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This thesis describes experiments that studied the excitations of an
ultra-cold atomic Rb gas in an optical lattice using Bragg spectroscopy. A
Bose-Einstein condensate (BEC) of 8Rb was formed in a cloverleaf trap. An
optical lattice of cubic symmetry, formed by the interference of six laser beams,
was superimposed on the Rb BEC and turned on adiabatically. Such a system
is well described by the Bose-Hubbard model, which predicts a quantum phase

transition from a superfluid to a Mott insulator state at a critical lattice depth.

In the first experiment, we studied the superfluid regime. The su-
perfluid admits sound waves as phonon excitations. In two photon Bragg
spectroscopy two laser beams intersecting at angle on the condensate create
such excitations. The excitation spectrum of BEC was measured in a three

dimensional optical lattice as a function of lattice strength.
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In the second experiment we studied the excitation spectrum of the
Mott insulator. The lowest energy excitations in such a system are particle-
hole excitations. These correspond to the hopping of atoms from one lattice
site to another. The insulating phase is characterized by a gap in the excitation
spectrum and we measured this particle-hole gap by Bragg spectroscopy. The
precise nature of our measurement allowed us to study the opening of the

excitation gap that has previously eluded experimental verification.
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Chapter 1

Introduction

Experiments done with liquid “He [1, 2] exhibited an anomalous behav-
ior which became known as superfluidity. Two groups independently measured
the resistance to the flow of liquid *He in narrow channels. They have observed
that, below a certain temperature the liquid flowed without resistance. This
zero viscosity behavior gave superfluidity its name. Superfluids also exhibit
other interesting phenomena such as, reduction of moment of inertia, persis-
tent currents, collective modes and quantized vortices. Superfluidity was first
attributed to Bose-Einstein Condensation (BEC) by London [3]. BEC was
predicted by Albert Einstein [4], who developed the work of Bose on quan-
tum statistics of photons [5]. Einstein studied the behavior of noninteracting
bosonic atoms, and showed that below a critical temperature T, a macroscopic
fraction of the atoms should condense into the lowest energy state. London’s
idea that superfluidity is due to BEC was not universally accepted as it was
believed that BEC would not be possible when inter-atomic interactions are
present as is the case for liquid “He. N.N. Bogoliubov studied a dilute gas
of atoms with weak repulsive interactions obeying Bose statistics and showed
that such a system can Bose condense and exhibit superfluidity [6]. However,

liquid helium is a strongly interacting system limiting the number of atoms



in the lowest energy (zero-momentum) state. Neutron scattering experiments
showed the presence of a condensation of about ~10% of atoms in liquid he-
lium [7]. This lead to the search for weakly interacting Bose gases with higher
BEC fractions. The experimental realization of dilute alkali gas BEC’s [8,9]
finally provided the textbook example of a weakly interacting system. One
question was whether the phenomena observed for liquid helium could also
be observed in trapped gases. A series of experiments has shown that indeed
trapped alkali gas BEC’s [10-15] do exhibit superfluidity and are ideal systems

to test superfluidity theories.

1.1 Weakly Interacting Regime

The dilute alkali gas BEC’s are dilute in the sense that the average par-
ticle spacing is large compared to the characteristic interaction length. Gross-
Pitaevskii equation (GPE) describes such a dilute system at zero temperature
[16]. The GPE assumes all the atoms are in the ground state (100% conden-
sate fraction) and neglects interaction induced correlations. In the Bogoliubov
theory the interactions between the particles cause a small fraction of atoms
to populate excited states, the population of which constitutes the depletion
of the condensate. The GPE and Bogoliubov theory are adequate to explain
the results of many experiments such as speed of sound in BEC [12], collective
oscillations [10,11] and quantized vortices [13,14]. In fact, Gross Pitaevski
theory was first developed to study vortex states in weakly interacting bosons.

These experiments showed that BEC of alkali atoms were ideal to study the



properties of superfluid as they can be described well with the theory. In a
dilute gas BEC the s-wave scattering length a, determines the interactions
between the atoms. The strength of interactions can be characterized by the
ratio of the interaction energy to the kinetic energy needed to correlate atoms
by bringing them within a distance of average particle spacing, v = Ein:/Exp

which for a given density n is

_ g 1)3
v = ey asn (1.1)

where g = 4mh%a,/m is the interaction strength in the mean field approach.

/3 is much larger than

For a dilute gas BEC the inter particle spacing n~
the scattering length a,. Thus the ratio v is very small corresponding to a
weakly interacting system. After excellent agreement between the experiments

and theory researchers wanted to push into the strongly interacting regime to

understand superfluidity in more complex systems.

1.2 Strongly Interacting Regime

The strongly interacting regime in the context of BEC means that the
interaction induced correlations play an important role in determining the
properties of the system and it can no longer be explained by the simple mean
field approach of GPE. The scattering length a, in BEC can be increased by
Feshbach resonance [17] which provides an obvious way to reach strong cou-
pling regime [18,19]. The problem with this method is the shortening of the

BEC lifetime due to three body loses. Another method is to erect an opti-



cal lattice onto a BEC. An optical lattice, [20-22] produced by the standing
waves of an off resonant laser, confines atoms at the nodes (or antinodes) due
to the dipole force on the atoms [23]. The localization of the atoms increases
the interactions between them at the same time reducing their kinetic energy.
The atoms can move from one lattice site to the next by tunnelling which
plays the role of the kinetic energy. Tunnelling and thus the kinetic energy
is suppressed with increasing lattice strength. The strength of the lattice can
be easily adjusted experimentally and allows us to study the system with in-
creasing interactions. For such a system the ratio of Fj,;/Exp is no longer
given by eq. (1). As we will see in the following chapters a condensate in an
optical lattice can easily reach the strong coupling regime even though a,n'/?
is still much smaller than 1. Thus ultra-cold atoms loaded in optical lattices
can be used to study many problems that have not been practical before.
Examples include studying superfluidity in moderate to strongly interacting
systems, quantum phase transitions and quantum computation. One of the
biggest advantages of ultra-cold atoms in optical lattices is the ease with which
the interactions between the atoms can be changed, making different regimes
(weakly interacting to strongly interacting) easily accessible. The number of
atoms in such a system along with their temperature can also be adjusted.
Another advantage includes the defect and impurity-free nature of the lat-
tice compared to solid-state and condensed-matter systems allowing precision
measurements. For example Bloch oscillations were observed using Cs atoms

loaded in an optical lattice [24] that could not be observed in solid crystals



before. Josephson oscillations were realized with a BEC in a one dimensional
optical lattice [15]. Precision measurements such as Bragg spectroscopy done
on BEC’s [25] to measure the Bogoliubov excitation spectrum can be imple-
mented with BEC’s in optical lattices to measure the excitation spectrum of
the BEC in the lattice. Last but not the least a quantum phase transition
from a superfluid to a Mott-insulator was observed [28] in a remarkable exper-
iment that triggered a surge of research both experimentally and theoretically

to understand properties of condensates in optical lattices.

1.3 Probing quantum phase transitions

Ultra-cold atoms in an optical lattice can be described with the Bose-
Hubbard model [26]. This model described bosons in a lattice and was used to
study liquid helium in porous media. Jaksch showed that ultra-cold atoms in
optical lattices is a simple realization of the Bose-Hubbard model [27]. One of
the peculiarities of this model is the prediction of a quantum phase transition
from a superfluid to an insulating phase. Recently, an experiment realized such
a quantum phase transition [28]. The onset of insulating phase is accompanied
by a loss of coherence of the wave function of the superfluid. The loss of
coherence can be probed with interference experiments and was realized in the
original experiment by Greiner et al. [28] and also reproduced in our group.
However, several processes can lead to a loss of coherence such as heating and
depletion of the condensate, so loss of coherence alone is not proof of Mott

insulating state. The other important feature of the Mott insulator state is



a gap in the excitation spectrum. Two different experiments were done to
detect this gap in the excitation spectrum, by applying a potential gradient to
the lattice [28], and shaking the lattice in one direction [29]. Although their
spectra shows a gap, the nature of the opening of the gap close to the transition
could not be probed. We use Bragg spectroscopy proposed by Oosten et al.
[30] to measure the particle-hole gap associated with the Mott insulator phase

and analyze the opening of the gap close to the transition.

1.4 Main results of this work

This thesis consists of two experiments. The first experiment consists
of measuring the excitation spectrum of ’Rb condensate loaded in an optical
lattice. We use Bragg spectroscopy to study the response of the system at
varying lattice heights. Up to a certain lattice height the system is a superfluid
and admits sound waves. We use Bragg spectroscopy similar to experiments
done by D.M. Stamper et al. [25] on condensates to study excitations of
superfluid in the lattice. We plot the excitation energy of the condensate
as a function of lattice height. In the second experiment we perform Bragg
spectroscopy in the Mott insulator phase. We measure the particle-hole gap
in the excitation spectrum. We show that the particle-hole gap tends to the
on-site interaction energy deep in the Mott insulator phase and decreases more

rapidly as we approach the superfluid region as predicted by Oosten et al. [30].



Chapter 2

Superfluid in optical lattices

Much work has been done to understand the properties of a weakly in-
teracting superfluids since the experimental realization of the dilute gas BEC.
Quasi-particles, collective excitations, and speed of sound concepts were devel-
oped to try to describe the superfluidity since experiments on liquid Helium.
The problem with liquid Helium is that it is strongly interacting and these
interactions cannot be treated by simple mean-field approach as in the dilute
BEC case. The weak interactions in the BEC allowed researchers to verify
experimental results by theory and vice versa. The next question is to try to
understand the behavior of superfluid with stronger interactions. Ultra-cold
atoms loaded in optical lattices provide a unique way to study the behavior
of the superfluid as a function of interaction strength between the atoms since

we can change the interaction strength by changing the lattice strength.

2.1 Excitations of Superfluid

As mentioned earlier, N. Bogoliubov gave the first macroscopic deriva-
tion of the elementary excitation spectrum of a weakly interacting Bose gas [6].

The excitation spectrum gives the energy hw(q) as a function of its momentum



wave vector . The elementary excitation spectrum has been measured in He
II by neutron scattering [31]. The low momentum excitations are phonons
corresponding to collective excitations of the system. The theory for inter-
acting bosons can reliably only describe the case of dilute gases where the
interactions are weak, as opposed to liquid He. The realization of dilute alkali
gas BEC’s [32, 33] allowed this theory to be tested experimentally for the first
time. In the first experiments shape oscillations of BEC’s that are analogous
to phonons in homogeneous systems were studied [10, 11]. Speed of sound in
BEC was first measured by exciting density perturbations and observing the
propagation of sound waves by Ketterle’s group [12]. The same group also used
Bragg spectroscopy to study phonon modes of the BEC both in the interacting
and free particle regime. Another experiment also utilized Bragg spectroscopy
to map out the excitation spectrum of the BEC[35]. Thus, Bragg spectroscopy
was proved to be a powerful tool to do precise measurement of excitations in
the BEC. We use Bragg spectroscopy to study excitations of the BEC in the

optical lattice.

2.2 Bragg Spectroscopy

Bragg scattering was first demonstrated by W. H. Bragg and W. L.
Bragg in 1912 by scattering X-rays from crystal planes. Neutron and light
scattering has been used in the past to study the excitations of liquid helium
[31]. This provided a lot of insight into the properties of superfluid Helium

such as the type of excitations in the system, an upper bound for the superfluid



critical velocity, and the structure factor (sec.2.2.1) of the superfluid. Thus,
Bragg spectroscopy of dilute gas BEC is an appealing method to understand
its properties. Bragg scattering of atoms from a standing light wave was first
observed by Martin et al. [34]. Several experiments were done to study the

properties of BEC using two-photon Bragg scattering [25, 35].

Bragg scattering of atoms involves coupling of the two momentum
states of an atom via a stimulated two photon process. It can be thought
of as a Raman process where two momentum states are coupled as opposed to
the internal states of the atoms. Thus this stimulated two photon process is

referred to as Bragg spectroscopy in analogy to Raman spectroscopy.

To perform Bragg spectroscopy the sample of interest is illuminated by
two laser beams intersecting at an angle 6 as shown in Fig. 2.1. We require that
the lasers are both far detuned from any optical transitions so that spontaneous
scattering is suppressed. The relative detuning between the two lasers w =
wy — wq is adjustable and can be very small. When an atom absorbs a photon
from one beam and is stimulated to emit another photon into the second beam,

it acquires a momentum of Aq and energy of hw given by equations:

0
hew = hws — huw. (2.2)

It was shown [25] that the two photon excitation rate Ry, per atom is given

by



Figure 2.1: Bragg spectroscopy set-up. The momentum transfer is determined
by the angle between the Bragg beams. The momentum transfer is determined
by the angle 6 while the frequency difference w = wy—w; determines the energy
transfer.
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Ry = 210%5,(S(q,w) — S(—q, ~w)) (2.3)

where (25, is the two photon Rabi frequency given by

IRV
» 4A Isat '

I is the line width of the relevant optical transition, A is the detuning of the

(2.4)

laser beams from this transition, I;, I, are the intensities of beams 1 and 2,

and I, is the saturation intensity.

The dynamic structure factor S(q,w) is a measure of the excitation of

the density fluctuations and deserves detailed explanation.

2.2.1 Structure Factor and the Bogoliubov Theory

The dynamic structure factor characterizes the dynamic response of
quantum many-body systems to a probe. It was first introduced to understand
the measurement of the excitation spectrum of *He [36]. For a many body

system, the structure factor is defined as [31]
1 _
S(a,w) = ;e PEm| < m|pgin > [*0(E — E,, — E,,) (2.5)

where q is the wave vector of the momentum and E is the energy trans-
ferred to the system from the probe. FE, is the eigenvalue of the eigenstate
n >, pqg = >, ; e'@ri/M is the Fourier transform of the single particle density
operator, and Z is the canonical partition function. In two-photon Bragg spec-

troscopy the atoms can be scattered by absorbing a photon from either of the

11



laser beams. Therefore, what is measured in Bragg spectroscopy is actually
(S(q,w) — S(—q, —w)). This is important because S(q,w) has a temperature
dependence that cancels out in the two photon case. Thus, one extracts the
information of the zero temperature system even for finite temperatures in the
BEC. This also means two photon Bragg spectroscopy is not a good tool to

measure the temperature of a superfluid.

The energy of a free particle with momentum hgq is fwy = h*q*/2m. If
we perform Bragg spectroscopy on a sample of non-interacting free particles
at rest, the particles will absorb photons and be stimulated to emit photons to
the other beam at a frequency difference for which the momentum and energy
is conserved, i.e the resonant frequency w will be hg*/2m corresponding to
the recoil momentum. In the Bogoliubov approach the effect of repulsive
interactions gives rise to an increase in the chemical potential y. Including
the interactions between atoms the energy of the quasi-particle excitations

becomes

hwp = \/hw,(hw, + 2gn) (2.6)

where g = 4nh?a,/m with a, the s wave scattering length. The product gn
is usually denoted by U, the inverse compressibility, giving the strength of
interactions between the atoms. For the high momentum case h%q?/2m > U
the dispersion relation Aiwpg = hwg+ U looks like that of free particles with the
additional offset due the interactions. For low momentum, h*¢*/2m < U,

the dispersion relation becomes hwp = hqy/U/m. Note that for the low

12



momentum case the resonant excitations are linear in ¢, while in the high
momentum case it is quadratic. The crossover from collective transitions to
free particle like excitations occurs at momenta on the order of i/¢ where ( is

a characteristic length called the healing length given by

(=1 (2.7)

8mnag

Thus the nature of the excitations in the superfluid is strongly depen-
dent on the wave vector q of the excitations. If we perform Bragg spectroscopy
we should expect the resonance condition to change depending on the interac-
tions in the system as given by the Bogoliubov dispersion relation. Stamper
Kurn et al. has done Bragg spectroscopy with fixed ¢ and demonstrated the
shift in resonance frequency between a free particle-like and an interacting
cloud [25]. Note also from eq. (2.1) that in Bragg spectroscopy ¢ depends on
the angle 6 between the two Bragg beams. Davidson et al. [35] has varied the
angle # to change q and mapped out the excitation spectrum of the BEC from
low q to high ¢ where they were able to show the dispersion relation changing

from linear to quadratic in q.

The integral of S(q,w) over w gives the static structure factor S(q),
which is the Fourier transform of the density-density correlation function [31].
Thus S(q) measures the magnitude of the density fluctuations in the fluid.
Stamper Kurn et al. [25] showed that using a Thomas Fermi density distribu-
tion for a BEC S(q) — 157/32(hwo/2p)"/? for low q and S(q) — 1 — 4u/Thwg

for high q. This shows that the excitations are suppressed in the phonon

13



regime. This is attributed to the quantum depletion in the condensate [25].

The condensate can be described by the local density approximation as
long as the Thomas Fermi radius in the q direction is much bigger than the

wavelength of the excitation [37]. Then the excitation spectrum is given by

hq?

w(q) = \/CLDA(Q)2C]2 +(5, ) (2.8)

where crpa(q) is % 3(2)2 — 1 and the static structure factor S(q) is [25, 35,

37].

15<3+a 3+ 2a — 202

S0 =7\~ e

1 (7r + 2arctan(a —1 ))) (2.9)

2V

where a = 2u/(h%q?/2m). The value crpa(q) changes very slowly thus
the excitation spectrum is well approximated by the Bogoliubov theory (eq.

2.6).

2.2.2 Speed of Sound

The speed of sound in the superfluid corresponds to the speed phonons
(low q excitations) travel. This speed is equivalent to the slope of the excitation
spectrum as a function of q. We have shown that for low ¢ (dispersion relation

linear in q) this slope (the speed of sound) is given by

c=1/— (2.10)

14



The speed of sound is also known as the Bogoliubov sound in reference to
his pioneering work that showed that phonons travel with speed ¢ in weakly
interacting bosons. This can be measured with low q excitations where the
dispersion relation is linear in q. Steinheur et al. has measured the speed of
sound with Bragg spectroscopy [35]. For low q the resonance frequency w(q)
is given by the dispersion relation and one can readily obtain speed of sound

from ¢ = w(q)/q.

The question then arises as to the response of the superfluid to the
excitations in the optical lattice. If the system is a superfluid it should admit
sound waves. The observation of sound modes in a lattice that is not transla-
tionally invariant is due to the long range phase coherence of the superfluid.
This means atoms move coherently through the lattice giving rise to dissipa-
tionless currents. The study of excitations in the optical lattice is the central

theme of this thesis.

2.3 Excitations of the Superfluid in Optical Lattices
2.3.1 Ultracold atoms in Optical Lattices

Optical traps have been used to trap atoms for various experiments
[38]. The simplest optical trap consists of a single Gaussian laser beam. A
two-level atom with a separation of hw, between its levels, when exposed to
such a beam experiences a force given by the potential [23, 39]

R20)2
~ 4A

v (2.11)

15



where € is the Rabi frequency, and A = w;, — w4 is the detuning of the laser
frequency wy, from the atomic resonance frequency wy. The Rabi frequency €2
is related to the intensity by Q? = I'?I /21, where T is the decay rate of the
excited level and I and I, are the intensity of the laser beam and saturation
intensity respectively. The atoms also spontaneously scatter photons from the

laser beam at a rate
B ro?
f}/S - 4A2 M

Spontaneous scattering causes heating of the atoms. For a multilevel atom all

(2.12)

the relevant transitions need to be included for the calculation of the potential
and the spontaneous scattering rate. Since Q2 is proportional to the laser
intensity, we can increase the laser intensity as we increase A to keep the same

potential with a smaller ~;.

A one dimensional (1D) optical lattice can be constructed by retro-
reflecting a Gaussian laser beam. This will form a standing wave with periodic
intensity modulations. The intensity of the standing wave is four times that
of the incoming beam giving Q(z)? = 4Q%sin?(kxz). Thus, the potential for an

atom in a 1D lattice is of the form
Vo(x) = 4V sin®(kx). (2.13)

2D square lattices or 3D cubic lattices can be constructed by having 2 or 3
sets of orthogonal retro-reflecting beams. For a 3D lattice the potential at the

trap center is of the form
V(z,y,2) = Volsin®(kz) + sin®(ky) + sin®*(kz)]. (2.14)

16



Note that these expressions are for a collimated beam. For Gaussian beams
of waist w the actual potential is of the form

y2+22 2$2+22 212+y2

V(z,y,z) = Vo[sin*(kx)e ~ =2 +sin’(ky)e = =0 + sin*(kz)e ~ =% |.

(2.15)
In experiments the waist of the gaussian beams are much bigger than the size
of the sample, so for small distances around the trap center this potential can

be approximated by

1
V(z,y, 2) = Vo[sin®(kz) + sin®(ky) + sin®(kz)] + Em[wiLIQ + w2y’ + w? 2’
(2.16)
where wyr, wyr,w,r, are the quadratic trap frequency contributions of the laser

beams given by
N N

4(w5 wi)' (2.17)

Wi =

In our experiments V, =V, = V. = Vj which is expressed in terms of the
recoil energy E, = h?k*/2m. It should be also mentioned that if the beams
in different axis have the same frequency there will be interference between
them which will modify the potential. This problem can be avoided by using

orthogonal polarizations and/or different frequencies for each axis.

2.3.2 Bloch Bands

The periodic potential of the lattice results in the appearance of a band
structure as in solid state systems. The eigenstates of a Hamiltonian with a

periodic potential are Bloch functions of the form
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Dj(2) = 'y () (2.18)

where u;,(z) has the same periodicity as the potential. For an optical lattice
constructed from a laser with wavelength A the lattice constant is A/2 and
we require wu;,(z) = uy(x + A/2). For a 1D lattice this wave function can be
inserted into the Schrodinger equation to get the band structure of an atom in
a periodic lattice. We can express the strength of an optical lattice in terms
of the recoil energy E, = h*k?/2m. In a deep lattice where Vy > E, each
lattice site can support many vibrational levels. We would like the atoms to
stay in the lowest energy band. If the lattice is turned on too fast the atoms
can populate higher energy bands. The time scale for adiabaticity (to stay in
the first band) is roughly (E, — Ey)/h, where E,, is the nth band and Ej is
the first band. This time scale is less than a millisecond and is satisfied easily.
There is another condition for staying in the ground state of the system that
is related to the tunnelling of the atoms which is harder to satisfy and will be

discussed in section 3.3.2.

2.3.3 Structure Factor and Bogoliubov Theory in Optical Lattices

As stated in sect. 2.2.1 for a BEC the static structure factor S(q) is
affected by the phonon correlations due to the interactions between the atoms.
The static structure factor of the BEC in a 1D lattice was studied and it was

shown that its behavior is dominated by the phonon correlations giving [41]

|hg|

Sla) = 2m*c

(forqg—0) (2.19)
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where m* is the effective mass and c¢ is the speed of sound in the lattice.
The effective mass is defined as the curvature of the lowest Bloch band. An
approximate expression for the case of high lattice heights (Vo > E,.) was

given by Zwerger [40]
2 (2.20)
m = A2J .

where the bandwidth J is the gain in kinetic energy due to tunnelling. Using
the 1-D Mathieu equation an expression for J in the V > E, limit can be
obtained [40]

4 Voygu /T
— (V)34 Er 2.21
J Tﬁ(ET) c (2:21)

We can also write an expression for the speed of sound c in the lattice as

1

rm*

¢= (2.22)

where the k = (ndu/On)~! is the inverse compressibility. The inverse com-
pressibility depends on the chemical potential iz determined by the interactions
between the atoms and reduces to 1/gn for no lattice. While the interaction
between the atoms is increasing, m* is increasing exponentially and the com-
petition between the two processes determines the Bogoliubov sound in the
lattice for low q. We note that for zero lattice height m* = m and we recover
the speed of sound without the lattice. While it is easy to obtain analytic
expressions for the effective mass and inverse compressibility in the case of
strong lattice (tight binding regime) these quantities need to be computed

for smaller lattice strengths. There have been some calculations showing a
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decreasing speed of sound as the lattice is raised in one-dimensional lattices
[41]. Another paper by de Boer argues that for low lattice heights even though
the 1D case shows a monotonic decrease in the speed of sound, a 3D lattice
exhibits an increase in ¢ before starting to go down [42]. This is due to the fact
that for low lattice heights, the interactions between the atoms is increasing

faster than the effective mass.

We use Bragg spectroscopy to find the resonance for different lattice
heights in the low q regime. This corresponds to mapping the Bogoliubov

excitation spectrum for a fixed ¢ as a function of lattice strength.

2.4 Experiment Setup

2.4.1 Experimental Procedure

The experimental apparatus is discussed in detail in [51] and here I give
an overview of the apparatus and the changes we have made. This apparatus
has the ability to produce a few million atom BEC’s within hours of turning
on the experiment. The ease of producing a BEC reliably allows us perform
complicated experiments where BEC is the starting point. The experiment is
carried out in an ultra-high vacuum chamber which is separated into the atom
source side and the experiment chamber by a gate valve. A schematic of the

experimental apparatus is shown in Fig. 2.2.

The production of the BEC starts from slowing an atomic beam of
8"Rb using a Zeeman slower [43] and a slower laser beam detuned 1.492 GHz

to the red of the 5S;/2(F = 2) — 5P;3)(F = 2) transition, counter prop-
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agating the atomic beam. The slowed atoms are loaded into a magneto-
optical trap (MOT) employing a trapping laser locked to 15 MHz red of
the 551 /2(F = 2) — 5P5(F = 3) and a repumper laser locked to the
551/2(F = 1) — 5P5)5(F = 2) transition. After about 30 s of MOT loading we
can get about 5 x 10° atoms. The density of the atoms in the MOT is limited
due to radiative repulsion [44]. This limitation is overcome by transferring
atoms into a dark MOT [45] by putting a hole in the center of the repumper
beam such that in the absence of repumper beam atoms do not absorb any
photons. Densities of 2 x 10'* cm ™3 are achieved after 150ms in the dark MOT
at which point the temperature of the atomic cloud is down to 180 uK. To
reduce the temperature of the cloud further a 5ms molasses is applied during
which the MOT coils are turned off and only MOT trapping beams are on with
a detuning of -35 MHz from the 55 /5(F = 2) — 5P3/5(F = 3). After molasses
we end up with a cloud density of ~ 10 x 10'° cm™ and a temperature of ~
50 pK that is ready to be transferred into a magnetic trap. The magnetic trap
is a loeffe-Pritchard type trap [46,47] that produces a harmonic confinement
with a bias field in the center to avoid Majarona spin flips [48]. The atoms are
optically pumped into the |FF = 1,mp = —1 > state and the magnetic trap
is suddenly turned on yielding a trap frequency of 9Hz for this atomic state,
in order to match the atomic cloud size to the trap geometry. The magnetic
trap frequencies are then increased adiabatically to their maximum values of
11.6 Hz for the axial direction and 170.5 Hz for the radial direction in order to

maximize the elastic scattering in evaporation. In order to reach the quantum
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degenerate regime the atomic cloud is cooled further using forced evaporative
cooling. This process involves radio-frequency (RF) induced transitions be-
tween Zeeman levels of energetic atoms and untrapped states. The RF field
is generated by a rectangular RF coil inside the chamber. We start with a
radio-frequency of 30 MHz to selectively transfer atoms with energy higher
than average to untrappable states. The remaining atoms rethermalize at a
lower temperature. This process is continued for 20s by decreasing the RF
amplitude and frequency. At the end of the evaporation we can obtain pure
condensates of up to 2 x 10° Rb atoms in the |FF = 1,mp = —1 >. The
temperature of the atomic cloud can be inferred from its density profile that

has a temperature dependence.

A thermal cloud (not a condensate) of N atoms at a temperature T,

has a Gaussian density profile given by

7‘2 _z2
n(r, 2), = n?he(_% e (2.23)
where
2kgT 1 2kgT 1
T = | e gy = 4 | e — (2.24)
T m wz

are the radial and axial cloud sizes, depending on the radial and axial trap
frequencies w, and w,, respectively. The peak density in the trap center is
nY, = N7=3/%/r;h?2y,. During evaporation, the atomic cloud goes through a
phase transition into the BEC at a temperature

_hw N

_ 1/3 2.2
¢ k3(1.202> (2.25)
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/3 The Bose condensed cloud can be described by the

where w = (w?w,)
Thomas-Fermi approximation [49] where the kinetic energy is ignored due to
being negligible compared to the trap and self energy. In the Thomas Fermi
limit the BEC density profile takes the shape of an inverted parabola

7”2 22

T'rp  RTF

where

n =~ (2.27)

The interaction strength g = 47h%a,/m and the chemical potential y is given
by
1
= 5ml/5(151\/ash2uf”)2/5. (2.28)

We can detect the density profile of the condensate by optical imaging that is

covered in detail in next section.

2.4.2 Imaging System

Our main detection of the condensate is done by absorption imaging. If
atoms are illuminated by a resonant or near resonant light beam, they absorb
some of the light and cast a shadow. A probe light with intensity Iy(x,y) will
be attenuated after passing through the cloud. The attenuation depends on
the optical density D(x,y) of the cloud such that the intensity of the emerging
probe light is

I(z,y) = Iy(z,y)e P@v), (2.29)
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The optical density is the product of the column density n(x,y) and the ab-
sorption cross section o. The column density is the integral of the spatial

density along the propagation axis of the probe beam

n(z,y) = a/n(:c,y,z)dz (2.30)

and
1

0]
AN2 I
I+ &+ 5o

o =

(2.31)

where 0y = 3\?/27 is the resonant cross section, A is the detuning of the probe
light, I' is the natural line width of the transition and Ig47 is the saturation

intensity.

We take an absorption image of the cloud after the trap is switched
off and the cloud is allowed to expand called time of flight (TOF) image.
The main reason for using this method is that the optical density D of the
condensate is too high before expansion. To take a TOF image the trap needs
to be switched off fast enough so that the system is not evolving during the
switch off. The relevant time scale is the trapping frequency. For the magnetic
trap the trapping frequencies are in the range of 10-200 Hz. The magnetic trap
can be turned off in 1.5 ms limited by the Eddy currents which is fast enough.
For atoms in the optical lattice the local trapping frequencies of individual
sites are on the order of 10 kHz. However, the optical lattice field is switched
off in less than a us using an AOM allowing a snap-shot of the cloud. During

the free expansion, a thermal cloud expands as

Qk:BT( 1

m o w? 4t

) (2.32)

Tith =
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whereas a condensate expands as

24
mw?

Te = Ae(T) (2.33)

where x is either r or z, C is the expansion coefficient from conversion of
self energy to kinetic energy, and 7 = tw, is the time scaling factor. The
coefficients are from Castin and Dum model of an expanding condensate [50],

and are obtained by fitting the solutions of the following coupled differential

equations
0%\, 1
87’2 — )\3—>\Z, (234)
9%\, €2
52 o (2.35)

The two differential equations must satisfy the boundary conditions A\, (0) = 1
and O\, /0T|;—o = 0. Using eq. 2.29 the images cloud can be expressed as the

sum of a condensate and a thermal cloud

S = —lnlio = Sc(z,y) + Swn(z,y) (2.36)
where
2 2
S0 = e e e O
and
2 2
Sin(z,y) = %ewp - % - %) (2.38)

The time dependence of the condensate expansion is contained in A, and the
time dependence of the thermal cloud expansion is in x;,. We fit the image to

the above model with the parameters N;, the total atom number, T'/T. the
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reduced temperature, and cloud location. Ny, obtained from the fit gives T..
Then reduced temperature gives T and the BEC fraction R = (1 — T/T,)3.
The trap frequencies allow us to calculate the the condensate and thermal
cloud densities based on eqs. 2.32-2.35. Then we can determine the density of

the unexpanded cloud at ¢t = 0.

We made some changes to improve the imaging system. In the original
design we used 25cm and 40cm regular achromats to image the cloud. The
chamber design features special windows that enable us to place lenses very
close to the atomic cloud for better resolution (see Fig. 2.3). We implemented
new lens set up that can give close to diffraction limited performance (4.5um)
in vertical direction and (8m) in the horizontal direction. The new lens set
up was tested using a resolution target (Edmund Industrial Optics model R38-
257). The lower resolution of the horizontal imaging setup is due the smaller

window limiting NA.

2.4.3 Atomic Source

The atom source is a two chamber oven allowing us to load two distinct
species into the chamber. The system is loaded with rubidium and bosonic
lithium (“Li). Currently we are doing experiments with only 8"Rb but the
apparatus is equipped to trap lithium as well. Lithium setup is described in
detail in the appendix. The drawing of the atom source is shown in Fig. 2.4.
Lithium has much lower vapor pressure than rubidium. Thus, each chamber’s

temperature is controlled separately allowing us to load single species or both
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Figure 2.3: We can place the imaging optics very close to the atomic cloud by
inserting the lens tube inside the re-entrant window. The dimensions are for
vertical imaging.
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species with comparable flux. The two species are mixed in the lithium cham-
ber and form a single atomic beam to be slowed by the Zeeman slower. The
lithium atoms can condense in the colder ~200°C rubidium chamber. Thus the
conductance of the main nozzle is about 50 times higher than the conductance
of the rubidium nozzle to prevent lithium atoms condensing on the rubidium
chamber (see Fig. 2.4). We only loaded ~ 3 grams of lithium compared to the

25 grams of rubidium due the difference in mass ratio.

2.4.4 Laser Set Up

The laser system for the 8"Rb experiment consists of four different
sources. Most of it is described in [51] and I will mention the set up briefly
and describe the changes we made. A Coherent Verdi-10 pumps a Coherent
MBR110 single frequency Ti:sapphire laser yielding an output of ~ 1.2W.
This laser is locked close to F=2 transition using a lamb dip set up to supply

the MOT, probe, slower and depopulator beams.

The original repumper laser required for the F=1 ground state to the
F=2 excited state transition consisted of a 5 mW Master DBR laser (Yokogawa
model: YL78XNW) and a 50 mw Slave utilizing injection locking. The master
DBR laser failed and was replaced by the only spare we had. Unfortunately, the
new DBR only lasted 16 days. With no DBR lasers for 780 nm in the market
we decided to use a Littrow laser as our master laser. We had a spare Littrow
housing originally built for lithium experiment. With minor modification we

were able to use this housing with a 70 mw (model:DL7140-201) yielding an
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output of 30 mW. We achieved a fiber coupling efficiency of ~ 60% making
the slave laser unnecessary. Mode hop free tuning range was only ~ 2 GHz
and the frequency of the laser drifted a few hundred MHz over a week that
required us to readjust the angle of the grating in the system. We thought
the frequency drift was due to temperature instability (5 mK) and added a
secondary thermo-electric TE cooler and servo just underneath the laser diode
housing. This improved the temperature stability to ~ 1 mK. However, the
laser frequency still drifted out of single mode operation over a week. This
prompted us to try a lower power 30 mW diode (Sharp model:LT025MDO).
This gave us a mode hop free tuning range of ~ 5 GHz and long term stability.
We think the better performance is due the difference in the power of the two
diodes. If the diode is not AR coated then the lower power diodes work better
than the higher power ones. The master laser has an output of &~ 15 mW so

we injection locked the slave to get 35 mW of power before fiber coupling.

The optical lattice beams are supplied by a Ti-Sapphire laser (Coherent
899-01) which is pumped by an Argon Ion laser. The optical lattice setup is
described in ref. [51]. The output of this laser is passed through an AOM and
the 1st order beam is delivered to the experiment table through a fiber. The
intensity of this laser is stabilized by feedback using a pickup window after the
output of the fiber. The laser is then split into three parts using two additional
AOMs with center frequencies of 200 MHz and 40 MHz to provide the three
sets of counter propagating beams for the lattice. The different frequencies

are necessary to avoid interference between different lattice beams. Each of
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these beams is then delivered into the chamber after being spatially filtered
by fibers. Each beam is retro-reflected to form three sets of standing waves.

The waist of the radial beams are set to 260 ym and that of the axial to 130
pm.

The Bragg spectroscopy and photoassociation (PA) experiment beams
are supplied by a Ti-Sapphire laser(Coherent 899-21) pumped by a Verdi (Co-
herent V10). The main beam is split into two by a polarizing beam splitter.
This way we send most of the power to the PA setup [51] and the rest to the
Bragg setup (see Fig. 2.5). The Bragg beams consists of two parallel polarized
beams delivered to the chamber with fibers. The angle between the two beams
is &~ 28 degrees and both are in the axial plane of the experiment. The RF
sources for the two AOMs are phase locked to each other and we can have
a very small frequency difference between the two Bragg beams. The Bragg
beams have a beam waist of &~ 500um. The fiber output couplers sending the
beam into the chamber are on 2D translation stages allowing precise alignment

of the beams onto the atomic cloud.

2.4.5 Cooling Water

The Argon Ion laser pumping the Ti-Sapphire for lattice laser and the
magnetic trap coils dissipate more than 40 kW of power and need to be water
cooled. The magnetic field of the trap is very sensitive to the chilled wa-
ter temperature. The original servo on the chilled water system to control the

temperature consisted of a proportional only gain controller (Johnson Controls
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Figure 2.5: Bragg spectroscopy and photoassociation beams are derived from
the same source. A polarizing beam splitter controls the amount of power going
into each set up. The main Bragg beam is split into two and each beam passes
through an identical AOM with a center frequency of 115 MHz. The frequency
difference v between the beams is adjusted by changing the frequency of one
of the AOMs. The beams are sent into the experiment chamber by fibers.
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model: T-5800-1) that received a pneumatic signal from an immersion tempera-
ture sensor and put out a pneumatic signal to an 8” pneumatic valve (Siemens
model 59901050) at the drain. The problem with this control was that when-
ever the main chilled water input parameters such as pressure changed the
temperature of the water drifted causing big number fluctuations in the BEC.
Thus, we installed a an electronic proportional and integral gain controller
(Siemens model RWC62) that is input by a nickel temperature sensor (Siemens
model 556-541). The output of the controller goes to a current/pressure trans-
mitter (Moore Industries model IPT/4-20mA /3-27PSIG/35PSI) that converts
the electronic signal into pneumatic signal to control the pneumatic valve.
The new servo provided & .1°C stability in cooling temperature measurement

reducing the number fluctuations to =~ 10%.

2.5 Measurement of the Excitation Spectrum in Optical

Lattices

We create a BEC in a cloverleaf trap and load it into a 3D optical
lattice. The BEC production and optical lattice setup are described in detail
in [51] and I report here only the relevant parameters of the experiment. The
magnetic trap is cylindrically symmetric with frequencies of 11.6 Hz and 20 Hz
in the axial and radial direction respectively. The axial optical lattice beam
has a beam waist around 130 pum and is aligned along the axis of the BEC. The
radial lattice beams are orthogonal to each other and the axial lattice beam

forming a simple cubic lattice. The radial beams each have a waist of 260
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pm and are both at 45 degrees to the horizontal as depicted in Fig. 2.6. The
Bragg beams have a beam waist of 500 pum each and are in the axial-horizontal
plane with an angle of 28 degrees between them such that the difference wave
vector q is directed radially (see Fig. 2.1). They are derived from the same
source as explained in sect. 2.5.2 and are detuned 430GHz red from the 8'Rb
D1 line. The experimental procedure is as follows: After a BEC of about .5
million atoms are produced the lattice is quadratically ramped to a variable
height Vy over 50 ms. Bragg beams are pulsed for 1ms with an intensity of
around 75 mW /cm? each yielding a two-photon Rabi frequency g, of .25
kHz. Immediately after the Bragg pulse the lattice and the magnetic trap are
turned off abruptly and the cloud is allowed to expand for 35 ms during which
the quasi-particles are turned into free particles before we take a TOF image
of the cloud from the vertical direction. The frequency difference between the
two Bragg beams is varied and the experiment is repeated. The out-coupled
atoms due to Bragg scattering are spatially separated from the unscattered
atoms as seen in (Fig. 2.7). Thus, we call this measurement the out-coupling
method. The scattering efficiency can be determined by comparing the number
of atoms in the scattered cloud to the number in the unscattered cloud. The
out-coupling method works well for low lattice heights. However, as the lattice
is ramped up higher the expansion of the cloud becomes too large and the
scattered atoms cannot be distinguished from the unscattered atoms. The
larger expansion is probably due to due to the quantum depletion giving a

bigger momentum distribution of the ground state of a single lattice site. Thus,
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we use the out-coupling method just to measure the response of the BEC to
Bragg beams for lattice strengths V) < 3.5E,.. We adopted a temperature
measurement, to detect the resonant response to the Bragg pulse for higher
lattice strength. The experimental procedure is the same as the out-coupling
method up to the pulsing of the Bragg beams. Then we quadratically ramp
down the lattice to zero height in 20 ms. We wait about 5 ms to let the cloud
come to thermal equilibrium before turning off the magnetic trap abruptly.
After we turn off the magnetic trap the cloud is allowed to expand for 24ms
after which we take a TOF image of the cloud from the horizontal direction.
The image is fit as described in section 2.4.2, and the temperature and the BEC
fraction of the cloud is determined from the fit. The excitations created during
Bragg pulse will be damped into the system as heat and this will show up as
an increase in the temperature of the system and a decrease in the condensate
fraction. We changed the power of the Bragg pulses to verify that we are in
the linear response regime. Note that the momentum transfer is fixed by the
angle between the two Bragg beams and we find the resonant frequency w(q)
for a single q for different lattice heights. The momentum transfer along the
radial direction is ¢ = .48k in a direction perpendicular to the trap symmetry
axis. As we ramp up the lattice the momentum wave vector becomes smaller
than the healing length putting us in the linear regime. We fit each scan
of w(q) for a given lattice height to a Gaussian peak and the center of the
peak gives the resonance frequency as shown in Fig. 2.8. We also use the

temperature measurement for low lattice heights and verify that they agree
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with the out-coupling method. If the Bragg beam power is increased beyond
linear response we can see 2nd order effects. The atoms get a momentum
kick of 2¢ at a frequency difference of 2w, between the Bragg beams where
wp is the resonant frequency in linear response. This is observed both with
the out-coupling method for low lattice heights as well as with temperature
measurement. The resonant frequency is plotted for different lattice heights
in Fig. 2.9. The Bogoliubov theory and the LDA (eq. 2.8) give a resonant
frequency of w/2m = 850H z) for zero lattice strength. Our measured value is
870 + 100 Hz with the error coming mainly from the atom number fluctuations.
As we increase the lattice height the resonance frequency increases slightly up
to Vp = 2F,. This is probably due to the faster increase of interaction energy U
compared to the increase in effective mass m*. The calculation of U is detailed
in section 3.3.1. Here we just report that in the tight binding approximation
(Vo > E,) it scales as

Vo 3/4
Ux(— . 2.
( 7n) (2.39)

Thus, U increases with increasing lattice strength. The effective mass increases

exponentially with lattice strength and from eqns. 2.20 and 2.21, scales as

m* Vo
24/ — 2.4
" o a2y 1) (2:40)

for Vo > FE,.. Thus, for strong lattice strength where tight binding approxi-
mation is valid the speed of sound decreases as

Yo

7 (2.41)

c x exp(—
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For V > 2F, the resonance frequency decreases gradually. We attribute this
to the decrease in the speed of sound due to the exponential increase of effec-
tive mass. The calculation of U and m* for low lattice strengths need to be
done numerically. As we are in linear regime the Bogoliubov speed of sound
is readily obtained through ¢ = wy/q from our data. The error is smaller
in the estimation of ¢ for stronger lattice. Thus, we compare our data for
the strongest lattice where we can still see superfluid excitations in the linear
regime. From eq. 2.41 and using the linear phonon regime our excitation en-
ergy should decrease by a factor of exp(—\/% . For zero lattice strength the
resonant excitation energy is 870 Hz and for lattice strength V) = 9.8F). tight
binding approximation gives a resonant excitation frequency of wy/27=380 Hz.
We measure wy/2m=420 Hz. The uncertainty in our measurement is = 120
Hz coming mainly due to the uncertainty in the calibration of lattice strength
as explained in section 3.3.2. This shows our measurement is in agreement
with the phonon excitations of superfluid. Observation of sound modes in the
BEC in optical lattice is independent proof of the coherence of the superfluid
throughout the lattice. Our data may provide theorists with valuable infor-

mation as we try to understand the strongly interacting superfluids better.

38



Radial

4"./)/

- o p—

\

Radial

Figure 2.6: 3-D optical lattice set up. Two radial direction optical lattice
beams are 45 degrees to vertical and horizontal directions. Imaging direction
is horizontal or vertical which will be 45 degrees to radial direction optical
lattice beams.
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Figure 2.7: Bragg Scattering in Optical Lattice. a)Lattice and Bragg laser
beam intensities as a function of time. The lattice laser is quadratically ramped
up over 50ms and then the Bragg pulse is applied for 1ms, after which both
beams are suddenly turned off along with magnetic trap. b)Time-of-flight
(TOF) image taken after 35ms of free expansion. The scattered atoms are
spatially separated from the unscattered cloud. c)Ratio of scattered atoms to
the unscattered atoms for V) ~ 2F, for different w.
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Figure 2.8: a)The schematic of the lattice and Bragg lasers are shown. The
lattice is ramped up quadratically over 50ms. The Bragg pulse duration is
Ims and the lattice is ramped back dogn in 20ms. b)The resonant excitations
during the Bragg pulse are damped into the system as heat. The response is
fit to a Gaussian and the center is taken as the resonance frequency.
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Figure 2.9: a)Dispersion relation showing the phonon (linear) regime for ¢ <
€71 and free particle-like regime for ¢ > £~!. In the experiment ¢ = 3.8 x
10%um~! and €71 ~ 6.5 x 10°%um~1. b) The resonance frequency as a function
of lattice height. Since we are in the linear regime the speed of sound is readily

obtained through ¢ = w(q)/q. The speed of sound ¢ = 4/ WI{ The decrease in

excitation frequency for V) > 4F, is due to the decrease in c.
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Chapter 3

Mott Insulator

The Mott insulator phase is the state when atoms are localized to
individual lattice sites due to repulsive interactions between them. These
repulsive interactions increase with increasing lattice height. For low lattice
heights the system is a superfluid and atoms are spread throughout the lattice
as would be expected from a BEC. In the superfluid state the atoms can move
freely through the lattice. A condensate exhibits coherent wavelike behavior
which can be observed with interference just like the interference of coherent
laser light. In the Mott insulator state because the particles are localized
to individual lattice sites, they do not have phase coherence and would not
exhibit any interference. The loss of coherence can be probed in time-of-flight
(TOF) images and this method has been used to demonstrate the transition
to the Mott insulator phase [28]. However, the loss of coherence alone is not
proof of the Mott insulator phase because processes such as heating during
the loading of the BEC to the lattice can cause loss of coherence. Also, phase
coherence does not go to zero close to the transition in the Mott insulator state.
Another feature of the Mott insulator phase is a gap in its excitation spectrum.
The lowest lying excitations for such a state are particle-hole excitations. In

our system this corresponds to an addition of an atom to one lattice site
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and removal of an atom from another lattice site as shown in Fig. 3.5. In
the superfluid there is no certainty in the number of atoms per site so such
excitations can be activated at all energies. However, in the Mott insulator
state the addition of an atom to a lattice site from another lattice site, i.e
hopping of one atom from one site to another, costs an energy that determines
the gap in the excitation spectrum. In the original experiment by Greiner
et al. [28] this gap was detected by tilting the lattice. Another group shook
the lattice in one direction to create excitations by putting sidebands to the
lattice [29]. However, for the latter experiment, there should be no scattering
in linear response and the response is probably due to nonlinear effects [30, 52].
Both experiments show similar data with a discrete excitation spectrum, but
do not provide any means to observe the opening of the gap that characterizes
the insulator state. We use Bragg spectroscopy in linear response to measure
the particle-hole excitations and observe the opening of the excitation gap in

the transition from the superfluid to the Mott insulator phase.

3.1 Quantum phase transition from a Bose-Hubbard
model
Jaksch et al. [27] showed that ultra-cold atoms in optical lattices is a
perfect realization of the Bose-Hubbard model originally studied by Fisher [26].
This model predicts a phase transition from a superfluid to a Mott insulator
state. To show that ultra-cold atoms in optical lattices can be described by the

Bose-Hubbard model Jaksch et. al. started with the Hamiltonian for bosons
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in an external trap [27]

1 47ash?
2

H = [ i@ Vol Ve @)oo+ T [ et )t @)
(3.1)
where 1 (x) is the boson field operator for the atoms in the optical lattice,
Vo(z) is the optical lattice potential and Vi (z) is an external trapping potential
(magnetic trap in our case). In sec. 2.3.2 we stated that the eigenstates of a
system in a periodic structure are Bloch functions. As the lattice potential is
ramped up the atoms become localized to individual lattice sites. The Bloch
states are not localized eigenstates but a superposition of such states gives the

Wannier functions which are localized and can be used to describe the atoms

in the lattice. The wave function can be written as

W(x) = Z baw(z — ;) (3.2)

where b; is the annihilation operator and w(z — z;) is the Wannier function for
it" lattice site. For this expression only the lowest vibrational state is included.
This is justified by the fact that the energy needed to excite the second band
is a lot higher than the energies involved in the system. If we substitute eq.

(3.3) into eq. (3.2) the Hamiltonian can be rewritten as

<ig> i
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where the operator n; gives the number of atoms in site ¢; the parameter
J = [ Prw*(x — x;)[~ L& 72 + V(@) |w(x — x;) is the hopping matrix element
between adjacent sites, U = 4% [ @Bylw(x)|* corresponds to the on site
interaction energy between atoms and ¢; = [ d*zVp(x)|w(x—x;)|? is the energy
offset of each lattice site. This term is due to the inhomogeneity of the trap.
It is zero at the center of the trap and equals to the chemical potential at the

edge. Now, the Hamiltonian takes the form of a Bose-Hubbard model.

The Wannier functions can be approximated by a Gaussian ground
state wave function corresponding to the harmonic trap of a lattice site for

Vo > E,. This results in analytic expressions for U (eq. 3.8) and J (eq. 2.18).

Fischer studied the Bose-Hubbard model and constructed a phase di-
agram [26]. Much insight can be gained by studying this diagram plotted in
(Fig. 3.1).
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Figure 3.1: Chemical potential as a function of J. Increasing lattice strength
corresponds to decreasing J/U. The system is superfluid for J/U > 1. The
particle and hole excitation energies are shown for a point in the one atom per
site Mott insulator region. This plot was generated in Mathematica using the
result of [53] obtained by minimizing the variational energy per site.
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Let us consider the limiting case of J = 0. The on site energy will be

given by from the Bose-Hubbard Hamiltonian (eq. 3.3) [26]

e(n) = —pn + %Un(n—l). (3.4)

Each lattice will be filled with the same integer number (n) of atoms that
minimizes this energy. From Fig. 3.1 it can be seen that forn — 1 < u/U <n
exactly n bosons occupy each lattice site. If we start increasing J by decreasing
the lattice height, the atoms will gain kinetic energy if they can hop to other
lattice sites. However, the atoms cannot hop until the kinetic energy gained
from such a process is on the order of the on site interaction energy U. Thus,
for large lattice heights when J/U < 1 the atoms cannot hop around and form
regions where each lattice site is occupied by a fixed number of atoms. These
constant n regions are incompressible and form Mott insulating phases. The
atoms are completely localized to individual lattice sites. This means the atom
number on each lattice site is determined which gives a vanishing expectation
value for b;. This translates into no phase coherence between lattice sites. Once
J is big enough to overcome the repulsion on the lattice sites the particles can

hop around and form a superfluid.

There have been experiments with two dimensional systems such as
YHe films [54] and flux lines in superconductors with artificial pinning cen-
ters [55] that attribute observed experimental effects to the formation of Mott
insulating regions. There has also been an experimental study with a one di-

mensional system of Josephson junction arrays [56] to study the Bose-Hubbard
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phase diagram along with numerous theoretical calculations [57-59].

It should be noted that this transition is a quantum phase transition
because it is due to the competition between terms in the ground state energy
of the system, as opposed to the terms in the free energy [60]. Thus, the

transition can occur even at zero temperature.

3.1.1 Probing Phase Transition with Momentum Distribution

When we take a time of flight (TOF) image we look at the momentum
distribution of the cloud. Neglecting interactions between the atoms during the
expansion, the momentum distribution is the Fourier transform of the spatial
distribution in the trap. When a BEC in the lattice is allowed to expand by
suddenly turning off all the confining potential (magnetic trap and the lattice
potential) the wave-packets confined to individual lattice sites expand and
overlap with each other. Due to the phase coherence over the whole lattice
we observe the interference of the wave-packets or matter waves from different
lattice sites. The momentum distribution in the lattice can be expressed as

[40]

n(k) = nfw(k)? 3 ¢ o (R) (3.5)

where pi(R) =< bib > is the one particle density matrix at separation R
with bl the particle creation operator at site i. (k) is the Fourier transform of
Wannier function. The summation is over all the lattice vectors R which are

integer multiples of the primitive lattice vectors. Zwerger [40] pointed out that
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in the superfluid for large R the one particle density matrix approaches a finite
value and n(k) has a peak proportional to the total number of particles at the
reciprocal lattice vectors k defined by k.R = 27. These interference peaks can
be seen in Fig. 3.2. The width of the interference peaks is the Fourier transform
of the ground state wave function size. For the superfluid the ground state
wave function extends over the whole lattice and there is no broadening of the
momentum peaks. In the Mott insulator phase however, p;(R) goes to zero
and the momentum peaks no longer scale with the total atom number. Close
to the transition in the Mott insulator interference peaks are still present as
long as p;(R) extends over a few lattice sites. Deep in the Mott insulator
state the phase coherence is lost completely and the momentum distribution
becomes a Gaussian with no peaks. In real experiments the momentum peaks
are broadened due to interactions between the atoms during the expansion but

still provide a lower bound for the coherence length in the system.

We use such TOF images to measure the width of the momentum peaks
to observe the phase transition from the superfluid to the Mott insulator. To
do the experiment we load a BEC of 8Rb in a 3D optical lattice which is
quadratically ramped up over 50ms to a height V. We then turn off the
magnetic trap and optical lattice suddenly and allow the atomic cloud to
expand for 20 ms and take an image. We start from zero lattice height and
repeat the experiment for lattice heights up to Vo = 20E,. The TOF images
are shown in Fig. 3.2. The radial side peaks are in the vertical direction and

axial side peaks are in the horizontal direction. Each of these peaks is 2hk from
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the central peak due to the periodicity of the lattice. The fact that the radial
peaks look closer is due to the imaging direction which is 45° to the radial
lattice beams directions. Radial and axial cross sections were fit by Gaussian
functions as shown in Fig. 3.3. We plot the central peak width as a function
of the lattice height in Fig. 3.4. The interference peaks initially grow with
increasing depth of lattice. This is due to the fact that the Wannier functions
in eq. 3.6 become more localized giving a larger Fourier transform. The
width of the peaks however, remain constant up to a certain lattice height.
The width of the interference peaks start broadening for V5 > 13F, which
we interpret as the signature of the quantum phase transition. Stoferle et
al. have observed similar results where they saw a sudden broadening of the
interference peaks [61] which they interpret as the onset of the superfluid-
insulator transition. Kollath et al. studied one-dimensional bosons in optical
lattices [62]. They conclude that the sudden broadening of the interference
peak is due the decrease in correlation length when the insulator state forms.
The correlation length is inversely proportional to the width of the interference
peak and diverges for the superfluid being equal to the size of the system. The
correlation length become finite in the Mott insulator due to the opening of an
excitation gap. The situation is different for an inhomogeneous system where
the co-existence of the superfluid and insulator prevents a sudden increase of
the interference peak width, as shown by calculations on the inhomogeneous
system. We conclude that even though the sudden broadening of the peak

width is due to Mott insulator, the existence of the superfluid close to the
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transition may delay this broadening, i.e the peak width may still show no
broadening till the superfluid fraction becomes negligible. The occupation
numbers for Bloch states with quasi-momentum k are proportional to the
intensity of the interference peaks [63]. The intensity of the central peak is
proportional to the population of the k=0 Bloch state or the number of atoms
in the condensate. The emergence of a broad background is attributed to the
quantum depletion of the condensate as the interactions between the atoms are
increased. The increased interactions for stronger lattice transfers atoms from
the k=0 state to higher quasi-momenta states which translates to the broad
background in the TOF images. The broadening of the interference starts
around 13F,. which is close to where we expect to see the phase transition. It
was also argued that the interference images does not give direct information on
the superfluid fraction in the system [63]. Thus, we can argue that the images
can give a quantitative information on the quasi-momentum distribution of

the system but not the superfluid fraction.

3.2 Excitations in the Mott Insulator

The lowest lying excitations in the Mott insulator region are the particle-
hole excitations. In our system a particle (hole) excitation corresponds to an
addition (removal) of one atom to (from) a lattice site. The energy required
to create such an excitation is the minimum vertical distance in p for a fixed
J from the upper (lower) phase boundary shown in Fig. 3.1. Suppose a lattice

site is in a Mott insulating region with chemical potential u and U > J such
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Figure 3.2: Matter wave interference peaks after 24ms TOF. After ramping
the 3-D optical lattice depth up to the final depth, the magnetic trap and
optical lattice beams were turned off suddenly.
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Figure 3.3: One pixel is 6 ym. The peak width starts broadening for Vj >

13E,.
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Figure 3.4: The central gaussian peak width as a function of lattice strength
in recoil energy. The vertical axis unit is pixels where 1 pixel is 2.4 um.
that we can ignore J. Then the energy required to add an atom to that lattice

site is [64]

1 1
Ep:—u+§U(n+1)n—§Un(n—1):Un—/1J (3.6)

and the energy required to remove an atom from that lattice site is
1 1
Eh:—,u+§U(n—1)(n—2)—§Un(n—1):U(n—l)—u. (3.7)

However, in our system the atom number is conserved such that the lowest
excitation is a particle and a hole excitation, i.e. an atom hops from one lattice
site to another. The energy required for this particle and hole excitation known
as the energy gap, is £, + I, = Eq,. This is the difference in p between the
upper and lower phase boundary in Fig. 3.1 and is equal to U for deep in the
Mott insulator state where J is negligible. We can understand this by looking

at Fig. 3.5. The on site interaction energy for two atoms in a lattice site is U.
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Figure 3.5: Initially each site is occupied by one atom. It costs an energy U
equal to the on-site interaction energy for an atom to hop from one site to the
other if they both have the same number of atoms.

Thus it costs an energy U for a particle to hop from one site into the other
if both have the same number of particles. To understand why this gap is
equal to the vertical distance from the upper to the lower phase boundary we
can consider a hole at the lower boundary for a fixed J. Then if we want to
add a particle it costs the same energy all the way to the top phase boundary
since the mean occupation per site is the same inside the Mott lobe. Note
that in the superfluid region (high J/U) region in Fig. 3.1 the atom number
in each site is undetermined. Thus, there is no energy gap for particle-hole
excitations. Probing these excitations provides us with a unique method to
detect the quantum phase transition from the superfluid to the insulator state
as the latter state will have a gap in its excitation spectrum. The critical value
of U/J at which this transition occurs is (U/J). = 5.8z where z is the number
of nearest neighbors [26,65,66]. For a 3D lattice z is 6. Scaling theory [26]

predicts the opening of the gap to be of the form
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Ey o< ((U/J) = (U] J)c)" (3.8)

with mean field calculations giving o« = 1/2, hence the parabolic shape of
the Mott lobes. If we can measure the particle hole excitations accurately we
can not only observe the phase transition but also study the dynamics of the
transition as well acquiring experimental insight into the phase diagram. This
is the motivation behind performing Bragg spectroscopy of the Mott insulator.
To understand what to expect from the experiment we should discuss the

differences between the homogeneous and inhomogeneous cases.

A homogeneous system has a uniform average occupancy < n > per
site. If < m > is an integer m the system enters the Mott insulator state at the
right tip of the Mott lobe (maximum J value at the phase boundary) as shown
in Fig. 3.1. In the homogeneous system non integer occupancy contours always
remain in the superfluid region joining the J = 0 axis at p = n for < n >> n.
Likewise the density contours between J = 0 axis at p =n —1 for <n >< n.
What this means is that the local chemical potential p; changes to keep a
constant occupancy < n > since < n > is fixed in the homogenous system.
Thus, a homogeneous system with non integer filling per lattice site cannot

cross into the insulator region.

The inhomogeneous case formed by an external trap as in our experi-
ment gives a non-uniform filling over the lattice. local density approximation
is employed to describe such a system. For this method the system is divided

into several regions such that within each region the atom number change is
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small so that each region can be treated as a homogeneous system. A local

chemical potential for the i*" lattice site is defined as

Hi = 1 — & (3.9)
where ¢€; is the energy offset at that site. Even though we have a locally
homogeneous system, the fixed parameter is p; instead of the density n. |,
as J/U is increased the density can change and cross into the Mott insulator
region. The inhomogeneous trap causes the chemical potential p; for a lattice
site close to the center of the trap to be different than the chemical potential
for a lattice site away from the center as can be seen in Fig. 3.6. Going from
the center to the edge of the trap local chemical potential decreases from the
total chemical potential i to zero, spanning a vertical line(vertical black arrows
in Fig. 3.6). Let us consider the case in which the center of the trap is in a
Mott insulating state with two atoms per lattice site (Fig. 3.6¢). As we go
further out there will be a region of superfluid followed by a region of a Mott

insulating phase with one atom per site and finally an outermost superfluid

shell (Fig. 3.6).

As mentioned earlier the particle-hole excitations in the superfluid do
not have an energy cost, thus if we transferred energy into the system we expect
to see no gap in the excitations. As we cross into the insulator region from the
superfluid region we expect to see a suppression of the particle-hole excitations
of the superfluid. The excitations are not suppressed completely because in

an inhomogeneous system there is always some superfluid present. For a given
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initial number of atoms and chemical potential the volume of different states
will be determined by the value of J/U. The superfluid fraction will be less as
J/U goes to zero. Finally we should see particle-hole excitations of the Mott
insulator if the energy transferred to the system can overcome the particle-hole

energy gap I,.
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Figure 3.6: As we decrease J/U the system changes from a complete superfluid
(A) to a coexistence of superfluid and Mott domains. This coexistence of
superfluid and Mott insulator domains is due the inhomogeneity of the system.
The dark and light arrows represent the chemical potential of the center and
edge of the cloud where the chemical potential decreases going from the center
to the edge as indicated by the black vertical arrows. When the system first
crosses into the Mott-insulating region only the middle of the cloud becomes an
insulator while the center and edge remain superfluid (B). As J/U is decreased
even further the center of the cloud forms a two atom per site Mott insulator,
then there is a superfluid region followed by a one atom per site Mott insulator,
and finally an outermost superfluid shell (C).
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3.3 Preparing the Mott Insulator
3.3.1 Loading Atoms into the Optical Lattice

The dynamics of the atomic cloud in the optical lattice needs to be
examined to understand the path we are taking on the Bose-Hubbard phase
diagram. As the lattice is ramped up the there will be extra confinement
from the lattice beams due to their Gaussian profile. This increases the trap
frequency where the contribution form the lattice lasers is given by eq. 2.17.
On the other hand the repulsive interactions between the atoms are increased
because of this tighter confinement which tends to expand the cloud. A mean
field approach can be taken to calculate the on site interaction U by considering
each site as a separate condensate. Then the interaction U can be calculated
by integrating the on site wave function over one lattice site such that there

is a correction to the normal mean field interaction g:

U=y [ o] 3.10)
where w(x) is the Wannier function of the lowest band and the integration is
over a volume of the unit cell. We can approximate the Wannier function by
the oscillator ground state wave function of the individual lattice site. This

approximation written in terms of the recoil energy F, yields

U~ 4\/2W%Er<%)3/4 (3.11)
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where a, is the s-wave scattering length. Even though this is only an ap-
proximation and is valid for Vj > FE,. it can be used to estimate the chemical
potential for lattice heights close to the insulator transition. The new chemical
potential is calculated for a Thomas Fermi shape using the new trap frequen-
cies and the new U from eq 3.12. The increased U can be though of as an
increase in the g such that the new g is g = g [ |w(x)|*. The Thomas Fermi

density profile is

1 1 2 2 1 2 2

nTF(T7 Z) - E(M - Emwrcomr - §mwzcomz (312)

and the Thomas Fermi radii are

[ 2u [ 2u
=, —" = 3.13
r mw?tot o mwgtot ( )

where w,4,; and w4, are the combined trap frequencies due the magnetic and

the dipole trap, and can be calculated easily a given lattice strength. The

chemical potential can be expressed as

_ (E NU@3m3/2(>\/2)3) (3.14)

16 Vor

with w? = (w?tothtOt)'

The density of the cloud in the Mott insulator state cannot be approxi-
mated by a Thomas Fermi shape. However, by knowing the average occupancy
of the lattice sites right before transition we can estimate the distribution of
the number of atoms per site and use it as a guide to estimate the number of

atoms in each domain after the transition. We can justify this by arguing that
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for large lattice heights the tunnelling is suppressed and atoms cannot dis-
tribute themselves effectively after the Mott insulator transition. Using these
simple approaches we can estimate the initial atom number to get most of
the atoms in the one atom per site Mott insulator or two atom per site Mott
insulator etc. To study the superfluid Mott insulator transition we would like
to have most of the atoms in the one atom per site Mott insulator to be able
to compare with the simplest theory. Starting with ~ .3 million atoms gives
us roughly 60% of the atoms in one atom per site just before the transition.
For such atom numbers the path taken on the Bose Hubbard diagram is close
to the path illustrated by the arrows in Fig. 3.6. It is rather hard to know the
exact density and these models should be checked experimentally if possible.
Photoassociation of atoms in the optical lattice is a great tool to probe site

occupancy and it will be discussed in section 3.5.

We tried to adjust our lattice beam diameters such that the change in
the cloud size is not big so the atoms can distribute themselves on a short time
scale. The cloud still expands by ~ 15% and the atoms need time equilibrate.
In order for the cloud to stay in equilibrium the lattice should be ramped up
slowly. The tunnelling time between neighboring atoms for lattice height of
10E, is roughly 1ms so by ramping up the lattice slowly (50 ms) we can satisfy

this condition of adiabaticity easily.

Tab. 3.1 shows the change in experimental parameters as we increase

the lattice strength.
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Lattice strength in E,. | ¢*/9 | Wreom(HZ) | Wecom(Hz) | trr(pm) | zpp(pm)
0 1 20 11.6 14.2 24.5
3.9 5.464 29 17 17.16 29.59
8 9.365 36.25 22.3 17.37 29.95
10 11.07 39.3 34.3 16.6 28.62
13 13.48 43.5 27 17.35 29.91

Table 3.1: We list the increase in interaction as g*/g as we increase the lattice
strength. The combined trap frequencies as well as the Thomas-Fermi radii
are listed.

3.3.2 Calibration of the Optical Lattice

The strength of the lattice can be calculated using our measurements
of the beam waist and optical power. When we first set up the lattice we
adjusted the fiber output couplers so that the radial lattice beams have the
same beam waist w, and the axial lattice beam waist is w, /2. However, due
the uncertainty in our beam waist and optical power measurements the cal-
culations need to be checked experimentally. We use two main techniques
to calibrate the lattice strength. The first and easier one relies on applying
the lattice beams individually for a very short period of time t (f < period
of oscillation in the lattice site potential) [67]. This pulse splits the atomic
population in different momentum components. This can be thought of as
imprinting a phase variation on the atomic wave packet ®y. The new wave
function is ® = ®pe~"*s(k?) where o = V7 /2h, with 7 is the duration of
the pulse and Vj is the strength of the optical lattice. This wave-function can
be expanded into different momentum components. The ratio of the atoms

in different momentum components depends on the lattice strength and pulse
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duration. If we use a small enough number of atoms such that only the ze-
roth and first orders are populated we can estimate the lattice depth easily.
The ratio of the number of atoms in the central peak to the first order peak
is J2(a)/J?(a)). We can probe this ratio with TOF images and calibrate the
lattice potential for each direction. This calibration was within 20% of the
calculated value. The main uncertainty in our measurement comes from the
uncertainty in the power measurement. The power of the short pulse is mea-
sured using a photodiode that picks up a tiny reflection of the lattice beam
from a window. The signal is digitally read by an oscillator but there is an
over-shoot that may yield a 10% error in the scope’s reading. The second
method that relies on photoassociation is harder and will be covered in section
3.5. Note that we had a photoassociation setup ready for another experiment,

otherwise using photoassociation for lattice calibration is too laborious.

3.4 Probing the Phase Transition with Bragg Spectroscopy

As mentioned earlier ultra-cold atoms in optical lattices allow us to
study solid-state-like systems with accurate experimental control of parame-
ters, one example being the superfluid-Mott insulator transition [28]. Even
though the interactions between atoms can be changed smoothly by changing
the intensity of optical lattice lasers, the opening of the excitation gap has
eluded experimental verification [28,29]. The interference experiments that
probe the phase coherence of atoms show a gradual transition. The tilting of

the lattice by Greiner et al. [28] and the shaking of the lattice by Stoferle et
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al. [29] to observe the Mott gap could not detect the vanishing of the gap
near the phase transition. According to mean filed theory the gap scales as
(U — U,)"/? [26] near the transition. Oosten et al. has proposed to use Bragg
spectroscopy to measure the particle hole excitations in the Mott insulator
[30]. They calculate the scattering rate from the Bragg beams and show re-
sults for the response of the system. Their results show that the gap grows
linearly with the on site interaction energy U when deep in the Mott insulator

state, and closes as
E, < /U —-U.+ n¢* (3.15)

for U close to U,, where U, is the on site interaction energy at the transition
point, ¢ is the momentum transfer from the Bragg beams, and 7 is a positive
function of U, and J, the hopping term in the Bose-Hubbard model. Note
that in the case of zero momentum transfer this result is the same as the mean
field calculation for the opening of the excitation gap (v/U — U.). Another
theoretical paper also studied the Bragg spectroscopy of the Mott insulator
and emphasizes this method’s ability to measure the particle hole excitations

[52).

3.4.1 Bragg Spectroscopy of the Mott Insulator

We followed the suggestions of Stoof et al. to measure the excitations
of the Mott insulator by Bragg spectroscopy. The Bragg beam setup is as
described in section 2.2. We load the BEC into the optical lattice, ramp up

the lattice over 50 ms to V{, and apply the Bragg beams for a duration 7.
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Then we ramp down in 20ms to zero lattice height and wait for 5 ms for the
cloud the thermally equilibrate. Then we turn off the magnetic trap, allow the
cloud expand for 24 ms, and take an image. We fit this cloud to the model
described in section 2.4.2 to determine the temperature of the system. The
Bragg beams’ frequency difference w is changed and the experiment repeated
to see the temperature increase of the system for different w. The excitations
created by the Bragg pulse are damped into the system as heat and shows up
as an increase in the temperature. After completing a scan for a certain Vj
we repeat the same experiment for different values of V. The Bragg beams
each had an intensity of ~180 mW /cm? and a detuning of ~ 430 GHz from

the 8" Rb D-1 line. The results of the scan are plotted in figs. 3.7-3.9.

What we observe in the plots is very instructive in understanding the
nature of the transition. If there is energy transferred to the system due
to particle-hole resonance the temperature increases and the BEC fraction
decreases. When we do the same experiment without the Bragg pulse we
can recover a BEC fraction of ~ 70%. In the superfluid region there is no
gap in the particle-hole excitation spectrum and we expect to see a decrease
in BEC fraction (excitations) for a broad range of w. In the Mott insulator
region however, the particle-hole excitation spectrum has a gap and there
should be no excitations for energy transfer up to the gap (hw < Ej). For
Vo = 11.5E, (Fig. 3.7) we see that there is a dip around w/27 = 1KHz,
for w/2n < 1K Hz there are some excitations and for w/2r > 1K Hz the

excitations are suppressed. We think this is due to the co-existence of the
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superfluid and Mott insulator domains. The superfluid is excited for low w
and the Mott insulator is excited at w/2m = 1K Hz. For higher w there is no
transfer of energy and the BEC fraction increases. The superfluid excitation
resonance gets smaller with increasing lattice height. Thus, high frequencies
(vi3 kHz) are far from the superfluid excitation resonance and the superfluid
is not excited as can be seen in figs. 3.7-3.9. To show that the dip in the
Bragg spectra is due to the Mott insulator we plot the scan before and after
the transition on the same graph in Fig. 3.11. From this plot it is clear that
the dip occurs only for stronger lattice (Mott insulator regime). As we go to
higher lattice heights we see that there is a peak due to the Mott insulator
and the excitations get smaller and smaller for lower w (Fig. 3.8, Fig. 3.9). To
understand this we can go back to the Bose-Hubbard phase diagram in Fig. 3.6.
The center of the cloud has a density represented by the dark horizontal arrow
in Fig. 3.6. As the lattice height is increased close to the transition point into
the one atom per site Mott insulator, the center of the cloud is superfluid
as is the edge of the cloud and a very small portion in between is in a Mott
insulator state. Thus, there are a lot of excitations still due to the superfluid.
As we increase the lattice strength further into the Mott insulator domain
the superfluid fraction decreases and the excitations due to the superfluid are
suppressed. For the Mott insulator region the excitation gap corresponds to
a transfer of energy equal in the vertical direction in pu; = p — ¢; which is U
for U > J as explained earlier (see Fig. 3.5). In our Bragg spectra this would

correspond to the left edge of each peak. To acquire the edge from our data,
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we exclude the sharp peak corresponding to the Mott insulator and fit the rest
with a polynomial. Then we fit the sharp left edge of the peak with a straight
line and take the intersection of two fits to be the particle-hole gap (Fig. 3.12).
We can see from the phase diagram that this gap goes to zero as we approach
the superfluid region from the Mott insulator region. We plot the particle hole
gap as a function of lattice height and note that the gap decreases more sharply
close to the transition (Fig. 3.10). We try to fit the opening of the gap to mean
filed calculation by Oosten et al. [30] that predicts the gap does not go to zero
at the transition (eq. 3.16). We plot our data where we convert the lattice
strength V4 in Fig. 3.12 to U and fit according to eq. 3.16. (Fig. 3.13. The fit
gives a transition lattice strength of V; = 11E,. Mean-field calculations predict
a transition at Vy = 12.5F,. This falls within our measurement uncertainty
of ~ 15% in Vj in Vj. This is the first observation of the nonlinear opening
of the Mott gap. The particle-hole gap can be measured very accurately as
can be seen from the plots. Our experiments establish Bragg spectroscopy as
a powerful tool in probing quantum phase transitions. Accurate measurement
of the particle-hole gap also has a future application for quantum information

processing as the fidelity of a Mott state is given by this gap [30].

69



BEC Fraction

BEC Fraction

Figure 3.7: BEC fraction of a Bragg-excited gas as function of excitation
energy. These data are taken in a regime im which the gas contains both
superfluid and insulating components. The excitations for low w are due the
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Figure 3.8: BEC fraction of a Bragg-excited gas as function of excitation
energy. The superfluid fraction and the excitations due to the superfluid are

decreasing as we increase the lattice strength. The peak due to the Mott
insulator is more evident.
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Figure 3.13: The circles are the same data points as in Fig. 77 converted
to U. The line is fit to the data points with a function of the form A =
ay/U —U.+ Ag. Ay was chosen to be a constant. The fit gives a transition
value U, = 870 Hz which corresponds to Vj = 11FE,.. The transition is expected
to occur at Vy = 12.5F), according to mean field calculations. This is within
our measurement uncertainty of &~ 15% in V5. At the transition the gap is
A() ~ 700 Hz.
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3.5 Photoassociation Experiments in the Mott Insula-

tor

After the successful observation of atomic BEC researchers set a new
goal of realizing molecular BEC [51, 68, 69]. Jaksch et al. proposed photoasso-
ciation (PA) of a Mott insulator of bosonic atoms in optical lattices to create
molecular BEC [70]. PA involves the coupling of two atoms to an excited
molecular level via an absorption of a photon [71]. A Mott insulator in optical
lattice provides an ideal framework for PA experiments due the constant high
densities in the Mott domains. In this section we report new data taken for
PA experiments reported in Changhyun Ryu’s thesis [51] and show how PA
can be used to probe the distributions of Mott insulator domains and calibrate

the lattice strength.

3.5.1 Single Photon Photoassociation of Mott Insulator

When the atoms are in a deep optical lattice, atoms in different lattice
sites are spatially separated and cannot be coupled by PA easily. If there
is more than one atom in a lattice site the atoms can readily PA to form
a molecule. These molecules are detectable as missing atoms and we can
measure the number of atoms with a TOF image. Thus, if we shine a PA laser
resonant with a bound excited molecular level we expect that the multiply
occupied sites decay very fast until we are left with single or no atoms in each
lattice site. We used this method to obtain decay curves of the atom number

vs PA pulse duration in a deep optical lattice (Vy = 20E,.). For atom numbers
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Figure 3.14: Number of remaining atoms in a Mott insulator as a function
of the duration of a photoassociation pulse. Multiply occupied sites readily
photoassociate yielding trap loss. The atom number decreases from 1 million
to .4 million over 2 ms due to multiply occupied sites. After 2ms the atoms
number decays very slowly due the fact that unit occupancy sites are decoupled
from each other and do not photoassociate.

N > .15 million there is a very fast decay (Fig. 3.14) followed by a very slow
decay. The fast decay must be coming from multiply occupied sites, and the
slow decay probably due to the single occupied sites in the system. Using this
method we can at least determine down to which atom number there is still a

two atom per site Mott insulator domain. Our results indicate that down to

.15 million atom numbers there are doubly occupied lattice sites.

3.5.2 Raman Photoassociation of a Mott Insulator

Extensive work has been done on producing ultra-cold molecules [72-
75]. Our group has concentrated on efforts to produce ultra cold molecules
by photo-association [69] in the BEC. However, these molecules are very short

lived due to inelastic collisions between atoms and molecules. One way around
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this problem is to use ultracold atoms in optical lattices. If each lattice site is
occupied by two atoms, then they can be converted to one molecule in each site
via two color photoassociation (PA). Jaksch et. al. suggested to use two atom
per site Mott domains in optical lattices to create molecules by PA and then
melt the lattice to make a molecular BEC [70]. These molecules do not suffer
from collisional losses and provide an ideal method for ultra-cold molecule
formation. Raman photo-association of 3" Rb, molecules in a Mott insulator
state was carried out in our group and is described in detail in [51]. Here I
give a brief review of the experiment and report the new data we obtained for

the same experiment.

Raman PA of a BEC was carried out to produce ultra-cold molecules
in a certain ro-vibrational molecular state [69]. A schematic of the process is
shown in Fig. 3.15. Two atoms can be coupled to a molecular ground state
level by absorbing a photon from the first laser (w;) and emitting a second
photon into the second beam (wy) by stimulated emission. The frequency of
the first beam is detuned (4;) from the intermediate excited molecular level to
minimize off resonant scattering. The detuning of the second laser (ds) is such
that wy—w; = €, the binding energy of the target ro-vibrational molecular state
[69]. The disadvantage of this method is the inelastic collisions between atoms
and molecules. Atoms in a Mott insulator are localized to individual lattice
sites and molecules produced in a lattice site will not suffer from collisions
with atoms in other lattice sites. We need two atoms per site to make a

molecule, therefore two atoms per site Mott insulator wll be the ideal tool for
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efficient production of molecules. As mentioned earlier because the system is
inhomogeneous the complete system cannot be in two atoms per site Mott
insulator. We can try to maximize the number of atoms in the two atom per
site Mott insulator. A calculation similar to the one described in sec. 3.3.2 can
be done to estimate the ideal atom number. An important peculiarity of the
Mott insulator is the difference in interaction energy between two atoms per
site and three atoms per site. Two atoms per site has an on site interaction
energy of U, , while three atoms per site has an on site interaction energy of
3U,_,. If we photoassociate two atoms in a lattice site and make a molecule
there is no on-site interaction energy. On the other hand photoassciation of
three atoms in a lattice site results in a molecule and an atom in that site with
an on-site interaction energy U,_,, between the atom and the molecule. This
results in a difference in the resonant frequencies of two atom sites and 3 atom
sites given by

hw3Raman - hw?Raman = 2Ua—a - Ua—m- (316)

We load the BEC in a deep lattice (Vo ~ 18F,) where it is deep in
the insulator phase and do Raman scan to observe the creation of molecules.
The experiment is described in detail in [51]. We are driving transitions to
the v = 39 vibrational state in the triplet ground state. This state has a a
binding energy of 636.0094 MHz. The detuning from the intermediate level is
3.9 GHz. Our PA beams have atotal power of ~ 70 mW.

The result of the scan is shown in Fig. 3.16a. We observe the frequency
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Figure 3.15: Two color Raman photoassociation schematic. This process is
described in detail in [68].
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difference between the two atom per site Mott insulator and the three atom
per site Mott insulator. These scans can be used to determine U,_,, and the
atom-molecule scattering length. Work is under way for accurate calculation
of these values using Wannier functions to calculate the ground state energy of
the system. Note also that by fitting our scan we can determine the percent-
age of the atoms in each domain. This is a very powerful tool in determining
the distribution of the atoms. We used the results of these scans to tune our
initial atom number to adjust relative populations of different Mott domains.
As mentioned earlier the most efficient molecule formation will be with a max-
imal two atom per site Mott state. We can get about 40% of atoms in the
two atoms per site domain as seen in Fig. 3.16b. Coupling two atoms in a
deep lattice site to molecules via Raman photoassociation can be a coherent
process. All the atoms in the two atom per site Mott insulator will be con-
verted to molecules with a 7 pulse, and back to atoms with another 7w pulse
exhibiting Rabi oscillations between atoms and molecules. We observed this
experimentally as reported in [51] by locking the Raman frequency to the two
atom per site resonance and varying the duration of the pulse. The data along
with a fit is shown in Fig. 3.17. We can observe up to 4 oscillations between
atoms and molecules, the dips in atom number corresponding to molecules
and peaks to the atoms. Raman-induced Rabi oscillations provides a possible
route t studies of degenerate molecular gases. In our setup this would involve
melting the lattice after forming molecules to create a degenerate molecular

gas. The molecules need to be in ground ro-vibrational state which may be
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achieved with an additional Raman scheme.

There is a zero point energy in a lattice site due to the tight confine-
ment. This zero point energy increases with increasing lattice height causing
a shift of the Raman resonance frequency. This shift in Raman frequency can
be used to calibrate the strength of the lattice beams. The zero point energy
shift due to the lattice is

AE = ghwg (3.17)

where wp is the harmonic trapping frequency of the lattice site given by
Vosin?(kz) = 1/2mw2x?. This number is 29.8 kHz for V; = 20E,. We ap-
ply the three lattice beams one by one, and perform Raman spectroscopy to
find the resonant frequency. Thus, we can calibrate the strength in each di-
rection by looking at the Raman resonance frequency shift to obtain equal

strengths in each direction.
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Figure 3.16: a)Raman scan with .5 million atoms showing frequency shift
between N=2 and N=3 Mott insulators. b) Raman scan with .25 million
atoms
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Figure 3.17: Rabi oscillations between atoms and molecules. The number of
atoms is .3 million, the total PA power is 75 mW (the first PA beam power is
55 mW and the second PA beam power is 20 mW), the detuning is -3.9 GHz,
and the optical lattice depth is 18FE,.
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Chapter 4

Conclusion

This thesis presents results of experimental studies of excitations of
quantum gases in optical lattices. By loading a BEC of 8Rb into an optical
lattice the interactions between the atoms were changed by changing the lattice
strength. A quantum phase transition from a superfluid to a Mott insulator
was realized. Both the superfluid and the Mott insulating state excitation

spectra were measured using Bragg spectroscopy.

This gives us valuable data as we try to understand the nature of

strongly interacting superfluid.

Ultracold atoms in optical lattices is a simple but perfect realization
of the Bose-Hubbard model, that predicts a quantum phase transition at a
critical lattice strength. Bragg spectroscopy allows the transfer of a controlled
amount of energy into the system which enables particle-hole excitations. Mott
insulator exhibits a gap in its excitation spectrum which was measured very
accurately using Bragg spectroscopy. This allowed us to observe the opening
of the gap close to the transition. Our results establish Bragg spectroscopy as

a powerful tool to study quantum phase transitions.

The measurement of the particle-hole gap is also important for the
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application of Mott insulator state for quantum information systems. The
fidelity of the Mott state is determined by the particle-hole gap [30]. Thus,
Bragg spectroscopy is already a proven candidate for measuring the fidelity of

such systems.

We have observed Rabi oscillations between atoms and molecules. This
is a first step toward realizing a molecular condensate with bosonic atoms.
This would involve melting the lattice which requires molecules to be in ro-
vibrational ground states. To transfer molecules from high vibrational states to
ground ro-vibrational state may be possible with an additional Raman scheme.
The complexity of the experiment will be the limiting factor in realizing stable

conditions.
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Appendix 1

Lithium Setup

In this chapter I describe the progress toward a rubidium-lithium ex-
periment. The laser system for lithium and the addition of lithium to the

rubidium apparatus is described.

1.1 Two Species

Study of of degenerate two species systems has a variety of interest-
ing applications. For example hetero-nuclear polar systems has long been
suggested for permanent electric dipole moment (EDM) investigation [76]. To
increase the sensitivity of the system tt is important to have the molecules in a
particular state. A good way of producing molecules in a specific state is photo-
association [71]. Thus production of ultra-cold molecules from two species will
provide an ideal system for EDM search. Another interesting phenomena is
the transition of fermionic atoms to a superfluid state of Cooper pairs [77].
The reason we need two species systems to study degenerate fermions is be-
cause evaporative cooling needed to cool alkalis to quantum degeneracy does
not work well for fermions. The reason is evaporative cooling relies on binary

collisions and at ultra-low temperatures this process is governed by quantum
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statistics. Fermions have anti-symmetric two particle wave functions, so s-
wave collisions are forbidden while higher order collisons are suppressed at
low temperatures. So far achieving quantum degeneracy in fermions relied on
sympathetic cooling [78-82]. This involves the thermalization of fermions by
a another colder species. The other distinguishable species can be different
isotopes of the same element, two different spin states of the same isotope or
even two different chemical elements. There is already some theoretical work
that shows the BCS phase transition of fermions in an optical lattice can be
reached experimentally [83]. Fermionc lithium cooled by rubidium can be an
ideal system to study this phase transition. Cooling °Li with rubidium has
advantages over cooling it with another state of °Li or the bosonic “Li. The
disadvantage of using two fermionic states for evaporative cooling is the re-
duced cooling rate at lower temperatures and the fact that both species are
evaporatively cooled leading to much smaller fermionic samples. The advan-
tage of rubidium over “Li is the big mass difference. Because rubidium mass is
so much heavier than lithium the latter enters quantum degeneracy at higher
temperatures. Thus, if we thermalize lithium with a BEC of 87Rb we can

casily reach deep quantum degeneracy for lithium (.1Tp).

1.2 Lithium Laser System

The laser system is based on a master-slave injection locking setup
Fig. 1.1. The master laser is a homemade Littrow laser that employs a 30mw

Phillips (model: CQL806/30) laser diode and a 954 aluminum bronze housing.
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The stability of the system is remarkable. After the initial tuning the laser
stayed on resonance over five years without the need to tune any knobs. The
laser is temperature controlled using a TE cooler. We only get about 15mW
of power from the laser as &~ 30% is reflected back into the diode from a
holographic grating. The slave lasers are employed to get more power. The
frequency of the master laser is locked to the cross-over resonance form the
Lamb-dip setup. The output is split into two and the frequency is shifted
up and down by half the ground state hyperfine splitting to injection lock
the repumper and the MOT slave lasers respectively. The frequency shift
is accomplished by double-passing each beam through an AOM. The master
laser and the two slaves were originally used to trap “Li ([84]). To modify the
system for °Li we simply replaced the AOMs that had a center frequency of
200 MHz with new AOMs with a center frequency of 115MHz to compensate
for the difference in the hyperfine splitting. We also decided to use more power
for the slower laser to saturate the transition. Therefore, we added two more
slave lasers to the setup. The first one is injection locked to the MOT laser.
The output of this laser is fed into a four pass through a 350MHz AOM to
shift its frequency by 1.4878GHz to the red to compensate for the Doppler
shift of the atoms coming out of the source. After the four pass we only have
5mW of power so we injection lock the other slave to get 25mW of power for

the slower laser beam.
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Figure 1.1: Lithium laser setup is based on a master-slave laser scheme. The
master laser is locked to the cross-over signal from the lamb dip setup. The
aster laser beam is split into two and shifted up and down by half the hyperfine
splitting A to lock the MOT and repumper slave lasers respectively. Another
slave is locked to the MOT slave laser and its output is frequency shifted by
0 in a four pass setup and injection locked into another slave which provides
the slower laser.
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1.3 Two Species Zeeman Slower

We considered several options in realizing the the two species trap.
The ultimate cooling into quantum degeneracy would have to be in the al-
ready running rubidium chamber. One of the options was to use the lithium
Zeeman slower and chamber that demonstrated efficient lithium MOT loading
to get a lithium MOT [84]. Then we would transfer lithium into the rubidium
chamber using a low-velocity intense source LVIS setup first demonstrated by
Lu et al. [85]. The other option was to use the lithium Zeeman slower to di-
rectly load a lithium atomic beam into the rubidium chamber. Both of these
methods would have cut down the available optical access of the system and
required considerable vacuum work. Therefore, we went with a third option
that involved making a two species atomic beam and slowing them with the

rubidium Zeeman slower.

This ideas was inspired by the work of Hadzibabic et al. [86] where
they loaded a two species MOT from a two species atomic beam slowed in the
same Zeeman slower. Our two species oven design is similar to this groups
as sketched in section 2.7. The main difference is our setup is that we want
to add lithium into a rubidium system as opposed to a sodium system. This
creates extra difficulty in using the same slower due to the big mass difference.

The maximum deceleration is given by
r
Amaz = Urec X - 1.1
5 (1)
Even though the maximum scattering rate I'/2 is comparable for lithium and
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rubidium the big mass difference gives a much bigger recoil velocity v,.. for

lithium compared to rubidium resulting in a ratio of

aki, 18 x10°m/s’

max

Rb 5 2
akt 105m/s

(1.2)

in maximum deceleration. A value of 0.6a,,,; is chosen to provide stable

Rb

e Tubidium

slowing conditions. Thus, a slower designed to operate at 0.6a
will be very inefficient for lithium slowing and vice versa. The Zeeman slower
is designed to cancel the Doppler shift throughout the slowing region such

that the atoms are always resonant with the slower laser [87]. A o~ slower

(increasing field requires the velocity along the z axis to satisfy [88]
Hb
v(z) = A(—=DB(z) — 9). (1.3)

For constant deceleration a, this gives a magnetic field profile along the z axis

B(z) = =B, — Biy\/1 — 2az/v? (1.4)

where B, = hd/ug, B1 = hv;/Aup, and v; is the initial velocity of the atoms
that will be captured. The rubidium Zeeman slower was based on this design
with @ = 0.6a,,4,, the detail of which are given in [43]. In order to slow both
species we have to to pulse loading where we alternate the current in the coils
of the slower to produce a different field profile for each species. This allows us
to get a deceleration of a = 0.6a,,,, for each species. The slower was designed
for rubidium and thus had 18 gauge coils for the tapered coils [43] which are
not desirable foe lithium as this species requires steeper magnetic field profile

meaning higher currents through the tapered coils. These factors were taken
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into account in determining what current to use in the bias and tapered coils
in order to get efficient slowing (@ = 0.6a,,4,) for lithium and not burn out the
coils. The field generated by the coils is calculated using a Matlab program.
The result is plotted in Fig. 1.2 along with the magnetic field profile given by

eq. 1.4.

1.4 Loading the Two-Species Source into the Chamber

One of the main reason in choosing a dual species atom source and
common slower design was the minimum amount of vacuum required. The
source part of the chamber is separated from the UHV part by a gate valve
allowing venting of the source side without disturbing the UHV part. The idea
is to vent the source side to argon replace the rubidium atom source with the

dual species atom source and pump down without a bake-out.

Lithium is not commercially available in glass vacuum ready ampules
as rubidium. Therefore, certain steps need to be taken to prepare lithium for
vacuum environment. Lithium sample is preserved and shipped in mineral oil
to prevent it from reacting with air. Mineral oil is detrimental to vacuum and
must be cleaned from the system. This is done by rinsing lithium in petroleum
ether in an argon filled glove-bag. Small amount of oxidization is present on
the lithium surface in mineral oil and this is removed with a metallic brush.
To clean the lithium further we need to do a preliminary bake-out. The clean
lithium is placed in the dual-species oven structure without the rubidium and

vacuum sealed inside the argon filled glove-bag. Then, it is rushed to pumping
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Figure 1.2: The blue curve is the calculated field profile generated by the coils.
The green curve is given by eq. 1.4. The tapered coil current is I;gperea=8.5A
and the bias coil current is zero to limit power dissipation to P=1.25KW. The
detuning 0=1.4878 GHz and v;=998m/s.
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station consisting of a mechanical and diffusion pump. The atom source is
sealed except for the 2mm hole in the nozzle. Because the source is filled with
argon, the diffusion of air through the tiny nozzle is negligible and oxidization
shouldn’t occur during the transfer to the pump station. The lithium is baked
up to 500°C for two days. We always keep the nozzle temperature at least 30°C
higher than the lithium temperature to avoid clogging. After the bake-out, the
oven is cooled slowly and the system is vented to argon. The oven is rushed
to an argon filled glove-bag where the section containing rubidium ampule is
attached and is kept there until the UHV system is ready. The UHV chamber is
sealed with the gate valve. The source side is vented to argon, the existing oven
is removed and immediately replaced with the new oven containing lithium.
The UHV system is pumped down using a pump station and the new source
is ready to be used. We first replaced the rubidium oven with a dual species
oven containing rubidium and “Li. We had in mind hetero-nuclear photo-
association experiments. Later we decided to use fermionic °Li instead and
ordered SLi from Icon Isotopes. Unfortunately, the shipment contained pure
"Li instead which was determined by absorption experiments in a Lamb dip
setup. Thus, we ended up replacing the "Li with "Li that cost us a lot of time.
This was a major set back and the lithium experiment didn’t materialize as

we decided to push ahead with rubidium experiments in the mean time.
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