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This dissertation describes numerical methods for representation and
simulation of dynamic systems with time invariant uncertain parameters. Sim-
ulation is defined as computing a boundary of the system response that con-
tains all the possible behaviors of an uncertain system. This problem features
many challenges, especially those associated with minimizing the computa-
tional cost due to global optimization. To reduce computational cost, an
approximation or surrogate of the original system model is constructed by em-
ploying Moving Least Square (MLS) Response Surface Method for non-convex
global optimization. For more complicated systems, a gradient enhanced mov-
ing least square (GEMLS) response surface is used to construct the surrogate
model more accurately and efficiently. This method takes advantage of the

fact that parametric sensitivity of an ODE system can be calculated as a by-
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product with less computational cost when solving the original system. Fur-
thermore, global sensitivity analysis for monotonic testing can be introduced
in some cases to further reduce the number of samples. The proposed method
has been applied to two engineering applications. The first is hybrid system
verification by reachable set computing/approximation. First, the computa-
tional burden of using polyhedron for reachable set approximation is reviewed.
It is then proven that the boundary of a reachable set is formed only by the
trajectories from the boundary of an initial state region. This result reduces
the search space from R" to R""!. Finally, the GEMLS method proposed is
integrated with oriented rectangular hull for reachable set representation and
an approximation with improved accuracy and efficiency can be achieved. An-
other engineering application is model-based fault detection. In this case, a
fault free system is modeled as a parametric uncertain system whose parame-
ters belong to a given bounded set. The performance boundary of a fault free
system can be acquired by using the proposed approach and then employed
as an adaptive threshold. A fault is defined when system parameters do not
belong to the set due to malfunction or degradation. Once such a fault oc-
curs, the monitored system performance will extend beyond the normal system

boundary predicted.
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Chapter 1

Introduction

The use of numerical models for the simulation of physical system has
greatly impacted our approach to engineering and science. However, model-
ing of physical systems is often complicated by the presence of uncertainties,
resulting from lack of information, incomplete scientific understanding, errors
in measurement, or manifested in the different predictions from different mod-

eling systems, etc.

This dissertation is concerned with representation and simulation of
dynamic systems with uncertain parameters. In this chapter, the problem is
first stated in a mathematical form, followed by background and motivation.
The goals and contributions are also included, and an outline is presented at

the end of the chapter.

1.1 Problem Statement

This dissertation posits to study the behavior of dynamic systems with

uncertain parameters. Consider the Initial Value Problem (IVP) of a dynamic



system represented by the Ordinary Differential Equations (ODE),

% = f(x,u, A, t)
y =g(x,u) (1.1)
x (0) = xg

xER" AeR™, ueR, yeR.

In this formation, x is an n-dimensional state vector, with the initial state
vector, Xg. The m-dimensional uncertain parameter vector is A, u is the p-
dimensional input vector, and y is the g-dimensional output vector. Both f

and g are vector-valued functions.

Definition 1.1 A determined system is a system described by Eq. (1.1), in

the case where parameter A and initial conditions x, are precisely known.

Definition 1.2 A trajectory is the path of output y;,j = 1,2, ..., ¢, of a deter-

mined system in the state space, ranging from t, to ;.

Definition 1.3 A parametric uncertain system' is a system described by

Eq. (1.1), in the case where the parameters A or initial conditions x, are

bounded,

Ao AilLi=1,2,..,m
o) € |ad, )] i =12 ..n (1.2)

i €

where z is the lower bound and 7 is the upper bound. Also, this study is lim-
ited to time invariant parametric uncertain systems, an uncertain parametric

system with A=0.

In this dissertation, parametric uncertain system strictly refers to a system defined by
Definition 1.3. System with uncertain parameters refers to a more general concept.



Definition 1.4 The parameters of an ODE system construct a parameter
space. The bounded uncertain parameter, A, and initial condition, xg, repre-
sent, a hyper rectangle in parameter space and state space, respectively. For a

determined system, these two hyper rectangles are two points.

Obviously, for parametric uncertain systems, there are an infinite num-
ber of output trajectories formed by all possible system parameter values. An

arbitrary trajectory can be denoted as y(t, VA).

At a given instant of time, ¢,, any output of a parametric uncertain

system should be bounded by,

min(yg(ts, VA)) < y(ts, VA) < max(yx(ts, VA)),k=1,2,...,¢q

Definition 1.5 The lower and upper envelope of a parametric uncertain dy-

namic system is defined as,

yr = U min (yx (t,YN))

t€[0,T]

Uk = U max (y (£, VA)) (1.3)
t€[0,T]

k=1,2,....q

Geometrically speaking, y, and 7, represent the lower and upper curves
that are projections of the boundary of the union of all possible trajectories,

to the y; plan, as shown in Figure-1.1.

Definition 1.6 Simulation is defined, in the context of parametric uncertain

system, as the process of computing the envelope yp, U

Boundaries and envelopes represent all the possible trajectories of an

uncertain system by a single image. The boundaries split the set of possible



Figure 1.1: Simulation of dynamic system with uncertain parameters

values of a specific output variable at a time point into two subsets: the allowed
values and the forbidden ones, according to the model and the input applied
to the system [4]. The generation of the exact boundary and envelopes are
not realistic goals in most practical cases. It is difficult or even impossible to
determine these measures. Hence the problem to be studied in this dissertation
is how to accurately and effectively find approzimation of yx and Yy, denoted

as Y and yy, . An illustration of this problem is shown in Figure-1.1.

1.2 Background and Motivation

A fundamental task in engineering and science is the construction and

simulation of models for representing real systems. For continuous dynamic



systems, ODE models are a common representation. Conventionally, such
models consist of a system of differential equations that describe the trajec-
tory of state variables over time. Making predictions from such determined
models has become straightforward and efficient, given the advancement and
availability of numerical ODE solvers. However, the value of this approach to
modeling and simulation depends on the accuracy of the ODE for representing
the physical system of interest. For many problems, accurate ODEs may be
difficult to find due to the existence of uncertainties [45]. For realistic sys-
tems, one can account for uncertainties of various types in the mathematical
model of the system. Uncertainty may occur in the parameters describing the
mathematical model, or in the formulation of the mathematical model used to
describe the system of interest, etc. This research is motivated by the following

1ssues:

1. Design/simulation dilemma: Modeling and simulation have been widely
used as design and decision making tools for decades. In most cases, the
designer who uses simulation as a design tool faces a dilemma: while
many of the simulations must be done in the early design stage, param-
eters needed for simulation are not completely known. In this stage, in
most cases, the engineers may have a good understanding of the phys-
ical principles involved in modeling the system, however, they will not
have precise knowledge of the values of each parameter, as the process
of design is what helps determine the parameters of the system. Thus,

design/simulation by nature is usually an iterative trial and and error



process. Many iterations may be needed. However, if one simulation is
computationally expensive, an iteration process is not desirable. This
is well illustrated in engineering applications such as power systems de-
sign [14, 36], circuit design [28], vehicle design [13,34], etc. The author
has encountered this problem while involved in the Advanced Locomo-

tive Propulsion System (ALPS) project [84].

. Uncertainties in real world. Assume that a design is finalized and the
designer has found a set of parameters for a given component. However,
any real component may have manufacturing tolerance, or the properties
of the materials may have variability. Therefore, it is unlikely that the
fabricated component/system will exactly reflect the original design. As
such, a modeling and simulation tool that has the ability to represent
and predict the behavior of the component with tolerance presents a

more useful tool for engineers.

. Design/simulation for uncertainties. Design is riddled with uncertain-
ties. For certain parameters in a model, their value may not be a discrete
value but a bounded set. For example, the inertia of a vehicle is an im-
portant factor for the design of the suspension system. Yet, the number
of passengers in the car may vary from 1 to 5. Consequently, the total
mass of the vehicle is left uncertain but bounded. The suspension must
work well in this range. Therefore, it will be better to use a simulation

tool that is able to handle such uncertain parameters.



4. Hybrid system verification. A hybrid system may be categorized as a
switching system. Such systems will switch among several continuous
systems represented by ODEs. For such systems, the continuous state
space is divided into several operational regions. Switching between
different continuous system is determined by whether the state of the
system enters into these regions. Verification of such a system determines
if a system will enter a certain region, given an uncertain initial state
region. This problem can be studied by reachable set computing and will

be discussed in detail in Chapter 4.

5. Fault detection. The performance of a determined system in ‘good’ oper-
ating condition can ideally be represented by a state trajectory. However,
due to different uncertainties, the acceptable performance of a system is
best represented by a boundary. Whenever the monitored system’s per-
formance is outside this boundary, a fault may have occurred. A fault
detection problem can thus be modeled by simulation of a parametric
uncertain system. The details of this application will be discussed in

Chapter 5.

In each of the above cases, inherent uncertainties are common to the
modeling and simulation task. Thus there is a strong motivation for the de-
velopment of efficient methods for simulating dynamic systems with uncertain

parameters.



1.3 Goal of This Research

The goal of this research is to formulate methods for the simulation of
parametric uncertain dynamic systems. This dissertation focuses on paramet-
ric uncertainties because in most cases other uncertainties can be transformed
to parametric uncertainties. The proposed methods should be a trade-off be-
tween efficiency and accuracy. These methods should be able to deal with
large uncertainties, certain number (< 10) of uncertain parameters, and be
easily applied for practical applications. Specifically, the goals of this research
are to find methods that increase accuracy without losing too much computa-
tional efficiency and are easily integrated with commercial simulation software.
This dissertation also examines classes of engineering applications that can be

solved by this method.

1.4 Summary of Key Contributions of This Research

This dissertation presents a hybrid method for solving the problems
described above based on Response Surface Method (RSM). The possible con-

tributions of this research are:

1. A hybrid numerical method for parametric uncertain system simulation
that integrates response surface method, sensitivity analysis, monotonic
testing and gradient enhanced RSM for enhanced computational effi-

ciency and accuracy. This method is described in detail in Chapter 3.

2. The introduction of sensitivity bands and monotone intervals for para-



metric uncertain dynamic systems, and a novel theorem that simplifies
the monotonic testing of a dynamic system to reduce the computational

cost of simulation. The detail is in Section 3.6.

3. The derivation and discussion of gradient enhanced moving least square
response surface method for function approximation with better accuracy

and efficiency. The details are in Section 3.5.3.

4. A boundary theorem that can reduce the search space of reachable set

computing problem from R" to R"~!. The details are in Section 4.4.3.

5. The applications of the developed method for existing engineering prob-
lems, such as hybrid system verification (Chapter 4), fault detection (Chap-

ter 5), to illustrate its capabilities.

1.5 Guide to This Dissertation

The content of this dissertation is arranged as follows: Chapter 2 exten-
sively reviews existing methods used for simulation of dynamic systems with
uncertain parameters, and an evaluation is given at the end of the chapter.
Based on the review of existing methods, Chapter 3 presents details of the
proposed method, which is the core of this research. Chapter 4 presents hy-
brid system verification problem. First the boundary theorem is derived and
then the proposed method integrated with oriented rectangular hull (ORH)

for reachable set computing is presented. Chapter 5 presents fault detection



by employing the proposed method. Chapter 6 summarizes the dissertation

and suggests future work.
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Chapter 2

Literature Review

In this chapter, existing and past research work on categorization, rep-
resentation and propagation of uncertainty in modeling and simulation are

reviewed.

2.1 Uncertainty Categorization

Uncertainties exist in every stage of the modeling and simulation task.

They can be categorized into different types for different applications.

2.1.1 Aleatory and Epistemic Uncertainty

One of the most widely recognized distinctions in uncertainty types is
between aleatory and epistemic uncertainty [62]. The term aleatory uncer-
tainty is used to describe the inherent variation associated with the physical
system or the environment under consideration. Sources of aleatory uncer-
tainty can commonly be modeled as ‘random’ quantities. Aleatory uncertainty
is also called wvariability, inherent uncertainty or natural uncertainty in some
literature. For example, in air pollution systems, the turbulent atmosphere

and unpredictable emission-related parameters are types of aleatory uncer-

11



tainties [42]. They can be represented as random distributions that can take
on values in an established or known range, but for which the exact value
will vary by chance from time to time. The mathematical representation most
commonly used for aleatory uncertainty is a probability distribution. Propa-
gation of these distributions through a modeling and simulation process is well

developed and is described in many texts [62].

Epistemic uncertainty derives from some level of ignorance of the sys-
tem or the environment. The term epistemic uncertainty is used to describe
any lack of knowledge or information in any phase or activity of the model-
ing process. As a result, an increase in knowledge or information can lead
to a reduction in this kind of uncertainty. Examples of sources of epistemic
uncertainty are when there is little or no experimental data for a fixed (but
unknown) physical parameter. As opposed to aleatory uncertainty, the math-
ematical presentation of epistemic uncertainty has proven to be much more
of a challenge. In fact, it is believed that the preeminent issue in uncertainty
analysis of systems is the representation and propagation of epistemic uncer-

tainty [62].

Uncertainty associated with model formulation and application can also
be classified as ‘reducible’ and ‘irreducible’. Aleatory or Natural uncertainty

is ‘inherent’ or irreducible, while Epistemic uncertainty is reducible.

12



2.1.2 Parametric and Model Uncertainty

For any particular physical system of interest that is mathematically
modeled, we can distinguish between parametric uncertainty and model un-

certainty.

e Model uncertainty: Mathematical models are necessarily simplified rep-
resentations of the phenomena being studied, and a key aspect of the
modeling process is the judicious choice of model assumptions. In fact,
sometimes modeling is rather subjective, depending on the modeling
team and its skills and therefore one often refers to it as to the ‘art
of modeling’ [69]. The optimal model will provide the greatest simpli-
fications, while providing an adequately accurate representation of the
processes affecting the phenomena of interest. Hence, the structure of
mathematical models employed to represent a dynamic systems is often
a key source of uncertainty [42]. In addition to the significant approx-
imations often inherent in modeling, sometimes competing models may
be available. Isukapalli and Georgopoulus [42] have categorized model

uncertainty in the following way:

1. Model structure uncertainty: Uncertainty arises when there are al-
ternative sets of scientific or technical assumptions for developing a
model. For example, a simplified DC/AC inverter can be modeled
by using ideal switches or by using an average state model of the

switching devices. In general, the results of the results from these

13



different models are very close. In this case, one can be confident
that the decision is robust in the face of uncertainty. However, in
certain cases, these two models may generate some different con-
clusions, other models may be used to evaluate the results given by

these two models.

. Model detail uncertainty: All models are, to some extend, simpli-
fications of real physical systems. Such as simple linear model of
a very complicated nonlinear system or models that only consider
the low order dynamics that are of interest. For example, for an in-
verter, for different purpose, models (for simple to complex) such as
behavioral model, average model, detailed device level model can
be used. Uncertainties from simplified models can sometimes be
characterized by comparison of their predictions to those of more

detailed models.

Model uncertainty is fundamentally epistemic in nature. Further detail

categorization of model uncertainty can be found in [42].

Parametric Uncertainty. Uncertainties in model parameter estimates

stem from a variety of sources. For example, measurement of parame-

ters are often associated with strong uncertainties, especially for prod-

ucts with small geometric features, such as VLSI chip or MEMS devices.

Other type of parametric uncertainties arise from the design/simulation

dilemma: at an early design stage, simulations are needed to aid design

14



decisions while the parameters of the design are not yet known. Fur-
ther, from a simulation point of view, some parameters are ‘inherent’
uncertain. For example, the mass of a vehicle depends on the number
of passengers in the car. Parametric uncertainly can be a mixture of

epistemic and aleatory uncertainties.

In fact, parametric uncertainty can be treated as a more fundamental
uncertainty, compared to model uncertainty. Model uncertainty can be a result
of parametric uncertainty. For example, if more parameters (information)
are available, a higher fidelity model can be built to avoid model structure

uncertainty.

2.2 Representation of Parametric Uncertainties

The representations of parametric uncertainties are strongly related to
the uncertainty types associated with the parameters. Some of the representa-
tions of uncertainty that occur in modeling and simulation of physical systems

include:

1. Pure qualitative representation [49,50]. In certain conditions, due to
lack of information, a parameter may only be described qualitatively,

such as ‘pretty big’ or ‘small’ etc.

2. Strong statistical information [62]. Sometimes large quantities of exper-

imental data are available, sufficient to derive or convincingly verify a
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particular statistical model of the uncertain parameter. In this case,
the uncertain parameter can be modeled by its probability density func-
tion (pdf). For example, the mass of a component may be uncertain due
to manufacturing errors, so mass can be modeled by a normal distribu-

tion function with its mean value and variation.

. Intervals [4,34,78]. Sometimes the upper and lower bounds on para-
metric values can be provided, typically from expert input or design
constraints. For example, the number of passengers in car could range
from 1 to 5 and thus the mass of the car will range from the lower limit
to upper limit. This representation is very common in design problems,
in which most unknown parameters are represented in intervals. Sys-
tems with interval uncertain parameters are called interval systems or

semi-qualitative system [4, 64].

. Mixed representation. In [62], Oberkampf et al., pointed out that more
commonly, real problems typically present a mixture of all the uncer-
tain sources across different parameters. Moreover, there may be multi-
information sources for one parameters [62]. For example, one parame-
ter might be independently estimated from several experts and each one
gives a different estimation. Thus, there is the challenge of aggregating
these disparate representations into a single representation, which might

have a hybrid or mixed mathematical form.
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The uncertain parameters represented by the methods reviewed above
can be further divided into two categories: time variant or time invariant.
Table 2.1 summarizes the most common representations of parametric un-
certainties. The methods used to propagate time variant and time invariant

uncertainties are very different, and the later case will is more challenging [62].

Table 2.1: Representation of uncertain parameters
Representation of uncertain parameter A

Time invariant A Time variant A(t)

A is known qualitatively A(t) is known qualitatively

A is a random variable with specified | A(t) is a stochastic process whose prob-
pdf abilistic structure is known

A is a random variable with specified | A(t) is a stochastic process whose prob-
pdf having uncertain parameters such | abilistic structure may contain uncer-

as mean and variance tain parameters
A belongs to an interval A(t) belongs to an interval
Mixed representation Mixed representation

In most engineering design/simulation stages, strong statistical infor-
mation or large quantities of experimental data may not be available, and
the probabilistic structure of the uncertain parameters is not generally known.
Thus, interval representation is perhaps the most appropriate representation.
In this case, the uncertain parameters form a hyper rectangular shape in pa-
rameter space. A more general and flexible representation of uncertain param-
eters is a set, which can be any shape in the parameter space. In this research,
the focus is on interval/set representation of time invariant parametric uncer-

tainties.
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2.3 Propagation of Parametric Uncertainties

The most important step in uncertainty analysis is the propagation of
the parametric uncertainties. This is to study of how uncertainties in system
parameters can impact the output of the system. Various uncertainty prop-
agation methods are reported in literatures and these depend on the nature

and representation of the parametric uncertainty.

2.3.1 Monte-Carlo Simulation

Monte-Carlo Simulation (MCS) is the most widely used means for un-
certainty analysis, with applications ranging from aerospace engineering to
zoology. It is a technique which has had a great impact in many different
engineering fields. This technique derives its name from the casinos in Monte-
Carlo - a Monte-Carlo simulation uses random numbers to model some sort
of a process. This technique works particularly well when the process is one
where the underlying probabilities are known but the results are more difficult
to determine [42]. Monte-Carlo methods can be loosely described as sample
based statistical simulation methods, where statistical simulation is defined in
general terms to be any method that utilizes sequences of random numbers to
perform the simulation. Monte-Carlo methods have been used for centuries,
but only in the past several decades has the technique gained the status of a
full-fledged numerical method capable of addressing the most complex appli-
cations [1]. For an ODE system with uncertain parameters, if the uncertain

parameters are represented by their pdfs, then Monte-Carlo methods can be
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Figure 2.1: Monte-Carlo simulation of uncertain dynamic systems

applied to simulate the system. The Monte-Carlo simulation can proceed by
random sampling from the pdf’s of the uncertain parameters and many sim-
ulations (solving ODEs numerically) are then performed (multiple ‘trials’ or
‘histories’). The final output pdf is then calculated. Figure-2.1 illustrates the
idea of Monte-Carlo simulation as applied to an ODE systems with uncertain
parameters represented by pdfs. If the uncertain parameters are represented
as intervals, then uniform distributions can be used to represent an interval,
but the output will not necessary be uniform distribution and some conver-
sions from pdf to an interval should be done. The primary components of a

complete Monte Carlo simulation method include the following [1]:
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1. Probability distribution functions (pdf’s) - the uncertain parameters
should be described by a set of pdf’s. If the parameters are not rep-

resented as pdfs, they should be converted to pdfs.

2. Random number generator - a source of random numbers uniformly dis-

tributed on the unit interval must be available.

3. Sampling rule - a prescription for sampling from the specified pdf’s,
assuming the availability of random numbers on the unit interval, must

be given.

4. Scoring (or tallying) - the outcomes must be accumulated into overall

tallies or scores for the quantities of interest.

5. Error estimation - an estimate of the statistical error (variance) as a

function of the number of trials and other quantities must be determined.

6. Variance reduction techniques - methods for reducing the variance in the
estimated solution to reduce the computational time for Monte Carlo

simulation.

7. Parallelization and vectorization - algorithms to allow Monte Carlo meth-

ods to be implemented efficiently on advanced computer architectures.

When applying the Monte-Carlo method to a dynamic system with
ODE solver, it is worth to note that one treats the uncertainty as a time

invariant or time variant value. For a time variant uncertain parameter, if the
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relationship between the variation of the parameter versus time is not known,

then Monte-Carlo method may not be directly applied.

Monte Carlo method has certain advantages:

1. Monte carlo methods involve running the model at a set of sample points
and establishing the relationship between inputs and outputs using these
sampled results. Since each run is independent of the others, Monte

Carlo simulations can be easily parallelized.

2. Monte Carlo methods do not require access to model equations or even
the model code and thus is completely general. Since it is completely
general it is frequently used to calibrate and validate other methods as
benchmarks. Also, existing system solving tools such as ODE solvers

can be applied directly.

3. Monte Carlo methods work for both probabilistic and non-probabilistic

problems.

The primary disadvantage of Monte Carlo is quite obvious: since it
requires a large number of samples, it is very time consuming, especially when
simulation of system take a long time, which is not unusual for many engi-
neering applications. The applicability of Mote-Carlo basically is sometimes

limited by computing power available.
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Figure 2.2: First order error propagation, adapted and modified from [5]

2.3.2 First Order Propagation and Error Propagation Law

The idea of this approach is to linearize the system with nominal pa-
rameters and thus reduce the computational cost to find the boundary. Figure-
2.2 [5] illustrates this idea with a simple case of one output and one unknown
parameter. The unknown parameter can be given in terms of intervals or it can
be treated as a random variable, and its the mean and variance are assumed

given.

If the uncertain parameters are given as intervals, this method is called
First Order Propagation (FOP). It is also called sensitivity based method in
some literature [71]. This approach estimates the worst case response using
nominal sensitivity and first order Taylor expansion of the original system
around a nominal value. Assume the trajectory given by the nominal parame-

ter set AN is y(z,u, AN, t),i =1,2,...,n, and each uncertain parameter \; has
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disturbance §);, then the system with uncertain parameter \; = AN + d); can

be approximated as,

z,u, AV 4 60, t) = ylx,u, AN, t) + o\ 2.1
N R RUED I N 21)
The above equation requires simulating the system with the nominal

0
parameters and calculating the parametric sensitivity coefficient, 8_2){ .
A=AN

For ODE systems, these two steps can be calculated simultaneously. With
little extra cost the sensitivity coefficient can be acquired [24]. Monte-Carlo
method can then be applied to Eq. (2.1) to estimate the boundary of the
system with less computational cost; or, the upper and lower boundary can
" Oy,

be approximated by: y; &~ y;j(x,u, AN, t) — |3 2
= i=1 O\

|(5/\1| and E ~

yi(z,u, AV 1) + ; a—)\i

If the uncertainties are given in terms of mean and variance, apply

O]

A=AV

the same procedure, and the so called Error Propagation Law (EPL) can be

derived as follows [5]:

SN System 2—b System 5,
2 i Y X,
— . —> —b ,
; V=7(.1) ;- x=f(h 1)
p Z — D- ‘;‘-",!‘L /
A, g(h.1) Aoy X

(a) Error propagation of two output Y, Z (b) Error propagation of n output z;,i =
1,2,..n

Figure 2.3: Error propagation law, adapted and modified from [5]
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Consider the system with two output y and z shown in Figure-2.3(a),
and assume the mean and the variance of \; are AY and §;, and the covariance

of A;, \j is ;5. The mean and variance of the output Y is then,

Mty = f()‘lea AéV) ce )\,{X,t)

2
m [ af mo I 9f Of 2.9
53z2<% Mv) 2D DD DN ¢ 50| I T

i=1 =1 j=1,i#j Ni=AN

The covariance that describes the statistical dependence of Y and Z is,

™ af D m oM af of
5YZ:Z<8)\,~8){}Z~) SEDUDY (aAiaAi)' o (23

i=1 A=A i=1 j=1,i#j A=A
k3

If the parameter A;, \; are independent, the second term, containing their
covariance 9;;, disappears from the above equation. In that case, we have the

following simplified error propagation law,

by = f(AiV7 Aé\/, a3 )\ﬁﬂf)

2
2 2
o = Z (fm Ai=AgV> O (2.4)
" [ Of dg
Ovz = 21: (aAi aAZ)

52

=1
1=

A=A

For the general dynamic system with n variables, as shown in Figure-
2.3(b), the error propagation law to propagate the error (parametric uncer-
tainties) from the uncertain system parameters to the output variables can be

written in matrix form as [5],

px = FON YA

(2.5)
Cx = JXCrJ3
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where C = ) ) ) ) is the covariance matrix of the un-
T
certain parameter. If the parameters are independent, then Cj is a diago-
oh O0h - Of
O\1 O\ O\
9 0k . Oh
nal matrix. In these formulation, Jy = | 9A1 0Xg OAm is the
Ofy 0fu  Of
| O\ O (o) e I
53%1 5rlr2 e 5%1%
. . . To2T1 592@ U 5962:% .
parametric Jacobian matrix, and C'x = . is the
5xnz1 5a:narz e 5% nXn

output covariance matrix.

From the above matrix form, it can be seen that the parametric un-
certainty represented by the matrix C) is propagated to the output through
the system parametric Jacobian matrix Jy. It shows that, in order to use
this approach, the Jacobian matrix must be calculated. As pointed before, for

ODE systems, Jy can be calculated with little extra cost.

The advantages of this approach are as follows:

1. Less computational cost. As an alternative to Monte-Carlo simulation,
this approach simulates the system based on Eq. (2.1) and Eq. (2.5)
only once, and there is no need to simulate the original system equation
many times. Although the Jacobian matrix of the system needs to be

calculated, for certain systems, including ODE systems, this extra cost
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is usually relatively low.

2. Sensitivity information. Since this method calculates the Jacobian ma-
trix, it provides the sensitivity information of the uncertain parameters
and can help determine which uncertain parameter will have the largest

impact on the output.

The disadvantages of this approach are also quite obvious: because the
high order terms are unknown, this approach often leads to overly estimated
results, and further it is not predictable whether the results will underestimate
or overestimate the actual response bounds [82]. Also, since Taylor linear
expansion only works well when the variation is very small, this approach is

applicable only when the uncertain parameters have relatively small intervals.

Despite the above disadvantages, this approach has been widely used in
many engineering fields, such as for bounding uncertainty in power systems [14,

61] and circuit analysis [71].

2.3.3 Vertex Enumeration

Vertex enumeration simulates all possible extreme cases of parameter
variations; i.e, it simulates all the vertex of a hyper-rectangle formed by uncer-
tain parameters represented as intervals. It is computationally less expensive
than Monte-Carlo method. However, extreme values of the output may not
necessarily occur at these corners of the parameter space [71] and thus the

quality of the result is low.
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2.3.4 Direct Global Optimization

From the definition of the envelope in Eq. 1.3, and the system equation
Eq. 1.1, it is found that the uncertainty propagation problem can be modeled

as an optimization problem as follows:

y= U min y(t) = U min x(t),u

- te[0,T] ' ( <)) te[0,T ' (g( (> >)
= U max t)) = U max x(t),u

y refo.1] a (y( )) refo.1] a (g( () ))

(2.6)

ot x(t) = %o + fot f(x,u,\, 7)dr
o )\E[Av)\]vxoe[ﬁax_d

The above equation shows that computation of y and y is an optimiza-
tion problem. At each time step, the above optimization problem needs to
be solved. To solve this problem, the uncertain space construct by uncertain
parameter A and uncertain initial condition xy must be searched. To evaluate
the objective function, Eq. (2.6), a simulation (integration of ODEs) needs
to be done and optimization algorithms should be integrated with the ODE

solver.

Note that this approach can only be applied to time invariant systems,
because time variant systems can not be simulated, unless the way that the
parameters change versus time is known. Meanwhile, this method is not re-
cursive since at each time step the integration should be initiated from time
zero. The detailed computational cost analysis of this optimization problem

will be shown in the next chapter.

The quality of the envelopes are determined by the optimization al-

gorithms. For example, if a local optimum is given by the optimization, the
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envelope may be under-bounded.

Different optimization algorithms have been applied to this problem,

such as Genetic Algorithms(GA) [25],and interval analysis [4, 26, 78].

2.3.5 Interval Analysis

Although many different optimization algorithms can be used for un-
certainties propagation, the most used global optimization algorithm to solve

Eq. 2.6 is by interval analysis [4, 26, 64, 78].

When the uncertain parameters or system initial conditions are rep-
resented using intervals, the problem of uncertain propagation can become a
case of finding the range of an interval function. For ODE systems, the range
of the state variables must be evaluated every time step. One method for

evaluating the range of the function is to use interval analysis [43, 59].

The foundation of interval analysis is interval arithmetic. It is an arith-
metic defined on sets of intervals, rather than sets of real numbers. Modern

interval arithmetic began with R. E. Moore’s pioneering work [59].

If x € [z,Z] and y € [y, 7], then the elementary arithmetic operations

are defined as [46]:

r+y=[z+yz+y
x x y = [min(zy, 27, Ty, Ty), max(xy, 27, Ty, T7)]
1 1 1. . — N N (2.7)
—=[=,—-],ift >00rz<0
x T T
1
I—y:xx_
Y
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Once the fundamental operations are defined, functions defined on in-
tervals can be defined by natural extension. For example, if f(x) = z(x — 1)
then,

F(10,1]) = [0,2]([0, 1] = 1) = [0, 1][=1, 0] = [-1,0],

which contains the exact range [—1/4;0]. Interval arithmetic will generate
a guaranteed over-bound interval that contains the exact range of the origi-
nal function. This feature guarantees that the envelope generated by solving
Eq. 2.6 is an over-bound envelope. For certain applications, such as hybrid

system verification, this feature is desired.

However, as can be found from the example presented, there is an in-
trinsic problem with interval analysis: the interval found by natural extension
is highly over-bounded, since there are multi-incidences (the same variable
appears more than once in an expression, in the above example, variable x
appeared twice and the calculated interval [—1, 0] is much wider than the real
range [—1/4,0]). Therefore, a way to obtain tighter interval is to express the
function with the lowest number of multi-incidences. Many techniques that
search for the best way to express an interval function with minimum multi-

incidence have been developed [43].

There are some simulators based on interval arithmetic such as NSIM (Nu-
merical Simulator using Interval Methods) [45] and NIS (Numerical interval
simulation) [80]. NSIM is limited to monotonic functions and NIS uses nu-

meric integration algorithms revised for intervals by calculating the range of
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the derivative of the state variables at each integration step, then the max-
imum and minimum of the derivatives of the variables are used for Euler or

Runge-Kutta integration algorithms.

These simulators obtain highly over-bounded envelopes due to ignored

multi-incidences. A comprehensive review of these types of simulators can be

found in [4].

Recently, an improved interval method called Modal Interval Analy-
sis (MIA) was reported and applied to simulate interval ODEs (ODEs system
with parameters defined as intervals) [4,64]. MIA is an extension of the clas-
sical interval theory that includes interesting properties. It gives a formal way
to study the optimality of an interval function for the results. It provides
tools to calculate the ranges of functions with multi-incidences. For mono-
tonic functions, it can give tighter intervals than classical intervals. However,
when the function is not monotonic, a splitting algorithm has to be used. It
divides the interval of the variables into small intervals, in which the function
is monotonic. By doing so, the bound will be tight but the computational cost

will be increased.

2.3.6 Differential Inclusion

A Differential Inclusion (DI) is a relation of the form x € f(x), where
f is a set-valued map associating any point X € R™ with a set f(x) € R™. As
such, the notion of a differential inclusion generalizes the notion of an ordi-

nary differential equation of the form x = f(x). Therefore, all problems usually
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studied in the theory of ordinary differential equations (existence and continu-
ation of solutions, dependence on initial conditions and parameters, etc.) can
be studied for differential inclusions as well. Since a differential inclusion usu-
ally has many solutions starting at a given point, new types of problems arise,
such as investigation of topological properties of the set of solutions, selection
of solutions with given properties, and many others. Differential inclusions
play an important role as a tool in the study of various dynamical processes
described by equations with a discontinuous or multi-valued right-hand side,
and they also are very useful in proving existence theorems in control the-

ory [74].

Naturally, an uncertain dynamic system can be represented as a differ-
ential inclusion rather than as differential equations. Let us consider a simple

example of a second order system [66],

d*y dy
g Z4y=0b 9.
72 +a i +y (2.8)

This is a simple ODE model. Introducing notation z; = y, xs = dy/dt

we obtain:
dxl
B, (2.9)
di = a9 T
In more general notation, the state equation is,
d
d—’; = f(a, b, %), (2.10)

where x is a two-dimensional vector, ¢ is the time, and f is a vector-valued

function. Now suppose that the parameters a and b are uncertain parameters
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and that the only information we have is the corresponding intervals where
the values may belong, or a permissible (may be quite irregular and variable)
set on the 2D-plane where the point (a,b) must belong. Note that we know
nothing about a possible probability distribution of these parameters and they
are not treated as random variables. Thus, Eq. 2.10 takes the following form,

d
d_)t( € f((l, b7 X)a (211)

where f is a set. This is a differential inclusion (DI). The above process also
suggests how parametric uncertain differential equations may be converted

into differential inclusions.

The solution to a DI is a tube in the state space contains all possible
system trajectories, and each one is one of the solutions to the uncertainty
problem. In this very natural way we see that the uncertainty in dynamic sys-
tem modeling leads to differential inclusions as a corresponding mathematical
tool. These methods have been known for about 70 years, mainly to the control
theory society [65]. However, accurate, effective, general differential inclusion
solvers are not yet available. Some solvers for simplified differential inclusion,
such as those assuming the right side is a regular set (a hyper-rectangle), i.e.
dx

T € O are reported [35]. Obviously, this is an over-simplified problem.

One reported general differential solver is to treat solving DI as a classi-
cal optimal control problem [65,66]. Observe that any trajectory that reaches

a point on the boundary of the solution tube is optimal in some sense; such

10 is used to represent a hyper-rectangle in this dissertation

32



trajectories can be calculated using Maximum Principle of Pontryagin in clas-
sical optimal control field, which is to solve the Hamilton-Jacobian equation.
For the above example, the uncertain parameters a, b can be treated as control
inputs whose values are bounded in certain intervals. Finding the boundary
of the solution tube can be treated as an optimal control problem: with the
constrained input a,b, what is the maximum region the system can reach at
certain time? In few words, the DI solver provided in [65, 66] works as follows.
The user provides the DI in the form of an equivalent control system. To do
this, first parameterize the right-hand size (the set f) using an m-dimensional
auxiliary control variable u (for the example above m = 2,u = [a,b]"). The
DI solver automatically generates the equations of the so-called conjugate vec-
tor p, and integrates a set of trajectories, each belonging to the boundary
of the solution tube. To achieve this, over each trajectory the Hamiltonian
H(x,p,u,t) is maximized. This procedure is similar to that used in dynamic
optimization in the optimal control problem. Details of this approach are

found in references [65,66, 81].

The above procedure implicitly assumes the uncertain parameters a, b
are time variant (since they are treated as input variables) when solving the
Hamilton-Jacobian equations using Maximum Principle. If the uncertain pa-

) : ) . da db )
rameters are time invariant, a strong constraint i 0, i 0 will make
solving the Hamilton-Jacobian very difficult. Thus, this approach is only ap-
plicable to systems with time variant uncertain parameters. Generally, the

solution tube of such system is much larger than the corresponding time in-
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Figure 2.4: The solution tube of time variant differential inclusion, adapted
from [66]

variant system. A typical DI solution tube for the time variant system,

dl’l

i a€[0.5,1.5),b € [~1,1]
—2 _ph- ars — 1

dt

is given in Figure-2.4 [66].

2.3.7 Qualitative Model and Simulation

The above mentioned approaches can be seen as semi-quantitative meth-
ods. For certain conditions, the system is so uncertain that only qualitative in-

formation is known. In this case, one should use a qualitative analysis method.
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In short, qualitative analysis is an area of research that seeks ways to
model and simulate the everyday, qualitative, non-numerical reasoning humans
use to estimate (the range of) possible solutions to some real-world problems
with strong uncertainties. This approach has been extensively formulated by

Kuipers and his team at the University of Texas at Austin [49].

The idea of qualitative simulation is to build gquantitative models. A
quantitative model is qualitative in two senses [50]. First, the values of vari-
ables are described in terms of their relations with a finite set of symbolic
landmark values (such as negative, positive), rather than in terms of real num-
bers. Second, functional relations may be described as monotonic functions
(increasing or decreasing over particular ranges) rather than by specifying a
functional form. These purely qualitative descriptions can be augmented with
semi-quantitative knowledge in the form of real bounding intervals around
unknown real values and real-valued bounding envelope functions around un-

known real-valued functions (In this case, the model became semi-qualitative).

The value of the derivative is also expressed in a purely qualitative way,
such as increasing, decreasing or steady. The qualitative model is represented
by Qualitative Differential Equations (QDE), which describe the relations
among variables. These relations include algebraic operations, derivatives,
monotonicity, etc. QDEs are more able than traditional models to express

states of incomplete knowledge about continuous mechanisms [49].

Once the QDE is built, certain rules can be applied in the design of

simulation algorithms. Details of these rules can be found in [45,49]. Given
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a qualitative description of a state, the result of a qualitative simulator is
the qualitative state descriptions that can possibly be direct successors of
the current state description. Repeating this process produces a graph of
qualitative state descriptions, in which the paths starting from the root are
the possible qualitative behaviors. The graph of qualitative states is pruned
according to criteria derived from the theory of ordinary differential equations,
in order to preserve the guarantee that all possible behaviors are predicted [50],
and guarantee to find all possible behaviors consistent with the knowledge in
the model. However, the time information of these states is not given since
qualitative simulation is not causal. The most widely used and advanced

qualitative simulator is called QSIM [45,49].

The value of qualitative simulation comes from the ability to express
natural types of incomplete knowledge of the world, and the ability to derive a
provably complete set of possible behaviors in spite of the incompleteness of the
model. Qualitative simulation starts with a QDE and a qualitative description
of an initial state. Results of it can be used in the design and validation
of dynamical systems, such as controllers. A set of qualitative models and
their associated predictions can also be unified with a stream of observations
to monitor an ongoing dynamical system or to do system identification on
a partial model [4,45,49]. The disadvantage of this approach is that it is
not causal and thus there is no time information in the simulation results
which limits its application in practical engineering problem. A qualitative

simulation result of parametric uncertain two-tank system was reported in [38].

36



2.3.8 Simulation with Uncertainties in Frequency Domain

In frequency domain, a time invariant linear dynamic system is char-
acterized by its transfer functions. For a determined, certain system, the
transformation can be written as,

N(s,r)
D(s,q)’

where N(s,r) and D(s,q) are all polynomials with fixed coefficients, r =

P(s,q,r) =

(2.12)

(1,79, ..., rm] and q = [q1, G2, - - -, qn], m < m. The stability of the system is
determined by the characteristic polynomial D(s,q). However, for a system
with parametric uncertainties, the transformation function can not be repre-
sented by polynomials with fixed coefficients, but interval coefficients, as the

following examples shows [7]:

Example 2.1 Torque control of a DC motor [7]. Consider a DC motor driving
a load with dumping. The uncertain parameters are motor constant, K €
[0.2,0.6]volts/rpm, and the load moment of inertia, Jz, € [1075,3 x 107%]kg —
m?. The transfer function is,

K(JLS+BL)
(Ls+ R)(Jms + Jps+ Bm + Br) + K2

P(s) =

Taking uncertain parameters ¢; = K and ¢» = J and fixed parameters J,,, =
2 x 1073kg — m3 B,, = 2x 10°N — m/rpm,L = 107°H,R = 1Q,B; =
2 X 107N — m/rpm, an interval transfer function can be formatted that

describes this parametric uncertain system as,

0.5¢1¢2s + 107,
(105 + 0.005¢2)52 + (0.00102 + 0.5¢2)5 + (2 x 10-5 + 0.5¢2)

P(s,q) =
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with ¢ € [0.2,0.6],2 € [107°,3 x 1077].

The above interval transfer function represents a family of transfer func-
tions. Also, the coefficients of this transfer function are dependent, since

coefficients of the 2"¢ order and 1% order term are all related to ¢o.

There are two important questions that need to be answered with an
interval transfer function and both are related to uncertainty propagation dis-

cussed in previous sections.

1. Is the uncertain system stable, given that all the parameters can vary
in the intervals? We know that if the poles of a transfer function lie in
the strict left half s-plane then the system will be stable. For a system
with parametric uncertainties, it is said that the uncertain system is ro-
bust stable, if for all q € [q, qT], all roots of P(s,q,r) lie in the strict
left half plane. Obviously, the robust stable question can be converted
to finding the boundary of all the roots of the uncertain denominator
polynomial D(s,q), or to use Hurwitz criterion for all the possible poly-
nomials determined by the interval polynomials. For example, when ¢,
and ¢y vary in their interval, the root locus of the DC motor system is

shown in Figure-2.5. It shows that the system is robust stable.

2. Does the uncertain system’s performance meet the frequency perfor-
mance specifications? For the uncertain transfer function P(s, q,r), the

uncertain bode plot is given by,

LG(w,q,r) = 20log |P(jw, q, )|
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Figure 2.5: Root locus of open loop interval transfer function

Now, a typical performance specification S might be as follows: In the
frequencies range wmin, Wmax, given a band or boundary of the desired
performance LG (w), LG(w), we seek to guarantee: LG(w) < LG(w) <
LG(w), for all r € [r~,r*],q € [q7,q"]. When these performance in-
equalities are met, we can say that the performance specification S is
robustly satisfied. Again, this problem can be converted to find the
boundary of the bode plot, as shown in Figure-2.6. If the boundary of

the bode plot is within the specification, then the design is robust.

Clearly, Monte carlo methods can be used to answer the two questions posed.
However, it could be too time consuming to calculate the roots and bode
plots. For the robust stability problem, Kharitonov’s Theorem represented

a dramatic breakthrough that initiated research into robust stability problem
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Bode plot of open loop interval transfer function
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Figure 2.6: Bode plot of open loop interval transfer function of the DC motor
system

that greatly reduced the computational cost. This theorem reduces the number

of polynomials to be studied to four, a magic number.

Definition Kharitonov’s polynomials: Associated with the interval polyno-

mial with independent coefficients,

n

p(s,q) = lai,q]s, (2.13)
1=0

are four Kharitonov’s polynomials, defined as,

Ki(s)=p () =qo +qrs+aq3 > +¢3s° +q;5" +¢5 "+

Ko(s)=p t(s)=qy +ai s+ 8"+ ¢85 +aqrs" +q5 s+

K (o) — ot — 2 A3 A~ 5 (2.14)
3(s) =P (s)=qy Tar s+ +a58 +qys" +q58+
Ky(s)=p™(s) =gy + s+ 8" + 438 +qifs* +q5 8+

Notice that there are only four Kharitonov’s polynomials— independent

of the degree of p(s, q).
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Kharitonov’s theorem [7]. In 1978 the Russian researcher Vladimir Kharitonov
proved the following fundamental result: A continuous-time interval poly-
nomial is robustly stable if its four Kharitonov polynomials are stable. The

coefficients of the polynomial are assumed to be independent.

This theorem means that instead of checking stability of an infinite
number of polynomials only the stability of four polynomials need be assessed,
and this can be done using the classical Hurwitz criterion. This result was so
surprising and elegant that it has been the starting point of a renewed interest
in robust control theory [10]. However, this theorem only applies to interval

polynomials with independent coefficients.

For interval polynomial with dependent coefficients, a graphical method

based on Zero Exclusion Condition should be used.

Definition Kharitonov’s rectangle: Let P(s,q) = >_ [q; , ¢, |s" be an interval

.

=0
polynomial, then at a fixed frequency wy, P(jwo,q) = i 4, ¢ ] (jwo)® de-
scribes the set of possible value that P(jwy,q) can assum; as ¢;,1=1,2,..,n
ranges over their intervals. P(jwo, q) is called the Kharitonov rectangle at fre-
quency wy. It can be proved that for an interval polynomial with independent
coefficient ¢;, P(jwo, q) in z-plane is a rectangle with vertices that are obtained
by evaluating the four Kharitonov polynomials K1, (s), Ka(s), K3(s), K4(s) at
frequency wy; i.e., the vertices of P(jwy,q) are precisely the K;(jwy). When w
changes from w = 0 to w = oo, the Kharitonov rectangle will move in z-plane,

as shown in Figure-2.7 [10].
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The Zero Exclusion Condition Suppose that an interval polynomial P(s, q)
has invariant degree and at least one stable member p(s, ¢°). Then it is robustly
stable if and only if z = 0 is excluded from the Kharitonov rectangle at all
nonnegative frequencys; i.e.,

0€ P(jw,q), (2.15)

for all frequency w > 0. The geometric meaning of this theorem is that if the
origin point of z-plane is outside the boundary of the Kharitonov rectangles
then the system is robustly stable. For the system in Figure-2.7, since the

origin point in outside the boundary, the system is robustly stable.

From the Kharitonov theorem we know that for interval system with
independent coefficient, the boundary can be acquired by evaluating only four
Kharitonov polynomials. However, for system with dependent coefficients,
finding the boundary can be quite difficult. The corner of the Kharitonov
rectangle can not be acquired by just evaluating four Kharitonov polynomials.
Repeated evaluations of many polynomials may be needed. Some methods,
such as level set theory, has been developed to approximate the boundary of

such systems [7].

An alternative to interval uncertain systems is spherical uncertain sys-
tems, in which the uncertainty set is described as an ellipsoid rather than a
box determined by intervals. For such systems, the Kharitonov rectangle will
became a Kharitonov ellipse, as shown in Figure-2.8. A tool to find such an

ellipse in reported in [40].
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Figure 2.7: Motion of Kharitonov rectangular and zero exclusion condition,
adapted from [10]
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Walue set of a spherical polynomial family

Figure 2.8: Spherical uncertain polynomials families, adapted from [40]
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Comparing the frequency domain uncertainty propagation problems
and the time domain uncertainty propagation problems reveals many simi-
larities. The w in frequency is analogous to time ¢ in time domain, and the
transfer function is analogous to the ODE in time domain. The problem of
frequency uncertainty analysis has also become one of finding the boundaries
of certain output, such as the boundary of the bode plot, the boundary of the
Kharitonov rectangles etc. In fact, methods used in time domain analysis, such
as interval analysis, can also be applied in frequency domain. Methods used
in frequency domain, such as level set, can also be used in time domain [58].
In a later chapter, a boundary theorem is proven for the time domain that can

be seen as analogous to the Kharitonov theorem for frequency domain.

2.4 Summary

In this chapter, topics related to simulation of dynamic systems with
uncertain parameter have been reviewed. Figure-2.9 summaries the content of

this review.

Table 2.2 shows the applicability of the different time domain ap-
proaches reviewed and the goal motivated by the review. Some conclusions

can be drawn from this review as follows:

1. Simulation of systems with uncertain parameters remains a challenging

problem, particularly because of the high computational cost.

2. Knowing the boundary of the output of an uncertain system has a wide
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range of applications.

This review motivated the following research goals:

. Develop a numerical method to simulate (in time domain) parametric un-
certain, time invariant, nonlinear dynamic systems, i.e., find the bound-

ary /envelopes of the output variables.

. The method should calculate boundary/envelope of the output accu-
rately and efficiently. Methods to improve accuracy and reduce compu-

tational cost should be pursued.

. The method should be able to deal with large uncertainties, and to han-

dle a reasonable number (< 10) of uncertain parameters.

. The method should be easily implemented and existing simulation tools

for determined systems should be easily integrated with this method.
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Table 2.2: Evaluation of reviewed time domain approaches
Evaluation MCS | FOP/ DGO IA DI QS VE New
Criteria EPL Approach
Computational | High | Low High High Low Low Low | medium
Cost
Solution High | Depends| High/ High/ Low Low Low | High/
quality Depends| Depends Depends
Uncertainty Large| Small Large Large Large | large Large | Large
Degree
Interval Yes | Yes yes yes Yes Yes Yes yes
Statistic/pdf | Yes | Yes No No No No No yes
Implementation Easy | Medium | Medium | Difficult | Difficult| Difficult| Easy | easy/
medium
Time Yes | Yes Yes Yes No? N/A Yes | Yes
invariant
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Chapter 3

The Response Surface Methodology

In this chapter, we describe in detail a proposed methodology for simu-
lation of parametric uncertain system. The goal of this approach is to resolve
the trade-off between efficiency and accuracy. To reach this goal, the compu-
tational cost of the problem is first analyzed and then the basic idea of the pro-
posed approach is presented. The basic idea is to study an approximation or a
surrogate of the original system model, instead of the original system. To con-
struct the surrogate model, the response surface method (RSM) is employed.
Since the optimization problem to be solved is generally non-convex, there
may be multiple local optima. Conventional RSM using polynomials which
provides global approximation is not able to deal with the non-convex prob-
lem. Thus a local approximation approach called Moving Least Square (MLS)
is used for response surface construction. For more complicated systems, a
gradient enhanced moving least square (GEMLS) response surface method is
used to solve the global optimization problem more efficiently. This method
takes advantage of the fact that parametric sensitivity of an ODE system
can be calculated as a by-product when solving the original system with less
computational cost. With the help of sensitivity information, the number of

samples needed to construct the response surfaces is further decreased, and the
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quality of the response surface can be improved. Furthermore, global sensitiv-
ity analysis for monotonic testing to further reduce the number of samples is
introduced. Finally, numerical examples are provided to show the applicability

and effectiveness of the proposed method.

3.1 Computational Cost Analysis

From Chapter 2 we know that the simulation of parametric uncertain
dynamic systems can be posed as an optimization problem, as in Eq. 2.6, which

is rewritten here for convenience,

y= U min(y(t))= U min(g(x(t),u

el ™ (y(t)) el ™ (g(x(t),u))
y= U max(y(t) = U max(g(x(t),u
V= i (y(®)) elor ™ (g(x(t),u))

(3.1)

ot x(t) = xo + fg f(x,u\, 7)dr
o AE[Aax]yxoe[ﬁax_ﬂ]

This formulation shows that the solution requires a method that is a com-
putationally expensive task. Specifically, this arises because of the following

aspects:

1. In order to solve Eq. (3.1), the objective function,

~ { min(g(x(1)))
O‘{mm@@@» (3:2)

must be evaluated at each time step. This means that numerical sim-
ulations (x(t) = x¢ + fot f(x, A, u,7)dT) need to be embedded into the

optimization routine. Since Eq. (3.1) is not generally a convex problem,
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Figure 3.1: Non-recursive simulation

it may have a lot of local maxima. To find the global maxima, simu-
lations may be performed many times. If simulation of the system is
already a computationally expensive task, which is often true for prac-
tical engineering systems (such as a nonlinear, stiff systems or if the
time to be simulated is very long), solving Eq. (3.1) will be even more

expensive.

2. Furthermore, Eq. (3.1) implies that the simulations embedded in the
optimization routine must always start from ¢ = 0, due to the nature of
time-invariant dynamic system. This is a non-recursive simulation that
is illustrated by Figure-3.1. The advantage of non-recursive simulation
is that it can guarantee that the approximation error does not grow with
time. On the other hand, it will take longer and longer to simulate the

system as time ¢ increases.

The computational cost of solving Eq. (3.1) can be approximated as follows:
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Assume the CPU time to simulate the system is linear with the time
span [0, 7] to be simulated. The CPU time to simulate the At time span is
denoted as A7. We also assume that, for each time step, m, simulations (eval-
uation of objective function O) are needed in order to solve Eq. (3.1). The

T
total time step is N = AL Then, the total CPU time is,

Tcpu,flow = mS(AT + 2AT 4 - - QAT + ... NAT)
N(N +1) (3.3)

= mAT
2

This shows that CPU time grows quadratically with V.

To reduce the computational cost of solving Equation 3.1, this non-

recursive simulation is often approximated by a recursive one as,

y= U min(§(t)) = U min(g(&(t),u))

te0,T] te[0,7]
v= U vit)) = U X(t ,
¥ =, max () = U max (g(X(t) w)

(3.4)
S.t‘{ R(t) = %(t— 1) + [ f(x,u, A, 7)dr

A € [A Al %o € [x0, X0]
where X is the approximation of state variable x at time t. Geometrically
speaking, X is the hyper rectangle bounded by y and y, as shown in Figure-
3.2. Eq. (3.4) can reduce the computational cost by converting a non-recursive
simulation to a recursive one, and thus there is no need to simulate the system

from time zero. This transformation leads to the following severe drawbacks:

1. Eq. (3.4) is a conservative approximation of Eq. (3.1), because the simu-

lation scheme is assuming the system is time-varying. Generally, the
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envelope given by Eq. (3.4) will be much wider than that given by
Eq. (3.1) [68].

. The approximation at time step t;_; will accumulate to the next time
step,tx, by Eq. (3.4), which is called wrapping effect, as illustrated in
Figure-3.2 [4]. In Eq. (3.4), the system’s state variable, x(t), is rep-

Error at step 3
Accurmmulate to step 3

——

— ~

o Error at step 2

X2
s
—
o
£
ol
i
—
ot
w "’\
—
i
— e

Figure 3.2: The wrapping effect, adapted from [4]

resented by a hyper rectangle. However, it may be that the system’s
state does not evolve into another hypercube at the next time point. In
Figure-3.2, an example is shown in which there are two state variables
and, therefore, the state is approximated as a rectangle. This rectangle

evolves to a thombus (it could evolve to any figure in two dimensions) in
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the following time step. As the value of each variable is still expressed
with an interval, the new state is represented with a new rectangle that
includes all possible states (the rhombus) but also spurious states, shown
in shadow in the figure. It can be found that error in a previous time

step will accumulate into the next step.

3. Because of the wrapping effect, the envelopes of a stable time variant

system may be unstable if Eq. (3.4) is used to simplify Eq. (3.1) [21].

To solve the above problems, a method called sliding window was pro-
posed [4, 21, 64]. The idea is to assume that the current state is only influenced
by a limited number of L previous states, due to the dynamics of the system.

L is called the window length. It simplifies the simulation to,

(3.5)

Xo—f—fotkf(x,u,)\,’f)d’f 0<k<L
T\ Rte-n) + [ fxow A T)dr k> L

Eq. (3.5) can be seen as a trade-off between pure time invariant simulation of
Eq. (3.1), where L = inf, and a pure time variant simulation of Eq. (3.4), where
L = 1. For linear parametric uncertain system, there exists a minimum window
length L,,;, that will guarantee that a stable simulation will be acquired if the

original linear parametric uncertain system is stable [68].

The sliding window method raised more questions than it answered.
For example, how to determine L,,;,, what if the system is nonlinear, etc.

Also new methods should be developed to reduce the computational cost.
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3.2 Surrogate Model for Optimization: The Response

Surface Method

As concluded in the previous section, the major computational burden
of simulation in parametric uncertain systems is that evaluation of the objec-
tive functions is too expensive, due to system dynamics and the non-recursive
character of time invariant systems. When optimization of the original ob-
jective function is too expensive, an approximation of the original function or
a surrogate could be used [7,8]. Evaluation of the surrogate takes less time
than evaluation of the original objective functions. One method to build such
surrogate is called Response Surface Method (RSM), which has long been used

for design, optimization and other applications [11, 31, 60].

RSM can be defined as a collection of statistical and mathematical tech-
niques useful for developing, improving, and optimizing processes. The most
extensive use of RSM can be found in the industrial applications, in situations
where several input variables influence some performance measure, called the
response, in a way that is difficult or impossible to describe with a rigorous
mathematical formulation. In these situations it might be possible to derive
an expression for the performance measure based on the response values ob-
tained from experiments at some particular combination of the input variables.
The expression of the performance measure obtained through experiments is
called response surface (RS) [60]. With the development of the computing

technology, the experiments cam be done by computer simulations.

The response surface method approximates an unknown objective func-
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tion O, with an appropriate empirical model, O, so that O(x) = O(x) + e.
The empirical model O is called the response surface of O. Once the response
surface, O, is built, it can be used to replace the original function, O, for

optimization or other purposes.

3.2.1 General Steps of Using RSM for Simulation of Parametric
Uncertain Systems

For the simulation of parametric uncertain system, the objective func-

tion Eq. (3.2) is a function of the uncertain parameter A and uncertain ini-

~

tial condition x¢, at a given time ¢. It can be written as: O(x,t), where

X = [A, @], x € R™ is the total uncertain parameter space to be searched.

A response surface O to approximate O based on just a few samples can
be constructed and used for optimization. The general steps of using RSM for

parametric uncertain system simulation are:

1. Take n, sample points from x, denoted as x%, i = 1,2,...,n,, where
X = (A% X
2. Integrate x'(t) = x%, + fOT f(x, AL, u,t)dt to get n, trajectories of state

variables in the time span [0, 7.
3. At ¢ time step t,,q = 1,2, ..., N, do the following:

a. Calculate O(x',t,) = g(x%,t,), 1 = 1,2, ..., ng

b. Construct the response surfaces O(x%,t,) based on O(x%,t,),i =
1,2, ..., ng.
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c. Solve Eq. (3.1) using O as the objective function, instead of using

0.

The above steps are illustrated in Figure-3.3. By using RSM, only n,
simulations from time 0 to T" are needed. Since each simulation is still started
from time 0, the error will not accumulate from step to step. (i.e. no wrapping
effect with this approach). In step 3-c, any appropriate global optimization
technique can be used, such as genetic algorithms or differential evolution [75];
or simply divide x into m,.,, grids, each grid is small enough and one cane
exclusively evaluate all the values of @(X, t) at each grid and find the minimum

and maximum, since @(X, t) is cheap to evaluate.

A
X

NAT

RS3

RS54
— n, simulations
_— form0Oto T
X0
} >
¢ t 2 83 T fime

Figure 3.3: Using RSM for simulation of parametric uncertain systems

3.2.2 Time Saving by Using RSM

The total CPU time used by RSM for parametric uncertain system

simulation can be approximated as follows: assume ng samples are needed and
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at each time step t,, m,s, evaluations of the response surface (evaluation of

~

0) are needed. The time for each evaluation is 7/, so the total CPU time is,
Tepursm = NsNAT + My NT'. (3.6)

From Eq. (3.3),
N

Tcpu,flow
g pum— . 3-7
C Tcpu,rsm nSNAT + NmrsmT/ ( )
N(N +1 N2 Myom
To simplify this equation, assume g ~ = a. Also,

2 T2 my
assume that m, = n,, which implies that if a certain optimization technique

used to solve Eq. (3.1) can find the optima of O directly by m, evaluations of
O, then m, samples can be used to construct a response surface to find the
optima of O as well. Let 7 = N AT, which is the CPU time to simulate system
from 0 to T'. The cost ratio between calculating the real objective function,O,
and the surrogate, @, is 0 = % Notice that 7/ can be treated as a constant,
while 7 will increases if T" increases. With these assumptions, Eq. (3.7) can be

simplified to,

N
MT —
<. _ Tcpu,flow ~ T 2 . N (3 8)
= Tcpu,rsm - MmsT + ngT N 2 (1 + a) : .
p 8

When ¢ >> 1, RSM will be a better choice for parametric uncertain
system simulation. Eq. (3.8) suggests that RSM can be effectively applied to

problems when:

1. N is large, which means time span is long or integration step is small.
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2. Generally, large values of a are needed to get accurate results. This

means that the search domain should be divided into smaller regions
when using RSM to do an exclusive search, leading to increased CPU
time. However, for systems where simulation is slow, § will easily be

large enough to cancel the effect of increasing a.

From the above analysis, it can be found that RSM will reduce the

computational cost for systems whose simulation is very time consuming, while

keeping the time invariant character and avoiding the wrapping effect. Com-

pared to the sliding window method, RSM can be applied to general nonlinear

systems and there is no need to select window length, L.

3.3 Total Least Square Response Surface

are:

The general steps to construct a response surfaces O of a function O(x)

1. Select input variables called sample points, which are denoted as, x’ €

R™ i =1,2,...,n,, where n, is the number of samples points. This step

is called Design of Experiment (DOE).

Acquire O% = O(x?), which are the corresponding outputs (observations)
of the selected sample points by experiments or simulation. The pairing
of a sample point x’ and its observation O! is called a sample. The

process of acquiring a sample is called sampling.
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3. Fit O to the samples by minimizing certain error function, F = E (OF —

01).

Different mathematical forms of O and F lead to different response surface

methods.

The most widely used response surface method is called the total least
square (TLS) method, which uses polynomials to from O. For example, a two

variable model represented by a quadratic polynomial can be written as,
O = ay + a1 + ass + ag2? + a2 + agry .

In matrix form, we have,

np

O = Zpk(x)ak = pa, (3.9)

k=1
where py(x) is called the basis function, and n, is the number of terms in the
basis. Generally, the basis functions are polynomials, as in this example. For

a 2" order approximation, the basis function p(x) can be written as,

p(x) =p(z1,22) =[P P2 P3 P2 D5 po)= [ 1 @1 w2 e i 2} ],

where a is the coefficient vector, and al = [ap a; --- anp_l] . In this

example, n, = 6.

The coefficient of the polynomials are determined by minimizing the

total square error defined as,

Er=3e =3 (0i- 0 =Y. [ pr(x)a, — O(x)
=1 =1 1

i=1 Lk=

(3.10)
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In matrix form, Eq. (3.10) can be written as,
Er = (P,a—0,)"(P,a—0,), (3.11)

where,

Of=[0(}) O -+ O™ ]1an’ (3.12)

P1 (Xé) pz(Xé) Pn, (Xé)
p, — pl(:XS) p2(:Xs) Pnpfxs) | (3.13)
pr(xE)  pa(xE?) Py (X57)

is the basis function matrix.

To minimize the total least square error, Er, require,

OET

Za | = 0= —2P’0, +2P!P.a(x) . (3.14)
Let,
A[”pxnp] = PfPS
(3.15)
B[npxl} = PZOS
then Eq. (3.14) simplifies to,
ax)=[ ai(x) ai(x) - a,(x)]=A"'B (3.16)

From the above procedures we can find that the response surface model con-
structed by total least square method is a global model. That is, once the
coefficient vector a is determined by the sampled data, it can be used to ap-

proximate the objective function value at any points in the entire domain
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where O is defined. The advantage of a global model is that the computa-
tional cost is low since one model can be used for all points where function
values are to be estimated. However, since the base function in the model is
a low order polynomial, such a global model can only be used to approximate
functions with very few local maxima. If a function with multi-local maxima is
to be approximated, the approximation error will be increased. To avoid this,
the order of the polynomial has to be increased, with corresponding computa-
tional cost. Because of this, global approximation is often used to approximate

a function in a very small domain where only one local maxima exists.

3.4 Local Approximation for Global Optimization

Generally, Eq. (3.1) is not convex and there may be several local max-
ima. Conventional response surfaces that use a single quadratic or cubic poly-
nomial to represent the entire domain of the target function are not able
to deal with objective functions having multiple local optima [32,48]. As
such, local approximation methods such as Kriging [17,41] and moving least
square [52,70] should be used for such optimization problem. Kriging is an
interpolation method that originated in geostatistics and uses properties of the
spatial correlation among the data samples. Moving least square is a weighted
least square method such that the weights are functions of the location of
approximation. This method has been used for optimization with up to ten
variables [48]. Compared with Kriging, moving least square is found to be more

accurate and computationally efficient [48]. In this section, we will introduce
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gradient enhanced moving least square for response surface construction, and

the principles apply to the Kriging method as well.

3.4.1 Moving Least Square (MLS) method

The moving least squares (MLS) method is a localized surface recon-
structing technique which was introduced in [70] by Shepard. Recently, it
has become widely used in related engineering areas by virtue of its approx-
imation power [52]. Such as approximation for time-dependent PDEs [27],
analysis of metal forming processes by the flow formulation [33], function op-

timization [37], etc.

MLS intrinsically is a weighted least square method, in which the
weighting is a function of the location of the point to be approximated. Figure-
3.4 can be used to interpret the concept of moving least square [47]. Figure-
3.4(a) shows a line generated by conventional total least square method. In
this method, sample points are equally weighted and their contributions to
the resulted model are the same. As a consequence, one model with fixed
coefficients is used to predict the output no matter what value of the input
variables. As shown in Figure-3.4(a), assume we use this model to approxi-
mate the output y when input x = 4.6, since the original function is highly
nonlinear around x = 4.6 and the predicted point A is far away from the real
point B. At the location where x = 7.5, the original function is quite linear,
but since the model (solid line) is also influenced by point-4 and point-5, the

predicted value is still not good.
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(a) Global model by total least square method

Figure-3.4(b) shows that only the samples in the neighborhood of the
estimated points are used to construct the response surface. Each point is
weighted according to its distance to the estimated point. Consequently, a
local approximation of the function will be constructed for each estimated
point, with different coefficients that depend on its location. The computing
cost of moving least square surface is higher than the total least square but the

accuracy is also improved dramatically. The procedure to construct a moving

Global model based on total least square method Local model based on weighted least square method
T T T T T T T T T
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Figure 3.4: The principle of Moving Least Square(MLS)method

least square response surface at a certain estimated point is as follows:

Assume an unknown function O(x) defined in the domain € is to be
approximated by, O(x,) as O(x,) = O(x,) + &, where x = [11 3 ... x,] and
¢ is the approximation error. Suppose we have ng sample points, X € x,i =

1,2,...,n,, and the observations, O(x!),i = 1,2,...,n,. First, the local ap-
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proximation O(x) of O(x) at each position x in the domain  is defined as a

linear combination of a set of independent functions,
O(x) = Y pr(x)ar(x) = p(x)a(x), (3.17)
k=1

where pi(x),k = 1,2,...,n, is the same as defined in Eq. (3.9). Comparing
Eq. (3.9) to Eq. (3.17), the only difference is that for the moving least square
method the coefficient a is a function of the location where the original function
is to be approximated, which makes it a localized approximation rather than

a global approximation.

Similar to the total least square method, the coefficients, ax(x), can be

obtained by minimizing the moving least square error, which is defined as,

Ns

Ey =Y w(x—x!) [p(xi)ax) — O(xi)]”. (3.18)

i=1

In matrix form, Eq. (3.18) can be written as,

Ey = (P,a(x) — 0,)TW(x)(P.a(x) — O,). (3.19)

The definitions of O4 and P, are the same as in total least square method and
the weight function matrix is,
w(x —x}t)
w(x — x?)
W(x) = ] . (3.20)
w(x — x) .

This equation shows that the moving least square method is intrinsically a

weighted square method in which the weight is a function of the location.
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Cubic spline weight function

Figure 3.5: The cubic spline weight function

The weight function should be a compactly supported function centered
at each sampling point. The cubic spline weight function can be used and it

is defined as,

(2
§_4r2+4r3 r <0.5
_ — 4 4
WEX=X) = 2 42805 <r<1
3 3
LO r>1
Ix —xi

where r = , and 7ry.y is called the radius of influence domain. The

rmax
value of 7,4, reflects how local the MLS will be. If r,,,, is large enough to
cover the whole domain €2, then MLS becomes a conventional TLS method.

The shape of the weight function in 2D is shown in Figure-3.5.
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To minimize the least square error FE,,, take,

8;324 =0=—-2P"W(x)0, + 2PTW(x)P a(x) . (3.21)
Let,
A[”pxnp} = PSW(X>P3
(3.22)
B, 1) = PyW(x)O,
Then,
a(x)=[ ai(x) a;(x) -+ an,(x) | =A"'B (3.23)

Comparing Eq. (3.16) and Eq. (3.23), the similarity between MLS and
TLS can be found. The condition for the above MLS procedure to work is that
matrix A must be non-singular. This can be guaranteed by adjusting 7., for
each estimated point x so that rank(W(x)) > n,. This shows that the MLS
approximation has a self-adaptive regulating ability for irregular sample point
patterns. At the location where density of the sample points are low, 7.y
should be larger to includes enough sample points. At the point where density
of sample points is high, 7., should be smaller so good local approximation
can be acquired. Another attractive property of the MLS approximations is
that the continuity of O(x) is related to the continuity of the weight function,
w(x — x.). Hence, one can use a linear basis function to reproduce higher
order continuous approximations by choosing a suitable weight function. In
addition, the MLS approximation is not necessarily an interpolant, ! but could

be an interpolant by introducing singularity to the weight function and making

nterpolant means the approximated function will go through the sample points

67



. w(x — x!

the weight of sample points infinity. For example, use w'(x —x%) = H
x —xt

as a weight function, where « is a positive even integer [37]. Interpolant MLS

is denoted as IMLS in the following discussion.

Example 3.1 Consider a one-dimensional mathematical function approxi-
mated by using the proposed MLS and interpolant MLS (IMLS). The analyt-
ical function is:

y = e “sindnr + 2°

In this example, 11 equidistance sample points and their function values (obser-
vations) are used for reconstructing this function, as shown in Figure-3.6. Both
thelinear p=[ 1 z] , and quadraticp=[1 2 2°] basis function are used,
and the spline cubic function is selected as the weight function for MLS/IMLS,
and o = 2 for the IMLS. The detailed approximation/interpolation results are
given in Figure-3.6. For comparison purposes, results given by conventional

least square with a 2nd order polynomial and 7th order polynomial are given

in Figure-3.6(e) and 3.6(f).

Example 3.2 A multiple variable example is shown in Figure-3.7. The original

function is a Matlab function called peaks. The expression of this function is
1

z=3(1- x)2e_“;2_(y_1)2 - 10(% — 2= y5)e_x2—312 _ g6—(»”L‘+1)2—1/2

The function is reconstructed with 36 sample points. According to
sampling theorem, 36 is very close to the minimum number of samples need

to reconstruct the original function. The surface and contours of the original
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Figure 3.6: Moving least square example
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Figure 3.7: Moving least square example: Peaks in Matlab
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and reconstructed function are shown in Figure-3.7(a). The results show that

the stationary points of the two functions are very close.

These two examples illustrate the following features of MLS:

1. MLS is a multi-variable regression method.

2. MLS has the ability of using low order basis functions to approximate
highly nonlinear functions with multiple optima, and the continuity of
the reconstructed function is related to the continuity of the weight func-
tion. Comparing Figure-3.6(a), 3.6(b) and Figure-3.6(e), 3.6(f), it is clear
that MLS is good at local approximation. A 2"¢ order MLS response sur-

face is as good as a 7! order total least square response surface.

3. Although the MLS approximation is not an interpolant, the stationary
points (locations where the local optima exist) approximated by MLS
are almost the same as their original true values, as shown in Figure-

3.6(b), 3.6(d) and Figure-3.7(c), 3.7(d).

4. The IMLS method can force the reconstructed function to pass through
the sample points exactly, by introducing singularities into the weight
function. However, the shape of the reconstructed function is not as
smooth as the one generated by MLS with same basis function. However,
this can be improved by increasing the order of the basis function, as

can be seen in Figure-3.6(c),3.6(d).

71



Taking into account the aforementioned observations, one therefore uses
the MLS approach in the development of an efficient optimal technique. First
the locations of the optima are found by using the moving least square response
surface and then the corresponding optimal function values can be found by

taking these locations as the input to the original function.

3.5 Reducing the Computational Effort

In order to construct the response surface, samples and their corre-
sponding function values must be calculated, a process referred to as sampling
before. Sampling contains two steps: 1) select the sample points x; in the
domain 2, which is called design of experiment (DOE) and 2) calculate the

2" step means simu-

corresponding observations Os. For our problem, the
lation of a determined system, and this can be time consuming. In order to
reduce the computational cost to construct a response surface, the amount

of sampling should be reduced, while maintaining the quality of the response

surface. To reach this target, two approaches may be taken:

1. Find samples that represent the original function better

2. Get more information from one sample point and its corresponding func-

tion value.

In this section, both methods will be discussed, with focus on the latter ap-

proach.
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3.5.1 Design of Experiment

An important aspect of RSM is the design of experiments, usually ab-
breviated as DOE. These strategies were originally developed for the model
fitting of physical experiments, but can also be applied to numerical experi-
ments. The objective of DOE is the selection of the points where the response
should be evaluated or where the sample points should be sampled. The choice
of the design of experiments can have a large influence on the accuracy of the
approximation and the cost of constructing the response surface.

Most existing DOE methods are designed for conventional RSM which

use 2m4

order polynomial and minimize the total least square error. They are
based on a philosophy of sequential experimentation, with the objective of
approximating the response with a low-order polynomial in a relatively small
region of interest that contains the optimum solution. This implies that there
may be only one local maximum. Thus, not all of these DOE methods apply

to optimization problems with many local maxima. A detailed description of

design of experiments theory can be found in [11, 60].

Some of the existing DOE methods can still be used directly for con-
structing the moving least square response surface. The can be categorized

into so called space filling design, and these methods are:

1. Full Factorial (FF) design or orthogonal lattice design. A factorial ex-
perimental is an experiment strategy in which design variables are varied

together, instead of one at a time. The lower and upper bounds of each

73



Figure 3.8: A 3 level factorial design

of n design variables in the optimization problem needs to be defined.
The allowable range is then discretized at different levels. If each of the
variables is defined at only the lower and upper bounds, the experiment
is call a 2 level design. Similarly, if the midpoints are included, the de-
sign is called 3 level design. This technique can be simply understood
as evenly sampling in the search space by dividing the search space into

many grids, as shown in Figure-3.8.

. Monte Carlo or Random design. The values of parameters are picked
randomly from within their range (usually using a simple uniform prob-

ability distribution function—all values are equally likely).

. Latin Hypercube (LH) design.

Superior alternatives to both the full factorial and Monte Carlo scans ex-
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Figure 3.9: Latin hypercube design

ist: descriptive sampling methods such as the latin hypercube method [22,
57]. The basics of the latin hypercube (LH) method are demonstrated vi-
sually in Figure-3.9. Instead of selecting values of parameters randomly
as is done in a Monte Carlo approach, values are selected descriptively.
The resolution of all sampled parameters is the same as the total number
of cases evaluated. In Figure-3.9, a problem with two parameters (A and
B) has been sampled with a resolution of 5: five values of each parameter
are sampled, but the same value of any one parameter is never tested

twice. The cells within the hypercube are themselves chosen randomly.

When used for gathering statistical information, such as mean, variance,
LH descriptive sampling is approximately 5 to 10 times more efficient
than Monte Carlo sampling. In other words, the same level of accuracy
can be gained in only 10% to 20% of the evaluations needed by the Monte

Carlo (and presumably the FF) search methods.

75



3.5.2 Local Sensitivity Analysis of ODE systems

Sensitivity analysis (SA) is the study of how the variation in the out-
put of a model can be apportioned, qualitatively or quantitatively to different
sources of variation, and of how the given model depends upon the information
input into it [67]. Sensitivity analysis can be divided into two large categories:
local and global sensitivity analysis. Local sensitivity analysis focuses on es-
timation of model sensitivity to input and parameter variation in the vicinity
of a sample point. This sensitivity is often characterized through gradients
or partial derivatives at the sample point [42]. In other words, for a multi-
variable system, local sensitivity analysis methods refer to small changes of
one parameter while other parameters are fixed. Global sensitivity analysis is
a domain-wide sensitivity analysis that involves the study of the system behav-
ior over the entire range of parameter variation, often taking the uncertainty
in the parameter estimates into account. It refers to the effect of simultaneous

parameter changes in a much larger amplitude.

In this section, we focus on the local sensitivity analysis of ODE sys-
tems. We concentrate on the numerical computing of the parametric sensitiv-
ity coefficients and explore the relationship between the ODE system and its
adjacent sensitivity equations. We will show how sensitivity analysis will help
to further reduce the computational cost by reducing the number of samples

to construct a response surface.

76



Considering the state equations for a parametric uncertain system:

{ x =f(x, A, u,t) (3.24)

x(0) = x¢
Differentiating Eq. (3.24) with respect to A yields,
ox of ox oOf

X —o
Oy

f f
Define, Sy = g—i, and J, = 2—, Jy= 86_)\’ so Eq. (3.25) can be written as,
X

S, =J.-Sy+J,
{ $1(0) = 0 (3:26)

Differentiating Eq. (3.24) with respect to xq yields,
ox  of 0Ox

6x0 N & . 8x0
0x
il I
9% [4—g

(3.27)

0
Define Sg = —X, Eq. (3.27) can be written as:

8X0
S() - Jx . S()
{ So(0) = 0 429

Eq. (3.26) and Eq. (3.28) are called sensitivity equations. Here Jx is an xn
matrix that contains derivatives of the right-hand side of the differential equa-
tion with respect to the system variables and is called the Jacobian matrix.
Ja is a n X m matrix that contains derivatives of the right-hand side of the

differential equation with respect to the system parameters and is called the
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parametric Jacobian matrix. Sy is a n X m matrix that contains all the para-
metric sensitivity coefficients and is called the parametric sensitivity matrix.
So n X n matrix that contains all the initial sensitivity coefficients and is called
initial sensitivity matrix. Iis the n xn identity matrix. The following example

shows how these matrixes are defined numerically.

Example 3.3a Consider the following linear system,

T _ Al Ao | _ Ax1 + Aoz
i’z )\3 )\4 i) )\31‘1 + /\4[E2
The number of states n = 2, the number of parameters m = 4. We have,

szﬁ:[)\l )\2:| J)\:ﬁ:|:$1 T 0 0:|
2x2 2x4

0x )\3 )\4 o\ 0 0 1 T2
d)\l d)\Q d)\g d)\4 dill'(l) dl'g
Sa = Sy =
dA\i dXy dAz dhg doyy dry dad 1,

The sensitivity equations of A\; and z} are as follows:

d.fL'l
s dhi | | AT+ Aezg + 1 Jo
ek I S B R v v S SO
dM\
dl’l
_ S drd | _ [ mn+ daws T1
si=| o | = [0 | = o | sa0= |
dr}

From this example, we can find that the form of the sensitivity equa-

tions is very close to the original system ODE. It implies that there may
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be some relationship between the original ODE and the adjacent sensitivity
equations. The sensitivity equations show that the solutions of the sensitivity
equation requires the knowledge of the solution of the original system equa-
tion at all points where the ODE solver calculates the right-hand side of the
sensitivity equation. Connections between these two sets of equations can be
made in several ways and lead to different methods to solve the sensitivity

equations.

There are several methods that can be used to solve Eq. (3.26) and
Eq. (3.28) [61,67]. The simplest one is called brute force method or indirect

method by using the finite-difference approximation,

d AN ’

i=1,..,m (3.29)

Solving sensitivity equation in this way requires m + 1 simulations of
the original model. Obviously, the accuracies of this method depend on the
parameter change, A);, and the linearity of the system. The advantage of this
method is its robustness. No modification to the system ODE is needed. The

system can also be treated as a black box.

A set of more accurate methods is called Direct methods (DM). These
solve the Eq. (3.26) and Eq. (3.28) directly. Numerical solutions of Eq. (3.26)
and Eq. (3.28) requires knowledge of J, and J at each step of the ODE solver
and thus the values of the system state variable x have to be known. Therefore,
the system ODE Eq. (3.24) must be solved in advance, or simultaneously, and

thus the computational cost of DM is quite high.
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It was Dunker [24] who first showed that a special relation existed
between the sensitivity equation Eq. (3.26), Eq. (3.28) and the system ODE
Eq. (3.24). This relationship can be used to solve Eq. (3.26) and Eq. (3.28)
with little extra computational cost when solving system ODE Eq. (3.24).
Algorithms based on his idea are called decoupled direct method or DDM. 1t

has been proved to be the best general method to calculate sensitivities [67].

The basic idea of Dunker begins by writing the implicit finite-time

difference form of Eq. (3.24) in the time interval [t, tx41] can be written as,

X(tpr1) — x(t)
At

X(tgy1) = = f(x(tge1), A, u,t), (3.30)

where At = 41 — tr. Using Taylor expansion to expand f(x(tx41), A, u,t)
near z(ty, A, u,t) yields,

of
f(X(tk-l-l)a Av u, t) = f(X(tk)v >‘7 u, t) + o

2
o Ax 4 O(x%), (3.31)

x=x(tg)
where Ax = x(tg11) — X(tg). Ignoring the higher terms and substituting

Eq. (3.30) into Eq. (3.31),

x(t —x(t of
) 22X i) Aut) + o) () —x(6)  (332)
At ox x=x(tx)
of
Let J, = —, and J, = I , and rearrange Eq. (3.32) to get
x=x(tx)

the following equations that solve the system ODE Eq. (3.24) iteratively,

X (tpp1) = x(tg) + AL (T — AtTy) " £ (x(t), A, u,t)

hl 3.33
X (tk+2) = X(tk_H) + At (J — At']xak—i-l) ! f (X (tk—i-l) s )\, u, t) ( )

where J is a unitary matrix (all elements are 1).

80



From Eq. (3.33) we can see the major computing task to solve system

ODE Eq. (3.24) is to calculate the matrix (J — AtJ, ;)"

Similarly, let Sx(tx) = S, ., the finite-difference form of parametric sen-
sitivity equation Eq. (3.28) is,

. S -S
Sakr1 = W = Jx k152 k41 + Inpt1 (3.34)

Reorganizing this equation,
Saskt1 = (Txkt1Sxkt1 + Inpt1) At + Sag,

Rewriting above equation yields an equation that solves the parametric sensi-

tivity equation Eq. (3.26) iteratively,
SA,k—f—l = (J — AtJXJH_l)il (J)\7k+1At + S)\7k) (335)

Let So(tx) = Sox and applying the same procedure to the initial sensitiv-
ity equation Eq. (3.24) yields an equation that solves the initial sensitivity

equation Eq. (3.28) iteratively::
So(ter1) = (J — AtTepr1) " So (x (tr)) (3.36)

Compare Eq. (3.33), Eq. (3.35) and Eq. (3.36), to find that the matrix (J — AtJ, ;)"
used to solve Eq. (3.33) can be used to solve Eq. (3.35) and Eq. (3.36) as well.

Thus only little extra computational cost is needed for solving Eq. (3.35) and
Eq. (3.36) if Eq. (3.33) is to be solved.

This analysis shows that the sensitivity equation can be solved with

little extra cost when solving the original system ODEs.
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Example 3.3b For the system ODE used in Example 3.3a, assume we have
A= [ -2 -3 5 —6 } and xg = [ 11 }, so we can calculate Sy, and Sq by

using DDM. The results are shown in Figure-3.10.

In this section, we show that the sensitivity equation Eq. (3.26) and
Eq. (3.28) can be solved as a byproduct of solving the original system Eq. (3.24)
with little extra cost. This is a very important conclusion and it means we
can get the function value and its derivative as a secondary function in one
sampling process. With both primary and secondary function values, the
quality of the response surface can be improved, or in other words, less samples

are needed if the quality of the response surfaces remains the same.

3.5.3 Gradient (Sensitivity) Enhanced MLS

The gradient enhanced response surface method (GERSM) uses both
the primary function values and the gradient (sensitivity) information as the
secondary function for construction of response surface. It has provided very
attractive results in many applications [16, 17,51, 56]. Generally, there are two
ways to use sensitivity information to form a gradient enhanced moving least
square response surface (GEMLS). The first method, which is called GEMLS1
in this dissertation, is to use sensitivity information to generate some ‘pseudo
samples’ around a real sample. Assume we have a sample O(xy), by using

Taylor expansion,

00
O(x, + 6) ~ O(x;) + —

. dxs = O(xs) + Sx,0 (3.37)
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where d should be small enough so Eq. (3.37) holds. From Eq. (3.37) it is
relatively easy to get the observation at the point x4+ d given the observation
O(x;) and the sensitivity information Sy,. Define O(x;+ ) as pseudo samples
around the real sample O(x,). As pointed out in the previous section, when
O(x;) is determined, Sy, is obtained with less cost. Thus, the pseudo samples
can be acquired along with the real sample O(x;) with little cost. This method
has also been called database argumentation in [54], or indirect method in [17].
The advantage of GEMLS1 is that no additional coding is required for the MLS
method. The disadvantage is that the value of step size, d, is hard to select.
Generally 6 < 5% of the total range of x is the rule. In [54], a method to
selecting a better step size by including the step size as one of parameters in

the response surface model is given.

Example 3.4 Pseudo Samples. In Example 3.1, there are 11 samples used
to reconstruct the original function. Figure-3.11(a) shows the result of us-
ing GEMLS1 with 6 samples and 10 pseudo samples to reconstruct the same
function used in Example 3.1, which is much better than the result shown in

Figure-3.11(b), which is generated by using MLS with 6 real samples.

Another method (GEMLS2 in this dissertation) is to treat sensitivity
information as a secondary function. The response surface should fit both

the original and secondary functions. A similar method is referred to direct

method in [16, 17].

Since O(x4) = O(xs) + ¢, by taking derivative with respect to z;,j =
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Figure 3.11: GEMLS1 by using pseudo samples

1,2,...,n, we have,

90(x)

B da(x)  Oe
e, o, a(z) + p(x) o, +8_acj (3.38)
00(x) Op(x) da(x)  Oe
Let O4(x) = HES ded= ———= 4+ —, then Eq. (3.38
et Of(x) o, P T g, S p(x) o, + o, then q. (3.38)
can be rewritten as,
Oj(x) = O?(x) + 8? = p?(x)a(x) + 6? (3.39)
R _ ? ; F o] T
Of Of p{ e
Let ® = 04 6 = 04 I = ol ,e = €9 , and write
o o b e

Eq. (3.39) in matrix form as,

(3.40)



Apply the same moving least square procedure to Eq. (3.40) as to Eq. (3.9),

and form a set of similar equations,

a(x)=A"1B
Ay, = TP W ()L, (3.41)

Bnpxl = HZ‘I’(X)@S

[ O(x) ] [ p(x;) ]
Of(x) pi(x;)
On(xs) Py (x5)
where ©, = : I, =
O(x¢) p(x¢)
Of(x3) P (x:*)
d Ngs d ‘ Ns
L On(x7) [(n+1)ms]x1 L pa(xge) [(n+1)-ms] xmp
w(x —x1)
} ;
w(x —x1)
[ w(x — x2) ]
w(x — x2)
0
|: w(x — x5°%)
i w(x — x5°)

O, II, and ¥ are called extended observation matrices, basis function matrix

and weight matrix, respectively.

It is worth noting that matrix A is still a n, X n, matrix so the com-

putational cost to construct a response surface with sensitivity information
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doesn’t increase very much.

Example 3.5 Reconstruct the Peaks. The Matlab function called peaks is
used to illustrate GERSM. This function has six local optima and the expres-

sion of this function is,
1 2 2
2= 3(1 — 2)2e w02 _ (L _ 3 _ ety _ Sem(@t)?y
(1-z) (5 y) 3

Figure-3.12 shows the surface and contours of the original and reconstructed
function by using MLS (49 real samples) and GEMLS1 (25 samples and 100
pseudo samples), GEMLS2 (25 samples and derivative as secondary function).

2304 test points (48 x 48 grids) are generated to test these three methods.

Table 3.1: Comparison of MLS and GEMLS

2304 test RMS Distance between real and reconstructed stationary
pts error points

S1 S2 S3 S4 S5 S6*(global)

Original 0 0 0 0 0 0 0

MLS 0.8452 | 0.0339 | 0.7858 | 0.3631 | 0.5730 | 0.5334 | 0.2422

GEMLS1 | 0.8469 | 0.1328 | 0.2793 | 0.1155 | 0.2443 | 0.0894 | 0.0330

GEMLS2 | 0.6906 | 0.0233 | 0.4242 | 0.1526 | 0.0632 | 0.1232 | 0.0881

Table 3.1 summarizes the difference between the real and reconstructed
peaks function. From Figure-3.11 and Table 3.1 it is found that even though
GERSM uses only half of the samples, it outperforms or matches the results
from the MLS. For this method, the stationary points reproduced are very close
to the real ones, especially at the global point. These results showed that by
using GEMLS, the computational cost to construct the response surface can

be greatly reduced.
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Figure 3.12: Gradient Enhanced Moving Least Square: Peaks in Matlab
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3.6 Further Reducing the Computational Effort

As mentioned before, there are two types of sensitivity analysis: local
and global. Local sensitivity analysis has been used to construct the gradient
enhanced moving least square to reduce the computational effort in a previous
section. In this section, global sensitivity analysis is used to further reduce the

computational effort.

3.6.1 Monotonicity and Global Sensitivity Analysis

A multi-variable function (A, Ag,...\,) is said to be increasing with

Oz > 0 in the

regard to A;, one of its independent variables, if and only if

1

ox
< 0. Notice that the same

o\

function can increase w.r.t. one variable while decreasing w.r.t. another.

whole parameter space, or decreasing w.r.t \; if

It is well known that the monotonicity of an objective function can
often be used to obtain a simplified optimization problem. This principle has
been successfully used in many design optimization problems [63]. Consider

the following simple optimization problem:

A3
A1
min  x = 0.5\ + i—% (3.42)

st. A€ [10,20], Aoy € [10,20]

max x = 0.5\ +

Assume evaluation of x is very time consuming, so the response surface
method described in the previous section is used to solve this problem. The
first step of RSM is to take samples. For this simple problem, by testing the

monotonic character of the function, it can be found that only two samples
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Figure 3.13: Monotonicity analysis of multi-variable function

dx

are needed. This is because by studying the sensitivity coefficient, S = T
2

2Xs € [20,40] > 0, which means x is a monotonically increasing function with

X2. Then the minimum of x will be 2,,,;,=\2 . = 10? = 100 and the maximum

2min

of z will be Z,0,=M\2_ = 20% = 400.

2mazx
Now consider the following problem:
max x = 0.5\ + A—%

min 2 = 0.5\ + i—% (3.43)

s.t. /\1 € [10,20], )\2 € [10, 20]

The shape of this function is shown in Figure-3.13.
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We still try to use monotonicity analysis first by taking derivatives,

dz A\ 2
05— (22
d\, ()\1)

dx )\2
dXg A

(3.44)

dx
We can easily find that z is still monotonically increasing with Ao, since I
2

2/\—? > () is guaranteed. But the sign of ;—/i is not known. Its value is between
-3.5 to 0.25, depending on the value of A\; and Ay. Thus the output z is not a
monotonic function w.r.t A;. This also can be seen from Figure-3.14(a), which
shows that the minimum =z is not located at corner value of \;. However, since
we do know z is monotonically increasing to A, as shown in Figure-3.14(b),
then only the corner values of Ay and several samples along A; is needed to

be taken to construct the response surface. Because of the monotonicity of

the objective function, the number of samples is greatly reduced. From the

= 7 52
x=05% + 25/,

(a) x value along \; direction, not monotonic (b) x value along A2 direction, monotonic

Figure 3.14: Monotonicity analysis example

above example, it can be found that the role of sensitivity analysis here is not
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to get the value of sensitivity coefficient at certain point in the domain, but
to find its sign when the variables A\;, A change in the whole range. Thus we
call this process global sensitivity analysis, in comparison to local sensitivity
analysis discussed in previous sections. Global sensitivity analysis is based on
the local analysis but its main purpose is to find the monotonic information
of the function. We use S;; to denote global sensitivity coefficient. Clearly,

the value of Sjj is not a number but an interval.

3.6.2 Global Sensitivity Analysis of ODE Systems

Global sensitivity has been used in many optimization problems, such
as linear circuit worst case simulation [77], design optimization [63], etc. How-
ever, testing the sign of Sj;7 is a very difficult task, especially for dynamic

system represented as ODEs where time ¢ plays an important role.

The purpose of global sensitivity analysis of ODE system is to explore
the monotonicity characteristics of the system output with respect to the un-

certain parameters.

Consider a dynamic system with uncertain parameters:

z = 2(t, A1, Ml [, Mol [As, Asls ooy Ay M), (3.45)
The local sensitivity coefficient provides the information of a single point A

in the parameter space, which can be denoted as,

o
o\

ox

Sig = =
o, ON

(3.46)

A=A A =A2 LN A=A
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As mentioned before, we can solve S; \, with DDM and S; , is a curve
that changes with time. However, since we are dealing with an uncertain
system, the parameter A can vary within a range. We want to study the effect
of changing all these parameters together. In a mathematic form, we want to

study the global sensitivity coefficient:

8.’171'

J X€ML, ], 26202, An €[An, An]

For monotonicity analysis, we only need to determine the sign of S;;

but not the exact range. Consider the following example.

Example 3.6 Global sensitivity analysis: For the system ODE used in Exam-
ple 3.3, assume we have the following uncertain parameters and a fixed initial
condition: A = [[-2.5,—1.5],[—3.5,—-2.5],5,—6] and xo = [ 1 1 ]. We can
use Monte-Carlo Method and DDM to calculate Sy and Sg with the uncertain
parameters vary in their range. The global coefficients Sai, Sa97, S237, S247
calculated by Monte-Carlo method are shown in Figure-3.15a-d. It can be
found that when the uncertain parameters varying in their range, the sen-
sitivity curves form a boundary similar to the system states. Each global
sensitivity coefficient S;;7 is a collection of sensitivity curves and we call the
collection of curves a sensitivity band. Each sensitivity band divides the t axis
into three types of monotone intervals, namely t+,t— and ¢+ intervals. In
t+ interval, the value of the global sensitivity coefficient is always positive
and in t— intervals the global sensitivity coefficient is always negative. In ¢+

interval, the sign of the global sensitivity coefficient changes between positive
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and negative. In the t+ or t— interval, the objective function is monotonically
increasing or decreasing with corresponding uncertain parameters. Only the
corner value of these uncertain parameters needs to be sampled for response

surface construction. In the ¢4 interval, more samples are needed.

There is no easy way to find these monotone intervals because in order
to find the sensitivity band the boundary of the state variable must be found
first, while the purpose of the global sensitivity analysis is to find the boundary
of the state variables more effectively. Thus, unless the monotonic intervals
can be found with less computational cost, global sensitivity analysis will not
help to reduce the computational effort. There are two methods that can be

used to estimate the monotonic intervals effectively:

1. Less accurate method. Estimate the monotone intervals by using local
sensitivity coefficient with uncertain parameters at their nominal values.
In this case, global sensitivity analysis becomes local sensitivity analy-
sis. There is only one curve that divides the time axis into only two
types of intervals: ¢+ or t—, as shown in Figure-3.15(e),(f), where Sa3
and Soq are approximated by this method. The monotonic intervals
approximated by this method are not very accurate. However, it still
gives some monotonic information qualitatively. Around the time where
the sensitivity curve crosses zero, more samples, both in parametric and
time space, should be taken since it is close to the t=+ intervals. At the
time span where the curve is far away from zero, it is quite safe to treat

this time span as t+ or t— intervals.
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Figure 3.15: Global sensitivity and monotonicity analysis

95



2. More accurate method. Use vertex simulation to form the sensitivity
band to approximate the monotone intervals. More accurate estimations

can be given by vertex simulation, as shown in Figure-3.15(e),(f).

For certain systems, the time intervals are quite short and monotone analysis
will not help too much. For example, the step response of a simple RLC circuit
in Figure-3.16(d) shows no strong sign of monotonicity to the value of L and
C, as shown in Figure-3.16(a),(b),(c), among three parameters, only the R
has pretty long ¢+ and {— monotonic intervals, while monotonic intervals of
R and C' basically are all t+ intervals. However, for certain systems, they
show strong monotonicity. The extreme case is that the t+ or {— monotonic
intervals of one or more global sensitivity coefficients are so long that it cover
all the time span [0, 7] to be simulated. The following theorem will show the

how to find such kind of system effectively.

3.6.3 Monotone Theorem

Consider the dynamic system,

:tl = fl(l'l,.fg,"' 7:1:717/\17/\27"' a)‘mat)
'jj2 = f?(xl7$27”' 7'9:717/\17/\27"' 7)\m7t)

jjn = fn(xlv'x% e wxna)\la)\% e 7)\m7t)
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Figure 3.16: System without strong monotonicity
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The sensitivity coefficient of parameter \; is S;; =

Sii = 833131] + 89@252] + ...+ 8a:nS"] + 8>\J
of; ( "~ f; aﬁ-)
= 228+ 28+
ﬁxi vy 0:171 8)\j (348)
= N(t)S; + M(t)
S,5(0) = 0

Equation (3.48) is called a monotonicity equation and the following
theorem holds:

Monotone theorem. For the monotonicity equation

S = N()S(t) 4+ M(t)
S(0) = 0

1. If vt € (0,T],M(t) > 0, then S(t) > 0.
2. If Vit € (0,T], M(t) < 0, then S(t) < 0.

3. If Vt € (0,T], M(t) = 0, then S(t) = 0.

Proof of conclusion (1): Refer to Figure-3.17.
S(0) =0,M(0) >0
S(0) = N(t)S(0) + M(0) > 0

Also, by the definition of derivatives, we will have d; > 0 so that:
S(0)=0

5(0+) = Lim S0+ 531 - 500) } = S(8;) > 0
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Figure 3.17: Prove of monotone theorem

Assume t; > 0 is the first point that S(¢;) = 0, in other words,

EI((S,: <t < T),S(tl) =0
d<t<t,VS(t) >0

Then we have:

S(tl_) = N(tl_)S(tl_) + M(tl_) = M(tl_) >0

However, by definition we have:

S(tr) = Jim S(t-) — ?t(tl —d) _0- S(?t ~5) _,

(3.49)

(3.50)

Eq. 3.49 conflicts with Eq. 3.50 so the assumption is not correct. Thus,

for Vt € (0,T], S(t) # 0.

Further, assume 3ty € (6,77, S(t2) < 0. Since S(é;) > 0, by inter-

mediate value theorem, 3¢; and S(¢;) = 0. This is conflict with the above
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conclusion and thus the assumption 3ty € (&, 7], S(t2) < 0 is not correct.
Combined with above conclusion, S(t) can only be great than zero. Conclu-
sion (1) is proved. Using the same procedure, conclusion (2) and (3) can also

be proved.

The power of this theorem is that if the sign of M (t) is fixed in the
time range [to, T and S(to) = 0, then the sign of S(¢) depends only on the
sign of M (t). No need to calculate the sign of N(?).

Notice that from Eq. 3.48, since M (t) is the summation of all the sen-
sitivity coefficients and the parametric Jacobian terms, it is very hard to know
the value of M (t) and thus the usage of the monotone theorem is limited.
However, for certain decoupled systems, using monotone theorem can greatly
reduced the computational cost. The following Two-Tank example will show

how this theorem can be used.
Example 3.7: Two-tank, use of monotone theorem:

Figure-3.18 shows the two-tank system that has been widely used as a

benchmark problem for uncertain analysis. The system equations are:

Vo = kiv'Vi — Bha/Va

where
I Vi < Vimax
A:Step(%max_‘/i):{o Vi;‘/i
1 Vo < Vomax
BIStep(‘/Qmax_%):{O ‘/rjz‘é
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N

Figure 3.18: The two-tank system

V1,2 stand for the volume of the two tanks and k; » stands for the flow
rate coefficient. w(t) > 0 is the input flow rate, which is independent of
Vi2. By introducing two step function A, B, above model accounts for the
saturation of the two tanks. Now assume we have two uncertain parameters,
ki € [0.8,1], k2 € [0.5,0.7] and we need to find the boundary of V; and V5. If

the monotonicity is not studied, we need to search in both k£ and ks directions.

Calculate the global sensitivity coefficient of k; and ko, w

.9V, dA k, OV,
Sn=2t =t - S

Ok dvi 2V Ok
oy ky 0V;
= —0(Vimax — Vi) 7t — Vi — ——=—— 3.51
( ! %)aklu ! 2\/718k:1 ( )
k1 oVi
= —VVi+ [ =0(Vimax — Vi)u — =
1*( \E % 2m) Ok
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Sy = —— = 52
S1s %, 0 (3.52)
. OV k2 OV av2
-2/ — kor/Vy + Bk
1= 5 i+ N <dk1) 2V V2 2a/<;1
ki oWy 8V2
=VVi+—F 0(Vamax — —k: \/ Vs + Bko——= 3.53
2 V. 8k1 —(=0(Va 81{:1 2 2 + 25 1 ( )
k, OV, OV,
a A a1 max ~ k: Bk
i+ SN + [6(V4 Vkan/Va — Bko| —— ok,
Soy = - - kon/Va + B [ V-
27 Oky 2V, Oky de: ) 2V V2 ( Wi a/@)}
oV, Bky 0Vy
=0— | —0(Vamax — V2) —k; Va4 BV, + 2 3.54
[ ( 2 2 2 2+ 2 2\/7281{:2} ( )
B Vs Bk,
=—B\Vy+ 87 {6(‘/2max — Va)kor/ Vo — BT ,VJ

From above equations, we can find that:

My = —/V1
M12 - 0
oVi kl
M. A = Vit =
21 1 2\/7151€1
May = =B/ V3
Applying the monotone theorem, S;; < 0, S9 < 0 since M11 <
. ki oV
0, M3y < 0. For Sy, the sign of My = /Vj =VVi+ —=
22 S r O21 gn 21 \/_ 2\/_8k1 \/_1 \/71 Si

could not be determined.

still be acquired by studying M.

However, qualitative monotonicity information can

Assume the initial condition is V; = 1000
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and V5 = 0. Because at time zero, S;; = 0 and thus My; must be larger than
zero. We can imagine that My, will be larger than zero for a while and thus
So1 will also be larger than zero. With the decreasing of V; and Sy; (became
negative), My, will decrease to zero and move to negative region and thus So

will also became negative.

Nevertheless, we now know V) will monotonically decrease with k; and
V5 will monotonically decrease with ko. Thus, upper bound of V, will be the
envelope of all the possible trajectory generated by the parameter [Vki, ko,
the lower bound will be the envelope of all the possible trajectory generated

by the parameter [Vki, ko). Thus, we only need to search [k, k] space in k

direction in order to generate the boundary of V5.

For Vi, it is even simpler since V; is a monotonic decreasing function
of k; and thus the upper bound is given by k; and the lower bound is given

by k.

Figure-3.19 shows monte-carlo simulation results of the above two-tank
system with input u = 0. Figure-3.19(a) shows the result of V1, Sj; and Sis.
Since the lower tank will not influence the upper tank, the value of ko will
not influence the status of the upper tank. Because of S;; < 0, the upper
boundary of V; can be acquired by simulating the system with k; = 0.7. The
lower boundary of V; can be acquired by simulating the system with k; = 1.
This result can be explained physically: if the orifice of the upper tank is

larger, at any time the volume in the upper tank will be lower and vise versa.
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Figure-3.19(b) shows the result of V5. From Figure-3.19, we can find
vy

that for all possible combination of k1 € [0.7,1],k2 € [0.3,0.5], So = o, is
always less than zero. Also, the sign of S5; changes from positive to negative,
which proved the qualitative monotonicity analysis by studying S5;. For the
boundary of V5, the upper boundary will be given by ks = 0.3. The lower
boundary will be given by k3 = 0.5. The physical meaning of the monotonicity
is that if the orifice of the lower tank is smaller, the higher the volume of the

lower tank and vise versa. To find the boundary of V5, only the value of k4

will be searched.

From the above example, it can be found that the monotonicity theorem
can be applied to systems, for which the sign of M(¢) in Eq. (3.48) can be
easily determined. Such systems are usually highly decoupled and systems
whose state variables are physically bounded, such as in the two-tank example

that V1o > 0 is known physically.

3.7 Numerical Example

In this section, an example which illustrates our simulation approach
is given. The example is a linear system with two uncertain parameters k; €
[0.4,0.8], k2 € [0.4,0.8] and two certain parameters k3 = ks = 0.6. The initial

condition is a certain value x¢ = [1, 1.5]. The system ODE is:

j:l = (kl — 1).1'1 + kgl’g
j?g = —]{731’1 + (]{34 - 1)$2

The above system can be proven to be robustly stable by using Khari-
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Figure 3.19: Two Tank example: use of monotone theorem
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tonv’s theorem in frequency domain. Note that one advantage of our approach
is that since it is not limited to linear systems, it can handle general nonlin-
ear dynamic systems. DDFE method is used to solve the adjunct sensitivity
equation. Monotonicity theorem can not be applied easily so monotonicity
test is not used. Use 16 samples and the corresponding sensitivity information
(GEMLS2) to construct the moving least square surface in the [0,10] second

time range with time step At = 1s.

In Figure-3.20(a),(b) are the time response of x; and zs, given by
Monte-Carlo of 125 simulations and GEMLS2 of only 16 simulation. It shows
that GEMLS2 gives a very good approximation of the upper and lower en-
velopes of both variables, with much less computational cost. Both of the
envelopes show that the system is robustly stable as proved by Kharitonv’s

theorem.

Figure-3.20(c) shows the hyper-rectangle in phase plane given by the
bound of z; and x5. It can be seen that the box covers all the Monte-Carlo re-
sults. However, the rectangle is not a good approximation of the set composed
by all possible states at a given time instance. This set can be imagined as a
cross section of the system performance tube (also called flow pipe), which is
the collection of all the possible trajectories, as shown in Figure-3.20(d). As
can be seen, there is some ‘empty space’ in the rectangle that the system will
not reach. In other words, although the envelope of each state variable is ac-
curately estimated, the boundary (edge of the set) of the system performance

tube is not accurately approximated. This set is also called reachable set at
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time ¢ of the system. In next chapter, we will show how the reachable set can

be accurately acquired by our methods.

3.8 Summary

In this chapter, the computational cost of simulation of uncertain sys-
tem is first analyzed and a gradient response surface response method is pro-
posed to reduce the computational cost, based on local sensitivity analysis.
Further, the concept of global sensitivity and sensitivity band are introduced
for monotonicity analysis to further reduce the computational cost. A theo-
rem to test the monotonicity of certain ODE systems effectively is proved. By
integrating all these methods together, the computational cost of simulation
of uncertain system can be greatly reduced. Figure-3.21 shows the structure

of the proposed method.
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Figure 3.20: Numerical example: Performance tube
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Figure 3.21: Flow of proposed method

109



Chapter 4

Reachable Set Approximation for Hybrid
System Verification

Hybrid systems, which contain both discrete and continuous dynamics,
have attracted a lot of attention recently [3,12]. Reachable set computing is
a basic problem in hybrid system analysis concerned with representing and
computing all possible states that the continuous dynamics of a hybrid system
can reach from a given set of initial conditions. This analysis has become a

key method in verifying the correctness of a hybrid system [3,23].

In this chapter, the concept of hybrid system and hybrid system verifi-
cation is first introduced and then the reachable set computing/approximation
problem is formulated as simulation of dynamic system with uncertain initial
conditions. The computational burden of current methods for reachable set
approximation, such as polyhedral approximation is studied. It shows that
these methods involve global optimization techniques that embedded numeri-
cal simulation of the dynamic system response into the routine for evaluating
the objective function. The search space is the entire uncertain initial state
in R”. It is general but computationally expensive, and thus not applica-

ble if simulation of the system is already computationally burdensome. The
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applicability of some existing approaches that avoid the global optimization
problem by employing the fundamental inequality theorem are shown to be

very limited.

To reduce the computational burden, we first prove that the boundary
of the reachable set is formed only by the trajectories from the boundary of the
initial state region. This result reduce the search space from R" to R"~!. For
more complicated system, the method proposed in previous chapter is used to
solve the global optimization problem more efficiently. Finally, it is shown that
it will be more efficient and accurate if GEMLS is integrated with Principal
Component Analysis (PCA) to find an oriented rectangular hull for reachable

set representation and approximation.

4.1 State-dependent (threshold) Events Driven Hybrid
Systems

Dynamical systems that are described by an interaction between con-
tinuous and discrete dynamics are usually called hybrid systems. Continuous
dynamics usually may be represented by ODEs and discrete dynamics can be
represented as a finite-state automata, with state q taking values in some fi-
nite set @, where transitions between different discrete states are triggered by
suitable values of an input variable, v. When the input w to the continuous
dynamics is some function of the discrete state g and, similarly, the value of
the input v to the discrete dynamics is determined by the value of the con-

tinuous state @, a hybrid system arises [53]. A simple hybrid system can be
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shown in the following example [53].
Example 4.1 A very simple manual car model can be expressed as:

.i'1:$2

iy = f(a,q)
where x; is the position and x5 is the velocity, a is the acceleration input
which is a function of ¢ € {1,2,3,4,5,—1,0}, the gear shift position. In
this system, x; and z, are the continuous states and ¢ is the discrete state.
Clearly, the discrete transition (shift position) affects the continuous states
and the continuous states (speed) will determine the transition of the discrete

states.

One way to study the hybrid systems is to treat them as continuous
systems with discrete switching events. Basically, switching events in such

systems can be state-dependent or time-dependent events.

In this chapter, we focus on how the approach developed Chapter 3
can be used for the verification of state-dependent hybrid systems. For this
kind of system, the continuous state space is partitioned into a number of
operating regions by means of a family of switching surfaces. In each of these
regions, a continuous dynamical system represented by a set of ODEs is given.
Whenever the system trajectory hits a switching surface, the continuous sys-
tem switches to a set of new ODEs. This type of hybrid system is called
threshold-event-driven hybrid systems (TEDHS) [18] or state-dependent events
driven hybrid system systems (SEDHS) [53]. Such systems can be illustrated

by Figure-4.1 [18]. This system consists three types of interconnected sub-

112



systems: 1) switched continuous systems with discrete piecewise constant in-
puts that select the continuous dynamics and continuous outputs, 2) threshold
event generators that take the continuous outputs of the switched continuous
systems and generate events when they cross certain thresholds (or switching
surfaces), and 3) finite state machines that are purely discrete transition sys-
tems with a finite number of states. The state transitions are triggered by the
event outputs from the threshold event generators. The discrete outputs of the
finite state machines, in turn, determine the dynamics of the switched contin-
uous systems. TEDHS are attractive from the modeling perspective as they
directly support block diagram modeling in which a system can be easily con-

structed by interconnecting the inputs and outputs of various subsystems [18].

4.2 Verification of Hybrid System

Verification of a hybrid system refers to methods for determining whether
or not given properties (specifications) are true for a given model of a dynamic
system. In general, there are two approaches to verification: Theorem proving
and model checking. Theorem proving aims at inferring/contradicting a spec-
ification for a model using the methods of logical proof systems, where model
checking approach uses the state-transition relation in iterative computations
to arrive at the set of states for which the specification is true [72]. Model
checking is an algorithmic technique and has a close relationship to the simu-

lation of uncertain systems. The following batch reactor system example used
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Figure 4.1: State-dependent events driven hybrid systems, adapted from [18].
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Figure 4.2: The batch reactor system, adapted from [72].

in [72] is borrowed to illustrate the model checking of hybrid systems.

Example 4.2: Verification of a hybrid system: the batch reactor sys-
tem: As shown in Figure-4.2, the reactor is filled by two liquid streams F4
and Fp with temperature T4 and T and concentration cy i, cg,in of two dis-
solved substances A and B. The streams can be controlled through the valves
v4 and vg in the inlet pipes. The stirred content of the reactor is cooled by
a cooling jacket. The supply of cooling water is switched on by opening valve
ve. Cooling is necessary since an exothermic chemical reaction 2A + B — D
leads to an increase of the reactor temperature Tx. The reaction product can
be discharged through the valve vo which is controlled by a discrete controller.

Measurements of the temperature Tg, the liquid volume Vg, and the concen-
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Figure 4.3: Operation procedure of the batch reactor, adapted from [72].

tration c, indicate whether these variables exceed specific thresholds or not.
The system equations and variables are,

d By
“a_ Aen —cp)—2-r

g Vi ke - A H
R S1-1'4 S2 - Ro - Ac R"T
TR (Ta —Tg) — Tr —Tc) —
dt VR (La = T) p-cp- Vg (T~ To) p-ep
dVy dtr )
— — 81 - _ =
dt i gy
r=c% ko e%fl(;:z-lﬁ—i—i Vr

A 4 "B Dp

s1 € [0, 1]- switch the valve vy to close or open. sy € [0, 1]- switch the valve

v to close or open.

The production procedure can be shown as a transition model (state
machine) as in Figure-4.3. Initially, assume one half of the reactor volume is
already filled with solution B (and vg is closed). In the first step (denoted by

z1), valve v, is opened to supply the solution A until the volume Vg reaches
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an upper limit Vig,. The chemical reaction leads to an increase of the tem-
perature (state z2) such that Tx eventually reaches a threshold Tr = Tyign.
From state z3 (reaction with cooling) three different states can be reached:
the ‘normal’ operation is that the concentration cs dropped down to ca ges
corresponding to a sufficiently high concentration of the product D (cp is
high enough), and the reactor is emptied through valve vo. If, alternatively,
the temperature increases further to an upper threshold T4, the state zj
is reached. (Note that Tk can show an over-shooting behavior when v¢ is
opened.) As a third possibility, a specified reaction time ¢f;,, can elapse be-
fore the desired concentrations are reached and the procedure terminates in
state zg. The reaction time is measured by a clock tr, which is reset when

valve v4 is opened.

The states z5 and zg should be excluded from the course of opera-
tion, because these two states means failures of the processes and are not
desired states. A discrete controller has to be designed such that is switches
the valves v4, v, and vp in order to ensure that the operation always ends
in state z4, the desired state. The objective of verification for this system
is: 1) to determine if the temperature threshold Tr = Tpig, is chosen ap-
propriately to guarantee T4, is never exceed, 2) to ensure that the desired
product concentration cp (or caqes) is reached (for which T;,, must not be
chosen too low) within the specified reaction time ¢4, and given certain
region of initial states because of uncertainties in the initial op-

erating conditions. For example, we want to verify that the system will
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Figure 4.4: Verification of the batch reactor system, adapted from [20].

work properly (within 60 minutes, ¢4 < 0.2 with Tp;e, = 310K) if the ini-
tial concentration of liquid A is in the interval [1.7,1.9]unit and the initial
tank temperature is in the interval [288,295]K. Thus, the verification of the
system can be converted to verify that if the system will go from the an un-
certain initial region Ry(cao € [1.7,1.9],Try € [288,295]) to a final region
R¢(ca € 10,0.2],t; = 60min). A verification result given by using the Check-
mate tool [20] is shown in Figure-4.4. It showed that with T4;,, = 310K, at
tr = 60min, 0.2 < ¢4 < 0.3. This example clearly shows that verification
of hybrid system is equivalent to simulation of parametric uncertain dynamic

system with only uncertain initial conditions. Thus, the techniques developed
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in the previous chapter can be applied for hybrid system verification.

4.3 Reachable Set Approximation

As shown in Figure-4.1 and Figure-4.4, for hybrid systems, the con-
tinuous state space R" is divided into several operating regions controlled by
different continuous systems. Switching between different continuous systems
is determined by whether the state of the system enters into these regions.
Verification of a hybrid system establishes whether a continuous system enters
a certain region with a given uncertain initial state region. This problem is

called reachable set computing and is defined by the following.:

For a continuous dynamic system,

x = f(x,t)

Xp € Xy C Rn, (41)

where X is a set of initial conditions. The reachable set of the above dynamic

system at time t is defined as,
Rt<X0) = {Xf| Xy = X(Xo,t),VXO S XO} . (42)

The reachable set from initial time ¢y to final time 7" is the union of all the

reachable sets from ty to T', which is defined as,

Ry = Useto,r F4(Xo) (4.3)

'Most literatures consider only uncertain initial condition when discussing reachable set
computing. Unless otherwise state, we follow these literatures.
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Figure 4.5: Reachable set computing problem

The reachable set in the time interval Ry, ;) is also called the flow pipe from
Xy in the time interval Ry, 4, [20]. Figure-4.5 illustrates the reachable set of
a dynamic system. It can be found that reachable set Ry, 7 equals to the
performance tube described in the previous chapter. R, is a cross section of
the performance tube at time ¢. Clearly, reachable set computing problem is a
special case of simulation of parametric uncertain system with only uncertain
initial conditions. Thus the techniques developed in previous chapters can be
applied directly to solve this problem. However, due to its special charac-
ter, some new techniques will be introduced in this chapter for reachable set

computing.

Because of its critical role in the verification of hybrid systems, many
methods to compute the reachable set have been developed. Meanwhile, as

stated before, finding the exact reachable set of a general nonlinear system
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is extremely difficult. As a result, all available tools focus on finding various

types of approximations of R;, which is denoted as R;.

Generally, most of the existing methods to get R, adopt a two step
strategy [58]. The first step is to choose a simplified parametric geometry to
represent the reachable set. Unlike simulation of parametric uncertain system,
in which case the outputs are often represented by a hyper-rectangle, reach-
able sets need to be represented more precisely. Thus, besides hyper-rectangle,
these parametric geometries include hyperellipsoid [29], or polyhedra (convex
hull) [20]. Commonly used geometry is shown in Figure-4.6 [76]. Selection of
the geometry to represent the reachable set is a trade-off between accuracy
and computational cost. A comparison of different geometries used can be

found in [76]. Once the shape of the geometry is selected, the next step is
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to find the parameters that define the geometry so it will over-approximate
the real reachable set, subject to minimizing the difference between the two.
This is analogous to the optimization step in simulation of uncertain system.
For reachable set computing problem, at this step, different assumptions are
made on the right hand side of the ODE, f(x), to simplify the problem and
lead to different types of hybrid models [58,72]. For example, [9] studied
the reachability of timed automata by letting f(x) = ¢,c € R" is constant.
The verification tool HyTech [35] provided a method to verify linear hybrid
automata in which the continuous dynamics f(x) can be specified by differen-
tial inclusion as f(x) € [Chin, Cimaz]. Another tool called d/dt [23] can deal
with hybrid systems with linear continuous dynamics in the form x = Ax + u.
These assumptions simplified the reachable set problem but also limited the

applicability of these tools.

CheckMate [19,20,73] is a verification tool that can handle general
nonlinear dynamics. An algorithm called flow pipe algorithm is used in this
tool. It uses a sequence of convex polyhedra with ny faces, as shown in Figure-
4.7, to approximate the reachable set. Such polyhedra can be defined by a set

of linear inequalities as,

POLY(C,d) = {x|Cx < d}

(C,d) c Rnfxn X Rnf (44)

A minimum convex polyhedra is found by integrating the global optimization
algorithms and numerical simulation of the dynamic system response together.

Details of the flow pipe algorithm are in next section. If the operational region
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Figure 4.7: A polyhedra, from www.mathworld.com

of a hybrid system are represented by polyhedra, this class of hybrid system is
called Polyhedral-Invariant Hybrid Automata (PIHA) [20]. For example, the
above batch tank system can be represented as a PIHA system, as shown in

in Figure-4.8 [20].

Nevertheless, like simulation of uncertain system, for existing methods
the complexity of the computation restricts applicability to fairly low-order
systems. These methods are computationally expensive due to the reasons
stated in the last chapter. The global optimization problem in the flow pipe
method [20], for example, involves many iterations of numerical simulation
(solving system ODESs) to compute the objective function, which is computa-
tionally expensive. The verification of systems with five continuous variables
with nonlinear dynamics usually requires hours of computation [72]. It will
be more difficult to apply these methods to higher order systems where the

number of faces in the polyhedral ny will be high. As such, some methods
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Figure 4.8: A polyhedra invariant hybrid system, adapted from [20]

to overcome the computational burden based on the fundamental inequality
theorem are reported, but as will be seen in the following, their practical ap-

plications may be very limited.

4.4 Computational Burden of Reachable Set Approxi-
mation of Nonlinear Systems

4.4.1 Flow Pipe Algorithm and its Computational Cost

In this section, the flow-pipe method is described and the sources of
computational burden that limit the application of this kind of method are
identified. Flow-pipe method and the software package CheckMate [19,20]

can be used for reachable set approximation of general nonlinear systems.

124



The original Flow-pipe method is used to approximate a reachable set seg-
ment Ry, 1 = Usero, 1182:(Xo). By very little modification, it can be used to
approximate R;, the reachable set at a given time ¢. The algorithm to approx-

imate R; is illustrated in Figure-4.9. Assume the real reachable set is set X

(a) Using polyhedra to represent (b) Minimize the difference by
the reachable set at time ¢ optimization

Figure 4.9: Flow pipe algorithms (at time t)

and a convex polyhedra with n; faces is used to over-approximate set X. This

polyhedra can be defined as,

POLY(C,d) = {x|Cx < d}

(C, d) c R X1 R f (45)

where x is any possible state variable vector at time ¢. Each row ch, J =
1,...,ns of the matrix C is an unit normal vector to the j™ face of the poly-
hedra, as shown in Figure-4.9(a). C can be called the direction matrix. The
elements of vector d are constants. A very close approximation of X can be
given, with the number of faces of the polyhedra growing to a large number

which will be hard to handle. Thus determination of matrix C is a trade-off
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between computational complexity and accuracy. A effective method based on
singular value decomposition (SVD) to find C is given in [76]. The polyhedra
found by this method is called oriented rectangular hull and will be discussed

later.

Once the direction matrix is selected, the value of the element of vector
d determines the volume of the polyhedral. To get an accurate approximation
of X, a polyhedra with minimum volume that cover X should be found, and

the following optimization problem will arise,
m(}n volume[POLY (C,d)] (4.6)
st.  Ri(Xo) € POLY(C,d) '

Solution of this equation is denoted as d*. Eq. (4.6) is equal to the optimization

problem,
max  clx
x ! (4.7)
s.t. X € Rt(X())
Using the definition of R¢(X,), Eq. (4.7) can be rewritten,
max  C] X
2 (4.8)

st. x(t) =%+ fot f(x,7)dr, %9 € Xo

The minimized polyhedra given by above equation is the approximation R,.
Comparing Eq. (3.1) and Eq. (4.8), it is found that the flow pipe algo-
rithm is actually a direct global optimization method for parametric uncertain

system simulation. Thus, it inherits those problems that lead to high compu-

tational cost stated in Chapter 3, such as,

1. Many numerical simulations (x(t) = xo+ f(f f(x, 7)dT) must be embedded

into the optimization routine.
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2. Non-recursive simulation. Simulations embedded in the optimization

routine must always start from ¢ = 0.

3. Increasing the number of the faces (ny) of the polyhedra will increase the
accuracy of the approximation as well as the computational cost, since

in each direction an optimization problem is to be solved.

To overcome the above problems, [20] proposed a bounding method
based on the theorem of fundamental inequality to avoid applying global op-
timization algorithms to solve Eq. (4.8). Other studies [6] have relied on
this theorem in a different manner to approximate the reachable set of non-
autonomous systems. This method in [20] is referred to as non-recursive and
the method in [6] is a recursive method. However, it will be shown that both

methods are not very applicable to practical problems.

4.4.2 Limitation of the Theorem of Fundamental Inequality

The fundamental theorem applies to the general theory of differential

equations and can be stated as follows [39]:

Definition 4.1: A number L is a Lipschitz constant with respect to x for a

function f(¢, ) defined on a region A of R? (the t,x-plane) if,
|f(t, 1) = f(t,@2)| < Ly — a2, for all (t,21), (¢, 22) in A.

The Fundamental Inequality Theorem: If, on a rectangle R = [a,b] X

[c,d], the differential equation x' = f(t,x) satisfies a Lipschitz condition with
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respect to x, with Lipschitz constant L # 0, and if uy(t)and us(t) are two

approximate solutions, piecewise differentiable, satisfying,

Jur (8) = £(
|us(t) = f(

for all t € [a,b] at which uy(t) and us(t) are differentiable; and if for some

tiui(t))| < e
t,ua(t))] < eo

tO € [CL, b]? |U1(t0) - u?(t0)| S 5; then fOT all t € [CI,, b},

s (t) — ua(t)| < deHrol + (if?) (eblt=tol 1) (4.9)

Based on the fundamental inequality theorem, the following lemma can

be derived [20]:

Lemma 1: Let f(x) be Lipschitz in x on M with a Lipschitz constant L,
where M C R" is a open connect set. Let xo and x{ be initial conditions such
that x(t,xo),x(t,x;) € M. Based on the fundamental theorem, the following
inequality holds:

(2, %0) — x(t,x5) ]| < ™ |x — x| (4.10)

This lemma shows that if x(¢,x{) is a trajectory from initial time ¢, to
time ¢ of the system with initial condition x, then at time ¢ the trajectory
from any arbitrary initial condition xq with ||x(¢,x0) — x(¢,x)|| < dx, must

be contained in the y-ball centered at x(¢,xf), with,

v = ey, (4.11)

In other words, the system need be simulated only once with a nominal

initial condition xj to get x(¢,x). Assuming the face normal vector c; is of
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unit length, then the objective function ¢ x is bounded by ¢l x(t,x5) £ 7. i.e.
clx(t,x5) —v < ¢ x(t,¥xo € Xo) < ¢ x(t,x5) + . This result can be used
to approximate the solutions of Eq. (4.8), and the time consuming procedures

to find the real optimal results can be avoided.

This approach seems quite promising since a guaranteed over estima-
tion of the reachable set is found without solving the optimization problem.
However, further examination of the equation, v = €4, , is discouraging be-
cause 7y grows exponentially with ta. The reachable set given by this method

will be too large.

The above method is a non-recursive method because the center of
the v ball x(t,xg) at time ¢ is calculated from the initial time to, not from the
previous time step t—At. This raises a question: can t be changed in Eq. (4.11)

LAty . is less

to At by iteration? If At can be made very small so that v = e
than the predefined tolerance, then the right side of Eq. (4.11) will not be a

problem.

Reference [6] describes use of theorem of fundamental inequality in such
a recursive manner to approximate the reachable set of a non-autonomous

system. This method can be briefly described as follows [6]:

Lemma 2: Let ®;(¢,x) be a trajectory of autonomous system x = f(¢,x) and
O, (t,z,u) be a trajectory of system x = f(¢,x) + u, where u is bounded by

mu. Based on the fundamental theorem, the following inequality holds:

|®f(t,x) — D(t,z,0)|| < Z(e™ —1) (4.12)

SI=
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This theorem states that to approximate the reachable set of the non-
autonomous system with input u, we can appropriately expand the reachable
set of the autonomous system by the amount given on the right hand side of
Eq. (4.12). However, as shown this grows exponentially. However, Asarin, et

al [6] proposed an iterative algorithm described as follows:

Let P,(Xp) be the reachable set of an autonomous system x = f(x), x¢ €
Xo. Let @, be the approximated reachable set of a non-autonomous system
in the form, x = f(x) + u(t), |ul < p, at time t. The set Pya;(Xp) is first
computed iteratively by taking Q, as the initial region, P, at(Xo) =~ PAt(Qt),
rather than using P,ya:(Xo) = Pa¢(F;). Note that in this step, error will
be generated, as shown in Figure-4.10. Then Q. a¢(Xo) is expanded from
Qua¢(Xo) by a7y ball, as Qrear(Xo) = Pryar(Xo) +v & Par(@r) + 7. In this
case, we have,

1

v = Z(eLAt —1). (4.13)

Comparing this equation with Eq. (4.12), it appears Eq. (4.13) is quite
promising since the right side is exponentially increasing with At other than
t. If At is small enough, then v could be a tight bound. However, this method
is also very limited. In Figure-4.10, it can be found that the error due to the
approximation, P, a;(Xo) &~ Pay(Q;), will propagate to the next time step
and accumulates, even if 7 is a constant. This is similar to the wrapping effect

mentioned in Chapter 3. In fact, the Hausdorff distance*? between the real

2Hausforff distance is a measure of the resemblance of two (fixed) sets of geometric
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Figure 4.10: Accumulating of errors

reachable set Qo) and the reachable set approximated by this method Q[Oﬂ

is given as, 2uAtel® [6], which still grows exponentially.

The proceeding analysis shows that methods based on the fundamental
inequality to reduce the computational burden can only be applied within a
very short of period of time. This shortcoming seriously weakens the applica-
bility of this method. Other methods must be found that solve the optimiza-

tion problem effectively.

points P and Q, defined as H(P,Q) = max{glealgc min d(a,b), max min d(a,b)},d(.,.) is the

distance metric, usually the Euclidean distance [2]
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4.4.3 Boundary Theorem

Reachable set computing is a special case of simulation of parametric
uncertain systems since only the initial conditions are uncertain. Thus, a

theorem that can reduce its computational cost can be derived.

Boundary Theorem: For a locally Lipschitz ODE system x = f(x,t) with

initial conditions set Xo and f(x,t) is not an explicit function of Xo, the

boundary of the reachable set Rp(Xy) of this system, denoted as | Rp(Xo) | can

be acquired by simulating the system from each point on the boundary of the

wnitial condition set, denoted as ;i.e.

R(Xo) | = {xf|xf — x(x0,1), VX0 € } .

Proof: First, claim that for a locally Lipschitz ODE system, two trajectories
from two different initial conditions will never intersect. Refer to Figure-4.11
and assume that two trajectories from different initial conditions intersects
at point (X,,, 7)), then chose X, as the initial condition and there will be
two solutions to an IVP problem with X,, as the initial condition. This is
contradicted to the unique existence theorem of ODE, thus the claim is true.
Because of this theorem, it is obvious that the trajectories from the boundary
of the initial condition region will form the boundary of all the trajectories
from the initial condition region. If one trajectory originating from a point
inside the initial condition exists outside the boundary, it must intersect with
one of the trajectories, as shown in Figure-4.12. However, this is contradictory

to the claim proven above and thus is impossible. The theorem is proven.
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Figure 4.11: Any two trajectories will not intersect

Figure 4.12: Boundary theorem
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This theorem shows that the search space to find the polyhedra that
approximate the reachable set can be reduced from R" to R"! since the
boundary of R; originates from the boundary of Xg; i.e., Eq. (4.8) can be

rewritten to,
max cl'x
x J

st. x(