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The process of tRNA maturation requires extensive posttranscriptional 

modification. These modifications include 5’ leader removal, 3’ CCA addition, 

intron splicing, and extensive base modification. The enzyme responsible for the 

removal of the 5’ leader is known as Ribonuclease P (RNase P). This 

ribonucleoprotein complex is present in all cells and cellular compartments that 

perform translation. In this dissertation, the archaeal Ribonuclease P protein 

aRpp29 from Archaeoglobus fulgidus was structurally characterized using 

nuclear magnetic resonance (NMR) and X-ray crystallography techniques.  
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The structure of aRpp29 consists of an amino terminal α-helix followed by 

a six-stranded, anti-parallel β-sheet and then an α-helix at the carboxy terminus. 

The three dimensional structure forms a semi-closed barrel, wrapped around a 

well-conserved hydrophobic core. The α-helices align in an anti-parallel 

orientation, capping the open end of the structure. There are well-conserved 

charged residues that may present a surface for interactions with either the 

RNase P RNA or the substrate tRNA. An interesting feature of this structure is an 

internal salt bridge formed by a triad of conserved residues. This feature may 

confer the unusual stability observed over a wide range of pH and temperatures. 

 

The investigation of the structure of aRpp29 using NMR revealed distinct 

differences when compared to the structure solved using X-ray crystallography. 

The solution structure forms the same six stranded anti-parallel β-sheet but lacks 

stable amino and carboxy terminal helices, indicating that ~40% of the protein is 

in an equilibrium between a folded and unfolded state. This finding was further 

investigated by measuring circular dichroism and amide proton exchange rates. 

  

The structure of aRpp29 reveals that it is a variant of the Sm-fold (or like-

SM) family of proteins. These proteins are involved in a variety of processes 

involving RNA, including splicing and transcriptional regulation. Sm proteins and 
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their homologs form heptameric rings in solution, although untracentrifugation 

studies show that aRpp29 forms a monomer in solution. 

The structural studies of archaeal Ribonuclease P protein Rpp29 

presented in this dissertation provide an essential step toward understanding the 

overall architecture of ribonuclease P. 
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Chapter 1 

Introduction 

 

 

1.1 The tRNA Maturation Process 

 Transfer RNA (tRNA) plays a central role in biology, serving as a link 

between the genetic code and protein.  Despite their relatively small size, tRNA 

molecules are extensively processed. The maturation process occurs in 5 steps: 

(1) The removal of the 5’ leader sequence by the ribonucleoprotein complex 

RNase P, (2) the removal of the 3’ trailer sequence by a combination of endo- 

and exonucleases, (3) the addition of the 3’CCA in the tRNA of eukarya, some 

archaea, and many bacterial species, (4) eukarya and some archaeal tRNA 

genes contain introns which must be precisely removed. The intron is excised by 

an endonuclease and a ligase that joins the exons, finally, (5) numerous base 

modifications are made at multiple positions. More than 80 base modifications 

from tRNAs have been identified in various organisms (Björk, 1995).  

The first step in the tRNA maturation process is performed by the 

ubiquitous ribonucleoprotein, RNase P. The removal of the 5’ leader is a uniform 

process across all kingdoms of life as RNase P is found in all organisms and 

organelles that synthesize tRNA and in almost all cases contains an RNA moiety 
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crucial for cleavage of the 5’ leader from the pre-tRNA.  In order to provide a 

context for the results presented in this dissertation, the data that makes up our 

current understanding of RNase P, its function and structure, will be discussed 

below. 

  

1.2  Bacterial RNase P 

Bacterial RNase P is the best-characterized example of the RNase P 

family. The holoenzyme contains two components, a large RNA subunit ranging 

in size from 350 - 450 nucleotides, and a protein subunit ranging in size from 120 

– 140 amino acids (Brown 1998). The RNA is encoded by the rnpB gene and can 

be classified as one of three types (Haas et al., 1996). Type A, or ancestral, is 

found in most bacteria, that is, Gram-negative and the high Gram-positives.  The 

E. coli RNase P RNA is the prototype for this category.  The Type B is found in 

the low Gram-positives with B. subtilis being the prototype. The type C is found in 

green nonsulfur bacteria (Haas et al., 1998).  The differences between the three 

types are the positions of the P6 and P10.1 stem loops (Siegel et al., 1996). 

Covariation analysis has led to the determination of a minimal consensus 

sequence (Haas et al., 1994).  

 Three-dimensional models of the core region have been constructed for 

both the E. coli and B. subtilis RNase P RNAs using covariation data, solvent 

accessibility studies, and cross-linking (Harris et al., 1994, Westhof et al., 1994, 
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Westhof et al., 1996, Harris et al., 1997, Chen et al., 1998). The central element 

in the model is the P4 helix formed by 2 distantly located conserved sequences. 

The domains J16-15 contain a binding site for the pre-tRNA 3’ CCA end and may 

also be a binding site for catalytic Mg2+ ions (Oh et al., 1998). Specific 

phosphates have been identified that bind the acceptor stem of the substrate, 

Mg2+, as well as other metal ions that are possibly important for substrate binding 

and catalysis (Hardt et al., 1995, Kleineidum et al., 1993, Kufel et al., 1996, 

Warnecke et al., 1996).  The pre-tRNA 3’ CCA has been shown to be important 

for recognition and binding by RNase P in E. coli (Oh et al., 1994, Sarvard et al., 

1996, Tallsjo et al., 1996. Hardt et al., 1995).   

In both E. coli and B. subtilis, the T stem loop of the pre-tRNA binds to the 

P8 region of the RNase P RNA (Pan et al., 1995, Loria and Pan 1997, Chen et 

al., 1998). In E. coli, the exact location of the cleavage site on the pre-tRNA 

substrate is determined by the 3’ end and the acceptor and T-stem helices 

(Kirsebom, 1995, Kirsebom and Vioque, 1996). A conserved adenosine, A248, in 

E. coli RNase P RNA interacts with the substrate nucleotide immediately 5’ of the  

cleavage site (Zahler et al., 2003). The preferred residue for this position is a 

uracil (Zahler et al., 2003). The biochemical data has led to the identification of 

two domains within the P RNA. The P RNA can be roughly divided into two 

regions, one consisting of the elements responsible foe specifity and binding of 
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the pre-tRNA substrate, and the other that contains that contains the elements 

necessary for catalysis of the substrate pre-tRNA.  

 Although no three-dimensional data exists for the holoenzyme or the 

complete P RNA, the crystal structure of the 154 nucleotide specificity domain 

from B. subtilis (type B) and the crystal structure of the 161 nucleotide specificity 

domain from T. thermophilis (type A) have been determined by X-ray 

crystallography. The domains from both types of RNase P RNA perform the 

same function and the functionally important domains are conserved. The 

differences arise from the tertiary fold of the RNA, resulting from structural 

changes due to variability in the secondary elements. These elements function to 

stabilize the core region of the RNA. These data provide a structural basis for the 

biochemical analysis (Krasilnikov et al. 2003, Krasilnikov, 2004) (Figure 1.1). 

The three-dimensional structure of the P protein from S. aureus has been 

solved by NMR methods and from T. maritima and B. subtilis by X-ray 

crystallography (Spitzfaden et al., 2000, Kazantsev et al., 2003, Stams et al., 

1998). The structure reveals an arrangement of 4 α-helices surrounding a 4 

stranded β-sheet (Figure 1.2). Cross-linking experiments indicate that the central 

cleft formed by one α-helix and the β-sheet directly interacts with the single 

stranded 5’ leader sequence of the pre-tRNA, 4-8 bases from the site of cleavage 

(Niranjanakumari et al., 1998). Binding studies with the pre-tRNA and the P 

protein show that the 
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Figure 1.1.  X-ray crystal structure of the specificity domain of the bacterial 
type B RNase P RNA.  Stick representation of the 154 nucleotide specificity 
domain of the B. subtilis RNase P RNA (PDB code 1NBS, Krasilnikov et al., 
2003).  The structure reveals the interactions required to maintain the overall 
architecture of this domain as well as regions that have been shown to be 
important in substrate recognition.  
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Figure 1.2. Cartoon representation of the crystal structure of the P protein 
from B. subtilis. The X-ray crystal structure of B. subtilis P protein has been 
solved at 2.6 Å (PDB code 1A6F, Stams et al., 1998). The fold of the protein 
consists of a 4 stranded β-sheet with 3 α-helices oriented around the sheet. The 

P protein is required for efficient catalysis under physiological conditions as it 
enhances substrate binding through interaction with the pre-tRNA substrate. The 
pre-tRNA binds to the central cleft of the protein (colored blue). Aromatic 
residues Phe16, Phe20, and Tyr 34 are directly involved in mediating this 
interaction (colored in red) 
 

N 

C 
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5’ leader sequence must be 4 -5 nucleotides in length for optimal affinity by the P 

protein (Crary et al., 1998). Moreover, aromatic residues Phe16, Phe20, and Tyr 

34 located in the central cleft of the E. coli protein, identified by mutagenesis, are 

involved with substrate binding (Gopolan et al., 1997). Two other sites of possible 

RNA interaction are a negatively charged metal binding loop and the conserved 

RNR motif that is situated in an unusual β−α−β crossover connection. 

Using small angle X-ray scattering, the B. subtilis RNase P enzyme was 

found to exist as a dimer containing two P RNA molecules and two P protein 

molecules in the absence of the pre-tRNA substrate  (Fang et al., 2001).  This 

dimerization was found to be sensitive to the environment and is mediated by the 

protein subunit (Fang et al., 2001, Barrera et al., 2002). In substrates that contain 

two tRNA molecules, the enzyme-substrate molecule contains the dimeric form of 

the holoenzyme indicating that this form may exist in vivo in order to process 

tRNA molecules that are organized in large operons (Barrera et al., 2002). 

 

1.3 Archaeal RNase P 

Archaeal RNase P has only recently been the subject of closer 

investigation. The archaeal RNase P RNA subunit is similar in both primary 

sequence and secondary structure to the phylogenetically conserved core of the 

bacterial P RNA (Haas et al., 1996). The archaeal RNase P RNA can be 
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classified into two groups, type A, which is similar to the type A found in most 

bacteria, and type M, which is a small class that lacks elements known to be 

involved in substrate recognition and binding in the bacterial P RNA (Andrews et 

al., 2001, Harris et al., 2001). These distinct differences consist of alterations in 

the P7, P9, and P10/P11 elements, as well as deletions of the P8, P15/16/17/18, 

and P6 elemets (Massire et al., 1998, Harris et al., 2001).  There are no 

additional elements found in the type M RNase P RNA that may compensate for 

these differences, but it is possible that the protein component may be involved in 

restoring the necessary functions played by the missing elements (Harris et al., 

2001).  

Very low levels of catalytic activity have been detected in the type A 

RNase P RNA, in the absence of the protein component, from methanobacteria, 

thermococci, and halobacteria in conditions of very high ionic strength (300mM 

MgCl2, 3.0-4.0 M ammonium acetate), 45-50°C, and pH 8.0 (Pannucci et al., 

1999). No activity could be detected for the type M RNase P RNA (Pannucci et 

al., 1999). The low levels of activity may be due to poor substrate affinity, as 

substrate cleavage rates increase linearly with substrate concentration up to 10 

uM (Pannucci et al., 1999).   

Chimeric RNase P, composed of the archaeal P RNA and the B. subtilis 

protein subunit elicited activity in conditions of low ionic strength, consistent with 

data using only the conserved core of the bacterial P RNA and the protein 
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subunit. These data suggest that RNA contains the necessary elements needed 

for substrate recognition and cleavage, but lacks the phylogenetically variable 

stability elements and the RNase P RNA may be structurally unstable in the 

absence of the protein component (Hall et al., 2002). Chimeric enzymes were 

produced from type M RNase P RNA but activity was not detected, although an 

active enzyme consisting of H. volcanii RNase P RNA and the B. subtilis P 

protein has been reported (Neiulandt et al., 1991). 

The characteristics of RNase P from representatives of both type A and 

type M RNase P have been reported.  The RNase P holoenzyme from 

Methanothermobacter thermoautotrophicus was found to have a buoyant density 

of 1.42 g/ml indicating a ribonucleoprotein complex with a substantial protein 

component (Andrews et al., 2001). Enzymatic activity for M. thermoautotrophicus 

was determined to have a Km of 34.5 nM and a kcat of 52.6 min-1 at 65°C in 800 

mM ammonium acetate with 5 mM MgCl2 (Andrews et al., 2001).   

The RNase P holoenzyme from Methanococcus jannashii, a 

representative of type M RNase P, was isolated and found to have a buoyant 

density in Cs2SO4 of 1.39 g/ml consistent with that from the type A RNase P 

found in M. thermoautotrophicus (Andrews et al., 2001). This is consistent with 

an enzyme complex consisting of roughly an equal ratio of protein to RNA 

(Andrews et al., 2001). The enzyme was found to be active over a wide range of 

temperatures, with the optimal activity being recorded at 80°C (M. jannashii’s 
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optimal growth temperature is 83°C), magnesium concentration, and ionic 

strength. The kinetic properties were examined by reaction velocity as a function 

of pre-tRNA concentration. The Km was found to be 68.4 nM, and the kcat was 

determined to be 34.1 min-1 at 50°C in 50 mM ammonium acetate, and 30 mM 

MgCl2 (Andrews et al., 2001).  

Comprehensive searches of archaeal genomes have not produced any 

open reading frames homologous to the bacterial RNase P protein subunit. The 

density of the M. thermoautotrophicus RNase P holoenzyme, which contains a 

type A RNA, in Cs2SO4 (1.42 g/ml) is consistent with a holoenzyme ~200 kDa, 

the RNA has a molecular weight ~96 kDa and the protein component ~98 kDa 

(Hall et al., 2002).  Interestingly, four open reading frames have been identified in 

archaeal genomes that have sequence similarity to four of the nine proteins from 

S. cerivisae RNase P (Hall et al., 2002, Kouzuma et al., 2003). The four protein 

subunits are homologous to the yeast RNase P proteins Pop4p, Pop5p, Rpr2p, 

and Rpp1p, with molecular weights of 10.7, 14.6, 17.0 and 27.7 kDa respectively 

(Hall et al., 2002) (Table 1.1).  Each of these proteins has been shown to 

physically interact with RNase P by immunoprecipitating RNase P activity from 

partially purified extracts using antisera generated against each of the proteins 

(Hall et al., 2002). The P RNA from M. thermoautotrophicus is active at very low 

levels in the absence of the protein in high ionic conditions, but the presence of 

the protein component enhances the substrate affinity over 1000 fold (Pannucci 
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Table 1.1 Protein subunit composition of nuclear RNase P from eukarya 

and RNase P from archaea.  

 
 
     Yeast   Human   Archaea 

      Pop1p            hPop1    ------- 

     Pop3p   -------    -------    

     Pop4p   Rpp29    aRpp29 

     Pop5p   hPop5    aPop5 

     Pop6p   -------    ------- 

     Pop7p   Rpp20    ------- 

     Pop8p   -------    ------- 

     Rpr2p   Rpp21    aRpp21 

     Rpp1p   Rpp30    aRpp30 

     -------   Rpp38    ------- 

     -------   Rpp40    ------- 

     -------   Rpp25    ------- 

     -------   Rpp14    ------- 
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et al., 1999). The Km of the M. thermiautotrophicus P RNA alone is 40 uM, while 

the Km of the holoenzyme was determined to be 34.5 nM (Pannucci et al., 1999, 

Andrews et al., 2001).  

The calculated molecular weight of the protein component, based on the 

CsSO4 data, was determined to be 98 kDa. The expected molecular weights of 

the four proteins shown to be associated with the archaeal RNase P holoenzyme 

total ~ 70 kDa, suggesting that there are yet to be identified factor(s) or the 

stoichiometry of the protein subunits is not one per holoenzyme (Hall et al., 

2002). 

An investigation by Kouzuma et al., (2003) demonstrated that the RNase 

P enzyme from Pyrococcus horikoshii could be reconstituted from proteins 

expressed in E. coli and in vitro transcribed RNA.  Each of the protein subunits 

homologous to those from yeast and identified by Hall et al., (2001) was able to 

bind the RNase P RNA subunit and together could restore activity in conditions of 

low ionic strength. These reconstitution experiments showed that the yeast 

homologues of Pop4p, Pop5p and Rpr2p are sufficient for RNase P activity, and 

the addition of the homolog of Rpp1p greatly increases the ability of the enzyme 

to bind its substrate pre-tRNA (Kouzuma et al., 2003). The optimal temperature 

for the in vitro reconstituted RNase P was observed at 55°C, while optimal 

activity for the native RNase P was observed at 70°C, suggesting that the RNA 

was in a slightly different conformation or other protein factors contribute some 
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sort of temperature stability (Kouzuma et al., 2003) These data demonstrate that 

the four proteins constitute the minimal protein component necessary for RNase 

P activity (Kouzuma et al., 2003).  

Structural characterization of the archaeal RNase P has recently provided 

valuable insight into its overall architecture. While structural data for the 

holoenzyme or the RNA component of archaeal RNase P has not been reported, 

the proteins have become the focus of intense structural characterization. The 

archaeal Rpp29/Pop4p homologue has been studied by both NMR and X-ray 

crystallography (Sidote and Hoffman, 2003, Boomershine et al., 2003, Numata et 

al., 2004, and Sidote et al., 2004). The structure of the archaeal homolog of the 

Rpp29/Pop4p protein is presented in this dissertation and will be discussed in in 

detail in subsequent chapters. The structure of the Rpp30/Rpp1p homologue 

from Pyrococcus horikoshii has been reported (Takagi et al., 2004). It contains a 

TIM barrel structure, consisting of ten α-helices and seven β−strands and can 

interact with the RNase P RNA (Kouzuma et al., 2003) (Figure 1.3). Surface 

residues thought to be important for RNA binding were investigated by site-

directed mutagenesis. Residues Arg90,  Arg107,  and Lys123 were mutated to 

Ala and found to cause decreases in RNase P activity by 42-48%. Mutations 

made to Arg176 and Lys196 caused a reduction in activity of reconstituted 

RNase P by 32%. These data suggest that these residues are involved 

interacting with the substrate pre-tRNA or the RNase P RNA. 
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Figure 1.3. X-ray crystal structure of the archaeal homolog of Rpp30 from 
P. horikoshii. Cartoon representation of the X-ray crystal structure of aRpp30 
with helices and loops colored blue and β-strands colored green (PDB code 

1V77, Takagi et al., 2004). The 24 kDa protein forms a TIM barrel structure, 
consisting of 10 α-helices and 7 β-strands. Residues important for RNase P 

function archaea are colored red. Mutation of these residues causes 32-48% 
reduction in activity. 
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1.4  Eukaryotic RNase P 

 

1.4.1  Nuclear RNase P 

Nuclear RNase P has been purified to homogeneity and the components of the 

complex determined (Lee et al., 1991, Lee et al., 1991, Lygerou et al., 1994, 

Dicht et al., 1997, Chu et al., 1997, Stolc and Altman 1997, Stolc et al., 1998).  

The yeast RNase P RNA subunit was first described fifteen years ago but the 

purification of the holoenzyme has only recently been reported. Biochemical 

purification has confirmed the presence of the RNA, termed RPR1, and the 

existence of nine protein subunits: Pop1p, Pop3p, Pop4p, Pop5p, Pop6p, Pop7p, 

Pop8p, Rpr2p, and Rpp1p (Chamberlain et al., 1998). The protein subunits are 

essential for RNase P activity and yeast viability (Chamberlain et al., 1998, Lee et 

al., 1991, Lygerou et al., 1994, Dicht et al., 1997, Chu et al., 1997, Stolc and 

Altman 1997). The other well studied representative of eukaryotic RNase P, 

human RNase P has been purified and the RNA subunit, termed H1, and 10 

protein subunits have been shown to be part of the complex, termed Rpp14, 

Rpp21, Rpp25, Rpp29, Rpp30, Rpp38, Rpp40, hPop1, and hPop5 (Bartkiewicz 

et al., 1989, Lygerou et al., 1996, van Eenennaam et al., 1999, Jarrous et al., 

1999, van Eennannaam et al., 2001, Jarrous et al., 2001). The human and yeast 

RNase P share some similarity as 6 of the 10 human protein subunits are 

homologous to the yeast protein subunits. 
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The RNA Component of Nuclear RNase P 

The RNA component of RNase P has been isolated from several 

eukaryotic organisms but the majority of the data comes from analysis of the 

yeast RNase P RNA, RPR1  (Frank and Pace, 1998, Brown. 1999, Frank et al., 

2000). In S. cerevisiae, the RPR1 RNA is transcribed by RNA polymerase III as a 

486-nucleotide precursor (Lee et al., 1994). The 84-nucleotide leader sequence 

and the 33-nucleotide trailer sequence are removed, although the enzymes that 

perform the cleavage are unknown (Lee et al., 1991).  

In yeast cells growing at a normal rate, the ratio of pre-RPR1 to mature 

RPR1 is ~1:9 and both can be immunoprecipitated by affinity tagged protein 

subunits (Chamberlain et al., 1998, Lygerou et al., 1994, Dichtl et al., 1997, Chu 

et al., 1997, Stolc and Altman, 1997). Both the pre-RPR1 and mature RPR1 can 

be purified using similar protocols, suggesting that the RNA processing occurs 

after the protein subunits are present on the RNA (Chamberlain et al., 1996). It 

has been shown that the pre-RPR1 enzyme is as active as the enzyme 

containing mature RPR1 (Srisawat et al., 2002). Interestingly, the protein 

subunits Pop3p and Rpr2p are not part of the pre-RPR1 complex and seem to 

bind to the complex after RPR1 has been processed (Srisawat et al., 2002).  

The pre-RPR1 and mature RPR1 forms are localized to the nucleolus, 

suggesting that the assembly of the RNase P holoenzyme takes place there as 

well (Bertrant et al., 1998, Srisawat et al., 2002). Studies of the human H1 RNA 
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have also suggested localization occurs in the nucleolus (Jacobson et al., 1997). 

A complex of seven Sm-like proteins (lsm2-8) has been shown to interact with 

the pre-RPR1 RNA. Sm/Lsm proteins have been shown to be involved in mRNA 

processing (Toro et al., 2001). However, they are not part of the mature RPR1 

complex and therefore may be involved in assembly or recycling of RNase P 

(Salgado-Garrido et al., 1999, Pannone et al., 2001).  

The secondary structure of the RPR1 RNA has been predicted based on 

phylogenetic analysis, and structure sensitive RNA footprinting (Tranguch et al., 

1993, Zimmerly et al., 1990, Frank et al., 2000, Tranguch et al., 1994). A 

conserved core structure can be identified from bacteria to eukarya (Chen et al., 

1997, Frank et al., 2000). There are five conserved regions that contain 

conserved residues and stems at similar positions, these regions are called CR1-

CRIV (Xiao et al., 2002).  The crystal structure of the RPR1 RNA has not yet 

been reported. Data regarding the structure and function of the RPR1 RNA 

comes mainly from mutagenesis, crosslinking, chemical probing and computer 

generated models.  

 The P4 helix, formed by base pairing of the CR1 and CRV regions, has 

been predicted to be the catalytic core of the bacterial RNase P RNA (Altman 

1993, Kazakov et al., 1991, Darr et al., 1992, Guerrier-takada et al., 1993, Haas 

et al., 1994, Harris et al., 1995, Pagan-Ramos et al., 1996). It has also been 

shown to be a binding site for the P protein in Bacterial RNase P (Biswas et al., 



 18 

2000). This same region was studied in the RPR1 RNA using mutagensis and 

was found to be important for substrate binding, catalysis, and RPR1 maturation 

(Pagan-Ramos et al., 1996). Several of the changes in and around the P4 helix 

caused a 10-fold reduction in catalytic efficiency, as well as decreases in levels of 

the mature RPR1 RNA (Pagan-Ramos et al., 1996).  RNA footprinting results 

demonstrate that the P4 helix is not accessible to nucleases, suggesting that is 

buried (Transguch et al., 1994). 

 As is the case with most RNA enzymes, magnesium concentration plays 

an important role. The CRII, CRIII, P10/P11 and P12 regions form a domain 

whose structure and function depend on magnesium concentration (Pagan-

Ramos et al., 1996, Ziehler et al., 1998). Deletion experiments have shown that 

this region is vital for RNase P activity and viability in yeast (Pagan-Ramos et al., 

1994). Mutagenesis of region IV produces large decreases in Kcat but negligible 

changes in Km, and do not alter the ratios of pre-RPR1 to mature RPR1 (Pagan-

Ramos et al., 1996). 

 The RPR1 RNA contains some unique features not observed in the 

bacterial RNase P RNA. The P3 element can be found in both the bacterial and 

yeast RNase P RNA, but the yeast element contains a helix-loop-helix structure 

not found in the bacterial version (Tranguch et al., 1993, Pittule et al., 1998, Chen 

et al., 1997, Frank et al., 2000).  The P3 region of  RPR1 has shown to be crucial 

for RNase P activity, mutational analysis results in defects in pre-tRNA 
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processing, RPR1 maturation, and disruption of the binding between RPR1 and 

Pop1p (Ziehler et al., 2001). The function of the P3 element has been studied in 

the human RNase P RNA and found to be important for localization to the 

nucleolus as well as acting as a protein binding site (Yuan et al., 1991, Liu et al., 

1994, Jacobson et al., 1997).  The function of the P15 region is unknown. The 

P15 region in the bacterial RNA is larger than the simple structure found in yeast 

and altogether absent in the human RNase P RNA (Xiao et al., 2002). 

 

The Protein components of Nuclear RNase P  

  The protein subunits of nuclear RNase P from both yeast and humans 

have been characterized.  RNA foot-printing shows that the majority of the yeast 

RNase P RNA subunit is covered by protein (Tranguch et al., 1994). The yeast 

proteins, designated Pop proteins, for processor of precursor, range in size from 

15.5 to 100.5 kDa. All of the proteins are very basic (pI > 9), with the exception of 

Pop5p, which has a pI of 7.8, and Pop8p, which is acidic with a pI of 4.6. It is 

interesting to note that none of the proteins contain a defined RNA binding motif, 

rather they contain only stretches of basic residues. Some of the proteins contain 

putative nuclear localization signals. 

Currently, there is no data on the assembly order of RNase P.  It is 

possible that the proteins bind the RNA as a preformed complex, or individually. 

Depletion studies of most of the RNase P proteins from yeast show that they are 
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necessary to maintain the proper ratio of mature RPR1 RNA (Chamberlain et al., 

1998, Chu et al., 1997, Stolc et al., 1997, Stolc et al., 1998).  Specific activities 

and functions of the yeast protein subunits in relation to RNase P activity are 

unknown at this time.  Some human RNase P protein subunits have been found 

to possess specific activities. It has been reported that Rpp14 binds to OIP2 and 

forms a 3’ -> 5’ exoribonuclease with phosphorolytic activity. This has only been 

demonstrated for crude extracts, as further purification removes this activity 

(Jiang and Altman. 2002).  Rpp14, Rpp21, and Rpp29 have been shown to bind 

pre-tRNA in gel mobility assays but the specificity for such interaction remains to 

be verified (Jarrous et al., 2001, Jarrous 2002).  It has been reported that Rpp20 

contains ATPase activity and contains a signiture motif found in a subunit of the 

ABC transporter, a regulator of membrane traffic, and a variation of the DEAD 

box motif found in many ATPases (Li et al., 2001). This DEAD box like motif is 

not present in the yeast homolog, Pop7p, indicating that this protein may fulfill a 

different role in the yeast RNase enzyme. Rpp20 has been shown to interact with 

the small heat shock protein, Hsp27. The nature of this interaction may be in a 

regulatory capacity as the addition of Hsp27 stimulates RNase P activity in a 

concentration dependent manner (Jiang et al., 2001). Although the specific 

functions of the nuclear RNase P protein subunits remains to be established, it 

may be that they serve multiple roles, not just in substrate recognition and 

cleavage, but also in discerning which RNAs are to be processed.  
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 The crystal structure of the eukaryotic RNase P holoenzyme has not yet 

been determined, although interaction maps for both yeast and human RNase P 

have been generated using cross-linking and yeast two-hybrid and yeast three-

hybrid assays (Fields et al., 1989, Houser-Scott et al., 2002, Jiang and Altman, 

2001). The protein-protein interaction between the yeast RNase P protein 

subunits was mapped using yeast two-hybrid assay (Houser-scott et al., 2002). It 

was determined that Pop1p, Pop4p, Pop5p, Pop6, Rpp1p and Rpr2p interact with 

at least one other subunit and Pop4p and Pop1p make multiple interactions 

(Houser-Scott et al., 2002). Pop4p interacts with 7 of the 8 protein subunits 

(Houser-Scott et al., 2002). Yeast three-hybrid assays were used to map the 

RNA-protein interactions and revealed that Pop4p and Pop1p interact with the 

RPR1 RNA (Houser-Scott et al., 2002). The Pop1p-RNA interaction has been 

mapped to the P3 region of the RPR1 RNA, although the Pop4p region remains 

to be determined (Zeihler et al., 2001) (Figure 1.4). 

The human RNase P interaction map has also been constructed and show 

edsome variation to the yeast RNase P (Jiang and Altman 2001) (Figure 1.5). 

Yeast two-hybrid assays determined that Rpp21, Rpp29, Rpp30, Rpp38, Rpp40, 

and hPop1 make extensive but weak interactions with the other subunits (Jiang 

and Altman 2001). Using UV crosslinking and yeast three-hybrid assays, the H1 

RNA was shown to interact with Rpp21, Rpp29, Rpp30, and Rpp38 (Jiang et al.,  
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Figure 1.4. Yeast RNase P interaction map determined by yeast two-hyrid 
and yeast three-hybrid assays. The individual protein subunits are 
represented as ellipsoids with sizes proportional to the molecular weight of each 
protein. Protien-protein interactions were detected by yeast –two hydrid assays. 
The shaded ellipsoids have been shown to interact with the yeast RNA subunit 
(shown in blue) as determined by yeast three-hybrid assay. Interactions 
detected between protein subunits are depicted by overlapping ellipsoids. Pop4p 
forms the center of the enzyme, interacting with 7 of the 8 protein subunits as 
well as the RNA. Interactions between Pop1 and the RNase P RNA have been 
demonstrated but it is not known where Pop4p interacts with the RNase P RNA.  
Figure was adapted from Houser-Scott et al., 2002. 
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Figure 1.5 Human RNase P interaction map determined by yeast two-hybrid 
and yeast three-hybrid assays. Each protein subunit is represented as an 
ellipsoid and the size is roughly proportional to the molecular weight of the 
protein. Overlapping ellipsoids indicate that protein-protein interactions were 
detected. The red ellipsoids indicate that the protein subunit was shown to 
interact with the RNA subunit in yeast three-hybrid assays. As in the yeast 
interaction map, the p29 (Rpp29) protein interacts with many of the protein 
subunits and the PNase P RNA. Interactions are represented as overlapping 
ellipsoids. Figure was adapted from Jiang et al., 2001 and Jiang and Altman, 
2001). This is in contrast to the yeast interaction map, as the only subunit that 
interacts in both organisms is Rpp29. 
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1.4.2  Mitochondrial RNase P 

 The activity of RNase P from mitochondria has been characterized mainly 

in yeast. In S. cereviae, mitochondrial RNase P consists of a mitochondrial 

genome encoded RNA subunit (Rpm1r) that is 490 nucleotides, and a 105 kDa 

protein subunit (Rpm2p) that is encoded in the nuclear genome (Miller and Martin 

1983, Underbrink-Lyon et al., 1983, Morales et al., 1992, Dang et al., 1993). 

Phylogenetic analysis has led to the proposal of a conserved RNA core structure 

that is similar to the bacterial RNA core structure (Wise 1991).  The protein 

subunit is required for RNase P activity as mutations of the Rpm2p gene causes 

accumulation of pre-tRNA lacking processing of the 5’ end (Morales et al., 1992). 

Moreover, Rpm2p is needed for proper processing of the mitochondrial RNase P 

RNA (Stribinskis et al., 1996, Stribinskis et al., 2001). Deletion of the gene 

altogether, prevents the fermentative growth of yeast cells (Kassenbrock et al., 

1995). 

 Human mitochondrial RNase P composition is still a matter of debate. It 

was first reported that mitochondrial RNase P from HeLa cells consists entirely of 

protein and exhibits mitochondrial specific substrate specificity (Rossmanith and 

Karwan 1998, Roassmanith et al., 1995). Recent data shows that the 

mitochondrial RNase P may contain an RNA identical to the HI RNA found in the 

nuclear RNase P (Puranam and Attardi, 2001). It should be noted that there is a 
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possibility that the presence of H1 RNA may be due to a contaminant from a non-

mitochondrial cellular compartment. 

 

1.4.3  Chloroplast RNase P 

 Chloroplast RNase P activity has been characterized in tobacco and 

spinach (Frank and Pace 1998). The presence of an RNA component has not 

been established for this RNase P and presents the only exception. Several lines 

of evidence indicate that chloroplast RNase P may consist entirely of protein: 1) 

spinach chloroplast is insensitive to micrococcal nuclease digestion, 2) No RNA 

has been detected in purified enzyme preparations, and 3) the buoyant density of 

the enzyme in CsCl2 is 1.28 g/ml, which is the same buoyant density as the 

protein (reviewed in Gegenheimer, 1995, Pace and Brown, 1995). 

 It appears that the cleavage mechanism used by the chloroplast RNase P 

differs from that of the bacterial enzyme. In the bacterial RNase P, replacement 

of the pro-Rp non-bridging oxygen with a sulfur at the scissile bond of the pre-

tRNA greatly decreases RNase P cleavage, while the same change has little 

affect on the chloroplast RNase P (Thomas et al., 2000) The Choloroplast RNase 

P can still efficiently bind to the substrate pre-tRNA with a Km of 16 nM (Thomas 

et al., 2000). 

 RNase P from cyanelle of the primitive alga cyanophura paradoxa has 

been characterized (Cordier and Schön, 1999). The cyanelle is  a photosynthetic 



 26 

organelle from cyanobacteria and belongs to a different phylogenetic branch than 

the choloroplasts of higher plants and green alga (Cordier and Schön, 1999). The 

RNA component has been shown to be required for activity as micrococcal 

nuclease treatment removes RNase P activity (Schön, 1999). The protein 

components constitute 80% of the mass of the holoenzyme and are required for 

RNase P activity (Baum et al., 1996, Pascual and Vioque, 1999, Schön, 1999). 

RNA footprinting data shows that the proteins cover the RNA component 

extensively (Cordier and Schön, 1999). 

 

1.5 The relationship between RNase P and RNase MRP 

RNase P is related to another ribonucleoprotein enzyme found only in 

eukarya, called RNase MRP. RNase MRP plays an important role in the 

processing of ribosomal RNA (Tollervey et al., 1995, Lindahl and Zenger 1995). 

RNase MRP RNA has been found to be localized mainly in the nucleolus (Riemer 

et al., 1988, Kiss et al., 1992, Li et al., 1994, Jacobsen et al., 1995). It has been 

determined that RNase MRP cleaves pre-rRNA at the A3 site in the first internal 

transcribed spacer region, which is an essential step for generating mature 5.8S 

rRNA (Schmitt and Clayton 1993, Lygerou et al., 1996, Chu et al., 1994). RNase 

MRP has been shown to be required for yeast viability, even though its 

established functions have not yet to be determined (Tollervey et al 1995). 
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Characterization of RNase MRP comes mainly from yeast and HeLa 

human cells. The yeast RNase MRP contains an RNA component called NME1 

RNA (Schmitt and Clayton 1992, Gold et al., 1989). Secondary structures of 

NME1 RNA have been predicted based on phylogenetic data (Forster and 

Altman, 1990, Karwan, 1993, Schmitt et al., 1993, Schmitt, 1999). The NME1 

RNA folds into a structure similar to that of RNase P, containing the regions CR1, 

CRIV, CRV, and the P3 loop (Lindahl et al., 2000). In human RNase P and 

RNase MRP, the P3 domain is required for several proteins to bind near or at the 

P3 domain (Pluk et al., 1999, Liu et al., 1994, Yuan et al., 1991).  

The protein component of yeast RNase MRP has been found to contain 

eight of the nine protein subunits found in yeast nuclear RNase P (Chamberlain 

et al., 1998). In addition to the overlapping eight proteins, each enzyme contains 

one distinct protein subunit. The distinct subunit found in RNase MRP is Snm1p,  

and in RNase P it is the Rpr2p protein. The Snm1p protein has a putative zinc 

binding doamain and can bind the NME1 RNA in gel shift assays (Schmitt 1994). 

Both Rpr2p and Snm1p have been shown to bind pop4p, although Rpr2p does 

not interact with the RNase P RNA (Houser-Scott et al., 2002).  
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1.5 Understanding RNase P structure and function using archaea as a 

model system 

The archaeon Archaeoglobus fulgidus was selected as the preferred 

species for the biophysical study of RNase P presented in this dissertation.  This 

strictly anaerobic sulfur-metabolizing organism is found in hydrothermal 

environments, and has an optimum growth temperature of 83 °C.  The A. fulgidus 

RNase P has several features that make it attractive for structural studies.  Its 

RNA component is relatively small, containing only 227 nucleotides.  The A. 

fulgidus genome has been sequenced (Klenk et al., 1997), which greatly 

simplifies the identification of the likely protein components of its RNase P.  

Moreover, it has been noted that hyperthermophiles have an excellent record of 

being the source of materials for successful biophysical studies.  

As a step toward furthering our understanding of RNase P structure, the 

protein from A. fulgidus that is homologous to the human RNase P protein Rpp29 

and the yeast RNase P protein Pop4 has been recombinantly expressed, purified 

and structurally characterized.   

The A. fulgidus homologue of the Rpp29 protein (henceforth referred to as 

aRpp29) is a particularly attractive target for structural analysis for several 

reasons: 1) It’s primary sequence is not significantly homologous to any protein 

of known structure; 2) It’s sequence is homologous to known archaeal RNase P 

proteins from M. thermoautotrophicus (Hall and Brown, 2002) and P. horikoshii 
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(Kouzuma et al., 2003), providing strong evidence that the A. fulgidus aRpp29 

protein is actually an RNase P component; 3) The homology of archaeal aRpp29 

with Rpp29 and Pop4 implies that any structural information obtained will be 

relevant for these human and yeast RNase P proteins as well; 4) Interaction 

maps based on data from two- and three-hybrid assays indicate that the yeast 

and human homologues of aRpp29 directly contact the RNA component of 

RNase P and are involved in a relatively large number of protein-protein 

interactions (Houser-Scott et al., 2002, Jiang et al., 2001), suggesting that 

aRpp29 and its homologues are central to, rather than a peripheral component 

of, the overall RNase P structure; 5) The human homologue of aRpp29 is present 

in both RNase P and RNase MRP (Chamberlain et al., 1998), so that the 

structural results provided by the present study will be relevant to a protein 

component of RNase MRP as well;  6) It has recently been demonstrated that a 

functional archaeal RNase P can be reconstituted from four recombinant P. 

horikoshii RNase P proteins and in vitro transcribed RNA (Kouzuma et al., 2003); 

one of these four proteins is the homologue of A. fulgidus aRpp29; 7) The yeast 

homologue of aRpp29, the Pop4 protein, is encoded by a gene that is essential 

for viability (Chamberlain et al., 1998), providing further evidence of the 

importance of this conserved gene product. 

This dissertation is divided into 5 chapters. In chapter 1, a detailed 

analysis of the current understanding of RNase P has be discussed. In chapters 



 30 

2 and 3, the NMR and crystal structures of the archaeal RNase P protein aRpp29 

will be presented. The results of biophysical analysis will be presented in chapter 

4 and chapter 5 will summarize the results and provide prospective. 
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Chapter 2 

NMR Structure of an Archaeal Homologue of RNase P Protein 

aRpp29 from Archaeoglobus fulgidus 

 

 

2.1 Introduction 

 Nuclear magnetic resonance (NMR) spectroscopy is a powerful technique 

for characterizing the three-dimensional structure of proteins in solution.  It 

exploits the intrinsic magnetic spin properties of atomic nuclei to detect atoms 

that are near each other in space, either by being bonded to each other or 

through the folded protein’s spatial arrangement. This information is then used to 

derive the three-dimensional structure of the macromolecule. The most common 

nuclei having a magnetic spin used for structure determination of are 1H, 15N, and 

13C. In order to simplify the analysis of NMR data, protein samples can be 

enriched with 15N and 13C isotopes to allow the identification of specific isotopes 

and chemical groups. An overview of the procedure used for determining a 

protein structure using NMR methods is discussed below. A more detailed 

explaination can be found in texts such as Wuthrich, 1986 and Cavanaugh, 1996. 



 32 

The structure determination of a protein from NMR data proceeds though 

3 distinct stages: 1) spectrum assignment; 2) derivation of the structural 

constraints from the spectra; and 3) structure refinement and refinement. 

 

2.1.1 Sample Preparation 

 A typical NMR experiment will start with a concentrated, homogeneous 

protein sample in a suitable buffer.  Buffers such as potassium and sodium 

phosphate are most common. Due to the insensitivity of certain NMR 

experiments, sample concentration should be about 1 mM or above. Normally, 

protein samples are prepared in 90% H2O/10% D2O at an acidic pH (between 3.0 

and 5.0), so that the peptide backbone amide protons are visible and the 

exchange with the solvent is kept to a minimum. The D2O is required to keep the 

magnetic field constant during the course of the experiment. The temperature at 

which the NMR data is collected can also have an impact on the quality of the 

data. Elevated temperatures increase the overall and local mobility of the protein, 

causing decreased resonance linewidth and increased resolution, therefore the 

thermal stability of the protein should be examined prior to NMR data collection. 

Most proteins require low concentrations of salt to maintain solubility. The ionic 

strength of the sample buffer should be kept to the minimum that the protein will 

tolerate, as high ionic stregth solutions can have an affect of the sensitivity of 

some NMR experiments. Other reagents necessary for protein stability such as 
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DTT or certain buffers can be used but must be obtained in a deuterated form to 

prevent the introduction of artifacts in the NMR spectra. Sodium azide to a 

concentration of a few millimolar is added to the protein sample to inhibit bacterial 

and fungal growth. 

 

2.1.2 Spectrum Assignment 

In order to define a structure it is first necessary to assign as many NMR 

resonances as possible to specific nuclei within individual amino acids. The first 

step in assignment strategy is to determine the resonances associated with 

specific amino acid types. This can be accomplished by analyzing NMR spectra 

that detect through bond interactions such as TOtal COrrelated SpectroscopY 

(TOCSY), Double-quantum filtered COrrelated SpectroscopY (DFQ-COSY), and 

15N-edited-HSQC-TOCSY. The determination of the specific type of amino acid 

depends on identifying HN, Hα, and side chain resonances that belong to the 

same amino acid.  

Typically, the backbone amide protons are well resolved and can easily be 

assigned. The Hα and sidechain resonances are determined by the observation 

of direct peaks to the backbone amide protons. The specific amino acid type can 

be deduced by examining the resonances corresponding to the side chain. The 

sidechain assignment is crucial for identifying the specific amino acid type. The 

number of protons, as well as the approximate random coil chemical shift value 
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for each proton on a sidechain can be used as a guide. In the next step, the 

adjacent residues in the sequence are determined by observing sequential NOE 

crosspeaks between the amide proton on one amino acid and the backbone 

protons on the proceeding amino acid.  The Hα resonance can also provide 

information on the local secondary structure, as Hα resonances upfield of the 

water indicate β-sheet and resonances downfield of the water indicate a helix. 

Generally, when the residue types of 3 – 5 sequential amino acids are 

determined, their unique position in relation to the primary sequence can be 

made (Figure 2.1). 

 There are a number of factors, such as chemical shift degeneracy and 

incompletely observed sidechain resonances, which prevent the unambiguous 

amino acid type determination from homonuclear data. To circumvent these 

problems three-dimensional heteronuclear NMR experiments are used. Triple 

resonance NMR spectra, using uniformly labeled 15N-13C protein, can be used to 

sequentially assign amino acids without prior knowledge of their type by detecting 

through bond interaction across the peptide backbone. The 13C chemical shifts of 

Cα, Cβ, and Co can be used to determine the sequential orientation of residues 

using experiments such as HNCA, HNCO, HNCACB, and HN(CO)CACB. For 

example, the HNCACB and HN(CO)CACB experiments can be used in 

conjunction to provide connectivities between sequential Cα and Cβ resonances. 

Even using multi-dimensional NMR methods, tt is not usually possible to work  



 35 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Two-dimensional TOCSY spectrum of aRpp29 at pH 5.8 and 

30°C. Each axis represents a 1H dimension. Vertical peaks having the same 

chemical shift belong to the same amino acid. This information can be used to 

determine the amino acid type and when used in conjunction with the 

corresponding NOESY spectrum, sequential amino acid assignments can be 

made. 
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Figure 2.2.  Sequential assignments of amino acids using homonuclear 

NMR. Slices of a three-dimensional NOESY experiment are shown. In this view 

the 1H-1H dimensions can be viewed by 15N chemical shift. Horizontal lines 

represent NOE interactions between the amide proton on one amino acid and the 

Hα protons of the preceding amino acid.  
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Figure 2.3. Backbone assignments using heteronuclear NMR. Schematic 
diagram of a peptide backbone demonstrating how a HNCACB (blue) 3D NMR 
experiment can be used in conjunction with a HN(CO)CACB (orange) to assign 
the peptide backbone. The amide proton and nitrogen chemical shifts can be 
used to link together sequential amino acids. 
 

from one end of the protein to the other using triple resonance spectra as overlap 

in the peaks may lead to ambiguity in the asiignments. Proline residues present 

another challenge due to the fact that they do not contain an amide proton.  

Triple resonance NMR data is also useful for unambiguously determining 

the specific type of amino acids. Amino acids such as alanine, glycine, serine 

and threonine have distinct Cα and Cβ chemical shifts. Specific 13C type labeled 

samples can be prepared for amino acids such as leucine, isoleucine, valine, and 

phenylalanine and HNCO spectra collected to resolve assignment ambiguities. 

Resonance assignments for the sidechains can also be determined by analyzing 

HCCH-TOCSY experiments. 
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2.1.3 Deriving structural constraints from spectra 

 The three-dimensional structure of a protein is derived mainly from the 

through-space NMR spectra that involve the Nuclear Overhauser effect (NOE). 

This is a relaxation effect in which the volume of the peak is used as a measure 

of the distance between the two nuclei, at distances of approximately 6 Å or less. 

The NMR spectra designed to observe the NOE effect are known as NOESY 

spectra. The intensity of the NOESY peaks are classified as strong, medium, and 

weak and define the NOE distance constraints that are used in structure 

calculation. However, NOE data can be distorted by spin-diffusion and internal 

motions within the molecule. Spin-diffusion causes an exaggeration of the 

nuclear relaxation effect resulting in observation of NOE cross peaks with 

abnormally strong intensity. The contribution of spin-diffusion can be measured 

by altering the NMR parameters of the NOESY experiments.  

 Short and medium range NOEs are dependent on the secondary 

structure. To define the tertiary structure it is necessary to observe and assign 

long range NOEs between nuclei on amino acids that are distant from each other 

in the primary sequence, but are brought into proximity by the fold of the protein. 

 In addition to NOE data, NMR experiments can be acquired to derive data 

for dihedral angles and hydrogen bond donors. These data are used as 

additional constraints to increase the precision of the final structure. Dihedral 

angles are calculated from J-coupling constants, which are a description of the 
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very fine splitting of NMR peaks caused by the effect of the local environment on 

non-equivalent nuclei that are 2, 3, or 4 bonds away.  Nuclei that are hydrogen 

bond donors can be detected by deuterium exchange by following the exchange 

of labile protons over time.  

 

2.1.4 Structure Refinement 

 The three-dimensional protein structure is calculated by analyzing the 

violations of distance constraints and the energy functions for each structure 

generated using all the structural constraints. The constraints are then modified 

to satisfy the violations in subsequent structure calculations. This is an iterative 

process requiring multiple rounds of structure calculation. 

 The final NMR structures should satisfy the energy conditions and have no 

violations outside the experimental error for all of the constraints used in their 

calculations. NMR structures are presented as ensembles of structures that 

represent the full range of structures that satisfy the NMR derived constraints and 

have reasonable molecular geometry. Ensemble representations are useful for 

determining regions of the protein that are well defined and those that are not 

well defined. These poorly defined areas of the structure are often the result of 

regions of the proteins that have very few NMR derived structural restraints to 

define them; typically these are in loops and the termini of the protein. The quality 

of the structure can be accessed by examining the root mean square deviation 
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(r.m.s.d.) of the ensemble for the backbone and sidechain atoms and by 

examining the Ramachandran plot to indicate whether the secondary structure 

adheres to the rules regarding the distance and orientation of atoms in proteins. 

 In this chapter, the NMR structure of the Ribonuclease P protein aRpp29 

from Archaeoglobus fulgidus is presented. This chapter was adapted from Sidote 

and Hoffman, 2003. The results of the structure calculation, a description of the 

structure, and interesting features of the protein will be discussed. 

 

2.2 Materials and Methods 

 

2.2.1 Cloning, expression, and purification of aRpp29 

 The 102 amino acid archaeal homologue of the human RNase P protein 

Rpp29 (aRpp29) was identified by a homology search using BLAST. The aRpp29 

gene was obtained by PCR from the genomic DNA of Archaeoglobus fulgidus 

cells (obtained from American Type Culture Collection, clone number 49558).  

PCR primers were designed to include unique EcoRI and BamHI restriction sites 

to allow the PCR product to be cloned into a plasmid encoding maltose binding 

protein (MBP) (pMAL-c2T (Kapust and Waugh, 1999), derived from pMAL-c2x, 

New England Biolabs) followed by a TEV protease site; this plasmid was 

transformed into BL21(DE3) cells (Novagen) supplemented with 100 mg/L 

ampicillin.  
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 Six independent PCR reactions were performed, and representatives from 

each reaction were cloned into the plasmid pMAL-c2t for sequence verification by 

automated DNA sequencing (ICMB Core Facility). All clones contain a base 

substitution that results in a Glu at position 9 in the protein being mutated to an 

Ala. The lack of conservation of this amino acid in the primary sequence 

alignment of the protein suggests that this mutation is either unique to the 

species of A. fulgidus used in this study or a sequencing mistake exists in the 

genomic database. 

 The recombinant MPB-aRpp29 fusion protein was produced by growing 

typically 4 liters of E. coli cells in Luria broth at 37 °C until the cells reached an 

OD600 of 0.5.  The cells were then induced with 0.6 mM isopropyl-B-D-

thiogalactopyranoside (IPTG) and allowed to grow for an additional 6 hours, 

harvested by centrifugation, and stored at –80 °C.  Thawed cells were lysed by 

sonication and the nucleic acids were precipitated by the addition of 0.5% 

polyethylenimine (v/v).  The cell lysate was centrifuged at 12,000 g for 20 

minutes to remove cellular debris and nucleic acids.  Cellular proteins were 

precipitated by adding ammonium sulfate up to 70% saturation, and separated by 

centrifugation at 12,000 g.  The protein pellet was dissolved in 10 mM potassium 

phosphate buffer at pH 5.8, loaded to an SP sepharose column (Sigma), and 

eluted using a 0 to 1 M NaCl gradient.  The fractions containing the MBP-aRpp29 
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fusion protein were identified using SDS-PAGE and pooled.  The typical yield 

was 75 mg of fusion protein per liter of cell culture.   

 The aRpp29 was cleaved from the MBP fusion protein by incubating with 

TEV protease at room temperature for 24 hours.  The cleavage products were 

then loaded to an SP sepharose column, and the aRpp29 protein was eluted 

using a 0 to 1 M NaCl gradient.  Fractions containing the aRpp29 protein were 

identified by SDS-PAGE, pooled and concentrated.  The typical yield of purified 

aRpp29 was 5 mg per liter of cell culture.  N-terminal sequencing and mass 

spectrometry were used to confirm the identity of the purified protein.  

  

2.2.2  Preparation of Enriched Samples 

Samples of aRpp29 enriched in 15N and/or 13C were prepared as above, 

but with M9 minimal media containing 0.5 g/l 15N ammonium chloride and/or 3 g/l 

13C glucose (Cambridge Isotope Laboratories) as the source of nitrogen and/or 

carbon (Table 2.1).  A protein sample selectively labeled with 15N lysine was 

prepared by growing the cells in M9 minimal media supplemented with 50 mg/l of 

15N labeled lysine and 100 mg/l of the other 19 unlabeled amino acids.  A protein 

sample selectively labeled with 15N glycine, serine and tryptophan was prepared 

using M9 minimal media supplemented with 100 mg/l of 15N labeled glycine and 

100 mg/l of each of 16 unlabeled amino acid types (all types except glycine,  
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Table 2.1 Reagents used for preparation of M9 minimal media for isotope 
labeling of A. fulgidus aRpp29 (per liter). 
 
Na2 HPO4         8.0 g 
KH2PO4         3.0 g 
NaCl          0.5 g 
NH4Cl          0.5 g 
Glucose         3.0 g 
MgSO4         2 mM 
FeCl3          1 uM 
CaCl2          0.1 mM 
Ampicillin         100 mg 
Trace Metal Solution       1 ml 
Vitamin          1 ml 
  
Trace metal solution (per liter) (Battiste et al., 2000)  _         
CoCl2          0.8 mg 
CuSO4         0.7 mg 
MoNa2O4         2.0 mg 
MnSO4         4.0 mg 
ZnSO4          5.0 mg 
 
Vitamin (per ml)_________________________________________          
Thiamine         5.0 mg 
Biotin          1.0 mg 
Folic acid         1.0 mg 
Niacinamide         1.0 mg 
Panthothenate        1.0 mg 
Riboflavin         1.0 mg 
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serine, cysteine and tryptophan).  Samples that were simultaneously 

enriched with 15N (uniform) and 1-13C-leucine (or 1-13C-isoleucine or 1-13C-

phenylalanine or 1-13C-valine) were prepared by growing the cells in M9 minimal 

media containing 1 g/l 15N-ammonium chloride and 100 mg/l of the 1-13C -labeled 

amino acid. 

 

2.2.3 Expression and purification of TEV protease 

Tobacco etch virus protease was chosen for its ability to be purified ‘in-

house’ and for it’s sequence specificity as it recognizes the seven amino acid 

consensus sequence, Glu-X-X-Tyr-X-Gln/Ser (Kapust et al., 2002). Recombinant 

tobacco etch virus (TEV) protease was purified from E. coli cells. The expression 

plasmid containing the TEV protease gene was transformed in BL21 (DE3) 

expression cells (Novagen) supplemented with ampicillin.   

Typically, 2 liters of cells were grown at 37°C until the OD600 reached  ~ 0.5. The 

cells were induced with IPTG to a final concentration of 1mM and allowed to grow 

for an additional 4 hours at 30°C. The cells were harvested by centrifugation, 

resuspended in lysis buffer (50 mM potassium phosphate pH 8, 100 mM NaCl, 

10% glycerol, and 25 mM imidizole.), and lysed by the addition of 10 mg/L of 

lysozyme, followed by incubation on ice for 30 minutes. The nucleic acids were 

precipitated by the addition of 0.5% polyethylenimine (v/v) and spun at 12,000 

rpm for 15 minutes. The supernatant was applied to a Ni-NTA column pre-
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equilibrated with lysis buffer and further washed with 5 volumes of lysis buffer. 

The TEV protease was eluted from the column using a 10 column volume 

gradient to 50 mM potassium phosphate pH 8, 100 mM NaCl, 10% glycerol, and 

500 mM imidizole. The fractions were analyzed by SDS-PAGE and pooled.  

Following the addition of EDTA and DTT to 1 mM, the enzyme was concentrated 

to 1mg/ml and stored at -20°C. 

 

2.2.4 NMR Spectroscopy 

 NMR spectra were recorded at 20 °C or 30 °C using a 500 MHz Varian 

Inova spectrometer equipped with a triple-resonance probe and z-axis pulsed 

field gradient.  NMR samples typically contained 1.8-2.0 mM aRpp29 protein in 

90% H2O/10% D2O plus 100 mM NaCl and a buffer of either 10 mM sodium 

phosphate at pH 5.8 or 10 mM deuterated acetic acid at pH 3.  Pulse sequences 

were obtained from Lewis Kay's group at the Toronto NMR center, and were 

optimized before use on the local NMR instrumentation.   

 Backbone resonance assignments were obtained using 3-dimensional 

HNCA, HNCACB and HN(CO)CACB spectra (Muhandiram and Kay, 1994), 

HNCO spectra (Grzesiek and Bax, 1992) and HACACBCO spectra (Kay, 1993); 

together these spectra correlate the backbone protons to the N, Cα, Co and Cβ 

signals of the same and adjacent amino acid residues.  Side chain resonance 

assignments were obtained by analyzing 3-dimensional 15N-edited HMQC-
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TOCSY and 13C-edited HCCH-TOCSY spectra (Wang et al., 1995), and 2-

dimensional homonuclear 2QF-COSY and TOCSY spectra (Table 2.2). 

NOE cross peaks were detected using 2-dimensional 1H-1H NOESY, 3-

dimensional 15N-1H-1H HSQC-NOESY, and 3-dimensional 13C-1H-1H HSQC-

NOESY (Pascal et al., 1994) spectra.  The NOE mixing time was 60 msec for 

spectra used to derive distance constraints.  A 13C-edited HSQC-NOESY 

spectrum (mixing time 80 msec) was acquired in 90% H2O/ 10% D2O solvent so 

that NOE cross peaks between amide and side chain protons could be resolved 

by the chemical shift of the 13C nucleus coupled to the side chain proton. 

 In several instances, chemical shift assignment ambiguities were removed 

with the help of the amino acid type-specifically labeled samples.  For example, 

amide resonances of amino acids that follow isoleucine were identified in an 

HNCO spectrum of protein that was uniformly enriched in 15N and specifically 

enriched with 1-13C isoleucine; an analogous procedure was used to assign 

resonances of amino acids that follow valine, leucine and phenylalanine.  

Similarly, assignments of glycine, serine, tryptophan and lysine resonances were 

confirmed using HSQC spectra of protein samples selectively enriched with the 

specific amino acids types labeled with 15N.  (Figure 2.4, 2.5) 

 Data were processed using either NMR-Pipe (Delaglio et al., 1995) or 

Felix (Hare Research).  1H, 15N and 13C chemical shifts were referenced as  
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Table 2.2. Summary of NMR spectra collected for resonance assignment 

and structure calculation. 

 
 
 
Spectrum    Sample (pH 5.8, 30°C)                
 
 
2D TOCSY    Unlabeled, 90% H2O, 10% D2O 
2D TOCSY    Unlabeled, 90% H2O, 10% D2O, pH 3.0 
2D TOCSY    Unlabeled, 99% D2O 
2D 2QF-COSY   Unlabeled, 90% H2O, 10% D2O 
2D 2QF-COSY   Unlabeled, 99% D2O 
2D NOESY    Unlabeled, 90% H2O, 10% D2O 
2D NOESY    Unlabeled, 90% H2O, 10% D2O, pH 3.0 
2D NOESY    Unlabeled, 99% D2O 
2D 15N-1H HSQC   Uniform 15N labeled 
2D 15N-1H HSQC   15N lysine labeled 
2D 15N-1H HSQC   15N glycine, serine, tryptophan labeled 
 
 
3D 15N-edited HSQC-TOCSY*      Uniform 15N labeled 
3D 15N-edited HSQC-NOESY* Uniform 15N labeled, mix=60ms 
3D 13C-edited HCCH-TOCSY    Uniform 13C and 15N labeled 
3D 13C-edited HSQC-NOESY Uniform 13C and 15N labeled, mix=80ms 
 
 
3D HNCA    Uniform 13C and 15N labeled 
3D HNCA    Uniform 13C and 15N labeled, pH 3.0 
3D HNCACB    Uniform 13C and 15N labeled 
3D HNCACB    Uniform 13C and 15N labeled, pH 3.0 
3D HNCO    Uniform 13C and 15N labeled 
3D HN(CO)CACB   Uniform 13C and 15N labeled 
3D HN(CO)CACB   Uniform 13C and 15N labeled, pH 3.0 
3D HACACBCO   Uniform 13C and 15N labeled 
3D HNCO       Uniform 15N labeled, 1-13C leucine 
3D HNCO    Uniform 15N labeled, 1-13C isoleucine 
3D HNCO    Uniform 15N labeled, 1-13C valine 
3D HNCO    Uniform 15N labeled, 1-13C phenylalanine 
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Figure 2.4. 15N-1H- HSQC spectrum of aRpp29 selectively labeled with 15N – 
gly/trp/ser. The spectrum was obtained using a sample (1.8 mM) in 10 mM 
potassium phosphate pH 5.8 with 100 mM NaCl at 30°C. Peaks are observed 
only from 15N labeled glycine, tryptophan, and serine. 
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Figure 2.5. 15N-1H- HSQC spectrum of aRpp29 selectively labeled with 15N–
lys. The spectrum was collected on a sample (1.8 mM) in 10 mM potassium 
phosphate pH 5.8 with 100 mM NaCl at 30°C. Peaks are observed only from 
labeled lysines. Two of the peaks could not be unambiguously assigned. 
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recommended (Wishart et al., 1995), with proton chemical shifts referenced to 

internal 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) at 0 ppm.  The 0 ppm 13C  

and 15N reference frequencies were determined by multiplying the 0 ppm 1H 

reference frequency by 0.251449530 and 0.101329118 respectively.  Chemical 

shift assignments for the aRpp29 protein have been deposited in the 

BioMagResBank (accession number BMRB-5805). 

 

2.2.5  NMR Dynamics  

 15N-1H heteronuclear NOE and 15N T1 and T2 relaxation times were 

measured using pulse sequences that feature gradient selection and sensitivity 

enhancement, and pulses for minimizing saturation of the solvent water (Farrow 

et al., 1994).  The 15N-1H heteronuclear NOE was measured by comparing 

spectra acquired with either a 5 sec delay between each free induction decay or 

a 2 sec delay followed by a 3 sec series of 120° nonselective 1H pulses.  For T1 

relaxation measurements, 2-D spectra with relaxation delays of 10, 260, 510, 760 

and 1010 msec were obtained; for T2 relaxation measurements 2-D spectra with 

relaxation delays of 29, 58, 87, 116 and 145 msec were acquired; in each case 

the relaxation delay between the acquisition of each free induction decay was 3 

sec.  T1 and T2 relaxation times were determined from the slope of plots of the 

logarithm of peak height versus relaxation delay. 
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2.2.6 Structure Calculation 

 Structure calculations were performed using the restrained simulated 

annealing protocol in the program CNS version 1.1 (Brünger et al., 1998), with 

the goal of identifying the full range of structures that are consistent with the 

distance and angle constraints derived from the NMR data while having 

reasonable molecular geometry, consistent with a minimum value of the CNS 

energy function.  Distance restraints were derived from the intensities of cross 

peaks within NOE spectra obtained with relatively short mixing times of 60 msec 

(in the case of homonuclear 2-D and 15N-resolved 3-D spectra) to 80 msec (in the 

case of the 13C-resolved 3-D NOE spectrum) to minimize the effects of spin 

diffusion.    

 Based on the cross peak intensity in the homonuclear 60 msec NOE 

spectra, distance restraints were classified as strong (< 2.8 Å), medium (< 3.2 Å), 

weak (< 3.8 Å) and very weak (< 4.2 Å); these distance bounds were calibrated 

by using inter-proton distances in regions of regular secondary structure as 

internal distance standards.  Additional cross peaks were observed in the three-

dimensional 15N and 13C-resolved NOE spectra (60 and 80 msec mixing time, 

respectively) and were assigned to distance restraints as strong (< 5.0 Å), 

medium (< 5.5 Å), weak (< 6.0 Å), and very weak (< 6.5 Å).  Due to the possibility 

of observing the effects of spin diffusion in long mixing time (200 msec) 
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experiments, NOE cross peaks that were only observed in these spectra were 

assigned to a distance restraint of 6.9 Å.   

 Pseudoatom corrections were applied to the distance constraints as 

follows: NOEs from valine or leucine methyl groups that were not 

stereospecifically assigned were measured from the center of the two methyl 

groups and 2.5 Å was added to the interproton distance.  For NOEs involving 

other methyl protons, distances were measured from the center of the methyl 

group and an additional 1.0 Å was added to the interproton distance. For NOEs 

involving methylene protons with no stereospecific assignment, distances were 

measured from the center of the methylene group and 0.7 Å was added to the 

interproton distance. For NOEs involving delta and epsilon protons on tyrosine 

rings, distances were measured from the center of the two delta protons (or 

epsilon protons), and 2.4 Å was added to the interproton distance.    

 Backbone dihedral angle restraints of psi = 150 + 25 and phi = -120 + 25 

degrees were included for residues within the regions of regular β-strand 

secondary structure, identified by characteristic NOE cross peaks and patterns of 

protection of the amide protons from exchange with the solvent.  Hydrogen bonds 

were defined using distance bounds for amide protons that were clearly located 

within the regions of regular β-sheet structure.  Experimental restraints used for 

the structure calculations and structural statistics are summarized in Table 2.3. 
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Table 2.3. Summary of the refinement and structural statistics for the NMR 
structure of A. fulgidus aRpp29. 
 
 
                                                                                                                           
Intraresidue NOEs                 215 
Sequential NOEs (residue i to i + 1)               178 
Medium-range NOEs (residue i to i + 2, 3, 4)              18 
Long-range NOEs                 143 
Dihederal angle restraints                70 
Hydrogen bond restraints                27 
Total structural restraints                651 
 
Number of unique starting structures for simulated annealing            10 

Number of simulated annealing runs, differing in initial trajectories           200 
 
R. m. s. d. for backbone atoms (residues 17-77)              0.87 Å 
R. m. s. d. for side chain atoms (residues 17-77)              1.78 Å 
 
Average number of NOE violations > 0.2 Å (per structure)            3.17 
Average number of NOE violations > 0.5 Å (per structure)            0 
 
Residues in the most favored regions of the Ramachandran plot            71.2 % 
Residues in the additional allowed regions of the Ramachandran plot           21.2 % 
Residues in generously allowed regions of the Ramachandran plot           5.8 % 
Residues in the disallowed regions of the Ramachandran plot            1.9 % 
 
R. m. s. d. for covalent bonds                               0.0034 ± 0.0001 
R. m. s. d. for covalent angles                                                                     0.511 ± 0.015 
R. m. s. d. for improper angles                                  0.581 ± 0.016 
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 An initial set of 10 structures was generated from an extended peptide 

conformation using a simulated annealing protocol with dihedral angle restraints 

only.  These structures with low overall energies were selected for further 

refinement.  The selected structures were then used as starting points to 

generate 20 structures each, via restrained simulated annealing using different 

initial trajectories.  A set of refined conformers having the lowest energy was 

retained for final analysis and evaluation using Procheck-NMR (Laskowski et al., 

1996), with statistics reported in Table 2.2.  These final structures are a fair 

representation of the full range of structures that are consistent with the 

experimental data while having reasonable molecular geometry, and have no 

NOE-derived distance constraint violations greater than 0.5 Å.  Searches for 

similar structures within the Protein Data Bank were carried out using the Vector 

Alignment Search Tool (VAST), located at the National Center for Biotechnology 

Information (NCBI) web site, and the DALI search tool (Holm and Sander, 1993).  

The coordinates for aRpp29 have been submitted to the Protein Data Bank and 

assigned PDB code 1PC0. The resonance assignments, NOE assignments, 

dihedral restraints, and hydrogen bond restraints are listed in appendices A, B, 

C, D, respectively. 
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2.3 Results and Discussion 

 

2.3.1 Initial Sample Characterization 

 The purified Archaeoglobus fulgidus aRpp29 protein was found to be 

soluble, stable, and suitable for structural analysis by NMR methods. (Figure 

2.6).  About 68 of 100 possible correlation peaks are observed in a 15N-1H 

HSMQC spectrum (Zuiderweg, 1990) obtained at pH 5.8 and 30 °C using 

presaturation for solvent suppression (Figure 2.7); these peaks are well 

dispersed as is typical for a folded protein.  When a non-saturating method of 

solvent suppression is used, additional 15N-1H correlation peaks corresponding to 

amide protons with relatively rapid solvent exchange rates are observed in or 

near the region of the spectrum typical of random coil structure.   

 These observations provided an initial indication that about two-thirds of 

the protein structure forms a folded and stable domain, while the remaining one-

third of the structure is significantly more flexible.  Triple resonance NMR 

methods were used to obtain unambiguous spectrum assignments for nuclei of 

all residues except 4-7, 79-84 and 93.  Mass spectrometry indicated that 

residues 1-3 are absent from the structure of the purified protein. 
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Figure 2.6. One dimensional spectrum of RNase P protein aRpp29 from A. 
fulgidus. The sample contains 1.8 mM protein in potassium phosphate buffffer  
consisting of 90% H2O/10% D2O at pH 5.8. The spectrum was acquired at 30°C. 
The wide dispersed peaks far from random coil values indicate the protein is 
folded and suitable for structure determination by NMR. Peaks between 5.0 and 
6.0 ppm indicate the presence of b strands in the structure. 
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Figure 2.7. 15N-1H correlated HSMQC spectrum of the aRpp29 protein from 

Archaeoglobus fulgidus. The spectrum was collected at 30 °C and pH 5.8, 

using presaturation for H2O suppression, so that the amide protons that 

exchange relatively rapidly with the solvent are attenuated.  Assignments for the 

best resolved cross peaks are labeled. Resonance assignments for 66 of the 

clearly resolved peaks are labeled. The remaining unlabeled peaks could not be 

unambiguously assigned due to fast exchange or spectral overlap. 
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2.3.2 Description of the aRpp29 structure 

 Structural results derived from the NMR data show that the dominant 

feature of the protein is an antiparallel sheet of six β-strands (Figure 2.8), formed 

by residues 18 through 76.  Within the β-sheet, strands β1 and β2 are connected 

by a short loop, as are strands β2 and β3, while strands β3 and β4 are connected 

by a compact turn, as are strands β5 and β6.  An interesting feature of the β-

sheet is a loop consisting of residues 57-61; this five residue loop connects 

strands β4 and β5, which are on opposite sides of the sheet as it is represented 

in two dimensions resulting in strands β5 and β6 being folded onto the first four 

strands to form a sandwich-like structure (Figure 2.8, 2.9).   

 The six β-strands are wrapped around a hydrophobic core containing 

residues L18, V20, V22, I33, V37, L45, I47, V56, F63, V65, M72 and I74.  The 

hydrophobic nature of these residues is conserved among a wide range of 

species (Figure 2.10), providing strong evidence that the RNase P proteins 

homologous to aRpp29 in the archaea, Rpp29 in humans, and Pop4 in yeast all 

contain a similarly structured β-sheet.  

 The six strands of the β-sheet are the best-defined region of the protein 

structure, due to the relatively high density of long-range NOE-derived distance 

constraints.  Within a family of structures that satisfies the NMR-derived restraints 
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Figure 2.8. Diagram of the six-stranded β-sheet structure of aRpp29 protein 

derived from NOE crosspeaks.  Pairs of protons for which unambiguous NOEs 
are observed are connected by arrows, and inter-strand hydrogen bonds are 
indicated by dotted lines.  Amide protons that require 12 hours or more to 
exchange with deuterated solvent are boxed. 
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2.10. Amino acid sequence alignment of A. fulgidus aRpp29 and RNase P proteins 
from other archaea and eukarya. Sequences from seven archaeal species are shown: 
M. thermoautothrophicus, M. jannaschii, T. acidophilum, T. acidarmanus, P. furiosus, 

and P. abyssi. The eukaryotic sequences are from H. sapiens, M. musculus, D. 
melanogaster, S. cerevisae, C. elegans, N. crassa, and A. thaliana. Archaeal aRpp29 is 

homologous to the C-terminal half of eukaryotic Rpp29. The most conserved 
hydrophobic residues, which form the hydrophobic core of aRpp29, are boxed in green. 

Conserved surface residues that are most likely to be involved in mediating protein-RNA 
or protein-protein interactions within RNase P are boxed in red. 
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equally well, the r.m.s.d. is less than 1 Å for the backbone atoms within the b-

strands (Figure 2.11, 2.12).  The loops that connect strands b1-b2 and b2-b3 are 

the least well defined of the connecting structures; these loops are primarily 

defined by sequential and intraresidue NOE-derived restraints (Figrue 2.12) 

 When the amino acid sequence of aRpp29 is aligned with that of 

homologous proteins from several species (Figure 2.10) and this alignment is 

compared with the structural results, it is possible to speculate as to the 

functional importance of each conserved amino acid.  The majority of the 

conserved hydrophobic amino acids are located within the core of the protein that 

is enclosed by the six β-strands; these positions are likely to be critical for protein 

folding and stability.  Several glycines located in turns are also well conserved.  A 

few hydrophobic amino acids (at positions 10, 15, 79 and 81) are located outside 

the well-ordered β-sheet structure and are also fairly well conserved; these 

residues may become more ordered and protected from the solvent when in the 

context of the fully assembled RNase P ribonucleoprotein particle.  

 Conserved hydrophilic amino acids on the surface of the protein are the 

most likely to be involved in essential intermolecular contacts with the RNase P 

RNA, other RNase P protein components, or other RNase P interaction partners. 

The protein contains several surface positions where positive charges (K58, R82 

and R86), negative charges (D14, E40 and D85), and ability to serve as a  
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Figure 2.11. Superposition of the backbones of 12 low energy structures of 
aRpp29. The structures are equally consistent with the NMR data and have the 
minimum value of the CNS energy function, color-ramped from red at the N-
terminal to blue at the C-terminal of the protein. The 12 models are a fair 
representation of the full range of structures that are consistent with the NMR-
derived constraints and reasonable molecular geometry.  The superposition of 
the 12 models was performed by minimizing the differences in the coordinates of 
the backbone heavy atoms of residues 17 through 77; the backbone is shown for 
residues 17 through 77 of the protein. 

17 

77 
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Figure 2.12. Plot of the root mean square deviation for the coordinates of 
the backbone heavy atoms for the aRpp29. R.m.s.d. is plotted versus residue 
number, calculated using 12 structures that satisfy the NMR-derived structural 
constraints, and are a fair representation of the full range of structures that are 
consistent with the NMR data.  The r.m.s.d. values were calculated using a set of 
structures that were superimposed by minimizing the differences in the 
coordinates of the backbone atoms of residues 17 through 77.  The figure shows 
that the b-strands are quite well-defined by the NMR data (r.m.s.d. < 1 Å), the 
loops connecting the strands are moderately well-defined (r.m.s.d. 1 to 3.5 Å), 
while the positions of the residues nearer to the N- and C-termini are not well 
determined (r.m.s.d. > 3 Å). 
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hydrogen bond donor (T41, Q42, N43) are conserved (Figure 2.10). The 

conserved lysine and arginines are excellent candidates for residues likely to 

make direct contact with the phosphate backbone of the RNase P RNA, while the 

conserved negative charges and hydrogen bond donors have the potential to 

interact with specific RNA bases or other protein components within RNase P.   

 The eukaryotic homologues of aRpp29 contain an additional ~100 amino 

acids at their N-terminus, however these additional N-terminal residues are not 

particularly well conserved, and are thus more likely to be involved in species-

specific interactions.  The observation that aRpp29 contains surface amino acids 

that are conserved among the eukaryotic as well as the archaeal homologues 

suggests that there are specific intermolecular interactions within RNase P that 

are similar among members of these kingdoms. 

 

2.3.3 Dynamics of aRpp29 in solution 

 Most of the hydrogen bonded amide protons within the β-sheet remain 

unexchanged with deuterated solvent after 12 hours or more, providing evidence 

that the sheet is a relatively stable and rigid structure.  This conclusion is further 

supported by 15N relaxation data.  The T1 and T2 relaxation times for the β-strand 

residues were found to be strikingly uniform, averaging 515 and 125 msec, 

respectively, and the 15N-1H heteronuclear NOE was found to be consistently 

positive with an average value of 0.72.  These data are consistent with a well 
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ordered structure undergoing isotropic rotation with a correlation time of 6.7 nsec; 

this rotational time is appropriate for a monomeric protein with a molecular weight 

of 11 kDa.  The amide nitrogens of residues 30, 41, 58 and 69 (all located in the 

turns or loops connecting the β-strands) have 15N relaxation times that deviate 

from these average values, consistent with their having less restricted motion.  

Amide proton exchange rates are significantly faster for the loop residues than for 

the β-strands, which is also consistent with the loops having the greater flexibility. 

 

2.3.4 The termini of aRpp29 are flexible 

 In contrast to the relatively rigid β-sheet structure, the positions of the 

residues prior to 17 and past 78 are poorly defined, with the majority of the 

observable NOEs being between protons of the same or sequential residues.  

The 15N-1H heteronuclear NOE was found to be negative or near zero for the 

amide groups of residues 88, 90, 92, 99, 101 and 102, consistent with their 

having short rotational correlation times and a relatively large amount of flexibility.  

15N-1H heteronuclear NOE data were not obtainable for most other residues in the 

N- and C-terminal regions due to their rapid amide proton exchange rates, an 

observation which by itself is consistent with the N- and C-termini of the structure 

being solvent exposed and relatively flexible.   
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 Chemical shift index (Wishart and Sykes, 1994) values for residues 89 

through 98 hint at the presence of helical structure, with an average backbone 

carbonyl 13C shift of 176.3 ppm.  However, the proton-proton NOEs typical of a 

helix are not observed, suggesting that the existence of this helix is only 

transient.  The 13C chemical shifts may suggest a rapid equilibrium between 

helical and unfolded structure in the C-terminal region of the protein; a more 

stable helix may form in the context of intact RNase P. 

 The presence of "tails" of flexible structure at the N- and C-termini of 

aRpp29 is reminiscent of several of the ribosomal proteins, such as L2, L3, L15, 

L21e and L37e (Roll-Mecak et al., 2000, Ban et al., 2000), which contain tails of 

extended structure at the N- and/or C-terminus of an otherwise globular domain 

(Figure 2.13).  Within the context of the structure of the complete ribosomal 

subunit, these tails were found to penetrate to the interior of the ribosome and 

make specific contacts with the ribosomal RNA.  By analogy, it is possible that 

the N- and  C-terminal residues of aRpp29 may become structured and have 

specific interactions within the context of the complete and functional RNase P 

ribonucleoprotein complex, perhaps penetrating into the interior of the RNase P 

RNA.  Lack of rigid structure in the N- and C-terminal residues of aRpp29 does 

therefore not imply that they are functionally unimportant. 
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Figure 2.13. Backbone structures of protein subunits containing regions 

lacking regular secondary structure from the archaeal large ribosomal 

subunit.  Shown are the structures of ribosomal proteins L2, L3, L15, L21e, and 

L37e from the X-ray crytstal structure of the H. marismortui large ribosomal 

subunit (PDB code 1S72, Ban et al., 2000). Globular domains are colored in 

green and regions without reguar secondary structure are colored in red.. 

Regions colored red are involved in anchoring the proteins to the ribosomal RNA 

and by analogy may serve a similar function in the case of aRPP29 and the 

RNase P RNA. 
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2.3.5  Data Collection at pH 3 and 20°C 

 Triple resonance and 15N-resolved 3-D NOE and 3-D TOCSY, as well as 

homonuclear  spectra were collected at reduced pH (3.0) and a slightly reduced 

temperature (20 °C), in an effort to slow the solvent exchange rates of the amide 

protons within the terminal regions of the protein, and perhaps obtain additional 

structural information for these flexible regions of the molecule.  However, only 

modest changes in the chemical shifts were observed, and little significant 

additional NOE information was obtained, indicating that the protein structure is 

not significantly changed at these alternate conditions.  
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Chapter 3 

X-ray crystal structure of the RNase P protein aRpp29 from  

A. fulgidus 

 

 

3.1  Introduction 

X-ray crystallography and NMR are complementary methods of 

investigating the three-dimensional structures of biological macromolecules. X-

ray crystallography was the first method available to provide detailed atomic 

resolution structures of proteins. Like NMR, it is not an imaging technique, but 

rather exploits the diffraction of X-rays by the distributions of electrons within a 

crystal lattice. 

The process of determining the atomic structure of a biological 

macromolecule by X-ray crystallography is a multistep process. Outlined below 

are the steps necessary to solve the structure of a biological molecule using X-

ray crystallography from initial crystal growth to final model validation. This is 

presented merely to give the reader a sense of the process and is not meant to 

provide a comprehensive explaination. For a detailed treatment of protein 

crystallography refer to texts by Drenth, 1999 and Blundell, 1976. 
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3.1.1 Crystallization of Proteins 

 Crystallizing proteins for structure analysis typically requires large 

amounts of pure, homogeneous, soluble material. Obtaining crystals that are 

suitable for structure determination can be an exhausting and time consuming 

process. The principle of crystallization is to gently induce the protein to come out 

of solution and arrange in a well-ordered lattice, forming crystals as large as 

possible. If the process happens too fast, amorphous precipitation will likely 

occur.  

 The procedure for determining the correct conditions for crystallization is 

mainly by trial and error. Solvent conditions that are typically varied include, pH 

buffer, salt, precipitant, and temperature. Additives such as organic solvents and 

detergents may also be used. The idea is to screen as many different conditions 

as possible in order to grow large, well ordered crystals.  The method used to 

grow the crystal, such as vapor diffusion, sitting drop, or dialysis can also affect 

crystal growth. Crystals can take anywhere from hours to months to grow to full 

size and the time may be dependent on changes the protein must undergo, such 

as degradation, before the conditions are appropriate for crystal formation. 

Crystals vary considerably in morphology. They can assume geometric shapes, 

needles, or clusters. The crystals should at least > 0.2 mm in the longest 

dimension for adequate diffraction on a home source X-ray generator/detector. 
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The availability of high-energy synchrotron X-rays allows the use of smaller 

crystals to obtain adequate diffraction. 

 

3.1.2  Symmetry and Space groups 

 When proteins crystallize, they arrange in specific three-dimensional 

orientations caused by regular packing and lowest free energy, forming special 

relationships of symmetry with each other. There are 3 vectors, a, b, and c and 

the angles between them, α, β, γ that define the three dimensions of the unit cell. 

The unit cell is the regular repeating unit that defines the crystal. If the crystal 

lattice has symmetry higher than triclinic, the unit cell will contain internal 

symmetry, and in the case of biological macromolecules, the molecular structure 

will be repeated a number of times due to symmetry operations.  This is known 

as the asymmetric unit. The number of molecules in the unit cells does not have 

to be the same as the number of asymmetric units, as there can be more than 

one molecule per asymmetric unit. There are 65 possible ways of combining 

symmetry operations in a crystal of a chiral molecule such as a protein. 

 

3.1.3 Crystal Characteristics 

 The ability of a crystal to diffract X-rays to a high resolution depends on 

the ordering of the molecules in the unit cell. However, the positions of the 

molecules are not fixed due to static disorder and thermal vibrations. Most 
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crystals contain defects in the repetition of the unit cells, known as mosaicity. 

This causes each unit cell to contribute a slightly different diffraction pattern to 

the overall diffraction of the crystal. Crystals of good quality will have slight 

mosaicity, which can be accounted for during data processing. 

 

3.1.4  Data Collection 

 Crystals are placed in the X-ray beam between the X-ray source and the 

detector. Generally, they are flash cooled in liquid nitrogen before being placed in 

the X-ray beam. This step is useful to reduce the effects of radiation damage and 

increase resolution by reducing thermal vibrations and disorder. The crystal is 

placed in a nylon loop or capillary tube (if cryo-cooling is not used) and positioned 

in the beam in a known orientation, preferably aligned along one axis of the 

crystal. Experimental conditions, such as exposure time, distance from the crystal 

to the detector, and degrees of oscillation are determined empirically. The crystal 

is rotated a fixed number of degrees to collect a complete set of data, meaning 

that each unique reflection is collected at least once. The number of degrees the 

crystals needs to be rotated depends on the space group of the crystal, as 

crystals of higher symmetry require fewer degrees of oscillation to collect a 

complete dataset. 
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3.1.5 Data Processing 

Protein crystals diffract X-rays weakly because they are composed of 

mainly light atoms and have large unit cells. The intensity of the diffracted spots 

can vary due to the amplitude of the wave and their phase. The accuracy of the 

intensity measurements is important for successful structure determination, 

especially in cases where small anomalous differences are being measured, as 

in the case of single anomalous diffraction (SAD) (Borek et al., 2003, Gonzalez, 

2003). Once the diffraction data has been collected, the intensities of the 

reflections (“spots”) are be measured by integration and then scaled against the 

rest of the reflections in the dataset so they can be related. Careful monitoring of 

the scaling statistics can be useful for rejecting bad spots or complete diffraction 

images and can be used to determine the overall quality of the dataset. At this 

point a number of useful parameters can be determined such as unit cell 

dimensions, space group, solvent content of the crystal, and number of 

molecules per asymmetric unit. 

 

3.1.6  The Phase problem 

 Diffraction data provides information pertaining to the intensities of the 

waves reflected from planes in the crystal (referred to as hkl). The amplitude of 

the wave |Fhkl| is proportional to the square root of the intensity (Ihkl). In order to 
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calculate the electron density of a point (xyz) in the crystal requires the following 

summation over all the hkl planes: 

ρ(xyz) = 1/V∑|Fhkl|exp(iαhkl)exp(2πi(hx + ky +lz)) 

where V is the volume of the unit cell and αhkl is the phase corresponding to the 

structure factor amplitude Fhkl. At this point we can measure the intensities, but 

the phases are lost. Determining the value for αhkl is referred to as the “phase 

problem”. The only relationship between the intensities and the phases is through 

the electron density (Taylor, 2003).  

There are a number of methods that can be used to derive the phase. A 

brief description of each is provided below. 

 

Isomorphous replacement  

This technique requires crystals to be soaked in a heavy atom salt solution 

to form isomorphous heavy atom derivatives. The diffraction patterns of the 

native and the derivative crystal are then compared and the measurable 

differences in intensity due to the heavy atoms are used to calculate their 

position. Once the positions of the heavy atoms are known they can be used to 

phase the protein. The main problem that arises with this method is 

nonisomorphism. The heavy atom salts can cause rearrangements in the crystal 

lattice, leading to changes in unit cell dimensions, poor diffraction, or no 
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diffraction. Heavy atom soaking can also change the orientation of the protein as 

well as cause conformational changes. 

In most cases more than one heavy atom derivative (multiple isomorphous 

replacement, MIR) is needed to derive the exact phase, but a single derivative 

(single isomorphous replacement, SIR) can also be used if it provides a 

sufficiently strong difference in intensity. The amplitudes of a reflection are 

measured for the native crystal, |FP|, and for the derivative crystal, |FPH|. The 

isomorphous difference can be calculated by |FH| = |FPH|-|FP| and can be used to 

determine the heavy atom positions (Drenth, 1999). The heavy atom positions 

can be refined and used to calculate a more accurate |FH| and its corresponding 

phase, αhkl.  

The phase calculation leads to two possible solutions of the heavy atom 

phase. Examining the phase probability distributions can break the phase 

ambiguity. The phase distribution probabilities are calculated by taking into 

account errors in the measurement of FPH and applying maximum-liklihood 

methods to arrive at the correct solution. Alternatively, electron density maps can 

be calculated for each possible phase following density modification and the 

correct phase determined by visual inspection of the map. The use of multiple 

heavy atom derivatives or the presence of anomalous scattering from the single 

derivative can be used to break the phase ambiguity (Drenth, 1999). 
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The phases can be further improved using solvent flattening, histogram 

matching and non-crystallographic symmetry averaging. Solvent flattening alters 

the electron density by setting regions of solvent to a lower density than that of 

the protein. The principle of this method is to recognize interpretable features in 

the electron density map and use them to generate a solvent mask around the 

protein molecule. The bulk solvent region is recognized as low density and the 

protein as regions of higher density. This is then used to generate a new set of 

phases that are then combined with the experimental phases and repeated. This 

technique is extremely useful as long as the solvent boundary is correctly 

identified and the errors in the phases are accounted for. Histogram matching 

changes values of the electron density points to be consistent with the expected 

distribution of electron density values. Noncrystallographic symmetry averaging 

forces the electron density values to be equal for each molecule in an 

asymmetric unit when more than one molecule is present. 

 

Molecular Replacement 

 Molecular replacement is the most rapid way to solve an unknown 

structure. This technique is useful when the structure of a homologous molecule 

has been solved. Generally, the sequence identity needs to be at least 25 % and 

the r.m.s.d. should be less than 2 Å between the Cα atoms of the model and the 

unknown structure. Molecular replacement can be thought of as crystallography 
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in reverse: the structure factors and phases from the model are used to calculate 

new structure factors and phases for the unknown molecule. Before the phases 

can be applied the search model must be positioned in the same way as the 

unknown molecule. The placement of the model is performed using rotational 

and translational searches to determine the position accurately enough to provide 

an interpretable electron density map.  

 

Direct Methods 

 Direct methods are based on the atomicity and positivity of electron 

density that leads to phase relationships between the structure factors. This is 

the least useful technique for biological macromolecular crystallography as it 

requires very high resolution data (< 1.2Å) and has successfully been used on 

small molecules (<1000 atoms). In the case of larger molecules, this method has 

been implemented in many phasing software packages to determine the heavy 

atom substructure, which can then be used in phase calculation. 

 

Anomalous scattering 

 In most cases, the electrons scatter as if they are “free”.  For atoms with 

high atomic numbers, the electrons do not behave this way. These atoms absorb 

X-rays at specific wavelengths at and near their absorption edges, causing 

excited electrons to jump from a lower energy level to a higher energy level, 
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which leads to anomalous scattering. The absorption edges for lighter atoms 

such as C, N, and O are not near the X-ray wavelengths used in protein 

crystallography, so these atoms do not contribute to the anomalous scattering.  

When anomalous scattering is present, the atomic scattering factor 

becomes: 

f = f0 +f´ +if˝ 
 

where f0 is the normal scattering factor, and f´ and f˝ are the real and imaginary 

components of the anomalous scattering factors (Blundell, 1976)(Figure 3.1A). 

The anomalous scattering factors depend on the wavelength but do not change 

with resolution. The value of f´ can be positive or negative. The imaginary 

component, f˝, is 90° ahead in phase in relation to f0 and is proportional to the 

absorption of the X-rays and to their fluorescence.  

The presence of anomalous components in the atomic scattering factors 

leads to the breakdown of Freidel’s law. This law states that symmetry related 

reflections will be equal in intensity and their phases are complementary, that is, 

Fα|hkl| = -F-α|-h-k-l|. This is no longer the case when the when anomalous 

scattering is present. The anomalous or Bijvoet difference can be used the same 

way isomorphous differences are used to determine the positions of the 

anomalous scattering atoms (Blundell, 1976). The phases for the structure 

factors can then be calculated as in the SIR/MIR case. 
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Figure 3.1. Anomalous contribution to scattering and its use in SAD 

phasing. (A) Atomic scattering factor when an anomalous contribution is present. 

The anomalous contribution is composed of a real component, f´, and an 

imaginary component, f˝. (B) Harker diagram for determining the protein phase 

angle by single-wavelength anomalous scattering. F+ and F- are the structure 

factor amplitudes of the Friedel mates of the anomalous scatterers. The two 

A 

B 
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points of intersections represent the two possible values for the protein phase 

angles. 
 

Mutiple-wavelength anomalous diffraction (MAD) 

 If the protein contains atoms that contribute to anomalous scattering, this 

can be exploited to solve the phase. The anomalous scatterer can be soaked into 

the crystal, as in the case of isomorphous replacement, occur naturally, such as 

in metalloproteins, or be incorporated during protein preparation, such as 

replacing methinonine with selenomethinonine in the growth medium.  For 

selenomethionine, the general rule requires at least one Se per 100 amino acids 

to detect a useful anomalous signal. 

  Using MAD to solve the “phase problem” involves collecting diffraction 

data at three or more different wavelengths in order to maximize the anomalous 

contribution to the scattering (Ealick, 2000). This requires access to a tunable 

synchrotron X-ray source. The wavelengths collected correspond to the 

wavelength where the peak anomalous signal is detected (determined for each 

crystal by fluorescence), the wavelength where the dispersive difference is 

smallest, and at a remote wavelength. Typically, all of the data are collected on a 

single frozen crystal with as high a completeness as possible and a high degree 

of redundancy to make the measurements as statistically significant as possible. 

The changes in structure factor amplitudes due to anomalous scattering are 
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small and require very accurate measurement to be useful. Once diffraction data 

has been collected the MAD case can be essentially be treated as MIR. 

 

Single-wavelength diffraction (SAD) 

 It is possible to calculate the phase using the anomalous difference from 

just the X-ray wavelength corresponding to peak wavelength if the anomalous 

difference is sufficient (Rice et al., 2000, Dauter et al., 2002, Dodson, 2003). 

Phasing by SAD is analogous to the SIR method, were the phase calculation 

leads to two possibilities, corresponding to the two possible hands of the 

positions of the anomalous scatterers (Figure 3.1B). To resolve this problem, 

phase calculations are performed in parallel on both hands followed by density 

modification. The phase ambiguity can be broken by examining the phase 

probability distribution or by visually inspecting the density modified electron 

density calculated for both phase possibilities (Broderson et al., 2000). The 

correct solution should have better contrast between the solvent and protein 

areas of the map as well as contain more stretches of connected density. 

 

3.1.7 Refinement and model building 

 Once the phases have been derived and refined, an electron density map 

can be calculated by Fourier transformation. If the map quality is sufficient to 
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reliably place the amino acids or nucleotides, model building can be used to 

reconstruct the protein. The model is refined to the lowest energy and through 

iterative rounds of manual model building and refinement. Refinement is the 

adjustment of the calculated and observed structure factors until they are as 

close to agreement as possible. The two main methods of refinement are to use 

a maximum-likelihood, or molecular dynamics. The maximum-likihood method 

minimizes the coordinate parameters to satisfy a maximum-likelihood function.  

The molecular dynamics approach uses a process called simulated annealing. 

Simulated annealing allows a molecule to sample all possible conformations by 

raising the temperature to, for example, 2500°C and constraining the model by 

energy terms derived from the input model and the experimental diffraction data, 

the structure can fold and refold until it reaches an energetically favorable 

conformation. 

 The accuracy of the model can be determined by comparing the observed 

diffraction data to the diffraction data calculated from the model.  This statistic is 

referred to as the crystallographic R factor, and it is defined as: 

 
R = ∑ ||FOBS| - k|FCALC|| 

                                  hkl                                                     x 100 
∑ |FOBS| 

                                                                    hkl 
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The crystallographic R factor is intended to provide a good approximation of how 

well the model reflects the experimental data. It is necessary to point out that the 

R factor alone is not a sufficient indicator of the structures accuracy. Other 

indicators of the quality of the structure are provided by the Ramachandran plot, 

which shows if phi and psi angles have allowed values for each residue in the 

protein molecule, how much the bond lengths and angles deviate from idealized 

values, rotamer side chain fit values, and hydrogen-bond analysis (Kleywegt, 

2000). 

 

3.1.6 The X-ray crystal structure of aRpp29 

 In chapter 2, NMR studies of A. fulgidus aRpp29 show that the central 

structural feature of this 102 residue protein is a sheet of six antiparallel β-

strands, wrapped around a core of conserved hydrophobic amino acids. In 

contrast to the relatively rigid and well-defined β-sheet, about 40 percent of the 

protein was poorly defined in solution; this includes the first 16 residues, located 

before the start of the first β-strand, and the last 24 residues, located past the 

end of the last β-strand. In this chapter, the X-ray crystal structure of the aRpp29 

from A. fulgidus will be presented. The X-ray structure of aRpp29 differs from the 

solution structure in that two well ordered helices are present at the amino and 

carboxy termini. Residues 6 – 12 and 83 – 96 form α-helices arranged in an anti-
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parallel orientation. This chapter of the dissertation was adapted from Sidote et 

al., 2004. 

 

3.2  Methods and Materials 

 

3.2.1  Crystallization and X-ray diffraction 

The 102 amino acid archaeal homologue of the human RNase P protein 

Rpp29 (aRpp29) was cloned from Archaeoglobus fulgidus genomic DNA and 

expressed as a fusion with maltose binding protein. Following cleavage of the 

fusion with tobacco etch virus (TEV) protease, the protein was purified to 

homogeneity as described chapter 2. The protein was crystallized using the 

hanging drop vapor diffusion method with samples at concentrations of 15 mg/ml. 

Native crystals were grown in 0.1 M sodium citrate (pH 5.5) and 2.2 M 

ammonium sulfate at room temperature, with crystal formation occurring after 2 

months. Protein containing selenomethionine was produced as described by 

VanDuyne et al. (1993), and purified exactly as the native protein. Crystals of the 

selenomethionine form of aRpp29 were grown from a solution of 0.1 M HEPES 

(pH 7.5) and 1.2 M ammonium sulfate, with crystal formation occurring after 4 to 

5 days at room temperature (Figure 3.2). Crystals were transferred to a 25% 

glycerol cryoprotectant solution for 1 minute prior to freezing, removed from the 

cryoprotectant using a nylon loop (Hampton Research), and frozen in the  
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Figure 3.2. Crystals of A. fulgidus RNase P protein aRpp29. Different crystal 

forms of the aRpp29 protein were grown by vapor diffusion using the hanging 

drop technique. The native form grew in the space group P212121 and the SeMet 

form in the space group P21212. In both cases, crystals grew to an approximate 

diameter of 0.2-0.3 mm. 
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nitrogen stream at 100K. X-ray diffraction data at 1.54 Å were collected for the 

native and selenomethionine forms using a rotating copper anode X-ray source 

equipped with a MAR3450 detector (MAR-USA, Inc.) (Figure 3.3). 

Synchrotrondata were collected for the selenomethionine form at the PX 

beamline at the Center for Advanced Microstructures and Devices (CAMD) in 

Baton Rouge, LA, equipped with a MAR CCD detector (MAR-USA, Inc.); data 

were collected at 0.97945 Å, corresponding to the peak selenium anomalous 

signal according to a fluorescence scan (Figure 3.4). Diffraction data were 

integrated and scaled using DENZO and SCALEPACK (Otwinowski and Minor, 

1997) to a resolution of 1.7 Å. 

 

3.2.2  Crystal structure determination and refinement 

The crystal structure of the selenomethionine form of aRpp29 was solved 

using the single wavelength anomalous diffraction (SAD) method. Alternative 

methods for solving the phase problem, such as isomorphous replacement and 

molecular replacement were attempted without success. The unit cell constants 

of the selenomethionine crystals, which grew faster than the native and therefore 

were more abundant for heavy atom soaking, varied considerably from crystal to 

crystal after cryoprotection. In most cases, as is the case with soaking crystals in 

heavy atom salts, the quality of diffraction drastically decreased or caused the 

crystal to deteriorate while soaking. Molecular replacement was attempted with  
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Figure 3.3. X-ray diffraction image of aRpp29 to 1.7Å resolution. These data 

were collected on a “home source” rotating copper anode X-ray generator 

equipped with a MAR 3450 detector. The crystal was flash cooled to 100K with 

25% glycerol used a crypprotectant prior to data collection. 
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Figure 3.4. Fluorescence scan of an aRpp29 crystal containing 5 
selenomethionine residues. In order to determine the wavelength of X-rays 
that produces the maximum anomalous signal, a fluorescence scan is performed. 
The fluorescence is proportional to the imaginary component of the anomalous 
scattering factor. The peak wavelength derived from this scan for this crystal was 
0.979495Å. 
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many search models and with different software suites but a correct solution was 

not found. The possible reasons for this are addressed later. 

The locations of the five selenium atoms and initial phases were 

calculated at 3.5 Å using SHARP (Bricogne et al., 2003) (Figure 3.5). After 

solvent flattening using ARP/warp (Perrakis et al., 2001), a model of the structure 

was built into the electron density using XtalView (McRee, 1999). The phase 

ambiguity that is inherent in the SAD was broken by examining the phase 

distribution probabilities calculated by SHARP and was confirmed by visually 

inspecting the electron density maps to access which phase calculation is 

correct. After positional refinement, density modification was repeated at 1.8 Å to 

improve the phases, followed by multiple cycles of re-building (using omit maps) 

and positional refinement using the 1.54 Å diffraction data to a resolution of 1.7 

Å. Atomic B-factors were refined using CNS version 1.1 (Brünger  et al., 1998). 

The structure of the native form of aRpp29 (which crystallized in a different space 

group) was solved by the molecular replacement method using CNS, with the 

structure of the selenomethionine form of the protein as a search model.  

After multiple cycles of re-building using omit maps, and positional and B-

factor refinement, the structure of the native form of the protein was completed 

using data to a resolution of 1.7 Å. Water molecules were added to each 

structure where the difference electron density was greater than 3 σ and the  
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Figure 3.5. Anomalous difference map showing the positions of the 
selenium atoms in the aRpp29 structure. The backbone of the aRpp29 crystal 
structure is shown in blue. The sidechains of SeMet19, -48, -72, -92, -93 are also 
drawn in blue. The orange mesh represents the electron density corresponding to 
the anomalous difference in scattering from the selenium atoms contoured at 
10σ.  

 

N 
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density in the 2|Fo|-|Fc| map was greater than 1 s. Summaries of the 

crystallographic and refinement statistics for the native and selenomethionine 

forms of the aRpp29 protein are given in Table 3.1. The quality and 

stereochemistry of the final structures were evaluated using PROCHECK 

(Laskowski et al., 1996). The programs DALI (Holm and Sander, 1993) and 

VAST (Gilbrat et al., 1996) were used to search the RCSB database for proteins 

that are structurally similar to aRpp29. Ribbon and stick diagrams were 

generated using Pymol (Delano, 2002). 

 

3.3  Results and Discussion 

 

3.3.1  Overview of the aRpp29 crystal structure 

Crystals of the A. fulgidus aRpp29 protein were grown from a solution of 

sodium citrate with ammonium sulfate as the precipitant; the crystals formed in 

the space group P212121 and diffract X-rays to 1.7 Å resolution. A derivative of 

aRpp29 containing selenomethionine (SeMet) in place of methionine was 

prepared as a tool for solving the phase problem by anomalous scattering 

methods. Interestingly, the SeMet-containing aRpp29 did not crystallize under the 

same conditions as the native form of the protein. However, crystals with a 

slightly larger unit cell diffracting to 1.7 Å were obtained in space group P21212 

from a solution of HEPES and ammonium sulfate.  
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Table 3.1. Structure determination and refinement statistics for the X-ray 
crystal structure of A. fulgidus aRpp29. 
 
Data set        Native  (Cu K)   SeMet (Cu K) SeMet (CAMD) 
 
Space group       P212121  P21212   P21212  
Cell constants (Å, °)      a = 39.6    a = 35.9   a = 38.1 
       b = 43.8    b = 71.8  b = 73.0 
       c = 49.2  c = 32.4  c = 32.5 
  
        α, ß, γ= 90.0   α, ß, γ = 90.0  α, ß, γ = 90.0  
 
Number of crystals      1     1     1 
Wavelength (Å)       1.542    1.542   0.97954 
Dmin (Å)      1.7     1.7    2.3 
Rsym (%)        4.3 (45.6)   4.0 (24.8)    8.0 (24.8) 
Completeness (%)      90.1 (98.5)  99.1 (88.1)  99.1 (93.1) 
I/σ       25.6 (3.0)  138.7 (21.9)  23.2 (5.3) 
Phasing power           1.52 
No. Observed Reflections   34,081  124,791  27,573 
No. Unique reflections      8955   10,241  7688 
Average redundancy       3.8   12.2   3.6 
 
Residues in structural model   6 – 86                    5 - 102 
Overall figure of merit    0.81   0.87 
Resolution range for refinement (Å)  15.0 to 1.7  15.0 to 1.7   
Rwork (%)        25.0   20.3 
Rfree (%)        28.4   23.9   
Average B factor (Å2)        18.9                 22.2 
 
Number of protein atoms     650   781   
Number of water molecules     99   144 
 
r.m.s.d. bond lengths (Å)     0.00500  0.00446 
r.m.s.d. bond angles (°)      1.360   1.350 
r.m.s.d. bonded B factors (Å2)     1.379   1.297 
 
Residues in most favored regions (%)        95.7           91.7 
Residues in additional allowed regions (%)    4.3            8.3  
Residues in generously allowed regions (%)  0.0            0.0 
Residues in disallowed regions (%)         0.0                        0.0                                                  

 All x-ray data were collected at 100 K. The values in parentheses correspond to the 

highest resolution shell of the x-ray data. The highest resolution shells for the native, 

SeMet, and CAMD datasets are 1.76-1.70, 1.72-1.66, and 2.38-2.30 respectively.  
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Obtaining two different crystal forms of aRpp29 was fortuitous in that it 

provided for two independent views of the protein structure. Several of the 

methionine residues were found to be located on the inter-molecular contacts 

within the crystal, thus providing an explanation for the change in molecular 

packing upon substituting selenomethionine for methionine.  

The electron density maps for each crystal form of aRpp29 were of 

excellent quality. For the SeMet form of the protein, residues 5 to 102 were built 

into the maps and refined. For the native protein, only residues 6 to 86 were 

clearly observed in the electron density maps; inspection of the molecular 

packing suggests that the C-terminal residues were absent in the native form of 

the protein, presumably due to degradation prior to crystallization (Figure 3.6). 

This observation is consistent with the significant difference in crystallization time 

for the two crystal forms: The SeMet protein crystallizes in several days, while the 

native protein requires two months to form crystals.  

The native and SeMet structures were refined to 1.7 Å with Rworking/Rfree of 

25.0%/28.4% and 20.3%/23.9%, respectively. The solvent contents of 31.7% and 

30.2% (v/v) for the native and SeMet crystal forms, respectively, are at the lower 

end of the range typical for protein crystals; this is consistent with relatively tight 

packing of the protein molecules and excellent diffraction. The two structures can 

be superimposed with an r.m.s.d. of 0.8 Å for the Cα atoms, with most of the 

variation coming from the last few residues at the C-terminus. Both structures 
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have been deposited to the Protein Data Bank, and assigned accession numbers 

1TS9 and 1TSF. 

 

3.3.2 Description of the structure of aRpp29 

 The central feature of the aRpp29 protein is a sheet of six antiparallel β-

strands formed by residues 17 through 75; this β-sheet is significantly twisted 

and wrapped around a core of conserved hydrophobic amino acids Val20, Val22, 

Val37, Val38, Leu45, Ile47, Val56, Phe63, Val65, and Ile74 (Figure 3.6). The high 

degree of conservation of these hydrophobic residues in the archaeal aRpp29, 

yeast Pop4, and human Rpp29 indicates that each of these proteins contains a 

similar β-sheet structure (Figure 3.7). Within the β-sheet, strand β1 is connected 

to β2 by a 7-residue loop containing one turn of helix centered at residue 28, and 

strand β2 is connected to β3 by a short loop, as is β3 to β4. Strand β4 is 

connected to β5, located at the opposite side of the protein, by a 5-residue loop 

that spans the open part of the twisted β-sheet. Strand β5 is connected to β6 by a 

compact turn, followed by a 7-residue loop containing one turn of helix centered 

at residue 76.  

 The N-terminal region of the aRpp29 protein contains a two-turn α-helix 

(residues 6 through 12), followed by a short loop leading to the first β-strand. 

Side chains of residues Leu10, Ile11 and Trp15 are oriented toward the 

hydrophobic face of theβ-sheet; residues at these positions are hydrophobic 
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Figure 3.6. Cartoon representation of the aRpp29 native and SeMet crystal 

structures. The cartoons are color ramped from blue at the N-terminus to red at 

the C-terminus. (A) The native form of aRpp29 crystallized in the space group 

P212121. The structures consists of residues 6 - 86. Inspection of the crystal 

packing suggests that residues 87 – 102 have degraded and are not missing do 

to disorder. (B) The SeMet form of aRpp29 crystallized in the space group 

P21212. The space group difference can be attributed to the positions of the 

SeMet residues, as they are located on the surface and form crystal contacts with 

neighboring molecules. The SeMet structure consists of residues 5 – 102. 
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Figure 3.7. Amino acid sequence alignment of A. fulgidus aRpp29 and 
RNase P proteins from other archaea and eukarya. Sequences from seven 
archaeal species are shown: M. thermoautothrophicus, M. jannaschii, T. 
acidophilum, T. acidarmanus, P. furiosus, and P. abyssi. The eukaryotic 
sequences are from H. sapiens, M. musculus, D. melanogaster, S. cerevisae, C. 
elegans, N. crassa, and A. thaliana. Archaeal aRpp29 is homologous to the C-
terminal half of eukaryotic Rpp29. The N-terminal region of Rpp29 is not well 
conserved among eukarya. The most conserved hydrophobic residues, which 
form the hydrophobic core of aRpp29, are boxed in green. Conserved surface 
residues that are most likely to be involved in mediating protein-RNA or protein-
protein interactions within RNase P are boxed in red.  
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Figure 3.8. Stereo view of the crystal structure of aRpp29 from A. fulgidus. 
Cartoon diagram showing two orthogonal views of the SeMet form of A. fulgidus 
aRpp29, color ramped from blue at the N-terminus to red at the C-terminus. The 
figure was generated using the backbone atoms of residues 5 to 102. 
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in aRpp29 from most species, suggesting that the N-terminal helix is a conserved 

feature of the protein structure. The C-terminal region of the SeMet form of the 

protein contains a four-turn α-helix formed by residues 83 to 96, followed by an 

irregular loop to residue Trp101. In the native form of the protein, only a single 

turn of this helix is observed in the electron density map.  

 The N-terminal and C-terminal helices are aligned antiparallel to each 

other, which may be a stabilizing feature since it provides for a favorable 

alignment of the helix dipoles. In the SeMet form of the protein, the N- and C-

terminal helices make inter-molecular contacts near a two-fold axis within the 

crystal. The selenomethionine residues are all exposed on the protein surface, 

with SeMet 19, 48, and 92 being directly involved in forming crystal contacts. In 

contrast, the packing of the native protein is mediated by the N-terminal helix and 

the C-terminal region from Asp77 to Arg86 packing against the surface of the β-

sheet formed by strands β1, β2, β5, and β6 (Figure 3.9).  

 The crystal structure of aRpp29 is structurally similar to the Sm and Sm- 

like (Lsm) proteins which are characterized by a motif consisting of two distinct 

sequences. The Sm-fold is defined by an N-terminal helix followed by a five-

stranded antiparallel b-sheet that forms an open barrel (Toro et al., 2002) (Figure 

3.10). The structure of aRpp29 is therefore a variation of this fold, as it contains 

the N-terminal helix and five b-strands (b1-b5) exhibiting the same connectivity, 

with strands b6 and the C-terminal helix being extra elements. The Sm-like 
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Figure 3.9. Lattice packing of the  native and SeMet forms of aRpp29. (A) Native 

aRpp29 packing in space group P212121. a,b,c denote the unit cell axes. (B) SeMet 
aRpp29 packing in space group P21212. Selenomethionine residues at positions 19, 48, 

and 92 form crystal contacts. The SeMet residue at position 92 is involved in making 
crystal contacts along the 2-fold axis (green and orange molecules in panel B). 

A 

B 
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Figure 3.10. Two-dimensional diagram of the aRpp29 variation of the SM-

fold. The SM and Lsm (SM-like) fold consists of an N-terminal α-helix followed by 

5 β-strands forming an anti-parallel β-sheet (Shown in orange). The structure of 

aRpp29 is a variation of the SM fold, as it contains the distinguishing features of 

the fold with an additional anti-parallel β-strand followed by a C-terminal α-helix 

(colored in blue). 
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proteins occur in all three domains of life (bacteria, archaea and eukarya), and 

are known to associate with U-rich RNA sequences. Sm and Sm-like proteins are 

known to be involved in a variety of RNA processing events, including pre-mRNA 

splicing (Pannone et al., 2001) and the biogenesis of the small nuclear 

ribonucleoprotein particles (snRNPs), as well as interaction with pre-RNase P 

RNA (Toro et al., 2001, reviewed by Valentin-Hansen et al., 2004).   

 The structural similarity between the β-sheet regions of aRpp29 and the 

Sm-like protein and bacterial transcription factor Hfq becomes even more 

apparent now that the crystal structure of aRpp29 is known, since Hfq contains a 

helix that corresponds to the N-terminal helix of aRpp29. In addition to their 

structural similarity, there is a slight but detectable amino acid sequence similarity 

between aRpp29 and Hfq. The bacterial Hfq protein contains the glycine at the 

bend in the central region of strand β2 (corresponding to the well-conserved 

Gly35 in A. fulgidus aRpp29) that appears to be essential for forming the 

characteristically bent β-sheet. The similarity between aRpp29 and other Sm- 

family members is not always noticeable at the level of primary sequence, 

although the structural similarity is fairly obvious. Unlike the apparently 

monomeric aRpp29, many of the Sm-like proteins form hexameric or heptameric 

complexes (Toto et al., 2002, Schumaher et al., 2002, Thore et al., 2003; 

reviewed by Valentin-Hansen et al., 2004). The structural similarity to aRpp29  
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can be seen in the ribbon diagrams of the monomer units of the Sm and Sm-like 

proteins Hfq, Sm2 and Human snRNP D1 shown in Figure 3.11. 

 The structure of a complex of Hfq with a single-stranded 

oligoribonucleotide (Schumaher et al., 2002) shows that the RNA binds in a basic 

cleft, however the residues of Hfq that contact the RNA do not correspond to 

conserved residues in aRpp29, suggesting that the RNA-binding modes of these 

proteins are different. An NMR chemical shift perturbation study of the M. 

thermoautotrophicus homologue of aRpp29 by Boomershine et al. (2003) 

suggested that a broad surface involving a number of the β-sheet residues may 

contact the RNA, which differs from the conserved surface that we suggest in 

Figure 1B.  

 In the recent crystal structure of the P. horikoshii homologue of aRpp29, 

Numata et al. (2004) propose a concave surface near the β2-β3 connecting loop 

as a possible site of interaction with RNA. The A. fulgidus aRpp29 as a whole is a 

basic protein, and conserved basic residues such as Arg82 and Arg89 on the 

protein surface are likely candidates for RNA contacts. An electrostatic surface 

plot based on the present crystallographic work indicates that the surface is 

overwhelmingly positive in charge (Figure 3.12). It appears clear that structural 

results for an aRpp29 protein-RNA complex will be required before the details of 

the protein-RNA interaction are understood. 
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3.11. Structural homologs of aRpp29 exhibiting the SM-fold. Cartoon 

representations of proteins that are similar in structure to aRpp29 and exhibit the 

Sm-fold, demonstrating its conservation across all three domains of life. The 

diagrams are color ramped from blue at the N-terminus to red at the C-terminus. 

The proteins shown are: Host-factor q (Hfq) from E. coli (PDB entry 1HK9), an 

RNA-binding protein involved in regulating translation; Sm-2 from A. fulgidus 

(PDB entry 1LJO); Sm-D1 from H. sapiens (PDB entry 1B34), which forms a 

dimer with Sm-D2 and interacts with the 3’-terminal U-tract of U6 snRNA. The 

r.m.s.d. between the backbone atoms of A. fulgidus aRpp29 (residues 17-77) and 

Hfq, Sm2, and Sm-D1 are 2.2 Å, 2.1Å, and 3.5 Å, respectively.  
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Figure 3.12. Electrostatic surface representation demonstrating the overall 
positive character of aRpp29.  aRpp29 is an RNA binding protein with an 
isoelectric point of approximately 10.5. The surface contains an overall positive 
charge which may be the sites of interaction with RNase P RNA or the pre-tRNA 
substrate. The electrostatic calculation was performed using Swiss PDB viewer.  
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3.3.3 Conserved surface residues of aRpp29 

 Amino acids are generally conserved among homologous proteins from a 

diverse set of species when they are important for purposes of structure, function 

or for inter-molecular interactions. In the case of aRpp29 and its homologues 

(Figure 3.7), conserved hydrophobic residues in the protein core are likely to be 

essential for stabilizing the overall protein fold. The conserved residues on the 

protein surface are the most likely to be important for inter-molecular interactions, 

such as contacting the RNase P RNA or other protein components.  

 The most-conserved residues on the surface of aRpp29 are spread 

throughout the primary sequence of the protein, but are spatially clustered into a 

single region of the protein surface (figure 3.13). Six surface residues (Asp14, 

Thr41, Gln42, Asn43, Arg82 and Arg88) that are well-conserved in archaeal 

aRpp29, as well as the RNase P proteins Rpp29 and Pop4 in eukarya, are 

located either within or near the loop connecting strands β2 and β3, and the 

beginning of helix α2. Each of these six conserved surface residues may act as 

either a hydrogen bond donor or acceptor, and is potentially a site of interaction 

with the RNase P RNA, the substrate pre-tRNA, or both.  

 Another interesting feature of the protein is a salt bridge formed by the 

triad of residues Glu40, Lys58, and Arg86 (Figure 3.14). These hydrophilic amino 

acid types are most commonly found on the surface of proteins, however in 

aRpp29, the charged ends of these residues are buried so that the salt bridge 
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Figure 3.13. Conserved surface residues provide a potential site of 
interaction. (A) Surface residues that are conserved in a wide range of species 
and considered likely to interact with the RNase P RNA or other protein subunits 
are shown in red; these conserved residues are clustered into a relatively small 
region of the protein surface. (B) Surface representation of aRpp29 with 
conserved surface residues colored red.  
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Figure 3.14. A region of aRpp29 2|Fo|-|fc| electron density map showing the 
three-way internal salt bridge formed by residues E40, K58, and R86. These 
residues are nearly completely inaccessible to the solvent. The distances from 
Glu40 Oε to Lys58 Nζ and Glu40 Oε to Arg86 Nη are 2.71Å and 2.63Å, 

respectively. The water molecule marked with an asterisk is involved in mediating 
the interaction between Lys58 and Arg86; the oxygen of this water molecule is 
3.10Å from Lys58 Nζ and 2.94Å from Arg86 Nη. The electron density is 

contoured at 1.5σ. 
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spans an interior region of the protein. This triad of residues is conserved from 

aRpp29 in A. fulgidus to Rpp29 in humans and Pop4 in yeast. A study of salt-

bridges within protein structures indicates that such a three-way internal structure 

is rather unusual (Kumar and Nussinov, 1999), and the degree to which the 

identity of each of these residues is conserved is also quite striking (Figure 3.7). 

It seems reasonable to speculate that the residues of the salt-bridge are 

conserved for a reason. One possibility is that the salt-bridge is required simply 

for protein stability. However, the present study provides evidence that the N- 

and C-terminal helices are far from rigidly stable, suggesting that the salt-bridge 

is often not as buried as it appears in the crystal. Also, the observation that these 

residues are conserved not just in thermophilic archaea, but also in higher 

eukarya, suggests the possibility that their function may be more complex. A 

relatively complex recognition mechanism could explain why the involved amino 

acids are so well conserved from archaea to humans. 

The alignment of the aRpp29 sequence with sequences of homologous 

proteins (Figure 3.7) indicates that one of the most conserved residues is a 

glycine (Gly35 in A. fulgidus aRpp29) located at a bend near the center of strand 

β2. A Ramachandran plot for aRpp29 shows that Gly35 has phi and psi angles 

that would be unfavorable for any other amino acid type (phi and psi are 163 and 

-169 degrees, respectively). This glycine therefore appears to be essential to the  



 110 

fold of the protein, in that it allows the structure to form its strongly bent open 

barrel.  

 

3.3.4 What about molecular replacement? 

 There are many examples of NMR structures being used successfully as 

molecular replacement search models for phasing X-ray crystal structures 

(reviewed in Chen et al., 2000). However, the circumstances for each problem 

are different. In the case of aRpp29, the molecular replacement method was 

attempted using all variations of the NMR structure as a search model. 

Specifically, the search models included using the complete β-strand region, with 

and without the loop regions, generating models with ideal geometry, the M. 

thermoautotrophicus NMR structure, and the crystal structure of Hfq. It is worth 

noting that our NMR model was only 60 % of the total structure so using smaller 

models might have required the r.m.s.d. be even smaller than for the complete 

structure. Molecular replacement was attempted with each search model using 

the computer programs Molrep, Amore, CNS, and EPMR without success. 

The failure to find a molecular replacement solution can be understood 

now that the crystal structure has been solved using SAD. The r.m.s.d. between 

the backbone atoms of the crystal and the average of all the calculated NMR 

structures is calculated to be 3.7Å. Molecular replacement was attempted using 

individual as well as the average NMR models. This difference is beyond the 
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positioning capabilities used in molecular replacement. When the NMR structure 

is superimposed onto the crystal structure the differences between the two 

structures become apparent. The β-sheet consisting of β1, β2, and β5 is twisted 

in relation to the crystal structure (Figure 3.15).  It is possible that, because the β-

sheet does not form a closed barrel, the dynamic nature of the termini of aRpp29 

exhibit a force on the β-sheet part of the structure causing slight changes in the 

orientation of one part of the β-sheet toward another. 
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Figure 3.15.  Stereo diagram showing two orthogonal views of the A. fulgidus 
aRpp29 average NMR structure superimposed on the crystal structure. The 
backbone atoms of NMR model (yellow), consisting of residues 17-77, were 

superimposed on the backbone atoms of the crystal structure (pink) with an r.m.s.d. of 
3.7 Å.  
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Chapter 4  Biophysical analysis of the termini of aRpp29 

 

4.1  Introduction 

 

 

 The NMR and X-ray structures of aRpp29 provide two distinct views of the 

molecule. The NMR structure consists of a relatively rigid six-stranded 

antiparallel β-sheet with flexible termini. The X-ray crystal structure contains the 

same six-stranded antiparallel β-sheet, but in contrast to the NMR structure, the 

amino and carboxy termini form well ordered α-helices at the amino and carboxy 

termini. This raises some interesting questions; 1) If the helices exist in solution, 

why were they not detectable by NMR? 2) Are the helices in the crystal structure 

artifacts of the crystallization?  

It can be hypothesized that the helices are in equilibrium between an 

unstructured state, consistent with the NMR, and an ordered state, as is 

observed in the crystal structure. To test this hypothesis, amide proton exchange, 

HSQC experiments, and circular dichroism were used to examine the dynamic 

characteristics of the termini of aRpp29. This chapter of the dissertation was 

adapted from Sidote et al., 20004. 
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4.1.1 Amide Protein Exchange 

 

 Amide proton exchange can be used to measure the exchange rate of 

amide protons with the solvent, and thus can provide information on the 

conformational stability of flexible parts of a protein. Unprotected amide protons 

can readily exchange with the solvent during conformational changes. An amide 

that is hydrogen bonded can exchange only a very small fraction of the time, and 

is usually an indication that those amides are involved in making interactions in 

stabile regions of the protein. Typically, the proton exchange rate can be 

explained by the “EX2” mechanism proposed by Hvidt and Nielson (1966) which 

is derived from: 

 

           k1                   kch                   k-1 
N(H) ⇔ OP(H)  ⇒  OP(D)  ⇔  N(D) 

           k-1                                             k1 
 

where, N(H) is the protonated form of the protein, OP(H) is the exchange capable 

locally unfolded form of the protein, OP(D) represents the deuterated locally 

unfolded form, N(D) represents the deuterated folded form of the protein, and kch 

is the rate of amide proton exchange for the exchange capable form of the 

protein (Lillemoen et al., 1997). Generally, the native state is considered to be the 
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most abundant form so it can be assumed that k-1 >> k1 and k-1 >> kch. From 

these assumptions, the following formula can be proposed: 

 

kHX = kOPkCH 

 

where kHX is the observed rate of exchange, kOP is equilibrium constant for the 

unfolded protein (Lillemoen et al. 1997). The “EX2” model implies that the rate of 

exchange increases 10 fold with each increasing pH unit and has been confirmed 

in previous studies (Lillemoen et al., 1997).  

The “EX2” mechanism can be used to study the conformational stability of 

the helices in aRpp29 by determining KOP from measurements of KHX. The ratio of 

kCH/kHX is referred to as the protection factor. Using this model, the rates at which 

the helices are in the open, or unfolded form can be quantitatively calculated by 

measuring kOP. 

 

4.1.2 Circular dichroism spectroscopy 

Circular dichroism (CD) is a type of absorption spectroscopy that can 

provide information on the structure of biological macromolecules. In addition to 

determining secondary structure content, CD can be used to monitor protein 

folding/unfolding, structural changes induced by pH and temperature, and 
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changes induced by ligand binding. CD experiments require low concentrations 

of material, require no extensive preparation, are insensitive to molecular weight, 

and allow measurements in solution.  

CD measures the difference between the absorption of right and left 

handed circularly polarized light by chiral molecules. The difference is always 

very small and is measured as a function of wavelength, typically in the UV 

range, from 190 to 300 nm. After passing through the sample, the right and left 

hand circularly polarized light have different amplitudes and the combination of 

the two unequal beams become elliptically polarized light. CD measures the 

ellipticity of the transmitted light.  

The peptide backbone is intrinsically asymmetric and always optically 

active. There are characteristic wavelengths in which the secondary structures of 

proteins elicit positive and negative ellipticity peaks based on Fasman standard 

curves for polylysine (Figure 4.1). For example, proteins with helical content will 

produce positive peaks at 208 and 222 nm and a negative peak at 192 nm, β-

sheet will produce a positive peak at 216 nm and a negative peak at 195nm, and 

random coil will produce only a positive peak at 200nm.  

There are a number parameters pertaining to the sample that are 

important for accurate data. In order to get accurate estimates of the structural 

content of the protein, it is essential that the concentration of the sample be 

accurately calculated. The sample should be as homogenous as possible to  



 117 

 

 

Figure 4.1. Circular dichroism spectra of the Fausman standards in the 

helical, β-sheet, and random coil conformations. The Fausman standards are 

consist of poly(Lys) in 3 different conformations. The 3 types of secondary 

structure each have a unique CD curve. The blue line represents the spectra of in 

the helical conformation; the red line represents the β-sheet conformation; and 

the yellow line represents the random coil conformation. 
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prevent artifacts. The amount of sample required for CD is very low, so to avoid 

excessive spectral noise, the total absorbance should not exceed 1 unit. The 

buffer concentration should be as low as possible while still maintaining the 

proper pH and should be limited to phosphate, borate or low concentration Tris 

(Martin, 1996). It should also be noted that Cl- ions absorb strongly below 195 

nm and should be substituted with fluoride or sulfate salts. 

 CD data is analyzed by fitting the experimental data curve to a set of 

standard curves using least squares minimization. The standards are proteins 

with very high-resolution crystal structures containing different ratios of helix and 

β-sheet. The best fitting models use data from many different proteins (≥ 20). The 

accuracy of structure determination depends on the type of secondary structure. 

The accuracy for helices, β-sheets, and turns is 0.97, 0.75, and 0.50 respectively 

 (Manavalan and Johnson, 1987). 

Aside from the inaccuracy of measuring β-sheet and turns, there are other 

limitations to structure analysis using CD. The shape of the absorption curve can 

be influenced by aromatic side chains and by the tertiary structure. Another 

problem arises from the use of reference spectra corresponding to 100 % helix, 

β-sheet and turns, as they are not directly applicable to proteins that contain 

short sections of helix or β-sheet. The CD of a helix is known to increase as the 

length of the helix increases and the CD of β-sheets is sensitive to environment 

and geometry. 
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4.2  Methods and Materials 

 

4.2.1 NMR spectroscopy 

  NMR data were collected using a 500 MHz Varian Inova spectrometer. 

Spectra were collected at 30°C unless stated otherwise. The 1H, 15N, and 13C 

chemical shifts for the nuclei of A. fulgidus aRpp29 were previously assigned 

using two and three-dimensional NMR spectra as described in chapter 2. Two-

dimension 1H-15N correlated spectra for the present work were collected using 

sweep widths of 8000 Hz and 5000 Hz in the 1H and 15N dimensions, 

respectively. Data were processed using nmrPipe (Delaglio et al., 1995) and 

analyzed using Sparky (Goddard and Kneller, 2002). 

 

4.2.2  Amide Proton Exchange Rate Measurements 

 The rates with which the backbone amide protons of the aRpp29 protein 

exchange with protons from the solvent were measured using a saturation-

transfer method, essentially as described by Lillemoen et al. (1997).  

Uniformly 15N-labeled samples of aRpp29 were equilibrated with buffers of 

10mM K2HPO4/KH2PO4/100mM NaCl, at pH 5.8, 6.8, 7.8 and 8.8. A pair of 1H-15N 

correlated 2-D NMR spectra was obtained at each pH. In all cases a selective 

excitation method was used for water suppression. For one spectrum of each 

pair, the water resonance was pre-saturated for 3 seconds, resulting in 
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attenuation of the backbone amide 1H resonances due saturation transfer from 

the solvent, which depends on the proton exchange rate, as well as a nuclear 

Overhauser effect (NOE). The NOE was assumed to be constant at each pH, 

while the proton exchange rate was assumed to increase tenfold with each unit 

increase in pH (Spera et al., 1991).  

By comparing the spectra obtained with and without presaturation at each 

pH, the effects of solvent exchange and NOE could be determined (Lillemoen et 

al., 1997). Amide proton exchange rates were normalized to pH 7 for 

comparison. Peak heights were measured for each assigned residue and fit to 

the equation: Ipresat/Io = (1-N)/ {10(7-pH)T1k+1} where k is the amide proton exchange 

rate. Ipresat and Io are the peak heights in the 1H-15N correlated spectra with and 

without water presaturation, respectively. N represents the NOE contribution. The 

longitudinal relaxation time T1 was estimated to be 0.7 s using an inversion 

recovery experiment.  

Alternatively, solvent exchange rates for relatively slowly exchanging 

amide protons were determined simply by transferring the protein to deuterated 

solvent and monitoring the disappearance of resonances in 2-D 1H-15N correlated 

spectra, as 1H is replaced with 2H. A solution of uniformly 15N labeled Rpp29 was 

passed through a column of Sephadex G-25 beads (Sigma-Aldrich) that had 

been pre-equilibrated in buffer (10 mM K2HPO4/KH2PO4 pH 5.8/100 mM NaCl) in 

99.9% D2O overnight. The protein was immediately placed in the NMR 
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spectrometer, and 2-D 1H-15N correlated spectra were collected at time intervals 

of 6 hours over a total of 24 hours, and after 48, 72, and 144 hours. All spectra 

were processed identically using nmrPipe (Delaglio et al., 1995) and peak 

heights were measured using Sparky (Goddard and Kneller, 2002). The 

decrease of the peak height over time was fit to a first-order exponential decay 

equation. Solvent exchange rates were measured for 58 backbone amide 

protons; overlapping or partially overlapping peaks were not included in the 

analysis. 

 

4.2.3  Circular Dichroism Measurements 

 Circular dichroism data were collected for the aRpp29 protein using an 

AVIV Circular Dichroism Spectrometer Model 62DS. The concentration of the 

protein sample was 14.2 µM in 10 mM potassium phosphate pH 7.0 and 100 mM 

NaF. Data were collected at 25°C using a cell with a path length of 1 mm. Nine 

scans were averaged to achieve a high degree of signal-to-noise. The 

parameters of each scan were as follows: wavelength range 260-185 nm; 

bandwidth 0.5 nm; scan time 2.0 s. The data were analyzed using Selcon3 

(Sreerama et al., 2000). 
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4.2.4  Analytical Ultracentrifugation 

 Sedimentation data were collected for the A. fulgidus aRpp29 protein for 

the purpose of determining its aggregation state in solution. Data were collected 

using a Beckman Coulter Optima XL-1 Analytical Centrifuge, operated at 20 °C 

with a sample concentration of 156 µM. A total of 60 UV absorbance scans were 

obtained at a rotor speed of 42,000 rpm, with an interval of 10 minutes between 

scans. The experiment was performed in triplicate, and data were analyzed using 

Ultrascan  (Demeler et al., 1997). The aRpp29 protein was found to have a 

sedimentation coefficient of 1.25 + 0.06 S at 20 oC in the same buffer as was 

used for the NMR experiments (100 mM NaCl, 10 mM K2HPO4/KH2PO4 pH 5.8); 

for comparison, hen egg white lysozyme, with 129 amino acids, was found to 

have a sedimentation coefficient that is slightly greater (1.60 + 0.04 S) under 

these same conditions. These sedimentation data are most consistent with 

aRpp29 being a monomer in solution. 

 

4.3 Results and Discussion 

 

4.3.1 Comparison of the crystal and solution structures of aRpp29 

  The crystal and NMR structures are similar in that each method describes 

essentially the same six-stranded antiparallel twisted β-sheet (Figure 2.9, 3.8), 

and the large majority of NMR-derived inter-proton distances are consistent with 
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the crystal structure. Indeed, the NMR structure of A. fulgidus aRpp29 identified 

exactly the same set of hydrogen bonds connecting the antiparallel β-strands as 

is observed in the crystal.  

 On the other hand, there are immediately obvious differences between the 

crystal and solution structures (Figure 3.14). Most notably, the well-ordered 

helices at the N- and C-termini of the protein in the crystal are not observed in 

solution, even upon re-examination of the NMR data in view of the 

crystallography results. NMR chemical shift index values for the residues of the 

C-terminal helix provided a hint of helical structure in solution, however the 1H-1H 

NOE cross-peaks typical of helical structure were not observed for either the N-

terminal or C-terminal helix. The r.m.s.d. between the backbone atoms of 

residues 18-76 of the crystal and NMR structures of the A. fulgidus protein 

exceeds 3 Å, which is larger than the likely uncertainty in the structures, 

suggesting that there likely are some real differences in the overall twist of the b-

sheet.  

 Several observed NOE cross-peaks involving loop residues (particularly 

Ser25) are inconsistent with distances in the crystal structure, indicating there are 

some differences in the loop structures of the solution and crystalline forms of the 

protein. In addition, the internal three-way salt bridge between residues Glu40, 

Lys58, and Arg86 in the crystal (Figure 3.13) was not observed in the solution 

structures of either archaeal protein, although the salt-bridge between two 
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residues of this triad (Glu40-Lys58) were detected in the M. thermoautotrophicus 

solution structure (Boomershine et al., 2003).  

 The apparent differences between the crystal and NMR structures suggest 

that the crystallization process may lead to a "freezing-out" of a single ordered 

form of the molecule, and that in solution the helices at the N- and C-termini of 

the protein may be in equilibrium between folded and unfolded forms. The 

biophysical tools of NMR and circular dichroism provide additional means to test 

this hypothesis, and reconcile the apparent differences between the crystal and 

solution structures of aRpp29. Understanding these differences is important since 

a simple static model of the structure may not provide an accurate description of 

the protein surface; a detailed understanding of the protein surface may be 

required to identify which residues make the essential inter-subunit and enzyme-

substrate interactions within RNase P. 

 

4.3.2 Reconciling differences the between the crystal and solution 

structures of aRpp29. 

 The large majority of the helical content within the crystal structure of aRpp29 

resides in the N- and C-terminal helices; the helical content of the crystal 

structure is approximately 28%. Circular dichroism (CD) measurements provide 

information from which the helical content of aRpp29 can be estimated in 
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solution. CD data from A. fulgidus aRpp29 collected at 25 °C were analyzed 

using the program Selcon3 (Sreerama et al., 2000), indicating a helical content of  

7.4% in solution; other methods of CD data analysis indicated a helical content of 

5 to 12% (Figure 4.2). The CD data therefore indicate that the helical content of 

aRpp29 in solution is approximately one-third of that in the crystal. The CD data 

are consistent with either 1) approximately two-thirds of the helical structure of 

aRpp29 being unfolded in solution; or 2) the helices of aRpp29 existing in 

equilibrium between folded and unfolded states, with the equilibrium slightly 

favoring the unfolded form.  

While circular dichroism measurements provide information regarding the 

average helical content of aRpp29 in solution, measurements of the rates at 

which backbone amide protons exchange with the solvent can provide insight 

into how frequently the helices unfold. Amide protons along the protein backbone 

are only competent to exchange with the solvent when they are not involved in 

stable hydrogen bonds. Thus, the frequency with which a proton exchanges with 

solvent sets an upper limit on how frequently a hydrogen bond opens.  

The solvent exchange rates for the backbone amide protons of aRpp29 

were measured using NMR methods: Slowly exchanging amide protons were 

monitored by simply observing the decay of 1H NMR signals after transferring the 

protein to deuterated solvent, while rates of rapidly exchanging protons were  
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Figure 4.2. Circular dichroism spectra used to determine the helical 

content of aRpp29 in solution. Data were collected at 25°C in 10 mM 

potassium phosphate with 100 NaF. Analysis of the data shows that the helical 

content of aRpp29 is approximately 5 – 12%. 
 

 

 

 

Wavelength (nm) 
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measured using a saturation transfer method (Figure 4.3). Amide proton 

exchange rates in aRpp29 were found to range over several orders of magnitude. 

Amide protons within the central regions of the antiparallel β-sheet were found to 

have exchange rates of less than 10-4 sec-1 at pH 7, consistent with being in a 

stable hydrogen bonded structure that opens infrequently. In contrast, the 

exchange rates for amide protons of the residues of the N- and C-terminal 

helices are several orders of magnitide more rapid. For example, solvent 

exchange rates of amide protons of Lys88 and Gly90, located in the middle of the 

C-terminal helix α2 in the crystal structure, are approximately 1.0 sec-1, indicating 

that these hydrogen bonds open much more frequently than those in the β-sheet. 

For the residues of the N-terminal helix α1, the backbone amide protons 

exchanged with the solvent too rapidly to measure by the saturation transfer 

method, or were altogether unobservable due to rapid exchange.  

 

4.3.3 The effect of elevated NaCl concentrations on the termini of aRpp29 

 It is possible that the helices observed in the crystal structure are a result 

of increased stability due to the elevated salt concentration used in the 

crystallization of aRpp29. The sample preparation of aRpp29 for the NMR and 

crystallographic studies were identical. In the case of NMR, a decrease in 

sensitivity can be observed in some experiments with elevated salt concentration 

so samples are typically prepared with the minimum salt concentration necessary 
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Figure 4.3. Analysis of rates of saturation-transfer between solvent water 
and amide protons can be used to gain insight into the motions within the 
Rpp29 protein. Left:  A section of the 15N-1H correlated NMR spectrum of Rpp29 
obtained using a selective excitation method for solvent suppression. Right:  A 
spectrum obtained under the same conditions, but in this case saturating the 
solvent water resonance. NMR signals from amide protons involved in stable 
hydrogen bonds are relatively uninfluenced by saturating the solvent resonance. 
In contrast, signals from amide protons that exchange with protons from the 
solvent during the saturation period are significantly reduced in intensity; 
examples are Thr41 and Asp77 which are partially attenuated, and Arg73, in the 
lower right of the figure, which is completely attenuated when the water 
resonance is saturated. The influence of the nuclear Overhauser effect is 
separated from that of amide exchange by performing the experiment at several 
different values of pH. 
 



 129 

to keep the protein folded (100 mM NaCl in the case of aRpp29). The 

crystallization of aRpp29 was successful only with salt concentrations ranging 

from 1.1 – 2.2 M ammonium sulfate.  

To address this issue, 1H-15N HSQC NMR experiments were collected 

under conditions of increasing concentrations of NaCl. If the helices are stabilized 

by elevated NaCl concentrations, then additional peaks should appear 

corresponding to more ordered structures with slower exchange times. NMR 

spectra were collected with NaCl concentrations of 0.1, 0.25, 0.5, and 1.0 M 

(Figures 4.4, 4.5, 4.6). Due to the decreased sensitivity of the NMR experiments, 

the highest NaCl concentration measurable was 1 M. By comparing the spectra 

of aRpp29 collected at 100 mM to those collected at the elevated NaCl 

concentrations, it can be concluded that absences of any additional peaks 

indicate that the elevated NaCl concentrations had little effect on stabilizing the 

helices. 

 

4.4.4 Conclusion 

In summary, CD and NMR data support a model where the N- and C-

terminal helices that are clearly observed in the crystal structure of A. fulgidus  
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Figure 4.4. 1H-15N HSQC spectra of aRpp29 collected at 250 mM NaCl (red) 
overlayed on a spectrum collected at 100 mM NaCl (blue). Both spectra were 
collected at 30° and pH 5.8. The samples used to determine the NMR structure of 

aRpp29 contained 100 mM NaCl. The crystals of aRpp29 using 1.1 – 2.2 M salt as the 

precipitant and it can be hypothesized that this increased NaCl concentration helps 
stabilize the N- and C-terminal helices visible in the X-ray crystal structure. To address 

this issue, spectra were collected with increasing NaCl concentrations. If the NaCl 
concentration was responsible for stabilizing the helices, additional peaks corresponding 

to the residues in the helices should become detectable. At 250 mM NaCl, peaks shift 
due to the change in salt concentration but the number of peaks does not increase. 
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Figure 4.5. 1H-15N HSQC spectra of aRpp29 collected at 500 mM NaCl (green) 
overlayed on a spectrum collected at 100 mM NaCl (blue). Both spectra were 
collected at 30° and pH 5.8. Increasing the NaCl concentration from 100 mM to 500 mM 

elicited no detectable changes in the spectrum of aRpp29. The increased number of 
peaks near I102 can be attributed to that residue being a the extreme C-terminal of the 

protein. 
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Figure 4.4. 1H-15N HSQC spectra of aRpp29 collected at 1 M NaCl (orange) 
overlayed on a spectrum collected at 100 mM NaCl (blue). Both spectra were 
collected at 30° and pH 5.8. Increasing the NaCl concentration from 100 mM to 1M again 

did not affect the number of peaks detectable by NMR. A concentration 1 M is about the 

limit that can be used in an NMR sample as the sensitivity decreases dramatically when 
a higher concentration is used. Based on the data collected up to 1 M NaCl, the NaCl 

concentration does not have an effect on the stability of the N- and C-terminal helices of 
aRpp29. 
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aRpp29 are either unfolded in solution, or are in rapid equilibrium between folded 

and unfolded states. These observations are consistent with the results reported 

in chapter 2, using measurements of 15N NMR relaxation rates (an alternative 

method of identifying flexible regions within a protein structure), which indicated 

that the residues of the β-sheet for A. fulgidus aRpp29 are significantly less 

mobile in solution than those of the termini. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 134 

 

Chapter 5 

Summary and conclusions 

 

 

With the exception of the ribosome, RNase P is the only RNA containing 

enzyme found in all organisms. RNase P is an integral part of a complicated 

tRNA maturation process, whereby it cleaves the 5’ leader from the pre-tRNA. 

The composition and complexity of RNase P varies across bacterial, archaeal, 

and eukaryal organisms, with the common element being a catalytic RNA 

subunit. 

Structural characterization of RNase P has been limited to the bacterial 

enzyme, which consists of a catalytic RNA and a protein subunit. The structure of 

the holoenzyme has not been reported, however the structure of the protein 

subunit and the specificity domain of the RNA component has been reported. 

The eukaryotic RNase P is a complex ribonucleoprotein, consisting of an RNA 

subunit and up to 10 protein subunits. To date, no structural data exists for the 

eukaryal RNase P enzyme. The archaeal RNase P is intermediate in terms of 

complexity, containing an RNA subunit and al least four protein subunits. For this 

reason, using archaea is an attractive model system for studying RNase structure 

and function. 
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The goal of the structural studies presented in this dissertation was to 

investigate the structure of the archaeal RNase P protein aRpp29. The NMR and 

crystal structures presented provide a unique view of aRpp29, indicating that it is 

dynamic structure and perhaps this characteristic plays an important role in the 

function or assembly of the RNase P holoenzyme in archaea. This dissertation 

presents the first atomic structure of a non-bacterial RNase P protein subunit. 

Future work on archaeal RNase P will continue towards the structure of 

the holoenzyme. Because RNase P is a multisubunit enzyme containing an RNA 

moiety, it is likely that this goal will be very difficult. The relatively low abundance 

of RNase P makes isolation directly from the source, as was the case for 

structural studies of the ribosome, very unlikely. Investigations of the individual 

subunits are underway and so far, in addition to the structures of A. fulgidus 

Rpp29 described in this thesis, there are structures of Rpp29 from P. horikoshii 

and M. methanoautotrophicus. In addition, the structure of the archaeal homolog 

of Rpp30 has also been solved. The structural analysis of the archaeal homologs 

of Pop5, Rpr2/Rpp21, and the RNA subunit are in progress. 
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Appendix 1. Resonance assignments for A. fulgidus aRpp29 

Atom  Residue Residue Atom  Atom  Chemical 
no.                     no.                     type                   name                 type                   shift          
1  7  GLY  CA  C  43.2 
2  8  VAL  H  H  8.33 
3  8  VAL  HA  H  4.03 
4  8  VAL  HB  H  1.9 
5  8  VAL  HG1  H  0.75 
6  8  VAL  HG2  H  0.8 
7  8  VAL  C  C  175.4 
8  8  VAL  CA  C  62.1 
9  8  VAL  CB  C  32.9 
10  8  VAL  CG1  C  20.8 
11  8  VAL  CG2  C  20.8 
12  8  VAL  N  N  119.2 
13  9  ALA  H  H  8.35 
14  9  ALA  HA  H  4.31 
15  9  ALA  HB  H  1.43 
16  9  ALA  C  C  177.1 
17  9  ALA  CA  C  52.2 
18  9  ALA  CB  C  19.3 
19  9  ALA  N  N  127.6 
20  10  LEU  H  H  8.24 
21  10  LEU  HA  H  4.34 
22  10  LEU  HB2  H  1.95 
23  10  LEU  HB3  H  1.95 
24  10  LEU  HG  H  1.71 
25  10  LEU  HD1  H  1.32 
26  10  LEU  HD2  H  0.76 
27  10  LEU  C  C  175.8 
28  10  LEU  CA  C  56.5 
29  10  LEU  CB  C  42.1 
30  10  LEU  N  N  8.24 
31  11  ILE  H  H  7.66 
32  11  ILE  HA  H  4.08 
33  11  ILE  HB  H  2.01 
34  11  ILE  C  C  175.2 
35  11  ILE  CA  C  62.3 
36  11  ILE  CB  C  38.4 
37  11  ILE  N  N  114.3 
38  12  ALA  H  H  7.66 
39  12  ALA  HA  H  4.49 
40  12  ALA  HB  H  1.36 
41  12  ALA  C  C  175.4 
42  12  ALA  CA  C  51.8 
43  12  ALA  CB  C  19.6 
44  12  ALA  N  N  124.4 
45  13  ARG  H  H  7.63 
46  13  ARG  HA  H  4.44 
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47  13  ARG  HB2  H  1.83 
48  13  ARG  HB3  H  1.83 
49  13  ARG  HG2  H  1.99 
50  13  ARG  HG3  H  1.99 
51  13  ARG  HD2  H  1.92 
52  13  ARG  HD3  H  1.92 
53  13  ARG  C  C  174.8 
54  13  ARG  CA  C  55.2 
55  13  ARG  CB  C  31.9 
56  13  ARG  N  N  117.4 
57  14  ASP  H  H  8.17 
58  14  ASP  HA  H  4.58 
59  14  ASP  HB2  H  3.02 
60  14  ASP  HB3  H  3.02 
61  14  ASP  C  C  176 
62  14  ASP  CA  C  54.9 
63  14  ASP  CB  C  42.1 
64  14  ASP  N  N  120 
65  15  TRP  H  H  9.65 
66  15  TRP  HA  H  4.62 
67  15  TRP  HB2  H  2.86 
68  15  TRP  HB3  H  2.86 
69  15  TRP  C  C  178.3 
70  15  TRP  CA  C  56.4 
71  15  TRP  CB  C  29.6 
72  16  ILE  H  H  7.93 
73  16  ILE  HA  H  3.46 
74  16  ILE  HB  H  1.95 
75  16  ILE  HG12  H  1.73 
76  16  ILE  HG13  H  1.73 
77  16  ILE  HG2  H  0.88 
78  16  ILE  HD1  H  0.97 
79  16  ILE  C  C  177.5 
80  16  ILE  CA  C  64.1 
81  16  ILE  CB  C  36 
82  16  ILE  CG1  C  27.5 
83  16  ILE  CG2  C  17.6 
84  16  ILE  CD1  C  12.8 
85  16  ILE  N  N  119.1 
86  17  GLY  H  H  9.27 
87  17  GLY  HA2  H  4.46 
88  17  GLY  HA3  H  3.86 
89  17  GLY  C  C  176.6 
90  17  GLY  CA  C  44.8 
91  17  GLY  N  N  116.6 
92  18  LEU  H  H  8.27 
93  18  LEU  HA  H  4.68 
94  18  LEU  HB2  H  1.34 
95  18  LEU  C  C  175.4 
96  18  LEU  CA  C  54.3 
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97  18  LEU  CB  C  41.8 
98  18  LEU  N  N  8.27 
99  19  MET  H  H  8.7 
100  19  MET  HA  H  5.04 
101  19  MET  HB2  H  1.96 
102  19  MET  HB3  H  1.92 
103  19  MET  HG2  H  2.19 
104  19  MET  HG3  H  2.21 
105  19  MET  C  C  174.8 
106  19  MET  CA  C  54.2 
107  19  MET  CB  C  32.2 
108  19  MET  CG  C  31.7 
109  19  MET  N  N  121.4 
110  20  VAL  H  H  8.94 
111  20  VAL  HA  H  5.99 
112  20  VAL  HB  H  2.22 
113  20  VAL  HG1  H  0.94 
114  20  VAL  HG2  H  0.99 
115  20  VAL  C  C  173.4 
116  20  VAL  CA  C  58.8 
117  20  VAL  CB  C  37 
118  20  VAL  CG1  C  21.2 
119  20  VAL  CG2  C  21.2 
120  20  VAL  N  N  118.3 
121  21  GLU  H  H  9.45 
122  21  GLU  HA  H  5.81 
123  21  GLU  HB2  H  2.26 
124  21  GLU  HB3  H  2.26 
125  21  GLU  HG2  H  1.98 
126  21  GLU  HG3  H  2.21 
127  21  GLU  C  C  176 
128  21  GLU  CA  C  53.6 
129  21  GLU  CB  C  37 
130  21  GLU  CG  C  36.3 
131  21  GLU  N  N  121.2 
132  22  VAL  H  H  9.36 
133  22  VAL  HA  H  4 
134  22  VAL  HB  H  2.69 
135  22  VAL  HG1  H  0.6 
136  22  VAL  HG2  H  1.06 
137  22  VAL  C  C  175.7 
138  22  VAL  CA  C  63.3 
139  22  VAL  CB  C  30.9 
140  22  VAL  CG1  C  21.1 
141  22  VAL  CG2  C  21.1 
142  22  VAL  N  N  127.5 
143  23  VAL  H  H  8.58 
144  23  VAL  HA  H  3.66 
145  23  VAL  HB  H  2.19 
146  23  VAL  HG1  H  0.67 
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147  23  VAL  HG2  H  0.87 
148  23  VAL  C  C  174.8 
149  23  VAL  CA  C  61.8 
150  23  VAL  CB  C  33 
151  23  VAL  CG1  C  21.5 
152  23  VAL  CG2  C  21.5 
153  23  VAL  N  N  122.6 
154  24  GLU  H  H  7.43 
155  24  GLU  HA  H  4.58 
156  24  GLU  HB2  H  2.06 
157  24  GLU  HB3  H  2.22 
158  24  GLU  HG2  H  1.78 
159  24  GLU  HG3  H  1.96 
160  24  GLU  C  C  174 
161  24  GLU  CA  C  56.1 
162  24  GLU  CB  C  34 
163  24  GLU  CG  C  36.1 
164  24  GLU  N  N  118.8 
165  25  SER  H  H  8.2 
166  25  SER  HA  H  4.82 
167  25  SER  HB2  H  3.34 
168  25  SER  HB3  H  3.88 
169  25  SER  HG  H  6.13 
170  25  SER  C  C  171.5 
171  25  SER  CA  C  54.8 
172  25  SER  CB  C  64.9 
173  25  SER  N  N  115.8 
174  26  PRO  HA  H  4.53 
175  26  PRO  HB2  H  1.95 
176  26  PRO  HB3  H  1.84 
177  26  PRO  HG2  H  2.03 
178  26  PRO  HG3  H  2.33 
179  26  PRO  HD2  H  3.71 
180  26  PRO  HD3  H  3.71 
181  26  PRO  C  C  175.8 
182  26  PRO  CA  C  63.8 
183  26  PRO  CB  C  31.8 
184  26  PRO  CG  C  27.2 
185  26  PRO  CD  C  50.8 
186  27  ASN  H  H  8.12 
187  27  ASN  HA  H  4.87 
188  27  ASN  HB2  H  2.48 
189  27  ASN  HB3  H  2.74 
190  27  ASN  C  C  174.9 
191  27  ASN  CA  C  51 
192  27  ASN  CB  C  38.1 
193  27  ASN  N  N  117.3 
194  28  HIS  H  H  9.08 
195  28  HIS  HA  H  4.23 
196  28  HIS  HB2  H  3.3 
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197  28  HIS  HB3  H  3.36 
198  28  HIS  HD1  H  7.35 
199  28  HIS  HD2  H  7.35 
200  28  HIS  HE1  H  8.52 
201  28  HIS  HE2  H  8.52 
202  28  HIS  C  C  176.5 
203  28  HIS  CA  C  59.5 
204  28  HIS  CB  C  29.2 
205  28  HIS  N  N  123.2 
206  29  SER  H  H  8.1 
207  29  SER  HA  H  4.23 
208  29  SER  HB2  H  3.92 
209  29  SER  HB3  H  3.92 
210  29  SER  C  C  177 
211  29  SER  CA  C  60.8 
212  29  SER  CB  C  62.9 
213  29  SER  N  N  113.8 
214  30  GLU  H  H  7.85 
215  30  GLU  HA  H  4.14 
216  30  GLU  HB2  H  2.07 
217  30  GLU  HB3  H  2.07 
218  30  GLU  HG2  H  2.25 
219  30  GLU  HG3  H  2.25 
220  30  GLU  C  C  176.4 
221  30  GLU  CA  C  56.1 
222  30  GLU  CB  C  31.2 
223  30  GLU  CG  C  36.4 
224  30  GLU  N  N  118.9 
225  31  VAL  H  H  7.06 
226  31  VAL  HA  H  3.2 
227  31  VAL  HB  H  1.96 
228  31  VAL  HG1  H  0.62 
229  31  VAL  HG2  H  0.85 
230  31  VAL  C  C  176.7 
231  31  VAL  CA  C  65.7 
232  31  VAL  CB  C  30.5 
233  31  VAL  CG1  C  21.3 
234  31  VAL  CG2  C  21.3 
235  31  VAL  N  N  117.9 
236  32  GLY  H  H  8.93 
237  32  GLY  HA2  H  4.54 
238  32  GLY  HA3  H  3.78 
239  32  GLY  C  C  175.1 
240  32  GLY  CA  C  44.5 
241  32  GLY  N  N  117.2 
242  33  ILE  H  H  7.8 
243  33  ILE  HA  H  4.02 
244  33  ILE  HB  H  1.87 
245  33  ILE  HG12  H  1.1 
246  33  ILE  HG13  H  0.95 
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247  33  ILE  HG2  H  0.78 
248  33  ILE  C  C  174.2 
249  33  ILE  CA  C  64.1 
250  33  ILE  CB  C  37.9 
251  33  ILE  CG1  C  27.3 
252  33  ILE  CG2  C  17.1 
253  33  ILE  N  N  123.4 
254  34  LYS  H  H  8.13 
255  34  LYS  HA  H  5.75 
256  34  LYS  HB2  H  1.75 
257  34  LYS  HB3  H  1.75 
258  34  LYS  HG2  H  1.21 
259  34  LYS  HG3  H  1.36 
260  34  LYS  HD2  H  1.56 
261  34  LYS  HD3  H  1.56 
262  34  LYS  C  C  174.2 
263  34  LYS  CA  C  54.5 
264  34  LYS  CB  C  36.7 
265  34  LYS  CG  C  27.4 
266  34  LYS  CD  C  30 
267  34  LYS  N  N  128.7 
268  35  GLY  H  H  8.88 
269  35  GLY  HA2  H  4.43 
270  35  GLY  HA3  H  3.86 
271  35  GLY  C  C  170 
272  35  GLY  CA  C  45.6 
273  35  GLY  N  N  112.2 
274  36  GLU  H  H  7.6 
275  36  GLU  HA  H  4.89 
276  36  GLU  HB2  H  1.8 
277  36  GLU  HB3  H  2.78 
278  36  GLU  HG2  H  1.95 
279  36  GLU  HG3  H  2.35 
280  36  GLU  C  C  171.8 
281  36  GLU  CA  C  54.8 
282  36  GLU  CB  C  32.6 
283  36  GLU  CG  C  33.9 
284  36  GLU  N  N  120 
285  37  VAL  H  H  9.16 
286  37  VAL  HA  H  4.27 
287  37  VAL  HB  H  2.81 
288  37  VAL  HG1  H  24.2 
289  37  VAL  HG2  H  24.2 
290  37  VAL  C  C  176.9 
291  37  VAL  CA  C  64.2 
292  37  VAL  CB  C  31.2 
293  37  VAL  CG1  C  24.2 
294  37  VAL  CG2  C  24.2 
295  37  VAL  N  N  126.9 
296  38  VAL  H  H  9.17 
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297  38  VAL  HA  H  4.65 
298  38  VAL  HB  H  2.31 
299  38  VAL  HG1  H  0.81 
300  38  VAL  HG2  H  1 
301  38  VAL  C  C  174.7 
302  38  VAL  CA  C  61.4 
303  38  VAL  CB  C  33.1 
304  38  VAL  CG1  C  21.2 
305  38  VAL  CG2  C  21.2 
306  38  VAL  N  N  124.1 
307  39  ASP  H  H  8.04 
308  39  ASP  HA  H  4.77 
309  39  ASP  HB2  H  2.25 
310  39  ASP  HB3  H  2.84 
311  39  ASP  C  C  175.7 
312  39  ASP  CA  C  53.8 
313  39  ASP  CB  C  43.8 
314  39  ASP  N  N  118.4 
315  40  GLU  H  H  8.58 
316  40  GLU  HA  H  4.67 
317  40  GLU  HB2  H  1.73 
318  40  GLU  HB3  H  1.9 
319  40  GLU  HG2  H  2.05 
320  40  GLU  HG3  H  2.19 
321  40  GLU  C  C  173.4 
322  40  GLU  CA  C  55.9 
323  40  GLU  CB  C  33.1 
324  40  GLU  CG  C  35.3 
325  40  GLU  N  N  122.4 
326  41  THR  H  H  8.67 
327  41  THR  HA  H  4.59 
328  41  THR  HB  H  4.44 
329  41  THR  HG2  H  1.1 
330  41  THR  C  C  174.7 
331  41  THR  CA  C  59.5 
332  41  THR  CB  C  71.4 
333  41  THR  CG2  C  21.1 
334  41  THR  N  N  115.6 
335  42  GLN  H  H  8.91 
336  42  GLN  HA  H  4.65 
337  42  GLN  HB2  H  2.27 
338  42  GLN  HB3  H  2.27 
339  42  GLN  HG2  H  2.19 
340  42  GLN  HG3  H  2.19 
341  42  GLN  C  C  174.9 
342  42  GLN  CA  C  62.6 
343  42  GLN  CB  C  32.7 
344  42  GLN  CG  C  33.9 
345  42  GLN  N  N  119 
346  43  ASN  H  H  8.32 
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347  43  ASN  HA  H  5.15 
348  43  ASN  HB2  H  2.79 
349  43  ASN  HB3  H  2.91 
350  43  ASN  C  C  176.1 
351  43  ASN  CA  C  53 
352  43  ASN  CB  C  41.5 
353  43  ASN  N  N  126.8 
354  44  THR  H  H  7.66 
355  44  THR  HA  H  5.17 
356  44  THR  HB  H  3.87 
357  44  THR  HG2  H  0.94 
358  44  THR  C  C  171.7 
359  44  THR  CA  C  60.6 
360  44  THR  CB  C  73.6 
361  44  THR  CG2  C  24.7 
362  44  THR  N  N  112 
363  45  LEU  H  H  8.99 
364  45  LEU  HA  H  4.68 
365  45  LEU  HB2  H  1.16 
366  45  LEU  HB3  H  1.53 
367  45  LEU  HG  H  0.18 
368  45  LEU  HD1  H  0.69 
369  45  LEU  HD2  H  0.69 
370  45  LEU  C  C  172.5 
371  45  LEU  CA  C  54 
372  45  LEU  CB  C  46.1 
373  45  LEU  CG  C  26.2 
374  45  LEU  CD1  C  23.5 
375  45  LEU  CD2  C  23.5 
376  45  LEU  N  N  119.2 
377  46  LYS  H  H  8.21 
378  46  LYS  HA  H  5.06 
379  46  LYS  HB2  H  1.73 
380  46  LYS  HB3  H  1.73 
381  46  LYS  HG2  H  1.21 
382  46  LYS  HG3  H  1.21 
383  46  LYS  HD2  H  1.55 
384  46  LYS  HD3  H  1.55 
385  46  LYS  C  C  174.1 
386  46  LYS  CA  C  55.6 
387  46  LYS  CB  C  32.9 
388  46  LYS  CG  C  24.2 
389  46  LYS  CD  C  30 
390  46  LYS  N  N  121 
391  47  ILE  H  H  9.31 
392  47  ILE  HA  H  4.58 
393  47  ILE  HB  H  1.49 
394  47  ILE  HG12  H  0.73 
395  47  ILE  HG2  H  0.48 
396  47  ILE  C  C  174.1 
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397  47  ILE  CA  C  60.1 
398  47  ILE  CB  C  41.7 
399  47  ILE  CG1  C  28.8 
400  47  ILE  CG2  C  20.5 
401  47  ILE  N  N  126.9 
402  48  MET  H  H  9.65 
403  48  MET  HA  H  4.92 
404  48  MET  HB2  H  1.95 
405  48  MET  HB3  H  2.78 
406  48  MET  HG2  H  1.82 
407  48  MET  HG3  H  2.34 
408  48  MET  C  C  174.4 
409  48  MET  CA  C  54.8 
410  48  MET  CB  C  31.4 
411  48  MET  CG  C  33.5 
412  48  MET  N  N  128.2 
413  49  THR  H  H  7.78 
414  49  THR  HA  H  5.3 
415  49  THR  HB  H  4.57 
416  49  THR  HG2  H  1.24 
417  49  THR  C  C  175.2 
418  49  THR  CA  C  60.3 
419  49  THR  CB  C  72.8 
420  49  THR  CG2  C  22.2 
421  49  THR  N  N  121.1 
422  50  GLU  H  H  9.32 
423  50  GLU  HA  H  4.27 
424  50  GLU  HB2  H  2.17 
425  50  GLU  HB3  H  2.17 
426  50  GLU  HG2  H  2.41 
427  50  GLU  HG3  H  2.41 
428  50  GLU  C  C  176.2 
429  50  GLU  CA  C  28.8 
430  50  GLU  CB  C  29.3 
431  50  GLU  CG  C  36.4 
432  50  GLU  N  N  120.6 
433  51  LYS  H  H  7.98 
434  51  LYS  HA  H  4.58 
435  51  LYS  HB2  H  2.12 
436  51  LYS  HB3  H  2.12 
437  51  LYS  HG2  H  1.52 
438  51  LYS  HG3  H  1.52 
439  51  LYS  HE2  H  3.76 
440  51  LYS  HE3  H  3.76 
441  51  LYS  C  C  175.1 
442  51  LYS  CA  C  54.7 
443  51  LYS  CB  C  32.7 
444  51  LYS  CG  C  29.2 
445  51  LYS  CE  C  42.3 
446  51  LYS  N  N  117 
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447  52  GLY  H  H  7.42 
448  52  GLY  HA2  H  4.61 
449  52  GLY  HA3  H  3.83 
450  52  GLY  C  C  174.4 
451  52  GLY  CA  C  44 
452  52  GLY  N  N  108 
453  53  LEU  H  H  8.76 
454  53  LEU  HA  H  4.75 
455  53  LEU  HB2  H  1.56 
456  53  LEU  HB3  H  1.56 
457  53  LEU  HG  H  2.1 
458  53  LEU  HD1  H  0.8 
459  53  LEU  HD2  H  0.8 
460  53  LEU  C  C  176.6 
461  53  LEU  CA  C  56 
462  53  LEU  CB  C  43.2 
463  53  LEU  CG  C  27 
464  53  LEU  CD1  C  24.5 
465  53  LEU  CD2  C  24.5 
466  53  LEU  N  N  124.6 
467  54  LYS  H  H  9.43 
468  54  LYS  HA  H  4.78 
469  54  LYS  HB2  H  2.28 
470  54  LYS  HB3  H  2.28 
471  54  LYS  HG2  H  1.44 
472  54  LYS  HG3  H  1.44 
473  54  LYS  HD2  H  1.7 
474  54  LYS  HD3  H  1.7 
475  54  LYS  C  C  173.7 
476  54  LYS  CA  C  53.6 
477  54  LYS  CB  C  35.3 
478  54  LYS  CG  C  24.9 
479  54  LYS  CD  C  29.2 
480  54  LYS  N  N  126.3 
481  55  VAL  H  H  8.58 
482  55  VAL  HA  H  4.75 
483  55  VAL  HB  H  1.97 
484  55  VAL  HG1  H  0.85 
485  55  VAL  HG2  H  0.98 
486  55  VAL  C  C  175.2 
487  55  VAL  CA  C  62 
488  55  VAL  CB  C  32.6 
489  55  VAL  CG1  C  21.2 
490  55  VAL  CG2  C  21.2 
491  55  VAL  N  N  124.1 
492  56  VAL  H  H  9 
493  56  VAL  HA  H  4.47 
494  56  VAL  HB  H  1.88 
495  56  VAL  HG1  H  0.91 
496  56  VAL  HG2  H  1.15 
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497  56  VAL  C  C  173.4 
498  56  VAL  CA  C  60.3 
499  56  VAL  CB  C  35.8 
500  56  VAL  CG1  C  23.5 
501  56  VAL  CG2  C  23.5 
502  56  VAL  N  N  127.6 
503  57  ALA  H  H  8.8 
504  57  ALA  HA  H  4.45 
505  57  ALA  HB  H  1.37 
506  57  ALA  C  C  175 
507  57  ALA  CA  C  51.9 
508  57  ALA  CB  C  18.7 
509  57  ALA  N  N  129.5 
510  58  LYS  H  H  7.33 
511  58  LYS  HA  H  4.14 
512  58  LYS  HB2  H  1.94 
513  58  LYS  HB3  H  1.94 
514  58  LYS  HD2  H  2.01 
515  58  LYS  HD3  H  2.01 
516  58  LYS  HE2  H  2.3 
517  58  LYS  HE3  H  2.3 
518  58  LYS  C  C  177.5 
519  58  LYS  CA  C  59.2 
520  58  LYS  CB  C  34.7 
521  58  LYS  CG  C  29.6 
522  58  LYS  CE  C  43.9 
523  58  LYS  N  N  115.3 
524  59  ARG  H  H  8.25 
525  59  ARG  HA  H  3.82 
526  59  ARG  HB2  H  1.77 
527  59  ARG  HB3  H  1.77 
528  59  ARG  HG2  H  1.52 
529  59  ARG  HG3  H  1.52 
530  59  ARG  HD2  H  3.2 
531  59  ARG  HD3  H  3.2 
532  59  ARG  C  C  177.1 
533  59  ARG  CA  C  58.6 
534  59  ARG  CB  C  29.8 
535  59  ARG  CG  C  27.4 
536  59  ARG  CD  C  43.6 
537  59  ARG  N  N  116.9 
538  60  GLY  H  H  9.24 
539  60  GLY  HA2  H  4.1 
540  60  GLY  HA3  H  3.75 
541  60  GLY  C  C  173.5 
542  60  GLY  CA  C  45.6 
543  60  GLY  N  N  114.3 
544  61  ARG  H  H  7.73 
545  61  ARG  HA  H  4.91 
546  61  ARG  HB2  H  1.71 
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547  61  ARG  HB3  H  1.98 
548  61  ARG  HG2  H  1.14 
549  61  ARG  HG3  H  1.14 
550  61  ARG  HD2  H  2.75 
551  61  ARG  HD3  H  2.91 
552  61  ARG  C  C  175.8 
553  61  ARG  CA  C  56.5 
554  61  ARG  CB  C  31 
555  61  ARG  CG  C  26.9 
556  61  ARG  CD  C  44.2 
557  61  ARG  N  N  123.3 
558  62  THR  H  H  8.19 
559  62  THR  HA  H  4.77 
560  62  THR  HB  H  3.65 
561  62  THR  HG2  H  0.97 
562  62  THR  C  C  171.8 
563  62  THR  CA  C  62.5 
564  62  THR  CB  C  69.5 
565  62  THR  CG2  C  21.2 
566  62  THR  N  N  116.5 
567  63  PHE  H  H  9.15 
568  63  PHE  HA  H  5.52 
569  63  PHE  HB2  H  2.97 
570  63  PHE  HB3  H  3.05 
571  63  PHE  HD1  H  7.12 
572  63  PHE  HD2  H  7.12 
573  63  PHE  HE1  H  7.01 
574  63  PHE  HE2  H  7.01 
575  63  PHE  C  C  174.4 
576  63  PHE  CA  C  56.7 
577  63  PHE  CB  C  42.3 
578  63  PHE  N  N  126.5 
579  64  ARG  H  H  9.75 
580  64  ARG  HA  H  5.12 
581  64  ARG  HB2  H  1.63 
582  64  ARG  HB3  H  1.63 
583  64  ARG  HG2  H  1.49 
584  64  ARG  HG3  H  1.49 
585  64  ARG  HD2  H  2.9 
586  64  ARG  HD3  H  2.9 
587  64  ARG  C  C  174.1 
588  64  ARG  CA  C  55.3 
589  64  ARG  CB  C  33.1 
590  64  ARG  CG  C  27.4 
591  64  ARG  CD  C  44.2 
592  64  ARG  N  N  123.8 
593  65  VAL  H  H  8.82 
594  65  VAL  HA  H  4.88 
595  65  VAL  HB  H  1.48 
596  65  VAL  HG1  H  0.38 
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597  65  VAL  HG2  H  0.44 
598  65  VAL  C  C  173.6 
599  65  VAL  CA  C  60.8 
600  65  VAL  CB  C  35.4 
601  65  VAL  CG1  C  21.7 
602  65  VAL  CG2  C  21.7 
603  65  VAL  N  N  123.8 
604  66  TRP  H  H  8.34 
605  66  TRP  HA  H  4.9 
606  66  TRP  HB2  H  3.13 
607  66  TRP  HB3  H  3.3 
608  66  TRP  HD1  H  7.13 
609  66  TRP  HE1  H  10.01 
610  66  TRP  HE3  H  7.75 
611  66  TRP  HZ2  H  7.36 
612  66  TRP  HZ3  H  6.88 
613  66  TRP  HH2  H  7.32 
614  66  TRP  C  C  174.8 
615  66  TRP  CA  C  58.5 
616  66  TRP  CB  C  31.2 
617  66  TRP  N  N  130.2 
618  67  TYR  H  H  8.68 
619  67  TYR  HA  H  4.84 
620  67  TYR  HB2  H  2.6 
621  67  TYR  HB3  H  2.68 
622  67  TYR  HD1  H  7.04 
623  67  TYR  HD2  H  7.04 
624  67  TYR  HE1  H  6.8 
625  67  TYR  HE2  H  6.8 
626  67  TYR  C  C  173.5 
627  67  TYR  CA  C  57.3 
628  67  TYR  CB  C  41.2 
629  67  TYR  N  N  125 
630  68  LYS  H  H  8.94 
631  68  LYS  HA  H  3.62 
632  68  LYS  HB2  H  1.39 
633  68  LYS  HB3  H  1.69 
634  68  LYS  HG2  H  0.44 
635  68  LYS  HG3  H  0.67 
636  68  LYS  HE2  H  2.85 
637  68  LYS  HE3  H  2.85 
638  68  LYS  C  C  175.6 
639  68  LYS  CA  C  57.1 
640  68  LYS  CB  C  30.1 
641  68  LYS  CG  C  23.9 
642  68  LYS  CE  C  42.2 
643  68  LYS  N  N  126 
644  69  GLY  H  H  8.28 
645  69  GLY  HA2  H  4.15 
646  69  GLY  HA3  H  3.66 
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647  69  GLY  C  C  173.2 
648  69  GLY  CA  C  45.6 
649  69  GLY  N  N  104.9 
650  70  LYS  H  H  7.91 
651  70  LYS  HA  H  4.61 
652  70  LYS  HB2  H  1.84 
653  70  LYS  HB3  H  1.84 
654  70  LYS  HG2  H  1.41 
655  70  LYS  HG3  H  1.41 
656  70  LYS  HD2  H  1.65 
657  70  LYS  HD3  H  1.65 
658  70  LYS  C  C  174.4 
659  70  LYS  CA  C  54.3 
660  70  LYS  CB  C  35.3 
661  70  LYS  CG  C  24.9 
662  70  LYS  CD  C  29.2 
663  70  LYS  N  N  121 
664  71  ILE  H  H  8.13 
665  71  ILE  HA  H  4.41 
666  71  ILE  HB  H  1.31 
667  71  ILE  HG12  H  1.11 
668  71  ILE  HG13  H  -0.17 
669  71  ILE  HG2  H  0.01 
670  71  ILE  HD1  H  0.64 
671  71  ILE  C  C  175.6 
672  71  ILE  CA  C  60.8 
673  71  ILE  CB  C  38.8 
674  71  ILE  CG1  C  26.9 
675  71  ILE  CG2  C  17.9 
676  71  ILE  CD1  C  13.9 
677  71  ILE  N  N  121.7 
678  72  MET  H  H  8.94 
679  72  MET  HA  H  4.69 
680  72  MET  HB2  H  1.94 
681  72  MET  HB3  H  1.94 
682  72  MET  HG2  H  1.72 
683  72  MET  HG3  H  1.72 
684  72  MET  C  C  173.4 
685  72  MET  CA  C  54.2 
686  72  MET  CB  C  36 
687  72  MET  CG  C  33.3 
688  72  MET  N  N  126.7 
689  73  ARG  H  H  8.46 
690  73  ARG  HA  H  5.22 
691  73  ARG  HB2  H  1.2 
692  73  ARG  HB3  H  1.22 
693  73  ARG  HG2  H  1.37 
694  73  ARG  HG3  H  1.64 
695  73  ARG  HD2  H  3.07 
696  73  ARG  HD3  H  3.21 
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697  73  ARG  C  C  174.9 
698  73  ARG  CA  C  55.2 
699  73  ARG  CB  C  32.1 
700  73  ARG  CG  C  27.4 
701  73  ARG  CD  C  43.5 
702  73  ARG  N  N  123.3 
703  74  ILE  H  H  9.4 
704  74  ILE  HA  H  4.63 
705  74  ILE  HB  H  1.98 
706  74  ILE  HG12  H  1.42 
707  74  ILE  HG13  H  1.42 
708  74  ILE  HG2  H  1.08 
709  74  ILE  C  C  174.5 
710  74  ILE  CA  C  59.1 
711  74  ILE  CB  C  41.9 
712  74  ILE  CG1  C  24.9 
713  74  ILE  CG2  C  24.9 
714  74  ILE  N  N  126 
715  75  LYS  H  H  8.6 
716  75  LYS  HA  H  4.66 
717  75  LYS  HB2  H  1.75 
718  75  LYS  HB3  H  1.75 
719  75  LYS  HG2  H  2.04 
720  75  LYS  HG3  H  2.04 
721  75  LYS  HD2  H  1.63 
722  75  LYS  HD3  H  1.63 
723  75  LYS  C  C  176.8 
724  75  LYS  CA  C  56.9 
725  75  LYS  CB  C  32.9 
726  75  LYS  CG  C  24.6 
727  75  LYS  CD  C  29.2 
728  75  LYS  N  N  129 
729  76  GLY  H  H  9.63 
730  76  GLY  HA2  H  4.7 
731  76  GLY  HA3  H  3.7 
732  76  GLY  C  C  175.3 
733  76  GLY  CA  C  47.2 
734  76  GLY  N  N  113.4 
735  77  ASP  H  H  8.71 
736  77  ASP  HA  H  4.26 
737  77  ASP  HB2  H  2.43 
738  77  ASP  HB3  H  2.7 
739  77  ASP  C  C  176.7 
740  77  ASP  CA  C  56.6 
741  77  ASP  CB  C  40.8 
742  77  ASP  N  N  117.1 
743  78  LEU  H  H  7.83 
744  78  LEU  HA  H  4.33 
745  78  LEU  HB2  H  1.94 
746  78  LEU  HB3  H  1.94 
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747  78  LEU  HG  H  1.74 
748  78  LEU  HD1  H  1.1 
749  78  LEU  HD2  H  1.1 
750  78  LEU  C  C  175.8 
751  78  LEU  CA  C  56.3 
752  78  LEU  CB  C  42.5 
753  78  LEU  CG  C  27.2 
754  78  LEU  CD1  C  25.2 
755  78  LEU  CD2  C  25.2 
756  78  LEU  N  N  116.2 
757  85  ASP  H  H  8.29 
758  85  ASP  HA  H  4.34 
759  85  ASP  HB2  H  2.06 
760  85  ASP  HB3  H  2.24 
761  85  ASP  C  C  175.8 
762  85  ASP  CA  C  55.3 
763  85  ASP  CB  C  42.5 
764  85  ASP  N  N  118.7 
765  86  ARG  H  H  7.81 
766  86  ARG  HA  H  4.27 
767  86  ARG  HB2  H  1.94 
768  86  ARG  HB3  H  1.94 
769  86  ARG  HG2  H  2.1 
770  86  ARG  HG3  H  2.1 
771  86  ARG  C  C  176.3 
772  86  ARG  CA  C  57.3 
773  86  ARG  CB  C  30.8 
774  86  ARG  CG  C  27.3 
775  86  ARG  N  N  125.1 
776  87  ILE  H  H  7.8 
777  87  ILE  HA  H  4.07 
778  87  ILE  HB  H  1.76 
779  87  ILE  HG12  H  1.94 
780  87  ILE  HG13  H  1.94 
781  87  ILE  HG2  H  1.36 
782  87  ILE  HD1  H  0.81 
783  87  ILE  C  C  175.9 
784  87  ILE  CA  C  62.2 
785  87  ILE  CB  C  38.4 
786  87  ILE  CG1  C  26.4 
787  87  ILE  CG2  C  26.4 
788  87  ILE  CD1  C  13.4 
789  87  ILE  N  N  119.8 
790  88  LYS  H  H  8.09 
791  88  LYS  HA  H  4.28 
792  88  LYS  HB2  H  1.85 
793  88  LYS  HB3  H  1.85 
794  88  LYS  HG2  H  1.44 
795  88  LYS  HG3  H  1.44 
796  88  LYS  HD2  H  1.67 
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797  88  LYS  HD3  H  1.67 
798  88  LYS  HE2  H  2.99 
799  88  LYS  HE3  H  2.99 
800  88  LYS  C  C  174.5 
801  88  LYS  CA  C  56.7 
802  88  LYS  CB  C  32.9 
803  88  LYS  CG  C  25.4 
804  88  LYS  CD  C  29.6 
805  88  LYS  CE  C  42.3 
806  88  LYS  N  N  123.8 
807  89  ARG  H  H  8.13 
808  89  ARG  HA  H  4.33 
809  89  ARG  HB2  H  1.8 
810  89  ARG  HB3  H  1.8 
811  89  ARG  HG2  H  1.53 
812  89  ARG  HG3  H  1.53 
813  89  ARG  C  C  177.5 
814  89  ARG  CA  C  56.5 
815  89  ARG  CB  C  30.9 
816  89  ARG  CG  C  27.9 
817  89  ARG  N  N  120.6 
818  90  GLY  H  H  8.24 
819  90  GLY  HA2  H  3.96 
820  90  GLY  HA3  H  3.96 
821  90  GLY  C  C  176.8 
822  90  GLY  CA  C  45.5 
823  90  GLY  N  N  108.8 
824  91  LEU  H  H  7.99 
825  91  LEU  HA  H  4.6 
826  91  LEU  HB2  H  1.84 
827  91  LEU  HB3  H  1.84 
828  91  LEU  HG  H  1.41 
829  91  LEU  HD1  H  1.66 
830  91  LEU  HD2  H  1.66 
831  91  LEU  C  C  176.3 
832  91  LEU  CA  C  55.3 
833  91  LEU  CB  C  42.6 
834  91  LEU  CG  C  27.2 
835  91  LEU  CD1  C  24.2 
836  91  LEU  CD2  C  24.2 
837  91  LEU  N  N  121 
838  92  MET  H  H  7.82 
839  92  MET  HA  H  4.27 
840  92  MET  HB2  H  1.95 
841  92  MET  HB3  H  1.95 
842  92  MET  HG2  H  2.11 
843  92  MET  HG3  H  2.53 
844  92  MET  C  C  180.1 
845  92  MET  CA  C  57.4 
846  92  MET  CB  C  34.3 
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847  92  MET  CG  C  33.4 
848  92  MET  N  N  124.8 
849  93  MET  C  C  176.2 
850  93  MET  CA  C  56 
851  93  MET  CB  C  31.1 
852  94  LEU  H  H  7.9 
853  94  LEU  HA  H  4.77 
854  94  LEU  C  C  172.2 
855  94  LEU  CA  C  53.1 
856  94  LEU  CB  C  42.7 
857  94  LEU  N  N  116.9 
858  95  LYS  H  H  8.61 
859  95  LYS  HA  H  4.78 
860  95  LYS  HB2  H  1.73 
861  95  LYS  HB3  H  1.73 
862  95  LYS  C  C  175.2 
863  95  LYS  CA  C  55.6 
864  95  LYS  CB  C  32.7 
865  95  LYS  N  N  122.4 
866  96  ARG  H  H  8.21 
867  96  ARG  HA  H  4.24 
868  96  ARG  HB2  H  1.78 
869  96  ARG  HB3  H  1.78 
870  96  ARG  C  C  175.9 
871  96  ARG  CA  C  56.7 
872  96  ARG  CB  C  30.7 
873  96  ARG  N  N  122 
874  97  ALA  H  H  8.05 
875  97  ALA  HA  H  4.34 
876  97  ALA  HB  H  1.44 
877  97  ALA  C  C  177 
878  97  ALA  CA  C  52.9 
879  97  ALA  CB  C  19.2 
880  97  ALA  N  N  123.8 
881  98  LYS  H  H  8.11 
882  98  LYS  HA  H  4.22 
883  98  LYS  C  C  176.2 
884  98  LYS  CA  C  56.6 
885  98  LYS  CB  C  33.1 
886  98  LYS  N  N  119.3 
887  99  GLY  H  H  8.38 
888  99  GLY  HA2  H  3.96 
889  99  GLY  HA3  H  3.95 
890  99  GLY  C  C  172.9 
891  99  GLY  CA  C  45.2 
892  99  GLY  N  N  110.8 
893  100  VAL  H  H  7.72 
894  100  VAL  HA  H  4.07 
895  100  VAL  HB  H  1.94 
896  100  VAL  HG1  H  0.81 
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897  100  VAL  HG2  H  0.81 
898  100  VAL  C  C  174.8 
899  100  VAL  CA  C  62.2 
900  100  VAL  CB  C  32.9 
901  100  VAL  CG1  C  21.4 
902  100  VAL  CG2  C  21.4 
903  100  VAL  N  N  118.9 
904  101  TRP  H  H  8.2 
905  101  TRP  HA  H  4.78 
906  101  TRP  HB2  H  3.19 
907  101  TRP  HB3  H  3.35 
908  101  TRP  HD1  H  7.23 
909  101  TRP  HE1  H  10.06 
910  101  TRP  HE3  H  7.68 
911  101  TRP  HZ2  H  7.47 
912  101  TRP  HZ3  H  7.15 
913  101  TRP  HH2  H  7.21 
914  101  TRP  C  C  174.2 
915  101  TRP  CA  C  56.9 
916  101  TRP  CB  C  30 
917  101  TRP  N  N  124.8 
918  102  ILE  H  H  7.51 
919  102  ILE  HA  H  4.22 
920  102  ILE  HB  H  1.8 
921  102  ILE  HG12  H  1.39 
922  102  ILE  HG13  H  1.39 
923  102  ILE  HG2  H  1.09 
924  102  ILE  HD1  H  0.85 
925  102  ILE  C  C  174.6 
926  102  ILE  CA  C  62.8 
927  102  ILE  CB  C  40 
928  102  ILE  CG1  C  28.1 
929  102  ILE  CG2  C  15.8 
930  102  ILE  CD1  C  12.4 
931  102  ILE  N  N  126.1 
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Appendix 2. NOE assignment table for A. fulgidus aRpp29 

NOE cross peaks observed in 2 dimensional NOESY experiments with 60 ms mixing times. Peak 
intensities converted to distance restraints using peak height as determined using the program 
sparky 
 

distance restraint 
------------------------- 
strong peak       2.8 Å {1} 
medium peak      3.2 Å {2} 
weak peak         3.8 Å {3} 
very weak peak   4.2 Å {4} 

 
 
NOE cross peaks observed in 3 dimensional NOESY experiments with 60ms mixing time. Peak 
intensities converted to distance restraints using  peak height as determined using the program 
Sparky 
     
       

distance restraint 
------------------------- 
strong peak       5.0 Å {5} 
medium peak      5.5 Å {6} 
weak peak         6.0 Å {7} 
very weak         6.5 Å {8} 

  
  
NOE cross peaks observed in 2 dimensional NOESY experiments with 200 ms  
mixing time have the following distance restraints:  
  
    6.9 Å {9} 
  
  
 i = intraresidue 
 s = sequential 
 l = long range 
 
 
 
 
 
{A9} 
assign (resid 9 and name hn) (resid 9 and name ha)  6.0 6.0 0.0 {7i} 
assign (resid 9 and name hn) (resid 9 and name hb*)  6.0 6.0 1.0 {7i} 
 
{L10} 
assign (resid 10 and name hn) (resid 10 and name ha)  6.0 6.0 0.0 {7i} 
 
assign (resid 10 and name hn) (resid 9 and name ha)  6.0 6.0 0.0 {7s} 
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{I11} 
assign (resid 11 and name hn) (resid 11 and name ha)  5.5 5.5 0.0 {6i} 
assign (resid 11 and name hn) (resid 11 and name hb)  5.5 5.5 0.0 {6i} 
 
assign (resid 11 and name hn) (resid 14 and name hn)  6.5 6.5 0.0 {8l} 
 
 
{A12} 
assign (resid 12 and name hn) (resid 12 and name ha)  6.0 6.0 0.0 {7i} 
assign (resid 12 and name hn) (resid 12 and name hb*)  5.5 5.5 1.0 {6i} 
 
assign (resid 12 and name hn) (resid 11 and name ha)  5.5 5.5 0.0 {6s} 
assign (resid 12 and name hn) (resid 11 and name hb)  6.5 6.5 0.0 {8s} 
 
{R13} 
assign (resid 13 and name hn) (resid 13 and name ha)  6.0 6.0 0.0 {7i} 
assign (resid 13 and name hn) (resid 13 and name hb*)  6.0 6.0 0.7 {7i} 
 
assign (resid 13 and name hn) (resid 12 and name ha)  5.5 5.5 0.0 {6s} 
assign (resid 13 and name hn) (resid 12 and name hb*)  5.5 5.5 1.0 {6s} 
 
{D14} 
assign (resid 14 and name hn) (resid 14 and name ha)         6.9 6.9 0.0 {9i} 
assign (resid 14 and name hn) (resid 14 and name hb*)        6.9 6.9 0.7 {9i} 
 
{W15} 
assign (resid 15 and name hn) (resid 15 and name ha)         6.0 6.0 0.0 {7i} 
assign (resid 15 and name hn) (resid 15 and name hb*)        6.5 6.5 0.7 {8i} 
  
{I16} 
assign (resid 16 and name hn) (resid 16 and name ha)         4.2 4.2 0.0 {4i} 
assign (resid 16 and name hn) (resid 16 and name hb)         3.8 3.8 0.0 {4i} 
assign (resid 16 and name hn) (resid 16 and name hd1)        4.2 4.2 0.0 {4i} 
assign (resid 16 and name hn) (resid 16 and name hg12)       6.5 6.5 1.0 {8i} 
assign (resid 16 and name hn) (resid 16 and name hg13)       6.5 6.5 1.0 {8i} 
assign (resid 16 and name ha) (resid 15 and name hb*)        6.5 6.5 0.7 {8l} 
 
{G17} 
assign (resid 17 and name hn) (resid 17 and name ha*)        3.8 3.8 0.7 {3i} 
 
assign (resid 17 and name hn) (resid 16 and name ha)         3.2 3.2 0.0 {2s} 
assign (resid 17 and name hn) (resid 16 and name hb)         6.0 6.0 0.0 {7s} 
assign (resid 17 and name hn) (resid 16 and name hg2)        3.8 3.8 0.0 {3s} 
assign (resid 17 and name hn) (resid 16 and name hd1)        5.5 5.5 0.0 {6s} 
 
assign (resid 17 and name hn) (resid 18 and name hn)         3.8 3.8 0.0 {3l} 
 
{L18} 
assign (resid 18 and name hn) (resid 18 and name ha)         6.0 6.0 0.0 {7i} 
assign (resid 18 and name hn) (resid 18 and name hb*)        6.0 6.0 0.0 {7i} 
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assign (resid 18 and name hn) (resid 17 and name ha*)        6.0 6.0 0.0 {7i} 
 
assign (resid 18 and name hn) (resid 37 and name hg**)       6.0 6.0 2.5 {7l} 
assign (resid 18 and name hn) (resid 37 and name hn)         6.5 6.5 0.0 {8l} 
 
 
{M19} 
assign (resid 19 and name hn) (resid 19 and name ha)  3.8 3.8 0.0 {3i} 
assign (resid 19 and name hn) (resid 19 and name hb*)  3.8 3.8 0.7 {3i} 
assign (resid 19 and name hn) (resid 19 and name hg*)        4.2 4.2 0.7 {4i} 
 
assign (resid 19 and name hn) (resid 18 and name ha)         3.8 3.8 0.0 {3s} 
assign (resid 19 and name hn) (resid 18 and name hb*)        4.2 4.2 0.7 {4s} 
 
assign (resid 19 and name ha) (resid 36 and name ha)         6.9 6.9 0.0 {9l} 
assign (resid 19 and name ha) (resid 20 and name hg**)       6.5 6.5 2.5 {8s} 
 
assign (resid 19 and name hb*)(resid 66 and name he3)        6.5 6.5 0.0 {8l} 
 
assign (resid 19 and name hn) (resid 67 and name ha)         3.8 3.8 0.0 {3l} 
assign (resid 19 and name hn) (resid 66 and name hb*)        6.5 6.5 0.7 {8l} 
assign (resid 19 and name hn) (resid 66 and name hn)         6.5 6.5 0.0 {8l} 
assign (resid 19 and name hn) (resid 20 and name hg**)       4.2 4.2 2.5 {4l} 
 
{V20} 
assign (resid 20 and name hn) (resid 20 and name ha)         3.8 3.8 0.0 {3i} 
assign (resid 20 and name hn) (resid 20 and name hb)         3.8 3.8 0.0 {3i} 
assign (resid 20 and name hn) (resid 20 and name hg**)       4.2 4.2 0.0 {4i} 
 
assign (resid 20 and name hn) (resid 19 and name ha)         2.8 2.8 0.0 {1s} 
assign (resid 20 and name hn) (resid 19 and name hb*)        6.0 6.0 0.7 {7s} 
 
assign (resid 20 and name ha) (resid 65 and name ha)         6.9 6.9 0.0 {9l} 
assign (resid 20 and name ha) (resid 66 and name he3)        6.5 6.5 0.0 {8l} 
 
assign (resid 20 and name hb) (resid 63 and name hd*)        6.5 6.5 2.4 {8l} 
assign (resid 20 and name hg**) (resid 63 and name hd*)      6.5 6.5 2.4 {8l} 
assign (resid 20 and name hn) (resid 35 and name hn)         6.5 6.5 0.0 {8l} 
assign (resid 20 and name hn) (resid 36 and name ha)         6.0 6.0 0.0 {7l} 
assign (resid 20 and name hn) (resid 66 and name he3)        3.8 3.8 0.0 {3l} 
assign (resid 20 and name hn) (resid 66 and name hz3)        3.8 3.8 0.0 {3l} 
 
{E21} 
assign (resid 21 and name hn) (resid 21 and name ha)         4.2 4.2 0.0 {4i} 
assign (resid 21 and name hn) (resid 21 and name hb*)        3.8 3.8 0.7 {3i} 
assign (resid 21 and name hn) (resid 21 and name hg*)        3.8 3.8 0.7 {3i} 
 
assign (resid 21 and name hn) (resid 20 and name ha)         3.2 3.2 0.0 {2s} 
assign (resid 21 and name hn) (resid 20 and name hb)         5.0 5.0 0.0 {5s} 
assign (resid 21 and name hn) (resid 20 and name hg**)       6.0 6.0 2.5 {7s} 
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assign (resid 21 and name ha) (resid 34 and name ha)         6.9 6.9 0.0 {9l} 
assign (resid 21 and name ha) (resid 34 and name hb*)        6.0 6.0 0.7 {7l} 
assign (resid 21 and name ha) (resid 22 and name hg**)       6.5 6.5 2.5 {8l} 
assign (resid 21 and name ha) (resid 23 and name hg**)       6.5 6.5 2.5 {8l} 
assign (resid 21 and name hb*)(resid 23 and name hg**)       6.5 6.5 2.5 {8l} 
 
assign (resid 21 and name hn) (resid 64 and name hn)         5.5 5.5 0.0 {6l} 
assign (resid 21 and name hn) (resid 65 and name ha)         3.8 3.8 0.0 {3l} 
assign (resid 21 and name hn) (resid 66 and name he3)        4.2 4.2 0.0 {4l} 
assign (resid 21 and name hn) (resid 66 and name hz3)        3.8 3.8 0.0 {3l} 
 
{V22} 
assign (resid 22 and name hn) (resid 22 and name ha)         3.8 3.8 0.0 {3i} 
assign (resid 22 and name hn) (resid 22 and name hb)         3.8 3.8 0.0 {3i} 
assign (resid 22 and name hn) (resid 22 and name hg**)       3.8 3.8 2.5 {3i} 
 
assign (resid 22 and name hn) (resid 21 and name ha)         3.2 3.2 0.0 {2s} 
assign (resid 22 and name hn) (resid 21 and name hb*)        6.0 6.0 0.7 {7s} 
assign (resid 22 and name hn) (resid 21 and name hg*)        6.0 6.0 0.7 {7s} 
 
assign (resid 22 and name ha) (resid 63 and name ha)         6.5 6.5 0.0 {8l} 
assign (resid 22 and name hg**)(resid 33 and name ha)        6.5 6.5 2.5 {8l} 
 
assign (resid 22 and name hn) (resid 33 and name hn)         6.5 6.5 0.0 {8l} 
assign (resid 22 and name hn) (resid 34 and name ha)         6.5 6.5 0.0 {8l} 
assign (resid 22 and name hn) (resid 34 and name hb*)        6.5 6.5 0.7 {8l} 
assign (resid 22 and name hn) (resid 63 and name hd*)        6.5 6.5 2.4 {8l} 
assign (resid 22 and name ha) (resid 64 and name hn)         6.5 6.5 0.0 {8l} 
 
{v23} 
assign (resid 23 and name hn) (resid 23 and name ha)         6.5 6.5 0.0 {8i} 
assign (resid 23 and name hn) (resid 23 and name hb)         6.0 6.0 0.0 {7i} 
assign (resid 23 and name hn) (resid 23 and name hg**)       3.8 3.8 2.5 {3i} 
 
assign (resid 23 and name hn) (resid 22 and name ha)         3.2 3.2 0.0 {2s} 
assign (resid 23 and name hn) (resid 22 and name hg**)       3.8 3.8 2.5 {3s} 
 
assign (resid 23 and name hn) (resid 63 and name ha)         3.8 3.8 0.0 {3l} 
assign (resid 23 and name hn) (resid 24 and name hn)         6.5 6.5 0.0 {8l} 
assign (resid 23 and name hb) (resid 24 and name hn)         6.5 6.5 0.0 {8l} 
 
{E24} 
assign (resid 24 and name hn) (resid 24 and name ha)         3.8 3.8 0.0 {3i} 
assign (resid 24 and name hn) (resid 24 and name hb*)        4.2 4.2 0.7 {4i} 
assign (resid 24 and name hn) (resid 24 and name hg*)        4.2 4.2 0.7 {4i} 
 
assign (resid 24 and name hn) (resid 23 and name ha)         3.8 3.8 0.0 {3s} 
assign (resid 24 and name hn) (resid 23 and name hg**)       3.8 3.8 2.5 {3s} 
assign (resid 24 and name hb*)(resid 23 and name ha)         6.5 6.5 0.7 {8s} 
assign (resid 24 and name hg*)(resid 23 and name ha)         6.0 6.0 0.4 {7s} 
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assign (resid 24 and name hn) (resid 27 and name hb*)        6.5 6.5 0.7 {8l} 
assign (resid 24 and name hn) (resid 22 and name hg**)       4.2 4.2 2.5 {4l} 
assign (resid 24 and name hn) (resid 32 and name ha*)        6.5 6.5 0.7 {8l} 
assign (resid 24 and name hn) (resid 63 and name ha)         6.5 6.5 0.0 {8l} 
assign (resid 24 and name hn) (resid 61 and name ha)         6.5 6.5 0.0 {8l} 
 
{S25} 
assign (resid 25 and name hn) (resid 25 and name ha)        3.2 3.2 0.0 {2i} 
assign (resid 25 and name hn) (resid 25 and name hb*)       4.2 4.2 0.7 {4i} 
 
assign (resid 25 and name hn) (resid 24 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 25 and name hn) (resid 24 and name hb*)       6.0 6.0 0.7 {7s} 
assign (resid 25 and name hn) (resid 24 and name hg*)       3.8 3.8 0.7 {3s} 
 
assign (resid 25 and name hb*)(resid 25 and name hg)        6.0 6.0 0.0 {7i} 
assign (resid 25 and name hb*)(resid 24 and name hg*)       6.5 6.5 0.0 {8s} 
assign (resid 25 and name hb*)(resid 31 and name hg**)      6.0 6.0 2.5 {7l}  
 
assign (resid 25 and name hn) (resid 26 and name hd*)       5.5 5.5 0.7 {6l}  
assign (resid 25 and name hn) (resid 22 and name hg**)      6.0 6.0 2.5 {7l}  
assign (resid 25 and name hn) (resid 23 and name hg**)      6.0 6.0 2.5 {7l}  
 
{N27} 
assign (resid 27 and name hn) (resid 27 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 27 and name hn) (resid 27 and name hb*)       3.8 3.8 0.0 {3i} 
 
assign (resid 27 and name hn) (resid 26 and name ha)        4.2 4.2 0.0 {4s} 
assign (resid 27 and name hn) (resid 26 and name hb*)       6.0 6.0 0.7 {7s} 
assign (resid 27 and name hn) (resid 26 and name hg*)       6.5 6.5 0.7 {8s} 
assign (resid 27 and name hn) (resid 26 and name hd*)       5.5 5.5 0.7 {6s} 
assign (resid 27 and name hn) (resid 25 and name hb*)       6.5 6.5 0.7 {4l}  
assign (resid 27 and name hn) (resid 25 and name hg)        6.5 6.5 0.0 {3l}  
assign (resid 27 and name hn) (resid 28 and name hd*)       6.5 6.5 0.7 {8l} 
 
{H28} 
assign (resid 28 and name hn) (resid 28 and name ha)  6.0 6.0 0.0 {7i} 
assign (resid 28 and name hn) (resid 28 and name hb*)       6.0 6.0 0.0 {7i} 
 
assign (resid 28 and name hn) (resid 27 and name ha)        6.5 6.5 0.0 {8s} 
assign (resid 28 and name hn) (resid 27 and name hb*)       6.5 6.5 0.7 {8s} 
 
 
{S29} 
assign (resid 29 and name hn) (resid 29 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 29 and name hn) (resid 29 and name hb*)       3.2 3.2 0.7 {2i} 
 
assign (resid 29 and name hn) (resid 30 and name hn)        6.0 6.0 0.0 {7l}  
 
{E30} 
assign (resid 30 and name hn) (resid 30 and name ha)        3.8 3.8 0.0 {3i} 



 160 

assign (resid 30 and name hn) (resid 30 and name hb*)       3.8 3.8 0.7 {3i} 
assign (resid 30 and name hn) (resid 30 and name hg*)       3.8 3.8 0.7 {3i} 
 
assign (resid 30 and name hn) (resid 29 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 30 and name hn) (resid 29 and name hb*)       4.2 4.2 0.7 {4s} 
 
assign (resid 30 and name hn) (resid 28 and name hb*)       6.5 6.5 0.7 {8l} 
assign (resid 30 and name hn) (resid 25 and name hg)        6.5 6.5 0.0 {8l} 
assign (resid 30 and name hn) (resid 31 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 30 and name hn) (resid 31 and name hg**)      4.2 4.2 2.5 {4l} 
 
assign (resid 30 and name ha) (resid 25 and name hg)        6.5 6.5 0.0 {8l}  
 
{V31} 
assign (resid 31 and name hn) (resid 31 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 31 and name hn) (resid 31 and name hb)        3.2 3.2 0.0 {2i} 
assign (resid 31 and name hn) (resid 31 and name hg**)      3.2 3.2 2.5 {2i} 
 
assign (resid 31 and name hn) (resid 30 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 31 and name hn) (resid 30 and name hb*)       4.2 4.2 0.7 {4s} 
assign (resid 31 and name hn) (resid 30 and name hg*)       6.0 6.0 0.7 {7s} 
 
assign (resid 31 and name ha) (resid 30 and name hn)        6.5 6.5 0.0 {8l}  
assign (resid 31 and name hg**)(resid 30 and name ha)       6.0 6.0 2.5 {7l}  
 
{G32} 
assign (resid 32 and name hn) (resid 32 and name ha*)       3.8 3.8 0.7 {3i} 
 
assign (resid 32 and name hn) (resid 31 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 32 and name hn) (resid 31 and name hb)        4.2 4.2 0.0 {4s} 
assign (resid 32 and name hn) (resid 31 and name hg**)      3.8 3.8 2.5 {3s} 
assign (resid 32 and name ha) (resid 23 and name ha)        6.9 6.9 0.0 {9l} 
 
{I33} 
assign (resid 33 and name hn) (resid 33 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 33 and name hn) (resid 33 and name hb)        3.8 3.8 0.0 {3i} 
assign (resid 33 and name hn) (resid 33 and name hg12)      3.8 3.8 0.0 {3i} 
assign (resid 33 and name hn) (resid 33 and name hg13)      3.8 3.8 0.0 {3i} 
assign (resid 33 and name hn) (resid 33 and name hg2)       4.2 4.2 0.0 {4i} 
 
assign (resid 33 and name hn) (resid 32 and name ha*)       4.2 4.2 0.7 {4i} 
assign (resid 33 and name hn) (resid 22 and name hb)        3.8 3.8 0.0 {3l} 
 
assign (resid 33 and name hn) (resid 22 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 33 and name hn) (resid 23 and name hg**)      6.5 6.5 2.5 {8l} 
 
 
{K34} 
assign (resid 34 and name hn) (resid 34 and name ha)        3.8 3.8 0.7 {3i} 
assign (resid 34 and name hn) (resid 34 and name hb*)       3.8 3.8 0.7 {3i} 
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assign (resid 34 and name hn) (resid 34 and name hg*)       3.8 3.8 0.7 {3i} 
assign (resid 34 and name hn) (resid 34 and name hd*)       6.9 6.9 0.7 {9i} 
 
assign (resid 34 and name ha) (resid 22 and name hn)        5.5 5.5 0.0 {6l} 
assign (resid 34 and name ha) (resid 21 and name ha)       6.0 6.0 0.0 {7l} 
assign (resid 34 and name ha) (resid 33 and name hg12)      6.5 6.5 0.0 {8l} 
 
assign (resid 34 and name hn) (resid 33 and name ha)        2.8 2.8 0.0 {1s} 
assign (resid 34 and name hn) (resid 33 and name hb)        3.8 3.8 0.0 {3s} 
assign (resid 34 and name hn) (resid 33 and name hg12)      3.8 3.8 0.0 {3s} 
assign (resid 34 and name hn) (resid 33 and name hg13)      3.8 3.8 0.0 {3s} 
assign (resid 34 and name hn) (resid 33 and name hg2)       3.8 3.8 0.0 {3s} 
 
assign (resid 34 and name hn) (resid 32 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 34 and name hn) (resid 50 and name ha)        6.5 6.5 0.0 {8l} 
 
{G35} 
assign (resid 35 and name hn) (resid 35 and name ha*)       3.8 3.8 0.0 {3i} 
assign (resid 35 and name ha*)(resid 34 and name hg*)      6.0 6.0 0.7 {7l} 
 
assign (resid 35 and name hn) (resid 34 and name ha)        5.0 5.0 0.0 {5s} 
assign (resid 35 and name hn) (resid 34 and name hb*)      3.8 3.8 0.7 {3s} 
assign (resid 35 and name hn) (resid 34 and name hg*)       6.0 6.0 0.7 {7s} 
assign (resid 35 and name hn) (resid 34 and name hd*)       6.5 6.5 0.7 {8s} 
  
assign (resid 35 and name hn) (resid 20 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 35 and name hn) (resid 21 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 35 and name ha) (resid 49 and name ha)        6.9 6.9 0.0 {9l}       
assign (resid 47 and name hn) (resid 47 and name hg2)       5.5 5.5 0.0 {6l} 
 
{E36} 
assign (resid 36 and name hn) (resid 36 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 36 and name hn) (resid 36 and name hb*)       3.8 3.8 0.7 {5i} 
assign (resid 36 and name hn) (resid 36 and name hg*)       3.8 3.8 0.7 {7i} 
 
assign (resid 36 and name hn) (resid 35 and name ha*)       3.8 3.8 0.7 {3s} 
 
assign (resid 36 and name hn) (resid 49 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 36 and name hn) (resid 48 and name hn)        4.2 4.2 0.0 {4l} 
 
assign (resid 36 and name hn) (resid 47 and name hg2)      3.8 3.8 0.0 {4l} 
assign (resid 36 and name hn) (resid 37 and name ha)        6.5 6.5 0.0 {8l} 
 
{V37} 
assign (resid 37 and name hn) (resid 37 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 37 and name hn) (resid 37 and name hb)        5.0 5.0 0.0 {5i} 
assign (resid 37 and name hn) (resid 37 and name hg**)     5.5 5.5 2.5 {6i} 
 
assign (resid 37 and name hn) (resid 36 and name ha)       5.0 5.0 0.0 {5s} 
assign (resid 37 and name hn) (resid 36 and name hb*)       6.0 6.0 0.7 {7s} 
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assign (resid 37 and name hn) (resid 36 and name hg*)       5.5 5.5 0.7 {6s} 
 
assign (resid 37 and name ha) (resid 48 and name hn)        6.0 6.0 0.0 {7l} 
assign (resid 37 and name ha) (resid 39 and name hn)        6.0 6.0 0.0 {7l} 
 
{V38} 
assign (resid 38 and name hn) (resid 38 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 38 and name hn) (resid 38 and name hb)        4.2 4.2 0.0 {4i} 
assign (resid 38 and name hn) (resid 38 and name hg**)      3.8 3.8 2.5 {3i} 
 
assign (resid 38 and name hg**)(resid 40 and name hn)       6.5 6.5 0.0 {8l} 
assign (resid 38 and name hg**)(resid 46 and name hn)      6.5 6.5 0.0 {8l} 
 
assign (resid 38 and name hn) (resid 37 and name ha)        2.8 2.8 0.0 {1s} 
assign (resid 38 and name hn) (resid 37 and name hb)        3.2 3.2 0.0 {2s} 
assign (resid 38 and name hn) (resid 37 and name hg**)      3.2 3.2 2.5 {2s} 
 
assign (resid 38 and name hn) (resid 39 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 38 and name hn) (resid 46 and name hn)        6.5 6.5 0.0 {8l} 
 
{D39} 
assign (resid 39 and name hn) (resid 39 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 39 and name hn) (resid 39 and name hb*)       4.2 4.2 0.7 {4i} 
assign (resid 39 and name hb*)(resid 40 and name hn)        6.5 6.5 0.7 {8l} 
assign (resid 39 and name hb*)(resid 38 and name hg**)      6.5 6.5 2.5 {8l} 
 
assign (resid 39 and name hn) (resid 38 and name ha)        4.2 4.2 0.0 {4s} 
assign (resid 39 and name hn) (resid 38 and name hb)        4.2 4.2 0.0 {4s} 
assign (resid 39 and name hn) (resid 38 and name hg**)      4.2 4.2 0.0 {3s} 
 
assign (resid 39 and name hn) (resid 37 and name ha)        6.0 6.0 0.0 {7l} 
assign (resid 39 and name hn) (resid 43 and name hn)        6.0 6.0 0.0 {7l} 
assign (resid 39 and name hn) (resid 40 and name hn)        6.5 6.5 0.0 {8l} 
 
{E40} 
assign (resid 40 and name hn) (resid 40 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 40 and name hn) (resid 40 and name hb*)       6.0 6.0 0.7 {7i} 
assign (resid 40 and name hn) (resid 40 and name hg*)       6.5 6.5 0.7 {8i} 
 
assign (resid 40 and name hn) (resid 39 and name ha)        2.8 2.8 0.0 {1s} 
assign (resid 40 and name hn) (resid 39 and name hb*)       6.0 6.0 0.7 {7s} 
 
{T41} 
assign (resid 41 and name hn) (resid 41 and name hg*)       6.0 6.0 1.0 {7i} 
 
assign (resid 41 and name hn) (resid 40 and name hb*)       6.5 6.5 0.7 {8s} 
assign (resid 41 and name hn) (resid 40 and name hg*)       6.5 6.5 0.7 {8s} 
 
{Q43} 
assign (resid 42 and name hn) (resid 42 and name ha)   6.0 6.0 0.0 {7i} 
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assign (resid 42 and name hn) (resid 42 and name hb*)   5.5 5.5 0.7 {6i} 
assign (resid 42 and name hn) (resid 42 and name hg*)   5.5 5.5 0.7 {6i} 
 
assign (resid 42 and name hn) (resid 41 and name hg)         6.0 6.0 0.0 {7s} 
 
assign (resid 42 and name hn) (resid 39 and name hn)   6.0 6.0 0.0 {7l} 
 
{T44} 
assign (resid 44 and name hn) (resid 44 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 44 and name hn) (resid 44 and name hb)        6.5 6.5 0.0 {7i} 
assign (resid 44 and name hn) (resid 44 and name hg*)       5.5 5.5 1.0 {6i} 
 
assign (resid 44 and name hn) (resid 43 and name ha)        6.0 6.0 0.0 {7s} 
assign (resid 44 and name hn) (resid 43 and name hb*)       6.5 6.5 0.7 {8s} 
 
{L45} 
assign (resid 45 and name hn) (resid 45 and name ha)        3.2 3.2 0.0 {2i} 
assign (resid 45 and name hn) (resid 45 and name hb*)       5.5 5.5 0.7 {6i} 
assign (resid 45 and name hn) (resid 45 and name hg)        6.5 6.5 0.0 {8i} 
assign (resid 45 and name hn) (resid 45 and name hd**)      6.5 6.5 2.5 {8i} 
 
assign (resid 45 and name hn) (resid 44 and name ha)        3.2 3.2 0.0 {2s} 
assign (resid 45 and name hn) (resid 44 and name hb)        5.0 5.0 0.0 {5s} 
assign (resid 45 and name hn) (resid 44 and name hg*)       6.0 6.0 1.0 {7s} 
 
{K46} 
assign (resid 46 and name hn) (resid 46 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 46 and name hn) (resid 46 and name hb*)      5.5 5.5 0.7 {6i} 
assign (resid 46 and name hn) (resid 46 and name hg*)       5.0 5.0 0.7 {5i} 
assign (resid 46 and name hn) (resid 46 and name hd*)       5.5 5.5 0.7 {6i} 
 
assign (resid 46 and name ha) (resid 47 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 46 and name ha) (resid 55 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 46 and name ha) (resid 55 and name hg**)      6.5 6.5 2.5 {8l} 
assign (resid 45 and name ha) (resid 45 and name hb*)       6.5 6.5 0.7 {8l} 
assign (resid 45 and name ha) (resid 45 and name hd**)      6.0 6.0 2.5 {7l} 
 
assign (resid 46 and name hn) (resid 45 and name ha)        3.2 3.2 0.0 {2s} 
assign (resid 46 and name hn) (resid 45 and name hb*)       3.8 3.8 0.7 {3s} 
assign (resid 46 and name hn) (resid 45 and name hg)        6.5 6.5 0.0 {8s} 
assign (resid 46 and name hn) (resid 45 and name hd**)      4.2 4.2 2.5 {4s} 
 
assign (resid 46 and name hn) (resid 40 and name ha)        6.0 6.0 0.0 {7l} 
assign (resid 46 and name hn) (resid 38 and name hg**)      6.0 6.0 2.5 {7l} 
 
{I47} 
assign (resid 47 and name hn) (resid 47 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 47 and name hn) (resid 47 and name hb)        3.2 3.2 0.0 {2i} 
assign (resid 47 and name hn) (resid 47 and name hg12)      4.2 4.2 2.5 {4i} 
assign (resid 47 and name hn) (resid 47 and name hg13)      4.2 4.2 2.5 {4i} 
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assign (resid 47 and name hn) (resid 47 and name hg2)       4.2 4.2 0.0 {4i} 
 
assign (resid 47 and name hn) (resid 46 and name ha)       2.8 2.8 0.0 {1s} 
assign (resid 47 and name hn) (resid 46 and name hb*)       6.5 6.5 0.7 {8s} 
assign (resid 47 and name hn) (resid 46 and name hg*)       6.0 6.0 0.7 {7s} 
assign (resid 47 and name hn) (resid 46 and name hd*)       6.5 6.5 0.7 {8s} 
 
assign (resid 47 and name hn) (resid 54 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 47 and name ha) (resid 37 and name ha)        6.5 6.5 0.0 {8l} 
 
assign (resid 47 and name hb) (resid 54 and name hn)        6.0 6.0 0.0 {7l} 
assign (resid 47 and name hb) (resid 45 and name hd**)      6.0 6.0 2.5 {7l} 
 
{M48} 
assign (resid 48 and name hn) (resid 48 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 48 and name hn) (resid 48 and name hb*)       3.2 3.2 0.7 {2i} 
assign (resid 48 and name hn) (resid 48 and name hg*)       3.8 3.8 0.7 {3i} 
 
assign (resid 48 and name hn) (resid 47 and name ha)        3.2 3.2 0.0 {2s} 
assign (resid 48 and name hn) (resid 47 and name hb)        4.2 4.2 0.0 {3s} 
assign (resid 48 and name hn) (resid 47 and name hg12)     3.8 3.8 2.5 {3s} 
assign (resid 48 and name hn) (resid 47 and name hg13)      3.8 3.8 2.5 {3s} 
assign (resid 48 and name hn) (resid 47 and name hg2)       3.8 3.8 0.0 {3s} 
 
assign (resid 48 and name hn) (resid 36 and name hn)        4.2 4.2 0.0 {4l} 
assign (resid 48 and name hn) (resid 37 and name ha)        6.0 6.0 0.0 {7l} 
 
assign (resid 48 and name ha) (resid 47 and name hg12)      5.5 5.5 2.5 {6l} 
assign (resid 48 and name ha) (resid 47 and name hg13)      5.5 5.5 2.5 {6l} 
 
{T49} 
assign (resid 49 and name hn) (resid 49 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 49 and name hn) (resid 49 and name hg*)       3.8 3.8 1.0 {3i} 
 
assign (resid 49 and name hn) (resid 48 and name ha)        3.2 3.2 0.0 {2s} 
assign (resid 49 and name hn) (resid 48 and name hb*)       6.5 6.5 0.7 {8s} 
assign (resid 49 and name hn) (resid 48 and name hg*)       4.2 4.2 0.7 {4s} 
 
assign (resid 49 and name hn) (resid 32 and name hn)        6.0 6.0 0.0 {7l} 
assign (resid 49 and name hn) (resid 53 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 49 and name ha) (resid 35 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 49 and name hn) (resid 25 and name hg)        6.5 6.5 0.0 {8l}  
 
 
{E50} 
assign (resid 50 and name hn) (resid 50 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 50 and name hn) (resid 50 and name hb*)      3.8 3.8 0.7 {3i} 
assign (resid 50 and name hn) (resid 50 and name hg*)       3.8 3.8 0.7 {3i} 
 
assign (resid 50 and name hn) (resid 49 and name ha)        3.8 3.8 0.0 {3s} 
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assign (resid 50 and name hn) (resid 49 and name hg*)       3.8 3.8 0.7 {3s} 
 
assign (resid 50 and name hn) (resid 35 and name ha)        6.9 6.9 0.0 {9l} 
 
{K51} 
assign (resid 51 and name hn) (resid 51 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 51 and name hn) (resid 51 and name hb*)       3.8 3.8 0.7 {3i} 
assign (resid 51 and name hn) (resid 51 and name hg*)       3.8 3.8 0.7 {3i} 
 
assign (resid 51 and name hn) (resid 50 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 51 and name hn) (resid 50 and name hb*)       6.5 6.5 0.7 {8s} 
assign (resid 51 and name hn) (resid 50 and name hg*)       6.5 6.5 0.7 {8s} 
 
assign (resid 51 and name hn) (resid 25 and name hg)        6.5 6.5 0.0 {4l}  
assign (resid 51 and name hn) (resid 32 and name hn)        3.8 3.8 0.0 {3l} 
 
{G52} 
assign (resid 52 and name hn) (resid 52 and name ha*)       3.8 3.8 0.7 {3i} 
 
assign (resid 52 and name hn) (resid 51 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 52 and name hn) (resid 51 and name hb*)       4.2 4.2 0.7 {4s} 
assign (resid 52 and name hn) (resid 51 and name hg*)       6.0 6.0 0.7 {7s} 
 
assign (resid 52 and name hn) (resid 25 and name hg)        6.5 6.5 0.0 {4l}  
 
{L53} 
assign (resid 53 and name hn) (resid 53 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 53 and name hn) (resid 53 and name hb*)       3.2 3.2 0.7 {2i} 
assign (resid 53 and name hn) (resid 53 and name hg)        4.2 4.2 0.0 {4i} 
assign (resid 53 and name hn) (resid 53 and name hd**)      4.2 4.2 2.5 {4i} 
assign (resid 53 and name ha) (resid 48 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 53 and name hn) (resid 52 and name ha*)      3.2 3.2 0.7 {2s} 
 
{K54} 
assign (resid 54 and name hn) (resid 54 and name ha)        3.2 3.2 0.0 {2i} 
assign (resid 54 and name hn) (resid 54 and name hb*)       3.8 3.8 0.7 {3i} 
assign (resid 54 and name hn) (resid 54 and name hg*)       3.8 3.8 0.7 {3i} 
assign (resid 54 and name hn) (resid 54 and name hd*)       3.8 3.8 0.7 {3i} 
assign (resid 54 and name hn) (resid 54 and name he*)       6.5 6.5 0.7 {8i} 
 
assign (resid 54 and name hn) (resid 53 and name ha)        3.2 3.2 0.0 {2s 
assign (resid 54 and name hn) (resid 53 and name hb*)       3.8 3.8 0.7 {3s} 
assign (resid 54 and name hn) (resid 53 and name hg)        3.8 3.8 0.0 {3s} 
assign (resid 54 and name hn) (resid 53 and name hd**)      3.8 3.8 2.5 {4s} 
 
assign (resid 54 and name hn) (resid 47 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 54 and name ha) (resid 48 and name ha)        6.0 6.0 0.0 {7l} 
 
{V55} 
assign (resid 55 and name hn) (resid 55 and name ha)        3.8 3.8 0.0 {3i} 



 166 

assign (resid 55 and name hn) (resid 55 and name hb)        3.8 3.8 0.0 {3i} 
assign (resid 55 and name hn) (resid 55 and name hg**)      3.8 3.8 2.5 {3i} 
 
assign (resid 55 and name hn) (resid 54 and name ha)        2.8 2.8 0.0 {1s} 
assign (resid 55 and name hn) (resid 54 and name hb*)       4.2 4.2 0.7 {4s} 
assign (resid 55 and name hn) (resid 54 and name hg*)       4.2 4.2 0.7 {4s} 
assign (resid 55 and name hn) (resid 54 and name hd*)       3.8 3.8 0.7 {3s} 
 
assign (resid 55 and name ha) (resid 46 and name ha)        6.5 6.5 0.0 {8l} 
 
{V56} 
assign (resid 56 and name hn) (resid 56 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 56 and name hn) (resid 56 and name hb)        3.8 3.8 0.0 {3i} 
assign (resid 56 and name hn) (resid 56 and name hg**)      3.8 3.8 2.5 {3i} 
 
assign (resid 56 and name hn) (resid 55 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 56 and name hn) (resid 55 and name hb)        3.2 3.2 0.0 {2s} 
assign (resid 56 and name hn) (resid 55 and name hg**)     3.8 3.8 2.5 {3s} 
 
assign (resid 56 and name hn) (resid 46 and name ha)        4.2 4.2 0.0 {4l} 
assign (resid 56 and name hg**)(resid 58 and name hn)       6.5 6.5 2.5 {8l} 
 
{A57} 
assign (resid 57 and name hn) (resid 57 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 57 and name hn) (resid 57 and name hb*)       3.2 3.2 1.0 {2i} 
 
assign (resid 57 and name hn) (resid 56 and name ha)        2.8 2.8 0.0 {1s} 
assign (resid 57 and name hn) (resid 56 and name hg**)      2.8 2.8 2.5 {1s} 
 
assign (resid 57 and name hb*)(resid 59 and name hn)        6.5 6.5 1.0 {8l} 
 
{K58} 
assign (resid 58 and name hn) (resid 58 and name ha)        3.8 3.8 0.0 {3i} 
 
assign (resid 58 and name hn) (resid 57 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 58 and name hn) (resid 57 and name hb*)       4.2 4.2 1.0 {4s} 
 
assign (resid 58 and name hn) (resid 45 and name hg)        4.2 4.2 0.0 {4l} 
assign (resid 58 and name hn) (resid 59 and name hn)       5.5 5.5 0.0 {6l} 
 
{R59} 
assign (resid 59 and name hn) (resid 59 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 59 and name hn) (resid 59 and name hb*)       2.8 2.8 0.7 {1i} 
assign (resid 59 and name hn) (resid 59 and name hg*)       3.2 3.2 0.7 {2i} 
assign (resid 59 and name hn) (resid 59 and name hd*)       6.5 6.5 0.7 {3i} 
 
assign (resid 59 and name hn) (resid 58 and name hn)        3.8 3.8 0.0 {3l} 
assign (resid 59 and name hn) (resid 58 and name ha)        3.8 3.8 0.0 {3l} 
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{G60} 
assign (resid 60 and name hn) (resid 60 and name ha*)       4.2 4.2 0.7 {4i} 
 
assign (resid 60 and name hn) (resid 59 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 60 and name hn) (resid 59 and name hb*)       6.5 6.5 0.7 {8s} 
 
{R61} 
assign (resid 61 and name hn) (resid 61 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 61 and name hn) (resid 61 and name hb*)       6.0 6.0 0.7 {7i} 
assign (resid 61 and name hn) (resid 61 and name hg*)       6.0 6.0 0.7 {7i} 
assign (resid 61 and name hn) (resid 61 and name hd*)       6.0 6.0 0.7 {7i} 
 
assign (resid 61 and name hn) (resid 60 and name ha*)       3.8 3.8 0.7 {3s} 
assign (resid 61 and name hn) (resid 60 and name hn)        5.5 5.5 0.0 {6l} 
 
{T62} 
assign (resid 62 and name hn) (resid 62 and name ha)        5.5 5.5 0.0 {6i} 
assign (resid 62 and name hn) (resid 62 and name hb)        5.5 5.5 0.0 {6i} 
assign (resid 62 and name hn) (resid 62 and name hg*)       6.0 6.0 1.0 {7i} 
 
assign (resid 62 and name hn) (resid 61 and name ha)        5.0 5.0 0.0 {5s} 
assign (resid 62 and name hn) (resid 61 and name hb*)       5.5 5.5 0.7 {6s} 
assign (resid 62 and name hn) (resid 61 and name hg*)       6.0 6.0 0.7 {7s} 
 
assign (resid 62 and name hn) (resid 24 and name hn)        5.5 5.5 0.0 {6l} 
 
assign (resid 62 and name hb) (resid 24 and name hn)        6.5 6.5 0.0 {8l} 
assign (resid 62 and name hb) (resid 23 and name hg**)      6.0 6.0 2.5 {7l} 
 
{F63} 
assign (resid 63 and name hn) (resid 63 and name ha)        4.2 4.2 0.0 {4i} 
assign (resid 63 and name hn) (resid 63 and name hb*)       4.2 4.2 0.0 {4i} 
 
assign (resid 63 and name hn) (resid 62 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 63 and name hn) (resid 62 and name hg*)       3.8 3.8 1.0 {3s} 
 
assign (resid 63 and name hn) (resid 74 and name hn)        6.0 6.0 0.0 {7l} 
assign (resid 63 and name ha) (resid 22 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 63 and name hn) (resid 75 and name ha)        6.5 6.5 0.0 {8l} 
 
assign (resid 63 and name hd*)(resid 22 and name hg**)      6.5 6.5 2.5 {8l} 
assign (resid 63 and name hd*)(resid 65 and name hg**)      6.5 6.5 2.5 {8l} 
assign (resid 63 and name he*)(resid 65 and name hg**)      6.5 6.5 2.4 {8l} 
assign (resid 63 and name hb*)(resid 63 and name hd*)       3.8 3.8 2.4 {3i} 
 
{R64} 
assign (resid 64 and name hn) (resid 64 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 64 and name hn) (resid 64 and name hb*)       3.8 3.8 0.7 {3i} 
assign (resid 64 and name hn) (resid 64 and name hg*)       3.8 3.8 0.7 {3i} 
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assign (resid 64 and name hn) (resid 63 and name ha)        3.2 3.2 0.0 {2s} 
assign (resid 64 and name hn) (resid 63 and name hb*)       3.8 3.8 0.7 {3s} 
assign (resid 64 and name hn) (resid 63 and name hd*)       3.8 3.8 2.4 {3s} 
 
assign (resid 64 and name hn) (resid 22 and name ha)        4.2 4.2 0.0 {4l} 
assign (resid 64 and name hn) (resid 21 and name hn)        3.8 3.8 0.0 {3l} 
 
{V65} 
assign (resid 65 and name hn) (resid 65 and name ha)        4.2 4.2 0.0 {4i} 
assign (resid 65 and name hn) (resid 65 and name hb)        3.8 3.8 0.0 {3i} 
assign (resid 65 and name hn) (resid 65 and name hg**)      4.2 4.2 2.5 {4i} 
 
assign (resid 65 and name hn) (resid 64 and name ha)        3.2 3.2 0.0 {2s} 
assign (resid 65 and name hn) (resid 64 and name hb*)       6.0 6.0 0.7 {7s} 
assign (resid 65 and name hn) (resid 64 and name hg*)       6.5 6.5 0.7 {8s} 
 
assign (resid 65 and name hn) (resid 73 and name Ha)        6.0 6.0 0.0 {7l} 
 
 
{W66} 
assign (resid 66 and name hn) (resid 66 and name ha)        3.2 3.2 0.0 {2i} 
assign (resid 66 and name hn) (resid 66 and name hb*)       4.2 4.2 0.7 {4i} 
 
assign (resid 66 and name hn) (resid 65 and name ha)        4.2 4.2 0.0 {4s} 
assign (resid 66 and name hn) (resid 65 and name hg**)      3.8 3.8 2.5 {3s} 
assign (resid 66 and name ne1)(resid 71 and name hd1)       5.5 5.5 0.0 {6l} 
assign (resid 66 and name he1)(resid 71 and name hd12)      6.5 6.5 2.5 {8l} 
assign (resid 66 and name he1)(resid 71 and name hd13)      6.5 6.5 2.5 {8l} 
assign (resid 66 and name hn) (resid 20 and name ha)        4.2 4.2 0.0 {4l} 
assign (resid 66 and name ha) (resid 71 and name ha)        6.5 6.5 0.0 {8l} 
assign (resid 66 and name hb*)(resid 66 and name hd1)       6.5 6.5 0.7 {8i} 
assign (resid 66 and name hn) (resid 19 and name hn)        6.5 6.5 0.0 {8l} 
 
{Y67} 
assign (resid 67 and name hn) (resid 67 and name ha)        4.2 4.2 0.0 {4i} 
assign (resid 67 and name hn) (resid 67 and name hb*)       3.8 3.8 0.7 {3i} 
assign (resid 67 and name ha) (resid 67 and name hd*)       4.2 4.2 2.4 {4i} 
assign (resid 67 and name hb*)(resid 67 and name hd*)       4.2 4.2 2.4 {4i} 
 
assign (resid 67 and name hn) (resid 66 and name ha)        3.8 3.8 0.0 {3s} 
assign (resid 67 and name hn) (resid 66 and name hb*)       4.2 4.2 0.7 {4s} 
 
assign (resid 67 and name hn) (resid 71 and name ha)        6.0 6.0 0.0 {7l} 
assign (resid 67 and name hb*)(resid 70 and name hn)       6.5 6.5 0.0 {8l} 
assign (resid 67 and name hb*)(resid 68 and name hg*)       6.5 6.5 2.5 {8l} 
assign (resid 67 and name hd*)(resid 37 and name hg**)      6.5 6.5 5.0 {8l} 
 
 
{K68} 
assign (resid 68 and name hn) (resid 68 and name ha)        3.2 3.2 0.0 {2i} 
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assign (resid 68 and name hn) (resid 68 and name hb*)       3.8 3.8 0.7 {3i}       
assign (resid 68 and name hn) (resid 68 and name hg*)       4.2 4.2 0.7 {4i} 
 
assign (resid 68 and name hn) (resid 67 and name ha)        6.0 6.0 0.0 {5s} 
assign (resid 68 and name hn) (resid 67 and name hb*)       3.8 3.8 0.7 {3s} 
 
assign (resid 68 and name hn) (resid 69 and name hn)        6.0 6.0 0.7 {7l}      
 
{G69} 
assign (resid 69 and name hn) (resid 69 and name ha*)       3.8 3.8 0.7 {3i} 
 
assign (resid 69 and name hn) (resid 68 and name ha)        3.2 3.2 0.0 {2i} 
assign (resid 69 and name hn) (resid 68 and name hb*)       6.5 6.5 0.7 {8s} 
 
assign (resid 69 and name hn) (resid 70 and name hn)        6.5 6.5 0.0 {8l} 
 
{K70} 
assign (resid 70 and name hn) (resid 70 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 70 and name hn) (resid 70 and name hb*)       5.5 5.5 0.7 {6i} 
assign (resid 70 and name hn) (resid 70 and name hg*)       5.5 5.5 0.7 {6i} 
 
assign (resid 70 and name hn) (resid 69 and name ha*)       6.0 6.0 0.7 {7s} 
 
{I71} 
assign (resid 71 and name hn) (resid 71 and name ha)        4.2 4.2 0.0 {4i} 
assign (resid 71 and name hn) (resid 71 and name hb)        3.8 3.8 0.0 {3i} 
assign (resid 71 and name hn) (resid 71 and name hg12)      3.8 3.8 0.0 {3i} 
assign (resid 71 and name hn) (resid 71 and name hg13)      3.8 3.8 0.0 {3i} 
assign (resid 71 and name hn) (resid 71 and name hd1)       6.0 6.0 0.0 {7i} 
assign (resid 71 and name hn) (resid 71 and name hg2)       4.2 4.2 0.0 {4i} 
 
assign (resid 71 and name hn) (resid 70 and name ha)        3.8 3.8 0.0 {3s}  
assign (resid 71 and name hn) (resid 70 and name hb*)       3.8 3.8 0.7 {3s} 
assign (resid 71 and name hn) (resid 70 and name hg*)       6.0 6.0 0.4 {7s} 
 
assign (resid 71 and name ha) (resid 66 and name ha)        6.5 6.5 0.0 {8l}  
assign (resid 71 and name hd1)(resid 58 and name hn)        6.5 6.5 0.0 {8l} 
 
{M72} 
assign (resid 72 and name hn) (resid 72 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 72 and name hn) (resid 72 and name hb*)       4.2 4.2 0.7 {4i} 
assign (resid 72 and name hn) (resid 72 and name hg*)       6.0 6.0 0.7 {7i} 
 
assign (resid 72 and name hn) (resid 71 and name ha)        3.2 3.2 0.0 {3s} 
assign (resid 72 and name hn) (resid 71 and name hb)        6.5 6.5 0.0 {8s} 
assign (resid 72 and name hn) (resid 71 and name hg12)     6.5 6.5 1.0 {8s} 
assign (resid 72 and name hn) (resid 71 and name hg13)      6.5 6.5 1.0 {8s} 
assign (resid 72 and name hn) (resid 71 and name hg2)       5.5 5.5 0.0 {6s} 
 
assign (resid 72 and name hn) (resid 66 and name ha)        5.5 5.5 0.0 {6l} 
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assign (resid 72 and name hn) (resid 65 and name hn)        6.5 6.5 0.0 {8l} 
 
{R73} 
assign (resid 73 and name hn) (resid 73 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 73 and name hn) (resid 73 and name hb*)       6.0 6.0 0.7 {7i} 
assign (resid 73 and name hn) (resid 73 and name hg*)       3.8 3.8 0.7 {3i} 
 
assign (resid 73 and name hn) (resid 72 and name ha)        3.8 3.8 0.0 {3s}      
assign (resid 73 and name hn) (resid 72 and name hb*)       4.2 4.2 0.7 {4s} 
assign (resid 73 and name hn) (resid 72 and name hg*)       3.8 3.8 0.7 {3s} 
 
assign (resid 73 and name ha) (resid 64 and name ha)        6.5 6.5 0.0 {8l} 
 
{I74} 
assign (resid 74 and name hn) (resid 74 and name ha)        3.8 3.8 0.0 {3i}           
assign (resid 74 and name hn) (resid 74 and name hb)        4.2 4.2 0.0 {4i} 
assign (resid 74 and name hn) (resid 74 and name hg12)      6.0 6.0 1.0 {7i} 
assign (resid 74 and name hn) (resid 74 and name hg13)      6.0 6.0 1.0 {7i} 
assign (resid 74 and name hn) (resid 74 and name hd1)       6.5 6.5 0.0 {8i} 
assign (resid 74 and name hn) (resid 74 and name hg2)       3.8 3.8 0.0 {3i} 
 
assign (resid 74 and name hn) (resid 73 and name ha)        3.2 3.2 0.0 {2s} 
assign (resid 74 and name hn) (resid 73 and name hb*)       4.2 4.2 0.7 {4s} 
assign (resid 74 and name hn) (resid 73 and name hg*)       6.5 6.5 0.7 {8s} 
 
assign (resid 74 and name hn) (resid 64 and name ha)        4.2 4.2 0.0 {4l} 
assign (resid 74 and name hn) (resid 63 and name hn)        6.0 6.0 0.0 {7l} 
 
assign (resid 74 and name hg2)(resid 63 and name hd*)       6.0 6.0 2.4 {7l} 
assign (resid 74 and name hg2)(resid 63 and name he*)       6.5 6.5 2.4 {8l} 
 
assign (resid 74 and name hd1)(resid 63 and name hd*)       6.5 6.5 2.4 {8l} 
 
{K75} 
assign (resid 75 and name hn) (resid 75 and name ha)        3.8 3.8 0.0 {3i}      
assign (resid 75 and name hn) (resid 75 and name hb*)       6.0 6.0 0.7 {7i} 
assign (resid 75 and name hn) (resid 75 and name hg*)       6.5 6.5 0.7 {8i} 
assign (resid 75 and name hn) (resid 75 and name hd*)       6.0 6.0 0.7 {7i} 
 
assign (resid 75 and name hn) (resid 74 and name ha)        3.2 3.2 0.0 {3s} 
assign (resid 75 and name hn) (resid 74 and name hb)        5.5 5.5 0.0 {6s} 
assign (resid 75 and name hn) (resid 74 and name hg12)      6.5 6.5 2.5 {8s} 
assign (resid 75 and name hn) (resid 74 and name hg13)      6.5 6.5 2.5 {8s} 
assign (resid 75 and name hn) (resid 74 and name hg2)       5.0 5.0 0.0 {5s} 
assign (resid 75 and name hn) (resid 74 and name hd1)       6.5 6.5 0.0 {8s} 
 
assign (resid 75 and name ha) (resid 62 and name ha)        6.0 6.0 0.0 {7s} 
 
{G76} 
assign (resid 76 and name hn) (resid 76 and name ha*)       6.0 6.0 0.7 {7i} 
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assign (resid 76 and name hn) (resid 75 and name ha)        5.0 5.0 0.0 {5s} 
assign (resid 76 and name hn) (resid 75 and name hb*)       6.5 6.5 0.7 {8s} 
assign (resid 76 and name hn) (resid 75 and name hd*)       6.5 6.5 0.7 {8s} 
 
assign (resid 76 and name hn) (resid 62 and name ha)        6.5 6.5 0.0 {8l} 
 
{D77} 
assign (resid 77 and name hn) (resid 77 and name ha)        3.8 3.8 0.0 {3i} 
assign (resid 77 and name hn) (resid 77 and name hb*)       3.8 3.8 0.7 {3i} 
 
assign (resid 77 and name hn) (resid 76 and name ha*)       4.2 4.2 0.7 {4s} 
 
assign (resid 77 and name hn) (resid 75 and name hg*)       6.0 6.0 0.7 {7l} 
assign (resid 77 and name hn) (resid 75 and name hd*)       6.0 6.0 0.7 {7l} 
assign (resid 77 and name hn) (resid 78 and name hd**)     6.0 6.0 2.5 {7l} 
assign (resid 77 and name hn) (resid 78 and name hn)        5.5 5.5 0.0 {6l} 
 
{L78} 
assign (resid 78 and name hn) (resid 78 and name ha)        4.2 4.2 0.0 {4i} 
assign (resid 78 and name hn) (resid 78 and name hb*)       5.5 5.5 0.7 {6i} 
assign (resid 78 and name hn) (resid 78 and name hg)        5.5 5.5 0.0 {6i} 
assign (resid 78 and name hn) (resid 78 and name hd**)      6.0 6.0 2.5 {7i} 
 
assign (resid 78 and name hn) (resid 77 and name hb*)       6.5 6.5 0.7 {8s} 
 
{G90} 
assign (resid 90 and name hn) (resid 90 and name ha*)       6.0 6.0 0.7 {7i} 
assign (resid 90 and name hn) (resid 91 and name hb*)       6.5 6.5 0.7 {8s} 
assign (resid 90 and name hn) (resid 89 and name ha)        6.5 6.5 0.0 {8s} 
 
{R96} 
assign (resid 96 and name hn) (resid 96 and name ha)        6.0 6.0 0.0 {7i} 
assign (resid 96 and name hn) (resid 96 and name hb*)       6.0 6.0 0.7 {7i} 
assign (resid 96 and name hn) (resid 95 and name ha)        6.0 6.0 0.0 {7s} 
assign (resid 96 and name hn) (resid 95 and name hb*)       6.5 6.5 0.7 {7s} 
 
{A97} 
assign (resid 97 and name hn) (resid 97 and name ha)        6.0 6.0 0.0 {7i} 
assign (resid 97 and name hn) (resid 97 and name hb*)       6.5 6.5 0.7 {8i} 
assign (resid 97 and name hn) (resid 96 and name ha)        6.0 6.0 0.0 {8s} 
assign (resid 97 and name hn) (resid 96 and name hb*)       6.0 6.0 0.7 {7s} 
 
{K98} 
assign (resid 98 and name hn) (resid 98 and name ha)        6.0 6.0 0.0 {7i} 
assign (resid 98 and name hn) (resid 97 and name ha)        6.5 6.5 0.0 {8s} 
 
 
 
{V100}  
assign (resid 100 and name hn) (resid 100 and name ha)      5.5 5.5 0.0 {6i} 
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assign (resid 100 and name hn) (resid 100 and name hb)      5.5 5.5 0.0 {6i} 
assign (resid 100 and name hn) (resid 100 and name hg**)    5.5 5.5 2.5 {6i} 
 
assign (resid 100 and name hn) (resid 99 and name ha*)      5.5 5.5 0.7 {6s} 
 
{W101} 
assign (resid 101 and name hn) (resid 101 and name ha)      6.0 6.0 0.0 {7i} 
assign (resid 101 and name hn) (resid 101 and name hb*)     5.5 5.5 0.0 {6i} 
assign (resid 101 and name hn) (resid 101 and name hd1)     6.0 6.0 0.0 {7i} 
assign (resid 101 and name hn) (resid 101 and name he3)     6.0 6.0 0.0 {7i} 
 
 
assign (resid 101 and name hn) (resid 100 and name ha)      6.0 6.0 0.0 {7s} 
assign (resid 101 and name hn) (resid 100 and name hb)      5.5 5.5 0.0 {6s} 
assign (resid 101 and name hn) (resid 100 and name hg**)    5.5 5.5 2.5 {6s} 
 
{I102} 
assign (resid 102 and name hn) (resid 102 and name ha)      5.5 5.5 0.0 {6i} 
assign (resid 102 and name hn) (resid 102 and name hb)      5.5 5.5 0.0 {6i} 
assign (resid 102 and name hn) (resid 102 and name hg12)   6.5 6.5 1.0 {8i} 
assign (resid 102 and name hn) (resid 102 and name hg13)   6.5 6.5 1.0 {8i} 
assign (resid 102 and name hn) (resid 102 and name hg2)     6.0 6.0 0.0 {7i} 
assign (resid 102 and name hn) (resid 102 and name hd1)     6.0 6.0 0.0 {7i} 
 
assign (resid 102 and name hn) (resid 101 and name ha)      5.0 5.0 0.0 {5s} 
assign (resid 102 and name hn) (resid 101 and name hb*)     6.0 6.0 0.7 {7s} 
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APPENDIX 3. Dihedral angle restraint table for the NMR structure of A. fulgidus aRpp29 
 
Dihedral angle constraits are used as follows: 
 
Torsion angle restraints are used to restrict dihedral angles to values within the range typical of 
beta sheets and alpha helices, when these regions of regular secondary structure are clearly 
identified by characteristic NOE cross peaks and chemical shift values.  
 
 
{*** beta strand 19 to 24 ***} 
 
  
assign (resid  18 and name  o)   (resid  19 and name n) 
       (resid  19 and name ca)   (resid  19 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  19 and name  n)   (resid  19 and name ca) 
       (resid  19 and name  c)   (resid  20 and name n )  1.0  150.0 25.0 2 
               
assign (resid  19 and name  o)   (resid  20 and name n) 
       (resid  20 and name ca)   (resid  20 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  20 and name  n)   (resid  20 and name ca) 
       (resid  20 and name  c)   (resid  21 and name n )  1.0  150.0 25.0 2 
        
assign (resid  20 and name  o)   (resid  21 and name n) 
       (resid  21 and name ca)   (resid  21 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  21 and name  n)   (resid  21 and name ca) 
       (resid  21 and name  c)   (resid  22 and name n )  1.0  150.0 25.0 2 
        
assign (resid  21 and name  o)   (resid  22 and name n) 
       (resid  22 and name ca)   (resid  22 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  22 and name  n)   (resid  22 and name ca) 
       (resid  22 and name  c)   (resid  23 and name n )  1.0  150.0 25.0 2 
assign (resid  22 and name  o)   (resid  23 and name n) 
       (resid  23 and name ca)   (resid  23 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  23 and name  n)   (resid  23 and name ca) 
       (resid  23 and name  c)   (resid  24 and name n )  1.0  150.0 25.0 2        
 
assign (resid  23 and name  o)   (resid  24 and name n) 
       (resid  24 and name ca)   (resid  24 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  24 and name  n)   (resid  24 and name ca) 
       (resid  24 and name  c)   (resid  25 and name n )  1.0  150.0 25.0 2        
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{*** beta strand 32 to 38 ***} 
 
       
 
assign (resid  31 and name  o)   (resid  32 and name n) 
       (resid  32 and name ca)   (resid  32 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  32 and name  n)   (resid  32 and name ca) 
       (resid  32 and name  c)   (resid  33 and name n )  1.0  150.0 25.0 2        
     
assign (resid  32 and name  o)   (resid  33 and name n) 
       (resid  33 and name ca)   (resid  33 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  33 and name  n)   (resid  33 and name ca) 
       (resid  33 and name  c)   (resid  34 and name n )  1.0  150.0 25.0 2     
 
assign (resid  33 and name  o)   (resid  34 and name n) 
       (resid  34 and name ca)   (resid  34 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  34 and name  n)   (resid  34 and name ca) 
       (resid  34 and name  c)   (resid  35 and name n )  1.0  150.0 25.0 2 
        
assign (resid  34 and name  o)   (resid  35 and name n) 
       (resid  35 and name ca)   (resid  35 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  35 and name  n)   (resid  35 and name ca) 
       (resid  35 and name  c)   (resid  36 and name n )  1.0  150.0 25.0 2 
               
assign (resid  35 and name  o)   (resid  36 and name n) 
       (resid  36 and name ca)   (resid  36 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  36 and name  n)   (resid  36 and name ca) 
       (resid  36 and name  c)   (resid  37 and name n )  1.0  150.0 25.0 2 
         
assign (resid  36 and name  o)   (resid  37 and name n) 
       (resid  37 and name ca)   (resid  37 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  37 and name  n)   (resid  37 and name ca) 
       (resid  37 and name  c)   (resid  38 and name n )  1.0  150.0 25.0 2 
              
assign (resid  37 and name  o)   (resid  38 and name n) 
       (resid  38 and name ca)   (resid  38 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  38 and name  n)   (resid  38 and name ca) 
       (resid  38 and name  c)   (resid  39 and name n )  1.0  150.0 25.0 2  
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{*** beta strand 44 to 49 ***} 
 
 
assign (resid  43 and name  o)   (resid  44 and name n) 
       (resid  44 and name ca)   (resid  44 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  44 and name  n)   (resid  44 and name ca) 
       (resid  44 and name  c)   (resid  45 and name n )  1.0  150.0 25.0 2  
 
assign (resid  44 and name  o)   (resid  45 and name n) 
       (resid  45 and name ca)   (resid  45 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  45 and name  n)   (resid  45 and name ca) 
       (resid  45 and name  c)   (resid  46 and name n )  1.0  150.0 25.0 2 
 
assign (resid  45 and name  o)   (resid  46 and name n) 
       (resid  46 and name ca)   (resid  46 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  46 and name  n)   (resid  46 and name ca) 
       (resid  46 and name  c)   (resid  47 and name n )  1.0  150.0 25.0 2 
        
assign (resid  46 and name  o)   (resid  47 and name n) 
       (resid  47 and name ca)   (resid  47 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  47 and name  n)   (resid  47 and name ca) 
       (resid  47 and name  c)   (resid  48 and name n )  1.0  150.0 25.0 2 
        
assign (resid  47 and name  o)   (resid  48 and name n) 
       (resid  48 and name ca)   (resid  48 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  48 and name  n)   (resid  48 and name ca) 
       (resid  48 and name  c)   (resid  49 and name n )  1.0  150.0 25.0 2  
        
        
{*** beta strand 53 to 57 ***}        
    
    
assign (resid  52 and name  o)   (resid  53 and name n) 
       (resid  53 and name ca)   (resid  53 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  53 and name  n)   (resid  53 and name ca) 
       (resid  53 and name  c)   (resid  54 and name n )  1.0  150.0 25.0 2 
        
assign (resid  53 and name  o)   (resid  54 and name n) 
       (resid  54 and name ca)   (resid  54 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  54 and name  n)   (resid  54 and name ca) 
       (resid  54 and name  c)   (resid  55 and name n )  1.0  150.0 25.0 2 
        
assign (resid  54 and name  o)   (resid  55 and name n) 
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       (resid  55 and name ca)   (resid  55 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  55 and name  n)   (resid  55 and name ca) 
       (resid  55 and name  c)   (resid  56 and name n )  1.0  150.0 25.0 2 
        
assign (resid  55 and name  o)   (resid  56 and name n) 
       (resid  56 and name ca)   (resid  56 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  56 and name  n)   (resid  56 and name ca) 
       (resid  56 and name  c)   (resid  57 and name n )  1.0  150.0 25.0 2 
        
assign (resid  56 and name  o)   (resid  57 and name n) 
       (resid  57 and name ca)   (resid  57 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  57 and name  n)   (resid  57 and name ca) 
       (resid  57 and name  c)   (resid  58 and name n )  1.0  150.0 25.0 2 
        
               
{*** beta strand 62 to 67 ***}  
 
 
assign (resid  61 and name  o)   (resid  62 and name n) 
       (resid  62 and name ca)   (resid  62 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  62 and name  n)   (resid  62 and name ca) 
       (resid  62 and name  c)   (resid  63 and name n )  1.0  150.0 25.0 2 
 
assign (resid  62 and name  o)   (resid  63 and name n) 
       (resid  63 and name ca)   (resid  63 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  63 and name  n)   (resid  63 and name ca) 
       (resid  63 and name  c)   (resid  64 and name n )  1.0  150.0 25.0 2 
        
assign (resid  63 and name  o)   (resid  64 and name n) 
       (resid  64 and name ca)   (resid  64 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  64 and name  n)   (resid  64 and name ca) 
       (resid  64 and name  c)   (resid  65 and name n )  1.0  150.0 25.0 2 
        
assign (resid  64 and name  o)   (resid  65 and name n) 
       (resid  65 and name ca)   (resid  65 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  65 and name  n)   (resid  65 and name ca) 
       (resid  65 and name  c)   (resid  66 and name n )  1.0  150.0 25.0 2 
 
assign (resid  65 and name  o)   (resid  66 and name n) 
       (resid  66 and name ca)   (resid  66 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  66 and name  n)   (resid  66 and name ca) 
       (resid  66 and name  c)   (resid  67 and name n )  1.0  150.0 25.0 2 
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assign (resid  66 and name  o)   (resid  67 and name n) 
       (resid  67 and name ca)   (resid  67 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  67 and name  n)   (resid  67 and name ca) 
       (resid  67 and name  c)   (resid  68 and name n )  1.0  150.0 25.0 2 
      
 
{*** beta strand 71 to 76 ***}        
       
         
assign (resid  70 and name  o)   (resid  71 and name n) 
       (resid  71 and name ca)   (resid  71 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  71 and name  n)   (resid  71 and name ca) 
       (resid  71 and name  c)   (resid  72 and name n )  1.0  150.0 25.0 2 
 
assign (resid  71 and name  o)   (resid  72 and name n) 
       (resid  72 and name ca)   (resid  72 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  72 and name  n)   (resid  72 and name ca) 
       (resid  72 and name  c)   (resid  73 and name n )  1.0  150.0 25.0 2 
 
assign (resid  72 and name  o)   (resid  73 and name n) 
       (resid  73 and name ca)   (resid  73 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  73 and name  n)   (resid  73 and name ca) 
       (resid  73 and name  c)   (resid  74 and name n )  1.0  150.0 25.0 2 
        
assign (resid  73 and name  o)   (resid  74 and name n) 
       (resid  74 and name ca)   (resid  74 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  74 and name  n)   (resid  74 and name ca) 
       (resid  74 and name  c)   (resid  75 and name n )  1.0  150.0 25.0 2 
        
assign (resid  74 and name  o)   (resid  75 and name n) 
       (resid  75 and name ca)   (resid  75 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  75 and name  n)   (resid  75 and name ca) 
       (resid  75 and name  c)   (resid  76 and name n )  1.0  150.0 25.0 2 
 
assign (resid  75 and name  o)   (resid  76 and name n) 
       (resid  76 and name ca)   (resid  76 and name o)   1.0 -120.0 25.0 2 
  
assign (resid  76 and name  n)   (resid  76 and name ca) 
       (resid  76 and name  c)   (resid  77 and name n )  1.0  150.0 25.0 2 
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Appendix 4. Hydrogen bond restraint table for NMR structure of A. fulgidus aRpp29. 
       
Hydrogen bonds in regular alpha helices and beta sheets are defined using distance restraints. 
 
  
{ *****  link strand 19-24 to 31-37  antiparallel  ***** } 
 
assign (resid  18 and name o ) (resid 37 and name hn)  2.15         0.0039         0.0039 
assign (resid  18 and name c ) (resid 37 and name  n)  4.35         0.0039         0.0039 
assign (resid  18 and name o ) (resid 37 and name  n)  3.14         0.0039         0.0039 
assign (resid  18 and name c ) (resid 37 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  35 and name o ) (resid 20 and name hn)  2.15         0.0039         0.0039 
assign (resid  35 and name c ) (resid 20 and name  n)  4.35         0.0039         0.0039 
assign (resid  35 and name o ) (resid 20 and name  n)  3.14         0.0039         0.0039 
assign (resid  35 and name c ) (resid 20 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  20 and name o ) (resid 35 and name hn)  2.15         0.0039         0.0039 
assign (resid  20 and name c ) (resid 35 and name  n)  4.35         0.0039         0.0039 
assign (resid  20 and name o ) (resid 35 and name  n)  3.14         0.0039         0.0039 
assign (resid  20 and name c ) (resid 35 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  33 and name o ) (resid 22 and name hn)  2.15         0.0039         0.0039 
assign (resid  33 and name c ) (resid 22 and name  n)  4.35         0.0039         0.0039 
assign (resid  33 and name o ) (resid 22 and name  n)  3.14         0.0039         0.0039 
assign (resid  33 and name c ) (resid 22 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  22 and name o ) (resid 33 and name hn)  2.15         0.0039         0.0039 
assign (resid  22 and name c ) (resid 33 and name  n)  4.35         0.0039         0.0039 
assign (resid  22 and name o ) (resid 33 and name  n)  3.14         0.0039         0.0039 
assign (resid  22 and name c ) (resid 33 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  31 and name o ) (resid 24 and name hn)  2.15         0.0039         0.0039 
assign (resid  31 and name c ) (resid 24 and name  n)  4.35         0.0039         0.0039 
assign (resid  31 and name o ) (resid 24 and name  n)  3.14         0.0039         0.0039 
assign (resid  31 and name c ) (resid 24 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  24 and name o ) (resid 31 and name hn)  2.15         0.0039         0.0039 
assign (resid  24 and name c ) (resid 31 and name  n)  4.35         0.0039         0.0039 
assign (resid  24 and name o ) (resid 31 and name  n)  3.14         0.0039         0.0039 
assign (resid  24 and name c ) (resid 31 and name hn)  3.38         0.0039         0.0039 
  
{ *****  link strand 18-24 to 62-67  antiparallel  ***** } 
 
assign (resid  66 and name o ) (resid 19 and name hn)  2.15         0.0039         0.0039 
assign (resid  66 and name c ) (resid 19 and name  n)  4.35         0.0039         0.0039 
assign (resid  66 and name o ) (resid 19 and name  n)  3.14         0.0039         0.0039 
assign (resid  66 and name c ) (resid 19 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  19 and name o ) (resid 66 and name hn)  2.15         0.0039         0.0039 
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assign (resid  19 and name c ) (resid 66 and name  n)  4.35         0.0039         0.0039 
assign (resid  19 and name o ) (resid 66 and name  n)  3.14         0.0039         0.0039 
assign (resid  19 and name c ) (resid 66 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  64 and name o ) (resid 21 and name hn)  2.15         0.0039         0.0039 
assign (resid  64 and name c ) (resid 21 and name  n)  4.35         0.0039         0.0039 
assign (resid  64 and name o ) (resid 21 and name  n)  3.14         0.0039         0.0039 
assign (resid  64 and name c ) (resid 21 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  21 and name o ) (resid 64 and name hn)  2.15         0.0039         0.0039 
assign (resid  21 and name c ) (resid 64 and name  n)  4.35         0.0039         0.0039 
assign (resid  21 and name o ) (resid 64 and name  n)  3.14         0.0039         0.0039 
assign (resid  21 and name c ) (resid 64 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  62 and name o ) (resid 23 and name hn)  2.15         0.0039         0.0039 
assign (resid  62 and name c ) (resid 23 and name  n)  4.35         0.0039         0.0039 
assign (resid  62 and name o ) (resid 23 and name  n)  3.14         0.0039         0.0039 
assign (resid  62 and name c ) (resid 23 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  23 and name o ) (resid 62 and name hn)  2.15         0.0039         0.0039 
assign (resid  23 and name c ) (resid 62 and name  n)  4.35         0.0039         0.0039 
assign (resid  23 and name o ) (resid 62 and name  n)  3.14         0.0039         0.0039 
assign (resid  23 and name c ) (resid 62 and name hn)  3.38         0.0039         0.0039 
  
{ *****  link strand 62-67 to 71-76  antiparallel  ***** } 
 
assign (resid  61 and name o ) (resid 76 and name hn)  2.15         0.0039         0.0039 
assign (resid  61 and name c ) (resid 76 and name  n)  4.35         0.0039         0.0039 
assign (resid  61 and name o ) (resid 76 and name  n)  3.14         0.0039         0.0039 
assign (resid  61 and name c ) (resid 76 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  74 and name o ) (resid 63 and name hn)  2.15         0.0039         0.0039 
assign (resid  74 and name c ) (resid 63 and name  n)  4.35         0.0039         0.0039 
assign (resid  74 and name o ) (resid 63 and name  n)  3.14         0.0039         0.0039 
assign (resid  74 and name c ) (resid 63 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  63 and name o ) (resid 74 and name hn)  2.15         0.0039         0.0039 
assign (resid  63 and name c ) (resid 74 and name  n)  4.35         0.0039         0.0039 
assign (resid  63 and name o ) (resid 74 and name  n)  3.14         0.0039         0.0039 
assign (resid  63 and name c ) (resid 74 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  72 and name o ) (resid 65 and name hn)  2.15         0.0039         0.0039 
assign (resid  72 and name c ) (resid 65 and name  n)  4.35         0.0039         0.0039 
assign (resid  72 and name o ) (resid 65 and name  n)  3.14         0.0039         0.0039 
assign (resid  72 and name c ) (resid 65 and name hn) 3.38         0.0039         0.0039 
  
assign (resid  65 and name o ) (resid 72 and name hn)  2.15         0.0039         0.0039 
assign (resid  65 and name c ) (resid 72 and name  n)  4.35         0.0039         0.0039 
assign (resid  65 and name o ) (resid 72 and name  n)  3.14         0.0039         0.0039 
assign (resid  65 and name c ) (resid 72 and name hn)  3.38         0.0039         0.0039 
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assign (resid  70 and name o ) (resid 67 and name hn)  2.15         0.0039         0.0039 
assign (resid  70 and name c ) (resid 67 and name  n)  4.35         0.0039         0.0039 
assign (resid  70 and name o ) (resid 67 and name  n)  3.14         0.0039         0.0039 
assign (resid  70 and name c ) (resid 67 and name hn)  3.38         0.0039         0.0039 
  
{ *****  link strand 44-49 to 53-57  antiparallel  ***** } 
 
assign (resid  56 and name o ) (resid 45 and name hn)  2.15         0.0039         0.0039 
assign (resid  56 and name c ) (resid 45 and name  n)  4.35         0.0039         0.0039 
assign (resid  56 and name o ) (resid 45 and name  n)  3.14         0.0039         0.0039 
assign (resid  56 and name c ) (resid 45 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  45 and name o ) (resid 56 and name hn)  2.15         0.0039         0.0039 
assign (resid  45 and name c ) (resid 56 and name  n)  4.35         0.0039         0.0039 
assign (resid  45 and name o ) (resid 56 and name  n)  3.14         0.0039         0.0039 
assign (resid  45 and name c ) (resid 56 and name hn)  3.38         0.0039         0.0039 
 
assign (resid  54 and name o ) (resid 47 and name hn)  2.15         0.0039         0.0039 
assign (resid  54 and name c ) (resid 47 and name  n)  4.35         0.0039         0.0039 
assign (resid  54 and name o ) (resid 47 and name  n)  3.14         0.0039         0.0039 
assign (resid  54 and name c ) (resid 47 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  47 and name o ) (resid 54 and name hn)  2.15         0.0039         0.0039 
assign (resid  47 and name c ) (resid 54 and name  n)  4.35         0.0039         0.0039 
assign (resid  47 and name o ) (resid 54 and name  n)  3.14         0.0039         0.0039 
assign (resid  47 and name c ) (resid 54 and name hn)  3.38         0.0039         0.0039 
  
assign (resid  52 and name o ) (resid 49 and name hn)  2.15         0.0039         0.0039 
assign (resid  52 and name c ) (resid 49 and name  n)  4.35         0.0039         0.0039 
assign (resid  52 and name o ) (resid 49 and name  n)  3.14         0.0039         0.0039 
assign (resid  52 and name c ) (resid 49 and name hn)  3.38         0.0039         0.0039 
 
 { *****  link strand 32-37 to 44-49  antiparallel  ***** } 
 
assign (resid  38 and name o ) (resid 46 and name hn)  2.15         0.0039         0.0039 
assign (resid  38 and name c ) (resid 46 and name  n)  4.35         0.0039         0.0039 
assign (resid  38 and name o ) (resid 46 and name  n)  3.14         0.0039         0.0039 
assign (resid  38 and name c ) (resid 46 and name hn)  3.38         0.0039         0.0039 
 
assign (resid  46 and name o ) (resid 38 and name hn)  2.15         0.0039         0.0039 
assign (resid  46 and name c ) (resid 38 and name  n)  4.35         0.0039         0.0039 
assign (resid  46 and name o ) (resid 38 and name  n)  3.14         0.0039         0.0039 
assign (resid  46 and name c ) (resid 38 and name hn)  3.38         0.0039         0.0039 
 
assign (resid  36 and name o ) (resid 48 and name hn)  2.15         0.0039         0.0039 
assign (resid  36 and name c ) (resid 48 and name  n)  4.35         0.0039         0.0039 
assign (resid  36 and name o ) (resid 48 and name  n)  3.14         0.0039         0.0039 
assign (resid  36 and name c ) (resid 48 and name hn)  3.38         0.0039         0.0039 
 
assign (resid  48 and name o ) (resid 36 and name hn)  2.15         0.0039         0.0039 
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assign (resid  48 and name c ) (resid 36 and name  n)  4.35         0.0039         0.0039 
assign (resid  48 and name o ) (resid 36 and name  n)  3.14         0.0039         0.0039 
assign (resid  48 and name c ) (resid 36 and name hn)  3.38         0.0039         0.0039 
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List of Abbreviations 

 

CD  circular dichroism 

CNS  Crystallography and NMR System 

COSY  correlation spectroscopy 
DNA   deoxyribonucleic acid 

D2O  deuterium (2H20)   

DFQ  double quantum filter 

DTT  dithiothreitol   

HEPES N-[2-hydroxyethyl]piperazine-N´-[2-ethanesulfonic acid] 

HMQC heteronuclear multiple-quantum correlation 

HSMQC heteronuclear single- and multiple-quantum correlation 

HSQC  heteronuclear single-quantum correlation 

kDa  kilodalton 

MAD  multiple-wavelength anomalous diffraction 

MIR  multiple isomorphous replacement 

NOE  nuclear Overhauser effect 

NOESY nuclear Overhauser effect spectroscopy 

NMR  nuclear magnetic resonance 
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OD  optical density 

PAGE  polyacryamide gel electrophoresis 

PCR  polymerase chain reaction 

PDB  Protein Data Bank 

pI  isoelectric point 

ppm  parts per million 

r.m.s.d. root mean square deviation 

RNA  ribonucleic acid 

SAD  single-wavelength anomalous diffraction 

SeMet  selenomethionine 

SIR  single isomorphous replacement 

TEV  tobacco etch virus 

TOCSY total correlation spectroscopy 

tRNA  transfer RNA 

UV  ultraviolet 
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