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The design of energy-efficient data memory architectures for embed-

ded system platforms has received considerable attention in recent years. In

this dissertation we propose a special-purpose data memory subsystem, called

Xtream-Fit, targeted to streaming media applications executing on both generic

uniprocessor embedded platforms and powerful SMT-based multi-threading

platforms. We empirically demonstrate that Xtream-Fit achieves high energy-

delay efficiency across a wide range of media devices, from systems running a

single media application to systems concurrently executing multiple media ap-

plications under synchronization constraints. Xtream-Fit’s energy efficiency

is predicated on a novel task-based execution model that exposes/enhances

opportunities for efficient prefetching, and aggressive dynamic energy conser-

vation techniques targeting on-chip and off-chip memory components. A key
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novelty of Xtream-Fit is that it exposes a single customization parameter, thus

enabling a very simple and yet effective design space exploration methodology

to find the best memory configuration for the target application(s). Exten-

sive experimental results show that Xtream-Fit reduces energy-delay product

substantially – by 32% to 69% – as compared to ‘standard’ general-purpose

memory subsystems enhanced with state of the art cache decay and SDRAM

power mode control policies.
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Chapter 1

Introduction

Embedded systems are pervasive in modern life. State-of-the-art em-

bedded technology drives the ongoing revolution in consumer and communi-

cation electronics, and is on the basis of substantial innovation in many other

domains, including medical instrumentation, process control, etc. [40]. 32-

bit embedded processors account for more than 90% of the marketshare [46].

Portable electronics and telecommunication equipment constitute a large seg-

ment of this embedded market. In fact, of the 500 million ARM processors

sold in 2002 more than 80% were used in mobile consumer electronics equip-

ment, such as cell-phones and personal digital assistants (PDAs) [46]. Market-

watchers [5] further predict that the media processing class of applications will

soon dominate the consumer electronics market — this domain is very vast, in-

cluding applications for image, audio and video encoding and decoding, speech

and handwriting recognition, etc.

The ability to realize such complex applications in cost effective de-

vices is fueled primarily by Moore’s Law, which enables the fabrication of ever

faster and denser integrated circuits (ICs). Unfortunately, as CMOS technol-

ogy rapidly scales, the challenges that must be overcome to deliver each new
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generation of electronic products multiply. In the last few years, power dissi-

pation has emerged as a major concern. In fact, projections on power density

increases due to CMOS scaling clearly indicate that this is one of the funda-

mental problems that will ultimately preclude further scaling [7, 29]. Although

the power challenge is indeed considerable, much can be done to mitigate the

deleterious effects of power dissipation, thus enabling performance and de-

vice density to be taken to truly unprecedented levels by the semiconductor

industry throughout the next ten to fifteen years.

Power dissipation has a direct impact on packaging and cooling costs,

and can also affect system reliability, due to electro-migration and hot-electron

degradation effects. Thus, the ability to decrease power, while offering similar

performance and functionality, critically enhances the competitiveness of a

product. Furthermore, for battery operated portable systems, maximizing

battery lifetime translates into maximizing duration of service, an objective of

paramount importance for this class of products. Thus, power and energy have

emerged as primary figures of merit in contemporaneous embedded system

design.

Embedded systems come in many varieties and with many distinct de-

sign optimization goals and requirements. Even when two products provide

the same basic functionality, say, video/audio playback, they may have funda-

mentally different characteristics, namely, different performance and quality-

of-service requirements, one may be battery operated and the other not, etc.

The implications of such product differentiation are of paramount importance
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when power and energy are considered. Clearly, the higher the system’s re-

quired performance/speed (defined by metrics such as throughput, latency,

bandwidth, response time, etc.), the higher will be its power dissipation [21]

— the key question is, how much higher does it need to be? To answer this

question, i.e., to realize highly energy-efficient systems, one may need to con-

sider static and dynamically adaptive energy conservation techniques, consider

specialized architectures, and exploit the specific characteristics of the target

embedded application on ‘specialized’ devices/subsystems. There is, thus, an

increasing interest in the design of ‘energy-aware’ systems, where the objective

is to minimize the energy spent to deliver the required level of performance

and/or quality of service guarantees [22, 30].

In this research we focus on energy-aware design methodologies target-

ing the data memory subsystem of embedded media processing systems. We

consider a generic embedded system architecture with a single processor core

and associated data and program memory subsystems. Although there are

certainly many alternative platforms, e.g., using multiple processors and/or

programmable media streaming hardware accelerators, such as Imagine [34],

the generic embedded system platform targeted in this research is very relevant

in today’s embedded systems market, particularly in the context of systems

with tight energy budgets and non-stringent performance requirements [23].

For such a platform, on-chip caches are typically responsible for a significant

percentage of a chip’s overall power dissipation, e.g., more than 40% for the

StrongARM-110 is reported in the study presented in [41]. Yet another data
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point is presented in [55], where the energy consumption of a SmartBadge1

decoding an MPEG video is analyzed. The study indicates that when a low

power SRAM is used to implement on-chip memory, it consumes approxi-

mately 30% of the total system energy. Thus, due to its substantial impact

on both energy consumption and performance, the memory subsystem is a

prime candidate for customization to an application’s requirements by embed-

ded system designers [12, 43, 45, 50], thus motivating the work presented in

this dissertation.

The main contributions of this work are:

1. A special-purpose data memory subsystem, called Xtream-Fit, targeted

to a generic uniprocessor embedded platform or an SMT-based multi-

threading platform, executing streaming media applications. We empir-

ically demonstrate that Xtream-Fit achieves high energy-delay efficiency

across a wide range of media devices, from systems running a single me-

dia application to systems concurrently executing multiple applications

under synchronization constraints.

2. A novel task-based execution model that exposes/enhances opportuni-

ties for efficient prefetching, and aggressive dynamic energy conservation

techniques targeting on-chip and off-chip memory components.

1A SmartBadge is an embedded system consisting of a StrongARM-1100 processor,
FLASH and SRAM memories, sensors, and a modem/audio analog front end on a printed
circuit board (PCB) powered by batteries through a DC-DC converter.
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3. A tuning methodology for the memory subsystem that exposes a single

customization parameter, thus enabling simple and yet effective design

space exploration methodology to find the best — (i.e., most energy

efficient) memory configuration for the target application(s).

The organization of this dissertation is as follows — We first present

relevant background (Chapter 2) and survey previous research in the area of

energy-efficient data memory subsystems (Chapter 3).

We then present our core research contributions — viz., a task-based

processing model for media applications (Chapter 4) that works in conjunction

with a novel data memory subsystem (Chapter 5) to achieve high energy-delay

efficiency for media applications. We then present experimental results for

embedded systems running a single media application (Chapter 6). We then

discuss a generalized model of Xtream-Fit for embedded systems concurrently

running multiple media applications (Chapter 7) and present experimental

results for the same (Chapter 8). We conclude with a brief summary and

present opportunities for future work (Chapter 9).
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Chapter 2

Background

There are two sources of power dissipation in synchronous CMOS cir-

cuits: dynamic and static. In this chapter we start by briefly discussing these

two components of power dissipation. We then provide some background on

state-of-the-art system level power models for memory components used to

support architecture-level design space exploration. We finally conclude with

a brief discussion on the energy-efficiency metric adopted in this work.

2.1 Power Dissipation in CMOS Circuits

Digital CMOS circuits have two main types of power dissipation: dy-

namic and static. Dynamic power is dissipated when the circuit performs the

function(s) it was designed for, e.g., logic and arithmetic operations (computa-

tion), data retrieval, storage, and transport, etc. Ultimately all of this activity

translates into switching of the logic states held on circuit nodes. Dynamic

power dissipation is thus primarily proportional to C.VDD
2.f.r, where C de-

notes the total circuit capacitance, VDD and f denote the circuit supply voltage

and clock frequency, respectively, and r denotes the fraction of transistors ex-
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pected to switch at each clock cycle [20, 47].1 In other words, dynamic power

dissipation is impacted to first order by circuit size/complexity, speed/rate,

and switching activity.

In turn, static power dissipation is associated with preserving the logic

state of circuit nodes in the absence of switching activity, and is caused by

leakage currents in a transistor when it has been turned off. While barely

negligible a few technology generations ago, static power dissipation in CMOS

circuits is becoming substantial, and the mechanisms that cause such leak-

age are worsening as CMOS scaling progresses [8]. Indeed, leakage currents

increase exponentially with increasing chip temperature and with decreasing

threshold voltage. As CMOS technology scales, and the number of devices

that can be integrated in the same area increases, chip power density also in-

creases with corresponding deleterious effects on temperature. Moreover, with

the scaling down of supply voltages that accompanies device scaling, threshold

voltages need to be scaled down to deliver faster transistors making leakage

currents and thus static power dissipation increasingly problematic.

2.2 Power Models for Memory

This section addresses high-level modeling and power estimation tech-

niques for memory elements, aimed at assisting early system and architecture-

1Short circuit power dissipation, which occurs due to the presence of a direct current path
from VDD to GND during the process of actual switching is usually classified as dynamic
power dissipation. However, this power dissipation is quite small when compared to other
sources of power dissipation.
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level design space exploration. First, one should note that it would be un-

realistic to expect a high degree of accuracy on power estimates produced

during such an early design phase, since accurate power modeling requires

detailed physical level information that may not yet be available. Moreover,

highly accurate estimation tools (working with detailed circuit/layout level

information) would be too time consuming to allow for any reasonable degree

of design space exploration [9, 40, 47]. Thus, practically speaking, power esti-

mation during early design space exploration should aim at ensuring a high

degree of fidelity rather than necessarily accuracy. Specifically, the primary

objective is to assess the relative power efficiency of different candidate mem-

ory architectures. Estimates that correctly expose relative power trends across

the design space provide the designer with the necessary information to guide

the exploration process.

Dynamic Power. The high regularity of memory structures (e.g.,

caches) permits the use of simple, yet good fidelity power estimation tech-

niques, relying on automatically synthesized “structural designs” for such

components. CACTI (Cache Access and Cycle TIme) is a widely used mem-

ory model that implements this synthesis-driven power estimation paradigm.

Specifically, given a specific cache hierarchy configuration (defined by param-

eters such as cache size, associativity, and line size), as well as information

on the minimum feature size of the target technology, it internally generates

a coarse structural design for such a cache configuration [63]. It then derives

delay and power estimates for that particular design, using parameterized

8



built-in C models for the various constituent elements, namely, SRAM cells,

row and column decoders, word and bit lines, pre-charge circuitry, etc. [31, 53].

Thus, during design space exploration, a designer may consider a number of

alternative L1 and L2 cache configurations, and use CACTI to obtain “access-

based” power dissipation estimates for each such configuration. Naturally,

the memory access traces used by CACTI should be generated by a micro-

architecture simulator (e.g., Simplescalar) working with a memory simulator

(e.g., Dinero [16]), so that they reflect the bandwidth requirements of the

embedded application of interest.

Static/Leakage Power. Similarly, a high-level model for static en-

ergy consumption in on-chip SRAM structures is obtained by considering the

leakage energy in the memory arrays.2 Static energy is typically estimated for

a single SRAM cell using low-level SPICE simulations and is then extrapolated

for the number of cells in memory. In this work, we use the leakage energy per

bit presented in [64] for estimating leakage energy in SRAMs.

Off-Chip SDRAM Power. Detailed specifications on operating mo-

des, operating currents and timing for off-chip memories, (e.g., SDRAM parts)

are typically available from vendors. Using such parameters, simple off-chip

memory models can be built to generate energy consumption estimates by

simply analyzing an off-chip access trace. In simple terms, the dynamic energy

consumed in an off-chip memory access is computed by summing up the energy

2Typically, the leakage power dissipated in the rest of the memory is negligible, and for
simplicity, can be discarded [26].
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needed to activate (open) an SDRAM bank row buffer, the energy used by the

actual read/write operation, and the energy needed to precharge (close) the

SDRAM bank row buffer.3 (As indicated before, such off-chip access traces

are typically obtained by tracking the reads and writes using cycle accurate

simulations). Static energy in off-chip memory, in turn, is estimated by adding

the self-refresh energy and the standby energy consumed in the memory during

different modes of operation, for the duration of the program.

2.3 Assessing Energy Efficiency

A design is “energy-efficient” if it can deliver “maximum” performance

for a given energy budget or, conversely, “minimize” energy for a given perfor-

mance target. Accordingly, assessing the energy efficiency of a system requires

considering, both, performance and energy, simultaneously. The seminal pa-

per [21] suggests the use of Energy-Delay Product as a simple metric to assess

the energy efficiency of a system. This metric is very well suited to compare

alternative systems that deliver a similar performance level, and will thus be

used throughout this dissertation to assess the relative energy-efficiency of

memory subsystems under such conditions.

3The cost of opening/closing a row is amortized by performing several read/write oper-
ations from that row together in burst mode.
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Chapter 3

Related Work

Xtream-Fit’s high energy efficiency is predicated on a novel task-based

execution model that exposes/enhances opportunities for exploiting stream

granularity prefetching and advanced dynamic energy conservation techniques.

In this chapter, we briefly review previous contributions to those areas.

3.1 Data Prefetching

There is a significant body of research on hardware and software tech-

niques for data prefetching. Hardware based data prefetching techniques try

to predict when a given piece of data will be needed, so as to load it into cache

before it is actually referenced by the application (i.e., used by a demand ac-

cess), see e.g. [13, 19, 48]. In contrast, software based prefetching techniques

work by inserting prefetch instructions for selected data references at carefully

chosen points in the program - such explicit prefetch instructions are executed

by the processor, to move data into cache, see e.g., [11, 36, 42, 66]. Advanced,

highly efficient software-based prefetching schemes, based on the independent

execution of stream granularity load/store instructions, have also been pro-

posed, mostly in the context of special purpose processors and hardware ac-

11



celerators [12, 34]. In the sequel we briefly review Imagine, a stream-oriented

coprocessor/accelerator for media kernels that exploits such techniques [34].

3.2 Special Purpose Memory Subsystems for Program-
mable Accelerators

The Imagine accelerator chip is controlled by a host processor, which

sends it stream instructions, namely, load and store instructions, to move

streams between memory and a 128 KB stream register file (SRF); operate

instructions, to invoke kernels residing on the control store of Imagine’s mi-

crocontroller, etc. During kernel execution, the same instruction executes on

Imagine’s eight arithmetic clusters in single-instruction, multiple-data mode [34].

In contrast, Xtream-Fit is a special purpose memory subsystem designed for

less performance demanding embedded systems, where a single microproces-

sor core (say, a StrongARM SA-1110) executes the complete streaming media

application. Similarly to our work, Imagine’s stream memory transfers are ex-

ecuted independently from computations, that is, the memory subsystem can

be prefetching streams to the SRF (for the next kernel execution) while the

current kernel is executing [34]. In sharp contrast, though, the host processor

is ultimately responsible for controlling the “dynamic” pace of such stream

transfers and kernel executions, as it sends stream instructions to the Imagine

chip. Moreover, to the best of our knowledge, no dynamic energy manage-

ment policies have (so far) been implemented in Imagine. Although such

issues/features may have a questionable relevance for a media kernel acceler-
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ator such as Imagine, they are critical to the energy-efficiency of the class of

embedded system architectures targeted in this dissertation. Similarly, in [15]

a methodology to evaluate memory architecture design trade-offs for multi-

processor video signal processing is proposed, however, energy-efficiency is not

addressed in the paper, nor are energy saving policies proposed for the targeted

memory architectures.

3.3 Novel Memory Subsystem Designs

Seminal work on decoupled access/execute architectures, explicitly sep-

arating access and computation instructions, can be found in [49, 57]. The

effectiveness of keeping a small partition of main memory (that is, a Scratch-

Pad) on-chip has been extensively studied in the literature, see e.g. [12, 23, 32,

43, 45]. Most such contributions consider embedded system architectures with

a standard cache hierarchy and a Scratch-Pad memory, and propose methods

for deciding which data to assign to the Scratch-Pad. Several novel cache

designs have also been proposed in recent years, see e.g. [6, 25, 52, 58]. The

above techniques focus primarily on performance optimization, as opposed to

energy-delay product optimization, and this distinction is critical. Indeed, as

evidenced by our experimental results in Section 6.7, properly “configured”

hardware-controlled caches typically provide sufficient bandwidth for media

applications, yet they are not energy efficient – see also [56]. Still, a number

of such performance oriented schemes may also lead to energy savings, a no-

table example being the general-purpose Adaptive Line Size Caches in [58].
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Indeed, when the variation on “optimal” burst sizes over time can be effec-

tively “tracked” by the dynamic controller proposed in [58], SDRAM energy

savings are likely to result. However, if the pattern of “optimal” burst sizes

oscillates “quickly” between very distinct values, e.g., due to the interleaving

of read/write accesses to compressed vs. decompressed input/output streams,

the controller may end up “stabilizing” on some “average” value over all such

distinct sizes. In contrast, burst sizes in Xtream-Fit are software controlled

and can be thus “optimally” programmed for each input/output stream-access,

with no “tracking” delays and associated transition-related energy overheads.

Energy-efficiency of on-chip caches has been directly addressed in recent

research, e.g., “Region-based Caching” [24] and “Cool Caches” [60]. Region

based caching is an elegant horizontal partitioning strategy aimed at reduc-

ing power dissipation by exploiting the nature of memory allocation conven-

tions [24]. Significant reduction in energy-delay product (in comparison to

a conventional cache design) is reported for Mediabench applications, when

two small (2 KB) horizontally partitioned region-based D-caches are added to

the regular L1 D-cache, one for stack data and one for global data [24]. The

Cool-Cache architecture, yet another novel memory subsystem design, signifi-

cantly reduces energy consumption for multimedia applications (from 25% up

to 77%, when compared to 64 KB direct mapped and 4-way caches) by elim-

inating cache tags – namely, scalars are directly mapped into a Scratch-Pad

memory area, and a compile-time speculative approach using a small register

area is used to eliminate tag-lookup for non-scalar memory accesses [60].
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Note that, Xtream-Fit also exploits “non-conventional” memory sub-

system components, namely, a Streaming Memory and Scratch-Pad Memory.

In contrast, though, one of its key unique strengths is a novel task-based execu-

tion model that exposes/enhances opportunities for efficient stream-granularity

prefetching and aggressive dynamic energy conservation policies targeting,

both, on-chip and off-chip memory components.

3.4 Techniques for Cache Leakage Power Reduction

Several techniques for reducing leakage power of caches have been pro-

posed in recent years – the key idea behind such techniques is to turn-off cache

lines holding data that is not likely to be reused [33, 65]. We found that, in

general, such techniques work extremely well in the context of media bench-

marks, due to the “well-behaved” stream-oriented patterns of memory access

and low degree of data reuse characteristic of such applications. In fact, sim-

ple cache line turn-off policies (e.g., cache decay [33], which wait for a fixed

number of cycles since the last access to a line before shutting it down), per-

form as well as more sophisticated/costly adaptive policies. In Section 6.8, we

contrast leakage power reduction results achieved by cache decay versus our

software/task driven shutdown policies.
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3.5 Techniques for Exploiting SDRAM Low-Power Mo-
des

Dynamic energy conservation techniques based on selectively control-

ling the operating mode of off-chip SDRAM modules have also been proposed

in recent years, see e.g., [14, 17]. Most techniques relevant to the embed-

ded system architecture targeted in this paper assume a standard cache hi-

erarchy and target Rambus DRAM technology with multiple power saving

modes [1]. The key challenge is to avoid spurious/costly mode transitions

when the RDRAM idles for only a “small” number of cycles. As discussed

in Section 5.2.1, Xtream-Fit greatly enhances the effectiveness of power mode

control policies (for streaming media applications), by consolidating SDRAM

activity/idleness.

3.6 Summary

In the chapters that follow, we will show that Xtream-Fit provides a

unique alternative to: (1) “standard/general-purpose” data memory hierar-

chies enhanced with state-of-the-art power-aware features found in contempo-

raneous off-the-shelf processors; and (2) complex, highly specialized hierarchi-

cal data memory subsystems found on many programmable hardware acceler-

ators. Specifically, Xtream-Fit enables an aggressive reduction of energy-delay

product when compared to the first group of solutions (see experimental re-

sults in Section 6.7), while greatly simplifying the overall customization effort

(hardware and software), when contrasted to the second group of solutions.
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Such “middle point” is likely to be attractive for many segments of the em-

bedded systems market.
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Chapter 4

A Processing Model for Media Applications

We propose a special-purpose data memory subsystem called Xtream-

Fit (see Figure 4.1) and an associated processing model aimed at achieving

high energy-delay efficiency for streaming media applications [50, 51]. In this

chapter we discuss the processing model and detail the memory organization

and associated energy saving policies in the next.

In Xtream-Fit, data transfers (to/from the off-chip SDRAM) are in-

dependent stream-granularity operations executed by a dedicated Streaming

Memory Controller. The relative “pacing” of such data transfers with respect

to actual computations is established via a dynamic synchronization of data

transfer tasks, executing on the Streaming Memory Controller, and processing

tasks, executing on the embedded processor core.

We will show that, when such tasks are properly defined, their syn-

chronized execution maximizes opportunities for energy savings, and exposes

critical energy-delay trade-offs, in two important ways. First, it enables a tight

control over the patterns of off-chip memory accesses/references generated by

the memory subsystem, namely, over their inherent locality and periodicity,

which in turn allows for a better exploitation of modern SDRAMs’ energy-

18



Memory
StreamingScratch−Pad

Memory
Off−Chip
SDRAM

Streaming

Controller
Memory

Processor
Core

Instruction
Cache

Peripherals

Xtream−Fit Data Memory Subsystem

Figure 4.1: Embedded media processing platform with Xtream-Fit.

delay efficient access modes. Second, it leads to a consolidation of system

components’ idle/dead times (e.g., off-chip SDRAM and/or specific regions of

the on-chip Streaming Memory), into larger and more predictable time inter-

vals. As will be seen, this is critical for optimizing the profitability of energy

saving techniques based on selective exploitation of low power modes.

In Section 4.1 we discuss the key characteristics of streaming media

applications and the Xtream-Fit processing model. Section 4.2 illustrates the

application of this task-based decomposition methodology for a media ap-

plication. Section 4.3 defines the notion of task granularity and describes a

scheduling policy for the synchronized execution of these tasks.

4.1 A Task-Based Model for Media Processing

Input and output streams of media applications are typically speci-

fied as sequences of relatively small basic data objects, which can be pro-

cessed/generated (quasi-) independently. For example, MPEG2 compression

and decompression of frames/pictures in a video stream is performed on a

macroblock basis (16x16 pixel block), JPEG encoders/decoders work on a
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block basis (8x8 pixel block), etc. [38].

Media applications usually perform sequences of complex operations

and transformations on streams of such basic data objects, often exhibiting

high locality of reference yet low data reuse [18, 34, 54]. In addition, a myr-

iad of constants (and/or infrequently changed data) are periodically reused

during the processing of those basic data objects – examples include arrays

of quantization, filtering, DCT, IDCT, FFT and other transform coefficients.

Xtream-Fit’s Scratch-Pad Memory and Streaming Memory (see Figure 4.2)

provide energy-efficient on-chip storage for these two types of data: (1) con-

stants and scalars; and (2) low reuse streaming data.

At the core of this work lies the idea of decomposing the media ap-

plication into tasks, which encapsulate continuous processing loads for one of

the two main architectural subsystems, namely, the data memory subsystem

(Xtream-Fit) and the processing subsystem (processor core). Thus, once a task

begins execution on the processing subsystem, it will not be stalled waiting
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for data transfers. Similarly, a task being executed on the memory subsystem

will make full use of the memory bandwidth until completion.

Accordingly, streaming media applications are decomposed into at least

one data transfer task and one processing task – the first prefetches and writes

input data object
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Figure 4.3: Task decomposition methodology: key principles.
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back data streams, while the second processes/generates those streams. Fig-

ure 4.3(a) shows an application that breaks down into two such tasks. Specifi-

cally, at iteration i, the data transfer task Task DT starts by storing (writing

back) the previously generated output data object (i.e., data object (i − 1) of

the output stream), and then prefetches the next input data object (i.e., data

object i of the input stream). When the data transfer task ends, a processing

task encompassing the entire application code starts executing – during such

execution, the input data object just prefetched is processed so as to generate

the corresponding output data object. Note that output data object i will

be written back only at the next iteration i + 1, and so forth. Many media

applications, e.g., JPEG and G721 encoders and decoders, can be decomposed

into only two such basic tasks.

Some applications may however require more than two tasks. The key

rule driving further task decomposition is as follows:

Memory accesses dependent on input or intermediate data, when

extant, should be organized or clustered into independent data trans-

fer tasks, such that continuous workloads on the two subsystems can

be ensured.

For example, consider a media application that requires one additional

input data object from some secondary input stream, as it processes each data

object from the primary input stream. Assume also that the address of this

additional input data object is encoded in the primary input data object itself.
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Data dependent accesses such as this define the boundaries for further task

decomposition. Indeed, one can only load the secondary data object after its

address has been determined/computed by a processing task, using the pri-

mary input data (namely, Task1 P in Figure 4.3(b)). Thus, if one wishes to

define data transfer tasks that ensure continuous workloads on the memory

subsystem, the loading of this secondary data object cannot be performed by

the same data transfer task that loads the primary input data object (namely,

Task1 DT in Figure 4.3(b)) – or, else, workload continuity would not be guar-

anteed, since such a task would stall, waiting for the address of the secondary

data object. Accordingly, an additional data transfer task (denoted Task2 DT

in Figure 4.3(b)) is defined for that purpose. Similarly, in order to ensure con-

tinuous workloads on the processing subsystem, the computations/decoding

that determines the address of the secondary data object (using the primary

input data) cannot be executed by the same processing task that eventually

generates the primary output data object. This application would thus be

decomposed into four tasks, interleaved as indicated in Figure 4.3(b).

4.2 Task Decomposition: MPEG2 Decoder Example

The above task decomposition methodology was successfully applied to

several representative media applications from Mediabench [38], consistently

resulting in the identification of only a few basic data transfer and process-

ing tasks. A natural result of this task decomposition is a consolidation of

idle times, i.e., avoiding scattered fine grain interleaving of stalls, which are
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Figure 4.4: Block diagram of the MPEG2 decoder.

difficult to exploit for energy conservation purposes. We now illustrate our

task decomposition methodology for a real media application. Consider the

block diagram of an MPEG2 decoder shown in Figure 4.4 (a) – the input is the

MPEG2 input stream (essentially, a sequence of compressed macroblocks), and

the output is a corresponding stream of decoded/decompressed macroblocks

(each denoted DEC MB in Figure 4.4 (a)) [38].

Observe that, in the MPEG2 decoder application, the memory accesses

required by the motion compensation part of the algorithm (represented by

the predictor block in Figure 4.4 (a)) are conditioned on the motion vectors
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extracted from the MPEG2 input stream for each macroblock (see inputs to

predictor block in Figure 4.4 (a)). Based on this simple observation, one

can define four main tasks for the MPEG2 decoder application, two executing

on the processing subsystem, and two executing on the memory subsystem.

These tasks have a level of granularity corresponding to a single macroblock,

that is, process one macroblock at a time, and are as follows:

• Task1 DT (data transfer task): stores (writes back) a previously de-

coded macroblock into main memory (thus releasing space in the Stream-

ing Memory for the macroblock about to be decoded), and then prefetches

a fixed size MPEG2 stream segment1 into a corresponding Streaming

Memory region2.

• Task1 P (processing task): extracts the differential DCTed macroblock

(denoted D dct MB in Figure 4.4 (a)) and the motion vectors from the

previously stored MPEG2 stream segment, and stores them in the cor-

responding Streaming Memory regions.

• Task2 DT (data transfer task): based on the motion vectors in storage,

prefetches zero, one, or two motion compensation macroblocks (denoted

MB B and MB F in Figure 4.4 (a)), from previously decoded frames.

1When dealing with variable size input stream data objects (e.g., compressed macroblocks
in MPEG2), an upper bound on the maximum size of such data objects is used by the
corresponding data transfer task.

2Streaming Memory organization into regions is discussed in Chapter 5
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• Task2 P (processing task): performs an inverse discrete cosine trans-

form (IDCT) on the previously extracted D dct MB macroblock, pro-

ducing a differential macroblock, averages two motion compensation

macroblocks (if needed), adds the result (or a single motion compen-

sation macroblock) to the previous differential macroblock (if needed),

and stores the decoded macroblock (denoted DEC MB in Figure 4.4 (a))

in the corresponding Streaming Memory region.

The corresponding task graph capturing those basic data dependencies,

i.e., defining the required interleaving between the four tasks, is shown in

Figure 4.4(b).

Once the set of basic tasks is identified, the application code is par-

titioned accordingly. For example, the two processing tasks defined for the

MPEG2 decoder, namely, Task1 P and Task2 P , can be obtained by par-

titioning the actual application code – in this case, the C program available

in the Mediabench benchmark suite – into the two shaded components in-

dicated in Figure 4.4(a). In contrast, data transfer tasks are specially writ-

ten small code segments that are executed by Xtream-Fit’s Streaming Mem-

ory Controller. For example, Task1 DT is essentially a single Xtream-Fit’s

store stream instruction, which writes back the output data object just gen-

erated, followed by a single load stream instruction, which prefetches a fixed

size MPEG2 stream segment corresponding to the next macroblock.
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4.3 Task Granularity and Scheduling

We define task granularity g to be the number of primary input data

objects processed during a single execution of an application’s task graph.

Note that, once a set of minimum granularity (g = 1) tasks is defined for a

streaming media application (using our task decomposition methodology), pa-

rameter g can be easily increased, so that g primary input stream data objects

are jointly fetched and then jointly processed by the subsequent (granularity

g) tasks. Figures 4.5(a) and (b) show an execution snapshot of MPEG2 tasks

with granularities g = 1 (i.e., one macroblock decoding at a time) and g = 2

respectively. The importance of being able to explicitly vary task granularity

will become evident in Sections 5.1 and 5.2.

We now discuss dynamic scheduling policies for data transfer and pro-
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cessing tasks. Although the delay of individual task types may vary signif-

icantly during the execution of a typical streaming media application, the

computation to memory access rate remains consistently high throughout any

such execution trace. In our experiments we found this ratio to be between one

and two orders of magnitude, for minimum granularity tasks (g = 1). As task

granularity increases, the dominance becomes even more significant. Those

numbers essentially confirm the well known fact that media applications are

computation bound, see e.g. [27, 28, 34, 54].

The delay dominance of one task type over the other has actually very

positive implications. Specifically, it enables the implementation of remarkably

simple dynamic synchronization policies between data transfer and processing

tasks. In order to illustrate this last point, consider again the MPEG2 decoding

application and assume, for generality, a task granularity of n macroblocks.

The dynamic scheduling policy for the processing tasks would be as follows.

Task1 P n can commence processing the new batch of macroblocks as soon

as the first input stream segment (corresponding to the first macroblock in
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the new batch) is stored in the Streaming Memory by Task1 DT n – this

is indicated by arrow (1) in Figure 4.6. Observe that, due to the relative

delays between both tasks, no additional synchronization is needed between

“producer” Task1 DT n and “consumer” Task1 P n.

Similarly, as soon as the motion compensation data for the first mac-

roblock is stored in the Streaming Memory by Task2 DT n, Task2 P n can

commence the processing of the corresponding macroblock – this is indicated

by arrow (3) in Figure 4.6. As in the previous case, no additional synchro-

nization is needed between the two tasks. The dynamic scheduling policy for

the data transfer tasks is even simpler – they are started on completion of

the logically preceding processing task, as indicated by arrows (2) and (4) in

Figure 4.6. The delay and energy overhead incurred by those simple dynamic

task scheduling/synchronization policies is essentially negligible.

These scheduling policies could be implemented very simply – e.g., on

the completion of granularity g tasks, the processing system could signal the

Streaming Memory Controller (either directly, or with the aid of the underlying

operating system), and wait for the Streaming Memory Controller to complete

the data transfers and signal it to start again. We only need to keep track of

the number of processing tasks that have already been executed since the last

data transfers.
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Chapter 5

Memory Organization and Energy

Management Policies

Xtream-Fit’s data memory subsystem replaces a traditional on-chip

data cache with a Streaming Memory and a Scratch-Pad as shown in Fig-

ure 4.1. The high energy efficiency of Xtream-Fit results from a novel, syn-

ergistic combination of these special-purpose memory subsystem components

and the task-based processing model that enhances the predictability and ef-

ficiency of resource usage. Tuning Xtream-Fit to the requirements of a spe-

cific media application and target performance, i.e., optimizing energy-delay

efficiency, is a surprisingly simple process, involving a single customization

parameter - task granularity (g). Providing the ability to explore the complex

energy trade-offs involved in such an optimization, by varying just this single

parameter, is yet another key novel contribution of this work. Section 5.1 de-

scribes the main components of the data memory subsystem and Section 5.2

presents the energy conservation policies. Section 5.3 details the design space

exploration process for Xtream-Fit.
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5.1 Memory Organization for Media Processing

Xtream-Fit’s high energy efficiency is achieved through the use of an

on-chip software-controlled Streaming Memory, a Scratch-Pad Memory, and

an aggressive exploitation of burst/page mode access and low power modes

available in modern SDRAMs. Data traffic in and out of the memory sub-

system is controlled by the Streaming Memory Controller, which executes the

data transfer tasks described in Section 4.1.

5.1.1 Software Controlled Streaming Memory

Control over (i.e., predictability of) on-chip memory accesses is en-

hanced by organizing Xtream-Fit’s Streaming Memory into a set of regions,

each capable of individually holding one of the input, output or intermediate

data streams used or generated during the processing of the media application’s

basic input data objects. The Streaming Memory for the MPEG2 decoder ap-

plication, for example, is organized into six regions, with corresponding sizes

parameterized by task granularity g – see Figure 5.1. Accordingly, a Streaming

Memory with task granularity 2, has twice the size of a Streaming Memory

with task granularity 1, and so forth.

5.1.2 Scratch-Pad memory

In our proposed memory subsystem, power hungry off-chip data ac-

cesses are “minimized” by mapping/assigning all constants (and/or infre-

quently changed data) required by the media application, as well as scalar
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variables, to Xtream-Fit’s on-chip Scratch-Pad memory. [32, 44, 60, 61]. Ac-

cordingly, the Scratch-Pad SRAM is mapped into an address space disjoint

from the off-chip main memory, yet, is connected to the same address and

data buses. In the case of the MPEG2 decoder benchmark, roughly 2 KB is

needed to store arrays of quantization and IDCT coefficients, tables of header

identifier codes, etc. As one would expect, this size is essentially invariant with

respect to the selected task granularity. Furthermore, a memory size of 2 KB

is sufficient for most Mediabench programs [61].

5.1.3 Streaming Memory Controller

Data traffic in and out of the memory subsystem is controlled by the

Streaming Memory Controller, which executes the data transfer tasks. The

Streaming Memory Controller could be implemented by augmenting an exist-

ing Direct Memory Access (DMA) Controller, on the processor core. Alterna-

tively, it could be implemented using a light-weight, low-power microcontroller,

programmed to execute data-transfer tasks, turn on and turn off Streaming
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Memory regions, etc.

5.2 Energy Conservation Policies

5.2.1 SDRAM: Burst/Page Mode Access, Low-Power Modes

Modern SDRAMs cache the most recently accessed row of each bank on

a row buffer. While a row is active in the buffer, an arbitrary number of single-

cycle burst/page mode (read and write) accesses to the row can be performed.

By aggressively exploiting burst/page mode, one can substantially decrease

average power consumption and delay of memory accesses to individual stream

elements [45, 54].

Xtream-Fit’s data transfer tasks provide the proper scope for such an

exploitation, namely, they allow embedded system designers to actually pro-

gram (that is, statically ensure) burst/page mode prefetching and delayed

storage of stream segments of a predefined, optimized size (see Section 5.3 on

Design Space Exploration). For example, consider Task1 DT of the MPEG2

decoder application, which starts by writing back a previously decoded mac-

roblock and then prefetches a fixed size input stream segment. A proper

(sequential) layout of the corresponding MPEG2 input and output streams

in the SDRAM enables both of these accesses to be performed in burst/page

mode. The task granularity parameter g, defined with respect to the media

stream’s basic data objects (e.g., macroblocks for MPEG2), establishes the

degree to which one wishes to take advantage of burst/page mode read/write

SDRAM accesses during the execution of data transfer tasks.
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Furthermore, as tasks execute on both subsystems, one can actually

predict when the next burst of SDRAM accesses will occur (namely, at the

start of a new data transfer task), as well as when the next (consolidated)

idling period will commence (corresponding to the end of a data transfer task).

Such an ability to ensure well-defined, consolidated intervals of SDRAM idle-

ness is critical to the effectiveness of energy conservation techniques exploiting

SDRAM low-power modes of operation, particularly when exit latencies from

such modes are non-negligible. In order to better access such benefits, our

initial experiments considered two types off-chip memory, namely, Rambus

DRAM [1] and low-power SDRAM modules [2, 3].

RDRAM’s multiple power modes (namely, active, standby, nap and

power-down) have corresponding resynchronization costs (i.e., exit latencies)

varying from only a few cycles (standby → active) up to several thousand cy-

cles (power-down → active). Note that, due to such resynchronization costs,

RDRAM’s idling intervals need to be long enough, so as to actually enable sub-

stantial energy savings with minimal impact on performance. It follows that

Xtream-Fit’s consolidation of off-chip main memory accesses into large, well

defined time intervals, corresponding to the execution of data transfer tasks, is

very effective from a power mode control standpoint. Indeed, consolidation of

activity and idleness creates more opportunities for energy conservation, while

decreasing the potential impact of resynchronization cycles in performance.

In particular, note that by varying Xtream-Fit’s task granularity parameter g,

one can directly control the average duration of RDRAM’s idling times and
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corresponding frequency of transitions between idleness and activity (see e.g.,

Figures 4.5(a) and (b)).

However, for the generic class of embedded system architectures tar-

geted in this dissertation, we found that low-power SDRAM modules such as

the ones available in [2, 3], are able to provide sufficient memory bandwidth

for the compute bound (not memory bound) streaming media applications of

interest. In other words, when compared to systems using RDRAMs, system

architectures using those low power memories delivered identical performance

and throughput at a much lower energy cost. Thus, for the sake of considering

system architectures that truly optimize energy consumption, in Chapter 6 we

present experimental results only for the low-power SDRAM modules. Since

such memories have a single low-power operation mode, with an exit latency

of only a few cycles [2, 3], it follows that a simple policy that immediately

switches the SDRAM to the low-power mode, as soon as a data transfer task

concludes execution, and switches it back to active mode, right before a new

data transfer task starts executing, performs optimally.

5.2.2 Software Controlled Streaming Memory: Reducing Leakage
Power

The region-based organization of Xtream-Fit’s Streaming Memory al-

lows for the implementation of simple, and yet highly effective, selective shut

down policies, as tasks execute on both subsystems. In Figure 4.6 for exam-

ple, as Task1 P n concludes the processing of the n compressed macroblocks
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sequentially stored in the MPEG2 input stream region (see time interval A

in Figure 4.6), the corresponding sub-regions where such data is stored are

selectively shut down (i.e., Vdd-gated [33]). At the end of the execution of

Task1 P n, and during the time interval until Task1 DT n starts the prefetch-

ing of the next batch of compressed macroblocks (see time interval B in Fig-

ure 4.6), the entire MPEG2 input stream region will remain shut down. Note

also that, as a result of similar shut down policies implemented by previous

tasks, the MPEG2 output stream and the two motion compensation macroblock

regions (i.e., backward and forward) will be permanently shut down during the

execution of Task1 P n. Experimental results in Section 6.8 show that such

low cost task/software driven shut down policies can considerably reduce leak-

age/static power dissipation on the Streaming Memory.

5.3 Design Space Exploration and Tuning Methodology

Given a streaming media application, the selection of a specific pro-

cessor core is driven by power/performance targets and other considerations

which are beyond the scope of this work. Once the processor core is selected,

Xtream-Fit’s design space exploration process, aimed at minimizing energy-

delay product [20] for the memory subsystem, is quite simple and systematic,

and can be conducted by simply varying the task granularity parameter g

for a number of representative input data sets. As with any non-trivial sys-

tem, design space exploration is indeed needed, because there are conflicting

cost/benefit trends in the memory subsystem architecture. Specifically, as task
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granularity g increases, both power dissipation and average delay of off-chip

data transfers decreases accordingly. However, the corresponding size of the

Streaming Memory and thus dynamic and leakage power dissipation in on-chip

memory, increase as well.

Figure 5.2 shows a sample of the design space exploration results for

the MPEG2 decoder application when running the mobile.mpg input data set

on a MIPS R10000 processing element. Figure 5.2(a) shows the impact of

task granularity g on the energy consumed by the on-chip memory (Stream-

ing Memory and Scratch-Pad) and the SDRAM during the decoding of the

MPEG2 stream. We plot energy consumed in mJ on the y-axis, and different

Xtream-Fit configurations, that is, values for parameter g, on the x-axis. As

expected, with increasing granularity, the energy consumed in on-chip memory

increases but that on the SDRAM decreases.

For the same input data set, (i.e., mobile.mpg), Figure 5.2(b) shows the

total energy consumption on the Streaming Memory, Scratch-Pad and SDRAM

in mJ versus total decoding delay (in simulation cycles), assuming several task

granularities. Figure 5.2(c) shows the resulting energy-delay product for the

various task granularities considered during the design space exploration. As

illustrated in Figures 5.2(a), (b) and (c), by simply varying parameter g, one

can systematically move across the conflicting energy consumption curves,

i.e., explore the design space, so as to easily find the point of maximum en-

ergy efficiency (i.e., minimum energy-delay product), for a particular target

processor/performance – see Figure 5.2(c).
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Figure 5.2: Xtream-Fit: Task granularity driven design space exploration for
MPEG2 considering an MIPS R10000 core and input data set mobile.mpg.

Hence, although there is a significant degree of “specialization” in

Xtream-Fit, the process of customizing it to an application is actually quite

simple and systematic. Given a target application, it starts with the definition

of an Xtream-Fit configuration for task granularity g = 1. In order to do so,

the application code needs to be first carefully analyzed, in order to identify

the set of basic (i.e., g = 1) processing and data transfer tasks, and generate

the corresponding task graph (see Section 4.1 and Section 4.2). Using the task

graph (see e.g., Fig.4(b)), and relying on the simple policies discussed in Sec-

tion 4.1, the dynamic scheduling of the various tasks can be then established

(see Section 4.3). Then, the Streaming Memory regions for the various input,

output and intermediate data objects produced/consumed by those tasks are

defined and sized (see Section 5.1 and Figure 5.1). Subsequently, the task-
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based shut down policies for Streaming Memory regions holding dead data are

defined and implemented in Xtream-Fit’s Streaming Memory Controller (see

Section 5.2.2). The default SDRAM power mode control policy is also trivially

implemented in the Streaming Memory Controller (see Section 5.2.1). Finally,

the Scratch-Pad memory (aimed at holding scalars and constants) is sized, as

discussed in Section 5.1.

Once an Xtream-Fit configuration for task granularity g = 1 is defined,

configurations for alternative task granularities can be easily derived from it.

Namely, for a configuration with granularity g = n, each processing task, when

invoked, iterates n times; each data transfer task, when invoked, prefetches

and/or writes back k × n basic data objects, exploiting page mode access

whenever possible1; the SDRAM is switched to its low power mode only after

each data transfer task executes n times; etc.

Design space exploration consists of systematically varying the task

granularity parameter (g = 1, 2, 4, 8, 16, etc.2), and determining the corre-

sponding energy-delay product for each such alternative configuration (for a

representative set of input data sets). The design space exploration process

ends when an Xtream-Fit configuration with minimum energy-delay product

is found. Section 6.1 describes an experimental set up that can be used to de-

1Note that, for certain tasks, the set of data objects to be accessed may not be stored
contiguously. For example, the 2 × n motion compensation macroblocks prefetched by
MPEG2’s Task2 Pn are stored at “arbitrary” locations.

2Depending on the application, a maximum granularity may need to be established,
based on specifications pertaining jitter and other considerations.
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termine the resulting energy-delay product for each alternative configuration

and input data set.

A few important comments on the complexity of the design space de-

fined by the Xtream-Fit memory architecture. Since energy consumption in

on-chip/off-chip memory increases/decreases with g (see e.g., Figure 5.2(a)),

while performance increases with g yet at a much slower rate3, one should ex-

pect to always find a single minimum energy-delay product point for any input

data set. That is, the complexity of the design space defined by Xtream-Fit is

in fact very reduced. Perhaps most importantly, for all media benchmarks and

representative input data sets considered in our experiments (see Table 6.1),

we found that: (1) for a given application, substantially different input data

sets consistently give very similar “optimal” task granularity points; and (2)

energy-delay product tends to vary very little in the vicinity of the “optimal”

granularity point for a given (application, input data set) pair.

Consider, for example, Figure 5.3(a), which shows the percentage in-

crease in energy-delay product, for a range of g-values, with respect to the

minimum energy-delay product found (through design space exploration) for

each of five MPEG2 input data sets running on a MIPS R10000 processor core.

As it can be seen, for four of the five input data sets, the “optimal” granu-

larity is g = 4, while for the remaining data set the “optimal” granularity is

2. Note further that the percentage increase in energy-delay product result-

3This is so due to the ‘computation bound’ nature of media applications.
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Figure 5.3: Xtream-Fit: Task granularity driven design space exploration for
MPEG2 considering multiple input data sets.
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ing from using granularity g = 2 for the four input data sets with “optimal”

granularity 4 is under 2%, while the increase in energy-delay product resulting

from using granularity g = 4 for the input data set with “optimal” granularity

2 is under 1%. Figures 5.3(b) and (c) show similar trends for configurations

using an ARM XScale processor core and a StrongARM SA-1110 processor

core, for the same input data sets. Similar results were obtained for the other

representative media benchmarks considered in our experiments – see also Sec-

tion 6.9. Such results are very positive, since they indicate that, even though

one may not be able to select a task granularity that is “optimal/ideal” for all

possible application workloads, the resulting energy-delay product for an arbi-

trary input data set will in general be very close to the “minimum” possible to

achieve. Additional experimental data is provided in Section 6.9, empirically

supporting this claim.
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Chapter 6

Experimental Results: Single-Application

Media Systems

In this chapter, we present the experimental methodology used to eval-

uate the effectiveness of the Xtream-Fit data memory subsystem and discuss

the results thereof. We first compare the performance and energy consumption

of Xtream-Fit to a set of reference systems using “standard” cache configura-

tions. Specifically, we consider a select set of memory configurations that could

be easily offered (“off-the-shelf”) for each of the processor cores targeted in our

experiments, and assess the energy-efficiency of Xtream-Fit relative to those

“standard” memory configurations. This first set of experiments thus aims

at comparing Xtream-Fit to systems developed with a reduced customization

effort. We then performed a much more exhaustive design space exploration

on the reference cache configurations (for each processor core and benchmark

application) so as to determine the best possible reference system to compare

against Xtream-Fit. This second set of experiments was designed to assess

the effectiveness of Xtream-Fit relative to aggressively customized cache hi-

erarchies. An important additional observation is that all reference cache

configurations (for both sets of experiments) were augmented/enhanced with

state-of-the-art techniques to reduce power consumption. Namely, cache decay
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Figure 6.1: Experimental methodology to evaluate Xtream-Fit.

policies were implemented to minimize leakage power in the cache hierarchy

of the reference systems and the optimal policy exploiting SDRAM low power

modes, discussed in Section 5.2.1, was integrated in both Xtream-Fit and the

reference systems to minimize energy consumption in off-chip memory. Al-

though some of these techniques might not be widely available or supported

in current processors, we did include them in our reference systems in order

to ensure that our experimental results truly reflect the very best (in terms of

energy efficiency) achievable with “traditional” cache hierarchies.
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6.1 Experimental Setup

The experimental framework used to evaluate Xtream-Fit and the ref-

erence systems is shown in Figure 6.1. The flowchart in the figure shows the

inputs specified for each experiment and the various simulators used to gener-

ate the outputs of interest. Specifically, each experiment requires the following

inputs:

1. The media benchmark – a C program from the Mediabench suite (see

Table 6.1);

2. The input data set for the selected benchmark (see Table 6.1);

3. The set of core parameters – a description of the processor core (see

Table 6.2);

4. The memory hierarchy specification – SDRAM parameters, and either

Xtream-Fit or cache hierarchy parameters (see details below).

The Simplescalar simulator [10] was augmented with cache decay policies and

modified to provide the following additional information:

1. Leakage and dynamic energy consumption for on-chip memory blocks;

2. A task trace for the Xtream-Fit system.

For systems with a traditional memory hierarchy, performance was calculated

by measuring the total number of simulation cycles taken to process an entire
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data set (i.e., from start to completion of the program). To counter the effects

due to startup of the program, we used sufficiently large input data sets, e.g.,

a (512 × 512) pixel picture for the JPEG encoder.

For the Xtream-Fit system, Simplescalar automatically generates a task

trace for the specified task granularity parameter g. The individual tasks are

then scheduled by the Task Simulator using the policies described in Sec-

tion 4.3. As argued before, the synchronization time between different data

transfer tasks and between data transfer and processing tasks is essentially

negligible. However, to stress the Xtream-Fit system to the fullest, we used a

very conservative synchronization time of 100 clock cycles.

6.2 Energy Estimation

The leakage energy in on-chip memories for both systems was calculated

based on the low-Vt data given in Table 2 of [64]. The data was extrapolated to

the sizes of different memories used in the experiments. The dynamic energy

for both systems was calculated using CACTI [53] as described in Chapter 2.

To measure SDRAM energy, a detailed model of a mobile SDRAM, from

Micron Technologies [2], specifically, part number MT48V2M32LFC-8 @ 2.5V,

was built and incorporated in the SDRAM simulator shown in Figure 6.1. We

chose Micron’s mobile SDRAM as it represents one of industry’s best low-

power SDRAMs and is widely used in media devices. It has a number of

power saving features, including low operating voltage, low operating currents

and temperature controlled self-refresh.
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Table 6.1: Benchmarks and input data sets used in our experiments.
Benchmark Description Input Data Set Description

P:mobile.mpg 60 frames video
Video dive.mpg 85 frame video

MPEG2 compression flower.mpg 150 frame video
decoder hakkinen.mpg 200 frame video

wallace.mpg 130 frame video
P:lena.ppm 512x512 image

Lossy image bike.ppm 768x512 image
JPEG compression circles.ppm 256x256 image

encoder slope.ppm 256x256 image
text.ppm 512x512 image
P:clinton.s.pcm 32KB raw data

Voice clap.pcm 268KB raw data
G721 compression keillor.pcm 36KB raw data

encoder piano.pcm 184KB raw data
sitar.pcm 156KB raw data

6.3 Benchmarks and Input Data Sets

Since we are targeting streaming media applications, we used bench-

marks from the Mediabench Suite [38]. We selected one representative applica-

tion from the video, image, and audio compression domains. The benchmarks

were compiled with gcc with optimizations turned on (−O2). A brief de-

scription of the applications and their input data sets is given in Table 6.1.

In order to evaluate Xtream-Fit’s energy-delay efficiency under different work-

load conditions, for each benchmark we selected five input data sets exhibiting

significantly different characteristics. For the MPEG2 benchmark, we chose

video of CIF and QCIF resolutions, with fast moving sports scenes (hakki-

nen.mpg, dive.mpg), and relatively slow moving scenes with low (flower.mpg)
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Table 6.2: Simplescalar parameters for core configurations.
StrongARM MIPS

Parameters SA-1110 XScale R10000
Fetch/Retire Rate 2 2 4
RUU Size 8 16 64
LSQ Size 8 8 32
Out-Of-Order No Yes Yes
Memory 4B/cycle 8B/cycle 64B/cycle
Memory Latency 32, 1 32, 1 64, 2
Functional Units 2 ALU, 1 Mult 2 ALU, 1 Mult 4 ALU, 2 Mult

and high (mobile.mpg) change in background scenery. For JPEG, we selected

images with different sizes and different content including a classical image

from the image processing community (lena.ppm), an image containing text

only (text.ppm), an image with substantial amount of color and background

detail (bike.ppm) and black and white images with and without sharp bound-

aries (circles.ppm and slope.ppm, respectively). Finally, for G721, our input

data set includes the voice of a man speaking (clinton.s.pcm and keillor.pcm),

sound of an audience applause (clap.pcm) and instrumental music (piano.pcm

and sitar.pcm).

6.4 Machine Models

We modeled three processor cores, specifically, two processors from the

ARM family, Intel’s StrongARM and Intel’s XScale, and a MIPS R10000. The

ARM cores were used to evaluate Xtream-Fit in the context of low-power, less

performance demanding embedded systems. The MIPS core was used to as-

sess its performance in the context of more performance demanding systems
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Table 6.3: “Optimal” Xtream-Fit task granularity for primary input data sets.

Family of “Optimal” Task Xtream-Fit
Benchmark Configurations GranularityConfiguration

SA-1110 (X1-g) g = 1 X1 − 1
MPEG2 XScale (X2-g) g = 1 X2 − 1

MIPS R10000 (X3-g) g = 2 X3 − 2
SA-1110 (X1-g) g = 2 X1 − 2

JPEG XScale (X2-g) g = 4 X2 − 4
MIPS R10000 (X3-g) g = 4 X3 − 4

SA-1110 (X1-g) g = 64 X1 − 64
G721 XScale (X2-g) g = 64 X2 − 64

MIPS R10000 (X3-g) g = 128 X3 − 128

requiring faster, more powerful processors. Details on the processor configura-

tions used in our experiments are given in Table 6.2. Some of the parameters

of those machines, including issue width, and ruu size have been aggressively

dimensioned in order to stress the bandwidth requirements of the memory sub-

system. We would like to have also considered DSPs, e.g., Starcore, TMS320

families, etc., yet our experiments require the availability of an open-source

cycle-by-cycle simulator, such as Simplescalar [10] and, unfortunately, such

simulators are not available for commercial DSPs. Still, the range of ma-

chines considered in our experiments provide a solid basis for assessing basic

trends on the relative energy-efficiency of Xtream-Fit across a large range of

sustainable IPC (instructions-per-cycle) levels, and thus memory bandwidth

requirements. In fact, similar evaluation methodologies have been frequently

used in literature, to overcome the lack of open-source simulators alluded to

above, see e.g., [35, 37].
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Table 6.4: Sizes of Streaming Memory and Scratch-Pad in Xtream-Fit.
MPEG2 JPEG G721

Scratch-Pad 2048 B 2048 B 64 B
Streaming Memory 2048 B × g 256 B × g 2B × g

6.5 Design Space Exploration: Xtream-Fit

As discussed in Section 5.3, given a processor core and a target me-

dia application, Xtream-Fit’s design space exploration process is quite simple

and systematic – it can be conducted by simply varying task granularity pa-

rameter g until the point of minimum energy-delay product is found. Such a

point (i.e., value of g), defines the “optimal” Xtream-Fit configuration for the

particular processor and application.

Accordingly, embedded systems implemented with “optimal” Xtream-

Fit configurations are represented by the corresponding processor core (Stron-

gARM → X1, XScale → X2, and MIPS R10000 → X3) and the “optimal” task

granularity is given by the appended integer, representing parameter g. Ta-

ble 6.3 gives the “optimal” task granularity experimentally determined for the

set of media benchmarks and processors considered in our study (assuming a

select set of input data sets, see discussion below). For example, the “optimal”

task granularity for the MPEG2 benchmark, for input data set mobile.mpg,

running on the MIPS R10000 core (X3 family) was found to be g = 2, and

therefore the corresponding “optimal” Xtream-Fit configuration is denoted

X3 − 2.

The sizes of Xtream-Fit’s Streaming Memory and Scratch-Pad Memory
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for the applications under study are given in Table 6.4. Naturally, when one

varies g, the size of Xtream-Fit’s Streaming Memory varies accordingly – as

indicated in the Table. The size of the Scratch-Pad memory, however, is fixed

for each application and was determined by a static analysis of the program.

As discussed in Section 5.3, substantially different input data sets con-

sistently gave very similar “optimal” configuration points for the three repre-

sentative media benchmarks considered in our experiments. Moreover, energy-

delay product tended to vary very little in the vicinity of the “optimal” granu-

larity point for a given (application, input data set) pair. Thus, in order to be

able to present actual performance, energy and energy-delay product numbers,

and analyze concrete trends on such numbers (see Section 6.7), the “optimal”

task granularities presented in Table 6.3, and the detailed results presented

in Figures 6.2, 6.3, 6.4 and 6.5, 6.6, 6.7 were determined considering a single

input data set for each application, namely, mobile.mpg for MPEG2, lena.ppm

for JPEG and clinton.s.pcm for G721. We denote these input data sets as the

primary input data sets (indicated with a P in Table 6.1). For completeness, in

Section 6.9, we present the overall percentage increase in energy-delay product

for each media benchmark resulting from running all input data sets consid-

ered for the particular benchmark with the “optimal” granularity determined

for the corresponding primary input data set, and discuss simple techniques to

incorporate multiple input data sets in the design space exploration process,

if deemed necessary.
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6.6 Design Space Exploration: Reference Systems

Our experiments are aimed at determining Xtream-Fit’s relative im-

provement in energy-delay product with respect to properly configured refer-

ence data memory subsystems, as well as analyzing percentage savings achieved

by Xtream-Fit on static and dynamic energy consumption with respect to

such baselines. Thus, similarly to Xtream-Fit, the design space exploration

performed for the reference memory subsystems was directed towards mini-

mizing energy-delay product for the primary input data sets. Accordingly,

the detailed results presented in Figures 6.2, 6.3, 6.4 and 6.5, 6.6, 6.7 were

determined considering those input data sets.

The overall design space for the reference data memory systems is de-

fined by the following eight parameters: L1 D-Cache size, L1 D-cache block

size, L1 D-Cache associativity, L1 D-Cache kill-window size, L2 D-Cache size,

L2 D-cache block size, L2 D-Cache associativity and L2 D-Cache kill-window

size.

Case 1: “Standard” Cache Hierarchies. In this set of experiments

we consider a limited set of cache configurations approximating those offered

for the actual processor cores (see Tables 6.5 and 6.6). Thus, in this set of

experiments the eight parameters listed above are only “partially” explored,

yet kill-window sizes were carefully tuned for each individual configuration (see

tuning ranges in Table 6.6) so as to minimize energy-delay product.

Case 2: “Best” Cache Hierarchies. The objective of this second
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set of experiments was to determine the “best/optimal” cache hierarchy config-

uration for each processor core and media benchmark through an exhaustive

search over the entire design space, that is, to determine the set of values

for the eight cache hierarchy parameters listed above leading to a minimum

energy-delay product. The parameter ranges considered in our exploration are

given in Tables 6.7 and 6.8 respectively.

Unfortunately, due to the “conflicting” nature of most such design pa-

rameters [23, 62], the actual design space for each processor-benchmark pair

Table 6.5: Experimental validation of Xtream-Fit with respect to “standard”
memory configurations (Case 1).

Core/Processor Reference Systems Xtream-Fit

Label L1-Cache L2-Cache Label
R1a 4 KB None

StrongARM R1b 16 KB None X1 − g
SA-1110 R1c 32 KB None

R2a 4 KB None
XScale R2b 16 KB None

R2c 32 KB None X2 − g
R2a∗ 4 KB 16 KB

XScale R2b∗ 16 KB 64 KB
R2c∗ 32 KB 128 KB
R3a 4 KB 16 KB

MIPS R10000 R3b 16 KB 64 KB X3 − g
R3c 32 KB 128 KB

Table 6.6: Cache configuration for “standard” reference systems (Case 1).
Cache Block Size Associativity Kill Windows
L1-Cache 32B 4-way 4000 - 1024000
L2-Cache 64B 4-way 64000 - 1024000
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was found to be consistently very complex. In order to ensure that we were

indeed identifying the minimum energy-delay product configuration for each

case, we had to exhaustively search the entire design space, i.e. perform up

to 6183 detailed simulations per processor-benchmark pair. Table 6.9 lists out

the results of our exhaustive design space exploration, i.e., the best perform-

ing cache hierarchy parameters for each processor-benchmark pair – notice the

significant variation in parameter values across such pairs.

6.7 Overview of Results

Case 1: Xtream-Fit Compared to “Standard” Cache Hierar-

chies.

Figures 6.2, 6.3 and 6.4 summarize the results of our first set of ex-

Table 6.7: Experimental validation of Xtream-Fit with respect to “best” mem-
ory configurations (Case 2).

Core/Processor Reference Systems Xtream-Fit

Label L1-Cache L2-Cache Label
SA-1110 R1 − opt 4/16/32 KB None X1 − g
XScale R2 − opt 4/16/32 KB None X2 − g
XScale R2 ∗ −opt 4/16/32 KB 4 times L1 X2 − g
MIPS R10000 R3 − opt 4/16/32 KB 4 times L1 X3 − g

Table 6.8: Design space exploration parameters for reference systems with
“best” cache configuration (Case 2).

Cache Block Size Associativity Kill Windows
L1-Cache 32B 1-way/2-way/4-way 1000 - 1024000
L2-Cache 64B/128B/256B 1-way/2-way/4-way 4000 - 1024000
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Table 6.9: “Best” cache configurations for Case 2.

Core L1 Cache L2 Cache energy*delay
size line asso k-win size line asso k-win

MPEG2
R1 32 KB 32 2 256000 - - - - 7.21e+11
R2 32 KB 32 2 64000 - - - - 4.21e+11
R2* 16 KB 32 2 4000 64 KB 64 4 256000 4.79e+11
R3 16 KB 32 1 4000 64 KB 64 4 256000 1.49e+11

JPEG
R1 32 KB 32 2 64000 - - - - 2.35e+09
R2 32 KB 32 2 1024000 - - - - 1.27e+09
R2* 16 KB 32 1 4000 64 KB 64 2 1024000 1.23e+09
R3 32 KB 32 1 4000 128 KB 128 4 1024000 6.63e+08

G721
R1 16 KB 32 1 64000 - - - - 1.20e+09
R2 16 KB 32 1 16000 - - - - 6.10e+08
R2* 4 KB 32 1 16000 16 KB 64 2 256000 5.34e+08
R3 16 KB 32 1 16000 64 KB 64 4 64000 1.52e+08

periments, contrasting Xtream-Fit’s energy efficiency to that of a select set of

“standard” cache hierarchies. Consider first the performance results for the the

MPEG2 decoder application, shown in Figure 6.2(a). The four graphs in the

figure plot decoding delays in processor cycles for primary input stream mo-

bile.mpg grouped by processor core. Note that the number of cycles required

to process the input data set varies by about one order of magnitude when one

moves from the slowest core (StrongARM SA-1100) to the fastest core (MIPS

R10000) – performing experiments exhibiting such wide performance variation

is very critical, since it allows us to evaluate Xtream-Fit energy-delay efficiency

under very different working conditions and bandwidth requirements. For each
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Figure 6.2: Comparative evaluation: “standard” cache hierarchy: MPEG2.

core, we normalize the performance of Xtream-Fit to the best reference config-

uration. For example, in the left-most bar-chart in Figure 6.2(a) that contrasts

reference configurations R1a, R1b, and R1c to Xtream-Fit’s X1-g (i.e., consid-

ers the StrongARM SA-1110 core), the best performing granularity was g = 1
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Figure 6.3: Comparative evaluation: “standard” cache hierarchy: JPEG.

(see Table 6.3 and Figure 5.2(c)), and the best performing reference was R1c

(see Table 6.5). Accordingly, we annotate X1-1 with the fractional delay rel-

ative to R1c. As it can be seen, Xtream-Fit never performs worse than the

corresponding best reference system.
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Figure 6.4: Comparative evaluation: “standard” cache hierarchy: G721.

For the same set of experiments on the MPEG2 benchmark, Figure 6.2(b)

plots total energy consumption in mJ on memory components, i.e., the Stream-

ing Memory, Scratch-Pad Memory and SDRAM for Xtream-Fit, and in the

cache hierarchy and SDRAM for the reference systems. As it can be seen,
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for MPEG2, Xtream-Fit consistently outperforms the best reference configu-

ration, with decreases in total energy consumption ranging from 55% to 62%.

Finally, Figure 6.2(c) plots the corresponding energy-delay product

metric for the same set of experiments. The results show very substantial

improvements for Xtream-Fit – specifically, it decreases energy-delay prod-

uct between 55% and 62%, when compared to the best performing reference

configuration for any particular core.

Similarly, Figures 6.3(a)-(c) and 6.4(a)-(c) plot performance, energy

consumption and energy-delay product for JPEG and G721 respectively, show-

ing energy-delay product improvements ranging from 61% to 69%.

A brief note on the relevance of the energy savings reported above. Us-

ing the PowerAnalyzer tool available for the ARM family of processors [4], we

verified that, for example, for the XScale default configuration (with a 32 KB,

4-way L1 on-chip cache), the energy consumption in the on-chip data memory

subsystem was consistently 26% to 30% of the total energy consumed by the

processor (excluding I/O pad drivers) when running the set of media bench-

marks considered in our experiments, i.e., MPEG2 decoder, JPEG encoder

and G721 encoder. Even though such percentages are already quite substan-

tial, we should further note that the PowerAnalyzer tool does not consider

off-chip memories. Thus, the actual percentage of energy consumed by the

data memory subsystem (including also off-chip memories) should be substan-

tially higher than the values reported above, attesting to the significance of

the energy savings achieved by Xtream-Fit.

59



Case 2: Xtream-Fit Compared to “Best” Cache Hierarchies.

Figures 6.5, 6.6 and 6.7 summarize the results of our second set of

experiments, contrasting Xtream-Fit’s energy efficiency with that of “best”

cache configurations. The results are organized in a manner similar to that

used for the “standard” cache configurations, except that the reference data

point presented for each processor-benchmark pair is the best (i.e., minimum

energy-delay product) cache hierarchy configuration found during the corre-

sponding design space exploration (i.e., out of the 6183 explored/simulated

configurations for the particular processor-benchmark pair). The correspond-

ing Xtream-Fit design point for each processor-benchmark pair is obviously

identical to that used in Figures 6.2, 6.3 and 6.4.

Overall Assessment of Results. A quick comparison between Xtream-

Fit’s improvement with respect to “standard” reference systems versus Xtream-

Fit’s improvement with respect to “best” reference systems, summarized in

Figures 6.5, 6.6 and 6.7 and Figures 6.2, 6.3 and 6.4, reveals the following:

1. In spite of our exhaustive design space exploration, the performance of

the “best” reference systems was found to be very similar to that of the

standard reference systems. The performance of the Xtream-Fit based

systems was found to be marginally better than that of the reference

systems.

2. When compared to the standard reference systems, energy consumption

in the “best” reference systems decreased significantly for all processor
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Figure 6.5: Comparative evaluation: “Best” cache hierarchy: MPEG2.

cores for the G721 benchmark, while it was only marginally better for

MPEG2 and JPEG.

3. When compared to the “best” reference systems, Xtream-Fit still delivers

a significant improvement in energy-delay product, ranging from 32% to
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Figure 6.6: Comparative evaluation: “Best” cache hierarchy: JPEG.

69%.
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Figure 6.7: Comparative evaluation: “Best” cache hierarchy: G721.

6.8 Detailed Analysis of Results

Consistent with studies on cache performance for multimedia applica-

tions [56], we found that traditional cache hierarchies perform quite well. In

fact, with sufficiently large cache sizes and an adequate degree of associativity,
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the performance of the reference systems came close to that of a hypotheti-

cal perfect memory system. In spite of that, we consistently found that the

execution time of media systems with Xtream-Fit was marginally better than

that of the reference systems. Note that, Xtream-Fit’s scheduling policy re-

quires processing tasks to wait until data required by the first processing task

has been prefetched into memory by the first data transfer task. Yet, the de-

lay dominance of processing tasks over data transfer tasks, and Xtream-Fit’s

ability to take advantage of burst/page mode access, more than offsets the

“on-demand access” features of modern out-of-order processors.

However, the key improvement achieved by Xtream-Fit is on energy-

delay efficiency, i.e., on aggressively decreasing the energy cost of supporting

the required memory bandwidth. As shown in Figures 6.2(b), 6.3(b), 6.4(b)

and Figures 6.5(b), 6.6(b), 6.7(b) Xtream-Fit configurations consume only a

fraction (32% to 68%) of the energy consumed by the best performing refer-

ence configurations. A comparative analysis of Xtream-Fit and the reference

systems for the three different energy components is provided below.

Off-chip SDRAM Energy. Xtream-Fit’s savings in SDRAM energy

consumption are very significant across both sets of experiments (14% to 68%

savings). Recall that, each individual read or write access to the SDRAM

requires two separate activate/precharge actions, which consume a significant

amount of energy. The ability to individually control burst sizes for each

distinct data stream, via data transfer tasks, is one of the key advantages of

Xtream-Fit over the reference configurations, since it leads to far fewer accesses

64



to external memory.

On-chip Leakage Energy. Even though the cache decay scheme

used in the reference systems works extremely well in “low reuse” media ap-

plications, throughout our experiments we found that Xtream-Fit’s on-chip

memories consistently consumed significantly less leakage energy (52% to 95%

improvement). This is due to two factors. First, at any given point in

time, Xtream-Fit’s Streaming memory stores just enough data required by

the “next” granularity g tasks. Secondly, the organization of the Streaming

Memory into data-object based regions allows us to efficiently/selectively shut

down these regions as the data they hold becomes “dead.”

On-chip Dynamic Energy. The percentage of dynamic energy sav-

ings enabled by Xtream-Fit with respect to the reference configurations varies

across various processor-benchmark pairs, from marginal (7%) to very signifi-

cant (67%). It should be noted that such savings are not merely a consequence

of different on-chip memory sizes used by both approaches. Note, for exam-

ple, that the g = 1 Xtream-Fit configuration for MPEG2 has a 4 KB on-chip

memory (i.e., a 2 KB Streaming Memory and 2 KB Scratch-Pad) which is the

same on-chip memory size used by the reference configuration with a 4 KB

L1 Cache; yet there is a significant difference in dynamic energy consumption

between the two systems. Indeed, most of Xtream-Fit’s dynamic energy sav-

ings are due to the hardware simplicity of the (software controlled) Streaming

Memory and Scratch-Pad, in contrast to the more “power hungry” features

of traditional caches, needed to deliver good performance (e.g., associativity).
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So, when such power hungry features are “truly” needed, that is, when they

lead to reference systems with minimum energy-delay product (see associativ-

ity parameters for “best” reference cache configurations listed in Table 6.9),

then Xtream-Fit’s relative dynamic energy savings will be correspondingly

more substantial. This last point illustrates once again the complex energy-

delay trade-offs involved in the selection of the eight (“best”) cache hierarchy

parameters for the reference systems, in contrast to the simplicity of the design

space exploration required by Xtream-Fit, and the substantial improvements

in energy-delay product consistently delivered by the resulting Xtream-Fit

based media systems.

6.9 Analysis over Multiple Input Data Sets

As indicated previously, the experimental data presented in Sections 6.7

and 6.8 was derived considering a single input data set for each media bench-

mark. Such “primary” input data sets were arbitrarily selected among the

five data sets considered for each benchmark, each exhibiting very different

characteristics (see Section 6.3). In this section, we assess the impact of an

application’s workload on the “optimal” task granularity parameter g. We do

so by empirically evaluating the ‘sensitivity’ of Xtream-Fit’s energy-delay effi-

ciency with respect to ‘small’ variations on parameter g around the “optimal”

value for a given workload.

Table 6.10 provides experimental results for the five MPEG2 input data

sets. The table is organized into three columns, each showing the data for a
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particular processor core. In each column, the first sub-column, titled gopt, lists

out the “optimal” granularity obtained for that input data set. The adjoining

sub-column labeled %(1−EDP Pr/EDP Op), gives the percentage increase

in energy-delay product resulting from running a given input data set using

the “optimal” granularity derived for the primary input data set (which is

highlighted and labeled P) rather than the “optimal” granularity derived for

that particular data set. Obviously, for the primary input data set (first line),

the energy-delay product values will be identical, since both correspond to

running the primary input set with its “optimal” g value – i.e., this entry is

always 0%. For the subtable corresponding to the StrongARM SA-1100, for

example, only one input data set (wallace.mpg) has a corresponding “optimal”

granularity different from that derived for the primary data set. Note also

that energy-delay product is insignificantly impacted (increase of 0.21%) for

that input data set, indicating that the granularity derived for the primary

input data set would essentially deliver “minimal” energy-delay product also

for wallace.mpg.1 The results reported on the remaining two subtables of

Table 6.10 (pertaining MPEG2), as well as on Tables 6.11 (JPEG) and 6.12

(G721) exhibit very similar trends, providing strong empirical evidence that

the ‘sensitivity’ of Xtream-Fit’s energy-delay efficiency with respect to ‘small’

variations on the g parameter around the “optimal” value for a given workload

is indeed likely to be very small for our three media benchmarks.

1In fact, the 0.21% percent increase is so small that it falls within the margin of error of
our estimation models, and thus has no actual significance.
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Table 6.10: Assessing the impact of workload variations on Xtream-Fit’s
energy-delay product improvement – MPEG2.

StrongARM SA-1100 XScale MIPS R10000
% % %

gopt 1− EDP Pr
EDP Op

gopt 1− EDP Pr
EDP Op

gopt 1− EDP Pr
EDP Op

P:mobile 1 0% 1 0% 2 0%
dive 1 0% 1 0% 4 0.07%
flower 1 0% 1 0% 4 0.04%
hakkinen 1 0% 1 0% 4 0.30%
wallace 2 0.21% 2 0.80% 4 1.34%

Table 6.11: Assessing the impact of workload variations on Xtream-Fit’s
energy-delay product improvement – JPEG.

StrongARM SA-1100 XScale MIPS R10000
% % %

gopt 1− EDP Pr
EDP Op

gopt 1− EDP Pr
EDP Op

gopt 1− EDP Pr
EDP Op

P:lena 2 0% 4 0% 4 0%
bike 2 0% 4 0% 4 0%
circles 2 0% 4 0% 4 0%
slope 2 0% 4 0% 4 0%
test 2 0% 4 0% 4 0%

Table 6.12: Assessing the impact of workload variations on Xtream-Fit’s
energy-delay product improvement – G721.

StrongARM SA-1100 XScale MIPS R10000
% % %

gopt 1− EDP Pr
EDP Op

gopt 1− EDP Pr
EDP Op

gopt 1− EDP Pr
EDP Op

P:clinton.s 64 0% 64 0% 128 0%
clap 32 0.14% 64 0% 128 0%
keillor 32 0.14% 64 0% 128 0%
piano 32 0.16% 64 0% 128 0%
sitar 32 0.14% 64 0% 128 0%

Thus, the results reported above strongly suggest that, at least for

the three representative media applications considered in this work, one could

simply select a single input data set among the ones representative for the ap-

plication of interest, and determine the “optimal” g for such a data set, using

the proposed design space exploration methodology. Yet, if a designer would

want to be sure that the selected granularity is indeed the one most likely
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to maximize the overall energy-delay efficiency achieved by Xtream-Fit over

varying workloads, a design space exploration considering several input data

sets can obviously be performed. Indeed, we conducted such an exploration,

considering five input data sets per benchmark, and obtaining for each appli-

cation and processor, at most two alternative granularities for Xtream-Fit (see

Tables 6.10, 6.11 and 6.12). It would thus be relatively simple to consider such

a small set of competing g values, together with some application dependent

measure of likelihood for the various representative input data sets, in or-

der to determine the actual granularity most likely to maximize Xtream-Fit’s

energy-delay efficiency for such representative working conditions. Although

this effort would be somewhat futile for the case studies considered in this work

since the decrease in energy-delay efficiency for the alternative granularity is

essentially negligible, it is conceivable that for some media applications, such

an exploration across multiple data sets may indeed be required.
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Chapter 7

Supporting Multi-Application Media Systems

In this chapter we consider the general case of media devices execut-

ing multiple applications under synchronization and possibly throughput con-

straints. We extend our task-based model in order to represent two types of

concurrency relevant to our target media applications – interleaving and par-

allel execution of applications. Accordingly, we consider two corresponding

target platforms, one with Simultaneous Multithreading machines (SMT), for

the parallel execution case (see Figure 7.1(a)), and another with conventional

superscalar machines (see Figure 7.1(b)), for the interleaving case. We incor-

porate the notion of synchronization constraints in our task-based execution

model and show that such constraints can be easily supported in the proposed

memory subsystem.

7.1 Memory Organization

For this more general, multiple applications case, the proposed data

memory subsystem architecture remains essentially the same, except that, (1)

the Streaming Memory is now partitioned among the various concurrent appli-

cations, and each partition is organized into regions, as in the single application
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Figure 7.1: Executing two media applications under synchronization con-
straints: (GA + GB) basic data objects (DOs), from applications A and B,
respectively, must be jointly processed.

case, and, (2) the Scratch-Pad is also partitioned across applications. The size

of each Streaming Memory and Scratch-Pad partition is derived similarly to

the single application case, since each can be seen as a logically independent

Streaming Memory or Scratch-Pad. Note that, for the conventional super-

scalar processor based multi-application platform, one could consider having

a single Streaming Memory and Scratch-Pad shared across all applications. In

our experiments, we observed that the relatively small sizes of the Scratch-Pad

and Streaming Memory required by our characteristic media applications did

not justify such an overhead of repeatedly storing and retrieving data for every

context switch.
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7.2 Task-based Processing Model with Synchronization
Constraints

We now define synchronization constraints in the context of Xtream-

Fit’s task-based execution model. Assume that two streaming media applica-

tions, say, applications A and B in Figure 7.1, are to be executed simultane-

ously on a media device. We start by introducing the notion of synchronization

granularity which, in simple terms, defines the number of basic data objects

from each application that must be processed “concurrently.” Assume, for ex-

ample, that the specified synchronization granularity for applications A and

B is GA and GB, respectively. Using these values, one may now define a

corresponding synchronization constraint (see Figure 7.1),

si ≥ ci−1

where:

si = S(GA + GB)i, is the time at which block “i” of basic data objects from

applications A and B starts being processed, and

ci−1 = C(GA + GB)i−1, is the completion time of block “i-1” of basic data

objects from applications A and B.

Throughput constraints may also be defined, e.g., by placing an up-

per bound on the time elapsed between the starting times of two consecutive

synchronization blocks – (see Figure 7.1),

(1/r) ≥ S(GA + GB)i − S(GA + GB)i−1

72



where:

1/r, is the rate at which synchronization blocks are processed, and

S(GA + GB)i−1, and S(GA + GB)i are the start times of consecutive synchro-

nization blocks i − 1 and i, respectively.

In the context of streaming media devices, the latter is typically defined

as a soft constraint, that is, a constraint that may be occasionally violated, and

larger windows of time may be considered, in which case the soft throughput

constraint would be expressed as

(1/rx) ≥ S(GA + GB)i − S(GA + GB)i−x, where : x ≥ 1

Enforcing synchronization constraints is very simple in our approach,

involving only a minor extension to the previous framework. Namely, we only

need to keep track of the number of granularity g tasks of each individual

application that still need to be executed in order to complete the current

synchronization block. For example, consider Figure 7.1, which shows a snap-

shot of two applications executing concurrently: (a) on an SMT machine with

two thread contexts (Thr1 and Thr2); and (b) on a conventional superscalar

machine. Note that, when the SMT core is used, each application runs con-

currently in its own thread context, while when the conventional superscalar

machine is used, the applications switch contexts periodically. For simplicity,

the figure represents only the time it took to process two consecutive syn-

chronization blocks, (GA + GB)1 and (GA + GB)2, with no explicit indication

of the processing and data transfer tasks executed during such period. In-
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deed, assuming that applications A and B are using task granularities gA and

gB, respectively, each task from A and B will be correspondingly executed

nA = GA/gA and nB = GB/gB times during the processing of a single syn-

chronization block. During such a processing of the synchronization block,

the scheduling policies used for each application’s processing and data trans-

fer tasks are identical to those used for a single application media system (see

Section 4.3). The only difference is that, once the ith set of nA tasks com-

pletes, the next set of nA tasks can only start executing if the corresponding

ith set of nB tasks has also completed, and vice-versa – this ensures that the

synchronization constraint specified in Figure 7.1 is met. As before, imple-

menting these policies in this more general case, is also quite simple. The only

difference is that in addition to the previous case, we also need to keep track of

the number of sets of granularity g tasks (n = G/g) that have been completed

for each application.

7.3 Design Space Exploration and Tuning Methodology

Note that, while GA and GB, the synchronization granularities used in

the example in Figure 7.1, are ‘specified’ for a particular device and execution

scenario – e.g., they may represent synchronization constraints between audio

and video, task granularities gA and gB are not. In fact, just as in the previous

case (single application), gA and gB are the key tuning parameters used to

maximize the energy-delay efficiency of Xtream-Fit for a particular set of target

media applications. The only extra restriction posed to gA and gB is that (nA =
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GA/gA) and (nB = GB/gB) should be integral. If this is not possible, then,

the corresponding synchronization block (say, of application A), is executed

nA = bGA/gAc times in ‘standard’ mode and the remaining gA
′ = GA − nAgA

tasks are executed in a shorter burst.

As will be seen in Chapter 8, the “smooth” design space induced by

Xtream-Fit enables, once again, the use of a very simple tuning methodology to

find “optimal” task granularities for the multi-application execution scenario.

Specifically, we found experimentally that for most cases the “optimal” task

granularity can be determined independently for each application, by executing

it alone:

1. on the same target machine, for the superscalar case; or

2. on a target machine with as many issue slots as the average IPC sustained

by the particular application/thread, when executing concurrently with

the remaining applications, for the SMT case.1

As before, for each such application, the task granularity was varied

(i.e., increased) during design space exploration, until the point of maximum

energy-delay efficiency was found.

Our experimental results consistently show that, even when the task

granularities derived using this simple method are not actually “optimal” for

1In the experiment used to assess the individual IPC of each thread, we assume a perfect
memory subsystem and no synchronization constraints.
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the concurrent scenario, the decrease in energy efficiency resulting from using

such values is typically insignificant (within 2%, see e.g., Figure 8.5).

In the following chapter we describe the experiments and results for

multiple media applications running on a single embedded system.
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Chapter 8

Experimental Results: Multi-Application

Media Systems

In this chapter, we evaluate the effectiveness of the Xtream-Fit data

memory architecture for the general case, viz., an embedded system running

multiple media applications concurrently. As mentioned in the previous chap-

ter, we consider platforms with Simultaneous Multithreading cores1 as well as

conventional superscalar cores to evaluate Xtream-Fit. As before, the cache

based data memory subsystem of the reference systems was augmented with

state-of-the-art cache decay and SDRAM power mode control policies. Our

experimental results show that, Xtream-Fit continues to be substantially more

energy-efficient than the reference systems, even for this general case.

8.1 Experimental Setup

The experimental framework used to evaluate Xtream-Fit against the

reference systems is similar to that used for the single application case – see

Figure 6.1. The only difference is that, in this new framework, we can now

1A Simultaneous Multithreading machine can issue multiple instructions from multiple
thread contexts each cycle and can thus execute several programs (threads) simultane-
ously [59]
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evaluate the performance and energy consumption of systems running multi-

ple media applications concurrently. Accordingly, the Simplescalar simulator

in Figure 6.1 was replaced with a simultaneous multithreading processor sim-

ulator [39]. In all our experiments the number of ‘hardware contexts’ was

set to the number of different applications executing on the SMT machine.

The SMT processor simulator is however, highly configurable, and can also

emulate a conventional superscalar processor running multiple applications

simultaneously, i.e., execute one application at a time and switch contexts

periodically. We were thus able to use the same simulator framework to com-

pare the energy-efficiency of Xtream-Fit against reference systems under the

varying bandwidth requirements of these two kinds of processors.

The inputs to the simulator now also include a set of one or more media

programs, with corresponding input data sets, and synchronization constraints

when applicable. The SMT processor simulator used for these experiments was

also augmented to provide (1) leakage and dynamic energy consumption num-

bers (2) an off-chip memory access trace, and (3) a task trace for Xtream-Fit

– performance and energy numbers were obtained as in the single application

study, see Section 6.1.

8.2 Benchmarks

We consider two experimental scenarios representative of workloads for

advanced multimedia devices, namely, video-phones and camera-phones (see

column 2 in Table 8.1). Specifically, Scenario 1 considers a device that enables
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Table 8.1: Benchmarks

Single Application Scenario Multi-Application Scenario

MPEG2 Video compression
decoder MPEG2

G.721d
G.721e

SCENARIO 1
Video-phone
Application

JPEG Image compression
encoder

G.721d Voice compression
decoder JPEG

G.721d
G.721e

SCENARIO 2
Camera-phone
Application

G.721e Voice compression
encoder

Table 8.2: Simulator parameters for core configurations.

1-wide
core

2-wide
core

4-wide
core

8-wide
core

Fetch/Retire Rate 1 2 4 8
Functional/Load-Store Units 1/1 2/2 4/2 8/4
RUU Size 8 16 32 128
LSQ Size 8 8 16 32
Out-Of-Order no yes yes yes

viewing your interlocutor during a phone conversation – the mix of applications

considered in this case is an MPEG2 decoder, a G.721 decoder and a G.721

encoder. Scenario 2 considers a device that enables the capture and encoding

of pictures while talking on the phone – the mix of media applications in this

case is a JPEG encoder, a G.721 decoder and a G.721 encoder. The component

applications comprising Scenarios 1 and 2 are listed in column 1 of Table 8.1.

The input data sets used to run these applications were the primary input

data sets used in the experiments in the single application case.
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Table 8.3: Reference Subsystems: Cache hierarchy configurations.

Size Range Associativity Line Size Kill-Win Range
L1 Cache Parameters

4KB-32KB 1/2Way 32B 4K-64K
L2 Cache Parameters

16KB-256KB 1/2/4Way 64B-256B 64K-1024K

8.3 Machine Models

As mentioned previously, we considered platforms with both SMT and

conventional superscalar cores. We modeled 4 processor cores with issue widths

ranging from 1 to 8 for each machine type. The cores with smaller issue

widths were used to assess the energy-efficiency of Xtream-Fit in the context

of low-power systems, while the high issue width cores were used to assess

it’s efficiency in the context of higher performance systems. The key core

configuration parameters for the 4 systems are shown in Table 8.2.

The data cache hierarchy parameters for the reference systems were ag-

gressively varied, as shown in Table 8.3. When considering experiments for the

reference systems with the SMT cores, we had the choice of using either uni-

fied L1 and L2 data caches or separate L1 and L2 data caches, with one cache

per thread context. Note that, after an extensive design space exploration

for these systems, we found that the best energy-delay product for the refer-

ence subsystems was consistently obtained for configurations with one L1 data

cache per thread context, and a unified L2 data cache (shared by all contexts)

– yet the ‘best’ performing cache sizes, associativity, kill window sizes, etc.,
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varied quite substantially across the various media benchmarks. Naturally, for

the superscalar machines, a standard hierarchy with a single L1 D-Cache and

a single L2 D-Cache was used. Finally, for the Xtream-Fit configurations, we

have one 2KB Scratch-Pad per application, and a Streaming Memory whose

size depends on the corresponding task granularities (see Section 5.1).

8.4 Results: Single Application Case

We start by discussing the effectiveness of Xtream-Fit for single applica-

tion media devices. These experiments are conceptually similar to the results

presented in Chapter 6, yet we regenerated them with the SMT machines with

a single hardware context, to use them as baselines for the multi-application

case.

A summary of the experimental results obtained for the MPEG2 de-

coder (executing with input stream mobile.mpg), is presented in Figure 8.1.

Specifically, Figure 8.1(a) plots decoding delays for platforms using Xtream-

Fit vs. the corresponding best reference configuration, for 1, 2, 4 and 8-

wide machines. Xy-z denotes a platform with an y-wide processor core and

Xtream-Fit, where z is the “optimal” task granularity for the particular case.

Ry denotes a platform with an y-wide processor core and the best reference

memory subsystem, i.e., the one leading to minimum energy-delay product,

for the particular case.

Not surprisingly, for most cases Xtream-Fit delivers marginal perfor-

mance improvements (always within a single digit – see relative percentages
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indicated at the top of Figure 8.1(a)), since properly tuned cache-based data

memory subsystems perform very well for media workloads. For the same set

of experiments, Figure 8.1(b) plots total energy consumption on memory com-

ponents, i.e., in the Streaming Memory, Scratch-Pad Memory and SDRAM for

Xtream-Fit, and in the cache hierarchy and SDRAM for the reference subsys-

tems. As indicated in the figure, Xtream-Fit consistently outperforms the

best reference configurations, with percentage improvements in total energy

consumption varying between 60% and 65%. Finally, Figure 8.1(c) plots the

corresponding energy-delay product metric, for the same set of experiments.

The results show very substantial improvements for Xtream-Fit – specifically,

it decreases energy-delay product by 62%-66%, when compared to the best

performing reference configuration, for any particular core. A comparative

analysis between Xtream-Fit and the reference memory subsystems for the

three different energy components is provided below.

8.4.1 On-chip Dynamic Energy

The dynamic energy savings enabled by Xtream-Fit are quite signifi-

cant, being mostly due to the hardware simplicity of the (software controlled)

Streaming Memory and Scratch-Pad, in contrast to the more “power hun-

gry” features of traditional caches, needed to deliver good performance (e.g.,

associativity).
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Figure 8.1: Comparative evaluation of performance, energy-consumption and
energy-delay product, Xtream-Fit vs. Reference Subsystems for the MPEG2
decoder running on a 1-wide, 2-wide, 4-wide and 8-wide MIPS R10000 like
machine.

8.4.2 On-chip Leakage Energy

Even though the cache decay scheme used in the reference subsystems

works very well for “low reuse” media applications [33, 65], we found that

Xtream-Fit’s on-chip memories consistently consumed significantly less leakage

energy (with 82% to 95% savings for the MPEG2 decoder). This is mostly due

to Xtream-Fit’s ability to efficiently/selectively shut down Steaming Memory

regions, as the data objects they hold become “dead.”

8.4.3 Off-chip SDRAM Energy

Xtream-Fit’s savings in SDRAM energy consumption are also signifi-

cant across all sets of experiments (50% to 61% savings for the MPEG2 ex-

periments). These improvements occur despite the fact that we use the same
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SDRAM shutdown policy for, both, Xtream-Fit and the reference subsystems.

Recall that each individual read or write access to the SDRAM requires two

separate activate/precharge actions, which consume a significant amount of

energy. The ability to individually control burst sizes for each distinct data

stream, via data transfer tasks, and the virtual elimination of any possible data

conflicts in on-chip memory (requiring live data eviction), are the two key ad-

vantages of Xtream-Fit over the reference configurations, leading to fewer and

far more efficient accesses to external memory.

8.4.4 Trends with Processor Performance

We now briefly discuss the main trends observed for this set of experi-

ments, as processor issue width increases, and as more bandwidth is required

from the data memory subsystem. We consider Xtream-Fit first. As one

moves from a 1-wide processor to a 8-wide processor, “optimal” task granu-

larity increases by a factor of 4 (specifically, g∗ is 1 for the 1-wide machine

and 4 for the 8-wide machine), performance improves by a factor of 4.5 (see

X1-1 and X8-4 in Figure 8.1(a)), and the total energy consumed by Xtream-fit

decreases by about 9% (see X1-1 and X8-4 in Figure 8.1(b)). Thus, Xtream-

Fit’s energy-delay efficiency is clearly higher for the faster processors, since,

both, delay and energy consumption decrease, as issue width increases.

Let us now analyze the specific trends for each of the three energy

components, noting that for the 1-wide machine (X1-1), on-chip leakage en-

ergy and on-chip dynamic energy account each for roughly 10% of the total
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energy consumed by Xtream-fit, while off-chip SDRAM energy accounts for

about 80% of such energy. As we move from X1-1 to X8-4, total on-chip leak-

age energy decreases by 70%, on-chip dynamic energy increases by about 16%,

and off-chip SDRAM energy decreases by about 4%. The observed decrease

in on-chip leakage energy is due to two factors. First, the 2 KB Scratch-Pad

leaks for much less time for the 8-wide machine (or, stating it differently, the

average amount of leakage energy wasted per ‘unit of work’, or task, is much

smaller). Second, the average time a given data object is alive in the Stream-

ing Memory is also smaller for the 8-wide machine – indeed, performance

improved by a factor of 4.5 while task granularity increased by only a factor

of 4.2 The increase in on-chip dynamic energy results from two factors. The

first of such factors is the increase in the size of the Streaming Memory for the

8-wide machine, due to the corresponding increase in task granularity. How-

ever, for our relatively small software-controlled memories, the corresponding

increase in energy consumption is almost negligible. Indeed, the bulk of the

observed increase in on-chip dynamic energy consumption is actually caused

by a substantial increase in the number of memory accesses, due to the higher

rate of misspeculations/branch mispredictions incurred by the wider out-of-

order processor core. Finally, the small decrease in off-chip SDRAM energy

consumption results, again, from the increase in task granularity, and thus

on the size of data blocks accessed from main memory. Note finally that the

small decrease observed in this case clearly indicates that the individual cost

2The size of the Streaming Memory for the MPEG2 decoder is (g × 2KB).
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of read/write accesses to the SDRAM is already quite amortized for a task

granularity of 1.

Summarizing, if one can perform the same amount of processing work

in less time, leakage and power down costs per ‘unit of work’ (incurred by on-

chip and off-chip memories, respectively) decrease. In addition, the memory

subsystem may be able to more aggressively prefetch data, with the associ-

ated benefits in terms of SDRAM access cost amortization. Obviously, faster

processors are also more power hungry. Still, the point being made here is

that, for the set of platforms/cores considered in our experiments, Xtream-

Fit’s energy-efficiency increases with higher bandwidth requirements, which is

clearly a desirable feature.

Let us now analyze the results for the reference memory subsystems.

While the tuning of Xtream-Fit was very simple, the tuning of the refer-

ence subsystems (in order to find the point of “maximum” energy delay effi-
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ciency) was extremely expensive, requiring thousands of simulations (aggres-

sively varying L1 and L2 cache sizes, and corresponding line sizes, degree of

associativity, and kill window sizes – see Table 8.3). For the best reference

subsystems, as one moves from a 1-wide processor to a 8-wide processor, per-

formance improves by a factor of 4.3, and total energy consumption decreases

by about 20%. Specifically, on-chip leakage energy consumption decreases by

about 22% (yet some “fluctuations” occur for intermediate machines3), on-

chip dynamic decreases by 21% and off-chip SDRAM decreases by about 19%.

(Note that, for the 1-wide machine, on-chip leakage energy, on-chip dynamic

energy, and off-chip SDRAM energy accounted for roughly 27%, 6% and 67% of

the total energy.) Thus, although the trends seen here are somewhat similar to

the ones observed for Xtream-Fit, the degree to which each energy component

varies is quite distinct. A detailed discussion on the rationale for such varia-

tions would require a lengthy discussion on the many (conflicting) parameters

defining a cache hierarchy [12, 23, 62], and is therefore not presented.

Note finally that Xtream-Fit’s improvement in energy-delay efficiency

with respect to the best reference subsystem slightly decreases as we move

from the 1-wide to the 8-wide machine (66% for a 1-wide machine, 64% for a

2-wide machine, 62% for a 4-wide machine, and 62% for a 8-wide machine).

As the processing subsystem becomes faster, the delay dominance of the pro-

cessing task over the data transfer task decreases and as a result, Xtream-Fit’s

performance improvement slightly diminishes. It is important to note however

3In other words, leakage sometimes increases as we move to a wider machine.
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that, this decrease in energy-efficiency is only marginal, and that Xtream-Fit

continues to be energy-efficient even for faster/wider processors.

8.4.5 Summary of Experimental Data

Figure 8.2 shows the percentage improvements in energy-delay product

achieved by Xtream-fit with respect to the best reference subsystems, for our

four media benchmarks. As it can be seen, Xtream-Fit consistently delivers

substantial improvements in energy-delay product, ranging from 50% to 75%.

The experimental results presented above were derived using a single

input data stream per application. The results are however representative,

since we have determined, through extensive experimental validation, that

using the exact same task granularity g∗ for very distinct input data sets con-

sistently gives very similar energy-delay efficiency improvements with respect

to the baseline reference subsystems (for each of the individual benchmarks),

with variations within 2% – see e.g., Section 5.3.

8.5 Results: Multiple Applications Case

We now discuss the effectiveness of Xtream-Fit for media devices run-

ning multiple applications under synchronization constraints.

8.5.1 Analysis of Results for Scenario 1

A summary of the experimental results obtained for Scenario 1, i.e., an

MPEG2 decoder running simultaneously with a G.721 encoder and a G.721
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Figure 8.4: Comparative evaluation of performance, energy-consumption and
energy-delay product for Xtream-Fit vs. Reference Subsystems, for the
MPEG2:G.721d:G.721e mix (Scenario 1) running on an SMT machine.
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decoder, is presented in Figures 8.3 and 8.4. As in the previous case, our experi-

ments consider 1, 2, 4, and 8-wide traditional superscalar cores (Figure 8.3) and

SMT cores (Figure 8.4). Since three applications run concurrently in this ex-

periment, the labels for the Xtream-Fit configurations indicate the “optimal”

task granularity for each such application. Specifically, Xy-z/w/v denotes a

platform with Xtream-Fit and a y-wide processor, where the “optimal” task

granularity for the MPEG2 decoder, the G.721 encoder and the G.721 decoder

is z, w, and v, respectively. For this experiment, we specified that the decoding

of each video frame (comprising 396 macroblocks) should be synchronized with

the decoding and encoding of 1092 sound samples, which corresponds to a syn-

chronization granularity of (GMPEG2 = 396, GG.721d = 1092, GG.721e = 1092).

Figures 8.3(a) and 8.4(a) plot decoding delays for platforms with su-

perscalar and SMT cores, respectively. Similarly to the single application

case, Xtream-Fit delivers marginal performance improvements with respect to

the best reference subsystems. In terms of absolute performance, the SMT

and superscalar based platforms with 1-wide processors achieve a rate of 5

video frames (CIF resolution) and 5+5 audio frames per second (32.2Kbps)

(MPEG2, G.721d and G.721e); platforms with 2-wide processors achieve a rate

of 10 video frames and 10+10 audio frames per second; and platforms with 4

wide processors achieve a rate greater than 30 video and 30+30 audio frames

per second. The latter is a very reasonable performance for the video-phone

application under consideration.

Figures 8.3(b) and 8.4(b) plot total energy consumption on memory
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components. As it can be seen, Xtream-Fit again consistently outperforms

the best reference configurations, delivering improvement in total energy con-

sumption in the range of 59% to 66%. Finally, Figures 8.3(c) and 8.4(c) plot

the corresponding energy-delay product metric. The results show very sub-

stantial improvements for Xtream-Fit, with decreases in energy-delay product

of 61% to 66%.

For each individual scenario, the “optimal” task granularity (g∗) was

determined on a per application basis, using the simple method discussed in

Section 7.3. Figure 8.5 shows the percentage variation in energy-delay product

resulting from using task granularities g∗, g∗/2 (represented at distance of −1

from g∗ in the graph) and 2g∗ (represented at distance of 1 from g∗), for each

of the applications in Scenario 1 (i.e., MPEG2 decoder, G.721 encoder and

G.721 decoder). As it can be seen, in Figure 8.5 the variation in energy-delay

product (when g∗, 2g∗ and g∗/2 task granularities are used) is insignificant,

suggesting that our simple design space exploration method should work very

well for most cases.

Let us now analyze the energy consumed on the various memory com-

ponents – see Figures 8.3(b) and 8.4(b). As we move towards wider machines,

Xtream-Fit exhibits a very similar behavior to that observed for the single

application case – on chip leakage energy decreases substantially, on-chip dy-

namic energy increases somewhat (roughly 12% from the 1-wide to 8-wide

machine, due to a steady increase in memory accesses, caused by a higher rate

of branch mispredictions), and off-chip energy decreases marginally (within a
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single digit for all cases). The reference subsystems, in turn, exhibit a much

less ‘predictable’ behavior, with no clear trend for on-chip leakage energy, as

well as some fluctuations in on-chip dynamic energy and, of course, always

perform much less energy efficiently than Xtream-Fit.

Note that SMT machines achieve better performance than their su-

perscalar counterparts, since they are better able to take advantage of the

available machine issue slots, by simultaneously exploiting the ILP available

in the three threads. For example, for the set of Xtream-Fit experiments per-

taining Scenario 1, the relative performance improvements achieved by the

SMT cores (with respect to the their superscalar counterparts) vary from 5%

(1-wide machines) to 26% (8-wide machines). The experimental data shows

that Xtream-Fit performs similarly well for both families of processors, with

fluctuations on relative energy-delay efficiency with respect to the reference
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subsystems being mostly caused by corresponding fluctuations on the perfor-

mance possible to achieve with these baselines.

8.5.2 Summary of Results for Scenario 2

Scenario 2 considers a JPEG decoder running simultaneously with a

G.721 encoder and a G.721 decoder. For this experiment, we specified a some-

what artificial synchronization constraint, namely, that the encoding of 32

8×8 pixel blocks of a 512×512 image should be synchronized with the decod-

ing and encoding of 1092 sound samples, corresponding to a synchronization

granularity of (GJPEG = 32, GG.721d = 1092, GG.721e = 1092).

A summary of the experimental results obtained for Scenario 2 is

presented in Figures 8.6 and 8.7. As before, Xtream-Fit’s performance is

marginally better than the best reference subsystems, it delivers very sub-

stantial improvements in total energy consumption (between 63% and 68%)

and thus substantial improvements in energy-delay product (between 63% and

68%).
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Chapter 9

Conclusions and Future Work

In this dissertation we propose a special-purpose data memory subsys-

tem, called Xtream-Fit, targeted to streaming media applications executing

on, both, generic uniprocessor embedded platforms and SMT-based multi-

threading platforms. We empirically demonstrate that Xtream-Fit achieves

high energy-delay efficiency across a wide range of media devices, from sys-

tems running a single media application to systems concurrently executing

multiple media applications under synchronization constraints. Xtream-Fit’s

energy efficiency is predicated on a novel task-based execution model that ex-

poses/enhances opportunities for efficient prefetching, and aggressive dynamic

energy conservation techniques targeting on-chip and off-chip memory com-

ponents. A key novelty of Xtream-Fit is that it exposes a single customiza-

tion parameter, thus enabling a very simple and yet effective design space

exploration methodology to find the best memory configuration for the target

application(s). Extensive experimental results show that Xtream-Fit reduces

energy-delay product substantially – by 32% to 69% – as compared to ‘stan-

dard’ general-purpose memory subsystems enhanced with state of the art cache

decay and SDRAM power mode control policies. Based on these results, we

argue that Xtream-Fit provides a unique alternative to: (1) “standard/general-
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purpose” data memory hierarchies enhanced with state-of-the-art power-aware

features found in contemporaneous processors; and (2) complex, highly spe-

cialized hierarchical data memory subsystems found on many programmable

hardware accelerators. Specifically, Xtream-Fit enables an aggressive reduc-

tion of energy-delay product when compared to the first group of solutions,

while greatly simplifying the overall customization effort (hardware and soft-

ware), when contrasted to the second group of solutions.

Our results indicate that Xtream-Fit scales seamlessly when used with

a wide range of processors including both conventional superscalar as well as

SMT machines, i.e, efficiency gains delivered by Xtream-Fit with respect to the

reference subsystems are not substantially impacted by the actual ILP of the

machine. This strongly suggests that, for media applications, Xtream-Fit will

consistently be much more energy-efficient than a corresponding cache-based

system dimensioned to deliver similar performance. For very high performance

systems, e.g., using programmable accelerators such as Imagine, faster, more

complex special purpose data memory architectures may be required.

An interesting future work direction would be to assess our approach’s

ability to support variable (“data driven”) synchronization constraints. Some

streaming media applications (or mixes of such applications) may require dis-

tinct synchronization granularities for different input data sets. Consider, for

example, a media device that must simultaneously execute an MPEG2 decoder

and a G.721 decoder. Different execution scenarios may be conceived for such

a device. For example, one may need to decode video streams at CIF or
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QCIF resolution (say, at a rate of 11880 macroblocks/s at 30 frames/s or 1485

macroblocks/s at 15 frames/s respectively) and with correspondingly different

audio frame rates. These two scenarios would require different synchronization

granularities, i.e., (GMPEG2d, GG.721d) values. At a first glance, it appears as

though such diversity can be handled well in our approach. Specifically, since

the number of macroblocks per frame is identified in the video stream, the re-

quired nMPEG2d and nG.721d values for the particular input set characteristics

(i.e., the number of times each task from each of the applications needs to be

executed before a synchronization point is reached), could, for example, be

quickly retrieved from a lookup table, and appropriately used.1

1Naturally, for each mix of applications, one may need to store several such tuples,
indexed by relevant stream characteristics, and possibly with a default set of values.
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