RMSEA equal or below 0.05 was between 82.7% and 90% for all conditions. With 

weak factorial invariance, the percentage of RMSEA equal or below 0.05 was as low as 

1.2% with essentially tau-equivalent items, five measurement times and five items. With 
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configural invariance, the percentage of RMSEA equal or below 0.05 was 25.5% with 

congeneric items, three measurement times and 3 items, but was below 4.4% with all 

other conditions (see Table 15). 

The fit of the model based on the combined criterion of CFI ≥ 0.95, TLI ≥ 0.95 

and RMSEA ≤ 0.05 depended on invariance (Cramer’s V = 0.630), type of item 

(Cramer’s V = 0.234), and number of measurement times (Cramer’s V = 0.119). Because 

the RMSEA would indicate the lowest percentage of acceptable models, the percentage 

of models that met the combined criterion for acceptable fit was identical to the 

percentage of models that had a RMSEA equal or below 0.05 for all conditions (see 

Table 15). 

It is interesting to notice that, differently from the curve-of-factors model, the 

CFI, TLI and RMSEA used to evaluate the fit of the univariate latent growth model were 

not affected by sample size (see Tables 7 and 36).  
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Table 15 
Percentage of replications in which the fit indices would lead to model 
retention with the univariate latent growth model, collapsing across 
sample size and reliability conditions. 

Invariance Type of 
item Times Items CFI TLI RMSEA Combined

Strict Tau Eq. 3 5 99.6% 96.5% 82.5% 82.5% 
   10 99.6% 96.6% 82.9% 82.9% 
   15 99.6% 97.0% 83.2% 83.2% 
  5 5 99.8% 99.8% 89.7% 89.7% 
   10 99.7% 99.7% 88.8% 88.8% 
   15 99.8% 99.8% 89.8% 89.8% 
 Congeneric 3 5 99.6% 96.8% 83.3% 83.3% 
   10 99.7% 96.6% 82.7% 82.7% 
   15 99.7% 97.2% 82.7% 82.7% 
  5 5 99.9% 99.9% 89.5% 89.5% 
   10 99.8% 99.8% 89.7% 89.7% 
   15 99.8% 99.8% 90.0% 90.0% 
Weak Tau Eq. 3 5 98.9% 91.8% 54.8% 54.8% 
   10 99.4% 95.3% 72.4% 72.4% 
   15 98.6% 90.4% 49.3% 49.3% 
  5 5 33.4% 33.4% 1.2% 1.2% 
   10 96.6% 96.6% 14.7% 14.7% 
   15 99.2% 99.2% 61.1% 61.1% 
 Congeneric 3 5 98.0% 84.1% 37.2% 37.2% 
   10 99.4% 93.8% 63.4% 63.4% 
   15 97.9% 80.2% 32.4% 32.4% 
  5 5 1.6% 1.6% 0.1% 0.1% 
   10 82.4% 82.4% 4.2% 4.2% 
   15 98.4% 98.4% 34.0% 34.0% 
Configural Congeneric 3 5 96.7% 72.2% 25.5% 25.5% 
   10 20.0% 3.5% 1.2% 1.2% 
   15 58.2% 11.6% 4.4% 4.4% 
  5 5 53.8% 53.8% 2.5% 2.5% 
   10 47.5% 47.5% 1.8% 1.8% 
   15 51.7% 51.7% 2.0% 2.0% 
Note. Criteria for model retention used to calculate the percentages:  

CFI ≥ 0.95, TLI ≥ 0.95, RMSEA ≤ 0.05, 
Combined = Criterion of acceptable fit based on the combination of CFI ≥ 0.95, 
TLI ≥ 0.95 and RMSEA ≤ 0.05 (Hu & Bentler, 1999) 
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Univariate LGM of item means with fixed error variances 

 Non-covergence was not a problem for the univariate LGM model with fixed 

error variances;  100% of the replications reached convergence. Despite this excellent 

convergence rate, a large number of inadmissible solutions occurred. The number of 

inadmissible solutions decreased as sample size and number of measurement times 

increased (see Table 16).  

 

Table 16  
Percentage of inadmissible solutions with the univariate latent growth 
model with fixed error variances  
Sample size Times Total
 3 5  
100 31.3% 2.4% 16.9%
200 23.7% 0.4% 12.1%
500 14.9% 0% 7.4% 
1000 10.0% 0% 5.0% 

 

Without removing the inadmissible solutions, the relative bias of the estimate of 

the mean of the level obtained the univariate LGM with fixed error variances depended 

on type of item (partial 2η = 0.847), invariance (partial 2η = 0.181), number of 

measurement times (partial 2η = 0.069), and interaction between number of measurement 

times and invariance (partial 2η = 0.089). The estimate of the mean of the level was 

positively biased with all conditions (see Table 17). With essentially tau-equivalent 

items, the overall mean relative bias was 0.51. With essentially congeneric items, the 

overall mean relative bias of the mean of the level was 0.22. With both essentially tau-
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equivalent and essentially congeneric items, the magnitude of the relative bias of the 

estimates of the mean of the level was consistent across all conditions.  

The relative bias of the estimate of the mean of the shape depended on type of 

item (partial 2η = 0.944), invariance (partial 2η = 0.646), number of measurement times 

(partial 2η = 0.342), number of items (partial 2η = 0.322), the interaction between 

number of times and invariance (partial 2η = 0.327), the interaction between number of 

items and invariance (partial 2η = 0.212), the interaction between number of items and 

number of times (partial 2η = 0.112), and the interaction between number of items and 

type of items (partial 2η = 0.084). The estimate of the mean of the shape was unbiased 

with essentially tau-equivalent items and strict factorial invariance. With tau-equivalent 

items and weak factorial invariance, the estimate was unbiased if the number of 

measurement times was five and negatively biased if the number of measurement times 

was three (see table 20). The overall mean relative bias of the mean of the shape with 

essentially tau-equivalent items was -0.036. The relative bias of the mean of the shape 

was as large -0.18 with tau-equivalent items, weak factorial invariance, 3 measurement 

times, and 5 items. The estimate of the mean of the shape was also negatively biased with 

congeneric items (see Table 21), and the overall mean relative bias with congeneric items 

was -0.289. The relative bias of the mean of the shape was as large as -0.492 with 

congeneric items, weak factorial invariance, three measurement times and five items. 

The relative bias of the estimate of the variance of the level depended on the type 

of item (partial 2η = 0.674). The relative bias was acceptable when the items were 
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essentially tau-equivalent, regardless of the other conditions (see Table 17). The overall 

mean relative biase with essentially tau-equivalent items was -0.023. On the other hand, 

the estimate of the variance of the level was negatively biases when the items were 

essentially congeneric with all other conditions (see Table 17). The relative bias with 

essentially congeneric items was consistent across all conditions and their overall mean 

was -0.491. 

The relative bias of the estimate of the variance of the shape depended only on 

type of item (partial 2η = 0.252). This relative bias was acceptable with almost all 

conditions where the items were essentially tau-equivalent (see Table 17), and the overall 

mean relative bias was -0.022. The only condition where the bias was just marginally 

acceptable was with essentially tau-equivalent items, weak factorial invariance, five 

measurement times and five items (see Table 17). However, when the items were 

essentially congeneric, the univariate LGM with fixed error variances resulted in 

unacceptable and negative relative bias of the estimate of the variance of the shape in all 

conditions (see Table 21). The overall mean relative bias of the estimate of the variance 

of the shape with essentially congeneric items was -0.47. The relative bias was as high as 

-0.818 with essentially congeneric items, configural invariance, three measurement times 

and 10 items. 

The relative bias of the estimate of the covariance between level and shape 

depended on type of item (partial 2η = 0.208) and invariance (partial 2η = 0.059). The 

univariate LGM with the fixed error variance produced an unbiased estimate of the 

covariance between level and shape when the items were essentially tau-equivelent (see 
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Table 20). The overall mean relative bias with essentially tau-equivalent items was 0.023. 

On the other hand, the estimate of the covariance between level and shape was negatively 

biased with essentially congeneric items, as shown in Table 17. The overall mean relative 

bias with essentially congeneric items was -0.363. The relative bias of the estimate of the 

covariance between level and shape was higher with essentially congeneric items and 

either strict or weak factorial invariance (i.e. its magnitude was between -0.399 and -

0.511) than with essentially congeneric items and configural invariance (i.e. its 

magnitude was between -0.058 and -0.366). 

None of the estimates of the standard errors obtained with the univariate LGM 

with  fixed error variances showed a relationship with the conditions manipulated in this 

study. Furthermore, all of the relative biases of the estimate of the standard error 

calculated without removing the inadmissible solutions were acceptable (see Table 18).  
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Table 17  
Mean relative bias of parameter estimates across conditions with the 
univariate LGM with fixed error variances, without removing the 
inadmissible solutions, collapsing across sample size and reliability 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
Shape 

Cov. 
level 
shape 

Tau Eq.        
Strict 3 5 0.560 -0.001 -0.011 -0.034 0.023 

  10 0.520 0.000 -0.005 -0.009 0.005 
  15 0.534 0.000 -0.011 -0.027 0.021 
 5 5 0.560 0.000 -0.007 -0.006 0.003 
  10 0.520 0.000 -0.007 -0.009 0.002 
  15 0.533 0.000 -0.009 -0.012 -0.002 

Weak 3 5 0.545 -0.193 -0.014 -0.034 0.028 
  10 0.512 -0.101 -0.011 -0.014 0.010 
  15 0.517 -0.065 -0.012 -0.024 0.024 
 5 5 0.432 -0.047 -0.050 -0.059 0.110 
  10 0.443 -0.013 -0.024 -0.028 0.043 
  15 0.482 -0.016 -0.015 -0.014 0.017 

Congeneric        
Strict 3 5 0.260 -0.300 -0.513 -0.513 -0.511 

  10 0.270 -0.250 -0.442 -0.445 -0.438 
  15 0.259 -0.273 -0.477 -0.481 -0.472 
 5 5 0.260 -0.300 -0.514 -0.513 -0.508 
  10 0.271 -0.250 -0.439 -0.442 -0.437 
  15 0.260 -0.273 -0.475 -0.475 -0.471 

Weak 3 5 0.246 -0.492 -0.516 -0.524 -0.500 
  10 0.260 -0.351 -0.441 -0.446 -0.424 
  15 0.243 -0.339 -0.479 -0.491 -0.460 
 5 5 0.131 -0.349 -0.553 -0.562 -0.418 
  10 0.192 -0.264 -0.456 -0.461 -0.399 
  15 0.209 -0.290 -0.484 -0.482 -0.456 

Configural 3 5 0.243 -0.316 -0.502 -0.219 -0.225 
  10 0.202 -0.265 -0.583 -0.818 0.207 
  15 0.217 -0.230 -0.539 -0.548 -0.058 
 5 5 0.194 -0.249 -0.477 -0.376 -0.308 
  10 0.166 -0.180 -0.486 -0.333 -0.283 
  15 0.233 -0.228 -0.457 -0.383 -0.366 

Note. Tau Eq. = Essentially tau-equivalent, Congeneric = Essentially 
congeneric items, Var. = variance, Cov. = covariance 
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Table 18 
Mean relative bias of the estimates of standard errors across 
conditions with the univariate LGM with fixed error variances, without 
removing the inadmissible solutions, collapsing across sample size and 
reliability 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
shape 

Cov. 
level 
shape 

Tau Eq.        
Strict 3 5 0.007 -0.005 0.001 -0.006 -0.003 

  10 -0.004 -0.002 -0.016 -0.009 -0.018 
  15 -0.003 -0.003 -0.016 -0.001 -0.006 
 5 5 -0.001 -0.002 -0.005 -0.025 -0.011 
  10 -0.012 -0.012 -0.015 -0.012 -0.006 
  15 -0.001 -0.012 0.014 0.002 -0.004 

Weak 3 5 -0.023 -0.011 0.002 0.006 0.007 
  10 -0.006 -0.005 -0.001 0.008 0.006 
  15 -0.015 -0.012 -0.007 0.012 0.006 
 5 5 -0.045 -0.031 0.005 -0.005 0.004 
  10 -0.016 -0.036 0.007 -0.001 -0.011 
  15 -0.008 -0.014 -0.013 -0.001 -0.002 

Congeneric        
Strict 3 5 -0.011 -0.017 0.001 -0.016 -0.017 

  10 -0.014 -0.010 -0.005 -0.006 -0.007 
  15 -0.010 -0.015 -0.007 -0.017 0.001 
 5 5 0.003 0.003 0.002 -0.011 0.000 
  10 0.001 -0.008 -0.012 -0.001 -0.014 
  15 -0.010 0.010 -0.012 0.001 0.002 

Weak 3 5 -0.010 -0.017 -0.008 -0.001 -0.002 
  10 -0.012 -0.022 -0.006 -0.011 -0.006 
  15 -0.004 -0.014 -0.020 -0.022 -0.019 
 5 5 -0.069 -0.081 0.005 -0.005 0.004 
  10 -0.034 -0.037 -0.016 0.001 0.004 
  15 -0.011 -0.001 -0.009 -0.005 -0.009 

Configural 3 5 -0.020 -0.006 -0.006 -0.009 -0.010 
  10 -0.055 -0.053 -0.018 -0.014 -0.031 
  15 -0.042 -0.038 -0.011 -0.027 -0.015 
 5 5 -0.023 -0.048 0.018 0.003 -0.027 
  10 -0.043 -0.027 -0.013 0.000 -0.009 
  15 -0.021 -0.023 -0.007 0.002 -0.011 

Note. Tau Eq. = Essentially tau-equivalent items, Congeneric = 
Essentially congeneric items, Var. = variance, Cov. = covariance 
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After removing the inadmissible solutions, the relative bias of the estimate of the 

mean of the level depended on the type of item (partial 2η = 0.843), invariance (partial 

2η = 0.170), number of measurement times (partial 2η = 0.076), and the interaction 

between number of measurement times and invariance (partial 2η = 0.087). The relative 

bias of the estimate of the mean of the level was positive in all conditions (see Table 19). 

However, with essentially tau-equivalent items, the relative bias was about twice larger 

than the relative bias with essentially congeneric items. The overall mean of the relative 

biases of the estimate of the mean of the level was 0.513 with tau-equivalent items and 

0.230 with essentially congeneric items. Within conditions with either essentially tau-

equivalent items or essentially congeneric items, the relative bias was consistent. 

The relative bias of the estimate of the mean of the shape, after removing 

inadmissible solutions, depended on type of item (partial 2η = 0.942), invariance (partial 

2η = 0.641), number of measurement times (partial 2η = 0.334), number of items (partial 

2η = 0.316), the interaction between number of times and invariance (partial 2η = 0.321), 

the interaction between number of items and invariance (partial 2η = 0.208), the 

interaction between number of items and number of times (partial 2η = 0.109), and the 

interaction between number of items and type of items (partial 2η = 0.083). The relative 

bias of the estimate of the mean of the shape was acceptable in all conditions with 

essentially tau-equivalent items and strict factorial invariance (see table 19). With 

essentially tau-equivalent items and weak factorial invariance, the relative bias was 
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negative with three measurement times but acceptable with five measurement times. In 

conditions with three measurement times, five items, weak factorial invariance and 

essentially tau-equivalent items, the relative bias of the estimate of the mean of the shape 

was as large as -0.192. When the items were essentially congeneric, the estimate of the 

mean of the shape presented unacceptable and negative relative bias (see Table 19), 

regardless of the other conditions. In conditions with essentially congeneric items, the 

relative bias had an overall mean of   -0.288. 

The relative bias of the estimate of the variance of the level depended on the type 

of item (partial 2η = 0.721). With essentially tau-equivalent items, the relative bias was 

acceptable in all conditions (see Table 19). The overall mean relative bias of the estimate 

of the variance of the level with essentially tau-equivalent items was 0.012.  With 

essentially congeneric items, the relative bias was negative and consistent across all 

conditions (see Table 19). The overall mean relative bias with essentially congeneric 

items was -0.472. 

The relative bias of the estimate of the variance of the shape depended on type of 

item (partial 2η = 0.412) and number of measurement times (partial 2η = 0.050). The 

estimate of the variance of the shape presented acceptable relative bias with essentially 

tau-equivalent items only when the number of measurement times was five (see Table 

19). When the number of measurement times was three and the items were essentially 

tau-equivalent, the relative bias of the estimate of the variance of the shape was positive. 

In this condition, the magnitude of the relative bias was consistently around 0.17. With 

essentially congeneric items, the relative bias was unacceptable and negative for all 
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conditions (see Table 19). The overall mean relative bias of the estimate of the variance 

of the shape with essentially congeneric items was -0.397. The magnitude of the relative 

biase when the items were essentially congeneric ranged from -0.110 to -0.559. 

 The relative bias of the estimate of the correlation between level and shape did 

not depend on any of the conditions included in this study. The relative bias of the 

estimate of the correlation between level and shape was acceptable in the conditions with 

strict factorial invariance and five measurement times, regardless of type and number of 

items, sample size or reliability (see Table 19). In the conditions with weak factorial 

invariance and five measurement times, the relative bias is positive and decreases as the 

number of items per construct increases, becoming marginally acceptable when the 

number of items reaches 15 (see Table 19). In conditions with three measurement times 

and either strict or weak factorial invariance, the relative bias was negative, and most of 

values of relative bias were around -0.12. Finally, with essentially congeneric items and 

configural invariance, the relative bias of the estimate of the correlation between level 

and shape was positive regardless of the other conditions.  
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Table 19 
Mean relative bias of parameter estimates across conditions with the 
univariate LGM with fixed error variances, after removing the 
inadmissible solutions, collapsing across sample size and reliability 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
shape 

Cor. 
level 
shape 

Tau Eq.        
Strict 3 5 0.561 0 0.041 0.169 -0.113 

  10 0.520 0 0.042 0.181 -0.122 
  15 0.534 0 0.043 0.177 -0.120 
 5 5 0.560 0 -0.005 -0.004 0.031 
  10 0.520 0 -0.005 -0.007 0.032 
  15 0.532 0 -0.007 -0.010 0.028 

Weak 3 5 0.545 -0.192 0.041 0.180 -0.131 
  10 0.512 -0.102 0.039 0.174 -0.113 
  15 0.517 -0.065 0.037 0.172 -0.105 
 5 5 0.432 -0.047 -0.047 -0.056 0.193 
  10 0.442 -0.013 -0.021 -0.025 0.087 
  15 0.482 -0.016 -0.013 -0.012 0.052 

Congeneric        
Strict 3 5 0.260 -0.300 -0.491 -0.423 -0.109 

  10 0.269 -0.251 -0.415 -0.340 -0.038 
  15 0.259 -0.273 -0.451 -0.378 -0.125 
 5 5 0.260 -0.300 -0.513 -0.512 0.033 
  10 0.270 -0.250 -0.438 -0.441 0.029 
  15 0.260 -0.273 -0.474 -0.474 0.029 

Weak 3 5 0.247 -0.492 -0.493 -0.427 -0.107 
  10 0.261 -0.351 -0.414 -0.333 -0.121 
  15 0.244 -0.339 -0.451 -0.383 -0.115 
 5 5 0.131 -0.349 -0.550 -0.559 0.329 
  10 0.193 -0.264 -0.455 -0.460 0.130 
  15 0.209 -0.290 -0.483 -0.481 0.071 

Configural 3 5 0.244 -0.316 -0.473 -0.110 0.084 
  10 0.214 -0.264 -0.491 -0.416 0.557 
  15 0.222 -0.229 -0.484 -0.328 0.359 
 5 5 0.194 -0.249 -0.475 -0.374 0.223 
  10 0.167 -0.180 -0.484 -0.331 0.239 
  15 0.233 -0.228 -0.456 -0.382 0.114 

Note. Tau Eq. = Essentially tau-equivalent, Congeneric = Essentially 
congeneric items, var. = variance, cor. = correlation 
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The relative bias of the estimate of the standard errors of the mean of the level and 

mean of the shape did not depend on any of the conditions manipulated in this study. The 

relative bias was acceptable in all conditions, with the exception of the condition with 

essentially congeneric items, strict factorial invariance, three measurement times and 10 

items, where the relative bias was marginally acceptable (see Table 20).  

The relative bias of the estimate of the standard error of the variance of the level 

depended on the number of measurement times (partial 2η = 0.242) and invariance 

(partial 2η = 0.053). The relative bias of the estimate of the standard error of the variance 

of the level was acceptable in most conditions except in a few selected conditions (see 

table 20). In conditions with essentially congeneric items, three measurement times and 

configural invariance, the relative bias ranged from 0.113 to 0.277 (see Table 20).  

The relative bias of the estimate of the standard error of the variance of the shape 

depended on the number of measurement times (partial 2η = 0.587), invariance (partial 

2η = 0.130), sample size (partial 2η = 0.083), number of items (partial 2η = 0.083), the 

interaction between number of times and sample size (partial 2η = 0.139), the interaction 

between number of items and invariance (partial 2η = 0.124) and the interaction between 

number of measurement times and invariance (partial 2η = 0.120). The estimate of the 

standard error of the variance of the shape was unbiased in all conditions with five 

measurement times, but positively biased in all conditions with three measurement times 

(see Table 20). In the conditions with three measurement times and either strict or weak 

factorial invariance, the relative bias was consistently around 0.2. In the conditions with 
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three measurement times and configural invariance, the relative bias ranged from 0.175 to 

0.686 (see Table 20). 

The relative bias of the standard error of the covariance between level and shape 

depended only on type of item (partial 2η = 0.240). The relative bias was acceptable in all 

conditions with five measurement times and positive in all conditions with three 

measurement times. In the conditions with three measurement times the magnitude of the 

relative bias ranged from 0.11 to 0.645 (see Table 20). 
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Table 20 
Mean relative bias of the estimates of standard error across conditions 
with the univariate LGM with fixed error variances, after removing the 
inadmissible solutions, collapsing across sample size and reliability 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
Shape 

Cov. 
level 
shape 

Tau Eq.        
Strict 3 5 0.002 -0.006 0.108 0.204 0.189 

  10 -0.004 0.010 0.082 0.191 0.177 
  15 0.000 0.004 0.080 0.209 0.192 
 5 5 -0.001 -0.002 0.001 -0.019 -0.002 
  10 -0.011 -0.011 -0.007 -0.008 0.004 
  15 0.000 -0.011 0.022 0.004 0.003 

Weak 3 5 -0.022 -0.004 0.098 0.216 0.206 
  10 -0.003 -0.002 0.099 0.214 0.190 
  15 -0.016 -0.003 0.083 0.213 0.181 
 5 5 -0.043 -0.032 0.009 0.005 0.019 
  10 -0.016 -0.034 0.013 0.004 0.000 
  15 -0.006 -0.012 -0.009 0.003 0.004 

Congeneric        
Strict 3 5 -0.016 0.000 0.089 0.187 0.159 

  10 -0.109 -0.106 0.041 0.202 0.110 
  15 -0.008 -0.010 0.085 0.195 0.180 
 5 5 0.001 0.002 0.008 -0.005 0.007 
  10 0.000 -0.006 -0.005 0.004 -0.006 
  15 -0.011 0.009 -0.007 0.007 0.011 

Weak 3 5 0.000 -0.014 0.082 0.230 0.204 
  10 -0.002 -0.014 0.093 0.206 0.202 
  15 0.000 -0.016 0.093 0.200 0.193 
 5 5 -0.070 -0.079 0.020 0.012 0.029 
  10 -0.033 -0.035 -0.011 0.007 0.014 
  15 -0.011 0.000 -0.004 0.001 -0.001 

Configural 3 5 -0.023 -0.006 0.113 0.175 0.182 
  10 -0.030 -0.038 0.277 0.686 0.645 
  15 -0.017 -0.037 0.187 0.382 0.380 
 5 5 -0.022 -0.048 0.028 0.010 -0.017 
  10 -0.042 -0.027 -0.001 0.008 0.004 
  15 -0.020 -0.022 -0.001 0.007 -0.004 

Note. Tau Eq. = Essentially tau-equivalent items, Congeneric = 
Essentially congeneric items, Var. = variance, Cov. = covariance 
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With the univariate LGM with fixed error variances, the chi-square fit statistics 

and the fit indices were similar regardless of whether they were calculated based on all 

solutions or only the admissible solutions. Therefore, the results will be presented 

considering only admissible solutions.  

The relative bias of the chi-square statistic depended on invariance (partial 2η = 

0.335), sample size (partial 2η = 0.285), number of measurement times (partial 2η = 

0.069), reliability (partial 2η = 0.062), the interaction between sample size and invariance 

(partial 2η = 0.235), the interaction between number of measurement times and 

invariance (partial 2η = 0.192),  the interaction between number of items and invariance 

(partial 2η = 0.171), and the interaction between the number of items and the number of 

measurement times (partial 2η = 0.078). 

 The chi-square statistic obtained using the univariate LGM with fixed error 

variances was unbiased in the conditions with strict factorial invariance, regardless of the 

other conditions (see Table 21). In the conditions with strict factorial invariance, the 

relative bias of the chi-square statistic decreased as sample size increased. However, the 

relative bias of the chi-square statistic was unacceptable and positive in conditions with 

weak or configural invariance. With weak and configural invariance, the relative bias 

increased consistently as sample size increased. 



 

 
 

143

Table 21 
Relative bias of the chi-square statistic with the univariate LGM with 
fixed error variances, collapsing across type of item and number of 
items 
Reliability Times Sample Invariance 
   Strict Weak Configural 
0.70 3 100 0.018 0.394 3.637 
   200 0.004 0.735 7.057 
   500 0.000 1.958 18.058 
   1000 0.009 3.810 36.136 
  5 100 0.022 0.920 1.104 
   200 0.006 1.801 2.168 
   500 -0.001 4.458 5.422 
   1000 0.003 8.902 10.797 
0.90 3 100 0.009 0.733 6.795 
   200 -0.012 1.460 13.231 
   500 -0.004 3.737 33.619 
   1000 0.015 7.314 67.926 
  5 100 0.029 1.851 2.262 
   200 0.017 3.640 4.485 
   500 0.010 9.059 11.072 
   1000 0.004 18.122 22.187 

 

 The CFI obtained with the univariate LGM with fixed error variances depended 

on invariance (Cramer’s V = 0.458), type of item (Cramer’s V = 0.213), number of 

measurement times (Cramer’s V = 0.188), and number of items (Cramer’s V = 0.136).  

The TLI obtained with the univariate LGM with fixed error variances depended 

on invariance (Cramer’s V = 0.526), type of item (Cramer’s V = 0.251) and number of 

items (Cramer’s V = 0.103).  

The univariate LGM with fixed error variances produced similar proportions of 

CFI and TLI that would indicate an acceptable model fit. In conditions with strict 

factorial invariance, the percentage of CFI and TLI that would indicate an adequate fit of 

the model was at least 99.6% regardless of reliability, type of item, number of items, 

number of measurement times and sample size (see Table 22). With weak factorial 
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invariance, the percentage of CFI and TLI that would indicate an acceptable model fit 

was below 33% if the number of times was five and the number of items was five, but it 

was at least 79% otherwise. With configural invariance, the percentage of CFI and TLI 

equal or above 0.95 was below 58% with all conditions, with the exception of the 

condition with congeneric items, three measurement times and five items, in which the 

percentage of CFI was 96.7% and the percentage of TLI was 71.8%. 

 The RMSEA obtained with the univariate LGM with fixed error variances 

depended on invariance (Cramer’s V = 0.630), type of item (Cramer’s V = 0.233) and 

number of measurement times (Cramer’s V = 0.120). The percentage of RMSEA that 

would support the adequate fit of the model was between 82.5% and 89.8% in conditions 

with strict factorial invariance (see Table 22). In the conditions with weak and configural 

invariance, the percentage of RMSEA equal or below 0.05 varied substantially in each 

condition, but did not exceed 75% in any condition.  

  The fit of each univariate LGM with fixed error variances was also evaluated with 

the combination of the CFI, TLI, and RMSEA suggested by Hu and Bentler (1999). The 

fit of the model as measured by the combination of CFI ≥ 0.95, TLI ≥ 0.95, RMSEA ≤ 

0.05 depended on invariance (Cramer’s V = 0.630), type of item (Cramer’s V = 0.234) 

and number of measurement times (Cramer’s V = 0.120). The percentage of models 

whose fit indices would support the adequate fit of the model according to the Hu and 

Bentler’s combined criterion was determined by the percentage of RMSEA equal or 

below 0.05, because it was lower than the percentage of CFI and TLI equal or above 

0.95. 
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Table 22 
Percentage of replications in which the fit indices would lead to model 
retention with the univariate LGM with fixed error variances, 
collapsing across sample size and reliability conditions. 

Invariance Type of 
Item Times Items CFI TLI RMSEA Combined

Strict Tau Eq. 3 5 99.6% 96.5% 82.4% 82.4% 
   10 99.6% 96.6% 82.5% 82.5% 
   15 99.7% 97.1% 83.1% 83.1% 
  5 5 99.8% 99.8% 89.5% 89.5% 
   10 99.7% 99.7% 88.6% 88.6% 
   15 99.8% 99.8% 89.5% 89.5% 
 Congeneric 3 5 99.6% 96.7% 83.1% 83.1% 
   10 99.6% 96.5% 82.5% 82.4% 
   15 99.7% 97.1% 82.7% 82.7% 
  5 5 99.9% 99.9% 89.4% 89.4% 
   10 99.8% 99.8% 89.7% 89.7% 
   15 99.8% 99.8% 89.8% 89.8% 
Weak Tau Eq. 3 5 98.9% 91.7% 54.8% 54.8% 
   10 99.4% 95.3% 72.2% 72.2% 
   15 98.6% 90.5% 49.5% 49.5% 
  5 5 32.6% 32.6% 1.3% 1.3% 
   10 96.4% 96.4% 14.5% 14.5% 
   15 99.2% 99.2% 60.3% 60.3% 
 Congeneric 3 5 98.0% 83.9% 36.9% 36.9% 
   10 99.4% 93.8% 62.8% 62.8% 
   15 97.7% 79.9% 32.1% 32.1% 
  5 5 1.6% 1.6% 0.1% 0.1% 
   10 81.7% 81.7% 4.2% 4.2% 
   15 98.3% 98.3% 33.3% 33.3% 
Configural Congeneric 3 5 96.7% 71.8% 25.3% 25.3% 
   10 19.8% 3.5% 1.2% 1.2% 
   15 57.5% 11.3% 4.3% 4.3% 
  5 5 52.5% 52.5% 2.4% 2.4% 
   10 46.0% 46.0% 1.8% 1.8% 
   15 50.4% 50.4% 1.9% 1.9% 
Note. Criteria for model retention used to calculate the percentages:  

CFI ≥ 0.95, TLI ≥ 0.95, RMSEA ≤ 0.05, 
Combined = Criterion of acceptable fit based on the combination of CFI ≥ 0.95, 
TLI ≥ 0.95 and RMSEA ≤ 0.05 (Hu & Bentler, 1999) 
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Univariate LGM with the correction for attenuation 

 While the first three methods that have been discussed did not have any 

convergence problems, there were several analyses with the univariate latent growth 

model with the correction for attenuation that did not converge (see Table 23). The 

reason comes from a well-known limitation of the correction for attenuation: It 

sometimes produces corrected correlation coefficients that are larger than one. 

Consequently, some of the corrected variance/covariance matrices of composites were 

non-positive definite and the analyses could not be performed. The number of non-

converged analyses was higher when the composite reliability was 0.7 because the lower 

the reliability, the larger the corrected correlation coefficient will be as compared with the 

uncorrected coefficient, and it is more likely that the corrected correlation will exceed 

one. The number of non-converged analyses was also higher in conditions with the 

smallest sample size (i.e. 100) and with five measurement times (see Table 23). The 

number of measurement times had an effect on convergence because in this study the 

correlation between level and shape was positive, so the inter-item correlations tended to 

increase with time. Consequently, the corrected correlations between the composites at 

later measurement times were more likely to exceed one than at earlier measurement 

times.  
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Table 23 
Non-converged solutions with the univariate LGM with the correction for 
attenuation, collapsing across number of items, type of item, and 
invariance. 
Sample size Reliability Percentage of non-convergent analyses 
  3 times 5 times 
100 0.7 1.15% 35.73% 
 0.9 0% 0.11% 
200 0.7 0.03% 8.30% 
 0.9 0% 0% 
500 0.7 0% 0.35% 
 0.9 0% 0% 
1000 0.7 0% 0% 
 0.9 0% 0% 

 

 With the univariate latent growth model with the correction for attenuation, there 

were also some analyses that resulted in non-positive definite estimates of the 

variance/covariance matrix of level and shape. The number of inadmissible solutions 

depended on the number of measurement times and on sample size. The percentage of 

these inadmissible solutions for each measurement time and sample size is displayed in 

table 24. 

Table 24 
Percentage of inadmissible solutions with the univariate latent growth 
model with the correction for attenuation, by sample size and 
measurement time, collapsing across the other conditions.  
Sample size Times Total 

 3 5  
100 30.3% 2.7% 16.5% 
200 22.5% 0.8% 11.7% 
500 13.7% 0% 6.8% 
1000 9.4% 0% 4.7% 

 

The relative bias of the parameter estimates and standard errors with the 

univariate latent growth model with the correction for attenuation was calculated both 

without removing inadmissible solutions and with the inadmissible solutions removed.  
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Because there were non-convergence problems with the univariate latent growth 

model with correction for attenuation, extra datasets were generate to complete 1000 

converged analyses for each condition. The 1000 converged analyses for each condition 

were used to calculate the relative biases of the parameter estimates and standard errors 

without removing inadmissible solutions. Then, the inadmissible solutions were removed 

and extra datasets were generated to complete 1000 analyses with admissible solutions 

per condition. These 1000 admissible solutions were used to compute the relative bias of 

the parameter estimates and standard errors a second time. 

Without removing the inadmissible solutions, the relative bias of the estimate of 

the mean of the level depended on type of item (partial 2η = 0.810), invariance (partial 

2η = 0.198), measurement times (partial 2η = 0.073), the interaction between number of 

measurement times and invariance (partial 2η = 0.114) and the interaction between 

number of items and invariance (partial 2η = 0.058). The estimate of the mean of the 

level was unacceptably biased in all conditions, and the relative bias was consistently 

positive (see Table 25). However, the relative bias of the estimate of the mean of the level 

in conditions with essentially tau-equivalent times was twice as large as the relative bias 

in conditions with essentially congeneric items. The overall mean relative bias in 

conditions with essentially tau-equivalent items was 0.507. In conditions with essentially 

congeneric items, the overall mean relative bias was 0.222. 

The relative bias of the estimate of the mean of the shape depended on type of 

item (partial 2η = 0.924), invariance (partial 2η = 0.540), number of measurement times 
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(partial 2η = 0.301), number of items (partial 2η = 0.239), the interaction between 

measurement times and invariance (partial 2η = 0.298), the interaction between number 

of items and invariance (partial 2η = 0.152), the interaction between number of items and 

number of times (partial 2η = 0.107) and the interaction between number of items and 

type of item (partial 2η = 0.065). The estimate of the mean of the shape was unbiased in 

conditions with essentially tau-equivalent items and strict factorial invariance, and also in 

conditions with essentially tau-equivalent items, weak factorial invariance and five 

measurement times. In the conditions with essentially tau-equivalent items, weak 

factorial invariance and three measurement times, the estimate of the mean o the shape 

was negatively biased, and the relative bias ranged from -0.063 with 15 items to -0.190 

with 5 items. The estimate of the mean of the shape in conditions with essentially 

congeneric items was consistently negatively biased (see Table 25). The relative bias 

ranged from -0.171 to -0.490, with an overall mean of -0.286. 

The relative bias of the estimate of the variance of the level depended on the type 

of item (partial 2η = 0.626). All of the conditions with essentially tau-equivalent items 

had an acceptable relative bias of the estimate of the variance of the level. On the other 

hand, all of the conditions with essentially congeneric items resulted in a negatively 

biased estimate of the variance of the level. With essentially congeneric items, the 

relative bias had an overall mean of -0.487 and it was consistent across the other 

conditions. 
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The relative bias of the estimate of the variance of the shape depended on type of 

item (partial 2η = 0.237). The estimate of the variance of the shape was unbiased in the 

conditions with essentially tau-equivalent items, but  negatively biased in the conditions 

with essentially congeneric items (see Table 25). The overall mean relative bias was -

0.013 and -0.472 with essentially tau-equivalent and essentially congeneric items, 

respectively. In the conditions with essentially congeneric items, configural invariance, 

three measurement times and 10 items, the relative bias of the estimates of the mean of 

the shape was as large as -0.85. 

The relative bias of the estimate of the covariance between level and shape 

depended on the type of item (partial 2η = 0.186) and invariance (partial 2η = 0.055). The 

relative bias was acceptable in all conditions with essentially tau-equivalent items, except 

when there was weak factorial invariance, the number of times was five and the number 

of items was five (see Table 25). In the conditions with essentially tau-equivalent items, 

the overall mean relative bias was 0.018. With essentially congeneric items, most of the 

estimates of the covariance between level and shape were negatively biased (see Table 

25). The only two exceptions were the conditions with essentially congeneric items, 

configural invariance, three measurement times, and ten items, which had positive 

relative bias, and the conditions with essentially congeneric items, configural invariance, 

three measurement times and fifteen items, which resulted in acceptable relative bias. The 

overall mean relative bias of the conditions with essentially congeneric items was -0.363. 
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Table 25 
Mean relative bias of parameter estimates across conditions with the 
univariate LGM with the correction for attenuation, without removing 
the inadmissible solutions, collapsing across sample size and 
reliability 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
shape 

Cov. 
level 
shape 

Tau Eq.        
Strict 3 5 0.561 -0.001 -0.013 -0.025 0.023 

  10 0.520 0.000 -0.004 -0.001 -0.004 
  15 0.534 0.001 -0.009 -0.029 0.021 
 5 5 0.560 0.000 0.006 0.011 -0.011 
  10 0.520 0.000 0.008 0.011 -0.020 
  15 0.533 0.000 0.003 0.004 -0.019 

Weak 3 5 0.544 -0.190 -0.017 -0.029 0.025 
  10 0.511 -0.100 -0.012 -0.020 0.015 
  15 0.515 -0.063 -0.011 -0.018 0.018 
 5 5 0.398 -0.031 -0.053 -0.042 0.112 
  10 0.422 -0.001 -0.023 -0.016 0.047 
  15 0.474 -0.010 -0.008 0.007 0.007 

Congeneric        
Strict 3 5 0.260 -0.301 -0.514 -0.519 -0.506 

  10 0.270 -0.250 -0.440 -0.447 -0.438 
  15 0.259 -0.273 -0.478 -0.481 -0.466 
 5 5 0.260 -0.300 -0.507 -0.502 -0.519 
  10 0.270 -0.250 -0.433 -0.431 -0.445 
  15 0.259 -0.273 -0.469 -0.466 -0.479 

Weak 3 5 0.244 -0.490 -0.517 -0.525 -0.496 
  10 0.259 -0.349 -0.440 -0.441 -0.433 
  15 0.241 -0.336 -0.479 -0.490 -0.459 
 5 5 0.091 -0.335 -0.549 -0.542 -0.426 
  10 0.170 -0.252 -0.457 -0.456 -0.395 
  15 0.200 -0.283 -0.479 -0.471 -0.467 

Configural 3 5 0.243 -0.314 -0.499 -0.216 -0.229 
  10 0.183 -0.264 -0.591 -0.850 0.248 
  15 0.208 -0.227 -0.544 -0.559 -0.037 
 5 5 0.177 -0.241 -0.469 -0.383 -0.307 
  10 0.155 -0.171 -0.467 -0.330 -0.301 
  15 0.244 -0.237 -0.443 -0.390 -0.380 

Note. Tau Eq. = Essentially tau-equivalent items, Congeneric = 
Essentially congeneric items, var. = Variance, cov. = Covariance 
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The bias of the estimate of the standard error of the mean of the level depended on 

reliability (partial 2η = 0.651), invariance (partial 2η = 0.243), number of measurement 

times (partial 2η = 0.125) and sample size (partial 2η = 0.124).  The estimate of the 

standard error of the mean of the level was negatively biased in all conditions with 

reliability equal to 0.7, regardless of invariance, type of item, number of items, number of 

measurement times or sample size (see Table 26). The overall mean relative bias in 

conditions with reliability equal to 0.7 was -0.277. With reliability of 0.9 and strict 

factorial invariance, the estimate of the standard error of the mean of the level was 

unbiased. With reliability of 0.9 and weak factorial invariance, the estimate of the 

standard error of the mean of the level was unbiased if sample size was larger than 500. 

With reliability of 0.9 and configural invariance, all estimates were negatively biased (see 

Table 26). 

The bias of the estimate of the standard error of the mean of the shape depended 

on reliability  (partial 2η = 0.692), invariance (partial 2η = 0.397), sample size (partial 

2η = 0.129), the interaction between number of measurement times and invariance 

(partial 2η = 0.207), the interaction between number of items and number of 

measurement times (partial 2η = 0.114), the interaction between number of items and 

invariance (partial 2η = 0.099), the interaction between reliability and invariance (partial 

2η = 0.059), and the interaction between reliability and sample size (partial 2η = 0.053). 

The estimate of the standard error of the mean of the shape was negatively biased in all 

conditions where reliability was 0.7 (see Table 26). The overall mean relative bias in 
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these conditions was -0.42. In conditions with reliability of 0.9, strict factorial invariance 

and sample size larger than 100, the relative bias was acceptable. In the conditions with 

reliability of 0.9 and either weak or configural invariance, the estimate of the standard 

error of the mean of the shape was negatively biased (see Table 26) 

The relative bias of the estimates of the standard errors of the variance of the 

level, variance of the shape, and covariance between level and shape were consistently 

unacceptable and negative in all conditions (see Table 26). The magnitude of the relative 

bias ranged from -0.38 and -0.57 when the reliability was 0.7. When the reliability was 

0.9, the relative bias ranged from -0.13 to -0.20.  

The relative bias of the estimate of the standard error of the variance of the level 

depended on reliability (partial 2η = 0.668), sample size (partial 2η = 0.070) and the 

interaction between number of measurement times and sample size (partial 2η = 0.059).  

The relative bias of the estimate of the standard error of the variance of the shape 

depended on reliability (partial 2η = 0.740), sample size (partial 2η = 0.108), the 

interaction between number of measurement times and sample size (partial 2η = 0.085) 

and the interaction between number of measurement times and reliability (partial 2η = 

0.068).  

The relative bias of the estimate of the standard error of the covariance between 

level and shape depended on reliability (partial 2η = 0.782), sample size (partial 2η = 

0.105), the interaction between reliability and sample size (partial 2η = 0.062) and the 

interaction between reliability and number of measurement times (partial 2η = 0.052). 
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Table 26  
Mean relative bias of the estimates of the standard errors with the 
univariate LGM with the correction for attenuation, without removing 
the inadmissible solutions, collapsing across number of measurement 
times, number of items, and type of item 

Rel. Invariance Sample Mean 
level 

Mean 
shape 

Var. 
level 

Var. 
shape 

Cov. 
level 
shape 

0.70 Strict 100 -0.278 -0.347 -0.501 -0.531 -0.530 
   200 -0.222 -0.288 -0.458 -0.495 -0.503 
   500 -0.184 -0.230 -0.399 -0.428 -0.431 
   1000 -0.178 -0.215 -0.390 -0.406 -0.424 
  Weak 100 -0.359 -0.465 -0.476 -0.551 -0.533 
   200 -0.324 -0.444 -0.447 -0.561 -0.515 
   500 -0.265 -0.399 -0.388 -0.466 -0.449 
   1000 -0.250 -0.355 -0.366 -0.439 -0.427 
  Configural 100 -0.418 -0.512 -0.496 -0.546 -0.545 
   200 -0.373 -0.483 -0.464 -0.512 -0.524 
   500 -0.323 -0.429 -0.395 -0.455 -0.458 
   1000 -0.297 -0.396 -0.378 -0.431 -0.439 
        
0.90 Strict 100 -0.076 -0.102 -0.166 -0.186 -0.186 
   200 -0.062 -0.083 -0.149 -0.168 -0.166 
   500 -0.052 -0.075 -0.147 -0.158 -0.160 
   1000 -0.054 -0.073 -0.139 -0.149 -0.151 
  Weak 100 -0.114 -0.182 -0.152 -0.202 -0.183 
   200 -0.105 -0.148 -0.134 -0.176 -0.172 
   500 -0.093 -0.151 -0.138 -0.177 -0.167 
   1000 -0.077 -0.137 -0.141 -0.168 -0.169 
  Configural 100 -0.148 -0.219 -0.165 -0.206 -0.218 
   200 -0.146 -0.194 -0.169 -0.190 -0.187 
   500 -0.109 -0.178 -0.159 -0.180 -0.199 
   1000 -0.128 -0.168 -0.137 -0.167 -0.181 
Note. Rel. = Reliability of the composite,  Var. = Variance,  
Cov. = Covariance 
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After removing the inadmissible solutions and generating more datasets to obtain 

1000 admissible solutions by condition, the relative bias of estimate of the mean of the 

level depended on type of item (partial 2η = 0.811), invariance (partial 2η = 0.091) and 

the interaction between number of measurement times and invariance (partial 2η = 

0.114). The estimate of the mean of the level was positively biased in all conditions. The 

overall mean of the relative bias of the mean of the level was 0.51 with essentially tau-

equivalent items and 0.230 with essentially congeneric items (see Table 27). 

 The relative bias of the mean of the shape depended on the type of item (partial 

2η = 0.924), invariance (partial 2η = 0.541), number  of measurement times (partial 2η = 

0.294), number of items (partial 2η = 0.241), the interaction between number of 

measurement times and invariance (partial 2η = 0.295), the interaction between  number 

of items and invariance (partial 2η = 0.152), the interaction between number of items and 

number of measurement times (partial 2η = 0.107), and the interaction between number 

of items and type of item (partial 2η = 0.065). The estimate of the mean of the shape was 

unbiased in conditions with essentially tau-equivalent items and strict factorial 

invariance, or weak factorial invariance and five measurement times (see Table 27). The 

conditions with essentially tau-equivalent items, weak factorial invariance and three 

measurement times resulted in negative relative bias ranging from -0.06 to -0.190. If the 

items were essentially congeneric, the relative bias of the mean of the shape was negative 

regardless of the other conditions (see Table 27). The relative bias of the mean of the 

shape ranged from to -0.171 to -0.490, with an overall mean of -0.289.  
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The bias of the estimate of the variance of the level depended on the type of item 

(partial 2η = 0.672). The relative bias was acceptable in all conditions with essentially 

tau-equivalent items, but was negative in conditions with essentially congeneric items 

(see Table 27). With essentially congenereric items, the relative bias of the estimate of 

the variance of the level was consistent and had an overall mean of -0.47. 

The relative bias of the estimate of the variance of the shape depended on type of 

item (partial 2η = 0.387). The estimate of the variance of the shape was unbiased if the 

items were essentially tau-equivalent and the number of measurement times was five (see 

Table 27). However, if the items were essentially tau-equivalent and the number of 

measurement times was three, the estimate of the variance of the shape was positively 

biased, and the magnitude of the bias was consistently around 0.18. In the conditions with 

essentially congeneric items, the estimate of the variance of the shape was negatively 

biased (see Table 27). This relative bias ranged from -0.104 to –0.53, with an overall 

mean of -0.397.  

None of the conditions included in the study had an effect size larger than 0.05 on 

the relative bias of the estimate of the correlation between level and shape. The relative 

bias was acceptable in conditions with strict factorial invariance and five measurement 

times, regardless of type of item, number of items, sample size, and reliability (see Table 

27). However, with three measurement times and either strict or weak factorial 

invariance, the relative bias was negative and of magnitude around -0.12. In conditions 

with five measurement times, weak factorial invariance, and either 5 or 10 items, the 

relative bias was unacceptable and positive, but with 15 items the relative bias was 
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acceptable. If there was configural invariance, the estimate of the correlation between 

level and shape presented positive bias, ranging from 0.087 to 0.540 (see Table 27). 

 

Table 27 
Mean relative bias of parameter estimates across conditions with the 
univariate LGM with the correction for attenuation, after removing the 
inadmissible solutions, collapsing across sample size and reliability. 

Type of item 
Invariance Times Items Mean 

level 
Mean 
shape 

Var. 
level 

Var. 
Shape 

Cor. 
level 
shape 

Tau Eq.        
Strict 3 5 0.560 -0.001 0.039 0.174 -0.112 

  10 0.519 0 0.046 0.185 -0.125 
  15 0.534 0.001 0.042 0.181 -0.122 
 5 5 0.560 0 0.011 0.015 0.009 
  10 0.520 0 0.014 0.013 0.001 
  15 0.533 0 0.006 0.008 0.007 

Weak 3 5 0.546 -0.190 0.041 0.181 -0.125 
  10 0.513 -0.100 0.039 0.182 -0.113 
  15 0.517 -0.062 0.038 0.179 -0.101 
 5 5 0.400 -0.031 -0.045 -0.039 0.190 
  10 0.423 -0.001 -0.017 -0.009 0.087 
  15 0.474 -0.011 -0.004 0.012 0.033 

Congeneric        
Strict 3 5 0.261 -0.300 -0.491 -0.424 -0.112 

  10 0.271 -0.250 -0.414 -0.339 -0.118 
  15 0.260 -0.273 -0.452 -0.380 -0.116 
 5 5 0.260 -0.300 -0.504 -0.500 0.001 
  10 0.271 -0.250 -0.431 -0.430 0.001 
  15 0.260 -0.273 -0.466 -0.464 0.007 

Weak 3 5 0.247 -0.490 -0.491 -0.423 -0.113 
  10 0.261 -0.349 -0.411 -0.329 -0.129 
  15 0.244 -0.336 -0.452 -0.379 -0.110 
 5 5 0.094 -0.336 -0.543 -0.538 0.278 
  10 0.171 -0.253 -0.453 -0.452 0.132 
  15 0.200 -0.283 -0.476 -0.469 0.048 

Configural 3 5 0.245 -0.313 -0.471 -0.104 0.081 
  10 0.208 -0.261 -0.489 -0.400 0.540 
  15 0.220 -0.225 -0.485 -0.314 0.345 
 5 5 0.177 -0.241 -0.467 -0.380 0.239 
  10 0.156 -0.171 -0.463 -0.325 0.184 
  15 0.244 -0.238 -0.441 -0.389 0.087 

Note. Tau Eq. = Essentially tau-equivalent items, Congeneric = 
Essentially congeneric items, var. = variance, cor. = correlation 
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After removing the inadmissible solutions, the relative bias of the estimate of  

standard error of the mean of level depended on reliability (partial 2η = 0.639), number of 

measurement times (partial 2η = 0.204), invariance (partial 2η = 0.191), sample size 

(partial 2η = 0.125), number of items (partial 2η = 0.067), the interaction between 

number of measurement times and invariance (partial 2η = 0.123), the interaction 

between number of measurement times and reliability (partial 2η = 0.111), the interaction 

between number of items and measurement times (partial 2η = 0.098), the interaction 

between number of items and invariance (partial 2η = 0.096) and the interaction between 

reliability and sample size (partial 2η = 0.054). The estimate of the standard error of the 

mean of the level was negatively biased in conditions with reliability of 0.7, regardless of 

the other conditions (see Table 28). The relative bias tended to decrease as sample size 

increased, but remained unacceptable. With reliability of 0.7, the relative bias of the 

estimate of the standard error of the mean of the level ranged from -0.17 to -0.39, with an 

overall mean relative bias of -0.266. In conditions with reliability of 0.9, the relative bias 

was acceptable if there was strict factorial invariance, or weak factorial invariance with a 

sample size larger than 200 (see Table 28). In the remaining conditions, the relative bias 

was negative and ranged from -0.101 to -0.129. 

The relative bias of the estimate of the standard error of the mean of the shape 

depended on reliability (partial 2η = 0.697), invariance (partial 2η = 0.405), sample size 

(partial 2η = 0.110), the interaction between number of measurement times and 
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invariance (partial 2η = 0.192), the interaction between number of items and number of 

measurement times (partial 2η = 0.117), the interaction between number of items and 

invariance (partial 2η = 0.094), the interaction between reliability and invariance (partial 

2η = 0.060), and the interaction between reliability and sample size (partial 2η = 0.057). 

The estimate of the standard error of the mean of the shape was negatively biased in all 

conditions with reliability of 0.7 (see Table 28). The overall mean relative bias in 

conditions with reliability of 0.7 was -0.363. When the reliability was 0.9 and there was 

strict factorial invariance, the estimate of the standard error of the mean of the shape had 

acceptable relative bias. However, in conditions with reliability of 0.9, if there was either 

weak or configural invariance, the relative bias was negative and ranged from -0.135 to   

-0.188. 

The relative bias of the estimate of the standard error of the variance of the level 

depended on reliability (partial 2η = 0.620), number of measurement times (partial 2η = 

0.121), and the interaction between number of measurement times and sample size 

(partial 2η = 0.117). The estimate of the standard error of the variance of the level was 

negatively biased in all conditions with reliability of 0.7 (see Table 28). The overall mean 

relative bias in the conditions with reliability of 0.7 was -0.378. In the conditions with 

reliability of 0.9 and strict factorial invariance, the relative bias was negative and was 

consistently around -0.12. The relative bias was acceptable in the conditions with 

reliability of 0.9, weak factorial invariance and sample sizes of 100 and 200, as well as in 

the conditions with configural invariance regardless of sample size.  
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The relative bias of the estimate of the standard error of the variance of the shape 

depended on reliability (partial 2η = 0.690), number of measurement times (partial 2η = 

0.304), invariance (partial 2η = 0.079), number of items (partial 2η = 0.055), the 

interaction between number of measurement times and sample size (partial 2η = 0.203), 

the interaction between reliability and sample size (partial 2η = 0.063), the interaction 

between number of measurement times and invariance (partial 2η = 0.058), and the 

interaction between number of items and invariance (partial 2η = 0.054). The estimate of 

the standard error of the variance of the shape was negatively biased in all conditions 

with reliability of 0.7 (see Table 28). The overall mean relative bias in these conditions 

was -0.408. With reliability of 0.9, the estimate of the standard error of the variance of 

the shape was unbiased if there was strict or weak factorial invariance and the sample 

size was bellow 500. Furthermore, the estimate was unbiased in the conditions with 

reliability of 0.9 and configural invariance, regardless of sample size. The conditions with 

reliability of 0.9, weak or strict factorial invariance and sample size of 500 or 1000 

presented negative relative bias around -0.13. 

The relative bias of the estimate of the standard error of the covariance between 

level and shape depended on reliability (partial 2η = 0.716), number of measurement 

times (partial 2η = 0.261), invariance (partial 2η = 0.059), number of items (partial 2η = 

0.052), the interaction  between number of measurement times and sample size (partial 

2η = 0.191), the interaction between reliability and sample size (partial 2η = 0.063), and 
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the interaction between number of items and invariance (partial 2η = 0.057). The estimate 

of the standard error of the covariance between level and shape was negatively biased in 

all conditions where reliability was 0.7. In these conditions, the overall mean relative bias 

was -0407. However, the relative bias was acceptable in conditions with reliability of 0.9 

and configural invariance, or conditions with weak or strict factorial invariance and 

sample size bellow 200. The remaining conditions presented negative bias ranging from  

-0.102 to -.161 (see Table 28). 
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Table 28 
Mean relative bias of the estimates of the standard errors with the 
univariate LGM with the correction for attenuation, after removing the 
inadmissible solutions, collapsing across number of measurement times, 
number of items, and type of item 

Rel. Invariance Sample Mean 
level 

Mean 
shape 

Var. 
level 

Var. 
shape 

Cov. 
level 
shape 

0.70 Strict 100 -0.270 -0.339 -0.428 -0.427 -0.437
    200 -0.222 -0.284 -0.406 -0.412 -0.424
    500 -0.184 -0.227 -0.366 -0.372 -0.383
    1000 -0.171 -0.214 -0.370 -0.373 -0.393
  Weak 100 -0.344 -0.465 -0.400 -0.452 -0.432
    200 -0.306 -0.437 -0.386 -0.475 -0.438
    500 -0.255 -0.393 -0.353 -0.409 -0.395
    1000 -0.245 -0.354 -0.343 -0.409 -0.399
  Configural 100 -0.394 -0.509 -0.408 -0.430 -0.425
    200 -0.353 -0.491 -0.391 -0.403 -0.426
    500 -0.303 -0.429 -0.330 -0.348 -0.346
    1000 -0.269 -0.400 -0.319 -0.320 -0.333
    
0.90 Strict 100 -0.080 -0.090 -0.112 -0.065 -0.087
    200 -0.062 -0.081 -0.115 -0.086 -0.094
    500 -0.052 -0.075 -0.132 -0.120 -0.125
    1000 -0.054 -0.075 -0.132 -0.138 -0.142
  Weak 100 -0.114 -0.183 -0.095 -0.074 -0.072
    200 -0.101 -0.151 -0.094 -0.091 -0.102
    500 -0.094 -0.148 -0.116 -0.134 -0.133
    1000 -0.075 -0.135 -0.138 -0.156 -0.161
  Configural 100 -0.129 -0.206 -0.078 -0.044 -0.051
    200 -0.124 -0.188 -0.095 -0.021 -0.026
    500 -0.097 -0.175 -0.087 -0.015 -0.048
    1000 -0.111 -0.174 -0.078 -0.009 -0.026
Note. Rel. = Reliability, Var. = Variance, Cov. = Covariance 
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With the univariate LGM with the correction for attenuation, the chi-square 

statistics and the fit indices did not change substantially with the removal of the 

inadmissible solutions, and therefore the results will be presented only considering 

admissible solutions.  

 The relative bias of the chi-square statistics depended on invariance (partial 2η = 

0.344), sample size (partial 2η = 0.280), the interaction between sample size and 

invariance (partial 2η = 0.232), the interaction between number of measurement times 

and invariance (partial 2η = 0.174), the interaction between the number of items and 

invariance (partial 2η = 0.160), and the interaction between the number of items and the 

number of times (partial 2η = 0.094). 

With the univariate LGM with the correction for attenuation, the relative bias of 

chi-square statistic was unacceptable and positive in all conditions. The relative bias of 

the chi-square statistic was smallest in conditions with strict factorial invariance, and 

largest in conditions with configural invariance. Interestingly, the relative bias decreased 

consistently with the increase of sample size when there was strict factorial invariance, 

although it remained unacceptable. On the other hand, in conditions with either weak or 

configural invariance, the relative bias of the chi-square statistic increased as sample size 

increased (see Table 29). 
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Table 29  
Relative bias of the chi-square with the univariate LGM with the 
correction for attenuation, collapsing across type of item and number 
of items 
Rel. Times Sample Invariance 
   Strict Weak Configural 
0.70 3 100 2.426 3.968 14.033 
   200 2.111 4.422 23.804 
   500 1.812 7.766 53.528 
   1000 1.893 12.959 103.385 
  5 100 7.412 10.912 11.798 
   200 7.508 15.389 17.022 
   500 5.886 23.715 28.246 
   1000 5.496 38.503 46.321 
0.90 3 100 0.514 1.716 10.555 
   200 0.478 2.775 20.245 
   500 0.476 6.063 50.175 
   1000 0.500 11.501 99.650 
  5 100 1.240 4.662 5.597 
   200 1.113 7.554 9.250 
  500 1.052 16.731 20.642 
   1000 1.029 32.198 40.026 
Rel. = Reliability 

 

With the univariate LGM with the correction for attenuation, the CFI depended on 

invariance (Cramer’s V = 0.507), number of measurement times (Cramer’s V = 0.420), 

type of item (Cramer’s V = 0.228), sample size (Cramer’s V = 0.136), reliability 

(Cramer’s V = 0.126), and number of items (Cramer’s V = 0.100). The percentage of CFI 

that would support an adequate model fit ranged between 81.0% and 99.1% in conditions 

with strict factorial invariance. Within conditions with strict factorial invariance, if the 

number of measurement times was three, the percentage of CFI equal or above 0.95 was 

consistently around 83%. However, with strict factorial invariance and five measurement 

times, the percentage of CFI equal or above 0.95 was around 98%. With weak factorial 

invariance, the relationship between invariance and number of measurement times 
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inverted: If the number of measurement times was three, the percentage of CFI equal or 

above 0.95 was around 97%, but if the number of measurement times was five, the 

percentage of CFI equal or above 0.95 ranged from 0% to 78.5% depending on the 

number of items (see Table 30). With weak factorial invariance and five measurement 

times, the percentage of CFI equal or above 0.95 increased as the number of items 

increased. With configural invariance, the percentage of CFI equal or above 0.95 was 

below 12% in most of the conditions (see Table 30). 

The TLI depended on invariance (Cramer’s V = 0.563), number of measurement 

times (Cramer’s V = 0.267), type of item (Cramer’s V = 0.263), sample size (Cramer’s V 

= 0.169), and reliability (Cramer’s V = 0.138). In conditions with strict factorial 

invariance and three measurement times, the percentage of TLI equal or above 0.95 was 

around 94%. However, in conditions with strict factorial invariance and five 

measurement times, the percentage of TLI equal or above 0.95 was around 82%. With 

weak factorial invariance and three measurement times, the percentage of TLI equal or 

above 0.95 ranged between 69.8% and 91.5%. With weak factorial invariance and five 

measurement times, the percentage of TLI equal or above 0.95 was as low as 0% in some 

conditions (see Table 30). With configural invariance, the percentage of TLI equal or 

above 0.95 was below 8% in most conditions. 

The RMSEA depended on invariance (Cramer’s V = 0.407), number of 

measurement times (Cramer’s V = 0.337), type of item (Cramer’s V = 0.150), and 

reliability (Cramer’s V = 0.142). The RMSEA was more conservative in supporting the 

adequate fit of the model than the CFI and TLI. The percentage of RMSEA equal or 
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below 0.05 ranged from 0% to a maximum of 67.4%. With strict factorial invariance and 

three measurement times, the percentage of RMSEA equal or below 0.05 was around 

67%. However, with strict factorial invariance and five measurement times, the 

percentage of RMSEA equal or below 0.05 was around 30%. In conditions with weak 

and configural invariance, there was substantial variability in the percentage of RMSEA 

which would indicate an adequate model fit. In these conditions, the percentage of 

RMSEA equal or below 0.05 ranged from 0% to 52.7% (see Table 30). 

The fit of the model as measured by the combination of CFI ≥ 0.95, TLI ≥ 0.95, 

RMSEA ≤ 0.05 depended on invariance (Cramer’s V = 0.407), number of measurement 

times (Cramer’s V = 0.337), type of item (Cramer’s V = 0.150), and reliability (Cramer’s 

V = 0.142). The percentage of analyses whose fit indices would support the adequate fit 

of the model based on the combined criterion was identical to the percentage of RMSEA 

equal or below 0.05 for all conditions (see Table 30). 
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Table 30 
Percentage of replications in which the fit indices would lead to model 
retention with the univariate LGM with the correction for attenuation, 
collapsing across sample size and reliability conditions. 

Invariance Type of 
Item Times Items CFI TLI RMSEA Combined

Strict Tau Eq. 3 5 98.8% 93.7% 67.5% 67.5% 
   10 98.9% 94.0% 67.4% 67.4% 
   15 99.1% 94.2% 67.3% 67.3% 
  5 5 83.5% 83.5% 31.0% 31.0% 
   10 83.5% 83.5% 30.1% 30.1% 
   15 83.5% 83.5% 30.7% 30.7% 
 Congeneric 3 5 98.8% 93.1% 66.0% 66.0% 
   10 98.9% 93.5% 66.4% 66.4% 
   15 99.0% 94.0% 67.3% 67.3% 
  5 5 81.0% 81.0% 24.5% 24.5% 
   10 82.7% 82.7% 28.1% 28.1% 
   15 82.8% 82.8% 29.1% 29.1% 

Weak Tau Eq. 3 5 97.8% 86.7% 37.1% 37.1% 
   10 98.6% 91.5% 52.7% 52.7% 
   15 97.3% 84.0% 31.8% 31.8% 
  5 5 1.6% 1.6% 0% 0% 
   10 59.2% 59.2% 0.2% 0.2% 
   15 78.5% 78.5% 4.0% 4.0% 
 Congeneric 3 5 95.6% 74.6% 21.9% 21.9% 
   10 98.2% 89.0% 44.5% 44.5% 
   15 95.3% 69.8% 19.3% 19.3% 
  5 5 0% 0% 0% 0% 
   10 16.6% 16.6% 0% 0% 
   15 73.8% 73.8% 0.9% 0.9% 

Configural Congeneric 3 5 93.7% 59.6% 14.9% 14.9% 
   10 11.9% 2.0% 0.4% 0.4% 
   15 40.7% 7.1% 2.1% 2.1% 
  5 5 2.1% 2.1% 0% 0% 
   10 7.9% 7.9% 0% 0% 
   15 2.9% 2.9% 0% 0% 

Note. Criteria for model retention used to calculate the percentages:  

CFI ≥ 0.95, TLI ≥ 0.95, RMSEA ≤ 0.05, 
Combined = Criterion of acceptable fit based on the combination of CFI ≥ 0.95, 
TLI ≥ 0.95 and RMSEA ≤ 0.05 (Hu & Bentler, 1999) 
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Comparison of the four methods 

 This study used two main criteria to evaluate the four methods of analyzing the 

growth of latent variables measured by multiple indicators: unbiased estimation of 

population parameters and their standard errors, and production of fit statistics and fit 

indices that would support the hypothesized model. This section will first present the 

differences in relative biases between analyses where the inadmissible solutions were 

retained and analyses where the inadmissible solutions were removed.  Next, the four 

methods will be compared with their ability to produce unbiased estimates of the 

parameters and standard errors, under the many conditions considered this study. Finally, 

the four methods will be compared with respect to the chi-square statistic and fit indices. 

Because of the fact that the maximum likelihood estimation method used 

sometimes produced inadmissible solutions, the relative bias of the parameter estimates 

was evaluated both before removing the inadmissible solutions and after removing them. 

In all four latent growth modeling methods evaluated, removing the inadmissible 

solutions did not affect substantially the distributions of the relative bias of the means of 

level and shape, or the distribution of the relative bias of the standard errors of the means 

of level and shape. Consequently, the magnitude of the relative bias of these statistics was 

similar both when the inadmissible solutions were retained and when they were removed. 

On the other hand, removing the inadmissible solutions changed the distributions of the 

variances and covariance of level and shape to a noticeable degree. More specifically, 

when the number of measurement times was three, the percentage of non-positive 

definite estimates of the variance/covariance matrix of level and shape was around 20%, 
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while with five measurement times, the percentage of non-positive definite solutions was 

less than 1%. Therefore, removing the inadmissible solutions did not change the relative 

bias of the variances and covariance of level and shape when the number of measurement 

times was five, but changed the relative bias substantially when the number of times was 

three.  

The effect of removing the inadmissible solutions in conditions where the number 

of measurement times was three with the curve-of-factors model was that the estimates of 

the variance of the level, variance of the shape, and covariance between level and shape, 

which were found to be unbiased regardless of the other conditions when the relative bias 

was calculated without removing inadmissible solutions, became unacceptably biased 

after the inadmissible solutions are removed. The same pattern was observed with the 

relative bias of the standard errors of the variances and covariance of level and shape.  

With the univariate LGM and the univariate LGM with the fixed error variances, 

when inadmissible solutions are retained, the relative bias of the variances and covariance 

of level shape and of their standard errors are acceptable whenever the items are 

essentially tau-equivalent, regardless of the number of measurement times. However, 

after inadmissible solutions are removed, the relative biases of the variances and 

covariance of level and shape and of their standard errors become unacceptable with 

essentially tau-equivalent items whenever the number of measurement times is three. The 

estimates are not affected by the removal of inadmissible solutions when the number of 

measurement times is five. 
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With the univariate LGM with the correction for attenuation, when the relative 

biases are calculated without removing the inadmissible solutions, the estimate of the 

variances and covariance of level and shape is unbiased in conditions with essentially 

tau-equivalent items regardless of the number of measurement times. After inadmissible 

solutions are removed, the estimates of the variances and covariance of level and shape 

become unacceptably biased with essentially tau-equivalent items and three measurement 

times. The estimates of the standard errors of the variances and covariance of level and 

shape were negatively biased with the univariate LGM with the correction for 

attenuation, regardless of whether the inadmissible solutions were removed or not. 

The four methods evaluated did not differ with respect to the percentage of 

inadmissible solutions. All of the methods produced around 30% of inadmissible 

solutions in conditions with three measurement times and around 1% of inadmissible 

solutions in conditions with five measurement times. However, the univariate LGM with 

the correction for attenuation produced non-positive definite variance/covariance 

matrices of the composites in addition to inadmissible solutions. 

Because the entire distribution of parameter estimates should be considered when 

evaluating whether an estimator is unbiased, the comparison of the four methods with 

respect to the relative bias of parameter estimates and standard errors will only take into 

account the results obtained without removing inadmissible solutions.  

With respect to the criterion of being able to provide unbiased parameter 

estimates, the curve-of-factors model, which is the only multivariate method examined in 

this study, performed satisfactorily under all conditions. Both the parameter estimates and 
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standard errors were unbiased regardless of sample size, number of items, type of item, 

number of measurement times, invariance, and reliability. 

The three univariate LGM methods performed identically with respect to 

estimating the means of the level and shape, because the LGM methods with fixed error 

variances and with correction for attenuation model did not introduce any modification to 

the means of the composites.  

The three univariate latent growth models produced estimates of the mean of the 

level that were systematically different from the population mean of the level. As shown 

previously, this difference is due to combining items that have different factor loadings 

and intercepts (see equations 54 to 58), and may not affect the interpretation of the 

results.  

With respect to the mean of the shape, biased parameter estimates would always 

change the interpretation of the results because they would indicate that growth was 

either smaller or larger that it really was in the population. The results show that all three 

univariate methods are only able to provide unbiased estimates of the mean of the shape 

when the items are essentially tau-equivalent. When the items are essentially congeneric, 

all of the estimates of the mean of the shape are negatively biased, regardless of the other 

conditions. Furthermore, with essentially tau-equivalent items, an interesting interaction 

was observed between number of measurement times and invariance (see Table 9): if 

there were only three measurement times, the relative bias of the mean of the shape was 

acceptable in conditions with strict factorial invariance, but not in conditions with weak 

factorial invariance. However, with five measurement times, the relative biases of the 
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mean of the shape were acceptable in conditions with either strict or weak factorial 

invariance.  

For all of the three univariate latent growth modeling methods, in conditions with 

three measurement times, tau-equivalent items and weak factorial invariance, the relative 

bias of the mean of the shape was unacceptable but approach acceptability with fifteen 

indicators. It can be concluded by induction that if the number of items was larger, the 

biases of the mean of the shape would be acceptable. 

The three univariate LGM methods were able to provide unbiased estimates of the 

variance of the level and shape with tau-equivalent items regardless of the other 

conditions. However, with congeneric items, all of the univariate methods provided 

negatively biased estimates.   

The three univariate methods produced unbiased estimates of the covariance 

between level and shape. The estimates of the covariance between level and shape were 

unbiased with essentially tau-equivalent items, but presented negative bias when the 

items were essentially congeneric. With essentially tau-equivalent items, the relative bias 

of the covariance between level and shape was only unacceptable if there was weak 

factorial invariance, the number of measurement times was five, and the number of items 

was five. 

In sum, the three univariate LGM methods produced almost identical relative 

biases of the parameter estimates (i.e. the estimates differed by less than 0.01). 

Furthermore, the same pattern was observed for all parameter estimates, with the 

exception of the mean of the level. The pattern observed was that the estimates were 
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unbiased with essentially tau-equivalent items and had negative biases with essentially 

congeneric items. 

With respect to the estimation of standard errors of the means, variances and 

covariance between level and shape, the univariate LGM and the univariate LGM with 

fixed error variances produced almost identical estimates of standard errors (i.e. the 

estimates differed by less than 0.002). On the other hand, the univariate LGM with the 

correction for attenuation produced negatively biased estimates of the standard errors in 

conditions with reliability of 0.7 regardless of sample size, number of measurement 

times, number of items, type of items or invariance. In the conditions with reliability of 

0.9, the univariate LGM with correction of attenuation provided an unbiased estimate of 

standard errors in selected conditions. Overall, the results indicate that the correction of 

attenuation applied to univariate LGM decreases the standard errors, which would result 

in an inflated type I error rate. 

A comparison of mean relative bias of each parameter estimate with the four 

methods across conditions is presented in tables Table 31. 
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Table 31 
Summary of relative biases of parameter estimates by type of item 
Estimates Tau-equivalent Congeneric 
 Cufs Ulgm FixLgm CorLgm Cufs Ulgm FixLgm CorLgm
Mean level 0 .513 .513 .508 0 .229 .229 .222 
Mean shape 0 -.036 -.036 -.033 0 -.289 -.289 -.286 
Var level 0 -.015 -.015 -.011 -.002 -.491 -.491 -.487 
Var of Shape -.001 -.023 -.023 -.012 -.002 -.473 -.473 -.472 
Correlation -.011 .024 .024 .018 -.010 -.362 -.363 -.363 
SE mean level -.003 -.010 -.010 -.155 -.006 -.021 -.021 -.202 
SE mean shape -.001 -.012 -.012 -.219 -.005 -.023 -.022 -.269 
SE Var Level -.012 -.004 -.004 -.280 -.011 -.007 -.007 -.295 
SE Var shape -.012 -.004 -.003 -.322 -.011 -.010 -.008 -.336 
SE Covariance -.010 -.004 -.003 -.316 -.014 -.009 -.009 -.335 
Note. Cufs = Curve-of-factors model, Ulgm = Univariate latent growth 
model, FixLgm = Univariate latent growth model with fixed error 
variances, CorLgm = Univariate latent growth model with the correction 
for attenuation. 
             

The curve-of-factors model and the three univariate LGM methods evaluated 

performed differently with respect to producing a chi-square statistic and fit indices that 

would support the fit of the model. The chi-square statistic obtained with the curve-of- 

factors model was only consistently unbiased with sample sizes of 500 and 1000 (see 

Table 32). The bias of the chi-square statistic depended on how large the model was (i.e. 

the number of indicators and the number of measurement times) as well as sample size. 

For example, in models with five items per construct and three measurement times, the 

relative bias of the chi-square statistic was acceptable with a sample size of 200, because 

the model is small. However, with the largest model (i.e. 15 items per construct and five 

measurement times), the chi-square statistic was only unbiased with a sample size of 

1100 (see Table 6). The curve-of-factors model produced biased chi-square statistics with 

sample sizes of 100 and 200 in most conditions. These results agree with the finding of 

Jackson (2001) that for a correctly specified measurement model with 20 indicators, the 
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chi-square statistic is positively biased with small sample sizes. The bias of the chi-square 

with the curve-of-factors model and small sample sizes is because with small sample 

sizes the parameter estimates are less stable (i.e. there is more variability in the sampling 

distribution of parameter estimates), resulting in larger differences between the observed 

and implied covariance matrices, larger discrepancy functions, and consequently larger 

chi-square statistics. Because the curve-of-factors model was fit to a large 

variance/covariance matrix of items, the differences between the implied and observed 

matrix accumulate, inflating the discrepancy function and the chi-square statistic. 

Consequently, it was observed that the relative bias of the chi-square statistic with small 

sample sizes increases as the number of indicators per construct and the number of 

measurement times increase (see Table 6), which correspond to an increase in the size of 

the observed variance/covariance matrix. As the sample size increases, parameter 

estimates become more stable, the difference between implied and observed covariance 

matrices is reduced, and the chi-square statistic also decreases. On the other hand, with 

the univariate latent growth models, the chi-square statistic was unbiased with small 

sample sizes because these models were fit to small variance/covariance matrices of 

composites. 

The chi-square statistic and the fit indices obtained with the three types of 

univariate LGM depended most strongly on invariance (see Table 32). The relative bias 

of the chi-square stastistic obtained with the univariate LGM and the univariate LGM 

with fixed error variances was acceptable only in the conditions with strict factorial 

invariance. The relative bias of the chi-square obtained with the univariate LGM with 
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correction for attenuation was not acceptable in any condition. However, many 

researchers do not base decisions about the fit of the model only on the value of the chi-

square statistic, because it has been shown to be very sensitive to sample size if there are 

small model misspecifications.  

Table 32 
Summary of relative biases of the chi-square statistics by invariance 
and sample size conditions 
Invariance Sample Cufs Ulgm FixLgm Corlgm 
Strict 100 0.222 0.017 0.017 2.864 

  200 0.092 0.004 0.004 2.769 
  500 0.033 0.001 0.001 2.303 
  1000 0.016 0.010 0.010 2.232 

Weak 100 0.224 0.984 0.984 5.210 
  200 0.091 1.916 1.916 7.529 
  500 0.033 4.809 4.809 13.576 
  1000 0.017 9.553 9.553 23.785 

Configural 100 0.224 3.496 3.496 10.373 
  200 0.091 6.927 6.927 17.471 
  500 0.034 17.260 17.260 38.229 
  1000 0.017 34.608 34.607 72.962 

Note. Cufs = Curve-of-factors model, Ulgm = Univariate latent growth 
model, FixLgm = Univariate latent growth model with fixed error 
variances, CorLgm = Univariate latent growth model with the correction 
for attenuation. 
 

With curve-of-factors model, almost 100% of the analyses in conditions where the 

sample size was 500 or 1000 resulted in a CFI, TLI, and RMSEA that met their 

respective criterion to retain the model. However, with sample sizes of 100 and 200, the 

percentage of analyses whose CFI, TLI and RMSEA would lead to rejection of the model 

decreased as the number of items and reliability decreased (see Table 7). 

The fit indices obtained with the univariate latent growth models depended most 

strongly on invariance (see Table 33). If there was strict factorial invariance, most of the 

analyses resulted in values of CFI, TLI, and RMSEA that would lead to the retention of 

the model, but the proportion of fit indices that would indicate inadequate fit increased 
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substantially with weak factorial invariance. In conditions with configural invariance, 

most of the CFI, TLI, and RMSEA would fail to support the fit of the model.  

The univariate LGM and the univariate LGM with fixed error variances 

performed identically with respect to the CFI, TLI and RMSEA. The method with the 

correction for attenuation, on the other hand, produced a smaller percentage of CFI, TLI 

and RMSEA that met their respective criteria for retaining the model than the other two 

methods. It is also interesting to notice that the RMSEA was consistently more sensitive 

than the other fit indices to changes in invariance. 

The results have also shown that, with the univariate LGM models, if the decision 

to retain the model was based on the combined criterion of CFI ≥ 0.95, TLI ≥ 0.95 and 

RMSEA ≤ 0.05, as suggested by Hu and Bentler (1999), this decision would be 

determined solely by the value of the RMSEA, because the RMSEA was more 

“conservative” (i.e. produced a larger percentage of values indicating inadequate model 

fit) than both the CFI and TLI. However, with the curve-of-factors model, using the 

combined criterion would differ from using only the RMSEA to decide on the adequate 

fit of the model, because there were combinations of conditions where either the CFI or 

the TLI were more conservative than the RMSEA, so that the combined criterion would 

be more conservative than each of the three fit indices separately (see Table 7).  

Hu and Bentler (1999) reported that with sample sizes smaller or equal 250, 

combination rules with either the TLI or RMSEA tend to over-reject true population 

models. In these cases, Hu and Bentler argue that combinations between CFI and SRMR 

are preferable. With the univariate latent growth models, the results of this study confirm 
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Hu and Bentler’s (1999) findings. This study has found that with the univariate latent 

growth models, the RMSEA leads to model rejection more frequently than the CFI and 

TLI in all conditions. Furthermore, with both the curve-of-factors model and the 

univariate latent growth models, the TLI was found to lead to model rejection slightly 

more frequently than the CFI in all conditions. However, this study has found that in 

conditions where the curve-of-factors model is being used with sample sizes of 100 or 

200, the CFI and TLI leads to model rejection more frequently than the RMSEA (see 

Table 33). 
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Table 33 
Percentage of analyses whose fit indices would indicate adequate fit 
for each LGM method, by invariance and sample size, collapsing across 
other conditions 
 Fit index Invariance Sample Cufs Ulgm FixLgm CorLgm 
CFI Strict 100 39.6% 98.9% 99.0% 76.4% 
  200 76.1% 99.9% 99.9% 88.0% 
  500 100% 100% 100% 99.1% 
  1000 100% 100% 100% 100% 
 Weak 100 37.6% 80.9% 80.7% 57.1% 
  200 73.7% 83.8% 83.6% 64.9% 
  500 99.6% 84.9% 84.7% 73.0% 
  1000 100% 85.1% 84.9% 75.7% 
 Configural 100 37.4% 56.6% 56.0% 29.3% 
  200 74.3% 55.5% 55.2% 28.0% 
  500 99.8% 54.1% 53.2% 25.6% 
  1000 100% 52.3% 50.9% 23.3% 
TLI Strict 100 38.0% 94.9% 94.8% 69.8% 
  200 74.7% 98.4% 98.4% 84.7% 
  500 100% 99.9% 99.9% 98.7% 
  1000 100% 100% 100% 100% 
 Weak 100 36.2% 73.5% 73.4% 47.6% 
  200 72.4% 77.8% 77.6% 56.0% 
  500 99.6% 81.1% 81.0% 66.6% 
  1000 100% 83.2% 83.0% 71.6% 
 Configural 100 35.8% 43.2% 42.5% 16.7% 
  200 72.9% 40.3% 39.9% 14.4% 
  500 99.7% 38.5% 37.7% 12.1% 
  1000 100% 38.2% 36.9% 11.2% 
RMSEA Strict 100 60.9% 73.0% 72.8% 32.6% 
  200 99.9% 82.3% 82.2% 38.3% 
  500 100% 92.6% 92.5% 52.9% 
  1000 100% 96.9% 96.9% 68.0% 
 Weak 100 61.1% 42.8% 42.8% 22.9% 
  200 99.9% 39.1% 38.9% 20.5% 
  500 100% 31.9% 31.5% 15.6% 
  1000 100% 27.9% 27.5% 11.8% 
 Configural 100 61.1% 14.0% 13.8% 6.5% 
  200 100% 7.4% 7.4% 3.7% 
  500 100% 2.5% 2.4% 1.1% 
   1000 100% 1.1% 1.0% 0.3% 
Note. Cufs = Curve-of-factors mode, Ulgm = Univariate latent growth 
model, FixLgm = Univariate LGM with fixed error variances, CorLgm = 
Univariate LGM with the correction for attenuation. 
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Comparison of four LGM methods in ideal conditions  

 “Ideal” conditions were simulated where reliability was one, there was strict 

factorial invariance and the items were parallel. There were 24 of these ideal conditions, 

as mentioned in chapter III, created based on the combination of four sample sizes, three 

numbers of items, and two numbers of measurement times. The results of these 

conditions were not reported previously because they would make the ANOVAs not 

completely crossed.  This section compares the four latent growth modeling methods 

with respect to these ideal conditions. 

In the ideal conditions, the univariate latent growth models become identical, 

because the reliability is one and consequently there is no correction for attenuation and 

the error variance of the composite is zero. 

As expected, the four methods produced unbiased parameter estimates of the 

mean of the shape, variance of the level, variance of the shape and covariance between 

level and shape in all of the ideal conditions. However, the estimates of the mean of the 

level were biased with the univariate latent growth models, as a consequence of summing 

items with different intercepts to form the composite, which re-scales the mean of the 

level (see Equations 54-58). A summary of the biases of parameter estimates with the 

ideal conditions are presented in table 34.  
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Table 34 
Summary of relative biases in conditions with perfect reliability, 
parallel items and strict factorial invariance 
Estimates Cufs Ulgm FixLgm CorLgm 
Mean level 0 0.540 0.540 0.540 
Mean shape 0 0 0 0 
VAR level 0.001 0.002 0.002 0.002 
VAR Shape 0.026 0.030 0.030 0.030 
Correlation  0.003 0 0 0 
SE mean level -0.001 0 0 0 
SE mean shape -0.006 -0.006 -0.006 -0.006 
SE VAR Level 0.008 0.011 0.011 0.011 
SE VAR shape 0.040 0.043 0.043 0.043 
SE Covariance .038 0.043 0.043 0.043 
Note. Cufs = Curve-of-factors mode, Ulgm = Univariate latent growth 
model, FixLgm = Univariate latent growth model with fixed error 
variances, CorLgm = Univariate latent growth model with the correction 
for attenuation. 
 
 In the ideal conditions, the curve-of-factors model only produces unbiased 

estimates of the chi-square statistic with sample sizes of 500 and 1000 (see Table 35). As 

discussed previously, the chi-square statistic of large models such as the curve-of-factors 

model requires large sample sizes in order to be unbiased. The chi-square statistic 

obtained with the univariate latent growth models was unbiased regardless of the sample 

size, because these models are small (see Table 35). 

 
Table 35 
Summary of the relative bias of the chi-square statistic in conditions 
with perfect reliability, parallel items and strict factorial 
invariance 
Sample Cufs Ulgm FixLgm CorLgm
100 0.225 -0.009 0.022 0.009 
200 0.092 0.024 0.013 0.010 
500 0.034 0.007 -0.003 0.001 
1000 0.019 0.018 0.004 0 
Note. Cufs = Curve-of-factors mode, Ulgm = Univariate latent growth 
model, FixLgm = Univariate latent growth model with fixed error 
variances, CorLgm = Univariate latent growth model with the correction 
for attenuation. 
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 In the ideal conditions, the CFI would support the adequate fit of the model in at 

least 99.9% of the analyses with any of the four methods, regardless of sample size. With 

the curve-of-factors model, the TLI would support an adequate fit of the model in 100% 

of the analyses. With the univariate latent growth models, the TLI would support the 

adequate fit of the model in at least 97.8% of the analyses with a sample size of 100, at 

least 99.6% of the analyses with the sample size of 200, and 100% of the analyses with 

sample size of 500 and 1000. The RMSEA for the curve-of-factors model with a sample 

size of 100 would support the adequate fit of the model in only 59.7% of the analyses. 

However, if the sample size was 200 or larger, the RMSEA would support the adequate 

fit of the model in 100% of the analyses. With the univariate latent growth models, the 

percentage of RMSEA equal or below 0.05 increased as the sample size increased (see 

Table 36). With a sample size of 100, only about 72.9% of the RMSEA would support 

the adequate fit of the model. The percentage of RMSEA equal or below 0.05 is around 

96.8% in conditions with a sample size of 1000. These results agree with the findings of 

Hu and Bentler (1999) which show that the TLI and RMSEA lead to over-rejection of 

models with small sample sizes. For analyses with small sample sizes, Hu and Bentler 

(1999) recommend using a combination of the CFI and the standardized root mean 

squared residual (SRMR). 
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Table 36 
Percentage of analyses whose fit indices would indicate adequate fit in 
conditions with perfect reliability, parallel items and strict 
factorial invariance 
Fit index Sample Cufs Ulgm FixLgm CorLgm 
CFI 100 100% 100% 100% 99.9% 
 200 100% 100% 100% 100% 
 500 100% 100% 100% 100% 
 1000 100% 100% 100% 100% 
TLI 100 100% 97.9% 97.8% 97.9% 
 200 100% 99.7% 99.7% 99.6% 
 500 100% 100% 100% 100% 
 1000 100% 100% 100% 100% 
RMSEA 100 59.7% 73.3% 72.9% 73.1% 
 200 100% 82.9% 82.8% 83.0% 
 500 100% 93.1% 93.0% 92.9% 
 1000 100% 97.0% 96.8% 96.9% 
Combined 100 59.7% 73.3% 72.9% 73.1% 
 200 100% 82.9% 82.8% 83.0% 
 500 100% 93.1% 93.0% 92.9% 
 1000 100% 97.0% 96.8% 96.9% 
Note. Cufs = Curve-of-factors mode, Ulgm = Univariate latent growth 
model, FixLgm = Univariate latent growth model with fixed error 
variances, CorLgm = Univariate latent growth model with the correction 
for attenuation. 
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Chapter V: Discussion 

This study was inspired by the fact that numerous researchers use univariate latent 

growth modeling to study the development of individuals on latent variables that are 

hypothesized to be measured by multiple indicators (e.g. Buist et al., 2002; Johnson, 

2002; Li, F. et al., 2001; Mason, 2001; Roth et al., 2001; Willett & Keiley, 2000). The 

literature search conducted indicated that there has not been a methodological study 

evaluating the practice of using univariate latent growth models with composites of 

multiple items. Furthermore, there has been little research using more sophisticated 

multivariate latent growth models such as the curve-of-factors model (e.g. Duncan, S. C. 

& Duncan, 1996; Hancock et al., 2001), which would be an alternative to the use of 

univariate latent growth models with composites of multiples indicators. The current 

study compared the univariate latent growth model used with composites of multiple 

indicators with three other alternatives. This section will present the conclusions that can 

be drawn from the comparison of the four methods as well as the limitations of this study 

and suggestions for future research. 

The results of this study have shown that the curve-of-factors model is able to 

produce unbiased parameter estimates with all types of items and invariance conditions, 

as long as the sample size is appropriate to ensure adequate fit statistics and fit indices. 

The reason that the curve-of-factors model performed well is that it estimates the 

indicator parameters (i.e. item loadings, error variances, and intercepts), which accounts 

for the effects of having different types of indicators (i.e. parallel, essentially tau-

equivalent or essentially congeneric) and different invariance conditions. This study has 
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shown that without a sample size of at least five hundred, however, the fit statistics and 

fit indices of the curve-of-factors model tend not to be adequate, although the parameter 

estimates may be unbiased. On the other hand, if the number of indicators is small (i.e. 

five or fewer) the curve of factors model may be used with sample sizes smaller than five 

hundred without compromising the adequacy of fit statistics and fit indices. The sample 

size requirement of the curve-of-factors model may represent a limitation for applied 

researchers who collect their own data, because sometimes it can be difficult to obtain 

large samples. Furthermore, educational and psychological scales frequently contain 

more than five items, which would increase the minimum sample size requirement.  

The three univariate methods compared in this study performed similarly, with a 

few differences. The results of this study indicate that using the univariate latent growth 

model with composites of multiple indicators, which is the practice most commonly 

found in the applied literature, produces biased parameter estimates if the indicators are 

essentially congeneric. The univariate latent growth models with fixed error variances 

and with the correction for attenuation also produce biased parameter estimates with 

essentially congeneric items. If the indicators are essentially tau-equivalent, all three 

univariate LGM methods produced unbiased estimates of the mean of the shape, variance 

of the level, variance of the shape, and covariance between level and shape. The three 

univariate LGM methods produce biased estimates of the mean of the level with either 

essentially tau-equivalent or essentially congeneric items, but this bias will not affect the 

interpretation of the results for a single group of individuals if the researcher does not 

interpret the magnitude of the mean of the shape as a percentage of the mean of the level. 
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The univariate latent growth model and the univariate latent growth model with fixed 

error variances were found to produce unbiased estimates of standard errors in all 

conditions (see Tables 10 and 18), while the univariate latent growth model with the 

correction for attenuation produces negatively biased estimates of standard errors (see 

Table 26).  

This study has shown that the univariate latent growth model with fixed error 

variances produces the same parameter estimates, standard errors, chi-square statistic and 

fit indices as the univariate latent growth model. The reason is presented below in 

equations 59 to 64. Equation 59 is the general expression for the variance of the 

composite as a function of the variances of the level, shape, and error, and the covariance 

between level and shape, with the univariate latent growth model presented in Figure 5.   

jjjC j
εσλσλσσ

βαβα ζζζζ +++= 22222  

Where 2
jCσ is the variance of the composite Cj, 2

αζ
σ is the variance of the level, jλ is the 

factor loading of the composite j on the shape factor, 2
βζ

σ is the variance of the shape, 

jε is the error variance, and 
βαζζσ is the covariance between level and shape. 

Equation 60 is the general expression for the variance of the composite as a 

function of the variance of the latent construct and the reliability of the composite, with 

the univariate latent growth model with fixed error variances presented in Figure 6.  

222 1
jjjjj CccC σρσσ η )( '−+=  

Where 2
jησ is the variance of the latent construct, '

jjccρ is the reliability of the construct, 

)(59

)(60
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and 21
jjj

Ccc σρ )( '− is the estimated value of the error variance of the composite, which is 

fixed in the model. 

 Equation 61 is the general expression for the variance of the latent factor as a 

function of the variances of the level, shape and disturbance, with the univariate latent 

growth model with fixed error variances presented in Figure 6. 

jjjj
ζσλσλσσ

βαβα ζζζζη +++= 22222   

Equation 62 combines equations 60 and 61 to obtain the expression for the 

variance of the composite as a function of the variances of the level, shape and 

disturbance, with the univariate latent growth model with fixed error variances. 

22222 12
jjjj CccjjjC σρζσλσλσσ

βαβα ζζζζ )( '−++++=  

 Joining equations 59 and 62 and solving for the error variance of the composite 

yields: 

21
jjj Cccjj σρζε )( '−+=  

Equation 63 shows that in the univariate latent growth model with fixed error 

variances, once the error variance of the composite is fixed at 21
jjj

Ccc σρ )( '− , the 

disturbance jζ is estimated so that its sum with the fixed term equals jε . Since jε  and 

21
jjj

Cccj σρζ )( '−+ are equal, formulas 59 and 62 become identical and produce the same 

estimates of the variance of the level and variance of the shape for both the univariate 

latent growth model and the univariate latent growth model with fixed error variances. 

Furthermore, for both models (see Figures 5 and 6), the general expression for the 

)(61

)(62

)(63
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covariance between two composites j and k is: 

βαβαβα ζζζζζζ σλσλσλλσσ kjkjCC kj
+++= 22  

Where 2
αζ

σ is the variance of the level, jλ is the factor loading of the composite j on the 

shape factor, kλ is the factor loading of the composite k on the shape factor, 2
βζ

σ is the 

variance of the shape, and 
βαζζσ is the covariance between level and shape. 

The covariance between level and shape appears in the equation for the 

covariances between composites (see equation 64) as well as the equation for the 

variances of the composites (see equations 59 and 62). Because the equation for the 

covariances between composites is the same for both the univariate LGM and the 

univariate LGM with fixed error variances, and the equations for the variances of the 

composites for these two models (i.e. equations 59 and 62) are equivalent, the same 

estimate of the covariance between level and shape is obtained for both models. 

 In conclusion, estimating and fixing the error variances of the composites in a 

latent growth model will not change the estimates of the variance of the level, variance of 

the shape, and covariance between level and shape. However, if any factor loadings of 

the shape are freely estimated, the unstandardized loadings will be the same in both 

models, but the standardized loadings will differ. In the univariate LGM, the standardized 

loading of the shape is obtained by multiplying the unstandardized loading by the ratio of 

the standard deviation of the shape and the model implied standard deviation of the 

composite (i.e.
jCj σσλ

βζ
). In the univariate LGM with fixed error variances, the 

standardized loading of the shape is obtained by multiplying the unstandardized loading 

)(64
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by the ratio between the standard error of the shape and the standard deviation of the 

latent factor (i.e.
jj ηζ σσλ

β
). Because the standard deviation of the composite, 

jCσ , is 

larger than the standard deviation of the latent factor, 
jησ , (unless there is perfect 

reliability, in which case they will be identical) the standardized loading of the shape 

obtained with univariate LGM is smaller than the standardized loading obtained with the 

univariate LGM with fixed error variances. 

Some of the analyzes performed in this study with the three univariate methods, 

as well as with the curve-of-factors model, resulted in inadmissible solutions, which are 

solutions where the variance/covariance matrix of the level and shape is non-positive 

definite. A positive definite correlation, variance/covariance, or moment matrix is a p x p 

matrix that has all of its p eigenvalues greater than zero (Wothke, 1993). There are 

several possible causes for the matrix of variance/covariance estimates to be non-positive 

definite. First, the probability of having a non-positive definite solution is higher if the 

sample size and/or the number of indicators is small (Boomsma, 1985). Furthermore, 

outliers, non-normality in the data, too many parameters, and empirical under-

identification can lead to inadmissible solutions (Wothke, 1993). In this study, the 

number of inadmissible solutions was higher when sample sizes were small, which agrees 

with the findings of Boomsma (1985).  

Because the data were randomly generated, it is likely that empirical under-

identification happened in some analyses.  Empirical under-identification may happen 

when some of the correlations between observed variables are zero, but the model 
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hypothesizes a non-zero parameter which depends on these correlations in order to be 

estimated. In this situation, the non-zero parameter specified by the model cannot be 

uniquely estimated from the zero observed correlations. Wothke (1993) provides an 

example of when empirical under-identification would appear: A model contains four 

indicators, and each pair is hypothesized to measure a different latent construct. The two 

latent constructs in the model are hypothesized to be correlated. Without any further 

constraints, this model has nine parameters to be estimated and one degree of freedom. 

However, if the observed correlations between the variables that are measuring different 

latent constructs are zero, the correlation between the two latent constructs cannot be 

estimated. With randomly simulated data, some zero correlations that would lead to 

empirical under-identification are likely to appear. 

Because the four methods were applied to the same datasets, the percentage of 

inadmissible solutions was similar with all four methods. Finally, it was observed that the 

datasets with three measurement times produced more inadmissible solutions than the 

datasets with five measurement times. The larger number of inadmissible solutions with 

models with three measurement times may be because these models have just one degree 

of freedom, so the number of parameters to be estimated is very close to the number of 

sample statistics used to estimate them. Furthermore, the only degree of freedom of these 

models comes from the means part of the model, and the variance/covariance part of the 

model is just-identified, which would increase the chance that the simulated data would 

produce empirical under-indentification. 

In all of the univariate LGM methods investigated, the factor that most strongly 
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influenced the relative bias of the estimates was clearly the type of item. All of the three 

univariate methods tested only produced unbiased parameter estimates of the mean of the 

shape, variances of the level and shape, and correlation between level and shape when the 

items were essentially tau-equivalent. This requirement creates problems for applied 

researchers who want to choose the best method for their data because it is not always 

possible to identify in advance whether a certain set of items is essentially tau-equivalent. 

Furthermore, because essential tau-equivalence requires that the items have identical 

loadings, it may be difficult to find items which have this characteristic. It is very 

desirable that an analysis method is able to provide unbiased parameter estimates with 

essentially congeneric items, which are the most general type (Jöreskog, 1971; Millsap & 

Everson, 1991). 

Overall, the curve-of-factors model was found to be the most adequate method to 

study the growth of a latent construct measured by multiple indicators. However, because 

the curve-of-factors model was found not to provide adequate fit statistics with small 

sample sizes unless the number of items is also small (e.g., 5 items per construct), a 

researcher who would like to study the growth of latent constructs measured by multiple 

indicators would have to collect enough observations (e.g., 500) to guarantee that the fit 

statistics and fit indices would not fail to identify a well-fitting model. 

In order to identify guidelines to determine an adequate sample size for using the 

curve-of-factors model, the percentage of curve-of-factor models that would have an 

acceptable fit based on the combined criterion of CFI ≥ 0.95, TLI ≥ 0.95 and RMSEA ≤ 

0.05 was calculated for each combination of number of items, number of measurement 
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times, and sample size. For each of these combinations, the ratio of observations per 

parameter estimated (i.e. N:q ratio) was also calculated. The results are displayed in 

Table 37. 

Table 37 
Percentage of models that would have acceptable fit based on the 
combined criterion 
Times Items Sample Parameters N:q ratio Combined

100 47 2.13 82.0% 
200 47 4.26 99.1% 
500 47 10.64 100% 

5 

1000 47 21.28 100% 
10 100 92 1.09 52.0% 

200 92 2.17 92.2% 
500 92 5.43 100% 

  

1000 92 10.87 100% 
15 100 137 0.73 6.6% 

200 137 1.46 66.6% 
500 137 3.65 99.7% 

3 

  

1000 137 7.30 100% 
5 5 100 75 1.33 77.2% 

200 75 2.67 99.7% 
500 75 6.67 100% 

  

1000 75 13.33 100% 
10 100 150 0.67 4.1% 

200 150 1.33 72.4% 
500 150 3.33 100% 

  

1000 150 6.67 100% 
15 100 225 0.44 0% 

200 225 0.89 24.8% 
500 225 2.22 98.9% 

  

  

1000 225 4.44 100% 
Note. Parameters = Number of parameters estimated, 
N:q ratio = Ratio of observations per parameters estimated, 
Combined = Percentage of analyses that would find support for the model based 

on the combined criterion of CFI ≥ 0.95, TLI ≥ 0.95, and RMSEA ≤ 0.05 
 

Table 37 indicates that the percentage of analyses which would result in 

acceptable fit based on the combined criterion can be as high as 98.9% with a N:q ratio as 

low as 2.22 when the sample size is 500. It is possible to conclude that the N:q ratio is not 

the main factor determining the percentage of fit indices which indicate acceptable 
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models. If the N:q ratio was a strong determinant of the percentage of fit indices 

supporting adequate model fit, the models with small N:q ratio would be consistently 

associated with small percentages of fit indices indicating acceptable models. 

Furthermore, because the conditions with five measurement times, 10 items, sample size 

of 200, and N:q ratio of 2.67 resulted in a percentage of acceptable models of 99.7%, 

there is evidence that the percentage of acceptable models does not depend exclusively 

on the sample size. The table above does not allow the elaboration of a rule-of-thumb 

with respect to sample size requirements for the curve-of-factors model, and therefore it 

indicates that further research is needed to produce guidelines with respect to sample 

sizes for fitting the curve-of-factors model. 

The univariate latent growth model with the correction for attenuation produced 

similar estimates of means, variances, and covariances to those of the other two 

univariate methods, but it severely underestimated the standard errors of the estimates. 

This study has shown that applying the correction for attenuation before fitting the model 

results in standard errors that are too small, which in turn inflates the type I error rate of 

hypothesis tests about the estimated parameters. These results lead to the conclusion that 

the correction for attenuation should not be used with univariate latent growth modeling. 

This conclusion implies that the recommendation of Fan (2003b) of using the correction 

for attenuation to estimate the true correlation between latent variables should not be 

applied to latent growth modeling. In the simulation study executed by Fan, he compared 

the performance of SEM and the correction for attenuation as separate methods to 

estimate the true correlation between latent constructs. He reports that both methods are 
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able to adequately estimate the correlation between the latent constructs, but recommends 

that the correction for attenuation should be preferred because it is simpler to implement 

than SEM. Because in Fan’s study he used SEM and the correction for attenuation to 

accomplish the same goal (i.e. estimate the correlation between latent factors), Fan does 

not suggest combining the correction for attenuation with SEM. This study attempted this 

unique idea under the hypothesis that combining the correction of attenuation with 

univariate LGM could improve the results of the later method. However, this study has 

found that univariate LGM is already able to produce unbiased estimates of standard 

errors in all conditions, so correcting for attenuation overdoes the work of the univariate 

latent growth model by reducing the standard errors too much. Because this study has 

found that under-estimation of standard errors happens when LGM and the correction for 

attenuation are combined, it is possible to conclude that it is not advisable to combine 

these two methods. An additional problem of the correction for attenuation found in this 

study is that it produces non-positive variance/covariance matrices of composites. These 

non-positive definite variance/covariance matrices of composites occurred because the 

adjusted correlation exceeded one. 

None of the univariate methods examined produced unbiased parameter estimates 

with the most general type of items: essentially congeneric items. Because it is not 

possible to know in advance whether the items fit the more restricted conditions of 

essentially tau-equivalence, a method that provides adequate results under the most 

general condition should be preferred. Consequently, the recommendation that can be 

made based on the results of this study is that the curve-of-factors model should be used 



 

 
 

195

whenever the sample size is large enough to ensure adequate fit statistics and fit indices.  

Limitations and suggestions for future research 

The data simulation and analyses accomplished in this study have provided some 

important guidelines with respect to which method should be preferred to model the 

growth of latent constructs measured by multiple indicators. However, because in a 

simulation study only a certain set of conditions can be included, there are other 

interesting conditions that were not examined.  

For example, this study only examined continuous indicators with multivariate 

normal distributions and no missing data. However, neither the curve-of-factors model 

nor the univariate latent growth models are limited to continuous and multivariate 

distributed data with no missing data. The choice of using continuous multivariate 

normally distributed indicators in this study allowed the used of maximum likelihood 

estimation, which is a widely known estimation method. A different estimation method 

which can handle categorical indicators (i.e. the WLSMV) or an estimation method 

which can handle missing data (i.e. the FIML) could be used to fit the curve-of-factors 

model or the univariate latent-growth model. It is expected that the conclusions of this 

study with respect to the effects of type of item and invariance on the bias of parameter 

estimates, standard errors and chi-square statistics, and on the fit indices would generalize 

for models for categorical indicators using WLSMV and models for datasets with missing 

data using FIML because the same relationships between the  item parameters within a 

factor (i.e. parallel, tau-equivalent or congeneric) and the same invariance relationships 

(i.e. strict, weak and configural) would be observed. However, the results with respect to 
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the effect of sample size on the relative bias of parameter estimates, standard errors and 

chi-square statistic, and on the fit indices would probably differ with WLSMV and FIML 

estimation because these estimation methods may require different sample sizes for 

fitting the same model. 

Another limitation of this study is that only linear growth was simulated and the 

measurement errors of the indicators were uncorrelated. Both curvilinear growth and 

correlated measurement errors lead to a vast number of modeling possibilities, and 

including them in this study would have extended the simulation beyond manageable 

proportions.  These are important topics which need to be addressed in future research 

employing the curve-of-factors model. 

This study provided some information about the sample size requirements of the 

curve-of-factors model. However, this study did not manipulate the size of the parameters 

and calculate the power obtained with each method and a given sample size, number of 

items, and number of measurement times, because generating more than one set of 

parameters at least doubles the size of the simulation. A future study could restrict some 

of the conditions of this study but generate different sets of parameters to look more 

specifically into power for estimating the univariate LGM model and the curve-of-factors 

model. 

 This study also did not test slightly misspecified models, such as ones where the 

residual errors correlate with each other but the model presents them as uncorrelated. A 

study simulating misspecified models could indicate how sensitive the univariate latent 

growth model and the curve-of-factors model are to misspecifications.  
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General conclusion 

This study indicates that the common practice of combining items of educational 

and psychological scales into composites and using univariate latent growth modeling to 

evaluate the level and shape of growth is only appropriate under certain conditions. 

Before deciding which latent growth model to use, an applied researcher should consider 

whether the information available about the psychometric properties of the items allows 

the assumption that they are essentially tau-equivalent. If the items can be assumed 

essentially tau-equivalent, the univariate latent growth model may be employed. On the 

other hand, if the items are probably congeneric and a sample size around 500 is available 

(if the number of indicators is small, sample sizes smaller than 500 may suffice) the 

researcher may use the curve-of-factors model, which does not require the very restrictive 

assumption of essential tau-equivalence. 
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Appendix A:  Summary of study design 

 

Methods of latent growth modeling: 

1. LGM of item means 

2. LGM of item means, with correction for attenuation 

3. LGM of item means, with fixed error variances. 

4. The curve-of-factors model 

Invariance: 

1. Strict factorial invariance 

2. Weak factorial invariance 

3. Configural invariance 

Number of items per factor: 

1. k = 5                

2. k = 10                

3. k = 15 

Type of items: 

1. Essentially tau-equivalent 

2. Essentially congeneric 

Reliability ( '
jjCCρ ): 

1. 70.' =
jjCCρ      

2. 90.' =
jjCCρ  
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Number of measurement times (j): 

1.  j = 3                

2.  j = 5 

Sample size (N): 

1. N = 100 

2. N = 200 

3. N = 500 

4. N = 1000 

The total number of conditions is 240. 
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Appendix B: Summary of ideal conditions 

Invariance: 

Strict factorial invariance 

Type of items: 

Parallel 

Reliability ( '
jjCCρ : 

1='
jjCCρ  

Number of items per factor: 

1. k =  5                

2. k = 10                

3. k = 15 

Number of measurement times (j): 

1. j = 3                

2. j = 5 

Sample size (N): 

1. N = 100 

2. N = 200 

3. N = 500 

4. N = 1000 

The total number of ideal conditions is 24. 
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Appendix C: Population parameters used in the simulation 

Mean of the level = 1 
Mean of the shape = 1 
Variance of the level = 0.5 
Variance of the shape = 0.1 
Correlation between level and shape = 0.4 
Covariance between level and shape = 0.089 
 
 
 The loadings presented below are for essentially congeneric items. The conditions 

with essentially tau-equivalent or parallel items had loadings equal to 1 for all items in all 

measurement times. 

Table 38 
Population factor loadings for conditions with configural invariance 
Items Time 1 Time 2 Time 3 Time 4 Time 5 

Item 1 1 1 1 1 1 
Item 2 0.6 0.6 0.8 0.6 0.7 
Item 3 0.7 0.8 0.6 1 0.5 
Item 4 0.5 0.6 0.9 0.6 0.9 
Item 5 0.7 0.9 0.8 0.7 0.8 
Item 6 0.7 0.7 0.9 0.7 0.9 
Item 7 0.9 0.5 0.6 1 0.9 
Item 8 0.6 0.8 0.9 0.8 0.6 
Item 9 0.8 0.5 1 0.9 0.8 
Item 10 1 0.9 0.7 1 0.8 
Item 11 0.7 0.9 0.6 0.8 0.6 
Item 12 0.9 0.5 0.9 0.5 1 
Item 13 0.7 1 0.7 0.9 0.7 
Item 14 0.6 0.7 0.8 0.8 0.6 
Item 15 0.5 0.8 0.9 0.9 0.5 
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Table 39 
Population factor loadings for conditions with weak or strict 
invariance 
Items Time 1 Time 2 Time 3 Time 4 Time 5 

Item 1 1 1 1 1 1 
Item 2 0.6 0.6 0.6 0.6 0.6 
Item 3 0.7 0.7 0.7 0.7 0.7 
Item 4 0.5 0.5 0.5 0.5 0.5 
Item 5 0.7 0.7 0.7 0.7 0.7 
Item 6 0.7 0.7 0.7 0.7 0.7 
Item 7 0.9 0.9 0.9 0.9 0.9 
Item 8 0.6 0.6 0.6 0.6 0.6 
Item 9 0.8 0.8 0.8 0.8 0.8 
Item 10 1 1 1 1 1 
Item 11 0.7 0.7 0.7 0.7 0.7 
Item 12 0.9 0.9 0.9 0.9 0.9 
Item 13 0.7 0.7 0.7 0.7 0.7 
Item 14 0.6 0.6 0.6 0.6 0.6 
Item 15 0.5 0.5 0.5 0.5 0.5 
 
Table 40 
Population intercepts for conditions with configural or weak invariance 
Items Time 1 Time 2 Time 3 Time 4 Time 5 

Item 1 0 0 0 0 0 
Item 2 0.3 0.5 0.1 0.2 1 
Item 3 0.8 0.2 0.4 0.2 0.8 
Item 4 0.9 0.7 0 0.4 0.4 
Item 5 0.8 0.2 0.4 0.4 0.2 
Item 6 0.3 0.1 0.5 0.4 0.6 
Item 7 0.4 0.3 0.7 0.5 0.9 
Item 8 0.5 0.2 0.4 0.4 0.5 
Item 9 0.8 0.7 0.6 0.9 0.8 
Item 10 0.4 1 0.1 0.3 0.1 
Item 11 0.3 0.6 0.8 1 0.2 
Item 12 0.7 0.6 0.1 0.6 0.4 
Item 13 0.5 0.2 0.9 0.8 0.7 
Item 14 0.8 0.2 0.1 0.6 0 
Item 15 0.5 0.7 1 0.1 0.2 
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Table 41 
Population intercepts for conditions with strict invariance 
Items Time 1 Time 2 Time 3 Time 4 Time 5 

Item 1 0 0 0 0 0 
Item 2 0.3 0.3 0.3 0.3 0.3 
Item 3 0.8 0.8 0.8 0.8 0.8 
Item 4 0.9 0.9 0.9 0.9 0.9 
Item 5 0.8 0.8 0.8 0.8 0.8 
Item 6 0.3 0.3 0.3 0.3 0.3 
Item 7 0.4 0.4 0.4 0.4 0.4 
Item 8 0.5 0.5 0.5 0.5 0.5 
Item 9 0.8 0.8 0.8 0.8 0.8 
Item 10 0.4 0.4 0.4 0.4 0.4 
Item 11 0.3 0.3 0.3 0.3 0.3 
Item 12 0.7 0.7 0.7 0.7 0.7 
Item 13 0.5 0.5 0.5 0.5 0.5 
Item 14 0.8 0.8 0.8 0.8 0.8 
Item 15 0.5 0.5 0.5 0.5 0.5 

 

The population error variances of the items were randomly chosen given the desired 

composite reliability (i.e. 0.7 or 0.9) and the sum of the sum of the squared factor 

loadings (see equation 49) as detailed in chapter III. 
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