
Copyright

by

Stacia Kathleen Wyman

2004

The Dissertation Committee for Stacia Kathleen Wyman

certifies that this is the approved version of the following dissertation:

Algorithms for the Analysis of Whole Genomes

Committee:

Benjamin Kuipers, Supervisor

Robert K. Jansen, Supervisor

Jeffrey L. Boore

David M. Hillis

C. Gregory Plaxton

Algorithms for the Analysis of Whole Genomes

by

Stacia Kathleen Wyman, B.A., M.S.

Dissertation

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

Doctor of Philosophy

The University of Texas at Austin

August 2004

Acknowledgments

I would like to thank my committee for making it possible for me to do interdis-

ciplinary work in Computational Biology. I could not have done it without the

steadfast support and encouragement of Bob Jansen. I would like to thank all the

people in the Jansen and Theriot lab for being supportive over the past years and, in

particular, Andrew Alverson for his excellent proofreading skills, humor and moral

support. I would like to thank Katherine St. John for tirelessly proofreading drafts

of this document and for being an excellent mentor and friend.

Stacia Kathleen Wyman

The University of Texas at Austin

August 2004

iv

Algorithms for the Analysis of Whole Genomes

Publication No.

Stacia Kathleen Wyman, Ph.D.

The University of Texas at Austin, 2004

Supervisors: Benjamin Kuipers, Robert K. Jansen

With the advent of whole genome sequencing, we now have an abundance of whole

genomes which have been sequenced and we have entered an era when algorithms

can address problems at the whole genome level. In the past, sequencing efforts

often focused on a single gene, and therefore, existing algorithms are at the scale

of a single gene. With whole genome sequencing, we have access to sequence data

for the entire genome of an organism or an organelle and algorithms are needed

for whole genome analysis. In this research, we have addressed new computational

problems that have arisen out of the availability and abundance of whole genome

data.

In genome annotation, all of the genes of a genome are located and identified

in preparation for publication of the complete genome sequence. We address the

problem of genome annotation with a software package that allows researchers to

locate and identify all the genes in a genome and prepare the genome for direct

submission to GenBank. A difficult problem that arises in the annotation of or-

ganellar genomes is the identification of animal mitochondrial transfer RNA genes.

We present an experimental evaluation a set of methods (including our own) for

v

identifying tRNAs.

The problem of reconstructing phylogenies from gene order data involves

recreating the evolutionary history of a set of organisms based on the order and

direction of the genes in the genomes. This can give insight into mechanisms of

large-scale evolutionary events. We present a new method for gene order phylogeny

reconstruction, as well as improvements to an existing method, and evaluate the

results on both real and simulated datasets.

Finally, we address the problem of identification of regulatory elements. Un-

derstanding gene expression is one of the most pressing unsolved problems in molec-

ular biology today because gene expression controls all of the metabolic and de-

velopmental processes in an organism. We present a new method which uses a

comparative genomics approach which is made possible now that we have access to

the complete DNA sequences of many sets of related organisms.

vi

Contents

Acknowledgments iv

Abstract v

List of Tables xii

List of Figures xiv

Chapter 1 Introduction 1

Chapter 2 Whole Genome Evolution: Reconstructing Phylogenies

from Gene Order Data 4

2.1 Introduction . 4

2.2 Definitions . 5

2.3 Previous Phylogenetic Methods . 9

2.3.1 Distance-Based Methods . 9

2.3.2 Computational Complexity of MPRG 10

2.3.3 Breakpoint Phylogeny . 10

2.4 Our New Method: Maximum Parsimony on Binary Encodings of

Genomes (MPBE) . 12

2.4.1 Phase I: Solving Maximum Parsimony on Binary Encodings

of Genomes . 12

vii

2.4.2 Phase II: Screening The Maximum Parsimony Trees 13

2.4.3 Running Time of MPBE . 14

2.4.4 MPBE as a Heuristic for the Breakpoint Phylogeny 14

2.5 Chloroplast Data Analysis . 16

2.5.1 The Campanulaceae cpDNA Dataset 16

2.5.2 Data Analysis . 17

2.6 Our Experimental Investigation . 22

2.6.1 Terminology . 23

2.6.2 Experimental Setup . 24

2.6.3 Experiment 1: Neighbor-Joining on Synthetic Data 26

2.6.4 Experiment 2: All Methods on Synthetic Data 31

2.7 Software Issues . 32

2.8 Conclusions . 34

2.9 Future Work and Recommendations 35

Chapter 3 Gene Order Phylogenetics: A Detailed Study of Break-

point Analysis 38

3.1 Introduction . 38

3.2 Definitions . 39

3.3 BPAnalysis . 40

3.4 Study Objectives . 41

3.5 Algorithmic Aspects of Our Implementation 42

3.5.1 Tree Generation . 42

3.5.2 Tree Labeling . 42

3.5.3 Condensation . 43

3.5.4 Approximate TSP Solvers . 43

3.5.5 Our Exact TSP Solver . 44

3.5.6 Initial Labeling . 45

viii

3.6 Coding Aspects of Our Implementation 46

3.7 Experimental Procedure . 47

3.8 Experiments . 48

3.9 Results and Discussion . 48

3.9.1 Experiments on 3-Genome Problems 48

3.9.2 Quality of Approximation of LK Heuristics 50

3.9.3 Tree Processing Rates . 51

3.10 Conclusions and Future Work . 52

Chapter 4 Advances in Gene Order Phylogenetics 53

4.1 Introduction . 53

4.2 Prior Results . 54

4.3 New Results . 55

4.4 Basic material . 56

4.4.1 Evolutionary Events . 56

4.4.2 The Nadeau-Taylor Model . 57

4.4.3 Model Trees: Simulating Evolution 57

4.4.4 Labeling Internal Nodes . 58

4.4.5 Performance Criteria . 59

4.5 Better Analyses . 59

4.5.1 Neighbor-Joining Performance 59

4.5.2 Parsimony Improves Accuracy 60

4.5.3 A Lower Bound Using Circular Orderings 63

4.5.4 The Lower Bound In Practice 64

4.6 High-Performance Computing . 66

4.7 Conclusions and Future Work . 67

ix

Chapter 5 Identifying Transfer RNAs 68

5.1 Introduction . 68

5.2 Biological Background . 70

5.3 Methods . 72

5.3.1 COVE . 72

5.3.2 tRNAscan-SE . 73

5.3.3 RNAMotif . 73

5.3.4 Our Method . 73

5.4 Experimental Setup . 76

5.5 Evaluation . 77

5.6 Results and Discussion . 77

5.7 Further Training of Covariation Models 79

5.8 Conclusions and Future Directions 81

Chapter 6 Organellar Genome Annotation 84

6.1 Introduction . 84

6.2 DOGMA Databases . 86

6.2.1 Animal Mitochondrial Genomes 86

6.2.2 Chloroplast Genomes . 86

6.2.3 Gene Nomenclature . 87

6.3 Identifying Genes . 87

6.3.1 Protein Coding Genes . 87

6.3.2 Identifying tRNAs . 88

6.3.3 Identifying rRNAs . 89

6.4 Web-based Display and Editing Tool 89

6.5 Future Work . 90

x

Chapter 7 Phylogenetic Footprinting: A Comparative Genomics Method

for Identifying Regulatory Elements 92

7.1 Introduction . 92

7.2 Prior Work . 93

7.3 The Substring Parsimony Problem 94

7.4 Blanchette et al.’s Approach . 95

7.5 Drawbacks to FootPrinter: Improvements with Maximum Likelihood 96

7.6 Maximum Likelihood Approach . 97

7.6.1 Definitions . 97

7.6.2 ML FootPrinter . 98

7.7 Real Data Analysis: The atpB-rbcL Region of a Set of Chloroplast

Genomes . 99

7.7.1 Methods . 100

7.7.2 Experiments . 102

7.7.3 Results for the Chloroplast Dataset 105

7.8 Simulated Data: An Experimental Investigation 106

7.8.1 Methods . 107

7.8.2 Experiments and Results . 108

7.9 Discussion and Future Work . 109

Bibliography 111

Vita 126

xi

List of Tables

2.1 The ITT distance matrix for the Campanulaceae dataset, computed

using derange2 and a 2.1 weight ratio. 22

2.2 The number of missing edges for various reconstruction methods

(with respect to the other methods) on the Campanulaceae data of

Figure 2.1. MPBE1 through MPBE4 are the four most parsimonious

trees by the first phase of the MPBE method. NJ refers to the tree

obtained by neighbor joining on the three distance matrices (these

three trees were identical). 23

2.3 Average false negatives of the NJ trees from the matrices BP and

ITT. Values in parentheses are the percentages over the 17 nontrivial

bipartitions in each model tree. 26

2.4 The false negative rates (in %) with respect to the true tree of various

reconstruction methods for various model trees and rates of evolution. 37

3.1 Ratios of tree-processing rates of 5 methods to the rate of the greedy

method on various datasets. 51

4.1 Percentage of trees eliminated through bounding. 64

5.1 Animal mitochondrial tRNA scoring rules. 75

xii

7.1 The 11 taxa used to create the chloroplast models and the coordinates

of the rbcL gene and the rbcL-atpB intergenic sequence. When rbcL

was on the reverse strand, the reverse complement of the downstream

sequence was used. 102

7.2 The parameter values for the QF and QNF models estimated from

the chloroplast dataset using PAUP*. 103

xiii

List of Figures

2.1 12 genera of Campanulaceae and the outgroup Nicotiana, as circular order-

ings of signed gene segments. We represent each circular ordering as a linear

ordering, beginning at gene segment 1. 18

2.2 The reconstructed phylogeny of 12 genera of Campanulaceae and

the outgroup Nicotiana based upon an MPBE analysis of 185 bi-

nary characters. Above each edge are given the number of inversions

and transpositions/inverted transpositions, the number of inversions

in an inversion-only scenario, and the number of breakpoints. 20

2.3 Comparison of distance calculations on the Campanulaceae dataset. 21

2.4 Comparison of distances on model tree TA. 28

2.5 Comparison of distances on model tree TB. 29

2.6 Comparison of distances on model tree TC 30

3.1 High-level description of the main loop of BPAnalysis. 41

3.2 Speed of the five solvers on various 3-genome problems under 3 dif-

ferent rates of evolution. 49

3.3 Relative running times of the five methods on 3-genome problems of

various sizes. 50

3.4 Percentage excess over optimal for LK and greedy solvers. 50

xiv

4.1 False negative rates of NJ methods under various distance estimators

as a function of the maximum pairwise inversion distance, for 10, 20,

40, 80, and 160 genomes. Model weight settings are 1:0:0 (inversion

only) and 1:1:1 (equally likely events). 61

4.2 Scoring NJ methods under various distance estimators as a function of

the maximum pairwise inversion distance for 10, 20, and 40 genomes.

Plotted is the ratio of the NJ tree score to the model tree score (break-

point or inversion) on an inversion-only model tree. 62

5.1 Schematic representation of a typical tRNA encoded by an animal

mitochondrial genome. Nucleotides paired by hydrogen bonds are

indicated by dashes. The tRNA is folded from a single string of

ribonucleotides starting with “CAAGATG”, reading counterclock-

wise around the structure (“TAGTAAATGCAGTACTTTTC ACT-

TACAATGAAAAAACGGCACATGGATTGCC”) and ending with

“CGTCTTGA”. 71

5.2 Pseudo-code for our tRNA algorithm. Scoring rules are shown in

Table 5.3.4 . 74

5.3 The number of false negatives for the four methods. For each number

of missed tRNAs (x-axis), the number of genomes with that number

of false negatives is plotted. 82

5.4 The number of false negatives for each tRNA for the four methods.

For each tRNA, the number of genomes that missed that tRNA is

plotted. 83

xv

6.1 The DOGMA annotation window showing details of the psbH gene in

a chloroplast genome. The bottom panel shows the option buttons,

while the middle panel shows the genes in the genome laid out on a

number line. The top panel is where the start and stop codons are

annotated for each gene. 91

7.1 The accepted phylogeny of the rbcL gene for the 11 chloroplast genomes

in our analysis. 101

7.2 MultiPipMaker output with Nicotiana used as the reference genome.

The region containing atpB and rbcL is highlighted. 103

xvi

Chapter 1

Introduction

With the advent of whole genome sequencing, we now have an abundance of whole

genomes which have been sequenced, and we have entered an era when algorithms

can address problems at the whole genome level. In the past, sequencing efforts

often focused on a single gene, and efforts would be made to sequence that gene (and

perhaps the surrounding sequence) and to understand the function and evolution

of that particular gene. With whole genome sequencing, we have access to the

complete genome sequence of an organism or an organelle. With the new data,

genome analysis allows us to identify genes, discover their function, understand how

they are regulated, and to reconstruct evolutionary histories on the scale of the

whole genome. This has such far-reaching implications as understanding causes of

diseases and developing drugs for them, or understanding large-scale mechanisms of

evolution which can give us insight into the origin of HIV [47] or predict the next

strain of influenza [20]. Currently, genome sequencing technology far exceeds the

capabilities of genome analysis algorithms and new approaches must be developed.

In this research, we have addressed new computational problems that have arisen

out of the availability and abundance of whole genome data.

In the first several chapters, we address the problem of reconstructing phy-

1

logenies from gene order data. Given a whole genome sequence, we can infer the

ordering of the genes along with the directionality of the genes, thus representing

the genome by an ordering of signed genes. We can then use the gene orders of the

genomes as input for reconstructing an evolutionary tree which has the minimum

number of evolutionary events. Recreating the evolutionary history of a set of or-

ganisms based on their gene order can give insight into mechanisms of large-scale

evolutionary events. Here we present a new method for gene order phylogeny recon-

struction, as well as improvements on an existing method, and evaluate the results

on both real and simulated datasets. Because this data is so newly available, this

work represents some of the first significant inroads into the gene order phylogeny

problem.

Chapters 5 and 6 focus on problems in genome annotation. Once a genome

has been sequenced, the next step in the analysis of the genome is annotation.

In genome annotation, all of the genes of a genome are located and identified in

preparation for publication of the complete genome sequence. When a large num-

ber of previously annotated genomes exist for a set of closely related organisms,

those previously-annotated genomes can be used to annotate the newly sequenced

genomes. This is the case for a set of plant chloroplast and animal mitochondria

organellar genomes. In Chapter 6, we present the organellar genome annotation

package (DOGMA). We developed this package to allow biologists to annotate animal

mitochondrial and chloroplast genomes using a web-based graphical user interface

and custom databases. It allows researchers to view their own sequence as well as

those for closely related organisms in order to locate and identify the genes and

prepare the genome for direct submission to GenBank, the National Institutes of

Health genomic sequence database.

A difficult problem that arises in the annotation of organellar genomes (specif-

ically animal mitochondrial genomes) is the identification of transfer RNA genes.

2

Animal mitochondrial tRNAs are notoriously difficult to identify because their pri-

mary (DNA nucleotide) sequence is not conserved from one organism to the next,

but they remain conserved in the basepairing of the secondary structure, and they

tend to evolve through compensatory mutations in the secondary structure. Algo-

rithms are therefore needed to identify these tRNAs based on secondary structure

conservation. Another difficulty is that although most tRNAs have a cloverleaf-like

secondary structure, animal mitochondrial tRNAs often have a non-canonical shape

to their secondary structure. In Chapter 5, we evaluate a set of methods (including

our own) for identifying tRNAs. The best-performing method has been incorporated

into our annotation package, DOGMA.

Finally, the last problem we address is the identification of regulatory ele-

ments. Understanding gene expression is one of the most pressing unsolved problems

in molecular biology today because gene expression controls all of the metabolic and

developmental processes is organisms. We use a comparative approach called Phylo-

genetic Footprinting which is made possible now that we have access to the complete

DNA sequences of so many organisms. This method explicitly incorporates an ac-

cepted phylogeny and models of DNA sequence evolution into the method. Our

approach uses maximum likelihood to evaluate sets of regulatory elements with re-

spect to both functional and non-functional models of evolution.

3

Chapter 2

Whole Genome Evolution:

Reconstructing Phylogenies

from Gene Order Data

2.1 Introduction

The genomes of some organisms have a single chromosome or contain organelles

with a single chromosome (such as mitochondria or chloroplasts) whose evolu-

tion is largely independent of the evolution of the nuclear genome for these or-

ganisms. Many single-chromosome organisms and organelles have circular chromo-

somes. Given a particular strand from a single chromosome, whether linear or cir-

cular, we can infer the ordering of the genes, along with directionality of the genes,

thus representing each chromosome by an ordering (linear or circular) of signed

genes. Note that picking the complementary strand produces a different ordering,

in which the genes appear in the reverse direction and reverse order. The evolution-

ary process that operates on the chromosome can thus be seen as a transformation

of signed orderings of genes.

4

The first heuristic for reconstructing phylogenetic trees from gene order data

was introduced by Blanchette et al. in [10] and was implemented in the program

BPAnalysis. It sought to reconstruct the breakpoint phylogeny and was applied to

a variety of datasets [11, 98].

A different technique for reconstructing phylogenies from gene order data was

introduced by Cosner in [27]. We have modified her technique so that it requires less

biological input. Our approach can also be described as a heuristic for the breakpoint

phylogeny, although it is quite different in its technique from BPAnalysis. We

call our approach Maximum Parsimony on Binary Encodings (MPBE). The MPBE

method first encodes a set of genomes as binary sequences and then constructs

maximum-parsimony trees for these sequences.

We describe MPBE and compare it with two other methods (BPAnalysis, the

heuristic designed and implemented by Blanchette et al. [10], and the polynomial-

time, distance-based method neighbor joining [95]) on both real and synthetic data.

We find that, when the rates of evolution are sufficiently low, all methods recover

very good estimates of the evolutionary tree (although BPAnalysis is much slower

than MPBE). However, when the rates of evolution are high, all methods recover

poor estimates of the evolutionary tree.

2.2 Definitions

We assume a fixed set of genes {g1, g2, . . . , gn}. Each genome is then an ordering

(circular or linear) of some multi-subset of these genes, each gene given with an

orientation that is either positive (gi) or negative (−gi). The multi-subset formula-

tion allows for deletions or duplications of a gene. A linear genome is then simply

a permutation on this multi-subset, while a circular genome can be represented in

the same way under the implicit assumption that the permutation closes back on

itself. For example, the circular genome on gene set G = {g1, g2, . . . , g6} given by

5

g1, g2,−g3, g4, g6, g2 has one duplication of the gene g2, has a deletion of the gene g5,

and has a reversal of the gene g3. That same circular genome could be represented by

several different linear orderings, each given by rotating the linear ordering above.

Furthermore, the ordering g1, g2, . . . , gn, whether linear or circular, is considered

equivalent to that obtained by considering the complementary strand, i.e., to the

ordering −gn,−gn−1, . . . ,−g1.

In tracing the evolutionary history of a collection of genomes with a single

chromosome, we use inversions, transpositions and inverted transpositions because

these events only rearrange gene orders. A more complex set of structural changes

has been considered, e.g., in [27].

Let G be the genome with signed ordering (linear or circular) g1, g2, . . . , gn.

An inversion between indices i and j, for i < j, produces the genome with linear

ordering:

g1, g2, . . . , gi−1,−gj ,−gj−1, . . . ,−gi, gj+1, . . . , gn.

If we have j < i, we can still apply an inversion to a circular (but not linear) genome

by simply rotating the circular ordering until the two indices are in the proper

relationship—recall that we consider all rotations of the complete circular ordering

of a circular genome as equivalent.

A transposition on the (linear or circular) ordering G acts on three indices,

i, j, k, with i < j and k /∈ [i, j], and operates by picking up the interval gi, gi+1, . . . , gj

and inserting it immediately after gk. Thus the genome G above (with the addi-

tional assumption of k > j) is replaced by:

g1, . . . , gi−1, gj+1, . . . , gk, gi, gi+1, . . . , gj , gk+1, . . . , gn.

Once again, if we have j > i, we can still apply the transposition to a circular (but

not linear) genome by first rotating it to establish the desired index relationship.

An edit sequence describes how one genome evolves into another through

6

a sequence of these evolutionary events. For example, let G be a genome and let

p1, p2, . . . , pk be a sequence of evolutionary events operating on G. Then G′ is

defined by p1, p2, . . . , pk(G). When each operation is associated with a cost, then

the minimum edit distance between two genomes G and G′ is defined to be the

minimum cost of any edit sequence transforming G into G′. As long as the cost of

each operation is finite, any two genomes have finite edit distance.

The inversion distance between two genomes is the minimum number of

inversions needed to transform one genome into another. The inversion distance be-

tween two signed genomes is computable in polynomial time [44, 56]; this algorithm

is available in software (signed dist), which we modified for use in our experi-

ments to compute only distances (and thus run very much faster). We let I refer

to the inversion distance. The transposition distance between two genomes is the

minimum number of transpositions needed to transform one genome into the other.

Computing the transposition distance is of unknown computational complexity.

When inversions, transpositions, and inverted transpositions are allowed,

nothing is known about the computational complexity or approximability of com-

puting edit distances; however, heuristics have been developed that can estimate the

minimum edit distance for weighted sums of inversions, transpositions, and inverted

transpositions. One such heuristic, derange2 [9], is available in software; both we

and Sankoff et al. [100] have used it for tree estimation purposes. We will refer to

the distances computed by derange2 as ITT distances.

Another distance between genomes that is not directly an evolutionary metric

is the breakpoint distance. Given two genomes G and G′ on the same set of genes,

a breakpoint in G is defined as an ordered pair of genes (gi, gj) such that gi and gj

appear consecutively in that order in G, but neither (gi, gj) nor (−gj ,−gi) appear

consecutively in that order in G′. For instance, if G = g1, g2,−g4,−g3 and G′ =

g1, g2, g3, g4, then there are exactly two breakpoints in G: (g2,−g4), and (−g3, g1);

7

the pair (−g4,−g3) is not a breakpoint in G′ since (g3, g4) appear consecutively and

in that order in G′. The breakpoint distance is the number of breakpoints in G

relative to G′ (or vice-versa, since the measure is symmetric).

An evolutionary tree (or phylogeny) for a set S of genomes is a binary tree

with |S| leaves, each leaf labeled by a distinct element of S. A putative evolutionary

tree is “correct” as long as this leaf-labeled topology is identical to the true evolu-

tionary tree. The true phylogeny is unknown for real data. Synthetic data can be

created with simulations using a given model tree; for such data, the “true” tree is

the model tree and is thus known. Studies using such synthetic data are standard

in the phylogenetics literature because they enable one to test the reliability of dif-

ferent methods. The process of tree reconstruction generally involves the inference

of additional aspects of the tree. For example, a given method may infer weights on

the edges (also called “branch lengths”), genomes at internal nodes (i.e., “ancestral”

genomes), or probabilities for each type of evolutionary event on each edge of the

tree. These topologies and additional parameters are estimated in order to optimize

some objective criterion; the three basic optimization criteria in use by biologists

are Maximum Parsimony, Distance-Based Methods, and Maximum Likelihood. We

briefly review the first two criteria. We now describe two approaches currently in

favor for genome phylogeny reconstruction.

Maximum parsimony: Assume that we are given a tree in which each node is

labeled by a genome. We define the cost of the tree to be the sum of the costs of

its edges, where the cost of an edge is one of the edit distances between the two

genomes that label the endpoints of the edge. Finding the tree of minimum cost

for a given set of genomes and a given definition of the edit distance is the problem

of Maximum Parsimony for Rearranged Genomes (MPRG); the optimal trees are

called the maximum-parsimony trees. (The MPRG problem is related to the more

usual maximum-parsimony problem for biomolecular sequences, defined later.)

8

Distance-based methods: Distance-based methods for tree reconstruction op-

erate by first computing all pairwise distances between the taxa in the dataset, thus

computing a representation of the input data as a distance matrix d. In the context

of genome evolution, this calculation of distances is done by computing breakpoint

(BP) distances, or minimum edit (e.g. I or ITT) distances. Given the distance

matrix d, the method computes an edge-weighted tree whose leaf-to-leaf distances

closely fit the distance matrix. The most frequently used distance-based methods

are polynomial-time methods such as neighbor joining [95]. These methods do not

explicitly seek to optimize any criterion, but can have good performance in empirical

studies. In particular, neighbor joining has shown excellent performance in studies

based upon simulating biomolecular sequence evolution and is probably the most

popular distance-based method.

2.3 Previous Phylogenetic Methods

2.3.1 Distance-Based Methods

There has been little use of distance-based methods for reconstructing phylogenies

from gene order data. Blanchette et al. [11] recently evaluated two of the most

popular polynomial-time distance-based methods for phylogenetic reconstruction,

neighbor joining and Fitch-Margoliash [38], for the problem of reconstructing the

phylogeny of metazoans. They calculated a breakpoint distance matrix for inferring

the metazoan phylogeny from mitochondrial gene order data. They found the trees

obtained by these methods unacceptable because they violated assumptions about

metazoan evolutionary history. Later, they examined a different dataset and found

the result to be acceptable with respect to evolutionary assumptions about that

dataset [99].

9

2.3.2 Computational Complexity of MPRG

MPRG seems to be the optimization criterion of choice; indeed, most approaches

to reconstructing phylogenetic trees from gene order data have explicitly sought

to find the maximum-parsimony tree with respect to some definition of genomic

distances (inversion distances or a weighted sum of inversions, transpositions, and

inverted transpositions). However, all these problems are NP-hard or of unknown

computational complexity. Even the fundamental problem of computing optimal

labels (genomes) for the internal nodes is very difficult: when only inversions are

allowed, it is NP-hard, even for the case where there are only three leaves [22].

2.3.3 Breakpoint Phylogeny

Blanchette et al. [11] recently proposed a new optimization problem for phylogeny

reconstruction on gene order data. In this problem, the tree sought is that with

the minimum number of breakpoints rather than that with the minimum number

of evolutionary events. It has long been known that the breakpoint distance is at

most twice the inversion distance for any two genomes [44]. For some datasets, how-

ever, there can be a close-to-linear relationship between the breakpoint distance and

either the inversion distance or the weighted sum of inversions and transpositions.

When a linear relationship exists, the tree with the minimum number of breakpoints

is also the tree with the minimum number of evolutionary events. Consequently,

when a close-to-linear relationship exists, the tree with the minimum number of

breakpoints may be close to optimal with respect to the number of evolutionary

events. Blanchette et al. [11] observed such a close-to-linear relationship in a group

of metazoan genomes (we computed the correlation coefficient between the two mea-

sures for their set and obtained a very high value of 0.9815) and went on to develop

a heuristic for finding the breakpoint phylogeny.

Computing the breakpoint phylogeny is NP-hard for the case of just three

10

linear signed genomes [89], a special case known as the Median Problem for Break-

points (MPB). Blanchette et al. showed that the MPB reduces to the Traveling

Salesman Problem (TSP) [45] and designed special heuristics for the resulting in-

stances of TSP. Their overall heuristic for the breakpoint phylogeny considers each

tree topology in turn. For each tree, it fills in internal nodes by computing medians

of triplets of genomes iteratively (until no change occurs) using the TSP reduc-

tion, then scores the resulting tree. The best tree is returned at the end of the

procedure. This heuristic is computationally intensive on several levels. First, the

number of unrooted binary trees on n leaves is exponential in n (specifically it is

(2n − 5) · (2n − 7) · . . . · 3), so that the outer loop is exponential in the number of

genomes. Secondly, the inner loop itself is computationally intensive, since comput-

ing the median of three genomes is NP-hard [89] and because the technique used

by Blanchette et al. involves solving many instances of TSP in a reduction where

the number of cities equals the number of genes in the input. Finally, the number

of instances of TSP can be quite large, since the procedure iterates until no further

change of labeling occurs within the tree. Thus the computational complexity of the

entire algorithm is exponential in each of the number of genomes and the number

of genes.

The accuracy of BPAnalysis for the breakpoint phylogeny problem depends

upon the accuracy of its component heuristics. While it evaluates every tree, the

labeling given to each tree is only locally optimal: although it solves TSP exactly

at each node, it labels nodes with an iterative method that can easily be trapped at

a local optimum. In our experiments, we have found that BPAnalysis often needed

to be run on several different random starting points in order to score a given tree

accurately. This is typical of hill-climbing heuristics, but will affect the running time

proportionally.

11

2.4 Our New Method: Maximum Parsimony on Binary

Encodings of Genomes (MPBE)

In this section, we describe a new approach to reconstructing phylogenies from gene

order data. This new method is derived from an earlier method developed by Cosner

in [27]. Like Cosner’s technique, our method encodes the genome data as binary

sequences and seeks a maximum-parsimony tree for these sequences, although our

encoding is very simple and uses no biological assumptions. However, our method

has a second phase, in which we select, from the maximum-parsimony trees we find,

the trees that have minimum length with respect to some evolutionary metric (such

as the inversion distance or the ITT distance). We now describe the two phases of

the MPBE approach.

2.4.1 Phase I: Solving Maximum Parsimony on Binary Encodings

of Genomes

We begin by defining the binary encoding. We note all ordered pairs of signed

genes (gi, gj) that appear consecutively in at least one of the genomes. Each such

pair defines a position in the sequences (the choice of index is arbitrary). If (gi, gj)

or (−gj ,−gi) appear consecutively in a genome, then that genome has a 1 in the

position for this ordered pair, and otherwise it has a 0. These “characters” can also

be weighted. (In this study, we did not weight any characters; however, in the study

reported in [27], character weighting was used, along with other characters such as

gene segment insertions and deletions, duplications of inverted repeats, etc. Thus,

the method can be extended to allow for evolutionary events more complex than

gene order changes.)

Let H(e) be the Hamming distance between the sequences labeling the end-

points of the edge e—the Hamming distance between two sequences is the number

12

of positions in which they differ. We define the Binary Sequence Maximum Parsi-

mony (BSMP) problem as follows: the input consists of a set S of binary sequences,

each of length L; the output is a tree T with leaves labeled by S and internal nodes

labeled by additional binary sequences of length L in such a way as to minimize

ΣH(e) as e ranges over the edges of the tree. The trees with the minimum score are

called maximum-parsimony trees.

Our first phase then operates as follows. First, each genome is replaced by

a binary sequence. The BSMP problem is then solved exactly or approximately,

depending upon the dataset size. BSMP is NP-hard [39], but fast heuristics exist

that are widely available in standard phylogeny software packages, such as PAUP*

[107]. Although no study has been published on the accuracy of these heuristics

on large datasets, it is generally believed that these heuristics usually work well on

datasets of size up to about 40 genomes. Moreover, exact solutions on datasets of

up to about 20 genomes can be obtained through branch-and-bound techniques in

reasonable amounts of time; consequently, BSMP has been solved exactly in some

cases.

2.4.2 Phase II: Screening The Maximum Parsimony Trees

Once the maximum-parsimony trees are obtained, the internal nodes are then re-

labeled by circular signed gene orders (recall that the labeling of internal nodes

obtained in the first phase of MPBE is with binary sequences, not with circular

signed genomes). The relabeling is obtained by giving the maximum-parsimony

tree as a constraint to BPAnalysis, thus producing a labeling of each internal node

with circular signed gene orders which (hopefully) minimizes the breakpoint dis-

tance of the tree. The labeling also allows us to score each tree for the I or ITT

distance. The tree that minimizes the total cost is then returned.

13

2.4.3 Running Time of MPBE

The computational complexity of MPBE, while less than that of BPAnalysis, re-

mains high. The maximum-parsimony evaluation of a single tree in the search space

takes polynomial time (the precise time is Θ(nk), where n is the number of genomes

and k is the number of genes in each genome). Thus, the first phase is exponen-

tial in the number of genomes, but polynomial in the number of gene segments.

However, we have the option of doing hill-climbing through tree space (rather than

exhaustive search) and thus can reduce the computational effort by comparison to

the exhaustive search strategy of BPAnalysis. In the second phase, we give the

maximum-parsimony trees to BPAnalysis as constraint trees. Thus we also call

BPAnalysis, (which is exponential in both the number of genomes and the num-

ber of gene segments), but only on a (typically small) subset of the possible trees.

Finally, we compute the cost of each node-labeled tree with respect to I or ITT

distances. Computing ITT distances is fast, although derange2 can be inexact.

Computing inversion distances with the original signed dist is fairly slow because

the program also returns inversions, but fast when it is modified to compute only

distances. Overall, Phase II is more computationally expensive than Phase I.

2.4.4 MPBE as a Heuristic for the Breakpoint Phylogeny

Suppose T is the breakpoint phylogeny for the set G1, G2, . . . , Gn of genomes. Each

node in T is labeled by a circular ordering of signed genes and the number of

breakpoints in the tree is minimized. If each node in the tree is replaced by its binary

encoding, the parsimony length of the tree is exactly twice the number of breakpoints

in the tree. Thus, seeking a tree with the minimum number of breakpoints is

exactly the same as seeking a tree (based upon binary encodings) with the minimum

parsimony length, provided that each binary sequence can be realized by a circular

ordering of signed genes.

14

This last point is significant, because not all binary sequences are derivable

from signed circular orderings on genomes. In other words, it is possible for the

MPBE tree (that is, the tree with minimal parsimony length for the binary sequence

encodings of the genomes) to have internal nodes whose binary sequence encodings

cannot be realized by circular orderings of signed genes. If the sequences in the

internal nodes of an MPBE correspond to signed circular orderings, then the tree

will be a breakpoint phylogeny. If they do not, then the MPBE trees and the

breakpoint phylogenies may be disjoint.

Consider rephrasing the breakpoint phylogeny problem as follows. We say

that a binary sequence is a “circular genome sequence” if it is the binary encoding of

a circular genome under a given representation method. The breakpoint phylogeny

problem is to find the tree of minimum parsimony length, with leaves labeled by the

binary encodings of the circular genomes and internal nodes labeled by “circular

genome sequences.” Since MPBE does not restrict the labels of internal nodes

to circular genome sequences, it searches through a larger space for the labels of

internal nodes and thus may assign labels to nodes that are not circular genome

sequences. When this happens, MPBE will fail to find feasible solutions to the

breakpoint phylogeny problem.

MPBE is thus a heuristic for breakpoint phylogeny, but it produces labelings

of the internal nodes that are binary sequences; as we discussed, these may not

correspond to circular orderings of signed gene segments. Therefore we must relabel

the internal nodes by circular genome sequences (using BPAnalysis or other such

techniques) so that the breakpoint distance of the trees can be computed. This is

why we have included Phase II in our method.

Since each of the problems we solve (maximum parsimony on binary se-

quences, the median problem for breakpoints, and the ITT) is either known or

conjectured to be NP-hard, the accuracy of the heuristics will determine whether

15

we find globally optimal or only locally optimal solutions.

2.5 Chloroplast Data Analysis

Chloroplast DNA is generally highly conserved in nucleotide sequence, gene order

and content, and genome size [85]. The genomes contain approximately 120 genes in-

volved in photosynthesis, transcription, translation, and replication. Major changes

in gene order, such as inversions, gene or intron (introns are pieces of non-coding

sequence within genes which get spliced out) losses, and loss of one copy of the in-

verted repeat, are rare. These genes are very useful as phylogenetic markers because

they are easily polarized and exhibit very little homoplasy when properly character-

ized [33]. In groups in which more than one gene order change has been detected,

the order of events is usually readily determined (e.g., [49, 58]). Chloroplast DNA

gene order changes have been useful in phylogenetic reconstruction in many plant

groups (see [33]). These changes have considerable potential to resolve phylogenetic

relationships and provide valuable insights into the mechanisms of cpDNA evolution.

2.5.1 The Campanulaceae cpDNA Dataset

We have used the chloroplast genomes of the flowering plant family Campanulaceae

for a test case of our technique. In earlier work [27], Cosner obtained detailed

restriction site and gene maps for 18 genera of the Campanulaceae and the outgroup

Nicotiana. (An “outgroup” is a taxon selected so that any two other members of

the set are more closely related than either is to the outgroup; the use of outgroups

in phylogenetic analysis allows us to root the tree). She then used a variant of the

MPBE analysis described above to obtain a phylogenetic analysis of these genera.

We analyzed the same dataset, but, in order to apply the MPBE method, had

to remove two incompletely mapped genera from the dataset. We also removed

the repeated regions, causing certain pairs of genera (which differ only in terms

16

of insertions and deletions of gene segments or expansions and contractions of the

inverted repeat) to become indistinguishable, reducing our dataset to 13 genera from

the original 19.

2.5.2 Data Analysis

We used gene maps to encode each of the 13 genera as a circular ordering of signed

gene segments. The result is shown in Figure 2.1.

We used these 13 circular orderings as input to BPAnalysis. The program

spent over 43 hours of computation time without completing. We also encoded these

orderings with our binary encoding technique and conducted an analysis of the re-

sulting binary sequences under maximum parsimony using the branch-and-bound

procedure of PAUP*. We obtained four maximum-parsimony trees from this dataset.

We inferred circular orderings of signed gene segments for each internal node by

giving each binary tree as a constraint tree to BPAnalysis. This produces a tree

in which each node (internal and leaf) is represented by circular signed orderings

on genes, potentially minimizing the number of breakpoints in the tree. (An ac-

tual minimization is not guaranteed, because BPAnalysis uses hill-climbing on each

fixed-tree and thus may find only a local minimum.) We then scored each tree for

the number of breakpoints. Interestingly, the labeling of internal nodes obtained by

BPAnalysis produced the same number of breakpoints on all four trees, namely 89.

We note that the best breakpoint score obtained in 43 hours of computation

by BPAnalysis from the original orderings was 96—much larger than the breakpoint

score obtained by our parsimony analysis of binary sequences.

We then scored each tree (using the labels assigned by BPAnalysis) for

the I distance using our modified signed dist and for the ITT distance using

derange2 with relative weights of 2.1 for transpositions and inverted transpositions

versus 1 for inversions. Using this weighting scheme, the first tree has a total

17

Trachelium
(1–15)(76–56)(53–49)(37–40)(35–26)(44–41)(45–48)(−36)(25–16)(90–84)
(77–83)(91–96)(55–54)(105–97)
Campanula
(1–15)(76–49)(39–37)(40)(35–26)(44–41)(45–48)(−36)(25–16)(90–84)(77–83)
(91–96)(105–97)
Adenophora
(1–15)(76–49)(39–37)(28–35)(40)(26–27)(44–41)(45–48)(−36)(25–16)(90–84)
(77–83)(91–96)(105–97)
Symphyandra
(1–15)(76–56)(39–37)(49–53)(40)(35–26)(44–41)(45–48)(−36)(25–16)(90–84)
(77–83)(91–96)(55–54)(105–97)
Legousia
(1–15)(76–56)(27–26)(44–41)(45–48)(36–35)(25–16)(90–84)(77–83)
(91–96)(55–53)(105–98)(28–34)(40–37)(49–52)(−97)
Asyneuma
(1–15)(76–61)(56–53)(60–57)(27–26)(44–41)(45–48)(36–35)(25–16)
(89–84)(77–83)(90–96)(105–98)(28–34)(40–37)(49–52)(−97)
Triodanis
(1–15)(76–56)(27–26)(44–41)(45–48)(36–35)(25–16)(89–84)(77–83)
(90–96)(55–53)(105–98)(28–34)(40–37)(49–52)(−97)
Wahlenbergia
(1–11)(60–49)(37–40)(35–28)(12–15)(76–61)(27–26)(44–41)(45–48)
(−36)(25–16)(90–84)(77–83)(91–96)(105–97)
Merciera
(1–10)(49–53)(28–35)(40–37)(60–56)(11–15)(76–61)(27–26)(44–41)
(45–48)(−36)(54)(25–16)(90–85)(77–84)(91–96)(−55)(105–97)
Codonopsis
(1–8)(36–18)(15–9)(40)(56–60)(37–39)(44–41)(45–53)(16–17)(54–55)
(61–76)(96–77)(105–97)
Cyananthus
(1–8)(29)(36–26)(40)(56–60)(37–39)(25–9)(44–41)(45–48)(55–49)(61–96)
(105–97)
Platycodon
(1)(8)(2–5)(29–36)(56–50)(28–26)(9)(49–45)(41–44)(37–40)(16–25)
(10–15)(57–59)(6–7)(60–96)(105–97)
Nicotiana
(1–105)

Figure 2.1: 12 genera of Campanulaceae and the outgroup Nicotiana, as circular orderings
of signed gene segments. We represent each circular ordering as a linear ordering, beginning
at gene segment 1.

18

of 40 inversions and 12 transpositions/inverted transpositions; the second has 48

inversions and 18 transpositions/inverted transpositions; the third has 40 inversions

and 12 transpositions/inverted transpositions; and the fourth has 67 inversions and

43 transpositions/inverted transpositions. Thus, the first and third trees are superior

(under this analysis) to the second and fourth. We then evaluated the first and third

trees with respect to the inversion distance, given the labeling on internal nodes

obtained by BPAnalysis: the first tree has a total number of 68 inversions, while

the third has 67. Both trees have zero-length edges (i.e., the endpoints of some edges

have the same gene orderings). When these edges are contracted, the two trees are

identical. The contracted tree is shown in Figure 2.2. Interestingly, that tree is also

a contraction of each of the trees obtained by the Cosner analysis [27] on the original

19 genera, and then restricted to the subset of 13 genera. Thus our restricted subset

of characters is compatible with the more biologically rich analysis performed by

Cosner, in which insertions, deletions, duplications, contractions/expansions of the

inverted repeat, etc., were also used.

We computed neighbor-joining trees (using Phylip [36]) on three different

distance matrices: the I matrix computed using our modified signed dist, the ITT

matrix computed with derange2 with relative weights of 1, 2.1, and 2.1, and the

breakpoint matrix computed using BPAnalysis. We show the derange2 distance

matrix in Table 2.1.

The three neighbor-joining trees have identical topologies, differing only in

their edge weights, while the MPBE trees differ from the NJ trees by at most 2

edges; see Table 2.2. The similarity between all reconstructed trees indicates a high

level of confidence in the the accuracy of the common features of the phylogenetic

reconstructions.

The conditions under which these genomes evolved (low rates of evolution

and a large number of gene segments) are probably responsible for this high level of

19

Figure 2.2: The reconstructed phylogeny of 12 genera of Campanulaceae and the
outgroup Nicotiana based upon an MPBE analysis of 185 binary characters. Above
each edge are given the number of inversions and transpositions/inverted transpo-
sitions, the number of inversions in an inversion-only scenario, and the number of
breakpoints.

20

Figure 2.3: Comparison of distance calculations on the Campanulaceae dataset.

similarity, which is observable at various levels. For instance, the breakpoint distance

and the ITT distance (using relative costs of 1, 2.1, and 2.1) are very closely related,

as illustrated in Figure 2.3. (The high correlation coefficient ρ indicates that the two

distances stand in a nearly linear relationship to each other.) These observations

suggest that this dataset forms an easy case for phylogeny reconstruction. We

therefore began an experimental investigation into the performance of methods for

phylogenetic reconstruction from gene order data to determine whether all methods

continue to perform well under a larger range of model conditions and whether there

are model conditions under which some methods consistently outperform others.

21

Tra Cam Ade Sym Leg Asy Tri Wah Mer Cod Cya Pla Tob
Tra 0.0 1.0 4.0 1.0 8.3 10.4 8.3 4.1 8.1 15.2 14.1 19.2 10.0
Cam 1.0 0.0 3.0 2.0 9.3 11.4 9.3 5.1 9.2 15.1 15.2 20.2 11.2
Ade 4.0 3.0 0.0 5.1 12.1 14.3 12.1 8.1 11.2 16.2 15.2 20.2 13.1
Sym 1.0 2.0 5.1 0.0 9.2 11.4 9.3 5.1 9.1 14.2 13.3 20.2 11.1
Leg 8.3 9.3 12.1 9.2 0.0 8.4 4.1 12.2 14.3 18.1 16.1 23.2 14.2
Asy 10.4 11.4 14.3 11.4 8.4 0.0 4.2 12.4 16.2 18.2 16.2 21.1 12.2
Tri 8.3 9.3 12.1 9.3 4.1 4.2 0.0 12.2 14.4 18.2 15.2 21.2 12.2
Wah 4.1 5.1 8.1 5.1 12.2 12.4 12.2 0.0 6.0 18.1 16.2 23.1 14.2
Mer 8.1 9.2 11.2 9.1 14.3 16.2 14.4 6.0 0.0 17.2 16.3 24.1 16.1
Cod 15.2 15.1 16.2 14.2 18.1 18.2 18.2 18.1 17.2 0.0 8.3 18.2 10.2
Cya 14.1 15.2 15.2 13.3 16.1 16.2 15.2 16.2 16.3 8.3 0.0 16.3 10.2
Pla 19.2 20.2 20.2 20.2 23.2 21.1 21.2 23.1 24.1 18.2 16.3 0.0 13.3
Tob 10.0 11.2 13.1 11.1 14.2 12.2 12.2 14.2 16.1 10.2 10.2 13.3 0.0

Table 2.1: The ITT distance matrix for the Campanulaceae dataset, computed
using derange2 and a 2.1 weight ratio.

2.6 Our Experimental Investigation

We developed a simple simulator that, given a model tree and parameters, mimics

the evolutionary history of a genome and produces a set of genomes. Using both

actual and synthetic model trees, we then reconstruct the putative phylogeny using

the various methods proposed to date as well as our new method (only through

Phase I). These putative phylogenies are then compared to the model tree.

We computed breakpoint distances (BP) with our own code, I distances

using our modified signed dist, and ITT distances using derange2. Since we gen-

erate the synthetic data ourselves, we can observe the actual process that happens

during the simulation. In particular, we can note when no evolutionary event (in-

version, transposition, or inverted transposition) takes place on an edge, enabling us

to derive a better estimate of the quality of a reconstruction, since no reconstruction

method can recover an edge (other than by guessing) when no evolutionary event

happens on it.

22

NJ MPBE1 MPBE2 MPBE3 MPBE4
NJ 0 1 2 1 2

MPBE1 1 0 1 1 2
MPBE2 2 1 0 2 1
MPBE3 1 1 2 0 1
MPBE4 2 2 1 1 0

Table 2.2: The number of missing edges for various reconstruction methods (with
respect to the other methods) on the Campanulaceae data of Figure 2.1. MPBE1
through MPBE4 are the four most parsimonious trees by the first phase of the
MPBE method. NJ refers to the tree obtained by neighbor joining on the three
distance matrices (these three trees were identical).

2.6.1 Terminology

Let T be a tree leaf-labeled by the set S. Given an edge e in T , the deletion of the

edge from T produces a bipartition πe of G into two sets. The set C(T) = {πe : e ∈

E(T)} uniquely defines the tree T ; this characterization is called the character

encoding of T . Given a collection of trees T1, T2, . . . , Tk, each leaf-labeled by S,

we define the strict consensus of the trees to be that unique tree Tsc defined by

C(Tsc) = C(T1) ∩ C(T1) ∩ ... ∩ C(Tn). This is the maximally resolved tree which is

a common contraction of each tree Ti. Character encodings are used to compare

trees and to evaluate the performance of a phylogenetic reconstruction method. Let

T be the “true” tree and let T ′ be the estimate of T . Then the false negatives of

T ′ with respect to T are those edges e that obey πe ∈ C(T) − C(T ′), i.e., edges in

the true tree that the method fails to infer. The false positives of T ′ with respect

to T are those edges e that obey πe ∈ C(T ′)− C(T), i.e., edges in the inferred tree

that do not exist in the true tree and should not have been inferred. Note that

every trivial bipartition (induced by the edge incident to a leaf) exists in every tree.

Consequently, false positives and false negatives are calculated only with respect to

the internal edges of the tree. These are sometimes expressed as a percentage of the

number of internal edges.

23

2.6.2 Experimental Setup

The simulator: The Nadeau-Taylor model [81] is the standard model of genome

evolution; it assumes that only inversions occur during the evolutionary history

of a set of genomes, that all inversions are equally likely, and that the number of

inversions on each edge obeys a Poisson distribution. We designed a simulator to

enable us to generate gene orders under the Nadeau-Taylor model, as well as under

more complex models in which transpositions and inverted transpositions also occur.

The input to the simulator is the topology of a rooted tree T (which determines the

number of genomes), the number k of genes in the genomes, the expected number λe

of inversions on each edge e, and a constant C denoting the relative cost of inversions

to transpositions and inverted transpositions. The expected number of events per

edge determines the rate of evolution for the dataset. More commonly (i.e. in

nucleotide data), the rate of evolution is defined as the expected number of mutations

over a branch per unit time, however, for gene order data, the rate of evolution is the

number of evolutionary events per branch. In the simulator, the number of each of

these events is a random variable obeying a Poisson distribution. Thus, we generate

a random leaf-labeled tree, randomly assign lengths (chosen uniformly from various

ranges) to each edge to represent the expected number of inversions per edge, and

feed the result to the simulator.

The simulator generates signed circular orderings of the genes as follows. The

root is assigned the identity gene ordering g1, g2, . . . , gk. When traversing an edge e

with expected number of inversions λe, three random numbers are generated. The

first determines the actual number of inversions on that edge; the second the actual

number of transpositions; and the third the actual number of inverted transpositions.

Once the number of each event is determined, the order of these events is randomly

selected. This process produces a set of circular signed gene orders for each genome

at the leaves of the model tree. The simulator also produces other information for

24

use in performance studies: the gene orders computed at each internal and leaf

node, the actual number of inversions, transpositions, and inverted transpositions

that occurred during that run of the simulator on each edge, and the “true distance

matrix” D between every pair of leaves in the tree. (Given the actual number of

inversions, transpositions, and inverted transpositions that occur on each leaf-to-

leaf path, the distance between the two leaves is the number of inversions plus the

weighted cost of the transpositions and inverted transpositions.) Note that this

matrix defines the model tree, with each edge weighted according to the weighted

cost of the events on that edge. As long as every edge has at least one event, standard

distance methods (such as neighbor joining [95]), when applied to the matrix D are

guaranteed to recover the true tree topology (see [112]).

Phylogenetic methods: For each dataset generated by the simulator, we com-

puted the BP distance and at least one of the I or ITT distances. We computed

neighbor-joining trees (as implemented in Phylip [36]) on these distance matrices.

We denote the neighbor-joining trees for the different distance matrices by NJ(BP),

NJ(ITT), and NJ(I). The MPBE heuristic is only computed through Phase I, so

that we return the strict consensus of all maximum-parsimony trees we compute

and do not perform any additional screening.

We wrote software to obtain binary sequence representations of the signed

circular gene orderings. We solved maximum parsimony exactly on datasets of up to

20 taxa using the branch-and-bound program of PAUP* and heuristically for larger

datasets; naturally, when we use a heuristic to “solve” maximum parsimony, we are

not guaranteed to find globally optimal solutions, only locally optimal ones. We used

the TBR (tree-bisection-reconnection) branch-swapping heuristic of PAUP*, with 100

initial starting points (trees obtained by optimizing the sequential placement of taxa,

randomly ordered, into the tree). We kept up to 10,000 trees in memory and in-

cluded auto-increment in the analysis. As these searches often returned hundreds

25

Avg. Number (Avg. %) of False Negatives
model tree NJ(BP) vs. model NJ(ITT) vs. model

TA 14.84 (87.29%) 15.34 (90.24%)
TB 8.22 (48.35%) 7.70 (45.29%)
TC 2.24 (13.18%) 1.90 (11.18%)

Table 2.3: Average false negatives of the NJ trees from the matrices BP and ITT.
Values in parentheses are the percentages over the 17 nontrivial bipartitions in each
model tree.

or thousands of local optima, we computed the strict consensus and majority con-

sensus trees of the local optima. In the following, we denote these trees by MPBE,

“maximum-parsimony tree(s) for the binary encoding of the genome data.”

We labeled internal nodes of each tree with circular orderings of signed genes

using BPAnalysis, and scored the resultant node-labeled trees under breakpoint

distances (ourselves), I distances (using signed dist) and ITT distances (using

derange2).

We were unable to run BPAnalysis to completion on our datasets because

of its computational complexity; however, we did use BPAnalysis in a restricted

search, by providing it with the strict consensus of the trees we obtained using our

other techniques as a “constraint” tree. This way of using BPAnalysis makes it

evaluate all binary trees that resolve the constraint tree. Since all trees we found

using other methods will be in the set of refinements of the constraint tree, this

strategy enables BPAnalysis to evaluate these trees and to find other, potentially

better, trees.

2.6.3 Experiment 1: Neighbor-Joining on Synthetic Data

The first round of experiments focused on the performance of neighbor joining under

a variety of model conditions. We generated three random model trees. TA had

20 genomes and 20 genes, with high rates of change (3 to 10 inversions per edge

26

on average), TB had 20 genomes and 20 genes, but low rates of change (1 to 3

inversions per edge on average), and TC had 20 genomes and 105 genes, with low

rates of change (1 to 3 inversions per edge on average). In each of the 50 runs of this

experiment, we ran our simulator on each random tree with relative costs of 1, 2.1,

and 2.1 for inversions, transpositions, and inverted transpositions. This simulation

generated gene orders for the 20 genomes at the leaves. Each run thus gives rise

to three matrices: D, BP, and ITT (true distances, breakpoint distances, and ITT

distances). The matrix D is determined during the simulation, the matrix BP can be

calculated exactly in linear time, but the matrix ITT is estimated using derange2,

perhaps with significant errors. We constructed the neighbor-joining trees on the

BP and ITT matrices, thus producing trees NJ(BP) and NJ(ITT) (see our earlier

discussion). These were then compared with the model tree, scoring the comparison

in terms of false negatives (since all trees are binary, false positive and false negative

rates are identical). Note that, on trees with low rates of evolution (TB and TC),

slightly more than 3 edges per tree have no changes; in these cases, a false negative

rate of around 3 would indicate complete success, so that all false negative rates

should be scaled down accordingly. (3 edges represents 18% of the interior edges of

TB and TC ; thus false error rates should be decreased by about 12% to make up

for the zero-length edges and the expected accuracy of a guessed resolution of an

unresolved tree.) The results are summarized in Table 2.3.

In Figures 2.4, 2.5, and 2.6, we compare the distances BP and ITT to the

true distances, on trees TA, TB, and TC , respectively. We also give the correlation

coefficient between the two measurements in each figure—a statistical measure of the

degree to which the two distances are linearly related. Note how closely correlated

the breakpoint and ITT distances are in the second and third cases (and, to a lesser

extent, in the first case), indicating a linear or nearly linear relationship. In contrast,

the true distance shows no particular correlation to the other two distances in the

27

(a) breakpoint vs. true distances

(b) ITT vs. true distances

(c) breakpoint vs. ITT distances

Figure 2.4: Comparison of distances on model tree TA.

28

(a) breakpoint vs. true distances

(b) ITT vs. true distances

(c) breakpoint vs. ITT distances

Figure 2.5: Comparison of distances on model tree TB.

29

(a) breakpoint vs. true distances

(b) ITT vs. true distances

(c) breakpoint vs. ITT distances

Figure 2.6: Comparison of distances on model tree TC .

30

first two trees. In tree TC , all three distances are closely correlated, reflecting the

relative lack of evolution and overall simplicity of that tree.

Neighbor-joining does quite well on the third tree TC , but poorly on TB and

very poorly on TA. Furthermore, its performance does not appear to depend upon

the choice of edit distance, but it does correlate well with the accuracy of the edit

distance calculation (BP or ITT) with respect to the true distance D. This accuracy

in turn seems to depend upon the rate of evolution relative to the number of genes

in the genomes.

2.6.4 Experiment 2: All Methods on Synthetic Data

In this experiment, we simulated only inversion events and so used the Nadeau-

Taylor model of evolution. We varied the number of genomes, the number of genes,

and rates of evolution. We computed BP distances, ITT distances, and I dis-

tances and then calculated neighbor-joining trees NJ(BP), NJ(ITT) (and sometimes

NJ(I)) for these distance matrices. We computed the strict consensus of the trees

obtained during Phase I of the MPBE method; in some cases we also computed

trees using BPAnalysis with the strict consensus of various recovered trees given as

a constraint tree (see the discussion above). We compared each tree to the model

tree and computed false negatives and false positives. Our results are summarized

in Table 2.4. As the model trees and neighbor-joining trees are always binary, we

only report false negative rates for neighbor-joining trees. On the other hand, we

report both false negatives and false positives for the MPBE strict consensus trees.

These results indicate that the various methods (neighbor joining on BP

and ITT distances and maximum parsimony on binary encodings of gene order

data) have the same qualitative performance on all model conditions we examined.

That is, we cannot as yet identify a model condition under which one method will

outperform the others. However, one other trend is clear: all methods do well when

31

the rate of change on an edge is low relative to the number of genes, while their

performance decreases as this rate increases. What is surprising is that the rate at

which their performance decreases appears to be the same.

We then examined the performance of BPAnalysis with respect to solving

the breakpoint phylogeny problem. We were also interested in determining whether

the model tree is one of the breakpoint phylogenies (and hence determine whether

solving the breakpoint phylogeny is a good approach to reconstructing trees from

gene order data). However, our results for BPAnalysis are limited, because of the

extreme slowness of the program; we found that the trees obtained by BPAnalysis

were almost always the same trees found by using Phase I of the MPBE method,

provided that we let BPAnalysis run long enough. Therefore, BPAnalysis seems to

be doing a reasonably effective job at solving the breakpoint phylogeny problem.

It seems that the breakpoint phylogeny may not always be a good estimate

of the model tree. In our experiments, the breakpoint phylogeny is a good estimate

of the model tree only when the rates of evolution on each edge are low relative

to the number of genes. In these cases, the model tree is one of the breakpoint

phylogenies or is close to optimal. In other cases, the breakpoint score of the model

tree is significantly larger than the breakpoint scores found by either MPBE or

BPAnalysis. This discrepancy suggests that, for model conditions in which the rates

of evolution are high, breakpoint phylogenies are unlikely to be accurate estimates

of the true evolutionary tree.

2.7 Software Issues

Running time is always important in comparing phylogenetic methods. While neigh-

bor joining runs in polynomial time, neither MPBE nor BPAnalysis does. Even

calculating the distance matrix between every pair of signed circular genomes in a

large set is computationally challenging. derange2 is fast, but inexact: because it

32

heuristically computes the distance between two genomes by using inversions, trans-

positions, and inverted transpositions using a greedy strategy, it only allows an oper-

ation if that operation decreases the breakpoint distance between the two genomes.

Consequently, it can miss minimal edit sequences, as we observed in our tests. Han-

nenhalli’s software signed dist for pairwise distances runs in slow polynomial-time

(Θ(k4) to compute distances between a pair of genomes on k genes); in order to

compute all pairwise distances, it requires Θ(n2k4) time. For our datasets, k was as

large as 105 and n as large as 60; we found the running time to be considerable for

any k ≥ 40, and even for smaller k if n was large.

We timed each method on the Campanulaceae dataset, using a Sun E5500

with 2GB of memory running Solaris 2.7. The first phase of MPBE took 0.15

seconds to complete on the Campanulaceae dataset (finding the four maximum-

parsimony trees with PAUP* took 0.15 seconds on a Macintosh G4). The second

phase took somewhat longer. Labeling the internal nodes with BPAnalysis took

0.38 seconds for each tree. Computing inversion distances on each edge using our

modified signed dist took 0.02 seconds and computing ITT distances on each edge

using derange2 took 0.01 seconds. The second phase of MPBE thus took about 4.5

seconds in all. Hence the complete MPBE analysis ran in under 5 seconds.

We also attempted to time BPAnalysis on the Campanulaceae dataset, but

it did not complete its search, so we had to estimate the amount of time it took

per tree and extrapolate. Our experiments suggest that BPAnalysis evaluates 120

trees a minute; at this rate, since the number of trees on 13 leaves is 13,749,310,575,

BPAnalysis would take well over 200 years to complete its search of tree space for

our problem. Blanchette et al. did complete their analysis of the metazoan dataset,

which has 11 genomes on a set of 37 genes. This is a much easier problem, as there

are far fewer trees to examine (only 2,027,025) and as scoring each tree involves

solving a smaller number of TSP instances on a much smaller number of cities (37

33

rather than 105). Overall, it is clear that datasets of sizes such as ours are currently

too large to be fully analyzed by BPAnalysis.

In view of these observations, our new method stands as a good compromise

between speed and accuracy. Neighbor-joining is faster (guaranteed polynomial-

time), but returns only one tree and thus tells us little about the space of near-

optimal trees, while BPAnalysis is quite slow. Furthermore, our results confirm

that our new method returns results as good as any of the other methods and does

so within very reasonable times, even on datasets on which BPAnalysis cannot run

to completion.

2.8 Conclusions

Our initial study on real and synthetic data containing a single chromosome suggests

that, for some conditions (when the rate of inversions per edge is low relative to the

number of genes), many of the proposed methods for reconstructing small phyloge-

netic trees from gene order data can recover highly accurate tree topologies. Further,

under model conditions with low evolutionary rates, the breakpoint phylogeny seems

to be a good candidate for the true evolutionary tree. Consequently, under these

conditions, methods that seek the breakpoint phylogeny offer real promise. However,

the methods can be distinguished in terms of the computational effort involved, in

which respect the MPBE method is a significant improvement over BPAnalysis for

at least some moderate to large datasets.

Our results suggest that all of the methods we evaluated have unacceptable

levels of errors on trees in which the inversion rate on the edges is high relative to

the number of genes. Thus, new methods need to be developed for these types of

genome evolution problems and current approaches to phylogenetic analyses based

upon gene orderings should be restricted to cases with low rates of evolution. These

findings apply to neighbor joining based upon various ways of calculating genome

34

distances, maximum-parsimony analyses of binary sequences derived from genome

data, and breakpoint phylogenies. Indeed, it may be that any approach for solving

the breakpoint phylogeny will perform poorly in the presence of high evolutionary

rates relative to the number of genes. In such cases, approaches that explicitly seek

to minimize the total number of evolutionary events may be required, but no such

method currently exists.

2.9 Future Work and Recommendations

Faster methods are needed for solving the breakpoint phylogeny problem, as well as

to score trees with respect to evolutionary distances (ITT and I). Since MPBE de-

pends upon BPAnalysis in order to label internal nodes with circular genomes, and

upon derange2 and signed dist to score these trees for ITT and I distances, a first

step should be to speed up BPAnalysis and signed dist, and improve the accu-

racy of BPAnalysis and derange2 (since these find local optima but not necessarily

global optima). More effective implementations of the basic concept in BPAnalysis,

such as hill-climbing or branch-and-bound through the tree space and abandoning

strict optimality in solving the TSP instances in favor of a fast and reliable heuristic

(such heuristics abound in the TSP literature), could make the method run fast

enough to be applicable to datasets comparable to ours.

Since the utility of the breakpoint phylogeny for reconstructing phylogenies

from gene order data seems limited to low evolutionary rate conditions, we will

also investigate methods which explicitly seek to minimize the number of mutations

(inversions, transpositions, inverted transpositions, as well as insertions, deletions,

and duplications of gene segments).

We note that in our studies the polynomial-time method of neighbor join-

ing has performed as well as MPBE in terms of topological accuracy, bringing into

question whether the more computationally intensive approaches deserve considera-

35

tion. One clear advantage of both MPBE and BPAnalysis is that they tell us more

about the space of optimal and near-optimal trees than neighbor joining does and

hence help us identify alternative hypotheses. The task remains to identify regions

of the parameter space in which MPBE or BPAnalysis outperform neighbor joining

in topological accuracy. We conjecture that such regions do exist (as other studies

based upon biomolecular sequence evolution show [50, 94]).

Given the rapid increase in the availability of complete genome sequences, the

current limitation in reconstructing phylogenies from gene order data for datasets

containing many genomes or genes is of major concern. Until improved methods

are developed, we recommend that phylogenetic analyses of gene order data seek to

obtain the breakpoint phylogenies and that these breakpoint phylogenies then be

scored under ITT distances, for some appropriate weighting of the events. We also

recommend that MPBE be used, until BPAnalysis can be made competitively fast.

36

Table 2.4: The false negative rates (in %) with respect to the true tree
of various reconstruction methods for various model trees and rates of
evolution.

Genomes Genes Inv./Edgea NJ(BP)b NJ(ITT)c NJ(I)d MPBEe

10 105 9–11 0 0 0 0 / 0
25 105 1–5 9.09 4.55 9.09/ 4.55f

25 105 4–6 0 0 0 / 0
25 105 1–10 9.09 0 4.55/ 4.55
40 105 1–5 13.51 10.81 10.81/ 2.70f,g

40 105 1–10 16.22 0 2.70/ 2.70g

25 37 1–5 22.73 9.09 4.55 27.27/ 9.09f

25 37 1–10 9.09 13.64 13.64 31.82/13.63f

40 37 1–5 37.84 10.81 18.92 35.14/ 2.70f,g

40 37 1–10 32.43 32.43 32.43 48.65/24.32f,g

20 20 3–10 49.41 60.00 60.00 65.88/20.00f

60 20 3–5 66.66 68.42 75.43/57.89f,g

a the expected number of inversions per edge
b neighbor joining on the breakpoint distance matrix
c neighbor joining on the ITT distance matrix computed by derange2
d neighbor joining on the inversion distance matrix computed by
signed dist

e maximum parsimony on the binary encoding of the genomes; includes
both false negative and false positive rates

f the strict consensus of all maximum-parsimony trees
g dataset too large for branch-and-bound parsimony, heuristic used in-

stead

37

Chapter 3

Gene Order Phylogenetics: A

Detailed Study of Breakpoint

Analysis

3.1 Introduction

Some organisms have a single chromosome or contain single-chromosome organelles

(mitochondria or chloroplasts), the evolution of which is mostly independent of the

evolution of the nuclear genome. Given a particular strand from a single chromosome

(whether linear or circular), we can infer the ordering of the genes along with the

directionality of the genes, thus representing each chromosome by an ordering of

oriented genes. The evolutionary process that operates on the chromosome may

include inversions and transpositions, which change the order in which genes occur

in the genome as well as their orientation. Other events, such as insertions, deletions,

or duplications, change the number of times and the positions in which a gene occurs.

Gene order, orientation, and number represent a new source of data for phylogeny

reconstruction. Appropriate tools for analyzing such data may help resolve some

38

difficult phylogenetic reconstruction problems; indeed, this new source of data has

been embraced by many biologists in their phylogenetic work [83, 85, 93].

A natural optimization problem for phylogeny reconstruction from this type

of data explicitly attempts to reconstruct an evolutionary scenario with a minimum

number of permitted evolutionary events (e.g., duplications, insertions, deletions,

inversions, and transpositions) on the tree. Such approaches are computationally

very intensive (all are known or conjectured to be NP-hard); worse, to date, no au-

tomated tools exist for solving such problems. Another approach is first to estimate

leaf-to-leaf distances (based upon some metric) between all genomes, and then to

use a standard distance-based method such as neighbor joining[95] to construct the

tree. Such approaches are quite fast and may prove valuable in reconstructing the

underlying tree, but cannot recover the ancestral gene orders.

Blanchette and Sankoff developed a technique, breakpoint phylogeny, for

the special case in which the genomes all have the same set of genes, and each gene

appears once. Our earlier simulation study suggests that the approach works well for

certain datasets (i.e., it obtains trees that are close to the model tree), but that the

implementation, the BPAnalysis software, is too slow to be used on anything other

than small datasets with a few genes (as described in Chapter 2). In this chapter, we

describe our reimplementation of BPAnalysis and how we have obtained speedups

of 2 to 3 orders of magnitude.

3.2 Definitions

When each genome has the same set of genes and each gene appears exactly once,

a genome can be described by an ordering (circular or linear) of these genes, each

gene given with an orientation that is either positive (gi) or negative (−gi). Given

two genomes G and G′ on the same set of genes, a breakpoint in G is defined as

an ordered pair of genes, (gi, gj), such that gi and gj appear consecutively in that

39

order in G, but neither (gi, gj) nor (−gj ,−gi) appears consecutively in that order

in G′. The breakpoint distance between two genomes is the number of breakpoints

between that pair of genomes. The breakpoint score of a tree in which each node

is labeled by a signed ordering of genes is then the sum of the breakpoint distances

along the edges of the tree. Given three genomes, we define their median to be a

fourth genome that minimizes the sum of the breakpoint distances between it and

the other three. The Median Problem for Breakpoints (MPB) is to construct such

a median and is NP-hard [89]. Sankoff and Blanchette developed a reduction from

MPB to the Traveling Salesman Problem (TSP), perhaps the most well-studied of

all optimization problems [55]. Their reduction produces an undirected instance of

the TSP from the directed instance of MPB by representing each gene by a pair of

cities connected by an edge that must be included in any solution.

3.3 BPAnalysis

BPAnalysis (see Figure 3.1) is the method developed by Blanchette and Sankoff to

solve the breakpoint phylogeny. Within a framework that enumerates all trees, it

is an iterative heuristic to label the internal nodes with signed gene orders. This

procedure is computationally very intensive. The outer loop enumerates all (2n−5)!!

leaf-labeled trees on n leaves, an exponentially large value. The inner loop runs an

unknown number of iterations (until convergence), with each iteration solving an

instance of the TSP (with a number of cities equal to twice the number of genes)

at each internal node. The computational complexity of the entire algorithm is

thus exponential in each of the number of genomes and the number of genes, with

significant coefficients. The procedure nevertheless remains a heuristic: even though

all trees are examined and each MPB problem solved exactly, the tree-labeling phase

does not ensure optimality unless the tree has only three leaves.

40

Initially label all internal nodes with gene orders
Repeat

For each internal node v, with neighbors A, B, and C, do
Solve the MPB on A, B, C to yield label m
If relabeling v with m improves the score of T, then do it

Until no internal node can be relabeled

Figure 3.1: High-level description of the main loop of BPAnalysis.

3.4 Study Objectives

Our earlier experiments with techniques for reconstructing phylogenies from gene

order data suggested that Sankoff and Blanchette’s implementation of BPAnalysis

is much too slow. On a collection of Campanulaceae with 13 genomes of 105 gene

segments, we estimated that Sankoff and Blanchette’s BPAnalysis would take well

over 200 years to complete—an estimate based on the average number of trees pro-

cessed by the code per unit time and extended to the 13,749,310,575 tree topologies

on 13 leaves. Although an exhaustive search of tree topologies is likely impossible

for more than 15 genomes (there are 0.2x1015 trees on 16 genomes), even selective

exploration of tree space requires very fast labeling of the internal nodes of a tree.

Our objective was therefore to develop a much faster implementation of

BPAnalysis, prior to modifying the method used for searching tree space. Our

three major goals were flexibility (e.g., the ability to change TSP solvers or to

change distance measures between genomes), the introduction of approximate TSP

solvers (which are required for large number of genes), and overall speed. To achieve

the last goal, we used a process termed algorithmic engineering [73, 76]—a combina-

tion of low-level algorithmic changes, data structures changes, and coding strategies

that combine to eliminate bottlenecks in the code, balance its computational tasks,

and make it cache-sensitive.

41

3.5 Algorithmic Aspects of Our Implementation

3.5.1 Tree Generation

Exploring tree space, whether exhaustively or selectively, requires the efficient gen-

eration of tree topologies. We need a generating mechanism that is interruptible

and restartable at any point. We chose to generate a preorder encoding of the tree,

then to produce the topology from the encoding. Generating the next tree in the

ordering takes amortized constant time. This enables us to produce only trees that

are refinements of a given constraint tree, as well as to generate only every kth tree

for a given stepping value k. The stepping value is a crucial feature for sampling-

based exploration. By generating every kth tree, we investigate a wide range of

tree topologies for large datasets. Without the step, we are limited to a fraction of

very similar tree topologies. Detailed profiling shows that the time taken by tree

generation does not rise above the noise level in our time measurements.

3.5.2 Tree Labeling

Labeling the internal nodes of a tree is the most challenging part of the problem—

indeed, no algorithm is known that would produce an optimal solution for more

than three leaves. Although the problem is NP-hard even for a three-leaf tree,

it is possible to produce an optimal solution for many realistic problems on three

leaves by using the TSP reduction. The approach used by Sankoff and Blanchette

to label an entire tree is to do a postorder traversal of the tree; at each internal

node, use the labels of its three neighbors to define an instance of the MPB, solve

that problem, and assign the new label to the node if the number of breakpoints is

thereby lowered; and repeat the entire process until no change occurs. This process

is rather wasteful—an NP-hard problem must be solved at each internal tree node,

over and over, with most solutions discarded because they do not bring about any

42

improvement. Our implementation only generates an MPB problem for nodes that

saw at least one of their three neighbors relabeled over the last pass. We also score

the tree incrementally in constant time after each relabeling (whereas BPAnalysis

calls a tree-scoring routine that requires linear time to run) and do so only if the

label has changed—a relatively rare occurrence. These changes brought about a

speed-up on the Campanulaceae on the order of 1.5.

3.5.3 Condensation

Sets of closely related genomes will inevitably share a number of adjacencies even

when not closely related. In those cases when all genomes in a set contain shared

adjacencies, we condense the shared adjacencies by redefining gene fragments to con-

sist of the longest shared subsequences and replace the original instance by one given

in terms of the new gene fragments. Such condensation does not affect labeling or

any of the rearrangement based distance measures (breakpoint, inversion, transpo-

sition). Condensation can be implemented (and reversed) efficiently and saves time

by producing significantly smaller numbers of genes in the genomes—and hence

smaller TSP instances. We use both an initial condensing of the entire dataset and

a dynamic condensing of each triple of genomes when computing the median. In

our Campanulaceae dataset, the 13 genomes have sufficient runs in common that

they can be initially condensed from 105 down to just 36 gene segments. When only

three genomes are considered at a time (as in the TSP instances), condensing can

have an even greater impact. Combining initial and dynamic condensation on the

Campanulaceae dataset results in a speed-up by a factor of 6.

3.5.4 Approximate TSP Solvers

Each MPB problem is solved through reduction to a TSP instance; the instance

produced has two cities for each gene in the genome. The number of such instances

43

solved in the analysis of a dataset is very large—and, of course, the TSP problem

is itself NP-hard. Therefore we spent most of our design effort on the TSP solver.

We used the Concorde library [3] for two of our three solvers—the chained and the

simple versions of the well-known Lin-Kernighan heuristic [65]. These heuristics

typically come within a few percent of optimal for the simple version and even

closer for the slower chained version, at least for the geometric TSP instances used

in most testbeds [55]. Unfortunately, the LK solvers are quite slow—even the simple

LK solver takes cubic time and suffers from significant coefficients.

We also implemented the standard greedy algorithm for TSP (also known as

“coalesced simple paths” [78]). This algorithm successively adds the next available

edge of least cost, subject to not creating a short cycle nor a vertex of degree three.

For our instances of the TSP, this method can be implemented to run in very fast

linear time, but tends to yield significantly poorer solutions than the LK solvers.

3.5.5 Our Exact TSP Solver

We implemented a standard include-exclude backtracking search with pruning—the

most basic technique for exhaustive search of a state space—along the lines of the

BPAnalysis code. This approach orders the edges by cost, then recursively attempts

first to include, then to exclude each edge in turn, the inclusions subject again to not

creating a short cycle nor a vertex of degree three. (In effect, the greedy method

described earlier is simply the first probe sequence of this search method.) The

recursion stops when a solution is obtained, when it runs out of edges, or when a

lower bound computation indicates that no tree can be found to improve upon the

current upper bound (the value of the current best solution).

In comparison with BPAnalysis, we used more streamlined data structures,

better bounding, and some features tailored to the special nature of the instances

generated in the reduction. Of the Θ(n2) edges of an instance produced by the

44

reduction to TSP, at most 3n are nontrivial—those that correspond to adjacent

genes segments in the three genomes. Our exact TSP solver considers only nontrivial

edges, treating the others as an undifferentiated pool—a refinement that allows each

step in the search to run in linear rather than quadratic time. Our lower bound is

computed with as much information as can easily be maintained in linear time—

excluded from the computation are not just edges that have already been considered

(as in BPAnalysis), but also any edges that would create a short cycle or a vertex

of degree three. Finally, we provide the solver with what often proves a very tight

upper bound by determining which of the current label and its three neighbors would

provide the best median, and initializing the solver with this solution. Our lower

and upper bounds prove tight enough that over two thirds of the calls to our TSP

solver are pruned immediately, without a single attempt to include or exclude an

edge. This combination of algorithmic changes accounted for a speed-up factor of

10 on the Campanulaceae dataset.

3.5.6 Initial Labeling

Since the labeling procedure is iterative, assigning initial labels can make a big dif-

ference in performance. Sankoff and Blanchette proposed several initializations. We

implemented all but one of them (their last heuristic, based on an ad hoc solution

method for a set of linear equations to define the parameters of each TSP instance,

is extremely slow), along with several of our own devising. The choice of an ini-

tialization procedure is crucial, because little to no relabeling is done after a good

initialization. All but one of the methods run in linear time (one of the two methods

described by Sankoff and Blanchette as “onerous” takes quadratic time), with the

exception of the cost of the calls to the exact TSP solver. Some of the methods

make no such call, some make one, while the more demanding methods make one

such call at each internal node. After much experimentation with these methods,

45

we settled on one of those proposed by Sankoff and Blanchette as the best compro-

mise of accuracy and speed—but our code provides another 6 methods. The chosen

method sets up a TSP instance for each internal node by using the closest already

labeled neighbor along each of the three directions out of that internal node; the

computed median is assigned to the internal node, which is then considered to be

labeled.

3.6 Coding Aspects of Our Implementation

Algorithmic engineering suggests a refinement cycle in which the behavior of the

current implementation is studied in order to identify problem areas which can

include excessive resource consumption or poor results. We used extensive profiling

and testing throughout our development cycle, which allowed us to identify and

eliminate a number of such problems. For instance, converting the MPB into a TSP

instance dominates the running time whenever the TSP instances are not too hard

to solve. We cut the running time of that routine down by a factor of at least six—

and thereby nearly tripled the speed of the overall code. We focused equal attention

on distance computations and on the computation of the lower bound, with similar

results. These steps provided a speed-up by a factor of 6–8 on the Campanulaceae

dataset.

The original BPAnalysis is written in C++ and uses a space-intensive full

distance matrix, as well as many other data structures. It has a significant memory

footprint (over 60MB when running on the Campanulaceae dataset) and poor lo-

cality (a working set size of about 12MB). Our implementation has a tiny memory

footprint (1.8MB on the Campanulaceae dataset) and mostly good locality (nearly

all of our storage is in arrays preallocated in the main routine), which enables it to

run almost completely in cache (the working set size is 600KB). Cache locality can

be improved by returning to a FORTRAN-style of programming, in which records

46

(structures/classes) are avoided in favor of separate arrays, in which simple itera-

tive loops that traverse an array linearly are preferred over pointer dereferencing,

in which code is replicated to process each array separately, etc. While we cannot

measure exactly how much we gain from this approach, studies of cache-aware algo-

rithms [61, 118] indicate that the gain is likely to be substantial—factors of anywhere

from 2 to 40 have been reported. Many new memory hierarchies show differences in

speed between cache and main memory that exceed two orders of magnitude.

3.7 Experimental Procedure

We had two objectives for our experiments. We wanted to compare the raw running

times of our versions and of BPAnalysis and investigate their dependency on the

number of genomes, the number of genes, and the rate of evolution in the model. We

also wanted to study the impact on the quality of solutions of using an approximation

algorithm for TSP.

We used a simulator we developed to create datasets for our experiments.

First, a random tree topology is generated and then evolution is simulated on the tree

using inversions and transpositions as the evolutionary events. We examined differ-

ent parameter settings by varying the expected number of inversions and transposi-

tions per edge, as well as varying the number of genes and the number of genomes.

We generated datasets with each of 2, 4 or 8 events per edge to simulate different

rates of evolution. The numbers of genes in each dataset were 10, 20, 40, 80, 160,

and 320. In order to obtain statistically significant data, we used runs of trials.

Each trial is one dataset, while a run is composed of a number of independent trials.

One then retains only the median value for the entire run and repeats the process

with additional runs, with each run yielding a single value. These values are then

examined for consistency. This method produces robust results even when, as in

our case, the enormous size of the sample space precludes any fair sampling.

47

3.8 Experiments

In order to test our TSP solvers, we ran a number of tests with just 3 genomes.

These problems have only one tree topology and only one internal node to label, so

that only one call is made to the TSP solver. We used 6 different numbers of genes

per genome and up to three rates of evolution. In some cases, the rate r = 8 was too

high a rate of evolution for the exact solvers—so we do not present data for those

cases. We ran the 3-genome problem for five different methods: BPAnalysis itself,

our exact solver, the greedy algorithm, the basic Lin-Kernighan, and the chained

Lin-Kernighan.

In our first experiment, we tested the different solvers under the different

rates of evolution. In our second experiment, we used the same data to compare

the relative running times of the 5 solvers. In our third experiment, we computed

the percent over optimal that the approximate solvers obtained. Our fourth ex-

periment explored tree processing rates for the various solvers. We used both real

and synthetic datasets for this experiment, including our Campanulaceae dataset.

Most datasets did not run to completion, but we ran them long enough to obtain

an accurate count of the number of trees processed per unit time and thus to be

able to predict the running time to completion (in the case of our code, we also used

the sampling option to ensure that the estimates were not biased towards the small

fraction of trees explored in a large problem).

3.9 Results and Discussion

3.9.1 Experiments on 3-Genome Problems

Figure 3.2 shows the running times of our four versions and of BPAnalysis on 3-

genome problems of increasing sizes and at different rates of evolution. The rates

r = 2, 4, and, 8 reflect the expected number of inversions on each tree edge. Higher

48

rates of evolution clearly induce much harder instances of the TSP, so that the two

exact solvers suffer; BPAnalysis could not solve any of the larger instances with

r = 8 within 20 minutes of computation.

Figure 3.2: Speed of the five solvers on various 3-genome problems under 3 different
rates of evolution.

Figure 3.3 presents the same data, this time per evolutionary rate so as to

facilitate comparisons of running times. The greedy solver is so fast that all of its

times fall on the horizontal axis, as do most of the times of the exact solver for r = 2

and r = 4. The greedy solver runs (in our special case) in linear time, the two LK

solvers in roughly cubic time, and the exact solvers in exponential time. Our figures

clearly demonstrate the exponential behavior of BPAnalysis, but our exact solver

stays in a flat part of its exponential curve all the way to 320 genes for r = 2 and

r = 4. The two LK solvers show at least quadratic behavior, while the greedy solver

give us nearly flat values (below noise level) for the entire range. Because high rates

of evolution induce numerous breakpoints, the resulting instances of the TSP have

49

Figure 3.3: Relative running times of the five methods on 3-genome problems of
various sizes.

relatively undifferentiated edges costs: thus most of the edges have maximal or near

maximal cost, making it difficult to find an optimal solution quickly, so that the

exact solvers suffer—indeed, the problems rapidly become intractable. In contrast,

the Chained LK solver slows down a bit and the simple LK and greedy solvers not

at all.

3.9.2 Quality of Approximation of LK Heuristics

Figure 3.4: Percentage excess over optimal for LK and greedy solvers.

Figure 3.4 shows the percentage by which the solutions returned by the sim-

ple LK solver exceed the optimal. In contrast, the Chained LK solver returned

50

Table 3.1: Ratios of tree-processing rates of 5 methods to the rate of the greedy
method on various datasets.

optimal solutions for all of these test instances. The error percentage can be ar-

tificially larger for smaller evolutionary rates because, for these lower rates, the

number of breakpoints in the optimal solution is quite small, thus magnifying per-

centages. Rather surprisingly, the fast and unsophisticated greedy algorithm holds

its own against the simple LK algorithm—not a situation encountered on typical

TSP benchmark[55].

3.9.3 Tree Processing Rates

In order to estimate the raw speed of each method, we ran all given methods on

real and synthetic datasets, letting them process thousands of trees until a fixed

time bound was attained. We then normalized the results and, since the greedy

algorithm was always the fastest, computed ratios of processing rates for the other

four methods against the rate of the greedy method. Table 3.1 shows the results.

In the table, n/N/r denotes a problem with n genomes, N genes, and r inversions

per model tree edge. The first two data sets are the full Campanulaceae dataset

and its first 8 members, respectively. The figure shown for the greedy method is

the actual processing rate of that method, in trees processed per second. The high

processing rate of our exact solver (we have observed rates from 70 to 5,000 times

faster than BPAnalysis) makes it possible to solve problems with 10–12 genomes

on a single processor. Chained LK is much too slow to be of use, and even simple

LK, while often faster than BPAnalysis, is far slower than our exact solver. On the

51

other hand, the greedy algorithm, while much faster than the exact solver, tends

to yield worse solutions than the exact solver and should be reserved for difficult

instances (large numbers of genes and high rates of evolution).

3.10 Conclusions and Future Work

We have presented a new implementation of breakpoint analysis that improves on

the original BPAnalysis by 2 to 3 orders of magnitude. Our implementation makes

it possible to analyze much larger datasets; it can be combined with massive paral-

lelism, reducing the running time for the Campanulaceae dataset from two centuries

down to a day when run on a 512-processor supercluster. Breakpoint scores may not

be the measure of choice; our latest implementation includes a fast linear-time com-

putation of inversion distances, allowing us to minimize either measure and compare

their relative use. These and other improvements pale against the main drawback of

the approach: enumerating all tree topologies is impossible for 16 or more genomes.

An implicit exploration of tree space is the next step.

52

Chapter 4

Advances in Gene Order

Phylogenetics

4.1 Introduction

Biologists can infer the ordering and strandedness of genes on a chromosome, and

thus represent each chromosome by an ordering of signed genes (where the sign

indicates the strand). These gene orders can be rearranged by evolutionary events

such as inversions and transpositions and, because they evolve slowly, give us an

important new source of data for phylogeny reconstruction. Developing such tools is

thus an important area of research—indeed, the DCAF symposium [31] was devoted

to this topic, as was a workshop at DIMACS [32].

A natural optimization problem for phylogeny reconstruction from gene or-

der data is to reconstruct an evolutionary scenario with a minimum number of

the permitted evolutionary events on the tree. This problem is NP-hard for most

criteria—even the very simple problem of computing the median of three genomes

under such models is NP-hard in the number of genes[22, 89]. All approaches to

phylogeny reconstruction for such data must therefore find ways of handling the

53

significant computational difficulties. Moreover, because suboptimal solutions can

yield very different evolutionary reconstructions, exact solutions are strongly pre-

ferred over approximate solutions (see [106]).

For some datasets (e.g., chloroplast genomes of land plants), biologists conjec-

ture that the only rearrangement events that occur are inversions. In other datasets,

transpositions and inverted transpositions are viewed as possible, but their relative

preponderance with respect to inversions is unknown, so that it is difficult to de-

fine a suitable distance measure based on these three events. Researchers have used

breakpoint distance as an independent measure of distance between genomes and the

breakpoint phylogeny, proposed by Blanchette et al. [10], is the most parsimonious

tree with respect to breakpoint distances.

4.2 Prior Results

We build upon several major prior results.

BPAnalysis: Blanchette et al. [10] proposed the breakpoint phylogeny (which

seeks the tree with the fewest breakpoints) and developed a reconstruction method,

BPAnalysis [100], for that purpose. Their method examines every possible tree

topology in turn and for each topology, it generates a set of ancestral genomes so as to

minimize the total breakpoint distance in the tree. This method returns good results,

but takes exponential time: the number of topologies is exponential and generating

a set of ancestral genomes is achieved through an unbounded iterative process that

must solve an instance of the Traveling Salesman Problem (TSP) for each internal

node at each iteration. And hence, the total running time is exponential in both the

number of genes and the number of genomes.

54

MPBE: We developed an alternate method, based on a binary encoding of break-

points, to take advantage of existing parsimony software [29, 28]. This method,

called Maximum Parsimony on Binary Encodings (MPBE), is exponential only in

the number of genomes (because the parsimony problem is NP-hard), runs very fast

in practice, but returns only candidate tree topologies and so must make use of

the labeling phase of BPAnalysis in order to return ancestral genomes. (Similar

approaches based on neighbor joining suffer from the same problem.)

GRAPPA: We reimplemented BPAnalysis in order to analyze our larger datasets

and also to experiment with alternate approaches. Our program, called GRAPPA [79],

includes all of the features of BPAnalysis, but runs about three orders of magnitude

faster. As part of the development of GRAPPA, we designed a new and very fast linear-

time algorithm for computing inversion distances [6], which has enabled us to extend

our work on breakpoint phylogeny to the inversion phylogeny.

4.3 New Results

We present several new results in this chapter:

• A simulation study examining the relationship between topological accuracy

and two definitions of tree length: the number of breakpoints on the tree and

the number of inversions on the tree. We find that both definitions for tree

length are correlated with topological accuracy, but that the correlation is

weakest for genomes on 37 genes (the mitochondrial genome case), especially

when the dataset is close to saturation.

• A detailed study of the efficacy of using a simple lower bound on the inversion

length of a candidate phylogeny. We observe that this simple bound can

quickly eliminate close to 100% of the candidate trees when the evolutionary

rates are sufficiently low.

55

• A successful analysis of the Campanulaceae dataset using a combination of

these techniques, resulting in a million-fold speedup over previous approaches.

Our research combines the development of mathematical techniques with extensive

experimental performance studies. We present a cross-section of the results of the

experimental study we conducted to characterize and validate our approaches. We

used a large variety of simulated datasets as well as several real datasets (chloro-

plast and mitochondrial genomes) and tested speed (in both sequential and parallel

implementations), efficacy (for our new bounding technique), and accuracy (for re-

construction and distance estimation).

4.4 Basic material

4.4.1 Evolutionary Events

When each genome has the same set of genes and each gene appears exactly once,

a genome can be described by an ordering (circular or linear) of these genes, each

gene given with an orientation that is either positive (gi) or negative (−gi). Let G

be the genome with signed ordering g1, g2, . . . , gn. An inversion between indices i

and j, for i ≤ j, produces the genome with linear ordering:

g1, g2, . . . , gi−1,−gj ,−gj−1, . . . ,−gi, gj+1, . . . , gn.

A transposition on the (linear or circular) ordering G acts on three indices, i, j, k,

with i ≤ j and k /∈ [i, j], picking up the interval gi, gi+1, . . . , gj and inserting it

immediately after gk. Thus the genome G above (with the additional assumption

of k > j) is replaced by:

g1, . . . , gi−1, gj+1, . . . , gk, gi, gi+1, . . . , gj , gk+1, . . . , gn.

An inverted transposition is an inversion composed with a transposition. The dis-

tance between two gene orders is the minimum number of inversions, transpositions,

56

and inverted transpositions needed to transform one gene order into the other; when

only one type of event is used in the model, we speak of inversion distance or trans-

position distance.

A dataset of genomes is said to be saturated if it contains a pair of genomes

whose inversion distance is as large as the expected distance between two completely

unrelated genomes. This saturation value depends upon the number of genes and

is bounded from above by n, the maximum distance between any two genomes on

n genes [74]. Reconstructing trees from saturated datasets is difficult because of

the seeming randomness in the data—this is well understood for gene sequences

[50, 51, 106], so it is no surprise that it applies to gene rearrangements as well.

Given two genomes G and G′ on the same set of genes, a breakpoint in G is

defined as an ordered pair of genes (gi, gj) such that gi and gj appear consecutively

in that order in G, but neither (gi, gj) nor (−gj ,−gi) appear consecutively in that

order in G′. The number of breakpoints in G relative to G′ is the breakpoint distance

between G and G′ (and is symmetric).

4.4.2 The Nadeau-Taylor Model

The Nadeau-Taylor model [81] of genome evolution uses only genome rearrangement

events. This results in all genomes having equal gene content. The model assumes

that each of the three types of events obeys a Poisson distribution on each edge—

with the three means for the three types of events in some fixed ratio.

4.4.3 Model Trees: Simulating Evolution

A model tree is a rooted binary tree in which each edge e has an associated non-

negative real number, λe, denoting the expected number of events on e. The model

tree also has a weight parameter, which defines the probability that a rearrangement

event is an inversion, transposition, or inverted transposition. We used weights equal

57

to 1:0:0 (inversions only), 0:1:0 (transpositions only), and 1:1:1 (all three events are

equally probable).

In our experimental studies, we used random leaf-labeled trees as the topolo-

gies and assigned uniform edge lengths to these trees. The simulator generates

signed circular orderings of the genes as follows. The root is assigned the identity

gene ordering g1, g2, . . . , gk. When traversing an edge e with expected number of

events λe, three random numbers are generated according to the model weight: the

first determines the actual number of inversions on that edge, the second that of

transpositions, and the third that of inverted transpositions. Once the number of

events of each type is determined, the order of these events is randomly selected,

as are the indices on which these events operate. This process produces a set of

circular, signed gene orders for each genome at the leaves of the model tree.

4.4.4 Labeling Internal Nodes

The approach proposed by Sankoff and Blanchette to derive ancestral genomes for

the internal nodes of a tree is iterative, using a local optimization strategy. After

initial labels have been assigned in some way, their procedure repeatedly traverses

the tree, computing the breakpoint median of its three neighbors for each node,

and using it as the new label if this change improves the overall breakpoint score.

The median-of-three subproblems are transformed into instances of the Traveling

Salesman Problem (TSP) and solved optimally. The overall procedure is a heuristic

without any approximation guarantees, but does very well in practice on datasets

with a small number of genomes.

GRAPPA uses the same overall iterative strategy and also solves the median-of-

three problem in its TSP formulation to get a potential label for the internal nodes.

GRAPPA, however, has the option of accepting a relabeling of an internal node based

on either the breakpoint score (as in BPAnalysis) or on the inversion score of the

58

tree. In addition, GRAPPA can substitute approximate TSP solvers (greedy and

variations of Lin-Kernighan [55]) for the exact one whenever the exact solver gets

bogged down by a TSP instance.

4.4.5 Performance Criteria

Let T be a tree leaf-labeled by the set S. Deleting some edge e from T produces a

bipartition πe of G into two sets. Let T be the true tree and let T ′ be an estimate

of T . Then the false negatives of T ′ with respect to T are those bipartitions that

appear in T that do not appear in T ′. This number is normalized by dividing by the

number of non-trivial bipartitions of T . Note that, if this rate is 0, then T ′ equals

T or refines it.

4.5 Better Analyses

4.5.1 Neighbor-Joining Performance

We conducted a simulation study to compare the performance of NJ using four differ-

ent distances: BP, INV, and two corrected distances: IEBP [110], and EDE [111].

Figure 4.1 shows our findings. This figure shows false negative rates for a best

case—inversion-only scenarios—and for a nearly worst-case—scenarios with both

transpositions and inverted transpositions. Note that NJ with the corrected dis-

tance EDE is remarkably robust: even though it was engineered for inversions only,

it handles datasets with a large number of transpositions and inverted transpositions

almost as well. NJ with EDE can recover 90% of the edges even for the close-to-

saturation datasets where the maximum pairwise inversion distance is close to 90%

of the maximum value. NJ with EDE is even competitive with the more computa-

tionally intensive MPBE (Maximum Parsimony on Binary Encoding) method (data

not shown).

59

4.5.2 Parsimony Improves Accuracy

Since the main goal of phylogeny reconstruction is producing the correct tree topol-

ogy, the parsimony approach we have taken needs to be evaluated in terms of the

topological accuracy of the trees produced. We ran a large series of tests on model

trees to test the hypothesis that reducing the total breakpoint or inversion length

of trees would yield more topologically accurate trees.

We ran a total of 209 tests of NJ with inversion and breakpoint distances

with at least 12 data points, on sets of up to 40 genomes. We used two genome

sizes (37 and 120 genes, representative of mitochondrial and chloroplast genomes,

respectively) and various ratios of inversions to transpositions and inverted trans-

positions, as well as various evolutionary rates. For each dataset, we computed the

total distances and compared their values with the percentage of errors (measured

as false negatives). We used the nonparametric Cox-Stuart test [26] for detecting

trends—i.e., for testing whether reducing breakpoint or inversion distance consis-

tently reduced topological errors. Using a 95% confidence level, we found that over

97% of the datasets with inversion distance and over 96% of those with breakpoint

distance exhibited such a trend. Indeed, even at the 99.9% confidence level, over

82% of the datasets still exhibited such a trend.

The false negative rates of the four distances are shown in Figures 4.1 and

4.2. Figure 4.2 shows the results of scoring the different NJ trees under the two

optimization criteria: breakpoint score and inversion length. Only the inversion-only

scenario is shown here, since other evolutionary settings produce similar behavior.

In general, the relative ordering and trend of the curves agree with the curves of

Figure 4.1, suggesting that decreasing the number of inversions or breakpoints should

lead to an improvement in topological accuracy. This correlation is strongest for the

120-gene case and somewhat weaker for the 37-gene case. Finally, this trend still

holds under the other evolutionary models (such as when only transpositions occur).

60

(a) inversion only, 37 genes (b) inversion only, 120 genes

(c) three classes equally likely, 37 genes (d) three classes equally likely, 120 genes

Figure 4.1: False negative rates of NJ methods under various distance estimators as
a function of the maximum pairwise inversion distance, for 10, 20, 40, 80, and 160
genomes. Model weight settings are 1:0:0 (inversion only) and 1:1:1 (equally likely
events).

61

(a) breakpoint score, 37 genes (b) breakpoint score, 120 genes

(c) inversion length, 37 genes (d) inversion length, 120 genes

Figure 4.2: Scoring NJ methods under various distance estimators as a function of
the maximum pairwise inversion distance for 10, 20, and 40 genomes. Plotted is the
ratio of the NJ tree score to the model tree score (breakpoint or inversion) on an
inversion-only model tree.

62

These experiments support the conjecture that improving the inversion length

or breakpoint length should lead to improved topological accuracy, at least for the

case of chloroplast genomes (which have many genes) and of mitochondrial genomes

where the rates of evolution are sufficiently low to keep the dataset below saturation.

4.5.3 A Lower Bound Using Circular Orderings

The following theorem is well known:

Theorem 1 Let d be a n×n matrix of pairwise distances between the taxa in a set

S; let T be a tree leaf-labeled by the taxa in S; and let w be an edge-weighting on T ,

so that we have wij =
∑

e∈Pij
w(e) ≥ dij. Set w(T) =

∑
e∈E(T) w(e). If 1, 2, . . . , n

is a circular ordering of the leaves of T , under some planar embedding of T , then

we have 2w(T) ≥ d1,2 + d2,3 + . . . + dn,1.

And this corollary immediately follows:

Corollary 1 Let d be the matrix of minimum inversion distances between every

pair of genomes in a set S, let T be a fixed tree on S, and let 1, 2, . . . , n be the

circular ordering of leaves in T . Then the inversion length of T is at least 1
2(d1,2 +

d2,3 + . . . + dn,1).

(This corollary forms the basis of the old “twice around the tree” heuristic for the

TSP based on minimum spanning trees [45].)

We use these bounds to help search tree space in the obvious way. First,

we obtain a good upper bound on the minimum achievable inversion length by

using a polynomial-time technique (NJ with EDE distances [111]); we update this

upper bound every time the search finds a better tree. For each tree, we quickly

compute the circular lower bound of Corollary 1. If that lower bound exceeds the

upper bound, the tree can be discarded without being scored. Since scoring a tree

involves solving numerous TSP instances, such bounding can dramatically reduce

the running time.

63

r value r = 2 r = 4 r = 8
genomes 10 20 40 80 160 10 20 40 80 10 20 40 80

genes
10 0 0 0 1 1 0 0 0 1 0 0 0 1
20 0 80 91 1 1 0 0 0 0 0 0 0 0
40 91 100 100 100 100 0 0 0 0 0 0 0 0
80 99 100 100 100 100 65 72 100 0 0 0 0 0

160 100 100 100 100 100 98 100 100 100 0 0 0 0
320 100 100 100 100 100 99 100 100 100 71 90 100 0

Table 4.1: Percentage of trees eliminated through bounding.

4.5.4 The Lower Bound In Practice

We ran three different experiments to quantify various aspects of our bounding

techniques. Our first experiment measures the percentage of trees that are pruned

through bounding (and thus not scored) as a function of the three model param-

eters: number of genomes, number of genes, and number of inversions per edge.

We used an inversion-only scenario, as well as one with approximately half inver-

sions and half transpositions or inverted transpositions. Our data consisted of two

collections of 10 datasets each for a combination of parameters. The numbers of

genomes were 10, 20, 40, 80, and 160, the numbers of genes were 10, 20, 40, 80,

160, and 320, and the rate of evolution varied from 2 to 8 events per tree edge, for

a total of 90 parameter combinations and thus 1,800 datasets. For each dataset,

we generated 1,000 random circular orderings, scored their pairwise circular order

inversion distance, and compared these scores to the upper bound. Table 4.1 shows

the percentage of trees pruned away by the circular lower bound. The lower bound

is surprisingly effective for certain datasets, but for many others would not eliminate

any trees. For low rates of evolution and datasets with up to 160 genomes, we found

that most random circular orderings were eliminated—a very encouraging result for

chloroplast genomes (which can contain several hundred genes) and quite sufficient

for the analysis of mitochondrial datasets (where the number of genes is 37), since

64

many have low evolutionary rates. However, note that at higher rates of evolution,

the bound is not effective until the number of genes gets into the range of 80 to 160,

while the bound is simply ineffective at truly high rates of evolution.

Our second experiment used our real dataset of 13 chloroplast genomes, 12

from the family Campanulaceae and with Nicotiana as an outgroup. Each of the

13 genomes has 105 gene segments and, though highly rearranged, has what we

consider to be a low rate of evolution. We ran GRAPPA on this dataset both with

and without the lower bound and computed the percentage of trees eliminated using

the bound. After running for 12 hours (on a 300MHz Pentium II workstation) and

processing well over 50 million trees, the code using bounding had eliminated 85%

of the trees from further computation.

Because computing the circular bound entails its own cost (linear in the

number of genomes), we were interested in what kind of running time speedup

GRAPPA would gain through this bounding technique. Our third experiment ran our

code on the Campanulaceae dataset for 12 hours each with and without bounding:

the version with bounding processed nearly 10 times as many trees. Thus the

speedup over BPAnalysis reported in [79] is now increased by another factor of

5–10, to a value of over 5,000.

The speedup obtained by bounding depends upon two factors: the percent-

age of trees that can be eliminated by the bounding and the difficulty of the TSP

instances avoided by using the bounds. As Table 4.1 shows, when the rate of evo-

lution is not too high, close to 100% of the trees can be eliminated by using the

bounds. However, the TSP instances solved in GRAPPA can be quite small when

the evolutionary rate is low, due to how we compress data (as described in [79]).

Consequently, the speedup will also depend upon the rate of evolution, with lower

rates of evolution producing easier TSP instances and thus smaller speedups. The

Campanulaceae dataset is a good example of a dataset that is quite easy for GRAPPA,

65

in the sense that it produces easy TSP instances—but even in this case, a signif-

icant speedup results. More generally, the speedup increases with larger numbers

of genomes and, to a point, with higher rates of evolution. When one is forced to

exhaustively search tree space, these speedups represent substantial savings in time.

Our last experiment used a combined heuristic. We analyzed the Campan-

ulaceae dataset using NJ and MPBE and then took the strict consensus tree (the

maximally resolved tree that is a common contraction) of the 8 trees returned by

these procedures. We gave this tree as a constraint tree to GRAPPA; this makes

GRAPPA search the space of all refinements of the constraint tree for the minimum

inversion tree. The search space contained only 10,395 trees, which we can run to

completion in much less than a minute (though not because of the bounding tech-

nique, since it did not eliminate any tree, an expected occurrence when all trees

examined have a good topology). The search returned 216 optimal trees, with an

inversion score of 67 and a breakpoint score of 84. Since earlier attempts to analyze

this dataset found only four trees with an inversion score of 67 [28], this represents

a significant advance.

4.6 High-Performance Computing

Even the best algorithms for phylogeny reconstruction are likely to take exponential

time in many cases, so that we should take advantage of high-performance tools

whenever possible. We used the best precepts of algorithm engineering [76] to im-

prove the running time of our GRAPPA software, eventually achieving a 2,000-fold

speedup, as reported in [79]. More recently, we parallelized our software (an easy

task, since it offers “embarrassing parallelism”) and used the 512-processor Los Lo-

bos supercluster at the University of New Mexico to run a complete analysis of

the Campanulaceae dataset discussed in [28]. This analysis took only 1.5 hours

instead of the several centuries estimated in [28], for a million-fold speedup [5].

66

We expect to effect similar speedups (by several orders of magnitude) in a future

reimplementation of parsimony searches (both local, using TBR techniques, and

global, using branch-and-bound searches), based on the same principles of high-

performance algorithm engineering and parallel algorithm development. Although

even a million-fold speedup will allow us to increase the number of taxa by only

a few when using an exponential-time algorithm, the same speedup applied to a

polynomial-time algorithm will represent the difference between solving a problem

today or waiting a few generations. We have also produced the first ever linear paral-

lel speedups for complex combinatorial problems [4], using shared-memory machines

(SMPs). Branch-and-bound falls in this category of problems, so that we can now

expect to see respectable parallel speedups in parsimony searches and other related

optimization problems when using our newly developed parallel techniques [77].

4.7 Conclusions and Future Work

We have described new theoretical and experimental results that have enabled us

to analyze significant datasets in terms of inversion events and that also extend to

models incorporating transpositions. The work described here is part of an ongoing

project to develop fast and robust techniques for reconstructing phylogenies from

gene order data. Our current software suffers from limitations that we need to

address; most limiting is the fact that it explicitly searches all of (constrained) tree

space. However, the bounds we have described can be used in conjunction with

branch-and-bound (based upon either inserting leaves into subtrees or extending

circular orderings), as well as in heuristic techniques for searching through tree

space. Our immediate work will implement these extensions to the software. In

the long term, we plan to extend the techniques to solving the IT (inversion plus

transposition) phylogeny problem, enable analysis of genomes with unequal gene

sets, and handle multiple chromosomes.

67

Chapter 5

Identifying Transfer RNAs

5.1 Introduction

Genome annotation is a critical aspect of whole genome analysis. With the advent of

high throughput sequencing, we are presented with a wealth of whole genomes which

must be analyzed, but methods are out-of-date and do not scale to the problems at

hand. Annotating whole genomes involves identification of protein coding genes (for

which excellent methods exist based on search by sequence similarity [2, 88]), as well

as ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs). Here, we evaluate the

effectiveness of existing methods for identifying animal mitochondrial (mt) tRNAs.

In animal mitochondrial genomes, tRNAs make up 22 of the 37 genes and

yet no program exists which can automate the identification process. Methods de-

veloped for protein coding genes (which are based on conservation of nucleotide

sequence) are not suitable for animal mt tRNAs (or most other tRNAs) because

selection operates on functional tRNAs based on maintenance of base-pairing (sec-

ondary) structure rather than conservation of nucleotide sequence. Transfer RNAs

sharing the same function may appear unrelated based on primary sequence simi-

larity, but the close relationship becomes apparent once their secondary structure is

68

known.

Many general-purpose programs have been developed for identifying RNA

molecules [37, 40, 68, 87] but they often focus on features to accommodate identifi-

cation of general RNA molecules (like pseudoknots, which create complex secondary

structures) or are based on a combination of secondary structure and primary se-

quence searching techniques. Because animal mitochondrial tRNAs have almost no

conservation of sequence at the nucleotide level, methods must focus on covariation

of basepairing in the secondary structure.

Here we present an analysis of the performance of four existing methods

in identifying animal mt tRNAs as well as an in-depth exploration of ways to im-

prove the best-performing method. The methods were rigorously tested by running

each program on the 300 complete animal mt genomes in GenBank [41] contain-

ing 6,600 tRNAs. The programs which we tested were: COVE [34], tRNAscan-

SE [68], RNAMotif [69], and our own method. Eddy and Durbin’s COVE software is

based on probabilistic covariation models constructed from aligned sequences. This

method has a solid theoretical framework and is quite tractable for the small size of

animal mt genomes (approx. 15000 nucleotides). Lowe and Eddy’s tRNAscan-SE,

probably the most popular program which exists for identifying tRNAs, is a hierar-

chical method based on a combination of three methods. Macke et al.’s RNAMotif

(a descendent of RNAMOT) uses descriptors of structural motifs, but differs from

RNAMOT in its more powerful descriptor language for capturing secondary struc-

ture information as well as its new global scoring mechanism. Finally, we tested

our own method which implements a custom animal mitochondrial tRNA scoring

scheme integrated into a structural motif-based search algorithm.

69

5.2 Biological Background

Transfer RNAs (see Söll and RajBhandary [103]) are approximately 70 nucleotides

in length and are necessary components to a cell’s protein synthesis machinery. They

fold into a complex shape, including both single-stranded regions and helices based

on internal nucleotide pairings. This can be represented in schematic form as a

cloverleaf with four stems. These parts are illustrated in Figure 5.1.

Each tRNA is enzymatically charged with one particular amino acid accord-

ing to features internal to the tRNA. The amino acid is chemically linked to the

discriminator nucleotide. The tRNA then delivers this amino acid to the growing

peptide chain on the ribosome. The order of entry of tRNAs into the ribosome

is specified by the messenger RNA (mRNA). The mRNA is a chain of nucleotides

(generally hundreds or thousands of nucleotides in length) that threads through the

ribosome by triplets, with each triplet (i.e. “codon”) binding to the three comple-

mentary nucleotides at the base of the tRNA (the anticodon; in the case of Figure 5.1

these are TAC). Thus, the order of nucleotides in the mRNA specifies the sequenc-

ing of tRNAs into the ribosome and, consequently, the order of amino acids in the

growing peptide chain.

These tRNAs are encoded by genes, which are commonly identified by the

potential of their sequences to form these cloverleaf-like structures and by certain

well-conserved nucleotide positions. This can be challenging to do reliably, and

attempts fail both by missing tRNA genes that are poorly conserved or aberrantly

structured as well as by generating false positives. These problems are especially

acute for the tRNAs that are encoded by animal mitochondrial genomes, which are

especially variable both in sequence and structure. Mitochondrial tRNAs are also

occasionally missing some paired arms or are otherwise varying in structure (see,

for example, Wolstenholme et al. 1987 [114]).

70

Figure 5.1: Schematic representation of a typical tRNA encoded by an an-
imal mitochondrial genome. Nucleotides paired by hydrogen bonds are in-
dicated by dashes. The tRNA is folded from a single string of ribonu-
cleotides starting with “CAAGATG”, reading counterclockwise around the struc-
ture (“TAGTAAATGCAGTACTTTTC ACTTACAATGAAAAAACGGCACATG-
GATTGCC”) and ending with “CGTCTTGA”.

71

5.3 Methods

Methods for identifying tRNAs typically fall into three basic categories: covariation

analysis based on a generalization of hidden markov models (HMMs) [34, 96], motif-

finding algorithms which include structural as well as nucleotide sequence motifs [35,

37, 40, 60], and minimum-energy based algorithms [119]. We tested four of these

programs for identifying tRNAs in animal mt genomes. The four programs are

COVE, tRNAscan-SE, RNAMotif, and our own method and are discussed briefly

below.

5.3.1 COVE

Identifying tRNAs using HMMs was first proposed in 1994 simultaneously by Eddy

and Durbin [34] and Sakakibarra et al. [96] and was implemented by Eddy and

Durbin in the COVE software package. A covariation model (CM) is created in

COVE by training the model with a set of sequences and adjusting the parameters

and structure of the model so that high probabilities are assigned to the training

sequences. The set of sequences may be previously aligned or not. This is well-suited

to the animal mt tRNA problem since we are not required (and, in fact, would not

be able to) align the training sequences based on primary structure. Once the model

has been created, a candidate RNA sequence is aligned to the CM using a three-

dimensional dynamic programming algorithm, and the score is then calculated based

on the probability of the alignment.

Although this method is one which initially showed promise and was very

accurate, it was prohibitively time-consuming to run on large nuclear genomes.

Lowe [68] estimated that searching the human genome with a tRNA covariation

model would take about nine and a half CPU years. However, animal mt genomes,

which are typically about 15,000 bp long, are a very reasonable size and indeed,

COVE typically took about two minutes to identify all the tRNAs in an entire

72

animal mt genome.

5.3.2 tRNAscan-SE

tRNAscan-SE is primarily targeted towards non-organellar tRNAs. It uses two

methods as a prepass for identifying candidate sequences based on sequence content

and then passes the candidates to COVE as a subroutine. For organellar tRNAs, it

bypasses the prepass step (because the sequences that they search for don’t exist in

organellar genomes) and gives the sequences directly to the covariation model. This

process, without the preprocessing, is equivalent to running the COVE program on

the tRNA CM included in the software package.

5.3.3 RNAMotif

RNAMotif is a descendent of past motif-based programs [8, 40, 60], but has a more

powerful descriptor language than its predecessor, RNAMOT [40], and it has a

global scoring scheme. The user creates a descriptor for a molecule based on stem

and loop motifs, including any specific information regarding nucleotide values or

numbers of mismatches in the stem. The descriptor also includes a scoring section

in which the user can query assignments made to the motifs by the search and from

this, can compute a score. RNAMotif first creates a tree representation from the

descriptor file. It then does a depth first search through the tree, trying to match the

input sequence. The successful candidates are then passed to the scoring routine,

where they are evaluated and optionally accepted or rejected based on rules in the

score section.

5.3.4 Our Method

Our method was implemented as part of DOGMA [117] a whole genome annotation

package for organellar genomes. It is a pattern-matching algorithm which combines

73

structural motif searching with an integrated scoring system designed specifically

for animal mt tRNAs. The scoring system is based on an empirical method for

identifying tRNAs in animal mt sequence data. The method’s search relies al-

most exclusively on secondary structure for identification. The pseudo-code for our

method is shown in Figure 5.2 It searches one-by-one for each tRNA’s anticodons

so that the user is given the best-scoring candidates for each tRNA. This way, none

of the tRNAs are missed entirely and the best-scoring possibilities are returned to

the user. The program first identifies the anticodon arm (see Figure 5.1) and then

searches to either side for a basepairing arm of length seven which is the acceptor

stem, awarding points for each positive pattern that is matched. The remaining

sequence between the anticodon and acceptor stems is then folded to maximize the

score. The best-scoring candidates are then saved and reported to the user.

For each strand (forward and reverse)
For each amino acid A

For each occurrence of A in the genome
If there exists a acceptor stem that is
-within 29 nt to left and 32 nt to the right
of anticodon arm stem

-of length 7
-with 5 or more bases paired

And the anticodon arm stem is has 3 or more bases paired
Fold and score D arm
Fold and score T arm
Fold and score extra arm

Report top-scoring A for each tRNA

Figure 5.2: Pseudo-code for our tRNA algorithm. Scoring rules are shown in Ta-
ble 5.3.4

74

Description Points
Pairing bases in stem +2
All bases in stem are pairing +2
All bases in anticodon arm stem are pairing +12
All bases in acceptor stem are pairing +16
First bases in stem are not pairing -1
Single nt closest to acceptor stem is C or T +1
Single nt second closest to acceptor stem is A or G +1
Single nt between D arm and anticodon arm stem is A or G +1
D arm stem length greater than 7 -3
T arm stem length greater than 8 -3
D arm stem length greater than 10 -6
D arm stem length greater than 11 -6
D and T arm stem length between 2 and 6 +2
D arm loop length less than 15 +2
T arm loop length less than 15 +2
T arm loop length less than 10 +2
Extra arm is length 4 +4
Extra arm is length 5 +2
Extra arm is length 3 +2
Extra arm is length 2 -1
Extra arm is length 1 -1
Extra arm is length 0 -1
Extra arm is length 6 -2
Extra arm is length 7 -2
Extra arm is length 8 -2
Extra arm is length 9 -2
Consecutive non-pairing bases in stem reject
Stem is length 4 with 2 or more non-pairing bases reject
Stem length is greater than 4 with 3 or more non-pairing bases reject

Table 5.1: Animal mitochondrial tRNA scoring rules.

75

5.4 Experimental Setup

Our dataset consists of 300 complete animal mitochondrial genomes from GenBank

with their accompanying annotation of 6,600 tRNAs. This is the complete list of all

animal mitochondrial genomes in GenBank at the time of this writing.

In testing the COVE method, a covariation model specifically trained to iden-

tify animal mitochondrial tRNAs was created. The model was trained with 1,432

tRNAs from 65 complete animal mt genomes taken from the set of 300 genomes.

COVE was then run on the datasets with and without the training sequences. The

results reported here are on the whole dataset (including the genomes used to train

the model) so that they can be more easily compared to the other methods which

are tested on the whole dataset. For tRNAscan-SE, we used the tRNA CM that

the program came with. This was trained on a dataset of 1415 aligned tRNAs from

the 1993 Sprinzl database [104]. Although this model was not trained on organellar

tRNAs, when a user queries the tRNAscan-SE web site with a mitochondrial se-

quence, this is the model which is used. For RNAMotif, we created a descriptor file

for animal mt tRNAs and went through several iterations of testing and modifying

the descriptor until we were convinced it was performing as well as it could. We

then ran the output through the pruning routine of RNAMotif which is meant to

prune out subsets of solutions.

After determining how well COVE performed with our CM trained on animal

mt tRNAs, we decided to explore different techniques for training the CM to see

if it could be further improved upon. The methods we tried and the results are

discussed in Section 5.7.

76

5.5 Evaluation

Each program was tested on the 300 genome dataset. Each genome has 22 tRNAs

(one for each amino acid and two for both serine (tRNA-Ser) and leucine (tRNA-

Leu)) to be identified. The methods were evaluated based on false negatives (FN)

and false positives (FP). A false negative occurs when a program fails to identify an

actual tRNA, and a false positive occurs when a program identifies a sequence as a

tRNA when it, in fact, is not. The false negatives for each genome were counted and

plotted in Figure 5.3. It shows, for each of the four methods, for each number of

false negatives, how many genomes missed that many tRNAs. The false negatives

for each of the 22 tRNAs were counted individually and are presented in Figure 5.4

with the FN for the two tRNA-Ser and tRNA-Leu combined. This figure shows for

each tRNA, how many genomes missed it for each method.

5.6 Results and Discussion

As can be seen in Figure 5.3, the best-performing method was, by far, COVE. In the

figure, the COVE results are for all 300 genomes, including the training set. (Even

without the subset of genomes which the model was trained on, it performed very

well) COVE found all 22 of the tRNAs for 215 out of 300 genomes. This is compared

to just 11 for tRNAscan-SE, 44 for our method and none for RNAMotif. Even as

the best performer, however, the CM trained for animal mitochondrial tRNAs still

missed some tRNAs, in the worst case, missing 8 of the tRNAs. Figure 5.4 shows

that for COVE, unlike the other methods, one can’t say that it performed especially

poorly on particular tRNAs or for particular genomes except that there is a spike on

the FN for COVE on serine. The FN for both serines were combined, but the FN is

still high. However, it does appear that COVE is much less sensitive to degenerate

cases of animal mt tRNA secondary structure than the other methods.

77

tRNAscan-SE is probably the most popular method for identifying tRNAs.

Although very successful for non-organellar genomes [68], the tRNAscan-SE CM,

which had been trained on non-organellar genomes, does not perform nearly as well

on animal mitochondrial tRNAs. As is illustrated in the results in Figure 5.3, a CM

needs to be appropriately trained for its target molecule. tRNAscan-SE only found

all 22 of the tRNAs in 11 genomes (compared to 215 for COVE) and even missed

every tRNA for one of the genomes. This can also be seen in Figure 5.4 where

tRNAscan-SE missed tRNA-Ser (which is often missing the D arm) for most of the

genomes. This illustrates how important it is to use care when using probabilistic

methods which require training. They can be extremely rigorous and accurate when

properly trained (as in COVE, above).

The least successful of the methods was RNAMotif, with over half of the

genomes missing more than 25% of the tRNAs and not finding all of the tRNAs

in any of the genomes. One of the problems with assessing the performance of

RNAMotif is the volume of output. This is meant to be a feature – that RNAMotif

will not overlook any potential RNA molecule which fits the descriptor, but it turns

out to not be appropriate for animal mt tRNAs. The descriptor for mitochondrial

tRNAs must be very general because individual nucleotides are not constrained, but

this also allows for a huge number of matches. Even when the output is run through

the pruning routine that comes with RNAMotif, the deluge of output is more than

even the most diligent user could wade through. For the graph in Figure 5.3, if a

candidate with the correct coordinates was found in the top 20 answers for each

tRNA, it was counted. This is a very generous way of counting (one could not have

much confidence in a method where the correct tRNA is ranked eighteenth in a list)

and yet it still did not perform very well. One of the drawbacks to this method is

its “all or nothing” approach. The descriptor language does have some nice regular

expression types of features, but it does not allow for boolean expressions. As an

78

example, one would want to allow for a missing D arm in a tRNA by matching a stem

and loop strongly or not at all. We suspect this is also the reason that RNAMotif

is the method most sensitive to missing particular tRNAs. In Figure 5.4, it appears

that there are a group of tRNAs for which RNAMotif performs exceptionally poorly.

Our own method found all 22 of the tRNAs for 44 of the genomes, and

usually only missed 1 or 2 tRNAs. When our method identified the correct tRNA,

it was usually the top scoring tRNA or within the top 3 for each tRNA. A feature of

our method is that it selects the top-scoring candidates for each tRNA and presents

them to the user. The results from our method also illustrate how difficult it can

be to develop a system for recognizing a set of tRNAs with such diverse secondary

structure and so many exceptions to the canonical tRNA structure. However, our

scoring scheme is very good at constructing putative secondary structures and can

be used as a postprocessing routine for candidate regions to fold and score potential

tRNAs.

With respect to false positives, the COVE program had very few and while

this is indeed a feature, it also doesn’t present the user with “second choices” if the

folding is not to their satisfaction. The number of false positives for our method is

not reported because the user can choose how many of the best-scoring candidates for

each tRNA should be returned. The number of false positives reported by RNAMotif

is so large as to make the method impractical, sometimes giving hundreds of false

positives per tRNA.

5.7 Further Training of Covariation Models

Encouraged by the strong performance of COVE, we attempted to improve upon

the method by trying different approaches to training the model. Despite coming

up with several strategies for training, we found that none of the new CMs that

we trained performed better than the original CM we trained with 1432 animal mt

79

tRNAs.

The first strategy was to increase the number of training sequences in the

training set. For the second CM, we trained the model with 3300 sequences (half

of the tRNAs in the dataset) and found that it did not outperform our first CM.

The 3300 CM found all of the tRNAs in 221 genomes versus 215 in the 1432 CM

but this was not uniform over different FN values. For individual tRNAs, the 3300

CM only missed 8 tRNA-Pro versus 15 in the 1432 CM but it missed 20 tRNA-Cys

when the 1432 CM only missed 14.

We then tried to construct a CM which would do a better job identifying

tRNA-Ser (usually one of the two tRNA-Ser is missing an arm). Using just the

tRNA-Ser sequences, we tried using all of the sequences for training as well as for

the test set, as well as trying a third as the test set (200 sequences), and finally tried

using the maximum likelihood model-making strategy option (which was very slow

to train) did not improve the results either. The original model which we trained had

a total of 41 false negatives, but the CM trained with all the tRNA-Ser sequences

had 52 false negatives. The model trained on 200 tRNA-Ser sequences missed 49

and the maximum likelihood trained model missed 64. We then tried targeting each

tRNA family individually. We created a CM for each individual tRNA family using

one third of the tRNAs (100) as the training set and then testing on the genomes

which weren’t part of the training set. Just as with the CMs targeted for tRNA-Ser,

there was not a discernible improvement in performance.

Our next idea was to explore the taxonomic sampling of the dataset to see if

there might be some kind of bias towards particular genomes. If most of the animal

mitochondrial genomes in GenBank were from the same taxonomic group, then

the model trained with the sequences would be biased toward identifying tRNAs

in these genomes. In examining the genomes which had the most false positives,

we found that many were actually within the same class. Three were in the class

80

Actinopterygii (ray-finned fishes) which had 114 complete genomes—more than any

other group in the whole set of genomes. This indicated that a bias towards certain

genomes in training was not cause of the false negatives. Rather than having a

CM which was more evenly sampled, we decided to construct one that was trained

specifically towards the genomes which had high numbers of false positives. We

trained a CM with 2508 tRNAs from the class Actinopterygii and then tested it on

all 114 genomes in that class, but to our disappointment, there was no improvement

in the number of false negatives.

5.8 Conclusions and Future Directions

Here we have presented an analysis of existing tRNA identification methods and

evaluated their performance with respect to animal mt genomes. We have shown

that COVE is the most effective and promising method and why other methods

are not successful at identifying animal mt tRNAs. COVE is also the most robust

method with respect to identifying non-canonical foldings. Future work will include

trying a combination of our method with COVE and modification of COVE (since

different training techniques did not prove fruitful).

81

0

50

100

150

200

250

0 5 10 15 20

of

 g
en

om
es

FN for all tRNAs

FN For All tRNAs For All Genomes

COVE
RNAMotif

Our method
tRNAscan-SE

Figure 5.3: The number of false negatives for the four methods. For each number of
missed tRNAs (x-axis), the number of genomes with that number of false negatives
is plotted.

82

0

50

100

150

200

250

Ala Arg Asn Asp Cys Gln Glu Gly His Ile Leu Lys Met Phe Pro Ser Thr Trp Tyr Val

F
N

Individual tRNAs

FN For Each tRNA For All Genomes

COVE
RNAMotif

Our method
tRNAscan-SE

Figure 5.4: The number of false negatives for each tRNA for the four methods. For
each tRNA, the number of genomes that missed that tRNA is plotted.

83

Chapter 6

Organellar Genome Annotation

6.1 Introduction

The Dual Organellar GenoMe Annotator (DOGMA) automates the annotation of or-

ganellar (plant chloroplast and animal mitochondrial) genomes. It is a web-based

package that allows the use of BLAST [2] searches against a custom database, and

conservation of basepairing in the secondary structure of animal mitochondrial tR-

NAs to identify and annotate genes. DOGMA provides a graphical user interface for

viewing and editing annotations. Annotations are stored on our password-protected

server to enable repeated sessions of working on the same genome. Finished anno-

tations can be extracted for direct submission to GenBank.

The comparison of complete mt genome sequences is becoming increasingly

important for reconstructing the evolutionary relationships of organisms [17, 21,

71, 75], for studying population structure and history [92], including those of hu-

mans [52], for identifying forensic materials [86], and for understanding the inheri-

tance of certain human diseases [109]. In the past, annotating organellar genomes

has been a time-consuming and error-fraught process and, with the input of high-

throughput genome sequencing centers, has been the rate-limiting step in the pro-

84

duction of complete chloroplast and mitochondrial genome sequences. DOGMA is the

first tool which automates this process.

DOGMA is a web-based annotation package. It takes as input a file containing

the complete nucleotide sequence of an animal mitochondrial or plant chloroplast

genome in FASTA format. For protein coding genes, the genome is translated in all

six reading frames and queried against our custom amino acid sequence databases

using BLAST. BLAST (or Basic Local Alignment Search Tool) is program for search-

ing with a query sequence against a database of sequences. (BLASTN is a nucleotide

query search against a nucleotide sequence database, and BLASTX is a nucleotide

query search against an amino acid sequence database.) Ribosomal RNAs (rRNAs)

and transfer RNAs (tRNAs) are queried against a nucleotide sequence database.

The databases were constructed from a set of annotated animal mitochondrial and

green plant chloroplast genomes. DOGMA constructs a list of genes from the BLAST

output, and graphically displays the list of genes to the user for annotation. When

a gene is selected, a detailed view of the gene’s nucleotide and amino acid sequence

and BLAST hits is displayed. Because the putative genes are located using sequence

similarity with genes in other genomes, and because BLAST is not explicitly looking

for a start and stop codon for the protein coding genes, the start and stop codons

must be chosen by the user. The start and end positions for each tRNA and rRNA

also must be verified. Annotations are stored on our password-protected server so

they can be retrieved and edited. When complete, the annotation may be retrieved

in a format suitable for direct submission to GenBank. DOGMA also allows the user

to extract sub-sequences of the genome (including intergenic regions, introns, amino

acid sequences of protein coding genes, etc.) for further analysis.

85

6.2 DOGMA Databases

Chloroplasts and mitochondria typically have circular, double-stranded chromo-

somes that vary little in gene content. This similarity in gene content allows us

to use a comparative approach for annotations. Genes which have been previously

identified in closely-related taxa can be used to identify those genes in newly se-

quenced genomes.

6.2.1 Animal Mitochondrial Genomes

Animal mitochondrial genomes typically are about 15,000 basepairs (bp) in length

and contain 37 genes: 13 protein coding genes, 22 tRNA and 2 rRNA genes [15].

Gene content is mostly fixed, though the gene order can be highly rearranged.

Duplications or deletions of genes are rare, most genes do not overlap (though there

are some well-identified exceptions), and genes do not contain introns (except for

some cnidarians). The animal mitochondrial genome databases were compiled from

the 367 annotated genomes in GenBank. Each database contains the amino acid

sequence for a specific gene from each of the genomes in which it appears. There

is a database for each of the 13 protein coding genes, plus one for each of the two

rRNA genes.

6.2.2 Chloroplast Genomes

Chloroplast genomes, on the other hand, are usually about 150,000 bp (but can

be as long as 220,000 bp) and contain 110-130 genes. There are 4 ribosomal RNA

genes, about 30 transfer RNAs and about 80 protein coding genes. Introns are in-

frequent in chloroplast genomes, occurring in 20 genes in Nicotiana, which makes

identifying genes much more straightforward. Chloroplast genomes contain 4 dis-

tinct regions. Two of the regions (IRA and IRB) are identical inverted repeats.

The other two regions are the large and small single-copy regions. In general, gene

86

content and order are highly conserved [84], although in some groups numerous

structural rearrangements have been identified [30]. There are currently 26 com-

plete plant chloroplast genomes in GenBank and 18 of these are green plants. For

chloroplast genomes, we created databases for genes from 16 complete genomes of

green plants. They include Adiantum, Arabidopsis, Epifagus, Lotus, Marchantia,

Mesostigma, Nephroselmis, Nicotiana, Oenothera, Oryza, Pinus, Psilotum, Spina-

cia, Triticum, and Zea. Database files were created for 98 chloroplast protein coding

genes (with two entries for the each of the trans-spliced pieces of rps12). We did not

include open reading frames (ORFs) in the database, however, hypothetical chloro-

plast reading frames (ycfs) were included. There are 4 rRNA nucleotide sequence

databases and 35 tRNA nucleotide sequence databases.

6.2.3 Gene Nomenclature

GenBank is fraught with errors in annotation. These errors include typos, incorrect

sequences and gene names, and inconsistencies is naming conventions. We have

endeavored to clarify this issue by correcting and standardizing all gene names for

both plant chloroplast and animal mitochondrial genomes. The naming conventions

follow those set forth by Martin et al. [71] for plastid genes and used by Boore [16]

for mitochondrial genes. In each case, these are generally the same as the gene

names established for their bacterial homologs.

6.3 Identifying Genes

6.3.1 Protein Coding Genes

Protein coding genes are identified in the input genome based upon conservation of

sequence similarity in genes in other genomes in the database. The input nucleotide

sequence is queried in all 6 reading frames against the amino acid sequence database

87

for each gene using BLASTX. Various BLAST parameters (such as e-value and

number of hits returned) may be set by the user. Once DOGMA has identified the

putative protein coding genes, the user then selects start and stop codons for each

gene. The program displays to the user the nucleotide sequence for the gene from

the input genome with the translation to amino acids, along with the amino acid

sequences from the BLAST hits. For genes containing introns, DOGMA will identify

exon boundaries based upon the BLAST hit boundaries which must then be verified

by the user. When a gene contains an intron, the exons are the pieces of coding

sequence which make up the gene surrounding the intron. This has proven to work

quite well; however, genes with very small exons (two or three amino acids) will

be missed by BLAST and they must be located by hand. These exons occur in

three well-documented genes in chloroplast genomes (petB, petD, and rpl16), and

the user will know to look for them when there is no start or stop codon for one of

these three genes.

6.3.2 Identifying tRNAs

In chloroplast genomes, the nucleotide sequences for tRNAs are highly conserved,

and we have found that sequence similarity is sufficient for their detection. Databases

of nucleotide sequences for chloroplast tRNAs are used for searching with BLASTN.

DOGMA identifies the anticodon for each tRNA based on the database entry.

Transfer RNAs diverge rapidly in sequence in animal mitochondrial genomes

and therefore, sequence similarity is not a sufficient criterion to locate the genes.

They must be identified based on conservation of basepairing in the cloverleaf-shaped

secondary structure. This is a difficult task, and we have found that methods based

on hidden Markov models can do well [116] and DOGMA uses the COVE [34] pro-

gram. COVE identifies candidate sequences of the tRNA genes based on secondary

structure, but does not give a putative folding, and so DOGMA then uses a custom

88

program to infer the stem and loop folding of the secondary structure.

6.3.3 Identifying rRNAs

Ribosomal RNAs can be detected through BLAST searches for sequence similarity

for both mitochondrial and chloroplast genomes. For mitochondrial genomes, the

BLAST parameters (such as gap penalty or percent identity) must be optimized

since some portions of the rRNA genes can be highly diverged.

6.4 Web-based Display and Editing Tool

DOGMA is a web-based display and editing tool. On first use, a researcher creates

a userid and password which keeps their (perhaps unpublished) data private from

other users of the software. Users may also save and retrieve existing annotations.

The tool consists of three panels (Figure 6.1). The main (middle) panel

displays all the putative genes, and genes are color coded by strand and gene type

and labeled with the gene name. When a gene in the middle panel is selected,

details for annotating that gene appear in the top panel and a new window appears

for recording the annotation information for that gene for input to Sequin (NCBI’s

software for submitting annotations to GenBank). DOGMA displays the nucleotide

sequence for both strands, with the translation to amino acids lined up above the

nucleotides, and the amino acid sequences for the BLAST hits in the other taxa

above that. All of the potential in-frame start and stop codons for a gene appear as

links and the user simply clicks on the codon to select it as the start or stop codon

of the gene. For annotation of rRNAs and chloroplast tRNAs, DOGMA functions

similarly to the protein coding genes, except that nucleotide sequences are displayed

rather than amino acid sequences, and the user chooses the start and end of the gene.

The user can also view the putative secondary structure of the tRNAs.

Animal mitochondrial tRNAs are notoriously difficult to annotate. DOGMA

89

uses Eddy and Durbin’s COVE software to identify a list of putative tRNA sequences

and then tries to infer the secondary structure. When a tRNA is selected in the

middle panel, a list of the possible tRNAs for that amino acid, with schematic

drawings of its secondary structure, are shown in the top panel. The user can

choose the tRNA based on the quality of the secondary structure folding and its

COVE score.

6.5 Future Work

In the future, the chloroplast database will be expanded to include more taxa. The

mitochondrial genomes of plants, fungi, and protists will be added to DOGMA, as

well as private custom databases for individuals. Researchers only interested in a

subset of the database will be able to identify the genomes they are interested in for

comparison. This will also allow people interested in phylogenetic reconstruction to

identify evolutionary similarity in anticipation of alignment of the whole genomes.

It will also allow users to use their own unpublished data for annotation. We plan to

construct a searchable database of folded tRNA structures for all organellar genomes

as well as adding the capability to DOGMA of searching for tRNAs using a variety of

types of methods. Future versions of DOGMA will additionally address the difficult

issue of RNA editing of start and stop codons. There are also plans for including

an ORF finder as a subroutine so putative new genes can be identified.

90

Figure 6.1: The DOGMA annotation window showing details of the psbH gene in a
chloroplast genome. The bottom panel shows the option buttons, while the middle
panel shows the genes in the genome laid out on a number line. The top panel is
where the start and stop codons are annotated for each gene.

91

Chapter 7

Phylogenetic Footprinting: A

Comparative Genomics Method

for Identifying Regulatory

Elements

7.1 Introduction

Understanding gene expression is one of the most pressing unsolved problems in

molecular biology today. Gene expression controls the metabolic and developmen-

tal processes in all organisms. Gene expression is controlled by regulatory elements

(or motifs) which are short sequences (about 6 to 20 nucleotides) to which enzymes

attach in order to control the expression of a gene. They are responsible for turning

on and off enzymes required for the function of metabolic processes. Regulatory

elements (e.g. promoters, transcription factor binding sites) are typically found in

the non-coding regions upstream of the genes that they regulate (other motifs may

appear downstream of genes or within coding regions or introns). Identifying regula-

92

tory elements is an extremely arduous laboratory process, and while computational

methods can provide information about potential regulatory elements, laboratory

experiments will be needed to demonstrate the function of these motifs. Successful

computational methods for identifying putative regulatory elements which are ver-

ified in the laboratory would change our understanding of the most widely studied

processes in cell and molecular biology.

7.2 Prior Work

Many approaches have been taken in addressing this problem. Existing methods for

finding regulatory elements include combinatorial methods [46, 90, 105], expectation

maximization (EM) methods [7, 23, 63], and Gibbs sampling methods [62, 66, 67, 72,

82, 115]. These methods have achieved some success, however, identifying regulatory

elements remains an unsolved problem in computational biology. Unfortunately,

most computational methods produce an avalanche of false positives [101, 113], but

it has been shown that a phylogenetic footprinting approach, which incorporates

phylogenetic information into the analysis, can significantly reduce the number of

false positives [64]. There has been much empirical evidence for the advantages of

using sequences from several related genomes [14, 18, 42, 54, 72, 113], which was

first suggested by Tagle et al. [108].

Phylogenetic footprinting is based on the observation that regulatory ele-

ments, under selective pressure, evolve more slowly than the the surrounding non-

functional sequence, and therefore, the regulatory elements will be conserved among

related species (or taxa) with respect to the surrounding sequence [80]. Developing

algorithms for phylogenetic footprinting is a difficult problem because not only do

regulatory elements for a particular gene vary from genome to genome, non-coding

regions (where regulatory elements are found) can vary greatly in length (from less

than 100 to 1000 or more nucleotides) and regulatory elements do not appear in

93

a fixed location with respect to the gene they regulate. Because most of the nu-

cleotides in non-coding regions are not functional, they evolve at a much higher

rate than functional regions of the genome (i.e. protein coding genes). In compar-

ing sequences for organisms for which the phylogenetic relationships are known, we

would like to align the sequences in order to identify the conserved elements among

the sequences, however, because the regulatory elements are not in a fixed position

relative to the gene they regulate, and because non-coding regions evolve rapidly,

those regions often cannot be aligned and the motifs prove to be elusive.

Blanchette et al. [13] introduced the first algorithm which explicitly incorpo-

rates not just phylogenetic relationships, but an actual phylogenetic tree into motif

discovery. Their algorithm, implemented in the program FootPrinter, makes a

significant contribution because it is the first to explicitly incorporate a phyloge-

netic tree, but has the drawback of using parsimony as an optimization criterion.

We developed a new approach to phylogenetic footprinting, one which builds upon

FootPrinter by using it as a first pass over the data in order to identify candi-

date regulatory elements. In the second pass, the candidate motifs are evaluated

under a maximum likelihood framework. The advantages of maximum likelihood

methods over parsimony in phylogenetic analysis are well-documented [48, 59, 106],

and incorporating models of evolution into the second pass addresses many of the

drawbacks inherent in the parsimony approach.

7.3 The Substring Parsimony Problem

A collection of sequences are homologous if they are descended from a common an-

cestor. Phylogenetic footprinting is the problem of identifying regulatory elements

in a collection of homologous sequences related by a known phylogenetic tree. It

allows us to identify regulatory elements in a collection of sequences which are evolv-

ing from species to species. The formal problem which is addressed by Blanchette et

94

al.’ s approach to phylogenetic footprinting is the Substring Parsimony Problem [12].

Given a tree T , leaf-labeled by a set of sequences S of length l, the parsimony score

of a set of sequences is the minimum total number of substitutions over the tree

T needed to explain the observed sequences. This is the minimum Hamming dis-

tance over all possible labelings of the internal nodes of T by sequences of length

l. The Substring Parsimony Problem can then be stated as: given a set of homolo-

gous sequences S1, ..., Sn from n different species, the phylogenetic tree T indicating

the relationship among these species, leaf-labeled with the sequences S1, ..., Sn, the

length k of the motifs to search for, and an integer d, find all sets of substrings

s1, ..., sn of S1, ..., Sn, each of length k, such that the parsimony score of s1, ..., sn on

T is at most d.

7.4 Blanchette et al.’s Approach

The Substring Parsimony Problem is NP-hard [1], but Blanchette et al. have de-

veloped a dynamic programming algorithm which solves it exactly. Their algorithm

arbitrarily roots the unrooted input tree T at an internal node r and proceeds from

the leaves to the root. At each node u of the tree, they compute a table Wu each

with 4k entries, one for each of the possible subsequences of length k. For a string s

of length k, Wu[s] is the best parsimony score for the subtree rooted at node u if u is

labeled with s. C(u) is the set of children of u, and d(s, t) is the Hamming distance

between sequences s and t, and Σ = {A, C, G, T}. The tables can be computed by the

following dynamic programming algorithm:

Wu[s] =


0 if u is a leaf, and s a substring of Su

∞ if u is a leaf, and s not a substring of Su∑
v∈C(u)

mint∈Σk(Wv[t] + d(s, t)) if u is not a leaf.

(7.1)

95

The score of the solution to the Substring Parsimony Problem is then given

by mins∈Σk(Wr[s]). This algorithm runs in O(nk(42k + l)) time where l is the av-

erage length of the input sequences, and for each of the O(n) edges, for each of the

4k strings of length k at each endpoint of the edges, the distance d(s, t) is computed

in k time. The ancestral sequences can be recovered by tracing back the recurrence

in time linear in the size of the tables. The k in the exponent makes the algorithm

infeasible to run as is, but they describe some bounding techniques which take ad-

vantage of the input parameter d, the maximum allowable number of mutations over

the tree. These improvements reduce the running time to O(nk(min(l(3k)
d
2 , 4k+l))).

7.5 Drawbacks to FootPrinter: Improvements with Max-

imum Likelihood

Although recent papers have made it clear that explicitly incorporating phyloge-

netic information is becoming the approach of choice for researchers [14, 18], the

fundamental problem with FootPrinter is that it seeks motifs with the minimum

number of changes (the most parsimonious solution) to explain the sequences. The

most parsimonious solution is not always the most biologically accurate [106] and

does not incorporate models of evolutionary change into the solution. Parsimony

inherently makes assumptions about the data, which can lead to incorrect solutions.

Incorporating models of evolution allows us to account for different rates of evolution

on the tree and between sites in a sequence, as well as to distinguish between the

kinds of mutations which occur (i.e. G may be more likely to mutate to C than to A).

Parsimony may not be computing a biologically accurate distance, and therefore can

miss motifs which are biologically significant (but have more than the d mutations

FootPrinter allows) in more distantly related taxa.

The advantages of a maximum likelihood approach are multifold. Given a

96

well-accepted tree computed under ML, we have at our hands not only estimates

of branch lengths of the tree, but also the model parameters which best fit the

data under which the tree was estimated. We can make use of this information

in assessing how likely it is for a motif to have evolved along an edge of the tree.

A significant improvement over Blanchette et al.’s approach is that we are actually

using the phylogenetic tree to explain the data and identify motifs that are conserved

in a way that is consistent with the input tree, its branch lengths, and its model

parameters. This makes much better use of the phylogenetic information at hand

and is more biologically accurate.

7.6 Maximum Likelihood Approach

7.6.1 Definitions

A substitution model Q is a table of rates at which each nucleotide is replaced

by each alternative nucleotide. This is represented by a 4x4 matrix where each

entry i, j represents the rate of change from base i to base j for some infinitesimal

amount of time. The model incorporates frequency parameters which represent

the frequencies of the bases A, C, G, T. The model also incorporates relative rate

parameters representing the probability of each base i to mutate to base j for all four

bases. When the matrix is symmetric around the diagonal, it is a time-reversible

model where the probability of a mutation from i to j is equal to the probability

of a mutation from j to i. The matrix Q specifies the rates of change from one

nucleotide to another per instant of time. The probabilities of change from one

state to another along a branch of length t is the likelihood. Given the matrix Q

and a tree T labeled with branch lengths, leaf-labeled with nucleotide sequences, we

can calculate the likelihood of the tree T with respect to the model Q. To incorporate

rate heterogeneity among sites, we also include a relative rate component into the

97

model, drawn from a gamma distribution, and represented by the shape parameter

α. And finally, the percent of expected invariable sites in the data is also specified

in the model.

7.6.2 ML FootPrinter

Our approach, in which we incorporate models of evolution into the analysis to aid

in the identification of regulatory elements, is ML FootPrinter. It has two phases.

Given an accepted phylogeny T for the set S of n input sequences, and an integer

d, the bound on the parsimony score, FootPrinter is run on the dataset in Phase

I. The input parameter d is set to a relatively high value in order to find motifs

which may have evolved over longer branches of the tree. This gives us a large set

of candidate motifs for the input sequences. FootPrinter often returns many motif

sequences per taxon when the motifs are short and there are low-complexity regions

in the sequences. If there are many motifs reported in an individual taxon of a

particular motif, it is unlikely that it is truly a regulatory element, as this would

mean that enzymes could bind to many different sites in the intergenic spacers. For

this reason, the next step in Phase I is to filter out the motifs which have returned

multiple motif sequences for each taxon. Phase II evaluates the candidate motifs.

In Phase II, the candidate sequences are evaluated under both functional and non-

functional models of evolution to see if the sequences are more likely given the

functional or non-functional model. Although we refer to models constructed from

intergenic regions as non-functional to distinguish them from the genic, functional

regions, obviously these regions contain functional elements, which are exactly the

motifs we are looking for.

Define QF and QNF to be the substitution models for the functional and

non-functional regions of the input genomes, respectively. Given the tree T with

branch lengths, a set s of n candidate motifs and the two models of evolution QF

98

and QNF , we evaluate the maximum likelihood of these motif sequences on the given

tree with respect to each model using the program PAUP* [107]. Once these scores

have been computed, the sequences which have a higher likelihood with respect

to the functional model are the sequences we would suggest to be true motifs or

regulatory elements. Once the likelihood scores are computed, we can use Akaike’s

Information Criteria (AIC) [19] to evaluate how well one model fits the data versus

the other. AIC values are calculated from likelihood scores for each model. We

can then calculate Akaike weights from the AIC values where the Akaike weight wi

is the weight of evidence that model i is the best approximating model, given the

the data and set of candidate models. The true test of whether a motif actually

regulates a gene must be done in the lab; our method is meant to reduce the number

of false positives a researcher must consider, and hopefully improve the quality of

the candidate motifs.

7.7 Real Data Analysis: The atpB-rbcL Region of a Set

of Chloroplast Genomes

Datasets suitable for phylogenetic footprinting must be chosen carefully; if there

is not enough evolution on the tree, there will not be enough change in the non-

coding regions to identify true motifs. If there is too large an amount of evolution

in the dataset, common motifs may not even exist among taxa. The intergenic

region between the rbcL and atpB genes of chloroplast genomes was chosen as a real

dataset for evaluation because the region has been well-studied [24, 43, 70, 120] with

two known promoter sequences for rbcL in that region. The rbcL gene encodes the

large subunit of the enzyme ribulose-1,5-bisphosphate carboxylase (Rubisco) which

is needed for fixation of carbon dioxide in photosynthesis. This enzyme is arguably

the most abundant and important enzyme because it controls the earth’s carbon

99

cycle [25]. Additionally, the whole genomes (and therefore the intergenic spacers)

have been sequenced for an appropriately divergent set of genomes and there exists

an accepted phylogeny for the genomes. Taxa included in the dataset are are shown

in Table 7.1. The accepted phylogeny for these taxa is shown in Figure 7.1 [24].

We used MultiPipMaker [102] to compute a Percent Identity Plot (PIP) for a

selection of the genomes in our analysis (Figure 7.2). MultiPipMaker compares long

DNA sequences to identify conserved segments and produces a percent identity plot,

which shows both the position in one sequence and the degree of similarity for each

aligning segment between all the sequences and the reference sequence. Positions

along the horizontal axis are labeled with genes. Horizontal lines represent a match

with the reference sequence, and the horizontal box for each genome represents

degree of similarity in percent from 50 (at the bottom of the box) to 100 (at the top

of the box). It can be seen from the figure that the genic regions of rbcL and atpB are

quite well-conserved, while the intergenic region has a large amount of variability.

This illustrates that the rate of evolution in the intergenic region is much higher

than in the functional genic region, making it a suitable test case for our algorithm

because conserved sequences would not be expected to occur spuriously.

7.7.1 Methods

To create the two models of evolution (QF for the genic region and QNF for the

intergenic region) for the chloroplast data, two separate datasets were compiled: a

functional dataset consisting of the DNA sequences of the rbcL gene for each of the 11

genomes (detailed in Table 7.1), and a non-functional dataset consisting of the DNA

sequences of the intergenic region between rbcL and atpB for all the genomes. For

each of the two datasets, sequences were extracted from GenBank and then aligned

using ClustalW [53]. Using the accepted phylogeny (Figure 7.1) for the aligned

sequences [24], PAUP* was then used to score the tree under maximum likelihood

100

Marchantia

Psilotum

Oryza

Triticum

Zea

Spinacia

Atropa

Nicotiana

Arabidopsis

Medicago

Lotus

Figure 7.1: The accepted phylogeny of the rbcL gene for the 11 chloroplast genomes
in our analysis.

101

rbcL Intergenic
Taxon Coordinates Strand Sequence Length
Atropa 57248-58681 + 56433-57247 814
Arabidopsis 54958-56397 + 54156-54957 801
Lotus 5158-6585 − 6586-7367 781
Marchantia 56355-57782 + 55847-56354 507
Medicago 117623-119047 + 116867-117622 755
Nicotiana 57595-59028 + 56777-57594 817
Psilotum 55824-57251 + 55232-55823 591
Oryza 54082-55536 + 53314-54081 767
Spinacia 53825-55252 + 53038-53824 786
Triticum 54910-56343 + 54128-54909 781
Zea 56874-58304 + 56115-56873 758

Table 7.1: The 11 taxa used to create the chloroplast models and the coordinates of
the rbcL gene and the rbcL-atpB intergenic sequence. When rbcL was on the reverse
strand, the reverse complement of the downstream sequence was used.

for the genic and for the intergenic sequences to compute the model parameters

for each of the two datasets. For each model, parameters include the substitution

rates, the nucleotide frequencies, the shape parameter of the gamma distribution (α)

which describes the among-site variation in rates of substitution, and the percent

of invariable sites, all of which are estimated from the data by PAUP*. The result

is QF , the model from the rbcL gene, and QNF , the model estimated from the

intergenic sequences. The parameter values for these models are shown in Table 7.2.

The branch lengths for the functional sequences were saved with the tree topology

as these represent the amount of change we would expect to see on a branch for

functional sequences (such as regulatory elements).

7.7.2 Experiments

We ran the 11-taxon chloroplast dataset consisting of sequences from the intergenic

regions through FootPrinter with various parameter settings. Because the dataset

102

Figure 7.2: MultiPipMaker output with Nicotiana used as the reference genome.
The region containing atpB and rbcL is highlighted.

Base Freqs. % Inv.
Model Rate Matrix A C G T α Sites

1.20 3.39 0.77
QF 0.99 5.38 0.29 0.18 0.22 0.31 0.828 0.43

1.00
1.16 2.13 0.57

QNF 1.78 2.45 0.38 0.13 0.13 0.36 5.514 0.04
1.00

Table 7.2: The parameter values for the QF and QNF models estimated from the
chloroplast dataset using PAUP*.

103

is large and because FootPrinter uses as large amount of memory, we were re-

stricted to searching for motifs of size 6, 8, 10, and under limited conditions, 12.

In searching for motifs of size 6, we searched with a maximum allowed parsimony

score of d = 4, a parsimony score of d = 5 for motifs of size 8, and a parsimony

score of d = 6 for motifs of size 10 and 12. We filtered out the motifs which had

multiple motif sequences for individual taxa. This is a particularly important step

for the rbcL dataset because intergenic regions in chloroplast genomes often evolve

in ways that create many small repeats (such as slipped-strand mispairing and in-

sertions linked with secondary structure formations) [57]. There are occasions when

regulatory elements do exist as multiple copies, but this is typically limited to just

pairs of regulatory elements [57] rather than many copies, as FootPrinter returns

for low complexity regions (i.e. a long string of As). The filtered motifs from the

first pass were then scored using maximum likelihood using PAUP* under both the

functional and non-functional models of evolution. The results were compared with

the two known regulatory elements for rbcL in that region. The motifs were also

evaluated in terms of their potential as novel regulatory elements.

The questions we wanted to answer in the real data analysis were as follows.

Can ML FootPrinter identify the known regulatory elements for this dataset? If

found, can they be evaluated based on their likelihood scores with respect to the

two models? Can it distinguish between the known promoter and spurious motifs

(false positives) using likelihood scores? A false positive occurs when a motif is

identified as a regulatory element although it is not one. Of course, besides the two

known promoters we are looking for, we don’t actually know when a sequence in the

real dataset is a false positive, that must be determined in the lab, but our hope is

that we could rule out a large number. While filtering eliminates a good number of

unlikely candidate motifs, the results from phase one still produce more motifs than

could reasonably be investigated in a lab.

104

7.7.3 Results for the Chloroplast Dataset

After being filtered, we were left with 24 motifs of length 6, 13 of length 8, 31 of

length 10, 7 of length 12, and 5 of length 14 to be evaluated. The two known rbcL

promoters for this dataset are cpt1 with the nucleotide sequence TTGCGC and cpt2

with the nucleotide sequence TACAAT [120]. FootPrinter identified the cpt1 pro-

moter while searching for motifs of length 8 and 10, but interestingly did not identify

it while searching for motifs of length 6. This is because there were mutations in the

regulatory element for the more distant taxa in the tree and the parsimony score

d may not have been high enough when search for motifs of length 6 (thought it

was set as high as possible). The promoter sequence appears exactly in 9 of the 11

sequences. The second known promoter was identified when searching for motifs of

length 10, 12 and 14. It appears in 8 of the 11 sequences without mutation.

When the promoter sequence cpt1 was found in the results for the motif

length 8 search, it had a log likelihood score of -23.440 with respect to QF and

-28.370 with respect to QNF which gives us AIC scores of 54.88 for QF and 64.74

for QNF and AIC weights wF = 0.992 and wNF = 0.007 making the data 138 times

more likely to fit QF . When cpt1 was found in the results for the motif length 10

search, it had a log likelihood score of -39.979 with respect to QF and -43.383 with

respect to QNF which gives us AIC scores of 87.96 for QF and 94.77 for QNF and

AIC weights wF = 0.968 and wNF = 0.032 making the data 30 times more likely

to fit QF . These numbers suggest that these motif sequences are more likely with

respect to the functional model and therefore it is a good candidate motif, as would

be hoped.

When the promoter sequence cpt2 was found in the results for the motif

length 10 search, it had a log likelihood score of -39.421 with respect to QF and

-34.447 with respect to QNF which gives us AIC scores of 86.84 for QF and 76.89

for QNF and AIC weights wF = 0.007 and wNF = 0.993 making the data 144 times

105

more likely to fit QNF . When cpt2 was found in the results for the motif length

12 search, it had a log likelihood score of -36.439 with respect to QF and -35.100

with respect to QNF which gives us AIC scores of 80.88 for QF and 78.20 for QNF

and AIC weights wF = 0.207 and wNF = 0.792 making the data 4 times more likely

to fit QNF . When cpt2 was found in the results for the motif length 14 search, it

had a log likelihood score of -52.900 with respect to QF and -49.093 with respect

to QNF which gives us AIC scores of 113.8 for QF and 106.19 for QNF and AIC

weights wF = 0.021 and wNF = 0.978 making the data 44 times more likely to fit

QNF . Obviously, the results for the cpt2 promoter are not what what would be

hoped, however, the results are probably due to to low complexity of the motif (i.e.

it contains 3 As). It suggests that perhaps having one model for all motifs may not

be enough to identify all the regulatory elements.

7.8 Simulated Data: An Experimental Investigation

In order to thoroughly explore the limitations and boundaries of the ML FootPrinter

method, we conducted a simulation study with trees and sequences of varying sizes

and randomly planted motifs of varying lengths into the sequences. With the simula-

tion study, we sought to answer the following questions. How often does it locate all

the planted motifs? How often did it miss just one motif? How often does it miss all

the planted motifs? What is the likelihood of the planted motifs with respect to the

other motifs found and with respect to both the functional and the non-functional

models? Can ML FootPrinter sufficiently distinguish between potentially functional

motifs and spurious ones to significantly reduce the number of false positives? What

are the limits with respect to tree size, motif length and sequence length?

106

7.8.1 Methods

Trees: In order to create the simulated datasets, we first constructed a set of

tree topologies with varying numbers of taxa and branch lengths. This was done

using the r8s package [97] which generates random binary trees under a birth-death

model of evolution. The birth-death model, in adding and removing new lineages

with some probability, has the result of creating trees that are not complete binary

trees. For each of the numbers of leaves (5, 7, 10, 12, 15, and 20), four different tree

topologies with different branch lengths were generated, giving us 24 trees topologies

total.

Sequences and planted motifs: We then used the program SeqGen [91] to gen-

erate sequences using the tree topologies generated by r8s. SeqGen allows the user

to specify the parameters of the evolutionary model to use in generating the se-

quences. We generated sequences under two models. Because we wanted the two

models to be representative of real models, we used the QF and QNF models from

the chloroplast dataset (see Table 7.2) representing the intergenic (non-functional)

region with a high rate of evolution, and the other from the functional rbcL region

of the dataset representing a region with a low rate of evolution. For each model

tree, we generated 4 simulated datasets each with sequences of length 250, 500, 750,

1000 and 2000 under the QNF model to represent the intergenic sequences, and

sequences of length 6, 8, 10, 12, 14 and 16 under the QF model to represent the

functional motifs. The short motif sequences generated from the QF model were

then randomly planted into the sets of sequences generated from the QNF model in

order to represent regulatory elements in intergenic regions. The result was a total

of 2,880 datasets for the simulation study.

107

7.8.2 Experiments and Results

All of the 2,880 simulated datasets with the planted motifs were then run through

FootPrinter with a parsimony score which varied according to the length of the

motif sought and the size of the tree. Typical values for d were half of the motif

size and half of the tree size. FootPrinter failed to produce motifs either because

it was not able to run to completion, or it simply did not find any motifs for the

dataset for the specified values of d. We found that , when the value of d was low, no

motifs were found, however too large values of d (for large trees with long sequences)

caused the program to run out of memory. All three parameters (tree size, motif

size, and sequence length) contributed to FootPrinter running out of memory or

failing to produce motifs. Sequences longer than 1,000 nucleotides, or trees with

more than 12 taxa, or motifs larger than 12 often caused FootPrinter to fail.

FootPrinter produced a set of motifs for 1, 494 of the 2, 880 datasets. This

discrepancy was not surprising since we were trying to test the boundary conditions

for the possible numbers of taxa and size of motifs for the datasets. Once we filtered

out the motifs which had multiple sequences for individual taxa, we were left with

putative motifs for 1,369 datasets. We found that of the datasets which produced

motifs, FootPrinter successfully found all of the planted motifs in 62 of the 1,369

datasets and it missed just one of the planted motifs for 27 of the datasets. For

1,226 of the 1,369 datasets, FootPrinter failed to find any of the planted motifs.

With respect to the planted motifs, they had AIC weights that overwhelm-

ingly favored the functional model for 2,860 of the datasets. This, of course, is

not surprising since the data was generated using the the functional model. When

the likelihoods of the planted motifs were compared with the other motifs found by

FootPrinter they did not suggest that any particular motif found was any better

than any of the other motifs found.

108

7.9 Discussion and Future Work

These are preliminary results for ML FootPrinter and, although it did not identify

all the regulatory elements, we still learned what improvements could be made and

what to explore next. A better implementation of FootPrinter, particularly in-

corporating a model-based approach, is needed. Modifications were attempted to

improve FootPrinter, but it was clear that either a serious overhaul or a reimple-

mentation would be required to improve it. More real data analysis would be helpful

in evaluating the method; this would demonstrate whether perhaps the chloroplast

dataset was not a good one to try and analyze, and it would demonstrate if there are

better ones to select with more closely or less closely related taxa. Because these are

the initial models, it may mean that they are not the correct models to use and that

new ones need to be tested. Perhaps deriving the models from the protein coding

genes of the genome does not generate the correct model. It may be that creating

models specific to collections of regulatory elements (as more regulatory elements

are identified), rather than functional regions of the genome, would perform better.

After more consideration of how protein coding genes evolve, and the specific se-

lective pressures they evolve under, these seems even more probable. For example,

protein coding genes often evolve with codon position bias. Each codon (triplet of

nucleotides) has three positions, and the first position is under the most selective

pressure in some genes, while the third position of the codon is under almost no

selective pressure. Mutations in the third position of a codon may not even change

the amino acid that the codon codes for in the protein or the gene function. No

such selective pressure exists in regulatory elements since they do not have codons.

Therefore, as we learn more about exactly how regulatory elements control the func-

tion of genes, then we will be able to construct more accurate models specific to

regulatory elements incorporating the specific kinds of selective pressure they are

under. It would be interesting to see how using the incorrect topology (if the phy-

109

logeny is not known for a dataset) affects the identification of regulatory elements.

There is more evidence accumulating daily that regulatory elements are certainly

conserved functional elements in intergenic regions, and methods which exploit this

fact will be the most successful. Much work is still required in this area, and as

more is known about gene function, automated methods will improve.

110

Bibliography

[1] T. Akutsu. Hardness results on gapless local multiple sequence alignment.

Technical Report 98-MPS-24-2, Information Processing Society of Japan,

1998.

[2] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local

alignment search tool. Journal of Molecular Biology, 215:403–410, 1990.

[3] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. CONCORDE: Combi-

natorial Optimization and Networked Combinatorial Optimization Research

and Development Environment. www.tsp.gatech.edu/concorde.html.

[4] D.A. Bader, A.K. Illendula, and B.M.E. Moret. Using PRAM algorithms

on a uniform-memory-access shared-memory architecture. Report 2001-03,

Deptartment of Computer Science, Univeristy of New Mexico, 2001.

[5] D.A. Bader and B.M.E. Moret. GRAPPA runs in record time. HPC Wire,

9(47), 2000.

[6] D.A. Bader, B.M.E. Moret, and M. Yan. A linear-time algorithm for com-

puting inversion distance between signed permutations with an experimental

study. J. Comput. Biol., 8(5):483–491, 2001.

[7] T.L. Bailey and C. Elkan. Unsupervised Learning of Multiple Motifs in

111

Biopolymers Using Expectation Maximization. Machine Learning, 21:51–83,

1995.

[8] B. Billoud, M. Kontic, and A. Viari. Palingol: a declarative programming

language to describe nucleic acids’ secondary sructures and to scan sequence

databases. Nucleic Acids Res., 24:1395–1403, 1996.

[9] M. Blanchette. http://www.cs.washington.edu/homes/blanchem/software.html.

[10] M. Blanchette, G. Bourque, and D. Sankoff. Breakpoint Phylogenies. In

S. Miyano and T. Takagi, editors, Genome Informatics, pages 25–34. Univer-

sity Academy Press, Tokyo, Japan, 1997.

[11] M. Blanchette, M. Kunisawa, and D. Sankoff. Gene order breakpoint evidence

in animal mitochondrial phylogeny. J. Mol. Evol., 49:193–203, 1999.

[12] M. Blanchette, B. Schwikowski, and M. Tompa. Algorithms for phylogenetic

footprinting. Journal of Computational Biology, 9(2):211–223, 2002.

[13] M. Blanchette and M. Tompa. Discovery of Regulatory Elements by a Compu-

tational Method for Phylogenetic Footprinting. Genome Research, 12:739–748,

2002.

[14] D. Boffelli, J. McAuliffe, D. Ovcharenko, K.D. Lewis, I. Ovcharenko,

L. Pachter, and E.R. Rubin. Phylogenetic Shadowing of Primate Sequences

to Find Functional Regions of the Human Genome. Science, 299:1391–1394,

2003.

[15] J.L. Boore. Animal Mitochondrial Genomes. Nucleic Acids Res., 27:1767–

1780, 1999.

[16] J.L. Boore. The duplication/random loss model for gene rearrangement ex-

emplified by mitochondrial genomes of deuterostome animals. In D. Sankoff

112

and J. Nadeau, editors, Comparative Genomics: Empirical and Analytical

Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of

Gene Families, pages 133–147, Dordrecht, Netherlands, 2000. Kluwer Aca-

demic Publishers.

[17] J.L. Boore and W.M. Brown. Big trees from little genomes: mitochondrial

gene order as a phylogenetic tool. Curr. Opin. Genet. Dev., 8(6):668–674,

1998.

[18] M.L. Bulyk. Computational prediction of transcription-factor binding site

locations. Genome Biology (Online journal), 5(201), 2003.

[19] K.P. Burnham and D.R. Anderson. Model selection and inference: a practical

information-theoretic approach. Springer-Verlag, New York, NY, 1998.

[20] R.M. Bush, C.A. Bender, K. Subbarao, N.J. Cox, and W.M. Fitch. Predicting

the evolution of human influenza A. Science, 286:1921–1925, 1999.

[21] Y. Cao, M. Fujiwara, M. Nikaido, N. Okada, and M. Hasegawa. Interordinal

relationships and timesecale of eutherian evolution as inferred from mitochon-

drial genome data. Gene, 259:149–158, 2000.

[22] A. Caprara. Formulations and hardness of multiple sorting by reversals. In

Proc. 3rd Int’l Conf. on Comput. Mol. Bio. (RECOMB99), pages 84–93. ACM

Press, NY, 1999.

[23] L.R. Cardon and G.D. Stormo. Expectation maximization algorithm for iden-

tifying protein-binding sites with variable lengths from unaligned DNA frag-

ments. Journal of Molecular Biology, 223:159–170, 1992.

[24] M.W. Chase, D.E. Soltis, R.G. Olmstead, D. Morgan, D.H. Les, B.D. Mish-

ler, M.R. Duvall, R.A. Price, H.G. Hills, Y.L. Qiu, K.A. Kron, J.H. Ret-

tig, E. Conti, J.D. Palmer, J.R. Manhart, K.J. Sytsma, H.J. Michaels, W.J.

113

Kress, K.G. Karol, W.D. Clark, M. Hedren, B.S. Gaut, R.K. Jansen, K.J.

Kim, C.F. Wimpee, J.F. Smith, G.R. Furnier, S.H. Strauss, Q.Y. Xiang, G.M.

Plunkett, P.S. Soltis, S.M. Swensen, S.E. Williams, P.A. Gadek, C.J. Quinn,

L.E. Eguiarte, E. Golenberg, Jr. G.H. Learn, S.W. Graham, S.C.H. Barrett,

S. Dayanandan, and V.A. Albert. Phylogenetics of Seed Plants: An Analysis

of Nucleotide Sequences from the Plastid Gene rbcL. Annals of the Missouri

Botanical Garden, 80(3):528–548,550–580, 1993.

[25] M.T. Clegg. Chloroplast gene sequences and the study of plant evolution.

Proc. Natl. Acad. Sci., 90:363–367, 1993.

[26] W.J. Conover. Practical Nonparametric Statistics, 3rd ed. John Wiley & Sons,

1999.

[27] M. E. Cosner. Phylogenetic and molecular evolutionary studies of chloroplast

DNA variations in the Campanulaceae. PhD thesis, Ohio State University,

Columbus, OH, Department of Botany, 1993.

[28] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L. Wang,

T. Warnow, and S.K. Wyman. A New Fast Heuristic for Computing the

Breakpoint Phylogeny and Experimental Phylogenetic Analyses of Real and

Synthetic data. In Proc. 8th Int’l Conf. on Intelligent Systems for Mol. Biol.

ISMB-2000, pages 104–115, 2000.

[29] M.E. Cosner, R.K. Jansen, B.M.E. Moret, L.A. Raubeson, L. Wang,

T. Warnow, and S.K. Wyman. An empirical comparison of phylogenetic meth-

ods on chloroplast gene order data in Campanulaceae. In D. Sankoff and J.H.

Nadeau, editors, Comparative Genomics, pages 99–122. Kluwer Acad. Pubs.,

2000.

[30] M.E. Cosner, R.K. Jansen, J.D. Palmer, and S.R. Downie. The highly rear-

114

ranged chloroplast genome of trachelium caeruleum (Campanulaceae): Multi-

ple inversions, inverted repeat expansion and contraction, transposition, inser-

tions/deletions, and several repeat families. Curr. Genet., 31:419–429, 1997.

[31] DCAF: Gene Order Dynamics, Comparative Maps and Multigene Families

(workshop). Montreal, Canada, August 2000.

[32] DIMACS Workshop on Whole Genome Comparison. Piscataway, New Jersey,

USA, February 2001.

[33] S.R. Downie and J.D. Palmer. Use of chloroplast DNA rearrangements in

reconstructing plant phylogeny. In P. Soltis, D. Soltis, and J.J. Doyle, editors,

Plant Molecular Systematics, pages 14–35. Chapman and Hall, 1992.

[34] S.R. Eddy and R. Durbin. RNA sequence analysis using covariance models.

Nucleic Acids Research, 22:2079–2088, 1994.

[35] N. El-Mabrouk and F. Lisacek. Very fast identification of RNA motifs in

genomic DNA. Application to tRNA search in the yeast genome. Journal of

Molecular Biology, 264:46–55, 1996.

[36] J. Felsenstein. PHYLIP. evolution.genetics.washington.edu/phylip.html.

[37] G.A. Fichant and C. Burks. Identifying potential tRNA genes in genomic

DNA sequences. Journal of Molecular Biology, 220:659–671, 1991.

[38] W. Fitch and E. Margoliash. Construction of phylogenetic trees. Science,

1955:279–284, 1967.

[39] L.R. Foulds and R.L. Graham. The Steiner problem in phylogeny is NP-

Complete. Advances in Applied Mathematics, 3:43–49, 1982.

115

[40] D. Gautheret, F. Major, and R. Cedergren. Pattern searching/alignment with

RNA primary and secondary structures: An effective descriptor for tRNA.

Comput. Applic. Biosci., 6:325–331, 1990.

[41] GenBank: http://ncbi.nlm.nih.gov/Genbank.

[42] M.S. Gelfand, E.V. Koonin, and A.A. Mironov. Prediction of transcription

regulatory sites in Archaea by a comparative genomic approach. Nucleic Acids

Research, 28:695–705, 2000.

[43] L. Hanley-Bowdoin and N.H. Chua. Transcriptional interaction between the

promoters of the maize chloroplast genes which encode the β subunit of ATP

synthase and the large subunit of ribulose 1,5-bisphosphate carboxylase. Mol.

Gen. Genet., 215:217–224, 1989.

[44] S. Hannenhalli and P.A. Pevzner. Transforming cabbage into turnip (polyno-

mial algorithm for sorting signed permutations by reversals). In Proc. 27th

Ann. Symp. on Theory of Computing (STOC95), pages 178–189, Las Vegas,

NV, 1995. ACM.

[45] M. Held and R.M. Karp. The travelling salesman problem and minimum

spanning trees. Operations Research, 18:1138–1162, 1970.

[46] G.Z. Hertz and G.D. Stormo. Identifying DNA and protein patterns with sta-

tistically significant alignments of multiple sequences. Bioinformatics, 15:563–

577, 1999.

[47] D.M. Hillis. Origins of HIV. Science, 288:1757–1759, 2000.

[48] D.M. Hillis, J.P. Huelsenbeck, and D.L. Swofford. Hobgoblin of phylogenetics?

Nature, 369:363–364, 1994.

116

[49] S.B. Hoot and J.D. Palmer. Structural rearrangements, including parallel

inversions, within the chloroplast genome of Anemone and related genera. J.

Molecular Evolution, 38:274–281, 1994.

[50] D. Huson, S. Nettles, K. Rice, T. Warnow, and S. Yooseph. Hybrid tree

reconstruction methods. ACM Journal of Experimental Algorithmics, 4(5),

1999.

[51] D. Huson, K.A. Smith, and T. Warnow. Correcting large distances for phy-

logenetic reconstruction. In Proc. 3rd Workshop on Algorithm Engineering

WAE99, pages 273–286. Springer Verlag, 1999.

[52] M. Ingman, H. Kaessmann, S. Pääbo, and U. Gyllensten. Mitochondrial

genome variation and the origin of modern humans. Nature, 408:708–713,

2001.

[53] T.J. Gibson J.D. Thompon, D.G. Higgins. CLUSTAL W: improving the sensi-

tivity of progressive multiple sequence alignment through sequence weighting,

position-specific gap penalties and weight matrix choice. Nucleic Acids Re-

search, 22:4673–4680, 2004.

[54] K. Jiao, J. Nau, M. Cool, W. Gray, J. Fassler, and R. Malone. Phylogenetic

footprinting reveals multiple regulatory elements involved in control of the

meiotic recombination gene, rec102. Yeast, 19:99–114, 2002.

[55] D.S. Johnson and L.A. McGeoch. The traveling salesman problem: a case

study. In E. Aarts and J.K. Lenstra, editors, Local Search in Combinatorial

Optimization, pages 215–310. John Wiley, New York, 1997.

[56] H. Kaplan, R. Shamir, and R.E. Tarjan. A faster and simpler algorithm for

sorting signed permutations by reversals. SIAM J. Comput., 29(3):880–892,

1999.

117

[57] S.A. Kelchner. The evolution of non-coding chloroplast DNA and its applica-

tion in plant systematics. Annals of the Missouri Botanical Garden, 87:482–

498, 2000.

[58] E.B. Knox, S.R. Downie, and J.D. Palmer. Chloroplast genome rearrange-

ments and the evolution of giant lobelias from herbaceous ancestors . Molec-

ular Biology and Evolution, 10:414–430, 1993.

[59] M.K. Kuhner and J. Felsenstein. A simulation comparison of phylogeny al-

gorithms under equal and unequal evolutionary rates. Molecular Biology and

Evolution, 11:459–468, 1994.

[60] A. Laferriere, D. Gautheret, and R. Cedergren. An RNA pattern matching

program with enhanced performance and portability. Comput. Applic. Biosci.,

10:211–212, 1994.

[61] A. LaMarca and R.E. Ladner. The Influence of Caches on the Performance of

Heaps. ACM J. Experimental Algorithmics, 1(4), 1996.

[62] C.E. Lawrence, S.F. Altschul, M.S. Boguski, J.S. Lui, A.F. Neuwald, and J.C.

Wootton. Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy for

Multiple Alignment. Science, 262:208–214, 1993.

[63] C.E. Lawrence and A.A. Reilly. An expectation maximization (EM) algo-

rithm for the identification and characterization of common sites in unaligned

biopolymer sequences. Proteins, 7:41–51, 1990.

[64] B. Lenhard, A. Sandelin, L. Mendoza, P. Engstrom, and W.W. Wasserman

N. Jareborg. Identification of conserved regulatory elements by comparative

genome analysis. Journal of Biology, 13(2), 2003.

[65] S. Lin and B.W. Kernighan. An effective heuristic algorithm for the traveling

salesman problem. Operations Research, 21:498–516, 1973.

118

[66] J.S. Liu and C.E. Lawrence. Bayesian inference on biopolymer models. Bioin-

formatics, 15:38–52, 1999.

[67] J.S. Liu, A.F. Neuwald, and C.E. Lawrence. Bayesian models for multiple

local sequence alignment and Gibbs sampling strategies. J. Am. Stat. Assoc.,

90:1156–1170, 1995.

[68] T.M. Lowe and S.R. Eddy. tRNAscan-SE: A program for improved detection

of transfer RNA genes in genomic sequence. Nucleic Acids Res., 25:955–964,

1997.

[69] T.J. Macke, D.J. Ecker, R.R. Gutell, D. Gautheret, D.A. Case, and R. Sam-

path. RNAMotif, an RNA secondary structure definition and search algorithm.

Nucleic Acids Res., 29:4724–4735, 2001.

[70] J.F. Manen, A. Natali, and F. Ehrendorfer. Phylogeny of rubiaceae-rubieae

inferred from the sequence of a cpDNA intergene region. Plant Systematics

and Evolution, 190:195–211, 1994.

[71] M. Martin, T. Rujan, T. Richly, A. Hansen, S. Cornelsen, T. Lins, D. Leis-

ter, B. Stoebe, M. Hasegawa, and D. Penny. Evolutionary analysis of Ara-

bidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny

and thousands of cyanobacterial genes in the nucleus. Proc. Natl. Acad. Sci.,

99:12246–12251, 2002.

[72] L. McCue, W. Thompson, C. Carmack, M. Ryan, J. Lui, V. Debyshire, and

C. Lawrence. Phylogenetic footprinting of transcription factor binding sites

in proteobacterial genomes. Nucleic Acids Research, 29:774–782, 2001.

[73] C.C. McGeoch. Toward an experimental method for algorithm simulation.

INFORMS J. Comput., 8:1–15, 1996.

119

[74] J. Meidanis, M.E.M.T. Walter, and Z. Dias. A lower bound on the reversal

and transposition diameter. Journal of Computational Biology, 9(5):743–745,

2002.

[75] M. Miya, A. Kawaguchi, and M. Nishida. Mitogenomic exploration of higher

teleostean phylogenies: A case study for moderate-scale evolutionary genomics

with 38 newly determined complete mitochondrial DNA sequences. Mol. Biol.

Evol., 18:1993–2009, 2001.

[76] B.M.E. Moret. Towards a discipline of experimental algorithmics. In DI-

MACS Monographs in Discrete Mathematics and Theoretical Computer Sci-

ence. American Mathematical Society, 2002.

[77] B.M.E. Moret, D.A. Bader, and T. Warnow. High-performance algorithm

engineering for computational phylogenetics. In Proc. 2001 Int’l Conf. Com-

putational Sci. ICCS 2001. Springer Verlag, 2001.

[78] B.M.E. Moret and H.D. Shapiro. Algorithms from P to NP, Vol. I: Design

and Efficiency. Benjamin-Cummings, Menlo Park, CA, 1991.

[79] B.M.E. Moret, S.K. Wyman, D.A. Bader, T. Warnow, and M. Yan. A new

implementation and detailed study of breakpoint analysis. In Proc. 6th Pacific

Symp. Biocomputing PSB 2001, pages 583–594. World Scientific Pub., 2001.

[80] A.M. Moses, D.Y. Chiang, M. Kellis, E.S. Lander, and M.B. Eisen. Position

specific variation in the rate of evolution in transcription factor binding sites.

BMC Evolutionary Biology, 3(19), 2003.

[81] J.H. Nadeau and B.A. Taylor. Lengths of chromosome segments conserved

since divergence of man and mouse. Proc. Nat’l Acad. Sci. USA, 81:814–818,

1984.

120

[82] A.F. Neuwald, J.S. Liu, and C.E. Lawrence. Gibbs motif sampling: detection

of bacterial outer membrane protein repeats. Protein Science, 4:1618–1632,

1995.

[83] R.G. Olmstead and J.D. Palmer. Chloroplast DNA systematics: a review of

methods and data analysis. Amer. J. Bot., 81:1205–1224, 1994.

[84] J.D. Palmer. Plastid chromosomes: structure and evolution. Cell Culture and

Somatic Cell Genetics of Plants, 7A:5–53, 1991.

[85] J.D. Palmer. Chloroplast and mitochondrial genome evolution in land plants.

In R. Herrmann, editor, Cell Organelles, pages 99–133. Wein, 1992.

[86] T.J. Parsons and M.D. Coble. Increasing forensic discrimination of mito-

chondrial DNA testing through the analysis of the entire mitochondrial DNA

genome. Croatian Med. J., 42:304–309, 2001.

[87] A. Pavesi, F. Conterlo, A. Bolchi, G. Dieci, and S. Ottonello. Identification

of new eukaryotic tRNA genes in genomic DNA databases by a multistep

weight matrix analysis of transriptional control regions. Nucleic Acids Res.,

22:1247–1256, 1994.

[88] W.R. Pearson. Rapid and sensitive sequence comparison with FASTP and

FASTA. Methods in Enzymology, 183:63–9, 1990.

[89] I. Pe’er and R. Shamir. The median problems for breakpoints are NP-

complete. Elec. Colloq. on Comput. Complexity, 71, 1998.

[90] P.A. Pevzner and S.H. Sze. Combinatorial Approaches to Finding Subtle Sig-

nals in DNA Sequences. AAAI Press, 2000.

[91] A. Rambaut and N.C. Grassly. Seq-Gen: an application for the Monte Carlo

121

simulation of DNA sequence evolution along phylogenetic trees. Comput. Appl.

Biosci., 13:235–238, 1997.

[92] D.M. Rand. The Units of Selection on Mitochondrial DNA. Ann. Rev. Ecol.

Syst., 32:415–448, 2001.

[93] L.A. Raubeson and R.K. Jansen. Chloroplast DNA evidence on the ancient

evolutionary split in vascular land plants. Science, 255:1697–1699, 1992.

[94] K. Rice and T. Warnow. Parsimony is Hard to Beat! In Proc. 3rd Ann. Int’l

Conf. Comput. Comb. (COCOON97), pages 124–133, 1997.

[95] N. Saitou and M. Nei. The neighbor-joining method: a new method for re-

construction of phylogenetic trees. Molec. Biol. Evol., 4:406–425, 1987.

[96] Y. Sakakibarra, M. Brown, R. Hughey, I.S. Mian, K. Sjölander, R.C. Under-

wood, and D. Haussler. Stochastic context-free grammars for tRNA modeling.

Nucleic Acids Res., 22:5112–5120, 1994.

[97] M.J. Sanderson. r8s: inferring absolute rates of evolution and divergence times

in the absence of a molecular clock. Bioinformatics, 19:301–302, 2003.

[98] D. Sankoff. Edit Distances for Genome Comparisons Based on Non-Local

Operations. In A. Apostolico, M. Crochemore, Z. Galil, and U. Manber,

editors, 3rd Ann. Symp. on Combinatorial Pattern Matching, volume 644 of

Lecture Notes in Computer Science, pages 121–135, Tucson, AZ, April/May

1992. Springer-Verlag.

[99] D. Sankoff. Personal communication, February 2000.

[100] D. Sankoff and M. Blanchette. Multiple genome rearrangement and breakpoint

phylogeny. J. Comp. Biol., 5:555–570, 1998.

122

[101] C.D. Schmid, V. Praz, M. Delorenzi, R. Perier, and P. Bucher. The Eukaryotic

Promoter Database EPD: the impact of in silico primer extension. Nucleic

Acids Research, 32:D82–D85, 2004.

[102] S. Schwartz, Z. Zhang, K.A. Frazer, A. Smit, C. Riemer, J. Bouck, R. Gibbs,

R. Hardison, and W. Miller. PipMaker: A Web Server for Aligning Two

Genomic DNA Sequences. Ann. Rev. Plant Physiol., 38:391–418, 1987.

[103] D. Söll and U. RajBhandary, editors. tRNA: Structure, Biosynthesis, and

Function. American Society for Microbiology, Washington, DC, 1995.

[104] S. Steinberg, A. Misch, and M. Sprinzl. Compilation of tRNA sequences and

sequences of tRNA genes. Nucleic Acids Res., 21:3011–3015, 1993.

[105] G.D. Stormo and G.W. Hartzell. Identifying protein-binding sites from un-

aligned DNA sequences. Proceedings of the National Academy of Sciences,

86:1183–1187, 1989.

[106] D. Swofford, G. Olson, P. Waddell, and D. Hillis. Phylogenetic inference. In

D. Hillis, C. Moritz, and B. Mable, editors, Molecular Systematics, chapter 11,

pages 407–514. Sinauer Associates Inc, 2 edition, 1996.

[107] D.L. Swofford. PAUP*: Phylogenetic analysis under parsimony and other

methods. Sinauer Assoc., 2000.

[108] D. Tagle, B. Koop, M. Goodman, J. Slightom, D. Hess, and R. Jones. Em-

bryonic ε and γ globin genes of a prosimian primate (Galago crassicaudatus)

nucleotide and amino acid sequences, developmental regulation and phyloge-

netic footprints. Journal of Molecular Biology, 203:439–455, 1988.

[109] D.C. Wallace. Mitochondrial diseases in man and mouse. Science, 283:482–

488, 1999.

123

[110] L.-S. Wang. Exact-iebp: a new technique for estimating evolutionary dis-

tances between whole genomes. In Lecture Notes in Computer Science: Proc.

1st Workshop for Alg. & Bio. Inform. WABI 2001, pages 175–188. Springer

Verlag, 2001.

[111] L.-S. Wang and T. Warnow. Estimating true evolutionary distances between

genomes. In Proc. 33th Ann. Symp. on Theory of Comp. (STOC 2001), pages

637–646. ACM, 2001.

[112] T. Warnow. Some combinatorial problems in phylogenetics. In Proc. Int’l

Colloquium on Combinatorics and Graph Theory, Balatonlelle, Hungary, 1996.

[113] W.W. Wasserman and A. Sandelin. Applied bioinformatics for the identifica-

tion of regulatory elements. Nature, 5:276–287, 2004.

[114] D.R. Wolstenholme, J.L. MacFalane, R. Okimoto, D.O. Clary, and J.A.

Wahleithner. Bizarre tRNAs inferred from DNA sequences of mitochondrial

genomes of nematode worms. Proc. Natl. Acad. Sci., 84:1324–1328, 1987.

[115] C.T. Workman and G.D. Stormo. Ann-Spec: a method for discovering tran-

scription factor binding sites with improved specificity. Cancer Research,

61:2492–2499, 2000.

[116] S.K. Wyman and J.L. Boore. Annotating animal mitochondrial tRNAs: An

experimental evaluation of four methods. In Proc. of European Conf. on Com-

putational Biology (ECCB03), pages 44–46, 2003.

[117] S.K. Wyman, R.K. Jansen, and J.L. Boore. Automatic annotation of organel-

lar genomes with DOGMA. Bioinformatics, 2004. To appear.

[118] L. Xiao, X. Zhang, and S.A. Kubricht. Improving memory performance of

sorting algorithms. ACM J. Experimental Algorithmics, 5(3), 2000.

124

[119] M. Zuker and P. Stiegler. Optimal computer folding of large RNA sequences

using thermodynamics and auxiliary information. Nucleic Acids Research,

9:133–148, 1981.

[120] G. Zuraawski and M.T. Clegg. Evolution of higher-plant chloroplast DNA-

encoded genes: implications for structure-fuction and phylogenetic studies.

Ann. Rev. Plant Physiol., 38:391–418, 1987.

125

Vita

Stacia Kathleen Wyman was born in Morristown, New Jersey on September 15,

1966, the daughter of Kathleen Mongan Wyman and Michael Thayer Wyman.

After graduating from The Williston Northampton School in Easthampton, Mas-

sachusetts, in 1985, she enjoyed a one-year hiatus from academia while on Grateful

Dead tour with friends. Refreshed from a year of travel and music, she went on

to receive her Bachelor of Arts degree from Smith College in Northampton, Mas-

sachusetts, in 1990. After a mere year and a half, she next completed her Master

of Science degree in Computer Science at The University of Wisconsin, Madison in

1991. She went on to attend the Automotive Program of The College of Alameda

in Alameda, California, for two years and then was employed as an auto mechanic

for one year in Corvallis, Oregon. Continuing her migration northward, she then

lived and worked in Seattle, Washington, before entering the University of Texas at

Austin in September of 1999.

Permanent Address: 2304 Longview Street

Austin, TX 78705

This dissertation was typeset with LATEX2ε
1 by the author.

1LATEX2ε is an extension of LATEX. LATEX is a collection of macros for TEX. TEX is a trademark of
the American Mathematical Society. The macros used in formatting this dissertation were written
by Dinesh Das, Department of Computer Sciences, The University of Texas at Austin, and extended
by Bert Kay and James A. Bednar.

126

