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Let us assume that F/Q is an elliptic curve of level N and rank equal
to 1. Let ¢ be a prime that does not divide the conductor. We study con-
jecture 4 of B. Mazur and J. Tate in [MT87]. This conjecture relates to the
Birch and Swinnerton-Dyer problem in the g-adic case. We produce a lot of
numerical evidence towards the conjecture. We also propose a refinement of

the conjecture in the rank 1 case in section 2.3.
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Chapter 1

Introduction

B. Mazur and J. Tate in Refined Conjectures of the Birch and Swinnerton-
Dyer Type postulated a series of conjectures of the BSD-type in terms of finite
layers. The hope was to find “functions with adelic type domains of definition
and ranges of values” for which the g-adic L functions were only a component,

as expressed by Yuri Manin [Man)].

In the present work, we show computational evidence related to those
conjectures. Our approach is completely experimental and we focus in the
special case of elliptic curves with Mordell-Weil rank 1. We concentrate our
attention in conjecture 4 in [MT87]. We start by defining the analytic and

arithmetic ingredients, then we will present our results and computations.

Our computations are mainly divided in two parts, one which matches
the language and ideas in [M'T87] and a second part which can be thought as

a curiosity in the computation of the arithmetic side or the g function.



Chapter 2

Mazur-Tate Conjecture for rank 1

2.1 Analytic Side

Assume FE is an elliptic curve over Q with conductor N. Consider a Néron
differential w for E. (i.e. a regular differential which extends to a differential
on the Néron model of E over Z and is not zero in the special fiber). Such w is
unique up to sign. Then, by the Néron lattice Ag we understand the “periods”

J,w € C, where v runs through loops in E(C).

Now, there is a unique pair of positive real numbers QF, and Q5 such

that one of the two conditions holds:
1. Ap =QEZ + QpiZ
2. Ap C QLZ + QiZ is the sub-lattice generated by the complex numbers

afdy, 4+ bQ2i such that a — b =0 (mod 2).

In the first case, we will just simply say that Ag is rectangular or that we
are on the rectangular case, otherwise, we will just say that we are on the

non-rectangular case.

Let f be the modular form associated to F, and let a/b be a rational



number. We define the modular elements by:
27r/ Fla/b+ it)dt = Qa/bl + Oxla/bl i (2.1)
0

If F4 and FE5 are two elliptic curves in the same isogeny class, we have

that:

/b, = g, /U, [0/, (2.2)

Denote R(FE1, Ey,+) = QEQ/QE. In our computations, we are going
to be concerned only with the plus symbols (+); so from now on, we denote
R(E1, Ey,+) simply by R(E;, Es). Also, most of the time the curve E will
be clear from the context, so we will simply write QF and [a/b]" for QF, and
a/b]1.

If w is the real period of E, then the value 2}, is a period in the
rectangular case, or half a period in the non-rectangular case. Hence, if w;

and w, are the real periods of F; and E,, respectively; we have the following

cases:

w2/w1 if AElAEQ >0
R(EQ,El) = 2’(1)2/’(1)1 if AE1 < 0 and AEQ >0 (23)
%wg/wl if AEl > 0 and AEQ <0

where Ap, and Ap, are the discriminants of F; and Es, respectively. Notice

that Ag is rectangular, if and only if, the discriminant of E is positive.

Hence, to compute the modular elements for all the elliptic curves in

an isogeny class, it suffices to compute them for only one curve E, and then

calculate the ratio R(E,_) for all the other curves in the class.



For convenience, we use the Strong Weil Curves, as listed in [Cre97],
of each class to compute the modular elements. If E is an elliptic curve, we

denote Eg the Strong Weil Curve in the class of E.

Definition 2.1.1. For a prime ¢ 1 N and an elliptic curve E with rank(E) > 1

we define the following “multiplicative” modular element:

q—1

l(g) = [T a"/"" (mod g) (2.4)

a=1

The values [a/q]" are integers for ¢ f N if rank(E) > 1 [Man72], so the

“multiplicative” modular elements are well defined.

Sometimes, it simplifies notation to consider the global multiplicative

modular element:

l=(Ua), € ]]F; (2.5)

N

(i.e. [ has projection [(q) at the g-coordinate for ¢t N).

2.2 Arithmetic side

Let Ey be the points of good reduction everywhere in E. Let P, P’ be points

on E and @ in Ey. For g1 N prime, consider the quantity:

d(P' + P)d(P' + Q)
d(PYd(P' + P + Q)

where d(T') is the denominator of the z-coordinate of a point 7.

9(P,Q,P'.q) = (mod q) (2.6)

This quantity is well defined (as element of ;) if all the d’s are different
from zero (mod ¢). In such a case, we say that the value g(P, @, P',q) is a

good value.



Lemma 2.2.1. If Q € Ey and n, = #(E(F,)), then the good values of
9(P,n,Q, P',q) depend only on P and Q.

Proof. See [MT87], page 733. O

Corollary 2.2.2. There is a bi-multiplicative function
§:ExE— []F; (2.7)
qtN
given by (P, Q) = g(P,n,Q, P',q) at the g-coordinate (q 1 N) and for some

P' € E, assuming there is a P’ such that 2.6 is well defined.

Proof. For simplicity, we denote @, = n,Q. Now, g(P; + P, Q, P, q) =
9(P1, Q4 P q)g(Pe, Qq, P’ + P, q) follows directly from the identity:

d(P'+ Qu)d(P' + P, + Py)
d(PYd(P'+ P+ P, +Q,)
d(P' + P)d(P' + Q) d(P'+ P + Po)d(P' + P + Q)

d(P'+ Py + Qu)d(P") d(P"+ P, + P, + Q,)d(P' + P)

(2.8)

So, taking P” = P'+ Py, in the last fraction of the equation, we obtain:
g(Pl + P27 qu P/v q) = g(P17 Qqu P/7 q)g(P27 Qqu P//7 q) (29)

But, since g(P, Qg P",q) = g(P, Q4. P, q) does not depend on the
choice of P" or P”, we obtain the proposition, provided all terms are well

defined.

The only problem with this proof is when P’ + P, € E,, in this case

d(P" + P;) will be divisible by ¢. To avoid this situation, we can take P in



place of P, and vice-versa. Again, if we also have P’ + P, € E,, we conclude

that P, = P, mod q.

In this case, we can change P’ so that the right hand side has no
vanishing denominators

But, then all the quantities on 2.8 will be well defined.

So, the function is multiplicative in the first coordinate.

The multiplicativity in the second coordinate follows from the formal

symmetry g(P, Qq, P, q) = g(Qq, P, P',q). Suppose Q, Q" € Ej, then:

g(P,Qq+ Q. P'.q) =9(Qq + Q. P, P',q)
:g(QQ7 P? P/7 q)Q(QZ]? P7 P/ _'_ QQ7 q)

=9(P,Qq; P, 0)g(P, Q4 P'+ Qy, q) (2.10)

But, multiplicativity follows because g(P, Q;, P’ 4 Qq,q) does not depend on
P’ by lemma 2.2.1. O

Remark 2.2.1. Notice §(0,Q) =1 € [1nF; Now, if T is a point of order
m, then: ¢(T,Q,, P',q)™ = g([m|T,Qq, P',q) = g(0,Qq, P',q) = 1, but then
the number ¢(T,Q,, P’,q) will be an m-root mod ¢ for almost all prime g¢.
Hence, ¢(T,Q,, P',q) = £1 if m is even, or ¢(T,Q,, P',q) = 1 if m is odd.
I still wonder if §(7,Q) = 1 € [, F; for every torsion point T'. I believe
this is the case, because the experimental evidence have shown that the value
g(P,Qq, P',q) does not depend on the generator P of the free part of E. We
know that the set of all possible generators is P+ E;,.5. So, if for a torsion point

T g(T,Q, P',q) = —1, then we must have also that g(P + T, Q) = —g(P, Q).



2.3 Mazur-Tate conjecture

Assume F is an elliptic curve of rank 1. We use similar notation as in the
previous section. Let Ejy be the everywhere good reduction points of E, and
let E, be fiber of the Néron model of E at ¢q. Denote E,;(F,) the non-singular
points of £ (mod q). Set N, := E,/E,s(F,) the group of conected components
in the fiber.

We would like to compute the order of the cokernel of the natural
projection:

¢:E— [N (2.11)
a€p
where ¢ ranges through the set of all primes .

By looking at the following exact commutative diagram:

0 1) 1)
0 Ey FE E/Ey——0

| | |

00— Hqép E”S(Fq) - Hqép Eq - Hqép Nq —0

we obtain the following formula for the order of the cokernel:

#(coker(8)) = —#(EC;EO)

(2.12)
where C' = # (qup Nq> = [ e, ¢ and ¢ = [Ny| are the Tamagawa numbers.

Denote Ej,.s the torsion of . We can explicitly compute the order
#(E/Ep) as the product =, where u is the order of torsion in E, v the order

of the torsion in Ey, and

r=min{j : jP+ R € Ey and R € Ei.5} (2.13)



and P is any generator of £ modulo torsion.

Conjecture 2.3.1. Case rank 1 at good reduction primes.

Let E be a curve of rank 1, let P be a generator of E (modulo torsion),

and let @ be a generator of Ey (modulo torsion), then:
Jw — g(P7 Q)\Hchoker(dm (214>

where |1 is the order of the Tate-Shafarevich group.

This conjecture is slightly stronger than Mazur and Tate conjecture,
since they have an extra ( u-power root of unit in the right side. The com-
putational evidence suggest that such a root of unit is in fact 1, so we don’t

include it in the formula.

Now, if we exponentiate the above equation by w/v, we obtain the
equation:

" =g9(P,Q) (2.15)

which in some way looks more like the classical BSD.

2.4 Testing

We tested the above conjecture for the first 300 elliptic curves in the Cremona
database [Cre97]. All these cases have trivial Tate-Shafarevich group. The
computations of the modular symbols was possible thanks to the program
modsym.gp by B. Bernardi, B. Perrin-Riou and W. Stein [BPRin] written for
running in the Pari Calculator [BC]. Those programs solve the linear algebra

to compute the modular symbols as explained in [Man72] and [Cre97].



However, we must point out that the program modsym.gp gives the
right modular symbols [a/q]™ up to a multiplication by a constant. So, in order
to have the correct modular symbols, we just have to determine the constant.
Thanks to John Tate who suggested to compute explicitly the integral and to
Fernando Rodriguez-Villegas who explained how to get the approximation, we
were able to fix this situation. Hence, to correct the value [a/b]", we assume
the aproximation:

la/b]T ~ <i %cas (27m (%))) /QF (2.16)

i=1

formally equal to the real part of the integral 2.1. Here, the a,, values are the
coefficients of the Fourier expansion of the normalized modular form associated
to E. We compare our computations with the ones obtained by modsym.gp,
to determine the constant. Once this constant is determined, we don’t have
to use the integral for computing more modular symbols, since this constant

is independent from a and b.

We may point out that the above series is equal to [a/b]T if integration
term by term is possible and that we don’t have an estimate of the error of
this approximation, but we are looking for differences of 0.49 or smaller. In
practice, we use the information that we have about the values [a/b]* computed
from modsym. gp to say if the series in 2.16 was a good approximation to [a/b]*.
What we did was to check many values of [a/b]T. More specifically, for b = ¢
a prime not dividing N. We computed the values [j/q|* using modsym.gp for
1 < j < q—1 and we kept the results in a vector with ¢ — 1 rational entries.

Now , we also approximated the integrals by computing

(St () e



up to the first 10,000 terms. We rounded those values to the closest integers,
and we also put the results in another vector with ¢ — 1 entries. If the compu-
tation is good enough, these two vectors are multiples of one another. Notice
that if the value of any of the integrals in 2.17 differs badly from the actual
value, then the vector obtained from the integrals won’t be a multiple of the
vector with the values [j/¢]* from the program modsym.gp. Now, once these

vectors are determined, we will have the needed constant.

If we want, we can also double check our results by taking another

prime and computing the constant again.

The corrected output from modsym.gp for the 300 curves was kept in a
big file. This allows to speed up our testing. Also, we computed the g function

using some routines that we wrote in Pari. and stored the output in another

file.

Now, the following tables contain the information necessary to test

2.3.1.

2.4.1 Tables
Table 1

This table lists all the strong Weil curves up to level 320 with the generators
of £ and Ej. In this table, N is the conductor, L is the letter type and # is
the number type. In the last two columns, we have vectors with points on E
and Fy. Those points are the generators for the groups F and FE, respectively.
The first point in each vector is of infinite order. The other points are torsion

points.

10
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Table 2.1: Generators of E and Ej.

Table of generators for £ and Ej.

| L | # | equation

Continued ...
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Table 2.1: (continued)

Table of generators for £ and Ej. (continued)
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Table 2.1: (continued)

Table of generators for £ and Ej. (continued)

N L | # | equation E FEy

196 | 1 1 [0,-1,0,-2,1] | [[0, 1, 1]] (-1, -1, 1]]

197 | 1 1 [0,0,1,-5,4] | [[1,0,1]] [[1, 0, 1]]

198 | 1 1 1, -1, 0, -18, | [-1, 5, 1], [4, 2, 1]] | [[21, -103, 1]]
4]

200 | 2 1 [0,1,0,-3,-2] | [[-1, 1, 1], [-2, 0, 1]] | [[2, 2, 1]]

201 |1 1 [0,-1,1,2,0] |[[1,1,1]] ([0, -1, 1]]

201 | 2 1 [1,0,0,-1,2] | [[1, 2, 1]] [[1, 1, 1]]

201 | 3 1 [1, 1, 0, -794, | [[16, -7, 1]] [[16, -7, 1]]
8289

203 | 2 1 1,1,1,0,-2] | ]2, 2, 1]] (1, -2, 1]]

205 | 1 1 1, -1, 1, -22, | [[-1, 8, 1], [2, 1, 1]] | [, 8, 1], [3, -2, 1]]
44)

207 | 1 1 1, -1, 1, -5, | [[0, 4, 1], [-3, 1, 1]] | [[1, -5, 1]]
20]

208 | 1 1 [0, -1, O, 8, - | [[4, 8, 1]] [[13, 46, 1]]
16]

208 | 2 1 [0, -1, O, -16, | [[4, -4, 1]] [[1, 4, 1]]
32]

209 | 1 1 [0, 1, 1, -27, | [[-5,9, 1], [1, 5, 1]] | [[13, -46, 1]]
55]

210 | 4 1 [1,1,0,-3,-3] | [[-1, 1, 1], [-2, 1, 1]] | [[-1, 1, 1]]

212 | 1 1 [0,-1,0, -4, 8] | [[2, -2, 1]] (1, 2, 1]]

214 | 1 1 [1, 0, 0, -12, | [[0, 4, 1]] [[6, -25, 8]]
16]

214 | 2 1 [1,0,1, 1, 0] ([0, 0, 1]] [[0, 0, 1]]

214 | 3 1 [1, 0, 1, -193, | [[11, 10, 1]] [[8, -4, 1]]
1012]

215 | 1 1 [0, 0, 1, -8, - | [[6, 12, 1]] [[4, -5, 1]]
12]

216 | 1 1 [0, 0, 0, -12, | [[-2, 6, 1]] [[89, 839, 1]]
20]

218 | 1 1 [1,0,0,-2,4] | [[4,6, 1], [0, 2, 1]] [[6, 11, 8]

219 | 1 1 [0,-1,1, -6, 8] | [[2, -1, 1]] (12, -1, 1]]

219 | 2 1 [0, 1,1, 3, 2] (12, 4, 1], [0, 1, 1]] (12, 4, 1]]

219 | 3 1 1, 1,0, -82, - | [[-6, 7, 1], [10, -5, | [[-6, 7, 1]]
305] 1]]

220 |1 1 [0, 1, 0, -45, | [[-5, -15, 1], [15, 55, | [[4576, -9738, 2197]]
100] 1]]

224 |1 1 [0, 1,0, 2, 0] 1, 2, 1], [0, 0, 1]] [[1, 2, 1]]

225 | 1 1 [0,0, 1,0, 1) (1, 1, 1]] [[-1, 0, 1]]

225 | 5 1 [0, 0, 1, -75, | [[-5, 22, 1]] [[138, 55, 27]]
256]

226 |1 1 [1,0,0,-5,1] | [[-2, 3, 1], [2,-1, 1]] | [[-2, 13, 8]]

Continued ...
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Table 2.1: (continued)

Table of generators for £ and Ej. (continued)

N L | # | equation E FEy

228 | 2 1 [0,-1,0,3,9] |[[3,-6, 1]] [[10, -29, 8]]

229 |1 1 [1,0,0,-2,-1] | [[-1, 1, 1]] (-1, 1, 1]]

232 | 1 1 [0,-1,0,8,-4] | [[2, 4, 1]] (1, -2, 1]]

234 | 3 1 1,-1,0,-3,5] | [[1, 1, 1], [-2, 1, 1]] | [[-1, -2, 1]]

235 | 1 1 [1,1,1,-5,0] | [[2, 3, 1]] [[0, 0, 1]]

236 | 1 1 [0,-1,0,-1,2] | [[1, 1, 1]] (12, -2, 1]]

238 | 1 1 [1, 0, 0, -60, | [[-4, 16, 1], [-8, 4, | [[448368568432,
16] 1]] 42753352118559, 49836032]]

238 | 2 1 [1,-1,0,2,0] | [[1,1,1],][0,0,1]] (1, 1, 1]]

240 | 3 1 [0,-1,0,4,0] |1, 2,1], 0,0, 1]] (1, 2, 1]]

242 | 1 1 [1, 0,0, 3, 1] [[0, 1, 1]] ([-2, -3, 8]]

243 | 1 1 [0,0,1,0,-1] | [[1,0,1]] [[1, 0, 1]]

244 | 1 1 [0, 0,0, 1, 6] (-1, 2, 1]] (12, 4, 1]]

245 | 1 1 [0,0,1,-7,12] | [[7, 17, 1]] [[1, -3, 1]]

245 | 3 1 [0,-1,1,-65,- | [[12, 24, 1]] [[1230, -506, 125]]
204]

246 | 4 1 [1, 1, 0, -66, | [[3, 3, 1], [4, -2, 1]] | [[5, 0, 1]]
180]

248 | 1 1 [0, 1,0, 0, 1) [0, 1, 1]] [[-1, -1, 1]]

248 | 3 1 [0,0,0,1,-1] | [[1, 1, 1]] (2, -3, 1]

249 | 1 1 [1, 1, 1, -55, | [[4, -3, 1]] [[4, -3, 1]
134]

249 | 2 1 [1,1,0,2, 1] [[0, 1, 1]] [[0, 1, 1]]

252 | 2 1 [0, 0, 0, -12, | [[-2, 9, 1], [-5, 0, 1]] | [[41171784, -733675159,
65) 94818816]]

254 | 1 1 [1, 0, 0, -22, | [[-4, 10, 1], [4, 2, 1]] | [[116, -167, 64]]
36)

254 | 3 1 [1, -1, 0, -5, - | [[-1, 1, 1]] [[-1, 1, 1]]
3]

256 | 1 1 [0,1,0,-3,1] | [[0,-1, 1], [1,0,1]] | [[0, -1, 1]]

256 | 2 1 [0,0,0,-2,0] | [-1,1,1],[0,0,1]] | [[1, 1, 1]]

258 | 1 1 [1,1,0,3,-3] |2, 3,1] (1, -2, 1]]

258 | 3 1 [1, 0, 1, -15, | [[5, -12, 1]] [[30, -104, 27]]
22)

262 | 1 1 [1,0,0, 1,25 | [[-2, 5, 1]] [[-4942, -9225, 2744]]

262 | 2 1 [1,-1,0,-2,2] | [[1,0,1 [[1, 0, 1]]

265 | 1 1 [1,-1,1,-138, | [[6, 1, 1], [7, -4, 1]] | [[6, 1, 1], [7, -4, 1]]
656]

269 |1 1 [0,0,1,-2,-1] | [[-1, 0, 1]] (-1, 0, 1]]

272 | 1 1 [0,1,0,-8,4] | [[-2,4,1],[2,0,1]] | [[3, -4, 1]]

272 | 2 1 [0, 0,0, -11, - | [[-1, 2, 1], [-3, 0, 1]] | [[6, 12, 1]]
6]

Continued ...
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Table 2.1: (continued)

Table of generators for £ and Ej. (continued)
N L | # | equation E FEy
273 | 1 | 1 | [0, -1, 1, -26, | [[1L, 31, 1] L, -7, 1]
68]
274 |1 |1 | [1,0,0,-7,9] | [[2, -3, 1]] ([-26, 15, 8]]
274 |2 |1 | [1, -1, 0, - | [[31,-15, 1]] 31, -15, 1]]
2846, 59156]
274 |3 |1 | [1,-1,0,-2,0] | [, 1,1],[0,0, 1] | [[1, 1, 1]]
275 |1 |1 | [1, -1, 1, 20, | [[8,21,1], [4, 10, 1]] | [[8, 21, 1]]
29]
277 |1 |1 | [1,0,1,0, -1 | [[1,0, 1] ([1, 0, 1]]
278 |1 |1 | [1,0,0,-1,9] | [[2 -5, 1]] (148, 215, 64]]
280 [ 1 |1 | [0,-1,0,-1,5] | [[1, 2, 1]] (4, 7, 1]
280 {2 |1 | [0, 0,0, -412, | [[-18, 70, 1]] [[-
3316] 23844365889629004 780557695,
-146026589415587201590421981,
1816504686805930915452625]
282 (2 |1 |[1, 1, 1, -15, | [[3, -6, 1], [-5, 2, 1]] | [[-65064, 75319, 13824]]
21]
285 (1 |1 |[1,0,0,19,0] | [[1,4,1],[0,0,1]] | [[5103,-23220, 343]]
285 |2 |1 | [1,1,0,2-17] | [[6, 13, 1], [2,-1,1]] | [[6, 13, 1]
286 |2 |1 | [1, 1, 1, 13, [[19, -98, 1]] ([-5052188869623392,
177] -6615903343401659,
1144707943923712]]
286 (3 |1 |1, 1, 0, -33, | [[1, 5, 1]] [[3, -2, 1]]
61]
288 |1 |1 |10,0,0,3,0 |1 21100 1] |2 -7 8]
288 |2 |1 |1[0,0,0,-21,- | [[3,4,1], 1,0, 1], | [[420, -715, 64]]
20] [5, 0, 1]]
280 | 1 |1 | [1,-1,1,-199, | [12, 38, 1], [30, | [[-12, 38, 1]]
510] 129, 1]]
200 | 1 |1 |[1,-1,0,-70,- | [[-5, 4, 1], [-4, 2, 1]] | [[-5, 4, 1]
204]
201 |3 |1 | [1,1,1,-3,0] |[o,-1,1],[1,-1, 1] | [[0, -1, 1]]
204 [7 |1 |[1,0,1,2 32 | [1.5 1], 3 1,1]] | [[6, 13, 1]
206 (1 |1 |0, -1, 0, -9, | [[1, 2, 1]] [[4, -5, 1]]
13]
206 |2 |1 |0, -1, 0, -33, | [[3, 2, 1]] (4, 1, 1]]
85]
207 |1 |1 |0, 0, 1, -81, | [[15, 49, 1] [[L, -15, 1]
290]
207 |2 |1 | [1,-1,1,1,0] | [[,0, 1] ([0, 0, 1]]
207 |3 |1 | [1,-1,0, 12, - | [[4, 7, 1] [[20, -99, 1]]
19]

Continued ...
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Table 2.1: (continued)

Table of generators for £ and Ej. (continued)

N L equation E FEy

208 | 1 1, 0, 0, -19, | [ L 1]] (12, -381, 64]]
33]

208 | 2 1,-1,0,1,-1] | [[1, 0, 1]] (1, 0, 1]]

300 | 4 0, -1, 0, -13, | [[7,-15, 1], 2,0, 1]] | [[324, -497, 64]]
29]

302 |1 [1, 1, 1, -230, | [[33, 159, 1], [1, 31, | [[4810366,-1101641, 551368]]
1251] 1]]

302 | 3 [1,-1,1,0, 3 |[[L 1,1]] -2, 11, §]]

303 | 1 0, 1, 1, -197, | [[-2, 13, 1]] (1046333508, 1767647804,
-208] 67419143]]

303 | 2 [0,1,1,-6,2] | [0, 1, 1]] (12, -2, 1]]

304 | 1 [0,1,0,0,-76] | [[10, 32, 1]] [[187 2564, 1]]

304 | 3 [0, -1, 0, -8, | [[0, 4, 1]] [[-3, 2, 1]]
16]

304 | 6 0, 1, 0, -21, | [[3, 2, 1]] 2, 1, 1]]
31]

306 | 2 [1,-1,0,-27,- | [[-3,6, 1], [6,-3, 1]] | [[7, -13, 1]]
27]

308 | 1 0, -1, 0, -21, | [[7, -14, 1] (26, 17, 8]
49]

309 | 1 [1,0,0,-6,9] | [[3, -6, 1]] [[5, 8, 1]]

310 | 2 [1, 0, 0, -106, | [[-4, 30, 1], [8, 6, 1]] | [[5948280296, -8759749391,
420] 1204550144]]

312 | 2 [0,-1,0,-3,0] | [1,1,1],[0,0, 1] | [[4, -6, 1]

312 | 6 0,1,0,5 14] | [[1,3, 1], [-2,0, 1]] | [[5754, 38998, 9261]]

314 | 1 1, -1, 0, 13, - | [[6, 13, 1]] 1, 1, 1]]
11]

315 | 2 [,-1,1,-23,- | [[-2, 1, 1], [3, 1, 1]] | [[-2, 1, 1]]
34]

316 | 2 0,0,0,-7,-2] | [[-1, 2, 1] (-2, -2, 1]]

318 | 3 1,1,0,7,-9 | [[5, 11, 1]] (1, 0, 1]]

318 | 4 1, 1, 1, -12, | [[1, 5, 1]] [[-5948841000, 2569385943,
45] 1151022592]]

320 | 2 [0,0,0,-8,8 |I[1,-1,1],[2,0,1]] | [[1, 1 1]]

320 | 6 0,1,0,-5 -5 | [-2, 1, 1], [1,0, 1]] | [[-2, 1, 1]
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This last table contains the quantities needed for testing Mazur and Tate

conjecture. N is the conductor, L is the letter type, # is the number type, r

is as in section 3, u is the order of the torsion, v is the order of the torsion in

Ey and C'is the product of Tamawaga numbers.

Table 2.2: Table of values for conjecture.

‘ Table of values for r conjecture. ‘

N [L

| #

[u_ v

IS |

37
43
53
57
o8
61
65
65
7
79
82
82
83
88
89
91
91
91
91
92
99
99
101
102
102
106

—_

DO = = = = = NN N DN = s e e e e e e e

—_

R NN PN, WNNR R RFRPRNNRARERPRNDRARERPRPRPRPRPR e

—_

NN RN WOWWHFERFRRFRRRFRRFRRRFRDDN R NN e
RO DD — DN — — W Wk KRR DD

1

—_

e e e e N e e e e e e e el S T S O e S S T Ty

—_

N R R, AN WOOR R R ERFRPRNDNNRFENERSRFRFNDNRF -

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

24

24

1
2
1
2
3
4
1
1
2
1
1
2
1
1
2
1
2
1
1
2
3
4

1
1
2
1
2

1
1
1
1
1

112 1

112 | 1

117 1

117 1

117 1

117 1

118 | 1

121 | 2

121 | 2

122 11

123 1

123 | 1

123 | 2

124 11

124 1 1

128 | 1

128 | 1

129 | 1

130 | 1

130 | 1

130 | 1

130 | 1
131

135 |1

136 | 1

136 | 1

138 | 1

138 | 1
141

141 | 4

142 | 1

142 | 2

143 |1

145 | 1

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

12

16

10

2
1
1
1
1
2
1
2
1
2
1
1
2
1
1
1
2
1
2
1
1
1
2
1
2
3
1
2
1
2
1
2
3
1

145 | 1

148 | 1

152 |1

153 | 1

153 | 2

153 | 2

154 |1

154 |1

155 |1

155 |1

155 | 3

156 | 1

156 | 1

158 | 1

158 | 2

160 | 1

160 | 1

162 | 1

162 | 1

163 | 1

166 | 1

170 | 1

170 | 1

171 ] 2

171 ] 2

171 ] 2

172 11

172 11

175 |1

175 |1

175 | 2

175 | 2

175 | 2

176 | 3

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

22

16

16

22

2
1
1
1
1
1
2
1
1
2
3
1
1
1
2
3
4
1
2
1
1
2
3
4
1
2

1
1
1
1
2
3
4

176 | 3

184 |1

184 | 2

185 |1

185 | 2

185 | 3

185 | 3

189 | 1

189 | 2

189 | 2

189 | 2

190 | 1

190 | 2

192 |1

192 1

192 1

192 |1

196 | 1

196 | 1

197 1 1

198 | 1

198 | 1

198 | 1

198 | 1

200 | 2

200 | 2
201

201 | 2

201 |3

203 | 2

205 | 1

205 | 1

205 |1

205 |1

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

12

16

12

18
18

12

12

12

12

1
2
1
2
3
1
1
2
1
2
3
4
1
1
1
1
1
1
1
2
1
1
2
1
2
1
2
3
4
1
2
1
2
1

207 | 1

207 |1

208 | 1

208 | 1

208 | 1

208 | 2

209 | 1

209 |1

210 | 4

210 | 4

210 | 4

210 | 4

212 |1

214 |1

214 | 2

214 | 3

215 |1

216 | 1

218 | 1

218 | 1

219 | 1

219 | 2

219 | 2

219 1 3

219 | 3

220 | 1

220 | 1

220 | 1

220 | 1

22411

22411

225 |1

225 |1

2251 5

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

12

28
o6

16

12

12
36

24

12

14
28

12

12
36

12

2
1
2
1
1
1
1
2
1
1
1
2
1
2
1
2
3
4
1
2
1
2
1
1
1
2
3
1
2
1
1
1
1
1

22515

226 | 1

226 | 1

228 | 2

229 |1

232 |1

234 | 3

234 | 3

235 |1

236 | 1

238 | 1

238 | 1

238 | 2

238 | 2

240 | 3

240 | 3

240 | 3

240 | 3

242 |1

24211

243 |1

243 |1

244 11

24511

245 | 3

245 | 3

245 | 3

246 | 4

246 | 4

248 |1

248 | 3

249 |1

249 | 2

252 | 2

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

12

10
11

10
11

2
1
2
3
1
1
2
1
2
1
1
1
1
1
2
1
1
2
1
2
3
4
1
1
1
1
2
1
2
3
4
1
1
1

252 | 2

254 |1

254 |1

254 |1

254 | 3

256 | 1

256 | 1

256 | 2

256 | 2

258 | 1

258 | 3

262 | 1

262 | 2

265 | 1

265 | 1

269 | 1

272 |1

272 |1

272 | 2

272 | 2

272 | 2

272 | 2

273 | 1

27411

274 | 2

2741 3

274 3

275 |1

275 |1

275 |1

275 | 1

277 | 1

278 | 1

280 | 1

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

60

16

10
20

26

16

16
32

12
12

60

10

26

1
1
2
1
2
1
2
1
1
1
2
1
2
3
4
1
2
3
4
1
2
1
2
1
2
1
1
1
1
1
1
1
1
2

280 | 2

282 | 2

282 | 2

285 | 1

285 | 1

285 | 2

285 | 2

286 | 2

286 | 3

288 | 1

288 | 1

288 | 2

288 | 2

288 | 2

288 | 2

289 | 1

289 |1

289 |1

289 |1

290 | 1

290 | 1

291 | 3

291 | 3

294 | 7

2041 7

296 | 1

296 | 2

297 | 1

297 | 2

297 | 3

298 | 1

298 | 2

300 | 4

300 | 4

Continued ...
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Table 2.2: (continued)

| Table of values for conjecture. (continued) |

15
15

14

20

12
12

24
12
24
12

12
24

16

16

22

15

14

20

12

12

22

1
2
1
1
1
1
2
1
1
1
2
3
4
1
1
1
2
3
4
1
2
1
2
1
1
2
3
4
1
1
1
1
2
3

302 | 1

302 |1

302 | 3

303 | 1

303 | 2

304 | 1

304 |1

304 | 3

304 | 6

306 | 2

306 | 2

306 | 2

306 | 2

308 | 1

309 | 1

310 | 2

310 | 2

310 | 2

310 | 2

312 | 2

312 | 2

312 | 6

312 1 6

314 | 1

315 | 2

315 | 2

315 | 2

315 | 2

316 | 2

318 | 3

318 | 4

320 | 2

320 | 2

320 | 2

Continued ...




Table 2.2: (continued)

| Table of values for conjecture. (continued) |

N |L # T u v C
320 | 2 4 2 2 1 8
320 | 6 1 1 2 1 2

Note about tables

The only interesting part in computing the tables above was the computation
of the subgroup Ej and, as a consequence, the value v. The generators of £
were available in [Cre97] or at Cremona’s extensive databases [Cre03]. The

torsion points of E are easily computed by Pari.

Now, in order to compute generators for Fy, we created a simple func-
tion called onerons, such that giving a point P € E, the onerons function
outputs the smallest integer £ such that kP € Ej;. We called this value the

order of Néron of P in E, and we denote it as o(P).
We use the following algorithms to compute Ejy and v.
Algorithm 2.4.1. Computation of generators of Ej.

The main idea is to use the free group L generated by the generators
of E. In other words, the group of expressions
t
aP+ Y bR (2.18)
i=1
where P is a generator of the free part and the points R; are generators of the

torsion. Now, we know that the torsion part has at most two generators. So,

26



in the worst case, we are working with an abelian group isomorphic to Z3.

Now, if L is the subgroup of all linear expressions such that aP +

Zle b;R; € Fy, then a basis for Ly will be a set of generators for Ej.

The generators of Ly are obtained by using the next algorithm 2.4.2

and the onerons function.

Algorithm 2.4.2. Given a finitely generated free abelian group F' and a sub-
group H of maximal rank in F. We would like to compute a basis for H,
assuming we have a basis for F' and an algorithm to determine if an element

x € F belongs to H.

Assume {fi, fo,..., f+} is a basis for F. Denote o; to the smallest
positive integer such that o;f; € H. Let I; = [0,0;](1Z and B; = I; x -+ X I.
Let F; =< fi1, fo, ..., fi > for 1 <i¢ <r,and set: H; = F;[ H.

Now, we construct a basis for H;,; from a basis {hq, hs, ..., h;} of H;
as follows: Set u;11 = gcd(0441,0109 -+ 0;), then take as h;y; any element in

(cuiyr fir1 + B;) () H, where ¢ > 1 is minimum such that

(cttisr fipr+ Bi) (VH #0 (2.19)

We will start the algorithm with hy = o1 fi.

Algorithm 2.4.3. Algorithm for computing v = #(Ey/ < Qo >) with Qg of

infinite order.

Let Ey =< 5,1y, > where Ty is the torsion part in By and S is a

generator of the free part. Then, if 7 is the minimal integer such that Qo —rS
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is a torsion, the representatives of Fy/ < @)y > are the elements: sS+ R, with

0 <s<rand R e Ty Hence, v=r|Tp.

To obtain r, let v be the order of the torsion, w the number of torsion
points with good reduction, set m = v/w. Then, starting from r=1, compute

m(Qo — rS), until m(Qy — rS) = O. Such an r is the one we want.



Chapter 3

The ¢ function

3.1 Extending the g function.

Easy testings on curves of composite conductor N show that we cannot extend
the function g to £x E. The main problem is that the function g(Py, n, P2, P', q)
with Py, P, P € E and ¢ 1 N is not well defined depending only on P; and

P,. In other words, it is not independent of the point P’.

Instead, we observed that the number of good values of g( Py, n, P, P, q),
fixing P;, P, and ¢ but varying P’, is bounded; and such a bound does not

depend on gq.

In fact, if V/(Py,n Py, q) is the set of distinct values of g(Py, n,Ps, P, q)
and 7 is chosen as in the previous section, we observed from our computations
that:

|[V(Pr,ngPa,q)| <r (3.1)

for all gt N.

We conjecture the following statement that we will assume true for the
remaining of the thesis. We have not proved it, but our computations of the

g function seems to suggest that it is true.
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Conjecture 3.1.1. Given Py, Py, and P’ points in E, and QQ a point of Ey,
then g(Py,n,Pa, P',q) = g(P1,n,Pa, P'+ Q, q) if both side of the equations are

good values.

This conjecture is saying that g(Pi,n,Ps, P’,q) depends only on P’
modulo Ey. So, for P; and P, fixed, we will have at most #(E/E;) = r%

different values in V (P, n,Ps, q).

Now, the next conjecture says a little more about the torsion.

Conjecture 3.1.2. Let P be a generator of E modulo torsion and Py, P, € E.
Then, for every 1 <i <7 and R € E},s, there is a j € Z with 1 < 7 < r such
that: g(Pi,nyPy,iP + R,q) = g(Pi,ngPa, jP,q) for every prime q not dividing

the conductor N, where the two sides are well defined.

Notice that the last two conjectures would impply that |V (P, n,P, q)| <

r.
Now, instead of extending g to E x E, we can construct a map:
§:ExE—][®) (3.2)
gtN
given by

§(P1,P2) = (Q(PhanmPa Q)ag(Phan%QP; Q), .- ,Q(Phan%T’P; Q)) (3-3)

Now, in order to get an equation of the BSD-type, we take the product
of all these values. (i.e. We compose ¢ coordinate by coordinate with the
product maps

m (Fp)" — Fy (3.4)

q
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(ug,...,uy) — Hu, (3.5)

Denote 7" = (717 )gv the product map over all the ¢’s.

We state the following weak conjecture.

Conjecture 3.1.3. For P, and P, points in E. There exist integer exponents

s and w depending on P; and P, such that

ZS :Wrog(Pl,Pg)w (36)

Now, if we set § = 7" o g( Py, P,), then for P € E and ) € Ey, we have
9(P.Q)=7"(P,Q).
The main result that we obtain after computing multiple values of the

function g(P;, P,) in several elliptic curves is the following conjecture.

Conjecture 3.1.4. Let E be an elliptic curve with conductor N and rank 1.
Let P a generator of & modulo torsion and r as above. Set P, = n,P. For
q1 N and d a divisor of r. Set a = r/d, then the function g(dP,dP,, P', q)
takes up to a different values. Those values satisfy the formula:
(H 9i(dP,dPy,iP, q)) =l(g)* (3.7)
i=1

for some integers w and s that does not depend on d.

In the following section, I will explain how this conjecture relates to
Mazur and Tate and how combining with it, we obtain a more precise descrip-
tion of the exponents in the above conjecture. In order to explain it, we need

some technical formulas.
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3.2 Multiplicative Formulas

Now, let g the function defined in 2.6. Then, we have the following proposi-

tions.

Proposition 3.2.1. For P, P,, P, Q1, Q2, Q, and P’ in E, and q t N; then,

we have the identities (if both sides of the equation are well defined in ¥} ):

1. g(P,Q1+Q2,P/,Q) :g(P,Ql,P/,Q)g(P,QQ,P/+Q1,q>

2. g(Pl‘l‘PQ,Q,P/,Q):g(Pl,Q,P/,Q)g(PQ,Q,P/‘I‘Pl,Q)

Proof. These identities follow by simple cancellation. We just write down the
proof of the first one (the second one is identical, replacing P’s by Q’s and

vice-versa):

d(P'+ P)d(P' 4+ Q1 + Q) .

d(P)d(P'+ P+ Q1+ Q2)
d(P'+ P)d(P'+ Q1) d(P'+ Q1 + P)d(P" + Q1 + @»)
d(PYd(P"+ P+ Q1) d(P'+ Q1)d(P'+ P+ Q1 + Q2)

(3.8)

O

Now, for convenience, we write g(P,Q, P’) instead of g(P,Q, P’ q).

Although, we understand this function depends also on ¢ { V.

In fact, the reader may notice that the identity used in the proof is the

same as the one used before to prove that g is a bi-multiplicative function.

An easy corollary to this proposition is the following:



Proposition 3.2.2. Having the same notation as in the previous proposition

and n € 7, these product formulas are true:

1. g(P,nQ,P") =11, g(P Q, P +iQ)

2. g(nP,Q, P =1[., g(P Q,P +iP)

Proof. Tt follows by induction from 3.2.1:

g(P,TLQ,P/) :g(P7Q7P/)g(P7 (TL— 1)Q7P/)

n—1

=4(P,Q, P) [ [ 9(P.Q, P'+iQ)

i=1

|
—

n

=119(P,Q, P +iQ) (3.9)

i

Il
=)

The base of induction is 3.2.1.

Now, these two propositions in conjunction with 3.1.1 and 3.1.2 imply
that the image of g (as a function in E x nyF x E) in the coordinate F} is
completely determined by the values g(P, P,, i P, q) where ¢ is an integer modulo
7. In other words, any element in the image of g in F} can be decomposed as
a product of those r values. Now, let’s use the above identities to justify some

of the identities in the last conjecture of the previous section.

Proposition 3.2.3. 1. If ged(ng, ) = 1, then 3.1.1 implies lemma 2.2.1.
Also, in this case g(P,n,Q, P) = g(Q,n, P, P).
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2. If ged(ng,r) = d > 1, then we have the identity: g(dP,n,Q,P) =

9(Q, ngP, P)<.

Proof. These proposition follows from a series of simple observations.

Let P € F and Q = rP, with r as in 2.2.1. Then, from 3.2.3 we have:

r—1
9(P,ngQ, P) = [ [ 9(P,nyP, P+ inyP) (3.10)

i=0
So, if ged(ng, ) = 1, we can arrange the product, so that:

r—1

9(P,n,Q, P) = [[ 9(P.n P, P +iP) = g(Q,n,P, P) (3.11)

=0

Now, notice also that this identity proves that g(P,n,Q, P) does not
depend on the choice of P. In fact, we change P by any other point in the
curve P = mP + R where R € E,,., and m € Z, this will be just a shifting
by m — 1 of the index ¢ in the middle term of the formula above. But, since
the quantity g(P,n,P, P') depends only on P’ modulo Ej, the product after

the shifting gives the same value.

Note 3.2.1. The only condition, on which we want to be careful is in having
all the g functions well defined. This may be a problem for small primes g,
because in that case n, may be small in comparison with r and therefore, we
may have a lot of bad values for g(P,n,Q, P +iP), and the products in 3.2.3
won’t be properly computed. But, for ¢ sufficiently large, so that r << n,,
all these formulas will hold nicely. For the same reason, it seems that in the
conjectures of B. Mazur and J. Tate in [MT87], we should be careful also

when ¢ is a small prime, since we may encounter anomalies or problems in
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the definition of the g function. Basically, the obvious case, is when a prime ¢

divides the denominator d(P) for every point P € E.

If ged(ng, ) = d, we obtain

r/d—1
g(P,ngQ, P)= | T] 9(P,ngP, P+idP) (3.12)

i=0
Unfortunately, this equation is not enough to prove that g(P,n,Q, P’) does
not depend on P’. We know that 2.2.1 is true, and we have plenty of evidence
in favor of conjecture 3.1.1. So, it is a reasonable question to see if the first

part of the proposition holds in general.

The second part of the proposition is obtained as follows:

d
r/d—1
9(dP.n,Q,P)=| ] 9(dP,n,P, P +idP) (3.13)
=0
=g(rP,n,P, P)* (3.14)
:g(Qa an7 P)d (315>

O

Now, from the proof of the second identity in the above proposition, it
is not very clear that that g(dP, n,Q, P') does not depend on the choice of P'.

The following lemma proves it.

Lemma 3.2.4. ¢g(Q,n,P, P') does not depend on the choice of P’.

Proof. This is clear, assuming 3.1.1 and the following identity:

g(P,n,P,P)  g(Q,n,P,P) (3.16)
g(P,ngP,P+Q) g(Q,n,P,P+P) '
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This identity is proved as usual by simple comparison and cancellations. In

fact, this equation shows that this lemma is equivalent to 3.1.1 O

One last comment ending this section is that if we can prove 3.1.1 by
elementary methods, and if it implies 2.2.1, then we would have obtained an

elementary way of explaining the properties of the g function.

3.3 De-constructing the g function

In this section, we will assume also 3.1.1. We will give some multiplicativity
identities to study the values g(mP,tP,, sP) with 0 < s < r and P, = n,P,

and P a generator of the free part of E.

The following proposition goes towards this direction. We denote ¢(Q, P,)
to the value g(rP, P,, sP).

Proposition 3.3.1. Let m be an integer. Let a =m (mod r) with 0 < a < r.

Set e = (m —a)/r. We have the following decompositions:
1. g(mP, P, P") = g(Q, P,)g(aP, P, P")

2. If ged(a,ny) = 1, then g(P,mP,, P') = §(P,Q,)g(P,aP, P').

Proof. The first computation is as follows:

m—1
g(mP, P, P') =[] 9(P, P, P +iP) (3.17)
=0
r—1 €a—1
= g(P,P, P+ iP)) [[sP P, P +iP) (3.18)
i=0 1=0
=9(Q, P,) g(aP, Py, P') (3.19)

The second is a corollary of the below proposition. O



We have the more general result of part two.

Proposition 3.3.2. Let d = gcd(ng,r) and let m an integer. Chose m = a

(mod r/d) and set e = d(m — a)/r. Then,

r/d—1
g(P,mP, P')= | [] 9(P,P, P'+idP) | g(P,aP,, P (3.20)

1=0

e

Proof. This is prove as follows:

m—1
g(P,mP, P)=1|g(P,FP,P+iP,) (3.21)
=0
e—1 (j+1)r/d—1 m—1
=\II Il 9oPr.P+iP)| [] 9(P.P,P+iP)
J=0  i=jr/d i=m—a
(3.22)
r/d—1 ¢ a
=| [ o2 P.P+iP)| [[9(P.P,P+iP,) (3.23)

=0 1=0
Now, since ged(Z, %) = 1, we can arrange indexes, so that, we obtain

the identity:

r/d—1 r/d—1
I[ 9(P.P,,P+iP) = [] 9(P.P,, P+ jdP) (3.24)
=0 =0
This proves the proposition. O

Now, the second part of 3.3.1 follows from 3.3.2, when d = 1. In such

a case, we obtain:
g(P,mP,, P") = g(P,rP,, P")g(P,aP,, P') (3.25)

Note that the above proposition is a generalization of 3.2.3. We summa-

rize this discussion in the following lemma, which is a kind of commutativity

property.
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Lemma 3.3.3. If gcd(n,,r) = d and if Q) is a generator of Ey and Q, = n,Q,

then:

Q(Qa Ptb P/)d = g(P, qu P/)d = (g(P7 Q)d)q (326>
Here, the third term is the q-coordinate of §(P, Q).
Proof. Since, we assume that the torsion is insignificant for the g function, we

have that ¢(Q, dP,, P') = g(rP, dP,, P") and also g(dP, Q,, P') = g(dP,rP,, P').
The lemma follows if we apply 3.3.2 to g(dP,rP,, P"). Thus,

g(P,rP,, P =g(dP,rP,, P') (3.27)
r/d—1 d
= | [] 9P, P, P’ +idP) (3.28)
=0
=g(rP, P,, P")? (3.29)
Note that this also follows from 3.2.3. O

We state a refinement or generalization of part ¢) of conjecture 3.1.4.

This is also a generalization of 3.1.1

Conjecture 3.3.4. Let ab = r witha, b € Z. Then, the functions: g(P,bP,, P')
and g(bP, P,, P') take up to a different values. Moreover, if P'—P" € Ey, then
g(P,bP,, P") = g(P,bP,, P") and g(bP, P,, P') = g(bP, P,, P").

Now, if the above lemma is true, then we can take the values g(bP, bP,, P+

iP) as representatives of the different values of g(bP,bP,, P').

Hence, we can state our last conjecture, using similar notation as in

section 3:



Conjecture 3.3.5. Let P be a generator of E. Let ab = r with a,b € Z. For
g1 N, we have
o/,
a—1 o
(H g(bP,bP,, P + z’P)) = I(q)*" (3.30)

i=0
I am still not sure if 2.3.1 implies 3.3.5.

But, at least in the case when gcd(ng,r) divides b, the equivalence

follows from the commutativity property 3.3.3. In that case, the identity:

a—1
g(rP,bP, P) = [ [ 9(bP,bP,, P +iP) (3.31)
=0
together with
g(bP, 1P, P) = (9(P,Q)), (3.32)

gives the equivalence.

3.3.1 Tables with multiple values

These are some of the tables as an example of the computations of multiples
values for g. We tabulate the values of the clases g(P, P,,iP,q) for 1 <i <r
and 3 < ¢ < 100 with ged(q, N) = 1. For ¢ | N, we just put a row of zeros.
Also, if ¢ divides always to at least one of the denominators of g(P, P,,iP+Q), q)
for any shift of @), we just write a 0 (In practice, we create a function that
computed g(P, P,,iP + j@Q,q) varying j until certain limit, if the value of

g(P, P,,iP + jQ,q) was not well defined for every j tested, we return a 0).
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Curve: e =1[0,0,1,—1,0]
N=37 L=1 #=1 1r=1

Table 3.1: Multiple values for 37A1l.

‘ Table of multiple values of g. ‘

‘ q ‘ 1P ‘
3 1
5 4
7 2
11 4
13 4
17 2
19 17
23 8
29 25
31 14
37 0
41 1
43 16
47 18
53 10
59 26
61 20
67 19
71 10
73 69
79 2
83 12
89 49
97 22

The end
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Table 3.2: Multiple values for 43A1.

‘ Table of multiple values of g. ‘
la [1P |
3

5

7

11
13
17
19
23
29
31
37
41
43
47
53
59
61
67
71
73
79
83
89
97

—_

DO W s WO Wk N O = 10t 00~ WUl i
O W w O = O (=}

S O
oo W

(@)
=

The end

Curve: e =[0,—1,1,-2,2]
N=57 L=1 #=1 r=2

Table 3.3: Multiple values for 57Al.

‘ Table of multiple values of g. ‘
lq |[1P 2P |
3]0 o

The end
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Table 3.3: (continued)

Table of multiple values of g. ‘

q 1P [2P
5 1 4

7 1 4

11 4 9

13 10 10
17 2 4

19 0 0

23 12 12
29 16 16
31 2 2

37 28 28
41 23 23
43 23 36
47 9 1

53 25 25
59 15 15
61 57 47
67 37 37
71 50 50
73 71 16
79 36 36
83 33 33
89 80 80
97 11 11

The end

Curve: e =1[0,0,0,—4,4]
N=8 L=1 #=1 r1=4



Table 3.4: Multiple values for 88 A1.

‘ Table of multiple values of g. ‘

lq [1P |2P [3P [4P |
3 1 1 1 1
5 4 1 1 1
7 2 1 1 2
11 0 0 0 0
13 4 3 3 4
17 9 9 9 9
19 7 7 7 7
23 1 6 1 13
29 16 6 6 16
31 8 2 8 16
37 34 27 34 16
41 36 21 21 36
43 17 25 25 17
47 12 12 12 12
53 9 9 9 9
59 15 48 1 48
61 27 47 47 27
67 10 36 40 36
71 25 24 29 24
73 67 49 49 67
79 18 72 72 18
83 27 25 25 27
89 87 44 87 11
97 75 43 9 43
The end
Curve: e = 0,1, 1,13,42]
N=91 L=2 #=2 r=3

Table 3.5: Multiple values for 91 52.

‘ Table of multiple values of g. ‘

lq

1P |2P [3P

3

|1

|1

£

The end
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Table 3.5: (continued)

Table of multiple values of g. ‘

q |1P 2P [3P
5 |1 |1
7|0
11 |4
13 |0
2
7
4

17
19
23
29 24 24 24
31 16 16 16
37 36 36 36
41 25 25 25
43 41 41 41
47 2 2 2
53 10 10 10
59 51 51 51
61 58 58 58
67 14 14 14
71 64 64 64
73 8 8 8
79 52 52 52
83 11 11 11
89 57 57 57
97 1 1 1
The end

B 0O RO

Curve: e =[0,1,1,—117, —1245]
N=91 L=2 #=3 r=9



Table 3.6: Multiple values for 9153.

Table of multiple values of g.

q [1P 2P |3P [4P |[5P |[6P [7P |8P |9P
3 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 0 0
7 0 0 0 0 0 0 0 0 0
11 |9 1 1 9 4 1 1 1 4
13 |0 0 0 0 0 0 0 0 0
17 |15 |15 |9 4 15 |15 |4 9 15
19 |9 9 9 9 9 9 9 9 9
23 |6 18 |18 |6 2 18 |18 |18 |2
29 |16 |1 1 16 |24 |1 1 1 24
31 |9 9 9 9 9 9 9 9 9
37 |27 |27 |27 |27 |27 |27 |27 |27 |27
41 136 |1 1 36 |25 |1 1 1 25
43 19 9 9 9 9 9 9 9 9
47 |21 |21 |21 |21 |21 |21 |21 |21 |21
53 |28 |28 |28 |28 |28 |28 |28 |28 |28
5 |5 5 28 |9 5 5 9 28 |5
61 |57 |57 |57 |57 |57 |57 |57 |57 |57
67 |54 |54 |54 |54 |54 |54 |54 |54 |54
71 |10 |10 |12 |64 |10 |10 |64 |12 |10
73 |2 2 2 2 2 2 2 2 2
79 |76 |76 |76 |76 |76 |76 |76 |76 |76
83 |7 7 7 7 7 7 7 7 7
89 |80 |4 4 80 |87 |4 4 4 87
97 |61 |61 |61 |61 |61 |61 |61 |61 |61
The end
Curve: e =[0,1,0,—40, 84]
N=112 L=1 #=2 r=4

Table 3.7: Multiple values for 112A2.

‘ Table of multiple values of g. ‘

g [1P [2P [3P [4P |

3 |1 J1 1 |1
The end




Table 3.7: (continued)

Table of multiple values of g. ‘

q |1P 2P [3P [4P
5 |1 |4 |4 |1
7 1o o o o

11 5 ) ) )
13 12 9 9 12
17 16 16 16 16
19 3 1 1 5
23 8 8 8 8

29 9 9 9 9

31 18 18 18 18
37 36 36 36 36
41 25 25 25 25
43 9 9 9 9

47 28 28 28 28
53 36 36 36 36
59 36 26 26 36
61 56 41 41 56
67 65 65 65 65
71 30 30 30 30
73 9 9 9 9

79 21 21 21 21
83 3 12 12 3

89 87 87 87 87
97 35 35 35 35

The end

Curve: e =[1,0,1,112,—4194]



Table 3.8: Multiple values for 130.A4.

Table of multiple values of g. ‘

lq [1P |2P |[3P [4P |5P |6P |
3 1 0 0 1 0 0
5 0 0 0 0 0 0
7 4 4 4 4 4 4
11 4 4 4 4 4 4
13 0 0 0 0 0 0
17 4 4 4 4 4 4
19 9 9 9 9 9 9
23 16 16 16 16 16 16
29 25 25 25 25 25 25
31 10 10 10 10 10 10
37 16 16 16 16 16 16
41 40 40 40 40 40 40
43 21 21 21 21 21 21
47 8 8 8 8 8 8
53 10 10 10 10 10 10
59 53 53 53 53 53 53
61 15 15 15 15 15 15
67 25 25 25 25 25 25
71 19 19 19 19 19 19
73 2 2 2 2 2 2
79 36 36 36 36 36 36
83 16 16 16 16 16 16
89 67 67 67 67 67 67
97 16 16 16 16 16 16
The end
Curve: e =[0,1,1,-12,2]
N=141 L=1 #=1 r=7

Table 3.9: Multiple values for 141 A1.

Table of multiple values of g. ‘

| O

| O

| 0

q |1P [2P [3P |4P |5P [6P |7P |
3 IE

[0 _Jo Jo

The end
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Table 3.9: (continued)

‘ Table of multiple values of g.

q 1P (2P |3P 4P (5P |6P |T7TP
5 4 1 4 1 1 1 1
7 4 4 1 4 4 1 4
11 9 9 1 9 9 9 1
13 10 4 12 10 12 4 10
17 15 15 13 15 15 15 13
19 5 6 7 5 7 6 5)
23 2 18 18 2 2 1 2
29 25 22 22 25 25 24 25
31 25 25 20 20 25 25 16
37 33 1 33 16 1 1 16
41 10 8 8 10 10 31 10
43 6 6 6 6 6 6 6
47 0 0 0 0 0 0 0
53 17 52 47 17 47 52 17
59 28 16 28 49 16 16 49
61 12 47 47 12 12 57 12
67 14 14 9 14 14 14 9
71 3 3 27 3 3 27 3
73 3 3 49 49 3 3 46
79 50 50 55 50 50 55 50
83 40 40 28 40 40 28 40
89 81 81 9 81 81 81 9
97 64 64 61 61 64 64 93
The end
Curve: e =[1,—1,1,-9,9]
N=158 L=1 #=1 r=328
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Table 3.10: Multiple values for 158 A1.

‘ Table of multiple values of g. ‘

lq [1P |[2P |[3P [4P |[5P |[6P [7TP |8P |
3 1 1 1 1 1 1 1 1
5 4 1 1 1 4 1 4 1
7 2 1 2 2 1 2 1 2
11 |4 9 4 5 5 4 9 4
13 |1 4 1 1 4 1 4 1
17 |9 9 8 2 15 |15 |2 8
19 |1 1 6 4 5 5 4 6
23 |6 13 |13 |6 9 6 6 9
29 |25 [25 |25 [25 |25 |25 |25 |25
31 (19 |28 [28 |19 |7 19 |19 |7

37 16 16 16 16
41 21 21 21 21
43 10 10 10 10
47 24 2 24 24

N = DN =

S = Oy
N = DN =
=~ O = O
N = DN =

S = Oy
N = DN =
= O = O

53 10 29 29 10 47 10 10 47
99 15 48 15 15 48 15 15 48
61 19 20 20 19 5 19 19 3

67 23 23 14 25
71 18 1 18 18
73 69 69 69 69
79 0 0 0 0

83 70 41 70 31
89 4 16 1 16
97 24 6 24 24 6 24 24

The end

=W O oY = Ot
— Ne) (@]
—_ - O O = Ut
(@] © oo O
[N e NoN S
N e ot
_— - O O = =
(@) O 0 =

Curve: e = [0,—1,0,—72,496]
N=208 L=1 #=2 1=12

Table 3.11: Multiple values for 208 A2.

| Table of multiple values of g. |
lq [1P |2P [3P [4P |[5P |[6P [7P [8P |[9P [10P [11P [12P ]
3 1 1 1 1 1 1 1 1 1 1 1 1
5 |4 4 1 4 4 4 1 4 4 4 1 4




Table 3.11: (continued)

Table of multiple values of g.

q 1P | 2P | 3P |4P (5P (6P |7P |8P |9P |10P |11P | 12P
7 2 4 2 1 2 4 2 1 2 4 2 1
11 |1 4 4 1 1 4 4 1 1 4 4 1
1310 0 0 0 0 0 0 0 0 0 0 0
17 | 13 13 1 13 13 13 1 13 13 13 1 13
19 | 4 6 16 4 11 16 16 11 4 16 6 4
23 | 12 12 12 12 12 12 12 12 12 12 12 12
29 | 5 ) 5 5 5 5 ) 5 5 5 ) )
31 | 20 1 20 20 1 20 20 1 20 20 1 20
37 | 33 26 21 26 33 26 21 26 33 26 21 26
41 | 20 39 39 20 20 39 39 20 20 39 39 20
43 | 25 16 25 13 11 9 25 4 25 9 11 13
47 | 27 8 27 2 27 8 27 2 27 8 27 2
593 | 28 6 6 28 28 6 6 28 28 6 6 28
59 | 17 9 9 17 17 9 9 17 17 9 9 17
61 | 47 ) 5 47 47 5 5 47 47 5 ) 47
67 | 17 35 1 17 59 1 1 59 17 1 35 17
71 | 50 54 58 54 50 54 o8 54 50 54 58 54
733 3 3 3 3 3 3 3 3 3 3 3
79 | 64 72 64 64 72 64 64 72 64 64 72 64
83 |9 9 9 9 9 9 9 9 9 9 9 9
89 | 8 8 8 8 8 8 8 8 8 8 8 8
97 | 12 12 12 12 12 12 12 12 12 12 12 12

The end
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Chapter 4

Mazur-Tate conjecture for |S| > 1.

4.1 Mazur and Tate for multiple primes

In this section, we present computational evidence related to the Mazur-Tate
conjecture for the case S = {q1, ¢, ..., qn} where qi,...,q, are primes of good

reduction at E.

The left hand side of the equation is defined in the obvious way.

Definition 4.1.1. Set mg = q; - - - ¢,. Then, the modular element in this case
is:

(Sy= [ dms" (4.1)

a€(Z/msZ)*

Now, we also generalize the definition of the g function.

Definition 4.1.2. If we set ng = ng, - - - ny, and Q) = ng@, then the g function

is given by

d(P'+ P)d(P' + Qs)
d(P)d(P'+ P + Qs)

g(P,Qs,mg) = (mod myg) (4.2)

Of course, we have again that this function is bi-multiplicative and
satisfies the identities and properties of the previous chapters. We won’t go

over those details again here.

o1



Now, to simplify notation, denote ¢(S) = g(P,Qs, ms). We have the

following proposition:

Proposition 4.1.1. If T C S, then
9(S) = g(T)"/"" (mod nr) (4.3)

Proof. This is straightforward:
g(P7 nSQ7 mT) = g(PJ (nS/nT)nTQ, mT) = g(PJ nTQ7 mT>nS/nT O

Hence, for computing g(.5), we only need to get g(¢;) for 1 <i < n and

to solve the system of congruences:

x = g(g;)"™ (mod ¢;) (4.4)

If we have all the values of ¢ already computed, this is trivially done.

Now, to define the right hand side of the Mazur-Tate conjecture, we

need the elementary proposition:

Proposition 4.1.2. For M | N such that ged(M,N/M) = 1, the map:
yuny 2 (Z/MZ)" — (Z/NZ)* (4.5)

given by
a — bPW/A) (4.6)

where b € (Z/NZ)*, b = a (mod M) and ¢ is the phi of Euler function is well
defined
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Proof. Let by,by € (Z/NZ)" such that by = by (mod M). Assume by = by+kM.

We would like to prove that: b(f(N/M) = bf(N/M) (mod N).

Now, clearly b(f(N/M) = bg’(N/M) (mod N/M). So, we just need to see:

by M = (by + kM )PNAD (4.7)

=b3 M) L M BSN™M) 4 other terms) (4.8)

So, b‘f(N/ M) = bg’(N/ M) (mod M) and hence the proposition follow because
ged(M,N/M) = 1.

U

Definition 4.1.3. We define the right hand side of the equation or the Capital

(G function as:

G(5) = [ virsy(g(T)) 0"
TCS

where Y1 5y = Yimrms}-

Now, to compute G(S) we can use the following:

Proposition 4.1.3. The following congruence is true:

G(S) = g(g:) (mod ;)

where

e(a,S)= Y (=)D (ng/ng)d(ms/mz)

@G ETCS

Proof. 1f q; € T, then from the following congruences:

9(T) = g(g;)" /™ (mod ¢;)

(4.9)

(4.10)

(4.11)

(4.12)
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and

yirsy(g(T)) = b2/ (mod myg) (4.13)

for b = g(T') (mod mr), we obtain that:

y{T,S}(g(T)) = g(qi)(NT/nqi)(b(mS/mT) (mod ¢;) (4.14)

If ¢ ¢ T, then yrsy(9(T)) = 1 (mod ¢;), because the map yr s

implies to raise to the power ¢(mg/mr) which is divided by ¢; — 1.

Hence, the proposition follows from splitting G(.S) as the product:

—1)(1H#(T) —1)(LH#(D)
II versilo@m)= II vrsilom)=? (4.15)

qeTCS q¢TCS

The last term in the product is trivial, so:

G(S) = [ wsy(o(@)""" (mod g) (4.16)
qeTCS
g Jng. b(ms fm (_1)(1+#<T))
— H (g(gy)mr/ma)éms /mz)) (mod ¢;) (4.17)
qeTCS
=g(g;)“"%) (mod ¢;) (4.18)
]

In order to compute efficiently the values e(qg;, S), we will have to intro-
duce some symmetric functions. Let Ij be the set of integers from 1 to k € Z.
Denote Per(i,n) the set of all 1-1 increasing maps o : I; — I,. Now, assume

that we have n-variables X; for 1 < i <n. Thus, denote:

Xo =[] Xo0 (4.19)
j=1

for o € Per(i,n).
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Also, let X = [[7_, X; and X, = X/X,.

For (X,Y) € A" x A", define the following “bi-symmetric” function:

n

MXY)=D> (1) > XY, (4.20)

i=1 o€ Per(iyn)
Also, given (X,Y) € A" x A" with X = (X3,..., X)) and Y = (Y3,...,Y,),
define the map:

s; 0 A" X A" — AT AT (4.21)

given by

(X1, X)), (Y1, ) — (X, Xa o X)), (Ya, . YY)

(4.22)
where (X7, .. X , X,,) means that we exclude the X; coordinate from the
vector (Xq,...,X,).

Using this notation, we have the following identity:
e(qi, S) = 0" o s;(q, 1) (4.23)

where = (g1 —1,...,¢, — 1) and 7 = (ng,, ..., Ny, ).

We summarize our methods to compute G(S) in the following algo-

rithm:
Algorithm 4.1.1. Algorithm to compute G(S).
1. Compute the values g(g;) for all ¢; € S.
2. Compute the functions s; and evaluate s;((q,7)).

3. Calculate the symmetric function "' and evaluate at s;((g, 7).
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4. Solve the congruences:

X = g(g)?" % (mod ¢;) (4.24)

Using the above algorithm, we can test for the Mazur and Tate conjec-
ture in the case:
Conjecture 4.1.4. Mazur-Tate for many primes.

The following identity is also true:
l(s)uv — G(s)\H_IHcoker(gbﬂ (425)

Here, ¢ is the function in section 3 (It is not the ¢ of Euler).

We tested this conjecture for the first 300 curves in Cremona tables

[Cre97] and for all the combinations of two primes 3 < ¢; < g2 < 50.

My last comment is that if we can prove something like proposition
4.1.3 for the function [(S) (i.e. to get {(S) in terms of congruences involving
powers of [(g;) for ¢; € S), we may be able to prove that Mazur and Tate for
a single prime implies the proposition for many primes. I don’t know if that

is possible, but it sounds like a reasonable question.
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Chapter 5

A computation with non-trivial Tate
Shafarevich group

The main problem to test 2.3.1, when we have a non-trivial Tate-Shafarevich
group arises from the fact that the conductor N is big enough in those cases
to slow down our computations. In fact, the elliptic curve of rank 1 having
non-trivial Tate Shafarevich group and smallest conductor has N = 1610, and

it is given by the equation:
vi oy +y =2 —2* — 8587x — 304111 (5.1)

This conductor is about 5 times higher than the curve with biggest conductor in
the tables in 2.4.1. In practice, this means a lot of computing time. Everytime,
we tried to solve the linear algebra of the modular symbols, using the function
ellsym(e,1) in modsym.gp, we had to Shut down the process after a several

days of getting nothing. Also, we attempted to use the aproximations

[a/b]T ~ (INiEX %cos <27m (%))) /QF (5.2)

i=1
INDEX

[a/b]t ~ (lz’my_)() Z %6_23’“"003 (27m (%))) /QF (5.3)

1=1
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(Suggested by Fernando Rodriguez-Villegas and John Tate)

We use different values for INDEX and y, but the changes made
the approximations differ badly, and we were not confident about the results.
Hence, we insisted in computing the linear algebra of the modular symbols.
This time, we took the simple tactic of “divide and conquer”. So, instead
of running the whole function ellsym(e, 1), we computed each of the proceses
inside of this function, separetely. We didn’t change the algorithm, nor the
sequel in which it was computed, but the machine worked better having just
a simple task to perform. Finally, we were able to compute the linear algebra,

after a couple of days.

The important information of these computations was recorded in a

296 x 3456 matrix, which represented the linear combinations of 3456 G-

symbols (for G = I'y(1610)) in terms of 296 generators. (See Cremona’s book

to read about G-symbols [Cre97]) We noticed that all the entries were di-

visible by 4, which impplies that the values [a/b]T (obtain with the program

modsym.gp will be also divisible by 4. Hence, the actual values [a/b]T are in
the range:

la/b]" € D (Prog(a/b) — 2, Prog(a/b) + 2) (5.4)

where D is the constant that we want to compute as in section 2.4 and

Prog(a/b) represents the value [a/b]* obtained from the program.

To compute D, we took the primes ¢ = 11,13 and calculate the vectors
([i/q]t)%Z}. Using the series approximation 5.3 with INDEX = 20,000 and

y = .00002, we obtained after rounding the following vectors:
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(4,3, =3, -4, —1, —1, —4, —3, 3, 4)

(11, 4, =3, =5, 3, —11, —11, 3, =5, —3, 4, 11)

And, using the information of the matrix, the values were:

(4,4, —4, —4,0,0, —4, —4, 4, 4)

(12, 4, —4, —4, 4, —12, =12, 4, —4, —4, 4, 12)

From, these computations, we conclude that D = 1, and that the ap-

proximation of the series was among the aceptable interval:
([a/0]" =2, [a/b]" +2) (5.5)

5.0.1 Tables with Big Shafarevich

To check for the conjecture, we had to compute the values u, v, r and C' as

mention in section 2.4, and also the generators of Fj.

The following tables show this computations for the elliptic curves with
rank(E) = 1, and |II] > 1 as listed in the file allbigsha.1-8000 in John
Cremona’s Web site [Cre03]. The generators of E were obtained from the

file allgens. 1-8000, also in John Cremona’s Web Site.
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Table 5.1: Table of generators for E and Fy with |III| > 1.

Table of generators for £ and Ej.

([N [L]#]F | Eo
1610 | 6 | 3 | [[6996, 11413, 64], [-426, | [[6996, 11413, 64], [-426, 209, 8]
209, 8]
2184 | 13| 5 | [[675, 13530, 1], [-225, 0, | [[675, 13530, 1], [-225, 0, 1]]
1]]
2478 | 7 | 3 | [[31511, 5361297, 1], [- | -too long
38234, 19113, §]]
2574 | 10| 3 | [[705, 1045, 1], [-2810, | [[705, 1045, 1]]
1405, 8]]
3192 | 14| 3 | [[501, 10776, 1], [-75, 0, | [[501, 10776, 1], [-75, O, 1]]
1]
3210 3 | 3 | [[705, 17659, 1], [-858, | [[1333287293276172, 6898592146675675,
425, 8] 5843671777728], [-858, 425, 8]]
3990 | 1 | 3 | [[49, 26, 1], [-394, 197, | [[-49, 26, 1]]
8]]
4074 | 12| 5 | [[58120, 13919050, 1], [- | [[40586697802055778714802890,
25090, 12545, 8]] 4555113796292921979884833573,
2713601628310633731000], [-25090, 12545,
8]
4080 | 31| 3 | [[370909, 9761928, 343], | [[370909, 9761928, 343], [-341, 0, 1]]
[-341, 0, 1]]
4305 | 13| 5 | [[73044, 463263, 64|, [- | [[73044, 463263, 64], [-4482, 2241, §]]
4482, 2241, 8]]
4641 | 1 | 3 | [[415,7532,1], [-730, 361, | [[415, 7532, 1], [-730, 361, 8]]
8]]
4680 | 7 | 3 | [[626, 13804, 1], [-158, 0, | [[626, 13804, 1]]
1]]
4830 20| 3 | [[-39, 20, 1], [-314, 153, | [[-98565048, 51284241, 2515456]]
8]
5190 | 16| 3 | [[332616, 3947487, 512], | -too long
[-2306, 1153, 8]]
5208 | 12| 3 | [[867, 19686, 1], [-289, 0, | [[1158837706364730317368138805183551, -
1]] 11371940706985593075463990582903493478,
12033686271471884265898133], [-289, 0, 1]]
6006 | 30| 5 | [[404102, 85009439, 8], |- | -too long
76098, 38049, 8]
6090 | 14| 3 | [[-68, 30, 1], [-466, 229, | [[-61789254, 31520551, 1061208]]
8]
6150 | 14| 7 | [[26122, 2403776, 1], [- | [[948898368439098, -240700091016804049,
87474, 43733, 8]] 13600574603]]
6160 | 4 | 3 | [[151, 390, 1], [-74, 0, 1]] | [[30685294770, -1973025331984, 7414875],
[-74, 0, 1]]
The end
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Table 5.1: (continued)

Table of generators for £ and Ej.

N |L]|#]|FE Eo
6162 | 17| 3 | [-132823880, 66411955, | [-132823880, 66411955, 175616]]
175616]]
6195| 5 | 3 | [[91005, 1250634, 125], [- | [[91005, 1250634, 125], [-2522, 1257, 8]]
2522, 1257, 8]
6390 | 10| 3 | [[8867,823634, 1], [-5114, | [[-175554015, 87775592, 274625]]
2557, 8]]
6402 | 11| 4 | [[61, 479, 1], [29, 179, 1]] | [[1476153690, 8232165727, 132651000]]
6450 | 42| 3 | [[436, 1592, 1], [-1714, | [[436, 1592, 1]]
853, 8]]
6510 | 20| 3 | [[1338, 48081, 1], [-546, | [[162824298, 2726911537, 474552]]
273, 8]]
6630 | 20| 3 | [[-355, 183, 1], [-2842, | [[-6432326405050, 3136888458861,
1417, 8]] 18108570376]]
6930| 6 | 3 | [[385, -184, 1], [3078, - | [[385, -184, 1]]
1539, 8]]
7230 | 14| 2 | [[-15, 8, 1], [-122, 57, 8]] | [[-334740, 153357, 21952]]
7230 | 22| 3 | [[374, 3428, 1], [-1346, | -too long
673, 8]
7320 | 17| 3 | [[243, 2934, 1), [-81, 0, 1]] | [[243, 2934, 1], [-81, 0, 1]]
7392| 6 | 2 | [[1569, 2492, 27], [-29, 0, | [[1569, 2492, 27], [-29, 0, 1]]
1]]
7410| 20| 3 | [[132372, 5793189, 64]] | [[8548440, 112295545, 13824]]
7770| 26| 5 | [[29022, 497049, 8], | [[1227274346684092301280, -
3486, -1743, 1]] 272123045660263521628423,
24979031175168000]]
7770| 26| 6 | [[1146157038, - | 11146157038, -507700151279, 5832]]
507700151279,  5832],
[-55778, 27889, ]|
7854 | 11| 3 | [[-179, 91, 1], [-1434, 713, | [[-7519808315716716302723751482,
8] 3713797364587613770490123653,
41952075357784943090604808)]]
7854 | 42| 6 | [[360, 4650, 1], [2430, - | [[188238063715170,  -7859023165871417
1215, 8]] 112678587000]]
7896 | 5 | 3 | [[838, 19932, 1], [-251, 0, | [[78445849488963,  -1253368286693360,

1]

123729330087], [-251, 0, 1]]

The end

We exclude the generators of Ej for a few curves above, because the
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62

points were too long to fit nicely in the above table. For instance, for the curve

of conductor 2478, we have that the generator of the free part of Ej is:

[84205400666667082663892769567186848951295332831119716030006866
161281926876303412879428156560476266194304187032292120609083049652306
451485549605970720906960129399919127345200469600999222004582521941313
500046036417969725622235342896671298938343468048114327799860553 756970
465003908960041997393720471399058927197330462,

—7262590469105385977768464625160815302975955468324995092373095
920035901299689850210303713513199200535117492735798366043857172708761
839532522948661854654290973632005878526509971232153075616029683998757
750193249441498421674437082949816373249011621732722699130899169697189
28875076990252681914043416062983226315661883263,

878361397212657694740728735061656523356678553488941505898038703
965260791747417364734543669010722966215622681253559211334600694 743207
940350780762397538642357181860072596685716481505695269324253097067002
250981769157420452061544697255590058931898010653688913077270723299699
7892125240902880830176156874382970216232]

The next table is like the second table in 2.4.1; except that now we add
the equation of the curve, the order of the cokernel of ¢ and the order |I1].

Table 5.2: Table of values for conjecture with |III| > 1.

| Table of values for conjecture. |

|N |L |#|e ||H_I||r|u|V|C|coker(¢)|
1610 | 6 |3 | [L,-L 1, 8587, -304111] 2 [1]2]2 11
2184 | 13 5 110, 1,0,-151424, -22730400] 4 1121212 |2
2478 | 7 3 [1, 1, 1, -68511744, - | 4 71212 |71
218299350495]
The end




Table 5.2: (continued)

Table of values for conjecture.

N L # e IO |r [u | v | C | coker(¢)
2574 | 10 | 3 | [1,-1, 0, -370656, -86764370] 4 112112 |1
3192 | 14 | 3 | [0, -1, 0, 17024, -849300] 4 |1 202011
3210 |3 |3 | [L 1, 1, -34240, -2452915] 4 |2 02021021
3990 | 1|3 |1, 1,0,-7108, -233642] 4 |1]2 121
4074 |12 |5 | [1, 0, 0, -29506624, - |4 21212 |8 |4
61694252620]
4080 |31 |3 |0, 1,0,-348160, -79187020] 4 1 ]2]2]2 ]2
4305 | 13 | 5 | [1, 0, 0, -941360, -351624105] 4 112 (2 (2|2
4641 |1 |3 | [L, 1, 1, -24752, -1509184] 4 |1 |202]1]1
4680 | 7|3 | [0,0,0,-74883, -7887202] 4 |1]2 121
4830 | 20 | 3 | [1,1,1,-4491, -117711] 4 312 |11]6 |1
5190 | 16 | 3 | [L 0.0, -249120, -47879478] 4 312102131
5208 | 12 | 3 | [0, 1, 0, -249984, -48191328] 4 312112 |3 |1
6006 | 30 |5 |[1, 0, 0, -271443794, - |4 |4 |2 |1 |32]4
1721367884082]
6090 | 14 | 3 | [1,0, 1, -10098, -391382] 4 312 |11]6 |1
6150 | 14 | 7 | [1. 0, 1, -353668001, - |4 |2 |2 |1 |164
2614520347102
6160 | 4 3 1[0,0,0,-16427, -810374] 4 2121212 |1
6162 | 17 | 3 | [1,0, 0, -1715733, -865156065] 9 111 (1 )11
6195 | 5 3| [1,1,1,-297360, -62536458] 4 11212 1|1
6390 | 10 | 3 | [1,-1, 0 -1226880, -522753080] | 4 112112 |1
6402 | 11 |4 | [1,1, 1, 508, 2551} 4 214118 |1
6450 | 42 | 3 | [1,0, 1, -137601, -19657652] 4 112 (12 |1
6510 | 20 | 3 | [1,0,0,-13901, -631995] 4 |2 0201141
6630 | 20 | 3 | [1,1,1,-377310, -89363493] 4 312 |1 |12]2
6930 | 6 3 | [1,-1, 0, -443520, 113799816] 4 112112 |1
7230 | 14 |2 | [1,1, 1 -645, -6573] 4 312 ]11]6 |1
7230 | 22 |3 | [1,0,0,-81210, -8907828] 4 1212 |1 | 482
7320 | 17 | 3 | [0, 1, 0, -19520, -1056240] 4 112 (2 (2|2
7392 [ 6 |2 | [0, 1,0,-2464, -47908] 4 |1]2 21011
7410 | 20 | 3 | [1, 0,0, -208136, -36744390] 9 21112 |1
7770 126 |5 | [, 0, 0, -9114581, -] 9 212118 |2
10592163939
7770 [ 26 |6 | [1, 0, 0, -145833331, - |9 |1 |2 |1 |4 |2
677861695189
7854 | 11 3 | [1,1,1,-95794, -11451745] 4 512 |1 (10]1
7854 | 42 | 6 | [1, 0, 0, 83356, -53367660) 4 2121 (8|2
7896 | 5 |3 | [0,-1,0,-189504,-31689252] |4 |2 |2 |2 |2 |1

The end
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Our testing was for the first curve in the above tables, and for primes

not dividing 1610 and smaller than 100.
The results as shown in Pari were as follows:

I = [Mod(1,3),0,0, Mod(4,11), Mod(3,13), Mod(1,17), Mod(5, 19), 0,
Mod(20,29), Mod(20,31), Mod(33,37), Mod(10,41), Mod(17,43), Mod(12, 47),
Mod(42,53), Mod(12,59), Mod(47,61), Mod(56,67), Mod(40, 71), Mod(55,73),
Mod(44,79), Mod(40, 83), Mod(2,89), Mod(61,97)]

g =10,0,0, Mod(4,11), Mod(3,13),0, Mod(5, 19), 0, Mod(20, 29), Mod(20, 31),
Mod(33,37), Mod(10,41), Mod(17,43), Mod(12,47), Mod(42, 53), Mod(12, 59),
Mod(47,61), Mod(56, 67), Mod(40, 71), Mod(55, 73), Mod(44, 79), Mod(40,83),
Mod(2,89), Mod(61,97)]

From the above results, we can see that the equation I(¢) = g(¢) must

be satisfied for almost all g.

This is a little sharper than the predicted equation I(¢)* = g(¢)* in the

conjecture 2.3.1 (since u =v = 2 and |II| = 4).
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