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This dissertation describes numerical methods for representation and

simulation of dynamic systems with time invariant uncertain parameters. Sim-

ulation is defined as computing a boundary of the system response that con-

tains all the possible behaviors of an uncertain system. This problem features

many challenges, especially those associated with minimizing the computa-

tional cost due to global optimization. To reduce computational cost, an

approximation or surrogate of the original system model is constructed by em-

ploying Moving Least Square (MLS) Response Surface Method for non-convex

global optimization. For more complicated systems, a gradient enhanced mov-

ing least square (GEMLS) response surface is used to construct the surrogate

model more accurately and efficiently. This method takes advantage of the

fact that parametric sensitivity of an ODE system can be calculated as a by-
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product with less computational cost when solving the original system. Fur-

thermore, global sensitivity analysis for monotonic testing can be introduced

in some cases to further reduce the number of samples. The proposed method

has been applied to two engineering applications. The first is hybrid system

verification by reachable set computing/approximation. First, the computa-

tional burden of using polyhedron for reachable set approximation is reviewed.

It is then proven that the boundary of a reachable set is formed only by the

trajectories from the boundary of an initial state region. This result reduces

the search space from Rn to Rn−1. Finally, the GEMLS method proposed is

integrated with oriented rectangular hull for reachable set representation and

an approximation with improved accuracy and efficiency can be achieved. An-

other engineering application is model-based fault detection. In this case, a

fault free system is modeled as a parametric uncertain system whose parame-

ters belong to a given bounded set. The performance boundary of a fault free

system can be acquired by using the proposed approach and then employed

as an adaptive threshold. A fault is defined when system parameters do not

belong to the set due to malfunction or degradation. Once such a fault oc-

curs, the monitored system performance will extend beyond the normal system

boundary predicted.
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Chapter 1

Introduction

The use of numerical models for the simulation of physical system has

greatly impacted our approach to engineering and science. However, model-

ing of physical systems is often complicated by the presence of uncertainties,

resulting from lack of information, incomplete scientific understanding, errors

in measurement, or manifested in the different predictions from different mod-

eling systems, etc.

This dissertation is concerned with representation and simulation of

dynamic systems with uncertain parameters. In this chapter, the problem is

first stated in a mathematical form, followed by background and motivation.

The goals and contributions are also included, and an outline is presented at

the end of the chapter.

1.1 Problem Statement

This dissertation posits to study the behavior of dynamic systems with

uncertain parameters. Consider the Initial Value Problem (IVP) of a dynamic

1



system represented by the Ordinary Differential Equations (ODE),
ẋ = f(x,u, λ, t)
y = g (x,u)
x (0) = x0

(1.1)

x ∈ Rn , λ ∈ Rm , u ∈ Rp , y ∈ Rq.

In this formation, x is an n-dimensional state vector, with the initial state

vector, x0. The m-dimensional uncertain parameter vector is λ, u is the p-

dimensional input vector, and y is the q-dimensional output vector. Both f

and g are vector-valued functions.

Definition 1.1 A determined system is a system described by Eq. (1.1), in

the case where parameter λ and initial conditions x0 are precisely known.

Definition 1.2 A trajectory is the path of output yj, j = 1, 2, ..., q, of a deter-

mined system in the state space, ranging from t0 to tf .

Definition 1.3 A parametric uncertain system1 is a system described by

Eq. (1.1), in the case where the parameters λ or initial conditions x0 are

bounded,
λi ∈

[
λi, λ̄i

]
, i = 1, 2, ...,m

xj
0 ∈

[
xj

0, x
j
0

]
, j = 1, 2, ..., n

(1.2)

where x is the lower bound and x is the upper bound. Also, this study is lim-

ited to time invariant parametric uncertain systems, an uncertain parametric

system with λ̇ = 0.

1In this dissertation, parametric uncertain system strictly refers to a system defined by
Definition 1.3. System with uncertain parameters refers to a more general concept.
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Definition 1.4 The parameters of an ODE system construct a parameter

space. The bounded uncertain parameter, λ, and initial condition, x0, repre-

sent a hyper rectangle in parameter space and state space, respectively. For a

determined system, these two hyper rectangles are two points.

Obviously, for parametric uncertain systems, there are an infinite num-

ber of output trajectories formed by all possible system parameter values. An

arbitrary trajectory can be denoted as y(t,∀λ).

At a given instant of time, ts, any output of a parametric uncertain

system should be bounded by,

min(yk(ts,∀λ)) ≤ yk(ts,∀λ) ≤ max(yk(ts,∀λ)), k = 1, 2, ..., q

Definition 1.5 The lower and upper envelope of a parametric uncertain dy-

namic system is defined as,

yk =
⋃

t∈[0,T ]

min (yk (t,∀λ))

yk =
⋃

t∈[0,T ]

max (yk (t,∀λ))

k = 1, 2, ..., q

(1.3)

Geometrically speaking, yk and yk represent the lower and upper curves

that are projections of the boundary of the union of all possible trajectories,

to the yk plan, as shown in Figure-1.1.

Definition 1.6 Simulation is defined, in the context of parametric uncertain

system, as the process of computing the envelope yk, yk.

Boundaries and envelopes represent all the possible trajectories of an

uncertain system by a single image. The boundaries split the set of possible

3



Figure 1.1: Simulation of dynamic system with uncertain parameters

values of a specific output variable at a time point into two subsets: the allowed

values and the forbidden ones, according to the model and the input applied

to the system [4]. The generation of the exact boundary and envelopes are

not realistic goals in most practical cases. It is difficult or even impossible to

determine these measures. Hence the problem to be studied in this dissertation

is how to accurately and effectively find approximation of yk and yk, denoted

as yk˜ and ỹk . An illustration of this problem is shown in Figure-1.1.

1.2 Background and Motivation

A fundamental task in engineering and science is the construction and

simulation of models for representing real systems. For continuous dynamic

4



systems, ODE models are a common representation. Conventionally, such

models consist of a system of differential equations that describe the trajec-

tory of state variables over time. Making predictions from such determined

models has become straightforward and efficient, given the advancement and

availability of numerical ODE solvers. However, the value of this approach to

modeling and simulation depends on the accuracy of the ODE for representing

the physical system of interest. For many problems, accurate ODEs may be

difficult to find due to the existence of uncertainties [45]. For realistic sys-

tems, one can account for uncertainties of various types in the mathematical

model of the system. Uncertainty may occur in the parameters describing the

mathematical model, or in the formulation of the mathematical model used to

describe the system of interest, etc. This research is motivated by the following

issues:

1. Design/simulation dilemma: Modeling and simulation have been widely

used as design and decision making tools for decades. In most cases, the

designer who uses simulation as a design tool faces a dilemma: while

many of the simulations must be done in the early design stage, param-

eters needed for simulation are not completely known. In this stage, in

most cases, the engineers may have a good understanding of the phys-

ical principles involved in modeling the system, however, they will not

have precise knowledge of the values of each parameter, as the process

of design is what helps determine the parameters of the system. Thus,

design/simulation by nature is usually an iterative trial and and error

5



process. Many iterations may be needed. However, if one simulation is

computationally expensive, an iteration process is not desirable. This

is well illustrated in engineering applications such as power systems de-

sign [14, 36], circuit design [28], vehicle design [13, 34], etc. The author

has encountered this problem while involved in the Advanced Locomo-

tive Propulsion System (ALPS) project [84].

2. Uncertainties in real world. Assume that a design is finalized and the

designer has found a set of parameters for a given component. However,

any real component may have manufacturing tolerance, or the properties

of the materials may have variability. Therefore, it is unlikely that the

fabricated component/system will exactly reflect the original design. As

such, a modeling and simulation tool that has the ability to represent

and predict the behavior of the component with tolerance presents a

more useful tool for engineers.

3. Design/simulation for uncertainties. Design is riddled with uncertain-

ties. For certain parameters in a model, their value may not be a discrete

value but a bounded set. For example, the inertia of a vehicle is an im-

portant factor for the design of the suspension system. Yet, the number

of passengers in the car may vary from 1 to 5. Consequently, the total

mass of the vehicle is left uncertain but bounded. The suspension must

work well in this range. Therefore, it will be better to use a simulation

tool that is able to handle such uncertain parameters.

6



4. Hybrid system verification. A hybrid system may be categorized as a

switching system. Such systems will switch among several continuous

systems represented by ODEs. For such systems, the continuous state

space is divided into several operational regions. Switching between

different continuous system is determined by whether the state of the

system enters into these regions. Verification of such a system determines

if a system will enter a certain region, given an uncertain initial state

region. This problem can be studied by reachable set computing and will

be discussed in detail in Chapter 4.

5. Fault detection. The performance of a determined system in ‘good’ oper-

ating condition can ideally be represented by a state trajectory. However,

due to different uncertainties, the acceptable performance of a system is

best represented by a boundary. Whenever the monitored system’s per-

formance is outside this boundary, a fault may have occurred. A fault

detection problem can thus be modeled by simulation of a parametric

uncertain system. The details of this application will be discussed in

Chapter 5.

In each of the above cases, inherent uncertainties are common to the

modeling and simulation task. Thus there is a strong motivation for the de-

velopment of efficient methods for simulating dynamic systems with uncertain

parameters.

7



1.3 Goal of This Research

The goal of this research is to formulate methods for the simulation of

parametric uncertain dynamic systems. This dissertation focuses on paramet-

ric uncertainties because in most cases other uncertainties can be transformed

to parametric uncertainties. The proposed methods should be a trade-off be-

tween efficiency and accuracy. These methods should be able to deal with

large uncertainties, certain number (< 10) of uncertain parameters, and be

easily applied for practical applications. Specifically, the goals of this research

are to find methods that increase accuracy without losing too much computa-

tional efficiency and are easily integrated with commercial simulation software.

This dissertation also examines classes of engineering applications that can be

solved by this method.

1.4 Summary of Key Contributions of This Research

This dissertation presents a hybrid method for solving the problems

described above based on Response Surface Method (RSM). The possible con-

tributions of this research are:

1. A hybrid numerical method for parametric uncertain system simulation

that integrates response surface method, sensitivity analysis, monotonic

testing and gradient enhanced RSM for enhanced computational effi-

ciency and accuracy. This method is described in detail in Chapter 3.

2. The introduction of sensitivity bands and monotone intervals for para-

8



metric uncertain dynamic systems, and a novel theorem that simplifies

the monotonic testing of a dynamic system to reduce the computational

cost of simulation. The detail is in Section 3.6.

3. The derivation and discussion of gradient enhanced moving least square

response surface method for function approximation with better accuracy

and efficiency. The details are in Section 3.5.3.

4. A boundary theorem that can reduce the search space of reachable set

computing problem from Rn to Rn−1. The details are in Section 4.4.3.

5. The applications of the developed method for existing engineering prob-

lems, such as hybrid system verification (Chapter 4), fault detection (Chap-

ter 5), to illustrate its capabilities.

1.5 Guide to This Dissertation

The content of this dissertation is arranged as follows: Chapter 2 exten-

sively reviews existing methods used for simulation of dynamic systems with

uncertain parameters, and an evaluation is given at the end of the chapter.

Based on the review of existing methods, Chapter 3 presents details of the

proposed method, which is the core of this research. Chapter 4 presents hy-

brid system verification problem. First the boundary theorem is derived and

then the proposed method integrated with oriented rectangular hull (ORH)

for reachable set computing is presented. Chapter 5 presents fault detection

9



by employing the proposed method. Chapter 6 summarizes the dissertation

and suggests future work.
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Chapter 2

Literature Review

In this chapter, existing and past research work on categorization, rep-

resentation and propagation of uncertainty in modeling and simulation are

reviewed.

2.1 Uncertainty Categorization

Uncertainties exist in every stage of the modeling and simulation task.

They can be categorized into different types for different applications.

2.1.1 Aleatory and Epistemic Uncertainty

One of the most widely recognized distinctions in uncertainty types is

between aleatory and epistemic uncertainty [62]. The term aleatory uncer-

tainty is used to describe the inherent variation associated with the physical

system or the environment under consideration. Sources of aleatory uncer-

tainty can commonly be modeled as ‘random’ quantities. Aleatory uncertainty

is also called variability, inherent uncertainty or natural uncertainty in some

literature. For example, in air pollution systems, the turbulent atmosphere

and unpredictable emission-related parameters are types of aleatory uncer-
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tainties [42]. They can be represented as random distributions that can take

on values in an established or known range, but for which the exact value

will vary by chance from time to time. The mathematical representation most

commonly used for aleatory uncertainty is a probability distribution. Propa-

gation of these distributions through a modeling and simulation process is well

developed and is described in many texts [62].

Epistemic uncertainty derives from some level of ignorance of the sys-

tem or the environment. The term epistemic uncertainty is used to describe

any lack of knowledge or information in any phase or activity of the model-

ing process. As a result, an increase in knowledge or information can lead

to a reduction in this kind of uncertainty. Examples of sources of epistemic

uncertainty are when there is little or no experimental data for a fixed (but

unknown) physical parameter. As opposed to aleatory uncertainty, the math-

ematical presentation of epistemic uncertainty has proven to be much more

of a challenge. In fact, it is believed that the preeminent issue in uncertainty

analysis of systems is the representation and propagation of epistemic uncer-

tainty [62].

Uncertainty associated with model formulation and application can also

be classified as ‘reducible’ and ‘irreducible’. Aleatory or Natural uncertainty

is ‘inherent’ or irreducible, while Epistemic uncertainty is reducible.
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2.1.2 Parametric and Model Uncertainty

For any particular physical system of interest that is mathematically

modeled, we can distinguish between parametric uncertainty and model un-

certainty.

• Model uncertainty: Mathematical models are necessarily simplified rep-

resentations of the phenomena being studied, and a key aspect of the

modeling process is the judicious choice of model assumptions. In fact,

sometimes modeling is rather subjective, depending on the modeling

team and its skills and therefore one often refers to it as to the ‘art

of modeling’ [69]. The optimal model will provide the greatest simpli-

fications, while providing an adequately accurate representation of the

processes affecting the phenomena of interest. Hence, the structure of

mathematical models employed to represent a dynamic systems is often

a key source of uncertainty [42]. In addition to the significant approx-

imations often inherent in modeling, sometimes competing models may

be available. Isukapalli and Georgopoulus [42] have categorized model

uncertainty in the following way:

1. Model structure uncertainty: Uncertainty arises when there are al-

ternative sets of scientific or technical assumptions for developing a

model. For example, a simplified DC/AC inverter can be modeled

by using ideal switches or by using an average state model of the

switching devices. In general, the results of the results from these
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different models are very close. In this case, one can be confident

that the decision is robust in the face of uncertainty. However, in

certain cases, these two models may generate some different con-

clusions, other models may be used to evaluate the results given by

these two models.

2. Model detail uncertainty: All models are, to some extend, simpli-

fications of real physical systems. Such as simple linear model of

a very complicated nonlinear system or models that only consider

the low order dynamics that are of interest. For example, for an in-

verter, for different purpose, models (for simple to complex) such as

behavioral model, average model, detailed device level model can

be used. Uncertainties from simplified models can sometimes be

characterized by comparison of their predictions to those of more

detailed models.

Model uncertainty is fundamentally epistemic in nature. Further detail

categorization of model uncertainty can be found in [42].

• Parametric Uncertainty. Uncertainties in model parameter estimates

stem from a variety of sources. For example, measurement of parame-

ters are often associated with strong uncertainties, especially for prod-

ucts with small geometric features, such as VLSI chip or MEMS devices.

Other type of parametric uncertainties arise from the design/simulation

dilemma: at an early design stage, simulations are needed to aid design
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decisions while the parameters of the design are not yet known. Fur-

ther, from a simulation point of view, some parameters are ‘inherent’

uncertain. For example, the mass of a vehicle depends on the number

of passengers in the car. Parametric uncertainly can be a mixture of

epistemic and aleatory uncertainties.

In fact, parametric uncertainty can be treated as a more fundamental

uncertainty, compared to model uncertainty. Model uncertainty can be a result

of parametric uncertainty. For example, if more parameters (information)

are available, a higher fidelity model can be built to avoid model structure

uncertainty.

2.2 Representation of Parametric Uncertainties

The representations of parametric uncertainties are strongly related to

the uncertainty types associated with the parameters. Some of the representa-

tions of uncertainty that occur in modeling and simulation of physical systems

include:

1. Pure qualitative representation [49, 50]. In certain conditions, due to

lack of information, a parameter may only be described qualitatively,

such as ‘pretty big’ or ‘small’ etc.

2. Strong statistical information [62]. Sometimes large quantities of exper-

imental data are available, sufficient to derive or convincingly verify a
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particular statistical model of the uncertain parameter. In this case,

the uncertain parameter can be modeled by its probability density func-

tion (pdf). For example, the mass of a component may be uncertain due

to manufacturing errors, so mass can be modeled by a normal distribu-

tion function with its mean value and variation.

3. Intervals [4, 34, 78]. Sometimes the upper and lower bounds on para-

metric values can be provided, typically from expert input or design

constraints. For example, the number of passengers in car could range

from 1 to 5 and thus the mass of the car will range from the lower limit

to upper limit. This representation is very common in design problems,

in which most unknown parameters are represented in intervals. Sys-

tems with interval uncertain parameters are called interval systems or

semi-qualitative system [4, 64].

4. Mixed representation. In [62], Oberkampf et al., pointed out that more

commonly, real problems typically present a mixture of all the uncer-

tain sources across different parameters. Moreover, there may be multi-

information sources for one parameters [62]. For example, one parame-

ter might be independently estimated from several experts and each one

gives a different estimation. Thus, there is the challenge of aggregating

these disparate representations into a single representation, which might

have a hybrid or mixed mathematical form.
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The uncertain parameters represented by the methods reviewed above

can be further divided into two categories: time variant or time invariant.

Table 2.1 summarizes the most common representations of parametric un-

certainties. The methods used to propagate time variant and time invariant

uncertainties are very different, and the later case will is more challenging [62].

Table 2.1: Representation of uncertain parameters
Representation of uncertain parameter λ

Time invariant λ Time variant λ(t)
λ is known qualitatively λ(t) is known qualitatively
λ is a random variable with specified
pdf

λ(t) is a stochastic process whose prob-
abilistic structure is known

λ is a random variable with specified
pdf having uncertain parameters such
as mean and variance

λ(t) is a stochastic process whose prob-
abilistic structure may contain uncer-
tain parameters

λ belongs to an interval λ(t) belongs to an interval
Mixed representation Mixed representation

In most engineering design/simulation stages, strong statistical infor-

mation or large quantities of experimental data may not be available, and

the probabilistic structure of the uncertain parameters is not generally known.

Thus, interval representation is perhaps the most appropriate representation.

In this case, the uncertain parameters form a hyper rectangular shape in pa-

rameter space. A more general and flexible representation of uncertain param-

eters is a set, which can be any shape in the parameter space. In this research,

the focus is on interval/set representation of time invariant parametric uncer-

tainties.
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2.3 Propagation of Parametric Uncertainties

The most important step in uncertainty analysis is the propagation of

the parametric uncertainties. This is to study of how uncertainties in system

parameters can impact the output of the system. Various uncertainty prop-

agation methods are reported in literatures and these depend on the nature

and representation of the parametric uncertainty.

2.3.1 Monte-Carlo Simulation

Monte-Carlo Simulation (MCS) is the most widely used means for un-

certainty analysis, with applications ranging from aerospace engineering to

zoology. It is a technique which has had a great impact in many different

engineering fields. This technique derives its name from the casinos in Monte-

Carlo - a Monte-Carlo simulation uses random numbers to model some sort

of a process. This technique works particularly well when the process is one

where the underlying probabilities are known but the results are more difficult

to determine [42]. Monte-Carlo methods can be loosely described as sample

based statistical simulation methods, where statistical simulation is defined in

general terms to be any method that utilizes sequences of random numbers to

perform the simulation. Monte-Carlo methods have been used for centuries,

but only in the past several decades has the technique gained the status of a

full-fledged numerical method capable of addressing the most complex appli-

cations [1]. For an ODE system with uncertain parameters, if the uncertain

parameters are represented by their pdfs, then Monte-Carlo methods can be
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Figure 2.1: Monte-Carlo simulation of uncertain dynamic systems

applied to simulate the system. The Monte-Carlo simulation can proceed by

random sampling from the pdf’s of the uncertain parameters and many sim-

ulations (solving ODEs numerically) are then performed (multiple ‘trials’ or

‘histories’). The final output pdf is then calculated. Figure-2.1 illustrates the

idea of Monte-Carlo simulation as applied to an ODE systems with uncertain

parameters represented by pdfs. If the uncertain parameters are represented

as intervals, then uniform distributions can be used to represent an interval,

but the output will not necessary be uniform distribution and some conver-

sions from pdf to an interval should be done. The primary components of a

complete Monte Carlo simulation method include the following [1]:
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1. Probability distribution functions (pdf’s) - the uncertain parameters

should be described by a set of pdf’s. If the parameters are not rep-

resented as pdfs, they should be converted to pdfs.

2. Random number generator - a source of random numbers uniformly dis-

tributed on the unit interval must be available.

3. Sampling rule - a prescription for sampling from the specified pdf’s,

assuming the availability of random numbers on the unit interval, must

be given.

4. Scoring (or tallying) - the outcomes must be accumulated into overall

tallies or scores for the quantities of interest.

5. Error estimation - an estimate of the statistical error (variance) as a

function of the number of trials and other quantities must be determined.

6. Variance reduction techniques - methods for reducing the variance in the

estimated solution to reduce the computational time for Monte Carlo

simulation.

7. Parallelization and vectorization - algorithms to allow Monte Carlo meth-

ods to be implemented efficiently on advanced computer architectures.

When applying the Monte-Carlo method to a dynamic system with

ODE solver, it is worth to note that one treats the uncertainty as a time

invariant or time variant value. For a time variant uncertain parameter, if the
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relationship between the variation of the parameter versus time is not known,

then Monte-Carlo method may not be directly applied.

Monte Carlo method has certain advantages:

1. Monte carlo methods involve running the model at a set of sample points

and establishing the relationship between inputs and outputs using these

sampled results. Since each run is independent of the others, Monte

Carlo simulations can be easily parallelized.

2. Monte Carlo methods do not require access to model equations or even

the model code and thus is completely general. Since it is completely

general it is frequently used to calibrate and validate other methods as

benchmarks. Also, existing system solving tools such as ODE solvers

can be applied directly.

3. Monte Carlo methods work for both probabilistic and non-probabilistic

problems.

The primary disadvantage of Monte Carlo is quite obvious: since it

requires a large number of samples, it is very time consuming, especially when

simulation of system take a long time, which is not unusual for many engi-

neering applications. The applicability of Mote-Carlo basically is sometimes

limited by computing power available.
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Figure 2.2: First order error propagation, adapted and modified from [5]

2.3.2 First Order Propagation and Error Propagation Law

The idea of this approach is to linearize the system with nominal pa-

rameters and thus reduce the computational cost to find the boundary. Figure-

2.2 [5] illustrates this idea with a simple case of one output and one unknown

parameter. The unknown parameter can be given in terms of intervals or it can

be treated as a random variable, and its the mean and variance are assumed

given.

If the uncertain parameters are given as intervals, this method is called

First Order Propagation (FOP). It is also called sensitivity based method in

some literature [71]. This approach estimates the worst case response using

nominal sensitivity and first order Taylor expansion of the original system

around a nominal value. Assume the trajectory given by the nominal parame-

ter set λN is y(x, u, λN
i , t), i = 1, 2, ..., n, and each uncertain parameter λi has
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disturbance δλi, then the system with uncertain parameter λi = λN
i + δλi can

be approximated as,

y(x, u, λN
i + δλi, t) ≈ y(x, u, λN

i , t) +
n∑

i=1

∂y

∂λi

∣∣∣∣
λi=λN

i

δλi (2.1)

The above equation requires simulating the system with the nominal

parameters and calculating the parametric sensitivity coefficient,
∂y

∂λ

∣∣∣∣
λ=λN

.

For ODE systems, these two steps can be calculated simultaneously. With

little extra cost the sensitivity coefficient can be acquired [24]. Monte-Carlo

method can then be applied to Eq. (2.1) to estimate the boundary of the

system with less computational cost; or, the upper and lower boundary can

be approximated by: yj ≈ yj(x, u, λN
i , t) −

∣∣∣∣∣ n∑
i=1

∂yj

∂λi

∣∣∣∣
λi=λN

i

∣∣∣∣∣ |δλi| and yj ≈

yj(x, u, λN
i , t) +

∣∣∣∣∣ n∑
i=1

∂yj

∂λi

∣∣∣∣
λi=λN

i

∣∣∣∣∣ |δλi|.

If the uncertainties are given in terms of mean and variance, apply

the same procedure, and the so called Error Propagation Law (EPL) can be

derived as follows [5]:

(a) Error propagation of two output Y, Z (b) Error propagation of n output xi, i =
1, 2, ...n

Figure 2.3: Error propagation law, adapted and modified from [5]
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Consider the system with two output y and z shown in Figure-2.3(a),

and assume the mean and the variance of λi are λN
i and δi, and the covariance

of λi, λj is δij. The mean and variance of the output Y is then,

µY = f(λN
1 , λN

2 , ..., λN
m, t)

δ2
Y ≈

m∑
i=1

(
∂f

∂λi

∣∣∣∣
λi=λN

i

)2

δ2
i +

m∑
i=1

m∑
j=1,i6=j

(
∂f

∂λi

∂f

∂λi

)∣∣∣∣
λi=λN

i

δij
(2.2)

The covariance that describes the statistical dependence of Y and Z is,

δY Z =
m∑

i=1

(
∂f

∂λi

∂g

∂λi

)∣∣∣∣
λi=λN

i

δ2
i +

m∑
i=1

m∑
j=1,i6=j

(
∂f

∂λi

∂f

∂λi

)∣∣∣∣
λi=λN

i

δ2
ij (2.3)

If the parameter λi, λj are independent, the second term, containing their

covariance δij, disappears from the above equation. In that case, we have the

following simplified error propagation law,

µY = f(λN
1 , λN

2 , ..., λN
m, t)

δ2
Y =

m∑
i=1

(
∂f

∂λi

∣∣∣∣
λi=λN

i

)2

δ2
i

δY Z =
m∑

i=1

(
∂f

∂λi

∂g

∂λi

)∣∣∣∣
λi=λN

i

δ2
i

(2.4)

For the general dynamic system with n variables, as shown in Figure-

2.3(b), the error propagation law to propagate the error (parametric uncer-

tainties) from the uncertain system parameters to the output variables can be

written in matrix form as [5],

µX = f(λN
1 , λN

2 , ..., λN
m, t)

CX = JλCλJT
λ

(2.5)
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where Cλ =


δ2
1 δ12 · · · δ1m

δ12 δ2
2 · · · δ2m

...
...

...
...

δm1 δm2 · · · δ2
m


m×m

is the covariance matrix of the un-

certain parameter. If the parameters are independent, then Cλ is a diago-

nal matrix. In these formulation, Jλ =



∂f1

∂λ1

∂f1

∂λ2

· · · ∂f1

∂λm
∂f2

∂λ1

∂f2

∂λ2

· · · ∂f2

∂λm
...

...
...

...
∂fn

∂λ1

∂fn

∂λ2

· · · ∂fn

∂λm


n×m

is the

parametric Jacobian matrix, and CX =


δ2
x1

δx1x2 · · · δx1xn

δx2x1 δ2
x2

· · · δx2xn

...
...

...
...

δxnx1 δxnx2 · · · δ2
xn


n×n

is the

output covariance matrix.

From the above matrix form, it can be seen that the parametric un-

certainty represented by the matrix Cλ is propagated to the output through

the system parametric Jacobian matrix Jλ. It shows that, in order to use

this approach, the Jacobian matrix must be calculated. As pointed before, for

ODE systems, Jλ can be calculated with little extra cost.

The advantages of this approach are as follows:

1. Less computational cost. As an alternative to Monte-Carlo simulation,

this approach simulates the system based on Eq. (2.1) and Eq. (2.5)

only once, and there is no need to simulate the original system equation

many times. Although the Jacobian matrix of the system needs to be

calculated, for certain systems, including ODE systems, this extra cost
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is usually relatively low.

2. Sensitivity information. Since this method calculates the Jacobian ma-

trix, it provides the sensitivity information of the uncertain parameters

and can help determine which uncertain parameter will have the largest

impact on the output.

The disadvantages of this approach are also quite obvious: because the

high order terms are unknown, this approach often leads to overly estimated

results, and further it is not predictable whether the results will underestimate

or overestimate the actual response bounds [82]. Also, since Taylor linear

expansion only works well when the variation is very small, this approach is

applicable only when the uncertain parameters have relatively small intervals.

Despite the above disadvantages, this approach has been widely used in

many engineering fields, such as for bounding uncertainty in power systems [14,

61] and circuit analysis [71].

2.3.3 Vertex Enumeration

Vertex enumeration simulates all possible extreme cases of parameter

variations; i.e, it simulates all the vertex of a hyper-rectangle formed by uncer-

tain parameters represented as intervals. It is computationally less expensive

than Monte-Carlo method. However, extreme values of the output may not

necessarily occur at these corners of the parameter space [71] and thus the

quality of the result is low.
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2.3.4 Direct Global Optimization

From the definition of the envelope in Eq. 1.3, and the system equation

Eq. 1.1, it is found that the uncertainty propagation problem can be modeled

as an optimization problem as follows:

y = ∪
t∈[0,T ]

min (y(t)) = ∪
t∈[0,T ]

min (g(x(t),u))

y = ∪
t∈[0,T ]

max (y(t)) = ∪
t∈[0,T ]

max (g(x(t),u))

s.t.

{
x(t) = x0 +

∫ t

0
f(x,u,λ, τ)dτ

λ ∈ [λ, λ],x0 ∈ [x0,x0]

(2.6)

The above equation shows that computation of y and y is an optimiza-

tion problem. At each time step, the above optimization problem needs to

be solved. To solve this problem, the uncertain space construct by uncertain

parameter λ and uncertain initial condition x0 must be searched. To evaluate

the objective function, Eq. (2.6), a simulation (integration of ODEs) needs

to be done and optimization algorithms should be integrated with the ODE

solver.

Note that this approach can only be applied to time invariant systems,

because time variant systems can not be simulated, unless the way that the

parameters change versus time is known. Meanwhile, this method is not re-

cursive since at each time step the integration should be initiated from time

zero. The detailed computational cost analysis of this optimization problem

will be shown in the next chapter.

The quality of the envelopes are determined by the optimization al-

gorithms. For example, if a local optimum is given by the optimization, the
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envelope may be under-bounded.

Different optimization algorithms have been applied to this problem,

such as Genetic Algorithms(GA) [25],and interval analysis [4, 26, 78].

2.3.5 Interval Analysis

Although many different optimization algorithms can be used for un-

certainties propagation, the most used global optimization algorithm to solve

Eq. 2.6 is by interval analysis [4, 26, 64, 78].

When the uncertain parameters or system initial conditions are rep-

resented using intervals, the problem of uncertain propagation can become a

case of finding the range of an interval function. For ODE systems, the range

of the state variables must be evaluated every time step. One method for

evaluating the range of the function is to use interval analysis [43, 59].

The foundation of interval analysis is interval arithmetic. It is an arith-

metic defined on sets of intervals, rather than sets of real numbers. Modern

interval arithmetic began with R. E. Moore’s pioneering work [59].

If x ∈ [x, x̄] and y ∈ [y, ȳ], then the elementary arithmetic operations

are defined as [46]:

x + y = [x + y, x̄ + ȳ]
x− y = [x− ȳ, x̄− y]
x× y = [min(xy, xȳ, x̄y, x̄ȳ), max(xy, xȳ, x̄y, x̄ȳ)]
1

x
= [

1

x̄
,
1

x
], ifx > 0 or x < 0

x÷ y = x× 1

y

(2.7)

28



Once the fundamental operations are defined, functions defined on in-

tervals can be defined by natural extension. For example, if f(x) = x(x − 1)

then,

f([0, 1]) = [0, 1]([0, 1]− 1) = [0, 1][−1, 0] = [−1, 0],

which contains the exact range [−1/4; 0]. Interval arithmetic will generate

a guaranteed over-bound interval that contains the exact range of the origi-

nal function. This feature guarantees that the envelope generated by solving

Eq. 2.6 is an over-bound envelope. For certain applications, such as hybrid

system verification, this feature is desired.

However, as can be found from the example presented, there is an in-

trinsic problem with interval analysis: the interval found by natural extension

is highly over-bounded, since there are multi-incidences (the same variable

appears more than once in an expression, in the above example, variable x

appeared twice and the calculated interval [−1, 0] is much wider than the real

range [−1/4, 0]). Therefore, a way to obtain tighter interval is to express the

function with the lowest number of multi-incidences. Many techniques that

search for the best way to express an interval function with minimum multi-

incidence have been developed [43].

There are some simulators based on interval arithmetic such as NSIM (Nu-

merical Simulator using Interval Methods) [45] and NIS (Numerical interval

simulation) [80]. NSIM is limited to monotonic functions and NIS uses nu-

meric integration algorithms revised for intervals by calculating the range of
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the derivative of the state variables at each integration step, then the max-

imum and minimum of the derivatives of the variables are used for Euler or

Runge-Kutta integration algorithms.

These simulators obtain highly over-bounded envelopes due to ignored

multi-incidences. A comprehensive review of these types of simulators can be

found in [4].

Recently, an improved interval method called Modal Interval Analy-

sis (MIA) was reported and applied to simulate interval ODEs (ODEs system

with parameters defined as intervals) [4, 64]. MIA is an extension of the clas-

sical interval theory that includes interesting properties. It gives a formal way

to study the optimality of an interval function for the results. It provides

tools to calculate the ranges of functions with multi-incidences. For mono-

tonic functions, it can give tighter intervals than classical intervals. However,

when the function is not monotonic, a splitting algorithm has to be used. It

divides the interval of the variables into small intervals, in which the function

is monotonic. By doing so, the bound will be tight but the computational cost

will be increased.

2.3.6 Differential Inclusion

A Differential Inclusion (DI) is a relation of the form ẋ ∈ f(x), where

f is a set-valued map associating any point ẋ ∈ Rn with a set f(x) ∈ Rn. As

such, the notion of a differential inclusion generalizes the notion of an ordi-

nary differential equation of the form ẋ = f(x). Therefore, all problems usually
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studied in the theory of ordinary differential equations (existence and continu-

ation of solutions, dependence on initial conditions and parameters, etc.) can

be studied for differential inclusions as well. Since a differential inclusion usu-

ally has many solutions starting at a given point, new types of problems arise,

such as investigation of topological properties of the set of solutions, selection

of solutions with given properties, and many others. Differential inclusions

play an important role as a tool in the study of various dynamical processes

described by equations with a discontinuous or multi-valued right-hand side,

and they also are very useful in proving existence theorems in control the-

ory [74].

Naturally, an uncertain dynamic system can be represented as a differ-

ential inclusion rather than as differential equations. Let us consider a simple

example of a second order system [66],

d2y

dt2
+ a · dy

dt
+ y = b. (2.8)

This is a simple ODE model. Introducing notation x1 = y, x2 = dy/dt

we obtain:
dx1

dt
= x2

dx2

dt
= b− ax2 − x1

(2.9)

In more general notation, the state equation is,

dx

dt
= f(a, b,x), (2.10)

where x is a two-dimensional vector, t is the time, and f is a vector-valued

function. Now suppose that the parameters a and b are uncertain parameters
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and that the only information we have is the corresponding intervals where

the values may belong, or a permissible (may be quite irregular and variable)

set on the 2D-plane where the point (a, b) must belong. Note that we know

nothing about a possible probability distribution of these parameters and they

are not treated as random variables. Thus, Eq. 2.10 takes the following form,

dx

dt
∈ f(a, b,x), (2.11)

where f is a set. This is a differential inclusion (DI). The above process also

suggests how parametric uncertain differential equations may be converted

into differential inclusions.

The solution to a DI is a tube in the state space contains all possible

system trajectories, and each one is one of the solutions to the uncertainty

problem. In this very natural way we see that the uncertainty in dynamic sys-

tem modeling leads to differential inclusions as a corresponding mathematical

tool. These methods have been known for about 70 years, mainly to the control

theory society [65]. However, accurate, effective, general differential inclusion

solvers are not yet available. Some solvers for simplified differential inclusion,

such as those assuming the right side is a regular set (a hyper-rectangle), i.e.

dx

dt
∈ �1 are reported [35]. Obviously, this is an over-simplified problem.

One reported general differential solver is to treat solving DI as a classi-

cal optimal control problem [65, 66]. Observe that any trajectory that reaches

a point on the boundary of the solution tube is optimal in some sense; such

1� is used to represent a hyper-rectangle in this dissertation
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trajectories can be calculated using Maximum Principle of Pontryagin in clas-

sical optimal control field, which is to solve the Hamilton-Jacobian equation.

For the above example, the uncertain parameters a, b can be treated as control

inputs whose values are bounded in certain intervals. Finding the boundary

of the solution tube can be treated as an optimal control problem: with the

constrained input a, b, what is the maximum region the system can reach at

certain time? In few words, the DI solver provided in [65, 66] works as follows.

The user provides the DI in the form of an equivalent control system. To do

this, first parameterize the right-hand size (the set f) using an m-dimensional

auxiliary control variable u (for the example above m = 2,u = [a, b]T ). The

DI solver automatically generates the equations of the so-called conjugate vec-

tor p, and integrates a set of trajectories, each belonging to the boundary

of the solution tube. To achieve this, over each trajectory the Hamiltonian

H(x,p,u, t) is maximized. This procedure is similar to that used in dynamic

optimization in the optimal control problem. Details of this approach are

found in references [65, 66, 81].

The above procedure implicitly assumes the uncertain parameters a, b

are time variant (since they are treated as input variables) when solving the

Hamilton-Jacobian equations using Maximum Principle. If the uncertain pa-

rameters are time invariant, a strong constraint
da

dt
= 0,

db

dt
= 0 will make

solving the Hamilton-Jacobian very difficult. Thus, this approach is only ap-

plicable to systems with time variant uncertain parameters. Generally, the

solution tube of such system is much larger than the corresponding time in-
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Figure 2.4: The solution tube of time variant differential inclusion, adapted
from [66]

variant system. A typical DI solution tube for the time variant system,

dx1

dt
= x2

dx2

dt
= b− ax2 − x1

a ∈ [0.5, 1.5], b ∈ [−1, 1]

is given in Figure-2.4 [66].

2.3.7 Qualitative Model and Simulation

The above mentioned approaches can be seen as semi-quantitative meth-

ods. For certain conditions, the system is so uncertain that only qualitative in-

formation is known. In this case, one should use a qualitative analysis method.
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In short, qualitative analysis is an area of research that seeks ways to

model and simulate the everyday, qualitative, non-numerical reasoning humans

use to estimate (the range of) possible solutions to some real-world problems

with strong uncertainties. This approach has been extensively formulated by

Kuipers and his team at the University of Texas at Austin [49].

The idea of qualitative simulation is to build quantitative models. A

quantitative model is qualitative in two senses [50]. First, the values of vari-

ables are described in terms of their relations with a finite set of symbolic

landmark values (such as negative, positive), rather than in terms of real num-

bers. Second, functional relations may be described as monotonic functions

(increasing or decreasing over particular ranges) rather than by specifying a

functional form. These purely qualitative descriptions can be augmented with

semi-quantitative knowledge in the form of real bounding intervals around

unknown real values and real-valued bounding envelope functions around un-

known real-valued functions (In this case, the model became semi-qualitative).

The value of the derivative is also expressed in a purely qualitative way,

such as increasing, decreasing or steady. The qualitative model is represented

by Qualitative Differential Equations (QDE), which describe the relations

among variables. These relations include algebraic operations, derivatives,

monotonicity, etc. QDEs are more able than traditional models to express

states of incomplete knowledge about continuous mechanisms [49].

Once the QDE is built, certain rules can be applied in the design of

simulation algorithms. Details of these rules can be found in [45, 49]. Given

35



a qualitative description of a state, the result of a qualitative simulator is

the qualitative state descriptions that can possibly be direct successors of

the current state description. Repeating this process produces a graph of

qualitative state descriptions, in which the paths starting from the root are

the possible qualitative behaviors. The graph of qualitative states is pruned

according to criteria derived from the theory of ordinary differential equations,

in order to preserve the guarantee that all possible behaviors are predicted [50],

and guarantee to find all possible behaviors consistent with the knowledge in

the model. However, the time information of these states is not given since

qualitative simulation is not causal. The most widely used and advanced

qualitative simulator is called QSIM [45, 49].

The value of qualitative simulation comes from the ability to express

natural types of incomplete knowledge of the world, and the ability to derive a

provably complete set of possible behaviors in spite of the incompleteness of the

model. Qualitative simulation starts with a QDE and a qualitative description

of an initial state. Results of it can be used in the design and validation

of dynamical systems, such as controllers. A set of qualitative models and

their associated predictions can also be unified with a stream of observations

to monitor an ongoing dynamical system or to do system identification on

a partial model [4, 45, 49]. The disadvantage of this approach is that it is

not causal and thus there is no time information in the simulation results

which limits its application in practical engineering problem. A qualitative

simulation result of parametric uncertain two-tank system was reported in [38].
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2.3.8 Simulation with Uncertainties in Frequency Domain

In frequency domain, a time invariant linear dynamic system is char-

acterized by its transfer functions. For a determined, certain system, the

transformation can be written as,

P (s,q, r) =
N(s, r)

D(s,q)
, (2.12)

where N(s, r) and D(s,q) are all polynomials with fixed coefficients, r =

[r1, r2, . . . , rm] and q = [q1, q2, . . . , qn], m ≤ n. The stability of the system is

determined by the characteristic polynomial D(s,q). However, for a system

with parametric uncertainties, the transformation function can not be repre-

sented by polynomials with fixed coefficients, but interval coefficients, as the

following examples shows [7]:

Example 2.1 Torque control of a DC motor [7]. Consider a DC motor driving

a load with dumping. The uncertain parameters are motor constant, K ∈

[0.2, 0.6]volts/rpm, and the load moment of inertia, JL ∈ [10−5, 3× 10−5]kg−

m3. The transfer function is,

P (s) =
K(JLs + BL)

(Ls + R)(Jms + JLs + Bm + BL) + K2
.

Taking uncertain parameters q1 = K and q2 = JL and fixed parameters Jm =

2 × 10−3kg − m3, Bm = 2 × 10−5N − m/rpm, L = 10−2H, R = 1Ω, BL =

2 × 10−5N − m/rpm, an interval transfer function can be formatted that

describes this parametric uncertain system as,

P (s,q) =
0.5q1q2s + 10−5q1

(10−5 + 0.005q2)s2 + (0.00102 + 0.5q2)s + (2× 10−5 + 0.5q2
1)

,
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with q1 ∈ [0.2, 0.6],q2 ∈ [10−5, 3× 10−5].

The above interval transfer function represents a family of transfer func-

tions. Also, the coefficients of this transfer function are dependent, since

coefficients of the 2nd order and 1st order term are all related to q2.

There are two important questions that need to be answered with an

interval transfer function and both are related to uncertainty propagation dis-

cussed in previous sections.

1. Is the uncertain system stable, given that all the parameters can vary

in the intervals? We know that if the poles of a transfer function lie in

the strict left half s-plane then the system will be stable. For a system

with parametric uncertainties, it is said that the uncertain system is ro-

bust stable, if for all q ∈ [q−,q+], all roots of P (s,q, r) lie in the strict

left half plane. Obviously, the robust stable question can be converted

to finding the boundary of all the roots of the uncertain denominator

polynomial D(s,q), or to use Hurwitz criterion for all the possible poly-

nomials determined by the interval polynomials. For example, when q1

and q2 vary in their interval, the root locus of the DC motor system is

shown in Figure-2.5. It shows that the system is robust stable.

2. Does the uncertain system’s performance meet the frequency perfor-

mance specifications? For the uncertain transfer function P (s,q, r), the

uncertain bode plot is given by,

LG(w, q, r) = 20 log |P (jω,q, r)| .
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Figure 2.5: Root locus of open loop interval transfer function

Now, a typical performance specification S might be as follows: In the

frequencies range ωmin, ωmax, given a band or boundary of the desired

performance LG(ω), LG(ω), we seek to guarantee: LG(ω) ≤ LG(ω) <

LG(ω), for all r ∈ [r−, r+],q ∈ [q−,q+]. When these performance in-

equalities are met, we can say that the performance specification S is

robustly satisfied. Again, this problem can be converted to find the

boundary of the bode plot, as shown in Figure-2.6. If the boundary of

the bode plot is within the specification, then the design is robust.

Clearly, Monte carlo methods can be used to answer the two questions posed.

However, it could be too time consuming to calculate the roots and bode

plots. For the robust stability problem, Kharitonov’s Theorem represented

a dramatic breakthrough that initiated research into robust stability problem
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Figure 2.6: Bode plot of open loop interval transfer function of the DC motor
system

that greatly reduced the computational cost. This theorem reduces the number

of polynomials to be studied to four, a magic number.

Definition Kharitonov’s polynomials : Associated with the interval polyno-

mial with independent coefficients,

p(s,q) =
n∑

i=0

[q−i , q+
i ]si, (2.13)

are four Kharitonov’s polynomials, defined as,

K1(s) = p−−(s) = q−0 + q−1 s + q+
2 s2 + q+

3 s3 + q−4 s4 + q−5 s5 + · · ·
K2(s) = p−+(s) = q−0 + q+

1 s + q+
2 s2 + q−3 s3 + q−4 s4 + q+

5 s5 + · · ·
K3(s) = p+−(s) = q+

0 + q−1 s + q−2 s2 + q+
3 s3 + q+

4 s4 + q−5 s5 + · · ·
K4(s) = p++(s) = q+

0 + q+
1 s + q−2 s2 + q−3 s3 + q+

4 s4 + q+
5 s5 + · · ·

(2.14)

Notice that there are only four Kharitonov’s polynomials– independent

of the degree of p(s,q).
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Kharitonov’s theorem [7]. In 1978 the Russian researcher Vladimı́r Kharitonov

proved the following fundamental result: A continuous-time interval poly-

nomial is robustly stable if its four Kharitonov polynomials are stable. The

coefficients of the polynomial are assumed to be independent.

This theorem means that instead of checking stability of an infinite

number of polynomials only the stability of four polynomials need be assessed,

and this can be done using the classical Hurwitz criterion. This result was so

surprising and elegant that it has been the starting point of a renewed interest

in robust control theory [10]. However, this theorem only applies to interval

polynomials with independent coefficients.

For interval polynomial with dependent coefficients, a graphical method

based on Zero Exclusion Condition should be used.

Definition Kharitonov’s rectangle: Let P (s,q) =
n∑

i=0

[q−i , q+
i ]si be an interval

polynomial, then at a fixed frequency ω0, P (jω0,q) =
n∑

i=0

[q−i , q+
i ](jω0)

i de-

scribes the set of possible value that P (jω0,q) can assume as qi, i = 1, 2, .., n

ranges over their intervals. P (jω0,q) is called the Kharitonov rectangle at fre-

quency ω0. It can be proved that for an interval polynomial with independent

coefficient qi, P (jω0,q) in z-plane is a rectangle with vertices that are obtained

by evaluating the four Kharitonov polynomials K1, (s), K2(s), K3(s), K4(s) at

frequency ω0; i.e., the vertices of P (jω0,q) are precisely the Ki(jω0). When ω

changes from ω = 0 to ω = ∞, the Kharitonov rectangle will move in z-plane,

as shown in Figure-2.7 [10].
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The Zero Exclusion Condition Suppose that an interval polynomial P (s,q)

has invariant degree and at least one stable member p(s, q0). Then it is robustly

stable if and only if z = 0 is excluded from the Kharitonov rectangle at all

nonnegative frequency; i.e.,

0 ∈ P (jω,q), (2.15)

for all frequency ω ≥ 0. The geometric meaning of this theorem is that if the

origin point of z-plane is outside the boundary of the Kharitonov rectangles

then the system is robustly stable. For the system in Figure-2.7, since the

origin point in outside the boundary, the system is robustly stable.

From the Kharitonov theorem we know that for interval system with

independent coefficient, the boundary can be acquired by evaluating only four

Kharitonov polynomials. However, for system with dependent coefficients,

finding the boundary can be quite difficult. The corner of the Kharitonov

rectangle can not be acquired by just evaluating four Kharitonov polynomials.

Repeated evaluations of many polynomials may be needed. Some methods,

such as level set theory, has been developed to approximate the boundary of

such systems [7].

An alternative to interval uncertain systems is spherical uncertain sys-

tems, in which the uncertainty set is described as an ellipsoid rather than a

box determined by intervals. For such systems, the Kharitonov rectangle will

became a Kharitonov ellipse, as shown in Figure-2.8. A tool to find such an

ellipse in reported in [40].
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Figure 2.7: Motion of Kharitonov rectangular and zero exclusion condition,
adapted from [10]
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Figure 2.8: Spherical uncertain polynomials families, adapted from [40]
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Comparing the frequency domain uncertainty propagation problems

and the time domain uncertainty propagation problems reveals many simi-

larities. The ω in frequency is analogous to time t in time domain, and the

transfer function is analogous to the ODE in time domain. The problem of

frequency uncertainty analysis has also become one of finding the boundaries

of certain output, such as the boundary of the bode plot, the boundary of the

Kharitonov rectangles etc. In fact, methods used in time domain analysis, such

as interval analysis, can also be applied in frequency domain. Methods used

in frequency domain, such as level set, can also be used in time domain [58].

In a later chapter, a boundary theorem is proven for the time domain that can

be seen as analogous to the Kharitonov theorem for frequency domain.

2.4 Summary

In this chapter, topics related to simulation of dynamic systems with

uncertain parameter have been reviewed. Figure-2.9 summaries the content of

this review.

Table 2.2 shows the applicability of the different time domain ap-

proaches reviewed and the goal motivated by the review. Some conclusions

can be drawn from this review as follows:

1. Simulation of systems with uncertain parameters remains a challenging

problem, particularly because of the high computational cost.

2. Knowing the boundary of the output of an uncertain system has a wide
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Figure 2.9: Summary of the review
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range of applications.

This review motivated the following research goals:

1. Develop a numerical method to simulate (in time domain) parametric un-

certain, time invariant, nonlinear dynamic systems, i.e., find the bound-

ary/envelopes of the output variables.

2. The method should calculate boundary/envelope of the output accu-

rately and efficiently. Methods to improve accuracy and reduce compu-

tational cost should be pursued.

3. The method should be able to deal with large uncertainties, and to han-

dle a reasonable number (< 10) of uncertain parameters.

4. The method should be easily implemented and existing simulation tools

for determined systems should be easily integrated with this method.
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Table 2.2: Evaluation of reviewed time domain approaches
Evaluation
Criteria

MCS FOP/
EPL

DGO IA DI QS VE New
Approach

Computational
Cost

High Low High High Low Low Low medium

Solution
quality

High Depends High/
Depends

High/
Depends

Low Low Low High/
Depends

Uncertainty
Degree

Large Small Large Large Large large Large Large

Interval Yes Yes yes yes Yes Yes Yes yes
Statistic/pdf Yes Yes No No No No No yes
Implementation Easy Medium Medium Difficult Difficult Difficult Easy easy/

medium
Time
invariant

Yes Yes Yes Yes No? N/A Yes Yes
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Chapter 3

The Response Surface Methodology

In this chapter, we describe in detail a proposed methodology for simu-

lation of parametric uncertain system. The goal of this approach is to resolve

the trade-off between efficiency and accuracy. To reach this goal, the compu-

tational cost of the problem is first analyzed and then the basic idea of the pro-

posed approach is presented. The basic idea is to study an approximation or a

surrogate of the original system model, instead of the original system. To con-

struct the surrogate model, the response surface method (RSM) is employed.

Since the optimization problem to be solved is generally non-convex, there

may be multiple local optima. Conventional RSM using polynomials which

provides global approximation is not able to deal with the non-convex prob-

lem. Thus a local approximation approach called Moving Least Square (MLS)

is used for response surface construction. For more complicated systems, a

gradient enhanced moving least square (GEMLS) response surface method is

used to solve the global optimization problem more efficiently. This method

takes advantage of the fact that parametric sensitivity of an ODE system

can be calculated as a by-product when solving the original system with less

computational cost. With the help of sensitivity information, the number of

samples needed to construct the response surfaces is further decreased, and the
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quality of the response surface can be improved. Furthermore, global sensitiv-

ity analysis for monotonic testing to further reduce the number of samples is

introduced. Finally, numerical examples are provided to show the applicability

and effectiveness of the proposed method.

3.1 Computational Cost Analysis

From Chapter 2 we know that the simulation of parametric uncertain

dynamic systems can be posed as an optimization problem, as in Eq. 2.6, which

is rewritten here for convenience,

y = ∪
t∈[0,T ]

min (y(t)) = ∪
t∈[0,T ]

min (g(x(t),u))

y = ∪
t∈[0,T ]

max (y(t)) = ∪
t∈[0,T ]

max (g(x(t),u))

s.t.

{
x(t) = x0 +

∫ t

0
f(x,u,λ, τ)dτ

λ ∈ [λ, λ],x0 ∈ [x0,x0]

(3.1)

This formulation shows that the solution requires a method that is a com-

putationally expensive task. Specifically, this arises because of the following

aspects:

1. In order to solve Eq. (3.1), the objective function,

O =

{
min(g(x(t)))
max(g(x(t)))

(3.2)

must be evaluated at each time step. This means that numerical sim-

ulations (x(t) = x0 +
∫ t

0
f(x, λ,u, τ)dτ) need to be embedded into the

optimization routine. Since Eq. (3.1) is not generally a convex problem,
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Figure 3.1: Non-recursive simulation

it may have a lot of local maxima. To find the global maxima, simu-

lations may be performed many times. If simulation of the system is

already a computationally expensive task, which is often true for prac-

tical engineering systems (such as a nonlinear, stiff systems or if the

time to be simulated is very long), solving Eq. (3.1) will be even more

expensive.

2. Furthermore, Eq. (3.1) implies that the simulations embedded in the

optimization routine must always start from t = 0, due to the nature of

time-invariant dynamic system. This is a non-recursive simulation that

is illustrated by Figure-3.1. The advantage of non-recursive simulation

is that it can guarantee that the approximation error does not grow with

time. On the other hand, it will take longer and longer to simulate the

system as time t increases.

The computational cost of solving Eq. (3.1) can be approximated as follows:
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Assume the CPU time to simulate the system is linear with the time

span [0, T ] to be simulated. The CPU time to simulate the ∆t time span is

denoted as ∆τ . We also assume that, for each time step, ms simulations (eval-

uation of objective function O) are needed in order to solve Eq. (3.1). The

total time step is N =
T

∆t
. Then, the total CPU time is,

Tcpu flow = ms(∆τ + 2∆τ + · · · q∆τ + · · ·N∆τ)

= ms∆τ
N(N + 1)

2

(3.3)

This shows that CPU time grows quadratically with N .

To reduce the computational cost of solving Equation 3.1, this non-

recursive simulation is often approximated by a recursive one as,

y˜ = ∪
t∈[0,T ]

min (ŷ(t)) = ∪
t∈[0,T ]

min (g(x̂(t),u))

ỹ = ∪
t∈[0,T ]

max (ŷ(t)) = ∪
t∈[0,T ]

max (g(x̂(t),u))

s.t.

{
x̂(t) = x̂(t− 1) +

∫ t

t−1
f(x,u, λ, τ)dτ

λ ∈ [λ, λ],x0 ∈ [x0,x0]

(3.4)

where x̂ is the approximation of state variable x at time t. Geometrically

speaking, x̂ is the hyper rectangle bounded by y˜ and ỹ, as shown in Figure-

3.2. Eq. (3.4) can reduce the computational cost by converting a non-recursive

simulation to a recursive one, and thus there is no need to simulate the system

from time zero. This transformation leads to the following severe drawbacks:

1. Eq. (3.4) is a conservative approximation of Eq. (3.1), because the simu-

lation scheme is assuming the system is time-varying. Generally, the
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envelope given by Eq. (3.4) will be much wider than that given by

Eq. (3.1) [68].

2. The approximation at time step tk−1 will accumulate to the next time

step,tk, by Eq. (3.4), which is called wrapping effect, as illustrated in

Figure-3.2 [4]. In Eq. (3.4), the system’s state variable, x(t), is rep-

Figure 3.2: The wrapping effect, adapted from [4]

resented by a hyper rectangle. However, it may be that the system’s

state does not evolve into another hypercube at the next time point. In

Figure-3.2, an example is shown in which there are two state variables

and, therefore, the state is approximated as a rectangle. This rectangle

evolves to a rhombus (it could evolve to any figure in two dimensions) in

53



the following time step. As the value of each variable is still expressed

with an interval, the new state is represented with a new rectangle that

includes all possible states (the rhombus) but also spurious states, shown

in shadow in the figure. It can be found that error in a previous time

step will accumulate into the next step.

3. Because of the wrapping effect, the envelopes of a stable time variant

system may be unstable if Eq. (3.4) is used to simplify Eq. (3.1) [21].

To solve the above problems, a method called sliding window was pro-

posed [4, 21, 64]. The idea is to assume that the current state is only influenced

by a limited number of L previous states, due to the dynamics of the system.

L is called the window length. It simplifies the simulation to,

x̂(tk)
L

=

{
x0 +

∫ tk
0

f(x,u, λ, τ)dτ 0 ≤ k ≤ L

x̂(tk−L) +
∫ tk

tk−L
f(x,u, λ, τ)dτ k > L

(3.5)

Eq. (3.5) can be seen as a trade-off between pure time invariant simulation of

Eq. (3.1), where L = inf, and a pure time variant simulation of Eq. (3.4), where

L = 1. For linear parametric uncertain system, there exists a minimum window

length Lmin that will guarantee that a stable simulation will be acquired if the

original linear parametric uncertain system is stable [68].

The sliding window method raised more questions than it answered.

For example, how to determine Lmin, what if the system is nonlinear, etc.

Also new methods should be developed to reduce the computational cost.
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3.2 Surrogate Model for Optimization: The Response
Surface Method

As concluded in the previous section, the major computational burden

of simulation in parametric uncertain systems is that evaluation of the objec-

tive functions is too expensive, due to system dynamics and the non-recursive

character of time invariant systems. When optimization of the original ob-

jective function is too expensive, an approximation of the original function or

a surrogate could be used [7, 8]. Evaluation of the surrogate takes less time

than evaluation of the original objective functions. One method to build such

surrogate is called Response Surface Method (RSM), which has long been used

for design, optimization and other applications [11, 31, 60].

RSM can be defined as a collection of statistical and mathematical tech-

niques useful for developing, improving, and optimizing processes. The most

extensive use of RSM can be found in the industrial applications, in situations

where several input variables influence some performance measure, called the

response, in a way that is difficult or impossible to describe with a rigorous

mathematical formulation. In these situations it might be possible to derive

an expression for the performance measure based on the response values ob-

tained from experiments at some particular combination of the input variables.

The expression of the performance measure obtained through experiments is

called response surface (RS) [60]. With the development of the computing

technology, the experiments cam be done by computer simulations.

The response surface method approximates an unknown objective func-
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tion O, with an appropriate empirical model, Ô, so that O(x) = Ô(x) + ε.

The empirical model Ô is called the response surface of O. Once the response

surface, Ô, is built, it can be used to replace the original function, O, for

optimization or other purposes.

3.2.1 General Steps of Using RSM for Simulation of Parametric
Uncertain Systems

For the simulation of parametric uncertain system, the objective func-

tion Eq. (3.2) is a function of the uncertain parameter λ and uncertain ini-

tial condition x0, at a given time t. It can be written as: Ô(χ, t), where

χ = [λ, x0], χ ∈ Rn is the total uncertain parameter space to be searched.

A response surface Ô to approximate O based on just a few samples can

be constructed and used for optimization. The general steps of using RSM for

parametric uncertain system simulation are:

1. Take ns sample points from χ, denoted as χi
s, i = 1, 2, ..., ns, where

χi
s = [λi

s,x
i
s0]

2. Integrate xi
s(t) = xi

s0 +
∫ T

0
f(x, λi

s,u, t)dt to get ns trajectories of state

variables in the time span [0, T ].

3. At qth time step tq, q = 1, 2, ..., N , do the following:

a. Calculate O(χi
s, tq) = g(xi

s, tq), i = 1, 2, ..., ns

b. Construct the response surfaces Ô(χi
s, tq) based on O(χi

s, tq), i =

1, 2, ..., ns.
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c. Solve Eq. (3.1) using Ô as the objective function, instead of using

O.

The above steps are illustrated in Figure-3.3. By using RSM, only ns

simulations from time 0 to T are needed. Since each simulation is still started

from time 0, the error will not accumulate from step to step. (i.e. no wrapping

effect with this approach). In step 3-c, any appropriate global optimization

technique can be used, such as genetic algorithms or differential evolution [75];

or simply divide χ into mrsm grids, each grid is small enough and one cane

exclusively evaluate all the values of Ô(χ, t) at each grid and find the minimum

and maximum, since Ô(χ, t) is cheap to evaluate.

Figure 3.3: Using RSM for simulation of parametric uncertain systems

3.2.2 Time Saving by Using RSM

The total CPU time used by RSM for parametric uncertain system

simulation can be approximated as follows: assume ns samples are needed and
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at each time step tq, mrsm evaluations of the response surface (evaluation of

Ô) are needed. The time for each evaluation is τ ′, so the total CPU time is,

Tcpu rsm = nsN∆τ + mrsmNτ ′. (3.6)

From Eq. (3.3),

ζ =
Tcpu flow

Tcpu rsm

=
ms∆τ

N

2
(N + 1)

nsN∆τ + Nmrsmτ ′
. (3.7)

To simplify this equation, assume
N(N + 1)

2
≈ N2

2
,
mrsm

ms

= α. Also,

assume that ms = ns, which implies that if a certain optimization technique

used to solve Eq. (3.1) can find the optima of O directly by ms evaluations of

O, then ms samples can be used to construct a response surface to find the

optima of Ô as well. Let τ = N∆τ , which is the CPU time to simulate system

from 0 to T . The cost ratio between calculating the real objective function,O,

and the surrogate, Ô, is β =
τ

τ ′
. Notice that τ ′ can be treated as a constant,

while τ will increases if T increases. With these assumptions, Eq. (3.7) can be

simplified to,

ζ =
Tcpu flow

Tcpu rsm

≈
msτ

N

2

msτ +
α

β
msτ

=
N

2

(
1 +

α

β

) . (3.8)

When ζ >> 1, RSM will be a better choice for parametric uncertain

system simulation. Eq. (3.8) suggests that RSM can be effectively applied to

problems when:

1. N is large, which means time span is long or integration step is small.
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2. Generally, large values of α are needed to get accurate results. This

means that the search domain should be divided into smaller regions

when using RSM to do an exclusive search, leading to increased CPU

time. However, for systems where simulation is slow, β will easily be

large enough to cancel the effect of increasing α.

From the above analysis, it can be found that RSM will reduce the

computational cost for systems whose simulation is very time consuming, while

keeping the time invariant character and avoiding the wrapping effect. Com-

pared to the sliding window method, RSM can be applied to general nonlinear

systems and there is no need to select window length, L.

3.3 Total Least Square Response Surface

The general steps to construct a response surfaces Ô of a function O(x)

are:

1. Select input variables called sample points, which are denoted as, xi
s ∈

Rn, i = 1, 2, ..., ns, where ns is the number of samples points. This step

is called Design of Experiment (DOE).

2. Acquire Oi
s = O(xi

s), which are the corresponding outputs (observations)

of the selected sample points by experiments or simulation. The pairing

of a sample point xi
s and its observation Oi

s is called a sample. The

process of acquiring a sample is called sampling.
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3. Fit Ô to the samples by minimizing certain error function, E = E(Oi
s −

Ôi
s).

Different mathematical forms of Ô and E lead to different response surface

methods.

The most widely used response surface method is called the total least

square (TLS) method, which uses polynomials to from Ô. For example, a two

variable model represented by a quadratic polynomial can be written as,

Ô = a1 + a2x1 + a3x2 + a4x
2
1 + a5x

2
2 + a6x1x2.

In matrix form, we have,

Ô =

np∑
k=1

pk(x)ak = pa, (3.9)

where pk(x) is called the basis function, and np is the number of terms in the

basis. Generally, the basis functions are polynomials, as in this example. For

a 2nd order approximation, the basis function p(x) can be written as,

p(x) = p(x1, x2) = [ p1 p2 p3 p4 p5 p6] =
[

1 x1 x2 x1x2 x2
1 x2

2

]
,

where a is the coefficient vector, and aT = [ a0 a1 · · · anp−1] . In this

example, np = 6.

The coefficient of the polynomials are determined by minimizing the

total square error defined as,

ET =
ns∑
i=1

ε2
i =

ns∑
i=1

(Oi
s − Õi

s)
2 =

ns∑
i=1

[
np∑

k=1

pk(x)ak −O(xi
s)

]2

. (3.10)
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In matrix form, Eq. (3.10) can be written as,

ET = (Psa−Os)
T (Psa−Os), (3.11)

where,

OT
s =

[
O (x1

s) O (x2
s) · · · O (xns

s )
]
1×ns

, (3.12)

is the observation matrix, and,

Ps =


p1(x

1
s) p2(x

1
s) · · · pnp(x

1
s)

p1(x
2
s) p2(x

2
s) · · · pnp(x

2
s)

...
... · · · ...

p1(x
ns
s ) p2(x

ns
s ) · · · pnp(x

ns
s )


ns×np

, (3.13)

is the basis function matrix.

To minimize the total least square error, ET , require,

∂ET

∂a

∣∣∣∣ = 0 = −2PT
s Os + 2PT

s Psa(x) . (3.14)

Let,
A[np×np] = PT

s Ps

B[np×1] = PT
s Os

(3.15)

then Eq. (3.14) simplifies to,

a(x) =
[

a1(x) a1(x) · · · anp(x)
]

= A−1B (3.16)

From the above procedures we can find that the response surface model con-

structed by total least square method is a global model. That is, once the

coefficient vector a is determined by the sampled data, it can be used to ap-

proximate the objective function value at any points in the entire domain

61



where O is defined. The advantage of a global model is that the computa-

tional cost is low since one model can be used for all points where function

values are to be estimated. However, since the base function in the model is

a low order polynomial, such a global model can only be used to approximate

functions with very few local maxima. If a function with multi-local maxima is

to be approximated, the approximation error will be increased. To avoid this,

the order of the polynomial has to be increased, with corresponding computa-

tional cost. Because of this, global approximation is often used to approximate

a function in a very small domain where only one local maxima exists.

3.4 Local Approximation for Global Optimization

Generally, Eq. (3.1) is not convex and there may be several local max-

ima. Conventional response surfaces that use a single quadratic or cubic poly-

nomial to represent the entire domain of the target function are not able

to deal with objective functions having multiple local optima [32, 48]. As

such, local approximation methods such as Kriging [17, 41] and moving least

square [52, 70] should be used for such optimization problem. Kriging is an

interpolation method that originated in geostatistics and uses properties of the

spatial correlation among the data samples. Moving least square is a weighted

least square method such that the weights are functions of the location of

approximation. This method has been used for optimization with up to ten

variables [48]. Compared with Kriging, moving least square is found to be more

accurate and computationally efficient [48]. In this section, we will introduce
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gradient enhanced moving least square for response surface construction, and

the principles apply to the Kriging method as well.

3.4.1 Moving Least Square (MLS) method

The moving least squares (MLS) method is a localized surface recon-

structing technique which was introduced in [70] by Shepard. Recently, it

has become widely used in related engineering areas by virtue of its approx-

imation power [52]. Such as approximation for time-dependent PDEs [27],

analysis of metal forming processes by the flow formulation [33], function op-

timization [37], etc.

MLS intrinsically is a weighted least square method, in which the

weighting is a function of the location of the point to be approximated. Figure-

3.4 can be used to interpret the concept of moving least square [47]. Figure-

3.4(a) shows a line generated by conventional total least square method. In

this method, sample points are equally weighted and their contributions to

the resulted model are the same. As a consequence, one model with fixed

coefficients is used to predict the output no matter what value of the input

variables. As shown in Figure-3.4(a), assume we use this model to approxi-

mate the output y when input x = 4.6, since the original function is highly

nonlinear around x = 4.6 and the predicted point A is far away from the real

point B. At the location where x = 7.5, the original function is quite linear,

but since the model (solid line) is also influenced by point-4 and point-5, the

predicted value is still not good.
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Figure-3.4(b) shows that only the samples in the neighborhood of the

estimated points are used to construct the response surface. Each point is

weighted according to its distance to the estimated point. Consequently, a

local approximation of the function will be constructed for each estimated

point, with different coefficients that depend on its location. The computing

cost of moving least square surface is higher than the total least square but the

accuracy is also improved dramatically. The procedure to construct a moving

(a) Global model by total least square method (b) Local model by Moving least square method

Figure 3.4: The principle of Moving Least Square(MLS)method

least square response surface at a certain estimated point is as follows:

Assume an unknown function O(x) defined in the domain Ω is to be

approximated by, Ô(xs) as O(xs) = Ô(xs) + ε, where x = [x1 x2 ... xn] and

ε is the approximation error. Suppose we have ns sample points, xi
s ∈ x, i =

1, 2, . . . , ns, and the observations, O(xi
s), i = 1, 2, ..., ns. First, the local ap-
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proximation Ô(x) of O(x) at each position x in the domain Ω is defined as a

linear combination of a set of independent functions,

Ô(x) =

np∑
k=1

pk(x)ak(x) = p(x)a(x), (3.17)

where pk(x), k = 1, 2, ..., np is the same as defined in Eq. (3.9). Comparing

Eq. (3.9) to Eq. (3.17), the only difference is that for the moving least square

method the coefficient a is a function of the location where the original function

is to be approximated, which makes it a localized approximation rather than

a global approximation.

Similar to the total least square method, the coefficients, ak(x), can be

obtained by minimizing the moving least square error, which is defined as,

EM =
ns∑
i=1

w(x− xi
s)
[
p(xi

s)a(x)−O(xi
s)
]2

. (3.18)

In matrix form, Eq. (3.18) can be written as,

EM = (Psa(x)−Os)
TW(x)(Psa(x)−Os). (3.19)

The definitions of Os and Ps are the same as in total least square method and

the weight function matrix is,

W(x) =


w(x− x1

s)
w(x− x2

s)
. . .

w(x− xns
s )


ns×ns

. (3.20)

This equation shows that the moving least square method is intrinsically a

weighted square method in which the weight is a function of the location.
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Figure 3.5: The cubic spline weight function

The weight function should be a compactly supported function centered

at each sampling point. The cubic spline weight function can be used and it

is defined as,

w(x− xi
s) =



2

3
− 4r2 + 4r3 r < 0.5

4

3
− 4r + 4r2 − 4

3
r3 0.5 < r ≤ 1

0 r > 1

where r =
‖x− xi

s‖
rmax

, and rmax is called the radius of influence domain. The

value of rmax reflects how local the MLS will be. If rmax is large enough to

cover the whole domain Ω, then MLS becomes a conventional TLS method.

The shape of the weight function in 2D is shown in Figure-3.5.
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To minimize the least square error Em, take,

∂EM

∂a

∣∣∣∣ = 0 = −2PT
s W(x)Os + 2PT

s W(x)Psa(x) . (3.21)

Let,
A[np×np] = PT

s W(x)Ps

B[np×1] = PT
s W(x)Os

(3.22)

Then,

a(x) =
[

a1(x) a1(x) · · · anp(x)
]

= A−1B (3.23)

Comparing Eq. (3.16) and Eq. (3.23), the similarity between MLS and

TLS can be found. The condition for the above MLS procedure to work is that

matrix A must be non-singular. This can be guaranteed by adjusting rmax for

each estimated point x so that rank(W(x)) > np. This shows that the MLS

approximation has a self-adaptive regulating ability for irregular sample point

patterns. At the location where density of the sample points are low, rmax

should be larger to includes enough sample points. At the point where density

of sample points is high, rmax should be smaller so good local approximation

can be acquired. Another attractive property of the MLS approximations is

that the continuity of Ô(x) is related to the continuity of the weight function,

w(x − xi
s). Hence, one can use a linear basis function to reproduce higher

order continuous approximations by choosing a suitable weight function. In

addition, the MLS approximation is not necessarily an interpolant, 1 but could

be an interpolant by introducing singularity to the weight function and making

1Interpolant means the approximated function will go through the sample points
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the weight of sample points infinity. For example, use w′(x−xi
s) =

w(x− xi
s)

‖x− xi
s‖

α

as a weight function, where α is a positive even integer [37]. Interpolant MLS

is denoted as IMLS in the following discussion.

Example 3.1 Consider a one-dimensional mathematical function approxi-

mated by using the proposed MLS and interpolant MLS (IMLS). The analyt-

ical function is:

y = e−x sin 4πx + x3

In this example, 11 equidistance sample points and their function values (obser-

vations) are used for reconstructing this function, as shown in Figure-3.6. Both

the linear p = [ 1 x] , and quadratic p = [ 1 x x2] basis function are used,

and the spline cubic function is selected as the weight function for MLS/IMLS,

and α = 2 for the IMLS. The detailed approximation/interpolation results are

given in Figure-3.6. For comparison purposes, results given by conventional

least square with a 2nd order polynomial and 7th order polynomial are given

in Figure-3.6(e) and 3.6(f).

Example 3.2 A multiple variable example is shown in Figure-3.7. The original

function is a Matlab function called peaks. The expression of this function is

z = 3(1− x)2e−x2−(y−1)2 − 10(
x

5
− x3 − y5)e−x2−y2 − 1

3
e−(x+1)2−y2

The function is reconstructed with 36 sample points. According to

sampling theorem, 36 is very close to the minimum number of samples need

to reconstruct the original function. The surface and contours of the original
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(a) 1st order MLS (b) 2nd order MLS

(c) 1st order IMLS (d) 2nd order IMLS

(e) 2nd TLS (f) 7th order TLS

Figure 3.6: Moving least square example
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(a) Original Peaks (b) MLS Reconstructed Peaks

(c) Contour of original Peaks (d) Contour of MLS reconstructed

(e) Comparison of original and reconstructed peaks

Figure 3.7: Moving least square example: Peaks in Matlab
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and reconstructed function are shown in Figure-3.7(a). The results show that

the stationary points of the two functions are very close.

These two examples illustrate the following features of MLS:

1. MLS is a multi-variable regression method.

2. MLS has the ability of using low order basis functions to approximate

highly nonlinear functions with multiple optima, and the continuity of

the reconstructed function is related to the continuity of the weight func-

tion. Comparing Figure-3.6(a), 3.6(b) and Figure-3.6(e), 3.6(f), it is clear

that MLS is good at local approximation. A 2nd order MLS response sur-

face is as good as a 7th order total least square response surface.

3. Although the MLS approximation is not an interpolant, the stationary

points (locations where the local optima exist) approximated by MLS

are almost the same as their original true values, as shown in Figure-

3.6(b), 3.6(d) and Figure-3.7(c), 3.7(d).

4. The IMLS method can force the reconstructed function to pass through

the sample points exactly, by introducing singularities into the weight

function. However, the shape of the reconstructed function is not as

smooth as the one generated by MLS with same basis function. However,

this can be improved by increasing the order of the basis function, as

can be seen in Figure-3.6(c),3.6(d).
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Taking into account the aforementioned observations, one therefore uses

the MLS approach in the development of an efficient optimal technique. First

the locations of the optima are found by using the moving least square response

surface and then the corresponding optimal function values can be found by

taking these locations as the input to the original function.

3.5 Reducing the Computational Effort

In order to construct the response surface, samples and their corre-

sponding function values must be calculated, a process referred to as sampling

before. Sampling contains two steps: 1) select the sample points xs in the

domain Ω, which is called design of experiment (DOE) and 2) calculate the

corresponding observations Os. For our problem, the 2nd step means simu-

lation of a determined system, and this can be time consuming. In order to

reduce the computational cost to construct a response surface, the amount

of sampling should be reduced, while maintaining the quality of the response

surface. To reach this target, two approaches may be taken:

1. Find samples that represent the original function better

2. Get more information from one sample point and its corresponding func-

tion value.

In this section, both methods will be discussed, with focus on the latter ap-

proach.
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3.5.1 Design of Experiment

An important aspect of RSM is the design of experiments, usually ab-

breviated as DOE. These strategies were originally developed for the model

fitting of physical experiments, but can also be applied to numerical experi-

ments. The objective of DOE is the selection of the points where the response

should be evaluated or where the sample points should be sampled. The choice

of the design of experiments can have a large influence on the accuracy of the

approximation and the cost of constructing the response surface.

Most existing DOE methods are designed for conventional RSM which

use 2nd order polynomial and minimize the total least square error. They are

based on a philosophy of sequential experimentation, with the objective of

approximating the response with a low-order polynomial in a relatively small

region of interest that contains the optimum solution. This implies that there

may be only one local maximum. Thus, not all of these DOE methods apply

to optimization problems with many local maxima. A detailed description of

design of experiments theory can be found in [11, 60].

Some of the existing DOE methods can still be used directly for con-

structing the moving least square response surface. The can be categorized

into so called space filling design, and these methods are:

1. Full Factorial (FF) design or orthogonal lattice design. A factorial ex-

perimental is an experiment strategy in which design variables are varied

together, instead of one at a time. The lower and upper bounds of each
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Figure 3.8: A 3 level factorial design

of n design variables in the optimization problem needs to be defined.

The allowable range is then discretized at different levels. If each of the

variables is defined at only the lower and upper bounds, the experiment

is call a 2 level design. Similarly, if the midpoints are included, the de-

sign is called 3 level design. This technique can be simply understood

as evenly sampling in the search space by dividing the search space into

many grids, as shown in Figure-3.8.

2. Monte Carlo or Random design. The values of parameters are picked

randomly from within their range (usually using a simple uniform prob-

ability distribution function–all values are equally likely).

3. Latin Hypercube (LH) design.

Superior alternatives to both the full factorial and Monte Carlo scans ex-
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Figure 3.9: Latin hypercube design

ist: descriptive sampling methods such as the latin hypercube method [22,

57]. The basics of the latin hypercube (LH) method are demonstrated vi-

sually in Figure-3.9. Instead of selecting values of parameters randomly

as is done in a Monte Carlo approach, values are selected descriptively.

The resolution of all sampled parameters is the same as the total number

of cases evaluated. In Figure-3.9, a problem with two parameters (A and

B) has been sampled with a resolution of 5: five values of each parameter

are sampled, but the same value of any one parameter is never tested

twice. The cells within the hypercube are themselves chosen randomly.

When used for gathering statistical information, such as mean, variance,

LH descriptive sampling is approximately 5 to 10 times more efficient

than Monte Carlo sampling. In other words, the same level of accuracy

can be gained in only 10% to 20% of the evaluations needed by the Monte

Carlo (and presumably the FF) search methods.
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3.5.2 Local Sensitivity Analysis of ODE systems

Sensitivity analysis (SA) is the study of how the variation in the out-

put of a model can be apportioned, qualitatively or quantitatively to different

sources of variation, and of how the given model depends upon the information

input into it [67]. Sensitivity analysis can be divided into two large categories:

local and global sensitivity analysis. Local sensitivity analysis focuses on es-

timation of model sensitivity to input and parameter variation in the vicinity

of a sample point. This sensitivity is often characterized through gradients

or partial derivatives at the sample point [42]. In other words, for a multi-

variable system, local sensitivity analysis methods refer to small changes of

one parameter while other parameters are fixed. Global sensitivity analysis is

a domain-wide sensitivity analysis that involves the study of the system behav-

ior over the entire range of parameter variation, often taking the uncertainty

in the parameter estimates into account. It refers to the effect of simultaneous

parameter changes in a much larger amplitude.

In this section, we focus on the local sensitivity analysis of ODE sys-

tems. We concentrate on the numerical computing of the parametric sensitiv-

ity coefficients and explore the relationship between the ODE system and its

adjacent sensitivity equations. We will show how sensitivity analysis will help

to further reduce the computational cost by reducing the number of samples

to construct a response surface.
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Considering the state equations for a parametric uncertain system:{
ẋ = f(x, λ,u, t)

x(0) = x0
(3.24)

Differentiating Eq. (3.24) with respect to λ yields,
∂ẋ

∂λ
=

∂f

∂x
· ∂x

∂λ
+

∂f

∂λ
∂x

∂λ

∣∣∣∣
t=0

= 0
(3.25)

Define, Sλ =
∂x

∂λ
, and Jx =

∂f

∂x
, Jλ =

∂f

∂λ
, so Eq. (3.25) can be written as,{

Ṡλ = Jx · Sλ + Jλ

Sλ(0) = 0
(3.26)

Differentiating Eq. (3.24) with respect to x0 yields,
∂ẋ

∂x0

=
∂f

∂x
· ∂x

∂x0
∂x

∂x0

∣∣∣∣
t=0

= I
(3.27)

Define S0 =
∂x

∂x0

, Eq. (3.27) can be written as:

{
Ṡ0 = Jx · S0

S0(0) = 0
(3.28)

Eq. (3.26) and Eq. (3.28) are called sensitivity equations. Here Jx is a n × n

matrix that contains derivatives of the right-hand side of the differential equa-

tion with respect to the system variables and is called the Jacobian matrix.

Jλ is a n × m matrix that contains derivatives of the right-hand side of the

differential equation with respect to the system parameters and is called the
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parametric Jacobian matrix. Sλ is a n×m matrix that contains all the para-

metric sensitivity coefficients and is called the parametric sensitivity matrix.

S0 n×n matrix that contains all the initial sensitivity coefficients and is called

initial sensitivity matrix. I is the n×n identity matrix. The following example

shows how these matrixes are defined numerically.

Example 3.3a Consider the following linear system,[
ẋ1

ẋ2

]
=

[
λ1 λ2

λ3 λ4

] [
x1

x2

]
=

[
λ1x1 + λ2x2

λ3x1 + λ4x2

]
The number of states n = 2, the number of parameters m = 4. We have,

Jx =
∂f

∂x
=

[
λ1 λ2

λ3 λ4

]
2×2

Jλ =
∂f

∂λ
=

[
x1 x2 0 0
0 0 x1 x2

]
2×4

Sλ =


dx1

dλ1

dx1

dλ2

dx1

dλ3

dx1

dλ4

dx2

dλ1

dx2

dλ2

dx2

dλ3

dx2

dλ4


2×4

S0 =


dx1

dx1
0

dx1

dx2
0

dx2

dx1
0

dx2

dx2
0


2×2

The sensitivity equations of λ1 and x1
0 are as follows:

Sλ1 =

[
S1

1

S2
1

]
=

 dx1

dλ1
dx2

dλ1

 =

[
λ1x1 + λ2x2 + x1

λ3x1 + λ4x2 + 0

]
,Sλ1(0) =

[
0
0

]

Sx1
0

=

[
S1−0

1

S1−0
2

]
=


dx1

dx1
0

dx1

dx1
0

 =

[
λ1x1 + λ2x2

λ3x1 + λ4x2

]
,Sx1

0
(0) =

[
1
0

]

From this example, we can find that the form of the sensitivity equa-

tions is very close to the original system ODE. It implies that there may
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be some relationship between the original ODE and the adjacent sensitivity

equations. The sensitivity equations show that the solutions of the sensitivity

equation requires the knowledge of the solution of the original system equa-

tion at all points where the ODE solver calculates the right-hand side of the

sensitivity equation. Connections between these two sets of equations can be

made in several ways and lead to different methods to solve the sensitivity

equations.

There are several methods that can be used to solve Eq. (3.26) and

Eq. (3.28) [61, 67]. The simplest one is called brute force method or indirect

method by using the finite-difference approximation,

dx

dλi

≈ x(λi + ∆λi)− x(λi)

∆λi

, i = 1, ...,m (3.29)

Solving sensitivity equation in this way requires m + 1 simulations of

the original model. Obviously, the accuracies of this method depend on the

parameter change, ∆λi, and the linearity of the system. The advantage of this

method is its robustness. No modification to the system ODE is needed. The

system can also be treated as a black box.

A set of more accurate methods is called Direct methods (DM). These

solve the Eq. (3.26) and Eq. (3.28) directly. Numerical solutions of Eq. (3.26)

and Eq. (3.28) requires knowledge of Jx and Jλ at each step of the ODE solver

and thus the values of the system state variable x have to be known. Therefore,

the system ODE Eq. (3.24) must be solved in advance, or simultaneously, and

thus the computational cost of DM is quite high.
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It was Dunker [24] who first showed that a special relation existed

between the sensitivity equation Eq. (3.26), Eq. (3.28) and the system ODE

Eq. (3.24). This relationship can be used to solve Eq. (3.26) and Eq. (3.28)

with little extra computational cost when solving system ODE Eq. (3.24).

Algorithms based on his idea are called decoupled direct method or DDM. It

has been proved to be the best general method to calculate sensitivities [67].

The basic idea of Dunker begins by writing the implicit finite-time

difference form of Eq. (3.24) in the time interval [tk, tk+1] can be written as,

ẋ(tk+1) =
x(tk+1)− x(tk)

∆t
= f(x(tk+1), λ,u, t), (3.30)

where ∆t = tk+1 − tk. Using Taylor expansion to expand f(x(tk+1), λ, u, t)

near x(tk, λ,u, t) yields,

f(x(tk+1), λ,u, t) = f(x(tk), λ,u, t) +
∂f

∂x

∣∣∣∣
x=x(tk)

∆x + O(x2), (3.31)

where ∆x = x(tk+1) − x(tk). Ignoring the higher terms and substituting

Eq. (3.30) into Eq. (3.31),

x(tk+1)− x(tk)

∆t
= f(x(tk), λ,u, t) +

∂f

∂x

∣∣∣∣
x=x(tk)

(x (tk+1)− x (tk)) (3.32)

Let Jx =
∂f

∂x
, and Jx,k =

∂f

∂x

∣∣∣∣
x=x(tk)

, and rearrange Eq. (3.32) to get

the following equations that solve the system ODE Eq. (3.24) iteratively,

x (tk+1) = x(tk) + ∆t (J−∆tJx,k)
−1 f (x (tk) , λ,u, t)

x (tk+2) = x(tk+1) + ∆t (J−∆tJx,k+1)
−1 f (x (tk+1) , λ,u, t)

(3.33)

where J is a unitary matrix (all elements are 1).
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From Eq. (3.33) we can see the major computing task to solve system

ODE Eq. (3.24) is to calculate the matrix (J−∆tJx,k)
−1.

Similarly, let Sλ(tk) = Sλ,k, the finite-difference form of parametric sen-

sitivity equation Eq. (3.28) is,

Ṡλ,k+1 =
Sλ,k+1 − Sλ,k

∆t
= Jx,k+1Sλ,k+1 + Jλ,k+1 (3.34)

Reorganizing this equation,

Sλ,k+1 = (Jx,k+1Sλ,k+1 + Jλ,k+1) ∆t + Sλ,k,

Rewriting above equation yields an equation that solves the parametric sensi-

tivity equation Eq. (3.26) iteratively,

Sλ,k+1 = (J−∆tJx,k+1)
−1 (Jλ,k+1∆t + Sλ,k) (3.35)

Let S0(tk) = S0,k and applying the same procedure to the initial sensitiv-

ity equation Eq. (3.24) yields an equation that solves the initial sensitivity

equation Eq. (3.28) iteratively::

S0(tk+1) = (J−∆tJx,k+1)
−1 S0 (x (tk)) (3.36)

Compare Eq. (3.33), Eq. (3.35) and Eq. (3.36), to find that the matrix (J−∆tJx,k)
−1

used to solve Eq. (3.33) can be used to solve Eq. (3.35) and Eq. (3.36) as well.

Thus only little extra computational cost is needed for solving Eq. (3.35) and

Eq. (3.36) if Eq. (3.33) is to be solved.

This analysis shows that the sensitivity equation can be solved with

little extra cost when solving the original system ODEs.
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Example 3.3b For the system ODE used in Example 3.3a, assume we have

λ =
[
−2 −3 5 −6

]
and x0 =

[
1 1

]
, so we can calculate Sλ and S0 by

using DDM. The results are shown in Figure-3.10.

In this section, we show that the sensitivity equation Eq. (3.26) and

Eq. (3.28) can be solved as a byproduct of solving the original system Eq. (3.24)

with little extra cost. This is a very important conclusion and it means we

can get the function value and its derivative as a secondary function in one

sampling process. With both primary and secondary function values, the

quality of the response surface can be improved, or in other words, less samples

are needed if the quality of the response surfaces remains the same.

3.5.3 Gradient (Sensitivity) Enhanced MLS

The gradient enhanced response surface method (GERSM) uses both

the primary function values and the gradient (sensitivity) information as the

secondary function for construction of response surface. It has provided very

attractive results in many applications [16, 17, 51, 56]. Generally, there are two

ways to use sensitivity information to form a gradient enhanced moving least

square response surface (GEMLS). The first method, which is called GEMLS1

in this dissertation, is to use sensitivity information to generate some ‘pseudo

samples’ around a real sample. Assume we have a sample O(xs), by using

Taylor expansion,

O(xs + δ) ≈ O(xs) +
∂O

∂xs

dxs = O(xs) + Sxsδ (3.37)
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(a) x1 (b) x2

(c) S1
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dx1

dλ1
,
dx1

dλ2
,
dx1

dλ3
,
dx1

dλ4
) (d) S2
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dx2

dλ1
,
dx2

dλ2
,
dx2

dλ3
,
dx2

dλ4
)

(e) S1
0 = (

dx1

dx1
0

,
dx1

dx2
0

) (f) S2
0 = (

dx2

dx1
0

,
dx2

dx2
0

)

Figure 3.10: Sensitivity analysis example
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where δ should be small enough so Eq. (3.37) holds. From Eq. (3.37) it is

relatively easy to get the observation at the point xs +δ given the observation

O(xs) and the sensitivity information Sxs . Define O(xs +δ) as pseudo samples

around the real sample O(xs). As pointed out in the previous section, when

O(xs) is determined, Sxs is obtained with less cost. Thus, the pseudo samples

can be acquired along with the real sample O(xs) with little cost. This method

has also been called database argumentation in [54], or indirect method in [17].

The advantage of GEMLS1 is that no additional coding is required for the MLS

method. The disadvantage is that the value of step size, δ, is hard to select.

Generally δ < 5% of the total range of x is the rule. In [54], a method to

selecting a better step size by including the step size as one of parameters in

the response surface model is given.

Example 3.4 Pseudo Samples. In Example 3.1, there are 11 samples used

to reconstruct the original function. Figure-3.11(a) shows the result of us-

ing GEMLS1 with 6 samples and 10 pseudo samples to reconstruct the same

function used in Example 3.1, which is much better than the result shown in

Figure-3.11(b), which is generated by using MLS with 6 real samples.

Another method (GEMLS2 in this dissertation) is to treat sensitivity

information as a secondary function. The response surface should fit both

the original and secondary functions. A similar method is referred to direct

method in [16, 17].

Since O(xs) = Ô(xs) + ε, by taking derivative with respect to xj, j =
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(a) GEMLS1: 6 real plus 10 Pseudo samples (b) MLS with 6 real samples

Figure 3.11: GEMLS1 by using pseudo samples

1, 2, ..., n, we have,

∂O(x)

∂xj

=
∂p(x)

∂xj

a(x) + p(x)
∂a(x)

∂xj

+
∂ε

∂xj

(3.38)

Let Od
j (x) =

∂O(x)

∂xj

, pd
j =

∂p(x)

∂xj

and εd
j = p(x)

∂a(x)

∂xj

+
∂ε

∂xj

, then Eq. (3.38)

can be rewritten as,

Od
j (x) = Ôd

j (x) + εd
j = pd

j (x)a(x) + εd
j (3.39)

Let Θ =


O
Od

1

Od
2
...

Od
n

 , Θ̂ =


Ô

Ôd
1

Ôd
2
...

Ôd
n

 ,Π =


p
pd

1

pd
2
...

pd
n

 , e =


ε
εd
1

εd
2
...
εd

n

, and write

Eq. (3.39) in matrix form as,

Θ(x) = Θ̂(x) + e

Θ̂(x) = Π(x)a(x)

(3.40)

85



Apply the same moving least square procedure to Eq. (3.40) as to Eq. (3.9),

and form a set of similar equations,

a(x) = A−1B

Anp×np = ΠT
s Ψ(x)Πs

Bnp×1 = ΠT
s Ψ(x)Θs

(3.41)

where Θs =



O(x1
s)

Od
1(x

1
s)

...
Od

n(x1
s)

...

O(xns
s )

Od
1(x

ns
s )

...
Od

n(xns
s )


[(n+1)·ns]×1

Πs =



p(x1
s)

pd
1(x

1
s)

...
pd

n(x1
s)

...

p(xns
s )

pd
1(x

ns
s )

...
pd

n(xns
s )


[(n+1)·ns]×np

Ψ =



 w(x− x1
s)

. . .

w(x− x1
s)

 0

 w(x− x2
s)

. . .

w(x− x2
s)


0

. . .  w(x− xns
s )

. . .

w(x− xns
s )


(n+1)×(n+1)


Θs,Πs and Ψ are called extended observation matrices, basis function matrix

and weight matrix, respectively.

It is worth noting that matrix A is still a np × np matrix so the com-

putational cost to construct a response surface with sensitivity information
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doesn’t increase very much.

Example 3.5 Reconstruct the Peaks. The Matlab function called peaks is

used to illustrate GERSM. This function has six local optima and the expres-

sion of this function is,

z = 3(1− x)2e−x2−(y−1)2 − 10(
x

5
− x3 − y5)e−x2−y2 − 1

3
e−(x+1)2−y2

Figure-3.12 shows the surface and contours of the original and reconstructed

function by using MLS (49 real samples) and GEMLS1 (25 samples and 100

pseudo samples), GEMLS2 (25 samples and derivative as secondary function).

2304 test points (48× 48 grids) are generated to test these three methods.

Table 3.1: Comparison of MLS and GEMLS
2304 test
pts

RMS
error

Distance between real and reconstructed stationary
points
S1 S2 S3 S4 S5 S6*(global)

Original 0 0 0 0 0 0 0
MLS 0.8452 0.0339 0.7858 0.3631 0.5730 0.5334 0.2422
GEMLS1 0.8469 0.1328 0.2793 0.1155 0.2443 0.0894 0.0330
GEMLS2 0.6906 0.0233 0.4242 0.1526 0.0632 0.1232 0.0881

Table 3.1 summarizes the difference between the real and reconstructed

peaks function. From Figure-3.11 and Table 3.1 it is found that even though

GERSM uses only half of the samples, it outperforms or matches the results

from the MLS. For this method, the stationary points reproduced are very close

to the real ones, especially at the global point. These results showed that by

using GEMLS, the computational cost to construct the response surface can

be greatly reduced.
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(a) Original Peaks (b) Contour of original Peaks

(c) MLS Reconstructed Peaks (49 samples) (d) Contour of MLS reconstructed peaks

(e) GEMLS1 (25+100) reconstructed Peaks (f) Contour of GEMLS1 reconstructed Peaks

(g) GEMLS2 (25) reconstructed Peaks (h) Contour of GEMLS2 reconstructed Peaks

Figure 3.12: Gradient Enhanced Moving Least Square: Peaks in Matlab
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3.6 Further Reducing the Computational Effort

As mentioned before, there are two types of sensitivity analysis: local

and global. Local sensitivity analysis has been used to construct the gradient

enhanced moving least square to reduce the computational effort in a previous

section. In this section, global sensitivity analysis is used to further reduce the

computational effort.

3.6.1 Monotonicity and Global Sensitivity Analysis

A multi-variable function x(λ1, λ2, ...λn) is said to be increasing with

regard to λi, one of its independent variables, if and only if
∂x

∂λi

> 0 in the

whole parameter space, or decreasing w.r.t λi if
∂x

∂λi

< 0. Notice that the same

function can increase w.r.t. one variable while decreasing w.r.t. another.

It is well known that the monotonicity of an objective function can

often be used to obtain a simplified optimization problem. This principle has

been successfully used in many design optimization problems [63]. Consider

the following simple optimization problem:

max
x

x = 0.5λ1 +
λ2
2

λ1

min
x

x = 0.5λ1 +
λ2
2

λ1

s.t. λ1 ∈ [10, 20], λ2 ∈ [10, 20]

(3.42)

Assume evaluation of x is very time consuming, so the response surface

method described in the previous section is used to solve this problem. The

first step of RSM is to take samples. For this simple problem, by testing the

monotonic character of the function, it can be found that only two samples
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Figure 3.13: Monotonicity analysis of multi-variable function

are needed. This is because by studying the sensitivity coefficient, S =
dx

dλ2

=

2λ2 ∈ [20, 40] > 0, which means x is a monotonically increasing function with

λ2. Then the minimum of x will be xmin=λ2
2min = 102 = 100 and the maximum

of x will be xmax=λ2
2max = 202 = 400.

Now consider the following problem:

max x = 0.5λ1 +
λ2
2

λ1

min x = 0.5λ1 +
λ2
2

λ1

s.t. λ1 ∈ [10, 20], λ2 ∈ [10, 20]

(3.43)

The shape of this function is shown in Figure-3.13.
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We still try to use monotonicity analysis first by taking derivatives,

dx

dλ1

= 0.5−
(

λ2

λ1

)2

dx

dλ2

= 2
λ2

λ1

(3.44)

We can easily find that x is still monotonically increasing with λ2, since
dx

dλ2

=

2
λ2

λ1

> 0 is guaranteed. But the sign of
dx

dλ1

is not known. Its value is between

-3.5 to 0.25, depending on the value of λ1 and λ2. Thus the output x is not a

monotonic function w.r.t λ1. This also can be seen from Figure-3.14(a), which

shows that the minimum x is not located at corner value of λ1. However, since

we do know x is monotonically increasing to λ2, as shown in Figure-3.14(b),

then only the corner values of λ2 and several samples along λ1 is needed to

be taken to construct the response surface. Because of the monotonicity of

the objective function, the number of samples is greatly reduced. From the

(a) x value along λ1 direction, not monotonic (b) x value along λ2 direction, monotonic

Figure 3.14: Monotonicity analysis example

above example, it can be found that the role of sensitivity analysis here is not
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to get the value of sensitivity coefficient at certain point in the domain, but

to find its sign when the variables λ1, λ2 change in the whole range. Thus we

call this process global sensitivity analysis, in comparison to local sensitivity

analysis discussed in previous sections. Global sensitivity analysis is based on

the local analysis but its main purpose is to find the monotonic information

of the function. We use Sij to denote global sensitivity coefficient. Clearly,

the value of Sij is not a number but an interval.

3.6.2 Global Sensitivity Analysis of ODE Systems

Global sensitivity has been used in many optimization problems, such

as linear circuit worst case simulation [77], design optimization [63], etc. How-

ever, testing the sign of Sij is a very difficult task, especially for dynamic

system represented as ODEs where time t plays an important role.

The purpose of global sensitivity analysis of ODE system is to explore

the monotonicity characteristics of the system output with respect to the un-

certain parameters.

Consider a dynamic system with uncertain parameters:

x = x(t, [λ1, λ1], [λ2, λ2], [λ3, λ3], ..., [λn, λn]), (3.45)

The local sensitivity coefficient provides the information of a single point λs

in the parameter space, which can be denoted as,

Si,λs =
∂x

∂λi

∣∣∣∣
λ=λs

=
∂x

∂λi

∣∣∣∣
λ1=λ1

s,λ2=λ2
s,...,λi=λi

s,...,λn=λn
s

(3.46)
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As mentioned before, we can solve Si,λs with DDM and Si,λs is a curve

that changes with time. However, since we are dealing with an uncertain

system, the parameter λ can vary within a range. We want to study the effect

of changing all these parameters together. In a mathematic form, we want to

study the global sensitivity coefficient:

Sij =
∂xi

∂λj

∣∣∣∣
λ1∈[λ1,λ1],λ2∈[λ2,λ2],...,λn∈[λn,λn]

(3.47)

For monotonicity analysis, we only need to determine the sign of Sij

but not the exact range. Consider the following example.

Example 3.6 Global sensitivity analysis: For the system ODE used in Exam-

ple 3.3, assume we have the following uncertain parameters and a fixed initial

condition: λ = [[−2.5,−1.5], [−3.5,−2.5], 5,−6] and x0 =
[

1 1
]
. We can

use Monte-Carlo Method and DDM to calculate Sλ and S0 with the uncertain

parameters vary in their range. The global coefficients S21 , S22 , S23 , S24

calculated by Monte-Carlo method are shown in Figure-3.15a-d. It can be

found that when the uncertain parameters varying in their range, the sen-

sitivity curves form a boundary similar to the system states. Each global

sensitivity coefficient Sij is a collection of sensitivity curves and we call the

collection of curves a sensitivity band. Each sensitivity band divides the t axis

into three types of monotone intervals, namely t+, t− and t± intervals. In

t+ interval, the value of the global sensitivity coefficient is always positive

and in t− intervals the global sensitivity coefficient is always negative. In t±

interval, the sign of the global sensitivity coefficient changes between positive
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and negative. In the t+ or t− interval, the objective function is monotonically

increasing or decreasing with corresponding uncertain parameters. Only the

corner value of these uncertain parameters needs to be sampled for response

surface construction. In the t± interval, more samples are needed.

There is no easy way to find these monotone intervals because in order

to find the sensitivity band the boundary of the state variable must be found

first, while the purpose of the global sensitivity analysis is to find the boundary

of the state variables more effectively. Thus, unless the monotonic intervals

can be found with less computational cost, global sensitivity analysis will not

help to reduce the computational effort. There are two methods that can be

used to estimate the monotonic intervals effectively:

1. Less accurate method. Estimate the monotone intervals by using local

sensitivity coefficient with uncertain parameters at their nominal values.

In this case, global sensitivity analysis becomes local sensitivity analy-

sis. There is only one curve that divides the time axis into only two

types of intervals: t+ or t−, as shown in Figure-3.15(e),(f), where S23

and S24 are approximated by this method. The monotonic intervals

approximated by this method are not very accurate. However, it still

gives some monotonic information qualitatively. Around the time where

the sensitivity curve crosses zero, more samples, both in parametric and

time space, should be taken since it is close to the t± intervals. At the

time span where the curve is far away from zero, it is quite safe to treat

this time span as t+ or t− intervals.
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(a) Global sensitivity analysis by MC: S21 (b) Global sensitivity analysis by MC: S22

(c) Global sensitivity analysis by MC: S23 (d) Global sensitivity analysis by MC: S24

(e) Global sensitivity analysis by nomi-
nal/vertex simulation: S23

(f) Global sensitivity analysis by nomi-
nal/vertex simulation: S24

Figure 3.15: Global sensitivity and monotonicity analysis
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2. More accurate method. Use vertex simulation to form the sensitivity

band to approximate the monotone intervals. More accurate estimations

can be given by vertex simulation, as shown in Figure-3.15(e),(f).

For certain systems, the time intervals are quite short and monotone analysis

will not help too much. For example, the step response of a simple RLC circuit

in Figure-3.16(d) shows no strong sign of monotonicity to the value of L and

C, as shown in Figure-3.16(a),(b),(c), among three parameters, only the R

has pretty long t+ and t− monotonic intervals, while monotonic intervals of

R and C basically are all t± intervals. However, for certain systems, they

show strong monotonicity. The extreme case is that the t+ or t− monotonic

intervals of one or more global sensitivity coefficients are so long that it cover

all the time span [0, T ] to be simulated. The following theorem will show the

how to find such kind of system effectively.

3.6.3 Monotone Theorem

Consider the dynamic system,
ẋ1 = f1(x1, x2, · · · , xn, λ1, λ2, · · · , λm, t)
ẋ2 = f2(x1, x2, · · · , xn, λ1, λ2, · · · , λm, t)

...
ẋn = fn(x1, x2, · · · , xn, λ1, λ2, · · · , λm, t)
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(a) Global sensitivity analysis of L (b) Global sensitivity analysis of R

(c) Global sensitivity analysis of C (d) LRC circuit with uncertain parameters

(e) Boundary by GEMLS and monte carlo re-
sults

Figure 3.16: System without strong monotonicity
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The sensitivity coefficient of parameter λj is Sij =
∂xi

∂λj

,

Ṡij =
∂f1

∂x1

S1j +
∂f2

∂x2

S2j + ... +
∂fn

∂xn

Snj +
∂fi

∂λj

=
∂fi

∂xi

Sij +

(
n∑

l=1,l 6=i

∂fi

∂xi

Slj +
∂fi

∂λj

)
= N(t)Sij + M(t)

Sij(0) = 0

(3.48)

Equation (3.48) is called a monotonicity equation and the following

theorem holds:

Monotone theorem. For the monotonicity equation

Ṡ = N(t)S(t) + M(t)
S(0) = 0

1. If ∀t ∈ (0, T ], M(t) > 0, then S(t) > 0.

2. If ∀t ∈ (0, T ], M(t) < 0, then S(t) < 0.

3. If ∀t ∈ (0, T ], M(t) = 0, then S(t) = 0.

Proof of conclusion (1): Refer to Figure-3.17.

∵ S(0) = 0, M(0) > 0

∴ Ṡ(0) = N(t)S(0) + M(0) > 0

Also, by the definition of derivatives, we will have δt > 0 so that:

S(0) = 0

Ṡ(0+) = Lim
δt

S(0 + δt)− S(0)

δt

⇒ S(δt) > 0

98



Figure 3.17: Prove of monotone theorem

Assume t1 > 0 is the first point that S(t1) = 0, in other words,

∃(δt < t1 < T ), S(t1) = 0
δ < t < t1,∀S(t) > 0

Then we have:

Ṡ(t1−) = N(t1−)S(t1−) + M(t1−) = M(t1−) > 0 (3.49)

However, by definition we have:

Ṡ(t1−) = lim
δt→0

S(t1−)− S(t1− − δt)

δt

=
0− S(t1− − δt)

δt

< 0 (3.50)

Eq. 3.49 conflicts with Eq. 3.50 so the assumption is not correct. Thus,

for ∀t ∈ (0, T ], S(t) 6= 0.

Further, assume ∃t2 ∈ (δt, T ], S(t2) < 0. Since S(δt) > 0, by inter-

mediate value theorem, ∃t1 and S(t1) = 0. This is conflict with the above
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conclusion and thus the assumption ∃t2 ∈ (δt, T ], S(t2) < 0 is not correct.

Combined with above conclusion, S(t) can only be great than zero. Conclu-

sion (1) is proved. Using the same procedure, conclusion (2) and (3) can also

be proved.

The power of this theorem is that if the sign of M(t) is fixed in the

time range [t0, T ] and S(t0) = 0, then the sign of S(t) depends only on the

sign of M(t). No need to calculate the sign of N(t).

Notice that from Eq. 3.48, since M(t) is the summation of all the sen-

sitivity coefficients and the parametric Jacobian terms, it is very hard to know

the value of M(t) and thus the usage of the monotone theorem is limited.

However, for certain decoupled systems, using monotone theorem can greatly

reduced the computational cost. The following Two-Tank example will show

how this theorem can be used.

Example 3.7: Two-tank, use of monotone theorem:

Figure-3.18 shows the two-tank system that has been widely used as a

benchmark problem for uncertain analysis. The system equations are:{
V̇1 = Au(t)− k1

√
V1

V̇2 = k1

√
V1 −Bk2

√
V2

where

A = step(V1max − V1) =

{
1 V1 ≤ V1max

0 V1 > V1max

B = step(V2max − V2) =

{
1 V2 ≤ V2max

0 V1 ≤ V2max
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Figure 3.18: The two-tank system

V1,2 stand for the volume of the two tanks and k1,2 stands for the flow

rate coefficient. u(t) ≥ 0 is the input flow rate, which is independent of

V1,2. By introducing two step function A, B, above model accounts for the

saturation of the two tanks. Now assume we have two uncertain parameters,

k1 ∈ [0.8, 1], k2 ∈ [0.5, 0.7] and we need to find the boundary of V1 and V2. If

the monotonicity is not studied, we need to search in both k1 and k2 directions.

Calculate the global sensitivity coefficient of k1 and k2, w

Ṡ11 =
∂V̇1

∂k1

=
dA

dV1

u−
√

V1 −
k1

2
√

V1

∂V1

∂k1

= −δ(V1max − V1)
∂V1

∂k1

u−
√

V1 −
k1

2
√

V1

∂V1

∂k1

= −
√

V1 +

(
−δ(V1max − V1)u−

k1

2
√

V1

)
∂V1

∂k1

(3.51)
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Ṡ12 =
∂V̇1

∂k2

= 0 (3.52)

Ṡ21 =
∂V̇2

∂k1

=
√

V1 +
k1

2
√

V1

∂V1

∂k1

− (

(
dB

dk1

)
k2

√
V2 + Bk2

∂V2

∂k1

)

=
√

V1 +
k1

2
√

V1

∂V1

∂k1

− (−δ(V2max − V2)
∂V2

∂k1

k2

√
V2 + Bk2

∂V2

∂k1

)

=
√

V1 +
k1

2
√

V1

∂V1

∂k1

+ [δ(V2max − V2)k2

√
V2 −Bk2]

∂V2

∂k1

(3.53)

Ṡ22 =
∂V̇2

∂k2

=
k1

2
√

V1

∂V1

∂k2

−
[(

dB

dk2

)
k2

√
V2 + B

(√
V2 +

k2

2
√

V2

∂V2

∂k2

)]
= 0−

[
−δ(V2max − V2)

∂V2

∂k2

k2

√
V2 + B

√
V2 +

Bk2

2
√

V2

∂V2

∂k2

]
= −B

√
V2 +

∂V2

∂k2

[
δ(V2max − V2)k2

√
V2 −

Bk2

2
√

V2

] (3.54)

From above equations, we can find that:

M11 = −
√

V1

M12 = 0

M21 =
√

V1 +
k1

2
√

V1

∂V1

∂k1

=
√

V1 +
k1

2
√

V1

S11

M22 = −B
√

V2

Applying the monotone theorem, S11 ≤ 0, S22 ≤ 0 since M11 ≤

0, M22 ≤ 0. For S21, the sign of M21 =
√

V1 +
k1

2
√

V1

∂V1

∂k1

=
√

V1 +
k1

2
√

V1

S11

could not be determined. However, qualitative monotonicity information can

still be acquired by studying M21. Assume the initial condition is V1 = 1000
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and V2 = 0. Because at time zero, S11 = 0 and thus M21 must be larger than

zero. We can imagine that M21 will be larger than zero for a while and thus

S21 will also be larger than zero. With the decreasing of V1 and S11 (became

negative), M21 will decrease to zero and move to negative region and thus S21

will also became negative.

Nevertheless, we now know V1 will monotonically decrease with k1 and

V2 will monotonically decrease with k2. Thus, upper bound of V2 will be the

envelope of all the possible trajectory generated by the parameter [∀k1, k2],

the lower bound will be the envelope of all the possible trajectory generated

by the parameter [∀k1, k2]. Thus, we only need to search [k1, k2] space in k1

direction in order to generate the boundary of V2.

For V1, it is even simpler since V1 is a monotonic decreasing function

of k1 and thus the upper bound is given by k1 and the lower bound is given

by k1.

Figure-3.19 shows monte-carlo simulation results of the above two-tank

system with input u = 0. Figure-3.19(a) shows the result of V 1, S11 and S12.

Since the lower tank will not influence the upper tank, the value of k2 will

not influence the status of the upper tank. Because of S11 < 0, the upper

boundary of V1 can be acquired by simulating the system with k1 = 0.7. The

lower boundary of V1 can be acquired by simulating the system with k1 = 1.

This result can be explained physically: if the orifice of the upper tank is

larger, at any time the volume in the upper tank will be lower and vise versa.
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Figure-3.19(b) shows the result of V2. From Figure-3.19, we can find

that for all possible combination of k1 ∈ [0.7, 1], k2 ∈ [0.3, 0.5], S22 =
∂V2

∂k2

is

always less than zero. Also, the sign of S21 changes from positive to negative,

which proved the qualitative monotonicity analysis by studying S21. For the

boundary of V2, the upper boundary will be given by k2 = 0.3. The lower

boundary will be given by k2 = 0.5. The physical meaning of the monotonicity

is that if the orifice of the lower tank is smaller, the higher the volume of the

lower tank and vise versa. To find the boundary of V2, only the value of k1

will be searched.

From the above example, it can be found that the monotonicity theorem

can be applied to systems, for which the sign of M(t) in Eq. (3.48) can be

easily determined. Such systems are usually highly decoupled and systems

whose state variables are physically bounded, such as in the two-tank example

that V12 > 0 is known physically.

3.7 Numerical Example

In this section, an example which illustrates our simulation approach

is given. The example is a linear system with two uncertain parameters k1 ∈

[0.4, 0.8], k2 ∈ [0.4, 0.8] and two certain parameters k3 = k4 = 0.6. The initial

condition is a certain value x0 = [1, 1.5]. The system ODE is:{
ẋ1 = (k1 − 1)x1 + k2x2

ẋ2 = −k3x1 + (k4 − 1)x2

The above system can be proven to be robustly stable by using Khari-
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(a) V1 and S11,S12

(b) V2 and S21,S22

Figure 3.19: Two Tank example: use of monotone theorem
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tonv’s theorem in frequency domain. Note that one advantage of our approach

is that since it is not limited to linear systems, it can handle general nonlin-

ear dynamic systems. DDE method is used to solve the adjunct sensitivity

equation. Monotonicity theorem can not be applied easily so monotonicity

test is not used. Use 16 samples and the corresponding sensitivity information

(GEMLS2) to construct the moving least square surface in the [0,10] second

time range with time step ∆t = 1s.

In Figure-3.20(a),(b) are the time response of x1 and x2, given by

Monte-Carlo of 125 simulations and GEMLS2 of only 16 simulation. It shows

that GEMLS2 gives a very good approximation of the upper and lower en-

velopes of both variables, with much less computational cost. Both of the

envelopes show that the system is robustly stable as proved by Kharitonv’s

theorem.

Figure-3.20(c) shows the hyper-rectangle in phase plane given by the

bound of x1 and x2. It can be seen that the box covers all the Monte-Carlo re-

sults. However, the rectangle is not a good approximation of the set composed

by all possible states at a given time instance. This set can be imagined as a

cross section of the system performance tube (also called flow pipe), which is

the collection of all the possible trajectories, as shown in Figure-3.20(d). As

can be seen, there is some ‘empty space’ in the rectangle that the system will

not reach. In other words, although the envelope of each state variable is ac-

curately estimated, the boundary (edge of the set) of the system performance

tube is not accurately approximated. This set is also called reachable set at
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time t of the system. In next chapter, we will show how the reachable set can

be accurately acquired by our methods.

3.8 Summary

In this chapter, the computational cost of simulation of uncertain sys-

tem is first analyzed and a gradient response surface response method is pro-

posed to reduce the computational cost, based on local sensitivity analysis.

Further, the concept of global sensitivity and sensitivity band are introduced

for monotonicity analysis to further reduce the computational cost. A theo-

rem to test the monotonicity of certain ODE systems effectively is proved. By

integrating all these methods together, the computational cost of simulation

of uncertain system can be greatly reduced. Figure-3.21 shows the structure

of the proposed method.
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(a) Envelops of x1 given by GEMSL2(16 samples) (b) Envelops of x2 given by GEMSL2(16 samples)

(c) Hyper rectangle in phase plane (d) Hyper rectangle in state space

Figure 3.20: Numerical example: Performance tube
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Figure 3.21: Flow of proposed method
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Chapter 4

Reachable Set Approximation for Hybrid

System Verification

Hybrid systems, which contain both discrete and continuous dynamics,

have attracted a lot of attention recently [3, 12]. Reachable set computing is

a basic problem in hybrid system analysis concerned with representing and

computing all possible states that the continuous dynamics of a hybrid system

can reach from a given set of initial conditions. This analysis has become a

key method in verifying the correctness of a hybrid system [3, 23].

In this chapter, the concept of hybrid system and hybrid system verifi-

cation is first introduced and then the reachable set computing/approximation

problem is formulated as simulation of dynamic system with uncertain initial

conditions. The computational burden of current methods for reachable set

approximation, such as polyhedral approximation is studied. It shows that

these methods involve global optimization techniques that embedded numeri-

cal simulation of the dynamic system response into the routine for evaluating

the objective function. The search space is the entire uncertain initial state

in Rn. It is general but computationally expensive, and thus not applica-

ble if simulation of the system is already computationally burdensome. The
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applicability of some existing approaches that avoid the global optimization

problem by employing the fundamental inequality theorem are shown to be

very limited.

To reduce the computational burden, we first prove that the boundary

of the reachable set is formed only by the trajectories from the boundary of the

initial state region. This result reduce the search space from Rn to Rn−1. For

more complicated system, the method proposed in previous chapter is used to

solve the global optimization problem more efficiently. Finally, it is shown that

it will be more efficient and accurate if GEMLS is integrated with Principal

Component Analysis (PCA) to find an oriented rectangular hull for reachable

set representation and approximation.

4.1 State-dependent (threshold) Events Driven Hybrid
Systems

Dynamical systems that are described by an interaction between con-

tinuous and discrete dynamics are usually called hybrid systems. Continuous

dynamics usually may be represented by ODEs and discrete dynamics can be

represented as a finite-state automata, with state q taking values in some fi-

nite set Q, where transitions between different discrete states are triggered by

suitable values of an input variable, v. When the input u to the continuous

dynamics is some function of the discrete state q and, similarly, the value of

the input v to the discrete dynamics is determined by the value of the con-

tinuous state x, a hybrid system arises [53]. A simple hybrid system can be
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shown in the following example [53].

Example 4.1 A very simple manual car model can be expressed as:

ẋ1 = x2

ẋ2 = f(a, q)

where x1 is the position and x2 is the velocity, a is the acceleration input

which is a function of q ∈ {1, 2, 3, 4, 5,−1, 0}, the gear shift position. In

this system, x1 and x2 are the continuous states and q is the discrete state.

Clearly, the discrete transition (shift position) affects the continuous states

and the continuous states (speed) will determine the transition of the discrete

states.

One way to study the hybrid systems is to treat them as continuous

systems with discrete switching events. Basically, switching events in such

systems can be state-dependent or time-dependent events.

In this chapter, we focus on how the approach developed Chapter 3

can be used for the verification of state-dependent hybrid systems. For this

kind of system, the continuous state space is partitioned into a number of

operating regions by means of a family of switching surfaces. In each of these

regions, a continuous dynamical system represented by a set of ODEs is given.

Whenever the system trajectory hits a switching surface, the continuous sys-

tem switches to a set of new ODEs. This type of hybrid system is called

threshold-event-driven hybrid systems (TEDHS) [18] or state-dependent events

driven hybrid system systems (SEDHS) [53]. Such systems can be illustrated

by Figure-4.1 [18]. This system consists three types of interconnected sub-
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systems: 1) switched continuous systems with discrete piecewise constant in-

puts that select the continuous dynamics and continuous outputs, 2) threshold

event generators that take the continuous outputs of the switched continuous

systems and generate events when they cross certain thresholds (or switching

surfaces), and 3) finite state machines that are purely discrete transition sys-

tems with a finite number of states. The state transitions are triggered by the

event outputs from the threshold event generators. The discrete outputs of the

finite state machines, in turn, determine the dynamics of the switched contin-

uous systems. TEDHS are attractive from the modeling perspective as they

directly support block diagram modeling in which a system can be easily con-

structed by interconnecting the inputs and outputs of various subsystems [18].

4.2 Verification of Hybrid System

Verification of a hybrid system refers to methods for determining whether

or not given properties (specifications) are true for a given model of a dynamic

system. In general, there are two approaches to verification: Theorem proving

and model checking. Theorem proving aims at inferring/contradicting a spec-

ification for a model using the methods of logical proof systems, where model

checking approach uses the state-transition relation in iterative computations

to arrive at the set of states for which the specification is true [72]. Model

checking is an algorithmic technique and has a close relationship to the simu-

lation of uncertain systems. The following batch reactor system example used
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Figure 4.1: State-dependent events driven hybrid systems, adapted from [18].
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Figure 4.2: The batch reactor system, adapted from [72].

in [72] is borrowed to illustrate the model checking of hybrid systems.

Example 4.2: Verification of a hybrid system: the batch reactor sys-

tem: As shown in Figure-4.2, the reactor is filled by two liquid streams FA

and FB with temperature TA and TB and concentration cA,in, cB,in of two dis-

solved substances A and B. The streams can be controlled through the valves

vA and vB in the inlet pipes. The stirred content of the reactor is cooled by

a cooling jacket. The supply of cooling water is switched on by opening valve

vC . Cooling is necessary since an exothermic chemical reaction 2A + B → D

leads to an increase of the reactor temperature TR. The reaction product can

be discharged through the valve vO which is controlled by a discrete controller.

Measurements of the temperature TR, the liquid volume VR, and the concen-
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Figure 4.3: Operation procedure of the batch reactor, adapted from [72].

tration cA indicate whether these variables exceed specific thresholds or not.

The system equations and variables are,

dcA

dt
=

s1 · FA

VR

(cin
A − cA)− 2 · r

dTR

dt
=

s1 · FA

VR

· (TA − TR)− s2 · kC · AC

ρ · cP · VR

· (TR − TC)− HR · τ
ρ · cP

dVR

dt
= s1 · FA,

dtR
dt

= 1

r = c2
A · k0 · e

d
−EA

Rm·TR , AC =
π

4
·D2

R +
4

DR

· VR

s1 ∈ [0, 1]- switch the valve vA to close or open. s2 ∈ [0, 1]- switch the valve

vC to close or open.

The production procedure can be shown as a transition model (state

machine) as in Figure-4.3. Initially, assume one half of the reactor volume is

already filled with solution B (and vB is closed). In the first step (denoted by

z1), valve vA is opened to supply the solution A until the volume VR reaches
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an upper limit VHigh. The chemical reaction leads to an increase of the tem-

perature (state z2) such that TR eventually reaches a threshold TR = THigh.

From state z3 (reaction with cooling) three different states can be reached:

the ‘normal’ operation is that the concentration cA dropped down to cA,des

corresponding to a sufficiently high concentration of the product D (cD is

high enough), and the reactor is emptied through valve vO. If, alternatively,

the temperature increases further to an upper threshold TAlarm, the state z5

is reached. (Note that TR can show an over-shooting behavior when vC is

opened.) As a third possibility, a specified reaction time tfinal can elapse be-

fore the desired concentrations are reached and the procedure terminates in

state z6. The reaction time is measured by a clock tR, which is reset when

valve vA is opened.

The states z5 and z6 should be excluded from the course of opera-

tion, because these two states means failures of the processes and are not

desired states. A discrete controller has to be designed such that is switches

the valves vA, vC , and vO in order to ensure that the operation always ends

in state z4, the desired state. The objective of verification for this system

is: 1) to determine if the temperature threshold TR = THigh is chosen ap-

propriately to guarantee TAlarm is never exceed, 2) to ensure that the desired

product concentration cD (or cA,des) is reached (for which THigh must not be

chosen too low) within the specified reaction time tfinal, and given certain

region of initial states because of uncertainties in the initial op-

erating conditions. For example, we want to verify that the system will

117



Figure 4.4: Verification of the batch reactor system, adapted from [20].

work properly (within 60 minutes, cA < 0.2 with THigh = 310K) if the ini-

tial concentration of liquid A is in the interval [1.7, 1.9]unit and the initial

tank temperature is in the interval [288, 295]K. Thus, the verification of the

system can be converted to verify that if the system will go from the an un-

certain initial region R0(cA0 ∈ [1.7, 1.9], TR0 ∈ [288, 295]) to a final region

Rf (cA ∈ [0, 0.2], tf = 60min). A verification result given by using the Check-

mate tool [20] is shown in Figure-4.4. It showed that with THigh = 310K, at

tR = 60min, 0.2 < cA < 0.3. This example clearly shows that verification

of hybrid system is equivalent to simulation of parametric uncertain dynamic

system with only uncertain initial conditions. Thus, the techniques developed
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in the previous chapter can be applied for hybrid system verification.

4.3 Reachable Set Approximation

As shown in Figure-4.1 and Figure-4.4, for hybrid systems, the con-

tinuous state space Rn is divided into several operating regions controlled by

different continuous systems. Switching between different continuous systems

is determined by whether the state of the system enters into these regions.

Verification of a hybrid system establishes whether a continuous system enters

a certain region with a given uncertain initial state region. This problem is

called reachable set computing and is defined by the following.1:

For a continuous dynamic system,

ẋ = f(x, t)
x0 ∈ X0 ⊆ Rn,

(4.1)

where X0 is a set of initial conditions. The reachable set of the above dynamic

system at time t is defined as,

Rt(X0) = {xf |xf = x(x0, t),∀x0 ∈ X0} . (4.2)

The reachable set from initial time t0 to final time T is the union of all the

reachable sets from t0 to T , which is defined as,

R[t0,T ] = ∪t∈[t0,T ]Rt(X0) (4.3)

1Most literatures consider only uncertain initial condition when discussing reachable set
computing. Unless otherwise state, we follow these literatures.
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Figure 4.5: Reachable set computing problem

The reachable set in the time interval R[t1,t2] is also called the flow pipe from

X0 in the time interval R[t1,t2] [20]. Figure-4.5 illustrates the reachable set of

a dynamic system. It can be found that reachable set R[t0,T ] equals to the

performance tube described in the previous chapter. Rt is a cross section of

the performance tube at time t. Clearly, reachable set computing problem is a

special case of simulation of parametric uncertain system with only uncertain

initial conditions. Thus the techniques developed in previous chapters can be

applied directly to solve this problem. However, due to its special charac-

ter, some new techniques will be introduced in this chapter for reachable set

computing.

Because of its critical role in the verification of hybrid systems, many

methods to compute the reachable set have been developed. Meanwhile, as

stated before, finding the exact reachable set of a general nonlinear system
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Figure 4.6: Geometry to represent a set:1-hyper rectangular 2-hyperellipsoid,
3-convex hull, adapted from [76]

is extremely difficult. As a result, all available tools focus on finding various

types of approximations of Rt, which is denoted as R̃t.

Generally, most of the existing methods to get R̃t adopt a two step

strategy [58]. The first step is to choose a simplified parametric geometry to

represent the reachable set. Unlike simulation of parametric uncertain system,

in which case the outputs are often represented by a hyper-rectangle, reach-

able sets need to be represented more precisely. Thus, besides hyper-rectangle,

these parametric geometries include hyperellipsoid [29], or polyhedra (convex

hull) [20]. Commonly used geometry is shown in Figure-4.6 [76]. Selection of

the geometry to represent the reachable set is a trade-off between accuracy

and computational cost. A comparison of different geometries used can be

found in [76]. Once the shape of the geometry is selected, the next step is
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to find the parameters that define the geometry so it will over-approximate

the real reachable set, subject to minimizing the difference between the two.

This is analogous to the optimization step in simulation of uncertain system.

For reachable set computing problem, at this step, different assumptions are

made on the right hand side of the ODE, f(x), to simplify the problem and

lead to different types of hybrid models [58, 72]. For example, [9] studied

the reachability of timed automata by letting f(x) = c, c ∈ Rn is constant.

The verification tool HyTech [35] provided a method to verify linear hybrid

automata in which the continuous dynamics f(x) can be specified by differen-

tial inclusion as f(x) ∈ [Cmin, Cmax]. Another tool called d/dt [23] can deal

with hybrid systems with linear continuous dynamics in the form ẋ = Ax + u.

These assumptions simplified the reachable set problem but also limited the

applicability of these tools.

CheckMate [19, 20, 73] is a verification tool that can handle general

nonlinear dynamics. An algorithm called flow pipe algorithm is used in this

tool. It uses a sequence of convex polyhedra with nf faces, as shown in Figure-

4.7, to approximate the reachable set. Such polyhedra can be defined by a set

of linear inequalities as,

POLY (C,d) = {x|Cx < d}
(C,d) ∈ Rnf×n ×Rnf

(4.4)

A minimum convex polyhedra is found by integrating the global optimization

algorithms and numerical simulation of the dynamic system response together.

Details of the flow pipe algorithm are in next section. If the operational region
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Figure 4.7: A polyhedra, from www.mathworld.com

of a hybrid system are represented by polyhedra, this class of hybrid system is

called Polyhedral-Invariant Hybrid Automata (PIHA) [20]. For example, the

above batch tank system can be represented as a PIHA system, as shown in

in Figure-4.8 [20].

Nevertheless, like simulation of uncertain system, for existing methods

the complexity of the computation restricts applicability to fairly low-order

systems. These methods are computationally expensive due to the reasons

stated in the last chapter. The global optimization problem in the flow pipe

method [20], for example, involves many iterations of numerical simulation

(solving system ODEs) to compute the objective function, which is computa-

tionally expensive. The verification of systems with five continuous variables

with nonlinear dynamics usually requires hours of computation [72]. It will

be more difficult to apply these methods to higher order systems where the

number of faces in the polyhedral nf will be high. As such, some methods
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Figure 4.8: A polyhedra invariant hybrid system, adapted from [20]

to overcome the computational burden based on the fundamental inequality

theorem are reported, but as will be seen in the following, their practical ap-

plications may be very limited.

4.4 Computational Burden of Reachable Set Approxi-
mation of Nonlinear Systems

4.4.1 Flow Pipe Algorithm and its Computational Cost

In this section, the flow-pipe method is described and the sources of

computational burden that limit the application of this kind of method are

identified. Flow-pipe method and the software package CheckMate [19, 20]

can be used for reachable set approximation of general nonlinear systems.
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The original Flow-pipe method is used to approximate a reachable set seg-

ment R[t0,T ] = ∪t∈[t0,T ]Rt(X0). By very little modification, it can be used to

approximate Rt, the reachable set at a given time t. The algorithm to approx-

imate Rt is illustrated in Figure-4.9. Assume the real reachable set is set X

(a) Using polyhedra to represent
the reachable set at time t

(b) Minimize the difference by
optimization

Figure 4.9: Flow pipe algorithms (at time t)

and a convex polyhedra with nf faces is used to over-approximate set X. This

polyhedra can be defined as,

POLY (C,d) = {x|Cx < d}
(C,d) ∈ Rnf×n × Rnf

(4.5)

where x is any possible state variable vector at time t. Each row cT
j , j =

1, ..., nf of the matrix C is an unit normal vector to the jth face of the poly-

hedra, as shown in Figure-4.9(a). C can be called the direction matrix. The

elements of vector d are constants. A very close approximation of X can be

given, with the number of faces of the polyhedra growing to a large number

which will be hard to handle. Thus determination of matrix C is a trade-off
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between computational complexity and accuracy. A effective method based on

singular value decomposition (SVD) to find C is given in [76]. The polyhedra

found by this method is called oriented rectangular hull and will be discussed

later.

Once the direction matrix is selected, the value of the element of vector

d determines the volume of the polyhedral. To get an accurate approximation

of X, a polyhedra with minimum volume that cover X should be found, and

the following optimization problem will arise,

min
d

volume[POLY (C,d)]

s.t. Rt(X0) ⊆ POLY (C,d)
(4.6)

Solution of this equation is denoted as d∗. Eq. (4.6) is equal to the optimization

problem,
max

x
cT

j x

s.t. x ∈ Rt(X0)
(4.7)

Using the definition of Rt(X0), Eq. (4.7) can be rewritten,

max
x

cT
j x

s.t. x(t) = x0 +
∫ t

0
f(x, τ)dτ, x0 ∈ X0

(4.8)

The minimized polyhedra given by above equation is the approximation R̃t.

Comparing Eq. (3.1) and Eq. (4.8), it is found that the flow pipe algo-

rithm is actually a direct global optimization method for parametric uncertain

system simulation. Thus, it inherits those problems that lead to high compu-

tational cost stated in Chapter 3, such as,

1. Many numerical simulations (x(t) = x0+
∫ t

0
f(x, τ)dτ) must be embedded

into the optimization routine.
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2. Non-recursive simulation. Simulations embedded in the optimization

routine must always start from t = 0.

3. Increasing the number of the faces (nf ) of the polyhedra will increase the

accuracy of the approximation as well as the computational cost, since

in each direction an optimization problem is to be solved.

To overcome the above problems, [20] proposed a bounding method

based on the theorem of fundamental inequality to avoid applying global op-

timization algorithms to solve Eq. (4.8). Other studies [6] have relied on

this theorem in a different manner to approximate the reachable set of non-

autonomous systems. This method in [20] is referred to as non-recursive and

the method in [6] is a recursive method. However, it will be shown that both

methods are not very applicable to practical problems.

4.4.2 Limitation of the Theorem of Fundamental Inequality

The fundamental theorem applies to the general theory of differential

equations and can be stated as follows [39]:

Definition 4.1: A number L is a Lipschitz constant with respect to x for a

function f(t, x) defined on a region A of R2 (the t,x-plane) if,

|f(t, x1)− f(t, x2)| ≤ L |x1 − x2|, for all (t, x1), (t, x2) in A.

The Fundamental Inequality Theorem: If, on a rectangle R = [a, b] ×

[c, d], the differential equation x′ = f(t, x) satisfies a Lipschitz condition with
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respect to x, with Lipschitz constant L 6= 0, and if u1(t)and u2(t) are two

approximate solutions, piecewise differentiable, satisfying,

|u′1(t)− f(t, u1(t))| ≤ ε1

|u′2(t)− f(t, u2(t))| ≤ ε2

for all t ∈ [a, b] at which u1(t) and u2(t) are differentiable; and if for some

t0 ∈ [a, b], |u1(t0)− u2(t0)| ≤ δ; then for all t ∈ [a, b],

|u1(t)− u2(t)| ≤ δeL|t−t0| +

(
ε1 + ε2

L

)(
eL|t−t0| − 1

)
(4.9)

Based on the fundamental inequality theorem, the following lemma can

be derived [20]:

Lemma 1: Let f(x) be Lipschitz in x on M with a Lipschitz constant L,

where M ⊂ Rn is a open connect set. Let x0 and x∗
0 be initial conditions such

that x(t,x0),x(t,x∗
0) ∈ M. Based on the fundamental theorem, the following

inequality holds:

‖x(t,x0)− x(t,x∗
0)‖ ≤ eLt ‖x− x∗

0‖ (4.10)

This lemma shows that if x(t,x∗
0) is a trajectory from initial time t0 to

time t of the system with initial condition x∗
0, then at time t the trajectory

from any arbitrary initial condition x0 with ‖x(t,x0)− x(t,x∗
0)‖ ≤ δx0 must

be contained in the γ-ball centered at x(t,x∗
0), with,

γ = eLtδx0 (4.11)

In other words, the system need be simulated only once with a nominal

initial condition x∗
0 to get x(t,x∗

0). Assuming the face normal vector cj is of
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unit length, then the objective function cT
j x is bounded by cT

j x(t,x∗
0)± γ. i.e.

cT
j x(t,x∗

0) − γ ≤ cT
j x(t,∀x0 ∈ X0) ≤ cT

i x(t,x∗
0) + γ. This result can be used

to approximate the solutions of Eq. (4.8), and the time consuming procedures

to find the real optimal results can be avoided.

This approach seems quite promising since a guaranteed over estima-

tion of the reachable set is found without solving the optimization problem.

However, further examination of the equation, γ = eLtδx0 , is discouraging be-

cause γ grows exponentially with ta. The reachable set given by this method

will be too large.

The above method is a non-recursive method because the center of

the γ ball x(t,x∗
0) at time t is calculated from the initial time t0, not from the

previous time step t−∆t. This raises a question: can t be changed in Eq. (4.11)

to ∆t by iteration? If ∆t can be made very small so that γ = eL∆tδx0 is less

than the predefined tolerance, then the right side of Eq. (4.11) will not be a

problem.

Reference [6] describes use of theorem of fundamental inequality in such

a recursive manner to approximate the reachable set of a non-autonomous

system. This method can be briefly described as follows [6]:

Lemma 2: Let Φf (t,x) be a trajectory of autonomous system ẋ = f(t,x) and

Φs(t, x,u) be a trajectory of system ẋ = f(t,x) + u, where u is bounded by

mu. Based on the fundamental theorem, the following inequality holds:

‖Φf (t,x)− Φs(t, x,u)‖ ≤ µ

L
(eLt − 1) (4.12)
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This theorem states that to approximate the reachable set of the non-

autonomous system with input u, we can appropriately expand the reachable

set of the autonomous system by the amount given on the right hand side of

Eq. (4.12). However, as shown this grows exponentially. However, Asarin, et

al [6] proposed an iterative algorithm described as follows:

Let Pt(X0) be the reachable set of an autonomous system ẋ = f(x),x0 ∈

X0. Let Q̃t be the approximated reachable set of a non-autonomous system

in the form, ẋ = f(x) + u(t), ‖u‖ ≤ µ, at time t. The set P̃t+∆t(X0) is first

computed iteratively by taking Qt as the initial region, P̃t+∆t(X0) ≈ P̃∆t(Q̃t),

rather than using Pt+∆t(X0) = P∆t(Pt). Note that in this step, error will

be generated, as shown in Figure-4.10. Then Q̃t+∆t(X0) is expanded from

Q̃t+∆t(X0) by a γ ball, as Q̃t+∆t(X0) = P̃t+∆t(X0) + γ ≈ P̃∆t(Q̃t) + γ. In this

case, we have,

γ =
µ

L
(eL∆t − 1). (4.13)

Comparing this equation with Eq. (4.12), it appears Eq. (4.13) is quite

promising since the right side is exponentially increasing with ∆t other than

t. If ∆t is small enough, then γ could be a tight bound. However, this method

is also very limited. In Figure-4.10, it can be found that the error due to the

approximation, P̃t+∆t(X0) ≈ P̃∆t(Q̃t), will propagate to the next time step

and accumulates, even if γ is a constant. This is similar to the wrapping effect

mentioned in Chapter 3. In fact, the Hausdorff distance2 between the real

2Hausforff distance is a measure of the resemblance of two (fixed) sets of geometric
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Figure 4.10: Accumulating of errors

reachable set Q[0,T ] and the reachable set approximated by this method Q̃[0,T ]

is given as, 2µ∆teLt [6], which still grows exponentially.

The proceeding analysis shows that methods based on the fundamental

inequality to reduce the computational burden can only be applied within a

very short of period of time. This shortcoming seriously weakens the applica-

bility of this method. Other methods must be found that solve the optimiza-

tion problem effectively.

points P and Q, defined as H(P,Q) = max{max
a∈P

min
b∈P

d(a,b),max
a∈Q

min
b∈P

d(a,b)}, d(., .) is the

distance metric, usually the Euclidean distance [2]
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4.4.3 Boundary Theorem

Reachable set computing is a special case of simulation of parametric

uncertain systems since only the initial conditions are uncertain. Thus, a

theorem that can reduce its computational cost can be derived.

Boundary Theorem: For a locally Lipschitz ODE system ẋ = f(x, t) with

initial conditions set X0 and f(x, t) is not an explicit function of X0, the

boundary of the reachable set RT (X0) of this system, denoted as RT (X0) can

be acquired by simulating the system from each point on the boundary of the

initial condition set, denoted as X0 ;i.e.

Rt(X0) =
{

xf |xf = x(x0, t),∀x0 ∈ X0

}
.

Proof: First, claim that for a locally Lipschitz ODE system, two trajectories

from two different initial conditions will never intersect. Refer to Figure-4.11

and assume that two trajectories from different initial conditions intersects

at point (Xm, Tm), then chose Xm as the initial condition and there will be

two solutions to an IVP problem with Xm as the initial condition. This is

contradicted to the unique existence theorem of ODE, thus the claim is true.

Because of this theorem, it is obvious that the trajectories from the boundary

of the initial condition region will form the boundary of all the trajectories

from the initial condition region. If one trajectory originating from a point

inside the initial condition exists outside the boundary, it must intersect with

one of the trajectories, as shown in Figure-4.12. However, this is contradictory

to the claim proven above and thus is impossible. The theorem is proven. �
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Figure 4.11: Any two trajectories will not intersect

Figure 4.12: Boundary theorem

133



This theorem shows that the search space to find the polyhedra that

approximate the reachable set can be reduced from Rn to Rn−1 since the

boundary of Rt originates from the boundary of X0; i.e., Eq. (4.8) can be

rewritten to,

max
x

cT
j x

s.t. x(t) = x0 +
∫ t

0
f(x, τ)dτ, x0 ∈ X0

(4.14)

If a Monte Carlo method is used for reachable set computing, this theorem

shows that in order to find the reachable set, sample points only need to be

taken from the boundary of the initial condition set.

For linear systems, computational costs can be further reduced. This

theorem shows that if the initial condition set of a linear system is a polyhedra,

then the reachable set of this system can be acquired by simulating the system

only from the corner of the initial polyhedra.

Boundary theorem: Linear system. If a linear time invariant system,

ẋ(t) = Ax, with an uncertain initial condition set as a polyhedra, {x0|x0 =

cTx ≤ d0}, then the reachable set of this system can acquired by simulating

from the corner of the initial polyhedral.

Proof: Points at the boundary of the initial condition satisfy,
{
x0

b | cTx0
b = d0

b

}
,

thus we have, x0
b = (cT )−1d0

b . From boundary theorem, it is known that the

boundary of the reachable set is,

Rt = eAtx0
b = eAt(cT )−1d0

b = ξTd0
b (4.15)

If ξT is a direction matrix, then Eq. (4.15) shows that Rt of linear system is

still a polyhedra. The corner of the initial set will evolve to the corner of Rt.
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Thus the corner of Rt is found by simulating from the corner of the initial

polyhedra. Once the corner of polyhedra Rt is known, R− t is determined. �

4.4.4 Oriented Rectangular Hull and RSM

When a hyper-rectangle is used to approximate an unknown set ,S, the

rectangle can be of any direction. One generally used case is an axes-parallel

rectangle. However, there exits an ‘optimal’ direction so that the size of the

rectangle can be minimized if the set S is directionally strong, as shown in

Figure-4.13. It is very hard to determine the real optimal direction since the

Figure 4.13: Oriented Rectangular Hull representation

shape of set S is not known and there are infinite elements in S. However, a

better direction based on a subset of S, which is composed of some samples in

S can be found. The preferred directions can be found by using the Principal

Component Analysis (PCA) [44], as proposed in [76]. The idea is to take some
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samples in S by simulation and use PCA to find the principle axes of S. The

direction vectors representing the principle axes found by PCA will form the

direction matrix C. Once the direction matrix C is determined by PCA, then

Eq. (4.8) needs to be solved to find the ORH with minimum size. In short,

PCA decomposes a matrix in the form,

X = USC′. (4.16)

This step can be done by singular value decomposition, where X is a n × ns

matrix, a column vector of X is a mean centered sampled state vector. C is

the matrix that we are interested in. This matrix contains eigenvectors that

are the optimal directions, as shown in Figure-4.13. For details of PCA, please

see [44].

The step for finding the ORH to approximate a reachable set Rt by

using PCA are:

1. Generate ns sample points at the boundary of the initial condition set,

i.e. xi
s0, i = 1, 2, ..., ns,x

i
s0 ∈ X0 .

2. Simulate the system from t0 to t with xi
s0, i = 1, 2, ..., ns. The set that

contains all the corresponding system response xi
s is denoted as Xs.

3. Transformation: find the geometric center XC
s of Xs and move the origin

of the original state space to XC
s so X̄s = Xs −XC

s .

4. Use singular value decomposition to find the direction matrix C as, X̄s =

U × S × C, where S is a ns × ns diagonal eigenvalue matrix, C is the
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Figure 4.14: Integration of GEMLS1 and Oriented Rectangular Hull

matrix containing eigenvectors (or direction of the principle axes in the

new coordinate system),

5. Optimization: solve
d∗j = max

x
cT

j x̄∗
i , i = 1, 2, · · · , nf

x̄ ∈ Rt [X0]−XC
s

and find the

oriented rectangular hull determined by C and d∗i .

The above procedure can be illustrated by Figure-4.14. This diagram shows

that finding the direction of the ORH is a sample-based method. Thus, it will

be more efficient if it is integrated with boundary theorem and GEMLS1. This

is because: 1) Samples can be taken only from the points on the boundary

of the initial set because of boundary theorem; 2) In step 1, in order to find
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an accurate ORH, enough samples should be taken and this can be done

by generating pseudo samples from sensitivity analysis; 3) In step 5, once

C is found, the same samples and pseudo samples used to find ORH can

then be used to calculate the observations of the objective function as, dj =

cT
j x̄s = jOs(xs0), and then the response surface can be constructed to solve

the optimization problem to find the ORH with minimal size. Notice that the

geometric meaning of dj = cT
j x̄j

s is the length of x̄i
s’s projection on the jth

principle axes.

4.4.5 Numerical Example

Example 4.3 Benchmark: The reachable set of a 2-D Van der Pol system3.

ẋ1 = x2

ẋ2 = −.02(x2
1 − 1)x2 − x1

X0 = {0.8 ≤ x1 ≤ 1, 0.8 ≤ x2 ≤ 1} t ∈ [0s, 10s], ∆t = 0.2s

is approximated by the approach described early. Random samples along the

border of the initial condition set (a square) are taken (8 real samples+ 4

pseudo samples ). The domain X0 is divided into 100 grids to evaluate the

response surface. For comparison purposes, Monte Carlo simulation results

based on 625 samples, taken in the square are also given, as shown in Figure-

4.15. Figure-4.15(a) shows the reachable set from t = 0 to t = 10s as a union of

series ORHs. The time step is ∆t = 0.2s. Figure-4.15(b) shows the reachable

set at t = 0s. Notice that at t = 0, since the real reachable set (a rectangle)

does not have a strong preferred orientation, the ORH found is not a very good

3This is a widely used benchmark problem, see [6, 19, 76]
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(a) Reachable set given by union of ROH (b) Reachable set at t=0s

(c) Reachable set at t=4,8 s

Figure 4.15: Reachable set of Van del Pol system given by GEMLS1 and ORH
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approximation due the singularities in the covariance matrix used for PCA [76].

Due to the dynamics of the system, the shape of the reachable set became more

oriented. Figure-4.15(c) shows the reachable set at t = 4s, t = 8s. It can be

found that even with just 8 real samples, GEMLS1 can find a very accurate

optimal location x∗
i as well as the corresponding optimal d∗i that determines

the size of the ORH. It happens that the reachable sets of this problem at

different times are all polygons, so only four simulations originated from four

corner values of the initial condition set are needed to determine the reachable

set.

Example 4.4 Using ORH to approximate reachable set of paramet-

ric uncertain system. A more general definition of a reachable set is the

performance tube of a parametric uncertain system that contains both uncer-

tain parameters and uncertain initial conditions. In this case, the boundary

theorem can not be applied. However, the integrated steps using ORH and

GEMLS1 mentioned above still hold, taking samples inside the initial con-

dition set and in the parameter space. Figure-4.16 shows the reachable set

of the system used in Example 3.8, generated by ORH. Contrasting with the

reachable set generated by hyper rectangle shown in Figure-3.20(c), it is found

that ROH gives a more accurate approximation.

4.5 Summary

This chapter formulates the verification of a hybrid system as a reach-

able set approximation problem, which is a special case of simulation of para-
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Figure 4.16: Oriented Rectangular Hull for reachable set approximation
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metric uncertain system. The flow pipe algorithm is analyzed and shortcom-

ings in using the fundamental inequality theorem to reduce the computational

cost are pointed out. A boundary theorem that can reduce the search space

from Rn to Rn−1 is then derived. Finally, ORH and GEMLS1 are integrated

together to approximate reachable sets with better efficiency and better accu-

racy.
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Chapter 5

Fault Detection as Simulation of Parametric

Uncertain System

This chapter treats the model-based fault detection problem as simula-

tion of parametric uncertain systems. First, a fault free system is modeled as

a parametric uncertain system whose parameters belong to a given bounded

parameter set, which is called normal set. The performance of a fault free sys-

tem is bounded by the boundary that can be acquired by using the approach

described in previous chapters. A fault is defined when system parameters

do not belong to the normal set due to malfunction or degradation. Once

such fault(s) occur, the monitored system performance will extend beyond the

system boundary predicted by the parametric uncertain model. A fault is re-

ported whenever the monitored system performance interacts with the system

boundary. Compared to conventional model-based fault detection methods

that use fixed threshold, method used in this chapter use boundary as an

adaptive threshold that can give better miss alarm and false alarm ratio.
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5.1 Fault and Failure

Any complex system is susceptible to faults or failures. In most general

terms a fault is any change in a system that prevents it from operating in

the proper manner [79]. It is recognized that fault detection is more properly

called change detection and that a fault can be either a failure in a physical

component, or a change in system performance. These definitions may be

formalized as follows [15]:

• Fault: Undesired changes in system parameters that degrades perfor-

mance. A fault may not represent a component failure.

• Failure: Catastrophic or complete breakdown of a component or func-

tion. To be contrasted with a fault which may be a tolerable malfunction.

• Fault detection: A binary decision making process. Either the system is

functioning properly, or there is a fault present.

• Fault isolation: Determination of source of a fault.

In this research, fault is defined as a change or degrading of system pa-

rameter values away from a normal value set. For example, when the internal

resistance of a power supply is between 0.01Ω to 0.02Ω , the system is treated

as working properly or normal. Whenever the internal resistance is out of this

range, the system is treated as abnormal.
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5.2 Fault Detection and Isolation (FDI)

For a complex system, with a number of potential fault states ( system

parameters), FDI is most often considered to be a multi-stage process:

1. Fault detection: firstly the fact that a fault has occurred (something

wrong?) must be recognized.

2. Fault diagnosis

• Fault isolation: Secondly the nature of the fault should be deter-

mined (what is wrong?) such that appropriate remedial action may

be initiated.

• Fault identification: Further information on a fault (How bad?) is

required after isolation, such as magnitude, cause, type of the fault.

3. Fault accommodation: actions are to be taken to account for the fault (what

to do with it?). This may vary from triggering an alarm or replacing a

part.

This reach focuses on the fault detection problem and a simple discussion on

fault isolation is given at the end of this chapter.

Fault detection systems have several major performance criteria. These

criteria are [79]:

1. Missed alarms ratio. It is most important that the system does actually

145



detect all the faults that occur. The missed alarm ratio reflects how good

the FD system at catching the faults.

2. False alarm ratio. A false alarm refers to when the FD system indicates

a fault and the system is actually not faulty. It reflects how reliable the

FD system is.

3. Detection delay. It is the delay between the appearance and the detection

of a fault It measures the speed at which the detection and handling

system operates when a fault happened.

An ideal FD system detects faults as soon as they appear to keep the

monitored system safe and with neither missed alarms nor false alarms. A

more realistic goal is to reduce these three indices to the minimum.

5.3 Fault Detection Methods

Basically, fault detection is done by comparing the performance of that

system against some ideal references system, as shown in Figure-5.1 [4]. This

ideal may be either another redundant, identical physical system, or a com-

puter model. The difference of the two systems is called residual. When the

residual is larger than certain threshold value, a fault occurs.

If the reference is another redundant physical system, the the fault

detection is a hardware based fault detection system. In many cases this is

not practical because of economical reasons or other kinds of constraints [15].
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Figure 5.1: Redundancy based fault detection, adapted from [4]

An alternative to overcome these problems is the use of a model to generate

the reference behavior, i.e. to perform analytical redundancy. This approach

is called model-based fault detection.

The major advantage of the model-based approach is that no additional

hardware components are needed in order to realize an FDI algorithm. A

model-based FDI algorithm can be implemented in software on the process

control computer. Furthermore, the measurement necessary to control the

process are, in many cases, also sufficient for the FDI algorithm so that no

additional sensors have to be installed [15].

A comparison of hardware vs model based redundancy approach is

shown in Figure-5.2 [15].

5.4 FD as Simulation of Parametric Uncertain Systems

As mentioned before, a fault is defined as undesired change in system

parameters that degrade performance. Thus, we can define fault detection as

147



Figure 5.2: Hardware vs analytical redundancy, adapted from [15]
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finding the change of parameters and transform FD to simulation of parametric

uncertain systems. First, a fault free system is modeled as a parametric uncer-

tain system whose parameters belong to a given bounded parameter set, which

is called a normal set. The performance of a fault free system is bounded by

the boundary that can be acquired by using the approach described in Chapter

3 and Chapter 4. A fault is defined when system parameters are not in the

normal set, due to malfunction or degradation. Once such fault(s) occur, the

monitored system performance will go beyond the system boundary predicted

from the parametric uncertain model. A fault is reported whenever the moni-

tored system performance interacts with the system boundary. This approach

is similar to the approach reported in [4], in which the boundary is found by

using interval analysis.

Such FD system is illustrated in Figure-5.3.

The advantage of modeling FD as simulation of uncertain systems are

as follows:

1. Practically, the value of a component with acceptable quality is defined

in a bounded set other than a value. For example, a resistor value is

often given as 1K ± 1%, which means the resistor is in good condition if

its real value is between 990Ω and 1100Ω . The uncertain model of the

system naturally reflects this fact.

2. Conventional model based fault detection compare a fixed thresholds

with the residual generated to make decisions. This fixed threshold usu-
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Figure 5.3: FD as simulation of uncertain system, adapted and modified
from [4]

ally is not very useful for dynamic systems because of the changing op-

erating point. In this case, it is better to compute a new threshold every

time step. This is an adaptive threshold [4].

Boundary of the system can be treated as an adaptive threshold with

changing values. The way it changes reflects the dynamics of the system

and thus the miss alarm and false alarm ratio can be reduced. This can

be shown in Figure-5.4 [4].

5.5 Numerical Example

5.5.1 The Motor-Pump-Pipe System

The following system is to be studied: a sub-unit in a process plant that

maintains the liquid level of a reactant tank to be used by a Continuous Stirred

Tank Reactor (CSTR). The system schematics are shown in Figure-5.51 as a

1This example is taken from the final exam of ME-397 Fall, Fault detection, given by
Dr. Fernandez in Mechanical Engineering Department, UT Austin
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Figure 5.4: Boundary as adaptive threshold, adapted from [4]

simplified Motor-Pump-Hydraulic System Circuit. A DC motor controlled via

voltage regulation is coupled to a centrifugal pump. The pump is associated

with a hydraulic circuit. To regulate the speed of the the pump, a proportional

(P) type controller is added to the system. To regulate the reactant level a

Proportional-Integral (PI) type controller is used.
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Figure 5.5: Motor-Pump-Pipe System.

5.5.2 System Model

The system equations of the Motor-Pump-Pipe system given in state

space form are:

λ̇(t) = ẋ1(t) = Kp1 · (ωref (t)−
h(t)

Jmp

)− Ra

La

λ(t)− km

Jmp

h(t)

ḣ(t) = ẋ2(t) =
km

La

λ(t)− Rmp

Jmp

h(t)− kp

IL

Γ(t)

Γ̇(t) = ẋ3(t) =
kp

Jmp

h(t)−
{

Kp2 · (Href (t)−
V (t)

AT

) + Ki · eI(t) + Rdl(t)

}
Γ(t)

IL

V̇ (t) = ẋ4(t) =
1

1 + Rd/Rl(t)

Γ(t)

IL

− gρ

AT

RT (t)V (t)

ėI(t) = ẋ5(t) = Href (t)−
V (t)

AT

(5.1)
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The measurable outputs are y(t) =
[

i (t) ω(t) Qi(t) Qd(t) H(t)
]T

, where:

i(t) = y1(t) = gi
λ(t)

La

ω(t) = y2(t) = gω
h(t)

Jmp

Qi(t) = y3(t) = gQi

Γ(t)

IL

Qd(t) = y4(t) = gQd

RlΓ(t)

RdlIL

H(t) = y5(t) = gH
V (t)

AT

(5.2)

Physical meanings of the state and output variables are listed in Table 5.1.

System parameters and their nominal values are shown in Table-5.2.

Table 5.1: Motor-pump-pipe state and output variables

State and output
variables

Physical Meaning Unit

λ Flux linkage in armature Wb
h Combined-pump angular momentum N −m/s
Γ The fluid momentum kg/m− s
V The tank’s volume m3

ėI Tank liquid level error m
i Current in the armature A
ω Pump angular speed Rad/s
Qi Inlet flow rate through the pump m3/s
Qd The leakage flow rate m3/s
H The liquid level in the tank m
gj The gain of sensor j

5.5.3 Modeling of Fault Modes

It can be found by examining Figure-5.5 that faults may occur anywhere

in the system. A complete model can be built to cover all the possible faults.
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Table 5.2: Motor-pump-pipe system parameters

Parameter
Symbol

Physical Meaning Nominal
value

Unit

Ra Armature resistance [1,2] Ω
La Armature inductance 0.15 H
km Motor constant 2 N −m/A
Rmp Motor-pump combined resistance 1.5 N −m− s/rad
Jmp Motor-pump combined inertia 0.025 kg −m2

kp Pump constant [1,1.2] N − s/m2

L Length of pipe 2.5 m
D Pipe diameter 0.25 m
Rd Discharge resistance 0.3554e-5 kg/m4 − s
AT Cross-sectional area of tank 0.0491 m2

RT Tank downstream resistance 4.8240e-6 kg/m4 − s
Rl Leak resistance [100,200] kg/m4 − s
Href Nominal height reference 2 m
ωref Nominal speed reference 1000 rpm
Kp1 Controller-1 proportional gain 5
Kp2 Controller-2 proportional gain 1e5
Ki Controller-2 integral gain 1
ρ Liquid density 1000 kg/m3

gH Level sensor gain [0.95,1.05]
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However, it is not necessary and practical to consider all the possible faults.

Only the most critical or frequent faults should be modeled. The following

faults modes are considered for the Motor-Pump-Hydraulic system.

1. Actuator faults. The faults associated with the motor and the centrifugal

pump are termed as actuator faults.

• DC Motor faults. For the fault associated with the DC motor, they

can be factored as the change of the motor armature resistance.

These faults include overheating of the motor, winding shortened

or broken, brush aging (contact resistance between commuter and

brush is higher than normal), etc.

• Centrifugal pump failure. Many faults may occur in a centrifu-

gal pump, such as seal related problems (leakages, loss of flushing,

cooling, quenching systems, etc), pump and motor bearings related

problems (loss of lubrication, cooling, contamination of oil, abnor-

mal noise, etc), leakages from pump casing, very high noise and

vibration levels, or driver (motor or turbine) related problems. The

most common fault associated with centrifugal pump is the inabil-

ity to deliver the desired flow and head. This can be factored into

the changing of the pump constant kp.

2. Sensor faults. A sensor can be modeled as a gain. For example, the

liquid level sensor can be modeled as Hs = gH×Hr, where Hr is the real

liquid level, gH is the sensor gain and Hs is the sensor reading. Ideally

155



the value of the gain should be one. Sensor faults include degrading

versus time, too much offset or totally lose sensing ability. These faults

can be factored by changing of the value of the gain.

3. Hydraulic circuit failure. The fault mode considered here is leakage in

the hydraulic circuit. Leakage in the hydraulic circuit can be factored

into the changing of the leakage resistance Rl from a large value (no

leakage) to a relative small value.

In order to model above faults, the system state equations Eq. 5.1

are modeled as interval ODEs with the following four set value parameters,

Ra, kp, gH , Rl. Their normal range is given in Table 5.2. The range basically

reflects the performance limit of the component that can be treated as normal.

For example, gH in the range between [0.95, 1.05] means the sensor’s allowable

tolerance is about five percent. If the sensor’s tolerance is out of this range, it

is treated as a faulty sensor.

5.5.4 Envelope Generation

Note that the boundary of each state variable can be used for fault

detection purpose. However, in the real physical system only two physical

sensors are implemented in the system; i.e., a speed senor monitors the DC

motor speed, and a level sensor monitors the tank liquid level. Thus only the

boundaries of the speed and tank water level are used for fault detection. By

doing this, sensor used for control purpose can also be used for fault detection.
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5.5.5 Results

Figure-5.6 shows the envelopes generated using gradient enhanced mov-

ing least square method and the result of Monte Carlo method, along with the

nominal system performance curves. The boundaries of two measurable sig-

nals: the tank liquid level and DC motor speed are shown. It can be found

that the GEMLS approach can predict the envelope very accurately.

The DC motor speed curve is almost a constant because of the P con-

troller. The following faults scenarios are simulated and the alarms are gener-

ated when the simulated curves intersect with the boundary. Also, we assume

at a certain time that only one fault has occurred, and the other parameters

remain at their nominal value. This assumption is necessary if fault isolation

is needed.

1. DC motor fault. The armature resistance is increasing with time as

Ra = 1.5+0.01∗t but saturates at Ra = 4Ω. This scenario may represent

overheating of the rotor of the DC motor. The simulated results are

shown in Figure-5.7. It can be found from speed response that the final

DC motor speed is determined by the value of the armature resistance,

which limits the DC motor output torque. For this fault scenario, the

fault occurred at t = 150s, at which the armature resistance is larger

than 3Ω. The speed curve will generate an alarm almost immediately

when Ra became 3Ω, but the alarm given by the tank level signal will

have roughly 80 seconds delay.
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(a) Envelope of tank liquid level

(b) Envelope of DC motor speed

Figure 5.6: Envelope of system performance
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(a) Tank level and fault due to armature resistance

(b) DC Motor speed and fault due to armature resistance

Figure 5.7: Fault due to DC motor armature resistance change
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2. Centrifugal pump fault. The pump constant has a sudden change from

kp = 1.1 to kp = 0.8 at t = 100seconds. The sudden change of pump

constant may be due to many reasons described in the previous section.

The simulated results are shown in Figure-5.8. It is found that this

fault will not be detected from the DC motor speed curve. This is

because the P controller used to maintain the speed of the DC motor will

compensate for this fault so that motor speed will remain in the normal

range. However, the tank level signal will generate alarms. Sensitivity

analysis in the next section will also show that the speed signal is not

capable of helping detect the pump constant change fault. The fault

occurred at t = 100s and the delay is about 130 seconds.

3. Level sensor fault. The gain of the level sensor degrades with time as

gH = 1− 0.01 ∗ t, and saturates at gH = 0.85. This degradation model is

used to simulate a sensor degradation as might result from many reasons.

The simulated results are shown in Figure-5.9. As for the pump fault,

the motor speed curve is not capable of reporting this fault. The fault

occurred at t = 5s when gH = 0.95, but the system reported the alarm

at t = 390s.

4. Leakage in pipe. The leakage resistance, Rl suddenly jumps from 1e2 to

1e − 5 at t = 200s, which corresponds to a sudden break in the pipe.

The simulated results are shown in Figure-5.10. The system reported

this fault at t = 220s. Again, the DC motor speed curve can not report

this fault.
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(a) Tank level and fault due to pump constant change

(b) DC Motor speed and fault due to pump constant change

Figure 5.8: Fault due to pump constant change
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(a) Tank level and fault due to level sensor degradation

(b) DC Motor speed and fault due to level sensor degradation

Figure 5.9: Fault due to level sensor degradation
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(a) Tank level and fault due to pipe leakage

(b) DC Motor speed and fault due to pipe leakage

Figure 5.10: Fault due to pipe leakage
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Notice that for discussion purpose, how the fault might occur are de-

scribed in this section. However, this is not necessary if this approach is applied

for fault detection. The only condition for this approach is that what fault

may occur should be known in advance so that the parameter associated with

that fault will be treated as an interval rather than a fixed value.

5.5.6 Discussion

The following observations are made from the above simulated results.

1. The system seems to respond to the faults too slowly.

2. Only the tank level signal is able to report all the faults.

For the first observation, it is because the uncertain model is built to

cover all four fault scenarios and thus the boundary is generated with four

parameters varying from their min to max values simultaneously. This ap-

proach can actually cover the worst case when the four faults occur together.

In this example, the fault scenarios were simulated so that only one parameter

changed and the other three parameters remained fixed. Thus, the envelopes

are quite conservative for a single fault. One way to improve the response

time is to generate four set of envelopes, each set for one fault scenario. For

example, a set of envelopes just to detect sensor fault can be generated with

the armature resistance, pump constant and leakage resistance just varying in

a very narrow range. However, this may increase the false alarm ratio. So the

164



response time of the system will be a trade off among several factors such as

model complexity, miss alarm ratio and false alarm ratio.

For the second observation, sensitivity analysis can also show that speed

signal is able to report only the first fault of armature resistor change. Figure-

5.11(a) shows the sensitivity of speed against the four parameters, armature

resistor, Ra, pump constant, kp, leakage resistance, Rl and level sensor gain,

gH . Clearly, it shows that it is only sensitive to Ra and the sensitivity coeffi-

cients of the other parameters are almost zero. Thus it is not able to report

the other three faults.

Also, the envelopes of the system are generated by searching in 4 di-

mensions since four fault scenarios are to be detected. However, the sensitivity

analysis results also indicate that the search space can be reduced. Figure-

5.11(a) shows that in order to generate the DC motor speed envelope, only Ra

need to be considered since there other three parameters will not influence the

speed. The sensitivity coefficient to Ra is always less than zero and thus only

the boundary value of Ra need to be sampled, as discussed in Chapter 3. For

the tank level signal, the situation is more complicated but we can find from

Figure-5.11(b) that before t = 300s, all the sensitivity coefficients (at nominal

value) show strong monotone character. Thus, sensitivity band analysis pro-

cedures described in Chapter 3 can also be used to reduce computational cost.
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(a) DC Motor speed sensitivity analysis at nominal values

(b) Tank level sensitivity analysis at nominal values

Figure 5.11: Sensitivity analysis to reduce search space
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5.6 Summary

This chapter treats fault detection as a simulation of a parametric un-

certain system. A fault free system is modeled as a parametric uncertain

system whose parameters are intervals. The system boundaries are used as

threshold for fault detection. A fault is defined when system parameters that

are not in the normal set. A fault is reported whenever the monitored sys-

tem performance interacts with the system boundary. The advantages of this

method, compared to other model-based fault detection are: 1) The uncertain

model can naturally reflect the uncertainties associate with the values of the

components in the system, and 2) Using boundary of the uncertain system as

an adaptive threshold can give better miss alarm and false alarm ratio than

fixed threshold.
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Chapter 6

Summary, Future Work and Conclusions

This chapter summarizes this dissertation and outlines directions for

future work.

6.1 Summary

This dissertation describes a study into numerical methods for repre-

sentation and simulation of dynamic systems with time invariant uncertain

parameters. Simulation is defined in the context of parametric uncertain sys-

tem as the process of computing the boundary of a system response that

contains all the possible behavior of an uncertain system. This research is

motivated by the facts that modeling and simulation of physical systems is

often complicated by the presence of uncertainties.

Existing and past work on uncertainty categorization, representation

and propagation are reviewed. The metrics used to compare different uncertain

propagation approaches are presented. The review revealed that simulation

of systems with uncertain parameters remains a challenging problem, partic-

ularly because of the computational cost. Also, boundary of the output of an

uncertain system has a wide range of applications. The review also motivated
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developing of a numerical method to simulate parametric uncertain nonlinear

dynamic systems with the ability to deal with large time invariant uncertain-

ties. The method should improve the accuracy and reduce the computational

cost for these types of problems.

Based on the review and the computational cost analysis of the prob-

lem, a method that is a trade-off between efficiency and accuracy is developed.

The basic idea is to study an approximation or a surrogate of the original sys-

tem model, instead of the original system. To construct the surrogate model,

the response surface method (RSM) is employed. Since the optimization prob-

lem to be solved is generally non-convex, there may be multiple local optima.

Conventional RSM using polynomials which provides global approximation is

not able to deal with the non-convex problem. Thus a local approximation

approach called Moving Least Square (MLS) is used for response surface con-

struction. For more complicated systems, a gradient enhanced moving least

square (GEMLS) response surface method is used to solve the global optimiza-

tion problem more efficiently. This method takes advantage of the fact that

parametric sensitivity of an ODE system can be calculated as a by-product

when solving the original system with less computational cost. With the help

of sensitivity information, the number of samples needed to construct the re-

sponse surfaces is further decreased, and the quality of the response surface can

be improved. Furthermore, global sensitivity analysis for monotonic testing to

further reduce the number of samples is introduced.

Once the approach is developed, it has been applied to several engi-
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neering applications. The first application is hybrid system verification by

reachable set computing. The reachable set computing/approximation prob-

lem is formulated as a simulation of a dynamic system with uncertain initial

conditions. Methods developed for parametric uncertain system simulation

can be directly applied to this problem. For reachable set computing, a more

accurate boundary should be found. Thus more complicated geometries, such

as polyhedra should be used rather than hyper rectangle to represent the

reachable set. The computational burden of current methods for reachable set

approximation, such as polyhedral approximation, is studied. It shows that

these methods involve global optimization techniques that embed numerical

simulations of the dynamic system response into the routine for evaluating the

objective function. The search space is the entire uncertain initial state in Rn.

It is general but computationally expensive, and thus not applicable if simula-

tion of the system is already computationally burdensome. The applicability

of some existing approaches that avoid the global optimization problem by

employing the fundamental inequality theorem are shown to be very limited.

To reduce the computational burden, we first proved a boundary the-

orem that reveals that the boundary of the reachable set is formed only by

the trajectories from the boundary of the initial state region. This result re-

duces the search space from Rn to Rn−1. For more complicated systems, the

GEMLS method proposed is used to solve the global optimization problem

more efficiently. Finally, it is shown that it will be more efficient and accurate

if GEMLS is integrated with Principal Component Analysis (PCA) to find an
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oriented rectangular hull for reachable set representation and approximation.

The other engineering application is model based fault detection. Model-

based fault detection can also be treated as simulation of parametric uncertain

systems. First, a fault free system is modeled as a parametric uncertain system

whose parameters belong to a given bounded parameter set, which is called

normal set. The performance of a fault free system is bounded by the bound-

ary that can be acquired by using the approach described in previous chapters.

A fault is defined when system parameters do not belong to the normal set

due to malfunction or degradation. Once such fault(s) occur, the monitored

system performance will extend beyond the system boundary predicted by

the parametric uncertain model. A fault is reported whenever the monitored

system performance interacts with the system boundary. Compared to con-

ventional model-based fault detection methods that use a fixed threshold, the

method used in this research uses the boundary as an adaptive threshold that

can give better miss alarm and false alarm ratio.

This dissertation can be summarized by Figure-6.1.

6.2 Future Work

This dissertation has developed a hybrid numerical method that inte-

grates RSM and local/global sensitivity analysis for simulation of parametric

uncertain dynamic systems. Using this method as a starting point, a number

of future research directions can be found.
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Figure 6.1: Summary of the dissertation
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1. More engineering applications should be studied. One possible engineer-

ing application that this research can be applied to is to support worst

case design. Worst-case design ensures that hardware meets or exceeds

the design specifications over all possible component variations. Conven-

tionally, it is done by using vertex enumeration. However, as we pointed

in the previous discussion and by other researchers, the results given by

the ‘corner value’ simulation has been found to be overly pessimistic.

Clearly, worst case simulation can be transformed to simulation of para-

metric uncertain systems and the proposed method can be applied.

2. Methods that could generate more accurate optimization results should

be studied. One disadvantage of RSM is that it is hard to validate the

results. It can not guarantee to give an very accurate global optimization

result unless a large number of samples are taken. For the reachable set

problem, RSM will not guarantee an overestimation of the real reach-

able set unless the optima given by RSM is accurate or larger than the

real optima. For fault detection problem, a non-accurate envelope will

increase the false or miss alarm ratio. One way to improve the accuracy

is by a two level algorithm: 1) Construct a RSM and find a level-1 global

optima point, due to its approximation error, level optima is not quite

match with the real optima. 2) use the level 1 optima as a starting search

point and construct a new response surface in the small region around

this starting point and find a level-2 optima which will be much more

accurate. Above step can be repeated several times until the result con-
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verges; or at level-2 gradient-based method around level-1 optima can

be applied since point since the gradient information is available [83].

3. Other multi-variable regression methods should be explored. Although

MLS is a very powerful regression method, other multi-variable regres-

sion methods, such as Kriging [54], Multivariate Adaptive Regression

Splines (MARS) [30], Neural Networks [55] should also be considered,

especially for systems with a large number of uncertain parameters.

4. Although a theorem to test the monotonicity of ODE systems is given, it

has very limited applicability. New methods that can quickly determine

the monotonicity of ODE systems should be developed.

6.3 Conclusions

Limited by the available computing power, uncertainty propagation for

systems with a large number of uncertain parameters will remain a challenging

problem. For systems withe less complexity, this study shows that a hybrid

approach composed of RSM, local/global sensitivity analysis provides an ef-

fective solution.
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