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Using satellite data only to estimate for an Earth gravity field introduces

the problem of an ill-conditioned system of equations. This mathematical difficulty

amplifies as the number of unknown gravity field parameters increases, requiring

a stabilization of the inversion for solution. But the number of parameters to be

estimated can also be too large to allow inversion using a sequential algorithm (one

computer processor). Therefore the challenge is two-fold. A stabilized inversion

must be performed with a parallel (multi-processor) algorithm.

Thus, new code was developed in the parallel computing infrastructure of

Parallel Linear Algebra Package (PLAPACK) to achieve the task of applying the

Singular Value Decomposition (SVD) to invert for (and stabilize) very large gravity

fields of well over 25,000 unknown parameters. This new code is given the name

(ParallelLA rgeSvd Solver)PLASS.
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The choice of the SVD was made because it offers multiple opportunities of

stabilization techniques. Poorly observed parameter corrections are removed from

the culpable eigenspace of the normal matrix of CHAMP or the singular vector

space of the upper R triangular matrix of GRACE. Solutions were stabilized based

on the removal of either eigenvalues or singular values using four different standard

optimization criteria: Inspection, Relative Error, Norm Norm minimization, trace

of the Mean Square Error (MSE) matrix, and with a fifth method, independently

introduced for this investigation, that optimizes removal of eigenvalues or singular

values based on Kaula’s power rule of thumb. This method is given the name “Kaula

Eigenvalue (KEV) or Kaula Singular Value (KSV) relation”. For the gravity fields

of this investigation, orbital fits, geodetic evaluations and error propagations of the

best of the resulting SVD gravity fields were performed, and shown to be compara-

ble to the CHAMP solution obtained by the GeoForschungsZentrum (GFZ) and to

the full rank GRACE solution obtained by the Center for Space Research (CSR).
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Chapter 1

Introduction

1.1 Gravity Field - Historical Background

The problem of estimating the Earth’s gravity field by tracking artificial

satellites began almost a half century ago with the launch of the Soviet Satellite

“Sputnik” in the fall of 1957. Since then, there have been steady advancements in

the techniques of gravity field determination and a steady increase in their solution

size. Because the Earth is non-spherical and has a heterogenous mass distribution,

its gravity field is non-uniform, thereby causing the motion of an orbiting satellite to

be perturbed away from that described by relative two-body orbital motion (Vallado

[1]), expressed in the following equation of motion as

−→r ′′
= − µ

r2

−→r
r

, (1.1)

whereµ is the gravitational constant and r is the relative barycentric distance be-

tween the two bodies of point mass or uniform spherical mass distribution. An

estimated gravity solution is commonly a synonym for a set of parameters that are

the coefficients of the orthogonal basis functions in a model that approximates the

shape of the Earth’s gravity field. These coefficients are often those of the Leg-

endre polynomial and trigonometric functions in a spherical harmonic expansion,
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an equation that describes a three dimensional gravitational surface potential in the

free space (zero density) above the Earth.

Data from which a gravity field is derived comes from two main sources,

terrestrial measurements (taken on the Earth’s surface) and that from the observed

motion of satellites. The number of satellites launched into orbit for gravity field

developments stood at more than 50 in the year 1964 (Vetter, et al. [2]). Gravity

models of note produced in that time period are those of the Johns Hopkins Uni-

versity/Applied Physics Laboratory (JHU/APL) and the Smithsonian Astrophysical

Observatory (SAO). Gravity Field JHU/APL 1.0, developed in 1963, was a spher-

ical harmonic model (seen in Equation 1.13) which contained terms up to degree

and order eight (Vetter, et al. [2]). Later, model JHU/APL 4.5 was complete up to

degree and order 15 by 1967. In 1966, the SAO produced Standard Earth 1, using

Baker-Nunn data, out to degree and order eight.

Since the mid 1960’s, the sizes of estimated gravity fields have increased

due to improvements in observation technologies, increase in computational power,

and the demanding accuracy requirements of scientific satellites. For example, the

required radial orbital error budget due to gravity model error of the Topex/Poseidon

mission (Stewart et al. [3]) was specified to be no more than±10 cm.

In 1972, using only Baker-Nunn data, the NASA/GSFC (Goddard Space

Flight Center) developed its first gravity model with the name Goddard Earth Model

(GEM). It is complete out to degree and order 12. Later models, GEM 1 through

GEM 10, were published and were derived from the sources of laser range, Doppler

range rate, satellite radar altimetry and surface gravity data. The GEM 10, finished
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in 1982, is complete to degree and order 36, followed ten years later by the model

GEM-T3, complete to degree and order 50. In preparation for the Topex/Poseidon

mission, this model was then followed up in a joint effort between NASA/GSFC and

the University of Texas at Austin/Center for Space Research UT/CSR, and labelled

the Joint Gravity Model (JGM), which models the gravity field up to degree and

order 70.

The Center for Space Research (CSR) has independently developed a num-

ber of gravity field models with the designation Texas Earth Gravity (TEG), using

a variety of different observations (i.e. satellite laser range (SLR), radar altimetry,

Doppler range rate, surface gravity). TEG-1 (degree and order 36) and TEG-2 (de-

gree and order 50) were published in 1988 and 1990, respectively. TEG-3 (degree

and order 70) contains data of similar nature but also includes that of Global Posi-

tioning System (GPS) data from the onboard GPS receiver of Topex/Poseidon and

surface gravity data from the Ohio State University (OSU) gravity model OSU91A.

Currently, CSR is conducting theGravity Recovery and Climate Experiment (GRACE)

twin satellite mission to develop a gravity field complete to degree and order 360.

The full set of data types may or may not encompass all those aforementioned, but

will certainly contain GPS observations and the relative microwave range and range

rate measurements recorded between the spacecraft pair. The next section explains

the difficulties caused by using only satellite tracking data to obtain a gravity field

of such a high degree and order.
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1.2 Observability Problem

Because the attenuation of the high degree and order harmonics with alti-

tude is rapid, these parameters have but a very slight effect on a satellite’s orbit.

Thus the satellite tracking data will observe only very small effects which are vul-

nerable to unwanted signals from noise or other undesirable sources. According

to Newton’s law for gravitational force, gravity fields decay with the inverse of the

square of the distance from their sources. This decay is dependant on wavelength,

so that for any given distance from the Earth surface, short-wavelength (high degree

and order harmonics) anomalies are attenuated more strongly than long-wavelength

(low degree and order harmonics) anomalies (NRC [4]). The inability of the obser-

vations to capture the short-wavelength anomalies is referred to as an observability

problem. To alleviate this situation, the satellite must fly closer to the Earth. How-

ever at lower altitudes there are larger surface force effects, such as atmospheric

drag which is non-conservative and is very difficult to model precisely. Devices

such as the accelerometers inside the GRACE satellites are used to sense the non-

gravitational forces at low-altitude, so they can be removed from the observations

to reveal weaker gravity signals. Furthermore, surface gravity data, which are more

sensitive to short-wavelength anomalies, may also be added into the observations to

help allay both the problems of remaining gravity signal obfuscation and orbit in-

sensitivities. To combine satellite tracking data with surface gravity data, UT/CSR

uses the serial computer code entitled Large Linear System Solver (LLISS), or the

parallel code called Aesop (Gunter [5]), both of which employ a technique that op-

timally assigns weights to observation data sets (Yuan [6]). If these methods do
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not completely avoid or eliminate observability problems, one is forced to solve an

ill-conditioned system of equations. The next section discusses what is meant by

“ill-conditioned” and describes some common techniques of solving such systems.

1.2.1 The Ill-Conditioned System

A system of linear equations is considered to be ill-conditioned when it

does not contain enough information to “observe” all of the parameters that one is

attempting to measure. In other words, if such a system is not observing all of the

intended parameters, then it can not resolve every one of them into an unambiguous

value during the final inversion for solution. Indeed a solution can exist for an

ill-conditioned system, however it may be nonsensical.

A system of linear equations can be represented by the matrix vector relation

Ax = b, where A is a matrix andx andb are vectors of appropriate dimension. If

A does not contain enough information to support a solution of all its unknowns

(parameters in the solution vectorx), matrix A is regarded as ill-conditioned. It

may also be classified assingularor non-invertible. This means that the solution,

x = A−1b, (1.2)

either does not exist (i.e.∞ appears) or there are infinitely many solutions. How-

ever, if matrix A isnon-singular, then the unique solution does exist and is given

by Equation 1.2. But suppose we add a small perturbation to the system in the form

of Ax = b + δb. This system also has a unique solutionx̃, that is hopefully not too

far from x, meaning that̃x − x = δx = small. A small perturbation also implies
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that the termsδb andδx are also small compared tob andx, respectively. To define

“small” and to quantify the size of vectors, the vector norm‖ · ‖ is used. Thus the

size ofδx relative tox is given by ‖δx‖
‖x‖ and the size ofδb relative tob is given by

‖δb‖
‖b‖ . It would be fortunate that when‖δx‖

‖x‖ is small, ‖δb‖
‖b‖ is also small. Substituting

the perturbationsx andb into the equationAx = b givesA(x + δx) = (b + δb),

which suggests thatAδx = δb and yieldsδx = A−1δb.

Postulate1. Suppose, using any vector norm definition and invoking the induced

matrix norm, this equation implies that

‖δx‖ ≤ ‖A−1‖‖δb‖. (1.3)

By writing the equationAx = b as b = Ax, we can get the inequality‖b‖ ≤
‖A‖‖x‖ to obtain

1

‖x‖ ≤ ‖A‖ 1

‖b‖ . (1.4)

If we multiply Equations1.3and1.4 together, we arrive at the important inequality

‖δx‖
‖x‖ ≤ ‖A‖‖A−1‖‖δb‖

‖b‖ , (1.5)

which provides a bound for‖δx‖/‖x‖ in terms of‖δb‖/‖b‖. The factor‖A‖‖A−1‖
is called the condition numberκ (A). (Watkins [7], Demmel [8])

Looking at Equation 1.5 it can be seen that ifκ (A) is not too “large”, then

small values of‖δb‖/‖b‖ lead to small values in‖δx‖/‖x‖. In other words if

the system is not excessively sensitive to perturbations inb then matrix A iswell-

conditioned. If, on the other handκ (A) is large, a small value of‖δb‖/‖b‖ might

cause a large change in‖δx‖/‖x‖. Therefore the system and solution could be very
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sensitive to small perturbations inb and we say that matrix A, or the system of

linear equations, isill-conditionedor has asingularityproblem.

1.2.1.1 Common Methods of Solution

In such situations we must resort to using special methods of solving for the

solution vectorx of Equation 1.2. A common technique is one which uses theL-

curve criterionto optimize a regularization procedure, that assumes error exists in

both matrix A and in vectorb. This approach tries to find the solution that achieves

a balance between the error introduced by the regularization and the error caused

by the data itself (Hansen [9][10] and Hansen and O’Leary [11]). Regularization

is a process by which an ill-conditioned system of equations is approximated, or

replaced, by another system that is less ill-conditioned. The following equations il-

lustrate the regularization (or stabilization) concept. For our ill-conditioned system

Ax = b, let

A ∈ <mxn, x ∈ <n, b ∈ <m andm > n, (1.6)

where m and n are the number of observations and parameters, respectively. The

regularization arises from the introduction of the operator L, a diagonal matrix, and

the replacement of the linear system with the minimization problem,

min
x ∈ <n

{‖ Ax− b ‖2 + α‖ Lx ‖2}. (1.7)

(whereα is the so calledregularization parameter) that ensures a search within a

subspace that locates a nearby acceptable solution. When Equation 1.7 is expressed

in the form,

(AT A− αLT L)xα = AT b (1.8)
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it is known as the Tikhonov-Regularization (Ehrig and Nowak [12]) and provides

a best fit solution. For gravity field solutions, choice of the elements in the di-

agonal matrix L can be related to Kaula’s power rule, yielding a so-called Kaula-

Matrix (Reigber [13]). This rule is based on empirical (historical) gravity field

measurements and provides an acceptable limit, at each harmonic degree, for the

total “power” of the estimated geo-potential coefficients in Equation 1.13. A par-

ticular power at an harmonic degree is calculated explicitly by the degree variance

Equation 4.45. Kaula’s power rule, seen in Equation 4.42, gives the expected limit.

The method of Generalized cross-validation (GCV) (Golub, Heath and Wahba

[14]) introduces a functional G ofα, namely

G(α) =
‖b− Axα‖2

(
tr

[
Im − A(AT A + αLT L)−1AT

])2 , (1.9)

to find the optimum regularization parameterα that produces the best solution. The

method ofQuasioptimalityis based on the assumption that the function‖xα − x∗‖,
wherex∗ is the exact solution of the unperturbed problem, contains a minimum at

the optimumα (Ehrig [12]), and is found by minimizing the following equation,

Ψ(α) = ‖α d

dα
xα‖

2

. (1.10)

Hanke and Raus [15] developed heuristic rules for the determination ofα for differ-

ent regularization techniques. Specific to the Tikhonov-Regularization approach,

the function ofα to be minimized is given as,

ϕ(α) =

√
1 +

1

α

√
(b− Axα1)

T (b− Axα2), (1.11)

8



where

xα2 = xα1 − α
d

dα
xα

∣∣∣
α=α1

. (1.12)

The method of Generalized-maximum-Likelihood, a specific case of the GCV tech-

nique mentioned above (Equation 1.9), is discussed by Neumaier [16] and presented

also as a functional in terms ofα and is recommended to the curious reader.

The method of Mean Square Error Analysis (MSE) as a means of finding

the optimumα is examined by Bouman et al. [17],[18],[19],[20], [21],[22]. The

MSE is implemented in this investigation, but in such a manner as to find the op-

timum number of singular values or eigenvalues which produces the best gravity

field solution. This technique is discussed in Chapter 4.

Another option for determining the geopotential model when the system of

equations is ill-conditioned involves the application of Householder QR factoriza-

tions with column pivoting to matrix A to produce an orthonormal basis (Golub

[23]) of lesser rank r, necessary for solution (where r = rank(A)< n). This algo-

rithm also determines the numerical rank of A.

1.2.2 Solutions of Ill-Conditioned Systems from the SVD

The Singular Value Decomposition (SVD) can be used to find the rank of

a given matrix to determine if it is invertible in the ordinary sense. If the matrix

is rank deficient (ill-conditioned), its inversion is possible by using fewer singular

values than the number of parameters that are being estimated. Removing singular

values to allow for a stable pseudo-inversion (SVD inversion) does not affect the

parameter space. That is to say, a full set of parameters comes out of the solution
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process regardless of the number of removed singular values. Thus, the problem of

determining how many singular values to keep in an SVD inversion is important, as

it effects solution quality.

Several methods have been investigated for finding the best number of sin-

gular values for ill-conditioned or near ill-conditioned problems. Lawson [24] sug-

gested a method that chooses the number of singular values that corresponds to the

minimum of the sum of two quantities. Those quantities are the square root of the

sum of the squares of the elements in the solution vector, the norm of the solution

vector, and likewise for the norm of the residual vector. If both norms are plotted

in a graph of the norms of the residuals versus the norms of the solutions, this min-

imum occurs at the point on the curve with the smallest distance to the origin. This

is referred to as a norm-norm plot and is described in Section 4.1.4.3. This tech-

nique was used by McCord [25] in the solution of linearized spacecraft navigation

problems.

An example of a realtime satellite SVD application is that of cycle ambigu-

ity resolution necessary for spacecraft attitude determination. The SVD can be used

to measure the observability of a given system of available measurements by com-

puting in real time the condition number of an observation matrix (Lightsey [26]).

As the observability improves, the condition number lowers to a value determined

by the Global Positioning System (GPS) signal line of sight and measurement ge-

ometry over the complete data collection. In other words, the condition number

may be used as a logical input for a feedback loop to select the best sample pe-

riod and collection time for the Quasi-Static integer resolution algorithm (Lightsey
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[26]).

1.2.2.1 SVD Gravity Fields

Cicci [27] developed a method of inverting ill-conditioned matrices by us-

ing a Ridge-regression approach, whose equation formulation is very similar to that

seen in the Tikhonov technique, Equation 1.8. This method addsa priori values

to the diagonal of the system’s matrix to avoid dividing by zero during inversion.

Cicci demonstrated his technique in the simulation of a degree and order 10 grav-

ity field solution and in 1994 [28] used it to determine the gravity field of Venus

to a degree and order of 22. In 1993 Lerch et al. [29] used Eigenvalue Decom-

position (EVD), which is a subset of the SVD method, to address the problems of

singularity in determination of gravity fields. Using only satellite tracking data,

the ill-conditioned system of equations were inverted via the EVD to solve for a

gravity solution of degree and order 36. Very similar to the SVD technique, the

EVD method decomposes the normal matrix to find the eigenvalues which produce

the best gravity solution. Determining exactly which eigenvalues to remove was

based on the minimum trace of the Mean Square Error (MSE) matrix. This trace

is the summation of two terms. One term, referred to as the noise, is the sum of

the squares of the reciprocals of the eigenvalues, the other is the sum of the squares

of the variances, each approximated by Kaula’s rule, and represents the bias. As

eigenvalues are removed, the noise term gets smaller, while the the bias term gets

larger. Choosing the number of eigenvalues which minimizes the sum of the two,

yields the best gravity solution. The total number of parameters estimated by Lerch
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in his investigation was less than 2000 and yielded comparable orbit fit residuals

with those of gravity field GEM-T2. In 1996 Ahn [30] used the SVD to estimate

larger gravity fields of degree and order 70 (which contain about 5000 parameters)

and performed similar solution quality tests.

As the size of the gravity field to be estimated increases (as the number of

geo-potential coefficients to be estimated increases) naı̈vely implementing the SVD

quickly becomes an impossibility. In gravity field solutions, the number of obser-

vations incorporated into the so-called information matrix (regress-file) can number

into the millions, and direct application of the SVD to the raw observations, would

require prohibitive amounts of computer time and memory. Commonly, the SVD

is carried out in such a way that requires three times the memory of the given input

matrix (IMSL [31] and Dongarra [32]) that is needed for the left and right singular

vectors and the original input matrix. In this study, memory requirement obstacles

are eliminated because of three reasons. First, in the cases of the square CHAMP

Normal matrix (dimension of 11216) and of the rectangular GRACE information

matrix (dimension of 8309302 by 25917), the left singular vectors are never accu-

mulated. Second, the GRACE information matrix is upper-triangularized (orthogo-

nalized) into square matrix R using the software entitled “aesop” (Gunter [5], [33])

(dimension 25917), see Section 4.1.2, before the SVD is applied. Third, if addi-

tional computer core memory is needed, the (ParallelLA rgeSvd Solver) PLASS

tool can use more processors. These techniques are standard.

As the degree and order of the harmonics in an estimated gravity field model

increases, the chance of unobservability in these higher coefficients gets larger.
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Thus, the estimated values of these parameters will become inflated due to small

diagonal elements in either the normal matrix or in the R matrix, all of which are

created by the observation partials that deliver little information. The singular val-

ues obtained from the SVD of such a matrix provide insight to these diagonals and

the matrix’s singularity. If there are some singular values which are zero (near ma-

chine zero) or they are much smaller than other singular values, then the system

(matrix) is considered ill-conditioned (singular), because the inversion is impossi-

ble in an ordinary sense. In other words, to obtain solution, the reciprocal of these

singular values must be taken. If any of them are zero or near zero, then infinity or

near infinity values are inserted into the projection of the singular vector subspaces

onto the solution space. By simplynot taking these reciprocals and setting them to

zero during the solution process, these singular values are removed along with their

associated vectors in U andV T (the matrices containing the left and right singu-

lar vector spaces, respectively). Thus, the singularity of any given ill-conditioned

system (information matrix) can be removed. In fact, no matter the severity of

the ill-condition, a solution is always possible when employing the SVD (Press

et al. [34]). In the case of gravity field solutions, the SVD enables the removal

of harmful influences from unobserved parameters, which manifest themselves as

unacceptable or inflated values in an estimation.

The solution obtained from the pseudo inverse using the SVD is therefore

unique, because each case of either retained or removed singular values, produces

a different estimate. The number of candidate SVD solutions can be as large as

the number of singular values to remove or keep. Often the distribution of singular
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values is smooth with no distinctive gap between any of them. This may be dis-

couraging as it would seem difficult to choose a “correct” solution. However, this

non-uniqueness can be an advantage. A good candidate solution can still be found

among the many, whereas in the case of the full rank solution of an ill-conditioned

system, where all singular values are retained, only one meaningless solution is

available. Thus the question ensues, how does one choose the singular values?

Section 4.1.4 discusses the techniques used to select singular values in an SVD

solution.

1.2.3 Parallel Implementations of the SVD

Because the SVD is one of the most fundamental and important matrix de-

compositions of linear algebra (Reilly [35]), which is used in a wide range of ap-

plications to solve ill-conditioned systems of equations, there are a fair number of

parallel SVD algorithms that have been developed to be applied in a multi-processor

environment. Since the most time consuming phase of the SVD is the convergence

from the bilinear to the diagonal form (if singular vectors are accumulated), many

parallel SVD methods are focused on this stage. Transforming the bidiagonal ma-

trix to a diagonal matrix (the elements of which are the singular values of the orig-

inal system of equations), involves the application of a series of two-dimensional

plane rotations (discussed in Section 5.2.2) also known as Givens plane rotations.

Because of the inherent parallelism in Givens rotations (discussed in Sec-

tion 5.2.2.1) and their high cost during the diagonalization stage of the SVD, there

has been a renewed interest in finding an efficient parallel SVD algorithm (Dem-
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mel [8]). Givens rotations can be applied in parallel to disjoint pairs of rows and/or

columns of a target matrix, so a matrix with n rows and/or columns can have [n/2]

Givens rotations applied simultaneously (Luk [36]). In this investigation, through

the use of themulti-vector object of the PLAPACK (Parallel Linear Algebra Pack-

age) infrastructure (van de Geijn [37]), the rotations are applied toall columns of a

matrix so that
n2

2

number of processors
of them can be performed concurrently. The other charac-

teristic of the multi-vector object, specific in the application of the Givens rotations,

is thatno communication or synchronization among processors is required during

the convergence to singular values. These facts enable the benefits of parallel pro-

cessing without the cost of communication between processors during convergence

to singular values, see Section 5.3.2.

The approach by Braun et al. [38], presents a different method in which one

or two columns of a matrix are updated on a single processor, requiring a high level

of frequency and complexity of inter-processor communication. That technique was

applied to very small problem sizes, i.e. 6 x 7 matrix, and would be problematic

if applied to systems containing thousands of unknowns. A technique which as-

sumes that the processors are arranged in a ring, is given by Berry et al. [39] where

multiple columns of the matrix are distributed in circular fashion. Pan and Hamdi

[40] discuss the SVD on a two-dimensional array of processors of a pipelined bus

system, in which messages can be transmitted in a pipelined fashion where each

processor is limited to the sending and receiving of one message per bus cycle.

Both methods of Berry and Pan require communication among processors during

the application of a Givens rotation. Jessup and Sorensen [41] present a conquer
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and divide approach on an Alliant FX/8 machine (2-dim array), where the bidiago-

nalized matrix is split recursively into submatrices of order 8 and uses a serial SVD

method on each processor. This recursive matrix splitting leads to a hierarchy of

subproblems with a data dependency graph in the form of a binary tree of height

called “h” (Jessup [41]). Somewhere inside this tree of dependencies, parallelism

is achieved by dynamically assigning root-finding and singular vector computation

tasks to processors (Jessup [42]). It is only necessary to understand this scheme to

the extent that it is clear, that this method of converging to singular values during

this Givens phase, requires communication and synchronization among processors.

Since this process is of a rather fine grain algorithm (Demmel [8]), operating on

pairs of columns, it cannot exploit higher level BLAS (Basic Linear Algebra Sub-

programs). Therefore, it is argued by Bischof and Shroff [43], [44], that one should

employ block Givens algorithms, which work on more than two columns of the tar-

get matrix, allowing for efficient matrix-matrix operations. However, this argument

quickly breaks down in CHAMP and GRACE size problems, when the block sizes

of Givens rotations get larger than about 12 columns. The time spent accumulating

block Givens rotation matrices is not recovered during their subsequent application

to the target matrix during the convergence phase. It is the opinion of this author,

that Givens rotation matrix sizes should be kept at the size of 2x2. The physical ar-

rangement of the computer processors in this study are linear, but they are logically

viewed in a two dimensional form. The next section describes the purpose of the

parallel SVD algorithm developed for this investigation.
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1.3 Purpose of this Investigation

The Singular Value Decomposition (SVD) investigation, this study, is con-

ducted to calculate gravity fields complete to degree and order 100 and 160, derived

from satellite data only, namely GPS and/or microwave measurements. The primary

motive for applying the SVD in this examination is to calculate gravity fields that

are comparable to or an improvement to full rank solutions, despite observability

problems that can exist from using satellite observations only. The second objec-

tive, is to demonstrate the practicality of using thePLASS SVD tool to solve for

very large gravity fields, showing that it is a feasible method of inversion and sta-

bilization. The next section summarizes how the goals of this SVD project were

met.

1.3.1 Goals of this Study - New SVD Tool “PLASS”

The goal of this study was to develop new parallel code in the infrastructure

of PLAPACK to apply the SVD as a parallel algorithm to solve for very large gravity

fields. The software product is given the name “ParallelLA rgeSvd Solver” and is

abbreviatedPLASS. (Other PLAPACK code, “aesop”, was already developed to

solve for very large gravity fields implementing theQR method (Gunter) [5]. The

“aesop” code generates the upper triangular matrix R which is used as the input for

PLASS)PLASS is required also to determine the singular values which produce the

best gravity field for a given input. Four standard techniques of choosing singular

values to invert a system of equations, were implemented. Also, the Kaula-Singular

Value (KSV) method, is introduced independently and included into this study to
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relate Kaula’s rule, specific to Earth gravity solutions, to a gravity field produced

by the SVD.

To define what is meant by “very large gravity field” the following expla-

nation is given. In this investigation, a gravity field is modelled using the spherical

harmonic expansion of Equation 1.13. This expression describes a three dimen-

sional gravitational potential, U, in the free space (zero density) above the Earth

(Tapley, Born, Schutz [45]),

U =
GM

r
+ U

′

U
′

= − GM∗

r

∞∑

l=1

(ae

r

)l

Pl(sinφ)Jl

+
GM∗

r

∞∑

l=1

l∑
m=1

(ae

r

)l

Pl,m(sinφ)[Cl,mcosmλ + Sl,msinmλ], (1.13)

where mass distribution is expressed in the spherical coordinates (r, φ, λ), with φ

andλ representing geocentric latitude and longitude, respectively. The scale factors

M? and reference distanceae nondimensionalize the mass property coefficients

Cl,m andSl,m. The termPl,m is Legendre’s Associated Function of degree` and

order m. If the values of̀ and m are assigned the integer 100, we say that the

gravity field is of degree and order 100. Expanding the double summation in this

equation with̀ =m=100 and using it to derive the partials seen in Equation 3.3 of

Section 3.1 (along with the observation-state partials of Equation 3.8), results in a

system of equations of about 10000 unknowns. In the CHAMP case of this study,

there are 11216 unknowns. In the GRACE case (very large gravity field) of this

investigation,̀ =m=160 (degree and order 160) there are exactly 25917 parameters
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to be determined. Problem sizes of 5000 or less parameters are considered “small”

gravity fields for the purposes of this analysis.

1.3.2 Outline of this Study

At this point of the document, the reader has finished an introduction to the

problem of gravity field estimation and a brief historical background. Common

solution approaches, their computational obstacles and what motivates the develop-

ment of parallel SVD algorithms were also discussed.

The next chapter, Chapter 2, provides a brief outline of some of the “ba-

sics” of parallel computation regarding machine architecture, parallel performance

theory and communication. The concept of Physically Based Matrix Distribution

(PBMD) [37] and a simple example thereof is also provided to give the reader an

idea of the philosophy behind the underlying algorithms of this dissertation.

Chapter 3 discusses the theory of precision orbit determination. Chapter 4

presents the Singular Value Decomposition (SVD) and how a solution is stabilized

for an optimum estimate along with a discussion on the SVD bias. The subsequent

chapter, Chapter 5, is included into this document to explain the steps and vari-

ous techniques necessary to implement the parallel SVD algorithm of this study,

but is only necessary for the curious reader. Chapter 6 contains the results of the

experiments. Conclusions from this study and suggestions for further research are

discussed in Chapter 7. Appendix A presents the algorithm of the validation test

and how it proves that the algorithm inside PLASS is correct with each execution.

Appendix B presents the scalability of PLASS and numerical issues of the SVD.
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Appendix C compares the SVD results of this investigation to the standard gravity

field Texas Earth Gravity 4 (TEG4).
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Chapter 2

Parallel Computation

The use of parallel processing has become important in fields of numerical

analysis where problem sizes are too large for sequential machines. Even though

the technology of individual computer processors are such that their computation

speed is constantly becoming faster, approximately doubling every 18 months, it

is the limitation of memory sizes near a processor and speed of memory opera-

tions, which prevent them from handling massively large problems, or prohibit the

application of certain mathematical algorithms. For example, applying the Singu-

lar Value Decomposition (SVD) to solve for large gravity fields on one computer

processor is simply impossible, due to the algorithm’s very intensive memory op-

eration and excessive space requirements. Thus, new code was developed, based

in the PLAPACK infrastructure (van de Geijn [37]) for this investigation. There

are many special complications and issues, that make parallel programming very

different from programming on one computer. The following sections outline the

elements of parallel processing and briefly discuss the important aspects that give

rise to the above issues and the solutions to deal with them.
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2.1 Machine Architecture

Parallel computers have evolved from experimental contrivances to reliable

computational resources. Through the years, a variety of systems have been de-

veloped to meet the ever increasing demand for more processing power. However,

problems of portability in software, both for algorithms and processor communica-

tions, across architectures, has hindered the ability of parallel computation to com-

pete with conventional serial programming. Fortunately, there are only two classes

of systems that appear to be surviving the competition, specifically, shared and dis-

tributed memory architectures. The driving force behind these system philosophies

is that processors must have the ability to communicate with each other in order to

cooperatively complete a task.

2.1.1 Shared Memory

A shared memory system is one in which its processors (or process ele-

ments, PE’s) can access a common memory. That is, any PE shares the same mem-

ory at the usual level of load and store operations (Gropp [46]). A schematic dia-

gram of this system is shown in Figure 2.1. This configuration allows processors

to communicate with each other through variables stored in a shared address space,

however it must be assured that processors do not simultaneously access regions

of memory in such a way that errors would occur. This makes referencing data

stored in memory similar to traditional single-processor programs. Usually, build-

ing a system with a large number of PE’s is difficult and expensive and one must

allow some memory references to take longer than others (Gropp [46]). Examples
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ADDRESS SPACE

PROCESSES

Figure 2.1: The shared-memory model

of such architectures are the SGI Origin 3000 series of computers, the SGI Power

Challenge and Origin2000.

2.1.2 Distributed Memory

In distributed memory machines, each processor has its own independent

memory. If one processor requires data contained in another processor’s memory,

messages must be passed between them, typically using a function library such

as Message-Passing Interface (MPI), via a high-speed communications network. A

schematic diagram of this system is shown in Figure 2.2. This system introduces the

problem of how to distribute a computational task to multiple processors, each with

distinct memory spaces, and to reassemble the results from each processor into one

solution. Simple physical network arrangements such as rings, meshes or the torus,

called topologies, are used for direct communication between processors to avoid

the excess complexity that would arise if each processor were directly connected

23



NETWORK

ADDRESS SPACE PROCESS

Figure 2.2: The distributed-memory model

to all other processors. Since each processor has its own memory, the problem of

memory access conflicts is avoided and an arbitrarily large number of them may be

employed. However problems of network delays and network congestion/conflicts

must be considered in programming for a distributed memory system.

2.1.3 Classes of Parallel Machines

The classes of parallel machines may be characterized by the way instruc-

tions are carried out on the processors and the manner in which data is distributed.

Parallel or concurrent operation can take on different forms within a computer sys-

tem. By understanding the concept of the “stream” in the computation process,

different kinds of parallelism may be illustrated. A “stream” is a sequence of ob-

jects, such as data, or of actions, such as instructions (Flynn [47]). Each stream is

independent of the other and an element in a stream may consist of one or more
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objects of data or instruction. Thus there are four combinations, which describe the

most familiar parallel architectures (Flynn [47]):

1. SISD—single instruction, single data stream. This is the traditional

uniprocessor (Figure2.3(a)).

2. SIMD—single instruction, multiple data stream. Single instruction is

carried out on more than one piece of data. Also refers to a set of operations for

efficiently handling large quantities of data in parallel. This includes vector proces-

sors as well as massively parallel processors. (Figure2.3(b)).

3. MISD—multiple instruction, single data stream. These are typically

systolic arrays. (Or ”data parallel”) Many processing elements (functional units)

perform the same operations on different data. There is often a central controller

which broadcasts the instruction stream to all the processing elements. They operate

with a global “heartbeat” and are no longer in use.(Figure2.3(c)).

4. MIMD—multiple instruction, multiple data stream. These computers are

characterized by each processor working independently on separate data (typically

executing the same program). This includes traditional multiprocessors as well as

the newer work of networks of workstations. (Figure2.3(d)).

5. SPMD—single program multiple data stream (subset of MIMD). Sepa-

rate processors running the same program synchronously or asynchronously using

different sets of data.
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Figure 2.3: The stream model

2.2 Parallel Performance Theory

Using more processors and more memory in parallel to solve a computa-

tional task does not necessarily ensure better performance over the use of a single

computer. Adding more horses to pull a heavy wagon may be helpful, but the

work-efficiency on a per horse basis might decrease due to coordination problems

or human-equine communication difficulties. Performance of parallel computing

systems can be diminished due to memory access conflicts, notable in shared mem-

ory machines, or by network conflicts of distributed memory machines. To evaluate

the advantage a parallel computing system might have over a sequential machine,

objective performance metrics are needed. Some of these measures are known as

“speed-up”, “efficiency” and “scalability”.
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2.2.1 SpeedUp

SpeedUp is a ratio of the time needed for the completion of a sequential

algorithm to that time needed for the completion of a parallel algorithm run on P

processors.

SpeedUp=
Timesequential

Time(P )parallel

, (2.1)

whereTime(P ) is the notation for parallel wall clock time as a function of the

number of processors P. To get the best, and most widely acceptable ratio, it is

important to evaluate this proportion using the fastest serial algorithm available.

2.2.2 Concurrent Efficiency

Concurrent or parallel efficiency, E, can be thought of as SpeedUp per pro-

cessor (van de Geijn [48]). It is defined as the ratio of SpeedUp to the number of

processors, P, on which the parallel algorithm is run

E =
SpeedUp

P
. (2.2)

In dense linear algebra algorithms containing direct methods, such as LU factor-

ization, the concurrent efficiency depends on problem size and the number of pro-

cessors, so on a given parallel computer and for a fixed number of processors the

running time should not vary greatly for problems of the same size (van de Geijn

[48]). Thus, E may be expressed also as a function of matrix problem size n (where

n is the number of columns of a square matrix),

E(n, P ) =
1

P

Time(n)sequential

Time(n, P )parallel

. (2.3)
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2.2.3 Scalability

Scalability defines the change in efficiency of a parallel algorithm as the

number of processors and/or problem size varies, and is commonly based on the

performance per processor at fixed memory per processor. An important presump-

tion in a scalability analysis is that the chosen algorithm and problem size can be

carried out on one processor. If a problem is too large for a sequential machine, then

an adjusted scalability analysis should be considered. In any case, scalability issues

should be examined during the development of parallel code, to assure efficiency as

the number of available processors changes.

There are many theories that can be used to asses scalability and perfor-

mance of a parallel algorithm. One of them is Amdahl’s Law, which for a given

algorithm/problem, is based upon the concept of comparing parallel performance

to that of sequential performance through ratios similar to those seen above. Letting

Wpar = work that can be parallelized,Wseq = work that is inherently sequential,

and P = the number of processors used, then the SpeedUp, S(P), may be expressed

as

S(P ) =
Wpar + Wseq

Wpar

P
+ Wseq

. (2.4)

If we let W = Wseq + Wpar, the total work in completion of a parallel algorithm,

then Equation 2.4, can be rewritten to represent an expected bound in the value of

SpeedUp as,

S(P ) ≤ W
Wpar

P
+ Wseq

≤ W

Wseq

=
1

Wseq

W

. (2.5)

This equation implies that the maximum SpeedUp of a parallel algorithm is bounded

by its sequential portion of work. However this law assumes that the problem size
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(i.e. square matrix dimension “n” in a linear algebra problem) is fixed as the num-

ber of processors increases. But if we assume that the problem size per processor

remains constant, as suggested by Gustafson et al. [49], then we can improve this

ratio by adding more processors as problem sizes get larger. Thus, Equation 2.5

may be rewritten as,

S(P ) ≤ W (P )
W (P )par

P
+ W (P )seq

≤ W (P )

W (P )seq

=
1

W (P )seq

W (P )

, (2.6)

whereW (P )seq is the amount of sequential work done as a function of the num-

ber of processors. Equation 2.6 shows that if the number of processors is allowed

to grow along with the size of the problem, the ratioW (P )
W (P )seq

will get larger and

SpeedUp will not be limited by the serial fraction of work, but will instead be a

linear function of the number of processors. Thus scalability for large parallel al-

gorithms is achievable.

2.2.4 Communication

Inherent in the performance of a parallel algorithm is the transmission of

data and instructions among processors. Introducing a model to understand the

contribution of communication to overall cost and wall clock time is discussed in

this section. The simplest example of communication is the sending of a message

by one processor and its reception by another.
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2.2.4.1 Point to Point Communication

The cost, or time, needed to send a message of length n bytes long between

two directly connected processors, without conflicts, can be modelled as:

α + nβ (2.7)

whereα is a fixed startup cost, needed to get the attention of the other processor,

independent of the message size, andβ is the transmission cost per unit of data

(Schultz [50]). The termα is independent of message length and is also referred to

as the latency of communication and the reciprocal ofβ is called the communication

bandwidth. The processor interface through which this fundamental message is

transmitted, is described in the next section.

2.2.4.2 Message-Passing Interface (MPI)

Communication using message-passing between processors enables paral-

lel computation to take place. Models of message-passing for coordination of data

movement and instructions among processors are numerous and may not be the

same for machines of different vendors. The attempt among a wide class of ven-

dors and users to collect, improve and standardize the best features of the many

message-passing systems, which have been developed over the years, resulted in

the Message-Passing Interface (MPI) standard. MPI is not a revolutionary new way

of programming parallel computers, but only the result of this consolidated effort.

MPI is a library not a language, that is used to support the basic computational

model, which is a collection ofprocessorscommunicating withmessages(Gropp

[46]).
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The most simple form of communication between two processors, is when

one performs asendoperation and the other performs areceiveoperation. For the

sendoperation, the usual things to be specified are the data, with a starting address

and length (in bytes for that data type) and its destination processor, commonly

indicated with an integer. For the receiving processor, the minimal describing argu-

ments will be those which designate where in local memory the data will be placed,

address and length, along with an integer which identifies the origin of the incom-

ing message. Screening parameters which enable a processor to control which mes-

sages it receives based on data type and origin are necessary to ensurematchingof

sent and received messages. Finally, a parameter to specify a size limit on a particu-

lar message is common. The following is then a minimal message interface (Gropp

[46]):

send(address, length, destination, tag)

receive(address,length, source, tag, actlen)

where “tag” identifies data type (allowing matching or the control of which mes-

sages a processor is to receive), and “actlen” specifies the message length. The

latter is commonly considered violated only if the message length is too long, but

not if it is too short.

However, there are complications of describing the message buffer, which

are not addressed by the above simple model. Data structures may be stored con-

tiguously or non-contiguously, i.e. a matrix row stored in a column-wise format is

not of stride one. Differing formats for data types between machines, such as in

the case of parallel computing using workstation networks or in other instances of
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heterogenous systems, where the floating point formats and lengths are different,

calls for the need to specify messages more completely (Gropp [46]). MPI offers

an approach to solve these problems, by specifying the parameter “count” and the

versatile value “datatype”, to further describe the message buffer. Thus with the

triplet, (address, count, datatype), the number occurrences “count” of whatever de-

fined “datatype” starting at “address”, a message buffer can be described flexibly.

For example (Gropp [46]), (A, 300, MPIREAL) describes a vector of 300 real

numbers, regardless of the length or format of a floating-point number. In an MPI

implementation, the term MPIREAL, will guarantee in a heterogenous network,

that the same 300 reals will be received, even though the receiving machine may

have a different floating-point format (Gropp [46]). Furthermore, the user may de-

fine his own “datatype” using MPI routines, to describe noncontiguous data. MPI

also offers other advanced features such as “collective communication”.

2.2.4.3 Collective Communication

Collective communication is a concept stemming from earlymessage-passing

libraries, that manifests itself in the notion of acollective operationperformed by

all processes in a computation (Schultz [50]). These communications are needed

because most parallel algorithms require more complicated transmissions that can-

not be efficiently constructed using necessary combinations of send and receive

messages, represented by the point to point communication cost of Equation 2.7 in

the minimal message interface.

There are two kinds of collective operations: data movement operations,
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used to rearrange data among the processes, and collective computation operations,

which include minimum, maximum, sum, logical OR, etc., as well as user defined

operations (Gropp [46]). The cost of either collective operation depends on how

much data is to be transmitted or the type of computation performed. These op-

erations are implemented by the MPI libraries, and are listed below. Their lower

bound costs is given in Table 2.1 (van de Geijn [51]), whereα is the latency or

communication startup cost,β is the cost to send one element of data (usually in

units of bytes),γ is the cost of a floating-point operation (multiply or add) and P is

the number of processors. Of course the linear sum of any row in this table would

represent the total cost of an operation.

• Broadcast: Prior to this operation, one processor contains a piece of data, i.e.

a vector. After the Broadcast, all processors contain a copy of the data.

• Reduce to One: Prior to this operation, each processor contains a vector.

The operation calculates the sum of all vectors, element-wise, then sends the

result to one processor.

• Scatter: Prior to this operation, one processor contains a vector of length

n elements. After the Scatter, each processor owns a piece of the vector of

length of length n/P, where P is the number of processors.

• Gather: Prior to this operation, each processor contains a piece of data, i.e.

a piece of a vector. After the Gather, one processor contains the entire vector

of data.
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Operation Latency Bandwidth Computation MPI Call
Broadcast log2(P )α n β MPI Bcast

Reduce to One log2(P )α n β p−1
p

nγ MPI Reduce
Scatter log2(P )α p−1

p
nβ MPI Scatter

Gather log2(P )α p−1
p

nβ MPI Gather
Collect log2(P )α p−1

p
nβ MPI Allgather

Reduce to All log2(P )α 2p−1
p

nβ p−1
p

nγ MPI Allreduce
Distributed Reduce log2(P )α p−1

p
nβ p−1

p
nγ MPI Reducescatter

All Scatter log2(P )α p−1
p

nβ MPI Alltoall

Table 2.1: Costs(time) of Collective Communication Operations

• Collect: Prior to this operation, each processor contains a piece of data, i.e. a

piece of a vector. After the Collect, all processors contain a copy of the entire

vector of data.

• Reduce to All: This operation is the same asReduce to One, except that the

resulting sum (vector) is duplicated to every processor.

• Distributed Reduce: This operation is the same asReduce to One, except

that afterwards, each processor will contain a portion of the resulting sum

(vector).

• All Scatter: Equivalent to performing aScatteron every processor.

2.3 Parallel Linear Algebra Package (PLAPACK)

Common approaches to the implementation and creation of high perfor-

mance parallel dense linear algebra libraries have been seriously hindered by the
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seemingly endless complexities of translating sequential algorithms to parallel code.

These complications arise from the required manipulation of indices and parameters

needed to describe data, its distribution to processors, and all supporting commu-

nication (ScaLAPACK [52]). Such intricacies lead inevitably to error-prone and

bug-filled parallel code, exactly the condition which prevents the parallel imple-

mentation of sophisticated algorithms.

The Parallel Linear Algebra Package (PLAPACK) (pronounced PLAY-pack)

is an infrastructure developed at the University of Texas at Austin that overcomes

these obstacles. PLAPACK provides coding interfaces which can mirror natural

descriptions of sequential dense linear algebra algorithms (van de Geijn et al. [37]),

by employing an “object based” approach to programming. Such an approach is

also utilized by the Message-Passing Interface (MPI), which is used in PLAPACK

as the mechanism for the communication between processors. Descriptions of lin-

ear algebra objects such as the matrix or vector, are stored inlinear algebra objects.

The use ofview objects, which are references into distributed matrices or distributed

vectors, enables the addressing of sub-blocks of matrices and sub-segments of vec-

tors. Therefore employing this philosophy/infrastructure, individual elements of a

blocked linear algebra algorithm are not explicitly indexed, and a parallel algorithm

can be written without explicitly referencing processor indices or communication.

Through use ofviews, a PLAPACK implementation becomes a line-by-line transla-

tion of a given blocked algorithm.
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2.3.1 Physically Based Matrix Distribution

The most distinguished fundamental principle of the PLAPACK infrastruc-

ture is its alternative approach to matrix distribution among processors in a parallel

system. Traditional approaches to distributing a matrix among processors for a par-

allel dense linear algebra algorithm are primarily concerned with partitioning and

distributing the matrices, not the accompanying vectors. This would seem to make

sense based on the fact that a dense n x n matrix representsO(n2) memory and

multiplications with one another requiresO(n3) operations. Vectors on the other

hand require much less memory and any computations involving them would only

reach a maximum ofO(n2) operations. However this reasoning fails to consider

the needs of the application. A matrix is merely a linear operator which provides

a transformation between vectors. It is the vectors in linear systems that naturally

dictate the partitioning and distribution of work associated with (most) applications

that lead to linear systems (Patra et al. [53]). Therefore by distributing the vectors,

(the objects which contain information of physical significance, representing the

physical problem) among processors, i.e. partitioning the vectors into sub-vectors

and assigning them to processors, we distribute the underlying problem itself. This

in turn, will induce matrix distribution among processors that is natural to the prob-

lem and which greatly simplifies the interfaces between PLAPACK applications

and MPI libraries. This concept is known asPhysically Based Matrix Distribution

PBMD (van de Geijn [37], Patra et al. [53]). The following example illustrates this

approach.
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2.3.2 Simple Example: Matrix-Vector Multiply

The matrix-vector multiplication operation,Ax = y, is implemented by

multiplying the matrix by vector x and overwriting the result into vector y, written

asAx −→ y, where the rows of A correspond to elements of y and elements of

x correspond to columns of A. Both vectors are identically distributed among P

processors in either a row-major or column-major order by logically viewing the

processors as a two dimensional r x c mesh, where r and c are the number of rows

and columns, respectively. In this example x and y are distributed in column-wise

processor order, leading to the vector distribution where processor(i,j) holds the

following subvectors:



xj∗r
xj∗r+1

...
x(j+1)∗r−1


 and




yj∗r
yj∗r+1

...
y(j+1)∗r−1


 (2.8)

The distribution of matrixA (Patra et al. [53]) is such that processor(i, j) holds the

sub-matrixÃi,j, written as

Ãi,j =




Ai,j∗r Ai,j∗r+1 · · · Ai,(j+1)∗r−1

Ai+r,j∗r Ai+r,j∗r+1 · · · Ai+r,(j+1)∗r−1

...
...

...
Ai+(c−1)∗r,j∗r Ai+(c−1)∗r,j∗r+1 · · · Ai+(c−1)∗r,(j+1)∗r−1


 (2.9)

With this distribution of matrix A and vectors x and y, each processor can locally

execute its own matrix vector multiply, that leads to a local contribution of vector

y from processor(i,j). After a summation within rows of processors, the resulting

global vector y is completed and distributed among processors in column-major
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format. The following steps to accomplish this operation are enumerated below

and illustrated in Figure 2.4 (van de Geijn [37]).

1. Distribute subvectors ofx among processors in column-major order, which

dictates the distribution of matrixA as described above.

2. Broadcast (MPIAllgather) the elements ofx on each processor within each

column of processors, thus duplicating the first r subsections ofx on each

processor in the first column of processors, the second r subsections ofx on

each processor in the second column of processors and so on, for all columns

of processors.

3. Perform the local matrix vector multiply on every processor.

4. Perform summation within rows of processors of the local partial results to

yield the desired vectory. This is accomplished with the Distributed Reduce

(sum), (MPIReducescatter), operation, and leaves a portion of the resulting

(sum) vector on every processor in a particular processor-row, a distribution

format which is identical to that of vector x.

2.3.2.1 Theoretical Performance

Using the concepts of SpeedUp and concurrent efficiency, introduced by

Equations 2.1 and 2.2, respectively, the derivation of performance equations for

the matrix-vector-multiply is straightforward. The number of operations required

for A times x is exactly 2n2, where n is the dimension of vector x. Therefore the
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Figure 2.4: PBMD: Parallel matrix-vector multiplication.
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sequential cost of this operation would be

Time(n)sequential = 2n2γ, (2.10)

whereγ is the time required for an arithmetic operation. The parallel cost on an

r × c mesh of processors is roughly given by:

Time(n, r, c)parallel =
2n2γ

P
+ T (n, r)broadcast + T (n, r)dist.reduce. (2.11)

Substituting the cost expressions (van de Geijn [51])

T (n, r, c)broadcast = [log(P ) + r + c− 2] α + 2
P − 1

P
nβ

T (n, r, c)dist.reduce = log2(P )α +
(c− 1)2 + c(r − 1)2

P
nβ +

P − 1

P
nγ

(2.12)

into Equation 2.11, yields,

SpeedUp(n, r, c) =

2n2γ
2n2γ

P
+[log(P )+r+c−2]α+2P−1

P
nβ+log2(P )α+

(c−1)2+c(r−1)2

P
nβ+P−1

P
nγ

.

(2.13)

Dividing by P and simplifying terms, the expression for concurrent efficiency, be-

comes,

E(n, r, c) =

1

1 + [log(P )+r+c−2]αP
2n2γ

+ (P−1)β
nγ

+ αPlog2(P )
2n2γ

+ (c−1)2+c(r−1)2

2nγ
β + P−1

2n

.

(2.14)
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From equation 2.14, it can be seen that for a fixed number of processors in anr× c

mesh, as the problem size n increases, the value of E(n,r,c)−→ 1. E = 1 indicates

full processor utilization. If n were held constant, while r and c increased, then

E −→ 0. E = 0 tells us that there is too little data and far too many processors.

Introducing Gustafson’s principle into Equation 2.14 by keeping the problem size

per processor constant (Gustafson [49]) as the number of processors grows, the ratio

of processors to matrix size will be given by

P

n2
= constant. (2.15)

Furthermore, if r is kept equal to c, or their ratior
c

is held constant, then it can be

seen again that E(n,r,c)−→ 1.

2.3.2.2 Actual Performance

To evaluate the parallel performance of the matrix-vector-multiply,Ax −→
y operation, five experiments were conducted using various sizes of two dimen-

sional logical meshes. Using the PLAPACK infrastructure, the tests were carried

out at the National Aeronautics and Space Administration (NASA) Ames computa-

tional research facility on the Silicon Graphics Inc. (SGI) Origin 3000 machines and

at the GeoForschungsZentrum (GFZ) in Potsdam, Germany on a Hewlett Packard

(HP) machine.

The performance results of PLAPACK were excellent and clearly demon-

strate the value of parallel computation. The theoretical predictions of the pre-

vious section can be seen in all of the figures illustrating the timing, SpeedUp,

41



and efficiency curves resulting from the experiments. Figure 2.5 shows that for a

small number (four) of processors, the performance of the sequential matrix-vector-

multiply is equal to or better than that of the parallel implementation. This is be-

cause the communication costs of the parallel algorithm dominate and outweigh

the benefits of distributing the computational burden among four processors. How-

ever, as the matrix size increases, it can be seen that the advantages of parallel

computation quickly begin to prevail over the communication costs, resulting in a

performance superior to that produced by a single processor. Figures 2.6, 2.7, and

2.8 illustrate very similar behavior in performance as the number of processors and

mesh size increases. It can be seen that the parallel times continue to decrease,

resulting in an ever improving performance of the parallel matrix-vector-multiply.

Figure 2.9 shows that for an increasing problem size n, a larger number of

processors (8x8) will deliver more speed up than the smaller mesh sizes. This is

due to the fact that more processors can contain more data, perform more floating

point operations for increasing problem sizes while doing less memory operations

in comparison to the fewer processors in the smaller meshes.

This example illustrated that the theoretical concepts of SpeedUp and ef-

ficiency can be used in helping predict actual performance of parallel algorithms.

It was seen that communication costs can degrade performance when the problem

size is too small for a given number of processors. There are other obstacles that

complicate the programming for a parallel algorithm. An important one is the issue

of load balancing, i.e. the equal distribution of computation and communication

burden among processors. By using PLAPACK and the library of MPI, all of these
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Figure 2.5: Parallel and Sequential Times for the Matrix-Vector-Multiply using a
2x2 mesh of the GFZ HP Machine.

concerns can be adequately addressed, allowing scalability to be achieved for ever

increasing problem sizes.

2.4 Summary

A brief outline of parallel computation, regarding machine architecture, par-

allel performance theory and communication has been given. The next chapter

presents a discussion of precise orbit determination and some of the standard meth-

ods used to estimate a gravity field.
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Figure 2.6: Parallel and Sequential Times for the Matrix-Vector-Multiply using a
3x3 mesh of the the NASA SGI Machine.
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Figure 2.7: Parallel and Sequential Times for the Matrix-Vector-Multiply using a
4x4 mesh of the the NASA SGI Machine.
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Figure 2.8: Parallel and Sequential Times for the Matrix-Vector-Multiply using a
8x8 mesh of the the NASA SGI Machine.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

10

20

30

40

50

60

70

80

90
Matrix−Vector−Multiply Speed−Up vs. Matrix Size on Ames Origin3000

square matrix size n

S
pe

ed
−

U
p 

2x2 logical mesh 
3x3 logical mesh 
4x4 logical mesh 
8x8 logical mesh 

Figure 2.9: Parallel Matrix-Vector-Multiply SpeedUp for various mesh sizes.

45



Chapter 3

Precision Orbit Determination

With the start of the year 1600, the evolution of orbit determination began in

middle Europe with the fruitful cooperation between two very significant historical

figures, Johannes Kepler and Tycho Brahe. These two men concerned themselves

with solving the perplexing problem of the erratic behavior of planet Mars in its

heliocentric trajectory. After Kepler abandoned his assumption of perfect circular

motion, he was able to match Brahe’s exquisite orbital observations to an elliptical

path. Thus, Kepler was able to determine the true shape of Mars’ orbit.

Much later, in 1795, Karl Friedrich Gauss invented the process of least

squares, providing a firm computational basis of orbit prediction (Vallado [1]).

Gauss’ next remarkable achievement was to accurately predict the reappearance of

the asteroid cluster Ceres from behind the Sun on New Year’s Day in 1802 (Bate,

Mueller, White [54]). The goal of orbit prediction and determination is to obtain

accurate ephemeris (positions and velocities) of an orbiting satellite, using tempo-

ral sequences of observations. By integrating the equations of motion of a satellite

from a reference epoch to the time of a true observation in relation to the model

of how the satellite is observed, apredictedobservation is produced. The differ-

ence between a predicted and a true observation is called a residual. Minimizing
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the residuals for all observations in a Gauss least squares sense, is an estimation

process that determines the kinematic and dynamic parameters which describe the

satellite’s ephemeris and those which designate the participating models.

3.1 Batch Filter Estimation

The equations of motion of a satellite in orbit are represented in vector form,

as a system of linear first order ordinary differential equations, with time t as the

independent variable,

Ẋ(t) = F [X(t), t] and Ẋ∗(t) = F [X∗(t)], (3.1)

both for the true and nominal state, respectively, where

X =



−→r−→v−→α


 (n x 1 vector)

−→r = satellite position (3 x 1 vector)

−→v = satellite velocity (3 x 1 vector)

−→α = vector of model parameters

F = derivatives of the state (n x 1 vector)

The term “nominal” refers to the state of the satellite that is computed, using math-

ematical and physical models, and is given the “*” notation. The initial conditions

areX(t0) andX∗(t0). Knowing that the true stateX(t) is the combination of the

nominal and some deviation,x(t)

X(t) = X∗(t) + x(t), (3.2)
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wherex(t) is an (nx1) vector of deviations away from the computed nominal value

of the stateX∗(t), a weak variation equation of state may be constructed. Rearrang-

ing terms in Equation 3.2, making one substitution, and taking the derivative with

respect to time, we get

ẋ(t) = Ẋ(t)− Ẋ∗(t)

= F [X(t), t]− F [X∗(t), t]

= F [X∗(t) + x(t), t]− F [X∗(t), t]

Expanding this equation in a Taylor series about the nominal trajectory, and ignor-

ing higher order terms, leads to,

ẋ(t) = F [X∗(t), t] +
∂F [X∗(t), t]

∂X∗(t)
x(t)

∣∣∣∣∣
eval. on nominal

+ higher order terms− F [X∗(t), t]

= A(t)x(t),

where

A(t) =
∂F [X∗(t), t]

∂X∗(t)
=




∂F1

∂X1

∂F1

∂X2
· · · ∂F1

∂Xn
∂F2

∂X1

∂F2

∂X2
· · · ∂F2

∂Xn
...

...
.. .

...
∂Fn

∂X1

∂Fn

∂X2
· · · ∂Fn

∂Xn


 (nxn matrix) (3.3)

The linearized differential Equation 3.3 has the solution

x(t) = Φ(t, t0)x(t0), (3.4)

wherex(t0) is the value of x(t) at epocht0 andΦ(t, t0) is the state transition matrix,

which relates a deviation to the state at some time t to the state att0 (Gelb [55]).

The matrixΦ(t, t0) satisfies the differential equation

Φ̇(t, t0) = A(t)Φ(t, t0), (3.5)
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with the initial condition ofΦ(t0, t0) = I, the identity matrix. By numerically

integrating Equation 3.5, the Equation 3.4 may be obtained. This deviation is then

related to the satellite observation residuals through the linearized observation-state

relation. With this relation, observation residuals are used to estimate corrections

to the nominal state vector. By using the state transition matrixΦ(t, t0) to map

all observations to some common epochx(t0), the corrections are applied at time

t = t0. If there are p actual observations taken at time t, they can be represented

by the (p x 1) vectorY (t). The observation-state equation is assumed to have the

following form

Y (t) = G[X(t), t] + ε(t) (3.6)

whereG[X(t), t] is a (p x 1) vector representing the mathematical model of satellite

observations. The (p x 1) vectorε represents the errors of commission and omission

in the mathematical models of motion. Using Equation 3.2 and expanding Equation

3.6 in a Taylor series and dropping terms higher than first order, we obtain the

following equation which relates an observation residual y(t) to x(t),

Y (t) = G[X∗(t) + x(t), t] + ε(t)

Y (t) = G[X∗(t)] +
∂G[X∗(t), t]

∂X∗(t)
x(t) + ε(t)

Y (t)−G[X∗(t)] =
∂G[X∗(t), t]

∂X∗(t)
x(t) + ε(t)

y(t) = H̃(t)x(t) + ε(t), (3.7)

whereH̃(t) is defined by ,

H̃(t) =
∂G[X∗(t), t]

∂X∗(t)
(3.8)
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and ε(t) now contains errors due to linearization in the observation and motion

models. Inserting Equation 3.4 into Equation 3.7 we find that

y(ti) = H̃(ti)Φ(ti, t0)x(t0) + ε(ti). (3.9)

If we let H(ti) = H̃(ti)Φ(ti, t0),we then have the following expression which maps

an observation taken at time ti, to the initial time t =t0

y(ti) = H(ti)x(t0) + ε(ti), (3.10)

where y(ti) andε(ti) are (p x 1) vectors,x(t0) is (n x 1) andH(ti) is a (p x n) matrix.

If a set of observations, termed a “batch”, is taken at times[t1, t2, · · · tk], all can be

represented by one equation in the following matrix form.



y1

y2
...
yk


 =




H(t1)
H(t2)

...
H(tk)


 x0 +




ε(t1)
ε(t2)

...
ε(tk)


 (3.11)

Compactly written as

y = Hx0 + ε, (3.12)

where y has the dimensions (kp x 1 = m x 1), H is (kp x n = m x n),x0 is (n x 1) andε

is (kp x 1 = m x 1). (Note: H often has the name “information matrix”) Usually the

number of observations is much greater than the number of parameters to be solved

(for), mÀ n and the observations are assigned weights. Thus the solution forx0

in Equation 3.12 can be obtained by using the weighted least squares estimation

technique. This can be done by either forming the normal equation to solve for

x0 or by directly performing an orthogonal factorization on the information matrix
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H. Another approach is to employ the linear unbiased minimum variance estimate

method. These methods are discussed in the following sections.

3.1.1 Forming the Normal Equation

The solution to Equation 3.12 is an estimated correction vectorx̂ that is

added to the nominal state vectorX∗(t) at the initial epoch,t0, namely

X∗(t0) = X∗(t0) + x̂(t0). (3.13)

This correction vector can by obtained by minimizing the weighted sum of the

square of the observation residuals as defined by the performance index J,

J = εT Wε. (3.14)

Rearranging Equation 3.10, and dropping the indices i and 0 for simplicity, we find

that at time t,

ε(t) = y(t)−H(t)x(t), (3.15)

leads to

J = [y(t)−H(t)x(t)]T W [y(t)−H(t)x(t)], (3.16)

where W is a diagonal matrix containing assigned observations weights, a topic

which is discussed in a later section. Setting the first variation of Equation 3.16

equal to zero, results in the following normal equation of the linear system,

(HT WH)x̂ = HT Wy. (3.17)
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Of course when inversion of the matrix(HT WH) is possible, either by direct or

indirect means, the solution is written as

x̂ = (HT WH)
−1

HT Wy. (3.18)

(The notation̂x implies that the correction vector which satisfies the first variation

condition, occurs at an extremum.) The variance and covariance of the unbiased

estimated correction vector̂x is given by (Tapley [56]) as

P = E[(x̂− E[x̂])(x̂− E[x̂])T ]

= E[(x̂− x)(x̂− x)T ]

= (HT WH)
−1

HT WE[εεT ]WH(HT WH)
−1

. (3.19)

When the weighting matrix W is chosen to equal the inverse ofobservationco-

variance, i.e.W =
{
E[εεT ]

}−1
, Equation 3.19 reduces to the following simple

form

P = (HT WH)
−1

. (3.20)

To include a previous estimatex, known as ana priori estimate and its correspond-

ing error covarianceP into a current estimation, after the proper mapping has been

carried out, the performance index must first be redefined at time t as

J = [y(t)−H(t)x(t)]T W [y(t)−H(t)x(t)] + [x(t)− x(t)][P (t)
−1

][x(t)− x(t)].

(3.21)

Setting the first variation equation equal to zero, and dropping the index t for ease

of presentation, gives the adjusted weighted least squares estimate, for the inclusion
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of a priori information, as

x̂ = [(HT WH) + P
−1

]
−1

[HT Wy + P
−1

x], (3.22)

Again, by lettingW =
{
E[εεT ]

}−1
, the resultant error covariance is

P =
[
(HT WH) + P

−1
]−1

. (3.23)

3.1.2 Orthogonal Factorization

Another name for orthogonal factorization is QR decomposition. It is an

important solution technique, because the disadvantage of the normal-equation ap-

proach is that it is sometimes less accurate than the QR approach. In fact, critical

information can be lost whenHT H is formed (Watkins [7], Tapley [45]). A simple

example taken from (Watkins [7]), illustrates an issue that can occur for any size

problem. Let

H =




1 1
τ 0
0 τ


 , (3.24)

whereτ > 0, is small. Clearly H has full rank, and

HT H =

[
1 + τ 2 1

1 1 + τ 2

]
(3.25)

which is positive definite. However ifτ is small enough such thatτ 2 is below ma-

chine precision, i.e. numerically zero, then the computedHT H will be

[
1 1
1 1

]
,

which is singular. Of course using double precision arithmetic will, in many cases

of the least square approach, be an adequate remedy. Despite this numerical prop-

erty and because H is often sufficiently well conditioned, (and despite the fact that
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the condition number ofHT H is the square of the condition number of matrix H)

the normal equation approach is frequently used. For further discussion on the

sensitivity of the least-squares problem, the text by Watkins [7] is suggested to

the curious reader. However, by using the QR approach, the matrixHT H is not

formed, rather the matrix H is used directly in the solution process. The matrix Q is

discussed in Chapter Five, however let us introduce its definition here. The concept

of orthogonality between two arbitrary vectorsu, v ∈ <3, is commonly defined by

the dot product〈u, v〉 = 0, namely that the angle between them isπ
2
. Extending the

orthogonality concept to matrices, a matrixQ ∈ <nxn is said to be orthogonal if

QQT = I. This equation also says that Q has an inverse, andQ−1 = QT (Watkins

[7]). The following theorem and proof (Watkins [7]), justify why/how orthogonal

factorization can be used as a solution technique.

Theorem 3.1.1.If Q ∈ <nxn is orthogonal, then for all x,y∈ <n,

(a) 〈Qx,Qy〉 = 〈x, y〉

(b) ‖Qx‖2 = ‖x‖2

Proof.

(a) 〈Qx, Qy〉 = (Qy)T Qx = yT QT Qx = yT x = 〈x, y〉

(b) ‖ 〈Qx,Qx〉 ‖2 = (Qx)T Qx = xT QT Qx = xT x = ‖ 〈x, x〉 ‖2

Because part (b) of the Theorem 3.1.1 says that Qx and x have the same

length,orthogonal transformations preserve lengths. By combining parts (a) and
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(b), and using the Law of Cosines (which permits the computation of the cosine of

an angle by the dot product of two vectors) it is clear that

arccos
〈Qx,Qy〉

‖Qx‖2‖Qy‖2

= arccos
〈x, y〉

‖x‖2‖y‖2

. (3.26)

Because the angle between Qx and Qy is the same as the angle between x and y,

orthogonal transformations preserve angles. Therefore the application of Q in the

solution of a least squares problem is permitted because when A and b are replaced

by QA and Qb, respectively, all lengths and angles are preserved. Rewriting the

performance index seen in Equation 3.16 in the form of the Euclidean norm, to

illustrate how Q is directly applied to H, and dropping the index t for simplicity,

J = [y −Hx]T W
T
2 W

1
2 [y −Hx]

=
{

W
1
2 [y −Hx]

}T {
W

1
2 [y −Hx]

}
= ‖W 1

2 [y −Hx]‖2

= ‖QW
1
2 [y −Hx]‖2

. (3.27)

By choosing the orthogonal transformation matrix Q such that

QW
1
2 H =

[
R
0

]
, (3.28)

where R is an upper triangular n x n matrix in the top portion of the m x n trans-

formed H. Applying the same Q to the right hand side ofHx = y, where y is an (m

x 1) vector, we get

QW
1
2 y =

[
b
e

]
, (3.29)

where b and e are vectors of dimension n and (m-n), respectively. Because the

transformation produces the upper triangular matrix R, this orthogonal factorization
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is commonly called the QR decomposition. The performance index is now written

as

J =

∥∥∥∥
[

R
0

]
x −

[
b
e

] ∥∥∥∥
2

J = ‖Rx− b‖2 + ‖e‖2. (3.30)

By inspection, the solution which minimizes J isRx̂ = b, which is easily obtained

by simple backwards substitution, a less costly endeavor than the inversion of the

normal matrixHT H. Thus, J will equal the scalar‖e‖2 and represents its minimum

value. Since‖e‖2 is an approximation of the root mean square (RMS) of the ob-

servation residuals for the estimated solution, it is also termed the linear predicted

RMS. By lettingW =
{
E[εεT ]

}−1
, as was the case in the formation of the nor-

mal equation, and assuming that the errors inε are random only, i.e. E[ε] = 0, the

covariance matrix can be written as

P = (HT WH)
−1

= (RT R)
−1

(3.31)

The calculation technique, seen in Hinga et al. [57], for the covariance af-

ter orthogonalization has been completed, has a great advantage over the standard

method used to compute covariance of the normal equation solution. By using the

matrix R produced by the QR decomposition for example, covariance computation

can be performed “in place”, meaning that no memory beyond that required to store

the (n x n) matrix R is needed. Also, in cases where R is ill-conditioned, the Sin-

gular Value Decomposition (SVD) may be applied and used to generate stabilized

solutions, by manipulating the singular values. Such an application is a topic of this

investigation.
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3.1.3 Linear Unbiased Minimum Variance Estimate (LUMVE)

Another methodology that can be applied in the estimation of a gravity field

is called the Linear Unbiased Minimum Variance Estimate (LUMVE). The equa-

tions for state and data, given by 3.4 and 3.12 respectively, repeated here are,

x(t) = Φ(t, t0)x(t0), (3.32)

and

y = Hx0 + ε, (3.33)

are used in the LUMVE method. Although the state is considered a constant vari-

able, the errorsε and the data y are modelled as random variables. Using the breve

notation to denote random variables, we rewrite 3.33 as

y̆ = Hx + ε̆. (3.34)

It is assumed that observation error has a zero mean,E[ε̆] = 0 and some

known observation covariance R (not to be confused with the orthogonalized R

matrix in the previous section), defined here as

E[εεT ] = R, (3.35)

where E represents the expected value. This estimate requiresx̂ to have a linear

relation toy̆ in the form

x̂ = My̆, (3.36)

where M is an (m x n) matrix, withm > n. Because we have the requirement that

the estimate be unbiased,

E[x̂] = x andE[ε̆] = 0. (3.37)
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By substituting Equations 3.36 and 3.34 into 3.37

E[x̂] = E[My̆] = E[M(Hx + ε̆)] = MHE[x] + E[ε̆] = MHx, (3.38)

leads to the constraint that gives and unbiased estimate,MH = I. The error co-

variance matrix is defined as

P = E[(x̂− E[x̂])(x̂− E[x̂])T ]. (3.39)

By substituting 3.34, and Equations 3.35 through 3.37 and imposing constraint

MH = I, one obtains

P = MRMT . (3.40)

To find the minimum variance, the trace of P is minimized by adding the constraint

MH = I and its transpose with a Lagrange multiplier,Λ, in the following form,

P = trace
{

MRMT + Λ[MH − I]T + [MH − I]ΛT
}

. (3.41)

By setting small delta changes∆M and∆Λ to zero and ignoring all second order

terms and higher, the first variation condition can be satisfied, yielding

M = (HT R−1H)
−1

HT R−1. (3.42)

Substituting this M into Equation 3.36 and 3.40 gives

x̂ = (HT R−1H)
−1

HT R−1y̆ (3.43)

and

P = (HT R−1H)
−1

. (3.44)
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The immediate question is whether we have a minimum and not a maximum, pro-

duced by this first variation condition. Given that the covariance matrix of obser-

vations, R, is full rank, and the fact that it is usually positive definite under usual

circumstances, i.e. the spectral norm of R,‖R‖2 > 0, is an assurance that we

have a minimum. For the skeptic, the second variation derivation and the proof that

Equation 3.43 corresponds to a minimum, the text by Poole [58] is suggested.

Often it is desirable to use ana priori estimated correction to the state x, and

the corresponding covariance P as the initial condition for the current time. After

properly mapping them to the current epoch, denoted byx andP , they can then be

propagated to obtain a future state. For the previous and current data equations, we

have

old x = Ix + η current y = Hx + ε (3.45)

whereη is the previous observation error. For both old and current, the observation

errors and error covariance are defined as

E[ε] = 0, E[εεT ] = R, E[η] = 0, E[ηηT ] = P. (3.46)

To combine these equations together, it is assumed that previous and current obser-

vation errors are not correlated,E[εηT ] = 0 andE[ηεT ] = 0. This leads to

ý =

[
y
x

]
, H́ =

[
H
I

]
, έ =

[
ε
η

]
, and Ŕ =

[
R 0
0 P

]
. (3.47)

SubstitutingŔ, H́, andý into Equation 3.43, the linear unbiased minimum variance

estimate, that includesa priori previous state, yields

x̂ = [(HT R−1H) + P
−1

]
−1

[HT R−1y + P
−1

x]. (3.48)
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Finally, the error covariance that includes previous covariance is expressed as

P = [(HT R−1H) + P
−1

]
−1

. (3.49)

Notice whenW = R−1, the estimates given by the normal equation in weighted

least squares and LUMVE are equivalent, Equations 3.22 and 3.48, respectively.

3.1.4 Description of the H Matrix

The observation partials matrix H, often called thesensitivityor information

matrix, relates how observations are affected by changes in state. As seen in Equa-

tion 3.9, H is the product of̃H(ti) and the state transition matrixΦ(t, t0), where the

former is derived from G, the observation model. A simple example of this model

is that of the range between an observing terrestrial station and a satellite, shown in

Figure 3.1 wherer equals the inertial coordinates of the satellite,Rs.i. is the relative

range vector from the ith station to the satellite in the inertial coordinate frame, and

rs.i. is the inertial position vector of the ith station. G =G(X(t), t) =
∥∥Rs.i.

∥∥, is the

magnitude of the relative position vector between the satellite and the ith observing

station. Thus the scalar range G is expressed as,

G = [(x− xECEF cos θ + yECEF sin θ)2 + (y − xECEF sin θ − yECEF cos θ)2

+(z − zECEF )2]
1
2 , (3.50)

where the Earth Centered Earth Fixed (ECEF) (x,y,z) coordinates of the ith station

have been transformed through the Greenwich hour angleθ into the Earth centered

inertial frame and subtracted from the inertial position vectorr(x,y,z) of the satel-

lite. Utilizing analytical or numerical techniques, G is used to evaluate the partials
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Figure 3.1: Observation Model.

for row vectorH̃(t),

H̃(t) =
∂G[X∗(t)]
∂X∗(t)

=
[

∂G[X∗(t)]
∂X∗(t)1

∂G[X∗(t)]
∂X∗(t)2

. . . ∂G[X∗(t)]
∂X∗(t)n

]
, (3.51)

where n is the number of unknown parameters to be estimated. Multiplication by

the state transition matrix is then carried out to map dynamic parameters to the re-

quired epoch, resulting in the matrix H. It can been seen here, and in Equation 3.9,

that each row of H contains the relation between one observation and a change in

state, mapped to the time of epoch. Therefore all rows of H relate how a change

in the initial state (at epoch) affect all measurements in a given batch of observa-

tions. Of course more than one observation model may be included into a batch of

observations which make up all of the rows of the sensitivity matrix H.
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3.2 Weighting of Observation Data

This section discusses the issue of assigning the proper amount of “influ-

ence” or weight that an observation is allowed to have during the estimation pro-

cess of a gravity field. Because not all observations are created equal or come from

identical sensor equipment, the accuracy of each individual observation or class

of observations must be taken into account. Assigning proper weights to satellite

observation data to combine them into a single information equation is the most

difficult step in the gravity solution process and is often performed in an iterative

manner, that is empirical in nature. Of course the chosen observation weights af-

fect both the quality of the gravity solution and its error covariance, so great care

is needed in their selection. If, the observation errors were exactly known, then

the square of their inverses, 1
[σ(i)obs

2]
would provide ideal data weights, whereσ(i)

is the ith standard deviation error of the ith satellite observation. However, these

observations errors are never exactly known, so they are approximated by the given

accuracy of the corresponding measurement system. Furthermore, the observa-

tion model error for a class of observations is also considered in the selection of

observation data weights. An iterative algorithm, which automatically determines

observation data weights was developed by Yuan [6]. For an additional ith data set

in the solution,Wi is defined as the ratio of two scalars, namely

Wi =
mi

(yi −Hix̂)T Ri
−1(yi −Hix̂)

, (3.52)

wheremi is the number of observations in the ith additional data set,Ri
−1 is the

initial weight based on the accuracies and models of the observation system class
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when the information equation for that data set was created,x̂ is the corresponding

estimate of the state deviation from the initial gravity solution, andyi andHi are the

observation residual vector and observation partials matrix, respectively, of the ith

data set. Remember that the calculated scalar values of Equation 3.52 are located

along the diagonal of the matrixWi. The new solution that uses these weighted

observation data sets is expected to return smaller residuals for a better “fit” to the

observations, than was seen in the initial solution. Continuing this scheme, the

corresponding variables,yi, Hi andWi
−1 of the new solution are then utilized to

calculate new weights for the observation data sets, for a better solution. This pro-

cedure is repeated until a defined criterion of convergence has been satisfied. The

Center for Space Research at the University of Texas at Austin uses this algorithm

in most gravity field solutions.

Another technique for determining weights, compares the changes in solu-

tion and error covariance as the result of introducing particular data sets into the

solution. This technique is called independent and subset solutions (Nerem [59]).

The distinction between two different estimated gravity solutionsX̂1 andX̂2, that

have been solved by using the same reference gravity field, is equal to the difference

between their state deviation estimates,x̂1 andx̂2, namely,

X̂1 − X̂2 = (X1
∗ + x̂1)− (X2

∗ + x̂2)

= x̂1 − x̂2 if X̂1
∗

= X̂2
∗
. (3.53)

The covariances of̂X1 andX̂2 are of the same form seen in Equation 3.19, rewritten
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here as

P1 = E[(x̂1 − x)(x̂1 − x)T ] = E[ε1ε1
T ] (3.54)

P2 = E[(x̂2 − x)(x̂2 − x)T ] = E[ε2ε2
T ] (3.55)

whereε1 andε2 are the estimation error vectors in solution 1 and 2, respectively.

The difference in the covariance between the two solutions is given by Lerch [60]

as

Pdiff = E[((x̂1 − x)− (x̂2 − x))((x̂1 − x)− (x̂2 − x))T ]

= E[(ε1 − ε2)(ε1 − ε2)
T ]

= E[(ε1ε1
T − 2ε1ε2

T + ε2ε2
T )]

= P1 − 2P12 + P2, (3.56)

whereP12 represents the “cross-covariance” of the two solutions (and x is the true

value of the state deviation vector). However, if the two solutions are each computed

with completely different sets of observation data, the errors in the solutions are

uncorrelated, simplifying Equation 3.56 to

Pdiff = P1 + P2 (3.57)

If the two solutions are not computed with completely different sets of observation

data, i.e. solution 2 is a subset of solution 1, thenP12 = P1 and Equation 3.56

becomes

Pdiff = P2 − P1. (3.58)

Therefore, in either case, the differences in the computed geopotential coefficients

of both solutions may be compared to the differences of their covariances. A scale
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factor can be introduced to form a relationship to assist in the comparison of the

solution difference to the covariance difference, and is written as

(x̂1 − x̂2)
T (x̂1 − x̂2) = k · diag(Pdiff ), (3.59)

wherek is a row vector containing the scale factorski, which correspond to each

computed geopotential coefficient. In the event that all of these scale factors are

close to unity,ki ≈ 1, then the observation data weights, that produced these so-

lutions were appropriate. If this is not the case, then the weights are in need of

adjustment.

3.3 Summary

This chapter presented three basic approaches for the gravity estimation pro-

cess and discussed the issue of the weighting of observation data. The next chapter

addresses the question of how the SVD is applied in the solution of an estimation

problem and what techniques are used in this study to find the best gravity field.

Then, a simple numerical example of the SVD is given to illustrate one simple

approach.
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Chapter 4

The Singular Value Decomposition (SVD)

The origin of the SVD can be traced back to the year 1873, when the Italian

mathematician, Eugene Beltrami (who studied at the University of Pavia, in Italy,

from 1853 to 1856) first published a paper containing a derivation of the singu-

lar value decomposition (SVD). He used the SVD in his attempt to explain bilinear

forms. In 1874, Camile Jordan, a French engineer and author of 120 papers in math-

ematics, independently derived the SVD in an effort to reduce a bilinear form to a

diagonal form by performing orthogonal substitutions. Later in 1907, the German

Erhard Schmidt generalized the SVD concept to function space and discovered the

approximation theorem using singular values. In 1913, Autonne extended the SVD

to complex matrices. In 1936, Americans Eckart and Young extended the SVD to

apply to rectangular matrices. Then in 1965, Golub and Kahan introduced the SVD

into the field of numerical analysis with their proposed computational algorithm

(Golub and W. Kahan [61]). Since the inception of the numerical computational

SVD algorithm, it has been widely applied in many different fields of engineering

science.

The SVD is not only useful in engineering but also in the areas of computer

science, image processing, control, signal processing, as well in the fields of natural
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science for example chemistry, geology, statistics, and medicine.

4.1 Formal Mathematical Definition of the SVD

When a set of linear equations inadequately describes a system, the matrix

that is used to solve for a solution, will be singular or numerically close to sin-

gularity. Standard techniques such as Gaussian elimination or LU Decomposition

will fail to give satisfactory results and the solution will be nonsensical. However,

through the use of the SVD it is possible to discover where the problems are, elim-

inate them and arrive at a solution. It is with the help of the singular values of a

matrix, that one can “diagnose” difficulties preventing solution and remove them.

The SVD is based on the following theorem, where n is the number of unknown

parameters and m is the number of observations.

Theorem 4.1.1.If H is a real m x n matrix, wherem ≥ n, then there exist orthog-

onal matricesU = [u1, ...,um] ∈ <mxm andV = [v1, ...,vn] ∈ <nxn such that

UTHV = diag(σ1, ..., σp) ∈ <mxn, p = min(m,n), whereσ1 ≥ σ2 ≥ . . . σp ≥ 0.

Theσi’s are thesingular valuesof H and the column vectorsui andvi are

the ith left singular vectorand theith right singular vector, respectively.V is both

row and column orthogonal such thatVTV = VVT = In andU is column orthog-

onal such thatUTU = Im (Golub [23]). The singular values of matrix H represent

the lengths of a semi-axes of the hyper ellipsoid defined by{Hx : ‖x‖ = 1} (Bels-

ley [62]). The SVD of H may be expressed, where the rank(H) = n (that is H is full
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rank), as

H = UmSnVn
T =

n∑

i=1

σiuivi
T. (4.1)

Notice that eachσi in Equation 4.1 is a scalar, allowing them to be moved out from

between the vectorsu andv in the summation. Portraying this decomposition in

another way, one can see the dimensions or shapes of the matrices clearly. The

square m-by-m matrix U, consists of the left singularui vectors, rectangular m-

by-n matrixΣ, contains the singular values in the top square n-by-n matrix, where

all other matrix entries are zero, and the square n-by-n matrix V contains the right

singular vectorsvi,

H =




u1 · · · · · · um







σ1

.. .
σn

0





 v1 · · · vn


 . (4.2)

If matrix H were square to begin with, then all matrix dimension in Equation 4.2

would be equal. It is important to mention this matrix geometry, as it is helpful to

understand how the SVD is applied to the normal matrix in the normal least squares

problem or in the orthogonal transformation.

4.1.1 The SVD and the Least Squares Problem

In the linearized least squares problem, the state deviation vectorx of di-

mension n, is related to the observation residual vectory, of dimension m, in the

following equation, through the so called information matrix H,

y = Hx + ε. (4.3)
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H is m-by-n and is also called the observation-state matrix whileε is a an error

vector of dimension m. Vectorε represents the errors of omission and commission

in the mathematical models involved in an estimation problem as well as the obser-

vation errors. While it is assumed that only the observation errors are random, this

error vector is considered to be random with zero mean,E[ε] = 0, with a covariance

equal to the identity matrix,E [ε] [ε]T = I, where I is an m-by-m.

Now suppose H is rank deficient, that is rank(H)= k < n. This means that

matrix H issingularor ill-conditioned. Such a situation can be caused by two sce-

narios. There are fewer than n independent columns or rows in matrix H, such that

the attempt to solve for n parameters in the system is impossible. Or the dimen-

sions m and n are sufficiently large, the problem is that not enough equations in

the linearized system, which manifest themselves as rows in matrix H, are linearly

independent enough to resolve certain “trouble” parameters apart from one another

during the solution, or “inversion” process. In other words, one or more rows in

matrix H are very similar to each other, in that they are almost a multiple of one

another, namely theypoint in very similar directions, i.e. they are close to being

collinear. Therefore, they are not observing these parameters and their informa-

tion content (in a collinear row) is too weak to return separate estimation values for

them.

Regardless of the situation, the SVD of H may be written as

H = USV T (4.4)

where matrix U, called theRange Spaceof matrix H, contains the left singular
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vectors, and matrix V, called theNull Spaceof matrix H, contains the right singular

vectors of matrix H. The matrix S contains the singular values of H in its upper

square portion, along the diagonal, as seen in Equation 4.2. Before we continue

with the discussion of the SVD of H, it is useful to explain what aRange Spaceand

a Null Spaceis. In general, a matrix is a linear operator which transforms a vector

from one vector space into another.

To illustrate this concept, let the linear operator, matrixA ∈ <mxn, w ∈ <n

andq ∈ <m. If, for example, A is full rank, then it can transform the vector w,

which exists in the space of dimension n, into a space of dimension m, namely the

vector q,

Aw = q. (4.5)

If this transformation is successful, then the range of A is “full” so that all of w

is transformed in to the space of q, and the vector q is therefore of dimension m-

by-1. Now if this transformation is unsuccessful, that means the range of A is not

“full”, and can not reach all of the space of q. Therefore after the unsuccessful

transformation, the vector q is not of dimension m-by-1, rather it is something less,

i.e. (m-p)-by-1. The “missing” portion of vector q, let us call it vector s, is of

dimension p-by-1. Vector s is called the null space vector. Similarly, the vector

q is called the range space vector. Both vectors are produced by their own linear

operators and provide for the transformation of the w vector into these two distinct

vector spaces.

These linear operators are called the Range Space (Matrix U) and the Null

Space (Matrix V), as seen in Theorem 4.1.1, where the former is the basis space

70



for the transformation of vector w into q, and the latter is the basis space for the

transformation of vector w into s. It can also be seen from Theorem 4.1.1, that the

column vectors in U and V are what span these spaces. Now that these important

concepts have been introduced, discussion of Equation 4.4 and the application of

the SVD on H may be continued. The matrix S can be written as

S =

[
Sk 0
0 0

]
(4.6)

whereSk is the diagonal matrix of the non-zero portion of the singular values of H.

Notice that k equals the rank of matrix H, which is less than its column dimension

n. Now, in the least squares problem, the goal is to minimize the Euclidean norm

of the residuals. In terms of the SVD this is written as

ρ = ‖y −Hx‖ = ‖UT y − UT
[
USV T

]
x‖ = ‖a− Sz‖ (4.7)

wherea = UT y andz = V T x. The vectora andv may be rewritten as

a =

[
ak

am−k

]
and z =

[
zk

zm−k

]
. (4.8)

Multiplying S by z, we see that

Sz =

[
Sk 0
0 0

] [
zk

zm−k

]
(4.9)

leads to

Sz =

[
Skzk

0

]
. (4.10)

After substituting equation 4.8 and 4.10 into 4.7 we obtain

ρ = ‖a− Sz‖ =

∣∣∣∣
∣∣∣∣
[

ak

am−k

]
−

[
Skzk

0

] ∣∣∣∣
∣∣∣∣ =

∣∣∣∣
∣∣∣∣

ak − Skzk

am−k

∣∣∣∣
∣∣∣∣

= ‖ak − Skzk‖+ ‖am−k‖. (4.11)
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Thus by settingak − Skzk = 0, zk = Sk
−1ak, ρ is minimized. Since the

value ofam−k has no effect onρ it can be set to any value. By choosingam−k = 0,

it produces a minimum norm of all solutions forx. Now let us find the expression

for thisx. From Equation 4.7, and the fact that V is an orthogonal matrix, it can be

seen thatx = V z. This means that the norm ofx is equivalent to the norm ofz.

Vectorz can be written as

z =

[
zk

0

]
=

[
Sk

−1ak

0

]
=

[
Sk

−1 0
0 0

] [
ak

am−k

]
= Sk

−1ak. (4.12)

By substituting this expression forz into x = V z and that for vectora, leads to the

estimatêx

x̂ = V Sk
−1ak = V Sk

−1UT y. (4.13)

The termSk
−1 is referred to the pseudo-inverseS+ of S (Golub [23]). The expected

value ofx̂ is

E [x̂] = E
[
V Sk

+UT y
]

= E
[
V Sk

+UT (Hx + ε)
]

= V Sk
−1UT HE [x] = V S+UT USV T x = V S+SV T x. (4.14)

Notice that,

S+S =

[
Sk

−1 0
0 0

] [
Sk 0
0 0

]
=

[
Ik 0
0 0

]
. (4.15)

This leads us to the following claim, that the estimate obtained from the

SVD is not unbiased. That is, it produces a biased estimate, if any singular values

are disposed of, causing zeros to appear in the lower right quadrant of the matrix

S+S defined in Equation 4.15. Letting

V =

[
V11 V12

V21 V22

]
(4.16)
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and carrying out the next equation shows that one does not get the Identity matrix

whenk 6= n.

V

[
Ik 0
0 0

]
V T =

[
V11 V12

V21 V22

] [
Ik 0
0 0

]
V T =

[
V11 0
V21 0

]
V T 6= In. (4.17)

Therefore, substituting the result of 4.17 into Equation 4.14, the expectation

of x̂ is

E [x̂] = V S+SV T x =

[
V11 0
V21 0

]
V T x 6= x for k 6= n. (4.18)

Thus an SVD estimate is not unbiased if any singular values are set to zero. If,

however, all singular values are retained, then k = n andS+S = In leading us to an

unbiased estimate. The covariance matrix P for the SVD can be derived as follows.

P = E
[
(x̂− E [x̂])(x̂− E [x̂])T

]

= E
[(

V S+UT y − V S+UT Hx
)(

V S+UT y − V S+UT Hx
)T

]

= V S+UT E
[
(y −Hx)(y −Hx)T

]
US+T

V T

= V S+UT E
[
εεT

]
US+T

V T . (4.19)

BecauseE
[
εεT

]
= In, Equation 4.19 is simplified to the form

P = V S+S+T
V T = V

[
Sk

−2 0
0 0

]
V T . (4.20)

The covariance matrix of Equation 4.20 represents only the random errors

in the estimation process. The bias, arising from the disposal of singular values

(caused by setting them to zero), is not included. Therefore, this covariance matrix

is not a complete representation of the error (Lerch [29]). Something very important

must also be mentioned about Equation 4.20. In the case of the normal equations
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in the least squares estimation process, it is the eigenvalues that appear along the

diagonal of matrixS+S+T in Equation 4.20, because each singular value ends up

being squared along this diagonal. An eigenvalueλi is the square of a singular value

σi, i.e. λi = σi
2. Thus, the exponent onSk should be set to minus one in Equation

4.20, when actually calculating the covariance matrix P of the normal equation.

4.1.2 The SVD and the Orthogonal Transformation

The performance index is the same as seen in the previous chapter and ma-

trix R comes from the orthogonalization of matrix H.

J = ‖QW
1
2 (y −Hx) ‖

= ‖b−Rx‖+ ‖e‖ = ‖b− USV T x‖+ ‖e‖

= ‖UT
(
b− USV T x

) ‖+ ‖e‖ = ‖b̃− SV T x‖+ ‖e‖

= ‖b̃− Sz‖+ ‖e‖ (4.21)

whereR = USV T , b̃ = UT b andz = V T x. For a full rank, well conditioned

matrix R, the performance index is minimized when‖b − Rx‖ = 0 or Rx = b.

Then the state deviation vectorx = R−1b is obtained by backwards substitution.

It can also be obtained by using the SVD, whereS = S+ = Sk, and k = n as

seen in Equation 4.13. If R is not full rank (ill-conditioned), then the performance

index is minimized when‖b̃− Sz‖ = 0 or Sz = b̃ and zero (or near zero) singular

values on the diagonal of matrix S are discarded to obtain a non-unique solution,

x = V S+UT b. The number of discarded singular values is n-k. During solution,

the reciprocals of each singular value is required. If one of them is zero, then its
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inverse will be infinity causing a machine overflow. To avoid this problem, a zero

singular value is discarded by setting it to zero after inversion. In other words we

set infinity to zero! (Important note: In actual implementation, the inverse of zero,

or near zero, is simply avoided and its “inverse value” is simply assigned the value

of zero.) The performance index in this case is

J = ‖b̃k − Skzk‖+ ‖b̃n−k‖+ ‖e‖. (4.22)

(In comparison to the numerical rank solution, which includes all singular values,

better gravity solutions may be obtained by discarding non-zero singular values.)

Equation 4.22 represents the performance index in which k singular values arere-

tainedand n-k are thrown away. Notice the introduction of the bias term‖b̃n−k‖.
It represents the information which is harmful or at best useless to the estimated

solution. The disposal of the n-k singular values results in a biased estimate. The

size of this bias and how it compares to the random only portion of the solution is a

topic of a later section.

Often some singular values appearing in matrix S are very close to zero and

there is a smooth transition from them to very large values. If a value is “very

small”, during the inversion process, the reciprocal of this number might cause the

inflation of the correction to an estimated parameter. If the singular value is “large”

then it is not apt to do this. Exactly which non-zero singular values in matrix S

should be discarded to achieve the best solution, is the subject of discussion after

the next section.
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4.1.3 The SVD Bias

Bias has been almost completely ignored in the literature of geophysical and

geodetic inversions (Rummel [63]). In the previous section, the bias resulting from

an SVD (inversion) solution was identified as‖b̃n−k‖. For simplicity, let us rename

this vector̃b. To understand better what the bias vector and a biased estimate is, let

us review the meaning of an unbiased estimate.

If multiple unbiased estimations are performed using different data, the scat-

ter of estimates (each one from a different data set) would be centered about the true

stateX. Using the expected value operator E[ ], the mean of the unbiased updated

state is,

E[X̂] = E[X∗ + x̂]

= X∗ + E[x̂]

= X∗ + x

= X

(4.23)

where X and x are the true state and true deviation, respectively, andx̂ is the esti-

mated correction. Thus, the covariance of this solution is

PX̂ = E[(X̂ − E[X̂])(X̂ − E[X̂])
T
]

= E[(X̂ −X)(X̂ −X)
T
],

(4.24)
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whereE[X̂] = X (the true state) and

X̂ −X = X∗ + x̂−X

= X∗ + x̂− (X∗ + x)

= x̂− x.

(4.25)

This allows us to conclude that,

PX̂ = E[(x̂− x)(x̂− x)T ]

= E[(x̂− E[x̂])(x̂− E[x̂])T ]

= Px̂.

(4.26)

In other words, the covariance of the updated state is the same as the covariance

of the correction update vector̂x. Stated in another way, the scatter of multiple

estimates (each using different data) ofX̂ about a mean ofX (true state) has the

same scatter as multiple estimates ofx̂ about a mean of̂x = x (true deviation). If we

were to draw error hyper- ellipsoids for̂X, they would all be exactly of the same

shape and orientation as those error hyper-ellipsoids forx̂. (Note: a hyper-ellipsoid

is an error ellipsoid for more than 3 dimensions.)

If the error inx̂ is defined as̃e ≡ x̂ − x, the scatter of the error has a mean
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of zero.

E[ẽ] = E[x̂− x]

= E[x̂]− E[x]

= x− x

= 0

(4.27)

Therefore the covariance matrix ofẽ is the same as the covariance matrix ofx̂,

namely

Pẽ = E[(ẽ− E[ẽ])(ẽ− E[ẽ])T ]

= E[(ẽ)(ẽ)T ]

= E[(x̂− x)(x̂− x)T ]

= E[(x̂− E[x̂])(x̂− E[x̂])T ] = Px̂.

(4.28)

Thus, for an unbiased estimate,Pẽ = Px̂ = PX̂ . Figure 4.1 illustrates this concept.

A two dimensional (2x1) vector estimate, has the error ellipses forx̂ centered on x,

the true deviation. It has the same error ellipses forẽ, centered on zero.

Now we are in a position to better understand what the bias vector and a

biased estimate is. Usually the term “true bias”b̃ is an unknown and represents the

difference between the expected value of the estimated stateX̂ and the true state

vectorX,

b̃ = E[X̂biased]−X. (4.29)
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Figure 4.1: 2-Dim. Error Ellipses for Deviation and Error

Figure 4.2 displays this scenario.

The termb̃ is also equal to the difference between the expected value ofx̂

and the truedeviationx. Equation 4.30 expresses this relation as,

b̃ = E[x̂biased]− x. (4.30)

Whether the estimate is biased or not, the state estimate is defined as

X̂ = X∗ + x̂, (4.31)

whereX∗ is the nominal and̂x is the correction.

Notice that Figure 4.2 also illustrates the fact that (in two dimensions) the

error ellipses for a biased estimate are not only centered about a different expected

value, but that the ellipses themselves are of a different shape, size and orientation.

For the case where n> 3, the resulting biased error hyper-ellipsoids would also be

centered about a different location (given byE[X̂biased]) and have different shapes

and orientation in comparison to those of the solutions from an unbiased estimate.
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An expression for the biased estimate is given (analogously to the unbiased case) as

X̂biased − E[X̂biased] = (X∗ + x̂biased)− (X + b̃)

= (X∗ + x̂biased)− (X∗ + x + b̃)

= x̂biased − (x + b̃)

= x̂biased − E[x̂biased],

(4.32)

whereE[x̂biased] is also seen in Equation 4.30. The covariance of this biased esti-

mate is then written as

PX̂biased
= E[(X̂biased − E[X̂biased])(X̂biased − E[X̂biased])

T
]

= E[(x̂biased − E[x̂biased])(x̂biased − E[x̂biased])
T ]

= Px̂biased
.

(4.33)

Equation 4.33 shows that the covariance of the updated biased state is the same as

the covariance of the biased correction update vector.

If the error in x̂biased is defined as̃ebiased ≡ x̂biased − x, the scatter of the

biased error has its mean centered on the bias (not zero), wherex = xtrue.

E[ẽbiased] = E[x̂biased − x]

= E[x̂biased]− E[x]

= xbiased − x

= b̃,

(4.34)
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Figure 4.2: 2-Dim. Error Ellipses for the SVD Biased Estimate

whereb̃ is also defined in Equation 4.30. (Important note: None of the Equations

4.23 through 4.34 can/will in practice provide no evidencewhatsoeverof a bias in

the estimate. These equations convey absolutely no knowledge of the existence of

b̃. Implementing/Calculating Equation 4.18 provides the proof that a bias exists.

Calculating that bias vector is explained below.)

Unfortunately, because the “true bias”b̃ ( bTRUE in Figure 4.2) is an un-

known (because the true state is unknown), one is forced to approximatebTRUE.

This is done by taking the difference between one value ofX̂UNBIASED and one

value of the SVD estimated̂XBIASED, to give the approximate bias vectorbAPPROX .

The termX̂UNBIASED is assigned to be an accepted standard estimate, such as the

Texas Earth Gravity 4 (TEG4) solution. Figure 4.2 illustrates this concept in two

dimensions. The true bias vector is the exact difference between the expected value

of X̂BIASED (the SVD estimate) andXTRUE. Figure 4.2 also shows that if both the
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biased and unbiased solutions are some “small” distance away from their expected

values (the center of their respective scatters), then the approximated bias vector

bAPPROX will be approximately equal to the true bias.

One method of quantifying/measuring the proximity of a biased solution to

that of an unbiased, is to use this approximated bias vector,

bAPPROX = X̂BIASED − X̂UNBIASED, (4.35)

in comparing the trace of the biased covariance matrixPx̂biased
(which contains ran-

dom error/uncertainty only) to the trace ofbAPPROXbAPPROX
T

(Bouman [64]). If

the ratio of the latter to the former is much less than unity, then the biased solution

may be considered as unbiased in an approximate sense. Since this metric is used

to assess the bias due to ridge regression or a Tikhonov regularization with signal

constraint (Bouman [64]), it will be used to evaluate the bias in the SVD solutions

of this investigation. To compute the biasvector bAPPROX , true coefficients are

needed. For this purpose, solutions from EIGEN1S (Reigber [65]), TEG4 (Tapley

[66]) and EGM96 [67] are used for the cases of CHAMP and GRACE.

4.1.4 Stabilization and Optimization of Solution

The reason why singular values in an ill-conditioned system of linear equa-

tions are discarded, is because keeping all of them results in a solution in which

some poorly observed parameters (elements of the state deviation correction vec-

tor), become “inflated”, meaning that they become too large or nonsensical. This is

an indication that there is not enough information in the observations to resolve the
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parameters apart from one another, specifically those which are suffering the infla-

tion. To “deflate” these estimated parameters or to stabilize their values, singular

values, which contribute to their instability during the estimation process, must be

discarded, and they may be thrown away based upon subjective or objective criteria.

For a large gravity field problem, high degree and order coefficients may be poorly

observed, leading to an inflation in their estimated values. By discarding singular

values it is possible to stabilize or to “deflate” these parameters so that reasonable

solutions can be obtained. Because this leads to many candidate solutions, it is de-

sirable to search for the optimal solution. The next section describes some of these

optimization techniques.

4.1.4.1 Inspection of Singular Values

The rank of a matrix determined by performing the SVD, or any other nu-

merical method, is referred to as the numerical rank. The rank of a matrix is the

number of singular values that are larger than zero. The most simplest method to

find the zeros is to plot all singular values and inspect them. Any located zero value

is then discarded during the solution process. However, it is often the case that

many singular values are very “close” to zero and the other computed singular val-

ues are smoothly dispersed up to some maximum value. Unfortunately, numerical

roundoff may cause an otherwise zero value to result in a very small value, or visa

versa. Therefore a choice must be made as to which singular values will be kept or

discarded, and this choice is often not obvious. The subjective method of inspection

may be used a good starting point in the search for the optimal pseudo inverse.
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4.1.4.2 Relative Error

Using a smaller rank matrix with k singular values to approximate a matrix

with n singular values, represents a forfeiture of n-k singular values and the infor-

mation they carry. One way to describe this loss of data is termed “relative error”

[30], and is represented in the following equation.

e (k) = 1−
√∑k

i=1s
2
i∑n

i=1s
2
i

, (4.36)

where eachsi is a singular value. Notice that e(k) ranges from zero to one as a

function of the integer k. As k approaches n, then more and more information is

retained. Thus, when k = n, no matrix information is discarded, giving a value

of 0 relative error. As k approaches zero, the opposite trend is observed. Thus,

when k = 0, all matrix information is gone, yielding a relative error of unity. Of

course the magnitude of singular values has a profound effect on relative error as to

their inclusion or exclusion. Consequently, dropping the very small singular values

of a near singular matrix does not significantly affect the relative error. However,

dropping the very large singular values, delivers considerable effect. Therefore if a

value of relative error is chosen as an objective, then the corresponding numerical

rank may be determined using Equation 4.36.

4.1.4.3 Norm-Norm Plot

Since the Norm-Norm Plot is the combination of two different graphs of the

“norm of the solution” and the “norm of the residual”, each should be described

separately. Although both are dependent on the matrix-vector equationÃx̂ = b,
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each exhibits distinct behaviors as a function of the number of singular values used

in an SVD solution. The “norm of the solution”‖x̂‖2 is defined as

‖x̂‖2 = ‖Ã−1b‖2, (4.37)

and the “norm of the residual”‖ρ‖2, is known as

‖ρ‖2 = ‖ Ãx̂− b ‖2. (4.38)

Every point in the plots generated by Equations 4.37 and 4.38, represents a

different solution to the linear equation of̃Ax̂ = b. Thus, it is possible to search

for and find an optimal SVD solution among the many candidates afforded by these

equations. The norm of the solution vector is directly proportional to the number

of included singular values used in an SVD solution, while there is an indirect pro-

portion between the norm of the residual vector and the singular values. These

two norms can be merged together in a so called “norm-norm” plot, by plotting the

norm of the residual vector versus the norm of the solution vector, see Figure 6.38.

Such norm-norm plots can be seen in Ehrig and Nowak [12] and in the problem of

spacecraft navigation at the Jet Propulsion Laboratory (JPL) McCord [25]. In the

left region of the norm-norm plot, fewer singular values are retained in the SVD so-

lution. The residuals will be larger due to the smaller contributions of the correction

vector elements to the a priori state vector. As more and more singular values are

retained, the correction vector becomes larger while its elements contribute more

and more to the state vector, leading to an overall decrease in residuals. This trend

continues until all singular values are retained, causing the norm of the solution to
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be large compared to the norm of the residual. It is the point on this norm-norm

curve, that is closest to the origin where we find the optimal balance between these

two norms. It is the point where the square root of the sum of the squares of the

elements of the residual vector,ρ and solution vector̂x are a minimum.

Before the parallel implementation of the SVD in this investigation, the

main disadvantage and difficulty of generating these norm norm plots was the

amount of time needed to compute each SVD solution and their norms (Ahn [30]).

However, implementing newly developed code (( Parallel LA rge Svd Solver) PLASS

), whose methods are discussed in Chapter 5, this obstacle has been eliminated

through the use of multiprocessing. Using 32 processors, for example,PLASS2

can generate very easily 3,000 different solutions of a GRACE gravity field of over

25,000 parameters in less than 8 hours on the current computer system at NASA

Ames. Such computation power allows for a fine grained sweep of all singular

values to be performed so that interesting regions in the norm-norm plot may be

investigated further. Since a norm-norm plot involves only the norms of the correc-

tion vector of a given system, its optimal solution may not correspond to an optimal

gravity solution. The correction vector must be added to the nominal gravity field

(called the nominal vector), before an adequate evaluation can be completed. Ex-

ample of such assessments are the orbital arc fit and the geoid test and are discussed

in a later section.
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4.1.4.4 Mean Square Error (MSE)

The MSE analysis can provide both an approximation of the bias introduced

by the elimination of singular values during an SVD solution and the optimal num-

ber of them to retain. The mean square error is the sum of the bias and noise for

an estimate. Using the Equations 4.7, 4.8 and remembering thatz = V T x, we can

let the bias vector due to the removal of singular values, be defined in z space. The

bias vector is then written as (Lerch [29])

β = z − E[ẑ] =

[
zk

zn−k

]
− E

[
zk

0

]
=

[
0

zn−k

]
where ẑ =

[
zk

0

]
. (4.39)

If it is desired, the covariance matrix of the estimate z may be derived as

P = E
[
(ẑ − E [ẑ])(ẑ − E [ẑ])T

]

= E
[(

S+UT y − S+UT Hx
)(

S+UT y − S+UT Hx
)T

]

= S+UT E
[
(y −Hx)(y −Hx)T

]
US+T

= S+UT E
[
εεT

]
US+T

=

[
Sk

−2 0
0 0

]
(4.40)

According to Lerch [29], the trace of the mean square error matrix in terms of z,

can be derived as a function of the integer k

trace[MSE(X̂)] = E[(X − X̂)
T
(X − X̂)]

= E[(z − ẑ)T (z − ẑ)]

=
∑k

i=1
S−2

i +
∑n

i=k+1
z2

i . (4.41)

The index k is the number of retained singular values in the SVD solution.X̂ is

the solution vector, which is a combination of the nominal and the state deviation
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vectors, namelyX̂ = X∗ + x̂, wherex̂ = V ẑ. The last relation in Equation 4.41

contains the addition of a noise component and a bias component, respectively. It

can be seen that the noise contribution increases with k while the bias decreases

with k. Hence, the optimum k is one that corresponds to a noise-bias combination

that minimizes the scalar trace[MSE(X̂)]. Unfortunately, the true values ofzi

which depend on̂x, are not available. However, they can be approximated by using

Kaula’s rule allowing a realistic definition of the bias term in Equation 4.41. The

degree variances of coefficients in the spherical harmonic expansion that represent

Earth’s gravitational potential, have a magnitude that can be approximated by the

formula:

σ2 =
10−10(2` + 1)

`4
, (4.42)

where` is geo-potential degree.

Using the fact thatx = V z, zi can be approximated as

z2 ≈ diag





VT




σ1
2 · · · 0

...
. . .

...
0 · · · σm

2


V





(4.43)

where z2 is a vector whose elements are eachzi and m is the maximum geo-

potential degree of the gravity model. It is important to say that the dimension

of all matrices seen in Equation 4.43 are n-by-n, and the order in which the spher-

ical harmonic coefficients appear on the diagonal is determined by the so called

parameter name-list vector. This is an important vector which describes the order

in which the parameters of the state deviation vector appear. For a given gravity

field problem, the MSE method finds a unique value for k. Although this value may
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be based on an approximation, it nevertheless provides a good solution that can be

compared to the others obtained by different techniques.

4.1.4.5 The Kaula-Singular Value (KSV) Relation

One goal of this investigation is to relate the disposal of singular values, in

the SVD stabilization of gravity field solutions, to Kaula’s rule seen in Equation

4.42. Since an SVD solution is affected by which singular values are included in

gravity field calculations, there must exist a relation between singular values and

the equations of gravity field estimation. A gravity field solution is an estimated pa-

rameter vector, whose elements are the scaled dimensionless coefficients,Cl,m and

Sl,m. These parameters are the constants that are multiplied against the basis func-

tions appearing in the spherical harmonic expansion, which is used in the equation

to describe a three dimensional gravitational potential, U, in the free space (zero

density) above the Earth. That potential equation is given by Tapley, Born, Schutz

[45] as

U =
GM

r
+ U

′

U
′

= − GM∗

r

∞∑

l=1

(ae

r

)l

Pl(sinφ)Jl

+
GM∗

r

∞∑

l=1

l∑
m=1

(ae

r

)l

Pl,m(sinφ)[Cl,mcosmλ + Sl,msinmλ], (4.44)

The relationship between singular values and these spherical harmonic coefficients

is revealed through the use of the equation called “degree variance”,

σ2
l =

l∑
m=0

(C2
l,m + S2

l,m). (4.45)
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Thus, all coefficients for a particular harmonic degree` are squared and summed

into a single scalar, a scalar which is closely approximated by Kaula’s rule.

Two new “vectors” (actually one-dimensional arrays) can be constructed

by using Kaula’s rule and the estimated coefficients of the SVD solution. Let us

call these vectors the “Kaula vector”,vKaula, and the “svd-vector”,vsvd(k), where

k is the number of singular values retained in an SVD solution. The ordering of

the elements for both vectors are identical and are based upon the sequence of the

estimated coefficients in the SVD solution, i.e. the ordering in which degree “l”

and order “m” appear in the estimation, are repeated and synchronized between

corresponding elements of these two vectors. Each element ofvKaula is defined by

Kaula’s rule and each element ofvsvd(k) is defined by theσ2
l seen in Equation 4.45,

which is based on the SVD solution. By populating both vectors in this manner

and comparing their elements, a relation between Kaula’s rule and singular value

disposal may be discovered. By taking the two-norm of the difference of these two

vectors, we obtain the scalar,

α(k) = ‖vsvd(k) − vKaula‖2
. (4.46)

This is equivalent to taking the square root of the sum of the squares of the

differences among the elements of the vectors. The following equation illustrates

this.

α(k) =

{
lmax∑

l=1

[
v(l)svd(k)l,m

− v(l)Kaula

]2
} 1

2

, (4.47)

where,

v(l)svd(k)l,m
=

[
l∑

m=0

(C2
l,m + S2

l,m)

]
, (4.48)
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and

v(l)Kaula =

{
10−10(2l + 1)

l4

}
. (4.49)

(The calculated ith or “̀th” element ofvsvd(k), v(l)svd(k)l,m
and the calculated “`th”

element ofvKaula, v(l)Kaula is controlled by whatever degree and order is specified

by the parameter name-list vector.) By constructing this vector pair for each new

SVD solution, according to each new combination of singular values, the behavior

of the dimensionless scalarα(k) may be plotted against k, the number of singular

values retained in a solution. Thus a function relating Kaula’s rule to singular value

disposal may be graphed. It is the minimum of this curve that corresponds to the

optimal choice of singular values, for the gravity solution that best satisfies Kaula’s

rule. By sweeping through many solutions, usingPLASS2, this optimum can be

quickly found. The corresponding gravity field can then be submitted for an orbital

fit or geoid analysis.

4.1.4.6 Orbit Fit Computations and the Geoid Test

An orbit fit is a comparison of actual satellite observations to the simulated

observations which are generated by the simulated movement of the same satellite

through an estimated gravity field. The estimated gravity field from an SVD solu-

tion of either an information array or a normal matrix, can be evaluated by fitting

various satellite orbits using UTOPIA (University of Texas Orbit determination Pro-

gram) (Tapley et al.[68]) and calculating the RMS of the data residuals. Although

this technique is expensive, it provides a good evaluation of a candidate gravity

solution. The geoid test is another assessment method in which an SVD gravity
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solution is used to produce an Earth geoid and is compared to that of an accepted

standard. The differences between them are then inspected and quantified for ob-

jective criticism. Both solution assessment techniques are conducted only after the

other, less expensive five methodologies, discussed in this chapter, have produced

their optimal candidate solutions.

4.1.4.7 Simple Numerical Example of the SVD

This section is intended to show the results of the SVD method performed

on a simple case of the Least Squares problem,H̃x = b. In the first test, the

information matrixH̃, is kept in its original rectangular m-by-n form (m = 12, n =

6), whereas in the second test, the normal matrix,H̃T H̃, is formed before the SVD

is applied. Both sets of singular values are tabulated, and it can be seen that the

nonzero singular values of̃HT H̃ are the square of those of̃H. After solving the

equationH̃x = b, the norm of the solution and norm of the residual are defined as

‖x‖ and‖ρ‖ = ‖H̃x−b‖, respectively and are listed for each case of singular value

disposal, seen in Tables 4.3 and 4.4. Finally, the norm-norm plots are given. For this

simple example, the elements of matrix̃H and vectorb were randomly generated

and are shown in Equations 4.50 and 4.51.

H̃ =




837.0789 208.1173 247.5771 48.6663 585.0636 83.5205
505.7258 468.5202 613.7354 781.0929 561.3329 228.5038
431.4836 176.7597 395.1752 107.7964 98.7934 456.9960
898.3065 602.2620 617.2275 589.2601 527.8372 482.8333

...
...

...
...

...
...

898.3065 602.2620 617.2275 589.2601 527.8372 482.8333




(4.50)

92



σi H̃ H̃T H̃
1 4.9626e+003 2.4628e+007
2 622.9068 3.8801e+005
3 478.9823 2.2942e+005
4 177.6345 3.1554e+004
5 3.2285e-014 5.0616e-010
6 2.0120e-030 1.3386e-010

Table 4.1: Singular Values for computed simple test cases

xi H̃ H̃T H̃
x1 0.0044 0.0044
x2 0.0120 0.0120
x3 -0.0095 -0.0095
x4 0.0013 0.0013
x5 -0.0057 -0.0057
x6 0.0011 0.0011

Table 4.2: Solution of̂x usingH̃ andH̃T H̃

b =




0.6977
0.1542
0.3700
3.6820

...
3.6820




(4.51)

σi’s retained ‖x‖ ‖ρ‖
σ1, σ2, σ3, σ4, σ5, σ6 2.386320e+014 7.234728e+017

σ1, σ2, σ3, σ4, σ5 6.958308e-002 4.986367e+001
σ1, σ2, σ3, σ4 1.701464e-002 1.977524e-014

σ1, σ2, σ3 3.597810e-003 2.954046e+000
σ1, σ2 2.141795e-003 3.262464e+000

σ1 2.132577e-003 3.264806e+000

Table 4.3: Norm of solution and residual usingH̃
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σi’s retained ‖x‖ ‖ρ‖
σ1, σ2, σ3, σ4, σ5, σ6 2.150794e-002 5.931892e+004

σ1, σ2, σ3, σ4, σ5 2.101312e-002 1.506255e+004
σ1, σ2, σ3, σ4 1.701464e-002 4.055163e-011

σ1, σ2, σ3 3.597810e-003 5.247405e+002
σ1, σ2 2.141795e-003 8.457092e+002

σ1 2.132577e-003 8.492091e+002

Table 4.4: Norm of solution and residual usingH̃T H̃

As expected, Table 4.2 shows that the same best solution is obtained regard-

less of whether̃H is used directly, or if the normal matrix̃HT H̃ is formed. Judging

by the singular values in Table 4.1, it is obvious that the rank ofH̃ is 4, because

there are four singular values which are much greater than zero. However this rank

deficiency is clearly seen earlier by noting that this information matrix contains

only 4 independent rows out of a possible 12. This is evidence that the final 8 rows

of H̃ convey no further data needed to solve for the 12 parameters inx. Notice that

in Tables 4.3 and 4.4, the best solution occurs when the first four singular values are

retained (σ1, σ2, σ3, σ4), discarding the rest. Also, looking at the norm-norm plots

in Figures 4.3 and 4.4, one can see that the optimal solution occurs at the point

where four singular values are kept in the solution, while the remaining two are

discarded. (Remember that a singular value disposal is defined as the act of setting

the reciprocal of a particular singular value to zero, not the singular value itself.)

Thus, both ill-conditioned matrices can be used to obtain a non-unique solution by

managing the inclusion/exclusion of singular values. Of course, for much larger

problems, rank deficiency may not be readily apparent.
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4.2 Summary

This chapter answered the question of how the SVD is applied in the so-

lution of an estimation problem and the five techniques that are used to determine

the best method of singular value disposal. Also, a small example of the SVD was

given to illustrate the inspection method. If one is curious, the next chapter explains

the steps used to implement the parallel SVD algorithm. Otherwise, Chapter 5 is

not necessary background for Chapters 6 and 7.
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Chapter 5

PLASS Methods of Computing the SVD

In order to apply the SVD to solve for a very large gravity field, new code,

written in C, and using the object based parallel infrastructure of Parallel Linear

Algebra Package (PLAPACK) (van de Geijn [37]), was developed. Over 200 new

parallel routines were written and integrated into two SVD tools required for this

study and are given the common name (ParallelLA rgeSvd Solver)PLASS. These

two tools are distinguished asPLASS1 andPLASS2. Already existing code, for

example the Fortran 90 and the Fortran 77 seen in the widely used canned rou-

tines of the Linear Algebra Package (LAPACK) is not able to easily handle esti-

mation problems involving gravity fields much larger than about 5000 unknown

parameters. Because the Fortran code of LAPACK issequentialin nature, using

only one computer, applying it to typical problem sizes seen in either the Challeng-

ing Minisatellite Payload (CHAMP) or Gravity Recovery and Climate Experiment

(GRACE) projects, would require months or years of computer wall clock time

to solve for SVD gravity solutions. There are however, a few selected Fortran 90

and Fortran 77 routines that have been wrapped inside thePLASS SVD Tools,

which are needed to perform some elementary single processor calculations. The

following sections describe the SVD algorithm ofPLASSand its methods of over-

coming the numerous computational obstacles faced when implementing the SVD
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technique to solve for large gravity fields. When either of the below algorithms,

PLASS1 or PLASS2 are utilized, implementing the SVD becomes a viable option

for solving large systems of equations.

5.1 Bidiagonalization of a Matrix

The first stage in performing the singular value decomposition on a system

of linear equations is to decompose the representative matrix to a bidiagonal form,

in which all matrix entries are zero except for the main diagonal and the upper di-

agonal. The way in which a matrix can be bidiagonalized is through the use of

orthogonaltransformations(Watkins [7], Demmel [69]). The two most common

forms are the plane rotation (i.e. Givens’ rotation) and the reflection (i.e. House-

holder reflection), the latter of which is described and defined in the next section.

5.1.1 Householder Reflection

Also called a reflector, the Householder transformation, named after A.S.

Householder, who was the first to use them in matrix computations, is a transfor-

mation which zeroes out all but the first element of a particular matrix column or

row. This reflector is an operator, that is multiplied against a matrix. To illus-

trate what this means, let us first consider its operation in a two dimensional basis

space. Letξ be any line in<2 that passes through the origin. The operator that

reflects through the lineξ is a linear transformation, so it can be represented by a

matrix (Watkins [7]). To determine that matrix, let nonzero vectorv lie alongξ and

nonzero vectoru be orthogonal toξ. Thenu,v is a basis of<2 so everyx ∈ <2
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Figure 5.1: Reflection through a line.

can be expressed as a linear combination ofv andu: x = αu + βv. Therefore the

reflectionof x throughξ is−αu + βv, see Figure 5.1.

This two dimensional orthogonal transformation seen in its matrix format

can be written as a rotation or a reflection, namely

Qrotation =

(
cos θ sin θ
− sin θ cos θ

)
Qreflection =

(
cos θ sin θ
sin θ − cos θ

)
(5.1)

while Qx is obtained by reflecting the vectorx across the line defined by

S = span

(
cos θ

2

sin θ
2

)
. (5.2)

If the basis space were three dimensional, then the reflection would occur across a

simple plane and the Householder matrix Q would be 3-by-3. Now letv ∈ <n be

nonzero. Then the following is the mathematical representation of this transforma-

tion in n-dimensions.

Q = I − 2

vTv
vvT (5.3)

(Notice that the fraction term evaluates to a scalar,α = 2
vT v

. ) The vectorv is called

a Householder vector. If a vectorx is multiplied byQ, then it is reflected in the
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hyperplane span{v}⊥ (Golub [23]). Now that we have defined what a Householder

transformation is, let us describe how it is multiplied against a matrix which is to

be transformed.

5.1.1.1 Reduction to Bidiagonal form

The Householder matrix is never explicitly formulated in this study. Fur-

thermore, the effect of a transformation on a matrix is also never literally recorded,

because storing zeroes is a wasteful use of computer memory. Rather, every com-

puted Householder vector is stored over its corresponding column or row that would

have contained the actual result of the transformation. To transform any matrix col-

umn, such that all elements but the first are zero, a reflection must occur on the

left side of the matrix. To transform a particular matrix row, such that all elements

but the first are zero, a reflection must occur on the right side of the matrix. These

reflections must be performed in an alternating fashion so as not to “destroy” the

zeroing of elements from a previous reflection. The following sketched procedure

illustrates this scheme. LetU1 ∈ <mxm be a reflector, acting on the left side of A,

or acting on a column of A, such that

UH1




a11

a12
...

an1


 =




∗
0
...
0


 (5.4)

Notice the first column ofU1A consists of zeroes except for the first entry. Now

choosing the first row inA, [a11, a12, . . . , a1n], let V1 ∈ <nxn be a reflector of the
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form

VH1 =




1 0 . . . 0
0
...
0

V̂H1


 (5.5)

such that

[a12, a13, . . . , a1n]VH1 = [∗0 . . . 0]. (5.6)

Remember thatVH1 is equivalent to a rank one update of the identity matrix (Equa-

tion 5.3) corresponding to the first right side Householder reflection of matrix A.

Therefore the first row ofUH1AVH1 consists of zeros except for the first

two entries. Since the first column ofVH1 is [1 . . . 0]T , the first column ofUH1A is

unaltered by right side multiplication ofVH1, thereforeUH1AVH1 has the form

UH1AVH1 =




∗ ∗ 0 . . . 0
0
...
0

Â


 (5.7)

Now, the next step (left side reflection) is identical to the first, except that it acts

on the submatrix̂A. Therefore after four steps, which completes two reflections on

both sides, matrixA has the following appearance.

UH2UH1AVH1VH2 =




∗ ∗
0 ∗

0 0 . . . 0
∗ 0 . . . 0

0
...
0

0
...
0

ˆ̂
A




(5.8)

The fifth and sixth step will perform the third reflection forUH3 andVH3 respec-

tively on submatrix ˆ̂
A. Continuing this policy, afterm reflections we achieve the
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following bidiagonal form of A:

UHn . . . UH2UH1AVH1VH2 . . . VHn−2 =




∗

0

∗
.. . . ..

. ..

0

∗
∗

0




= B

(5.9)

In many applications, m (the number of observations) is much larger than n (the

number of unknown parameters), so it is obvious that once the number of reflections

has reached n-2, the last two reflections,UHn−1, andUHn should be applied only

on the left side, because all matrix rows have been zeroed above the two non-zero

diagonals in the last column, signified by asterisks in Equation 5.9. If mÀ n, then it

makes sense to perform all of the left side Householder reflections ofUHi before the

bidiagonalization is commenced. This should be done in block format, by zeroing

out more than one column at a time. This is called theQR decomposition and

transforms the matrix A into an upper triangular form, R, where all entries are zero

except those on and above the diagonal. The following expression illustrates this.

A = URn . . . UR2UR1A = QR =
(

Q1 Q2

) (
R
0

)
(5.10)

whereR ∈ <nxn is upper triangular. These left side Householder reflections are

then applied to the right hand side vector,br.h.s., as seen in the following equation.

b = [URn . . . UR2UR1] br.h.s.. (5.11)
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(note:PLASSdoes not perform block Householder reflections, only single column

reflections.) In the case of GRACE data, the matrix R, provided byAesop(Gunter

[5]), is an input toPLASS. Then, in the next transformation stage, the bidiagonal-

ization is performed in the alternating fashion, as seen in Equation 5.9, on matrix

R. The advantage of using matrix R, which is n-by-n, is that it is relatively smaller

than m-by-n matrix A. This is a more efficient process than implementing Equation

5.9 on the original matrix A at the beginning. Thus, R is reduced to its bidiagonal

form R̂ = ŨB̃Ṽ T . Since all of these matrices aren by n, it can be shown (Watkins

[7]) that

A =
(

Q1 Q2

) [
Ũ 0
0 I

] [
B̃
0

]
Ṽ T . (5.12)

If we let

Û =
(

Q1 Q2

) [
Ũ 0
0 I

]
=

[
Q1Ũ
Q2

]
∈ <nxn (5.13)

B =

[
B̃
0

]
∈ <mxn (5.14)

andV̂ = Ṽ ∈ <nxn, it can be said thatA = ÛBV̂ T . In this less costly procedure,

the right side reflections are applied to the smaller matrixR̂ instead of to the larger

matrix A. However, once the upper̂R is obtained, any right side reflections will

destroy the zeros in the columns under the main diagonal, so the left side reflections

must be repeated to re-establish zeros under the main diagonal. But if the ratiom
n

is

sufficiently large, the added cost of the extra left side multiplications will be more

than offset by the savings in the right side multiplications (Watkins [7]). In the case

of CHAMP, the n by n normal matrix A (arising from the normal equation) is given

asA = HT H, whereH is the so called m by n information matrix. Therefore, it
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makes no sense in the CHAMP case to transform A into an upperR̂ form. However,

in the case of GRACE, the normal equations are not formed, leaving us withA =

H, whereH is m by n, and mÀ n. Therefore in case of GRACE, A is transformed

into R̂ before the alternating left and right Householder reflections are applied, as

seen in Equation 5.9. After the matrix A has been reduced to its bidiagonal form,

one may ask the question, what do we do with all of the left and right side reflections

that have been stored in the form of Householder vectors over the original matrix

A? The answer is that they eventually must be applied in an appropriate manner that

will lead to a solution. It is necessary to mention that the scalarα seen in Equation

5.3 is also stored for each Householder reflection, into a one dimensional storage

array. There are two types of one dimensional storage arrays, one containing all

of the left side reflection coefficients, called thesL array, and one containing all of

the right side reflection coefficients, called thesRarray. The next section discusses

how all of these Householder vectors and coefficients are applied in the solution

technique.

5.1.1.2 Left Side Householder Reflections

Before we reach afork in the road as described in the next section, it is

necessary first to rearrange the bidiagonalization of A into a form which solves both

the minimum least squares equation and the orthogonal transformation equation. In

both cases the equatioñAx = b must be re-expressed to putx into closed form,

namelyx = Ã−1b. After x has been calculated, it is the vector which minimizes

the norm‖Âx− b‖. Of course, the term̃A−1 is not calculated by direct means, but
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in a circuitous way that involves the inverse of the bidiagonalizedA. The following

equation introduces the decomposition ofA into the bidiagonal matrix B.

UH
T
n . . . UH

T
2 UH

T
1 AVH1VH2 . . . VHn−2 = B (5.15)

By expressing bidiagonalizedA in closed form, we see that

A = [UH1UH2 . . . UHn] B [VH1VH2 . . . VHn−2]
T . (5.16)

Since eachUHi andVHi are orthonormal matrices, the expression for the inverse of

bidiagonalized A is

A−1 = [VH1VH2 . . . VHn−2] B
−1[UH1UH2 . . . UHn]T . (5.17)

But the inverse of B is also not carried out directly. Obtaining the inverse of B will

be discussed later. For now the steps taken in the solution up to and including the

bidiagonalization of A, are described. Inserting the bidiagonalization expression of

A−1 into the relationx = A−1b, yields,

x = [VH1VH2 . . . VHn−2] B
−1[UH1UH2 . . . UHn]T b. (5.18)

Very fortunately, it is not necessary to explicitly formulate, inO(m3) operations,

the left side reflections into the m x m matrixUb = [UH1UH2 . . . UHn]. Because

there is no future need for them, they can be applied to the right hand side vectorb,

transforming it tõb = Ub
T b, in as few as4n2 +n operations. The solution therefore

reduces to

x = [VH1VH2 . . . VHn−2] B
−1b̃. (5.19)
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Now, depending upon whether we employPLASS1 or PLASS2, described in the

sections below, it may be necessary to explicitly formulate the matrix

Vb = [VH1VH2 . . . VHn−2] . (5.20)

If we were to naively carry out each each matrix multiplication to formulateVb,

then the number of operations would be on the order ofO(n3). However, by accu-

mulating these reflections in block format and taking advantage of the many zeroes

in each reflection, the number of operations can be drastically reduced, as shown in

a later section. The next section describes the choice which dictates a major path

in thePLASS algorithm that is to be taken, the so calledfork in the road. That is,

whether an SVD covariance matrix is to be calculated or not. If an SVD covari-

ance matrix is needed, thenPLASS2 should be used, otherwisePLASS1 should be

applied.

5.2 SVD Tool Method One: PLASS1

EmployingPLASS1 requires twice the number of processors (in compari-

son toPLASS2), however it consumes about half of the wall clock time needed by

PLASS2. The reason is thatPLASS1 does not accumulate matrixVb, instead all

Householder reflections (both left and right) are applied to the right hand side in as

few as4n2 + 6n operations. Therefore, no matrices are accumulated or explicitly

formulated anywhere in the process.
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5.2.1 Computing the SVD without Right Side Orthonormal Basis

After matrix A has been reduced to its bidiagonal form (matrix B) further

transformations applied to reduce B are no longer Householder reflections, rather

they are Givens’ rotations, because we only need to set single particular elements

in matrix B to zero, not entire rows or columns. Such a transformation will be

described in detail later, after the policy of managing them has been discussed.

5.2.1.1 Managing the Givens’ Rotations

Givens’ rotations are applied to the left and right side of matrixB in an

alternating fashion, not unlike the pattern of the Householder transformations, until

matrix B has been decomposed to its diagonal values. Any left side Givens’ rotation

applied to matrixB, during this process, is multiplied against the right hand side

vector b̃. However, the right side Givens’ rotations (VGi described below) can be

applied tõb only after matrix B has been fully decomposed to its singular values.

Since there is no accumulated matrixVb to which they can be multiplied against,

all VGi rotations must be stored in an array until such time it is possible to multiply

them against the right hand side. The following equations illustrate thisbottleneck

caused byΣ−1.

x = [VH1VH2 . . . VHn−2]
[
VG1VG2 . . . VGf

]
Σ−1

[
UG

T
fUG

T
f−1 . . . UG

T
2UG

T
1

]
b̃,

(5.21)

thus,

B−1 =
[
VG1VG2 . . . VGf

]
Σ−1

[
UG

T
fUG

T
f−1 . . . UG

T
2UG

T
1

]
. (5.22)
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Since

Σ =




σ1

0

σ2

.. .

0

σn




, (5.23)

Σ−1 is simply obtained by taking the reciprocals of each of its diagonal elements.

It is clear that all of theUGi rotations may be quickly applied tõb as they are

generated during the convergence to a diagonalized matrixΣ, as seen in the next

equation, which is obtained by simplifying Equation 5.21.

x = [VH1VH2 . . . VHn−2]
[
VG1VG2 . . . VGf

]
Σ−1˜̃b, (5.24)

where

˜̃b =
[
UG

T
fUG

T
f−1 . . . UG

T
2UG

T
1

]
b̃. (5.25)

The new right hand side becomes (for later use in Equation 5.41),

˜̃̃
b = Σ−1

[
UG

T
fUG

T
f−1 . . . UG

T
2UG

T
1

]
b̃. (5.26)

However the class of right side Givens’ rotationsVGi may not be applied tõ̃b, before

convergence to singular values, nor can they be applied to a non existing matrixVb.

Therefore they must be placed in a storage array (along with the corresponding

columnindicesof B to which each rotation was applied) until after the iteration for

theΣ−1 matrix in Equation 5.24 has been completed. Furthermore, the storage must

occur in the proper sequence, so that the rotations can be applied later in reverse

order to the vector̃̃b. As is soon discussed, this amounts to storing four items of

information for every right side rotation (VGi) and is the reason for the enormous
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amount of memory required to catalogue and bookkeep these transformations. The

average number of iterations needed to converge to the singular values isO(n2),

where n is the number of unknown parameters being estimated. (In the case of

CHAMP and GRACE there are exactly53,272,938
2

and 348,039,215
2

right side Givens’

rotations, respectively, and multiplying each ratio by 4 gives the total number of

items to be stored for both cases.)

5.2.2 Givens’ Rotation

Also called aplane rotator, a Givens’ rotation is an n x n matrix that is never

explicitly formulated to selectively set elements of a target matrix to zero. The kth

plane rotator has the form

VGk =




1
1

. ..
1

c −s
1

. ..
1

s c
1

. ..
1




←− i

←− j

c = cos θ
s = sin θ

↑ ↑
i j

(5.27)

All blank entries in the matrix above are zeros. Therefore a plane rotator looks

like an Identity matrix except that one pair of columns and rows contains the two
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Figure 5.2: Reference Frame Rotation.

dimensional plane information. It is these column and row indices and the “c” and

“s” values which are stored into the array, discussed previously, for bookkeeping

during the multiplication of each rotation against the right hand side vector˜̃b. In

compactform the rotator looks like a 2 by 2 matrix

VGk =

(
cos θ − sin θ
sin θ cos θ

)
, (5.28)

that rotates a reference frame of a vector through an angleθ as seen in Figure 5.2.

So, for everyx ∈ <2, there exists a rotatorVG such thatV T
G x =

[
y
0

]
. Now that

we have an idea what Givens’ rotations are and how each one sets a matrix element

to zero, the alternating left and right manner in which they are all applied to the

bidiagonal matrix B is discussed next.

5.2.2.1 Convergence to Singular Values: Chasing the Bulge

Applying the Givens’ rotations, until matrix B is diagonal, is the process

of matrix B converging to its singular values. It is also known as a QR iterative
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process where each QR transformation is a step in apatternreferred to as “chas-

ing the bulge” (also called the Francis sweep). The standard algorithm for finding

singular values of a bidiagonal matrix B is the QR algorithm applied implicitly to

BT B (Golub and Kahan [61]). Thispatternor algorithm computes a sequenceBi

of bidiagonal matrices starting fromB0 = B as follows. FromBi the algorithm

computes a shiftσ2, which is usually taken to be the smallest eigenvalue of the bot-

tom 2 by 2 block ofBiB
T
i . Then the algorithm does an implicit QR factorization

of the shifted matrixBT
i Bi− σ2I = QR, where Q is orthogonal and R upper trian-

gular, from which it computes a bidiagonalBi+1 such thatBT
i+1Bi+1 = RQ + σ2I.

As i increases,Bi converges to a diagonal matrix whose elements correspond to the

singular values of the initial matrixB0 (Demmel and Kahan [69]). The detection of

convergence is an important issue and is addressed in their article. The algorithm

used in this study is a variation of this standard QR algorithm which computes all

of the singular values of a bidiagonal matrix, even the tiniest ones, with guaranteed

high relative accuracy (Demmel and Kahan [69]). It is called the “implicit zero-

shift QR algorithm”. When theσ2 term is zero, the algorithm is equivalent to the

standard. However, this improved algorithm is organized in such a way as to guar-

antee that each entry ofBi+1 is computed fromBi to nearly full machine precision

(Demmel and Kahan [69]). When the ratio of the largest to smallest singular value

(condition number) is modest, the standard QR is used and when this ratio is large,

the implicit zero-shift QR is used. This hybrid algorithm is discussed at length

in the paper by Demmel and Kahan, (Demmel and Kahan [69]), and the reader is

referred to that document for a detailed description. (It is worth mentioning, that
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this algorithm was written in Fortran and was wrapped inside thePLASS tool. For

PLASS2, the algorithm was altered so that a multitude of processors could per-

form the iteration on matrix B and implement the necessary global updates to the

Vb matrix.)

To summarize the standard QR algorithm, we need to define some simple

notation, and the example and text seen in Demmel and Kahan [69] will be recre-

ated here for the sake of simplicity and clarity inindices. Keep in mind that in

the following figures and equations, any rotation on the left side of matrix B corre-

sponds to aUGk rotation and any rotation on the right side of matrix B corresponds

to aVGk rotation.

Let J(i, j, θ) denote the Givens rotation entries i and j by angleθ. (Note

these indices correspond exactly to those seen in Equations 5.27, 5.28 and Figure

5.2.) In other words,J(i, j, θ) is an n by n identity matrix except for rows and

columns i and j whose intersections consist of the following 2 by 2 rotation matrix:

(
cos θ sin θ
− sin θ cos θ

)
. (5.29)

Given the vectorx, choosingθ so that xj

xi
= tan θ, means that the i-th and j-th

entries ofJ(i, j, θ)x will contain ±
√

(x2
i + y2

i ) and 0, respectively. To illustrate

this, let us carry this out on a 4 by 4 example, where we use x and + to indicate

nonzero entries and 0 and blank to indicate zero entries. InitiallyBi is in the form

Bi =




x x
x x

x x
x


 . (5.30)

112



We begin by postmultiplyingBi by J1 ≡ J(i, j, θ1). The very important choice

of θ1 will be discussed in a moment. This introduces a nonzero entry in the (2,1)

position:

BiJ1 =




x x
+ x x

x x
x


 . (5.31)

BiJ1 will now be pre- and postmultiplied by a sequence of Givens’ rotations whose

purpose is to “chase the bulge” indicated by “+” off the end of the matrix. Choose

θ2 so thatJ2 ≡ J(1, 2, θ2) introduces a zero in the (2,1) entry ofJ2BiJ1:

J2BiJ1 =




x x +
0 x x

x x
x


 (5.32)

Next chooseθ3 in J3 ≡ J(2, 3, θ3), θ4 in J4 ≡ J(2, 3, θ4), θ5 in J5 ≡ J(3, 4, θ5)

andθ6 in J6 ≡ J(3, 4, θ6), to give the following sequence of transformations:

J2BiJ1J3 =




x x 0
x x
+ x x

x


; J4J2BiJ1J3 =




x x
x x +
0 x x

x


 (5.33)

J4J2BiJ1J3J5 =




x x
x x 0

x x
+ x


; J6J4J2BiJ1J3J5 =




x x
x x

x x
0 x


 ,

(5.34)

whereBi+1 ≡ J6J4J2BiJ1J3J5. The error analysis of Givens’ rotations (Wilkinson

[70]) shows that the computedBi+1 is the exact transformation of a matrixBi + E

whereE is on the order ofp(n)εBi, p(n) a modest function of n (Demmel and

Kahan [69]). To chooseθ1, the shiftσ2 is computed. The shift is generally chosen to
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be the smallest eigenvalue of the bottom right 2 by 2 submatrix of the matrixBiB
T
i .

θ1 is selected so thatJ1 introduces a zero into the (2,1) entry ofJT
1 (BT

i Bi − σ2I).

Therefore, this means that

tan θ1 =
(BT

i Bi)12

σ2 − (BT
i Bi)11

. (5.35)

This choice of shift is called the Wilkinson’s shift and it guarantees at least linear

convergence and generally yields asymptotic cubic convergence of the offdiagonal

entries ofBi to zero (Parlett [71]). The assumption is that the arithmetic is done

exactly. To illustrate the zero-shift, let us takeσ2 = 0. For simplicity of notation

the subscript i is dropped on B and from Equation 5.35 we see thattan θ1 = − b12
b11

so that after the first rotation on this 4 by 4 matrix, the result is

B(1) ≡ BJ1 ≡




b
(1)
11 0

b
(1)
21 b

(1)
22 b23

b33 b34

b44


 . (5.36)

The superscript on matrix B and its entries indicate thatJ1 has been applied. Com-

paring Equation 5.36 to 5.31 it is clear that the (1,2) entry is zero instead of nonzero.

This zero will propagate through the rest of the algorithm and is the key to its ef-

fectiveness (Demmel and Kahan [69]). After applying the rotationJ2 we have

B(2) ≡ J2BJ1 ≡




b
(2)
11 b

(2)
12 b

(2)
13

0 b
(2)
22 b

(2)
23

b33 b34

b44


 (5.37)

It is interesting to note that
(

b
(2)
12 b

(2)
13

b
(2)
22 b

(2)
23

)
=

(
sin θ2b

(1)
22 sin θ2b23

cos θ2b
(1)
22 cos θ2b23

)
(5.38)
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is a rank one matrix. Therefore, postmultiplication byJ3 to zero out the (1,3) entry

will also zero out the (2,3) entry:

B(3) ≡ J2BJ1J3 ≡




b
(2)
11 b

(3)
12 0

0 b
(3)
22 0

b
(3)
32 b

(3)
33 b34

b44


 . (5.39)

Comparing matrixB(3) to that seen in Equation 5.32 one notices that there is an

extra zero on the superdiagonal. Applying rotationJ4 on the left side, repeats the

situation. The submatrix ofJ4J2BJ1J3 from the intersection of rows 2 and 3 and

columns 3 and 4 is rank one, and a rotation byJ5 on the right side will not only

zero out entry (2,4) but also entry (3,4). This pattern or movement of the nonzero

“bulge” continues in a downward fashion, toggling above and below the diagonal

until it is “chased” out of the matrix. Then, starting at the top left of matrixBi, this

entire pattern, or “bulge chasing” is repeated again from choosing a newθ1 based

on the current state ofBi. Each superdiagonal element entry will converge closer to

zero with each cycle of “bulge chasing”. When all superdiagonal elements have ap-

proached a value very close to zero, convergence is declared and the singular values

of the original matrix A, will exist along the diagonal elements of the diagonalized

matrix B. (As mentioned earlier, the detection of this convergence is of utmost im-

portance. A discussion of this can be found in section four of Demmel and Kahan

[69] for the curious reader.) Now that the singular values have been converged

to the diagonal matrixΣ, Σ−1 is obtained by taking the reciprocal of its diagonal

elements so that Equation 5.24 may be simplified into the following expression

x = [VH1VH2 . . . VHn−2]
[
VG1VG2 . . . VGf

] ˜̃̃
b (5.40)
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leaving us with two major steps remaining to calculate the solution vectorx.

5.2.3 Applying Right Side Givens’ Transformations

At this stage in the SVD algorithm ofPLASS1, all of the saved Givens’

rotations that were applied to the right side of matrixB must be released from

the storage array (in the reverse sequential order in which they were recorded) and

applied to the transformed right hand side vector called
˜̃̃
b to produce the vector̂b,

expressed as

b̂ =
[
VG1VG2 . . . VGf

] ˜̃̃
b. (5.41)

The multiplication of all the Givens’ rotations in Equation 5.41 against
˜̃̃
b can require

a maximum of exactly3n2 (where n is the number of unknown parameters) floating

point operations. Because we need to record four elements of information for every

rotation, i.e.cos θ, sin θ, global column and global row (of matrix B), for the right

side Givens’ transformations, the storage array discussed in Section 5.2.1.1 needs

to be large enough to contain6n2 floating point numbers. If n = 25917, the case of

the GRACE 160x160 gravity field problem, the number of stored elements for right

side Givens’ iterations, takes on a maximum value of4.030145 · 109. This would

require at least 176 processors to handle this storage array, assuming about 23 mega

words of available memory per processor. Once
˜̃̃
b has been completely transformed

by all of the right side Givens’ rotations, the resultingb̂ vector may be substituted

into Equation 5.40 to give

x = [VH1VH2 . . . VHn−2] b̂. (5.42)
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Now, the next and final step is to apply the right side Householder transformations

to b̂, which are stored in the form of Householder vectors directly over their cor-

responding columns and rows of matrix A. These Householder vectors are to be

released and applied tôb in the reverse order in which they were stored over matrix

A. Because no Householder matrices are explicitly created during this procedure

and the transformations applied to theb̂ vector involve one inner product between

a Householder vector and theb̂ vector, and a subsequent addition of two vectors

together, the total number of operations is2n2 − 5n + 2.

At this point we now have our solution vectorx. The next section describes

how we can solve for new solution vectors by reusing both the storage array con-

taining the right side Givens’ iterations and the right side Householder vectors.

5.2.4 Fast Calculation of new Solutions

In this study one objective is to search for an optimum solution with a given

input matrix, whether it be a square dense matrix from the normal equations or an

upper triangular matrix resulting from the blocked Householder orthogonal trans-

formations, without having to re-decompose these matrices for every different solu-

tion. Such a task would be impractical. But by reusing the stored right side Givens’

iterations and Householder reflections, different solutions may be quickly calcu-

lated in an almost trivial amount of time. It is by selectively discarding singular

values along the diagonal seen in Equation 5.23, that the matrixΣ−1 in Equation

5.26 can be altered. Subsequently, this alteration changes the contents of
˜̃̃
b, leading

to a different correction vector,x. Thus every different set of singular values chosen
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yields a different solution.

5.3 SVD Tool Method Two: PLASS2

PLASS2 starts just likePLASS1 by bidiagonalizing matrix A until it reaches

the same stage ofPLASS1’s decomposition, illustrated in Equation 5.19. It is at this

point that the two methods begin to differ (the so calledfork in theroad). Employ-

ing PLASS2 is in general a better choice to make even though it may require twice

the amount of time in comparison toPLASS1. As the size of the gravity field to be

determined gets larger,PLASS1 must store a larger number of right side Givens’

iterations/rotations into a dynamic storage array during SVD convergence. This

becomes burdensome, as the required number of processors to dynamically store

the plane rotation data may quickly exceed the available number of processors. In

PLASS2, all right side plane (Givens’) rotations can beabsorbedinto the matrixVb,

which is an accumulation of all right side Householder transformations. The term

absorbedimplies that the rotations can be multiplied against matrixVb (of Equa-

tion 5.47) as soon as they are generated during the decomposition of matrixB in its

convergence to the diagonal matrixΣ. Thus, no large storage array is required and

fewer processors are necessary for a given gravity field problem. Another advan-

tage ofPLASS2, is that it produces the null-space matrix V, whose columns are the

singular vectors spanning the null space of the original matrixA. PLASS1 does not

have this capability. These singular vectors are particularly useful as they can be

used to calculate an SVD covariance matrix and other linear objects necessary for

error analyzes. In summary, implementingPLASS2 requires more time but fewer
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processors and produces the null space V of A.PLASS1 requires more processors

but takes less time and does not return V.

5.3.1 Computing the SVD and the Right Side Orthonormal Basis

The calculation of the right side orthonormal basis of matrix A, also called

the null space, begins as an Identity matrix and is transformed with all of the rank

one updates from all right side Householder and Givens’ transformations. Let V

represent this matrix:

V = [VH1VH2 . . . VHn−2]
[
VG1VG2 . . . VGf

]
(5.43)

Clearly the accumulation must begin with the Householder transformations, starting

with VH1, and proceed in the forward direction. Each Householder matrix is not

formed explicitly but rather applied as rank one updates to identity matrices. The

following section describes how all of the right side Householder transformations

are accumulated.

5.3.1.1 Block Accumulation of Householder Reflections

The techniquePLASS2 uses to accumulate the right side Householder re-

flections is based on block representations for products of Householder matrices. In

general, the forward accumulation of Householder matrices is represented by

Q = Q1Q2 · · ·Qr Qi = I − βiv
(i)v(i)T (5.44)

whereQi is a Householder transformation, andv is its Householder vector. Since

eachQi is a rank-one modification of the identity, it follows from the structure of
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the Householder vectors thatQ is a rank-r modification of the identity and can be

written in the form (Golub [23])

Q = I + WY T (5.45)

whereW andY are n-by-r matrices. The key to computing theblock representation

in Equation 5.45 is the following lemma.

Lemma 5.3.1 (Lemma).SupposeQ = I + WY T is an n-by-n orthogonal matrix

with W,Y∈ <nxj. If P = I − βvvT with v ∈ <n andz = −βQv, then

Q+ = QP = I + W+Y+
T

(5.46)

whereW+ =
[

W z
]

andY+ =
[

Y v
]

are each n-by-(j+1) (Golub [23]).

Proof.

QP =
(
I + WY T

) (
I − βvvT

)
= I + WY T − βQvvT

= I + WY T + zvT = I +
[

W z
] [

Y v
]T

.

By repeatedly applying this lemma, the block representation ofQ in Equa-

tion 5.44 can be generated (Golub [23]). The following is an algorithm to imple-

ment this technique.
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Algorithm5.1. SupposeQ = Q1Q2 · · ·Qr is a product of n-by-n Householder ma-

trices as described in Equation 5.44. This algorithm computes matricesW,Y ∈
<nxr such thatQ = I + WY T .

Y = v(1)

W = −β1v
(1)

for j = 2:r

z = −βj(I + WY T )v(j)

W =
[

W z
]

Y =
[

Y v(j)
]

end

This algorithm involves about2r2n − 2r3

3
flops if the zeros in thev(j) are

exploited (Golub [23]). This means that as the algorithm proceeds, there are an in-

creasing amount of zero entries in the upper portion of the each subsequentv(j)

causing the same zeros to appear in each new z vector, each of which are the

columns of matrix W. Thus, matrix W will be lower triangular with non unity values

along its diagonal. MatrixY T is the matrix of right side Householder vectors that

were stored over the original matrix A, therefore matrix Y is lower triangular with

unity on its diagonal. When the algorithm above is completed, the final computa-

tion of Q is one triangular matrix times the transpose of another triangular matrix,

both of which whose contents are about 50 percent zeros, then an addition of the

identity matrix. Although the W matrix is constructed one column at at time, it is

the avoidance of any multiplication involving these zeros during the final triangular

multiplication, that enables the accumulation of the Householder transformation to
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be accomplished in a very small amount of time. Without these zeros, the appli-

cation of the SVD to large gravity problems would be intractable. The next stage

in PLASS2 is to use the matrix of accumulated right side Householder reflections

to absorb the right side Givens’ plane rotations as they are produced during the

convergence of matrix B to its diagonal matrix,Σ, of singular values. The fol-

lowing equation defines the matrix,Vb, that represents the accumulated right side

Householder transformations, for n unknown parameters.

Vb = [VH1VH2 . . . VHn−2] (5.47)

The next equation illustrates the stage of the algorithm afterVb has been accu-

mulated. Remember, that theleft side Householder reflections have already been

applied to the right hand side, and the convergence of matrixB to Σ has not yet

commenced.

x = VbB
−1b̃, b̃ =

[
UH

T
n . . . UH

T
2UH

T
1

]
b (5.48)

Notice that in Equation 5.21 all Givens’ right side (VGi) transformations generated

during convergence to singular values, appear on the right side of matrixVb. This

means that when each plane rotation is multiplied againstVb, anypair of columns

of Vb are updated. (Remember, two columns are updated by a Givens’ plane rota-

tion, because as can be seen from Equation 5.27, it is only the intersection of the

ith and jth column and row of matrixVGk which is non-zero or non-unity.) The

next section describes a critical parallel computation technique for the process of

updatingcolumn pairs of matrix Vb, which is absolutely essential toPLASS2’s

ability to handle very large gravity problems. Without it, applying the SVD to sys-
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tems of linear equations involving more than about 5000 unknown parameters, is

not practical.

5.3.2 Performing Convergence to Singular Values on all Processors

The parallel computation technique that enables the SVD solution of very

large gravity problems is made possible by the “multi-vector” linear algebra object

of the PLAPACK (van de Geijn [37]) infrastructure. The multi-vector data type is

a way in which a matrix can be distributed among processors for a given problem

(van de Geijn [37]). The main philosophy of this matrix distribution is based on

matrix rows. In other words, matrixVb is distributed such that each processor con-

tainsall of the columns of the matrix but only a portion of its rows. Because only

a portion of the rows of a matrix is fitted onto one processor, they are distributed in

a “wrapped” fashion among them. Figure 5.3 illustrates this important matrix dis-

tribution concept (multi-vector linear algebra object) for a case where the wrapping

is chosen to be exactly one fourth the number of rows of a matrix. (This is done

for ease of illustrative purposes only. Often the wrapping occurs at values of 16 or

32 rows.) Because each processor (0, 1, 2, and 3 in Figure 5.3) has access to all

columns of matrixVb and only a portion of its rows, the iteration for singular values

may be performed on every processor,independently. Remember that the right

side Givens’ rotations transformcolumn pairs of Vb. By copying the main and

superdiagonal of matrix B (only two vectors of data) to every processor we can per-

form the convergence of the bidiagonal matrix B, to itsΣ matrix (one vector of data)

on every processor independently, while updating any column pair ofVb on any pro-
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Figure 5.3: Multi-vector matrix distribution.

cessor. This means that during the SVD convergence stage, any right side Givens’

rotation as it is generated on any processor, may be appliedasynchronouslyamong

processors, to any two columns of the matrixVb, with guaranteed correct update se-

quence continuity for theentire matrix Vb. For this investigation, the importance

and these benefits of the multi-vector object can not be overemphasized. Figure

5.4 illustrates the “column pair multi-vector update” concept. Clearly, no matter

which order (among processors) the labelled steps in Figure 5.4 are carried out,

when completed, any two columns ofVb will have been completely and correctly

updated. Furthermore, it is obvious, that there is no required communication be-

tween processors, as each owns an identical copy of the initial bidiagonal matrix B.

Thus, all plane rotations generated among them will be identical, which explains

why they can be applied independently.

Once all right side Givens’ plane rotations have been multiplied againstVb,
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Figure 5.4: Givens’ update to any two columns of a Multi-vector Matrix.

matrix B will have converged to the diagonal matrixΣ of its singular values. At

this point, matrixVb is fully transformed into the null space matrixV as shown in

the next equation.

V = Vb

[
VG1VG2 . . . VGf

]
(5.49)

At this stage in the algorithm ofPLASS2, x may be represented as

x = V Σ−1˜̃b, (5.50)

remembering that̃̃b is given as

˜̃b =
[
UG

T
fUG

T
f−1 . . . UG

T
2UG

T
1

] [
UH

T
n . . . UH

T
2UH

T
1

]
b. (5.51)

5.3.3 Fast Calculation of new Solutions

It is obvious from Equation 5.50 that different correction vectorsx can be

calculated by selectively setting singular values along the diagonal ofΣ to zero,
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before Equation 5.50 is multiplied out completely. Because the null space matrix

V is also saved (both dynamically among processors, and on disk for future opti-

mization experiments) multiple correction vectorsx may be quickly re-calculated,

enabling the search for an optimal solution based on singular value disposal. This

concludes the description of thePLASS methods of computing the Singular Value

Decomposition in this study.

5.4 Summary

This chapter presented the two main algorithms of how the SVD is calcu-

lated in this study. Both are the same except that one algorithm does not accumulate

the right singular vectors (PLASS1), rather it stores the right side Givens’ rotations

into a storage array. The other method (PLASS2) doesaccumulate the right singu-

lar vectors which span the corresponding null space. The next chapter, Chapter 6

presents the results of this investigation.
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Chapter 6

Application of PLASS to CHAMP and GRACE

This chapter presents the results of the author’s toolParallel LA rge Svd

Solver (PLASS) in its application to the normal equation of CHAMP in the so-

lution of a 100x100 gravity field and to the orthogonalized equations of GRACE

in the solution of a 160x160 gravity field. In both cases, the main purpose is to

demonstrate the viability and practicality of applying the parallel solverPLASS to

very large ill-conditioned systems of satellite only observations and to find the op-

timal number of retained singular values that produces the best gravity field. Four

standard techniques of solution optimization criteria are discussed and a relation

between singular value disposal and Kaula’s rule, the Kaula Singular Value (KSV)

relation, is independently introduced, to provide a fifth method of obtaining an op-

timum stabilized estimate. To select the best gravity field among the five optimal

solutions for CHAMP or GRACE given byPLASS, each stabilized candidate grav-

ity field is evaluated. It will be concluded thatPLASS provides a feasible method

to obtain alternative solutions for large gravity fields.

PLASSalso has the capability to perform parallel inplace covariance matrix

calculations as described in Hinga [57] for full rank solutions involving the orthog-

onalized equations of GRACE.PLASS can also compute error propagations in the
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form of geoid height errors (referenced to the standard ellipsoid) based on its com-

putation of an SVD covariance matrix. ThesePLASS capabilities were developed

as a necessity for solution evaluations.

6.1 Challenging Mini-satellite Payload(CHAMP) 100x100 Grav-
ity Field

6.1.1 Introduction

The CHAMP satellite was launched on July 15, 2000 into an almost cir-

cular orbit, with an inclination of 87.2490 degrees and is managed by the Geo-

ForschungsZentrum (GFZ) in Potsdam, Germany. The satellite was injected into

an initial altitude of 454 km and was designed to last five years. Because of its

low altitude, it can be tracked continuously using the Global Positioning System

(GPS) constellation for constant and accurate monitoring of orbital perturbations

and is equipped with a high-precision three-axes accelerometer for measuring sur-

face force accelerations. One of its scientific objectives is to determine very pre-

cisely the global static Earth gravity field and its temporal variation. The linearized

system of equations which relate the model of the CHAMP satellite motion to the

GPS observations are solved by forming the normal equation. With this satellite,

the n by n normal matrix A is formed to estimate n parameters from m observations

in the equationA = HT H, where H is the so called information matrix (which

includes the observation weights).

To obtain an alternative gravity solution to the GFZ solution namedEIGEN1S,

the author’s Singular Value Decomposition (SVD) toolParallelLA rgeSvd Solver
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(PLASS) is applied to the CHAMP normal matrix (ngl-eigen-1s) to perform an

eigenvalue analysis. The original EIGEN1S solution is based on the Tikhonov reg-

ularization method of approximating the ill-conditioned system of equations in a

subspace of lower rank. In the alternative solution, based on eigenvalue analysis,

poorly determined linear combinations of parameter corrections are removed in the

culpable eigenspace of the unconstrained least-squares normal equation. The selec-

tion of eigenvalues to be removed can be based upon a method, that was indepen-

dently introduced for this investigation or four other different common optimiza-

tion/truncation criteria. The introduced method optimizes the removal of eigenval-

ues to best satisfy Kaulas rule. The four other techniques are: inspection, relative

error, norm-norm minimization (known as the so called L curve), and finding the

minimum trace of the mean square error (MSE) matrix. Analysis of five candi-

date Eigenvalue Decomposition (EVD) gravity fields is performed, and the best are

shown to be comparable to the EIGEN1S CHAMP solution obtained by the Geo-

ForschungsZentrum (GFZ).

The number of estimated parameters n is 11216. Since the matrix H corre-

sponds to satellite only observations, and because of rapid attenuation of spherical

harmonics with increasing altitude, a high degree of unobservability was expected

to cause the normal matrix A to be ill-conditioned. Starting with A,PLASS pro-

duced five stabilized solutions, along with their covariance matrices and subsequent

geoid height error propagations. The five optimal solutions are then presented.
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Figure 6.1: CHAMP Eigenvalue vs. Number

6.1.2 Inspection

Before an inspection analysis can be performed, a graph of the eigenvalues

versus number (where “number” is the ith eigenvalue), must be obtained. Fig-

ure 6.1 is such a graph. The largest and smallest eigenvalues are1.0x1026 and

1.0x1010, respectively, which yields a condition number of8.87x1015; indicating

an ill-conditioned system of equations. Often when displaying eigenvalues in this

manner, they are sorted in either increasing or decreasing size, however in this case

no such arrangement was made. The original order of appearance in solution was

maintained.

Because the smallest eigenvalue is much greater than zero and there is such

a smooth transition throughout most of the graph, it is difficult to know which of the

eigenvalues are responsible for the ill-conditioned nature of the normal matrix. It
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Figure 6.2: CHAMP: All Eigenvalues solution

was hoped that eigenvalues very close to zero would be found, because such quan-

tities are usually guilty of causing harm to a solution. Therefore three guesses had

to be made. The first guess was to dispose the smallest 4000 eigenvalues. The next

guesses were to eliminate the 6000 and 10000 smallest eigenvalues, with each guess

producing a separate solution. For comparison, a solution in which all eigenvalues

were retained, was performed. All four solutions are presented in Figures 6.2 -

6.3 as graphs of degree amplitude versus harmonic degree overlayed with Kaula’s

rule. Clearly, it can be seen from Figure 6.2, that without stabilization from eigen-

value disposal, the estimates of parameters above a harmonic degree of about 50 are

quite inflated. But when the eigenvectors which contribute to this inflation (through

linear combination in the eigenspace) are eliminated by eigenvalue disposal, their

deleterious effects are set to zero, and the solution is improved. Apparently, the

guess to remove the 10000 smallest eigenvalues is the better of the three. Because
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Figure 6.3: CHAMP: Three Inspection Solutions.

the inspection method is subjective and of only marginal value, objective methods

are needed to determine how many eigenvalues are to be thrown away, to obtain an

optimal EVD solution. The next section describes the results of the Relative Error

method.

6.1.3 Relative Error

Because the relative error calculation in Equation 4.36 is an explicit for-

mula, it is a simple matter to evaluate the relative error for all smallest eigenvalue

disposal permutations. Since there are 11216 eigenvalues, the same number of rel-

ative error scenarios are computed. This leads to the graph of relative error as a

percentage versus the number of eigenvalues retained, see Figure 6.4. As expected,

when all eigenvalues are thrown away the relative error becomes 100 percent, and

zero when all are kept. One may contend that the best relative error is zero percent,
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however we are looking for something in between the trivial solutions. That point

was determined, from the graphing data, to be at 4871 retained eigenvalues, equiv-

alent to 6345 discarded. Figure 6.5 displays the corresponding degree amplitude

versus harmonic degree spectrum, overlayed with Kaula’s rule. By comparing the

solutions of Figure 6.3 and Figure 6.5, one can see that the relative error formula

provides an improved solution that merits further evaluation. Thus the best grav-

ity field obtained from the relative error formula can be submitted as a candidate

solution for further gravity field analysis.

6.1.4 Mean Square Error (MSE)

The computation of an MSE solution, requires the accumulation of the

eigenspace V and the calculation of thez2 vector in Equation 4.43. Fortunately,

the scaling of the eigenspace matrix by selected Kaula quantities, as coordinated by
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the parameter-name-list vector, is carried out only once, before a complete permu-

tation of retained and disposed eigenvalue combinations is initiated. The result is

three curves: total noise, total bias as a result of eigenvalue disposal (approximated

by Kaula’s rule) and mean squared error (MSE). The MSE curve is the addition of

the other two curves that are functions of unitless scalar values. The minimum of

the MSE function is the optimum combination that minimizes the scalar contribu-

tion from both the total noise and total bias. That point is found to occur exactly at

the value of 6045 retained or 5171 discarded eigenvalues, see Figure 6.6. Figure 6.7

shows the corresponding gravity solution expressed as degree amplitude versus har-

monic degree overlayed with Kaula’s rule. It can be seen that in comparison with

Kaula’s rule, coefficients above harmonic degree 45 are still somewhat inflated and

in need of further stabilization. Nevertheless, it will be submitted as a candidate for

later gravity field analysis.
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6.1.5 Norm-Norm Minimization

The computation of the norm of the residual and the norm of the solution

can be carried out with or without the eigenspace matrix. If the eigenspace matrix is

not desired and only solutions are needed, thenPLASS1 should be used.PLASS2

should be applied, if other stabilization schemes are to be tested and error analyzes

carried out. In this norm-norm minimization experiment,PLASS2 was used to pro-

duce 11216 different solutions, enabling a complete sweep of all permutations in the

calculation of solution corrections‖x̂‖2 = ‖Ã−1b‖2, as seen in Equation 4.37, and

residuals‖ρ‖2 = ‖ Ãx̂− b ‖2 as seen in Equation 4.38, for the number of eigenval-

ues retained. For example, as each eigenvalue was individually disposed, a separate

solution correction vector and residual was calculated for that scenario. The norm

of each of the correction vectors and residuals were computed and plotted. Using

one processor to perform a complete sweep of eigenvalue disposal for large prob-

lem norm-norm analysis is prohibitive due to the enormous amount of computer

time and memory required. However, given enough processors,PLASS eliminates

these obstacles and completes the analysis in a matter of a few hours. Figure 6.8 is

a log-log plot of the norm of the residual versus the norm of the correction vector

for all possible scenarios. The point on the norm-norm curve that is closest to the

origin is where the optimal balance between these two norms is found. It is the

point where the square root of the sum of the squares of the elements of the residual

vector,ρ and solution vector̂x is a minimum. This point occurs in the case where

8373 eigenvalues are thrown away. Since the optimum suggested by the norm-norm

graph corresponds to a gravity fieldcorrection, this correction must be added to the
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Figure 6.8: CHAMP: Norm of Resid. vs Norm of Soln.

nominal (a priori) gravity field for evaluation. Figure 6.9 shows the correspond-

ing updated gravity solution expressed as degree amplitude versus harmonic degree

overlayed with Kaula’s rule. It can be seen that the power in the estimated coef-

ficients which causes their inflation above Kaula’s rule has been removed. Since

there are 11216 eigenvalues, we have discarded 75 percent of the information con-

tained in the normal matrix “ngl-eigen-1s”. It may be that too many eigenvalues

have been removed from this normal matrix to obtain a solution, however it will be

submitted as a candidate for gravity field analysis. The next stabilization technique

involves Kaula’s rule as a reference to eigenvalue removal for solution, which may

lead to more information retention.
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Figure 6.9: CHAMP: Discard 8373 Eigenvalues solution.

6.1.6 Kaula Eigenvalue (KEV) Relation

UsingPLASS2, and the eigenspace matrix generated from the norm-norm

analysis, every case of discarding one eigenvalue at a time was considered when

implementing the Equation 4.47, repeated here for convenience,

α(k) =

{
lmax∑

l=1

[
v(l)evd(k)l,m

− v(l)Kaula

]2
} 1

2

. (6.1)

The subscript “evd” indicates Eigenvalue Decomposition (as called for by a normal

matrix). The dimensionless termα(k) is plotted versus number (k) of eigenvalues

used. There are a total of 11216 alpha values along the generated function and it

was expected that there would be one global minimum which best satisfies Kaula’s

rule. Figure 6.10 shows the entire search for that minimum and Figure 6.11 dis-

plays a magnified view of the area where the global minimum occurs, which is the

point where 7581 eigenvalues were discarded (3635 are kept). Figure 6.12 shows
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Figure 6.10: CHAMP: Global Sweep of Eigenvalue Disposal Cases.

the corresponding updated gravity solution expressed as degree amplitude versus

harmonic degree overlayed with Kaula’s rule. In this case fewer eigenvalues were

discarded and 7 percent more of the information in the normal matrix was retained,

in comparison to the best norm-norm solution. Clearly, Figure 6.12 fulfills the

expectation that this solution follows Kaula’s rule better than the previous four best

gravity fields. It is only with further evaluation however, can the best of the five

fields be selected.

6.1.7 Evaluation of Gravity Fields

Because it is not clear which of the five candidate gravity fields is the best,

evaluations based on error propagation from the computation of geoid height er-

rors, orbit fit calculations, geoid comparisons, and degree error variance analyzes

are performed. It must be remembered however, that the covariance matrix corre-
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Figure 6.11: CHAMP: Global Minimum of Used Eigenvalue Cases.
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Figure 6.12: CHAMP: Discard 7581 Eigenvalues Solution.
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Method Optimum Number of Used Eigenvalues

Inspection 1216
Relative Error 4871

MSE 6045
Norm Norm minimization 2843

KEV relation 3635

Table 6.1: Five Candidate Gravity Fields to be Evaluated

sponding to an Eigenvalue Decomposition (EVD) or Singular Value Decomposition

(SVD) estimated solution, is not an adequate measure of error for an estimate if any

eigenvalues or singular values have been discarded. Because eigenvalues (in the

case of CHAMP) have been set to zero, their eigenvectors were not included into

the estimation process. This causes the estimate to be biased, meaning that the cal-

culated gravity field is “shifted” by some amount away from the true gravity field

and the confidence in the estimated coefficients may be too optimistic, i.e. perhaps

their variances are tighter than variances from unbiased estimates. However, if the

bias introduced by an EVD/SVD estimate is “small”, their estimates may be consid-

ered unbiased in an approximate sense. This will be discussed after the best gravity

field has been chosen. Table 6.1 summarizes the used eigenvalues in each candidate

gravity field and for convenience, Figure 6.13 presents the apparent “best” two can-

didates in a common graph overlayed with Kaula’s rule. Clearly, as eigenvalues

are discarded, the solution becomes more stabilized, in the sense that the power in

the coefficients causing inflation is removed. The next section will test these grav-

ity fields by using them to model the motion of selected Earth satellites, comparing

their predicted states with actual observations and reporting the results in the form

of orbital fit residuals.
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Figure 6.13: CHAMP: Apparent Best Two Candidate Solutions.

Satellites Semi-major axis (km) Inclination (deg.) Eccentricity

Topex/Poseidon 7705 65.99 0.0010
Starlette 7335 49.81 0.0206
Stella 7200 98.00 0.0001

Lageos 1 12271 109.83 0.0040
Lageos 2 12162 52.63 0.0137

GFZ1 6764 51.64 0.0073

Table 6.2: Orbital Elements of Selected Satellites

6.1.7.1 Orbital Arc Fit Computations

The satellites selected to fly through the estimated EVD gravity fields are

shown in Table 6.2. This group of satellites were chosen because they represent a

good sample of inclinations and altitudes necessary for an adequate orbital fit test.

Satellite GFZ1 is used to test the higher degrees/orders because of its low altitude.

Starlette, Stella, and Topex are the satellites used to assess the somewhat lower

degrees/orders of an estimated gravity field, because of their higher altitudes. To
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Figure 6.14: Selected Satellites for Orbit Fit Analysis.

scrutinize the quality of the low degrees/orders, the satellites Lageos 1 and 2 were

chosen for their high altitudes. Figure 6.14 illustrates schematically their orbital

heights above the Earth. Each orbit fit of the five EVD gravity fields was computed

using UTOPIA (Tapley et al. [68]) and compared with the actual observation data

for a chosen satellite. For uniformity in the orbit fit calculations, all of the gravita-

tional and non-gravitational perturbations of the orbit estimations in the UTOPIA

runs are kept consistent for each case and each test satellite. The gravitational per-

turbations are those due to the non-spherical geopotential of the Earth, sun, moon,

other planets, the solid Earth tides, ocean tides, rotational deformation, and general

relativity. The non-gravitational perturbations are those due to atmospheric drag,

solar radiation pressure, Earth radiation pressure and other unknown forces. Since

the epoch of the CHAMP EVD fields is years later than the epochs of the satel-

lites, J2, J3 and J4 were propagated to a common epoch. Table 6.3 contains the arc

lengths, number of arcs, and satellite epochs used in the UTOPIA runs. Table 6.4

shows the SLR (Satellite Laser Range) orbit fits in centimeters RMS (radial) of all
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Satellites Arc length (days) Number of Arcs Epoch
Topex/Poseidon 10 1 June 1999

Starlette 5 6 Jan. 1998
Stella 5 6 Sept.1993

Lageos 1 3 10 May 2002
Lageos 2 3 10 May 2002

GFZ1 3 7 Aug. 1995

Table 6.3: Observation Data used in UTOPIA Runs

five candidate gravity fields on all selected satellites. Notice, that for the Inspection

case (1216 eigenvalues used), all satellites fall out of orbit, causing the test to fail.

Therefore this case can be eliminated as a candidate gravity field, while the others

remain in contention. The case EIGEN1S is the gravity field produced by the GFZ

from the same CHAMP normal matrix “ngl-eigen-1s” of this investigation, but sta-

bilized using a different technique. It is this EIGEN1S gravity field to which the

four remaining EVD fields are compared. Other than the GFZ1 satellite, the RMS

values are fairly similar for all cases of the EVD gravity fields and the EIGEN1S.

It is not until using the test satellite GFZ1, with a low altitude, does the effect of

eigenvalue disposal deliver a considerable influence to orbital fit residuals. Because

the GFZ1 satellite is at a lower altitude, the EVD deflation effects on the poorly

observed higher degree and order coefficient corrections, can be perceived.

6.1.7.2 EVD Degree Error Variance and Geopotential Variance Difference
vs. EIGEN1S

In the previous section, one gravity field was eliminated, because it caused

all satellites to fall out of orbit in every flight simulation. By comparing the for-

mal degree error variances of each remaining candidate gravity field with that of
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Case GFZ1 Lageos 1 Lageos 2 Starlette Stella Topex

Inspection crash crash crash crash crash crash
Eigen-Kaula 11.52 8.12 10.77 3.08 3.64 2.32

MSE 15.65 10.77 10.77 2.95 3.64 2.32
Norm-Norm 11.34 8.13 10.77 3.08 3.64 2.39

Relative Error 11.22 8.12 10.77 2.97 3.64 2.34
EIGEN1S 74.03 8.11 10.76 3.07 3.31 2.37

Table 6.4: Orbital Arc Fits of Candidate Gravity Fields (cm. radial RMS)

EIGEN1S, further objective elimination of solutions is possible. The formal degree

error variance is a measure of the power of the geopotential errors for a specific har-

monic degree and is represented as the sum of the squares of the formal variance of

the estimated gravity coefficients at a particular harmonic degree l. It is expressed

in Equation 6.2 as

σ2
l =

lmax∑
m=1

(
σ2

Clm
+ σ2

Slm

)
, (6.2)

whereσClm
andσSlm

are the standard deviation of the normalized estimated geopo-

tential coefficients for degree l and order m. The valueσ2
l is then scaled into mil-

limeters of height and plotted as a function of degree amplitude versus harmonic

degree. To generate degree amplitude difference curves for the power spectrum dif-

ferences between the estimated coefficients of the EVD and EIGEN1S, the degree

variance difference42
l is calculated. This relation is a measure of the power of the

geopotential differences between two gravity fields at a specific harmonic degree l,

and is expressed in Equation 6.3 as,

42
l =

lmax∑
m=1

(
42

Clm
+42

Slm

)
, (6.3)
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where4Clm
and4Slm

are the scalar differences of the normalized geopotential

coefficients for a specific harmonic degree l and order m.

Since every candidate gravity field solution is biased (because eigenvalues

are discarded), the EVD error covariance matrix contains only random error, as

mentioned in Section 4.1.1. However, the variances of a candidate gravity field and

of a reference field (which is unbiased) may be compared to evaluate the differ-

ence between the two fields with respect to the error variance of the reference field.

Figure 6.15 shows the degree error variance of the KEV solution in comparison to

that of the EIGEN1S reference field. The differences between their geopotential

coefficient variance spectra in the form of geopotential power per harmonic degree

is shown. It can also be seen, that the formal error variances of the biased KEV

solution are all within the error variances of EIGEN1S, implying that this candidate

EVD field is within the uncertainty (in a random sense) of the EIGEN1S gravity

field. Figures 6.16, 6.17 and 6.18 illustrate the same information for the candidate

gravity fields produced by the eigenvalue analyzes of the MSE, norm-norm min-

imization, and the relative error criteria, respectively. These plots show that all

degree error variances of the four EVD solutions are within the degree error vari-

ances of EIGEN1S. However, because the degree variance differences to EIGEN1S

in the cases of MSE and Relative Error become excessive with harmonic degree,

these two candidate fields are excluded from further consideration. At this point we

have eliminated three of five EVD gravity fields. In the next section, we compare

the geoids generated from the remaining fields to that of EIGEN1S.
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Figure 6.15: CHAMP:KEV Degree Error Var. and Var. Geopotential Difference to
EIGEN1S
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Figure 6.16: CHAMP:MSE Degree Error Var. and Var. Geopotential Difference to
EIGEN1S
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Figure 6.17: CHAMP:Norm Degree Error Var. and Var. Geopotential Difference to
EIGEN1S
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Figure 6.18: CHAMP:Rel.Error Degree Error Var. and Var. Geopotential Differ-
ence to EIGEN1S
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6.1.7.3 EVD Geoid Differences to EIGEN1S

The simple geoid undulation above the Earth’s spheroid of radiusae is com-

puted as (Condi [72])

N = ae

lmax∑

l=2

l∑
m=0

P l,m(sinφ)[∆C l,mcosmλ + ∆Sl,msinmλ] (6.4)

where∆C l,m and∆Sl,m are the differences of the normalized geopotential coef-

ficients between two gravity fields. Plotting N, then reveals the geoid undulation

differences.

Figure 6.19 shows the geoid undulation map of the CHAMP EIGEN1S field

of the GFZ. The distinctive pattern of low regions south of India, Antarctica and off

the West and East coasts of North America can be seen, as well as the high regions

of the North Atlantic and East South Pacific. To illustrate the incremental effects

(to the geoid undulation differences with EIGEN1S) of eigenvalue disposal, the

eliminated MSE EVD gravity field in Figure 6.22 is presented as the first geoid un-

dulation difference contour plot, as it is the case of the least amount of eigenvalues

removed, namely 5171. Over the majority of the Earth, both land and ocean, the

differences undulate roughly between -6 cm and 7 cm. Only at the poles can wider

differences be seen. Discarding another 1174 eigenvalues in the Relative Error case

(cumulative total of 6345), Figure 6.23 indicates a very similar global pattern, ex-

cept that the differences oscillate between about -1.3 cm and 7 cm. The removal

of yet another 1236 eigenvalues, and an additional 792, seen in Figures 6.24 and

6.25 respectively, has the effect of tightening this pattern to produce a fluctuation
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between about -1 cm and 2 cm, while also emphasizing a Himalayan anomaly first

revealed in the EIGEN1S.EVD.7581 case.

Table 6.5 summarizes the extrema and mean geoid undulation values of

the GFZ reference field EIGEN1S and the EVD gravity fields, except for the in-

spection case (EIGEN1S.EVD.10000), which fails to generate a geoid. This is not

surprising, as this case also caused all test satellites to fall out of orbit during or-

bit fit evaluation. Only the geoids from the KEV and norm-norm minimization

solutions are presented in Figures 6.20 and 6.21, respectively, as they are the best

solutions. Table 6.6 summarizes the extrema and mean values of the differences

between the GFZ EIGEN1S and these EVD gravity fields. Although the EVD so-

lutions EIGEN1S.EVD.5171 and EIGEN1S.EVD.6345 have been eliminated from

further contention, they are included in this table to illustrate the incremental ef-

fects of eigenvalue disposal in the geoid differences. It can be seen that the spread

between the maximum and minimum geoid points for each case of Table 6.6 is re-

duced as the number of removed eigenvalues increases. This is another indication

that the EVD solution continues to improve with eigenvalue removal. Of course

if too many eigenvalues are removed (case EIGEN1S.EVD.10000) the estimated

coefficients may be nonsensical, even though inflation has been removed and their

degree variance power spectrum falls below Kaula’s rule. To propagate the uncer-

tainties of the EVD gravity fields,PLASS2 was tasked to compute the geoid height

errors for every calculated EVD covariance matrix. To compute the geoid height

errors of the EIGEN1S solution, a given covariance matrix, supplied by the GFZ,

was input toPLASS2.
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Number of geoid points computed: 64,800
Parameters of the mean Earth ellipsoid used in geoid undulation computations:
GM = 3.986004415 x 1014 m3

s2 , ae = 6.37813630 x 106 m
f = 1

298.2570
, ωe = 7.29215 x 10−5 rad

sec

¦ = eliminated, all table entries: units in cm.

Gravity Fields Max. Height Min. Height
Mean Value of

Geoid Undulation
EIGEN1S 79.82 -104.83 -0.8147

EIGEN1S.EVD.5171¦ 83.89 -110.13 -0.8178
EIGEN1S.EVD.6345¦ 82.58 -105.83 -0.8217
EIGEN1S.EVD.7581 83.06 -105.44 -0.8313
EIGEN1S.EVD.8373 82.33 -104.94 -0.8096

Table 6.5: Geoid Undulations of Gravity Fields

Number of geoid points computed: 64,800
Parameters of the mean Earth ellipsoid used in geoid undulation computations:
GM = 3.986004415 x 1014 m3

s2 , ae = 6.37813630 x 106 m
f = 1

298.2570
, ωe = 7.29215 x 10−5 rad

sec

¦ = eliminated, all table entries: units in cm.
Gravity Fields Max. Height Min. Height RMS about Mean

EIGEN1S - EIGEN1S.EVD.5171¦ 32.43 -30.84 5.3713
EIGEN1S - EIGEN1S.EVD.6345¦ 25.94 -19.46 3.3128
EIGEN1S - EIGEN1S.EVD.7581 8.193 -7.500 1.0885
EIGEN1S - EIGEN1S.EVD.8373 8.590 -7.170 0.9302

Table 6.6: Geoid Undulation Differences of EVD Gravity Fields to EIGEN1S
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Figure 6.19: CHAMP: GFZ Standard EIGEN1S Geoid

Figure 6.20: CHAMP: Geoid EIGEN1S.EVD.7581

Figure 6.21: CHAMP: Geoid EIGEN1S.EVD.8373
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Figure 6.22: CHAMP: Geoid Diff: EIGEN1S-EIGEN1S.EVD.5171

Figure 6.23: CHAMP: Geoid Diff: EIGEN1S-EIGEN1S.EVD.6345

Figure 6.24: CHAMP: Geoid Diff: EIGEN1S-EIGEN1S.EVD.7581

153



Figure 6.25: CHAMP: Geoid Diff: EIGEN1S-EIGEN1S.EVD.8373

6.1.7.4 Geoid Height Errors of the EVD and EIGEN1S Gravity Fields

To assess the error of a particular gravity solution, it is necessary to compute

the covariance matrix, also known as the variance-covariance matrix. It is the diag-

onal elements of this matrix that convey the statistical confidence of each parameter

in an estimated solution. The off diagonals represent their covariances and can be

used to derive all correlations among them. The covariance matrix can be used to

support “goodness of fit” evaluations or error propagations. In this investigation the

covariance matrix is used in an error propagation known as the geoid height error.

Such error calculations are the mapping of all estimation uncertainties into a space

called the geodetic surface of the Earth.

The calculation of the geoid height errors is traditionally (i.e. with a single

processor) carried out by forming the Equation 6.5 (Schrama [73]) which propa-

gates all of the error in the nxn covariance matrix, C, where n is the number of

estimated parameters, to one single location on the surface of the globe (reference

spheroid), i.e. to a particular degree latitude and longitude. This mapping is ex-

154



pressed as,

α = vT Cv, (6.5)

whereα is a 1x1 scalar, and v is an nx1 column vector containing the paired ele-

ments (ae[cosmλ]P l,m(sinφ)) and (ae[sinmλ]P l,m(sinφ)). The termP l,m(sinφ) is

the associated normalized Legendre polynomial, a harmonic function of degree l

and order m. ae is the radius of the spheroid Earth having the geodetic angles

φ = latitude, andλ = longitude. The organization of these paired terms is the same

as the order in which the estimated parameters appear in the covariance matrix C.

By multiplying the variance and covariance elements inside matrix C against the

identically ordered elements of vector v and then adding them together, as dictated

by linear algebra, all uncertainties in the estimate of a gravity field are mapped from

the spherical harmonic space and propagated into the space of the geodetic surface

of the Earth, namely onto latitude and longitude locations. Obviously, the values

inside the vector v must be re-calculated for every change in longitudeλ or lati-

tudeφ. Computing such an equation using only one processor consumes enormous

amounts of time, i.e. potentially days of wall clock time for CHAMP or GRACE

size gravity fields. Fortunately, the above sequential equation may be re-organized

into a form which allows one to bring into bear the power of parallel computation.

PLASS has this capability and computes the geoid height errors in the following

manner.

Instead of performing the calculation where v is an nx1 vector,manycolumns

of matrix D (of Equation 6.6), each of which is a different instance of the vector v, is

formed. Therefore 360 points of longitudeλ, at a particular latitudeφ, is contained
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in 360 columns of matrix D, with dimension nx360. Multiplying the right side of

covariance matrix C with D, produces the matrix B, namely

B = CD, (6.6)

where B is nx360 and C is nxn. To finish this example calculation of geoid height

errors, for a particular latitudeφ, we must carry out a certain operation ofDT

against the left side of matrix C, which isnot a matrix multiplication. The operation

is defined by taking the transpose of the ith column in D

( [
D1

] [
D2

]
· · ·

[
D360

] )
=⇒ transpose=⇒




[D1]
T

[D2]
T

· · ·
[D360]

T


 (6.7)

and performing a dot product with the ith column of B,

( [
B1

] [
B2

]
· · ·

[
B360

] )
. (6.8)

This yields the ith scalar value for the ith geoid height error at the ith point, i.e.

(φ, λ) on the reference spheroid, and can be expressed as,

αφ,λ = [Di]
T ·

[
Bi

]
. (6.9)

Performing this calculation 360 times, once around the globe, results in a row array

(not a vector) of squared geoid height errors with dimension 1x360,

[αφ,1, αφ,2, αφ,3, · · · , αφ,360] , (6.10)

for a particular latitudeφ. The square root of each term is then taken to get the

final form of the propagated error for each location. If we increase the number of
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columns in matrix D by the multiple k, where k is the number of latitude points,

then matrix D and B assume the dimensions of n x 360k. In the end, this leads to

a one dimensional array of geoid height errors that has length of 360k, where each

element corresponds to one particular latitude and longitude.PLASS can execute

these calculations in one step per latitude, propagating the uncertainties once around

the globe in one step, or if the user desires and ifPLASS is provided with enough

processors, it can compute all 64,800 points of latitude and longitude geoid height

errors in one step.

To provide a proper reference for the geoid height errors that correspond

to each of the EVD gravity fields, the covariance matrix of the standard GFZ

EIGEN1S gravity field was propagated usingPLASS to a global grid resolution

of one degree of latitude and longitude. (Note: The calculation of the geoid height

errors was carried out at a1ox1o grid resolution although the 100 degree and or-

der CHAMP gravity field contains only enough gravity information to support a

(φ, λ) grid resolution of 5 degrees. Therefore, it should be remembered that the grid

resolution is actually5ox5o in a physical sense.)

Figure 6.26 shows the geoid height error reference calculated at a grid res-

olution of 1ox1o. The eliminated gravity fields of casesEIGEN1S.EVD.5171, and

EIGEN-1S.EVD.6345, andEIGEN1S.EVD.10000are included in this section to demon-

strate the incremental effects of eigenvalue removal to the calculated geoid height

errors. Comparing the case which contains the most number of used eigenvalues,

Figure 6.27, to that of the EIGEN1S propagated error, Figure 6.26, it can be seen

that the disposal of eigenvalues removes geoid height error but does not affect the
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overall pattern of propagated error. Very similar zonal patterns exist in both plots,

only in the case EIGEN1S.EVD.5171, they are weaker. Careful examination of the

zonal band between30o and−30o latitude, reveals a faint vertical pattern which

may indicate the inclination of the CHAMP satellite. The tightening of the spread

between maximum and minimum geoid undulation differences, seen in the previ-

ous section, occurs as a result of eigenvalue removal. Figures 6.28, 6.29, 6.30,

and 6.31 illustrate a similar trend of tightening ingeoid height errorsas more and

more eigenvalues are thrown away. Although, the errors appear to be declining

in these figures, one should bear in mind that the bias introduced from the exclu-

sion of eigenvalues is not being represented. These plotted geoid height errors

are due to random effects only and may be overly optimistic and possibly too far

away from those of a non-biased solution that is near the truth. For the case of

EIGEN1S.EVD.10000, its orbit fit analysis was fortunate enough to fail, thus ex-

posing the fact that is was too far from the true solution. Although many eigenvalues

were truncated in the cases of EIGEN1S.EVD.7581 and EIGEN1S.EVD.8373, they

may still be considered as un-biased estimates in an approximate sense. This issue

will be discussed in Section 6.1.7.5. Table 6.7 summarizes the propagated er-

ror extrema seen in the geoid height error contour plots and the parameters used to

calculate them.

6.1.7.5 The KEV and Norm-Norm EVD Bias

The SVD bias assessment technique described in Section 4.1.3 can be ap-

plied to quantify bias introduced from an EVD solution. Three different bias vectors
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Figure 6.26: CHAMP: Geoid Height Errors GFZ EIGEN1S

Figure 6.27: CHAMP: Geoid Height Errors EIGEN1S.EVD.5171

Figure 6.28: CHAMP: Geoid Height Errors EIGEN1S.EVD.6345
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Figure 6.29: CHAMP: Geoid Height Errors EIGEN1S.EVD.7581

Figure 6.30: CHAMP: Geoid Height Errors EIGEN1S.EVD.8373

Figure 6.31: CHAMP: Geoid Height Errors EIGEN1S.EVD.10000
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Number of geoid height error points computed: 64,440
Parameters used to map uncertainties to geodetic surface:

GM = 3.986004415 x 1014 m3

s2 , Re = 6.37813630 x 106 m
¦ = eliminated, all table entries: units in cm.

Gravity Fields Max. Error Min. Error Mean Error
EIGEN1S 58.33 13.26 43.1959

EIGEN1S.EVD.5171¦ 29.45 14.36 25.3325
EIGEN1S.EVD.6345¦ 16.50 8.88 10.5623
EIGEN1S.EVD.7581 5.64 3.10 3.6295
EIGEN1S.EVD.8373 2.41 1.28 1.6001

EIGEN1S.EVD.10000¦ 0.25 0.11 0.1412

Table 6.7: Geoid Height Errors of all EVD Gravity Fields.

for b̃ are calculated by considering the unbiased state estimates, EIGEN1S, TEG4

and EGM96, to be true state values, for separate evaluations of the KEV and Norm-

Norm EVD biases. In each case the vectorb̃ is approximated as

b̃ = X̂EIGEN1S.EVD.7581− X̂UNBIASED

or

b̃ = X̂EIGEN1S.EVD.8373− X̂UNBIASED.

(6.11)

The traces of the error variance-covariance matrix corresponding to EIGEN1S.EVD.-

7581 and EIGEN1S.EVD.8373 have the scalar values

trace(PX̂EIGEN1S.EV D.7581
) = 4.7889x10−07

trace(PX̂EIGEN1S.EV D.8373
) = 1.8195x10−14,

(6.12)
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True Soln. KEV trace(b̃b̃T ) KEV ratio Norm trace(b̃b̃T ) Norm ratio
EIGEN1S 2.0503x10−14 4.2814x10−08 1.8195x10−14 8.9057x10−08

EGM96 2.6835x10−14 5.6037x10−08 2.0901x10−14 1.0230x10−07

TEG4 2.6449x10−14 5.5230x10−08 2.0604x10−14 1.0084x10−07

Table 6.8: CHAMP: KEV and Norm-Norm EVD Ratios of Bias to Random Error

and the trace of the outer product ofb̃ is expressed in general as

trace(b̃b̃T ), (6.13)

so that the ratio of these two traces is given by

ratio =
trace(b̃b̃T )

trace(PX̂EIGEN1S.EV D
)
. (6.14)

Fortunately, since the ratios given in Table 6.8 are much less than unity, the

biases in EIGEN1S.EVD.7581 and EIGEN1S.EVD.8373 can be ignored (Bouman

[64]), because they are small compared to the random error in the EVD estimates.

Therefore the KEV and Norm-Norm EVD solutions can be considered as unbiased

in an approximate sense.

6.1.7.6 Discussion

PLASS performed the Eigenvalue Decomposition (EVD) on an ill condi-

tioned system of equations to solve for 11216 parameters. It demonstrated a new

feasibility in the application of the EVD in the solution for large gravity fields. Be-

cause the CHAMP normal matrixngl-eigen-1scontains information derived from

satellite only observations, it was expected that the attenuation of the short wave

gravitational anomalies, those signals whose wavelengths are much shorter than the
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satellite’s altitude, would cause inflation in the estimation of their corresponding

spherical harmonic coefficients. Four common optimization methods (Inspection,

Relative Error, Mean Square Error (MSE), Norm-Norm minimization) and the in-

troduced criterion of this investigation, which relates Kaula’s rule to eigenvalue

disposal (the KEV relation), were written intoPLASSand implemented to find the

best solution among the many that can be generated by an EVD stabilized estimate.

All five methods of choosing the best regularization result, each produced their own

optimum gravity field. In the Inspection case, the disposal of 10000 eigenvalues

was deemed to be the optimum. In the Relative Error, MSE, KEV, and Norm-Norm

cases, the removal of 6345, 5171, 7581, and 8373 eigenvalues, respectively, were

found to be an optimum. To choose the best optimum among the five solutions,

further evaluation of these gravity fields was carried out. Once all candidates were

properly contrasted to the GFZ EIGEN1S gravity field, it was the solutions stabi-

lized with the Kaula rule eigenvalue relation and the Norm-Norm minimization that

survived scrutiny.

In all five solutions, there was bias introduced into the estimate due to eigen-

value truncation. Because bias is not quantified in the error variance-covariance

matrix of an EVD estimate, this matrix is not an adequate measure of solution ac-

curacy. Only by calculating the bias and comparing it to the random error, can one

judge the quality of the solution. In the case of the KEV EVD and Norm-Norm

stabilized gravity solutions, the comparison of the trace of the outer product of the

bias vector̃b to the trace of the error variance-covariance matrix, in the form of a

ratio, showed that the bias was small compared to the random error.
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By calculating the EVD covariance matrix for every candidate gravity field

and reading in the (given) covariance matrix of the EIGEN1S,PLASS was able

to propagate the uncertainties in all solutions by computing their geoid height er-

rors. This was done to illustrate the incremental effects of eigenvalue disposal on an

EVD covariance matrix. It was shown that the geoid height errors become smaller

with eigenvalue removal, thus indicating an increase in confidence of random errors.

Although an EVD solution is biased and its covariance matrix represents only a ran-

dom effect, it was determined that the bias in the solution of EIGEN1S.EVD.7581

(KEV) and EIGEN1S.EVD.8373 (Norm-Norm) was sufficiently small enough to

consider these estimates as non-biased in an approximate sense. In other words,

their “shifted distance” away from the true solution, due to bias, may be considered

negligible in that there were no deleterious effects detected by the analyzes of this

investigation. Because the solutions stabilized by the Kaula Eigenvalue (KEV) re-

lation and the Norm-Norm method survived close scrutiny, they are considered to

be the best CHAMP EVD gravity fields of this study.

6.2 Gravity Recovery and Climate Experiment (GRACE)160x160

Gravity Field

6.2.1 Introduction

The twin GRACE satellites were launched on March 17, 2002 into an almost

circular orbit at an altitude 485 km, with an inclination of about 89 degrees. The

primary science goal of the GRACE project is stated as: “High resolution, mean and

time variable gravity field mapping for Earth System Science applications”. Both
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satellites are equipped with high-precision three-axes accelerometers for measuring

surface force accelerations, while the distance between them is measured at the

micron level using a microwave ranging system. Because of their low altitude, the

satellites can be tracked continuously using the GPS constellation for constant and

accurate monitoring of orbital perturbations, just as in the case of CHAMP.

The GRACE project is a joint effort between the National Aeronautics and

Space Administration (NASA) and the Deutsche Forschungsanstalt für Luft und

Raumfahrt (DLR) in Germany. Prof. Byron Tapley of The University of Texas

Center for Space Research (UTCSR) is the Principal Investigator (PI), and Prof.

Christoph Reigber of the GeoForschungsZentrum (GFZ) Potsdam is the Co-Principal

Investigator (Co-PI). Project management and systems engineering activities are

carried out by the Jet Propulsion Laboratory (JPL), while engineering orbit opera-

tions are conducted by the German Space Operations Center (GSOC) in Oberpfaf-

fenhofen, Germany.

One of the GRACE scientific objectives is to determine very precisely the

global long-wavelength features of the static Earth gravity field and its temporal

variation. The linearized system of equations which relate the model of the GRACE

satellites’ motion to the GPS observations,y = Hx + ε, are solved by transform-

ing (using Householder reflections discussed in the previous chapter) them to an

orthogonalized system of equations, Equation 4.21. Matrix H is the so called infor-

mation matrix of dimension m x n (m observations and n parameters) that already

includes observation weights. After orthogonalization, upper triangular matrix R

represents the transformed system of equations.PLASS is then applied to perform
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the Singular Value Decomposition (SVD), yielding the singular values of R that

are used to stabilize the system of equations and obtain a gravity solution. The R

matrix of GRACE33(Case 61) is used in this investigation. The number of esti-

mated parameters n, is 25917 and the number of observations m, is 8309302. Since

the nxn matrix R corresponds to satellite only observations, and because of rapid

attenuation of spherical harmonics with increasing altitude, a high degree of un-

observability causes this matrix to be ill-conditioned. Using R,PLASS produced

five stabilized solutions, along with three covariance matrices and their subsequent

geoid height error propagations. It was deemed unnecessary to compute all five

SVD covariance matrices. The five optimal solutions are presented in order of in-

creasing quality.

6.2.2 Inspection

Before an inspection analysis can be performed, a graph of the singular

values versus number (where “number” is the ith singular value), must be obtained.

Figure 6.32 is the graph of the singular values of matrix R. The largest and smallest

singular values are1.037 ·107 and8.293 ·101, respectively, which yields a condition

number of1.2506 · 105; indicating an ill-conditioned system of equations. Often

when displaying singular values in this manner, they are sorted by either increasing

or decreasing size. In Figure 6.32, the GRACE singular values are arranged by

decreasing size. For solution, their original sequence is maintained.

Because the smallest singular value is much greater than zero and there is

such a smooth transition throughout most of the graph, it is difficult to know which
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Figure 6.32: GRACE33(Case61) Singular Value vs Number.

of the singular values are responsible for the ill-conditioned nature of the R ma-

trix. It was hoped that singular values very close to zero would be found, because

such quantities are usually responsible for causing inflation in a solution. Therefore

five guesses were made. The first guess was to dispose the smallest 1000 singular

values. The next four guesses were to remove the 5000, 10000, 15000, and 20000

smallest singular values, producing a separate solution for each guess. For com-

parison, a solution in which all singular values were retained, was carried out. The

degree variance spectrum of the solution in which no singular values were removed,

is shown in Figure 6.33 overlayed with Kaula’s rule. All five solution spectra of the

Inspection cases are presented together in Figure 6.34 as graphs of degree amplitude

versus harmonic degree overlayed with Kaula’s rule. Clearly, it can be seen from

Figure 6.33, that without stabilization from singular value disposal, the estimates of

parameters above a harmonic degree of about 100 are quite inflated. But when the
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Figure 6.33: GRACE33(Case61): All Singular Values Solution
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Figure 6.34: GRACE33(Case61): Five Inspection Solutions
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singular vectors which contribute to this inflation (through their linear combination

in the null space) are eliminated by singular value disposal, their deleterious effects

are set to zero, and the solution is improved. Because the inspection method is sub-

jective, it is not a reliable technique of determining how many singular values to

throw away for an optimal SVD solution. However, the guess to remove the 20000

smallest singular values is the best of all five guesses, and will be considered as a

candidate gravity field for further evaluation. The next section describes the results

of the Relative Error method.

6.2.3 Relative Error

Because the relative error calculation in Equation 4.36 is an explicit formula,

it is a simple matter to evaluate the relative error for all smallest singular value

disposal permutations. Since there are 25917 singular values, the same number of

relative error scenarios are computed. This leads to the graph of relative error as

a percentage versus the number of singular values retained, see Figure 6.35. As

expected, when all singular values are thrown away the relative error becomes 100

percent, and zero when all are kept. One may contend that the best relative error

is zero percent, however we are looking for a non-trivial solution in between the

extremes. By graphing the percentage data, that point was determined to be at

25916 retained singular values, equivalent to 1 discarded. Figure 6.36 displays the

corresponding degree amplitude versus harmonic degree spectrum, overlayed with

Kaula’s rule. Unfortunately, this result is not desirable. The difference between

an unstabilized solution and one in which only one singular value is removed, is
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Figure 6.35: Relative Error Graph for GRACE33(Case61).
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Figure 6.36: GRACE33(Case61): Discard 1 Singular Value.
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negligible. Thus, this solution is eliminated from contention as a candidate gravity

field.

6.2.4 Mean Square Error (MSE)

The computation of an MSE solution in the case for GRACE33( Case61),

requires the accumulation of the null space matrix V and the calculation of the

z2 vector in Equation 4.43. Fortunately, the scaling of the null space matrix by

selected Kaula quantities, as coordinated by the parameter-name-list vector, is car-

ried out only once before a complete permutation of retained and disposed singular

value combinations is initiated. The result is three curves: total noise, total bias as a

result of singular value disposal (approximated by Kaula’s rule) and mean squared

error (MSE). The MSE curve is the addition of the other two curves that are func-

tions of unitless scalar values. The minimum of the MSE function is the optimum

combination that minimizes the scalar contribution from both the total noise and

total bias. That point was found to occur exactly at the value of 3 retained or 25914

discarded singular values, see Figure 6.37. Unfortunately, the results of the MSE

analysis proved to be of little help. By looking at the solutions seen in the five cases

of the inspection analysis, it is obvious that removal of only 3 singular values is

not sufficient to remove the excess power in the unregularized solution spectrum

above harmonic degree 100. For this reason, the MSE solution is eliminated from

contention as a candidate gravity field.
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Figure 6.37: GRACE33(Case61): Mean Square Error

6.2.5 Norm-Norm Minimization

The computation of the norm of the residual and the norm of the solution

can be carried out with or without the null space matrix V. If the null space ma-

trix is not desired and only solutions are necessary, thenPLASS1 should be used.

PLASS2 should be employed, if other stabilization schemes are to be tested and

error analyzes carried out. In the norm-norm plot analysis of GRACE33(Case61),

PLASS2 is used to produce 1296 different GRACE33(Case61) SVD gravity solu-

tions, calculating them at a granularity of 20 singular values (i.e. removing 20 at

a time, for each computed solution). Once the global minimum is found at this

resolution, a subsequent search at the precision of one singular value is performed.

This enables an efficient search on all of the 25917 possible permutations in the

calculation of solution corrections‖x̂‖2 = ‖Ã−1b‖2, as seen in Equation 4.37, and
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Figure 6.38: GRACE33(Case61): Norm of Resid. vs Norm of Soln.

residuals‖ρ‖2 = ‖ Ãx̂− b ‖2 as seen in Equation 4.38, to find the solution corre-

sponding to the optimum number of singular values retained. For example, as each

singular value is disposed, a separate solution correction vector and residual is cal-

culated for that scenario. The norm of each of the correction vectors and residuals

is taken and then plotted. Traditionally, using one processor, performing a search

of singular values for large problem norm-norm plot analysis, is prohibitive due to

the enormous amount of memory and the computer time a sequential algorithm re-

quires. However, given enough processors,PLASS eliminates these obstacles and

completes the analysis in a matter of a few hours. Figure 6.38 is a log-log plot of the

norm of the residual versus the norm of the correction vector for the scenarios com-

puted. The point on the norm-norm curve that is closest to the origin is where the

optimal balance between these two norms is found. It is the point where the square

root of the sum of the squares of the elements of the residual vectorρ and solution
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Figure 6.39: GRACE33(Case61): Discard 20986 Singular Values.

vectorx̂ are a minimum. This point occurs in the case where 20986 singular values

are thrown away. Since the optimum suggested by the norm-norm graph corre-

sponds to a gravity fieldcorrection, this correction must be added to the nominal (a

priori ) gravity field for evaluation. Figure 6.39 shows the corresponding updated

gravity solution expressed as degree amplitude versus harmonic degree overlayed

with Kaula’s rule. It can be seen that most of the power in the estimated coefficients

which causes their inflation above Kaula’s rule has been removed. Since there are

25917 singular values, we have discarded 81 percent of the information contained

in the GRACE33( Case61) upper triangular matrix R to invert for solution. Perhaps

too many singular values have been removed from R to obtain solution, however it

will be submitted as a candidate for further gravity field analysis. The next stabi-

lization technique involves Kaula’s rule as a reference (not a constraint) to singular

value removal for solution, leading perhaps to more information retention.
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6.2.6 Kaula Singular Value (KSV) Relation

UsingPLASS2 and the null space matrix generated from the previous norm-

norm analysis, every case of singular value disposal was evaluated with Equation

4.47, repeated here for convenience,

α(k) =

{
lmax∑

l=1

[
v(l)svd(k)l,m

− v(l)Kaula

]2
} 1

2

, (6.15)

where the subscript “svd” indicates Singular Value Decomposition (as called for

in the case of the GRACE orthogonal matrix R). The index k is the number of

retained singular values. The dimensionless termα(k) is plotted versus number

of singular values used. There are a total of 1296 alpha values in the generated

function at a granularity of 20 singular values. After the coarse global minimum of

this curve was found, alphas were calculated again, but at a granularity of 1 singular

value in a region spanning both sides of the global minimum. By “focusing” in on

the global minimum in this manner, it is possible to find the precise number of

used singular values that best satisfies Kaula’s rule. Figure 6.40 shows the rough

search for the global minimum and Figure 6.41 displays the refined search in the

area where the global minimum occurs, which is at the point where 21372 singular

values were discarded (4545 are kept). Figure 6.42 illustrates the corresponding

updated gravity solution expressed as degree amplitude versus harmonic degree

overlayed with Kaula’s rule. Comparing this case to that of the previous section,

more singular values (82.5 percent total) were discarded. Thus 17.5 percent of the

original information inside matrix R was retained for the SVD stabilized inversion.

In the case of the norm-norm solution, it was 19 percent. Clearly, Figure 6.42

175



0 0.5 1 1.5 2 2.5 3

x 10
4

3.5

4

4.5

5

5.5

6

6.5

7
Nrm2 of SVD Soln.Deg.Amp.Spectrum minus Kaula Rule Deg.Amp.Spectrum vs. No. of Singular Values

Number of Singular Values used (min occurs at 4545)

al
ph

a 
(d

im
en

si
on

le
ss

) 

GRACE33 Case 61 160x160

Figure 6.40: GRACE33(Case61): Global Rough Sweep of Singular Value Disposal
Cases

2000 3000 4000 5000 6000 7000 8000 9000 10000
3.537

3.537

3.5371

3.5371

3.5372

3.5372

3.5373

3.5373

3.5374

3.5374
Nrm2 of SVD Soln.Deg.Amp.Spectrum minus Kaula Rule Deg.Amp.Spectrum vs. No. of Singular Values

Number of Singular Values used (min occurs at 4545)

al
ph

a 
(d

im
en

si
on

le
ss

) 

GRACE33 Case 61 160x160

Figure 6.41: GRACE33(Case61):Refined Sweep near Global Min. of Used Singu-
lar Value Cases

176



0 20 40 60 80 100 120 140 160
10

−2

10
−1

10
0

10
1

10
2
GRACE33 Case 61 160x160 Discard 21372 Singular Values: Degree Amplitude vs. Geopotential Degree 

Degree (21372 based on KSV relation)

D
eg

re
e 

 A
m

pl
itu

de
 (

m
)

Kaula’s rule 
SVD solution 

Figure 6.42: GRACE33(Case61): Discard 21372 Singular Value Solution

fulfills the expectation that this solution follows Kaula’s rule well. It is only with

further evaluation however, can the best of the three fields (inspection, norm-norm,

KSV) be determined.

6.2.7 Evaluation of Gravity Fields

To determine the best of the three candidate gravity fields, evaluations based

on error propagation from the computation of geoid height errors, orbit fit calcula-

tions, geoid comparisons, and degree error variance analyzes are performed. It

must be remembered however, that the covariance matrix corresponding to a Sin-

gular Value Decomposition(SVD) estimated solution is not an adequate measure of

error for an estimate. The error represented by an SVD covariance matrix is only

that of the random effect and does not include the error of bias, introduced by the

removal of singular values. Because singular values (in the case of GRACE33(
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Method Optimum Number of Used Singular Values

Inspection 5917
RelativeError¦ 25916

MSE¦ 3
Norm Norm minimization 4931

KSV relation 4545
¦ = eliminated

Table 6.9: Three Candidate Gravity Fields to be Evaluated

Case61)) have been removed (set to zero) in these solutions, their corresponding

singular vectors were not included into the estimation process. This is the cause of

the bias and it produces a “shift” in the estimated gravity field by some amount away

from the true gravity field. The confidence in the estimated coefficients may also

be too optimistic, i.e. perhaps their variances are tighter than the variances of the

full rank unbiased estimate. However, if the bias introduced by an SVD estimate is

“small”, the estimate may be considered unbiased, at least in an approximate sense.

This will be discussed after the best SVD gravity field has been chosen. Table 6.9

summarizes the used singular values in all estimated GRACE gravity fields and for

convenience, Figure 6.43 presents all of the solutions’ power spectra in a common

graph overlayed with Kaula’s rule. (Note: Unfortunately, all solutions are not vis-

ible in this figure, as some are unavoidably hidden by others when plotted.) It

can be seen that as singular values are discarded, power in the coefficient correc-

tions causing inflation is removed and the solution becomes more stabilized. The

next section will test these gravity fields by using them to model the motion of se-

lected Earth satellites, comparing their predicted states with actual observations and

reporting the results in the form of orbital fit residuals.
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Figure 6.43: GRACE33(Case61): All Five Candidate SVD Solutions.

6.2.7.1 Orbital Arc Fit Computations

Since the orbital arc fit analysis employed in this section evaluates only

those coefficients of an estimated gravity field below degree and order of 100, the

gravity coefficients of the GRACE33(Case61) field above this value have little or

no effect on orbit fit residuals. Therefore, this section offers only a partial, but valu-

able, insight to the quality of the three candidate solutions. The satellites selected

to fly through the estimated SVD 160x160 gravity fields are the same as those used

in the previous CHAMP analysis. For convenience they are shown again in Table

6.10. This group of satellites were chosen because they represent a good sample of

inclinations and altitudes necessary for an adequate orbital fit test. Due to its low al-

titude, satellite GFZ1 can test the higher degrees and orders, while Starlette, Stella,

and Topex are satellites that are well suited to assess thesomewhathigher degrees

and orders of an estimated gravity field. To scrutinize the quality of the low degrees
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Satellites Semi-major axis (km) Inclination (deg.) Eccentricity

Topex/Poseidon 7705 65.99 0.0010
Starlette 7335 49.81 0.0206
Stella 7200 98.00 0.0001

Lageos 1 12271 109.83 0.0040
Lageos 2 12162 52.63 0.0137

GFZ1 6764 51.64 0.0073

Table 6.10: Orbital Elements of Selected Satellites
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Figure 6.44: Selected Satellites for Orbit Fit Analysis.

and orders, the satellites Lageos 1 and 2 were chosen for their high altitudes. Figure

6.44, repeated in this section for convenience, illustrates schematically their orbital

heights above the Earth. Each orbit fit of the three SVD gravity fields were com-

puted using the UTOPIA (Tapley et al. [68]) program and compared with the actual

observation data for a chosen satellite. For uniformity in the orbit fit calculations,

all of the gravitational and non-gravitational perturbations of the orbit estimations

in the UTOPIA runs are kept consistent for each case and each test satellite. The

gravitational perturbations are those due to the non-spherical geopotential of the

Earth, sun, moon, other planets, the solid Earth tides, ocean tides, rotational defor-
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Satellites Arc length (days) Number of Arcs Epoch
Topex/Poseidon 10 1 June 1999

Starlette 5 6 Jan. 1998
Stella 5 6 Sept.1993

Lageos 1 3 10 May 2002
Lageos 2 3 10 May 2002

GFZ1 3 7 Aug. 1995

Table 6.11: Observation Data used in UTOPIA Runs

mation, and general relativity. The non-gravitational perturbations are those due to

atmospheric drag, solar radiation pressure, Earth radiation pressure and other un-

known forces. Since the epoch of the GRACE33(Case61) SVD fields are years later

than the epochs of the satellites, J2, J3 and J4 were propagated to a common epoch.

Table 6.11 contains the arc lengths, number of arcs, and satellite epochs used in

the UTOPIA runs. Table 6.12 shows the SLR (Satellite Laser Range) orbit fits in

centimeters RMS (radial) of the three candidate SVD gravity fields on all selected

satellites. The case GRACE33(Case61) is the gravity field produced by the full

rank solution. It is this gravity field to which the three candidate SVD fields are

compared.

Other than the GFZ1 and Stella satellites, the RMS values are fairly similar

for all cases of the SVD gravity fields and GRACE33(Case61). It is not until using

the two lowest altitude test satellites, GFZ1 and Stella, does the effect of discarding

singular values deliver a noticeable influence to RMS orbit fits. This is not surpris-

ing, as lower altitude satellites are more sensitive to the shorter wavelength gravity

signals corresponding to degrees and orders higher than about 100. The RMS fits

of the high altitude satellites Lageos1, Lageos2, Starlette and Topex should not be
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Case GFZ1 Lageos 1 Lageos 2 Starlette Stella Topex

Inspection 11.39 1.09 1.08 3.0 5.05 2.16
KSV relation 12.52 1.05 1.03 3.01 7.47 3.08

Norm Norm minimization 12.25 1.07 1.06 2.97 6.52 2.05
GRACE33(Case61) 9.32 1.40 1.50 2.95 3.33 2.05

Table 6.12: Orbital Arc Fits of Candidate Gravity Fields (cm. radial RMS)

influenced by these shorter wavelength anomalies nor should it be expected that

their orbit fit residuals could be influenced significantly by SVD deflation effects

for the estimates of this study. The SVD regularization serves mostly to remove

the inflation in the poorly observed high degree and order coefficients that signify

short wavelength anomalies. Of course, since stabilization affects all estimated pa-

rameters, there may exist a tradeoff between the deflation in these higher order and

degree coefficients with the estimation of the lower degree and order coefficients.

This negotiation, between deflation of poorly observed geopotential coefficients and

the quality in the estimation of well observed parameters, manifests itself clearly in

the RMS fits of satellite GFZ1. The RMS increases by about 2 to 3 centimeters

using any of the SVD fields, in comparison to the full rank (unstabilized) residual.

Fortunately, the tradeoff of 3.2 centimeters RMS for a well stabilized (KSV) solu-

tion is a very reasonable one. Because there appears to be a negligible distinction

in the RMS fits of the three SVD fields, all of them will be submitted for further

analysis.
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6.2.7.2 SVD Degree Error Variance and Geopotential Variance Difference vs.
GRACE33 (Case61)

By comparing the formal degree error variances of each candidate SVD

gravity field with that of GRACE33(Case61), further objective elimination of so-

lutions is possible. The formal degree error variance is a measure of the power

of the geopotential errors for a specific harmonic degree and is represented as the

sum of the squares of the formal variance of the estimated gravity coefficients for a

particular harmonic degree l. It is expressed in Equation 6.2, but repeated here for

convenience, as

σ2
l =

lmax∑
m=1

(
σ2

Clm
+ σ2

Slm

)
, (6.16)

whereσClm
andσSlm

are the standard deviation of the normalized estimated geopo-

tential coefficients for degree l and order m. The valueσ2
l is then scaled into mil-

limeters of height and then plotted as a function of degree amplitude versus har-

monic degree. To generate degree amplitude difference curves for the power spec-

trum differences between the estimated coefficients of the SVD and the full rank

GRACE33(Case61) solution, the degree variance difference42
l is calculated. This

relation is a measure of the power of the geopotential differences between two grav-

ity fields at a specific harmonic degree l, and is expressed in Equation 6.3 (repeated

here for convenience) as,

42
l =

lmax∑
m=1

(
42

Clm
+42

Slm

)
, (6.17)

where4Clm
and4Slm

are the scalar differences of the normalized geopotential

coefficients for a specific harmonic degree l and order m.
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Figure 6.45: KSV Degree Error Var. and Var. Geopotential Difference to Case61

Since every candidate SVD gravity field is biased (because singular values

are discarded), the SVD error covariance matrix contains only random error, as

mentioned in Section 4.1.1. However, the error variances of a candidate SVD grav-

ity field and of a reference field (which is unbiased) may be compared to evaluate

the difference between the two fields with respect to the error variance of the ref-

erence field. Figure 6.45 shows the degree error variance of the KSV solution in

comparison with that of the full rank GRACE33(Case61) reference field and the dif-

ferences between their geopotential coefficient variance spectra along with the can-

didate solution in the form of its geopotential power per harmonic degree. It can be

seen that the error variance of the biased KSV SVD solution are all within (smaller

than) the error variance of GRACE33(Case61). This implies that the candidate KSV

SVD field is within the uncertainty (in a random sense) of the GRACE33(Case61)

solution. Figures 6.46 and 6.47 illustrate the same information for the Inspection
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Figure 6.46: Insp. Degree Error Var. and Var. Geopotential Difference to Case61

and Norm-Norm candidate gravity fields respectively. These plots show that the

degree error variances of the three SVD solutions areall (in a random sense) within

the degree error variance of GRACE33(Case61). The spectra of the degree error

variances for these solutions, however may indicate an overconfidence (in a random

sense) in the estimation for those coefficients above a harmonic degree of about 80,

as all (formal error) curves decrease rapidly and monotonically beyond this region.

At this point three of five SVD gravity solutions have survived scrutiny. In the next

section, we compare their geoids to that of GRACE33(Case61).
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Figure 6.47: Norm Degree Error Var. and Var. Geopotential Difference to Case61

6.2.7.3 SVD Geoid Differences to Full Rank Case61

The simple geoid undulation above the Earth’s mean spheroid of radiusae,

is computed (repeated here for convenience) as (Condi [72])

N = ae

Lmax∑

l=2

l∑
m=0

P l,m(sinφ)[∆C l,mcosmλ + ∆Sl,msinmλ] (6.18)

where∆C l,m and∆Sl,m are the differences of the normalized geopotential coeffi-

cients between two gravity fields. Plotting N in a contour map format reveals the

geoid undulation differences between two gravity fields.

Figure 6.48 shows a “ripple filled” reference geoid undulation map for the

full rank solution GRACE33(Case61) field. These ripple patterns indicate an ob-

servability problem in the geopotential coefficients used to calculate this contour

plot. The distinctive areas of low regions south of India, Antarctica and off the
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West and East coasts of North America are observed, as well as the high regions of

the North Atlantic and East South Pacific, which contain an emphasis of the ruffling

patterns. These oscillations are smoothed in the geoids of the best two candidate

gravity fields given the labels GRACE33.SVD.20986 and GRACE33.SVD.21372,

seen in Figures 6.49 and 6.50, respectively.

The effect of removing 20000 singular values on geoid undulations is illus-

trated in the differences between the geoids of GRACE33(Case61) and GRACE33.-

SVD.20000, seen in Figure 6.51. Over the majority of the Earth, both land and

ocean, the differences undulate roughly between -7.7 cm and 7 cm. Only in the re-

gion midway between Australia and South America, can wider differences be seen.

It is not clear why this anomaly appears. Discarding another 986 singular values to

minimize the norms of the residual and correction to the nominal, (for a cumulative

total of 20986 removed singular values) yields a pattern very similar to that of the

inspection case, with very similar extrema as seen in Figure 6.52. The removal of

yet another 386 singular values to best satisfy the KSV relation, has little effect on

this pattern, see Figure 6.53.

Table 6.13 summarizes the minima, maxima and mean geoid undulation

values of the reference field GRACE33(Case61) and those of the candidate SVD

gravity fields. It can be seen that the removal of over 20000 singular values results

in only a three or four centimeter change in these geoid undulation extrema. Ta-

ble 6.14 summarizes the extrema and mean values of the differences between the

GRACE33(Case61) and the SVD gravity fields. It can be seen that the spread be-

tween the maximum and minimum geoid points for each case in Table 6.14 is small,
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Number of geoid points computed: 64,800
Parameters of the mean Earth ellipsoid used in geoid undulation computations:
GM = 3.986004415 x 1014 m3

s2 , ae = 6.37813630 x 106 m
f = 1

298.2570
, ωe = 7.29215 x 10−5 rad

sec

all table entries: units in cm.

Gravity Fields Max. Height Min. Height
Mean Value of

Geoid Undulation
GRACE33(Case61) 87.78 -111.00 -0.7657

GRACE33.SVD.20000 84.13 -106.28 -0.8187
GRACE33.SVD.20986 84.36 -106.33 -0.8205
GRACE33.SVD.21372 84.46 -106.25 -0.8207

Table 6.13: Geoid Undulations of GRACE33 SVD Gravity Fields

changing only slightly as more singular values are removed from the R matrix, for

each case. Since only hundreds of singular values are discarded from case to case,

compared to the initial 20000 or so needed to initially stabilize for a solution, this

result is not surprising.

The SVD solutions continue to improve with singular value removal, be-

cause the GRACE33(Case61) R matrix poorly observes coefficients above degree

and order 100. But if too many singular values are removed the estimated coeffi-

cients may be nonsensical, even though inflation has been removed and their degree

variance power spectrum falls below Kaula’s rule. This potential hazard was not de-

tected in the orbit fit analyzes as was the case in one instance of a CHAMP solution.

To propagate the uncertainties in these three GRACE SVD gravity fields, including

the full rank GRACE33(Case61) reference field,PLASS2 was employed to com-

pute their geoid height errors.
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Number of geoid points computed: 64,800
Parameters of the mean Earth ellipsoid used in geoid undulation computations:
GM = 3.986004415 x 1014 m3

s2 , ae = 6.37813630 x 106 m
f = 1

298.2570
, ωe = 7.29215 x 10−5 rad

sec

all table entries: units in cm.
Gravity Fields Max. Height Min. Height RMS about Mean

GRACE33 - GRACE33.SVD.20000 36.42 -37.17 6.5554
GRACE33 - GRACE33.SVD.20986 36.41 -37.04 6.5599
GRACE33 - GRACE33.SVD.21372 36.43 -37.06 6.5609

Table 6.14: Geoid Undulation Diff. of GRACE33 SVD Grav. Fields to GRACE33

Figure 6.48: GRACE: Full Rank GRACE33(Case61) Geoid

Figure 6.49: GRACE: GRACE33.SVD.20986 Geoid
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Figure 6.50: GRACE: GRACE33.SVD.21372 Geoid

Figure 6.51: GRACE: Geoids: GRACE33(Case61) minus GRACE33.SVD.20000

Figure 6.52: GRACE: Geoids: GRACE33(Case61) minus GRACE33.SVD.20986
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Figure 6.53: GRACE: Geoids: GRACE33(Case61) minus GRACE33.SVD.21372

6.2.7.4 Geoid Height Errors of the SVD and Full Rank GRACE33 (Case61)
Gravity Fields

To assess the error of a particular gravity solution, it is necessary to compute

the covariance matrix, also known as the variance-covariance matrix. It is the diag-

onal elements of this matrix that convey the statistical confidence of each parameter

in an estimated solution. The off diagonals represent their covariances and can be

used to derive all correlations among them. The covariance matrix can be used to

support “goodness of fit” evaluations or error propagations. In this investigation

the covariance matrix is used in an error propagation known as the geoid height

errors. Such error calculations are the mapping of all estimation uncertainties into

a space called the geodetic surface of the Earth. The traditional calculation of geoid

height errors using one processor and the realized advantage of the parallel method

employed byPLASS, is discussed in Section 6.1.7.4.

Using the R matrix of GRACE33(Case61),PLASS calculated, “in-place”,

the covariance matrix of the full rank GRACE33(Case61) gravity field, namely
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R−1R−T (Hinga [57]). The term “in-place” refers to the fact that nowork space is

required to accomplish this operation. Full rank covariance calculations are carried

out using only the memory required to contain the matrix R.

After computing the covariance matrix of the full rank GRACE33(Case61)

gravity field and that for each candidate SVD gravity field,PLASSwas used to cal-

culate all geoid height errors at a global grid resolution of one degree of latitude and

longitude. Table 6.15 summarizes the propagated error extrema seen in the geoid

height error plots and the parameters used to calculate them. (Note: The calculation

of the geoid height errors is carried out at a1ox1o grid resolution although the 160

degree and order GRACE gravity field contains only enough gravity information to

support a (φ, λ) grid resolution of 3 degrees. Therefore, it should be remembered

that the grid resolution is actually3ox3o in a physical sense.)

Figure 6.54 shows the full rank geoid height error. Figure 6.55 shows the

results of the Inspection case where 20000 singular values are removed to stabi-

lize the solution so that the degree coefficient variance power spectrum falls below

Kaula’s rule. Clearly, the disposal of 20000 singular values eliminates a consider-

able amount of error and emphasizes the vertical pattern seen in the full rank geoid

height error plot. This pattern may indicate the inclination of the GRACE twin

satellites. Figures 6.56 and 6.57 illustrate that the disposal of another 986, then an

additional 386 singular values, respectively, further reduces geoid height error, but

does not affect the overall pattern of propagated error. The vertical patterns remain

in these last two plots.

The tightening of the spread between maximum and minimum errors, as
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Figure 6.54: GRACE: Geoid Height Errors Full Rank GRACE33(Case61)

seen in the CHAMP section, is again occurring as a result of singular value removal

in the case of GRACE, because the variance-covariance matrix is reduced in mag-

nitude by singular value disposal. Although, the errors appear to be declining in

these figures, one should bear in mind that the bias introduced from the exclusion

of singular values is not being accounted for. These plotted geoid height errors stem

from random error only and may be overly optimistic and represent solutions that

are overly biased. Although many singular values were truncated in the cases of

GRACE33.SVD.20000, GRACE33.SVD.20986, and GRACE33.SVD.21372, they

may still be considered as un-biased estimates in an approximate sense. This issue

is discussed in section 6.2.7.5.

6.2.7.5 The KSV and Norm-Norm SVD Bias

Two different bias vectors for̃b are calculated by considering the unbiased

state estimates TEG4 and EGM96, to be true state values, for separate evaluations

of the KSV and Norm-Norm SVD biases. In each case the vectorb̃ is approximated
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Figure 6.55: GRACE: Geoid Height Errors GRACE33.SVD.20000

Figure 6.56: GRACE: Geoid Height Errors GRACE33.SVD.20986

Figure 6.57: GRACE: Geoid Height Errors GRACE33.SVD.21372 Solution
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Number of geoid height error points computed: 64,440
Parameters used to map uncertainties to geodetic surface:
GM = 3.986004415 x 1014 m3

s2 , Re = 6.37813630 x 106 m
¦ = eliminated, all table entries: units in cm.

Gravity Fields Max. Error Min. Error Mean Error
GRACE33(Case61) 2032.8 861.51 1394.8

GRACE33.SVD.20000 2.73 2.19 2.3936
GRACE33.SVD.20986 1.76 1.32 1.5014
GRACE33.SVD.21372 1.43 1.06 1.2352

Table 6.15: Geoid Height Errors of all SVD Gravity Fields.

as

b̃ = X̂GRACE33.SVD.20986− X̂UNBIASED

or

b̃ = X̂GRACE33.SVD.21372− X̂UNBIASED.

(6.19)

The traces of the error variance-covariance matrix corresponding to GRACE33.SVD.-

21372 and GRACE33.SVD.20986 have the scalar values

trace(PX̂GRACE33.SV D.20986
) = 1.7715x10−08

trace(PX̂GRACE33.SV D.21372
) = 1.4188x10−08,

(6.20)

and the trace of the outer product ofb̃ is expressed in general as

trace(b̃b̃T ), (6.21)
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True Soln. KSV trace(b̃b̃T ) KSV ratio Norm trace(b̃b̃T ) Norm ratio
EGM96 4.7133x10−15 3.3220x10−07 4.7390x10−15 2.6751x10−07

TEG4 3.2587x10−15 2.2968x10−07 3.3181x10−15 1.8730x10−07

Table 6.16: GRACE33(Case61): KSV and Norm-Norm SVD Ratios of Bias to
Random Error.

so that a ratio of these two traces is given by

ratio =
trace(b̃b̃T )

trace(PX̂GRACE33.SV D
)
. (6.22)

Fortunately, since the ratios given in Table 6.16 are much less than unity,

the biases in GRACE33.SVD.21372 and GRACE33.SVD.20986 can be ignored

(Bouman [64]), because they are small compared to random error in the SVD es-

timates. Therefore the KSV and Norm-Norm SVD solutions can be considered as

unbiased in an approximate sense.

6.2.7.6 Discussion

The toolPLASSperformed the Singular Value Decomposition (SVD) on an

ill-conditioned system of equations, represented by the matrix R, to solve for 25917

parameters. It demonstrated a new feasibility in the application of the SVD in the

solution for large gravity fields. Because the GRACE matrix R contains information

derived from satellite only observations, it was expected that the attenuation of

the short wave gravitational anomalies, those signals whose wavelengths are much

shorter than the twin satellites’ altitude, would case inflation in the estimation of

their corresponding spherical harmonic coefficients.

Four common methods (Inspection, Relative Error, MSE, Norm Norm mini-
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mization) and the technique introduced for this investigation, which relates Kaula’s

rule to singular value disposal, KSV, were written intoPLASS and implemented

to find the best solution among the many that can be generated by an SVD stabi-

lization. All five methods of choosing singular values to obtain the best solution,

each produced its own optimum gravity field. In the Inspection case, the disposal of

20000 singular values was deemed to be an optimum solution. In the Relative Error,

MSE, KSV relation and Norm-Norm minimization cases, the removal of 1, 25914,

21372 and 20986 singular values, respectively, were found to be optimums. The

solutions from the Relative Error and MSE techniques were immediately thrown

out, as they were too close to the trivial solutions of either disposing all or none of

the singular values. The optimum gravity fields produced by the Inspection method,

Norm-Norm analysis and the KSV relation, were submitted for further evaluation

In all five solutions, there was bias error introduced into the estimate due

to singular value truncation. Because bias is not quantified in the error variance-

covariance matrix of an SVD estimate, this matrix is not an adequate measure of

solution accuracy. Only by calculating the bias and comparing it to the random

error, can one judge the quality of the solution. In the case of the KSV SVD and

Norm-Norm stabilized gravity solutions, the comparison of the trace of the outer

product of the bias vector̃b to the trace of the error variance-covariance matrix, in

the form of a ratio, showed that the bias was small compared to the random error.

It was shown that all geoid height errors became smaller with singular value

removal, thus indicating an increase in confidence of the random errors. Although

the SVD solutions, GRACE33.SVD.20986 (Norm-Norm) and GRACE33.SVD.-
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21372 (KSV) are biased, it was determined that their bias is sufficiently small to

consider them as non-biased estimates in an approximate sense. Their “shifted

distance” away from the true state, due to their small bias, was also negligible in

that there were no deleterious effects detected by the orbit fit and geoid analyzes of

this investigation. Because the solutions stabilized using the Kaula Singular Value

(KSV) relation and the Norm-Norm plot method are of an objective nature, which

survived the scrutiny of this study, they are considered to be the best GRACE SVD

gravity fields.
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Chapter 7

Conclusion

7.1 Summary of PLASS

Parallel code was developed to apply the SVD to very large systems of equa-

tions. With enough processors,PLASS can handle very large problem sizes and

maintainscalability(See Appendix B). Among the capabilities ofPLASS to apply

the EVD or the SVD to solve for very large gravity fields in the form of either the

normal equation or orthogonalized equation, respectively, this tool can also perform

the following analysis using parallel computation techniques and generate all out-

put necessary for subsequent analysis (note: the term singular may be interchanged

with the word eigen):

Inspection: Allows user to choose singular values for removal, from generated

singular value distribution graph.

Relative Error: Implement the equation necessary for relative error analysis.

Mean Square Error: Implement all equations and matrix operations necessary for

this analysis. Generates data for required graphs.

Norm Norm minimization: Implement all equations and matrix operations nec-

essary for this analysis. Generates data for required graphs.
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Kaula Singular Value (KSV) relation: Implement all equations and matrix oper-

ations necessary for this analysis. Generates data for required graphs.

Calculate any EVD/SVD Covariance Matrix: After eigenvalue/singular value re-

moval has been determined, corresponding EVD/SVD covariance matrix can

be calculated, if desired.

Calculate the Covariance “inplace” using Matrix R: Given the R matrix of the

orthogonalized system of equations, covariance matrix can be calculated “in-

place”, if desired.

Geoid Height Error Calculations: Using any covariance matrix, whether inter-

nally computed or read in byPLASS, it can propagate and map the uncertain-

ties to the geodetic surface of the Earth at grid resolution of 1 degree latitude

and longitude, in little time (i.e. 8 hours of wall clock time for 200x200 TEG

Gravity Field for entire globe).

Safeguards: PLASScan be stopped and then started again at the same point at

anytime during the stages of the EVD/SVD process.

Projections: PLASS reports the exact number of total Givens’ iterations neces-

sary for convergence. This is used to calculate expected wall clock time for

convergence to eigenvalues/singular values. Timings will vary depending on

core memory availability, number of processors and processor speed.

Orthonormal Basis Space Option: User has the choice of obtaining EVD/SVD

estimate with or without the null space or eigen space, whichever the case
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may be.

7.2 Summary of Results

7.2.1 Choice of Optimum Singular/Eigen Values

The techniques of singular value removal in this investigation that turned out

to be unreliable, for both CHAMP and GRACE, were the methods of Inspection and

Relative Error. However, Inspection does have its use for the purpose of getting an

initial rough idea of how much deflation is necessary.

The method of Mean Squared Error (MSE) in the case of CHAMP and

GRACE provided well behaved graphs of noise and bias. However the resulting

optimum number of used CHAMP eigenvalues was inadequate at removing enough

inflation in the higher degree and order corrections to geopotential coefficients. The

MSE applied to GRACE, removed inflation, but resulted in an unacceptable opti-

mum number of used singular values, as it was too close to the trivial solution of

discarding all singular values. Thus, the use of MSE should be used with caution.

The methods of Norm Norm minimization and the Kaula Singular Value

(KSV) relation proved to be very dependable for both CHAMP and GRACE. Al-

though these two techniques are reliable and recommended, the author tends to

prefer the KSV relation, as it is less expensive to perform and specifically related to

gravity field estimation.
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7.2.2 Orbit Fit Computations

Orbit fit computations for selected satellites provided very useful insight on

both CHAMP EVD and GRACE33 SVD gravity fields. In comparison to EIGEN1S,

marked improvements in the GFZ1 satellite RMS fits were seen in allEIGEN1S.EVD

stabilized gravity fields except for that of the Inspection case, which caused this

spacecraft to crash into the atmosphere. This dramatic result was informative, as

it revealed the fact that the geopotential coefficients of that case were nonsensical,

even though their power spectrum did not violate Kaula’s power rule. The RMS fits

of all other satellites in the EVD stabilized fields were of negligible difference to

the EIGEN1S case.

In the comparison of the SVD stabilized GRACE33 gravity fields to their

full rank solution, no appreciable differences were seen, for the higher altitude

satellites Topex, Lageos1, Lageos2, and Starlette. This makes sense, as their or-

bits would be little affected by the higher degree and order geopotential coefficients

which were deflated from SVD stabilization. In the cases of the lower altitude satel-

lites, GFZ1 and Stella, it can be seen that regularization of the gravity field increases

their RMS fits from about 2 cm to 4 cm. The tradeoff of a maximum of 4.14 cm

RMS for stabilized solutions is deemed worthwhile.

7.2.3 Geodetic Evaluation of the SVD Fields

The geoids of the EIGEN1S and GRACE33(Case61) were calculated and

the appropriate differences between them and the geoids from the stabilized EVD

and SVD solutions, respectively, were computed, plotted and examined. In all nom-
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inated cases, the stabilized solutions contained sufficient information to be compa-

rable to their respective reference solutions. In the case of GRACE, the noticeable

effect of the SVD was to smooth the ripples seen in the reference GRACE33(Case61)

geoid.

The geoid height errors of all CHAMP EVD fields and selected SVD fields

of GRACE33 were calculated. The effect of eigenvalue/singularvalue removal on

the magnitude of the variance-covariance matrices was revealed. Size of the random

uncertainties decrease with eigenvalue/singularvalue removal, thus causing geoid

height errors to decline.

7.2.4 Bias of the SVD Solution

The proper quality measure of a biased estimate is the mean square error

instead of the error variance (Rummel [63]). For an adequate assessment of the

quality of an SVD estimate, the error variance (the error variance-covariance ma-

trix) must be compared to the bias error. To satisfy this standard, the biases were

computed for the two best EVD/SVD estimates, in both the CHAMP and GRACE

examples. All bias errors were determined to be small in comparison to all ran-

dom errors. Thus, these four solutions can be considered to be non-biased in an

approximate sense.

7.2.5 Conclusion

The following are conclusions of this study.

• PLASSdemonstrated the viability, scalability and practicality of applying the
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SVD to solve for large Earth gravity fields.

• The Kaula Singular Value (KSV) method of choosing singular values or

eigenvalues is the best technique to stabilize a gravity field solution.

• Using Norm Norm minimization to choose singular values or eigenvalues is

reliable.

• The methods of inspection, relative error and MSE are not reliable.

• The biases in the best stabilized solutions of this study are small enough to

consider these solutions as “non-biased” in an approximate sense.

• The tradeoff between bias and overall error in the best stabilized solutions of

this study is worthwhile.

7.2.6 Suggestions for Further Study

In the case of the MSE method to choose the optimal number ofeigen/singular

values, the bias portion of the trace of the mean square error matrix was approxi-

mated using Kaula’s rule. It is suggested, that this MSE bias could be represented

by using the coefficients of a standard gravity field, for example those of TEG4.

Such a substitution may render the MSE method to be reliable. The results of such

an experiment would be interesting to the author of this investigation.

Although Kaula’s rule was well satisfied in the cases of both KEV EVD

and KSV SVD stabilization, through eigenvalue and singular value disposal re-

spectively, it may have been the case, that too many eigen/singular values were
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thrown away. The number of retained eigen/singular values as seen in the plots of

Figure 6.10 and Figure 6.40 were far into the region in which little change in alpha

is seen as further eigen/singular values are discarded. (This is discussed further

in Appendix C.) More useful information from the normal matrix N (CHAMP)

or the orthogonalized matrix R (GRACE) could have been extracted and included

into solution without significant loss of stabilization. Thus, modifying the crite-

rion of the KEV/KSV relation by considering also in what region of the alpha

curve are eigen/singular values being discarded, would be worthwhile. In other

words, the “delta” changes in alpha should be monitored as eigen/singular values

are thrown away. If∆alpha remains small after subsequent stabilized solutions,

further eigen/singular value disposal is not necessary. An investigation into this as-

pect and into other methods of objective inversion stabilization techniques would

be topics of worthy study.
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Appendix A

Validation of PLASS

This section describes the validation test that proves the algorithms used in

PLASS1 and PLASS2 implement their SVD decompositions correctly. This vali-

dation test is written into the software so that it is performed concurrently as the

algorithm is applied to the actual data. Therefore the user of PLASS receives the

final residual result of the validation test along with the final result of the SVD ap-

plied to the actual input data. The validation test is described (in step format) as

follows:

Step 1 Pick a random vector x and ANY real matrix R.

Step 2 Formb = Rx (b is obviously in the range ofR). Thereforeb ≡ Rx

Step 3 Calculatex̂ = R−1b (using whatever method) where“x̂” indicates com-

putedx

Step 4 Computêb = Rx̂

Step 5 Form the residual ratio‖b−b̂‖
‖b‖ = exact 0,but why ??

Step 6 Substitutingb = Rx andb̂ = Rx̂ into step 5, yields

‖Rx−Rx̂‖
‖Rx‖ .
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Step 7 Substitutingx̂ = R−1b into step 6 then yields

‖Rx−RR−1b‖
‖Rx‖ .

Step 8 Finally, substitutingb = Rx into step 7 gives

‖Rx−RR−1Rx‖
‖Rx‖ = ‖Rx−Rx‖

‖Rx‖ = 0 (exact theoretical).

Theoretically, this residual ratio will evaluate to exact zero iff the term

“R−1” is the true inverse of the original matrix R.Obviously the term “R−1” for

this investigation is the SVD calculated “psuedo-inverse”. Using numerical com-

putation however, this residual ratio will evaluate to be “small” iff the term “R−1”

is calculatedcorrectly. It could never evaluate to “exact zero” because of, i.e. trun-

cation (chopping) or round off errors, during the floating-point arithmetic. If the

algorithm miscalculates the term “R−1” or there is something wrong in the algo-

rithm, then that “blunder” will manifest itself in the form of a large residual ratio.

Why do we use a ratio? Because a relative error in the residual is more

interesting and informative than an absolute error in the residual. After all, we want

to comparethe computed answer to what the true answer is. The next concept

to clarify is our definition of “small”. That value is on the order of1 × 10−16 or

1× 10−15.

If we use double precision IEEE floating point standard, the mantissa has

53 binary digits (about 16 decimal digits) of accuracy. Rounded arithmetic has a

unit “u” roundoff largest relative error of about

u = 2−53 ≈ 1× 10−16 (A.1)
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GRACE Data PLASS1 PLASS2 matrix
matrix size n residual residual condition number

5037 7.6381×10−15 1.2810×10−14 1.6764×1003

14637 2.4107×10−14 2.5443×10−14 1.0982×1004

25917 1.9014×10−14 2.5992×10−14 1.2505×1005

Table A.1:PLASSGRACE Data Validation Results: relative residual

PLASS1 PLASS2 matrix size n = 1000
residual residual matrix condition number

6.403508×10−15 6.901393×10−15 1.0369×1000

6.452276×10−15 7.084092×10−15 1.0181×1004

6.420774×10−15 7.211693×10−15 1.0181×1006

6.465525×10−15 6.951665×10−15 1.0181×1009

6.595521×10−15 7.113030×10−15 1.0181×1015

Table A.2:PLASSRandom Data: relative residual, keep all singular values

This applies to an individual operation, but if our final computed results (after a

great many operations) yield a relative error of this magnitude, then we can be very

confident that our numerical algorithm, to calculate “R−1”, is sound and correct.

The tables of this section present the residuals calculated in this validation test us-

ing both GRACE data and randomly generated matrices. Notice that regardless of

matrix condition number, the residual ratio is always small. This is proof that the

algorithms of PLASS (PLASS1 and PLASS2) are correct and can be trusted.

PLASS1 PLASS2 matrix size n = 1000
residual residual matrix condition number

6.786532×10−15 7.017996×10−15 1.0181×1018

3.493306×10−15 2.810962×10−15 1.0181×1023

6.612903×10−15 7.138595×10−15 ∞
Table A.3: PLASS Random Data: relative residual, discard small/zero singular
values
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Appendix B

Scalability and Numerical Issues of the SVD

Because the SVD is rich in level 2 (Basic Linear Algebra Subprograms)

BLAS, it may not be apparent at first how parallel SVD computation provides a

benefit (order n squared operations while communicating only n squared data).

For the problem sizes of this investigation, the scalability analysis, (such as that

discussed in Section 2.2.3) which compares parallel performance of an algorithm

against the performance implemented by a sequential machine, must be adjusted.

A single processor is not able to calculate a large SVD solution, at least within a

time scale of less than weeks or months of wall clock time, if it could satisfy the

SVD memory requirements. Thus, a scalability analysis ofPLASS is conducted,

in which the performance behavior ofPLASS for the two cases of data (CHAMP

and GRACE) are discussed and compared.

This analysis reports performance per processor at some fixedmemoryper

processor as discussed by van de Geijn et al. [48]. The term “flops”, used below, is

an acronym for “floatingoperations persecond ”, while the performance acronym

“MFLOPS” refers to “megaflop persecond”.

210



B.1 Scalability

B.1.1 PLASS1

PLASS1contains the following three stages for an SVD solution. For each

stage the flop count is given. (note: Householder updates never entail the explicit

formation of the Householder matrix.)

• Stage 1: Bidiagonalization

• Stage 2: Convergence to Singular Values

• Stage 3: Applying Storage Array of Givens’ Iterations to the right hand side

and apply right side Householder reflections to r.h.s.

Bidiagonalization of the square R matrix (of size n), involves n left-side and (n-2)

right side Householder reflections. Each calculation of a Householder reflection

itself requires 3n flops. Since there are 2n-2 Householder reflections, we have a

flop count of

6n2 − 6n (B.1)

required just tocomputethe Householder reflections. The flop count for applying a

Householder reflection and updating the rest of the matrix is based on the following

explanation. A left side reflection with Householder vector u on matrix R is given

as:
(
I − αuuT

)
R (B.2)

Table B.1 summarizes how Equation B.2 is carried out for thefirst Householder re-

flection. Summing the flop count in Table B.1 we get4n2 +n flops. For subsequent
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First Householder Transformation of R matrix size n(
I − αuuT

)
R

may be rewritten as(
R− αuuT R

)
Step Description

R - α u RT u ←− rewritten as
let w = α RT u ←− 2n2 + n flops

R - uwT ←− rank one update2n2

Table B.1: Flop Count for Steps in thefirst Householder Transformation

left side transformations we have

4(n− 1)2 + (n− 1)

4(n− 2)2 + (n− 2)

4(n− 3)2 + (n− 3)
...

4(n− n)2 + (n− n)

(B.3)

which may be expressed in summation form as

4
n∑

i=0

(n− i)2 +
n∑

i=0

(n− i) . (B.4)

For the right side Householder transformations the operation is very similar, but the

reflections are applied to the right side of matrix R

R
(
I − αuuT

)
, (B.5)

however there are (n-2) of them. Thus their flop count is expressed in the summation

4
n−2∑
i=0

(n− i)2 +
n−2∑
i=0

(n− i) . (B.6)
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Rewriting left and right side transformations together, rearranging and separating

terms we have
n∑

i=0

(
4n2 + n

) −
n∑

i=0

8n (i) +
n∑

i=0

4(i)2 −
n∑

i=0

(i) +

n−2∑
i=0

(
4n2 + n

) −
n−2∑
i=0

8n (i) +
n−2∑
i=0

4(i)2 −
n−2∑
i=0

(i).

(B.7)

Equation B.7 can be approximated in continuous integral form, where the indepen-

dent discrete variable “i” is replaced by the continuous and independent variable x,

namely

(
4n2 + n

) ∫ x=n

x=0

dx − 8n

∫ x=n

x=0

x dx + 4

∫ x=n

x=0

x2 dx−
∫ x=n

x=0

x dx +

(
4n2 + n

) ∫ x=n−2

x=0

dx − 8n

∫ x=n−2

x=0

x dx + 4

∫ x=n−2

x=0

x2 dx−
∫ x=n−2

x=0

x dx.

(B.8)

Carrying out the integration, summing like terms and simplifying yields

8

3
n3 − 3n2 + 4n− 38

3
, (B.9)

as the number of flops required to bidiagonalize square matrix R of size n. The

flops required to apply the left side Householder transformations to the right hand

side (the b vector in Equation 5.24) is

2n2 + 3n. (B.10)

Adding Equations B.1, B.9 and B.10 yields the total flops required forPLASS1

Stage 1, as
8

3
n3 + 5n2 − n− 38

3
. (B.11)
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During Stage 2 (“chasing the bulge”), each Givens’ rotation calculation re-

quires 2 divisions, 3 multiplications, 1 addition and 1 square root. There are also

four multiplications performed outside a single Givens’ rotation scheme for a to-

tal of 11 flops per one “bulge chasing” step. Since there are orderO(n2) iteration

stepsnecessary to converge the bidiagonal matrix to the diagonal matrix containing

singular values, a close approximation of the total flops for chasing the “bulge” is

11n2. (B.12)

Applying the left side Givens’ rotations to the right hand side during convergence

(the b vector in Equation 5.21) is also a part of Stage 2 and requires

3n2 flops. (B.13)

Adding Equations B.12 and B.13 gives us the total flops for Stage 2

14n2. (B.14)

Stage 3 consists of two steps. First, the release of all the saved right side

Givens’ rotations (from the storage array), applying them to the right hand side (the

b vector in Equation 5.41), requiring

3n2 flops, (B.15)

second, the application of the right side Householder reflections to the right hand

side, which has the flop count of

2n2 − 5n + 2 . (B.16)

Table B.2 summarizes the stages ofPLASS1. Table B.3 displays computa-

tional statistics ofPLASS1 in calculating a CHAMP 100x100 gravity field.
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PLASS1
Stage 1

6n2 − 6n compute Householder reflections
8
3
n3 − 3n2 + 4n− 38

3
Householder reflections on R and updates to R

2n2 + 3n apply left side Householder reflections to r.h.s.
8
3
n3 + 5n2 − n− 38

3
Stage 1 Total flops

Stage 2
11n2 chase the bulge
3n2 apply left side Givens’ rotations to r.h.s.
14n2 Stage 2 Total flops

Stage 3
3n2 apply saved right side Givens’ rotations to r.h.s

2n2 − 5n + 2 apply right side Householder reflections to r.h.s.
5n2 − 5n + 2 Stage 3 Total flops

Total
8
3
n3 + 24n2 − 6n− 32

3
Overall Total Flop Count

Case
3.76×1012 Flops CHAMP 100x100
46.4×1012 Flops GRACE 160x160

Table B.2: Flop Count forPLASS1SVD Solution

CHAMP 100x100 Gravity Field: n = 11216 parameters
vampir HP machine at GFZ: shared memory,
1 GHZ 1 GB per processor, peak performance 2 GFLOPS per processor
total number of Givens’ rotations required to converge to eigen values:
expected: 125798656
actual: 53272938
all stages completed in one job submission

Stages flops time (hrs.) no. of processors MFLOPS/proc.

All 8
3
n3 + 24n2 − 6n− 32

3
12 6 15

Table B.3: CHAMP:PLASS1EVD Computational Statistics
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B.1.2 PLASS2

PLASS2 contains the following four stages for SVD solution. For each

stage the flop count is given. (note: Householder updates never entail the explicit

formation of the Householder matrix.)

• Stage 1: Bidiagonalization

• Stage 2: Accumulation of Householder Reflections into matrixVb

• Stage 3: Convergence to Singular Values

• Stage 4: Application of Singular Vector SpaceV to r.h.s.

Stage 1 ofPLASS2 is identical to that ofPLASS1. Stage 2 ofPLASS2 applied

to matrix R is the accumulation of the right side Householder reflections into the

matrix Vb (described in Section 5.3.1.1) and has the following flop count (Golub

and van Loan [23])
4

3
n3. (B.17)

Stage 3 is the same as that ofPLASS1, except the flop count required to update the

accumulated matrixVb with all the right side Givens’ rotations must be included.

That term is described as follows. There are orderO(n)2 Givens’ iterationstepsin

chasing the bulge. But since we apply only the right side Givens’ rotations to matrix

Vb, there are approximately1
2
n2 matrix Vb updates. Because it requires 6n flops to

update matrixVb with one Givens’ rotation, the total number of flops to updateVb

until convergence to singular values is

6n
1

2
n2 −→ 3n3. (B.18)
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Thus the total flops required in Stage 3 ofPLASS2 is

3n3 + 14n2. (B.19)

Stage 4 ofPLASS2 is multiplication of the final and completely updated

matrix Vb, which is matrix V of Equation 5.50, by the fully updated right hand

side (the vector b in Equation 5.51 multiplied by the inverted diagonal matrix of

singular values in Equation 5.50 ). This operation is a matrix vector multiplication

and involves

2n2 flops. (B.20)

Table B.4 summarizes the stages ofPLASS2. Tables B.6 and B.7 display com-

putational statistics ofPLASS2 in calculating the CHAMP 100x100 gravity field.

Tables B.5, B.8, B.9 and B.10 display computational statistics ofPLASS2 in cal-

culating the GRACE 70x70, 120x120 and 160x160 gravity fields.

Table B.11 displays the results of the scalability (with respect to perfor-

mance per processor) experiments carried out on the longhorn (IBM) machine. The

problem size was increased along with the number of processors. The performance

per processor stays more or less constant in SVD stage 1 and stage 3 and 4, but

“dips” down somewhat in stage 2. Thus, the PLASS2 SVD algorithm can be con-

sidered “approximately” scalable with respect to MFLOPS at some fixed memory

per processor.

Table B.12 displays the results of the scalability experiments carried out on

the hopper (Origin2000) machine at NASA. The problem size (n=5035) was kept
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PLASS2
Stage 1

6n2 − 6n compute Householder reflections
8
3
n3 − 3n2 + 4n− 38

3
Householder reflections on R and updates to R

2n2 + 3n apply left side Householder reflections to r.h.s.
8
3
n3 + 5n2 − n− 38

3
Stage 1 Total flops

Stage 2
4
3
n3 accumulate right side Householder reflections

Stage 3
11n2 chase the bulge
3n2 apply left side Givens’ rotations to r.h.s.
3n3 updateVb until convergence to singular values

3n3 + 14n2 Stage 3 Total flops

Stage 4
2n2 multiply matrix V against r.h.s

Total
7n3 + 21n2 − n− 38

3
Overall Total Flop Count

Case
0.89×1012 Flops GRACE 70x70 Gravity Field
9.87×1012 Flops CHAMP 100x100 Gravity Field
21.9×1012 Flops GRACE 120x120 Gravity Field
121.8×1012 Flops GRACE 160x160 Gravity Field

Table B.4: Flop Count forPLASS2SVD Solution
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GRACE 70x70 Gravity Field: n = 5035 parameters
longhorn IBM machine at Univ. of Texas at Austin
IBM Power4 System Shared Memory, 224 total processors,
Operating System: AIX
1.3 GHZ 1.792 GB per processor,
5.2 GFLOPS peak performance per processor
total number of Givens’ rotations required to converge to singular values:
expected 25351225
actual 18728953
(subsequent solutions are attainable in minutes or less)

SVD Stage flops time(hrs.) no. of processors MFLOPS
1 8

3
n3 + 5n2 − n− 38

3
0.22 1 430

2 4
3
n3 0.11 1 439

3 and 4 3n3 + 16n2 0.88 1 121
Total 7n3 + 21n2 − n− 38

3
1.21 1 205

Table B.5: GRACE:PLASS2SVD Computational Statistics (for first solution)

CHAMP 100x100 Gravity Field: n = 11216 parameters
vampir machine at GFZ: shared memory
per processor: 1 GHZ, 1 GB, peak performance 2 GFLOPS
total number of Givens’ rotations required to converge to eigenvalues:
expected: 125798656
actual: 53272938
all stages completed in one job submission
(subsequent solutions are attainable in minutes or less)

EVD Stage flops time(hrs.) no. of processors MFLOPS
1 8

3
n3 + 5n2 − n− 38

3
21.09 3 17

2 4
3
n3 8.18 6 11

3 and 4 3n3 + 16n2 1.95 5 120
Total 7n3 + 21n2 − n− 38

3
31.22 6 15

Table B.6: CHAMP:PLASS2EVD Computational Statistics (for first solution)
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CHAMP 100x100 Gravity Field: n = 11216 parameters
vampir machine at GFZ: shared memory
per processor: 1 GHZ, 1 GB, peak performance 2 GFLOPS
total number of Givens’ rotations required to converge to eigenvalues:
expected: 125798656
actual: 53272938
all stages completed in one job submission
(subsequent solutions are attainable in minutes or less)

EVD Stage flops time(hrs.) no. of processors MFLOPS
1 8

3
n3 + 5n2 − n− 38

3
10.73 6 16

2 4
3
n3 8.18 6 11

3 and 4 3n3 + 16n2 1.55 6 127
Total 7n3 + 21n2 − n− 38

3
20.45 6 22

Table B.7: CHAMP:PLASS2EVD Computational Statistics (for first solution)

GRACE 120x120 Gravity Field: n = 14643 parameters
longhorn IBM machine at Univ. of Texas at Austin
IBM Power4 System Shared Memory, 224 total processors,
Operating System: AIX
1.3 GHZ 1.792 GB per processor,
5.2 GFLOPS peak performance per processor
total number of Givens’ rotations required to converge to singular values:
expected 214417449
actual 146274384
(subsequent solutions are attainable in minutes or less)

SVD Stage flops time(hrs.) no. of processors MFLOPS
1 8

3
n3 + 5n2 − n− 38

3
3.36 2 346

2 4
3
n3 0.78 5 295

3 and 4 3n3 + 16n2 6.80 3 128
Total 7n3 + 21n2 − n− 38

3
10.94 5 112

Table B.8: GRACE:PLASS2SVD Computational Statistics (for first solution)
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GRACE 160x160 Gravity Field: n = 25917 parameters
longhorn IBM machine at Univ. of Texas at Austin
IBM Power4 System Shared Memory, 224 total processors,
Operating System: AIX
1.3 GHZ 1.792 GB per processor,
5.2 GFLOPS peak performance per processor
total number of Givens’ rotations required to converge to singular values:
expected 671690889
actual 348039215
(subsequent solutions are attainable in minutes or less)

SVD Stage flops time(hrs.) no. of processors MFLOPS
1 8

3
n3 + 5n2 − n− 38

3
4 14 230

2 4
3
n3 5.25 16 77

3 and 4 3n3 + 16n2 7.5 12 161
Total 7n3 + 21n2 − n− 38

3
16.75 16 126

Table B.9: GRACE:PLASS2SVD Computational Statistics (for first solution)

GRACE 160x160 Gravity Field: n = 25917 parameters
longhorn IBM machine at Univ. of Texas at Austin
IBM Power4 System Shared Memory, 224 total processors,
Operating System: AIX
1.3 GHZ 1.792 GB per processor,
5.2 GFLOPS peak performance per processor
total number of Givens’ rotations required to converge to singular values:
expected 671690889
actual 348039215
(subsequent solutions are attainable in minutes or less)

SVD Stage flops time(hrs.) no. of processors MFLOPS
1 8

3
n3 + 5n2 − n− 38

3
5.08 7 363

2 4
3
n3 1.20 29 185

3 and 4 3n3 + 16n2 1.84 29 272
Total 7n3 + 21n2 − n− 38

3
8.76 29 133

Table B.10: GRACE:PLASS2SVD Computational Statistics (for first solution)
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Field Size SVD Stage time(hrs.) no. of proc. MFLOPS per proc.
70x70 1 0.22 1 430

120x120 1 3.36 2 346
160x160 1 5.08 7 363
70x70 2 0.11 1 439

120x120 2 0.78 5 295
160x160 2 1.44 16 281
70x70 3 and 4 0.88 1 121

120x120 3 and 4 6.80 3 128
160x160 3 and 4 8.80 10 128

Table B.11: GRACE:PLASS2SVD Scalability w.r.t. perf. per proc.

constant while the number of processors increased. Three processors were the min-

imum for stage 2. It can be seen that the performance degrades (as expected) con-

sistently in all stages going from 8 to 16 processors. This was anticipated because

the “data density” per processor goes down in this experiment. It is interesting to

note that overall wall clock time improves (goes down) with increased processors,

see Table B.13. (If the SVD algorithm were perfectly parallelizable, then the wall

clock times would decrease by a factor equal to the number of increased proces-

sors.)Theperformanceper processor appears to be low. But this is due to the fact

thatnoneof the operations in the SVD are matrix matrix multiplies, rather they are

operations which involve matrix vector multiplications or something else of lower

data density.

Table B.14 displays the scalability results with respect to wall clock time. It

can be seen that the actual and theoretical (expected) times are fairly close for all

stages of the PLASS SVD algorithm. In fact, for stages 3 and 4, the multiprocessor

wall clock times performed better than expected. (Note: The reference time for a
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SVD Stage no. of proc. time(min.) MFLOPS per proc.
1 2 67.51 89
1 4 35.18 86
1 8 16.80 90
1 16 15.05 50
2 3 20.89 45
2 4 16.61 43
2 8 8.93 40
2 16 10.47 17

3 and 4 2 49.65 64
3 and 4 4 24.26 66
3 and 4 8 18.14 44
3 and 4 16 14.00 29

Table B.12: GRACE:PLASS2Const. Prob. Size w. Proc. Increase (for 1st soln.)

No. of Processors overall MFLOPS per proc. overall wall clock time (min.)
2 77 138.05
4 70 76.04
8 61 43.87
16 34 39.52

Table B.13: GRACE:PLASS2Const. Prob. Size w. Proc. Increase (for 1st soln.)
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particular stage is that of a one-processor wall clock time measurement. Thus the

expected and actual times will be equivalent when using a single processor for a

particular stage.)

Thus, it is claimed that the parallel SVD algorithm developed for this study

is scalablefor two reasons. First: The PLASS SVD algorithm delivered approx-

imately consistent performance for any particular SVD stage (MFLOPS on a per

processor basis) as both problem size and number of processors increases. Second:

Using the metric of wall clock time, PLASS’s actual measurements were close to

or better than expected (theoretical).

Note on performance numbers: The low MFLOPS reported in the above

tables may raise an eyebrow. The main reason for this is that there are no matrix

matrix operations in any of the stages of the SVD. All of the computations utilize

either level 1 or level 2 BLAS. This means that the maximum number of operations

at any one time is ordern2 using ordern2 data. There is however, one point in

the algorithm (PLASS2) were a triangular matrix times a triangular matrix multiply

does occur, but this step is not a full matrix matrix multiply. One may argue that it

makes no sense to report performance numbers in terms of MFLOPS for the SVD,

but the author believes it is of interest.

B.2 A few Words on some Numerical Issues in the SVD

Some important remarks about the effects of error on the singular value

decomposition are given in this section. Expressions for the singular value pertur-

bation bound and perturbation expansion are presented along with a note on the
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Scalability w.r.t Time (problem size increases with processors)
GRACE 70x70 Gravity Field:n1 = 5035 parameters
GRACE 120x120 Gravity Field:n2 = 14643 = 2.91n1 parameters
GRACE 160x160 Gravity Field:n3 = 25917 = 1.77n2 = 5.15n1 parameters
longhorn IBM machine at Univ. of Texas at Austin
IBM Power4 System Shared Memory, 224 total processors,
Operating System: AIX
1.3 GHZ 1.792 GB per processor,
5.2 GFLOPS peak performance per processor
Stage 1 =8

3
n3+ ignore lower order terms

Stage 2 =4
3
n3

Stage 3 and 4 =7n3+ ignore lower order terms
Grav.Field No. of Proc. SVD Stage Expected Time (hrs.) Actual

70x70 1 1 t70 =
8
3
n3

1

1
= t70 = 0.22 0.22

120x120 2 1 t120 =
8
3
(2.91n1)3

2
= 12.32t70 = 2.71 3.36

160x160 7 1 t160 =
8
3
(5.15n1)3

7
= 19.51t70 = 4.29 5.08

70x70 2 2 t70 =
4
3
n3

1

2
= t70 = 0.11 0.11

120x120 5 2 t120 =
4
3
(2.91n1)3

5
= 4.93t70 = 0.54 0.78

160x160 16 2 t160 =
4
3
(5.15n1)3

16
= 8.54t70 = 0.94 1.44

70x70 1 3,4 t70 =
7n3

1

1
= t70 = 0.88 0.88

120x120 3 3,4 t120 = 7(2.91n1)3

3
= 8.21t70 = 7.23 6.80

160x160 10 3,4 t160 = 7(5.15n1)3

10
= 13.66t70 = 12.02 8.80

Table B.14: GRACE:PLASS2SVD Problem Size increases w. Processors (for 1st
soln.)
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effect of perturbation to the singular vectors calculated in this study.

B.2.1 Perturbation Expressions for Singular Values

Errors arise from two sources: rounding-errors made in computing the sin-

gular value decomposition and errors initially present in the matrix (Stewart [74]).

Rounding errors are generally unimportant, because if a stable algorithm is used to

compute the decomposition, their effect is as if the original matrix had been very

slightly perturbed (Stewart [74]). It is the effect of the errors initially present in the

matrix, that is important to understand. If we letR̃ = R + E be a perturbation on

matrix R, where E is a matrix representing the perturbation error, then

ŨT R̃Ṽ =
[

Σ̃
]
, (B.21)

is the singular value decomposition ofR̃. To understand how̃Σ compares withΣ a

perturbation bound for the singular values of a matrix are given by Mirsky [75] and

Weyl [76],

Theorem B.2.1.Weyl|σ̃i − σi| ≤ ‖E‖2

Theorem B.2.2.Mirsky
√∑

i (σ̃i − σi)
2 ≤ ‖E‖F ,

where the spectral norm‖ · ‖2 is defined as

‖E‖2 ≡ max
‖x‖2 = 1

‖Ex‖2 (B.22)

and the Frobenius norm is defined by,

‖E‖F ≡
√∑

ij

ε2
ij. (B.23)
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These two theorems hold, no matter what the size of the error is and they show

that ordering the singular values by magnitude provides a natural pairing: we know

immediately which singular value is near which (Stewart [74]). Weyl’s theorem

also states that the singular values of a matrix are perfectly conditioned, i.e. no

singular value can move more than the norm of the perturbations (Stewart [74]).

An expression (Stewart [74]) of the expansion of the perturbations is as

follows: Letσ 6= 0 be a simple singular value (it is not repeated) of matrix R with a

left singular vector u and right singular vector v. Then as E approaches zero, there

is a unique singular valuẽσ of R̃ such that

σ̃ = σ + uT Ev + O(‖E‖2). (B.24)

Provided the perturbation (E) is small, this expansion is very accurate. The closer

eachσ is to its neighbors, the smaller E will be. If the separation between the

singular values isδ, then the second order term is approximately bounded by‖E‖/δ
(Stewart [74]). If the elements of E are independent and random with mean zero

and standard deviation ofε and we ignore the second order term of Equation B.24,

the perturbation in the ith singular value isui
T Evi. Therefore the expected value of

the sum of the squares of the errors in the singular values is (Stewart [74])

E
[ n∑

i=1

ui
T Evi

2]
= nε2. (B.25)

The expected value of the square of the Frobenius norm of E is

E[(‖E‖2
F )] = mnε2, (B.26)

where m and n are the number of rows and columns of matrix R, respectively.
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B.2.2 Perturbation of the Singular Vectors

Perturbation theory for singular vectors can be problematic when the sin-

gular values of a matrix are very close together. That means that the calculation

of the singular vectors can be very sensitive to perturbations in the matrix being

decomposed. It may be that small and arbitrary epsilon changes in R may cause

enormous changes in its singular vectors. Fortunately, for the matrices in this study,

this dangerdoes not exist at all. The CHAMP singular values have as their small-

est separation a distance of approximately 18 trillion. In the GRACE matrix, the

minimum singular value separation is about 0.002. Although this number may only

be a hundred or a thousand times larger than a perturbation in matrix R, the singu-

lar vectors corresponding to such singular values are easily eliminated before final

solution. Also, the singular vectors of this investigation are used only in the trans-

formations from the singular space to the solution space, they are not used in any

other calculation. Furthermore, because the SVD is computed by a stable algorithm,

thecomputedU, V andΣ satisfy

R + G = UΣV T , (B.27)

where G represents a perturbation that is on the order of rounding the matrix R.

The use of the perturbed left and right singular vectors in this case, amounts to a

negligible change in the original problem (Stewart [74]). Figures B.1 and B.2 show

the separation of eigenvalues and singular values for the CHAMP and GRACE

matrices, respectively, of this study.
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B.2.3 Roundoff Properties During Bidiagonalization

Roundoff properties associated with Householder matrices are very favor-

able. The Householder function of Golub and van Loan [23] used in this study

produces a Householder vectorv̂ very near the exact v, see Wilkinson [70]. If

Equation 5.3, repeated here for convenience,

Q̂ = I − 2

v̂T v̂
v̂v̂T , (B.28)

then

‖Q̂−Q‖2 = O(u), (B.29)

meaning thatQ̂ is orthogonal to machine precision. The termu is unit roundoff

and is defined in the model of floating point arithmetic (Golub and van Loan [23])

asu = 1
2
β1−t, whereβ is thebaseand t is theprecision. Moreover, the computed

updates withQ̂ are close to the exact updates with Q:

fl(Q̂R) = Q(R + E), ‖E‖2 = O(u‖R‖2)

fl(RQ̂) = (R + E)Q, ‖E‖2 = O(u‖R‖2)

B.2.4 Roundoff Properties During Givens’ Plane Rotations

The numerical properties of Givens’ rotations are as favorable as those for

the Householder reflections (Golub and van Loan [23]). Specifically, it can be

shown that the computed cosine and sine of the angles (see Equation 5.28),ĉ andŝ,

respectively, in the Givens’ function of this study, satisfy

ĉ = c(1 + εc), εc = O(u)

ŝ = s(1 + εs), εs = O(u).
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If ĉ andŝ are subsequently used in a Givens’ update, then the computed update is

the exact update of a nearby matrix:

fl[Ĝ(i, j, θ)T R] = G(i, j, θ)T (R + E) ‖E‖2 ≈ u‖R‖2

fl[RĜ(i, j, θ)] = (R + E)G(i, j, θ) ‖E‖2 ≈ u‖R‖2

The detailed error analysis of Givens’ rotations may be found in Wilkinson [70].

B.2.5 A Word on the Accuracy of the Computed Singular Values

The subroutine used in this study to converge to singular values takes as the

beginning input, the main and upper diagonals of the bidiagonalized matrix (see

Section 5.2.2.1) and has the name sbdsqr.f90, written by Demmel and Kahan [69].

It was altered by the author of this study so thatPLASS would “wrap” around this

routine in order to perform the convergence to singular values on every processor in

parallel fashion. The singular values obtained by the routine sbdsqr.f90 are deter-

mined to the same relative precision as the individual matrix entries of R (Demmel

and Kahan [69]). Thus, if the matrix entries are known to high relative accuracy,

then the singular values will be known to high relative accuracy, independent of

their magnitudes. This algorithm by Demmel and Kahan is a method of computing

the singular values of a bidiagonal matrix thatguaranteeshigh relative accuracy, re-

gardless of their sizes. For details on convergence criteria and a further discussion

of the perturbation theory, the curious reader is referred to the Demmel and Kahan

paper [69].
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Appendix C

GRACE33 (Case61) SVD Results compared to TEG4

One goal of this investigation was to perform the SVD on an ill-conditioned

(full rank) GRACE system of equations and demonstrate that the stabilization can

be achieved objectively using Kaula’s rule within the scope of one particular infor-

mation matrix. However, it is also important to compare the results of this large

KSV SVD stabilized solution to that of other gravity fields. The Texas Earth Grav-

ity 4 (TEG4) model is a field that is used as a nominal model in many of the gravity

solutions produced by the Center for Space Research (CSR) and thus is used as

another quality check.

Figure C.1 seen also in Section 6.2.6, repeated here for convenience, shows

the search (granularity at 20 singular values) for the global minimum using the

KSV relation. Notice the minimum occurs to the far left in the graph (4545), a

region which is flat in the curve of alpha versus the number of singular values used.

This “flatness” (high radius of curvature) suggests that this amount of singular value

disposal, although satisfying Kaula’s rule well, may be excessive. For example, if

one continues to discard singular values beyond 15000, the incremental improve-

ment to minimize the difference between the SVD solution and Kaula’s rule may

be inadequate to justify throwing away more information (of the orthogonalized in-
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formation matrix). To support this claim the following figures are shown and for

convenience, Figure C.2 seen also in Section 6.2.6 which best satisfies Kaula’s rule

is repeated. Looking at the so-called “triangle plot”, Figure C.3, that corresponds

to Figure C.2, it can be seen that too many singular values may have been truncated

to best satisfy Kaula’s rule.

The triangle plots display the ratio of contributed information from the SVD

stabilization to that of the TEG4 solution (in a two-dimensional space of degree

vs both negative and positive order coefficients). In other words one can see the

amount of (gravity) signal being “added” to a nominal field after a KSV SVD in-

version has been completed. For all of the triangle plots, the ratio of the difference

in estimated coefficients between the SVD solution and the TEG4 to the TEG4, is

displayed in the upper left plot. The upper right plot, illustrates the ratio of the
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SVD variances to the TEG4 variances. In the lower plot, the ratio of the difference

in the estimated coefficients between the SVD and TEG4 to the TEG4 error vari-

ance, is presented in an attempt to further illustrate the discrepancy between the two

solutions. The meaning of a such a ratio may indicate how “optimistic” an SVD so-

lution is, or perhaps how much bias is being introduced by the truncation process.

If a ratio is large or the SVD variances drop off too quickly with increasing degree,

then the SVD solution may be interpreted as being too optimistic, as well as being

too biased with respect to the TEG4 gravity field.

One can see clearly in the triangle plots, that much information has been

thrown away for the best KSV SVD solution (GRACE33.SVD.21372). In this plot,

the ratio of the SVD variances to the TEG4 variances reach a maximum value of

0.04, or 4 percent, in only a small portion of the plot. In the region between Degree

70 and 80, the ratios quickly drop to very low values. This indicates that little
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Figure C.3: KSV SVD Case Discard 21372 Singular Values Comparison to TEG4
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information is included during/after inversion. This same behavior is evident also

in Figure C.2, where the formal error drops quickly in the same region.

In an attempt to capture more information during the KSV SVD inversion,

three more solutions were performed and plotted in the same manner. The choice of

singular value disposal in these three new cases was based on visual observation of

the function curvature in Figure C.1 and (randomly) choosing one local minimum

seen in Figure 6.41 of Section 6.2.6. The points chosen were located at singular

value disposal cases of 18560 (case T), 10917 (case X) and 5917 (case Y). All three

cases are shown in Figure C.4 in the form of geoid height versus harmonic degree.

As one discards fewer singular values, the drop in formal error variance is delayed

to higher harmonic degrees, which is helpful, however the stabilization becomes

less strong. The same trend/behavior is seen in the corresponding triangle plots, but

236



-1
60

-1
40

-1
20

-1
00 -8
0

-6
0

-4
0

-2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

0

20

40

60

80

100

120

140

160

-1
60

-1
40

-1
20

-1
00 -8
0

-6
0

-4
0

-2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

0

20

40

60

80

100

120

140

160

-1
60

-1
40

-1
20

-1
00 -8
0

-6
0

-4
0

-2
0 0 20 40 60 80 10
0

12
0

14
0

16
0

0

20

40

60

80

100

120

140

160

(coeffsvdktgeo - coeffGEOTEG4)/(coeffGEOTEG4)

D
eg

re
e

Order

1.000E-3
0.002054
0.004217
0.008660
0.01778
0.03652
0.07499
0.1540
0.3162
0.6494
1.334
2.738
5.623
10.00

C S

(sigsvdktgeo)/(sigGEOTEG4)

D
eg

re
e

Order

1.000E-4
2.458E-4
6.043E-4
0.001486
0.003652
0.008977
0.02207
0.05425
0.1334
0.3278
0.8058
1.981
4.870
10.00

C S

(coeffsvdktgeo - coeffGEOTEG4)/(sigGEOTEG4)

D
eg

re
e

Order

0.01000
0.02054
0.04217
0.08660
0.1778
0.3652
0.7499
1.540
3.162
6.494
13.34
27.38
56.23
100.0

C S

Figure C.5: KSV SVD Case T Discard 18560 Singular Values Comparison to TEG4

also illustrating how much more information is being added in each of the succes-

sive cases, T, X and Y, see Figures C.5, C.6, and C.7 respectively. In Figure C.5

the maximum “realistic” ratio of KSV SVD geo-coefficient information to TEG4 is

somewhere between 65 and 100 percent throughout a significant portion of the up-

per left plot and drops off markedly in the 100 to 120 harmonic degree zone. Ratios

above 100 percent may be nonsensical and perhaps indicate that some inflation is

getting through during the inversion, however it could be (welcomed) gravity sig-

nal. The variance (sigma) ratios show a very similar, but smoother pattern. Areas

of grey are to be interpreted as regions where there is zero added information.
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Figure C.6: KSV SVD Case X Discard 10917 Singular Values Comparison to TEG4
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Figure C.7: KSV SVD Case Y Discard 5917 Singular Values Comparison to TEG4
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It is interesting to note, that by adding 2812 singular values to the best KSV

SVD solution (keeping a total of 7357, a region still well inside the “flat zone” of

Figure C.1), seems to improve the field markedly with very little trade-off in stabi-

lization, Figure C.5. The beneficial effect of adding another 7643 singular values

(15000 total retained) is shown in triangle plot, Figure C.6. Notice that the signif-

icant drop in error variance is delayed further to the region of about degree 120.

This may indicate that more information has been extracted out of the orthogonal-

ized information matrix (R). There is also low trade-off in stabilization to solution.

Figure C.7 shows the case where maybe too many singular values are kept (20000)

and too much inflation is creeping through and hurting the solution. Much of the

SVD error variance is larger than that of TEG4 (also seen in Figure C.4), because

significant portions of its triangle plot are well above ratios of unity. One might

also say, that the drop-off of SVD error variance is too much delayed, and harm-

ful inflation is allowed through. Said in another way, the point at which the SVD

formal error goes above that of TEG4, may correspond to the maximum number of

singular values that should be included into the inversion for solution. It may also

be interpreted, that because the ratio of the differences in coefficients to the TEG4

variances hovers around unity for most of the bottom triangle plot, this particular

SVD solution (case Y) is over optimistic and too biased.

In any case, it is evident that curvature of the KSV SVD alpha function (of

Figure C.1) should be taken into account along with Kaula’s rule when searching

for the best gravity solution stabilized by a truncated SVD inversion. Finally, it

appears that after the point at which there is “little” change in the difference to
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Kaula’s rule, as seen in the alpha versus retained singular values curve, is the region

where thebestsolution may be found for a particular ill-conditioned orthogonalized

information matrix R.
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