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The speed of a pressure wave (the speed of sound) in rapid granu-

lar flows is typically only a few centimeters per second while the collective

streaming motion of the particles is on the order of meters per second. In this

supersonic regime, shocks form when a granular flow encounters an obstacles.

This work examines the shocks formed in three geometries: the surface wake

behind a cylinder, the oblique shock formed at a wedge and a normal shock

propagating through a funnel. In each case we evaluate the applicability of a

hydrodynamic description to shocks in rapid granular flows.

We study the V-shaped wake formed by a cylindrical rod moving through

a vertically vibrated granular layer. The wake appears for rod velocities vR

greater than a critical velocity c. We measure the half-angle θ of the wake as

a function of vR and layer depth h. We find that c and θ can be described by

a hydrodynamic description applied to shallow fluids, where c =
√

gh is the

speed of a gravitational wave on a shallow fluid and sinθ = c/vR is the Mach
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relation. We find the decrease in the height of the wake hmax as it propagates

away from the rod agrees with Landau’s theory for the decay of shock waves

far from their origin.

We measure the time-averaged velocity, density and temperature fields

for a gravity driven granular flow past a wedge. The flow is supersonic with

a sound speed less than 10% of the flow speed. We find the shock formed

at the wedge tip is nearly identical to oblique shocks found in a supersonic,

elastic gas. Molecular dynamics simulations of Newton’s laws yield fields in

quantitative agreement with experiment. A numerical solution of granular

hydrodynamic equations is only in qualitatively accord with experiment. We

show that hydrodynamic theory fails because it does not include friction. We

use molecular dynamics simulations to examine the effect of friction on the

dissipation of energy and scattering angles in collisions.

We examine the propagation of a normal shock formed in a quasi-two

dimensional funnel. For shocks propagating without change in a fluid, one can

use the Rankine-Hugoniot approximation to predict the velocity of the shock

and the difference in flow values across the shock. We show that inelastic

collisions between particles cause the shock to continuously evolve, hence the

Rankine-Hugoniot predictions are inadequate for describing the evolution of

granular shocks.
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3.1 The dependence of the wake half-angle θ on the velocity of an
object, vR, traveling through a surface-tensionless fluid of finite
depth h [53]. For vR <

√
gh, both transverse and diverging
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√
gh, the transverse waves are not

resonantly excited. A superposition of diverging waves leads
to the formation of a shock (right inset). The opening angle
decreases with increasing vR. . . . . . . . . . . . . . . . . . . . 33

3.2 The granular layer is confined in a plexiglass container (17.75
cm in diameter and 10.7 cm tall) with an aluminum base. A
motor is attached to a plexiglass disk through a rotary motion
feedthrough. A stainless steel rod is suspended from the disk
at a radius of 5.1 cm. The motor spins the disk such that
the rod moves with a constant speed vR in the range of 4-30
cm/s. Outside of the container, a thick aluminum plate also
rotates with the rod. On each rotation the aluminum plate
passes through a photo diode, triggering the CCD camera to
record 52 images of the layer. . . . . . . . . . . . . . . . . . . 35

3.3 The granular layer is vibrated by an electromagnetic shaker.
The shaker is attached to the container via a 2.54 cm square air
bearing. The bearing minimizes both rotational and horizontal
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is sensitive to the tilt of the container. The air bearing rests on
an aluminum plate which is suspended above an air table. We
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3.4 (a) Schematic of the laserline scanning technique used to mea-
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respect to the flat surface, that captures 52 digital images of
the laser line separated in time by δτ = 2.2 ms. For vR = 21.5
cm/s, the distance between line scans is δx = vR∗δτ = 0.47 mm.
The inset shows an average over 400 periods of the rod motion.
The location of the laser line is determined to subpixel accuracy
by finding the center of a Gaussian fit to each vertical slice as
shown in the inset (red line). The wake is a 3D reconstruction
of the averaged laser lines. (b)The top view of the shock cre-
ated by the rod, moving to the right, for vR = 21.5 cm/s. The
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Chapter 1

Introduction

1.1 Motivation

Granular materials are conceptually simple. Any collection of particu-

late matter whose individual components interact via inelastic collisions qualify

as a granular material. This definition includes a wide range of systems across

many scales such as: sand, coal, pills, rice, basketballs, cake sprinkles, and

asteroids.

The motion of granular materials frequently arises in industrial ap-

plications such as moving cereal through a plant, mixing the components in

pharmaceuticals, or storing grains in silos. Granular materials are second only

to water in the tons of material transported [33]. The equations of motion for

fluids are well known, allowing water to be handled with great efficiency. For

granular flows, however, there remains no accepted theory, severely limiting

the ability to control their motion. A 1985 study on solid processing found

the average performance of plants was less than 50% of design efficiency [37].

Our difficulty in understanding granular flows can be attributed to two

major properties of the material. First, the macroscopic grain size limits the

number of particles in a system. A cm3 volume element of air at STP contains
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approximately 1019 individual molecules. For a granular flow consisting of 160

micron spheres, a cubic centimeter, at the maximum density, contains only

105 particles. Since the statistical fluctuations of a system scale inversely with

the square root of the number of particles, these fluctuations are much more

prominent in granular fluids [44, 45].

More importantly, collisions between atoms in air conserve energy -

collisions between grains do not. With each collision energy is lost to the

creation of phonons, plastic deformation of the surfaces, and thermal heating

of the grains. The continuous energy sink due to inelastic collisions destroys

the spatial and temporal scale separation assumed by hydrodynamics [44, 133].

Despite these concerns researchers have looked to fluids for their inspi-

ration and have developed continuum descriptions analogous to the Navier-

Stokes equations of fluid mechanics. While the Navier-Stokes equations are

well accepted with a centuries worth of experimental validation, granular con-

tinuum theory is still in its beginnings with many open questions and few

quantitative experimental comparisons [21, 43]. More experiments are required

to validate granular continuum theory, guide further theoretical developments

and to understand the limits of its applicability.

1.2 Overview of the Dissertation

This dissertation explores the applicability of a hydrodynamic descrip-

tion to rapid granular flows. We study the granular analog of three well un-

derstood shock problems in fluid dynamics. For each geometry we ask two
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questions: can a hydrodynamic theory describe the results and how well do

the techniques developed for fluid mechanics apply to the granular flow? Chap-

ters 3, 5, and 6 present our studies. In Chapter 2, I briefly review the literature

on granular flows. In chapter 4 I describe the methods applied to the study of

granular flow past an obstacle.

In Chapter 3, I present an experimental study of the wake formed

behind a cylinder moving through a thin, vibrated granular layer. Above a

critical rod velocity vR, a bow shock forms in front of the rod and extends into

a v-shaped wake. This system is well described by a continuum, shallow water

theory. The wake is directly analogous to a shock wave formed on the surface

of a fluid. Both the onset and the half angle of the shock agree with the Mach

relation for supersonic flow. In addition, the maximum height of the shock

wave decays as a cylindrical sound wave in a fluid.

In Chapter 5, I describe an experimental study of a granular flow in-

teracting with a wedge. The flow is supersonic with the average flow speed

more than 10 times the mean sound speed in the fluid. We compare the shock

formed at the wedge to a numerical solution of granular continuum equations.

The continuum description shows the same qualitative features as the experi-

ment, however, it does not agree quantitatively. We attribute the disagreement

in our study to frictional interactions with the confining sidewalls used in the

experiment. Further work with MD simulations suggests inter-particle friction

may also lead to disagreement between experiment and continuum theory.

In Chapter 6, I use particle simulations to investigate the propagation
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of a shock wave through a funnel. For an elastic gas, the changes across a

shock can be predicted by jump conditions derived from conservation laws.

We find that the jump conditions do not describe the changes across a shock

propagating in a granular fluid. Inelastic collisions cause changes in the shock

profile that is unaccounted for in the jump conditions. An asymptotic solution

of a continuum description including inelasticity shows similarities to our in-

vestigations and correctly predicts the shock speed dependence on inelasticity.

Our experiments agree surprisingly well with granular continuum the-

ory, however, they highlight distinctions between inelastic and elastic fluids.

Unlike elastic fluids, inelastic flows do not show scale separation; approxima-

tions assuming separation of time or spatial scales should be applied with care.

In chapter 7 I conclude this study with suggestions for future improvements

to the continuum theory and further experimental work.

1.3 Why shocks?

Each of the studies presented in this dissertation investigates shocks

found in granular flows. Inelastic collisions dissipate the energy in granular

flows, hence, granular materials must be forced to maintain a fluid-like state.

Shock waves provide a method to transfer energy from the boundaries into

the bulk of the fluid. Understanding the propagation of energy by shocks is

crucial to our understanding of granular flows [46].

Shock waves occur in nature when a fluid is perturbed faster than the

sound speed in the material - the rate at which information can be transmitted.
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Figure 1.1: a) Sand in an open container behaves as a liquid taking on the
shape of the container. The surface can support some stress. b) When the
beaker is tilted, the sand flows out of the beaker resembling a fluid. The
granular flow is supersonic: the mean flow velocity is greater than the speed
of a pressure wave. When the sand hits the surface, inelastic collisions quickly
dissipate energy and the sand forms a weak solid.

Since the sound speed in air or water is high, shocks are rare and occur under

high energy conditions. For instance thunder is caused by the rapid heating

of the air by 10,000 Amperes of current traveling through the air in a bolt of

lightening. A shock forms at the nose of an airplane once it passes the speed

of sound in air, 331 m/s at STP.

The sound speed in a granular medium is often much smaller than the

streaming velocity. Hence shocks are common in granular media. Consider

the sand pouring out of a beaker shown in Fig 1.1. Gravity accelerates the

flow downward, creating an average velocity U that reaches 100 cm/s after the

sand has fallen only 5 cm. In contrast, the sound speed c in the granular gas

becomes small, typically 10 cm/s. The simple act of turning over a beaker full
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of sand can easily generate a supersonic flow with Mach number,

M = U/c (1.1)

equal to 10.

The sound speed in a gas can be determined from thermodynamic re-

lations,

c =

√(
∂P

∂ρ

)
S

=

√
cp

cv

(
∂P

∂ρ

)
T

, (1.2)

where ρ is the local density, S is the entropy, cp is the specific heat at constant

pressure, cv is the specific heat at constant volume, and T is the temperature.

The constituent particles of granular flows are too large to be affected by

thermal energy, kBT << mgσ, where σ is the particle diameter. Instead, the

temperature for a granular fluid is dominated by the random component of

the kinetic energy,

T =

(
1

D

) (〈v2〉 − 〈v〉2) , (1.3)

where D is the dimension of the flow. It is the random component of the ve-

locity that causes particles to collide and therefore is reduced by the coefficient

of restitution e. Inelastic collisions dissipate T .

For a dense inelastic gas, c is given by [109]:

c =

√
Tχ

(
1 +

2

3
χ +

ν

χ

∂χ

∂ν

)
, (1.4)

where, ν is the volume fraction, χ = 1+2(1+e)G(ν) is the dense gas correction

to the equation of state and G(ν) is the radial distribution function evaluated

at contact.
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Figure 1.2: Molecular dynamics simulation of a granular flow through a quasi
2D cell. The mean values of a) Temperature and b) Mach number are plotted
verses distance from the bottom of the cell. Particles were injected into the
top of the cell, y = 300σ, with an initial velocity chosen from a Gaussian
distribution centered at Vy. The width of the distribution corresponds to the
flows temperature. As the particles collide inelastically, e = 0.97, but without
friction µ = 0 the temperature is dissipated and the sound speed decreases.
Within 10 particle diameters the Mach number is greater than 1.

Consider the results from our MD simulation shown in Fig. 1.2. More

details regarding the simulation methodology are discussed in Chapter 4. In

the simulation inelastic particles were injected with a velocity Vy and temper-

ature T (the particles initial velocity was chosen from a Gaussian distribution

with width T). The temperature profile of the fluid continuously decayed as it

moved away from the top boundary. Although the granular fluid entered the

box with a Mach number less than one, within a few particle diameters inelas-

tic collisions cooled the gas and the Mach number increased beyond unity.

When a supersonic flow encounters an obstacle a shock is created. The
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shock separates two regions of the flow, an undisturbed region that is unaware

of the obstacle, and a region where the streamlines have adjusted to fit the

boundary conditions at the obstacle (Fig. 1.3). The flow behind a shock is

changed compared with the undisturbed region. For free surface flows, the

height of the surface behind the shock increases. For compression shocks in

the bulk of a fluid, the density and temperature increase. In an ideal fluid with

no viscosity, heat conduction, or dissipation, a shock is a zero-width surface

of discontinuity. In a non-ideal fluid the shock has a finite width on the order

of a particle’s mean free path in the fluid [5].

When a fluid with velocity U > c impinges perpendicularly onto an

obstacle, a normal shock forms and propagates in the −U direction. If, instead,

the fluid velocity and the obstacle are not perpendicular, an oblique shock

forms and propagates into the flow at an angle and with a speed determined

by the local flow values.

In this dissertation, we look for the analogous behavior in granular

shocks.

8



0 0.125Volume Fraction

Figure 1.3: Molecular Dynamics simulation of elastic, frictionless particles
interacting with an obstacle (g=0). The flow is incident onto a wedge with
M = 2.5. Impenetrable boundary conditions at the surface of the wedge
require the flow streamlines to be parallel. The interface between the incident
and deflected flow is a shock, where the streamlines change. Behind the shock
the flows volume fraction, temperature and pressure are greater than in front
of the shock.
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Chapter 2

Review of Granular Flow Phenomena

Portions of the contents of this chapter have been published in the Fermi School

Papers [118].

Granular materials have captured the interest of physicists for a long

time. In 1773 Coulomb proposed the ideas of static friction, the force respon-

sible for granular piles [26]. In 1831, Faraday discovered convection rolls in

vibrated powders [40]. Prandtl noticed shock interactions in sawdust eject-

ing from a nozzle, which later led to his discovery of the expansion fan [5].

Reynolds introduced the notion of dilatancy, suggesting that in order to flow,

a granular material must first expand [102]. A recent resurgence in physicist

participation in the science of granular materials was sparked when Pierre-

Gilles de Gennes recommended the field to French scientists [33, 118]. Since

then the scientific literature on granular materials has boomed with more than

700 papers appearing in 2000-2003.

In sections 1 and 2 of this chapter, I briefly describe classes of experi-

ments on granular materials and how they led the field to consider the appli-

cability of continuum equations. In section 3 I review recent experimental and

theoretical work on shock waves in granular flows. In section 4 I introduce
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molecular dynamics simulations as a useful tool for understanding granular

flows. Finally in section 5 I review the continuum description considered in

this dissertation. I will save specific introductions to the experiments in this

thesis for the chapters in which they are discussed.

2.1 Static Granular Materials

While the focus of this dissertation will be rapid granular flows, I want

to acknowledge the vast amount of research devoted to static granular prob-

lems.

The natural state of a granular material is a pile. Even this simple

structure of grains resting on each other contains a great richness of behavior

and remains a current topic of research. For instance, Bagnold showed that

the surface angle of a sand pile can have only two values, the static angle of

repose θs and the dynamic angle θd. If one continued to add sand forcing a

pile beyond θs, a large avalanche would move an entire wedge of material down

the pile. After the big avalanche, the pile would have an angle of θd [7, 54].

While this picture worked for large piles, experiments later showed that small

sand piles can have a power law distribution of static angles [54].

The forces in a sand pile are not uniformly distributed among the grains,

but are carried by a small fraction of the particles along stress chains. The

stress chains lead to history dependence for granular materials. If a sand pile

is created by raining particles from a sieve, then the pressure distribution at

the bottom of the pile is uniform. If instead, the pile is formed by turning over
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a container of sand and then removing the container, the pressure distribution

at the bottom of pile shows a dip at the center - less of the weight of the

particles is carried down the center of the pile than at the edges [123].

When granular material is held inside a container, additional phenom-

ena occur. For instance, above a critical depth, the frictional interaction be-

tween grains and between grains and the walls allow a portion of the pile’s

weight to be supported by the walls of the container. This leads to a pressure

distribution that is independent of height. It is this feature that allows an

hour glass to keep reasonable time; the flow rate through the orifice is nearly

constant and not a strong function of the amount of material in the upper

cone [59].

2.2 Experimental Granular Flows

The distinguishing characteristic of granular materials is particles lose

energy when they collide. Due to these inelastic collisions, it is not possible for

a granular flow to be in equilibrium. Energy must be pumped in to offset the

energy lost in collisions. Experimentally, there are limited options for adding

energy into the system.

2.2.1 Sheared Flows

Granular shear flows often exist in the intermediate regime between

solid and fluid like behavior. In a Couette geometry used by [13, 74, 85,

124] a granular material is confined between two, rough cylinders. The outer
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cylinder remains fixed while the inner cylinder rotates. The material closest

to the boundary is dragged along as the inner cylinder rotates. The energy

of this motion is transmitted to a band of particles, but damps within a few

particle diameters [13]. The motion in a slowly sheared cell is dominated by

the formation and breaking of stress chains [124]. Researchers have found

history dependence in shear flows; the response of the grains depends on the

direction of the most recent shear [13].

In gravity driven avalanches, the rapid motion of the particles is con-

fined to a thin surface layer. The conditions governing the interaction of the

surface layer and the solid material beneath are still unknown. The evolution

of the velocity profile and depth of an avalanche are critical test problems for

granular flow theory [65, 108, 109].

Surprisingly, avalanches on desert sand dunes can create acoustical en-

ergy; the amplitude of the induced low frequency booming of a fully devel-

oped avalanche has been compared to rumbling thunder [27, 30]. While the

phenomenon has been known for centuries, the mechanism is not understood

and is hampered by the inability to reproduce it in a laboratory setting.

2.2.2 Rotated Flows

Granular flow in a horizontal rotating drum is an oft studied geometry

rich in phenomena and industrial applications. In the experiments, a cylindri-

cal container is partially filled with a granular material and rotated about an

axis perpendicular to gravity. As the cylinder rotates, the granular material
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Figure 2.1: An initially uniform mixture of glass beads of three sizes [0.5 mm
(blue), 1 mm (gold), 2 mm (red)] segregated into bands. The particles were
rotated about an axis perpendicular to gravity at 30 rpm for several hours [88].

moves as a rigid body - remaining static with respect to the container until

the surface inclination angle reaches a critical value. At the critical angle,

grains near the surface avalanche, flowing parallel to the surface [39, 58, 98].

The critical angle, depth of the flowing region, and velocity profiles have been

studied for different materials and rotation rates.

Rotating flows with two or more different sized particles spontaneously

segregate into bands with the finest particles in the center of each band and

the coarsest on the outside (Fig. 2.1). The mechanism of segregation remains

unknown [25, 88].

2.2.3 Vibrated Flows

One of the more popular methods for driving granular materials is

to shake it. Large scale convective motions have been observed in verti-

cally [38, 41, 72] and horizontally vibrated [120] granular layers. This convec-

tion is typically caused by frictional contact with the side walls of the container

or due to interaction with an interstitial gas.

Under vertical, sinusoidal vibrations an initially flat granular layer
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(b)(a) (c)

Figure 2.2: Standing wave patterns in vertically vibrated granular layers: (a)
stripes, (b) squares, and (c) hexagons. White corresponds to high points of the
surface and black to low points. The patterns oscillate at half of the driving
frequency [118].

spontaneously forms a standing wave pattern at a critical acceleration of the

driving. The patterns slosh subharmonically with respect to driving frequency.

An initial array of peaks and valleys will switch places with each collision of

the plate so that the pattern reoccurs every two cycles of the driving. These

patterns arise only because of the inelastic and frictional interaction of the

grains - side wall forcing or interstitial air is not required [11, 79, 122].

Vibrating granular materials of two or more species leads to segregation.

In vertical vibration depending on the system parameters, large particles can

be confined to either the top (The Brazil Nut Effect) [104] or the bottom of

the layer (The Reverse Brazil Nut Effect) [15]. Horizontally vibrating binary

mixtures separate particle species into wavy bands [87, 100].
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2.3 Shock Waves in Granular Materials

Although granular materials often exist in the supersonic regime, few

experimental studies on the shocks and their properties have been conducted.

Since systematic granular experiments are difficult [21, 43], the majority of

theoretical work is compared to numerical simulations.

Hurluck and Dimon have investigated two-dimensional, dense granular

flow through a funnel. In their experiment the particles roll down an inclined

plane tilted at an adjustable angle θ. The inclined plane is bounded by rough,

confining walls arranged in a funnel with opening angle β. For sufficiently

dense flows, shock waves spontaneously form near the bottom of the funnel and

propagate upstream. The researchers measure the shock speed as a function

of the two angles, the roughness of the side walls, and the polydispersity of

the flow [55–57, 125].

Amarouchene et al. photographed sand falling under gravity confined

between two, vertical, parallel plexiglas flowing past obstacles. Shocks formed

near the obstacles. They determined the shape of the interface and described

the flow as a dynamic sand dune [4].

In their 1995 paper, Goldshtein et al. observed compression and ex-

pansion waves in a vibrated granular layer. They postulated that the shock is

responsible for delivering the energy into the cell [49] as opposed to the conduc-

tion mechanism previously suggested by Hapf. Each time the layer collided

with the plate a shock formed and propagated through the layer, transmit-
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ting the energy of the collision upward to the surface. In order to estimate

the amount of energy transmitted by the shock, the researchers theoretically

examined the granular analog of a piston moving in a gas. They determined

that as much as 1/2 of the work performed by the piston can be converted into

granular temperature [46]. We investigate this problem further in Chapter 6.

Bougie et al. numerically studied the shock formed in an oscillated

granular layer [14]. They compared numerical solutions of inelastic continuum

equations [63] to frictionless molecular dynamics simulations (Fig. 2.3). The

two simulations show good agreement throughout the cycle, despite the pres-

ence of large spatial gradients and a strong time dependence. In the dilute

regimes above and below the layer, numerical solutions of the inelastic contin-

uum equations are unstable unless artificial dissipation is added [14], following

the example from numerical solutions of Knudsen gases [103]. The effect of

the extra dissipation is most pronounced in the falling layer and accounts for

the disagreement between MD and continuum at the top of the cell.

Researchers have used molecular dynamics simulations to investigate

the interaction of two-dimensional granular flows and disks. In both simula-

tions, one with a hard sphere model [18] and one using a soft sphere poten-

tial [129], a bow shock was observed in front of the disk. In the soft sphere

simulation, a high temperature low density region formed directly between

the shock front and the disk. In the hard sphere simulation a gap opened be-

tween the disk and the shock front. This phenomenon has not been observed

experimentally.
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Figure 2.3: Shock formation and propagation in an oscillated granular layer.
The dimensionless temperature T/gσ and volume fraction ν are plotted as
functions of the dimensionless height z/σ at four times ft in the oscillation
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2.4 Multiphase Flows

Adding an interstitial fluid between the grains complicates an already

difficult problem. The surrounding fluid leads to long range interactions be-

tween particles and an additional source of temperature supplied by the motion

of the fluid. When two nearby particles sediment in a fluid, the interaction of

the particles and wakes leads to a transfer of linear momentum into horizontal

momentum [42].

In our experiment with F. Merkt, R.D. Deegan and D. Goldman, we

found that a vertically vibrated suspension of glass spheres (or cornstarch)

and water displays a number of unexpected phenomena (Fig. 2.4) [81]. If

the suspension is vibrated above a critical acceleration and then poked, the

hole created by the perturbation will persist indefinitely. If the system is

vibrated with an even greater acceleration, the initial perturbation grows into

a wildly delocalized state characterized by the growth of finger-like protrusions.

The mechanism for the stable holes and delocalized state is not known, but

the shear thickening behavior due to jamming in dense suspensions may be

responsible.

2.5 Molecular Dynamics Simulations

Molecular Dynamics (MD) simulations performed on personal comput-

ers provide an extremely useful tool to examine granular flows [35]. Event

driven MD simulations model granular flows as collections of hard spheres

that only interact via binary dissipative collisions. Between collisions, parti-
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Figure 2.4: Top view of a vibrated aqueous suspension of cornstarch (a-c) or
glass spheres (d-f). Each image has a diameter of 9.4 cm. White corresponds
to high points of the surface and black to depressions that reach near the
container bottom. The layer depth is 0.5 cm for the cornstarch suspension and
0.2 cm for the glass suspension. For high forcing frequencies stable holes occur
without Faraday waves: (a) acceleration amplitude a = 12g, f = 150 Hz; (d)
30g,100 Hz. At lower frequencies stable holes are accompanied by the Faraday
patterns: (b) 12g,60 Hz; (e) 27.3g, 92 Hz. Delocalized state: (c) 30g, 120 Hz;
(f) 30g, 60 Hz [81]
.
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cle trajectories evolve in accord with Newton’s laws. MD simulations allow

researchers to peer into the interior of 3-D granular flows, a region not easily

accessible with available experimental techniques. In addition, the collision

parameters in the simulation can be changed systematically. Experimentally,

one can not arbitrarily set the values of the coefficient of restitution or the

strength of frictional interactions.

MD simulations captured the surface wave patterns on vibrated granu-

lar layers [11], discovered convective motion of the grains within the pattern [9]

and illuminated the role friction plays in stabilizing the patterns [82].

2.6 Continuum Description

A complementary method for understanding granular flows is to model

the macroscopic motion directly by a continuum field theory that describes

the bulk motion of the flow in terms of the density, velocity and tempera-

ture fields. Unlike MD simulations, the continuum approach is not limited by

particle number. A personal computer currently contains enough memory for

useful MD simulations of laboratory experiments. However, industrial pro-

cesses contain billions of particles, far outside the abilities of MD simulations.

Another reason that a continuum approach is attractive is that it could exploit

tools such as stability analysis, amplitude equations, and perturbation theory,

which have been developed through more than a century of research on the

Navier-Stokes equations and other partial differential equations.

Granular flows present many difficulties in developing a continuum the-
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ory [119, 133]. Continuum theory requires a separation of length and time

scales: variations over space should be small and occur over long distances, so

that the behavior of local collections of individual particles can be averaged

and replaced with small fluid elements. Changes in time for the flow should

occur for times long compared to the mean time between particle collision so

that particles moving between fluid elements do not affect the average values

in a fluid element. Unfortunately, inelastic collisions between particles create

an inherent lack of scale separation [43, 119]. Sufficient separation of scales

may only be present for granular flows in the specific circumstances of low

density and low dissipation [43, 66, 119].

The derivation of the continuum equations from kinetic theory makes

assumptions about the underlying statistics of granular flows, assumptions

which have not been verified by MD simulations. For instance, the velocity

distribution function is assumed to have a steady state functional form that

is nearly Gaussian. Since granular flows are dissipative, a steady state dis-

tribution function can only be achieved in the presence of forcing. Granular

experiments have yielded velocity distributions that depend on the forcing

characteristics and experimental geometry [69, 91, 106, 124, 132].

Also, most derivations of continuum equations assume Boltzmann’s

molecular chaos (particle velocities before collisions are uncorrelated), but

strong velocity correlations have been found in MD simulations [12, 83].

Despite the reservations regarding a continuum approach in granular

media, observations of granular media have revealed many phenomena simi-
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Figure 2.5: Forced granular materials produce qualitatively similar patterns
as forced fluids: (a) stripe pattern formed by a vertically oscillated granular
layer [80], (b) stripe pattern formed by a vertically oscillated layer of water [68],
(c) stripe pattern formed in thermal convection of a fluid (CO2) [95].

lar to those observed in continuum systems. For example, the stripe patterns

shown in Fig. 2.5(a) look like those in vertically oscillated liquid layers [68]

(Fig. 2.5(b)), chemical reaction-diffusion systems [97], Rayleigh-Bénard con-

vection in fluids [8](Fig. 2.5(c)), and liquid crystals [34].

Not only are the patterns similar for granular and continuum systems,

but also some the same pattern instabilities have been observed. For example,

when the wave number of parallel convection rolls (stripes) in a Rayleigh-

Bénard convection becomes small, an instability leads to the formation of

cross rolls with a larger wave number oriented perpendicular to the original

rolls [29, 31]; the same instability has been observed for stripes in oscillated

granular layers, as Fig. 2.6 illustrates. The cross rolls invade the region of

small wave number stripes such that, after sufficient time, the region contains

23



a pattern of straight stripes perpendicular to the original pattern and with a

larger wave number.

Granular stripe patterns also exhibit a skew varicose instability like

that in convection roll patterns (Fig. 2.6). When the local wave number be-

comes too large, an initially straight pattern of stripes will develop a distortion

which evolves into a dislocation defect. The defect propagates away, destroying

one of the stripes and decreasing the local wave number of the pattern. The

stability of the stripe pattern in fluid convection is well described by ampli-

tude equations derived from the Navier-Stokes equations for fluids [29]. That

the granular pattern shows the same behavior strongly suggests a continuum

description for the vibrated system is applicable.

Aspects of the phase diagram for granular patterns have been repro-

duced by amplitude equation models. For example, a phenomenological con-

tinuum model requiring that the mass of the layer is conserved locally, pro-

duces stripe, square, and oscillon-like patterns similar to those found in exper-

iment [22, 121]. A continuum, shallow water like model of the granular layer

captures the patterns and yields a dispersion relation which agrees with exper-

iment [36]. The success of these and other models [105, 107, 112, 126] provides

further motivation for considering continuum equations derived for a granular

gas.

Additional evidence for the applicability of continuum theory to granu-

lar media is provided by a recent study of noise in vertically oscillating granular

layers. In the Rayleigh-Bénard system below the onset of convection, thermal
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Figure 2.6: Instabilities of patterns found in oscillating granular layers and
Rayleigh-Bénard convection in a fluid. Cross roll instability in stripes: (A)
Vibrated granular layer [31] and (a) Rayleigh-Bénard convection [20]. Skew
varicose instability in stripes: (B) Granular layer [31] and (b) Rayleigh-Bénard
convection [6]. Spiral defect chaos in: (C) vibrated granular layer [32] and (c)
Rayleigh-Bénard convection [6].
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noise has been found to drive noisy transient disordered waves with a char-

acteristic length scale (Fig. 2.6(a) and (c)). The intensity and coherence of

these modes increase as the transition from conduction to convection is ap-

proached [89]. Above onset the coherent spatial motion develops orientational

order (Fig. 2.6(b) and (d)). This behavior is well-described by the fluctuating

hydrodynamic theory of Swift and Hohenberg [117]. Remarkably, the same

noisy incoherent modes are observed just below the transition from a flat

vertically oscillating granular layer to a square pattern (Fig. 2.6 A-D). The

Swift-Hohenberg continuum theory describes the observations for the granular

system very well, even though the noise is many orders of magnitude greater

than thermal noise [45].

2.7 Jenkins and Richman Equations

Fired by the promise of quantitative predictive power and encouraged

by the qualitative similarity of granular flows to fluid flows, researchers have

proposed various continuum descriptions for rapid granular flows [1, 16, 48,

52, 63, 78, 110]. This dissertation focuses on one such description [63] and

compares results from it to MD simulations and a granular flow experiment.

Jenkins and Richman derived a set of inelastic continuum equations

in a manner similar to the derivation of the Navier-Stokes equations [63].

This approach begins with the single particle distribution function f (1) (r,v, t),

which gives the probability of finding a particle at a position r with a velocity

v at a given time t. Integrating f (1) over all possible velocities gives the local
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Figure 2.7: Vibrated granular layers (A-D) [45] display coherent motion be-
low the onset of patterns similar to the fluctuating thermal noise observed in
Rayleigh-Bénard convection (a-d) [131]. Below onset, snapshots of the system
below (A and a) and above (B and b) show no long range order but the mod-
ulus of the corresponding fourier transform (C and c) and (D and d) indicate
each system fluctuates within a ring in phase space. Above onset, the intensity
of the coherent motion increases and orientational emerges.
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number density, n(r, t). The ensemble averaged value of any particle property

ψ is determined by

< ψ >=
1

n

∫
ψ(v)f (1)(v, r, t)dv. (2.1)

The Inelastic Enskog-Boltzmann equation describes how f (1) changes

in time. Particles can move in and out of volume elements due to streaming

motion; particle velocities can change in response to external forces F; or

particles can be scattered out of elements by collisions. The time rate of

change for f (1) is given by

∂f (1)

∂t
+ v · ∇rf

(1) + F · ∇vf
(1) = Θ(f (1)), (2.2)

where Θ(f (1)) is the collision operator. Collisions are considered to be binary,

frictionless, and inelastic with a constant coefficient of restitution e0 [63]. In-

tegrating eq. (2.2) yields the balance law for the number density,

∂n

∂t
+ ∇ · (nu) = 0, (2.3)

where u(r, t) = (1/n)
∫

vf (1)(r,v, t)dv is the local average velocity. Multiply-

ing by the velocity and then integrating gives the balance law for momentum,

n

(
∂u

∂t
+ u · ∇u

)
= ∇ · P − ngẑ, (2.4)
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Finally, multiplying by v2 and integrating gives the balance law for

the energy, where the granular temperature T is proportional to the average

kinetic energy of the random motion of particles,

T = 1/3
(
< v2 > − < v >2

)
, (2.5)

3

2
n

(
∂T

∂t
+ u · ∇T

)
= −∇ · q + P : E − γ, . (2.6)

where γ is the energy loss rate due to inelastic collisions.

A series of approximations is required in order to derive the form of the

pressure tensor P, the velocity gradient tensor E, and the heat flux q. One

assumes that f (1) is nearly Gaussian, that spatial derivatives of n, u, and T

are small, and that (1− e0) is small. With these assumptions, the components

of the velocity gradient tensor E are given by: Eij = 1
2
(∂jui + ∂iuj). The

components of the stress tensor P are given by the constitutive relation:

Pij =

[
−p + (λ − 2

3
µ)Ekk

]
δij + 2µEij, (2.7)

and the heat flux is given by Fourier’s law:

q = −κ∇T. (2.8)

The transport coefficients are fully determined and are the same as for

a dense gas of hard spheres. The bulk viscosity is given by

λ =
8

3
√

π
nσT 1/2G(ν), (2.9)
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the shear viscosity by

µ =

√
π

6
nσT 1/2

[
5

16

1

G(ν)
+ 1 +

4

5

(
1 +

12

π

)]
, (2.10)

and the thermal conductivity by

κ =
15
√

π

16
nσT 1/2

[
5

24

1

G(ν)
+ 1 +

6

5

(
1 +

32

9π

)]
, (2.11)

where

G(ν) = νg0(ν), (2.12)

and the radial distribution function at contact, g0, is [47]:

g0(ν) =

[
1 −

(
ν

νmax

) 4
3
νmax

]−1

, (2.13)

where ν is the volume fraction of the flow and νmax = 0.65 is the 3-dimensional

random close-packed volume fraction.

The only difference between these equations and those for an elastic

gas is γ in eq. (2.6), which accounts for the temperature loss due to inelastic

collisions:

γ =
12√
π

(1 − e2
0)

nT 3/2

σ
G(ν). (2.14)

The system is closed by an equation of state, proposed by Goldshtein

et al. in [47],

p = nT [1 + 2(1 + e0)G(ν)] . (2.15)
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Direct experimental verification of the inelastic continuum equations

has been slow in coming due to the complexity of solving the equations and

also due to difficulties in finding an appropriate experimental system [21].

The presence of strong gradients in granular materials [43, 119] adds addi-

tional difficulty to solving continuum equations. For instance, simulations of

the vertically vibrated layer find that the temperature varies by three orders of

magnitude throughout the cycle [14]. Thus, unlike most Navier-Stokes simu-

lations, the transport coefficients (λ, µ and κ) cannot be treated as constants,

but must be recomputed at each grid point at every time step. Additionally, a

complete set of boundary conditions for granular flows is still not established

and remains an active area of research [17, 61, 64, 65, 113, 114]. Without the

correct boundary conditions, numerical solutions can be unstable and are not

guaranteed to converge to a correct solution in the bulk. For a good discus-

sion on the difficulties in determining the correct boundary conditions, see

Goldhirsch’s review paper [43].

In a 1990 review paper [21], Campbell made a resounding call for gran-

ular flow experiments to make quantitative tests of the inelastic continuum

approach. The application of new technologies such as particle tracking in

two and three dimensions is now making these measurements feasible, but

granular flow experiments still present technical challenges. Plugs develop

in pipe flow [2, 96], wall effects dominate in quasi-two-dimensional experi-

ments [101, 132], and detailed bulk flow measurements are difficult to make

in fully three dimensional experiments [13].
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Chapter 3

Wake Behind a Cylinder in a Granular Flow

Portions of the contents of this chapter have been submitted to PRE Rapid

Communications

3.1 Abstract

We study the V-shaped wake (Mach cone) formed by a cylindrical rod

moving through a thin, vertically vibrated granular layer. The wake, analogous

to a shock (hydraulic jump) in shallow water, appears for rod velocities vR

greater than a critical velocity c. We measure the half-angle θ of the wake as

a function of vR and layer depth h. The angle satisfies the Mach relation,

sin θ = c/vR = 1/M, (3.1)

where M is the Mach Number and c =
√

gh, even for h as small as one particle

diameter.

3.2 Introduction

We present a study of the shape of the wake behind a cylinder in a

vertically vibrated granular layer. Wake flow was originally solved by Have-

lock for an infinitesimal disturbance moving on the surface of a dispersive
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gh /vR

Figure 3.1: The dependence of the wake half-angle θ on the velocity of an
object, vR, traveling through a surface-tensionless fluid of finite depth h [53].
For vR <

√
gh, both transverse and diverging waves contribute to the wake

leading, to the Kelvin wedge pattern (left inset). For vR >
√

gh, the transverse
waves are not resonantly excited. A superposition of diverging waves leads to
the formation of a shock (right inset). The opening angle decreases with
increasing vR.
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medium [53]. For water, neglecting surface tension, the dispersion relation of

surface (gravity and capillary) waves is known, and the shape of asymptotic

wake can be solved for analytically. The speed of a long gravitational wave on

water (neglecting surface tension) is c =
√

gh. If the disturbance propagates

with a speed vR less than c, the far wake behind the disturbance is described

by the Kelvin wedge (Fig. 3.1). The wake consists of transverse and longi-

tudinal waves all contained within an envelope at a fixed angle of 19.5o. If

the disturbance propagates with vR > c, a shock wave forms. The transverse

waves are no longer amplified and the angle of the wake envelope follows the

Mach relation (Fig. 3.1).

Detailed studies of wakes in granular materials have not been per-

formed. However, experiments and simulations have examined the drag force

on an object inserted into a granular medium. When the granular medium

is static, the drag force is found to be independent of [3, 23] or only weakly

dependent [130] on the object velocity. When the granular medium is flu-

idized via external forcing, as in an experiment by Zik [134] and simulations

by Buscholtz and Wassgren [18, 129], the drag is found to be proportional to

the square of the object‘s velocity. The square dependence is consistent with

a shock wave formed at the front of the object [71].

3.3 Experiment

A stainless steel rod of diameter D = 0.75 mm is inserted into a shallow,

vibrofluidized granular layer consisting of bronze spheres with a diameter σ =
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Figure 3.2: The granular layer is confined in a plexiglass container (17.75 cm
in diameter and 10.7 cm tall) with an aluminum base. A motor is attached to
a plexiglass disk through a rotary motion feedthrough. A stainless steel rod
is suspended from the disk at a radius of 5.1 cm. The motor spins the disk
such that the rod moves with a constant speed vR in the range of 4-30 cm/s.
Outside of the container, a thick aluminum plate also rotates with the rod.
On each rotation the aluminum plate passes through a photo diode, triggering
the CCD camera to record 52 images of the layer.

0.17 mm. The rod moves in a circular path of radius 51 mm with a constant

speed vR in the range 4-30 cm/s (Fig. 3.2).

The granular layer is vibrofluidized using an apparatus similar to the

one described in [45, 79]. A schematic of the apparatus is shown in Fig. 3.3. For

each layer depth h, the peak plate acceleration 2.2g and the nondimensional

frequency f ∗ = fD

√
h/g =0.39 are chosen such that the layer is fluidized but

remains below the onset of patterns [86]. The container is evacuated to less
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Granite Stone
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electromagnetic 

shaker

air table with pneumatic
 supports

air bearing

diode laser
Dalsa 256x256 

camera

steel rod

Figure 3.3: The granular layer is vibrated by an electromagnetic shaker. The
shaker is attached to the container via a 2.54 cm square air bearing. The
bearing minimizes both rotational and horizontal motion, so the container is
only forced vertically. The system is sensitive to the tilt of the container. The
air bearing rests on an aluminum plate which is suspended above an air table.
We adjust the length of the wires until the layer inside the container remains
level while being shaken.
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than 4 Pa to reduce air effects [94]. The distance from the bottom of the

container to the rod is held fixed at 0.5h throughout the container oscillation.

We measure the time averaged height field of the layer behind the rod

using a laserline technique similar to the one reported in [41]. A thin laser sheet

(1 mm thick) is shone perpendicularly onto the granular layer and imaged by a

CCD camera set at a fixed angle to the granular surface (Fig. 3.4). Deviations

from a straight line indicate the variations of surface height. The resulting

height field is shown in fig. 3.4(b) for h=4σ and vR =21.5±0.1 cm/s.

3.4 Results

For small vR, the time averaged layer remains everywhere flat to within

our experimental error. For vR greater than a critical velocity, c, the height

field shows a bow shock structure: a rapid increase in surface height, analogous

to a hydraulic jump, develops in front of the rod and extends downstream in

a v-shaped wake (Fig. 3.4). The maximum deflection of the layer (∆hmax),

measured from the laser line directly behind the rod, as a function of vR is

shown in Fig. 3.5. For vR greater than c, the layer height increases linearly

with rod velocity. A fit to the data for a layer depth of h=4σ indicates a

critical wave speed c =8.4±0.7 cm/s.

The transition from the subcritical flow without a shock, to a super-

critical flow with a bow shock is not sharp, as indicated by the rounding of

the transition seen in Fig. 3.5. As the flow accelerates around the rod, a small

supercritical region develops for vR less than but near c. A shock forms in this
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Figure 3.4: (a) Schematic of the laserline scanning technique used to measure
the displacement of the surface created by a rod moving through a granular
layer. The rod travels in a circular path of r = 5.1 cm. A laser light sheet
is incident downward onto an initially flat granular surface. When the rod
passes through the laser line it triggers a CCD camera, held at a fixed angle
with respect to the flat surface, that captures 52 digital images of the laser
line separated in time by δτ = 2.2 ms. For vR = 21.5 cm/s, the distance
between line scans is δx = vR ∗ δτ = 0.47 mm. The inset shows an average
over 400 periods of the rod motion. The location of the laser line is determined
to subpixel accuracy by finding the center of a Gaussian fit to each vertical
slice as shown in the inset (red line). The wake is a 3D reconstruction of the
averaged laser lines. (b)The top view of the shock created by the rod, moving
to the right, for vR = 21.5 cm/s. The location of the maximum positive
displacement for each laser line is indicated by the dots. A linear fit to the
maxima (blue) reveals the wake’s asymptotic half angle θ.
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Figure 3.5: The maximum upward displacement of the layer determined from
height profiles along the dashed line in Fig. 3.4 (b) behind the rod as a function
of rod velocity for layer depth h=4σ. For small vR the layer behind the rod
remains flat to within experimental accuracy (dotted line). Above a critical
velocity the deflection increases linearly (dashed line). The intersection of the
dashed line with the horizontal axis indicates a non zero critical velocity. The
noise level was determined by the peak to peak oscillations in the flat part of
the layer.
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region, but does not extend out into the fluid.

We measure the half-angle θ of the shock with respect to the axis of

the rod’s motion as a function of vR. We define the location of the shock by

the maximum of the height field for each line scan. Near the rod the shock is

curved; however, within a few rod diameters the shock straightens, creating a

V-shaped wake with a well-defined half-angle. A linear fit through the maxima

of the asymptotic shock yields θ (Fig. 3.4). We find θ is described well by the

Mach relation (3.1) for a compressible gas. The linear dependence of the data

plotted in Fig. 3.6 indicates a constant surface wave speed. For h = 4σ we

find c = 7.9± 0.4 cm/s, which is consistent with the critical speed determined

from the height measurement (8.4±0.7 cm/s).

3.5 Shallow water theory

The results can be understood in terms of a shallow water approxima-

tion, similar to the approach applied to avalanches [51, 108] and granular free

surface patterns [10]. When the depth of a fluid is small compared to the

other dimensions in the system, one can neglect the fluid velocity in the ver-

tical direction compared with the velocity components parallel to the surface.

In this shallow water approximation, the equations describing the motion of a

free surface of an incompressible, isothermal fluid in a gravitational field are

equivalent to the equations for a compressible gas flow [71]. In both cases a

shock forms when the relative velocity between the fluid and the obstacle is

greater than a critical velocity. For waves on a free surface the critical velocity
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Figure 3.6: The dependence of the half-angle θ of the shock cone on vR. The
ordinate is scaled so that a sinusoidal dependence yields a straight line. The
slope yields the wave speed, c. Inset shows dependence of c on the layer depth
h. The error includes uncertainty in the depth due to leveling of the container
(horizontal error bars) and uncertainty in the algorithm determining the angle
(vertical error bars). The solid line is the prediction from shallow water theory,
c =

√
gh.
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is the maximum gravitational wave speed, c =
√

gh for long waves without

surface tension, and the shock is a discontinuity in height.

For completeness, the derivation of the hydraulic approximation from

the Jenkins and Richman equation is included in the Appendix A.

We determined the critical wave speed as a function of layer height

by finding the slope of the line from the angle measurements. For h =1-6σ

the surface wave speed follows c =
√

gh in agreement with the shallow water

interpretation (inset to Fig. 3.6).

The agreement with shallow water theory is surprising. A vibrated

granular layer is highly compressible [14, 48]; during each collision with the

plate, a shock wave forms in the bulk of the fluid and travels through the

layer compressing and heating the grains. Although the volume fraction and

granular temperature across the shock can change by as much as a factor of 2 or

100 respectively [14], the energy is quickly dissipated by inelastic collisions [11].

Our molecular dynamics simulations for the conditions of our experiment show

that throughout much of the cycle the bulk of the layer has an approximately

constant density and temperature (Fig. 3.7). If the forcing of the plate is

assumed to only fluidize the granular layer and does not play a strong roll in

the propagation of waves on the surface, a shallow water approximation for

granular flows is reasonable. Remarkably, the wave speed for a layer depth of

only one particle diameter follows the prediction from the continuum, shallow

fluid theory. Instead, deviations from the theory appear to occur for deeper

layers (h=6d). Keeping the container level is more challenging for deeper
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Figure 3.7: Space-time plot of the horizontally averaged flow fields for (a)
Temperature and (b) volume fraction from a MD simulation of a vertically
vibrated granular layer (Γ = 2.2, f ∗ = 0.39, h = 4σ). Each horizontal line
shows the averaged field as a function of height in the cell. The crystal ordering
of particles can be seen in the volume fraction curve. Red indicates high
values of the field; blue indicates low values. For t = 0 the layer begins
colliding with the plate (solid white line). Near the plate a compression shock
forms, compressing and heating the grains. By t = 0.25τ , the shock has
traveled through the layer. For the remainder of the cycle, the layer moves
with respect to the plate, but the temperature and density profile do not
change significantly.
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Figure 3.8: The maximum height of the shock front as a function of r, the
distance from the shock front to the rod’s axis of motion. The amplitude of the
cylindrical sound waves excited by the rod decay as 1/

√
r, where r is the radial

distance from the origin of the wave. The shock formed by the coalescence of
these waves does not extend into the fluid indefinitely, but decays as r−3/2.

layers, increasing the error in the determination of c.

3.6 Shock Decay

The granular shock rapidly decreases intensity as it extends into the

surrounding fluid. The maximum height of the shock versus r, the distance

from the shock to the axis of motion of the rod, is plotted in Fig. 3.8. Within

3 rod diameters, the height of the shock decreases by a factor of two.

In his 1945 paper, Landau presented a scaling argument for the damping

of shock waves far from the origin [70]. Here I present his argument for the

shape of shocks at large distances from their origination. Then I apply the

scaling to the cylinder wake profile.
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Figure 3.9: A shock profile propagating through a fluid can not be multi-
valued. Instead, a discontinuity forms at x = x0. The location of the discon-
tinuity is such that the two shaded areas will be equal [71]

In the simplest approximation for the motion of a wave through a fluid,

one assumes each point on the wave profile travels with a constant velocity

u = c0. For the motion of shock waves, this approximation is insufficient - the

velocity of the wave depends on the local conditions, namely the local pressure.

In the second order approximation

u = c0 + αv, (3.2)

where α = (∂u/∂ρ0)S ρ0/c0. The first term in the equation describes the

motion of the profile without change and the second term accounts for the

distortion due to pressure differences in the fluid.

Consider the arbitrary wave shown in Fig. 3.9. Point a on the wave is

traveling with a faster velocity than point c. Eventually, a will move ahead
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of c and the wave profile will be multi-valued. This evolution is prohibited,

instead a discontinuity forms at the point x = x0.

The location of the discontinuity can be determined by considering the

conservation of mass. On either side of the discontinuity, the mass flux must be

equal. Let the discontinuity move with a velocity u0 and the flow on either side

of the discontinuity have velocities u1 and u2. Conservation of mass requires

ρ1 (u1 − u0) = ρ2 (u2 − u0) . (3.3)

Solving for u0 yields,

u0 =
ρ1u1 − ρ2u2

ρ1 − ρ2

=
d (ρu)

dρ
|u=1/2(u1+u2). (3.4)

Using Eq. 3.2 to evaluate the derivative gives the velocity of the discontinuity

u0 = c0 + 1/2 (v1 + v2) . (3.5)

The difference in the two shaded areas in Fig. 3.9 is found by integrating∫ v2

v1

(x − x0) dv (3.6)

along the curve. The change in area as the curve propagates is

d

dt

∫ v2

v1

(x − x0) dv =

∫ v2

v1

((c0 + α0v) − (c0 + 1/2 (v1 + v2))) dv = 0. (3.7)

Since the time derivative of the area is zero, the area of abc must equal the

area of cde.

Far from the obstacle, the flow must return to the undisturbed state.

Consider the velocity profile shown in Fig. 3.10. A triangle is a good approx-

imation for a shock consisting of plane waves far from its origin, since the
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Figure 3.10: Decay of a shock discontinuity as it travels through a material.
The area of the shaded triangles must be equal

compressed front moves faster than the relaxing flow behind it. Landau used

the constant area of the profile to derive the intensity change of the shock front

as it propagates.

In a given time t point B will move αt∆v0 with respect to C yielding

the triangle A’B’C’ shown in Fig. 3.10(b). As before, the shock profile cannot

be multivalued, instead the actual discontinuity will only travel to point D.

Since the area defined by the discontinuity is constant, ABC = A′DE which

implies

l0∆v0 = l∆v. (3.8)

Triangles A’DE and A’B’E are similar implying the ratio of any two

sides must be equal.

tan θ =
∆v0

l0 + αt∆v0

=
∆v

l
. (3.9)

Solving for ∆v in terms of l, l0, ∆v0 and setting the area of ABC = A′DE
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gives

l = l0

√
1 +

αt

l0
∆v0 (3.10)

∆v =
∆v0√

1 + αt
l0

∆v0

. (3.11)

For large t, the length of the shock l increases as
√

t and the shock intensity

decays as 1√
t
.

The same geometric argument applies to discontinuities in cylindri-

cal waves, such as those excited as the rod travels through the layer. The

amplitude of any cylindrical wave decays as 1/
√

r. This decay affects the

propagation velocity so that any point in the profile moves with a velocity

u = c0 + αv0

√
r0/r.

Consider again the profiles described in Fig. 3.10. The point B’ prime

will exceed point C’ by

δr =

∫ r

r0

αv0

c0

√
r0/r dr (3.12)

δr =
2αv0

c0

√
r0

(√
r −√

r0

)
. (3.13)

Following the same method as used above for plane waves, we set the area of

the triangles equal and determine the dependence of l on r.

l = l0

√
1 +

2αv0

l0c0

√
r0

(√
r −√

r0

)
(3.14)

For r >> r0, l ∝ r1/4. The decrease in intensity of the discontinuity scales as
√

r∆v ∝ r−1/4, yielding a total decrease in intensity of

∆v ∝ r−3/4. (3.15)
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For a shallow fluid ∆v ∝ √
∆h, implying that

∆h ∝ r−3/2. (3.16)

The solid line in Fig. 3.8 is a fit to ∆hmax proportional to r−3/2. The

agreement with Landau’s theory for the damping of a discontinuity in a dis-

sipationless fluid is surprising. The bronze particles continuously dissipate

energy via inelastic, frictional collisions between particles and between parti-

cles and the boundaries. Despite this innate energy loss, the system damps

with the same scaling as a compressive shock in a gas with no viscosity.

3.7 Time Dependence

High speed images of the layer reveal time dependent behavior in the

wake that can not be explained in terms of a simple shallow water approxima-

tion. As the rod moves through the layer, it displaces a portion of the granular

medium, creating a hump in front of the rod and a dip behind. During the

fraction of the driving cycle when the layer is in the air, the dip is prominent.

When the layer collides with the plate particles rush in and close the dip cre-

ating a peak. The peak remains stationary while the rod continues to move

through the layer (Fig. 3.11).

In the determination of the height field shown in Fig. 3.4, we made no

effort to resolve the influence of the external driving. The fields are a time

average over many cycles where the frequency of the averaging is incommen-

surate with the frequency of the external driving. Averaging over many plate
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Figure 3.11: High speed images of the wake. The white circles indicate the
approximate position of the rod. Red indicates high points of the layer and
dark blue indicates depressions. The vertical oscillation of the layer imposes
an additional feature on the wake. With each oscillation the depressed region
behind the rod collides with the plate and fills forming a small peak at x = x0.
The peak remains stationary while the rod continues to move with vR. On
the next oscillation with the plate the old peak is damped and a new one will
form at x = x0 + vR/f .
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oscillations at an incommensurate frequency yields the additional, oval peak

behind the rod seen in Fig. 3.4.

3.8 Conclusions

Our experiments demonstrate that a thin vertically vibrated granular

layer is described well by shallow water theory for a surface-tensionless fluid.

We find that a shock forms on the surface when an obstacle’s velocity exceeds

the speed of a gravity wave, c =
√

gh. The angle of the shock cone is deter-

mined by the Mach relation, and the damping of the shock follows the scaling

derived by Landau for shocks traveling in a dissipationless fluid. Future ex-

periments should study the applicability of this model as a function of layer

depth and inelasticity. For deeper layers, the shock generated when the layer

collides with the bottom plate may not travel to top of the layer [46], possibly

changing the behavior.

The shocks formed in our experiment are an example of Cerenkov radi-

ation generated by an object traveling through a medium faster than the wave

phase velocity [60]. Such radiation leads to increased resistance (wave drag)

when a critical velocity is exceeded. Future experiments should examine the

dependence of drag on vR near the onset of the shock because experiments

[19, 134], simulations [18, 129], and theory [24, 99] disagree on this increase in

drag.
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Chapter 4

Methods

In this chapter I discuss the methods employed in our study of granular

flow past an obstacle. In the experiment stainless steel particles confined

between two glass plates fell under gravity and interacted with an obstacle.

We determined the position and velocity of the particles from successive high

speed images of the flow. Averaging over many frames yielded bulk flow fields

of density, velocity and temperature. We compared the experimental fields

to results from molecular dynamics simulations and a numerical solution of

the inelastic continuum equations. In this chapter I describe the experimental

apparatus, data analysis and simulation techniques.

4.1 Flow Past a Wedge Apparatus

A snapshot of the experimental apparatus is shown in Fig. 4.1. In

the experiment particles fall through a Hele-Shaw cell (a quasi-2D cell with a

width much greater than the plate separation [84]) . The particles are initially

distributed on a conveyor belt located above the Hele-Shaw cell. For each

experiment, particles fall off the belt into a hopper set on top of the Hele-

Shaw cell, through the glass plates and are collected in an aluminum box. A
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10 cm

Figure 4.1: A snap-shot of the experimental apparatus. Particles fall past
obstacles (in this image two wedges) confined between two glass plates. The
Hele-Shaw cell is set in a large, aluminum box that can be evacuated.
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detailed description of each of the components is provided below.

4.1.1 Particles

We used stainless steel particles with a diameter σ = 1.191 ± 0.002

mm. The large, non-magnetic (302SS), metallic particles minimized magnetic,

electrostatic, and air effects. Stainless steel has a high coefficient of restitution,

e0 = 0.96 for an impact velocity of 1.2 m/s [73]. All of the obstacles and

sidewalls were made from non-magnetic stainless steel flat stock.

4.1.2 Hele-Shaw Cell

The granular flow was confined between two 1.27 cm×52.7cm×52.7cm

float glass plates. The spacing between the plates was set by two strips of

stainless steel flat stock that serve as the side walls for the granular flow. An

obstacle made of the same flat stock is located within the experimental cell

(Fig. 4.2a). The glass plates are supported and clamped on either side. The

top and bottom of the cell remain open.

Float glass plates are rarely square and of uniform thickness. In order

to account for these effects we designed a flexible clamping system. The plates

rest in a 5.7 cm wide by 2.5 cm deep grove cut into the aluminum clamps set

on either end of the glass plates. The stainless steel flat stock is sandwiched

between the plates. A thin strip of rubber rests on the outside of each glass

plate in order to smooth out the surface. Six screws are located on each side

of the clamps. The bottom of the screws rest in shallow holes in the aluminum

54



47.6 cm (400 σ)

47.6 cm
 (400 σ

)

5 cm

11.9 cm
(100 σ)

10.2cm

58
.4

 c
m

stainless steel 
spacer

threaded
holes

rubber
47

.6
 c

m

1.27
cm

A
lu

m
in

um
 S

pa
ce

r

A
lu

m
in

um
 S

pa
ce

r

G
la

ss
 P

la
te

G
la

ss
 P

la
te

1.27
cm

(a) (b)

Figure 4.2: Schematic of the experimental cell: a) the Hele-Shaw cell is formed
by two 1.27 cm thick glass plates. b) Cross section of the clamps
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bearing housing tensioning rod

side wall support plate

flexible coupler
to motor assemply

back stop

Conveyor Belt

Figure 4.3: image of the conveyor belt

bars. As the screws are turned, the aluminum bars press against the glass

clamping them in place. We tighten the screws using a random pattern until

the obstacle is held in place purely by frictional forces.

4.1.3 Distribution

Before each run particles were distributed on a conveyor belt in a single

layer hexagonal close pack crystal. As the belt turned, particles fell off the belt

and into a hopper resting on top of the glass plates. The hopper was made of

polished aluminum cut at a 30◦ angle. The edges of the aluminum pieces are

set flush with the glass. Particles rattle around the hopper before entering the

glass plates, so that the original crystal arrangement is randomized before the

flow enters the Hele-Shaw cell.

56



6.9 cm

10.9 cm

support 
bar3.8 cm

Glass Plates

relief for conveyor belt

1.3 cm

Hopper Schematic

Figure 4.4: schematic of the hopper system

The particle flux into the Hele-Shaw cell was controlled by the conveyor

belt velocity and the spacing between the two glass plates. For each gap width,

we chose the maximum belt velocity that allowed particles to flow into the cell

without jamming.

4.1.4 Lighting

The system was illuminated from behind by a two dimensional array of

red LED’s with a 45◦ opening angle. The 1440 LED’s are wired in parallel. In

order to gain sufficient light for high speed imaging, the LED array requires

25 Amperes of current delivered by a Little Mite power supply. The light is

further diffused by frosted glass taped onto the back of the Hele-Shaw cell.
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4.1.5 Vacuum Apparatus

For the experiments reported in Chapter 5.4.1, we enclosed the Hele-

Shaw cell in a vacuum chamber at a pressure 4 Pa. At this pressure the mean

free path of a N2 molecule is 1.6 mm, which is slightly larger than the gap

thickness of the Hele-Shaw cell.

The vacuum chamber was a rectangular box (121 cm tall by 91.4 cm

wide by 45.7 cm deep) made of 1.27 cm thick aluminum plates. In order to

strengthen the chamber, a 5 cm by 2.5 cm aluminum bar stock was welded

along the center of each sidewall. At 4 Pa, the maximum deflection of the

aluminum plates occurring at the center of the side walls was 0.5 cm.

Windows on either side of the chamber allowed the system to be illumi-

nated from behind with LED array and imaged with a camera located outside

the chamber. The windows were made from 7.6 cm thick Plexiglas and lexan.

The lexan is slightly stronger but harder to polish than the Plexiglas. We

imaged the cell through the Plexiglas window. Each 61 cm by 61 cm window

was affixed to the chamber with an 0-ring seal, held in place by 44 bolts. Once

the windows were attached, they were never removed.

The entire front panel of the chamber served as a door allowing access

to the interior. During a vacuum run, the door was sealed to the chamber

with an O-ring and 46 bolts.

The chamber was evacuated with an oil based roughing pump. In order

to reduce the contamination of the chamber by pump oil, a molecular sieve trap
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was placed between the pump and the chamber. A Varian aluminum block

valve allowed the chamber to be isolated from the pump. Before evacuating

the chamber, the sieve was baked for 24 hours while under vacuum.

The rough pressure is measured inline with the vacuum pump via a

convectron gauge. Once the chamber pressure fell below 13.4 Pa, a Varian

HT100 sensor connected to a convectron gauge monitored the pressure. The

sensor was not inline with the vacuum pump, leading to a more accurate

measure of the interior pressure.

Mechanical motion to the conveyor belt was applied through an MDC

direct drive rotary motion feed through. The vacuum is maintained by a

preloaded o-ring shaft seal. The feed through can be rotated up to 300 rpm,

however can only maintain vacuum for torque less than 70 N-cm. The feed

throughs are sensitive to lateral and axial load.

4.2 Particle Tracking

We record high speed images of the flow with a Kodak Motioncorder

camera. For each experimental run the camera recorded 2173 images of par-

ticles separated in time by 1 ms. A series of scripts developed in Matlab with

Mark Shattuck were used to locate the particles centers in each frame and

to connect particles from one frame to the next. While particle tracking is a

commonly used method in experimental physics, the flows studied here present

unique difficulties.
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Figure 4.5: Image of a white sheet of paper taken with the Kodak Motioncorder
camera. The pixel array is noisy, showing a 2 by 2 square pixel pattern of
varying intensity.

First, the Kodak camera is noisy. An image of a white sheet of paper

(Fig. 4.5) shows a clear pixel pattern of 2X2 squares of varying intensity.

While the wavelength of the pattern remains constant, the pixel values vary in

time and are always noticeable in the recorded images. Because of this noise

pattern, center finding techniques such as weighted averaging [28, 92, 115] or

edge detection [128] must be adapted.

4.2.1 Finding centers

The first step in the image analysis accounts for the non uniform illumi-

nation by the LED arrays. Before each data run, we record 100 images of the

cell without falling particles. The images are averaged together and serve at

the background. We subtract each data image (Fig. 4.6a) from the background

60



a b

Figure 4.6: (a) A snap shot of the experimental. The image shows an area
35σ × 34σ taken from the top and center of the cell. The flow is viewed
in transmission, so that particles are dark. Unfortunately the camera has a
noise pattern so the particles do not appear as solid disks nor as a Gaussian
reflection. The center is not necessarily reflected by the darkest pixel. (b) A
background subtracted snap shot shows a more regularly illuminated image.
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and divide the result by the background, yielding the more homogeneous image

seen in Fig. 4.6b.

For coarse particle tracking, it is often sufficient to call the brightest

pixel in a group the center of the particle. Sub-pixel accuracy is determined

by weighting the intensities of the surrounding pixels by their distance from

the center. The camera noise introduces too much uncertainty in pixel val-

ues for this method to return accurate centers. Although the background we

subtracted from the image helps remove the variation in lightening, some still

persists. Faster moving particles and particles near boundaries appear much

darker than others. The brightest pixel technique misses too many particles

in each frame, returning inaccurate densities and also causing difficulty deter-

mining velocities. We use the brightest pixels above a user adjusted threshold

only as a first guess for the particle‘s center p1. Using this guess we deter-

mine the typical intensity profile of a particle by averaging a box of pixels

centered around p1 for each particle. The ”ideal particle“(ip) determined by

this method is shown in Fig. 4.7(a).

The image in Fig. 4.6(b) can be thought of as a convolution of delta

functions located at the particle centers and ip. In order to determine the

location of the centers, we deconvolve the image with ip. The deconvolution

of Fig. 4.6(b) and ip is shown in Fig. 4.7(b). The brightest pixels in the

deconvolution, above a certain threshold, are considered the second guess for

the particle centers p2. This method resolves most particles including those in

dense clusters.
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a b c

Figure 4.7: a An image of the average particle, ip detected by the camera.
This image is used to deconvolve the original images, yielding bright pixels at
the center of each particle in the frame b. Subpixel resolution is determined
by minimizing the difference between the actual image from an image created
by ip’s.

To refine the positions p2 to sub-pixel accuracy, we create an ”ideal

image” consisting of ip located at each point in p2. We minimize the difference

between the ideal image and the actual image.

4.2.2 Determining Velocities

We determine the velocities of the particles by matching the location

of a particle in one frame with its location in the next frame. Matching the

particles is non trivial, as strong velocity gradients in the flow imply particles

can move more than their diameter between frames. In addition particles can

collide or pass each other between frames. Finally, particles are free to enter

or leave the frame.

We determine particle pairings with a multi step process. First we
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Figure 4.8: Location of the particle center determined at each of the three
stages: p1 green, p2 black, and p3 white.
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make an initial guess, matching a particle in frame n to the particle in frame

n + 1 closest to the original location. If the particle is closest to a boundary,

the match is to that boundary. The pairing must be one to one. If two or

more particles pair with a particle in n + 1, then the matches are readjusted

to minimize overall distance between particles. This process is repeated until

the pairing is 1 to 1. With the initial guess in hand, we average over all

initial guesses and build an average flow field. The pairing process is repeated,

however instead of choosing simply the closest particle, we use the velocity

field to predict where a particle in frame n should be in frame n + 1. This

process is repeated until no particle matches are changed. The typical number

of repeats for dense systems is four. See Fig. 4.9.

4.2.3 Building average flow fields

For the flows considered in Chapter 5 we create average flow fields on

a sub-pixel grid. Each time a particle is located in a grid, the number count

is incremented by one and the velocity by the velocity of the particle. This

procedure is repeated for at least 16000 frames. A particle should not simply

be represented by its center, the whole particle contributes to the flow. We

adjust for this by convolving the flow field with a Gaussian corresponding to

the particle size. An example of an experimentally determined flow field is

shown in Fig. 4.10.

The above method to compute the average flow fields works well for

dilute flows. For high density flows, the finite size of the particles is evident
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Figure 4.9: We match particles from one frame to another. Red are particles
in the first frame. Blue particles in the second. Arrow connects the dots.
Particles are allowed to come in and leave through all of the walls.
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Figure 4.10: Average vertical velocity flow field determined from time-averaged
particle tracks. The image shows a 125σ × 100σ region.

67



in the smooth fields making it difficult to compare to continuum theory which

does not recognize a particle length scale in the flow fields. In this regime we

compute the voronoi tessellation for all particle centers in a frame (Fig. 4.11).

Each polygon represents the area of the cell which is closest to that particle.

The flow density of each polygon equals 1/area of the polygon, and the velocity

of the polygon is the particle’s velocity [90, 111].

In order to average over many realizations of a flow, the information

contained in the tessellated frame must be mapped to a steady structure. We

map each frame to a square grid with grid spacing equal to σ. If a grid spacing

falls entirely within a polygon, the density and velocity associated with that

polygon is assigned to the grid location. If instead, the grid spacing only

partially falls within the polygon, we assign a fraction of the value associated

with the polygon to the grid spacing. We determine the appropriate fraction by

dividing the original grid space into a 10 X 10 rectangular array and computing

how many of the vertices of the array fall within the polygon. Fig. 4.11 shows

the average of 8 realizations of a flow computed in this manner.

We compare the experimentally determined averaged flow fields of vol-

ume fraction, velocity and temperature to continuum theory. The bulk tem-

perature at a grid point is defined as the second moment of the local distribu-

tion function. In order to get a reliable temperature, we need to average over

sufficient particles to adequately sample the local distribution function. The

dependence of the measured temperature on the number of particles used to

compute T is shown in Fig. 4.12. A reasonable T may be determined with 8
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Figure 4.11: Top zoomed in region on the exit of a funnel. The black regions
correspond to portions of two wedges defining the funnel. The bottom of the
wedges are separated by 12σ. Near the opening of the funnel, the grains are in
a crystal configuration. We compute the voronoi tessellation, such that each
polygon defines the area closest to the particle contained within the polygon.
The density of the flow inside a polygon is 1/area. We average over many
realizations of this flow to determine the average flow field. Bottom The
average volume fraction field determined by the tessellation technique.
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Figure 4.12: MD simulation results for the temperature, T , at the top and
middle of a quasi-2D cell. We plot the dependence of the measured T on the
number of particle velocities used to compute T . For number of particles,
N < 8, the recorded value of the temperature is incorrect.

or more particles. For the results presented in this thesis, each T value was

computed from at least 16 particles.

In order to have sufficient resolution for particle tracking, we can not

image the entire 400σ× 400σ flow field at once. Instead, we piece together the

field from smaller, zoomed in images of 33σ× 35σ. Before moving the camera,

we image a ruler placed in the field of view of the camera. The ruler remains

in place while the camera is moved. We can reconstruct the location of the

field by matching the rulers from each region.
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4.3 Molecular Dynamics Simulation

We compared experimental results to an event driven, hard sphere

molecular dynamics simulation developed by Joe Newman and Chris Bizon.

The code was validated against experiment for the vertically vibrated granular

layers [11] and adapted by Bizon for the wedge geometry.

In the simulation, particles follow parabolic trajectories and interact

through instantaneous, binary collisions. The collision model, developed in [127],

conserves both linear and angular momentum but allows energy dissipation by

inelastic and frictional collisions [127]. At a collision the velocities are decom-

posed into their relative normal (vn) and tangential(vt) components. The

relative displacement vector r̂12 defines the distance between particles located

at r1 and r2.

r̂12 = (r1 − r2) / |r1 − r2| , (4.1)

vn = ((v1 − v2) · r̂12) r̂12 (4.2)

vt = r̂12 × ((v1 − v2) × r̂12) . (4.3)

The relative surface velocity at the collision vs for spheres of diameters σ is

vs = vt + r̂12 × σ/2 (w1 + w2) , (4.4)

where w1 and w2 are the particles angular velocities.

The change in a particle’s normal velocity from a collision is found

by conserving linear momentum and reducing the normal component of the
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velocity by the coefficient of restitution:

∆v1n =
m12

m1

(1 + e)vn (4.5)

∆v2n = −m12

m2

(1 + e)vn, (4.6)

where m12 is the average mass.

The tangential velocity is changed by two processes: it is reduced be-

cause of sliding friction and is coupled to the angular momentum because of

rolling friction. The frictional interaction of the grains causes a reduction in

the relative surface velocity between particles. In addition, energy of the colli-

sion can be stored in tangential strain at the contact region, causing a reversal

in the relative surface velocity. β takes all of this into account

β = min [β0,−1 + µ(1 + e)( 1 + 1/K )vn/vs] , (4.7)

where β0 is the maximum tangential coefficient of restitution. For sliding

friction, the tangential impulse is assumed to be given by the normal impulse

multiplied by µ.

∆v1t =
m12

m1

K (1 + β)

(K + 1)
vs (4.8)

∆v2t = −m12

m1

K (1 + β)

(K + 1)
vs (4.9)

∆w1 =
σ

2I

m12

m1

K (1 + β)

(K + 1)
r̂12 × vs (4.10)

∆w2 = − σ

2I

m12

m2

K (1 + β)

(K + 1)
r̂12 × vs, (4.11)
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Figure 4.13: The coefficient of restitution is velocity dependent (figure from
[50]).
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where I is the momenta of inertia about the center of a sphere ( 1
10

mσ2)and

K = 4I/ (mσ2) is a geometrical factor relating the momentum transfer from

translational to rotational momentum.

Experimental studies of the impact of spheres show that the coefficient

of restitution depends on the relative velocity of the impact, as Fig. 4.13 illus-

trates. As the relative collision velocity tends to zero, e tends to unity. For the

initial study of rapid granular flow past a wedge presented in chapter 5, the

granular flow fields did not show any difference between velocity independent

and velocity dependent runs. For our initial comparison with hydrodynamic

theory (which assumes a constant e) we set e = e0. However for dense gran-

ular flows a constant e causes a numerical instability referred to as inelastic

collapse [75, 76], where a particle can have an infinite number of collisions in

a finite time. To prevent this artifact we allow the coefficient of restitution

to be 1 if a particle collides within a time 3 × 10−4
√

σ/g of the previous

collision [77]. For collisions with small relative velocities vn <
√

0.2gσ, the

coefficient of restitution varies as 1− (1 − e0)
(
vn/

√
gσ

)3/4
. Otherwise, e = e0.

Collisions with the boundaries are treated in the same way as collisions

with other particles, however the boundary has infinite mass and the collision

parameters e, β, and µ are defined independently.

The molecular dynamics simulation mimics the experimental geometry.

Particles are introduced into the top of the box at a specified rate. The initial

horizontal location of the particle is chosen randomly and the initial velocity

of the particle is chosen from a Gaussian distribution with a nonzero mean
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velocity in the direction parallel to gravity. The width of the distribution,

the input rate of particles, and the mean vertical velocity are chosen in order

to match the measured experimental conditions of ν,vz and T measured 42σ

above the wedge. The width of the Gaussian distribution perpendicular to the

confining plates was reduced by α, where α was altered in order to fit the free

stream flow.

4.4 Continuum Equation Solver

We compare experimental results for the wedge geometry with a nu-

merical solution of the Jenkins and Richman equations presented in Chapter

2. The initial code was written by Mark Shattuck and reported in [101]. The

equations were solved on a 2-D grid via a second order space and first or-

der time accurate finite difference solver. We solved the 3D equations, but

all derivatives along the third direction (perpendicular to the plates) were as-

sumed to be zero. Euler time stepping was applied. Since the experimental

flow reaches a steady state, the continuum simulation is run from the ini-

tial conditions until the system reaches a steady state where the mass flux is

constant to 0.01%

We use a rectangular grid with spacing such that the grid points fall

exactly on the wedge boundary. For the experimental comparison presented

in Chapter 5, we used a wedge with half-angle θ = 30◦ centered on a 504×194

grid where ∆x = 0.61σ and ∆z = 1.0417σ.
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4.4.1 Boundary Conditions

The boundary conditions at the inlet to the Hele-Shaw cell were spec-

ified from the experiment (ν0 =0.0145, V0 =0.6387 m/s, T0 =0.0176 (m2/s2)

and at the outlet were unspecified. At the side walls, the boundary conditions

were periodic.

Along the wedge we used a slip boundary condition on the velocity,

such that the ratio of the tangential strain to normal strain was equal to one.

The wedge is ”colder” than the surrounding granular fluid, so there is a net

heat flux into the wedge. We followed Jenkins and Askari [62] and set the

heat flux to be proportional to the local volume fraction ν and T 3/2. This

relationship is only expected to hold true for dilute flows. We measured the

proportionality constant directly from the MD simulations and found k = 0.2.

The appropriate boundary condition at the wedge tip was difficult to

determine. Three regions of the granular flow converge on the wedge tip: the

free stream particles which have not yet interacted with the wedge and particles

bouncing off either side of the wedge. Results from MD simulations show the

velocity distributions within 2σ of the wedge have a different functional form

than the surrounding flow.

We designed the grid so that the wedge tip falls between evaluated

points. At the wedge tip, the flow parameters are set to be equal to the

value found in MD simulations. However, results from the MD and continuum

simulation are most different near the tip. The MD simulation shows a bulb of
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Figure 4.14: Velocity Distribution of particles within 2σ of the wedge tip
determined from MD simulation. The Gaussians fits are determined from the
temperature and mean values in the free stream region near the tip.
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a.)a.) b.)b.)

Figure 4.15: Temperature fields for a). molecular dynamics simulation and b).
continuum equations. Each simulation handles the tip differently, leading to
poor agreement in the vicinity of the wedge tip.

hot material with a rapidly cooling halo. The continuum results gives a more

typical bow shock structure.

The slip boundary condition applied along the wedge causes difficul-

ties at the bottom corners. This condition allows the boundary to exert an

unphysical pull on the granular fluid. Because of the inappropriate boundary

conditions, the flow at the bottom corners was unstable. We chose not to com-

pare to the continuum solution within 2σ of the bottom of the wedge. Future

work will employ a different boundary condition on the surface, which should

improve stability.
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Chapter 5

Flow Past A Wedge

Portions of this chapter have been published in Physical Review Let-

ters [101]

5.1 Abstract

We measure time-averaged velocity, density and temperature fields for

steady granular flow past a wedge. We find the flow to be supersonic with

a speed of granular pressure disturbances (sound speed) equal to about 10%

of the flow speed, and we observe shocks nearly identical to those found in a

supersonic gas. Molecular dynamics simulations of the experimental geometry

yield fields in quantitative agreement with experiment. A numerical solution

of the inelastic continuum equations is only in qualitative accord with the

experiment, but agrees quantitatively with a molecular dynamics simulation

for the experimental conditions excluding wall friction.

5.2 Introduction

A classic problem for supersonic flows of an elastic gas is the shock

formed when the flow encounters a wedge [5]. In the free stream the flow stream
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Figure 5.1: MD simulation of a supersonic elastic gas interacting with a wedge
of half angle θ = 20◦. The flow is incident on the wedge with a Mach number
of 2.5. Impenetrable boundary conditions at the surface of the wedge require
the flow stream lines behind the shock to be parallel to the wedge surface.
The shock extends outward into the fluid at an angle β with respect to the
incident flow.

lines are parallel and incident on the wedge. At the shock the streamlines

are deflected through an angle θ and aligned parallel to the wedge surface.

Across the shock the Mach number decreases and the pressure, temperature

and volume fraction increase. The shock surface extends outward into the flow

with at an angle β with respect to the initial incident streamlines (Fig. 5.1).

If the incident flow is steady, inviscid, and isothermal, than the shock

angle β may be determined by the free steam Mach number and the half-angle

of the wedge θ. The θ − β − Mach relation for an elastic gas is shown in

Fig. 5.2. For each incident Mach number, there exists a maximum deflection

angle θmax. If the geometry requires the stream lines to be deflected through
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an angle θ > θmax, then no straight line shock solution exists, instead a normal

shock is created in front of the obstacle, curving as it extends into the fluid.

For a Mach 5 flow, θmax = 41.5◦.

In this chapter we examine the shock formed when a granular flow en-

counters a wedge. We first present the experimental setup and the results. We

compare experimental shock profiles with those computed via MD simulation

and the inelastic continuum equations. Finally we describe how the oblique

shock formed in the granular flow differs from the elastic gas analog.

5.3 Experiment

In the experiment, stainless steel spheres (particle diameter σ = 1.2

mm) fell under gravity past a wedge sandwiched between two glass plates

separated by 1.6σ. The particles were initially distributed uniformly on a

conveyor belt. As the conveyor turned, particles fell off into a hopper that

guided the particles into the cell formed by the closely spaced plates; the

wedge was located a distance of 42σ below the top of the cell. The positions

and velocities of the particles were determined from high speed images of the

falling particles, and data from many thousands of particles were averaged to

obtain the time-independent velocity, volume fraction, and temperature fields.

We computed the average free stream speed of sounds from our mea-

surements according to Eq. 1.4. The sound speed for flow incident on the

wedge was 0.09 m/s. The flow entered the top of the cell with a Mach number

of 7 and accelerated under gravity to a Mach number of 12 at the tip of the
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Figure 5.2: The θ − β − Mach relationship for elastic, oblique shocks. Figure
taken from Anderson [5].
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30σ

Figure 5.3: An observed image of granular flow incident downward on a wedge,
where the particle positions and velocities (denoted by arrows) are determined
from images separated by 1 ms. The longest arrow corresponds to a velocity
of 1.65 m/s. The figure 68σ by 45σ shows the top 30σ of a wedge of total
height 100σ.

wedge.

The horizontal velocity field measured in the experiment is shown in

fig. 5.4(a). A shock separates the undisturbed region, where the horizontal

velocity is nearly zero, from the compressed region, whose stream lines follow

the flow around the obstacle. Because of gravity and inelasticity, the shock

does not extend out at a constant angle but curves towards the wedge.

At the bottom of the wedge the compressed gas expands in a fan-

like structure as the volume available to the flow increases (fig. 5.5). In an

expansion fan the density and temperature decrease and the Mach number

increases. The expansion fan is a smooth transition radiating from the bottom

corner of the wedge.

The flow was computed numerically in a three-dimensional MD simu-
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Figure 5.4: Horizontal component of the velocity field of a granular flow inci-
dent downward on a wedge, determined by three methods: (a) experiment, (b)
MD simulations, and (c) integration of inelastic continuum equations. (d) MD
simulation of an elastic gas in a gravitational field is included for reference.
Each picture shows a region 130σ by 104σ. The solid lines with arrows denote
streamlines. Quantitative comparisons along the dashed line in (a) are shown
in figs. 5.6 and 5.7 [101].

84



Figure 5.5: The horizontal velocity field measured for the expansion fan that
formed when the supersonic granular flow reached the bottom of the wedge.
The solid lines indicate selected streamlines. The total height of the region
shown is 55σ. The white region below the wedge had too few particles for the
velocity to be determined [101].

lation (fig. 5.4(b)) and in a two-dimensional finite difference simulation of the

inelastic continuum equations (fig. 5.4(c)). The two simulations yield results

for the horizontal component of velocity in qualitative accord with experi-

ment: a shock forms at the tip of the obstacle, and behind the shock the flow

is compressed, has a higher temperature, and lower mean velocity. Quantita-

tive comparisons among the methods are plotted in figs. 5.6 and 5.7 for values

of the fields along the dashed line shown in fig. 5.4(a).

Three parameters were adjusted in the MD simulation to achieve the

agreement with the experiment shown in figs. 5.6. The same coefficient of

restitution e0 = 0.97 and friction coefficient µ = 0.15 were used to model

inter-particle and particle-wall collisions. The initial conditions of the experi-
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Figure 5.6: Shock profiles for granular flow past a wedge measured in an
experiment (circles) are compared with results from molecular dynamics (solid
lines): (a) volume fraction, (b) horizontal component of the velocity, and (c)
temperature. The profiles are taken along the dashed line in fig. 5.4 [101].
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ment were modeled by placing particles into the top of the cell at a constant

rate. Incoming particles were placed randomly at the top of the cell with a

mean downward velocity measured from the experiment, and fluctuations were

chosen from a Gaussian distribution determined by the measured temperature.

An additional parameter α, defined as the ratio of temperature perpendicular

to the wall to that parallel to the wall, was set to 0.8. These parameters, which

were not measured in the experiment, were adjusted to provide agreement in

the full flow fields, including the free-stream velocity. The parameters are set

to provide good agreement with the experiment throughout the full plane,

including the incident free stream velocity.

Results from the MD simulation are compared with experiment in

fig. 5.6 for the volume fraction, horizontal velocity component, and tempera-

ture. The agreement is quite good with a root mean square difference between

experiment and simulation of less than 2% for the volume fraction and velocity

fields and 10% for the temperature field.

The simple geometry and steady state behavior of the experiment pro-

vided a good system for testing the inelastic continuum equations. We compare

a two-dimensional simulation of the Jenkins and Richmann equations to the

experiment and MD simulations.

The continuum equations were numerically solved by a second-order

accurate, finite difference method. The only fit parameter in the equations was

the coefficient of restitution, which was set to the same value of e0 = 0.97 used

in the MD simulation. Boundary conditions at the inlet were determined by
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the experiment and at the outlet were free. Slip velocity boundary conditions

were used along the wedge boundary. The heat flux at the wedge was taken

to be proportional to the local ν and T 3/2 [64]. Euler time stepping was used

to increment the simulation until the flow reached a steady state where the

horizontally averaged mass flux was constant to 0.01%.

Both the experiment and continuum simulation showed a shock and an

expansion fan, but the shape of the profiles differed and the magnitudes of

the fields disagree by as much as a factor of two (fig. 5.7). We attribute the

disagreement to the frictional drag of the confining side walls in the experiment.

The confining glass sidewalls in the experiment affect the flow. The

average vertical velocity of the experimental free-stream is shown in fig. 5.8.

The measured average acceleration inside the cell is 8.9 m/s2, while a particle

outside the cell falls with the expected downward acceleration of 9.8 m/s2. This

difference could be due to an increase in air drag because of the thin channel

geometry, wall friction, or a combination of the two effects. The molecular

dynamics simulation is three dimensional, including the confining walls, and

allows for friction during ball-wall collisions. Unfortunately, the computational

time for a full three dimensional continuum simulation was prohibitive for this

work and a two-dimensional model for frictional drag does not exist for these

flows.

We can evaluate, indirectly, the capability of the continuum model.

We compare the continuum simulation to the molecular dynamics with µ = 0

for ball-wall collisions. The two simulations agree to within 1% in the bulk
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Figure 5.7: Comparison of shock profiles for granular flow past a wedge ob-
tained from molecular dynamics (solid lines) and inelastic continuum equations
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quantitatively. The difference between the simulations and the experiment is
due to wall friction [101]. 89
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Figure 5.8: Experimentally measured free stream vertical velocity versus ver-
tical distance (blue dots). The top of the cell corresponds to y=0. The solid
red line is a fit to the experimental data yielding a downward acceleration of
8.9 m/s2.

flow. Near the tip of the wedge, the simulations disagreed with a maximum

error of 10%. The larger errors indicate a problem with the simple boundary

conditions used in this study. However, the excellent agreement in the bulk

confirms the applicability of the continuum equations and validates the kinetic

theory approach.

5.4 Friction

The inelastic continuum equations agree qualitatively with experiment,

but they fail to agree quantitatively due to the lack of friction in the model

equations. The inclusion of friction in the continuum equations takes an al-

ready difficult problem and complicates it further requiring three additional
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coupled partial differential equations for the exchange of angular momentum.

Researchers have suggested that more simple modifications to the continuum

model such as a tangential coefficient of restitution or viscous boundary con-

ditions may be sufficient to bring the continuum description in quantitative

accord with experiment. In the experiment, there are three sources of friction:

air drag on the particles, friction between particles and the boundaries, and

friction between the particles. In this section, we use the experiment and MD

simulations to discern the effect of each type of friction on the shock profiles.

5.4.1 Air Friction

The air drag on a 1.2 mm sphere falling in an infinite volume is negligi-

ble. In the experiment, the particles fall with speeds in the range of 0.6–3 m/s.

For these velocities the corresponding Reynolds numbers Re = 50−250 imply

the air drag on the particles is proportional to the velocity squared. We find

that the drag force is in the range of 0.1–2.6 µN, less than 3% the force of

gravity on the particles.

The drag force, however, is unknown for particles confined in a narrow

channel. In order to eliminate air resistance, we evacuated the experimental

cell to 4 Pa. The distribution of downward accelerations for particles falling

between glass plates separated by 1.1σ is shown in Fig. 5.9. There was no sta-

tistical difference between particles falling through air at atmospheric pressure

and those falling through air at 4 Pa; particles fell in air with a mean downward

acceleration ay = 9.2 ± 0.93 m/s2, and in vacuum with ay = 9.02 ± .96 m/s2.
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5.4.2 Wall Friction

In the experiments reported in this chapter, the width of the Hele-Shaw

cell was 1.6σ. At this width particle-particle collisions can be significantly off

axis, scattering particles into the walls. The distribution of individual particle

tracks reveals a wide range of accelerations felt by the particles (Fig. 5.9).

Narrowing the gap thickness to 1.1σ reduces the possibility of off axis collisions,

increasing the mean of the distribution of accelerations. The mean downward

acceleration for a 1.1σ gap thickness was 9.2± 0.93 m/s2 – much greater than

for a gap of 1.6σ where ay = 7.1± 0.75 m/s2. This effect does decrease in the

free stream as particles expand and the collision frequency decreases. However,

behind the shock the collision frequency increases, presumably increasing the

effect of the wall friction. Future experiments will be performed with a gap

thickness of 1.1σ.

5.4.3 Inter-Particle Friction

Results from our study of granular flow past a wedge were dominated by

the effect of wall friction. Researchers have suggested that the disagreement

between the continuum solution and the experiment may be resolved with

inclusion of a viscous boundary condition [46]. However, recent experiments

have shown inter-particle friction also plays a vital role in granular flows [82].

To elucidate the effect of inter-particle friction, we performed MD simulations

without wall friction and gravity, varying only the particle properties. As

expected, an elastic frictionless gas shows a straight shock formed at the wedge
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Figure 5.9: Distribution of the measured downward accelerations for particles
in the experiment with gap thickness 1.6σ and atmospheric pressure(green),
gap thickness 1.1σ atmospheric pressure (red) and 1.1σ at 4 Pa (blue) . The
accelerations were determined by fitting tracks from particles in the top portion
of the cell. Only particles with smooth (collisionless) tracks over a vertical
distance 30σ were considered.
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Figure 5.10: MD simulations showing the dependence of the shock shape on in-
elasticity and friction. For elastic particles, the shock extends straight into the
fluid at a constant angle with constant parameters behind the shock. Adding
inelasticity and friction causes the shock to curve in towards the wedge. The
dashed lines show the location of the comparisons in Fig. 5.11.
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tip (Fig. 5.10). The shock profiles for ν,T ,and Mach number are shown in

Fig 5.11. For an elastic frictionless gas (blue line), the shock is sharp and the

flow parameters behind the shock are constant. For an inelastic frictionless

gas, the shock curves closer to the wedge. Behind the shock the increased

temperature due to shock compression is rapidly dissipated and the volume

fraction continues to increase (blue line). With the addition of inter-particle

friction, the region behind the shock narrows, the maximum temperature in

the shock decreases and the dissipation rate increases (green line).

5.5 Conclusion

Our experiments on granular flow past a wedge reveal shocks that are

analogous to those in gas dynamics. We find that both molecular dynamics

and continuum equations predict the quantitative behavior of a supersonic,

frictionless granular flow past an obstacle in the regime of low dissipation and

low volume fraction. The disagreement between experiment and continuum

modeling is a consequence of the confining sidewalls. While a thin cell geome-

try is useful in experiment because it facilitates imaging, most real applications

will be fully three dimensional with negligible wall interactions. However, fur-

ther MD simulations of the flow geometry without gravity and wall friction

show that inter-particle friction may still complicate direct comparison be-

tween frictionless continuum theory and physical granular flows.
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Figure 5.11: Shock profiles taken from MD simulation results of particles
moving through a thin cell with no gravity and interacting with a wedge.
We compare the volume fraction a, temperature b, Mach number c profiles
along the horizontal dashed line in Fig. 5.10 for elastic, frictionless particles
e0 = 1, µ = 0 (blue line), inelastic, frictionless particles e0 = 0.97, µ = 0 (red
line), and inelastic frictional particles e0 = 0.97, µ = 0.15(green line). The
flow values behind the shock for elastic frictionless particles are constant. In-
elastic collisions cause the flow parameters to evolve behind the shock – as the
temperature is dissipated, the volume fraction increases and the Mach number
increases. Adding friction increases the dissipation of energy and exacerbates
the effects. In d we plot the Mach Number of the free stream flow taken along
the vertical dashed line in Fig. 5.10. Adding inelasticity and friction to the
particles causes the temperature in the free stream to be dissipated, increasing
the Mach number.
.
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Chapter 6

Normal Shock Propagation in a Funnel

6.1 Abstract

We study the propagation of a normal shock wave formed at the inter-

section of two oblique shocks. We compare results from MD simulations to a

Hugoniot-Rankine type approximation of the inelastic continuum equations.

The MD simulations show behavior similar to the simplified equations, but

inelastic collisions cause evolution of the shock unaccounted for in the approx-

imation. We find the shock speed as a function of inelasticity and compare

results to an asmyptotic solution of a set of inelastic continuum equations.

6.2 Introduction

In the previous chapter we described an oblique shock formed as a

granular flow interacts with a wedge. In this chapter we examine a flow that

travels through a funnel defined by two wedges. This geometry is often found

at the end of a wind tunnel [5]. As before, the free stream flow is incident

downwards on the wedges (Fig. 6.1). At each wedge tip, an oblique shock

wave forms. At the shock the streamlines are deflected through an angle θ to

flow parallel to the wedge surfaces. Near the opening of the funnel, the shocks
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interact. In the interaction region the streamlines are again deflected by θ and

flow out of the funnel. For sufficiently strong shocks, the second deflection can

not be achieved through an oblique shock front, instead a normal shock forms

at the intersection region [5]. Behind the normal shock, the flow streamlines

return to the original orientation.

We observe the identical phenomena in our experiments (Fig. 6.1C)

and MD simulations (Fig. 6.2). As in the previous chapter, a granular flow fell

under gravity past two 30 degree wedges. Two identical oblique shocks form

at each wedge tip and interact near the opening. A normal shock forms in the

interaction region. Behind the shock the flow is denser, hotter and slower.

An oft studied problem in supersonic fluid mechanics is the shock tube

where a piston moves with supersonic velocity into an initially undisturbed

gas. The motion of the piston creates a normal shock that propagates into the

undisturbed region. This geometry is difficult to achieve for granular flows,

however we exploit the normal shock formed in the funnel described above in

order to study this problem. If we reduce the distance between the bottom of

the wedges such that the incoming mass flux into the funnel is greater than the

flow rate into the channel, the normal shock will propagate upstream, similar

to the shock propagating in a tube.

In the MD simulations, particles are injected into the Hele-Shaw cell

with an initial mean vertical velocity u = −5.8
√

gσ and temperature T =

0.024 gσ. The particles accelerate under gravity into a funnel composed of

two 30◦ wedges (Fig. 6.2). The bottom corners of the wedges are separated
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Figure 6.1: Schematic of oblique shocks (blue lines) interacting in a region be-
tween two wedges. The dashed lines with arrows indicate the direction of the
flow streamlines. The initial flow is incident downwards. Behind the shocks
the flow is deflected through an angle θ and the Mach number of the flow de-
creases. The flow is deflected again by θ in the region of shock interaction. The
maximum allowed deflection angle by an oblique shock depends on the Mach
number in the incident region (see Chapter 5.2, Fig. 5.2). If the Mach number
in region 2 is large, then θ < θmax, the incident shock waves are refracted at
the interaction region (A). If the Mach number is small such that θ is greater
than θmax, a normal shock forms at the interface of the interaction region (B).
The vertical velocity field from an experimental granular flow through a fun-
nel formed by two wedges is shown in (C). The bottom of the wedges were
separated by 25σ. A normal shock forms at the interaction region. The flow
behind the normal shock is hotter, denser, and slower than the incident flow.
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Figure 6.2: Volume fraction fields from an MD simulation of granular flow in
a funnel for e0 = 0.9. The average fields were calculated using the tessellation
technique described in Methods.
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Figure 6.3: MD simulation results (e0 = 0.97) for the propagation of the
volume fraction wave up the funnel. Each profile is the mean volume fraction
at time along the center between the two wedges. (Time τ is measured in
units of

√
σ/g.) Dark dots indicate the location of the shock and open circles

indicate the front of the crystalline region. The shaded region is the realm
inside the funnel.

by 12σ. Within a time τ = 16
√

σ/g, we observe an oblique shock at each

wedge tip and a normal shock near the funnel exit. The mass flow rate into

the interaction region is greater than the flow rate exiting into the vertical

channel, causing the normal shock to propagate upwards.
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6.3 Normal shock propagation

Volume fraction profiles through the center of the funnel are shown in

Fig. 6.3. A dilute granular flow (ν0 = 0.09) enters into the Hele-Shaw chamber

at y = 140σ and expands due to gravity. Near the exit of the funnel at y = 0

a normal shock forms. The strength of the shock increases as it propagates

upstream from τ = 0 − 30
√

σ/g until the volume fraction behind the shock

reaches the maximum allowed value (0.5496 corresponds to a single layer of

hexagonally packed spheres confined in a cell with gap thickness 1.1σ). For

τ > 40
√

σ/g the shape of the volume fraction profile remains constant as it

propagates. At τ = 60
√

σ/g the shock approaches the opening of the funnel.

The front edge of the shock occurs where the volume fraction changes

from expanding under gravity to increasing because of shock compression. To

find the shock location, we subtract the free stream evolution of ν from the

volume fraction profiles. We define the leading edge of the shock as where

the adjusted volume fraction profiles δν increase above 0.05 (solid black dots

shown in Fig. 6.3). The dense, crystalline region begins where the profile

reaches the maximum volume fraction (open circles shown in Fig. 6.3).

The shock front location versus time is plotted in Fig. 6.4. For small

times, τ < 20
√

σ/g, the shock is developing and propagates quickly. Once

the maximum volume fraction behind the shock is reached, the shock velocity

decreases and the profile propagates without change. The solid line is a linear

fit to the shock locations for τ = 30−60
√

σ/g. Shock locations after 60
√

σ/g

were excluded because the shock front moved beyond the funnel. For e = 0.9
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Figure 6.4: (MD simulation, e0 = 0.9) The location of the shock as a function
of time as the normal shock propagates upwards in the funnel (blue dots). The
solid blue line is a fit to the linear, constant profile region. The slope of the
line indicates the velocity of the shock. The red open circles indicate the front
location of the crystalline region behind the shock and the red line is a fit to
the linear, constant region. The growth rate of the crystalline region is equal
to the shock velocity within our fitting accuracy
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Figure 6.5: MD simulation results for the propagation of the temperature wave
up the funnel. Dark dots indicate the location of the shock. The shaded region
is the realm inside the funnel.

and opening width 12σ the asymptotic shock velocity equals 0.83
√

gσ. The

front edge of the crystalline region travels with a velocity 0.89
√

gσ.

At the leading edge of the shock wave, the temperature of the flow

increases dramatically by more than 2 orders of magnitude (Fig. 6.5). As the

temperature and density increase, so does the collision frequency. The greater

numbers of inelastic collisions rapidly reduce the temperature, such that once

the maximum volume fraction is reached behind the shock, the temperature

has cooled to less than the free stream value. At the exit of the funnel, the

temperature again increases as the particles streaming velocity increases. As
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the shock wave propagates upstream, the maximum value of the temperature

decreases.

6.4 Hugoniot-Rankine Approximation

The full equations of motion for a compressible gas flow are complicated

and difficult to solve. For several problems of interest in elastic flows, the flow

is constant both before and after the shock, changing only at the shock wave.

For these systems, a series of approximations greatly simplify the equations.

What was once five coupled partial differential equations requiring a computer

to solve is reduced to one-dimensional jump conditions, the Hugoniot-Rankine

equations, only needing algebra to find the solution [5, 71].

For instance consider the one-dimensional problem of a piston moving

with constant, supersonic velocity up into a gas. Far from the piston, the gas

is undisturbed with an initial density ρ1, velocity u1 and pressure P1. Near the

piston, no slip boundary conditions require the gas to move with the piston

velocity, u2 = up. A normal shock separates regions 1 and 2 (Fig. 6.6). If

we assume the gas to be inviscid and non-conducting with no body forces,

and assume the flow has reached the asymptotic steady state where the shock

propagates without change, then the compressible Navier-Stokes equations

reduce to the Hugoniot-Rankine jump conditions [5, 71]. The conservation of

mass requires the mass flux to be constant:

ρ1u1 = ρ2u2 = j. (6.1)
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piston

u

2

undisturbed gas

p

1

us

Figure 6.6: schematic. The piston moves into the gas with a constant super-
sonic velocity up. A normal shock separates the undisturbed region 1 from the
compressed region 2. The shock propagates into the undisturbed region with
a velocity us.
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Applying conservation of momentum yields

P1 + ρ1u
2
1 = P2 + ρ2u

2
2. (6.2)

We use the above Hugoniot-Rankine equations to estimate the changes across

the normal shock propagating in the funnel. Because the fluid is inelastic, the

volume fraction behind the shock will approach the maximum allowed value.

The final velocity behind the shock can be estimated from Eq. 6.1, u2 =

(ν1u1) /νmax. The vertical velocity profile for the normal shock at 56
√

σ/g is

shown in Fig. 6.7a. The velocity in the free stream is accelerated by gravity

(red line). Behind the shock the velocity initially decreases. Near the exit of

the funnel, the velocity is again accelerated by gravity. The jump conditions

accurately predict the initial value behind the shock (redline).

For a strong shock, P2 is much greater than P1. From Eq. 6.2, the pres-

sure change is approximately P2 = j (u2 − u1). Using the velocity difference

determined above we find an approximation for the final pressure behind the

shock. The pressure profile for the normal shock wave at 56
√

σ/g is shown

in Fig. 6.7b. In the free stream the pressure is negligible. Behind the shock

the pressure dramatically rises as both the temperature and volume fraction

increase. The prediction for the Hugoniot relation is far removed from the

measured pressures.

The inability of the jump conditions to capture the full features of the

granular flow is unsurprising. In a simple, elastic gas, the flow change due

to compression by a piston depends on the incoming flow parameters and the
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Figure 6.7: The vertical velocity (a) and pressure profiles (b) taken through
the center of the funnel (e0 = 0.9, τ = 56

√
gσ). In the free stream the

vertical velocity changes due to gravity. Behind the shock, the flow reaches a
constant velocity and the pressure increases. The solid red line indicates the
values predicted by the jump conditions and the solid green line indicates the
asymptotic pressure predicted by the analytic solution.
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velocity of the piston. For a granular gas, the final state is independent of

the initial conditions. Inelasticity provides a temperature sink, continuously

cooling the gas. The flow behind the shock will cool until the temperature is

zero and density has reached the maximum allowed value, independent of the

initial conditions or piston velocity. Since the number of particles is conserved

in a granular gas, Eq. 6.1 holds and the approximation accurately predicts

the velocity of the flow once the maximum volume fraction has been reached.

The energy of the flow is not conserved, hence Eq. 6.2 does not hold since the

pressure of the flow also depends on temperature.

The temperature in the solid region should decay to zero, however the

MD simulation is not designed for solids with zero T . In the simulation, if

two particles collide twice within 3× 10−4
√

g/σ, the coefficient of restitution

for the second collision is set to 1, preventing further decay of T in that

collision. While the prevented energy loss is small, it may contribute to the

disagreement in the pressure term. The temperature in the crystalline region

is small compared with the free stream, but is prevented from reaching zero.

6.5 Analytical Solution of a set of Inelastic Continuum
Equations

Goldshtein et al. theoretically examined how inelasticity affected the

shock formed by a piston moving into an initially undisturbed granular gas [48,

67]. The resulting flow, similar to our MD study, may be divided into three

sections: the undisturbed region, the shock region, and cold, crystalline region
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adjacent to the piston. The thickness of the crystalline region increases with

time as

(us − up) t (6.3)

[46].

In the asymptotic time limit, the researchers found analytic expressions

for the shock front velocity and final pressure behind the shock.

us =
up

1 − ν0/νmax

(6.4)

Ps =
ρou

2
p

1 − ν0/νmax

. (6.5)

The limiting values of the shock velocity and the shock pressure are surprisingly

independent of e0, varying only due to the initial density.

We examined the dependence of the normal shock speed as a function

of inelasticity. The shock location versus time for 4 different values of e0

is shown in Fig. 6.8. For smaller values of restitution the shock travels less

distance, however the asymptotic shock value us does not depend on e0 within

our fitting error.

To compare with Eq. 6.4 and 6.5, we define up according to Eq. 6.3.

Our results show that shock front moves at approximately the same speed as

the crystalline region. This is consistent with Eq. 6.4 since ν0 << νmax. The

predicted asymptotic pressure behind the shock agrees surprisingly well with

the measured value (Fig. 6.7 (greenline)).
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Figure 6.8: The shock location versus time for 4 values of e0. The shock front
travels fastest while it is developing and eventually settles to an asymptotic
value. The solid lines are a fit to the asymptotic region. The final velocity us

does not vary systematically with e0.
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6.6 Discussion

The normal shock in the funnel reached an asymptotic steady state

where the volume fraction profile propagates without change. In this limit

it is possible to apply approximations to the inelastic continuum equations

with some success. However, a steady state shock profile is not typical of

granular flows. For instance, in the frequently studied vibrated system, a

normal shock is created by a piston moving with a time-dependent velocity.

The shock continuously changes as it propagates into a fluid with strong spatial

gradients [14], see Chapter 2.3. Even when the forcing and flow is steady,

such is in gravity driven granular flow past a wedge, the flow behind the

oblique shock wave evolves. The presence of gravity causes spatial gradients

in the velocity behind the shock. In these cases an approximate or asymptotic

solution to the inelastic continuum equations is insufficient; instead the full,

compressible and time dependent equations must be solved.

For an elastic fluid, the changes across the shock depend on the up-

stream flow parameters. The values of T , ν, and P in the region behind the

shock will change depending on the values in front of the shock. In a granular

flow the asymptotic values behind the shock are fixed. The shock will continue

to change until T approaches zero and ν reaches νmax. Unlike in an elastic

gas where the shock is controlled by pressures at the boundaries, a shock in

an inelastic fluid is controlled by energy dissipation rate and the maximum

allowed volume fraction.
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Chapter 7

Conclusions and Suggestions for Future Work

We began this work asking whether continuum, hydrodynamic ideas

apply to granular flows. Despite the macroscopic size of the particles, lack of

spatial and time scale separation, and an energy sink due to inelastic collisions,

we found the continuum theories to be in qualitative accord with experiment

and MD simulation in each of the three geometries studied. We found quanti-

tative agreement when the continuum theory predictions were independent of

the particle properties, as in the shallow water approximation applied to the

cylinder wake flow and in the asymptotic behavior of a normal shock propa-

gating in a granular funnel. The inelastic continuum equations captured the

qualitative features of experimental measurements from the granular flow past

a wedge, but quantitative agreement suffered because frictional interactions

between particles and between particles and boundaries were not taken into

account in the derivation of the equations. In this chapter I briefly summarize

the results of each study and suggest further experiments.
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7.1 Wake Behind a Cylinder

We found the v-shaped wake behind a cylinder moving through a vi-

brated granular layer to be well described by a shallow water theory for a

surface-tensionless fluid for layer depths studied from h = 1σ to 6σ. The

shallow water approximation has been assumed in theoretical treatments of

granular avalanches and vibrated layers [51], but our measurements provide

the first detailed, experimental verification of the applicability of the shallow

water equations to granular fluids.

Researchers have suggested that for deeper layers the energy generated

when the layer collides with the bottom plate may not travel to the top of

the layer [46]. Our studies were restricted to small layer depths by limitations

of the experimental apparatus. For deeper layers, the container level was

unstable. Replacing the 5 cm2 air bearing with a larger, 10 cm2 bearing should

make it easier to keep the surface of the layer level allowing future experiments

to study deeper layers.

Hugoniot style jump conditions from shallow water theory predict the

change in height across a shock on the surface of a fluid. Further measurements

of the height profile directly in front of the rod may be compared to these

predictions, further testing the applicability of the shallow water theory.

Within the v-shaped wake, we observe an additional diamond like struc-

ture that is not captured by the shallow water theory. The wavelength of the

diamond pattern scales with the rod velocity and frequency of the shaking, sug-
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gesting the pattern is related to the external forcing. How the shaking leads to

the diamond structure is not understood. Time resolved height measurements

of the wake may explain the diamond formation.

7.2 Granular flow past a wedge

We verified that a granular flow falling between two glass plates is

supersonic with a mean Mach number greater than 10. While it is often men-

tioned that granular flows are supersonic, this remains the only measurement

of the Mach number in the bulk of an experimental granular fluid. An oblique

shocked formed at a wedge inserted into the flow. Quantitative comparison

between the experiment and a numerical solution of the inelastic continuum

equations was hampered by the influence of the side walls in the experiment.

However, agreement between the continuum theory and MD simulations with-

out wall friction confirmed the applicability of the hydrodynamics description

and highlights the need for frictional effects to be incorporated into the equa-

tions.

7.2.1 gap thickness

We found that narrowing the plate separation in the experiment re-

duced the effect of the confining sidewalls. The number of particles falling

in the free stream with an acceleration of 9.8 (m/s2) increased when the gap

thickness was decreased from 1.6σ to 1.1σ. It is not clear how the narrowed gap

affects the hotter, denser flow behind the shock. Future experiments should
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determine the affect of gap width on the profiles behind the shock.

7.2.2 boundary conditions

Determining the appropriate boundary conditions for granular fluids

remains an active and difficult area of research [43, 61, 64, 111]. For our nu-

merical solution of granular flow past the wedge, we empirically determined the

heat flux condition at the wedge by measuring the effect in MD simulations. A

similar method was employed by Bougieet al. [14]. The boundary conditions

for a granular fluid are not necessarily similar to the conditions employed in

elastic gas flows. In fluid mechanics, the derivation of the boundary conditions

assumes the fluid never leaves the boundary, but this does not hold true for

granular flows [111]. More experimental measurements on the interactions of

granular flows with surfaces are needed.

7.2.3 higher dissipation

The inelastic continuum equations were derived in the limit of small

dissipation. Our flow consisted of stainless steel particles with a high coefficient

of restitution in order to agree with this assumption. Future experiments

should determine how decreasing the coefficient of restitution affects the shock

profiles and the agreement with the equations.
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7.3 Normal shock propagation in a funnel

Our initial study of a normal shock propagating in a funnel revealed a

favorable comparison between MD simulations and an asymptotic solution to

a hydrodynamic theory. However, the MD simulation is not designed to model

the cold, crystalline flows which formed behind the shock. The most imme-

diate next step is to perform an experiment in the granular funnel geometry

and compare results to the hydrodynamic solution. This work is already in

progress.

7.4 velocity distributions

The Hugoniot-Rankine relations and the Navier-Stokes equations accu-

rately predict the changes across a normal shock in a fluid of elastic particles.

However, the structure of the shock profile and the single particle velocity

distribution function within the shock remain unknown [93]. In an elastic gas

the shock is too thin and the molecules are too small for standard experi-

mental techniques, making a direct measurement of the distribution function

extremely difficult. A direct measurement of the distribution function is pos-

sible in a granular fluid. Preliminary analysis of data from experiment and

MD simulations suggest the distribution function within the shock is neither

Gaussian nor bimodal. Further experiments should yield a functional form of

the distribution function and aid the understanding of kinetics in shocks.

117



7.5 Conclusions

Our work on shocks demonstrates that hydrodynamic theories can cap-

ture granular phenomena. At some point, the description must fail since it

should not apply to quasi static flows where the particles remain in contact.

More experiments amenable to direct comparison to theory are needed to fur-

ther establish the equations, determine better boundary conditions for the

equations, and determine the limits of their applicability.
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Appendix 1

Shallow Water Equations

The hydraulic approximation for fluids assumes the flow is isentropic,

inviscid, and incompressible. Applying these assumptions to the inelastic con-

tinuum equations derived by Jenkins and Richman, we begin with

∇ · u = 0 (1.1)

ρ
∂u

∂t
+ ρu · ∇u = −∇ · P − gẑ (1.2)

Additionally, we assume that the flow is irrotational:

∇× u = 0. (1.3)

The above equations are identical to those for a fluid in this limit.

Following the method laid out by Stoker, we recover the shallow water equation

for a fluid [116]:

Let the free surface be described by z = η (x, y, t). The boundary

condition at the top surface, z = η is then:

w =
∂η

∂t
+ u · ∂η

∂x
+ v · ∂η

∂y
|z=η, (1.4)

and

P = 0|z=η. (1.5)
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For a traditional fluid, the fluid remains in contact with the bottom boundary

at z = −h. At the bottom, the boundary condition is(
u
∂h

∂x
+ v

∂h

∂y
+ w

)
|z=−h = 0 (1.6)

The shallow water limit requires the changes in the direction perpen-

dicular to the surface (ẑ) be much smaller than the changes parallel to the

surface (x̂, ŷ). To make the coming expansion evident, we non-dimensionalize

the flow in terms of two lengths d and k, where d represents a typical depth

and k a typical length in the horizontal direction. The system is shallow if

σ = d2/k2 is small. In non-dimensional units the independent variables are:

x̄ = x/k, ȳ = y/k, z̄ = z/d, τ = t
√

gd/k, (1.7)

and the dependent variables are:

ū =
u√
gd

, v̄ =
v√
gd

, w̄ = w
d

k
√

gd
, P̄ =

P

ρgd
, η̄ = η/d, h̄ = h/d. (1.8)

Writing equations A.1 through A.6 in terms of the non-dimensional

variables and dropping the bars yields the incompressibility condition:

σ
∂u

∂x
+ σ

∂v

∂y
+

∂w

∂z
= 0, (1.9)

the momentum flux condition:

σ

[
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

]
+ w

∂u

∂z
= −σ

∂P

∂x
, (1.10)

σ

[
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

]
+ w

∂v

∂z
= −σ

∂P

∂y
, (1.11)

σ

[
∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y

]
+ w

∂w

∂z
= −σ

(
∂P

∂z
+ 1

)
, (1.12)
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and for irrotational flow:

∂w

∂y
=

∂v

∂z
,

∂u

∂z
=

∂w

∂x
,

∂v

∂x
=

∂u

∂y
. (1.13)

The surface boundary condition at z = η becomes

σ

[
∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y

]
= w (1.14)

and P = 0. The bottom boundary condition taken at z = −h is

σ

[
u
∂h

∂x
+ v

∂h

∂y

]
+ w = 0. (1.15)

We then expand all dependent variables in a power series in σ:

u = u(0) + σu(1) + ... (1.16)

v = v(0) + σv(1) + ... (1.17)

w = w(0) + σw(1) + ... (1.18)

P = P (0) + σP (1) + ... (1.19)

η = η(0) + ση(1) + ... (1.20)

and insert the expansions into Eq.A.9 through A.15. Equating terms of like

powers in σ we find to zero order the relations

w(0) = 0, (1.21)

u(0) = u(0) (x, y, t) , (1.22)

v(0) = v(0) (x, y, t) , (1.23)

P (0) (x, y, z, t) |z=η0 = 0. (1.24)
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The vertical component of the velocity is zero, and the velocities parallel to

the surface are independent of the vertical coordinate to lowest order.

Collecting terms that are linear in σ yields the equations:

∂u(0)

∂x
+

∂v(0)

∂y
= −∂w(0)

∂z
(1.25)

∂u(0)

∂t
+ u(0)∂u(0)

∂x
+ v(0) ∂u(0)

∂y
= −∂P (0)

∂x
(1.26)

∂v(0)

∂t
+ u(0) ∂v(0)

∂x
+ v(0) ∂v(0)

∂y
= −∂P (0)

∂y
(1.27)

∂P (0)

∂z
+ 1 = 0 (1.28)

∂η(0)

∂t
+ u(0) ∂η(0)

∂x
+ v(0)∂η(0)

∂y
= w(1), at z = η(0) (1.29)

u(0) ∂h

∂x
+ v(0) ∂h

∂y
= w(1), at z = −h (1.30)

From the zero order approximation, we found u(0) and v(0) are indepen-

dent of z, so Eq. 1.25 can be easily integrated to give:

w(1) = −
(

∂u(0)

∂x
+

∂v(0)

∂y

)
z −

[
∂

(
u(0)h

)
∂x

+
∂

(
v(0)h

)
∂y

]
z=−h

. (1.31)

To first order the vertical component of the velocity is linearly depen-

dent on z. We can also integrate the pressure condition from Eq. 1.28 to

get

P (0) (x, y, z, t) = η(0) (x, y, t) − z, (1.32)

which is the hydrostatic pressure relation. Inserting the values for P (0) and

w(0) into the equations and dropping the superscripts yields the shallow water
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equations:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+

∂η

∂x
= 0, (1.33)

∂v

∂t
+ u

∂v

∂y
+ v

∂v

∂y
+

∂η

∂y
= 0, (1.34)

∂η

∂t
+

∂u (η + h)

∂x
+

∂v (η + h)

∂z
= 0 (1.35)

.

The shallow water equations are identical in form and spirit to the

equations for a compressible fluid: with the layer height h and sound speed

c =
√

∂p̄
∂ρ̄

=
√

gh. In order to make the analogy clear, we assume the problem

is one dimensional and that u,η and their derivatives are small. Keeping only

linear terms from Eqs. 1.33 and 1.35 gives:

∂u

∂t
= −∂η

∂x
(1.36)

∂u (η + h)

∂x
= −∂η

∂t
. (1.37)

Eliminating η from the system of equations gives the wave equation for u and

assuming a flat bottom,

∂2u

∂x2
− 1

h

∂2u

∂t2
= 0. (1.38)

A wave propagates over the surface with a velocity c =
√

h in non-dimensional

units, or in real units c =
√

gh.
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