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In this dissertation, I would like to consider the efficient estimation of

various models in the presence of heteroskedasticity of unknown form. The first

essay focuses on mean sqaure errors comparison of linear regression model of

hetetroskedasticity with unknown form. I compare higher order properties of

the efficient estimators which include the GMM-type Cragg estimator, FGLS

based on series and kernel estimations. The comparison is to calculate the

approximate mean square errors of estimators using the Nagar type stochastic

expansion.

In the second essay, I consider the efficient estimation of partial linear

regression model under heteroskedastictiy with unknown form. I propose an

efficient estimator and prove it achieves Chamberlain’s (1992) semi-parametric

efficiency bound. The new estimator I propose has the same first order asymp-

totic properties as Li’s (2000) estimator. My estimator has the potential ad-

vantage of analyzing the higher order asymptotics.
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The third essay considers the two-step series estimation method for

generated regressors problem in context of semiparametric regression model

under heteroskedastictiy of unknown form. I establish the root-n consistency

and asymptotic normality results of the two-step series estimators. Compared

to the double kernel estimator introduced by Stengos and Yan (2001), my

estimator has some computational advantage and is more accurate in the sense

of the asymptotic variance. Simulation results show that the two-step series

estimator outperforms the double kernel estimator in terms of mean absolute

bias and mean square error.

The estimators considered in three essay involve the problem of choos-

ing smoothing parameters. Therefore, I also demonstrate how to pick optimal

smoothing parameters in each essay.
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Chapter 1

Introduction

In this dissertation, I would like to consider the efficient estimation

of various models in the presence of heteroskedasticity of unknown form. In

Chapter 2, I consider the linear regression model. As we know, a common prob-

lem in regression with cross-sectional data is the presence of heteroskedasticity

in the residuals. Even though we could get consistently estimated standard

errors to conduct hypothesis testing OLS is asymptotically less efficient than

other alternative estimators such as the feasible Generalized Least Squares

(FGLS) estimator and an efficient GMM estimator. One problem with these

estimators is that they typically involve the choice of a smoothing parameter

in order to estimate the unknown variance function or to determine the num-

ber of moment conditions to be used in GMM. Although there are rules for

the smoothing parameters that guarantee efficiency less is known about the

impact of the choice of smoothing parameter on the finite sample distribution

of the estimators. In Chapter 2, I compare higher order properties of effi-

cient estimators under heteroskedasticity of unknown form and in particular

consider how the smoothing parameter affects the finite sample properties of

the estimator. The estimators considered include the GMM-type Cragg esti-

mator, FGLS based on series and kernel estimations. The comparison is to
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calculate the mean square errors (MSE) of estimators using the Nagar type

stochastic expansion. It is natural to pick the optimal smoothing parameter

by minimizing the approximate MSE.

Chapter 3 discusses efficient estimator of partially linear regression

model with heteroskedastictiy of unknown form. I extend the Generalized

Least Square estimator considered in Li (2000) to the feasible GLS estima-

tor. I also propose an efficient estimator of partial linear regression model

and prove it achieves Chamberlain’s (1992) semi-parametric efficiency bound.

The new estimator I propose has the same first order asymptotic properties as

Li’s (2000). Both estimators involve the choice of two smoothing parameters.

The advantage of my estimator is that its form makes it more amenable to

asymptotic expansions that could potentially be used to pick the two smooth-

ing parameters. In the context of a Monte Carlo experiment, I compare my

estimator with Li’s (2000) and kernel estimators in terms of absolute mean bias

and mean squared error. The simulation results show that my estimator be-

haves similar to Li’s (2000) estimator. Also the performance of the series type

estimator seems more robust to the setting of the unknown function than the

kernel estimator. To overcome the problem of picking smoothing parameters in

series estimation, I propose the bootstrapping approximate mean square error

to choose the smoothing parameters. Using the true MSE as the benchmark,

the bootstrapping method works very well and provides us a useful criterion

for choosing two smoothing parameters simultaneously.

In Chapter 4, I consider the two-step series estimation method for gen-

2



erated regressors problem in context of semiparametric regression model un-

der heteroskedastictiy of unknown form. I establish the
√
n consistency and

asymptotic normality results of the two-step series estimators. These estima-

tors are much simpler to compute than the kernel methods proposed in the

literature, such as the double kernel estimator of Stengos and Yan (2001). In

addition I have allowed more general pocesses for the residual than considered

in that paper. The asymptotic variance of the two-step series estimator is com-

posed of two sources of error – one is the sampling error term and the other is

from the fact that the series approximation may not necessarily equal the true

function. We consider methods of inference that are robust to heteroskedastic-

ity in the residuals. Simulation results show that my two-step series estimator

outperforms the double kernel estimator in terms of mean absolute bias and

mean square error. Finally we consider the use of bootstrapping the MSE for

determining the two smoothing parameters and find that the method works

well in practice.

3



Chapter 2

Higher Order MSE Comparison of Linear

Regression Model Under Heteroskedasticity

with Unknown Form

2.1 Introduction

A common problem in regression with cross-sectional data is the pres-

ence of heteroskedasticity in the residuals - the variance in many cases varies

with the regressors. For example, in the study of family income and expendi-

tures, it seems reasonable to expect that lower income families would spend

at a rather steady rate, while the spending patterns of higher income families

would be more volatile. In general the ordinary least squares (OLS) estimator

of linear regression models is unbiased, consistent and asymptotically normal

under heteroskdasticity. However, inference based on the variance of OLS es-

timator is likely to be misleading due to the use of wrong variance covariance

matrix. i.e. The estimated standard errors are inconsistent. In addition, even

if one were able to consistently estimate the standard errors for OLS, tests will

tend to have lower than optimal power due to the relative inefficiency of the

OLS estimator.

There is a large literature in econometrics that addresses the problem

of obtaining valid inference for the OLS estimator. The pioneering work of

4



Eicker (1963) in statistics and White (1980) (referred to as a heteroskedasticity

consistent covariance matrix – HCCME) in econometrics suggested a simple

method for consistently estimating the OLS standard error. A nice feature

of their estimator is the fact that one does not need to know the form of

heteroskedasticity, and in addition there is no need for smoothing parameters

as is usually required for nonparametric estimation. This has led to the wide

use of their method for estimating standard errors. Although there method is

popular MacKinnon and White (1985) has shown in Monte Carlo simulations

and Chesher and Jewitt (1987) have shown with direct bias approximations

that the HCCME tends to give standard errors that are too small in finite

samples. Various authors have suggested some alternatives to HCCME that

have better finite sample properties. These include some of the alternatives in

MacKinnon and White (1985), including the Jackknife and various bootstrap

procedures, including the Wild Bootstrap, considered in Wu (1986). Other

more recent papers that address the issue of reliable inference for the OLS

estimator include Chesher (1989), Chesher and Austin (1991), Cribari-Neto,

Ferrari and Cordeiro (2000) and Cribari-Neto and Galvão (2003), Cribari-Neto

(2003).

There is also a large theoretical literature aimed at efficient estimation

with heteroskedasticity of unknown form. There are two basic approaches for

achieving efficient estimation of the linear model. The first is Generalized

Least Squares (GLS) with nonparametric estimation of the skedastic function.

The papers by Carrol (1982) and Robinson (1987) proposed efficient estima-

5



tors which assume heteroskedasticity of unknown form but have the same first

order asymptotic distribution as the true GLS estimator. Carrol used kernel

estimators of the variance function which involved a nonparametric regres-

sion of the squared OLS residual on the regressors. His result was based on

i.i.d. observations with compactly supported regressors. Robinson used k-

nearest neighbor (k-NN) method to estimate the variance function. He kept

the i.i.d. observation assumption but discarded the compact support assump-

tion. White and Stinchcombe (1991) studied nonparametric FGLS estimation

by allowing the data to be dependent and heterogeneously distributed. Newey

(1994) took into account of the series based FGLS estimator and gave the
√
n consistency and asymptotic efficiency results. The other main approach

is to use GMM with an increasing number of moment conditions. This leads

to an estimator that has the form suggested in Cragg (1983). Newey (1993)

showed that the Cragg (1983) estimator could become efficient if the right set

of moment conditions were used in estimation. Both these papers showed in

small sampling experiments that there could be efficiency gains even in small

samples. Donald (1987) suggested an adjustment to the Cragg estimator that

involved a bias correction to the squared residual that gives rise to even greater

efficiency gains than found for the Cragg estimator.

Despite the large literature on efficient estimation the methods have

not proved popular in applied work. The reasons are twofold. First, one

must choose a smoothing parameter or a number of moment conditions. To

date there are no justified methods for doing this. The second is that it is

6



not clear how the various estimators compare in terms of their finite samples

and how the performance varies with the choice of smoothing parameter. In

this chapter we aim to address these deficiencies. In particular we investigate

three estimators including the GMM-type Cragg estimator, FGLS estimator

based on series and kernel estimations, which are all efficient estimator in

the sense that their asymptotic variances get to the Chamberlain’s (1992)

semiparametric efficiency bound. To understand the finite sample properties

for those estimators, we will compare the higher order approximate MSE of the

estimators with a focus on terms in the MSE that depend on the smoothing

parameter. This approximation is based on arguments that are similar to that

of Nagar (1959). We obtain a stochastic expansion for the estimators and find

the MSE of the largest terms in the stochastic expansion. Under regularity

conditions the MSE of the leading terms is identical to the same expansion as

those of Edgeworth approximation (see Rothenberg, 1984). The expansions

allow us to compare the different estimators. In addition the MSE can be

used as a criterion for choosing the smoothing parameter in much the same

way as in Donald and Newey (2001) in the context of instrumental variables

estimation. The idea is to estimate the approximate MSE using preliminary

estimates and to use this estimated MSE as a criterion.

In section 2 we describe the various estimators. Section 3 presents and

compares the approximate MSE for the three estimators we consider. We also

propose the criteria to choose smoothing parameters. Section 4 discusses the

extension to vector case. Section 5 is a small Monte-Carlo experiment. Section

7



6 applies the criteria empirically to the estimation of a wage equation. Section

7 concludes this chapter.

2.2 The Model and Estimators

The model we consider in this chapter is the linear regression model.

yi = x′iβ + εi, (2.1)

for i = 1, 2, ..., n, where yi is a scalar, xi is a vector of exogenous variables. We

have the usual assumption

E [εi|xi] = 0 (2.2)

and

E
[
ε2i |xi

]
= σ2 (xi) ,

which allows the variance of the error term εi to be heteroskedastic. The

matrix form of the model is

y = Xβ + ε,

where E [εε′|X] = Σ = diag(σ2 (x1) , ..., σ
2 (xn)) . Let’s first consider the ordi-

nary least squares estimator (OLS) and its variance.

β̂OLS = (X ′X)
−1
X ′y

V ar
(
β̂OLS

)
= (X ′X)

−1
X ′ΣX (X ′X)

−1

We know that OLS estimator is unbiased, consistent and asymptotically nor-

mal but not efficient (relative to generalized least squares estimator, GLS) un-

8



der heteroskedasticity. In addition, as is well known the variance of OLS esti-

mator is no longer σ2 (X ′X)−1 so that statistical inference based on σ̂2 (X ′X)−1

will be invalid.

The most common approach to dealing with heteroskedasticity is the

one popularised in White (1980). This involves estimating V ar
(
β̂OLS

)
by

replacing Σ with Σ̂ =diag(e2i ) , where e2i is the square of the ith least squares

residual. This gives rise to,

V W
β̂OLS

= (X ′X)
−1
X ′Σ̂X (X ′X)

−1
,

which is known as HC0. However, lots of simulation studies reveal the down-

ward bias of HC0, see MacKinnon and White (1985). There are several cor-

rections based on White’s setup and they turned out to be more efficient than

OLS estimator using White’s estimator. Hinkley (1977) did the degree of

freedom correction to V W
β̂OLS

as below.

V H
β̂OLS

=

[
n

n− d

]
(X ′X)

−1
X ′Σ̂X (X ′X)

−1
,

which is known as HC1. d is the dimension of covariates X. HC1 inflates

the residual by factor
√
n/n− d. Horn, Horn, and Duncan (1975) used an

”almost unbiased” estimator1 for σ2 (xi) .

V HD
β̂OLS

= (X ′X)
−1
X ′diag

(
e2i

1− hii

)
X (X ′X)

−1
,

1In the homoskedastic error case, we can show

E
[
e2i
]

= σ2 [1− hii] 6= σ2.

Even though e2i / [1− hii] is not unbiased estimator of σ2
i under heteroskedasitcity, it is a

less biased estimator than e2i .

9



where hii being the ith diagonal element of X (X ′X)−1X ′. V HD
β̂OLS

is known

as HC2, which inflates the magnitude of HC0 by factor (1− hii). MacKinnon

and White (1985) proposed the HC3 as follows.

V MW
β̂OLS

=
n− 1

n
(X ′X)

−1
X ′
[
diag

(
e∗2i

)
− 1

n
e∗e∗′

]
X (X ′X)

−1
,

where e∗i = ei/ (1− hii) and e∗ is a n×1 column vecter of e∗i . The Monte-Carlo

results of MacKinnon and White showed that OLS variance covariance estima-

tor based on ordinary jackknife method2 will be more efficient that based on

other correction methods. Lots of simulation work show that HC3 outperforms

other variants of HC0. Long and Ervin (2000) strongly suggest statistical soft-

ware developers to add HC3 to their programs. Chesher and Austin (1991)

found the impact of leverage points on the finite sample behavior. Monte Carlo

by Cribari-Neto and Zarkos (2001) showed the presence of high leverage points

in the design matrix plays an important role in the small sample properties of

the various HCCMEs. And the influence of these high leverage point is more

decisive than heteroskedasticity itself. Based on this fact, Cribari-Neto (2003)

proposed a modified estimator called HC4.

V CN
β̂OLS

= (X ′X)
−1
X ′diag

(
e2i

(1− hii)
δi

)
X (X ′X)

−1
,

where δi = min {4, nhii/
∑n

i=1 hii} .

2Actually the three corrections based on White (1980) considered in MacKinnon and
White (1985) could be all thought of as jackknife based estimator. White (1980) is called
infinitesimal jackknife method. Hinkley (1977) is called weighted jackknife estimator. MacK-
innon and White (1985) is the direct applicatin of the jackknife covariance estimator from
the idea of Efron (1982).

10



The other problem with the OLS is its inefficiency, which impacts the

power of statistical tests and the accuracy of confidence intervals. As is well

known the efficient estimator is the GLS or Aitken estimator which has the

form,

β̂Aitken =
(
X ′Σ−1X

)−1
X ′Σ−1y

with variance given by (X ′Σ−1X)
−1
. The problem with the estimator is that Σ

is typically unknown. One may try to parameterize this heteroskedasticity and

obtain feasible GLS. However, if the assumed functional form of heteroskedas-

ticity is incorrect then one is not necessarily any better off than one would

have been with the OLS estimator – indeed it is possible that one could be

even more inefficient than the OLS estimator in terms of variance. To over-

come the specification of the functional form of heteroskedasticity, the remedy

is to adopt nonparametric methods (series, kernel, local linear, k-NN,...etc)

to estimate the unknown variance covariance matrix Σ in the GLS estimator.

Carrol (1982) and Robinson (1987) are two leading examples of this type of

work. In this paper we consider two methods for this nonparametric part.

The first is based on series estimation of the variance, denoted β̂Series and the

second is the kernel based FGLS estimator (β̂Kernel). The former is based on

power series, splines or Fourier series. The latter could be on the basis of

Nadaraya-Watson, k-NN or local polynomials. Let’s denote two estimators as

follows.

β̂Series =
(
X ′Σ̂−1

S X
)−1

X ′Σ̂−1
S y

β̂Kernel =
(
X ′Σ̂−1

K X
)−1

X ′Σ̂−1
K y.

11



Their corresponding variance-covariance matrices will be

V arβ̂Series
=

(
X ′Σ̂−1

S X
)−1

V arβ̂Kernel
=

(
X ′Σ̂−1

S X
)−1

.

Both approaches are sometimes called semiparametric methods in the sense

that they do the nonparametric estimation in the first step and the parametric

procedure in the second step

An alternative route to efficient estimation is using an estimator due

to Cragg (1983). This estimator is based on using a GMM type of approach3

based on the moment condition (2.2). Specicially if we let qi be a vector of

functions of xi (including xi) then the condition (2.2) implies the following set

of unconditional moment restrictions,

E(qi (yi − xiβ)) = 0

Then the optimal weighted 2-step GMM procedure (with OLS used in the first

step) based on this condition would involve solving the following problem,

β̂GMM = arg min
β

(
1

n

n∑
i=1

(yi − x′iβ) q (xi)

)′(
1

n

n∑
i=1

e2i q (xi) q (xi)
′

)−1

×

(
1

n

n∑
i=1

(yi − x′iβ) q (xi)

)
,

where ei is the OLS residual. This results in the estimator that is,

β̂Cragg =

(
X ′Q

(
Q′Σ̂Q

)−1

Q′X

)−1

X ′Q
(
Q′Σ̂Q

)−1

Q′y.

3The GMM interpretation of the estimator was not in the original Cragg (1983) article.
The GMM interpretation was noted in Newey (1993).
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with variance given by,

V arβ̂Cragg
=

(
X ′Q

(
Q′Σ̂Q

)−1

Q′X

)−1

,

where Q = (X : Ψ) is the matrix whose rows are qi and Ψ being a n × G

matrix of auxilliary variables (or instruments) which consists of moments of

the variables in X, except for those moments already contained in X. Using

similar logic to that in White (1980) this estimator behaves asymptotically

like the infeasible estimator given by,

β̂GMM =
(
X ′Q (Q′ΣQ)

−1
Q′X

)−1

X ′Q (Q′ΣQ)
−1
Q′y

Newey (1993) noted that this estimator can be efficient with appropriate choice

of auxilliary functions – in particular functions that have good approximation

properties. To see this we note that from Chamberlain (1987) the optimal

unconditional moment restriction based on the conditional moment restriction

(2.2) is,

E (ψ∗ (xi) (yi − xiβ)) = 0.

ψ∗ (xi) =
xi

σ2
i

Performing GMM with instrument ψ∗ (xi) would lead directly to the GLS

estimator. The FGLS estimators described earlier attempt to estimate this by

plugging in an estimate of the variance function directly. The GMM estimator

of Cragg (1983) and Newey (1993) implicitly uses a moment condition that is

13



an estimated version of,

E (ψ (xi) (yi − xiβ)) = 0.

ψ (xi) = q′i (Q
′ΣQ)

−1
Q′X.

The reason that this can be as efficient as the direct FGLS method is that

ψ (xi) can eventually approximate ψ∗ (xi) . To see this note that the fitted

value in the regression

xi

σi

= σiq
′
iπ + error

is

σiq
′
i (Q

′ΣQ)
−1
Q′X = σiψ (xi) .

Assuming that qi is sufficiently in terms of its approximation properties then,

min
π

sup
i

∣∣∣∣xi

σi

− σiq
′
iπ

∣∣∣∣ ≤ min
π

sup
i
σi

∣∣∣∣ xi

σ2
i

− q′iπ

∣∣∣∣
≤ Cmin

π
sup

i

∣∣∣∣ xi

σ2
i

− q′iπ

∣∣∣∣
= O

(
K−α

)
,

where α is the smoothness index of xi/σ
2
i . Then since it is the case that

σiq
′
i (Q

′ΣQ)−1Q′X will eventually approximate xi/σi it should be the case

that q′i (Q
′ΣQ)−1Q′X will eventually approximate xi/σ

2
i . Thus one can attain

the efficiency bound by doing standard GMM using an increasing number of

moment conditions.

A problem with all of the efficient methods of estimation is that they all

require the choice of some smoothing parameter – a bandwidth, or a number
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of polynomial terms or a number of moment conditions. In general the esti-

mators will have finite sample properties that will depend on the smoothing

parameter and it is not clear if one estimator may be more sensitive to the

choice of smoothing parameter than another. Through the use of higher order

MSE approximations this chapter explores the extent to which the estimators

depend on the smoothing parameter so that some comparisons across different

methods can be made. In addition we examine the use of the MSE and its

estimate as a means for selecting a smoothing parameter in practice.

2.3 The Mean Square Error

The way we calculate approximate MSE is similar to Nagar (1959). We

compute the approximate MSE for each estimator we considered. That is to

calculate

MSEj = E

[
n
(
β̂j − β

)(
β̂j − β

)′]
,

where j = {Cragg, Series,Kernel} .

2.3.1 Regularity Conditions

Some regularity conditions have to be specified to obtain the results.

Let ‖A‖ = tr (A′A)1/2 denote the usual Euclidean norm for a matrix A.

Assumption 2.3.1. {yi, xi} are i.i.d., E [εi|xi] = 0, E [ε2i |xi] = σ2 (xi) = σ2
i <

∞ and E [ε3i |xi] = 0.

This assumption puts the bounded second moment condition and zero
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third moments condition, which is important in our derivation. Assumption 1

also allows for heteroskedasticity.

Assumption 2.3.2. For every K there is a nonsingular constant matrix B

such that for qK (xi) = Bqi; (i) the smallest eigenvalue of E
[
qK (xi)

′ qK (xi)
]

is bounded away from zero uniformly in K and; (ii) there is a sequence of

constants ζ (K) satisfying supx∈X

∥∥qK (x)
∥∥ ≤ ζ (K) and K = K (n) such that

ζ (K)2K/n→ 0 as n→∞.

Assumption 2.3.2 is usually imposed on series estimator. See Newey

(1997). This assumption normalizes approximating function. Part (i) bounds

the second moment matrix away from singularity. Part (ii) controls the con-

vergence rate of the series estimator.

Assumption 2.3.3. For an integer d ≥ 0 there exits α and βK such that∣∣g0 − qK′βK

∣∣
d

= O (K−α) as K → ∞, where g0 = E [y|x] denotes the true

conditional expectation and g denotes some function of x. If d = 0, the integer

α = s/r is the smoothness index of g0, where s is the number of continuous

derivatives of g0 and r is the dimension of x.

Assumption 2.3.3 specifies the bound of the approximation error. Since

we do not need the derivative of approximation error, what we need is the case

of d = 0. In our notation, we will have 1/n
∑n

i=1

(
xi/σi − qK (xi)/σi)

′ π
)2

=

O (K−2α) = O
(
‖f‖2) .

Assumption 2.3.4. The constant scalar ζ (K) in Assumption 2.3.2 satisfies

(i) ζ (K)K/
√
n→ 0 and; (ii) ζ (K)

√
K/

√
n→ 0.
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Assumption 2.3.4 is imposed to ensure the small order terms converge

to zero sufficiently fast. Actually, part (i) implies part (ii).

2.3.2 MSE Formulae

We put all the proofs of the propositions in the Appendix. First, we

give the approximate MSE for Cragg estimator.

Proposition 2.3.1. If Assumptions 2.3.1-2.3.3 are satisfied, then MSE for

Cragg estimator is

Ω∗−1 [MSECragg] Ω
∗−1

= Ω∗−1E

[
n
(
β̂Cragg − β

)(
β̂Cragg − β

)′]
Ω∗−1

=

[
X∗′X∗

n
+
X∗′ (I − P ∗)X∗

n
− 1

n
tr (Ξ1) +

5

n
tr (Ξ2)

]
+ o

(
K

n

)
,

where

Ω∗ =

(
X∗′X∗

n

)−1

Ξ1 = (Q∗′Q∗)
−1
∑

i

κ∗ix
∗2
i Q

∗
iQ

∗′
i

Ξ2 = (Q∗′Q∗)
−1
∑

i

x∗2i Q
∗
iQ

∗′
i

κ∗i = E
[
ε∗4i |x∗i

]
x∗i =

xi

σ (xi)

ε∗i =
εi

σ (xi)

Q∗
i =

qK(xi)

σ (xi)
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Next result is for series based FGLS estimator.

Proposition 2.3.2. If Assumptions 2.3.1-2.3.4 are satisfied, then MSE for

series based FGLS estimator is

Ω∗−1 [MSESeries] Ω
∗−1

= Ω∗−1E

[
n
(
β̂Series − β

)(
β̂Series − β

)′]
Ω∗−1

=
X∗′X∗

n
+

1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2 − 2
1

n

∑
i

x∗2i

σ4
i

Piiκi

+
1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijκj + 6

1

n

∑
i

x∗2i Pii −
1

n

∑
i6=j

σ4
j

σ4
i

x∗2i P
2
ij + o

(
K

n

)
,

where

Pij = Qi (Q
′Q)

−1
Qj

κi = E
[
ε4i |xi

]
σ2

i = qK′ (xi) (Q′Q)
−1
Q′σ2

ε∗i =
εi

σ (xi)
.

Now we present the approximate MSE for kernel based FGLS estimator.

The method of estimating σ2
i is using local polynomial regression4 considered

in Linton (1996).

Proposition 2.3.3. If all the Assumptions of nonparametric estimators in

4There several advantages of adopting local polynomial regression method such as no
boundary effects and design adaptation.
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Linton (1996) are satisfied, then MSE for kernel based FGLS estimator is

Ω∗−1 [MSEKernel] Ω
∗−1

= Ω∗−1E

[
n
(
β̂Kernel − β

)(
β̂Kernel − β

)′]
Ω∗−1

=
X∗′X∗

n
+ h4B + n−1h−dV + op

(
n−2µ

)
=

X∗′X∗

n
+ h4

[
Γ2 − Γ1Ω

∗−1Γ1

]
+ n−1h−d

[(
κ2

3 + κ4 − 1
)
Ω∗

n

]
+ op

(
n−2µ

)
,

where

Γ1 = n−1

n∑
i=1

xix
′
iσ
−4
i B̃i

Γ2 = n−1

n∑
i=1

xix
′
iσ
−6
i B̃2

i

B̃i = h−2
∑
j 6=i

(
σ2

j − σ2
i

)
wij

Ω∗
n = n−1

n∑
i=1

xix
′
iσ
−2
i

(
nhd

∑
j 6=i

w2
ij

)
µ = 2/ (d+ 4)

E
[
ε3i
]

= κ3σ
3
i

E
[
ε4i
]

= κ4σ
4
i .

First of all, notice that the leading term in the approximate MSE is

X∗′X∗/n, which is common to all the of our approximate MSEs. It is natural

to omit this term in choosing the smoothing parameter since X∗′X∗/n does

not involve K or h. The additional terms are the largest (in order) of those

that increase or decrease with the smoothing parameters – K in the case of
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Cragg and series based FGLS estimator and h in the case of kernel based

FGLS. Note that matrix Q plays the role of approximating functions both in

Cragg estimator and series based FGLS estimator. This offers the basis for our

comparison. The difference is that for Cragg estimator we use series estimators

to form unconditional moment restriction. While for series based estimator,

series estimators provides nonparametric estimation of unknown parameter σ2
i .

We observe that there is common structure of approximate MSE we list

above. The approximate MSEs are all composed of a leading term which is

nothing to do with smoothing parameter, a term decreasing in smoothing pa-

rameter, and terms increasing in smoothing parameter. For Cragg estimator,

X∗′X∗/n is the common leading term, the term X∗′ (I − P ∗)X∗/n is decreas-

ing with K and the term 5tr (Ξ2) /n− tr (Ξ1) /n is increasing with K provided

the kurtosis is not too high.5 For series based FGLS estimator, X∗′X∗/n is the

common leading term, the term
∑

i (x
∗2
i /σ

4
i ) [σ2

i − σ2
i ]

2
/n is decreasing with

K and the rest of terms is increasing with K provided the kurtosis is not too

high. For kernel based FGLS estimator, X∗′X∗/n is still the common leading

term, the term n−1h−d [(κ2
3 + κ4 − 1) Ω∗

n] is decreasing with h and the term

h4 [Γ2 − Γ1Ω
∗−1Γ1] is increasing with h.

Looking at the second term of order O (K−α1) in Proposition 2.3.1, it

5We don’t want the kurtosis of the error terms is too high. In this case we will tend to
pick the numbers of instruments as many as possible. Please see the simulation results in
later section. Also note that our result is along the line with the asymptotic expansion with
respect to GMM minimum distance estimation in Konenker et al (1994).
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could be rewritten as

1

n

n∑
i=1

[
xi

σi

− σiq
′
iπ1K

]2

,

where π1K = (Q′ΣQ)−1Q′x. It is just the residuals sum of square of regressing

xi/σi on σiq
′
i. If we pick the approximating function q properly, the residuals

sum of square will shrink to zero at rateO (K−α1). As we illustrated in previous

section. q′iπ1K will estimate the optimal instrument xi/σ
2
i quite well. The

second term of order O (K−α2) in Proposition 2.3.2 could be expressed as

1

n

n∑
i=1

x2
i

σ6
i

[
σ2

i − q′iπ2K

]2
,

where π2K = (Q′ΣQ)−1Q′σ2. The regression implication is the weighted resid-

uals sum of square of regression σ2
i on Q′

i. If we pick the approximating func-

tion q properly, the weighted residuals sum of square will shrink to zero at

rate O (K−α2). That is q′iπ2K could estimate σ2
i very well.

In general, we could not determine the relative size of the approximate

MSE among three estimators without further assumptions. It is quite inter-

esting to compare the size of approximate MSE of Cragg estimator and series

based FGLS estimator due to the similar form of the terms in Proposition

2.3.1 and 2.3.2. We conduct a simulation study to evaluate the three major

terms in both estimators. See section in simulation result. We consider differ-

ent distributions of regressors, errors and forms of heteroskedasticity and find

that the numerical evaluation of the approximate MSE of Cragg estimator is

quite similar to that of series based FGLS estimator. i.e. We cannot uniformly

rank these two estimators.
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Proposition 2.3.2 is to come up with data based methods for selecting

smoothing parameter K. For series based FGLS we look at a method based

on the MSE of the resulting FGLS estimator,

E

[(
β̂Series − β

)2
]
.

An alternative is to minimize MSE in the estimation of the variance function

(using cross validation). The regression is (assume one knows the residual)

ε2i = σ2
i + vi (2.3)

= Q′
iπ2K +

(
σ2

i −Q′
iπ2K

)
+ vi.

The series estimator for σ2 is

σ̂2 = Q (Q′Q)
−1
ε2

= σ2− (I − P )σ2 + Pv,

so the sample MSE is

1

n
E

[(
σ̂2− σ2

)′ (
σ̂2− σ2

)]
=

1

n
σ2′ (I − P )σ2 +

1

n
E [v′Pv|x]

=
1

n

n∑
i=1

[
σ2

i −Q′
iπ2K

]2
+

1

n

n∑
i=1

(κ4 − 1)σ4
i Pii.

However, (2.3) is not the actual regression done for FGLS since ε2i is unknown.

What we actually did is to regress e2i on Q′
i,

σ̃2 = Q (Q′Q)
−1
e2.
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The following proposition shows that the MSE of σ̂2 is essentially asymptoti-

cally equivalent to that of σ̃2 in the sense that the difference is of order that

is smaller than the order of the MSE.

Proposition 2.3.4.

MSE
(
σ̃2
)

= MSE
(
σ̂2
)

+ o(
1

n
σ2′ (I − P )σ2 +

1

n
(κ4 − 1)

n∑
i=1

σ4
i Pii).

One can see from this result that the optimal smoothing parameter

from the point of view of estimating the variance function will generally be

different from the one that is optimal from the point of view of estimating the

regression parameter.

The next proposition, under an assumption of homoskedasticity σ2 (xi) =

σ2
i = σ2, gives an equivalence result between the Cragg estimator and the series

based FGLS estimator.

Proposition 2.3.5. Under homoskedasticity, we have

Ω∗−1 [MSECragg] Ω
∗−1

= Ω∗−1 [MSESeries] Ω
∗−1

=
1

nσ2

∑
i

x2
i +

5

nσ2

∑
i

x2
iPii −

1

nσ6

∑
i

x2
iPiiκi.

Supprisingly, under homoskedasticity the higher order MSE of Cragg

estimator is the same as that of series based FGLS estimator. Our simu-

lation, which computes the MSE according to Proposition 2.3.1 and 2.3.2

respectively confirms this finding. Unlike the case of heteroskedasticity, the
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approximate MSE under homoskedasticity does not depend upon the term

which is decreasing with K. The term of increasing with K could be factored

out by 5σ4 − κi = σ4 (5− κi/σ
4) . Ine the case of conditional normality of

εi κi/σ
4 = 3 so that the terms in approximate MSE (other than the leading

term) are strictly increasing with K. This fact is also confirmed by our simu-

lation. However, if the disturbances are much thicker tailed than normal (say

κi/σ
4 > 5), we may expect the approximate MSE will decrease with K. We

can further combine the second and third terms in Proposition 2.3.5 in the

case where the conditional fourth moment is constant (ie κi = κ4),

1

nσ2
(5− κ4)

∑
i

x2
iPii. (2.4)

This expression shows exactly how the degree of kurtosis affects the way in

which the smoothing parameter impacts the higher order MSE. Note that the

term
∑

i x
2
iPii = O(K).

Notice that the MSE of Cragg and series based FGLS estimator will

involve the projection matrix P = Q′ (Q′Q)−1Q. However, the MSE of kernel

based estimator involves the kernel weight wij. It arises the difficulty comparing

the approximate MSEs between various estimators. To make comparison easily

under homoskedasticity, we assume third moment condition holds for kernel

based FGLS estimator. Here is the result.

Proposition 2.3.6. Under homoskedasticity and E [ε3i |xi] = 0, we have

Ω∗−1 [MSEKernel] Ω
∗−1 =

1

nσ2

n∑
i=1

x2
i +

1

nσ6

∑
i6=j

x2
iw

2
ijκj −

1

nσ2

∑
i6=j

x2
iw

2
ij.
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It is still difficult to compare the approximate MSE of kernel based

FGLS estimator with that of other two estimators even though we’ve imposed

the zero third moments condition and assumed homoskedasticity. However,

we could combine the second and third terms in Proposition 2.3.6 as followed.

1

nσ2
(κ4 − 1)

∑
i6=j

x2
iw

2
ij. (2.5)

Now the term in (2.5) looks like term in (2.4).

2.3.3 Choosing the Smoothing Parameters

Since we’ve established the approximate MSEs for all three estimators,

the next question is how to pick the smoothing parameter K or h to minimize

approximate MSE. As we mentioned in previous section, the term which does

not grow with smoothing parameter has been omitted. The selection criteria

for Cragg estimator is

SCragg (K) =
1

n
X̂∗′

(
I − P̂ ∗

)
X̂∗ − 1

n

∑
i

κ̂∗i x̂
∗2
i P̂

∗
ii +

5

n

∑
i

x̂∗2i P̂
∗
ii,

where the ”hat” means the estimated variable. The unknown parameters in

SCragg (K) are σ2
i and forth moment κ∗i . The criteria for series based FGLS

estimator is

SFGLS−Series (K) =
1

n

∑
i

x̂∗2i

σ̂4
i

[
σ̂

2

i − σ̂2
i

]2
− 2

1

n

∑
i

x̂∗2i

σ̂4
i

Piiκ̂i

+
1

n

∑
i6=j

x̂∗2i

σ̂4
i

P 2
ijκ̂j + 6

1

n

∑
i

x̂∗2i Pii −
1

n

∑
i6=j

σ̂4
j

σ̂4
i

x̂∗2i P
2
ij.

As we discussed in previous subsection, we could pick the smoothing parameter

K by minimizing the estimated MSE in variance function. The criteria is as
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follows.

SV ariance (K) =
1

n
σ̂2

′
(I − P ) σ̂2 +

1

n
(κ̂4 − 1)

n∑
i=1

σ̂4
i Pii

Another method for choosing K in the variance function is to calculate the

cross validation (CV) criteria of the fit. In this case, the CV is

1

n

n∑
i=1

[
e2i − ê2−i

]2
=

1

n

n∑
i=1

[
1

1− Pii

ûi

]2

,

where e2i is the first stage OLS squared residuals, ê2−i is the delete-one version

of the fitted value and ûi is corresponding to the redidual of fitted value ê2i .
6

The criteria for kernel based FGLS estimator is

SFGLS−Kernel (h) = h4B̂ + n−1h−dV̂.

The second order effect could be minimized by setting h so that h4 = γn−1h−d

or h = γn−1/(4+d). Minimizing h with respect to SFGLS−Kernel (h) gives us the

optimal value of γ being

γ̂ =

[
dV̂

4B̂

] 1
(4+d)

.

Of course we have to replace the unknown σ2
i and the fourth moment κ4 in B̂

and V̂ by the estimated counterparts. Now the optimal bandwidth is

ĥ = γ̂n−1/(4+d) =

[
dV̂

4B̂

] 1
(4+d)

n−1/(4+d).

6Note that

ê2−i = q′i
(
q′−iq−i

)−1
e2

ê2i = q′i (q′q)−1
e2

ûi = e2i − ê2i .
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2.4 Extension to Vector Case

Our calculation for Proposition 2.3.1 to 2.3.3 are based on scalar case.

It is quite natural to extend our results to general vector case. Let’s consider

the scalar standardized quantities:

T =
√
nλ′
(
β̂ − β

)
, (2.6)

where λ is any d × 1 vector. λ = (0, ..., 0, 1, 0, ...0)′ is an important special

case. The MSE of (2.6) which is the linear combination of coefficients will be

MSE(T ) = nλ′E
[(
β̂ − β

)(
β̂ − β

)]
λ.

The Proposition 2.3.1 to 2.3.3 could be summarized by the following corollaries.

The proofs are staightforward.

Corollary 2.4.1. If Assumptions 2.3.1-2.3.3 are satisfied, then MSE for Cragg

estimator is

Ω∗−1 [MSECragg] Ω
∗−1

= Ω∗−1E

[
n
(
β̂Cragg − β

)(
β̂Cragg − β

)′]
Ω∗−1

=

[
λ′X∗′X∗λ

n
+
λ′X∗′ (I − P ∗)X∗λ

n
− 1

n
tr (Ξ1) +

5

n
tr (Ξ2)

]
+ o

(
K

n

)
.

Corollary 2.4.2. If Assumptions 2.3.1-2.3.4 are satisfied, then MSE for series
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based FGLS estimator is

Ω∗−1 [MSESeries] Ω
∗−1

= Ω∗−1E

[
n
(
β̂Series − β

)(
β̂Series − β

)′]
Ω∗−1

=
λ′X∗′X∗λ

n
+

1

n

∑
i

λ′x∗ix
∗′
i λ

σ4
i

[
σ2

i − σ2
i

]2 − 2
1

n

∑
i

λ′x∗ix
∗′
i λ

σ4
i

Piiκi

+
1

n

∑
i6=j

λ′x∗ix
∗′
i λ

σ4
i

P 2
ijκj + 6

1

n

∑
i

λ′x∗ix
∗′
i λPii −

1

n

∑
i6=j

σ4
j

σ4
i

λ′x∗ix
∗′
i λP

2
ij + o

(
K

n

)
.

Corollary 2.4.3. If all the Assumptions of nonparametric estimators in Lin-

ton (1996) are satisfied, then MSE for kernel based FGLS estimator is

Ω∗−1 [MSEKernel] Ω
∗−1

= Ω∗−1E

[
n
(
β̂Kernel − β

)(
β̂Kernel − β

)′]
Ω∗−1

=
λ′X∗′X∗λ

n
+ h4B + n−1h−dV + op

(
n−2µ

)
=

λ′X∗′X∗λ

n
+ h4λ′

[
Γ2 − Γ1Ω

∗−1Γ1

]
λ+ n−1h−d

[(
κ2

3 + κ4 − 1
)
λ′Ω∗

nλ
]
+ op

(
n−2µ

)
.

2.5 Monte Carlo Experiment

The first part of the simulation we compare the performance of variants

of White estimators, Cragg estimator and semiparametric FGLS estimators

under heteroskedasticity of unknown form. The criteria of comparing different

HCCME estimators are the accuracy of the inference and MSEs of the estima-

tors. To compare the accuracy of the inference, we list the empirical size of a

test and see how far it is from the nominal size. The estimators we consider in

the simulation include the OLS, FGLS, and Cragg estimators for β. Among
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the three types of the estimators, we use different estimators for the unknown

parameters in the corresponding variance covariances.

The second part of the simulation we compare the approximate MSE

for Cragg, series based FGLS estimators and series based variance estimator

in variance function numerically.

2.5.1 Simulation Design

In the simulation design we adapt the model in Cragg (1983) and con-

sider the case of only one regressor.

yi = βxi + εi, (2.7)

where xi is a log-normal random variable and εi is a normally distributed

random variable with mean zero and variance given by

σ2
i = γ1 + γ2xi + γ3x

2
i , (2.8)

where the vector γ = (γ1, γ2, γ3)
′ could represent the magnitude of heteroskedas-

ticity.

The estimator of β could be OLS (β̂OLS), FGLS (β̂FGLS) and Cragg’s

estimator (β̂Cragg). To get the accuracy of a test, we compare the nominal and

actual size of t-statistics. For each estimator we calculate the t-statistics as

follows.

t =
β̂ − β

s.e.
(
β̂
) ,
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where β̂ is one of three major types of estimators of β and s.e.
(
β̂
)

is computed

from potential variance-covariance estimators of β. For OLS estimator, the

corresponding variance covariance estimators are based on the true Σ, White’s

estimator Σ̂W and MacKinnon-White’s estimator Σ̂MW . For FGLS estimator,

the corresponding variance covariance estimators are based on the true Σ,

White’s estimator Σ̂W , MacKinnon-White’s estimator Σ̂MW , series estimator

Σ̂S, and kernel estimator Σ̂K . For Cragg estimator, the corresponding variance

covariance estimators are based on the true Σ, White’s estimator Σ̂W and

MacKinnon-White’s estimator Σ̂MW . Note that the OLS estimator of β is

nothing to do with the estimation of Σ. However, FGLS and Cragg estimators

of β and the variance covariance matrices both depend upon the estimation of

Σ.

To evaluate the finite sample properties of different estimators, the sam-

ple size T is set to (50, 100, 150). The number of replications is 1000. We also

assume the true value β = 1. The parameters related to heteroskedasticity are

specified as γ = (0, .2, .5)′ which corresponds the case of severe heteroskedas-

ticity noted by Cragg.

To evaluate the approximate MSE for Cragg and series based FGLS es-

timators7, we generate covariate from uniform distribution and consider three

types of error structure with different kurtosis– normal, uniform and logistic.

7Here we evaluate Cragg and series based FGLS estimator and exclude kernel based
FGLS estimator because the former two estimators both involve the approximating function
in terms of the number K.
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Also the sample size will increase to 200.

2.5.2 Simulation Results

2.5.2.1 Finite Sample Properties

The basic results are summarized in the following tables. Table D.1

states the size performance of 4 versions of OLS estimators. It is obvious that

if we adopt the true variance matrix in t-test, the empirical size is very close to

the nominal size. The column β̂B
OLS deviates from the nominal size significantly

due to the use of the wrong variance matrix in t-test. The use of the White

correction improves things to a degree but there are still large size distortions

with rejection rates in some cases above 20% when the nominal size is 5%.

MacKinnon and White’s estimator8 provides more accurate inference, although

even for that approach there are some size distortions. As expected, things

improve for the White and MW approaches as the sample size grows while

the size distortion grows with the sample size when using the OLS standard

error. In this example the the OLS standard errors are too small – this need

not always be the case as we see when we consider an empirical example in

8There are two verisons of MacKinnon and White estimators. They are

V MW
1 =

n− 1
n

(X ′X)−1
X ′
[
diag

(
u∗2i

)
− 1
n
u∗u∗′

]
X (X ′X)−1

V MW
2 = (X ′X)−1

X ′ [diag
(
u∗2i

)]
X (X ′X)−1

.

Andrew (1991) pointed out that V MW
2 is analogue of the leave-one-out cross-validation

estimator of the covariance matrix. Our simualtion shows tiny difference between the two
versions although Andrew (1991) asserted that V MW

2 outperforms V MW
1 in terms of size

distortion.
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the next section.

Table D.2 reports the size distortion of different FGLS estimators. As

in the case of OLS estimator, using the true variance matrix gives us almost

accurate size. Series based FGLS estimator performs well compared with ker-

nel based FGLS estimator9. The size distortion of series based FGLS estimator

tends to decrease as sample size increases. In general, semiparametric FGLS

estimators provide more accurate inference than White’s correction.

The size comparison of Cragg estimator is summarized by Table D.3.

True variance matrix performs well as usual. The Cragg estimator using MW

performs markedly better than it does when using White. Both methods

perform better than the FGLS approach. Indeed among the various approaches

to inference including OLS with corrected standard errors using the Cragg

estimator with MW provides the best approach in the sense of having size

close to nominal size.

The MSEs comparison of FGLS estimators is listed in Table D.4. First

of all, we can see the MSEs are decreasing with the sample size in all estima-

tors we consider. By theory, we know that GLS estimator is the most efficient

estimator due to correcting heteroskedasticity. The sample MSEs verify this

fact. Note that the case of K = 1 in FGLS estimator corresponds the OLS

estimator which has the highest MSE within expectation. The Cragg estima-

9For the kernel based FGLS estimator ,we report the local linear estimation method. We
also implement the case of Nadaray-Watson kernel estimation method, which turns out to
be worse than local linear estimation method.
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tor using true variance matrix has higher MSE than that of GLS estimator

because we know that GLS is the most efficient estimator. See Table D.5.

When we increase the number of instruments (K = 5), the MSE of Cragg

estimator (.1207) approaches to GLS estimator (.1202) quickly. This confirms

the theoretical argument that Cragg estimator will get the efficiency with an

increase in the number of moment conditions. Also note that the feasible

Cragg estimators have smaller MSEs than those of FGLS estimators.

2.5.2.2 Evaluation Simulation

In this subsection we conduct the simulation to evaluate the size of

the terms in approximate MSE of Cragg and series based FGLS estimator.

The first result is to evaluate the terms in Proposition 2.3.1 and 2.3.2 numer-

ically under homoskedasticity. See Table D.6. This result numerically verifies

our Proposition 2.3.4 which says the MSE of Cragg and series based FGLS

estimator should be the same under homoskedasticity.

For the numerical evaluation of Cragg estimator, we consider three

errors structures with different kurtosis. See Table D.7. The kurtosis for

normal, uniform and logistic distributions are 3, 1.8 and 12.6 respectively. We

can see that optimal number of instrument is 2 in Model 1 and 2. In model

3 we have excess kurtosis and tend to pick as many instruments as possible.

This fact could be seen from Proposition 2.3.1.

Table D.8 lists the evaluation result of series based FGLS estimator.

We observe that the magnitude of approximate MSE of series based FGLS

33



estimator is very close to that of Cragg estimator for three different data

generating process. The optimal instrument is 3 in Model 1 and 2 except

using criteria to pick K in model 2. It turns out to be 1 under uniform error

assumption. For model 3, excess kurtosis makes approximate MSE grow with

K, which is consistent with Proposition 2.3.2.

2.6 Empirical Application

We adopt the empirical example of estimating wage equation from

Wooldridge (2000). For the population of people in the work force in 1976, the

data set includes wages for 526 individuals, ages, work experience, education

level,...,etc. We use log-wages of individuals as the dependent variable and

work education level, experience and experience2 as independent variables.

The simple wage regression is

logwage = β0 + β1educ+ β2 exp er + β3 exp er2 + u.

Simply looking at the residuals plot or plot of log-wage against work

experience may not tell the magnitude of heteroskedasticity.10 We perform the

general White test and Breusch-Pagan tests and find that we could not reject

the assumption of homoskedastic errors at 5% (even lower) significance level.

See Table D.10.

10Heteroskedasticity could be introduced by any independent variables in arbitrary form.
We conduct Breusch-Pagan tests using various covariates and find that work experience is
relevant to the variance of the error term.
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To implement the estimation method we proposed in this paper, we

need to pick the smoothing parameters. For Cragg estimator, series based

FGLS and variance function, we report the corresponding optimal K using the

estimated criteria proposed in section 3. From the Table D.11, we can see that

the optimal number of moments for the Cragg estimator will be K = 7. For

series based FGLS we find thatK = 4 is optimal whereas using cross validation

method on the estimation of the variance function leads to an optimal K that

is 6.

After determining the smoothing parameters, one can now do the esti-

mation. The estimation results using different estimation methods considered

in this paper are summarized in Table D.12. Although the differences are not

large the Cragg and FGLS estimators are more precise with smaller standard

errors than the OLS estimator using the more reliable MW approach to esti-

mating the variance of OLS. It is interesting to note that the OLS standard

error is smaller than the MW standard error for education while the opposite

is true for the experience variables.

2.7 Concluding Remarks

In this chapter we compare the higher order approximate MSE of

GMM-type Cragg estimator, series based FGLS estimator and kernel based

FGLS estimator through Nagar type stochastic expansion. According to our

calculation, it is hard to uniformly rank the three estimators although they

have interesting implications under homoskedasticity. Instead, we could nu-
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merically compare the sieve based estimators which depend on the same smooth-

ing parameter. Accroding to the numerical evaluation, the Cragg estimator

generally has quite similar approximate MSE to that of the series based FGLS

estimator. We also derive the criteria for selecting the smoothing parameters.

However, the result of estimated version of approximate MSE is mixed. We

take empirical example of wage equation to illustrate the estimation procedure

we propose in this chapter.
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Chapter 3

Efficient Estimation of Partial Linear Model

Under Heteroskedasticity with Unknown Form

3.1 Introduction

Nonparametric methods have become quite popular in economics in

recent decades. While nonparametric regression is flexible in recovering the

true shape of the regression curve without specifying a parametric family for

the data, it has some disadvantages. The most fundamental problem is the

curse of dimensionality. To overcome this problem, a useful approach is to re-

main nonparametric about certain variables but take a parametric form about

the variables of interest. A popular method for doing this is to specify the

regression model as,

yi = x′iβ + g (zi) + ui, (3.1)

where g (·) is an unknown nonparametric function and is usually highly di-

mensional. This model is called partial linear or semilinear regression model.

Engle, Granger, Rice and Weiss (1986) applied this model to study the effect

of weather on electricity demand. The partial linear specification also appears

in various sample selection models such as Newey, Powell and Walker (1990),

and Lee, Rosenzweig and Pitt (1992).
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Previous work of estimation on partial linear model includes papers

by Engle, Granger, Rice and Weiss (1986), Wahba (1984), Heckman (1986),

Rice (1985), Chen (1988), Speckman (1988), Robinson (1988), Linton (1995),

Donald and Newey (1994), Hong and Cheng (1999), and Li (2000). Engle,

Granger, Rice and Weiss (1986), Wahba (1984) proposed the partial spline

smoothing approach. The method was further studied by Rice (1985) and

Heckman (1986). Rice (1985) obtained the asymptotic bias of a partial spline

smoothing estimator of β and showed that this approach can not attain the

Berry-Esseen rate
√
n for the estimator of β unless x and z are uncorrelated or

the unknown nonparametric component g (·) is undersmoothed.1 Chen (1988)

proposed a kind of piecewise polynomial approximation to g (·) and the con-

vergence rate of β̂ is shown to be
√
n consistent with the smallest possible

variance even when x and z are dependent. Speckman (1988) considered ker-

nel smoothing and proved that the parametric rate of β̂ is attainable for the

usual ”optimal” bandwidth choice under which the optimal nonparametric

convergence rate for the estimation of g (·). Robinson (1988) constructed a

feasible least squares estimator of β using Nadaraya-Watson kernel estimators

of E [y|z] and E [x|z] . He proved that β̂ is
√
n consistent and asymptotically

normal. Linton (1995) proposed the local polynomial regression method to

estimate E [y|z] and E [x|z].2 He established the
√
n consistent estimator of

1It means that the
√
n parametric rate for estimation of β and optimal nonparametric rate

for estimation of g (·) could not be attained simultaneously in the partial spline smoothing
approach.

2Linton (1995) adopted local polynomial regression estimator instead of Robinson’s
(1988) Nadaraya-Watson kernel estimator due to the nice properties of local polynomial
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β and found that it is second order optimal using a second order approxi-

mation of
√
n
(
β̂ − β

)
. Donald and Newey (1994) used series approximation

to the the unknown function g (·) . They showed that the estimator was
√
n

consistent estimator and asymptotic normality under weak conditions.3 Hong

and Cheng (1999) revisited the kernel smoothing method and showed that

normal approximation rate of β is achieved only when bandwidth h is cho-

sen with rate n−1/4 instead of the usual ”optimal” bandwidth rate n−1/5.4

Li (2000) considered the additive partial linear model using series estimation

method and proved the estimator of finite dimensional parameter β reaches

the semiparametric efficiency bound under homoskedasticity.5 An alternative

approach to partial linear model is to avoid the nonparametric estimation pro-

cedure. Yatchew (1997) proposed a differencing estimator to remove the effect

of unknown function g (·). The differencing estimator is in general not efficient.

Yatchew proposed the generalized method of differencing to achieve the same

asymptotic efficiency bound of Robinson (1988).

In this paper we add to the literature on partially linear models by con-

sidering a new form of estimator that is efficient when there is heteroskedas-

ticity of unknown form. This involves not only dealing with the unknown

regression estimator which is design adaptive and is able to correct the boundary bias prob-
lem.

3The condition is weaker than previous studies in that the modulus of continuity of g (z)
and E [x|z] be higher than 1/4 the dimension of z and that the number of terms be chosen
appropriately. Also the covariates z could be not only multidimensional but also be discrete.

4The faster convergence rate of tending to zero of bandwidth than optimal rate is callded
”undersmoothed”.

5Li’s result was based on homoskedastic errors. However, Chamberlain’s (1992) semi-
parametric efficiency bound can allow for conditional heteroskedasticity.
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function g but also an unknown variance function which is allowed to depend

on all of the regressors. The paper by Li (2000) proposed a feasible GLS

type estimator that is efficient in the case of heteroskedasticity. His estimator

relies on the use of the series method and involves a weighted least squares

estimation of a regression model which involves the linear component x′β and

an approximation to the nonparameteric component g. Although the estima-

tor is efficient its form makes higher order expansions difficult and hence a

common method for picking a smoothing parameter may be difficult to use

in practice. The alternative estimator proposed here has a simpler form that

makes a higher order expansion possible and also does not rely on the use of

the series based approximation to the function g. In our case we do weighting

of the regression of y − E [y|z] on x − E [x|z] . The method could potentially

be implemented using any method for estimating conditional expectations and

the form of the estimator will potentially make higher order expansion possi-

ble and help in the problem of coming up with a method for picking the two

smoothing parameters.

The remainder of this paper is organized as follows. In section 2 we

describe the model and estimation technique in this paper. The first order

asymptotic results for different efficient estimators are provided in Section 3.

In Section 4 we conduct a small scale Monte Carlo experiment. Section 5

concludes this paper.
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3.2 The Model

Consider a partial linear regression model in (3.1)

yi = x′iβ + g (zi) + ui, (3.2)

where the covariates xi and zi are of dimension r and q respectively, β =

(β1, ..., βr)
′ is a r × 1 vector of unknown parameter, and g (·) is an unknown

function. Of course, we could extend (3.2) to the additive partially linear

regression model by setting

g (zi) = g1 (z1i) + g2 (z2i) + ...+ gL (zLi) ,

where gl (zli) is scalar, zli is of dimension ql (ql ≥ 1, l = 1, 2, ..., L). For

simplicity, we assume L = 1, ql = q. In matrix form, we could write (3.2) as

y = xβ + g (z) + u. (3.3)

The identification condition for β in (3.3) is stated below.

Assumption 3.2.1. (Identification) To identify the partial linear regression

model in (3.3), we need E
[
(x− E [x|z])′ (x− E [x|z])

]
to be positive definite.

Literally, we need that random variable x is not fully contained in z.

To understand the identification condition, taking expectation conditional on

z with respect to (3.3) gives

E [y|z] = E [x|z] β + g (z) + E [u|z] . (3.4)

41



Substracting (3.4) from (3.3) gives

y − E [y|z] = [x− E [x|z]] β + u− E [u|z] . (3.5)

It is obvious that identification of β requires the full rank of x−E [x|z]. In the

context of a sample selection model where z would represent the variables that

affect selection we can have a situation where z is a linear function of some

variable that appear in x provided that there is also a variable that predicts

selection but does not appear in x, see Newey, Powell and Walker (1990). In

other instances where z just represents some other variables we require that x

and z not overlap.

Before providing regularity conditions we discuss the estimation meth-

ods to be used in this paper. The estimation strategy of model (3.3) recom-

mended in Robinson (1988) is to estimate E [y|z] and E [x|z] nonparametrically

(Nadaraya-Watson type kernel method) and regress y −E [y|z] on x−E [x|z]

to get estimate of β. However, when using a series estimator and not using

weighted least squares this is equivalent to regression y on x and the series

basis functions,.

pK (z) = (p1K (z) , p2K (z) , ..., pKK (z))′ ,

Here we let pK be the n×K matrix with ith row pKi = pK (zi) . The projection

matrix is Q = pK (p′KpK)−1 p′K . Then the partialled out series based method

of estimating the parameter β, as first suggested in Donald and Newey (1994)
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is given by,

β̂ =
[
(x−Qx)′ (x−Qx)

]−1
(x−Qx) (y −Qy)

= [x′ (I −Q)x]
−1
x′ (I −Q) y.

So, what we do here is different from Robinson (1988) in that we employ

series method to estimate E [y|z] and E [x|z] instead of kernel method. Now,

the unknown function g (·) could be estimated by ĝ = pK (z)′ π̂, where π̂ is

given by

π̂ = (p′KpK)
−1
p′K

(
y − xβ̂

)
.

Li (2000) verified that under homoskedasticity assumption β̂ will be semipara-

metric efficient in the sense that the inverse of the asymptotic variance of
√
n
(
β̂ − β

)
achieves Chamberlain’s (1992) semiparametric efficiency bound.

He also established
√
n-consistency of β̂ under conditional heteroskedasticity.

However, if the disturbances are heteroskedastic, β̂ will in general not be semi-

parametric efficient.6 Therefore, Li (2000) suggested a GLS type estimator by

regressing yi/σi on
[
xi/σi, pK (zi)

′ /σi

]
, where σ2

i = E(u2
i |xi, zi) = σ2(zi). We

let β̂GLS denote the corresponding estimator of β and note that it has the

form,

β̂GLS = [x∗′ (I −Q∗)x∗]
−1

[x∗′ (I −Q∗) y∗] , (3.6)

6The estimator β̂ is said to be ”local efficient” according to Li (2000) in that its effi-
ciency is attained when some restrictions are satisfied. Here, it means that assumption of
homoskedasticity is satisfied.
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where

x∗ = (x1/σ1, x2/σ2, ..., xn/σn)′

Q∗ = p∗K (p∗′Kp
∗
K)

−1
p∗′K

p∗K = (pK1/σ1, pK2/σ2, ..., pKn/σn)′.

Without providing any proof, he asserted the method will produce a semi-

parametric efficient estimator of β. We will prove this fact in Theorem 3.3.1.

To implement this one would use an estimate of the variance function σ2
i

which would then be plugged into the matrix Q∗. This could be done by using

a preliminary consistent estimator of the model, such as β̂, then regressing

the squared OLS residuals onto x and z using some nonparametric regression

method. In this case we would regress the square of,

ûi = yi − x′iβ̂ − ĝ (zi)

on x and z. Robinson (1987) suggested a k-nearest neighbor method for doing

this in a linear model, but in principle one could also use a series based method.

A difficulty with this approach is that one would like to know how the estimator

depends on the smoothing parameters and in this case there will be two. One

smoothing parameter relates to the number of functions used to approximate

g (say K) as well as the number of functions used to approximate the variance

function (say H). On other hand, one could consider to partial out the variable

PK (z) in the first stage and then do the weighted least square in the second

stage.
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The estimator proposed in this paper differs in that we do a weighted

regression of y−E(y|x) on x−E(x|z) using weights that are the inverse of the

variance. All conditional expectations are estimated via series regression so

that if the variances were known we would have the following GLS estimator,

β̃GLS =
[
x′(I −Q)Σ−1(I −Q)x

]−1 [
x′(I −Q)Σ−1(I −Q)y

]
(3.7)

Although the two estimators look different, we could prove that our estimator

has the same first order result as Li’s (2000) estimator. The reason that

weighting after removing the mean works is that essentially we are estimating

the model,

yi − E [yi|zi] = [xi − E [xi|zi]] β + ui

by weighted least squares with weights that are the inverse of the variances.

This then is equivalent to doing the regression,

yi − E [yi|zi]

σi

=
[xi − E [xi|zi]]

σi

β +
ui

σi

and the residual in this regression is conditionally homoskedastic. It means

our estimator inherits the semiparametric efficiency. At this moment, we are

considering the infeasible GLS procedure. It is natural to extend our results

to feasible GLS by incorporating the estimated version of σ2
i using the H

series functions of the variable zi. The feasible versions of Li (2000) and our

estimators using these estimated variances will be denoted β̃FGLS and β̂FGLS.

3.3 First Order Asymptotics

The following assumptions are needed to establish our results.
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Assumption 3.3.1. (i) (yi, xi, zi) , i = 1, ..., n are i.i.d. (independent and

identically distributed); the support of (x, z) is a compact subset of Rq+r; (ii)

E [ui|xi, zi] = 0, E [u2
i |xi, zi] = σ2(zi) = σ2

i and ui has bounded fourth mo-

ments; (iii) Let xi = E (xi|zi) + εi = h(zi) + εi, E (εi|zi) = 0, and E (ε2i |zi) is

bounded away from ∞; (iv) All of h (zi) and σ2(zi) are bounded functions on

the support of (x, z) .

Assumption 3.3.1 (i) is quite standard in regression model. Assump-

tion 3.3.1 (ii) allows for conditional heteroskedasticity. Assumption 3.3.1 (iii)

assumes that xi is function of zi plus a random element that has a finite vari-

ance. These conditions plus smoothness, discussed below in Assumption 3.3.3

will make it possible to estimate the various unknown functions.

Note that Assumption 3.3.1 (ii) imposes the restriction that the con-

ditional varianc E [u2
i |xi, zi] depends only on zi.but not xi. The reason is

to get semiparametric efficient estimator in the sense that the variance at-

tains Chamberlain’s (1992) semiparametric efficiency bound. If we assume

E [u2
i |xi, zi] = σ2(xi, zi), the semiparametric efficiency bound could be ex-

pressed as

SPEB = inf
ξ
E
{
[xi − ξ (zi)] [xi − ξ (zi)]

′ /σ2(xi, zi)
}
. (3.8)

On the other hand, the asymptotic variance of our estimator is

E
{
[xi − h (zi)] [xi − h (zi)]

′ /σ2(xi, zi)
}
. (3.9)
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In general the minimizer ξ in (3.8) will not be equal to h (zi). However, im-

posing the assumption of E [u2
i |xi, zi] = σ2(zi), our estimator will be semipara-

metric efficient. i.e. The SPEB in (3.8) will reduce to (3.9).

Assumption 3.3.2. For every K there is a nonsigular constant matrix B such

that for PK (z) = BpK (z) ; (i) the smallest eigenvalue of E
[
pK (zi) p

K (zi)
′]

is bounded away from zero uniformly in K and; (ii) there is a sequence of

constants ζ (K) satisfying supz∈Z

∥∥pK (z)
∥∥ ≤ ζ (K) and K = K (n) such that

ζ (K)2K/n→ 0 as n→∞, where Z is the support of z.

Assumption 3.3.2 is usually imposed on series estimators. See Newey

(1997). This assumption normalizes approximating function. Part (i) bounds

the second moment matrix away from singularity. Part (ii) controls the con-

vergence rate of the series estimator.

Assumption 3.3.3. (i) For f = g or f = h, there exits some πf and

αf (> 0) such that supz∈Z

∣∣f (z)− PK (z)′ πf

∣∣ = O (K−αf ) as K → ∞; also,
√
nK−α → 0 as n → ∞. (ii) For σ2, there exits some πσ2 and α (> 0) such

that sup(x,z)∈X×Z

∣∣σ2 (x, z)− PH (x, z)′ πσ2

∣∣ = O (H−ασ2 ) as H → ∞; also,
√
nH−ασ2 → 0 as n→∞.

Assumption 3.3.3 specifies the bound of the approximation error when

we approximate unknown function g or h as well as the variance function

as will be required in order to implement a FGLS estimator of the partially

linear model. Note that there are two smoothing parameters K and H that are
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required for estimation. The following theorem gives the first order asymptotic

distribution of β̂GLS, which is the infeasible GLS of Li’s (2000) estimator in

(3.6). All the proofs in this section are put in the Appendix.

Theorem 3.3.1. Define xi = h (zi)+ εi and assume that E [εiε
′
i/σ

2
i ] is positive

definite, then under Assumptions 3.2.1-3.3.3, we have

√
n
(
β̂GLS − β

)
d→ N

(
0, J−1

0

)
,

where J0 = E {[xi − h (zi)] [V ar (ui|xi, zi)] [xi − h (zi)]} = E [εiε
′
i/σ

2
i ] is Cham-

berlain’s semi-parametric efficiency bound.

Proof. The proof is given in Appendix.

The next theorem states that our estimator of infeasible version. β̃GLS

in (3.7) is semiparametric efficient.

Theorem 3.3.2. Define xi = h (zi)+ εi and assume that E [εiε
′
i/σ

2
i ] is positive

definite, then under Assumptions 3.2.1-3.3.3, we have

√
n
(
β̃GLS − β

)
d→ N

(
0, J−1

0

)
,

where J0 = E {[xi − h (zi)] [V ar (ui|xi, zi)] [xi − h (zi)]} = E [εiε
′
i/σ

2
i ] is Cham-

berlain’s semi-parametric efficiency bound.

Proof. The proof is given in Appendix.
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The results for the feasible GLS estimators are below and show that

one can also achieve the efficiency bound even without knowing the variance

function provided that the assumptions stated above are satisfied. Note that

since we are estimating the variance function the conditions pertaining to this

are now required.

Theorem 3.3.3. Define xi = h (zi)+ εi and assume that E [εiε
′
i/σ

2
i ] is positive

definite, then under Assumptions 3.2.1-3.3.3, we have

√
n
(
β̂FGLS − β

)
d→ N

(
0, J−1

0

)
,

where J0 = E {[xi − h (zi)] [V ar (ui|xi, zi)] [xi − h (zi)]} = E [εiε
′
i/σ

2
i ] is Cham-

berlain’s semi-parametric efficiency bound.

Proof. The proof is given in Appendix.

Theorem 3.3.4 proves that our feasible estimator is semiparametric ef-

ficient.

Theorem 3.3.4. Define xi = h (zi)+ εi and assume that E [εiε
′
i/σ

2
i ] is positive

definite, then under Assumptions 3.2.1-3.3.3, we have

√
n
(
β̃FGLS − β

)
d→ N

(
0, J−1

0

)
,

where J0 = E {[xi − h (zi)] [V ar (ui|xi, zi)] [xi − h (zi)]} = E [εiε
′
i/σ

2
i ] is Cham-

berlain’s semi-parametric efficiency bound.

Proof. The proof is given in Appendix.
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If one would be interested in comparing finite sample properties of

competing estimators of partial linear model, higher order expansion will be

needed. Although our estimator is the same as Li’s (2000) estimator in first

order sense, our estimator has advantage in doing asymptotic expansion. To

see this, let us consider Li’s estimator first.

√
n
(
β̂FGLS − β

)
=

[
1

n

n∑
i=1

[xi − x̃∗i ]
2

σ̂2
i

]−1 [
1√
n

n∑
i=1

[xi − x̃∗i ] [gi − g̃∗i + ui − ũ∗i ]

σ̂2
i

]
,

(3.10)

where the ”*” means the projection matrix in forming x̃ involves the normal-

ized version of the approximating functons. As we expand equation (3.10),

one has to expand not only the term σ̂2
i in the general denominator in (3.10)

but also the implicit σ̂2
i in normalized approximating function – this will com-

plicate the expansions. As for our estimator,

√
n
(
β̃FGLS − β

)
=

[
1

n

n∑
i=1

[xi − x̃i]
2

σ̂2
i

]−1 [
1√
n

n∑
i=1

[xi − x̃i] [gi − g̃i + ui − ũi]

σ̂2
i

]
.

(3.11)

The projection matrix in forming x̃ does not involve the normalized random

factor, σ̂2
i and should be more amenable to higher order expansion.

Although the series estimator we propose in this paper is quite easy

to implement, we still need to pick the number of approximating functions.

We need to pick a smoothing parameter K for the approximation of E(y|z)

and E(x|z) and H for the approximation of the variance function σ2 (z).7 The

7We have implicitly assumed that the same number of functions is used to approximate
E(y|z) and all elements of E(x|z). In principle they could all be different.
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natural problem is how to choose the optimal smoothing parameter according

to some higher order approximate MSE. Although we do not present results

in this direction the discussion above suggests that it may be easier to do

for our estimator. The method we consider below is to use, without formal

justification, the bootstrap to approximate the MSE and to pick smoothing

parameters to minimize the estimated MSE. Using the bootstrap-based pro-

cedure for selecting the moment condition has been discussed in Inoue (2003).

3.4 Monte Carlo Experiment

3.4.1 Simulation Design

We briefly state the simulation design in this section.

yi = β · xi + exp(zi) + ui · σ2 (xi, zi) (3.12)

xi = d · zi + vi,

zi =
i

n
, i = 1, ...n

ui ∼ N (0, 1) , vi ∼ N (0, 1)

d = 10, β = 1

Here is the setting for heteroskedasticity.

σ2 (xi, zi) = .3x2
i + 0 · z2

i

We consider 1000 replications for sample sizes of n = 100, 200 and 400. The

Mean Absolute Bias (BIAS) and Mean Square Error (MSE) are computed for
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four possible estimators, which include preliminary estimator8, our estimator,

Li’s estimator and kernel estimator. Those estimators will be described below.

3.4.2 Estimators of β

3.4.2.1 Li’s estimator

1. Regress yi on pK (zi) and xi on pK (zi). Obtain residuals yi − ỹi and

xi − x̃i, where

yi − ỹi = yi − pK (zi)
(
pK (z)′ pK (zi)

)−1
pK (z)′ y

xi − x̃i = xi − pK (zi)
(
pK (z)′ pK (zi)

)−1
pK (z)′ x.

2. Regress yi − ỹi on xi − x̃i. Obtain preliminary estimator of β, b0.

3. Estimate g by ĝ (zi) = pK (zi)
(
pK (z)′ pK (zi)

)−1
pK (z)′ [[y − xb0] .

4. Estimate ui by ûi = yi − xib0 − ĝ (zi) .

5. Estimate σ2
i (zi) by

σ̂2
i (zi) = pH (zi) (p′H (z) pH (z))

−1
pH (z)′ û2,

where û2 is a column vector of û2
i .

6. Regess yi/σ̂i on xi/σ̂i, pK (zi) /σ̂i to get Li’s (2000) semiparametric effi-

cient estimator of β.

8Preliminary estimator represents the series estimator of partial linear model without
considering heteroskedasticity.
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3.4.2.2 New estimator

1. Regress yi on pK1 (zi) and xi on pK1 (zi). Obtain residuals yi − ỹi and

xi − x̃i, where

yi − ỹi = yi − pK (zi)
(
pK (z)′ pK (zi)

)−1
pK (z)′ y

xi − x̃i = xi − pK (zi)
(
pK (z)′ pK (zi)

)−1
pK (z)′ x.

2. Regress yi − ỹi on xi − x̃i. Obtain preliminary estimator of β, b0.

3. Estimate g by ĝ (zi) = pK (zi)
(
pK (z)′ pK (zi)

)−1
pK (z)′ [[y − xb0] .

4. Estimate ui by ûi = yi − xib0 − ĝ (zi) .

5. Estimate σ2
i (zi) by

σ̂2
i (zi) = pH (zi) (p′H (z) pH (z))

−1
pH (z)′ û2,

6. Regress (yi − ỹi) /σ̂i on (xi − x̃i) /σ̂i to get our semiparametric efficient

estimator of β.

3.4.2.3 Kernel estimator

1. Compute the kernel (or local linear) estimators of E (y|z) and E (x|z)

by

ŷi =
yi

f̂i

=

1
Nh

∑N
j=1 yjK

(
Zi−Zj

h

)
1

Nh

∑N
j=1K

(
Zi−Zj

h

)
x̂i =

xi

f̂i

=

1
Nh

∑N
j=1 xjK

(
Zi−Zj

h

)
1

Nh

∑N
j=1K

(
Zi−Zj

h

) ,
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where K (·) is the kernel function and h is the bandwidth.9

2. Obtain initial b0 =
[
(x− x̂)′ (x− x̂)

]−1
[(x− x̂) (y − ŷ)] .

3. Obtain the residuals by û = (y − ŷ)− (x− x̂) b0.

4. Form the kernel regression (or local linear) of σ̂2
i (zi) using û2

i with ex-

planatory variable zi.
10

5. Regress (yi − ŷi) /σ̂i (xi, zi) on (xi − x̂i) /σ̂i (zi) to get efficient estimator

of β.

3.4.3 Simulation Results

We know that the series estimator of the variance function is not nec-

essarily positive. One should do trimming to guarantee the positive variance.

However, the choice of trimming parameter is not the issue we would explore

in this paper. To report the simulation result, we arbitrarily set three possible

trimming points (TP ), TP = .1, .01 and .001.

The simulation result is summarized in Table E.1. Under heteroskedas-

ticity and exponential g function, we know that the preliminary estimator

ignoring heteroskedasticity performs worst. Li’s (2000) estimator has the min-

9Here we utilize Gaussian kernel and pick the bandwidth by

h = cn−(4+p),

where c = 1, p = 1 and n is the sample size.
10Here we still utilize Gaussian kernel and pick the bandwidth along the same way as step

1.
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imum BIAS and MSE in almost all cases. Our estimator only dominates in

the case of n = 400. However, one could find that our new estimator performs

pretty much similar to Li’s (2000) estimator. As the sample size increases to

400, the behaviour of the two estimators is just about equivalent. On the other

hand, kernel estimator is dominated by Li’s (2000) and our estimators in this

case.

To see the impact of different setup of unknown g function, we change

the setting to be g(z) = (1 + z)3 . The result is listed in Table E.2. One could

observe that in this setting Li’s (2000) estimator still dominates although our

estimator is quite close to Li’s. Note that the kernel estimator performs poorly

in this particular setting.

Note that throughout the simulation we arbitrarily pick the approxi-

mating function for g (z) and σ2 (z) being (1, z, z2) and (1, z, z2) respectively.

The issue of how to pick the optimal smoothing parameters will be explored

in next subsection.

3.4.4 Picking Smoothing Parameters

We would like to consider picking optimal smoothing parameters by

minimizing the mean square error. Since MSE involves the true value of the

estimator, in practice we need to expand our series estimator using higher

order asymptotic expansion. Then the approximate MSE will not depend on

the true value of the estimator. Therefore, one could minimize the approximate

MSE to obtain the optimal smoothing parameter. However, it is not trivial
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to derive the approximate MSE in our context. An alternative approach is

to estimate the approximate MSE through bootstrapping. Of course, the

bootstrapping method we suggest in this section could be easily applied for

Li’s (2000) estimator. In this experiment, we consider three possible sets which

serve as the functions for approximating g (z) and σ2 (z) . The DGP follows

the same setup in (3.12). The numbers of Monte Carlo and bootstrapping

replications are set to 1000 and 399 for all cases. The resampling scheme is to

bootstrap the (x, z, y) pairs. The potential instrument sets for approximating

g (z) and σ2 (z) are

z1 = (1, z)

z2 =
(
1, z, z2

)
z3 =

(
1, z, z2, z3

)
.

Conducting the series estimation ends up with 9 combinations of instruments.

We use the following notation to record each combination.

K11 = (z1, z1) , K21 = (z2, z1) , K31 = (z3, z1) ,
K12 = (z1, z2) , K22 = (z2, z2) , K32 = (z3, z2) ,
K13 = (z1, z3) , K23 = (z2, z3) , K33 = (z3, z3) ,

where K32 stands for using (1, z, z2, z3) and (1, z, z2) as the instruments of

approximating g (z) and σ2 (z) respectively. It also means that we employ

4 and 3 instruments in forming the approximating functions. Note that we

restrict our attention as the case of TP = .001.

The result is shown in Table E.3. One can observe that it is not the

best strategy to choose as many as functions such as picking K33. Most of
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the situations (such as K21 or K31) tend to choose more (say, three or four)

instruments for g (z) and just two instruments for σ2 (x, z). Because we know

the DGP, the true MSE could be actually calculated for different combination

of instruments. We compare the true MSE criteria with boostrapping method

and find that the optimal smoothing parameters chosen by the two methods

are quite similar. For instance, as n = 100, true MSE and bootstrapping MSE

pick K21 and K31 respectively.

3.5 Concluding Remarks

In this paper we extend the feasible Generalized Least Square estimator

considered in Li (2000) to allow for heteroskedastictiy of unknown form. We

also propose an efficient estimator of partial linear regression model and prove

it achieves Chamberlain’s (1992) semi-parametric efficiency bound. The new

estimator we proposed has the same first order asymptotic properties as Li’s

(2000) but is likely to be an easier estimator when it comes to studying higher

order properties and bandwidth selection. In addition our estimator can be im-

plemented using any nonparametric method whereas the method of Li (2000)

is only implementable using a series method. The first order asymptotics of

the feasible version of Li’s (2000) and our estimator are provided.

In the Monte Carlo experiment, we compare our estimatoar with Li’s

(2000) and kernel estimators in terms of absolute mean bias and mean squared

error. The simulation results show that our estimator behaves similar to Li’s

(2000) estimator. Also the performance of the series type esitmator seems more
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robust to the setting of the unknown g function than the kernel estimator. One

needs to determine two smoothing parameters in estimating unknown g (z) and

σ2 (z). The ususal way is to derive the approximate MSE. It is not trivial to

construct the higher order MSE expansion for our series estimator. This will

be left for the future research. To overcome the problem of picking smoothing

parameters in series estimation, we propose the bootstrapping approximate

mean square error to choose the smoothing parameters. Using the true MSE

as the benchmark, the bootstrapping method works very well and provides us

the criteria to choose two smoothing parameters simultaneously.
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Chapter 4

Two-Step Series Estimation of Semiparametric

Model with Generated Regressors

4.1 Introduction

Generated regressors occur in models where conditional expectations

enter a regression model. An example in applied microeconomics is the esti-

mation of simultaneous equation models with endogenous dummy variables.

In that case, the conditional expectation term may involve a discrete variable

which appears in the second step regression. See Amemiya (1985). The prob-

lem also occurs in the sample selection model with a nonparametric selection

equation. The difference is that the regressor is a nonlinear transformation of

a nonparametric estimate in a sample selection model. Macroeconomic models

with rational expectations could have unknown conditional mean function on

the right hand side, see Barro (1977). In labor economics, the unobservable ex-

pectations variables in a wage equation could be the expected job tenure which

is a function of marital status, education, and other demographic variables.1

In the area of international trade, if one would like to test the proposition

in the influential paper by Grossman and Helpman (1994), the absolute own

1Generated regressor is also a technique to reduce dimensionality in the setting of non-
parametric regression model with many regressors. See the discussion in Rilstone (1996).
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price elasticity of import demand could be viewed as generated regressor.2 See

the application in Gawande (1997).

The econometric issues in presence of generated regressors have been

extensively discussed by Pagan (1984, 1986). Basically, if we ignore the gen-

erated regressor problem, the estimation will be inefficient and statistical in-

ference will be invalid. The two-step estimators are generally consistent and

efficient but don’t provide valid inference. Pagan (1984, 1986) only discussed

the parametric setting in both the main regression model and auxiliary re-

gression model. However, if either the functional form of main or auxiliary

regression model is misspecified, it will result in incorrect inference. Andrews

(1991, 1994) and Newey (1994a) consider the nonparametric setting in auxil-

iary regression. They estimate the generated regressor nonparametrically in

the first step but keep the parametric setting in the second stage regression.

One will suffer the inconsistent estimates or invalid inference owing to the mis-

specification of the regression equation of interest. Ahn (1995), Rilstone (1996)

and Stengos and Yan (2001) try to avoid the strong parametric assumption

in both first and second stage regression. They estimate both the regression

of interest and auxiliary regression nonparametrically. Ahn (1997) established

2The regression model of testable prediction of Grossman and Helpman (1994) is

ti
1 + ti

= β
zi

ei
+Xγ + ε,

where ti is the ad valorem trade taxes or subsidies for good; zi is the ratio of domestic
output to imports; ei is the absolute own price elasticity of import demand and X is other
control variable. The Grossman and Helpman hypothesis is that β > 0.

60



the
√
n consistency and asymptotic normality results for the two-step esti-

mators. Stengos and Yan (2001) proposed the double kernel estimators and

build the
√
n consistency and asymptotic normality results as the generated

regressor enters the interest of semiparametric model in linear form.

Series estimation methods have been proposed to estimate the nonpara-

metric regression model since it is conceptually simple and easily applicable.

In addition it is straightforward to impose additive structure on unknown

functions using series based approach, see Newey (1994b, 1997) for detailed

discussion. Series methods work owing to the Stone-Weierstrass theorem that

any continuous function could be approximated by a linear combination of

known approximating functions including spline, power series and Fourier se-

ries. In many instances one could use relatively low order series to obtain high

accuracy. Donald (1992) exploited some asymptotic restults for averages of

series based nonparametric estimates. He applied the series based method to

handle the generated regressor problem.3

In this paper we consider the two steps series estimation method for

generated regressors problem in context of semiparametric regression model.

We also establish the
√
n consistency and asymptotic normality results of

two-step series estimators. The asymptotic variance of the two-step series

estimator is composed of two sources of error – one is the sampling error

term and the other is from the fact that the series approximation may not

3The generated regressor problem in Donald (1992) is a parametric regression model
containing an expectation term.
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necessarily equal the true function. Our two step series method incoporates not

only the conditional heteroskedastictiy but also the correlation of error terms

between the regression of interest and auxiliary regression. This feature is not

simultaneously investigated in Stengos and Yan (2001) and Donald (1992).

Section 2 starts with simple parametric model with generated regres-

sors. Section 3 presents the asymptotic distribution of two-step series estima-

tor allowing for more general semiparametric setting. The issue of choosing

the smoothing parameters will be addressed in Section 4. Section 5 consists

the performance of the estimator we propose through small Monte Carlo sim-

ulation. It also demonstrates the procedure of picking smoothing parameters

using bootstrap method. Section 6 concludes.

4.2 Parametric Model

Let us consider the parametric model with generated regressor which

enters the model linearly.

y = x′β + E [s|z] · α+ u (4.1)

= x′β + g (z) · α+ u,

where we define E [s|z] = g (z) and s = E [s|z] + ε. Let E [x|z] = e (z) and

x = E [x|z] + v. Here we could imagine that E [s|z] is the expected job tenure.

s represents the length of time at the present job. z may include age, mar-

ital status, number of children and other demographic characteristics which
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are assumed to be exogenous. Therefore, we allow the elements of x and z

to overlap. More specifically, consider three variables (x1, x2, x3) . One could

think x as (x1, x2) and z as (x2, x3). The overlapping variable between x and

z is x2. We also assume that error term is heteroskedastic. To adopt the se-

ries method in estimation we need the following assumptions and definitions.

For the function g we let S(g) denote the smoothness index. So that for in-

stance a smoothness index of 2.5 means that the function is twice continuously

differentiable and the following Lipschitz condition holds,∥∥∥∥ ∂2

∂z2
g(z1)−

∂2

∂z2
g(z0)

∥∥∥∥ ≤ C ‖z1 − z0‖1/2

As is well known from the work of Andrews (1991) and Newey (1994a) when

the function has smoothness index S(g) then one can approximate the function

uinformly well in the sense that one can find coefficients π such that,

sup
z

∥∥∥∥∥g(z)−
K∑

j=1

wj(z)πj

∥∥∥∥∥ = O(K−S(g)/ dim(z))

where dim(z) is the dimension of z and where wj(z) is the jth function of z

such as a polynomial or spline type function. Thus the approximation error

will go to zero faster if the smoothness index of nonparametric function g

is larger. We make two assumptions that also aid in bounding the variance

terms.

Assumption 4.2.1. For the regression model (4.1) the observations are in-

dependent and

E [ui|xi, zi] = 0, E
[
u2

i |xi, zi

]
= σ2

i ,
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where

0 < inf
i
σ2

i < sup
i
σ2

i = σ2
u <∞.

Also, E
[
|ui|3 |xi, zi

]
< ∆ <∞ almost surely.

Assumption 4.2.2. For the regression model (4.1) the observations are in-

dependent and

xi = E [xi|zi] + vi = e (zi) + vi,

where

E [vi|zi] = 0, E
[
v2

i |zi

]
= σ2

vi,

and

0 < inf
i
σ2

vi < sup
i
σ2

vi = σ2
v <∞.

Assumption 4.2.1 imposes the conditional mean zero, bounded second

and third moments on the error term conditioning on xi and zi. Assumption

4.2.2 limits the behaviour of xi conditioning on zi. Assumption 4.2.1 and 4.2.2

also allow for conditional heteroskedasticity.

4.2.1 The Estimator

We could estimate E [s|z] = g (z) by a series based regression method.

Denote the estimator of the vector of g by g̃ = Pzs where Pz is the projection

matrix formed using the K functions wj(zi). The model (4.1) becomes

yi = x′iβ + g̃iα+ (gi − g̃i)α+ ui. (4.2)
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Denote (x′i, g̃i) = w†i , (x′i, gi) = wi, and (β′, α)′ = γ. Rewrite (4.2) as

yi = w†iγ + (gi − g̃i)α+ ui.

We could estimate γ by regressing y on w†.

γ̂ =
(
w†′w†

)−1
w†′y (4.3)

= γ +
(
w†′w†

)−1
w†′ [(g − g̃)α+ u] .

Note that in this case, we only utilize series method once due to the para-

metric setting. The two step series method will be applied on more general

nonparamteric setting in the next section.

4.2.2 First Order Results

We now state the first order asymptotic result by the following propo-

sition.

Proposition 4.2.1. Given the following assumptions

(i) 1
n

∑
iw

†
iw

†′
i = A+ op (1) , where A (= 1

n

∑
iwiw

′
i) is positive definite.

(ii) ui and εi satisfy the conditions in Assumption 4.2.1.

(iii) g̃ = Pzs and S (g) > dim (z) + 1, K (n) = O
(
n1/2−ξ

)
with 0 < ξ <

1/2− dim (z) /2S (g) .

(iv) S (e) > 0, with xi = e (zi) + vi satisfying Assumption 4.2.2.
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(v) The elements of xi have bounded 4th moments. Then

√
n (γ̂ − γ) → N

(
0, A−1 (S1 + S2 − 2S12)A

−1
)
,

where

S1 = p lim
1

n

∑
i

w′iwiE
[
u2

i |xi, zi

]
S2 = p lim

α2

n

∑
i

(
e (zi)

′ gi

)′ (
e (zi)

′ gi

)
E
[
ε2i |zi

]
and

S12 = p lim
α

n

∑
i

E
[
εiuiw

′
i

(
e (zi)

′ gi

)]
Proof. The proof of Proposition 4.2.1 is given in the Appendix.

One could observe that the asymptotic variance of γ involves the term

both from
(
w†′w†

)−1
w†′u (sampling errors) and

(
w†′w†

)−1
w†′ (g − g̃)α (ap-

proximation errors) as well as the covariance term between these two sources

of errors. Compare our estimator under the parametric setting with Stengos

and Yan’s (2001) double kernel method. We can find the result is basically

similar to theirs. Employing series method we could easily establish the
√
n

consistency and asymptotic normaliy properties. The difference is that we re-

lax the assumption of conditional homoskedasticity. Donald (1992) considers

the similar model using series method to estimate γ assuming that there is

no correlation between the error terms u and ε. Our series estimator con-

tains Stengos and Yan’s (2001) double kernel method and Donald’s (1992)

series method as special cases in the sense that we incoporate conditional
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heteroskedasticity (not considered in Stengos and Yan) and correlation of er-

rors between equation of interest and auxiliary regression (not considered in

Donald).

4.2.3 Variance Estimation

Now we briefly discuss the variance estimation in Proposition 4.2.1.

Basically, one could replace the population value with the sample counterpart.

First of all, the term S1 could be esitmated as follows by White’s (1980)

method.
∨
S1 =

1

n

∨
w
′ ∨
Ψ
∨
w,

where
∨
w = (x g̃) and

∨
Ψ = diag

(
∨
u

2

i

)
. Similarly, we can estimate S2 by

∨
S2.

∨
S2 =

α̂2

n

(
∨
e
′
g̃
)′ ∨

Ξ
(
∨
e
′
g̃
)
,

where
∨
e
′
is the estimate of E [x|z] and

∨
Ξ = diag

(
∨
ε
2

i

)
. Of course,

∨
e
′
could be

estimated nonparametrically by series, local linear or k-NN estimators. For

example, a standard kernel estimator (say, Nadaraya-Watson estimator) of

E [x|z] is given by

∨
e (z) =

∑n
l=1K

(
zl−z

h

)
xl∑n

l=1K
(

zl−z
h

) .

A series estimator of E [x|z] is given by

∨
e (z) = Pzx,
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where Pz is the projection matrix formed by approximating function qz. Now

deal with the estimate of the convariance term S12.

∨
S12 =

α̂

n

∑
i

[
∨
εi
∨
u
′
i

∨
wi

′ (∨
e
′
i g̃
)]
.

The next proposition says that applying the sample couterpart in variance

estimation will end up with consistency result.

Proposition 4.2.2.
∨
S1,

∨
S2 and

∨
S12 are consistent estimators of S1, S2 and

S12 respectively.

Proof. We know that g̃ is consistent estimator of g.
∨
w will be the consistent

estimator of w. Applying White’s (1980) result on heteroskedasticity consistent

covariance matrix estimator gives the consistency of
∨
S1. Similarly, one could

find a consistent estimator of e,
∨
e.

∨
S2 is the consistent estimator of S2. We

already have the consistency result of α̂ in Proposition 4.2.1.
∨
S12 will be a

consistent estimator of S12 as well.

4.2.4 Efficiency Bound

In this section we discuss the efficiency bound for estimating the pa-

rameter β. To simplify the discussion of the semiparametric efficiency bounds,

we assume that x and z are scalars. We also need the normality assumption

for the distribution of u and e. Homoskedasticity of u and ε makes our work

easier. A series method is adpoted in this paper to approximate the unknown
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g function. The so called parametric submodel K is written as

y = βx+ α
K∑

j=1

γjwj (z) + u (4.4)

s =
K∑

j=1

γjwj (z) + ε.

Now we have parameters of interests (β, α) and nuisance parameters γK =

(γ1, γ2, ..., γK)′ . Let ψK =
(
β, α, γK

)
. The log-likelihood function of the para-

metric submodel K in (4.4) is

L
(
β, α, γK

)
= constant− 1

2σ2
u

[
y − βx− α

K∑
j=1

γjwj (z)

]2

− 1

2σ2
ε

[
s−

K∑
j=1

γjwj (z)

]2

.

The score function as evaluated at the true model is the (K + 2) vector

S
(
ψK

0

)
=

(
Sθ

SγK

)
=

 (1/σ2
u)ux

(1/σ2
u)ug0

[(1/σ2
u)αu+ (1/σ2

ε ) ε]w
K

 =
1

σ2
u

 ux
ug0

τ0w
K

 ,

where Sθ = (Sβ, Sα)′, τ0 = αu + (σ2
u/σ

2
ε ) ε and wK = (w1, w2, ..., wK)′ . To

proceed the calculation of semiparametric lower bounds, we now define the

tangent set, T, for the nuisance function as the mean square closure of all

K × 1 linear combinations of the score functions SγK
.

T =

{
t ∈ R2 : E ‖t‖2 <∞,∃MjSγK

: lim
j→∞

(
E ‖t−MjSγK

‖2)1/2 → 0 as j →∞
}
.

The residual vector from the projection of Sθ on the tangent set is defined as

the efficient score S∗, which could be expressed as

S∗θ = Sθ − P [Sθ|T] .
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The semiparametric efficiency bound is

Vθ = [E (S∗θS
∗′
θ )]

−1
.

To apply above result to our context, we need the Lemma 1 in Rilstone (1993)

by setting h = σ2
uSθ and B = τ0. Now the projection of the score Sθ on the

tangent set will be

P [Sθ|T] =
E [σ2

uSθ|z]
E [τ 2

0 |z]
τ0

=
1

σ2
u

[
φε+

φσ2
u

ασ2
ε

u

](
E [x|z]
g0 (z)

)
,

where φ = α2σ2
ε

α2σ2
ε +σ2

u
∈ (0, 1) . The efficient score S∗θ is given by

S∗θ =
1

σ2
u

(
ux

ug0 (z)

)
− 1

σ2
u

[
φε+

φσ2
u

ασ2
ε

u

](
E [x|z]
g0 (z)

)
.

A little algebra gives

E (S∗θS
∗′
θ ) =

1

σ2
u

(
E [x2] E [g0x]
E [g0x] E [g2

0]

)
− φ

σ2
u

(
E
[
(E [x|z])2] E [g0x]
E [g0x] E [g2

0]

)
.

Therefore,

Vθ =

(
Vββ Vβα

Vαβ Vαα

)
= [E (S∗θS

∗′
θ )]

−1
= σ2

u

(
B11 B12

B21 B22

)−1

,

where

B11 = E
[
x2
]
− φE

[
(E [x|z])2]

B12 = E [g0x]− φE [g0x] = B21

B22 = E
[
g2
0

]
− φE

[
g2
0

]
.
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Using the partition inverse formula, we have

Vββ = B−1
11 +B−1

11 B12F2B
′
12B

−1
11 ,

where F2 =
(
B22 −B′

12B
−1
11 B12

)−1
.

4.3 General Model

If the model considered in (4.1) is misspecified, we will end up with

inconsistent estimation and invalid inference. Therefore, we should avoid spec-

ifying the parametric setting like that in (4.1). Now consider the more general

semiparametric model (or partial linear regression model) with generated re-

gressor in the linear part. The parametric part x′β has been replaced by

nonparametric unknown function θ (x).

y = θ (x) + E [s|z] · α+ u (4.5)

= θ (x) + g (z) · α+ u.

The identification of this model is stated below.

Assumption 4.3.1. (Identification) To identify the semiparametric model in

(4.5), we need E
[
(g − E [g|x])′ (g − E [g|x])

]
is positive definite.

Literally, we need that random variable z is not fully contained in x. To

understand the identification condition 4.3.1, taking expectation conditional

on x with respect to (4.5) gives

E [y|x] = θ (x) + E [g (z) |x] + E [u|x] . (4.6)
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Substracting (4.6) from (4.5) gives

y − E [y|x] = [g (z)− E [g (z) |x]]α+ u− E [u|x] .

It is obvious that identification of α requires the full rank of g (z)−E [g (z) |x].

Now let’s consider the following examples.

Example 4.3.1. Let x = (x1, x2, x3), z = (x3, x4) and g (z) = x2
3 + x4. In this

case, the identification condition in Assumption 4.3.1 holds, α is identified. In

fact,

g (z)− E [g (z) |x] = x4 − E [x4|x1, x2, x3] 6= 0.

Example 4.3.2. Let x = (x1, x2, x3), z = x3 and g (z) = x2
3. In this case, the

identification condition in Assumption 4.3.1 does not hold, α is not identified

since every element of z is contained in x. In fact,

g (z)− E [g (z) |x] = x2
3 − E

[
x2

3|x1, x2, x3

]
= x2

3 − x2
3 = 0.

Example 4.3.3. Let x = (x1, x2), z = (x1, x2, x3, x4) and g (z) = x2
1x2 +x2

3x
5
4.

In this case, the identification condition in Assumption 4.3.1 holds since X ⊂

Z. α is identified. In fact,

g (z)− E [g (z) |x] = x2
3x

5
4 − E

[
x2

3x
5
4|x1, x2

]
6= 0.

4.3.1 The Estimator

The first step for the two step estimator of α is to estimate E [s|z] =

g (z) by g̃i = Pzs. The model becomes

yi = θi + g̃iα+ (gi − g̃i)α+ ui. (4.7)
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Premultiplying equation (4.7) by Px the projection matrix formed using series

basis functions of x gives

ŷi = θ̂i + ̂̃giα+
(
ĝi − ̂̃gi

)
α+ ûi, (4.8)

where Â = PxA. Substracting (4.8) from (4.7) gives

yi − ŷi = θi − θ̂i +
(
g̃i − ̂̃gi

)
α+ (gi − g̃i)α−

(
ĝi − ̂̃gi

)
α+ ui − ûi. (4.9)

The second step is to estimate α by regressing y − ŷ on
(
g̃ − ̂̃g) or using the

partialling out formula.

α̂ =

[(
g̃ − ̂̃g)′ (g̃ − ̂̃g)]−1 (

g̃ − ̂̃g)′ (y − ŷ) (4.10)

= [g̃′ (I − Px) g̃]
−1
g̃′ (I − Px) y.

4.3.2 First Order Results

Using the fact that y = θ (x) + g (z) · α + u, equation (4.10) could be

rewritten as

α̂ = [g̃′ (I − Px) g̃]
−1
g̃′ (I − Px) (θ + gα+ u)

= [g̃′ (I − Px) g̃]
−1
g̃′ (I − Px)

[
g̃α+ θ̂ +

(
θ − θ̂

)
+ (g − g̃)α+ u

]
= α+ [g̃′ (I − Px) g̃]

−1
g̃′ (I − Px) [θ − (g̃ − g)α+ u] .

The idea of obtaining the consistency result is to verify that the term

[g̃′ (I − Px) g̃]
−1
g̃′ (I − Px) [θ − (g̃ − g)α+ u]

will approach to zero in probability limit. On the other hand, the term

[g̃′ (I − Px) g̃]
−1
g̃′ (I − Px) [(g̃ − g)α+ u]
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allows us to establish the asymptotic normality. The asymptotic distribution

of α̂ is given in Proposition 4.3.1.

Proposition 4.3.1. Given the following assumptions

(i) 1
n
g̃′ (I − Px) g̃ = E

[
(g − h)′ (g − h)

]
+ op (1) = D + op (1) , where g =

E [s|z] , h = E [g|x] and D is positive definite.

(ii) ui and εi satisfy the conditions in Assumption 4.2.1.

(iii) g̃ = Pzs and S (g) > dim (z) + 1, K (n) = O
(
n1/2−ξ

)
with 0 < ξ <

1/2− dim (z) /2S (g) .

(iv) S (e) > 0, with xi = e (zi) + vi satisfying Assumption 4.2.2.

(v) The elements of xi have bounded 4th moments. Define g = h (x)+η and

η = ψ (z) + ω. Then

√
n (α̂− α) → N

(
0, D−1 (T1 + T2 − 2T12)D

−1
)
,

where

T1 = p lim
1

n

∑
i

gi (I − Px) giE
[
u2

i |xi, zi

]
= E

[
(g − h)′E [uu′|x, z] (g − h)

]

T2 = p lim
α2

n

∑
i

ψiE
[
ε2i |zi

]
ψi

= α2ψ′E [εε′|z]ψ
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and

T12 = p lim
α

n

∑
i

E [(gi − hi)ψiεiui]

= αE
[
(g − h)′ ψ′E [εu′|x, z]ψ (g − h)

]
.

Proof. The proof of Proposition 4.3.1 is given in the Appendix.

Our result under more general setting is different from Stangos and Yan

(2001) in two aspects. First, the asymptotic variance of α̂ in Stangos and Yan

contains only the aymptotic variance of

[g̃′ (I − Px) g̃]
−1 g̃′ (I − Px)u√
n

,

which is from sampling error. Denote it as T1. As for our series estimator,

there are two extra terms. One is the asymptotic variance of

[g̃′ (I − Px) g̃]
−1 g̃′ (I − Px) (g̃ − g)α√

n
,

which is from the approximation error. Denote it as T2. The other is a covari-

ance term between the sampling and approximatin errors. It is T12 defined

in Proposition 4.3.1. Stangos and Yan proved that T2 will eventually disap-

pear in double kernel estimation context. However, our result shows that the

asymptotic variance from approximating unknown function g should be taken

into account.

We think that our result is more reasonable in that the asymptotic

variance of α̂ contains the term from approximation error. Take a look at the
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first order asymptotic result of Stengos and Yan (2001), Donald (1992) and our

series estimator under parametric setting. One can find out the asymptotic

variances of the three methods all involves the term from approximation error.

Moreover, the parametric case is the special case of the more general case of

semiparametric model. One could imagine that in the more general setting,

the error of approximating unknown g function should matter as well.

The second major difference between Stangos and Yan (2001) and ours

is that our estimator allows conditional heteroskedasticity. While Stangos and

Yan merely consider the conditional homoskedastic case. In empirical appli-

cation, the asymptotic result of our estimator shows that it is quite straight-

forward to estimate the conditional heteroskedasticity of unknown form using

White type method.

4.3.3 Variance Estimation

In this subsection we propose methods to estimate the asymptotic vari-

ance in Proposition 4.3.1. Following the similar strategy in previous section,

one could replace the population value with the sample counterpart. The term

T1 could be esitmated by

∨
T 1 =

1

n

(
g̃ −

∨
h

)′ ∨
Ψ

(
g̃ −

∨
h

)
,

where
∨
Ψ = diag

(
∨
u

2

i

)
and

∨
h, which could be estimated through any nonpara-

metric method described in previous section. Now we would estimate T2 by
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∨
T 2.

∨
T 2 =

α̂2

n

∨
ψ
′ ∨
Ξ
∨
ψ,

where
∨
Ξ = diag

(
∨
ε
2

i

)
and

∨
ψ
′
, where

∨
ψ
′
could be estimated using series method

as follows.
∨
ψ
′
= g̃′ (Pz − PxPz) ,

where Px and Pz are projection matrix formed by appropriate approximating

function4. The last term T12 could be estimated as follows.

∨
T 12 =

α̂

n

∑
i

[(
g̃i −

∨
hi

)
∨
ψi

∨
ei
∨
ui

]
.

The next proposition says that applying the sample couterpart in variance

estimation will end up with consistency result.

Proposition 4.3.2.
∨
T 1,

∨
T 2 and

∨
T 12 are consistent estimators of T1, T2 and

T12 respectively.

4From the Appendix-C, we have

ψ (z) = g (z)− E [E [g (z) |x] |z] .

Under the idenfication of α, the series estimator of ψ (z) is

∨
ψ = Pzs− PzPxPzs.

However, if X ⊂ Z, α is still identified but the estimator of ψ (z) becomes

∨
ψ = Pzs− PxPzs,

since in this case
E [E [g (z) |x] |z] = E [g (z) |x] = h (x) .

Using the notation in the Appendix-C, the error term ω will be 0.
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Proof. By the consistency result of g̃ and
∨
h. The sandwich form of

∨
T 1 is the

consistent estimator of T1 by the White’s argument. α̂ is a consistent estimator

of α from Proposition 4.3.1. The nonparametric estimator
∨
ψ is also consistent.

Consistency of
∨
T 2 is easy to establish. Based on the consistency results of

∨
T 1

and
∨
T 2, consistency of

∨
T 12 is not hard to verify.

4.4 Choosing the Smoothing Parameters

Although the 2-step series estimator we propose in this paper is quite

easy to implement, we still need to pick the number of column in approximating

function (or the smoothing parameter, K). In the parametric regression model,

one smoothing parameter will be needed since there is only one unknown

function g to be approximated. In the more general case, we have to pick two

smoothing parameters due to the approximation of θ (x) and g (z) . In this case,

what we need is to choose two smoothing parameters. For instance, let us just

simply assume x = (x1, x2) and z = (z1, z2) . For the double kernel estimator,

they need to specify four kernel functions for x1, x2, z1 and z2. Further, they

have to pick the 4 bandwidths for the corresponding kernel functions. As the

number of (x, z) variables increase, double kernel methods will get into trouble

in picking too many smoothing parameters. In this sense, our 2-step series

estimator may be easier to use in practice than the double kernel estimator.

Our method may also be easier from a computational standpoint and can be

implemented with most regression packages.

The natural problem is how to choose the optimal smoothing param-

78



eter. One approach to answer this question is to emply higher order asymp-

totics. It may not be trivial in this context. Alternatively, we may utilize the

bootstrap method to get approximate mean square error. Using the bootstrap-

based procedure for selecting the moment condition has been discussed in In-

oue (2003). Minimizing the bootstrapping approximate MSE will obtain the

optimal K. The detail will be discussed in the next section.

4.5 Monte Carlo Experiment

4.5.1 Simulation Design

In the section, we conduct a small Monte Carlo simulation to see the

performance of ours and double kernel estimator proposed by Stengos and Yan

(2001). The simulation design follows Stengos and Yan (2001) in order to do

comparison. The design is as follows5.

y = θ (x) + E [s|z]α+ u (4.11)

θ (x) = (β1x1 + β2x2)
2

s =
[
(z1 + z2)

2 z2

]
γ + e

zi = xiδi + vi, i = 1, 2.

5Allowing for more general setting of g function could verify the 2 step series estimator
is robust to the functional form of the unkown function. We also implement the experiment
by setting g function as exp

[
(z1 + z2)

2 + z2

]
, which is obviously not a polynomial form

employed by Stengos and Yan (2001). See the estimation result in next subsection. Fur-
thermore, since Stangos and Yan (2001) did not take into account conditional heteroskedas-
ticity, we will not explore this issue here. Of course, our two-step estimator could deal with
conditional heteroskedasticity well.
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where xi (i = 1, 2) are generated from uniform distribution on [1,2] and u ∼

N (0, σ2
u) , v ∼ N (0, σ2

v) , e ∼ N (0, σ2
e) , ρi = cov (xi, zi) /σ

2
xi
. We pick the

coefficients of δi by δi =
√

12σρ/
√

1− ρ2, where ρ is the correlation coefficient

between x and z. σ is set to 1. In addition, we introduce the correlation

between u and e by setting σue = 0.5, which is not specified in Stengos and

Yan (2001). The related parameters are summarized as follows.

β1 = β2 = α = 1, γ = (1, 1)′ , σ2
u = σ2

v = σ2
e = 1,

δ = .35 if ρ = .1, δ = 2 if ρ = .5, δ = 7.15 if ρ = .9.

We consider 4000, 2000 and 1000 replications for sample sizes of n = 100, 200

and 400 respectively. We also report three possible correlation between x and

z as in Stengos and Yan (2001). In the simulation, we compute the Mean

Absolute Bias (BIAS) and Mean Square Error (MSE) for seven estimators

rather than three estimators in Stengos and Yan (2001). The seven estimators

are described below.

1. True estimator: We assume that the unknown functions g and θ are both

known to us. Of course, it’s the unattainable goal. However, it provides

the benchmark for various estimators.

2. True series estimator: It means that we directly take the true value of g

(= E [s|z]) in the auxilliary regression instead of estimating it. Then we

use this true value to estimate coefficient α using the series method.

3. True Kernel estimator: It is computed in Stengos and Yan (2001) for

the benchmark. Here we take the true value of g and use the Kernel
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method6 to estimate α.

4. Linear series estimator: We treat the unknown g function as linear one

and get the estimate of g. Then we use the misspecified estimate of g to

estimate α using series method.

5. Linear Kernel estimator: It has the same form as the Linear series esti-

mator except that we adopt Kernel method in the second stage estima-

tion.

6. 2-Step series estimator: That is the estimator we propose in this paper.

We estimate E [s|z] by series method in the first stage and estimate

E [E [s|z] |x] by series method again in the second stage. Then we get

the estimate of coefficient α.

7. Double Kernel estimator: That is the estimator proposed by Stengos

and Yan (2001). The feature is that they applied the Kernel method in

both stages of estimation.

4.5.2 Simulation Results

The simulation result is summarized in Table F.1. The preliminary

simulation result is encouraging in this particular design. First, under the as-

6To implement the Kernel regression, we need the choices of kernel function and band-
width. Here we follow Stengos and Yan’s strategy by selecting Gauss kernel and setting
bandwidth as

h = cn−(4+p),

where c = 1, p = 2 and n is the sample size.
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sumption of knowing the true unknown g function, our series method performs

better than Kernel method especially when the correlation between x and z

is higher. Second, even when we assume the unknown g function is linear,

the performance of Linear series estimator is better than the Double Kernel

method. That means using the series method in the second stage will be bet-

ter than the Double Kernel method in this case. Finally, simulation evidence

shows that our 2-step series estimator performs well. It uniformly outperforms

the Double Kernel estimator in all cases. In some cases, our estimator has even

smaller BIAS and MSE than those of True Kernel estimator.

Some may argue that the original specification of the nonparametric

g function in Stengos and Yan (2001),
[
g (z) = (z1 + z2)

2 + z2

]
, would be in

favor of our series estimator since it is kind of polynomial form. Therefore

we change the DGP by setting g (z) = exp
[
(z1 + z2)

2 + z2

]
. The estimation

result is shown in Table F.2. Even though we modify the DGP of g function,

our two-step series estimator still performs very well.

Note that throughout the simulation we arbitrarily pick the approxi-

mating function for g (z) and θ (x) being

(
1, z1, z2, z

2
1 , z

2
2 , z1z2

)
,(

1, x1, x2, x
2
1, x

2
2, x1x2

)
respectively. The issue of how to pick the optimal smoothing parameters will

be explored in next subsection.
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4.5.3 Picking Smoothing Parameters

We would consider to pick optimal smoothing parameters by minimiz-

ing the mean square error. Since MSE involves the true value of the estimator,

in practice we need to expand our two-step series estimator using higher order

asymptotic expansion. The approximate MSE will not depend on the true

value of the estimator. Therefore, one could minimize the approximate MSE

to obtain the optimal smoothing parameter. However, it is not trivial to derive

the approximate MSE in our context. An alternative approach is to estimate

the apprxoimate MSE through bootstrapping. In this experiment, we con-

sider three possible sets which serve as the approximating functions for g (z)

and θ (x) . The DGP follows the same setup in (4.11). The numbers of Monte

Carlo and bootstrapping replications are set to 1000 and 399 for all cases7.

The resampling scheme is to bootstrap the (x, z, y, s) pairs. The instruments

for estimating θ (x) are

x1 = (1, x1, x2)

x2 =
(
1, x1, x2, x

2
1, x

2
2, x1x2

)
x3 =

(
1, x1, x2, x

2
1, x

2
2, x1x2, x

3
1, x

3
2, x

2
1x2, x1x

2
2

)
.

7We use 1000 Monte Carlo replications instead of 2000 or 4000 to save the computing
time.
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The instrument sets for approximating g (z) are

z1 = (1, z1, z2)

z2 =
(
1, z1, z2, z

2
1 , z

2
2 , z1z2

)
z3 =

(
1, z1, z2, z

2
1 , z

2
2 , z1z2, z

3
1 , z

3
2 , z

2
1z2, z1z

2
2

)
.

Thus there are a total of nine combinations of approximating functions. We

use the following notation to record each combination.

K11 = (x1, z1) , K12 = (x1, z2) , K13 = (x1, z3) ,
K21 = (x2, z1) , K22 = (x2, z2) , K23 = (x2, z3) ,
K31 = (x3, z1) , K32 = (x3, z2) , K33 = (x3, z3) ,

where K23 stands for using (1, x1, x2, x
2
1, x

2
2, x1x2) and (1, z1, z2, z

2
1 , z

2
2 ,

z1z2, z
3
1 , z

3
2 , z

2
1z2, z1z

2
2) as the instruments of approximating θ (x) and g (z)

respectively. It also means that we employ 6 and 10 instruments in forming

the approximating function.

The result is shown in Table F.3. One can observe that it is not the best

strategy to choose as many functions as possible, K33. Most of the situations

tend to choose medium numbers of instruments such as K22 or K23. When

the sample size is 100, fewer functions of x variables (say, 3) are needed in

estimating θ (x). Increasing the sample size (n = 100 or 200), results in more

functions becoming preferable (say, 6). On the other hand, it was usually

optimal to pick a larger number of functions of z variables (say 6 or 10).

Because we know the DGP, the true MSE could be actually calculated for

different combination of instruments. We compare the true MSE criteria with

boostrapping method and find that the optimal instruments chosen by the
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two methods are quite similar. For instance, as n = 100, true MSE and

bootstrapping MSE pick K12 and K13 respectively. For n = 200 and 400, K22

and K23 are usually the best choices.

4.6 Concluding Remarks

In this paper, we propose the two-step series estimation method to

estimate a semiparametric regression model with generated regressors. We

start with simple parametric model with generated regressors and then con-

sider more general semiparametric setting. We establish the
√
n consistency

and asymptotic normality for the two-step estimator. Our two step series

method incoporates not only conditional heteroskedastictiy but also the corre-

lation of error terms between the regression of interest and auxiliary regression.

This feature is not simultaneously investigated in Stengos and Yan (2001) and

Donald (1992). Also in more general setting, the asymptotic variance of our

estimator seems more plausiable than that of Stangos and Yan (2001).

According to our simulation result, our two step series estimator out-

performs other competing estimators in terms of mean absolute bias and mean

square error. Even if we change the functional form of unknown g function,

the performance of our two-step series estimator is overwhelming. Compared

to the double kernel method, our estimator has some computational advan-

tage in the sense that running ordinary least squares twice is required in our

appraoch. However, one needs to determine two smoothing parameters in

estimating unknown θ (x) and g (z). The ususal way is to derive the approx-
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imate MSE. It is not trivial to construct the higher order MSE expansion for

our two-step series estimator. We propose the bootstrapping method to ap-

proximate MSE. Using the true MSE as the benchmark, the bootstrapping

method works very well and provides us the criteria to choose two smoothing

parameters simultaneously.
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Appendix A

Appendix-Chapter 2

We will use the following useful expansion for a matrix repeatedly.

Â−1 = A−1−A−1
(
Â− A

)
A−1 +A−1

(
Â− A

)
A−1

(
Â− A

)
A−1 + ... (A.1)

A.1 Proof of Proposition 2.3.1

We have that

β̂Cragg − β =

[
X ′Q

(
Q′Σ̂Q

)−1

Q′X

]−1

X ′Q
(
Q′Σ̂Q

)−1

Q′ε = Ĥ−1ĥ.

To simplify the calculation, we adopt White’s (1980) method of estimating

Σ̂ =diag(u2
i ) ≡ S. Remember u2

i is the square of the OLS residual. We now

expand (Q′SQ)−1 using (A.1).

(Q′SQ)
−1

= (Q′ΣQ)
−1 − (Q′ΣQ)

−1
Q′ (S − Σ)Q (Q′ΣQ)

−1
.

It follows that

ĥ = X ′Q (Q′ΣQ)
−1
Q′ε−X ′Q (Q′ΣQ)

−1
Q′ (S − Σ)Q (Q′ΣQ)

−1
Q′ε.
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and

Ĥ−1

=
(
X ′Q (Q′ΣQ)

−1
Q′X

)−1

+
(
X ′Q (Q′ΣQ)

−1
Q′X

)−1

×(
X ′Q (Q′ΣQ)

−1
Q′ (S − Σ)Q (Q′ΣQ)

−1
Q′X

)(
X ′Q (Q′ΣQ)

−1
Q′X

)−1

.

Define X∗ = Σ−1/2X, Q∗ = Σ1/2Q, S∗ = Σ−1/2SΣ−1/2, ε∗ = Σ−1/2ε and

P ∗ = Q∗ (Q∗′Q∗)−1Q∗′. After change of variables, we obtain the following.

Ĥ−1

= (X∗′P ∗X∗)
−1

+ (X∗′P ∗X∗)
−1

(X∗′P ∗ (S∗ − I)P ∗X∗) (X∗′P ∗X∗)
−1

− (X∗′P ∗X∗)
−1

(X∗′P ∗ (S∗ − I)P ∗ (S∗ − I)P ∗X∗) (X∗′P ∗X∗)
−1
.

ĥ = X∗′P ∗ε∗ −X∗′P ∗ (S∗ − I)P ∗ε∗ +X∗′P ∗ (S∗ − I)P ∗ (S∗ − I)P ∗ε∗.
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Now we have

Ĥ−1ĥ

= (X∗′PX∗)
−1
X∗′Pε∗︸ ︷︷ ︸

T1

+ (X∗′PX∗)
−1

(X∗′P (S∗ − I)PX∗) (X∗′PX∗)
−1
X∗′Pε∗︸ ︷︷ ︸

T2

−(X∗′PX∗)
−1

(X∗′P (S∗ − I)P (S∗ − I)PX∗) (X∗′PX∗)
−1
X∗′Pε∗︸ ︷︷ ︸

T3

−(X∗′PX∗)
−1
X∗′P (S∗ − I)Pε∗︸ ︷︷ ︸

T4

−(X∗′PX∗)
−1

(X∗′P (S∗ − I)PX∗) (X∗′PX∗)
−1
X∗′P (S∗ − I)Pε∗︸ ︷︷ ︸

T5

+(X∗′PX∗)
−1

(X∗′P (S∗ − I)P (S∗ − I)PX∗) (X∗′PX∗)
−1
X∗′P (S∗ − I)Pε∗︸ ︷︷ ︸

T6

+ (X∗′PX∗)
−1
X∗′P (S∗ − I)P (S∗ − I)Pε∗︸ ︷︷ ︸

T7

+ (X∗′PX∗)
−1

(X∗′P (S∗ − I)PX∗) (X∗′PX∗)
−1
X∗′P (S∗ − I)P (S∗ − I)Pε∗︸ ︷︷ ︸

T8

− (X∗′PX∗)
−1

(X∗′P (S∗ − I)P (S∗ − I)PX∗)︸ ︷︷ ︸
T9

× (X∗′PX∗)
−1
X∗′P (S∗ − I)P (S∗ − I)Pε∗︸ ︷︷ ︸

T9

.

Furthermore, it is useful to simplify terms T1 to T9 by the following expansion.

(X∗′PX∗)
−1

= (X∗′X∗)
−1

+ (X∗′X∗)
−1
X∗′ (I − P )X∗ (X∗′X∗)

−1

X∗′Pε∗ = X∗′ε∗ −X∗′ (I − P ) ε∗.

Before calculating the orders of T1 to T9, let’s present some results of related

orders by the following lemmata.

Lemma A.1.1. (X∗′X∗/n)−1 = Op (1) and (X∗′ε∗/
√
n) = Op (1) .
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Proof. By the boundedness of X∗ and Central Limit Theorem.

Lemma A.1.2. [X∗′ (I − P ∗)X∗/n] = Op

(
‖f‖2) .

Proof. By the traditional assmption of series estimation, we have[
n∑

i=1

(
f (x∗i )− qK (x∗i )

′ π
)2
/n

]1/2

= O
(
K−α

)
= O (‖f‖) .

Lemma A.1.3. [X∗′ (I − P ) ε∗/
√
n] = O (‖f‖) .

Proof. It is mean zero, so that

V ar

[
X∗′ (I − P ) ε∗√

n

]
=
X∗′ (I − P )X∗

n
= Op

(
‖f‖2) .

By M, the result follows.

Lemma A.1.4. [X∗′P (S∗ − I)PX∗/n] = 1
n
X∗′PS1PX

∗ +O (1/n) .

Proof. We define the following notations.

S1 = diag
(
ε∗2i − 1

)
S2 = diag (x∗i ε

∗
i )

S3 = diag
(
x∗2i

)
.
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Note that ui =
(
β − β̂

)
xi + εi. We have1

u2
i =

[(
β − β̂

)
xi + εi

]2
= ε2i +

(
β − β̂

)2

x2
i + 2

(
β − β̂

)
xiεi.

1If we adopt MacKinnon and White (1985) jackknife estimate of covariance matrix,
diag

(
u2 (xi) / (1− hii)

2
)

will replace diag
(
u2 (xi)

)
. Note that

(1− hii)
−1 = 1 + hii + h2

ii + ... = 1 + hii

(1− hii)
−2 = 1 + 2hii + 3h2

ii + ... = 1 + 2hii.

Now we will have

1
n

n∑
i=1

x∗2i

[(
ε∗2i +

(
β̂ − β

)2

x∗2i − 2
(
β̂ − β

)
x∗i ε

∗
i

)
(1 + 2hii)− 1

]

= [terms as in White] +
2
n

n∑
i=1

x∗2i ε
∗2
i hii

+
2
n

(
β̂ − β

)2 n∑
i=1

x∗4i hii +
4
n

(
β̂ − β

) n∑
i=1

x∗2i x
∗
i ε
∗
i hii

= [terms as in White] +
2
n

n∑
i=1

x∗2i

[
ε∗2i − 1

]
hii +

2
n

n∑
i=1

x∗2i hii

+
2
n

(
β̂ − β

)2 n∑
i=1

x∗4i hii +
4
n

(
β̂ − β

) n∑
i=1

x∗2i x
∗
i ε
∗
i hii

Here are the orders.
2
n

n∑
i=1

x∗2i ε
∗2
i hii = Op

(
d

n

)

V ar

[
1
n

n∑
i=1

x∗2i x
∗
i ε
∗
i hii

]
=

1
n2

n∑
i=1

x∗4i x
∗2
i h

2
ii = Op

(
ζ (K)2 d
n3

)
.
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Applying the expansion of u2
i gives

1

n
X∗′P (S∗ − I)PX∗

=
1

n
X∗′P

(
3∑

j=1

S̃j

)
PX∗,

where S̃1 = S1, S̃2 = 2
(
β − β̂

)
S2, and S̃3 =

(
β − β̂

)2

S3. By the fact that

1

n
X∗′PS1PX

∗ = O

(
1√
n

)
and

1

n
X∗′P

(
2∑

j=1

S̃j

)
PX∗ = O

(
1

n

)
,

the result follows.

Lemma A.1.5. [X∗′P (S∗ − I)P (S∗ − I)PX∗/n] = 1
n
X∗′PS1PS1PX

∗ =

O (K/n)

Proof. It could be written as

1

n
X∗′P

(
3∑

j=1

S̃j

)
P

(
3∑

j=1

S̃j

)
PX∗

=
1

n
X∗′PS1PS1PX

∗ +O

(
1

n

)
= O

(
K

n

)
.

Lemma A.1.6. [X∗′P (S∗ − I)Pε∗/
√
n] = 1√

n
X∗′PS1Pε

∗− 2√
n

(
β̂ − β

)
X∗′PS2Pε

∗

+o
(

K
n

)
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Proof. Expansion gives

1√
n
X∗′P

(
3∑

j=1

S̃j

)
Pε∗ =

1√
n
X∗′PS1Pε

∗− 2√
n

(
β̂ − β

)
X∗′PS2Pε

∗+o

(
K

n

)
.

We can show

1√
n
X∗′PS1Pε

∗ = O

(√
K√
n

)
2√
n

(
β − β̂

)
X∗′PS2Pε

∗ = O

(
K√
n

)
.

The proof ends.

Lemma A.1.7. [X∗′P (S∗ − I)P (S∗ − I)Pε∗/
√
n] = 1√

n
X∗′PS1PS1Pε

∗ =

O
(

ζ(K)
√

K
n

)
Proof.

1√
n
X∗′P

(
3∑

j=1

S̃j

)
P

(
3∑

j=1

S̃j

)
Pε∗

=
1√
n
X∗′PS1PS1Pε

∗ + o

(
K

n

)
= O

(
ζ (K)K

n

)
.

Now deal with terms
√
nT1 to

√
nT9. To simplify the calculation, we

premultiply all of the terms by Ω∗−1 = X∗′X∗/n. Furthermore, by Lemma

A.1.1-A.1.7 we could drop out lots of terms with small orders.

Ω∗−1
√
nT1 =

(
X∗′ε∗√
n

)
+

(
X∗′ (I − P )X∗

n

)(
X∗′X∗

n

)−1(
X∗′ε∗√
n

)
−
(
X∗′ (I − P ) ε∗√

n

)
+O

(
1

n

)
.
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Ω∗−1
√
nT2 =

(
1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
−
(

1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ (I − P ) ε∗√

n

)
+O

(
1

n

)
.

Ω∗−1
√
nT3 =

(
1

n
X∗′PS1PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
+O

(
1

n

)
.

Ω∗−1
√
nT4 =

1√
n
X∗′PS1Pε

∗ − 2√
n

(
β̂ − β

)
X∗′PS2Pε

∗ +O

(
1

n

)
.

Ω∗−1
√
nT5 =

(
X∗′PS1PX

∗

n

)(
X∗′X∗

n

)−1(
X∗′PS1Pε

∗
√
n

)
+O

(
1

n

)
= O

(√
K

n

)
.

Ω∗−1
√
nT6 =

(
X∗′PS1PS1PX

∗

n

)(
X∗′X∗

n

)−1(
X∗′PS1Pε

∗
√
n

)
+O

(
1

n

)
= O

(
1

n

)
.

Ω∗−1
√
nT7 =

X∗′PS1PS1Pε
∗

√
n

= O

(
ζ (K)K

n

)
.

Ω∗−1
√
nT8 =

1√
n

(X∗′PS1PX
∗) (X∗′X∗)

−1
(X∗′PS1PS1Pε

∗) = tiny.

Ω∗−1
√
nT9 =

1√
n

(X∗′PS1PS1PX
∗) (X∗′X∗)

−1
(X∗′PS1PS1Pε

∗) = tiny.
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Combining Ω∗−1
√
nT1, ...,Ω∗−1

√
nT9 gives us the expansion of Ω∗−1

√
n
(
β̂Cragg − β

)
.

Ω∗−1
√
nĤ−1ĥ

= Ω∗−1
√
n

9∑
i=1

Ti

=

(
X∗′ε∗√
n

)
+

(
X∗′ (I − P )X∗

n

)(
X∗′X∗

n

)−1(
X∗′ε∗√
n

)
−
(
X∗′ (I − P ) ε∗√

n

)
+

(
1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
−
(

1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ (I − P ) ε∗√

n

)
−
(

1

n
X∗′PS1PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
− 1√

n
X∗′PS1Pε

∗ +
2√
n

(
β̂ − β

)
X∗′PS2Pε

∗

+
1√
n
X∗′PS1PS1Pε

∗ +O

(
1√
n

)
=

9∑
j=1

Uj +O

(
1√
n

)
.
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Note that the definitions and orders of U1 to U9 are listed below.

U1 =
X∗′ε∗√
n

= O (1)

U2 =

(
X∗′ (I − P )X∗

n

)(
X∗′X∗

n

)−1(
X∗′ε∗√
n

)
= O

(
‖f‖2)

U3 = −
(
X∗′ (I − P ) ε∗√

n

)
= O (‖f‖)

U4 =

(
1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
= O

(
1√
n

)
U5 = −

(
1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ (I − P ) ε∗√

n

)
= O

(
‖f‖√
n

)
U6 = −

(
1

n
X∗′PS1PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
= O

(
K

n

)
U7 = − 1√

n
X∗′PS1Pε

∗ = O

(√
K√
n

)

U8 =
2√
n

(
β̂ − β

)
X∗′PS2Pε

∗ = O

(
K√
n

)
U9 =

1√
n
X∗′PS1PS1Pε

∗ = O

(
ζ (K)K

n

)
Now define

Ξ1 = (Q′Q)
−1
∑

i

κix
∗2
i QiQi

Ξ2 = (Q′Q)
−1
∑

i

x∗2i QiQi

κi = E
[
ε∗4i |x∗i

]
.

E [U1U
′
1] = E

[
X∗′ε∗√
n

ε∗′X∗
√
n

]
=
X∗′X∗

n
= O (1)

97



E [U3U
′
3] = E

[
X∗′ (I − P ) ε∗√

n

ε∗′ (I − P )X∗
√
n

]
=

X∗′ (I − P )X∗

n

= O
(
‖f‖2)

E [U7U
′
7] = E

[
X∗′S1Pε

∗
√
n

ε∗′PS1X
∗

√
n

]
=

1

n

∑
i

x∗2i P
2
iiE
[(
ε∗2i − 1

)2]
ε∗2i

= O

(
K

n

)
=

1

n
tr (Ξ1)−

1

n
tr (Ξ2) + o

(
K

n

)

2E [U2U
′
1] = 2E

[(
X∗′ (I − P )X∗

n

)(
X∗′X∗

n

)−1(
X∗′ε∗√
n

)(
ε∗′X∗
√
n

)]

= 2
X∗′ (I − P )X∗

n

= O
(
‖f‖2)

2E [U1U
′
3] = −2E

[
X∗′ε∗√
n

ε∗′ (I − P )X∗
√
n

]
= −2

X∗′ (I − P )X∗

n

= O
(
‖f‖2)

98



2E [U4U
′
1] = 2E

[(
1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
ε∗′X∗
√
n

]
=

2

n2
E
[
X∗′PS1PX

∗Ω∗−1X∗′ε∗ε∗′X∗]
=

2

n2
E

[∑
ijk

X∗2
i

(
ε∗2i − 1

)
Ω∗−1X∗

j ε
∗
jX

∗
kε
∗
k

]

=
2

n2

∑
i

X∗2
i Ω

∗−1X∗2
i E

[(
ε∗2i − 1

)
ε∗2i

]
= O

(
1

n

)

2E [U5U
′
1] = −2E

[(
1

n
X∗′PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ (I − P ) ε∗√

n

)
ε∗′X∗
√
n

]
= − 2

n2
E
[
X∗′PS1PX

∗Ω∗−1X∗′ (I − P ) ε∗ε∗X∗]
= − 2

n2
E

[∑
ijk

X∗2
i

(
ε∗2i − 1

)
Ω∗−1

(
X∗

j −X∗
j

)
ε∗jX

∗
kε
∗
k

]

= − 2

n2

∑
i

X∗2
i Ω

∗−1
(
X∗

i −X∗
i

)
E
[(
ε∗2i − 1

)
ε∗2i

]
= o

(√
K

n

)

2E [U6U
′
1] = −2E

[(
1

n
X∗′PS1PS1PX

∗
)(

X∗′X∗

n

)−1(
X∗′ε∗√
n

)
ε∗′X∗
√
n

]
= − 2

n2
E
[
X∗′PS1PS1PX

∗Ω∗−1X∗′ε∗ε∗X∗]
= − 2

n2
E

[∑
ijkl

X∗
iX∗

j

(
ε∗2i − 1

) (
ε∗2j − 1

)
PijΩ

∗−1X∗
l ε
∗
lX

∗
kε
∗
k

]

= − 2

n
[tr (Ξ1)− tr (Ξ2)] + o

(
K

n

)
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2E [U7U
′
1] = −2E

[(
1

n
X∗′PS1Pε

∗
)
ε∗′X∗
√
n

]
= − 2

n2
E [X∗′PS1Pε

∗ε∗′X∗]

= − 2

n2
E

[∑
ijk

X∗
i

(
ε∗2i − 1

)
Pijε

∗
jX

∗
kε
∗
k

]

= − 2

n2

∑
i

X∗2
iX

∗
i PiiE

[(
ε∗2i − 1

)
ε∗2i

]
= − 2

n
[tr (Ξ1)− tr (Ξ2)] + o

(
K

n

)

2E [U8U
′
1] = 2E

[
2√
n

(
β̂ − β

)
X∗′PS2Pε

∗ ε
∗′X∗
√
n

]
=

4

n2
E

[∑
ijkl

φiε
∗
iX

∗
jε
∗
jX

∗
jPjkε

∗
kε
∗
lX

∗
l

]

=
4

n2

[∑
i

φiX∗
iX

∗2
i PiiE

(
ε∗4i

)]
+

[
4

n2

∑
i6=j

φiX
∗
i X

∗
jX

∗
jPjj

]

+
4

n2

[∑
i6=j

φiX∗
jX

∗2
j Pji

]
+

4

n2

[∑
i6=j

φiX∗
iX

∗
i Pij

]

=
4

n
tr (Ξ2) + o

(
K

n

)

2E [U9U
′
1] = 2E

[(
1√
n
X∗′PS1PS1Pε

∗
)
ε∗′X∗
√
n

]
=

2

n
[tr (Ξ1)− tr (Ξ2)] + o

(
K

n

)
Note that all other terms of tiny orders are neglected. The mean of Ω∗−1

√
n
(
β̂Cragg − β

)
is zero. Hence the MSE of Ω∗−1

√
n
(
β̂Cragg − β

)
will be

1

n
X∗′X∗ +

1

n
X∗′ (I − P )X∗ − 1

n
tr (Ξ1) +

5

n
tr (Ξ2) + o

(
K

n

)
.

Q.E.D.
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A.2 Proof of Proposition 2.3.2

The series based FGLS estimator β̂Series could be written as

√
N
(
β̂Series − β

)
=

[
1

n

∑
i

x2
i

σ̂2
i

]−1 [
1√
n

∑
i

xiεi
σ̂2

i

]
= Ĥ−1ĥ.

We could expand Ĥ and ĥ respectively as

Ĥ =
1

n

∑
i

x2
i

σ2
i

− 1

n

∑
i

x2
i

σ4
i

(
σ̂2

i − σ2
i

)
+

1

n

∑
i

x2
i

σ6
i

(
σ̂2

i − σ2
i

)2
and

ĥ =
1√
n

∑
i

xiεi
σ2

i

− 1√
n

∑
i

xiεi
σ4

i

(
σ̂2

i − σ2
i

)
+

1√
n

∑
i

xiεi
σ6

i

(
σ̂2

i − σ2
i

)2
.

In matrix form, they are

Ĥ =
1

n
X∗′X∗ − 1

n

[
X∗′

(
Σ̂∗ − I

)
X∗
]

+
1

n

[
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
X∗
]

= H + TH + ZH

and

ĥ =
1√
n
X∗′ε∗ − 1√

n

[
X∗′

(
Σ̂∗ − I

)
ε∗
]

+
1√
n

[
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
ε∗
]

= h+ T h + Zh.

To simplify the calculation of MSE for series based FGLS estimator, we will

verify the Lemma 1 of Donald and Newey (2001) and then compute E
[
Â (K)

]
in Lemma 1. Before the calulation, we present Lemmata of leading terms in

expansion. The following Lemmata hold for series based FGLS estimator.
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Lemma A.2.1.
[
X∗′

(
Σ̂∗ − I

)
X∗/n

]
= 1

n

∑
i

x∗2i

σ2
i

(σ2
i − σ2

i ) + 1
n

∑
i

x∗2i

σ2
i
vi +

Op

(
1
n

)
.

Proof. We could rewrite X∗′
(
Σ̂∗ − I

)
X∗/n as

1

n
X∗′

(
Σ̂∗ − I

)
X∗ =

1

n

∑[
x∗2i

(
1

σ2
i

σ̂2
i − 1

)]
. (A.2)

The series estimator for the diagonal element of Σ is

σ̂2
i = qK (xi)

′ (Q′Q)
−1
Q′e2,

where qK (xi) is a k × 1 vector and Q is a n × k approximating function. e2

is a n× 1 vector of squared residuals from OLS estimation.2 The matrix form

of the OLS squared residuals expansion is

e2 = ε2 + 2
(
β − β̂

)
xε+

(
β − β̂

)2

x2,

where

ε2 =
(
ε21, ε

2
2, ..., ε

2
n

)′
2
(
β − β̂

)
xε = 2

(
β − β̂

)
(x1ε1, x2ε2, ..., xnεn)′(

β − β̂
)2

x2 =
(
β − β̂

)2 (
x2

1, x
2
2, ..., x

2
n

)′
.

Now σ̂2
i could be expanded as

σ̂2
i = qK (xi)

′ (Q′Q)
−1
Q′
[
ε2+2

(
β − β̂

)
xε+

(
β − β̂

)2

x2

]
. (A.3)

2More specifically, Q =


qK (x1)

′

qK (x2)
′

...
qK (xn)′

 and e2 =


e21
e22
...
e2n

 .
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Plugging equation (A.3) into equation (A.2) gives us

1

n

∑[
x∗2i

(
1

σ2
σ̂2

i − 1

)]
=

1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′
[
ε2+2

(
β − β̂

)
xε+

(
β − β̂

)2

x2

]
− 1

]]
=

1

n

[
xs2′Q (Q′Q)

−1
Q′ε2− xs′ι

]
+2
(
β − β̂

)
· 1

n

[
xs2′Q (Q′Q)

−1
Q′xε

]
+
(
β − β̂

)2

· 1

n

[
xs2′Q (Q′Q)

−1
Q′x2

]
=

1

n
[xs2′Pε2− xs′ι] (A.4)

+2
(
β − β̂

)
· 1

n
[xs2′Pxε] (A.5)

+
(
β − β̂

)2

· 1

n
[xs2′Px2] , (A.6)

where the projection matrix P is Q (Q′Q)−1Q′, and

x2 =
(
x2

1, x
2
2, ..., x

2
n

)′
xs2 = (x2

1/σ
4 (x1) , x

2
2/σ

4 (x2) , ..., x
2
n/σ

4 (xn))′

xs =
(
x2

1/σ
2 (x1) , x

2
2/σ

2 (x2) , ..., x
2
n/σ

2 (xn)
)′

ι = (1, ..., 1)′ .

Let’s denote

ε2 = E (ε2|x) + v

= σ2 + v,

where E (v|x) = 0 and σ2 = (σ2 (x1) , ..., σ
2 (xn))

′
. Also vi =

∑
j Pijvj.
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Rewrite the term in (A.4) as follows.

1

n
[xs2′Pε2− xs′ι]

=
1

n
[xs2′P (σ2 + v)−xs′ι]

=
1

n
[xs2′Pσ2 + xs2′Pv − xs′ι]

=
1

n
[xs2′σ2− xs2′ (I − P )σ2 + xs2′v − xs2′ (I − P )v−xs′ι]

=
1

n
[−xs2′ (I − P )σ2+xs2′v − xs2′ (I − P )v]

= O
(
‖f‖

∥∥σ2
∥∥)+O

(
1√
n

)
+O

(
‖f‖√
n

)
=

1

n

∑
i

x∗2i

σ2
i

(
σ2

i − σ2
i

)
+

1

n

∑
i

x∗2i

σ2
i

vi.

We know that

− 1

n
|xs2′ (I − P )σ2| ≤

[
xs2′ (I − P )xs2

n

]1/2 [
σ2′ (I − P )σ2

n

]1/2

= O
(
K−αxs2/σ

)
·O
(
K−ασ2/σ

)
= O

(
‖f‖

∥∥σ2
∥∥) .

Also we have

1

n
xs2′Pxε

=
1

n
xs2′xε− 1

n
xs2′ (I − P )xε

= O

(
1√
n

)
+O

(
‖f‖√
n

)
.

The order of the term in (A.5) will be

2
(
β − β̂

)
· 1

n
[xs2′Pxε] = O

(
1

n

)
+O

(
‖f‖
n

)
.
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Next,

1

n
xs2′Px2 =

1

n
xs2′x2− 1

n
xs2′ (I − P )x2

= O (1) +O
(
‖f‖2) .

The order of the term in (A.6) will be

(
β − β̂

)2

· 1

n
[xs2′Px2] = O

(
1

n

)
+O

(
‖f‖2

n

)
.

Therefore, the order of equation (A.2) will be

1

n
X∗′

(
Σ̂∗ − I

)
X∗

=
1

n
[−xs2′ (I − P )σ2+xs2′v − xs2′ (I − P )v] +O

(
1

n

)
=

1

n

∑
i

x∗2i

σ2
i

(
σ2

i − σ2
i

)
+

1

n

∑
i

x∗2i

σ2
i

vi +O

(
1

n

)
.

Lemma A.2.2.[
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
X∗/n

]
=

1

n

∑[
x∗2i

σ4
i

[
σ2

i − σ2
i

]2]
+

1

n

∑[
x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
+O

(
1

n

)
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Proof. It could be rewritten as

1

n
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
X∗

=
1

n

∑[
x∗2i

(
σ̂∗2i − 1

)2]
=

1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′
[
ε2+2

(
β − β̂

)
xε+

(
β − β̂

)2

x2

]
− 1

]2
]

=
1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′ε2− 1

]2
]

(A.7)

+4
(
β − β̂

)2 1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]2
]

(A.8)

+
(
β − β̂

)4 1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′x2

]2
]

(A.9)

+4
(
β − β̂

) 1

n

∑[
x∗2i

[
1

σ2
i

σ2
K (xi)− 1

] [
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]]
(A.10)

+2
(
β − β̂

)2 1

n

∑[
x∗2i

[
1

σ2
i

σ2
K (xi)− 1

] [
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′x2

]]
(A.11)

+4
(
β − β̂

)3 1

n

∑[
x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′xε

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
,(A.12)
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where σ2
K (xi) = qK′ (xi) (Q′Q)−1Q′ε2. The order of term (A.7) is

1

n

∑[
x∗2i

[
1

σ2 (xi)
qK′ (xi) (Q′Q)

−1
Q′ε2− 1

]2
]

=
1

n

∑[
x∗2i

σ4 (xi)

[
qK′ (xi) (Q′Q)

−1
Q′ (σ2 + v)− σ2

i

]2]
=

1

n

∑[
x∗2i

σ4 (xi)

[(
qK′ (xi) (Q′Q)

−1
Q′σ2− σ2

i

)
+ qK′ (xi) (Q′Q)

−1
Q′v

]2]
=

1

n

∑[
x∗2i

σ4 (xi)

[
qK′ (xi) (Q′Q)

−1
Q′σ2− σ2

i

]2]
+

1

n

∑[
x∗2i

σ4 (xi)

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
+

2

n

∑[
x∗2i

σ4 (xi)

[(
qK′ (xi) (Q′Q)

−1
Q′σ2− σ2

i

)(
qK′ (xi) (Q′Q)

−1
Q′v

)]]
= O

(∥∥σ2
∥∥2
)

+O

(
K

n

)
+O

(
ζ (K)2 ‖σ2‖

n
√
n

)
.

Define

qK′ (xi) (Q′Q)
−1
Q′σ2

=
∑

j

Pijσ
2
j

= σ2
i

We know that

1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′σ2− 1

]2
]

=
1

n

∑[
x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′σ2− σ2

i

]2]
≤ ∆

1

n

∑[
σ2

i − σ2
i

]2
= ∆

1

n
σ2′ (I − P )σ2

= O
(∥∥σ2

∥∥2
)
.
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1

n

∑[
x∗2i

σ4 (xi)

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
≤ 1

n

∑[
qK′ (xi) (Q′Q)

−1
Q′v

]2
=

1

n
v′Pv

= O

(
K

n

)
.

Let

ϕ =
2

n

∑
i

[
x∗2i

σ4 (xi)

[(
qK′ (xi) (Q′Q)

−1
Q′σ2− σ2

i

)(
qK′ (xi) (Q′Q)

−1
Q′v

)]]
=

2

n

∑
ij

[
x∗2i

σ4
i

[(
σ2

i − σ2
i

)
Pijvj

]]
.

It is easy to verify that E [ϕ] = 0. The variance of ϕ is

4

n2
E

[∑
ij

x∗4i

σ8
i

[(
σ2

i − σ2
i

)2
P 2

ijv
2
j

]]

=
4

n2

∑
ij

[
x∗4i

σ8
i

(
σ2

i − σ2
i

)2
P 2

ijE
[
v2

j

]]
≤ ∆

4

n2

∑
ij

[
x∗4i

σ8
i

(
σ2

i − σ2
i

)2
P 2

ij

]
= ∆

4

n2

∑
i

[
x∗4i

σ8
i

(
σ2

i − σ2
i

)2
P 2

ii

]
+ ∆

4

n2

∑
i6=j

[
x∗4i

σ8
i

(
σ2

i − σ2
i

)2
P 2

ij

]
≤ ∆

4

n2

∣∣supP 2
ii

∣∣∑
i

(
σ2

i − σ2
i

)2
+ ∆

4

n2

∣∣supP 2
ii

∣∣∑
i

[(
σ2

i − σ2
i

)2]
= O

(
ζ (K)4 ‖σ2‖2

n3

)
.

Therefore,

ϕ = O

(
ζ (K)2 ‖σ2‖

n
√
n

)
.
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The order of term (A.7) is

O
(∥∥σ2

∥∥2
)

+O

(
K

n

)
+O

(
ζ (K)2 ‖σ2‖

n
√
n

)
.

To calulate the order of term (A.8) rewrite as

1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]2
]

≤ ∆
1

n

∑[
qK′ (xi) (Q′Q)

−1
Q′xε

]2
= ∆

1

n

∑[
xε′Q (Q′Q)

−1
qK (xi) q

K′ (xi) (Q′Q)
−1
Q′xε

]
= ∆

1

n
xε′Pxε

= O

(
K

n

)
.

Hence, the order of term (A.8) is

4
(
β − β̂

)2 1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]2
]

= O

(
K

n2

)
.

The order of term (A.9) is(
β − β̂

)4 1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′x2

]2
]

≤ ∆
(
β − β̂

)4 1

n

∑[
qK′ (xi) (Q′Q)

−1
Q′x2

]2
= ∆

(
β − β̂

)4 1

n
x2′Px2

= ∆
(
β − β̂

)4 1

n
(x2′x2− x2′ (I − P )x2)

= O

(
1

n2

)[
O (1) +O

(
‖f‖2)]

= O

(
1

n2

)
+O

(
‖f‖2

n2

)
.
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To calculate the order of term (A.10), decompose it as

∑ x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′ε2− 1

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]
=

∑ x∗2i

σ4
i

(
σ2

i − σ2
i

) [
qK′ (xi) (Q′Q)

−1
Q′xε

]
+
∑ x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]
.

The first term is

∑ x∗2i

σ4
i

(
σ2

i − σ2
i

) [
qK′ (xi) (Q′Q)

−1
Q′xε

]
= O

(√
n
∥∥σ2
∥∥)O (√K)

and the second term is3

∑ x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]
≤ v′Pxε

= O
(√

K
)
.

The order of term (A.10) is

4
(
β − β̂

) 1

n

∑[
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′ε2− 1

] [
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]]
= O

(
1

n
√
n

)[
O
(√

n
∥∥σ2
∥∥)O (√K)+O

(√
K
)]

= O

(
‖σ2‖

√
K

n

)
+O

(√
K

n
√
n

)
.

3Note that E [v′xε] = 0.
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To compute the order of term (A.11), similarly,

∑
x∗2i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′ε2− 1

] [
1

σ2 (xi)
qK′ (xi) (Q′Q)

−1
Q′x2

]
=

∑ x∗2i

σ4
i

(
σ2

i − σ2
i

) [
qK′ (xi) (Q′Q)

−1
Q′x2

]
+
∑ x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]
.

Now we have the first term being

∑ x∗2i

σ4
i

(
σ2

i − σ2
i

) [
qK′ (xi) (Q′Q)

−1
Q′x2

]
= O

(√
n
∥∥σ2
∥∥) (x2′Px2)

1/2

= O
(√

n
∥∥σ2
∥∥)

and second term

∑ x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]
= O (1) +O (‖f‖) .

The order of term (A.11) is

2
(
β − β̂

)2 1

n

∑ x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′ε2− 1

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]
= O

(
1

n2

)[
O
(√

n
∥∥σ2
∥∥)+O (1) +O

(
‖f‖2)]

= O

(
‖σ2‖
n
√
n

)
+O

(
1

n2

)
+O

(
‖f‖2

n2

)
.
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The order of term (A.12) is

4
(
β − β̂

)3 1

n

∑[
x∗2i

[
1

σ2
i

qK′
i Q′Q−1Q′xε

] [
1

σ2
i

qK′
i (Q′Q)

−1
Q′x2

]]
≤ ∆4

(
β − β̂

)3
∣∣∣∣ 1n∑[

qK′ (xi) (Q′Q)
−1
Q′xε

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]∣∣∣∣
≤ ∆′

(
β − β̂

)3
[

1

n

∑[
qK′
i (Q′Q)

−1
Q′xε

]2]1/2 [
1

n

∑[
qK′
i (Q′Q)

−1
Q′x2

]2]1/2

=

√
O

(
1

n6

)√
O

(
K

n

)√
O (1) +O

(
‖f‖2)

= O

(
1

n

)
.

The order of X∗′
(
Σ̂∗ − I

)(
Σ̂∗ − I

)
X∗/n is

1

n
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
X∗

= O
(∥∥σ2

∥∥2
)

+O

(
K

n

)
+O

(
ζ (K)2 ‖σ2‖

n
√
n

)
+O

(
1

n

)
=

1

n

∑[
x∗2i

σ4
i

[
σ2

i − σ2
i

]2]
+

1

n

∑[
x∗2i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
+O

(
1

n

)
.

Lemma A.2.3.[
X∗′

(
Σ̂∗ − I

)
ε∗/
√
n
]

=
1√
n

∑ x∗i ε
∗
i

σ2
i

[
σ2

i − σ2
i

]
+

1√
n

∑ x∗i ε
∗
i

σ2
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]
+2
(
β − β̂

) 1√
n

∑ x∗i ε
∗
i

σ2
i

[
qK′ (xi) (Q′Q)

−1
Q′xε

]
+O

(
1

n

)
.
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Proof. We could rewrite X∗′
(
Σ̂∗ − I

)
ε∗/
√
n as

X∗′
(
Σ̂∗ − I

)
ε∗

√
n

=
∑(

1√
n
x∗i ε

∗
i

(
1

σ2
i

σ̂2
i − 1

))
. (A.13)

Plugging equation (A.3) into equation (A.13) gives us

1√
n

∑[
x∗i ε

∗′
i

(
1

σ2
i

σ̂2
i − 1

)]
=

1√
n

∑[
x∗i ε

∗′
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′
[
ε2+2

(
β − β̂

)
xε+

(
β − β̂

)2

x2

]
− 1

]]
=

1√
n

[xsεPε2− x∗′ε∗] (A.14)

+2
(
β − β̂

)
· 1√

n
[xsε′Pxε] (A.15)

+
(
β − β̂

)2

· 1√
n

[xsε′Px2] , (A.16)

where xsε = (x∗1ε
∗
1/σ

2 (x1) , ..., x
∗
nε
∗
n/σ

2 (xn))
′
. White the term in (B.1) as

1√
n

∑[
x∗i ε

∗
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′ε2− 1

]]
=

1√
n

∑ x∗i ε
∗
i

σ2
i

[
σ2

i − σ2
i

]
+

1√
n

∑ x∗i ε
∗
i

σ2
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]
$ =

1√
n

∑ x∗i ε
∗
i

σ2
i

[
σ2

i − σ2
i

]
.

We have

E [$] = 0.
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The variance of $ is

V ar [$] = E

{
1

n

∑
i

[
x∗2i ε

∗2
i

σ4
i

[
σ2

i − σ2
i

]2]}

=
1

n

∑
i

[
x∗2i

σ4
i

[
σ2

i − σ2
i

]2]
= O

(∥∥σ2
∥∥2
)

Hence,

1√
n

∑ x∗i ε
∗
i

σ2
i

[
σ2

i − σ2
i

]
= O

(∥∥σ2
∥∥) .

Also,

1√
n

∑ x∗i ε
∗
i

σ2
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]
=

1√
n
xε′Pv

=

√
K√
n
.

The order of term in (B.1) will be

1√
n

[xsε′Pε2− x∗′ε∗] = O
(∥∥σ2

∥∥)+O

(√
K√
n

)
.

The order of the term in (B.2) will be

2
(
β − β̂

) 1√
n

[xsε′Pxε]

= O

(
1√
n

)
O

(
K√
n

)
= O

(
K

n

)
.
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The order of the term in (A.16) will be(
β − β̂

)2 1√
n

[xsε′Px2]

=
(
β − β̂

)2 1√
n

[x2′xsε− x2′ (I − P )xsε]

= O

(
1

n

)
[O (1) +O (‖f‖)]

= O

(
1

n

)
+O

(
‖f‖
n

)
.

Therefore, the order of equation (A.13) will be

X∗′
(
Σ̂∗ − I

)
ε∗

√
n

= O
(∥∥σ2

∥∥)+O

(√
K√
n

)
+O

(
K

n

)
+O

(
1

n

)
=

1√
n

∑ x∗i ε
∗
i

σ2
i

[
σ2

i − σ2
i

]
+

1√
n

∑ x∗i ε
∗
i

σ2
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]
+2
(
β − β̂

) 1√
n

∑ x∗i ε
∗
i

σ2
i

[
qK′ (xi) (Q′Q)

−1
Q′xε

]
+O

(
1

n

)
.

Lemma A.2.4.[
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
ε∗/
√
n
]

=
1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σi

2 − σ2
i

]2]
+

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
+O

(
1

n

)
.
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Proof. It could be rewritten as

1√
n
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
ε∗

=
1√
n

∑[
x∗i ε

∗
i

(
1

σ2
i

σ̂2
i − 1

)2
]

=
1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′
[
ε2+2

(
β − β̂

)
xε+

(
β − β̂

)2

x2

]
− σ2

i

]2
]

=
1√
n

∑[
x∗i ε

∗
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′ε2− 1

]2
]

(A.17)

+4
(
β − β̂

)2 1√
n

∑[
x∗i ε

∗
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]2
]

(A.18)

+
(
β − β̂

)4 1√
n

∑[
x∗i ε

∗
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′x2

]2
]

(A.19)

+4
(
β − β̂

) 1√
n

∑
i

[
x∗i ε

∗
i

σ4
i

[∑
j

Pijε
2
j − σ2

i

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]]
(A.20)

+2
(
β − β̂

)2 1√
n

∑[
x∗i ε

∗
i

σ4
i

[∑
j

Pijε
2
j − σ2

i

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
(A.21)

+4
(
β − β̂

)3 1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′xε

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
(A.22)
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The order of term (A.17) is

1√
n

∑[
x∗i ε

∗
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′ε2− 1

]2
]

=
1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′ (σ2 + v)− σ2

i

]2]
=

1√
n

∑[
x∗i ε

∗
i

σ4
i

[(
qK′ (xi) (Q′Q)

−1
Q′σ2− σ2

i

)
+ qK′ (xi) (Q′Q)

−1
Q′v

]2]
=

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σi

2 − σ2
i

]2]
+

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
+

2√
n

∑[
x∗i ε

∗
i

σ4
i

[(
σi

2 − σ2
i

) (
qK′ (xi) (Q′Q)

−1
Q′v

)]]
= O

(
ζ (K)

∥∥σ2
∥∥2
)

+O

(
ζ (K)K

√
K

n

)
+O

(
ζ (K)2

n

∥∥σ2
∥∥) .

Let

ψ =
1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σi

2 − σ2
i

]2]
.

We have E [ψ] = 0 and

V [ψ] =
1

n
E
∑[

x∗2i ε
∗2
i

σ8
i

[
σi

2 − σ2
i

]4]
=

1

n

∑[
x∗2i

σ8
i

[
σi

2 − σ2
i

]4]
≤ ∆

1

n
sup

[
σi

2 − σ2
i

]2∑[
σi

2 − σ2
i

]2
= O

(
ζ (K)2

∥∥σ2
∥∥2
)
O
(∥∥σ2

∥∥2
)
.

Hence,

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σi

2 − σ2
i

]2]
= O

(
ζ (K)

∥∥σ2
∥∥2
)
.
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1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
=

1√
n

∥∥∥v′Q (Q′Q)
−1

(Q′SQ′) (Q′Q)
−1
Q′v

∥∥∥
≤ 1√

n

∥∥∥v′Q (Q′Q)
−1
∥∥∥2

‖Q′SQ′‖

=
1√
n
O

(
K

n

)
O
(√

nζ (K)
√
K
)

= O

(
ζ (K)K

√
K

n

)
,

where S = diag(x∗i ε
∗
i /σ

4
i ).

4

2√
n

∑[
x∗i ε

∗
i

σ4
i

[(
σi

2 − σ2
i

) (
qK′ (xi) (Q′Q)

−1
Q′v

)]]
=

2√
n

∑
ij

[
x∗i ε

∗
i

σ4
i

(
σi

2 − σ2
i

)
(Pijvj)

]
= τ.

4 ∥∥∥(Q′Q)−1
Q′v

∥∥∥2

= v′Q (Q′Q)−2
Q′v

≤ λmax

[(
Q′Q

n

)−1
]

1
n
v′Q (Q′Q)−1

Q′v

=
1
n
v′Q (Q′Q)−1

Q′v

=
1
n
v′Pv

= O

(
K

n

)
.
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We have5 E [τ ] = 0 and variance of τ being

V [τ ] =
4

n
E
∑
ij

[
x∗2i ε

∗2
i

σ8
i

(
σi

2 − σ2
i

)2
P 2

ijv
2
j

]
=

4

n

∑
i

[
x∗2i

σ8
i

(
σi

2 − σ2
i

)2
P 2

iiE
[
ε∗2i v

2
i

]]
+

4

n

∑
i6=j

[
x∗2i E [ε∗2i ]

σ8
i

(
σi

2 − σ2
i

)2
P 2

ijE
[
v2

j

]]
≤ ∆

4

n

∑
i

(
σi

2 − σ2
i

)2
P 2

ii + ∆′ 4

n

∑
i6=j

(
σi

2 − σ2
i

)2
P 2

ij

≤ ∆
4

n

∣∣supP 2
ii

∣∣∑
i

(
σi

2 − σ2
i

)2
= O

(
ζ (K)2

n

)2

O
(∥∥σ2

∥∥2
)
.

2√
n

∑
ij

[
x∗i ε

∗
i

σ4
i

(
σi

2 − σ2
i

)
(Pijvj)

]
= O

(
ζ (K)2

n

∥∥σ2
∥∥) .

2√
n

∑[
x∗i ε

∗
i

σ4
i

(
σi

2 − σ2
i

) (
qK′ (xi) (Q′Q)

−1
Q′v

)]

≤ 2√
n

[∑
i

(
x∗i ε

∗
i

σ4
i

)2 (
σi

2 − σ2
i

)2]1/2 [∑
i

(
qK′ (xi) (Q′Q)

−1
Q′v

)2
]1/2

≤ 2√
n

[∑
i

(
σi

2 − σ2
i

)2]1/2

[v′Pv]
1/2

≤ O

(
1√
n

)
O
(√

n
∥∥σ2
∥∥)O (√K)

= O
(∥∥σ2

∥∥√K) .
5E [εivi] = E

[
εi
(
ε2i − σ2

i

)]
= E

(
ε3i
)
− σ2

iE (εi) = 0.
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To calulate the order of term (A.18) let6

1√
n

∑ x∗i ε
∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′xε

]2
=

1√
n
xε′Q (Q′Q)

−1
Q′SQ (Q′Q)

−1
Q′xε

≤ 1√
n

∥∥∥xε′Q (Q′Q)
−1
∥∥∥2

‖Q′SQ′‖

= O

(
ζ (K)K

√
K

n

)

Hence, the order of term (A.18) is

4
(
β − β̂

)2 1√
n

∑[
x∗i ε

∗
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]2
]

= O

(
ζ (K)K

√
K

n2

)
.

To calulate the order of term (A.19), first compute

1√
n

∑
x∗i ε

∗
i

[
1

σ2 (xi)
qK′ (xi) (Q′Q)

−1
Q′x2

]2

=
1√
n
x2′Q (Q′Q)

−1
Q′SQ (Q′Q)

−1
Q′x2

≤ 1√
n

∥∥∥xε′Q (Q′Q)
−1
∥∥∥2

‖Q′SQ′‖

= O

(
1√
n

)
O (1)O

(√
nζ (K)

√
K
)

= O
(
ζ (K)

√
K
)
.

6Note that we apply the following inequality.∑[
qK′ (xi) (Q′Q)−1

Q′xε
]4
≤ [xε′Pxε]2
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The order of term (A.19) is

(
β − β̂

)4 1√
n

∑[
x∗i ε

∗
i

[
1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′x2

]2
]

= O

(
1

n2

)
O
(
ζ (K)

√
K
)

= O

(
ζ (K)

√
K

n2

)
.

To calulate the order of term (A.20) rewrite as

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σ2

i − σ2
i

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]]
+

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]]
.

The first term is

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σ2

i − σ2
i

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]]

=
1√
n

[∑(
x∗i ε

∗
i

σ4
i

)2 [
σ2

i − σ2
i

]2]1/2 [∑[
qK′ (xi) (Q′Q)

−1
Q′xε

]2]1/2

≤ 1√
n

(∑[
σ2

i − σ2
i

]2)1/2

(xε′Pxε)
1/2

= O

(
1√
n

)
O
(√

n
∥∥σ2
∥∥)O (√K)

= O
(∥∥σ2

∥∥√K) .
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The second term is

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′xε

]]
=

1√
n
v′Q (Q′Q)

−1
Q′SQ (Q′Q)

−1
Q′xε

≤ 1√
n

∥∥∥v′Q (Q′Q)
−1
∥∥∥∥∥∥xε′Q (Q′Q)

−1
∥∥∥ ‖Q′SQ′‖

= O

(
ζ (K)K

√
K

n

)

The order of term (A.20) is

4
(
β − β̂

) 1√
n

∑[
x∗i ε

∗
i

σ2
i

[
ε2i − σ2

i

] [ 1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′xε

]]
= O

(
1√
n

)[
O
(∥∥σ2

∥∥√K)+O

(
ζ (K)K

√
K

n

)]

= O

(
‖σ2‖

√
K√

n

)
+O

(
ζ (K)K

√
K

n
√
n

)
.

To calulate the order of term (A.21) rewrite as

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σ2

i − σ2
i

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
+

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
.
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The first term is

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σ2

i − σ2
i

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]

=
1√
n

[∑(
x∗i ε

∗
i

σ4
i

)2 [
σ2

i − σ2
i

]2]1/2 [∑[
qK′ (xi) (Q′Q)

−1
Q′x2

]2]1/2

≤ 1√
n

(∑[
σ2

i − σ2
i

]2)1/2

(x2′Px2)
1/2

= O

(
1√
n

)
O
(√

n
∥∥σ2
∥∥)O (1)

= O
(∥∥σ2

∥∥)
The second term is

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
=

1√
n
v′Q (Q′Q)

−1
Q′SQ (Q′Q)

−1
Q′x2

≤ 1√
n

∥∥∥x2′Q (Q′Q)
−1
Q′SQ (Q′Q)

−1/2
∥∥∥∥∥∥(Q′Q)

−1/2
Q′v

∥∥∥
= O

(
1√
n

)
O
(√

K
)
O
(√

K
)

= O

(
K√
n

)
The order of term (A.21) is

2
(
β − β̂

)2 1√
n

∑[
x∗i ε

∗
i

σ2
i

[
ε2i − σ2

i

] [ 1

σ2
i

qK′ (xi) (Q′Q)
−1
Q′x2

]]
= O

(
1

n

)[
O
(∥∥σ2

∥∥)+O

(
K√
n

)]
= O

(
‖σ2‖
n

)
+O

(
K

n
√
n

)
.
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To calculate the order of term (A.22) rewrite as

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′xε

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
=

1√
n
xε′Q (Q′Q)

−1
Q′SQ (Q′Q)

−1
Q′x2

≤ 1√
n

∥∥∥x2′Q (Q′Q)
−1
Q′SQ (Q′Q)

−1/2
∥∥∥∥∥∥(Q′Q)

−1/2
Q′xε

∥∥∥
= O

(
1√
n

)
O
(√

K
)
O
(√

K
)

= O

(
K√
n

)
.

The order of term (A.22) is

4
(
β − β̂

)3 1

n

∑[
x∗i ε

∗
i

[
qK′ (xi) (Q′Q)

−1
Q′xε

] [
qK′ (xi) (Q′Q)

−1
Q′x2

]]
= O

(
1

n
√
n

)
O

(
K√
n

)
= O

(
K

n2

)
.

To sum up, the order of X∗′
(
Σ̂∗ − I

)(
Σ̂∗ − I

)
ε∗/
√
n is

1√
n
X∗′

(
Σ̂∗ − I

)(
Σ̂∗ − I

)
ε∗

= O
(
ζ (K)

∥∥σ2
∥∥2
)

+O

(
ζ (K)K

√
K

n

)
+O

(
ζ (K)2

n

∥∥σ2
∥∥)+O

(
1

n

)
=

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
σi

2 − σ2
i

]2]
+

1√
n

∑[
x∗i ε

∗
i

σ4
i

[
qK′ (xi) (Q′Q)

−1
Q′v

]2]
+O

(
1

n

)
.
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Apply Lemma A.2.1-A.2.4 to Ĥ and ĥ defined before then drop out

terms of small order. We summarize the decomposition of Ĥ and ĥ in Table

D.13.

To verify lemma 1 in Donald and Newey (2001) we first guess

ρ
K,n

=
K

n
+O

(
‖f‖

∥∥σ2
∥∥)+O (‖f‖) +O

(∥∥σ2
∥∥) .

It is obvious that
∥∥TH

∥∥2
is o

(
ρ

K,n

)
. To check small order for

∥∥TH
∥∥∥∥T h

∥∥ , we

have to check the orders of
∥∥TH

i

∥∥∥∥T h
j

∥∥ (i = 1, .., 4; j = 1, .., 5). The require-

ment of uniform convergence which is ‖σ2‖ ζ (K) −→ 0 implies
∥∥TH

1

∥∥∥∥T h
4

∥∥ =

o
(
ρ

K,n

)
. To get

∥∥TH
1

∥∥∥∥T h
5

∥∥ = o
(
ρ

K,n

)
the extra condition that ζ (K)K/

√
n −→

0 will be needed. Note that ζ (K)K/
√
n −→ 0 implies ζ (K)

√
K/

√
n −→ 0.∥∥TH

2

∥∥∥∥T h
5

∥∥ = o
(
ρ

K,n

)
is ensured. Other terms are easy to check. Combining

the above results gives
∥∥TH

∥∥∥∥T h
∥∥ = o

(
ρ

K,n

)
.

Next, compute E
[
Â (K)

]
and note that

(
h+ T h

) (
h+ T h

)′ − hh′H−1TH′ − THH−1hh′

= hh′ + T hh′ + hT h′ + T hT h′ − hh′H−1TH′ − THH−1hh′ (A.23)

= A (K) + Z (K) .

To save the space, we list the the results of the expectation of terms in (A.23)

sequentially.

E (hh′) =
1

n
X∗′X∗

E
(
T h

1 h
′) = − 1

n

∑
i

x∗2i

σ2
i

[
σ2

i − σ2
i

]
= O

(
‖f‖

∥∥σ2
∥∥)
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E
(
T h

2 h
′) = − 1

n

∑
i

x∗2i

σ4
i

PiiE [vi] = O

(
K

n

)

E
(
T h

3 h
′) =

2

n

∑
i

x∗2i Pii = O

(
K

n

)

E
(
T h

4 h
′) =

1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2
= O

(∥∥σ2
∥∥2
)

E
(
T h

5 h
′) =

1

n

∑
i

x∗2i

σ4
i

P 2
iiE
(
v2

i ε
∗2
i

)
+

1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijE
(
v2

j

)
≤ ∆

1

n

∑
i

P 2
ii + ∆′ 1

n

∑
i6=j

P 2
ij

= o

(
K

n

)
+O

(
K

n

)

As for the term E
(
T hT h′) , by inspection the orders of E

(
T h

3 T
h
3
′) ,

E
(
T h

4 T
h
4
′) and E

(
T h

5 T
h
5
′) are negligible. The only two terms which will matter

is

E
(
T h

1 T
h
1
′) =

1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2
= O

(∥∥σ2
∥∥2
)

E
(
T h

2 T
h
2
′) =

1

n

∑
i

x∗2i

σ4
i

P 2
iiE
(
ε∗2i v

2
i

)
+

1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijE
(
v2

j

)
≤ ∆

1

n

∑
i

P 2
ii + ∆′ 1

n

∑
i6=j

P 2
ij

= O

(
K

n

)

E
(
hh′H−1TH′

1

)
= − 1

n

∑
i

x∗2i

σ2
i

[
σ2

i − σ2
i

]
= O

(
‖f‖

∥∥σ2
∥∥)
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E
(
hh′H−1TH′

2

)
= −H

−1

n2

∑
i

x∗4i

σ4
i

E
(
viε

∗2
i

)
≤ ∆

H−1

n2

∑
i

x∗4i

σ4
i

= O

(
1

n

)

E
(
hh′H−1TH′

3

)
= H−1

[
1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2]
H = O

(∥∥σ2
∥∥2
)

E
(
hh′H−1TH′

4

)
=

H−1

n2

∑
ij

x∗2i x
∗2
j

σ4
i

P 2
ijE
(
v2

j ε
∗2
j

)
+

1

n

∑
ij

x∗2i

σ4
i

P 2
ijE
(
v2

j

)
= O

(
K

n2

)
+O

(
K

n

)
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Combining above results we have7

E
[
Â (K)

]
=

1

n
X∗′X∗ − 2

1

n

∑
i

x∗2i

σ2
i

[
σ2

i − σ2
i

]
− 2

1

n

∑
i

x∗2i

σ4
i

PiiE
[
v2

i

]
+4

1

n

∑
i

x∗2i Pii + 2
1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2
+2

1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijE
[
v2

j

]
+

1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2
+

1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijE
[
v2

j

]
+ 2

1

n

∑
i

x∗2i

σ2
i

[
σ2

i − σ2
i

]
−2

1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2 − 2
1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijE
[
v2

j

]
=

1

n
X∗′X∗ − 2

1

n

∑
i

x∗2i

σ4
i

Pii

(
κi − σ4

i

)
+ 4

1

n

∑
i

x∗2i Pii

+
1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2
+

1

n

∑
i6=j

x∗2i

σ4
i

P 2
ij

(
κj − σ4

j

)
=

1

n
X∗′X∗ − 2

1

n

∑
i

x∗2i

σ4
i

Piiκi + 6
1

n

∑
i

x∗2i Pii

+
1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2
+

1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijκj −

1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijσ

4
j .

7We’ll use the fact that

E
(
v2

i

)
= E

(
ε4i
)
− σ4

i

= κi − σ4
i

= σ4
i κi − σ4

i

= σ4
i (κi − 1)
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Thus,

Ω∗−1 [MSESeries] Ω
∗−1

= Ω∗−1E

[
n
(
β̂Series − β

)(
β̂Series − β

)′]
Ω∗−1

=
X∗′X∗

n
+

1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2 − 2
1

n

∑
i

x∗2i

σ4
i

Piiκi

+
1

n

∑
i6=j

x∗2i

σ4
i

P 2
ijκj + 6

1

n

∑
i

x∗2i Pii −
1

n

∑
i6=j

σ4
j

σ4
i

x∗2i P
2
ij + o

(
K

n

)
.

Q.E.D.

A.3 Proof of Proposition 2.3.3

We are actually regressing e2 on Q. We know that

e2 = ε2 +
(
β̂ − β

)2

x− 2
(
β̂ − β

)
xε.

The predicted value is

σ̃2 = Q (Q′Q)
−1
Q′e2

= Q (Q′Q)
−1
Q′ε2 +

(
β̂ − β

)2

Q (Q′Q)
−1
Q′x

−2
(
β̂ − β

)
Q (Q′Q)

−1
Q′xε

= Pε2 +
(
β̂ − β

)2

Px− 2
(
β̂ − β

)
Pxε.
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We do know the behavior of Pε2. The sample MSE of σ̃2− σ2 is

1

n
E

[(
σ̃2− σ2

)′ (
σ̃2− σ2

)]
(A.24)

=
1

n
σ2′ (I − P )σ2 +

1

n
E (v′Pv) +

1

n
E

[(
β̂ − β

)2

x′Px

]
+

4

n
E

[(
β̂ − β

)2

xε′Pxε

]
+

2

n
E

[(
β̂ − β

)2

v′Px

]
− 4

n
E
[(
β̂ − β

)
v′Pxε

]
− 4

n
E

[(
β̂ − β

)3

x′Pxε

]
.

It is easy to verify that only the first two terms in (A.24) matter. Hence, we

have

1

n
E

[(
σ̃2− σ2

)′ (
σ̃2− σ2

)]
=

1

n
E

[(
σ̂2− σ2

)′ (
σ̂2− σ2

)]
.

Q.E.D.

A.4 Proof of Proposition 2.3.4

The proof follows the proposition 1A of Linton (1996).

Q.E.D.
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A.5 Proof of Proposition 2.3.5

By σ2
i = σ2, the terms of Cragg estimator are as followed.

1

n
X∗′ (I − P ∗)X∗ =

1

n

∑
i

[x∗i − x∗i ]
2

=
1

n

∑
i

[∑
j

P ∗
ijx

∗
j − x∗i

]2

=
1

n

∑
i

σiQ
′
i

(∑
i

QiQ
′
iσ

2
i

)−1

σjQj
xj

σj

− xi

σi

2

=
1

n

∑
i

σQ′
i

(∑
i

QiQ
′
iσ

2

)−1

σQj
xj

σ
− xi

σ

2

=
1

nσ2

∑
i

[
Q′

i (Q
′Q)

−1
Qjxj − xi

]2
=

1

nσ2

∑
i

[∑
j

Pijxj − xi

]2

= 0

− 1

n

∑
i

x∗2i P
∗
iiκ

∗
i

= − 1

n

∑
i

x2
i

σ2
i

σiQ
′
i

(∑
i

QiQ
′
iσ

2
i

)−1

σiQi
κi

σ4
i

= − 1

nσ6

∑
i

x2
iQ

′
i (Q

′Q)
−1
Qiκi

= − 1

nσ6

∑
i

x2
iPiiκi
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5

n

∑
i

x∗2i P
∗
ii

=
5

n

∑
i

x2
i

σ2
i

σiQ
′
i

(∑
i

QiQ
′
iσ

2
i

)−1

σiQi

=
5

nσ2

∑
i

x2
iPii

The terms of series based FGLS estimator are as followed.

1

n

∑
i

x∗2i

σ4
i

[
σ2

i − σ2
i

]2
=

1

n

∑
i

x2
i

σ6
i

[∑
j

Pijσ
2
j − σ2

i

]2

=
1

nσ2

∑
i

x2
i

[∑
j

Pij − 1

]2

=
1

nσ2

∑
i

[∑
j

Pijxi − xi

]2

= 0

−2
1

n

∑
i

x∗2i

σ4
i

Piiκi

= −2
1

nσ6

∑
i

x2
iPiiκi
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1

n

∑
i6=j

1

σ4
i

x∗2i P
2
ijκj

=
1

nσ6

∑
i6=j

x2
iP

2
ijκj

=
1

nσ6

(∑
i,j

x2
iP

2
ijκj −

∑
i

x2
iP

2
iiκi

)

=
1

nσ6

∑
i,j

x2
iQ

′
i (Q

′Q)
−1 (

QjκjQ
′
j

)
(Q′Q)

−1
Qi

− 1

nσ6

∑
i

x2
iQ

′
i (Q

′Q)
−1

(QiκiQ
′
i) (Q′Q)

−1
Qi

=
1

nσ6

∑
i

x2
iQ

′
i (Q

′Q)
−1

(∑
j

QjκjQ
′
j

)
(Q′Q)

−1
Qi

− 1

nσ6

∑
i

x2
iQ

′
i (Q

′Q)
−1

(QiκiQ
′
i) (Q′Q)

−1
Qi

=
1

nσ6

∑
i

x2
iPiiκi −

1

nσ6

∑
i

x2
iP

2
iiκi

6
1

n

∑
i

x∗2i Pii

= 6
1

nσ2

∑
i

x2
iPii
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− 1

n

∑
i6=j

σ4
j

σ4
i

x∗2i P
2
ij

= − 1

nσ2

∑
i6=j

x2
iP

2
ij

= − 1

nσ2

(∑
i,j

x2
iP

2
ij −

∑
i

x2
iP

2
ii

)

= − 1

nσ2

∑
i,j

x2
iQ

′
i (Q

′Q)
−1 (

QjQ
′
j

)
(Q′Q)

−1
Qi

+
1

nσ2

∑
i

x2
iQ

′
i (Q

′Q)
−1

(QiQ
′
i) (Q′Q)

−1
Qi

= − 1

nσ2

∑
i

x2
iQ

′
i (Q

′Q)
−1

(∑
j

QjQ
′
j

)
(Q′Q)

−1
Qi

+
1

nσ2

∑
i

x2
iQ

′
i (Q

′Q)
−1

(QiQ
′
i) (Q′Q)

−1
Qi

= − 1

nσ2

∑
i

x2
iPii +

1

nσ2

∑
i

x2
iP

2
ii.

Dropping out the terms of small orders gives the results.

Q.E.D.

A.6 Proof of Proposition 2.3.6

If we think about the special case of homoskedasticity, the term Bi will

be zero as well as B̃i. The order of Bi is not O (h2) anymore.

Bi =
∑
j 6=i

(
σ2

j − σ2
i

)
wij =

∑
j 6=i

(
σ2 − σ2

)
wij = 0 = o (1) .
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Let’s consider the MSE ofMn

√
n
(
β̂FGLS − β

)
= Ω∗−1

√
n
(
β̂FGLS − β

)
. First,

Ω∗−1
√
n
(
β̂FGLS − β

)
= {XN0 −

[
LN1 −

b′D1M
−1
n XN0√
n

]
+

[
LN2 −

b′D2M
−1
n XN0√
n

]
+

[
LN3 −

b′D3M
−1
n XN0√
n

]
−QN1 +QN2 + CN1 −

X ′
D0M

−1
n XN0√
n

}+ op

(
n−2µ

)
Then, MSE of Ω∗−1

√
n
(
β̂FGLS − β

)
is

V ar [XN0] + V ar

[
LN1 −

b′D1M
−1
n XN0√
n

]
+ V ar [QN1]

= Mn + h4
[
M−1

n

[
Γ2 − Γ1M

−1
n Γ1

]
M−1

n

]
+ n−1h−d

[(
κ2

3 + 2 + κ4

)
M−1

n M∗
nM

−1
n

]
= Mn + n−1h−d

(
κ2

3 + 2 + κ4

)
M∗

n

=
1

nσ2

n∑
i=1

xix
′
i +
(
κ2

3 + 2 + κ4

) 1

nσ2

n∑
i=1

∑
j 6=i

xix
′
iw

2
ij

=
1

nσ2

n∑
i=1

xix
′
i +

1

nσ6

∑
i6=j

xix
′
iw

2
ijκj −

1

nσ2

∑
i6=j

xix
′
iw

2
ij.
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We use our previous setting that

κ2
3 = 0, E

[
ε4j
]

= κj

V ar [QN1] =
∑∑

j 6=i

∑
k 6=l

∑
ρijρ

′
lkE [εiξjεkξl]

=
∑
j 6=i

∑
ρijρ

′
ijσ

2
i

[
E
[
ε4j
]
− σ4

j

]
= n−1

n∑
i=1

∑
j 6=i

w2
ijxix

′
iσ
−8
i σ2

i

[
E
[
ε4j
]
− σ4

j

]
≈ n−1

∑
i6=j

xix
′
iσ
−2
i

[
E
[
ε4j
]

σ4
j

− 1

]
w2

ij

= n−1
∑
i6=j

xix
′
iσ
−6E

[
ε4j
]
w2

ij − n−1
∑
i6=j

xix
′
iσ
−2w2

ij

=
1

nσ6

∑
i6=j

xix
′
iw

2
ijκj −

1

nσ2

∑
i6=j

xix
′
iw

2
ij.

Q.E.D.
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Appendix B

Appendix-Chapter 3

B.1 Lemmata

Let C denote the generic constants throughout this Appendix. The

Eucledean norm ‖·‖ for a matrix A is defined as ‖A‖ = [tr(A′A)]1/2 . Let C.S.

denote Cauchy-Schwartz inequality. According to the notaion by Robinson

(1988), for scalar or column vector sequences Ai and Bi, we define SA,B =

n−1
∑n

i=1AiB
′
i and SA = SA,A. The following lemmata of Li (2000) are useful

in the proof of our theorems. The proofs are referred to Li (2000: p.1089-

1090).1

Lemma B.1.1. Q̂− I = Op

(
ζ (K)

√
K/

√
n
)
, where Q̂ = (P ′P/n) .

Lemma B.1.2. ‖π̃f − πf‖ = Op (K−α) , where π̃f = (P ′P )−1 P ′f, and f = g

or f = h.

Lemma B.1.3. (Q′η/n) = Op (ζ (K) /
√
n) = op (1) .

Lemma B.1.4. Sf−f̃ = Op (K−2α) = op

(
n−1/2

)
, where f = g or f = h.

1Note that we adopt the notation from Li (2000). In our paper, since we don’t consider
additive partial linear model, there is no need to decompose ε as v + η. However, the order
related to ε̃ in our proof is similar to the order of ṽ in Li’s paper. For instance, it is trivial
to see Sε̃ = Op (K/n).
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Lemma B.1.5. (i) Sṽ = Op (K/n) , (ii) Sũ = Op (K/n) , (iii) Sη̃ = op (1) .

Corollary B.1.1. If we replace the approximating function pK by the nor-

malized version (say p∗K = (pK1/σ1, pK2/σ2, ..., pKn/σn)′), Lemma B.1.1-B.1.5

still hold.

Corollary B.1.2. If we replace the random variables by the normalized version

(e.g. f = (f1/σ1, f2/σ2, ..., fn/σn)′), Lemma B.1.1-B.1.5 still hold.

B.2 Proof of Theorem 3.3.1

We can write
√
n
(
β̂GLS − β

)
as

√
n
(
β̂GLS − β

)
=

[
x∗′ (I −Q∗)x∗

n

]−1√
n

[
x∗ (I −Q∗) (g∗ + u∗)

n

]
= S−1

x∗−x̃∗∗

√
nSx∗−x̃∗∗,g∗−g̃∗∗+u∗−ũ∗∗ . (B.1)

What we want is to prove that the first term in (B.1) coverges in probability

by Law of Large Number and the second term converges in distribution by

Lindberg-Levi Central Limit Theorem. We use the following propositions to

prove the results.

Proposition B.2.1. x∗′ (I −Q∗)x∗/n = Sx∗−x̃∗∗ = E [εiε
′
i/σ

2
i ] + op (1) .
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Proof. Let x̃∗i = p∗Ki (p
∗′
Kp

∗
K)−1 p∗′Kx. Using the definition of xi and x̃∗i gives

1

n
x∗′ (I −Q∗)x∗

=
1

n

n∑
i=1

εiε
′
i

σ2
i

+
1

n

n∑
i=1

[(
hi − h̃∗i

)
− ε̃∗i

] [(
hi − h̃∗i

)
− ε̃∗i

]′
σ2

i

+
2

n

n∑
i=1

εi

[(
hi − h̃∗i

)
− ε̃∗i

]′
σ2

i

= Sε∗ + S(h∗−h̃∗∗)−ε̃∗∗ + Sε̃∗∗,(h∗−h̃∗∗)−ε̃∗∗ . (B.2)

Note that the variables with single ”*” represent nomalization by σi and the

variables with double ”**” stand for normalized variables which are premuti-

plied by normalized projection matrix Q∗. By LLN, the first term in (B.2) will

converge to E [εiε
′
i/σ

2
i ] + op (1) . We also have the inequality S(h∗−h̃∗∗)−ε̃∗∗ ≤

2
[
Sh∗−h̃∗∗ + Sε̃∗∗

]
= op (1) by Corollary B.1.1, Corollary B.1.2, Lemma B.1.4,

and Lemma B.1.5 (i) and (iii). Applying CS on the last term in (B.2) gives

Sε̃∗∗,(h∗−h̃∗∗)−ε̃∗∗ ≤
(
Sε̃∗∗S(h∗−h̃∗∗)−ε̃∗∗

)1/2

= (Op (1) op (1))1/2 = op (1) .

Proposition B.2.2. Sx∗−x̃∗∗,g∗−g̃∗∗ = op

(
n−1/2

)
Proof. Using definition of x∗and x̃∗∗ gives

Sx∗−x̃∗∗,g∗−g̃∗∗ = Sε∗,g∗−g̃∗∗ + Sh∗−h̃∗∗,g∗−g̃∗∗ − Sε̃∗∗,g∗−g̃∗∗ .

1. Sε∗,g∗−g̃∗∗ ≤ (Sε∗Sg∗−g̃∗∗)
1/2 = Op (K−α) by C.S., Proposition B.2.1 and

Lemma B.1.4.
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2. Sh∗−h̃∗∗,g∗−g̃∗∗ ≤
(
Sh∗−h̃∗∗Sg∗−g̃∗∗

)1/2
= Op (K−2α) by C.S., and Lemma

B.1.4.

3. Sε̃∗∗,g∗−g̃∗∗ ≤ (Sε̃∗∗Sg∗−g̃∗∗)
1/2 = op (1)Op (K−α) by C.S., Lemma B.1.5 (i)

and Lemma B.1.4.

Proposition B.2.3. Sx∗−x̃∗∗,ũ∗∗ = op

(
n−1/2

)
.

Proof. Using definition of x∗ and x̃∗∗ gives

Sx∗−x̃∗∗,g∗−g̃∗∗ = Sε∗,ũ∗∗ + Sh∗−h̃∗∗,ũ∗∗ − Sε̃∗∗,ũ∗∗ .

1. E
[
‖Sε∗,ũ∗∗‖2 |Z

]
= n−2tr [Q∗ε∗ε∗′Q∗E [u∗u∗′|Z]] ≤ Cn−2tr [ε̃∗∗ε̃∗∗′]

= Cn−1tr (Sε̃∗∗) = Op (K/n2) by C.S. and Lemma B.1.5 (i).

2. Sh∗−h̃∗∗,ũ∗∗ ≤
(
Sh∗−h̃∗∗Sũ∗∗

)1/2
= Op (K−α)Op

(√
K/

√
n
)

by C.S., Lemma

B.1.4 and Lemma B.1.5 (ii).

3. Sε̃∗∗,ũ∗∗ ≤ (Sε̃∗∗Sũ∗∗)
1/2 = Op (K/n) by C.S., Lemma B.1.5 (i) and Lemma

B.1.5 (ii).

Proposition B.2.4.
√
nSx∗−x̃∗∗,u∗

d→ N (0, E [εiε
′
i/σ

2
i ]) .

Proof. Using definition of x∗ and x̃∗∗ gives

Sx∗−x̃∗∗,u∗ = Sε∗,u∗ + Sh∗−h̃∗∗,u∗ − Sε̃∗∗,u∗ .
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1.
√
nSε∗,u∗ =

∑n
i=1 [εiui/σ

2
i ] /
√
n

d→ N (0, E [εiε
′
i/σ

2
i ]) by Lindberg-Levi

Central Limit Theorem.

2. E

[∥∥∥Sh∗−h̃∗∗,u∗

∥∥∥2

|Z
]

= n−2tr

[(
h∗ − h̃∗∗

)(
h∗ − h̃∗∗

)′
E (u∗u∗′|Z)

]
≤ Cn−1tr

[
Sh∗−h̃∗∗

]
= op (n−1) by C.S. and Lemma B.1.4.

3. E
[
‖Sε̃∗∗,u∗‖2 |Z

]
= n−2tr [Q∗ε∗ε∗′Q∗E (u∗u∗′|Z)] ≤ Cn−1tr [Sε̃∗∗ ] = op (n−1)

by C.S. and Lemma B.1.5 (i).

Combining Proposition B.2.1-B.2.4 proves Theorem 1.

B.3 Proof of Theorem 3.3.2

Our new estimator could be written as

√
n
(
β̃GLS − β

)
=

[
x(I −Q)Σ−1(I −Q)x

n

]−1√
n

[
x(I −Q)Σ−1(I −Q) (g + u)

n

]
= S−1

x∗−x̃∗

√
nSx∗−x̃∗,g∗−g̃∗+u∗−ũ∗ . (B.3)

What we want is to prove that the first term in (B.3) coverges in probability by

Law of Large Number and the second term converges in distribution by Central

Limit Theorem. We use the following propositions to prove the results.

Proposition B.3.1. x∗′ (I −Q)x∗/n = Sx∗−x̃∗ = E [εiε
′
i/σ

2
i ] + op (1) .
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Proof. Let x̃i = pKi (p
′
KpK)−1 p′Kx. Using the definition of xi and x̃i gives

1

n
x∗′ (I −Q)x∗

=
1

n

n∑
i=1

εiε
′
i

σ2
i

+
1

n

n∑
i=1

[(
hi − h̃i

)
− ε̃i

] [(
hi − h̃i

)
− ε̃i

]′
σ2

i

+
2

n

n∑
i=1

εi

[(
hi − h̃i

)
− ε̃i

]′
σ2

i

= Sε∗ + S(h∗−h̃∗)−ε̃∗ + Sε∗,(h∗−h̃∗)−ε̃∗ . (B.4)

Note that here we only have the variables with single ”*” representing nomal-

ization by σi. And the projection matrix Q is not normalized by σi. By LLN,

the first term in (B.4) will converge to E [εiε
′
i/σ

2
i ] + op (1) . We also have the

inequality S(h∗−h̃∗)−ε̃∗ ≤ 2
[
Sh∗−h̃∗ + Sε̃∗

]
= op (1) by Corollary B.1.2, Lemma

B.1.4, and Lemma B.1.5 (i) and (iii). Applying CS on the last term in (B.4)

gives

Sε∗,(h∗−h̃∗)−ε̃∗ ≤
(
Sε∗S(h∗−h̃∗)−ε̃∗

)1/2

= (Op (1) op (1))1/2 = op (1) .

Proposition B.3.2. Sx∗−x̃∗,g∗−g̃∗ = op

(
n−1/2

)
Proof. Using definition of x∗and x̃∗ gives

Sx∗−x̃∗,g∗−g̃∗ = Sε∗,g∗−g̃∗ + Sh∗−h̃∗,g∗−g̃∗ − Sε̃∗,g∗−g̃∗ .

1. Sε∗,g∗−g̃∗ ≤ (Sε∗Sg∗−g̃∗)
1/2 = Op (K−α) by C.S., Proposition B.2.1 and

Lemma B.1.4.
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2. Sh∗−h̃∗,g∗−g̃∗ ≤
(
Sh∗−h̃∗Sg∗−g̃∗

)1/2
= Op (K−2α) by C.S., and Lemma

B.1.4.

3. Sε̃∗,g∗−g̃∗ ≤ (Sε̃∗Sg∗−g̃∗)
1/2 = op (1)Op (K−α) by C.S., Lemma B.1.5 (i)

and Lemma B.1.4.

Proposition B.3.3. Sx∗−x̃∗,ũ∗ = op

(
n−1/2

)
.

Proof. Using definition of x∗ and x̃∗ gives

Sx∗−x̃∗,g∗−g̃∗ = Sε∗,ũ∗ + Sh−h̃∗,ũ∗ − Sε̃∗,ũ∗ .

1. E
[
‖Sε,ũ∗‖2 |Z

]
= n−2tr [Qεε′QE [u∗u∗′|Z]] ≤ Cn−2tr [ε̃ε̃′] = Cn−1tr (Sε̃) =

Op (K/n2) by C.S. and Lemma B.1.5 (i).

2. Sh−h̃∗,ũ∗ ≤
(
Sh−h̃∗Sũ∗

)1/2
= Op (K−α)Op

(√
K/

√
n
)

by C.S., Lemma

B.1.4 and Lemma B.1.5 (ii).

3. Sε̃∗,ũ∗ ≤ (Sε̃∗Sũ∗)
1/2 = Op (K/n) by C.S., Lemma B.1.5 (i) and Lemma

B.1.5 (ii).

Proposition B.3.4.
√
nSx−x̃∗,u

d→ N (0, E [εiε
′
i/σ

2
i ]) .

Proof. Using definition of x and x̃∗ gives

Sx∗−x̃∗,u∗ = Sε∗,u∗ + Sh∗−h̃∗,u∗ − Sε̃∗,u∗ .
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1.
√
nSε∗,u∗ =

∑n
i=1 [εiui/σ

2
i ] /
√
n

d→ N (0, E [εiε
′
i/σ

2
i ]) by Lindberg-Levi

Central Limit Theorem.

2. E

[∥∥∥Sh∗−h̃∗,u∗

∥∥∥2

|Z
]

= n−2tr

[(
h∗ − h̃∗

)(
h∗ − h̃∗

)′
E (u∗u∗′|Z)

]
≤ Cn−1tr

[
Sh∗−h̃∗

]
= op (n−1) by C.S. and Lemma B.1.4.

3. E
[
‖Sε̃∗,u∗‖2 |Z

]
= n−2tr [Qε∗ε∗′QE (u∗u∗′|Z)] ≤ Cn−1tr [Sε̃∗ ] = op (n−1)

by C.S. and Lemma B.1.5 (i).

Combining Proposition B.3.1-B.3.4 proves Theorem 2.

B.4 Proof of Theorem 3.3.3

We can write
√
n
(
β̂FGLS − β

)
as

√
n
(
β̂FGLS − β

)
=

[
1

n

n∑
i=1

[xi − x̃∗i ]
2

σ̂2
i

]−1 [
1√
n

n∑
i=1

[xi − x̃∗i ] [gi − g̃∗i + ui − ũ∗i ]

σ̂2
i

]
.

One could get

1

n

n∑
i=1

[xi − x̃∗i ]
2

σ̂2
i

=
1

n

n∑
i=1

[xi − x̃∗i ]
2

σ2
i

− 1

n

n∑
i=1

[xi − x̃∗i ]
2

σ4
i

(
σ̂2

i − σ2
i

)
+ ...

=
1

n

n∑
i=1

[xi − x̃i]
2

σ2
i

+ ...

and

1√
n

n∑
i=1

[xi − x̃∗i ] [gi − g̃∗i + ui − ũ∗i ]

σ̂2
i

=
1√
n

n∑
i=1

[xi − x̃i] [gi − g̃i + ui − ũi]

σ2
i

+ ...

Therefore, based on the proof in Theorem 3.3.4, the result follows.
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B.5 Proof of Theorem 3.3.4

We can write
√
n
(
β̃FGLS − β

)
as

√
n
(
β̃FGLS − β

)
=

[
x′MΣ̂−1Mx

n

]−1 [
x′MΣ̂−1M (g + u)√

n

]

=

[
1

n

n∑
i=1

[xi − x̃i]
2

σ̂2
i

]−1 [
1√
n

n∑
i=1

[xi − x̃i] [gi − g̃i + ui − ũi]

σ̂2
i

]
.

Here M = I − P. P = pK (p′KpK)−1 p′K . pK (z) is the approximating function

to approximate unknown function g (z) . We go on estimating σ2
i by σ̂2

i , which

is defined as

σ̂2
i = P2ie2,

where e2 is OLS squared residuals and

P2 = pK
i (x, z)

(
pK (x, z)′ pK (x, z)

)−1
pK (x, z)′ ,

where pK (x, z) is the approximating function to approximate σ2 (x, z) with

heteroskedasticity of unknown form. According to asymptotic expansion, we

have

√
n
(
β̃FGLS − β

)
= D̂−1d̂

= D−1
[
d̂+

(
D − D̂

)
D−1d+

(
D − D̂

)
D−1

(
d̂− d

)
+ ...+Rn

]
.

The first order result will depend on the term D and d. The following propo-

sitions tell us what do D and d look like.
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Proposition B.5.1. D = 1
n
ε′Σ−1ε = Op (1)

Proof.

D̂ =
1

n

n∑
i=1

[xi − x̃i]
2

σ̂2
i

=
1

n

n∑
i=1

[xi − x̃i]
2

σ2
i

− 1

n

n∑
i=1

[xi − x̃i]
2

σ4
i

(
σ̂2

i − σ2
i

)
+ ...

= D̂1 + D̂2 + ...

D̂1 =
1

n

n∑
i=1

[xi − x̃i]
2

σ2
i

=
1

n

[
x′ (I − P ) Σ−1 (I − P )x

]
=

1

n
(h+ ε)′ (I − P ) Σ−1 (I − P ) (h+ ε)

=
1

n
h′ (I − P ) Σ−1 (I − P )h+

2

n
h′ (I − P ) Σ−1 (I − P ) ε

+
1

n
ε′ (I − P ) Σ−1 (I − P ) ε.∣∣∣∣ 1nh′ (I − P ) Σ−1 (I − P )h

∣∣∣∣ ≤ ∣∣∣∣ 1nh′ (I − P )h

∣∣∣∣ = O
(
‖h‖2)

2
n
h′ (I − P ) Σ−1 (I − P ) ε is mean zero and its variance is

V ar [·] =
4

n2
h′ (I − P ) Σ−1 (I − P )E [εε′] (I − P ) Σ−1 (I − P )h

≤ 4

n2
h′ (I − P ) Σ−1 (I − P ) Σ−1 (I − P )h

≤ 4

n2
h′ (I − P ) Σ−2 (I − P )h

≤ 4

n2
h′ (I − P )h

= O

(
‖h‖2

n

)
.

We have

2

n
h′ (I − P ) Σ−1 (I − P ) ε = O

(
‖f‖√
n

)
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Wi Term Order
D 1

n
ε′Σ−1ε O (1)

W1
1
n
ε′P ∗ε O

(
K
n

)
W2 − 2

n
ε′P ∗ε∗ O

(
K
n

)
W3

1
n
h′ (I − P ) Σ−1 (I − P )h O

(
‖h‖2)

W4
2
n
h′ (I − P ) Σ−1 (I − P ) ε O

(
‖h‖√

n

)
Table B.1: Terms of D̂1

1

n
ε′ (I − P ) Σ−1 (I − P ) ε

=
1

n
ε′Σ−1ε+

1

n
ε′PΣ−1Pε− 2

n
ε′PΣ−1ε

=
1

n
ε′Σ−1ε+

1

n
ε′P ∗ε− 2

n
ε′P ∗ε∗

= O (1) +O

(
K

n

)
+O

(
K

n

)
Now we obtain D̂1.

D̂1 = D +W1 +W2 +W3 +W4 + o

(
K

n

)

Proposition B.5.2. d = 1√
n
ε′Σ−1u = Op (1)

Proof.

d̂ =
1√
n

n∑
i=1

[xi − x̃i] [gi − g̃i + ui − ũi]

σ̂2
i

=
1√
n

n∑
i=1

[xi − x̃i] [gi − g̃i + ui − ũi]

σ2
i

− 1√
n

n∑
i=1

[xi − x̃i] [gi − g̃i + ui − ũi]

σ4
i

(
σ̂2

i − σ2
i

)
+ ...

= d̂1 + d̂2
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d̂1 =
1√
n

n∑
i=1

[xi − x̃i] [gi − g̃i + ui − ũi]

σ2
i

=
1√
n
x′ (I − P ) Σ−1 (I − P ) g +

1√
n
x′ (I − P ) Σ−1 (I − P )u

1√
n
x′ (I − P ) Σ−1 (I − P ) g =

1√
n
h′ (I − P ) Σ−1 (I − P ) g

+
1√
n
ε′ (I − P ) Σ−1 (I − P ) g

1√
n

∣∣h′ (I − P ) Σ−1 (I − P ) g
∣∣

≤ 1√
n

(
h′ (I − P ) Σ−1 (I − P )h

)1/2 (
g′ (I − P ) Σ−1 (I − P ) g

)1/2

=
√
nO (‖h‖)O (‖g‖)

1√
n
ε′ (I − P ) Σ−1 (I − P ) g = O (‖g‖)

1√
n
x′ (I − P ) Σ−1 (I − P )u

=
1√
n
h′ (I − P ) Σ−1 (I − P )u+

1√
n
ε′ (I − P ) Σ−1 (I − P )u

1√
n
h′ (I − P ) Σ−1 (I − P )u = O (‖h‖)

1√
n
ε′ (I − P ) Σ−1 (I − P )u

=
1√
n
ε′Σ−1u+

1√
n
ε′PΣ−1Pu− 1√

n
ε′PΣ−1u− 1√

n
ε′Σ−1Pu

=
1√
n
ε′Σ−1u+

1√
n
ε′P ∗u− 1√

n
ε′P ∗u∗ − 1√

n
ε∗′P ∗u

= O (1) +O

(√
K√
n

)
+O

(√
K√
n

)
+O

(√
K√
n

)
.
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Wi Term Order
d 1√

n
ε′Σ−1u O (1)

W6
1√
n
ε′P ∗u O

(√
K√
n

)
W7 − 1√

n
ε′P ∗u∗ O

(√
K√
n

)
W8 − 1√

n
ε∗′P ∗u O

(√
K√
n

)
W9

1√
n
h′ (I − P ) Σ−1 (I − P )u O (‖h‖)

W10
1√
n
ε′ (I − P ) Σ−1 (I − P ) g O (‖g‖)

W11
1√
n
h′ (I − P ) Σ−1 (I − P ) g O (

√
n ‖h‖)O (‖g‖)

Table B.2: Terms of d̂1

Combining the orders gives

d̂1 = d+W6 +W7 +W8 +W9 +W10 +W11 + op

(
K

n

)

To get the first order asymptotics, we use the result of Proposition

B.5.1 and B.5.2, and take the product of D−1d. By WLLN,

D =
1

n
ε′Σ−1ε =

1

n

∑
i

εiε
′
i

σ2
i

p→ E

[
εiε

′
i

σ2
i

]
.

By Lindberg-Levi CLT,

d =
1√
n
ε′Σ−1u =

1√
n

∑
i

εiui

σ2
i

d→ N

(
0, E

[
εiε

′
iu

2
i

σ4
i

])
= N

(
0, E

[
εiε

′
iE [u2

i |xi, zi]

σ4
i

])
= N

(
0, E

[
εiε

′
i

σ2
i

])
.
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Therefore,

D−1d
d→ N

(
0, E

[
εiε

′
i

σ2
i

]−1

· E
[
εiε

′
i

σ2
i

]
· E
[
εiε

′
i

σ2
i

]−1
)

= N

(
0, E

[
εiε

′
i

σ2
i

]−1
)
,

which attains semiparametric efficiency bound.
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Appendix C

Appendix-Chapter 4

C.1 Lemmata

The following Lemmata are useful in the proof of Proposition 4.2.1.

Lemma C.1.1. 1
n

∑
(g̃2

i − g2
i ) = op (1) .

Proof. It follows from MSE convergence of g̃ to g, boundedness of g.

Lemma C.1.2. 1
n

∑
xi (g̃i − gi) = op (1)

Proof. By CS,

1

n

∑
xi (g̃i − gi) ≤

(
1

n

∑
x2

i

)1/2(
1

n

∑
(g̃i − gi)

2

)1/2

= Op (1) · ‖gr
K‖0,∞,Z

= Op (1) · op (1)

= op (1) .

Lemma C.1.3. 1√
n

∑
(g̃i − gi)ui = 1√

n
(s′Pzu− g′u) = op (1) .
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Proof. Using the fact that s = g (z) + ε gives

1√
n

(s′Pzu− g′u) =
1√
n

(g′Pzu+ ε′Pzu− g′u)

=
1√
n

[ε′Pzu− g′ (I − Pz)u]

= O

(
K√
n

)
+
√
n

(
u′u

n

)1/2(
1

n
‖(I − Pz) g‖2

)1/2

≤ O

(
K√
n

)
+O (1)

√
n ‖gr

K‖0,∞,Z

= op (1) .

Lemma C.1.4. 1√
n

∑
(g̃i − gi)

2 = op (1) .

Proof.

1√
n

∑
(g̃i − gi)

2 =
√
n

1

n
‖g̃ − g‖2

=
√
n ‖gr

K‖
2
0,∞,Z

= op (1) .

C.2 Proof of Proposition 4.2.1

We need to show

√
n (γ̂ − γ) = A−1 (Bn

1 +Bn
2 ) ,
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where

Bn
1 =

1√
n

∑
i

wiui

Bn
2 =

α√
n

∑
i

wi (g̃i − gi) .

From (4.3) we have

√
n (γ̂ − γ) =

√
n
(
w†′w†

)−1
w†′ [(g − g̃)α+ u]

=

(
w†′w†

n

)−1 [
w†′ (g − g̃)α+ w†′u√

n

]
.

It is sufficient to show the followings.

1

n

∑
w†iw

†′
i −

1

n

∑
wiw

′
i = op (1) (C.1)

1√
n

∑(
w†i − wi

)
ui = op (1) (C.2)

1√
n

∑(
w†i − wi

)
(g̃i − gi) = op (1) (C.3)

Showing (C.1) is equivalent to show that

1

n

∑
g̃2

i − g2
i = op (1) (C.4)

and

1

n

∑
xi (g̃i − gi) = op (1) . (C.5)

To show (C.2) we need to prove

1√
n

∑
(g̃i − gi)ui = op (1) . (C.6)
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One could claim that showing (C.3) is identical to show

1√
n

∑
(g̃i − gi)

2 = op (1) . (C.7)

(C.4) to (C.7) could be shown by Lemma C.1.1 to C.1.4. Now deal with the

variance term of Bn
1 and Bn

2 and the covariance term between Bn
1 and Bn

2 .

V ar [Bn
1 ] =

1

n

∑
i

w′iwiE
[
u2

i |xi, zi

]

V ar [Bn
2 ] = V ar

[
α√
n

∑
i

wi (g̃i − gi)

]

=
α2

n

∑
i

(
e (zi)

′ gi

)′ (
e (zi)

′ gi

)
E
[
ε2i |zi

]
Cov [Bn

1 , B
n
2 ] =

α

n

∑
i

E [εiuiw
′
ie (zi)] .

The asymptotic normality result of
√
n (γ̂ − γ) could be easily combined.

C.3 Lemmata

Before proceeding the proof of Proposition 4.3.1, we need the following

lemmata. Here are some notations.

s = E [s|z] + ε = g (z) + ε

x = E [x|z] + v = e (z) + v

g = E [g (z) |x] + η = h (x) + η

η = E [η|z] + ω = ψ (z) + ω

E [ε|z] = 0, E [v|z] = 0, E [η|x] = 0, E [ω|z] = 0
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Lemma C.3.1. g̃′ (I − Px) θ/
√
n− g′ (I − Px) θ/

√
n = op (1)

Proof.

1√
n

[g̃′ (I − Px) θ − g′ (I − Px) θ] =
1√
n

[
(g̃ − g)′ (I − Px) θ

]
≤

√
n

∥∥∥∥ g̃ − g√
n

∥∥∥∥∥∥∥∥(I − Px) θ√
n

∥∥∥∥
≤

√
n ‖gr

K‖0,∞,Z ‖θ
r
K‖0,∞,X → 0

Lemma C.3.2. g′ (I − Px) θ/
√
n = op (1)

Proof.

1√
n
g′ (I − Px) θ

≤
√
n

(
g′g

n

)1/2 ∥∥∥∥(I − Px) θ√
n

∥∥∥∥
= Op (1)

√
n ‖θr

K‖0,∞,X → 0

Lemma C.3.3. g̃′ (I − Px) (g̃ − g) /
√
n− g′ (I − Px) (g̃ − g) /

√
n = op (1)

Proof.

1√
n

[g̃′ (I − Px) (g̃ − g)− g′ (I − Px) (g̃ − g)] =
1√
n

[
(g̃ − g)′ (I − Px) (g̃ − g)

]
≤

√
n

∥∥∥∥ g̃ − g√
n

∥∥∥∥2

≤
√
n ‖gr

K‖
2
0,∞,Z → 0
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Lemma C.3.4. g′ (I − Px) (Pzg − g) /
√
n = op (1)

Proof.∣∣∣∣ 1√
n
g′ (I − Px) (Pzg − g)

∣∣∣∣ ≤
√
n

(
g′ (I − Px) g

n

)1/2(
g′ (I − Pz) g

n

)1/2

≤
√
n

(
g′ (I − Px) g

n

)1/2

‖gr
K‖0,∞,Z → 0

Lemma C.3.5. h′ (I − Px) (Pzε) /
√
n = op (1)

Proof. ∣∣∣∣ 1√
n
h′ (I − Px) (Pzε)

∣∣∣∣ ≤
√
n

(
h′ (I − Px)h

n

)1/2(
ε′Pzε

n

)1/2

≤
√
n ‖hr

K‖0,∞,X Op

(√
Kz√
n

)
→ 0

Lemma C.3.6. η′PxPzε/
√
n = op (1)

Proof. ∣∣∣∣ 1√
n
η′PxPzε

∣∣∣∣ ≤
√
n

(
η′Pxη

n

)1/2(
ε′Pzε

n

)1/2

≤
√
nOp

(√
Kx√
n

√
Kz√
n

)
→ 0

Lemma C.3.7. ω′Pzε/
√
n = op (1)
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Proof. ∣∣∣∣ 1√
n
ω′Pzε

∣∣∣∣ ≤
√
n

(
ω′Pzω

n

)1/2(
ε′Pzε

n

)1/2

≤
√
nOp

(√
Kz√
n

√
Kz√
n

)
→ 0

Lemma C.3.8. ψ′Pzε/
√
n

d→ N (0, ψ′E [εε′|z]ψ)

Proof. First we can write ψ′Pzε/
√
n as ψ′ε/

√
n−ψ′ (I − Pz) ε/

√
n. It is easy to

verify that ψ′ (I − Pz) ε/
√
n = op (1). Applying the Liapunov’s Central Limit

Theorem on ψ′ε/
√
n completes the proof.

Lemma C.3.9. g′ (I − Pz) (I − Px)u/
√
n = op (1)

Proof.∣∣∣∣g′ (I − Pz) (I − Px)u√
n

∣∣∣∣ ≤
√
n

(
(g̃ − g)′ (I − Px) (g̃ − g)

n

)1/2(
u′u

n

)1/2

≤
√
n ‖gr

K‖0,∞,Z ·Op (1) → 0

Lemma C.3.10. ε′Pz (I − Px)u/
√
n = op (1)

Proof.

ε′Pz (I − Px)u√
n

=
ε′Pzu√
n
− ε′PzPxu√

n

= Op

(
Kz√
n

)
+Op

(√
Kz

√
Kx√

n

)
= op (1)
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Lemma C.3.11. g′ (I − Px)u/
√
n

d→ N
(
0, E

[
(g − h)′E [uu′|x, z] (g − h)

])
Proof. Applying Liapunov’s Central Limit Theorem gives the result.

C.4 Proof of Proposition 4.3.1

One could write
√
n (α̂− α) as

√
n (α̂− α) =

[
g̃′ (I − Px) g̃

n

]−1 [
g̃′ (I − Px) (θ + (g − g̃)α+ u)√

n

]
=

[
s′Pz (I − Px)Pzs

n

]−1 [
g̃′ (I − Px) [θ + (g − Pzs)α+ u]√

n

]
.

Define

u∗ = θ + (g − Pzs)α+ u.

The limiting distribution of
√
n (α̂− α) depends on the new error structure u∗,

which contains the original error term u, approximation error g−Pzs and θ.We

can show later that θ is not important in building the asymptotic result. By

Lemma C.3.1 to C.3.2, we can ignore the term g̃′ (I − Px) θ/
√
n. By Lemma

C.3.3, it reduces to deal with the term

g′ (I − Px) (g̃ − g) /
√
n = g′ (I − Px) (Pzg − g) /

√
n+ g′ (I − Px) (Pzε) /

√
n.

By Lemma C.3.4, g′ (I − Px) (Pzg − g) /
√
n is small order. Now we could

decompose g as g = h (x) + η and η as ψ (z) + ω. By Lemma C.3.5-C.3.8,

g′ (I − Px) (Pzε) /
√
n will converge to normal distribution with variance ψ′E [εε′|z]ψ.
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The last step is to decompose the term g̃′ (I − Px)u/
√
n as follows.

g̃′ (I − Px)u√
n

=
g′ (I − Px)u√

n
− g′ (I − Pz) (I − Px)u√

n
+
ε′Pz (I − Px)u√

n
. (C.8)

Lemma C.3.9 and C.3.10 verify the second and third terms in (C.8) are small

orders. Lemma C.3.11 gives the asymptotic normality of the first term in

(C.8). Combining the Lemma C.3.1 to C.3.11 proves the Proposition 4.3.1.
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Appendix D

Tables-Chapter2

β̂True
OLS β̂B

OLS β̂W
OLS β̂MW

OLS

n Nominal size Empirical size
50 .100 .104 .560 .289 .150

.075 .080 .529 .244 .114

.050 .052 .496 .202 .093

.025 .020 .453 .150 .064

.010 .009 .382 .103 .037

100 .100 .107 .640 .243 .143
.075 .078 .606 .214 .108
.050 .047 .573 .171 .076
.025 .019 .516 .113 .044
.010 .004 .449 .066 .026

150 .100 .107 .650 .234 .144
.075 .083 .615 .192 .109
.050 .054 .588 .146 .080
.025 .022 .544 .106 .061
.010 .007 .503 .071 .033

Note: x ∼ log normal, u ∼ normal, σ2
i ∼ abs

Table D.1: Nominal and Empirical Sizes for OLS estimators
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β̂True
FGLS β̂S

FGLS β̂K
FGLS

n Nominal size Empirical size
50 .100 .101 .235 .239

.075 .076 .191 .205

.050 .053 .157 .166

.025 .022 .114 .121

.010 .010 .062 .077

100 .100 .109 .227 .249
.075 .087 .194 .209
.050 .065 .169 .169
.025 .036 .112 .119
.010 .014 .066 .079

150 .100 .102 .221 .233
.075 .078 .186 .193
.050 .055 .150 .155
.025 .029 .099 .102
.010 .008 .052 .056

Note: x ∼lognormal, u ∼ normal, σ2
i ∼ abs

Table D.2: Nominal and Empirical Sizes for FGLS estimators
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β̂True
Cragg β̂W

Cragg β̂MW
Cragg

n Nominal size Empirical size
50 .100 .093 .156 .101

.075 .069 .116 .076

.050 .044 .079 .054

.025 .026 .057 .038

.010 .009 .031 .022

100 .100 .099 .149 .120
.075 .077 .118 .088
.050 .049 .079 .059
.025 .024 .048 .037
.010 .008 .026 .017

150 .100 .105 .131 .110
.075 .078 .108 .085
.050 .046 .076 .061
.025 .022 .035 .023
.010 .006 .016 .013

Note: x ∼ log normal, u ∼ normal, σ2
i ∼ abs

Table D.3: Nominal and Empirical Sizes for Cragg estimators
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β̂True
FGLS β̂S

FGLS β̂K
FGLS

n = 50 .1110 K = 1 .2659 h = .49 .1552
K = 2 .1445 h = .59 .1534
K = 3 .1443 h = .69 .1521
K = 4 .1524 h = .79 .1511
K = 5 .1757 h = .89 .1505

n = 100 .0817 K = 1 .2251 h = .49 .1046
K = 2 .1026 h = .59 .1036
K = 3 .1012 h = .69 .1030
K = 4 .1115 h = .79 .1023
K = 5 .1274 h = .89 .1022

n = 150 .0637 K = 1 .2108 h = .49 .0888
K = 2 .0855 h = .59 .0879
K = 3 .0845 h = .69 .0873
K = 4 .0924 h = .79 .0871
K = 5 .1059 h = .89 .0869

Note: x ∼lognormal, u ∼ normal, σ2
i ∼ abs

Table D.4: RMSEs for FGLS estimators
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β̂True
Cragg β̂W

Cragg β̂MW
Cragg

n = 50 K = 1 .2659 .2659 .2659
K = 2 .1174 .1421 .1267
K = 3 .1133 .1433 .1247
K = 4 .1113 .1514 .1338
K = 5 .1112 .1608 .1427

n = 100 K = 1 .1053 .1053 .1053
K = 2 .0888 .0973 .0921
K = 3 .0843 .0939 .0874
K = 4 .0828 .0982 .0910
K = 5 .0819 .1037 .0957

n = 150 K = 1 .0886 .0886 .0886
K = 2 .0717 .0793 .0748
K = 3 .0666 .0771 .0713
K = 4 .0651 .0804 .0735
K = 5 .0639 .0840 .0768

Note: x ∼ log normal, u ∼ normal, σ2
i ∼ abs

Table D.5: RMSEs for Cragg estimators

Model 1 Model 2 Model 3
Cragg FGLS Cragg FGLS Cragg FGLS

K = 1 192.37 1.91 193.52 3.05 183.23 -7.24
K = 2 7.23 7.23 11.58 11.58 -27.49 -27.49
K = 3 14.16 14.16 22.66 22.66 -53.81 -53.81
K = 4 20.62 20.62 33.00 33.00 -78.37 -78.37
K = 5 26.89 26.89 43.02 43.02 -102.18 -102.18
K = 6 33.48 33.48 53.57 53.57 -127.24 -127.24
K = 7 39.60 39.60 63.36 63.36 -150.48 -150.48
K = 8 45.48 45.48 72.76 72.76 -172.81 -172.81
K = 9 51.72 51.72 82.75 82.75 -196.52 -196.52
K = 10 57.70 57.70 92.32 92.32 -219.25 -219.25
Model 1: x ∼ normal, u ∼ normal, σ2

i ∼constant
Model 2: x ∼ normal, u ∼ uniform, σ2

i ∼constant
Model 3: x ∼ normal, u ∼logistic, σ2

i ∼constant

Table D.6: Theoretical RMSE of Cragg and FGLS estimators under Ho-
moskedasticity
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Model 1 Model 2 Model 3
Theory Criteria Theory Criteria Theory Criteria

K = 1 50.74 46.76 51.07 6.52 48.08 35.42
K = 2 2.71* 12.79* 3.58* 3.88* -4.21 20.89
K = 3 2.91 13.36 4.19 5.93 -7.33 20.40
K = 4 2.86 13.98 4.56 7.93 -10.80 19.80
K = 5 3.55 14.73 5.68 9.91 -13.48 19.14
K = 6 4.25 15.48 6.80 11.88 -16.15 18.33
K = 7 4.95 16.25 7.92 13.85 -18.82 17.43
K = 8 5.65 17.05 9.04 15.82 -21.48 16.50
K = 9 6.35 17.86 10.16 17.77 -24.13 15.58
K = 10 7.05 18.69 11.27 19.72 -26.78* 14.71*
Model 1: x ∼uniform, u ∼normal, σ2

i ∼ exp
Model 2: x ∼uniform, u ∼uniform, σ2

i ∼ exp
Model 3: x ∼uniform, u ∼logistic, σ2

i ∼ exp

Table D.7: RMSE of Cragg estimator under errors with different kurtosis

Model 1 Model 2 Model 3
Theory Criteria Theory Criteria Theory Criteria

K = 1 2.10 4.31 2.42 7.83* -.41 4.05
K = 2 2.65 3.19 3.50 11.24 -4.11 1.02
K = 3 2.06* 1.94* 3.31* 10.91 -7.99 -.56
K = 4 2.75 2.59 4.44 14.68 -10.74 -.90
K = 5 3.45 3.24 5.55 18.43 -13.42 -1.27
K = 6 4.15 3.89 6.68 22.14 -16.10 -1.68
K = 7 4.85 4.53 7.80 25.86 -18.77 -2.10
K = 8 5.55 5.18 8.92 29.56 -21.46 -2.61
K = 9 6.25 5.83 10.04 33.25 -24.08 -3.08
K = 10 6.95 6.47 11.16 36.93 -26.73* -3.57*
Model 1: x ∼ uniform, u ∼ normal, σ2

i ∼ exp
Model 2: x ∼ uniform, u ∼ uniform, σ2

i ∼ exp
Model 3: x ∼ uniform, u ∼logistic, σ2

i ∼ exp

Table D.8: RMSE of series based FGLS estimator under errors with different
kurtosis
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Model 1 Model 2 Model 3
Theory Criteria Theory Criteria Theory Criteria

K = 1 15.68 22.98 13.86 1.52 30.22* 298.18
K = 2 14.62 14.43 10.43 1.18 48.16 228.45
K = 3 10.92* 7.96* 4.46* .29* 62.75 142.51*
K = 4 14.57 10.56 5.85 .38 84.32 189.39
K = 5 18.24 13.16 7.30 .47 105.77 236.41
K = 6 21.92 15.78 8.77 .56 127.13 283.56
K = 7 25.60 18.40 10.24 .65 148.45 330.71
K = 8 29.27 21.02 11.71 .74 169.75 377.88
K = 9 32.93 23.65 13.17 .84 190.98 425.10
K = 10 36.58 26.28 14.63 .93 212.17 472.36
Model 1: x ∼ uniform, u ∼ normal, σ2

i ∼ exp
Model 2: x ∼ uniform, u ∼ uniform, σ2

i ∼ exp
Model 3: x ∼ uniform, u ∼logistic, σ2

i ∼ exp

Table D.9: RMSE of series based estimator in variance regression under errors
with different kurtosis

White test P-value Breusch-Pagan test P-value
23.39, Chi-sq(8) .0029 23.91, Chi-sq(2) 6.4e-06

Table D.10: Heteroskedasticity tests

# of K Cragg FGLS Variance Variance-CV
K = 1 -6733378 2777861.4 .0740 1.8784
K = 2 -7953344 1656619.7 .0756 1.8814
K = 3 -14383004 7140911.5 .0444 1.8532
K = 4 -16700076 789443.95* .0141* 1.8239
K = 5 -16541297 946018.65 .0177 1.8277
K = 6 -17643387 1311052.2 .0213 1.8235*
K = 7 -17905310* 1598746.6 .0249 1.8272
K = 8 -17830572 1748223.5 .0292 1.8310
K = 9 -17717161 1977208.3 .0329 1.8360
K = 10 -17586057 2184831.6 .0366 1.8413

Table D.11: Optimal K using criteria introduced in chapter 2
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Constant Education Experience Experience2

OLS 0.12800 0.09037 0.04101 -0.00071
t-ratio (wrong s.e.) 1.20830 12.10041 7.89161 -6.16389

(0.10593) (0.00747) (0.00520) (0.00012)

t-ratio (White s.e.) 1.19940 11.65556 8.19434 -6.52501
(0.10672) (0.00775) (0.00500) (0.00011)

t-ratio (M-W s.e.) 1.18042 11.45501 8.11618 -6.44709
(0.10843) (0.00789) (0.00505) (0.00011)

FGLS-Series 0.12422 0.08822 0.04402 -0.00076
t-ratio 1.31631 12.53150 9.21773 -6.99317

(0.09437) (0.00704) (0.00478) (0.00011)

Cragg-White 0.05836 0.09426 0.04329 -0.00075
t-ratio 0.55395 12.23446 8.97863 -7.17348

(0.10534) (0.00770) (0.00482) (0.00010)

Cragg-MW 0.04661 0.09513 0.04331 -0.00075
t-ratio 0.43643 12.16447 8.88793 -7.06698

(0.10679) (0.00782) (0.00487) (0.00011)

Table D.12: Estimation Results of Wage Equation
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Decomposition of ĥ Order
h 1√

n
X∗′ε∗ O (1)

T h
1 − 1√

n

∑ x∗i ε∗i
σ2

i
[σ2

i − σ2
i ] O (‖σ2‖)

T h
2 − 1√

n

∑ x∗i ε∗i
σ2

i

[
qK′ (xi) (Q′Q)−1Q′v

]
O
(√

K√
n

)
T h

3 2
(
β̂ − β

)
1√
n

∑ x∗i ε∗i
σ2

i

[
qK′ (xi) (Q′Q)−1Q′xε

]
O
(

K
n

)
T h

4
1√
n

∑ x∗i ε∗i
σ4

i
[σ2

i − σ2
i ]

2
O
(
ζ (K) ‖σ2‖2

)
T h

5
1√
n

∑ x∗i ε∗i
σ4

i

[
qK′ (xi) (Q′Q)−1Q′v

]2
O
(

ζ(K)K
√

K
n

)
Decomposition of Ĥ Order

H 1
n
X∗′X∗ O (1)

TH
1 − 1

n

∑
i

x∗2i

σ2
i

(σ2
i − σ2

i ) O (‖f‖ ‖σ2‖)

TH
2 − 1

n

∑
i

x∗2i

σ2
i
vi O

(
1√
n

)
TH

3
1
n

∑ x∗2i

σ4
i

[σ2
i − σ2

i ]
2

O
(
‖σ2‖2

)
TH
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Appendix E

Tables-Chapter3

TP = .1 TP = .01 TP = .001
CASESa BIASb MSE BIAS MSE BIAS MSE
n = 100
bLin 0.2410 0.0921 0.1714 0.0471 0.1922 0.0601
bLi 0.2409 0.0921 0.1713 0.0469 0.1899 0.0584
b0 0.2704 0.1180 0.2704 0.1180 0.2704 0.1180
bK 0.2584 0.1057 0.2259 0.0754 0.2360 0.0814

n = 200
bLin 0.1683 0.0443 0.1124 0.0201 0.1244 0.0253
bLi 0.1682 0.0442 0.1123 0.0201 0.1240 0.0251
b0 0.1902 0.0573 0.1902 0.0573 0.1902 0.0573
bK 0.1796 0.0503 0.1554 0.0351 0.1703 0.0407

n = 400
bLin 0.1202 0.0223 0.0824 0.0109 0.0929 0.0135
bLi 0.1202 0.0223 0.0825 0.0109 0.0929 0.0134
b0 0.1369 0.0286 0.1369 0.0286 0.1369 0.0286
bK 0.1306 0.0256 0.1080 0.0174 0.1245 0.0221

a bLin, bLi, b0 and bK represent my estimator, Li’s (2000) estimator, pre-
liminary estimator and kernel estimator respectively.
b Note that the number in boldface is the minimum of the corresponding
BIAS or MSE

Table E.1: Simulation results of partial regression model assuming g(z) =
exp(z)
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TP = .1 TP = .01 TP = .001
CASESa BIASb MSE BIAS MSE BIAS MSE
n = 100
bLin 0.2416 0.0923 0.1731 0.0479 0.1944 0.0615
bLi 0.2415 0.0922 0.1719 0.0472 0.1889 0.0578
b0 0.2712 0.1182 0.2712 0.1182 0.2712 0.1182
bK 0.4668 0.2866 0.4753 0.2836 0.4753 0.2836

n = 200
bLin 0.1687 0.0444 0.1135 0.0205 0.1277 0.0267
bLi 0.1686 0.0444 0.1128 0.0203 0.1234 0.0248
b0 0.1909 0.0575 0.1909 0.0575 0.1909 0.0575
bK 0.3080 0.1287 0.3141 0.1226 0.3141 0.1226

n = 400
bLin 0.1203 0.0223 0.0829 0.0110 0.0934 0.0138
bLi 0.1203 0.0223 0.0827 0.0109 0.0921 0.0133
b0 0.1371 0.0285 0.1371 0.0285 0.1371 0.0285
bK 0.2142 0.0617 0.2140 0.0570 0.2140 0.0570

a bLin, bLi, b0 and bK represent my estimator, Li’s (2000) estimator, pre-
liminary estimator and kernel estimator respectively.
b Note that the number in boldface is the minimum of the corresponding
BIAS or MSE.

Table E.2: Simulation results of partial regression model assuming g(z) =
(1 + z)3
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n = 100 n = 200 n = 400
CASES True Bootstrap True Bootstrap True Bootstrap

MSEa MSE MSE MSE MSE MSE

K11 0.1062 0.1439 0.0519 0.0624 0.0227 0.0265
K21 0.0559 0.1354 0.0297 0.0569 0.0140 0.0244
K31 0.0569 0.1326 0.0296 0.0539 0.0141 0.0238
K12 0.0949 0.1617 0.0413 0.0712 0.0172 0.0316
K22 0.0560 0.1578 0.0288 0.0675 0.0121 0.0288
K32 0.0561 0.1515 0.0284 0.0637 0.0123 0.0278
K13 0.1043 0.2009 0.0481 0.0874 0.0208 0.0392
K23 0.0639 0.1778 0.0313 0.0745 0.0142 0.0319
K33 0.0643 0.1761 0.0313 0.0715 0.0143 0.0314

a Note that the number in boldface is the minimum of the corresponding
MSE.

Table E.3: Choosing smoothing parameters under partial linear regression
model assuming g(z) = exp(z)
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Appendix F

Tables-Chapter4
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ρ = .1 ρ = .5 ρ = .9
CASE BIAS MSE BIAS MSE BIAS MSE
n = 100
True 0.0945 0.0144 0.0447 0.0032 0.0297 0.0014
True series 0.1237 0.0246 0.1315 0.0272 0.2800 0.1227
True Kernel 0.1294 0.0268 0.1423 0.0317 0.4036 0.2404
Linear series 0.1382 0.0319 0.1309 0.0276 0.2818 0.1273
Linear Kernel 0.1446 0.0348 0.1401 0.0329 0.4002 0.2498
2-step series 0.1216 0.0238 0.1274 0.0253 0.2646 0.1110
Double Kernel 0.1654 0.0440 0.1845 0.0530 0.4398 0.2784

n = 200
True 0.0752 0.0092 0.0337 0.0018 0.0215 0.0007
True series 0.0957 0.0147 0.0967 0.0150 0.1969 0.0625
True Kernel 0.0993 0.0158 0.1051 0.0176 0.2944 0.1267
Linear series 0.1042 0.0182 0.0967 0.0153 0.2004 0.0648
Linear Kernel 0.1074 0.0196 0.1036 0.0179 0.2921 0.1306
2-step series 0.0916 0.0134 0.0938 0.0141 0.1919 0.0587
Double Kernel 0.1343 0.0284 0.1524 0.0348 0.3508 0.1685

n = 400
True 0.0592 0.0055 0.0260 0.0011 0.0162 0.0004
True series 0.0741 0.0088 0.0746 0.0086 0.1470 0.0333
True Kernel 0.0762 0.0092 0.0786 0.0097 0.2141 0.0669
Linear series 0.0827 0.0111 0.0761 0.0091 0.1494 0.0343
Linear Kernel 0.0849 0.0118 0.0805 0.0103 0.2130 0.0677
2-step series 0.0719 0.0083 0.0747 0.0086 0.1444 0.0327
Double Kernel 0.1099 0.0181 0.1241 0.0221 0.2828 0.1060

Table F.1: Simulation results of semiparametric regression model with gener-
ated regressors assuming g(z) =

[
(z1 + z2)

2 + z2

]
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ρ = .1 ρ = .5 ρ = .9
CASE BIAS MSE BIAS MSE BIAS MSE
n = 100
True 0.0214 0.0008 0.0081 0.0001 0.0036 0.0000
True series 0.0307 0.0019 0.0134 0.0003 0.0116 0.0002
True Kernel 0.0322 0.0021 0.0146 0.0004 0.0164 0.0004
Linear series 0.0513 0.0045 0.0448 0.0033 0.0989 0.0156
Linear Kernel 0.0586 0.0058 0.0485 0.0039 0.1058 0.0177
2-step series 0.0352 0.0023 0.0190 0.0006 0.0456 0.0034
Double Kernel 0.2255 0.0652 0.1985 0.0458 0.2722 0.0806

n = 200
True 0.0181 0.0006 0.0068 0.0001 0.0028 0.0000
True series 0.0254 0.0012 0.0110 0.0002 0.0087 0.0001
True Kernel 0.0263 0.0013 0.0119 0.0003 0.0133 0.0003
Linear series 0.0391 0.0026 0.0310 0.0016 0.0726 0.0085
Linear Kernel 0.0428 0.0031 0.0338 0.0019 0.0818 0.0105
2-step series 0.0281 0.0014 0.0151 0.0004 0.0404 0.0025
Double Kernel 0.1887 0.0440 0.1743 0.0337 0.2469 0.0636

n = 400
True 0.0151 0.0004 0.0059 0.0001 0.0023 0.0000
True series 0.0224 0.0009 0.0100 0.0002 0.0074 0.0001
True Kernel 0.0230 0.0009 0.0106 0.0002 0.0106 0.0002
Linear series 0.0347 0.0020 0.0229 0.0009 0.0567 0.0049
Linear Kernel 0.0364 0.0023 0.0246 0.0010 0.0677 0.0066
2-step series 0.0249 0.0011 0.0129 0.0003 0.0388 0.0020
Double Kernel 0.1573 0.0296 0.1505 0.0242 0.2203 0.0498

Table F.2: Simulation results of semiparametric regression model with gener-
ated regressors assuming g(z) = exp

[
(z1 + z2)

2 + z2

]
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ρ = .1 ρ = .5 ρ = .9

CASES
True
MSE

BT
MSE

True
MSE

BT
MSE

True
MSE

BT
MSE

n = 100
K11 0.0351 0.0740 0.0282 0.0343 0.1249 0.1473
K12 0.0246a 0.0272 0.0253 0.0284 0.1181 0.1178
K13 0.0252 0.0247 0.0260 0.0261 0.1110 0.0835
K21 0.0357 0.0754 0.0288 0.0357 0.1234 0.1499
K22 0.0248 0.0281 0.0258 0.0291 0.1105 0.1215
K23 0.0256 0.0254 0.0274 0.0267 0.1108 0.0843
K31 0.0381 0.0829 0.0307 0.0390 0.1317 0.1624
K32 0.0262 0.0307 0.0273 0.0318 0.1177 0.1317
K33 0.0271 0.0276 0.0289 0.0290 0.1127 0.0998

n = 200
K11 0.0186 0.0234 0.0150 0.0173 0.0640 0.0701
K12 0.0148 0.0160 0.0141 0.0160 0.0662 0.0689
K13 0.0153 0.0154 0.0144 0.0155 0.0625 0.0567
K21 0.0183 0.0234 0.0148 0.0172 0.0616 0.0686
K22 0.0146 0.0158 0.0141 0.0156 0.0591 0.0615
K23 0.0153 0.0152 0.0148 0.0151 0.0620 0.0512
K31 0.0190 0.0248 0.0152 0.0180 0.0633 0.0709
K32 0.0149 0.0165 0.0144 0.0162 0.0608 0.0636
K33 0.0156 0.0158 0.0153 0.0156 0.0628 0.0558

n = 400
K11 0.0115 0.0124 0.0089 0.0093 0.0341 0.0355
K12 0.0090 0.0094 0.0083 0.0089 0.0350 0.0395
K13 0.0094 0.0093 0.0082 0.0089 0.0313 0.0370
K21 0.0112 0.0122 0.0089 0.0092 0.0340 0.0345
K22 0.0088 0.0092 0.0083 0.0086 0.0311 0.0327
K23 0.0092 0.0091 0.0086 0.0086 0.0326 0.0311
K31 0.0113 0.0125 0.0090 0.0094 0.0342 0.0350
K32 0.0089 0.0094 0.0084 0.0088 0.0313 0.0332
K33 0.0093 0.0092 0.0086 0.0087 0.0317 0.0320

a Note that the number in boldface is the minimum of the corresponding
MSE.

Table F.3: Choosing smoothing parameters under semiparametric regression
model with generated regressors 175
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