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In the field of supramolecular chemistry a common goal is to design a 

receptor that is highly selective for a targeted analyte.  While this is a worthwhile 

goal, many of these synthetic receptors are less selective than their natural 

counterparts such as enzymes or antibodies.  Many aspects of the work shown 

herein demonstrate that these less selective synthetic receptors are still useful 

chemosensors.  Just as Nature utilizes differential receptors in our sense of taste 

and smell, synthetic sensor arrays can be developed to achieve similar results.   

Chapter 1 is an overview of the development of a sensor.  It begins with 

the aspects of binding carboxylates and diols, specifically by guanidiniums and 

boronic acids.  Next, signaling motifs of a sensor are discussed, leading to the 

advantages of using an indicator displacement assay.  Finally, differential sensors 
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are discussed, introducing the idea of incorporating non-selective synthetic 

sensors for the detection of multiple analytes with the use of pattern recognition.   

Chapter 2 discusses the use of non-selective synthetic receptors in a 

number of sensing schemes.  First a receptor was used to bind a class of age 

related analytes found in scotch whiskies.  A correlation was found between the 

age of the scotch and the sensing ensemble’s response to the beverage.  In another 

sensing application, a high degree of selectivity was achieved by using two 

receptors and two indicators together in solution.  Due to the differential response 

of the receptors to the indicators and the guests, the simultaneous quantification of 

tartrate and malate was achieved with the aid of pattern recognition.  Finally, 

initial efforts were put forth for incorporating the receptor into a differential 

sensing array by immobilizing the receptor on a solid support.  The selectivity of 

the receptor was investigated, showing that the receptor still had a higher affinity 

for tartrate over malate.   

Chapter 3 investigated the thermodynamics of guanidiniums and boronic 

acids binding carboxylates and diols, respectively.  Four hosts were investigated 

with a variety of guests.  The association constants were determined through 

UV/vis analysis, while the entropy and enthalpy were determined with isothermal 

titration calorimetry.  The binding of boronic acids to more than just aliphatic 

diols was also investigated.   

Chapter 4 discussed the development of new sensor for catechol 

containing analytes.  The sensor’s design is based on iron binding siderophores.  
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The iron is both the binding site and the signaling motif for the sensor.  Upon 

addition of catechol guests, a signal modulation did occur.   
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Chapter 1:  Introduction and Background 

 

1.0 INTRODUCTION 

 

One goal of supramolecular chemistry is to selectively bind a target 

molecule by the rational design of a synthetic receptor.1  The targets often include 

guests such as saccharides,2  natural products,3-5 metals,6,7 and ions.8-10  The 

ultimate goal is to achieve the selectivity and affinity of natural receptors such as 

enzymes and antibodies.  Some excellent selectivities can indeed be achieved with 

synthetic systems.4,5,7,8,11,12  Although this is a very worthwhile endeavor that our 

group13-18 and many others are pursuing,3,4,9,19 it is still true that the relative 

simplicity of synthetic receptors render most of these less selective than their 

natural counterparts.  However, this lack of selectivity can, for some applications, 

still be very useful, as Nature has proven in a sensing method for multiple 

analytes.  Our sense of taste is achieved through the combination of differential or 

non-specific receptors and pattern recognition.  Detection of complex mixtures of 

analytes can be obtained through the use of sensors designed to bind classes of 

analytes instead of designing sensors for each analyte.  The fingerprint of the data 

obtained can then be deciphered with pattern recognition to determine the 

composition of the mixture.  To mimic Nature through the development of 

differential sensors, there first must be an understanding of molecular recognition 
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and single analyte detection.  Sensor arrays can then be developed as a powerful 

tool for multi-analyte detection.   

 

1.1 MOLECULAR RECOGNITION 

 

Supramolecular chemistry is a field that was designed to study the events 

of natural processes such as an enzyme binding a substrate.  Model compounds 

are synthesized that are much simpler than their natural counterparts and their 

interactions with various guest molecules are investigated.  The first 

macromolecules were crown ethers and cryptands, which were determined to bind 

metal cations.  That was over forty years ago.  Since then, the field has undergone 

extensive growth and chemists have obtained a wealth of knowledge from this 

research.  Many receptors have been explored and many guests have been 

targeted.  These guests include saccharides, natural products, metals, ions, and 

biomolecules.   

The nature of these host/guest interactions comes from a concept termed 

molecular recognition.  This is the study of two molecules and the specific nature 

of their interactions.  In other words, the forces that allow two molecules to 

interact or bind are investigated, such as an enzyme binding a substrate in the 

active site.  This is generally accomplished through non-covalent interactions.  To 

understand molecular recognition, a basic knowledge of the properties of 

molecular interactions, or the forces that are responsible for attraction must be 

understood.  The most important ones are ion pairing, hydrogen bonding, van der 
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Waals attractions, and metal-ligand interactions.  Many of these non-covalent 

interactions are a part of biological processes and structure, where several 

interactions are used in collaboration to complete the job.  For example, the 

structure and stability of proteins rely on hydrogen bonding between the carbonyl 

and the N-H groups in the polypeptide backbone, electrostatic interactions 

between charged groups, and hydrophobic interactions of neutral non-polar amino 

acids.  Generally, host/guest complexes also rely on a combination of these forces 

to obtain tight associations. 

The binding of a guest to a receptor or host is dependent on many factors.  

These include the size and shape of the host and guest, whether the binding site is 

complementary, and what the solvent is.  All of these aspects should be 

considered in the design of a receptor.  Again, many of the ideas are derived from 

natural systems such as enzymes.  For example, the functional groups in enzyme 

binding pockets are known to be cooperative due to the preorganization of the 

cavity.  The exclusion of water from the cavity also plays a role in many enzyme 

active sites, derived from the use of hydrophobic amino acids in key positions.  

 

1.2 PREORGANIZATION OF THE SCAFFOLD 

 

The selectivity and affinity of synthetic hosts are commonly altered by 

carefully choosing a scaffold upon which to append binding moieties to create a 

binding pocket.  A pocket that is complimentary in size and shape to the guest 

will improve the selectivity.20-22  With regards to the affinity, higher binding 
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constants are commonly achieved by preorganizing the functional groups at the 

binding site.20-22  Cram stated “the more highly hosts and guests are preorganized 

for binding and low solvation prior to their complexation, the more stable will be 

their complexes.”20   

The ability of crown ethers to bind alkali and alkali earth metals was first 

discovered by C. J. Pederson.22  This discovery came about with the observation 

that compound 1.1, the first of many crown ethers, became soluble in methanol 

upon the addition of sodium hydroxide.  Since the crown ether had no acidic 

groups this seemed like a strange phenomenon.  Soon Pederson realized that the 

increased solubility was not due to the base, but due to the sodium salt.  In fact, 

any sodium salt such as sodium chloride also increased the solubility.  It was later 

discovered that the crown ether was complexing the cation through interactions 

between the positive charge of the cation and the negative dipole charges on the 

oxygens.  The crown ethers were soon termed phase transfer catalysts, due to their 

ability to catalyze solid to liquid transfers.  In order to easily name the crowns, 

Pedersen invented a system of shorthand.  Compound 1.1 was named dibenzo-18-

crown-6, where the eighteen refers to the number of atoms in the ring and the six 

refers to the number of heteroatoms.  Upon further studies of different sized 

macrocycles, it was determined that each cation had an optimum sized crown or 

host.  Sodium prefers crowns between 15-crown-5 and 18-crown-6, while 

potassium is bound best by 18-crown-6.  Cesium prefers a little larger 

macrocycle, such as 18-crown-6 or 21-crown-7.  Sandwich type complexes tend 
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to form when the crown and the cation are not the ideal size for one another.  The 

term sandwich refers to two crowns binding one cation.   

 

O

O
O

O

O

O

1.1  

Strong complexation of the cation based on preorganization of the crown 

ether was used as the basis to further supramolecular chemistry with the 

development of cryptands by Lehn23 and cavitands by Cram.24  Both systems rely 

on the importance of the preorganization of the host and the binding through non-

covalent forces.  Over the years, many different preorganized scaffolds have been 

designed and utilized in host/guest chemistry with great success, some of which 

will be discussed later in the chapter. 

 

1.3 SOLVENT EFFECTS 

 

Many aspects of the design of the receptor need to be considered, but 

external factors must also be contemplated, such as solvent.  Unlike biological 

systems, synthetic receptors can take advantage of varying the solvent systems to 

modify or enhance intermolecular interactions, such as hydrogen bonding or 

charge pairing.15,25,26  Such interactions can be enhanced by replacing solvents 

such as water and methanol with non-hydrogen bonding solvents such as DMSO 
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or chloroform, that have lower dielectric constants.  Even subtle differences such 

as increasing the methanol concentration in an aqueous solution can enhance 

charge pairing interactions.  Therefore, the affinity constants can be tuned to work 

in a desired concentration range.   

Hamilton and coworkers investigated the role of the solvent in host/guest 

association,27 specifically the recognition of dicarboxylates by bis-guanidinium 

receptors.  They studied the association and thermodynamics of binding of 1.2 

with 1.3 in increasingly competitive solvents, starting with dimethyl sulfoxide 

(DMSO) then moving to methanol and finally adding water.  The association 

constants were determined to decrease upon introduction of higher concentrations 

of the stronger hydrogen bonding solvent, resulting in an increased solvation of 

both host and guest.  The association constant was determined to be near 55,000 

M-1 in DMSO with a dramatic decrease to 230 M-1 in 50% water in methanol. 
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1.4 MOLECULAR RECOGNITION OF CARBOXYLATES 

 

In designing a receptor, functional groups must be incorporated that are 

complementary to the functional groups on the guest that is being targeted.  In our 

group, many of these guests are comprised of anionic groups such as 
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carboxylates.  There are numerous examples of receptors or sensors that have 

been developed for this purpose.  Anions such as carboxylates are often bound to 

synthetic receptors via hydrogen bonding or charge pairing interactions, where 

ammonium and guanidinium28 groups are commonly used at the binding pocket.  

The most favorable binding motifs of carboxylates/carboxylic acids are shown in 

Eq. 1.1.  Ammonium groups have a high localization of charge,29 but their 

geometry is not as conducive for hydrogen bonding to carboxylates (Eq. 1.1A).  

The charge pairing interactions of guanidinium groups are more diffuse, but they 

also have a more favorable geometry for binding carboxylates and remain 

protonated over a higher pH range (Eq. 1.1B).30  Neutral binding sites are also 
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used, such as ureas, thioureas, and amides.28  Although they lack the electrostatic 

component, they have been shown to form strong associations with carboxylates 

through bidentate hydrogen bonding motifs (Eq. 1.1C and D). 

 

1.4.1 Ammoniums 

 

The interaction of polyammonium salts with carboxylates was studied by 

Kimura and coworkers.31  They synthesized a series of polyammonium 

macrocycles 1.4-1.6, and found that at neutral pH they were triply protonated.  All 

three macrocycles formed complexes with the tris-carboxylate analyte citrate.  

Association constants of 55-1000 M-1 were obtained where the host with the 

larger ring had the strongest association.  The macrocycles 1.5 and 1.6 were also 

shown to bind bis-carboxylates that had short linkages between the carboxylates, 

such as succinate and malonate, but the binding constants were decreased in 

relation to citrate.  Longer bis-carboxylates such as glutarate and aspartate did not 

bind.  When a similar host was studied that was acyclic, binding of all the guests 

was negligible showing that the preorganization of the amines in the cavity 

enhances binding. 

HNNH
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1.4.2 Ureas, Thioureas, and Amides 

 

Strong associations can be achieved between carboxylates and receptors 

that contain ureas, thioureas, or amide binding sites.  Without the electrostatic 

component, the studies are generally done in non protic solvents such as dimethyl 

sulfoxide or chloroform to enhance hydrogen bonding.  Morán and coworkers 

developed a receptor for carboxylates32 that is composed of two chromenones 

linked by a urea.  The host binds through hydrogen bonding from a combination 

of urea and amide hydrogens.  Receptor 1.7 bound benzoic acid in DMSO 

through four hydrogen bonds (Scheme 1.1) to achieve an association constant of 

1.5 x 104 M-1 (1H NMR).  In a similar receptor which lacked one of the 

chromenones, binding was greatly reduced even though only one hydrogen bond 

was removed.  The association constant was determined to be 20 M-1 in DMSO.   
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CPK models suggested that the urea carbonyl was twisted out of the plane of the 

chromenone ring due to steric hinderance of a hydrogen on the aromatic ring with 

the carbonyl.  This may have prevented the formation of linear hydrogen bonds 

compared to the added rigidity of making four hydrogen bonds in 1.7. 

 

1.4.3 Guanidiniums 

 

Schmidtchen and co-workers have extensively studied the 

thermodynamics of anion recognition by guanidiniums.33  They have studied the 

role of solvent, counter anions, and the functionality around the binding site.34  

The study of the association of bicyclic guanidinium structure 1.8 with benzoic 

acid was done by isothermal titration calorimetry (ITC) to determine the counter 

anion's effect on binding.  The binding constant of 1.8 to the carboxylate was 

greatly affected by the guanidinium's counter ion in acetonitrile.  The larger 

binding constants came from the larger, less hydrogen-bonding anions.  Both 

enthalpy and entropy were determined to be favorable.  Smaller anions resulted in 

an increase in entropy, due to more solvent molecules being released from the 

binding site.  The exothermic component also decreased with a decrease in the 

counter anion size, indicating that the anion was competing with the guest for the 

guanidinium. 

N

N

N
H H
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Hamilton27,35 has also performed research into the thermodynamics of 

guanidinium/carboxylate interactions.  In one study, the binding of 

tetrabutylammonium acetate to a series of guanidinium derivatives was 

investigated by ITC. 25  The association of the bicyclic guanidinium (1.9) with 

acetate had a reasonable affinity in DMSO, but the presence of the methyl groups 

in 1.10 and 1.11 completely inhibited binding, as found by ITC and 1H NMR, 

showing the importance of hydrogen bonding for complexation.  The 

thermodynamic data showed that the guanidinium/carboxylate interaction was 

favorable with the binding being exothermic, with positive entropy.  Therefore, 

the binding was attributed predominately to hydrogen bonding interactions, and 

the affinities were again reduced when the counter ion was changed from iodide 

or tetraphenyl borate to chloride. 

 

N

N

N
R1 R2

1.9 R1=H, R2=H
1.10 R1=CH3, R2=H

1.11 R1=CH3, R2=CH3 

 

1.5 MOLECULAR RECOGNITION OF DIOLS 

 

As for the binding of diols, there have been a variety of studies aimed at 

targeting this functional group, primarily concerned with sugar recognition.36  
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Carbohydrates are one of the most abundant organic molecules found in Nature.  

Their functions are numerous including energy, structure, and intercellular 

communication.  For example, ribofuranosides are a vital component of RNA and 

ATP, while cell surface oligosaccharides are involved in cell-recognition 

processes.  The understanding of the molecular recognition of sugars is an 

important investigation that many supramolecular chemists are pursuing.  There 

have been numerous receptors and sensors developed for the binding of 

saccharides.  Many of these receptors were designed to form neutral hydrogen 

bonds with sugar molecules, since they possess more hydrogen-bonding 

functional groups per carbon atom, than any other natural product. 

 

1.5.1 Hydrogen Bonding Receptors in Organic Solvents 

 

Some artificial receptors are designed to form neutral hydrogen bonds to 

the hydroxyl groups of the sugar with amide NH or alcohol groups, patterned after 

protein/carbohydrate interactions.  In biotic binding clefts, water is generally 

excluded in order to eliminate competing hydrogen bonds; therefore, artificial 

receptors are generally studied in aprotic solvents to achieve the same effect.  

Polypyridine-macrocyclic receptors were designed for the binding of 

glucopyranosides by Inouye and coworkers.37  Amides as well as pyridines were 

incorporated in the receptor for hydrogen bonding to the saccharides.  Receptor 

1.12 was determined to have an affinity with n-octyl β-(D)-glucopyranoside of 

170 M-1 (1H NMR, CDCl3).  It was theorized that the low affinity of the acyclic 
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system resulted from the loss of energy through rotation about the pyridine-

pyridine axis to bind to the saccharide.  Therefore the macrocyclic receptor 1.13 

was synthesized to create a preorganized cavity.  The resulting complexes were 

determined to have an association constant near 5600 M-1 for glucopyranoside, 

with selectivity over galatopyranoside.  The selectivity is obtained due to the 

difference of one hydroxyl group between the sugars (axial versus equatorial).  

Glucopyranoside is able to efficiently make more hydrogen bonds when bound 

than the galatopyranoside with its one axial hydroxyl group.   
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1.5.2 Saccharide Binding Receptors in Water 

 

There is also an interest in binding diols, or mainly saccharides, in water.  

The reason monosaccharides are so difficult to bind in water is because the 

receptor must exclude water from its binding pocket in order to bind its guest.  

Yet saccharides resemble a water cluster due to the large number of hydroxyl 
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groups making it difficult for the receptor to distinguish between the saccharide 

and the water.  Binding of monosaccharides in water has been accomplished, but 

very low association constants are generally the result; therefore many others 

have targeted functionalized substrates that are easier to bind such as saccharides 

with hydrophobic surfaces.36,38  One successful system that bound 

unfunctionalized saccharides in water was synthesized by Kral, Schmidtchen, and 

coworkers.39  The macrocyclic porphyrin compound 1.14 was designed to 

sandwich saccharides between the two hydrophobic porphyrins, with the tertiary 

amides assisting with the formation of hydrogen bonds.  Association constants 

were determined by UV/visible titrations and 1.14 was determined to have the 

strongest affinity for maltotriose (5.5 x 104 M-1), a trisaccharide of glucose.  The 

affinities decrease with the di- and monosaccharides, but were still respectable in 

water.  For example, glucose bound with an affinity of 1.3 x 103 M-1 while a 

disaccharide such as lactose had an affinity of 2.8 x 104 M-1.  It was suggested that 

the high association constants were derived from the complementarity of the host 

and guest in regards to the hydrophobic and hydrophilic portions of each.   
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1.5.3 Boronic Acids 

 

Molecular recognition has traditionally been focused on the use of non-

covalent bonding interactions for the study of host/guest interactions, such as 

hydrogen bonding and charge pairing discussed previously.  More recently, the 

use of covalent interactions has been explored in this area.  The use of boronic 

acids has helped to advance the molecular recognition of sugars in aqueous 

media, by forming reversible covalent linkages to 1, 2- and 1, 3-diols (Scheme 

1.2, B going to D).  Due to their ability to form boronate esters,40 they have been 

extensively studied for the binding of saccharides, and are routinely incorporated 

into synthetic receptors.41,42  The formation of the boronate ester is faster when 

the boron is tetrahedral, which happens at high pH.  Scheme 1.2 shows the 

equilibrium of phenylboronic acid with a diol in aqueous media.  At low pH, the    
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Scheme 1.2 
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boronic acid is trigonal planar (A), therefore upon an increase in pH, the boron 

becomes tetrahedral (B) as the water that is coordinated to the boron’s empty p 

orbital is deprotonated (pKa = 8.8).43  Addition of a diol results in the formation of 

a boronate ester (D) which in turn enhances the Lewis acidity of the boron.  This 

increase in Lewis acidity results in a lowering of the pKa of the bound water.42  

When the pH is lowered below the pKa of the boronate ester, the boron again 

becomes trigonal planar (C) where the hybridization of the boron is no longer 

conducive for binding, resulting in a shift in equilibrium to A.   

A fluorescent sensor of saccharides developed by Czarnik and coworkers 

helps to illustrate the increased Lewis acidity of the boronic acid upon 

complexation of a diol.  Fluorescent-pH titrations of 1.15 were performed varying 

the amount of fructose present from 0-100 mM.  When the boron is tetrahedral, 

the fluorescence is quenched, resulting in a decrease in signal, which happens at 
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high pH.  Yet, in the presence of increasing amounts of fructose, the quenching 

occurrs at lower and lower pH values, indicating that the tetrahedral boron was 

forming.  It was found that the pKa of the water bound to the boronate ester was 

5.9 in the presence of fructose compared to 8.8 of the uncomplexed boronic acid.  

An association constant of 270 M-1 was determined, by the titration of fructose 

into a solution of 1.15 in water at pH 7.4, where the greatest signal modulation 

occurred.   
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Wang and coworkers have studied the interactions of boronic acids and 

diols in detail,44 using phenyl boronic acid and Alizarin Red S as a fluorescent 

reporter.  They have studied buffer effects, pH effects, and overall affinities of 

phenyl boronic acid for different diols, showing that many common beliefs may 

actually be misperceptions.  For example, it has been stated in the literature that 

binding constants of these systems are buffer-independent.45  This work shows 

that the binding constant is dependent on the type of buffer, and in the case of 

phosphate, the concentration as well.  It is also shown that phenyl boronic acid 

has a stronger affinity for catechol than other 1,2-alkane diols, and all of their 

binding constants were pH dependent. 
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Since it is not always desirable to work at high pH, Wulff46 demonstrated 

a method of binding diols at neutral pH.  His discovery came about while he was 

investigating new binding sites for affinity chromatography of diols, alcohols, and 

amines.  Polymers were available that bound diols with the tetrahedral boron 

discussed above, but some of the targeted analytes were labile in basic solutions.  

Wulff discovered that a tertiary amine adjacent to the boron allows for the 

formation of boronate esters (G) at neutral pH.  The pKa of the ammonium E was 

determined to be 5.2, which allows for a boron-nitrogen complexation between 

the lone pair of the nitrogen and the empty p orbital of the boron.  This results in 

formation of a tetrahedral boron (F) at neutral pH with efficient boronate ester 

formation, also at neutral pH (Scheme 1.3). 
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Shinkai and coworkers have done extensive research into the binding and 

selectivity of sugars with the amine complexed boronic acids.  The fluorescent 

photoinduced electron transfer (PET) (Section 1.6.1) sensor 1.16,47 which has 

only one boronic acid for complexing saccharides, was determined to be selective 

for fructose.  Yet, when a second boronic acid is incorporated into the scaffold, 

the host (1.17) now shows a preference for glucose.48  This shows that the spatial 
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orientation of the binding moieties has a significant affect on determining the 

selectivity of the receptor.  
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1.6 DEVELOPMENT OF A SENSOR 

 

So far, the development of receptors for molecular recognition has only 

been discussed.  In order to detect analytes, a way to signal their presence needs 

to be incorporated.  Since many analytes of interest do not include their own 

chromophore or fluorophore, and detecting them without chemical modification is 

preferred, the development of receptors into sensors needs to be investigated.  A 

sensor is a device that upon a specific interaction yields a measurable response.  

Many scientists in the past have viewed sensors as macroscopic devices such as 

pH meters, where all the components are contained within one device.  Yet, there 

are others that consider engineered molecules as sensors or chemosensors.  In 

order to make a useful chemosensor, a compound must contain a "binding site" 

and a "signaling site," such as a chromophore, fluorophore, or redox active center.  
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Further, a mechanism to communicate between them must exist.49  For the most 

part, these synthetic sensors possess covalent links between the fluorophore or 

chromophore and the binding site.  Traditionally, when an analyte associates with 

the binding site, a microenvironment modulation occurs that perturbs the 

properties of the signaling site (Scheme 1.4).  From changes in the spectroscopic 

or redox properties, binding constants and stoichiometries can be obtained.50  

With organic structures, absorbance or fluorescence changes are commonly 

observed.  A change in signal upon binding can result from PET,51,52 charge 

transfer, fluorescence resonance energy transfer (FRET),53 or simple 

microenvironment changes such as those that arise from changes in local ionic 

strength or pH.     

 

Scheme 1.4 
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Colorimetric versus fluorimetric signaling both have distinct advantages 

and disadvantages.  Colorimetric has the advantage of being detectable by the 
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naked eye, such as a color change, or the appearance or disappearance of color.  

For example, the pH indicator phenolphthalein switches between colorless and 

pink at the appropriate concentration of protons.  The disadvantages for 

colorimetric versus fluorescence are that higher concentrations of receptor and 

analyte are needed to obtain accurate absorbance measurements.  Fluorescence 

has the advantage of being more sensitive, due to the low background, and 

therefore lower concentrations of analyte can be detected.  The problems 

associated with fluorescence are photobleaching of the fluorophore, stability of 

the fluorophore, and sensitivity to the solution environment including pH, 

polarity, and temperature.   

 

1.6.1 Photoinduced Electron Transfer (PET) 

 

Photoinduced electron transfer (PET)52 is a method of signaling for a 

sensor that is like a switch, the fluorescence is either “on” or “off.”  This 

generally entails a fluorophore-spacer-receptor system, where the binding event 

triggers the switch.  A popular example of this utilizes the fluorophore with an 

adjacent amine.  In the absence of an analyte, the lone pair of the amine quenches 

the fluorescence of the fluorophore through PET.  Upon binding of an analyte, the 

lone pair is no longer available for electron transfer due to association with the 

analyte and thus the fluorescence is regenerated.  This form of signaling, where 

the sensor is “off” and the analyte switches the fluorescence “on,” is powerful in 

relation to the reverse method.  The difference is the background when the sensor 
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is uncomplexed.  The “off-on” method essentially starts at zero and grows in 

intensity, while the “on-off” situation already has a strong signal and the presence 

of analyte just decreases the signal.  A large number of sensors have been 

constructed based upon this principle.47,49,54 

There has been a large development of PET sensors over the years for a 

variety of different analytes, with cations being one group of targets.  Sensor 1.18 

was developed for the selective detection of lithium.55  The amino-crown binding 

site quenches the fluorescence of the naphthalenes, until the addition of lithium 

switches the fluorescence on due to the lone pairs of the amine complexing the 

cation, resulting in a PET lithium cation sensor.  In non aqueous systems, 1.18 

had a high selectivity for lithium over other cations such as sodium, potassium, 

calcium, and magnesium.   
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1.6.2 Fluorescence Resonance Energy Transfer (FRET) 

 

Another method of signaling that can be incorporated into sensors is a 

technique termed fluorescence resonance energy transfer (FRET).56  The 
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principles of this technique have been widely used in biochemical settings and it 

involves the use of two fluorophores.  The FRET pair has overlapping excitation 

and emission bands so that energy can be exchanged between them.  When 

radiation is absorbed by one fluorophore (the donor), in theory it could emit a 

photon, but when the second fluorophore is near, it transfers its energy to the 

second molecule or the acceptor.  This molecule subsequently fluoresces, 

resulting in a large shift in excitation versus emission wavelengths.  The 

efficiency of the transfer is greatly affected by the distance between the two 

fluorophores.  Therefore, when they are separated, FRET no longer occurs, and 

the excitation of the acceptor results in straight emission, with no transfer of 

energy.   

James and coworkers developed a bis-boronic acid, bis-fluorophore 

receptor (1.19) that was selective for saccharides.57  Phenanthrene and pyrene 

were chosen as the donor and acceptor respectively since the emission wavelength 

of phenanthrene overlaps with the excitation wavelength of pyrene for 

fluorescence energy transfer in the excited state.  Excimer emission was observed 

with 1.19 free in solution due to π-π stacking.  Upon titration of 1.19 with 

different saccharides, FRET emission was viewed with an increase in 

fluorescence at 417 nm, the emission wavelength of pyrene through the excitation 

of phenanthrene (299 nm).  The excimer emission also decreased upon addition of 

the saccharides.  It was determined that 1.19 had the strongest affinity for glucose 

relative to galactose and fructose, by a factor of two.  Due to the relative 

intensities of the host/guest complexes, it was determined that the energy transfer 
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from donor to acceptor is more efficient in the rigid 1.19/glucose complex relative 

to the more flexible 1.19/fructose complex.   
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1.6.3 pH 

 

Another common method of indicating binding is the use of an indicator 

that is sensitive to changes in pH.  A frequently used indicator that is used to 

detect changes in pH is phenolphthalein.  When the indicator is protonated, it is 

colorless, but in solutions that are above a pH of 8 or 9, the solution becomes 

pink.  Incorporating a signaling site like this with a binding site allows for 

detection of microenvironment changes upon complexation of an analyte.   

An example of a sensor that uses a pH sensitive indicator to modulate 

absorbance upon complexation with a guest is 1.20, an alizarin yellow-modified 

β-cyclodextrin (β-CD).58  The cyclodextrin receptor is known to form inclusion 

complexes with organic guests in aqueous media.59  In order to create a 

chemosensor for such entities, alizarin yellow, a pH indicator,60 was covalently 

attached to a β-CD through an ethylenediamine linkage.  In solution, the indicator 
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is partially incorporated within the CD cavity, protecting it from the aqueous 

environment.  Upon inclusion of a guest such as 1-adamantanol (1.21), the 

indicator is displaced from the cavity and the pKa values are shifted.  This causes 

a change in the protonation state of the alizarin yellow and hence a change in the 

absorption spectrum.  This example highlights a sensor with a fundamentally 

different signaling mechanism than sensors based upon PET.  A displacement 

occurs that leads to a signal modulation, due to a change in protonation state of a 

pH indicator.  In this kind of general scheme, one may ask, "why have any 

covalent attachment between the receptor and the reporter?"  By eliminating 

several synthetic steps, the creation of chemosensors would then be more facile.  
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1.6.4 Dye Displacement Assay 

 

An alternative method to a covalently attached chromophore or 

fluorophore is a competition between the indicator and the analyte for the binding 

pocket.  This signaling mechanism is well precedented for the determination of 

association constants,61 and works in a similar manner to many antibody-based 

biosensors in competitive immunoassays.62  A solution containing the unlabeled 

antigen is added to the antibody receptor, which is associated with a tagged 

antigen.  Upon displacement of the tagged antigen a signal modulation is 

observed.  Although the method is easy and convenient, it has seen relatively little 

incorporation in the molecular recognition/supramolecular community.  For the 

synthetic receptors, an indicator is displaced from the binding pocket upon 

addition of an analyte, causing a signal modulation (Scheme 1.5).  This type of 

signaling protocol can be applied to most synthetic receptors.  There are several  
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advantages to this method of signaling:  1) since the receptor is not covalently 

attached to the indicator, it is possible to change indicators at will, 2) no extra 

covalent bond architecture is required in the synthesis, allowing one to focus on 

the design of the host first, and choose an indicator later, and 3) it works well in 

both aqueous and organic solvents, and therefore one can tune the solvent system 

to obtain the desired Ka values of the indicator and analyte.  The major 

disadvantage of this technique is that it is not amenable to imaging, such as tissue 

or whole cells, because the indicator is present everywhere in solution, not just 

isolated to the receptor. 

 

1.6.4.1 Acetylcholine Sensors 

 

Prior to our exploitation of this technique, few examples were found in the 

literature.  One example was reported by Inouye12 for the detection of 

acetylcholine (1.22) (Scheme 1.6).  The resorcinal based calixarene 1.23 forms 

inclusion complexes with alkyl ammonium cations in an alkaline media through 

electrostatic and/or cation-π interactions.  The indicator chosen was a pyrene- 

modified N-alkylpyridinium cation (1.24).  When 1.24 was bound in the cavity of 

1.23, its orange fluorescence was quenched through PET from the anionic oxygen 

of 1.23.  Upon addition of 1.22 to the solution, a competition for the binding 

cavity occurred that led to the release of the fluorophore and the regeneration of 

fluorescence.   
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Scheme 1.6 
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Inouye's system required strongly basic conditions to deprotonate four of 

the hydroxyl groups of 1.23, which caused problems such as nucleophilic attack 

on the pyridinium and degradation of the acetylcholine.  This prompted Shinkai63 

to investigate a way to monitor the presence of acetylcholine in a neutral 

environment.  Calix[n]arene-p-sulfonates (n = 4 or 6) were chosen as the 

receptors (1.25) since they have a lower pKa value making them anionic at neutral 

pH, and also form inclusion complexes with cationic guests through electrostatic 

and/or cation-π interactions.  The fluorescence of 1.24 was quenched upon 

inclusion in this cavity, and was regenerated upon addition of 1.22.  Since these 

first few examples, other groups are beginning to exploit this signaling method.64   
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1.6.4.2 Citrate Sensor 

 

Using an indicator displacement assay, our group developed a 

chemosensor for citrate (Scheme 1.7).  The sensor consisted of an ensemble of the 

host molecule 1.26 and the indicator 5-carboxyfluorescein (1.27).65  It was 

anticipated that this competition assay would be able to signal the presence of 

citrate in highly competitive media. 

The design of 1.26 focused on a 1,3,5-trisubstituted-2,4,6-triethylbenzene 

scaffold incorporating three guanidinium recognition units.  The six substituents 

point alternately up and down around the ring, thereby preorganizing the 

guanidinium binding sites on one face of the aromatic ring.66  When the binding 

of citrate to a host lacking the ethyl groups was compared to 1.26, the binding 

affinity dropped by a factor of two.14  Since ammonium and guanidinium 

functionalities are commonly used for binding anions in aqueous media,67,68 the 

two were contrasted to determine selectivity.  The tris-guanidinium receptor was 

nearly three-fold better than the tris-ammonium receptor for binding citrate in 

water as determined by 1H NMR.    
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Scheme 1.7 
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The fluorescent indicator 1.27 was chosen due to its similar characteristics 

to citrate (tris-anionic) and the fact that it is a pH indicator.69  Since the 

absorbance and fluorescence intensities of 1.27 are sensitive to changes in pH, it 

was expected that small microenvironment differences such as the binding cavity 

of 1.26 would induce these pH changes.  Upon addition of 1.26 to a solution of 

1.27 in a solvent mixture of methanol and water, the absorbance increased at λmax 

498 nm (Figure 1.1A) as more of the indicator became bound, inducing a 

microenvironment change.  This was the expected modulation.  The indicator is 

more highly ionized when bound in the cavity of 1.26, which is associated with an 

increase in absorbance and emission intensity.  When citrate was added to the 

solution of 1.26 and 1.27, the absorbance decreased (Figure 1.1B) as 1.27 was 

displaced from the binding pocket.  A binding constant of 2.9 × 105 M-1 was 

determined for 1.26-citrate by UV/visible spectroscopy.50 
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FIGURE 1.1.  UV/VIS SPECTRUM FOR CITRATE SENSING ENSEMBLE. (A) The 
absorbance was measured as 1.26 was added to a solution of 1.27 
at constant concentration.  (B) The absorbance was measured as 
citrate was added to a solution of 1.26 and 1.27 at constant 
concentrations (25% water in methanol (v/v), 5 mM HEPES, pH 
7.4). 

 

Upon testing different solvent systems, a ratio of 25% water in methanol 

at a pH of 7.4 (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) 

buffer) was chosen.  A stipulation in picking a buffer is that it should not inhibit 

the binding of the analyte.  HEPES was the buffer of choice due to its low 

association with guanidiniums.  When the buffer was changed from one 

containing sulfonate groups to phosphate groups, the complexation between 

citrate and 1.26 was inhibited due to buffer interference.  Methanol was used in 

the solutions to increase the host's affinity for both citrate and 1.27.  By changing 

the solvent system, the association constants of the indicator or analyte to host can 

be tuned to be able to work in the desired concentration range of the analyte.  

When the solvent was changed from water to 3:1 methanol:water, the binding 

constant increased approximately an order of magnitude.  Finally, the pH was 
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adjusted within range of the pKa of 1.27 to increase the sensitivity to 

microenvironment changes. 

Calibration curves were generated for citrate under the same solution 

conditions discussed above.  Figure 1.2A shows a decrease in absorbance at 498 

nm as the concentration of citrate is increased.  Figure 1.2B displays the 

selectivity of 1.26 for citrate by examination of emission calibration curves at 525 

nm.  Addition of di- and mono-carboxylates such as succinate and acetate 

respectively, results in little or no fluorescence change.  The same result is 

achieved when the analytes are simple salts or sugars. 
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FIGURE 1.2.  CALIBRATION CURVES FOR CITRATE SENSING ENSEMBLE (A) 
UV/Vis calibration curve of citrate at λ = 498 nm.  (B) 
Fluorescence emission calibration curve for citrate ( ), succinate 
(■), and acetate (●).  Excitation at λ = 490 nm and emission at λ = 
525 nm (25% water in methanol (v/v), 5 mM HEPES, pH 7.4). 

 

Once the selectivity of the chemosensor was determined, its ability to 

detect citrate in a highly competitive media was tested.  The sensing ensemble 

1.26-1.27 was used to assay the concentration of citrate in beverages such as soft 
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drinks and sports drinks.  Table 1.1 depicts these results from colorimetric and 

fluorescent analysis as compared to NMR titrations as a control.  Regardless of 

the highly competitive media, the assay performed with good agreement across 

the three methods. 

 
TABLE 1.1.  ANALYSIS OF CITRATE CONCENTRATION (MM) IN BEVERAGES 

determined by NMR and competition assay 1.26-1.27 by 
absorbance and fluorescence. 

 

 by NMR 1.26 plus 1.27, 

absorbance [mM] 

1.26 plus 1.27, 

emission [mM] 

citrate model solution  30.3 29.9 

orange juice 43.1 44.1 44.7 

Gatorade 16.0 15.1 15.1 

Powerade 12.4 11.1 11.3 

All Sport 7.4 7.1 8.1 

Mountain Dew 8.0 5.5 5.4 

tonic water 21.0 21.2 20.8 

Coca Cola 0 0 <0.5 

Diet Coke <0.2 <0.4 <0.7 
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1.6.4.3 Glucose-6-phophate Sensor 

 

Using the same basic principle, a sensing ensemble was designed to signal 

the presence of glucose-6-phosphate (1.28).  To achieve selectivity, a receptor 

needed to be designed that incorporated binding sites with an affinity for diols and 

anions in water.  Boronic acids are known to rapidly and reversibly form boronate 

esters with 1,2- and 1,3-diols in basic aqueous media (Section 1.5.3).40  Thus, the 

glucose-6-phosphate receptor 1.29 incorporates three m-aminomethyl benzene 

boronic acids as the binding sites on the 1,3,5-trisubstituted-2,4,6-triethylbenzene 

scaffold.70  The boronic acids are in a position to form cyclic boronate esters with 

the hydroxyls of glucose-6-phosphate, while the ammoniums were incorporated to 

coordinate with the phosphate through charge pairing interactions.  It is worth 

noting that the kinetics of the boronate ester formation is fast in a basic 

environment when the boron is tetrahedral.  These studies were done near neutral 

pH where the boron is planar (sp2).  Even though the assay was not under optimal 

conditions, with a slow rate of exchange, binding was still feasible.  
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Binding studies were performed using 31P NMR and UV/visible 

spectroscopy in a solvent system of 70% methanol in water.  A 1:1 binding 

stoichiometry was determined using 31P NMR.  Using this data, the host was 

found to have a binding constant for glucose-6-phosphate of 1.6 × 103 M-1.  With 

UV/visible spectroscopy, a competition assay was employed to signal binding.  

Once again, 5-carboxyfluorescein (1.27) was chosen as the indicator.  Since the 

indicator's absorbance and fluorescence is sensitive to small pH changes, upon 

binding to 1.29 it was expected to behave in a similar fashion to the previous 

sensing ensemble.  Indeed, upon addition of 1.29 to a solution of 1.27, the 

absorbance increases at 494 nm (Figure 1.3A) as more of the indicator becomes 

bound to the host.  As 1.28 is added to a solution of 1.27 and 1.29, the absorbance 

decreases (Figure 1.3B) as more of the indicator is displaced from the binding 

pocket by 1.28.  Using this data, the binding constant between 1.28 and 1.29 was 

determined to be 2.2 × 103 M-1 (by UV/Vis), similar to the value determined using 
31P NMR.  Testing similar analytes, there was no detectable change in the sensing 

ensemble's absorbance upon addition of glucose or sodium phosphate.  However, 

the overall spectral response is relatively small, and is not likely practical.  Yet, 

we have discovered ways to improve upon low signal response, as shown in a 

sensing ensemble for IP3. 
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FIGURE 1.3.  UV/VIS SPECTRUM FOR GLUCOSE-6-PHOSPHATE SENSING 
ENSEMBLE (70% methanol in water (v/v), 40 mM HEPES, pH 
7.4). (A) Absorbance increase as 1.29 was added to a solution of 
1.27 at constant concentration. (B) Absorbance decrease as 1.28 
was added to a solution of 1.27 and 1.29 at constant 
concentration. 

 

1.6.4.4 IP3 Sensor 

 

The next receptor was designed due to an interest in being able to detect 

inositol-1,4,5-trisphosphate (IP3), a polyanionic secondary messenger, by utilizing 

capillary electrophoresis (CE) during cellular processes.71  In this regard, a sensor 

needed to be developed that can signal the presence of very low concentrations of 

IP3.  In the development of a sensor with an affinity constant appropriate for so 

sensitive an application, the binding of anions in aqueous media needed to be 

further analyzed.  Guanidiniums were chosen as binding sites due to their high 

affinity for not only carboxylates, but phosphates as well. 67  Further, several 

guanidiniums were required and needed to be preorganized to complement IP3.  
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As a result, the cleft-like receptor 1.30 consists of four units of the 1,3,5-

trisubstituted-2,4,6-triethylbenzenes with one acting as the base and the other 

three surrounding it as substituents linked via amines.15  The six guanidinium 

binding sites were expected to be oriented toward the center of the cavity through 

steric gearing. 
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A 1:1 binding stoichiometry was determined for IP3 with 1.30 using 1H 

NMR.  Fluorescence spectroscopy was chosen for the binding studies of 

nanomolar concentrations of IP3, due to the sensitivity of the technique.  The 

signaling motif again employed a competition assay with 5-carboxyfluorescein 

(1.27) as the indicator.  In water, as with the previous glucose-6-phosphate 

studies, little intensity and wavelength shift upon indicator binding was observed.  

A switch between fluorescent and non-fluorescent forms upon binding would 

increase the sensitivity of the sensor.  To achieve this, binding studies were done 

in methanol, where 1.27 preferred the non-fluorescent lactonized form, which is 

generated when the carboxylate undergoes an intramolecular conjugate addition 

to the quinoid structure, thereby disrupting the conjugation. It was expected that 

the positive microenvironment of the host would cause the ring to reopen, thereby 

returning 1.27 to the fluorescent form.  Indeed, Figure 1.4A shows the 
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regeneration of fluorescence at 530 nm upon addition of 1.30 to the solution as 

more of the indicator becomes bound to the host. When IP3 is incrementally added 

to an ensemble of 1.27 and 1.30, the fluorescence decreases (Figure 1.4B) as the 

indicator is displaced from the binding cavity and the cyclized form dominates.  

The binding constant between IP3 and 1.30 was determined to be 1.0 × 108 M-1.  It 

was found that IP3 in methanol could be detected at the 2 nM range with the 

sensing ensemble 1.27 and 1.30 in the absence of any competing analytes.  At this 

detection level it is feasible that the intracellular concentration of IP3 can be 

determined with the assistance of CE.   
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FIGURE 1.4.  FLUORESCENCE SPECTRUM FOR IP3 SENSING ENSEMBLE. (A) 

Increase in fluorescence intensity as incremental amounts of 1.30 
are added to a solution of 1.27. (B) Decrease in fluorescence 
intensity as IP3 is incrementally added to a solution of 1.30 and 
1.27.  Excitation is at 450 nm (100% methanol, 10 mM HEPES 
buffer, pH 7.4). 
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1.6.4.5 Non-Aqueous Indicator Displacement 

 

All of the assays presented thus far have used 5-carboxyfluorescein as the 

indicator where either fluorescence or absorbance intensity modulations can be 

monitored in response to the presence of analyte.  In this manner, the indicator is 

used to signal analytes it was never designed to signal.  To further generalize this 

method, it was shown that inorganic ions such as nitrate could be targeted as 

guests.  Nature uses amides in proteins to complex anions such as sulfates and 

phosphates.72  The receptor designed for the complexation of nitrate was an 

amide-linked C3-symmetric bicyclic cyclophane (1.31).18  It was shown that the 

amide hydrogens complex as neutral hydrogen bond donors to the anion's π-

systems.  Our receptor consists of two molecules of the 1,3,5-tris-aminomethyl-

2,4,6-triethylbenzene as the base and the cap.  The two are linked by the 

formation of 2,6-pyridine diamides, where the six amide hydrogens converge into 

the center of the cavity.  
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In order to complete the chemosensor, the pH indicators methyl red (1.32) 

and resorufin (1.33) were chosen.16  It was expected that the anionic dyes would 

bind in the cavity causing a change in their absorbance.  Upon addition of an 

appropriate analyte, the dyes would be displaced from the cavity resulting in a 

change in absorbance associated with the dye free in solution.  Indeed, upon 

addition of 1.31 to a solution of 1.32 or 1.33, the absorbance spectrum of the 

indicators changed.  The formation of the complex 1.31-1.32 resulted in a 

decrease in absorbance at 575 nm (Figure 1.5A).  An increase in absorbance 

occurred at 495 nm when the complex 1.31-1.33 was formed (Figure 1.5B).  

When neutral methyl red was tested for complexation with 1.31 the spectrum 

showed no change, indicating that an anion is needed for complexation. 
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FIGURE 1.5.  UV/VIS SPECTRUM OF (A) RESORUFIN AND (B) METHYL RED at 

constant concentrations as 1.31 is added (50% methanol in 
dichloromethane (v/v)). 

 

The formation of a complex between 1.31 and 1.33 is inhibited in the 

presence of nitrate. Figure 1.6A shows the absorbance changes of 1.33 at 576 nm 
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upon the addition of various analytes.  The host 1.31 shows selectivity for nitrate 

over other anionic guests such as bromine and perchlorate in 50% (v/v) methanol 

in dichloromethane.  The association constant between 1.31 and nitrate was 

determined to be 380 M-1 by UV/Vis spectroscopy when using 1.33 as the 

indicator.  When indicator 1.32 in 75% (v/v) acetonitrile in dichloromethane is 

used, higher bonding constants were anticipated due to a lower dielectric media 

and the absence of competing hydrogen bonds.  Figure 1.6B shows the 

absorbance changes of 1.32 at 423 nm in the presence of 1.31 with varying 

concentrations of anions.  Again, 1.31 is found to be selective for nitrate over 

other anions with a binding constant for 1.31 to nitrate of 500 M-1.  The  
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FIGURE 1.6.  UV/VIS CALIBRATION CURVES FOR NITRATE SENSING 
ENSEMBLE (A) the sensing ensemble 1.31 and 1.33 at 576 nm 
upon addition of analytes: NO3- (●), Br- (■), and ClO4- ( ) 
(50 % methanol in dichloromethane (v/v)). (B) the sensing 
ensemble 1.31 and 1.32 at 423 nm upon addition of analytes: 
NO3- (●), Br- (■), and ClO4- ( ) (25% acetonitrile in 
dichloromethane (v/v)).  The counter cations are sodium and 
tetrabutylammonium for the two different solvent systems 
respectively. 
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development of this chemosensor shows that the competition assay is applicable 

in an organic solvent system, and the sensing ensemble is not limited to one 

indicator.   

 

1.6.4.6 Tartrate/Malate Sensing Ensemble 

 

The next example discusses the result of a sensor that was designed to be 

selective for a particular analyte (tartrate), yet it also had a similar affinity for a 

very structurally similar analyte (malate).  The assay for tartrate was developed 

using a colorimetric indicator.  The host was designed to bind tartrate, which is a 

common natural product found in grape derived beverages such as wine and 

juice.13  Since tartrate is comprised of two carboxylates and a diol functionality, 

complimentary binding sites needed to be chosen accordingly.  From what we 

learned in the use of the previously described hosts, two guanidiniums and a 

boronic acid were chosen as the recognition moieties in host 1.34, and the same 

hexa-substituted benzene scaffold was used.  The boronic acid coordination 

chemistry used here is different from that of 1.29, because the amino methyl 

group is now ortho to the boronic acid instead of meta.  We previously noted that 

the kinetics of the boronate ester formation is fast when the boronic acid is 

tetrahedral due to the lone pair of the adjacent amine donating into the empty p-

orbital of the boron.   
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The chosen chromophore, alizarin complexone (1.35), possesses similar 

functionalities to tartrate, and is used as an indicator for the determination of pH, 

fluoride ions, and some rare-earth metals.73,74  It was expected that 1.35 bound to 

1.34 would have a different "protonation state" than 1.35 free in solution.  Indeed, 

Figure 1.8A shows that upon incremental addition of 1.34 to a solution of 1.35 in 

a methanol/water mixture the absorbance at 525 nm decreases as the absorbance 

at 450 nm increases, which is indicative of a color change from burgundy to  
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FIGURE 1.8.  TARTRATE/MALATE COMPETITION ASSAY.  UV/Vis spectrum of 
1.35 (75% methanol in water (v/v), 10 mM HEPES, pH 7.4). (A) 
Absorbance decrease at λ = 525 nm and increase at λ = 450 nm as 
1.34 is added to a solution of 1.35 at constant concentration. (B) 
Absorbance decrease at λ = 450 nm and increase at λ = 525 nm as 
tartrate is added to a solution of 1.34 and 1.35 at constant 
concentration. 
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yellow.  This is one of the first indicators discussed, where there was a large color 

change upon addition of the receptor.  When tartrate is added to a solution of 1.34 

and 1.35 under the same conditions, the absorbance change is reversed with an 

increase at 525 nm and decrease at 450 nm (Figure 1.8B).  A binding constant of 

5.5 x 104 M-1 between tartrate and 1.34 was determined by UV/Vis spectroscopy.   

Other possible competing analytes were tested with the sensing ensemble 

using UV/Vis spectroscopy, including: ascorbate, malate, succinate, lactate, and 

glucose.  Figure 1.9 depicts the calibration curves that were generated in these 

studies.  The sensing ensemble 1.34 – 1.35 was selective for tartrate over sugars 

and mono- and bis-carboxylates, including lactate, with the exception of malate  
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FIGURE 1.9. UV/VIS CALIBRATION CURVES FOR TARTRATE/MALATE SENSING 
ENSEMBLE at 450 nm for 1.34 and 1.35 upon addition of the 
analytes:  tartrate (◆ ), malate ( ), ascorbate  (◇ ), succinate ( ), 
glucose (■), and lactate (●) (75% methanol in water (v/v), 10 mM 
HEPES, pH 7.4). 
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(4.8 x 104 M-1).  Since, tartrate and malate are very structurally similar in which 

they only differ by one hydroxyl, the result was 1.34 had similar affinity constants 

for both analytes.  The similarity in affinity constants can be seen in the response 

given by the sensing ensemble in the calibration curves.   

With the calibration curves in hand, various beverages were analyzed for 

their total concentration of tartrate and malate.  Wines and grape juices were 

tested with 1.34 and 1.35, and the values obtained were in good agreement with 

values independently determined by NMR (Table 1.2).  In summary, even though 

the colorimetric sensing ensemble was designed to be selective for one analyte, it 

demonstrated a similar affinity for two very structurally similar analytes.  Yet one  

 
TABLE 1.2.  TARTRATE AND MALATE CONCENTRATIONS IN GRAPE DERIVED 

BEVERAGES determined by both NMR and colorimetric assay. 
 

 NMR 

[mM] 

1.34 + 1.35 

UV-Vis [mM] 

Tartaric acid model solution 51.2 50.2 

Ernest & Julio Gallo Sauvignon Blanc 35.6 32.9 

Ste. Genevieve Chardonnay 34.1 36.3 

Henri Marchant Spumante 26.5 24.9 

Talus Merlot 19.5 20.3 

Santa Cruz Organic White Grape Juice 43.7 42.3 

Welch’s Grape Juice 69.4 71.3 
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goal of supramolecular chemistry is to develop receptors that have high 

selectivity.  Therefore, one might question the utility of this sensing ensemble.  In 

the end, the sensor was able to quantify both analytes simultaneously in grape 

derived beverages.  Due to its ability to bind a “class of analytes” one might 

envision this sensor as a differential receptor that could be effective in a sensor 

array. 

 

1.7 MULTIPLE ANALYTE SENSOR 

 

At the beginning of this chapter, it was discussed that supramolecular 

chemists strive to develop synthetic receptors that have high affinities and 

selectivities, yet due to their inherent simplicity, many fall short of this goal.  Yet, 

in some instances, this lack of selectivity can make these systems desirable, 

especially in the area of multi-component sensing, as shown above.  In order to 

simultaneously detect multiple analytes in a solution, many different sensors are 

needed.  A selective sensor can be developed for each analyte, but depending on 

the number of analytes that are being quantified, that can be an arduous task.  A 

more practical approach would be the development of sensors that sense for 

classes of analytes, similar to Nature’s approach to taste and smell.  Fewer sensors 

are needed due to the cross-talk that is displayed for a particular analyte eliciting a 

response from many receptors at once.  This idea is portrayed in Figure 1.10, 

where the response is shown from a six component sensor array upon addition of 

analyte A and B, respectively.  From the example shown, analyte A received a  
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FIGURE 1.10.  A REPRESENTATION OF A SENSOR ARRAY where only one factor 
is being looked such as one wavelength for absorbance.  The top 
two graphs represent the response obtained from the sensors upon 
addition of analytes A and B separately.  The bottom graph is the 
collective response from the array upon addition of both analytes.  
Pattern recognition would be used to determine the composition of 
the mixture.   
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strong response from sensor 6, with smaller responses from sensors 1, 2, and 3, 

while sensors 4 and 5 offer essentially no response.  Of the same six sensors, only 

1 and 5 gave a response upon addition of analyte B.  The pattern from each 

analyte of interest was collected, such that upon addition of both analytes pattern 

recognition programs used the collective response to determine the composition 

of the sample.  This example only looks at one factor, for example looking at only 

one wavelength out of entire UV/visible spectrum.  The addition of more 

responses from more “wavelengths” results in a very powerful tool for sensing.   

 

1.7.1 Nature’s Multi-Analyte Sensor 

 

Of the five mammalian senses, vision, hearing, touch, smell, and taste, the 

first three are physical senses based on forces such as sound waves, light waves, 

etc.  The other two, taste and smell, are often referred to as the lower senses, and 

are based on our response to chemical stimuli resulting in Nature’s sensor array.75 

Over the years the number of primary tastes has been disputed and at one 

point even included “tastes” such as fatty, astringent, sharp, and nauseous.  Wund 

eventually would narrow it down to only sweet, sour, salty, and bitter.75  Even 

with only four primary tastes, mixing these components in different combinations 

create unique tastes, much like the mixing of the primary colors. 

Taste or gustation is a result of chemical interactions or molecular 

recognition events on the surface of the tongue through “taste buds,” shaped like 

and named for an unopened flower.76  The concept of taste receptors has been 
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around since the time of Aristotle, but taste buds were first identified in the mid 

nineteenth century by Leydig.  Schultze (1863) proposed the idea that they were 

chemosensory structures.76  Taste buds exhibit selectivity for a particular taste and 

are clustered in different regions of the tongue in depressions called taste pores 

according to their selectivity.  The tip of the tongue is where salt is sensed, the 

sides nearest the tip is sweet, further back on the sides is sour, and across the back 

of the tongue seems to have the greatest sensitivity for bitterness.  The center of 

the tongue appears to be insensitive to all taste.  When chemical stimuli enter the 

taste pores, the epithelial cells within the taste buds respond to the stimuli and 

activate nerves.76  Sweetness results from sugar, sugar derivatives, sweet amino 

acids like most D-amino acids, and some simple salts (beryllium and lead).  

Bitterness is thought to be a safety mechanism against poisons by being directly 

related to the gag reflux and is attributed to a diverse amount of stimuli including, 

hydrophobic amino acids, basic heterogeneous compounds, divalent salts, and 

some peptides.77  Sour is dependent on the acidity of the food, while saltiness 

stems from halide salts such as sodium chloride.78  Due to the diverse types of 

stimuli for one particular taste, multiple receptors are required.  Yet there it would 

be impossible to have a specific receptor for each stimuli that can be eaten.  This 

is where the idea of differential receptors is applied.  The receptors have 

selectivities for classes of analytes where each receptor has a different affinity for 

a particular stimulus.  The response of each of these receptors is combined to 

create a pattern that is specific for a certain taste.  This pattern can be stored in the 
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brain so that the same taste can be identified upon future exposure.  This pattern 

may also be used to classify similar tastes as pleasant or unpleasing. 

 

1.7.2 Synthetic Multi-Component Sensor Arrays 

 

To mimic the sense of taste, we need to have the ability to detect single or 

multiple analytes through a collection of specific or general sensors utilizing a 

signaling scheme and pattern recognition.  An array of sensors is compiled and a 

specific pattern emerges for each stimuli and mixture of stimuli that is tested.  

This pattern can then be stored in a computer to create a library of “tastes” to be 

utilized for future recognition.  One approach uses poly-(ethylene glycol)-

polystyrene (PEG-PS) resin beads with a variety of covalently attached chemical 

sensors to mimic taste buds (Figure 1.11A)79.  These sensors were selective for 

individual analytes, but not specific in their recognition ability.  These derivatized 

beads were placed in micromachined wells (Figure 1.11B) in silicon wafers to 

immobilize the beads.80  A 3 x 3 array was used to detect a variety of analytes at 

once.  A charge-coupled device (CCD) was used to determine the absorption 

properties of the beads, and the red, green, and blue (RGB) light intensities were 

studied for each individual bead upon addition of analyte. Of the four sensors 

chosen, one was specific and three were nonspecific.  Each was compared to a 

control, which consisted of a resin bead where the amines were acetylated.  The  
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FIGURE 1.11.  NATURAL AND SYNTHETIC “TASTE BUD” (A) A rat fungiform 

papilla as seen by a scanning electron microscope (SEM).83  (B) 
An SEM image of a micromachined silicon well, with a bead 
immobilized in it. 

 

sensors included fluorescein as a pH indicator,81 o-cresolphthalein complexone 

for detection of Ca2+ and pH,82 alizarin complexone for Ce3+, Ca2+, and pH,74 and 

a boronic acid with a resorufin-derivatized galactose associated with it to indicate 

the presence of simple sugars. 

Proof of concept for the detection of Ca2+ using 0.1 M Ca(NO3)2 at various 

pH values is shown in Figure 1.12.  The CCD array analyzed the change in 

transmitted light as the beads responded to calcium and pH.  Experiments were 

also performed with cerium (Ce(NO3)3), a combination of cerium and calcium, 

and the simple sugar fructose.  o-Cresolphthalein indicated the presence of 

calcium at a pH of 11.4 by a purple color.  In the absence of calcium ion, the 

purple color was not observed until pH 12.5.  Fluorescein was used as a pH 

sensor, changing from light yellow to orange at a pH around 6.  Alizarin 

complexone was used for multiple roles, including a pH sensor were the beads 

were yellow at a pH less than 4.5, orange/red from pH 4.5-10, and a deep purple 

when the pH was higher than 11.5.  When cerium was present, the change from 
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yellow to orange/red occurred at a lower pH.  The same effect was also observed 

for calcium, but the color change was not as dramatic.  When fructose is added to 

the resorufin-β-D-galactopyranoside boronic acid complex, the bead changes 

from dark orange to yellow as the tagged sugar is displaced from the boronic acid 

and washed away due to the higher binding affinity of fructose.  There was also a 

slight sensitivity to pH that was recorded by the CCD showing an increase in the 

absorbance of red light.  These studies show that it is possible to detect multiple 

analytes at once, by analysis of the RGB patterns. 
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FIGURE 1.12.  RGB PATTERNS FOR ELECTRONIC TONGUE.  A series of bar 
graphs showing the color attenuation that was recorded by the 
CCD as the sensors were exposed to calcium at various pHs.  
(ALZ = alizarin complexone, FLU = fluorescein, BOH = boronic 
acid/galactose/resorufin, CRP = o-cresolphthalein complexone, 
BLK = blank) 
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A cross-reactive sensor array was developed with Nature’s own enzymes 

by Walt and coworkers.84  The sensor array was developed to determine the 

presence of a series of esters, through the use of esterase enzymes which catalyze 

the hydrolysis of esters to carboxylic acids.  While some enzymes have a high 

specificity for their substrates, others have overlapping specificities such that they 

are class reactive.  The assay was performed in a microtiter plate, and the reaction 

kinetics was monitored by fluorescence, with the presence of fluorescein.  The 

indicator is sensitive to changes in pH, such that the fluorescence was altered as 

more of the carboxylic acid was produced.  Twenty-three esters were tested in the 

array, which ranged from simple aliphatic to multi-functional esters.  The 

esterases varied in specificity such that the presence of each ester created a 

fingerprint of fluorescent responses that was used as a training set for pattern 

recognition.  Principle component analysis (PCA) was used to analyze the data.  

The pattern recognition program is widely used to reveal simpler patterns within 

complex data sets.  In this experiment, approximately twenty amino acids were 

correctly identified in solution by themselves and in mixtures.  Even though it was 

determined that complex mixtures of esters would be difficult to determine, the 

system helped to demonstrate the utility of using the combination of differential 

sensors and pattern recognition for sensing applications.   
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1.7.3 Support Bound Single Analyte Sensing 

 

Now that the technology is in place to form sensor arrays, the 

immobilization of synthetic receptors on solid supports needs to be investigated.  

In the Anslyn group, a library of support bound single analyte chemosensors was 

designed to be selective for ATP.17  This sensor takes advantage of a rationally 

designed core while utilizing combinatorial methods in the development of the 

recognition moieties.  A preorganized cavity was formed using the 1,3,5-

trisubstituted-2,4,6-triethylbenzene scaffold mentioned previously.  One of the 

substituents consisted of lysine/urea linkage to Tentagel resin.  The remaining 

substituents were identical tripeptide chains extending from guanidinium linkages 

to the base 1.36.85  The fluorophore 5-carboxyfluorescein was attached to the N-

terminus of the peptide chains while 7-diethylaminocoumarin-3-carboxylic acid 

was attached to the lysine side chain.  It was expected that binding could then be 

signaled by some perturbation of the fluorescence resonance energy transfer 

(FRET) between the two fluorophores. 
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A library was generated and then screened against the desired analyte, 

ATP, to determine the most selective receptors.  The host without the 

fluorophores (1.36) was used to screen the library.  A fluorescently labeled N-

methylanthraniloyl-ATP (MANT-ATP, 0.25 mM) was used to select the strongest 

binding members of the library (HEPES buffer 10 mM, pH 7.1).86  Illumination of 

the beads at 366 nm allowed for a range of fluorescent intensities to be viewed.  

Several of the highly fluorescent and nonfluorescent beads were removed and 

sequenced to determine which peptide chains were active and inactive (Table 

1.3).  Three highly fluorescent “hits” and one nonfluorescent “miss” were 

resynthesized with the fluorophores as in 1.37. 

The randomly chosen “hit” and “miss” beads were sandwiched between 

two layers of gold mesh on a glass slide to create a mono layer which could be 

studied using a standard fluorimeter to determine their ATP signaling ability.  As 

expected, the “miss” exhibited no fluorescence modulation upon excitation of 

either fluorophore when exposed to ATP.  Upon excitation of fluorescein all but 

one “hit” (Thr-Val-Asp) exhibited fluorescence modulation, however no change 

in the extent of FRET was observed. A large spectral change was observed with 

ATP and the Ser-Tyr-Ser sensor to yield a binding constant of 3.4x103 M-1 (Figure 

1.12).  The fluorescence modulation may be due to an increase in the positive 

microenvironment around the fluorescein upon binding of the ATP. The 

potentially competing analytes AMP and GTP were also tested with this sensor 

due to their similarity in structure to ATP.  Selectivity for ATP over AMP 

suggests the importance of the guanidinium binding.  Similarly, the specificity 
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over GTP indicates the tripeptide arms create specificity for nucleotide bases.  

This demonstrates that a selective resin bound chemosensor can be created 

through combinatorial methods. 

 
TABLE 1.3.  SEQUENCING RESULTS OF SELECT MEMBERS OF LIBRARY.  The 

peptide chains in bold were resynthesized, incorporating the 
fluorophores. 

 

Active Beads Inactive Beads 

Thr-Val-Asp His-Phe-Gly 

Asp-Ala-Asp Ser-Ala-Asp 

Ser-Tyr-Ser Trp-Asn-Glu 

Asp-His-Asp Thr-Phe-Ser 

Met-Thr-His  

Glu-Pro-Thr  

His-Ala-Asp  
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FIGURE 1.12.  BINDING ISOTHERMS FOR THE SER-TYR-SER 1.37 when 
combined with ■ = ATP,  = AMP, and ● = GTP. (200 mM 
HEPES buffer, pH 7.4) 

 

1.8 SUMMARY 

 

The study of molecular recognition and the development of single analyte 

sensors has led to the ability to simultaneously analyze for several components in 

a complex solution.  Instead of developing sensors that have high selectivity and 

specificity, perhaps a new frontier might be the development of sensors that are 

responsive to classes of analytes.  The creation of a pattern, or fingerprint, 

resulting from the response of several of these differential sensors allows for the 

determination and potential quantification of these analytes using pattern 

recognition protocols.  The fact that the molecular recognition events are taking 

place in parallel allows for “cross-talk” or non-specific receptors to be used.  A 
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library can be created out of the patterns obtained, to be used for future analysis of 

unknown solutions.   

The next few chapters help to show how many of these concepts and ideas 

can be applied.  From investigating sensors that are selective for classes of 

analytes to using multiple sensors and pattern recognition for analyte 

quantification.  These advances help to show that synthetic receptors can make 

useful differential sensors, and work is shown how they will be incorporated into 

sensor arrays.  An investigation of the thermodynamics of boronic acid and 

guanidinium binding is also discussed.  The binding of four boronic 

acid/guanidinium hosts with various combinations of diol/carboxylate guests are 

studied by UV/visible titrations and isothermal titration calorimetry and the 

cooperativity is looked at.  Finally, a new sensing method for catechol containing 

compounds is investigated, that resembled iron binding siderophores.   
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Chapter 2: Teaching Old Receptors New Tricks 

 

2.0 INTRODUCTION 

 

In chapter one, the use of selective versus non-selective receptors was 

discussed.  The point was made that many supramolecular chemists strive to 

design and synthesize selective receptors that rival the affinity and selectivity of 

natural receptors such as antibodies or enzymes.1  While many research groups 

have had partial success in this endeavor,2 including our own,3,4 synthetic 

receptors are inherently much simpler than their biological counterparts.  

Therefore, due to this simplicity, they are generally less selective than natural 

receptors and it is difficult to obtain a high degree of selectivity for complex 

guests.  However, this lack of selectivity can, for some applications, make 

synthetic receptors more desirable than natural ones.  For example, receptors with 

selectivities for classes of analytes can be used in differential sensor arrays, 

creating powerful diagnostic tools. 

The development of receptor 2.1 illustrates how a receptor that lacked a 

certain degree of selectivity, can still be a useful chemical sensor.5  The receptor 

was designed to be selective for gallate, a tris-hydroxy benzoic acid derivative.  

When binding studies were performed, it was determined that the receptor was 

actually selective for a class of analytes similar to gallate.   
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This chapter goes on to discuss the development of a highly selective 

sensing ensemble which was created through the use of multiple synthetic 

receptors in solution.  Two hosts were chosen that had differential responses to 

tartrate and malate and to the two indicators that were selected.  The simultaneous 

detection of tartrate and malate was determined through the use of pattern 

recognition using neural network analysis.  The results demonstrate the 

achievement of a highly selective sensing ensemble through the use of differential 

receptors which resulted in determination of two structurally similar analytes.   

Finally, the incorporation of an analog of receptor 2.1 into a differential 

sensor array platform will be discussed.  Receptor 2.1 was incorporated onto a 

solid phase resin for incorporation into the array platform.  It was found that the 

receptor was still selective for tartrate over malate.  This was all done in 

preparation of incorporating an enzyme sensing assay into the array, creating a 

differential sensing platform.   
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2.1 DEVELOPMENT OF 2.1 

 

2.1.1 Design 

 

The design of receptor 2.1 is based on a scaffold that induces 

preorganization of the binding sites.  The scaffold was again the 1,3,5-

trisubstituted-2,4,6-triethylbenzene unit, where the groups attached to the 

methylene groups alternate up and down around the ring, allowing the binding 

sites to be sterically preorganized on one face of the benzene ring.6  This steric 

gearing has been shown to enhance binding in earlier work, where decreased 

binding was observed with a similar receptor lacking the ethyl groups (Section 

1.6.4.2, compound 1.26).4  

The binding sites chosen were designed to target the guest gallate and 

other similar analytes.  Gallate contains a 3,4,5-trihydroxy phenyl group and a 

carboxylate.  Therefore, two phenyl boronic acids with o-aminomethyl groups and 

a guanidinium imbedded in an aminoimidazoline group were incorporated into the 

design to bind the diols and the carboxylate, respectively.  As discussed in 

Chapter 1 (Section 1.5.3), the boronic acids form reversible, covalent bonds with 

1,2- and 1,3-diols in aqueous media7 making them desirable binding sites in 

sensors for saccharides and other related analytes.  Guanidiniums are known to 

bind carboxylates through charge pairing and hydrogen bonding interactions 

(Chapter 1, Section 1.4.3).8  The proposed binding motif of gallate and 2.1 can be 

seen in Figure 2.1.   
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FIGURE 2.1.  PROPOSED BINDING MOTIF OF 2.1 AND GALLATE. The 

carboxylate should charge pair with the guanidinium, while 
boronate esters are formed between the boronic acids and the 
catechol functionalities. 

 

2.1.2 Synthesis 

 

The synthesis of receptor 2.1 began with electrophilic aromatic 

substitution on the commercially available 1,3,5-triethylbenzene (2.2) with 

paraformaldehyde in refluxing acetic acid and hydrobromic acid (Scheme 2.1).4  

The bis-bromo methylene substituted product (2.3) was first isolated, and 

subjected to substitution conditions again with paraformaldehyde, potassium 

bromide, and sulfuric acid refluxing, to obtain the tris bromomethyl substituted 

product 2.4.  The yield was rather low over the two step procedure.  This product 

was taken on to the tris azide compound (2.5) through nucleophilic displacement 

of the bromides with azides in near quanitative yields.   

 

 



 74

Scheme 2.1 

(CH2O)n

HBr, AcOH
118 °C

(CH2O)n

KBr, H2SO4

118 °C
35%

NaN3

10% H2O, THF

2.2

Br

Br

2.3

Br

Br

Br

2.4

N3

N3

N3

2.5
99%

 

 

The synthetic route shown in Scheme 2.1 to obtain product 2.5 had been 

proven to work over the years, but there were a few problems associated with it.  

To obtain the tris halogenated product, the synthesis was performed over two 

steps, and the resulting yield was rather low.  The formation of 2.5 also needed 

improvement, not due to low yields, but due to the dangerous use of water with 

the sodium azide.  Through the work of Dr. Robert Hanes, the synthetic route 

shown in Scheme 2.2 was developed.9  The tris chloro product (2.6) was now the 

target through electrophilic aromatic substitution using chloromethylmethyl ether 

and tin tetrachloride.  The reaction proceeded well, resulting in yields in the high 

seventies.  High yields were still obtained for the nucleophilic displacement with 

sodium azide even though the solvent was changed from water/THF mixtures to 

DMF.   
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Subsequent reduction of the azides of 2.5 with triphenylphosphine and 

water through a Staudinger reduction10 resulted in compound 2.7.  In order to put 

boronic acids and a guanidinium on the scaffold, two of the nitrogens needed to 

be protected.  The protecting group chosen was the t-butyl carbamate or the BOC 

group.  The addition of di-t-butyl dicarbonate to 2.7, resulted in a statistical 

mixture of four different products, that ranged from the tris protected amine to the 

tris free amine.  The bis-BOC protected compound 2.8 was the product desired, 

which was obtained in 28% yield.   
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The next step was to incorporate the guanidinium binding site.  The acetic 

acid salt of 2.8 and free based 2-methylthio-2-imidazoline (2.9) were ground 

together, placed in a conical vial, and heated to 80 °C for three days.  This solid 

melt resulted in compound 2.10 in only 37 percent yield.  The removal of the 

BOC protecting groups was accomplished with trifluoroacetic acid, and the 

counter ions were exchanged to acetates to give 2.11.  
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Due to the difficulty in purifying a water soluble compound through 

reverse phase chromatography, and the low yields in obtaining 2.10, a new route 

of obtaining the guanidinium was pursued (Scheme 2.5).  This new route coupled  
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the free amine of bis-BOC protected 2.8 with an N-BOC protected imidazoline 

derivative (2.12), which was synthesized through a BOC protection of 2-

methylthio-2-imidazoline hydroiodide (Scheme 2.6).11  The coupling produced  
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the BOC protected guanidine 2.13 more efficiently, and purification was more 

facile than in the guanidinium formation.  Deprotection of all three BOC groups 

of 2.13 was accomplished with trifluoroacetic acid to give 2.11 in near 

quantitative yields.  The anions were all exchanged to acetates to determine the 

protonation state of 2.11.  The final step to obtain 2.1 was a reductive amination 

with 2-formylbenzene boronic acid (2.14) and 2.11 (Scheme 2.7).   
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Scheme 2.7 
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2.2 INVESTIGATION INTO THE AMINE ADJACENT TO THE BORONIC ACID 

 

The binding of boronic acids with alkane diols was discussed in Chapter 1 

(Section 1.5.3).  The formation of boronate esters is facile in basic aqueous media 

when the boron is tetrahedral.  Wulff7 discovered that the incorporation of an 

amine adjacent to the boronic acid forms an sp3 boron at or near neutral pH, due 

to the intramolecular coordination of the amine with the boron.  This boron-

nitrogen interaction raises the boronic acid's pKa from near nine12 to near twelve, 

and can lower the pKa of a tertiary ammonium ion from around nine to near five.  

Many boronic acid receptors exist that incorporate an adjacent tertiary amine.  

The intramolecular coordination between a tertiary amine and a boronic acid not 

only improves the kinetics of exchange, but can also be used to modulate 

photoinduced electron transfer (PET), leading to a sensing application.  For 
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example, Shinkai's sugar sensor 2.15 is a boronic acid linked to an anthracene 

moiety via a proximal tertiary amine.13  The amine is able to quench the receptor's 

fluorescence through PET, even though it is involved in the boron-nitrogen 

interaction.  Upon complexation with a sugar, the fluorescence of the anthracene 

is regenerated as the formation of the boronate ester increases the Lewis acidity of 

the boron, decreasing the PET. 
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Recently, a secondary amine has been used in a non-fluorescent boronic 

acid sensor.  James and coworkers synthesized a colorimetric sensor (2.16) for 

saccharides.14  The host was generated by covalently attaching an azo dye to a 

phenyl boronic acid through a proximal secondary amine.  The use of an aniline 

nitrogen gave a color change due to deprotonation upon sugar complexation.  

Due to the incorporation of a secondary amine adjacent to a boronic acid 

in receptor 2.1 and other receptors from the Anslyn group such as 1.34 (Section 

1.6.4.6) and 2.17,15,16 the structure of the amine needed to be investigated.  In 

these receptors, dye displacement strategies were used to signal the presence of 

guests17 as compared to the covalently attached signaling moieties of 2.15 and 

2.16.  In our systems, the role of the secondary amine is both structural and 
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electronic, preorganizing the cavity and enhancing the kinetics of exchange, 

respectively. 
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While several examples exist which locate tertiary amines adjacent to 

boronic acids for sensing applications, few are available that incorporate 

secondary amines.  The utility of this latter combination raises questions 

pertaining to the pKa of the secondary ammonium ion relative to its tertiary 

counterpart (i.e. the strength of the B-N interaction at neutral pH) as well as the 

geometry found at the boron and nitrogen centers with varying pH.   

To address the questions concerning pKas, model compounds 2.18 and 

2.19 were synthesized.  With these compounds, there are several equilibria to 

consider.  The first pKa is undoubtedly deprotonation of the ammonium ion in 

2.18a (Scheme 2.8A).  The second pKa can be attributed to either another 
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deprotonation of the amine (2.18b to 2.18d) or coordination of hydroxide to the 

boronic acid (2.18b to 2.18c).  We expected that the pKa of the amine 2.18b 

should be above that of an alkyl ammonium since the  
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lone pair has no ability to delocalize and is near a negative charge, yet this needed 

to be confirmed.  If the second deprotonation is of the amine, this could lead to 

hydroxide elimination to give 2.18e, which can be found under dehydrating 

conditions.18  This would not be evident in a potentiometric titration since it is 

formally the elimination of water, although it would be evident in a 11B NMR 

spectrum, where changes in the hybridization of the boron are reflected in its 

chemical shift.  Importantly, if 2.18e does dominate at neutral pH, it would not be 

as effective for binding diols in sensing applications as is a tertiary amine analog. 

The equilibria available to the analogous tertiary model (2.19) is much 

simpler (Scheme 2.8B).  Deprotonation of the ammonium ion (2.19a to 2.19b) 

and coordination of hydroxide (2.19b to 2.19c) can be assigned to the first and 

second pKa, respectively.7  Given the equilibria presented in Scheme 2.8, 

potentiometric titrations were performed and 11B NMR versus pH studies were 

done on 2.18 and 2.19 to probe the pKa values and the geometries at boron as a 

function of pH. 

 

2.2.1 Synthesis of Model Compounds 

 

Secondary model 2.18 was prepared in one step through a reductive 

amination between benzyl amine and 2-formylbenzene boronic acid (2.14) 

(Scheme 2.9) to afford the product in high yield.  Tertiary model 2.19 was 

prepared (Scheme 2.10) in a similar procedure to Shinkai’s13,19 approach by 
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protecting the boronic acid of 2-methylbenzene boronic acid (2.20) with 

neopentyl glycol to obtain essentially 100% protected boronic acid (2.21) as a 

clear oil.  The methyl group was then brominated to obtain 2.22, where the low 

yield of 31% resulted from over bromination and difficulty in product 

purification.   
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Subsequently the bromine was displaced through nucleophilic substitution by N-

methyl benzylamine.  The boronic acid was deprotected by hydrolysis on silica 

gel and eluted with methanol to obtain 2.19 with a yield of 50%.20 

 

2.2.2 pH Titrations 

 

Potentiometric titrations were performed to determine the first pKa values 

associated with 2.18a and 2.19a.  These values were obtained with the help of Dr. 

James W. Canary at New York University and his graduate student Yu Hung 

Chiu.  The pKa of an ammonium generally ranges between 9 and 10, but a boronic 

acid adjacent to an ammonium will lower that significantly.  The titration curves 

for both models are shown in Figure 2.2 and the equilibrium constants were 

determined with Martell’s program BEST.21  From these curves, a pKa of 5.7 was 

found for 2.19a, which is comparable to the known value of 5.2 for a dimethyl 

ammonium ion adjacent to a boronic acid.7 The titration of the secondary model 

2.18a produced a value of 5.3 for its pKa.  Hence, the pKa values determined from 

the potentiometric titrations of 2.18a and 2.19b are quite similar.22 
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FIGURE 2.2. PH PROFILE OF 2.18 (■) AND 2.19 (●) upon addition of base.  (0.15 
M NaCl in water, 0.1 M NaOH, and 4.5 mM (initial) 2.18 and 2.19)  
The titration of 2.18 started with a higher concentration of acid and 
the first few data points were excluded. 

 

2.2.3 11B NMR Investigations 

 

In an effort to better understand the geometry at boron, the 11B NMR 

spectra of 2.18 and 2.19 were recorded as a function of pH (Figure 2.3).23  It is 

known that changes in hydridization of boron can be seen in changes of the 

chemical shift of 11B NMR spectra.  When boron is tetrahedral, its chemical shift 

is upfield from that of the trigonal planar geometry, where pure sp3 and sp2 are 

approximately 0 and 30 ppm respectively.24  In our studies, both compounds 2.18 

and 2.19 showed shifts from approximately 30 to 10 ppm as the pH was raised.  
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This indicates that the boron centers in both the secondary and the tertiary model 

compounds are trigonal planar at low pH and upon increasing the pH they become 

tetrahedral, with pKa values of 5.2 and 5.8 respectively.  These values are in 

agreement with those determined by potentiometric titrations.  Further, at neutral 

pH the chemical shifts found for 2.18 and 2.19 are near identical. Since we are 

confident in the assignment of form 2.19b at neutral pH for the tertiary model, it 

indicates that the proper form for the secondary counterpart is 2.18b at this pH.  

This data therefore signifies that the dominant forms of the secondary and tertiary 

compounds near neutral pH are 2.18b and 2.19b respectively. 
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FIGURE 2.3.  11B NMR CHEMICAL SHIFTS OF MODEL COMPOUNDS 2.18 (■) 
AND 2.19 (●) with increasing pH.  (10% d4-methanol in water, 40 
mM 2.18 and 2.19, 40 mM NaCl)  Referenced to Et2O•BF3 in 
toluene as zero. 
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2.2.4 Crystal Structures 

 

To further investigate the geometry of the boron center of 2.18 near neutral pH, a 

crystal structure was obtained.  Crystallographic quality crystals were grown from 

pure methanol (Figure 2.4).  As can be seen, the nitrogen has added into the 

boron, making the boron tetrahedral, and more conducive to binding.  The 

protonation state of the nitrogen can also be seen, where the hydrogen on the 

nitrogen is still present,25 allowing the secondary nitrogen and the boron to form a 

zwitterionic complex,  with a B-N bond length of approximately 1.665 Ǻ.26   

 

 

FIGURE 2.4.  CRYSTAL STRUCTURE OF 2.18 showing the atom labeling scheme.  
Displacement ellipsoids are scaled to the 50% probability level. 
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As further evidence, Hassan Ait-Haddou obtained a crystal structure of the 

polyaza compound 2.17 (Figure 2.5).  Importantly, the boron is tetrahedral, as is 

the coordinated nitrogen, and the B-N bond lengths are about 1.669 Å.27  11B 

NMR of the crystals provide a chemical shift of 9.4 ppm, consistent with our 

assignment of form 2.18b at neutral pH. 

 

 

FIGURE 2.5.  CRYSTAL STRUCTURE OF 2.17 showing a partial atom labeling 
scheme.  Thermal ellipsoids are scaled to the 50% probability 
level.  Hydrogen atoms shown are drawn to an arbitrary scale.  The 
molecule lies on a crystallographic two-fold rotation axis bisecting 
the pyridine ring and passing through N1.  Atoms with labels 
appended by ‘ are related by -x, y, 1/2 - z.  The protons on the 
amines were located and refined in the crystal structure. 
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In conclusion, it was determined that the pKa values of secondary 

ammoniums adjacent to boronic acids are comparable to the analogous tertiary 

amines.  Further, at neutral pH, form 2.18b dominates.  Therefore, secondary 

amines can be used to coordinate boronic acids for sensor applications with 

geometries appropriate for the complexation of 1,2- and 1,3-diols, as is routinely 

done with tertiary amines.  Undoubtedly there will be a difference in the extent of 

PET between a tertiary and secondary amine that can be exploited for sensor 

applications,28 but the use of secondary and tertiary amines are essentially the 

same with regards to complexation geometry and pH dependence. 

 

2.3 BINDING TARGETS OF RECEPTOR 2.1 

 

As was discussed earlier, receptor 2.1 was designed to bind gallate, a tris 

hydroxy benzoic acid derivative.  This analyte is found in scotch whiskies along 

with other similar analytes due to the aging process.  Fine scotch whiskies are 

required to age for a period of time in oak barrels or casks before they are ready 

for consumption.  This aging process is known to affect the flavor and color of the 

beverage through extraction of phenolic acids from the wood.29,30  Some examples 

are ellagic acid, protocatechuic acid, cafeic acid, and gallic acid (shown below).  

The amount of gallic acid present in scotch whiskey is considered to be an 

indication of age, since it is generated through the hydrolysis of tannins over 

time.30  However, the concentration of these other "gallate-like" compounds can 

also act as an indicator of the age of the scotch whiskey.  Other factors that 
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determine the concentration of gallic acid and analogs incorporated into the spirit 

depend on the type of wood, how many times the casks have been used, and what 

they were used for. Therefore, the exact level of any specific compound can only 

be roughly related to age.  Yet, gallate is currently the compound most often 

quantified.   
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2.3.1 Choosing the Indicator for the Sensing Ensemble  

 

In order to perform binding studies with receptor 2.1, a way to signal 

binding needed to be incorporated.  The method chosen for receptor 2.1 was an 

indicator displacement assay.  As you recall from Chapter 1 (Section 1.6.4), an 

indicator is associated with the host, and upon addition of an analyte, the indicator 

is displaced from the cavity causing a signal modulation.  It was expected that the 

microenvironment change upon binding the indicator to the host would cause a 

change in its absorbance in a manner similar to increasing the pH, since the 

positive microenvironment of the binding pocket was expected to lower the pKa 
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of the phenol of the indicators.  A few different indicators with similar 

functionalities to gallate were investigated to determine which one would work 

the best.  Figure 2.6 shows the structures of the indicators and the UV/visible 

spectrum upon addition of increasing amounts of 2.1.  The three shown are 

alizarin complexone (1.35), bromopyrogallol red (2.23), and pyrocatechol violet 

(2.24).  Other indicators that were examined were alizarin yellow, pyrogallol red, 

Evan’s blue, alizarin, bromochlorophenol blue, and bromocresol purple.  All of 

them except pyrogallol red essentially exhibited no response upon addition of 2.1.  

Pyrogallol red was not used because it decomposed easily.   

Alizarin complexone is used for the determination of pH, fluoride ions, 

and some rare-earth metals31 and was used as the signaling indicator with the 

tartrate/malate sensing ensemble in Chapter 1 (Section 1.6.4.6).16  It was chosen 

to try with 2.1 due to its similar functionalities to gallate, since 1.35 also 

possesses carboxylates and hydroxy phenyl groups.  Upon addition of 2.1 to a 

solution of 1.35 (0.18 mM) in 75% methanol in water (v/v), the maroon indicator 

solution turned yellow as the indicator became bound in the binding pocket of the 

receptor (Figure 2.6A).   

Bromopyrogallol red is also a pH indicator that is used in the 

spectrophotometric determination of various metals such as yttrium and cerium.32  

The presence of catechols for binding to the boronic acids, as well as a sulfonate 

for charge pairing with the guanidinium, made it a good indicator to investigate 

with 2.1.  Upon formation of a complex between 2.23 (0.02 mM) and 2.1, the 
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absorbance of the indicator decreases at 570 nm (Figure 2.6B) resulting in a 

change in color from purple to pink.   
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FIGURE 2.6. UV/VIS SPECTRUM OF INDICATORS TESTED WITH RECEPTOR 2.1. 

A. Alizarin Complexone (1.35)  B. Bromopyrogallol Red (2.23)  C. 
Pyrocatechol Violet (2.24) (10 mM HEPES buffer, 75% methanol in 
water, pH 7.4). 
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Finally, pyrocatechol violet, a colorimetric indicator commonly used for 

the determination of tin and bismuth,33 was also explored, for the same reasons 

2.23 was chosen.  Figure 2.6C shows the absorbance changes associated with 2.24 

(0.06 mM) upon complexation with receptor 2.1.  The free indicator is yellow at 

pH 7.4 in 75% methanol in water and upon binding 2.1 the color changes to 

maroon which resulted in the λmax absorbance shifts from 442 nm to 488 nm.  

Next, the binding affinities of each of these ensembles were investigated.   

 

2.3.2 Determination of Binding Affinities between Indicators and 2.1 

 

The data for each of the above titrations was fit with a 1:1 binding 

algorithm,34 but only one example will be discussed here, the interaction of 2.1 

and 2.24.  The binding of 2.1 and 2.24 was defined through Eq. 2.1, where I = 

indicator and L = host.  Absorbance is defined with Beer’s law, and through a  

 

ILLI →+                                                   Eq. 2.1 

 

derivation of equations using the mass balance equations of indicator and ligand 

and the equilibrium constants, the free ligand (Li) can be calculated using the 

quadratic equation (Eq. 2.2), where It is the total indicator concentration, K1 

represents the binding constant, and Lt refers to the total ligand concentration.   
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The free ligand concentration is then used in the final binding isotherm (Eq. 2.3). 
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The calculated delta absorbance and the actual delta absorbance were plotted 

against the concentration of host.  The binding constant (K1) and the delta molar 

absorptivity (∆ε) were iterated until the best fit of the data was obtained (Figure 

2.7).  This gave a binding constant of 6.2 x 104 M-1 in 75% methanol in water 

(v/v) at pH 7.4 for 2.1 and 2.24.  The association constant of 2.1 to 1.35 was  
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FIGURE 2.7.  UV/VIS STUDY FOR ASSOCIATION OF 2.1 AND 2.24 The curve 
fitting analysis of the binding of 2.1 and 2.24 using a 1:1 binding 
algorithm.  The data was taken at 510 nm (75% methanol in water 
(v/v), 10 mM HEPES, pH 7.4).  
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determined to be 9.0 x 104 M-1, while the affinity between 2.1 and 2.23 was 

calculated to be 5.3 x 104 M-1.  Pyrocatechol violet was the indicator that was 

chosen out of the three.  The binding of 1.35 to 2.1 was investigated because it 

was known to work before, yet we were looking for a new indicator.  

Pyrocatechol violet was chosen over bromopyrogallol red because a color change 

was more desirable than just an intensity decrease, which is essentially all that 

2.23 displayed.   

The absorbance of pyrocatechol violet was investigated at a variety of 

different pH values (Figure 2.8).  Between pH 1 and 7, the indicator is yellow in 

solution.  Upon further deprotonation, the indicator becomes purple.  When 2.24  
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FIGURE 2.8.  THE ABSORBANCE OF PYROCATECHOL VIOLET AT DIFFERENT 

PH VALUES.  Pyrocatechol violet is yellow at low pH and becomes 
blue/violet at high pH.  The absorbance of the dye/host complex 
(2.1/2.24) shifts toward the absorbance at higher pH.   
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is complexed by 2.1 it displays a maroon color, which is in between the 

absorbances at pH 7 and near 12, suggesting that when the indicator is bound, the 

change in microenvironment is similar to an increase in pH.   

 

2.3.3 Determining Analyte Binding Constants with the Competition Assay 

 

A competition assay is the next step to determine the binding constant of 

the guests to 2.1.  All the assays work in a similar manner, but only one specific 

example will be discussed here.  Upon addition of gallate to a solution of 2.1 and 

2.24 at constant concentration and pH (Figure 2.9), the absorbance spectra shifted  
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FIGURE 2.9.  UV/VIS SPECTRUM OF COMPETITION ASSAY.  The absorbance of 

the sensing ensemble 2.24-2.1 upon addition of increasing amounts 
of gallate.  The absorbance decreases at λ = 488 nm and increases at 
λ = 442 nm is a result of the indicator being displaced back into 
solution.  Both 2.1 and 2.24 are at constant concentration.  (10 mM 
HEPES, 75% methanol in water, pH 7.4) 
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back towards 442 nm, as the indicator was displaced from the cavity.  The 

determination of the binding constant is more complicated than the 

indicator/receptor association because the equilibria between the guest (S) and the 

indicator host complex (IL) now exists (Eq. 2.4), along with the equilibria from 

Eq. 2.1.34   

 

ISLSIL +→+                                                Eq. 2.4 

 

For a graphical approach to determining a binding constant between gallate and 

2.1 (K11), the mass balance equations and the equilibrium constants were used to 

derive the equations defined by P (Eq. 2.5) and Q (Eq. 2.6).34  Q is termed the 

indicator ratio, and can be obtained through the absorbances of the free (AI) and 

bound indicator (AIL).  These two equations are then used to derive Eq. 2.7, which 

defines the equation of a line (y=mx+b), where y is [St]/P, x is Q, b is 1, and the  
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slope is the ratio of the binding constant of 2.1-2.24 (K1) over 2.1-gallate (K11).  

The data was subsequently fit by varying the value of AIL until the Y-intercept 

was 1 (Figure 2.10), and K11 was determined to be 1.0 x 104 M-1.   
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FIGURE 2.10.  DETERMINING ASSOCIATION CONSTANTS FOR COMPETITION 
ASSAY. Analysis of Eq. 2.7 for determining the binding constant of 
2.1 to gallate using a competitive binding algorithm. The data was 
taken at 605 nm (75% methanol in water (v/v), 10 mM HEPES 
buffer, pH 7.4). 

 

Other analytes tested using this sensing ensemble included the 

aforementioned ellagic acid (no Ka determined),35 3,4-dihyroxybenzoic acid (4.5 x 

103 M-1), caffeic acid (3.9 x 103 M-1), and 4-hydroxycinnamic acid (<1 x 102 M-1), 

along with fructose (4.0 x 102 M-1), and acetate (<1 x 102 M-1).  Some of their 

calibration curves are shown in Figure 2.11.  The sensing ensemble shows 

selectivity for the analytes that possess both diols and carboxylates, but shows 
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little response to fructose, 4-hydroxycinnamic acid, and acetate.  Looking at the 

affinity constants more closely, when one hydroxyl group is removed from gallate 

(3,4-dihydroxybenzoate) the affinity constant only drops by a factor of two.  If the 

analyte is increased in length, 3,4-dihydroxybenzoate versus caffeic acid, the 

affinity constant essentially remains the same.  The polyol fructose had a higher 

affinity than the mono-hydroxycinnamic acid, showing the importance of the diol 

interaction with the boronic acids.  Due to the receptor’s varied affinities for the 

entire class of analytes, it was determined that the sensing ensemble would not be 

able to quantify one particular analyte in the presence of similar analytes, but 

would bind the entire class of analytes.   
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FIGURE 2.11. UV/VIS CALIBRATION CURVES WITH THE 2.1 SENSING 

ENSEMBLE The change in absorbance of the ensemble 2.1 (0.26 
mM) and 2.24 (0.06 mM) upon addition of the analytes: gallate 
(●), 3,4-dihydroxybenzoic acid (◇ ), 3,4-dihydroxycinnamic acid 
(■), 4-hydroxycinnamic acid (∆), fructose (○), and acetate (▲). 
(25% water in methanol (v/v), 10 mM HEPES, pH 7.0). 
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2.4 SCOTCH WHISKEY AND TEA ANALYSIS 

 

The sensing ensemble 2.1-2.24 was used to evaluate several different 

scotch whiskies that had been aged between 5 and 16 years.  In order to have the 

scotch whiskies as similar as possible in regards to production and materials, Islay 

scotches were chosen. Islay refers to a Scottish island.  It was expected that the 

sensor response would correlate with the age of the scotch whiskey due to an 

overall response to the aforementioned class of compounds that contain diols and 

carboxylates.  Upon addition of microliter quantities of scotch whiskey, a 

"response number" was determined from the single calibration curve of gallate 

 
TABLE 2.1.  SENSING ENSEMBLE (2.1-2.24) ANALYSIS AND HPLC ANALYSIS 

OF SCOTCHES. 

 
Single Islay Malt 
Whiskies 

Age 
Years 

UV/Vis Analysis 
"response number"  
(mM) 

HPLC Analysis 
gallate only (mM) 

Vintage Islay  5  0.69 0.03 

Caol Ila  7  0.89 0.02 

Laphroaig 10  1.85 0.04 

Macallan 12  2.5 0.09 

Lagavulin 16  3.23 0.06 
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(Table 2.1).  This means the response of the sensing ensemble to the class of 

similar analytes was correlated as if the entire response was from gallate, which is 

not the case.  Hence, our "response number" should be much higher than the real 

gallate concentration. 

Indeed, as the age of the scotch whiskey increased, there was an increase 

in the "response number."  To show that the concentration obtained was more 

than just gallate, HPLC analysis36 was performed to quantify gallate.  As 

expected, the concentration of gallate was significantly lower than the "response" 

obtained through absorption analysis of the sensing ensemble.  Either there are 

tannin hydrolysis products in much higher concentrations than gallate, or some 

which bind significantly better than gallate.  Importantly, targeting the entire class 

of gallate analogs with our sensing ensemble shows a better correlation with age 

than quantifying gallate alone.  It would be interesting to discover if the 

correlation holds for scotche whiskies from other regions of Scotland, and for 

blends. 

An attempt was made to quantify gallate in herbal teas such as green tea 

and black tea.  Gallate along with many polyphenols such as catechin, 

epicatechin, epigallocatechin gallate (EGCg), epicatechin gallate (ECg), and 

epigallocatechin (EGC) are present in the tea leaves and have been widely studied 

due to their antioxidant activity.37  The association constants of 2.1 to each of 

these analytes were determined.  They are shown under their structures.  Since the 

guests were not charged, most of the binding was between the boronic acids and 

catechol functionalities (discussed in detail in Chapter 3).  Also, since the guests 
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were considerably larger than gallate the binding constants were anticipated to be 

lower due to the size differences between the host and guest.  When the 

diastereomers catechin and epicatechin were investigated, their affinities with 2.1 

were determined to be 5 x 102 M-1 for both of them.  This is about two orders of 

magnitude less than the association of gallate and 2.1.  Upon testing an analyte 

with one more hydroxyl group, EGC, the affinity constant doubled due to the 

increased interactions with the boronic acids.  The last two analytes investigated, 

ECg and EGCg, had an affinity constant with 2.1 that was similar to gallate’s.  

This increase in association constants relative to catechin or EGC could be due to 

the increased number of interactions with the boronic acids.  Once the binding 

studies were completed, the concentration of gallate was determined in the teas 

through HPLC analysis.  Next, an attempt to quantify gallate with the sensing 

ensemble 2.24-2.1 was performed.  Problems were encountered with the assay, 

which resulted in the determination of inaccurate concentrations, therefore 

quantification was deemed impossible.  Part of the problem was the background 

absorbance of the tea was interfering.  Subtracting the raw absorbance of the tea 

still did not result in the correct concentration of gallate.   
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We have shown that a sensing ensemble of 2.1 and 2.24 was able to 

correlate an increase in the age of scotche whiskies to a class of compounds that 

increase in concentration during the maturation process.  This shows that the 

inherent low selectivities of some synthetic systems can actually be an advantage 

for certain applications, and that such applications can be attractive targets for 

supramolecular and analytical chemists to contemplate.  Perhaps this “low 

selectivity” can be used for other applications that require differential sensing as 

was discussed in Chapter 1.   
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2.5 SIMULTANEOUS QUANTIFICATION OF TARTRATE AND MALATE 

 

In the first chapter, the drive to obtain highly selective synthetic receptors 

was discussed.  Yet artificial receptors are inherently much simpler than their 

biological counterparts.  Therefore, it is difficult to obtain a high degree of 

selectivity for complex guests.  For example, one may expect it to be difficult 

using a synthetic receptor to distinguish between two structurally similar guests 

such as tartrate and malate, which differ by only one hydroxyl.   
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Mother Nature uses “differential” receptors to achieve our sense of taste 

and smell (Chapter 1, Section 1.7.1).38  This is accomplished through the use of an 

array of cross reactive receptors.  The response from each of these receptors for a 

particular mixture of stimuli creates a pattern that is stored in the brain.  Upon 

introduction of that mixture again, the pattern is recalled to identify the taste or 

smell.  We have proposed that the combination of pattern recognition and 

synthetic differential receptors can be advantageous in a sensing application.39  

When colorimetric sensors are used, several wavelengths in a UV/visible 

spectrum can be the “array” and the absorbance at each wavelength is the 

“pattern.”  In the particular application described, we have demonstrated that 
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using multiple hosts in combination with pattern recognition allows one to 

achieve a high degree of selectivity.  This allows one to distinguish between 

and/or perform the simultaneous quantification of very structurally similar guests.   

 

2.5.1 Two Hosts and Two Indicators 

 

Two hosts with affinities for tartrate and malate were chosen for this 

study, which was a collaboration with John T. McDevitt’s group.40  The hosts 

(1.34 and 2.1) have each been discussed previously in regards to their design and 

their selectivities.  Boronic acids impart affinity to vicinal diols,14,41 while 

guanidinium groups impart affinity to carboxylates.  Receptor 1.34 was 

previously found to have a similar affinity for tartrate and malate (Chapter 1, 

Section 1.6.4.6).16  While for receptor 2.1, the combination of two boronic acids 

and one guanidinium was determined to have a greater affinity for tartrate over 

malate (Chapter 3, Table 3.1).42  We postulated that the differential responses that 

these two receptors have to the two analytes would allow pattern recognition to 

determine their concentrations.   
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The previously reported synthesis16,43 of 1.34 was accomplished (Scheme 

2.11) from the mono BOC protected bis amine compound 2.25, which is another 

product from the protection of 2.7 shown in Scheme 2.3.  Guanidiniums were 

formed through a solid melt, coupling 2-methylthio-2-imidazole and the acetate 

salts of 2.25 to obtain 2.26.  The amine was deprotected with trifluoroacetic acid 

and the anions were exchanged to acetates using an ion exchange column (2.27).  

A reductive amination of 2.14 and 2.27 resulted in the final boronic 

acid/guanidinium receptor in moderate yields.   
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A signaling protocol was needed for this study.  Again an indicator 

displacement assay was incorporated into this sensing system.17  To further 

exploit the different characteristics of 1.34 and 2.1, two indicators with different 

affinities for 1.34 and 2.1 were chosen.  In addition, large differences in their 
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wavelength maximums were desirable so that the spectral response would be 

spread over a large wavelength axis.  The two indicators chosen were 

bromopyrogallol red (2.23) (λmax = 567 nm) and pyrocatechol violet (2.24) (λmax = 

445 nm).  Figure 2.12 shows the change in absorbance of a mixture of 2.24 and 

2.23 as increasing amounts of 2.1 are added (75% methanol in water (v/v)).  A 

similar, but reproducibly different response is found upon addition of 1.34.  The 

combination of pyrocatechol violet (2.24) and alizarin complexone (1.35) was 

also investigated (Figure 2.13), but the change in absorbance upon addition of 2.1 

was not as impressive because there were not large differences in their 

wavelength maximums.  In essence, the two indicators have the opposite change 

in absorbance, where 2.24 is yellow and becomes maroon in the bound state, 

while 1.35 is maroon when free and yellow when bound.   
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FIGURE 2.12.  THE UV/VISIBLE SPECTRA OF 2.23 (30 µM) AND 2.24 (60 µM) 
upon addition of increasing amounts of 2.1 (75% methanol in 
water (v/v), pH 7.4, 10 mM HEPES buffer).   
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FIGURE 2.13. THE CHANGE IN ABSORBANCE OF A MIXTURE OF 2.24 (60 µM) 
AND 1.35 (180 µM) UPON ADDITION OF 2.1 (75% methanol in 
water (v/v), pH 7.4, 10 mM HEPES buffer).   

 

2.5.2 The Experiment 

 

The calibration for analysis of tartrate and malate was comprised of a four 

component ensemble of hosts and indicators in solution (150 µM of 1.34, 150 µM 

of 2.1, 30 µM of 2.23, and 60 µM of 2.24).  UV/visible spectra were obtained 

upon addition of various amounts of tartrate and malate, keeping the 

concentrations of the hosts and indicators constant.  The concentration of tartrate 

and malate were altered in increments of 0.2 mM ranging between 0 and 1.2 mM, 

resulting in 49 spectra (Figure 2.14 shows a schematic of the matrix of scans).  

One representative example of the differences between the binding of tartrate and 

malate to the two receptors is given in Figure 2.15.  The UV/visible spectra shown 

are both taken at a total analyte concentration of 0.8 mM, but for one spectrum the 
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concentration of tartrate is greater than in the other.  These two UV/visible traces 

demonstrate that the combination of two differential receptors differentiates 

tartrate and malate, and even mixtures of these two analytes.  The reproducible 

variation in absorbance found for the pure samples and various mixtures of 

tartrate and malate is the data used as the training set for the artificial neural 

network (ANN)44-46 pattern recognition algorithm. 
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FIGURE 2.14.  A REPRESENTATION OF ONE TWO HOST/TWO DYE EXPERIMENT 
PERFORMED, where spectrum were obtained at various 
concentrations of tartrate and malate. 
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FIGURE 2.15.  VARYING TARTRATE AND MALATE CONCENTRATIONS IN 
SENSING ENSEMBLE. The UV/visible spectra of the dye 
displacement assays formed from the mixture of the indicators 
2.23 (30 µM) and 2.24 (60 µM) and the receptors 1.34 (150 
µM) and 2.1 (150 µM) upon the addition of tartrate and malate 
in various concentrations [(-----) Tartrate (0.6 mM) and malate 
(0.2 mM)] and [(____) Tartrate (0.2 mM) and malate (0.6 mM)] 
(75% methanol in water (v/v), pH 7.4, 10 mM HEPES buffer).  
The inside ticks are representative of the 27 wavelengths chosen 
for analysis. 

 

2.5.3 Pattern Recognition Analysis (Artificial Neural Network) 

 

An artificial neural network (ANN) was chosen to analyze the data for this 

experiment.  The next few sections describes ANN’s in detail and how they work.  

ANN’s are computer programs designed for pattern recognition, and are patterned 

after how the human brain processes information.  The idea of simulating 

biological neural networks has been around well before the introduction of 
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computers.  The first artificial neuron was made in 1943 by the neurophysiologist 

Warren McCulloch and the logician Walter Pits,47 but without the aid of 

computers, there was little they could achieve with this idea.  Over the years, and 

a series of ups and downs, the technology has evolved such that neural networks 

are now used in numerous applications,48 including voice and handwriting 

recognition.  One exploit, analogous to that reported herein, trains the program to 

determine the concentrations of multiple metals in electroplating solutions using 

spectral data.49 

 

2.5.3.1 Neurons 

 

There is still much that is unknown about how the brain works and learns, 

but the basic idea is that the human brain is comprised of millions of neurons 

(Figure 2.16) through which electrical energy is transmitted.46  Dendrites collect  
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FIGURE 2.16.  COMPONENTS OF A NEURON AND HOW IT WORKS. 
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signals from other neurons, where the signals are shuttled to the cell body to be 

stored.  Once a certain number of signals are received or a threshold is reached, 

the neuron then sends an output signal down the axon.  At the end of the axon, the 

signal is passed on to other connected neurons, and this junction is called the 

synapse.  A simplification of this can be seen in Figure 2.17, where there are 

inputs and outputs, with a summation in the cell body.50   
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FIGURE 2.17.  A SIMPLIFICATION OF A NEURON. 

 

Neural networks work in a similar manner to the simplification seen in 

Figure 2.17, where the computer program is comprised of an input layer, neuron 

layer, and an output layer.  The neuron layer is where most of the work is done 

with regards to the learning and usage functions.  The following sections will be 

used to show how each of these layers work.  Examples will be shown, starting 

with the very simple to the more complicated program setup.   
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2.5.3.2 Applications 

 

There are many uses for ANN’s, but their primary use is to create 

relationships between data.  Some of the tasks that they are designed to perform 

include image, voice, and handwriting recognition.  For example, the US Post 

Office uses these programs for the sorting of mail by recognizing handwritten zip 

codes.51  This technology is also employed on train and airplane engines where 

the noises in the engine are recorded as a training set for neural network 

algorithms such that a different pattern in the noise can be detected.  Scientists 

have also used the programs for spectra identification.  The advantage of using 

these programs over other conventional computer programs is that they are able to 

deal with noisy or missing data and they can handle non-linear data.  

Conventional computer programs need to follow a specific set of instructions, 

hence if a step is missing; the program can not complete its task.  Neural networks 

learn by example or absorbing experience.  They have the ability to 

“spontaneously” learn from training samples, and therefore train themselves.   

 

2.5.3.3 A Simple Neural Network 

 

If we develop a simple artificial neuron52 similar to the simplified one in 

Figure 2.17, a schematic of it might look like Figure 2.18A.  This schematic 

shows the main three layers of neural networks: the input, the output, and the 

hidden layer.  The hidden layer is where most of the work is done, which mostly 
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consists of the learning process.  A simplified example of the learning process is 

shown in Figure 2.18B, where a basic form of pattern recognition is depicted.  

Four known inputs are entered into the system (in the light gray area), which 

consist of ones and zeros in different combinations in the blocks X1, X2, and X3.  

For the combinations 111 or 101, the output is going to be 1.  When the input is 

000 or 001, the output is 0.  These are shown in columns A-D.  The columns E-H 

represent the rest of the combinations of zeros and ones that could be inputs, 

where the output could either be a zero or a one (top chart).  The neural network 

works by looking for patterns in the data.  The program takes the data that it does 

not know an output for, and finds the data it is most similar to.  For example, in 

order to find the output for column E, we need to look at similarities of E to the 

columns A-D.  Column E has a pattern of 010.  When compared to each of the 

known input columns A-D, column E differs from column A by one (X2), column 

B by two (X2 and X3), column C by two (X1 and X3), and column D by all three.  

Therefore E is related closely to A, which has an output of 0, therefore the 

network will also assign a 0 for the output of E (bottom chart).  The same 

inspection is continued for each of the last three columns.  The bottom chart 

reveals the outputs obtained after the inspection.  When there is a similarity 

between two answers, and there is no more information to work from, the 

program may provide two answers as an output.  When comparing F to the known 

inputs/outputs, it differs by one number for two columns, B and C, which have 

outputs of 0 and 1 respectively.  Therefore, the output is both a 0 and a 1.   
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FIGURE 2.18.  A SIMPLE SCHEMATIC OF AN ARTIFICIAL NEURAL NETWORK.  
A.  The neuron consists of three layers, an input, an output, and a 
hidden layer.  B.  A simple example of the way the neuron 
processes data.  There are four known inputs with known outputs.  
These are shown in the light gray area of the top chart.  The last 
four columns show the rest of the combinations of ones and zeros.  
All of the unknown inputs could have outputs of one or zero (top 
chart).  The bottom chart shows the outputs of the last four 
columns after looking at the light gray columns and finding the 
pattern that is the closest to its own. 
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2.5.3.4 Pattern Recognition in a Feedforward Network 

 

Now that we have examined a simple neuron, the next step is to move to a 

more complicated example (Figure 2.19A).52  This new model has nine inputs, 

three neurons in the hidden layer, and three outputs.  Here blocks of gray and 

white are the patterns, where gray blocks represent zeros and white blocks 

represent ones.  In part B of Figure 2.19, the known input and output values or 

patterns are shown.  These patterns are translated into numbers in part C, so the 

top line of the cube with three gray blocks is translated to 000 for blocks X11, 

X12, and X13 respectively.  The second pattern for X11, X12, and X13 was 

determined to be 010.  The rest of the blocks are incorporated into the charts, and 

the knowns are shown as the light gray columns.  The next step is to determine 

the outputs for the rest of the chart, which is done in the same manner as the 

example above, looking for similarities between knowns and unknowns.  Once 

the patterns are determined, unknown inputs can be introduced into the system.  

Part D represents that process, where the first cube has an input of 001 (X11, X12, 

X13), 101 (X21, X22, X23), and 101 (X31, X32, X33).  The outputs were 

determined to be 000 from the chart in part C.  The second example works in a 

similar manner, but the third set of inputs is a little more complicated.  The 

outputs for X10’s and X30’s are straight forward, while the X20’s give two 

outputs, hence there are two output patterns given.   
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FIGURE 2.19.  AN EXAMPLE OF A MORE COMPLICATED NEURON, WITH MORE 

INPUTS, OUTPUTS, AND HIDDEN NEURONS.  A. Each row feeds 
into one neuron, that has one output.  B.  The known input and 
outputs for training the neural network.  The zeros represent gray 
blocks, and the ones represent white blocks.  C.  With the help of 
the known inputs and outputs, the neural network is trained and the 
result is shown in the tables, with the knowns shown in light gray.  
D.  The trained data set is then subjected to unknown inputs to 
obtain the outputs shown on the right.  The third set of inputs has 
multiple outputs due to the similarity of the inputs to multiple 
patterns. 
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2.5.3.5 How the Network Learns 

 

The phrase, the neural network is “learning”, has been used a few times, 

but what does it really mean?  The neural network is patterned after the human 

brain, where there are neurons and connections between them.  It is not clearly 

known how the brain physically learns, but one widely held belief is that the 

connections between the neurons change, hence when something is learned the 

connection grows stronger.50  Just the opposite happens when something is 

forgotten; the connection grows weaker.  Neural network programs can not 

physically change the connections between the neurons, therefore, the learning is 

done through a series of weights that connect the inputs to the hidden layer 

(Figure 2.20).46,52  These weights are a series of real numbers that are randomly 

chosen to start and the correct final weights are found through an iterative search.  

Each input is multiplied by a weight, and all the products are summed (Eq. 2.8) 

where I is the input and W is the weight. 

 

XWIWIWI nn =++ ....2211                                        Eq. 2.8 

 

The neuron “fires” an output when the sum reaches a set threshold or the total X 

is greater than the threshold.  The learning is continued, by comparison of the 

known output to the output obtained by the program.  An iterative process is 

continued, by a continuous changing of the weights until the predicted output 

matches the expected output.  The weights are changed through the delta learning 
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rule (Eq. 2.9), which changes the weight by taking the difference of outputs and 

multiplying it by the input (X) and the learning rate (R).  The learning rate affects 

the magnitude of the weight change, and usually decreases during the learning 

process.  This process continues until ∆Wi equals zero.   

 

ROutputOutputXW ANNknownii )( −=∆                                 Eq 2.9 

 

When the output is already known, this is considered supervised learning.53  The 

“imaginary supervisor” looks at the error and changes the weights accordingly.   
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FIGURE 2.20.  A SCHEMATIC OF A SIMPLE NEURON, WHERE WEIGHTS HAVE 
BEEN ADDED in order to improve the learning process.  This 
follows the McCulloch and Pitts Model (MCP). 

 

2.5.3.6 Perceptron 

 

A very simple example of an ANN is the perceptron, which is a single 

layer, feedforward network (Figure 2.21).53  This type of system only has an input 
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and an output layer, no hidden layer.  Every input layer is connected to every 

output layer, and all the connections are weighted.  The feedforward term states 

that neurons in the same layer can not be connected.  The activation of the neuron 

is defined by a hard limiter function, which means the neuron only fires when a 

specific set of values are obtained.  For example, the hard limiter might be set so 

the neuron fires a zero when X≤0 (Eq. 2.8) and a one is fired when X≥1.  The 

training of the network is supervised, and the weights are adjusted through the 

delta learning rule.   
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FIGURE 2.21.  A PERCEPTRON NEURAL NETWORK.  This feed forward network 
is the simplest example, with only an input and an output layer.  Its 
activation function is defined by a hard limiter function, and 
learning is accomplished through the delta learning rule.   
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2.5.3.7 Multi-Layer Perceptron 

 

The Multi-Layer Perceptron network (Figure 2.22) is an extension of the 

perceptron feedforward network, but has more options associated with the layers, 

the learning algorithm, and the activation function.  This type of network still has 

input and output layers, plus one or more hidden layers, and the connections are 

associated with weights.  For example, let’s look at the connection between 

neurons in layer i and neurons in layer j.  In order to get an input for neuron j 

(netj), the neurons in layer i must fire outputs (outputi) and that is defined by Eq. 

2.10, where wij is the weight between neuron i and j.   

 
i

i
ijj outputwnet ∑=                                       Eq.2.10 

 

The activation function is the function that produces an output for the neuron.  

This output can be dictated through two options, the hard limiter, discussed 

previously, and the sigmoid.  The sigmoidal function45 compresses a wide range 

of inputs into a limited number of outputs.  This is done through taking a 

weighted sum of the inputs at each neuron and “squashing” it using Eq. 2.11. 

 

jnetj e
output −+

=
1

1                                                  Eq. 2.11 

 



 122

The output that is obtained is then passed on to the next layer as the input for that 

layer using Eq. 2.10.  The learning process is supervised and the weights can be 

adjusted through the delta learning rule (Eq. 2.9) or through back propagation. 
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FIGURE 2.22.  A SCHEMATIC OF THE MULTI-LAYER PERCEPTRON.  It is at 
least a three layer, feedforward network, with weighted 
connections. 

 

2.5.3.8 Back Propagation 

 

Back propagation (BP)45,54 is an algorithm for training the neural network, 

through reducing the error between the actual and expected results by determining 

how the error depends on the outputs, inputs, and weights.  The algorithm works 
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in the opposite direction of the activity of the network.  In other words, it starts 

with the output layer and works backwards, hence the term back propagation.  

This can become complicated with the increased number of weights as more 

layers are added as seen in Figure 2.22.  The knowledge of how the final error is 

affected when each weight is slightly increased or decreased is needed, because 

the output of one layer affects the outputs of all layers to which it is connected. 

An example with how the back propagation algorithm computes the error 

derivative of the weights is shown here.  Once the ANN has gone through its first 

feedforward calculations, the error can be computed.  The error for neuron j can 

be calculated from Eq. 2.12.  The BP algorithm can then compute the rate at 

which the error changes as the activity of the output unit changes (Eq. 2.13).  This 

we will term the EA, which is the difference between the calculated and known 

outputs for the output units. 

 
2)(
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jknownjANN OutputOutputE                          Eq. 2.12 
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Next, the dependence of the output on the activation and the weights is 

determined (Eq. 2.14).  This comes from a combination of Eq.2.10 and 2.11 

where Outputi is essentially the output from the previous layer or the input for 

neuron j.   
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The error associated with the output, which is associated with the changes in the 

weights, is shown in Eq. 2.15, which is essentially the product of Eq. 2.13 and 

2.14. 
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Through Eq. 2.15, the weight’s contribution to the error of the network is obtained 

and the weight can be changed accordingly through Eq. 2.16 by multiplying the 

error times a constant η (the learning rate).  If the learning rate is low it may take 

a long time for the algorithm to determine the correct weights, or it may get stuck 

in a local minima.  If the learning rate is too high there is a chance of never 

converging on the correct set of weights.   

 

ij
ij w

Ew
∂
∂

−=∆ η                                        Eq. 2.16 

 

Now that the weights of the last layer have been adjusted, the process continues 

for each of the previous layers in the network until the weights are adjusted such 

that the desired output matches the output that the ANN derives. 
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2.5.4 Outputs for the Two Host/Two Indicator Experiment 

 

The ANN employed was based on a Multilayer Perceptron architecture 

with a back propagation algorithm55 for training, performed by Dr. Pierre N. 

Floriano.  In Section 2.5.2, it was discussed that the change in absorbance was 

measured for the two host/two indicator system as the concentration of tartrate 

and malate were altered in small increments resulting in 49 spectra.  Of the 49 

spectra obtained, 45 were used to train the data set using 27 points or wavelengths 

from each spectrum, while the other 4 were left out as “unknowns.”  When the 

absorbances for the 27 wavelengths (shown as ticks in Figure 2.15) were entered 

for the four unknowns, an absolute error between 1 and 6% was obtained for the 

output concentrations of tartrate and malate (Table 2.2).   

 
TABLE 2.2.  THE PREDICTED CONCENTRATION VALUES OBTAINED FROM THE 

ANN COMPARED TO THE REAL CONCENTRATIONS OF TARTRATE 
AND MALATE (MM). 

Training NN1  Real [malate] Pred. [malate] Real [tartrate] Pred. [tartrate]  
Val. case # 1 0.00 0.0731 1.00 0.9711 (3%) 
Val. case # 2 0.59 0.568 (3%) 0.80 0.7911 (1%) 
Val. case # 3 0.99 1.0340 (4%) 0.22 0.2119 (5%) 
Val. case # 4 1.19 1.1362 (5%) 1.00 1.0126 (1%) 
     
Training NN2 [malate]  Real [tartrate] Pred. [tartrate] 
Val. case # 1 0.2 ------- 1.00 0.995 (0.6 %) 
Val. case # 2 0.2 ------- 0.53 0.527 (0.0 %) 
Val. case # 3 0.2 ------- 0.24 0.238 (1.3%) 

 

Although we felt this level of error was very good for our first trial, we 

wanted to discover if the incorporation of more training data could further reduce 
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the error.  In a second round of data collection, the concentration of malate was 

held constant (0.2 mM), and the concentration of tartrate was varied between 0 

and 1.2 mM moving in increments of 0.05 mM.  To test the ability of the data set 

to determine the concentration of tartrate, three spectra were held back from the 

training set to use as “unknowns.”  With this training set, the error in the 

calculated concentration was reduced to less than 2% for all unknowns (Table 

2.2). 

Next, three different wines were chosen in an attempt to use the multiple 

host and indicator sensing ensemble to determine the concentration of tartrate and 

malate in the grape beverages.  The wines consisted of a Rioja (Marqués de 

Cáceres 1998), a Merlot (Fontana Candida 2000), and a Chardonnay (Rabbit 

Ridge 2000).  The concentrations of tartrate and malate were determined in each 

of the wines by 1H NMR analysis, by lyophilizing the wines, redissolving them in 

deuterated water, and adding a standard in known concentrations.  Next, small 

aliquots of the wines were added to the sensing ensemble mixture and the 

resulting absorbances were run through a trained ANN.  However, due to the 

interfering absorbance of the wine, an accurate concentration of the two analytes 

could not be obtained.  In order to obtain these concentrations in the wine, the 

neural network would need a training set of the sensing ensembles with the wines 

at different concentrations.  This would help to alleviate the interfering 

absorbances. 
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2.5.5 Expanding the Scope of the Project 

 

To push the limits of the technique, the differential response of citrate to 

the two receptors 2.1 and 1.34 in the presence of the indicators 2.24 and 2.23 was 

investigated.  The change in absorbance is shown in Figure 2.23 upon addition of 

citrate, tartrate, and malate to the sensing ensemble mixture.  The plots shown 

(absorbance versus analyte concentration) are different than normal calibration 

curves due to the presence of two indicators and the mixed equilibrium that must  
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FIGURE 2.23.  THE CHANGE IN ABSORBANCE OF THE SENSING MIXTURE 

ENSEMBLE 2.1 (0.15 MM), 1.34 (0.16 MM), 2.24 (0.06 MM), 
AND 2.23 (0.03 MM) UPON ADDITION OF THREE DIFFERENT 
ANALYTES.  Shows the differential response of 2.1 and 1.34 to 
tartrate (●), malate (■), and citrate (▲) (10 mM HEPES, 75% 
methanol in water, pH 7.4). 
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exist.  Both receptors have an affinity for citrate, and indeed the response does 

show a differential response to citrate over tartrate and malate.  The next step 

would involve developing a training set for the neural network program varying 

the concentration of the three analytes in an attempt to simultaneously quantify 

three analytes in solution.   

Another approach in expanding this application would be the 

incorporation of more indicators and receptors in order to target more analytes.  

Figure 2.24 shows the initial investigation of a three indicator experiment.   
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FIGURE 2.22.  THE INVESTIGATION OF THREE INDICATORS AND TWO 
RECEPTORS.  A. The change in absorbance of 2.24, 2.23, and 
PGR in the presence of 2.1 and 1.34 upon addition of tartrate.  
B. The absorbance of the three indicators, alone and together.  
C. The absorbance of the three indicators bound to 2.1 (10 mM 
HEPES, 75% methanol in water, pH 7.4). 
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Pyrogallol red (PGR) was included along with 2.24 and 2.23.  At first thought 

one would think that the increased number of indicators would increase the 

sensitivity of the technique, and this may very well be true in some systems.  Yet 

looking at the change in absorbance of 2.24, 2.23, and PGR in the presence of 2.1 

and 1.34 upon addition of tartrate (Figure 2.24) the change is very similar to the 

two indicator experiment (Figure 2.12).  The free absorbances of the indicators 

are shown in Figure 2.24B along with the absorbance of the indicators bound to 

2.1 (Figure 2.24C).  PGR’s absorbance is between the absorbances of 2.24 and 

2.23 in both the bound and unbound state, which results in a decrease in 

sensitivity.  This does not preclude the use of more than two indicators, but our 

prediction that one needs to use indicators with large absorbance maximum 

differences is enforced. 

Here we have shown that using differential receptors in parallel can create 

a powerful method to differentiate between very structurally similar guests, and 

even render a method of simultaneous quantification.  The key to this 

quantification lies with the use of pattern recognition, and with hosts that have 

differential responses to each of the guests, similar in theory to the sense of taste.  

This study shows that differential sensors in solution coupled with pattern 

recognition is a simplified example of a sensor array.   
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2.6 INCORPORATING THE HOST INTO A SOLID PHASE SENSOR ARRAY 

 

Throughout this chapter the use of receptor 2.1 has been discussed in a 

couple of different sensing applications.  It has been utilized as a differential 

sensor to detect a class of analytes in scotch whiskies, and in conjunction with 

another sensing ensemble to detect two analytes simultaneously through pattern 

recognition.  Even though both have been shown to be powerful tools, both are 

limited in their usefulness.  For example, in order to increase the number of 

analytes detected, more receptors need to be incorporated into the sensing 

ensemble.  With the multiple hosts and indicators project, there will ultimately be 

a limit to the number of species that can be detected within one cuvette.  One of 

the main disadvantages will be the limit to the number of indicators that can be 

incorporated.  If too many indicators are present, a spectral response would be 

hard to visualize.  Therefore, the next goal is to incorporate receptors into a sensor 

array platform, where many sensors are present, yet confined to their own 

spatially addressable positions.  Such a goal can take many forms, yet the 

approach taken at UT requires that the sensor be immobilized on a resin bead to 

use the platform discussed in Chapter 1, Section 1.7.2.  An analog of receptor 2.1 

was incorporated into a solid phase resin (2.28), in preparation for its 

incorporation into a sensor array.   
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One of the first arrays that the receptor will be utilized in is a project that 

is in collaboration with the groups of Dr. Jason Shear and Dr. John T. McDevitt.  

The goal of the project is to have an artificial sensor and an enzyme sensing 

ensemble working simultaneously on the same chip.  The chip would be used to 

quantify tartrate and malate, where malate dehydrogenase (MDH) will be used for 

the detection of malate, while receptor 2.28 will be used to quantify tartrate.  

Malate will be detected through the formation of a formazon dye through a series 

of reductions and oxidations with NAD/NADH, an electron mediator, and a 

tetrazolium indicator.  The detection of tartrate with 2.28 will work in a similar 

manner to receptor 2.1, with an indicator displacement assay as the signaling 

motif.  Again, pyrocatechol violet (2.24) was the indicator of choice.  The idea 

being that the indicator will associate with the resin bound host and upon addition 

of an analyte that binds the receptor, the indicator will be displaced and washed 

away, decreasing the light absorbed.   
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2.6.1 Synthesis 

 

In an attempt to achieve the same selectivity for tartrate over malate, 

receptor 2.28 was designed to be very similar to receptor 2.1.  Therefore, upon the 

same hexa-substituted benzene scaffold was appended two boronic acids and an 

ammonium.  The difference in the two receptors lies in the incorporation of an 

ammonium (2.28) for charge pairing and hydrogen bonding rather than a 

guanidinium as in 2.1.  This replacement was made to make the receptor’s 

attachment to the resin facile. 

In order to synthesize receptor 2.28 (Scheme 2.12), the scheme was started 

with the mono BOC protected compound 2.25.  Reductive amination of 2.25 with 

two equivalents of 2-formyl benzene boronic acid (2.14) gave the protected 

boronic acid compound 2.29.  The BOC group was cleaved with trifluoroacetic 

acid, and the resulting salt was ion exchanged to obtain the acetate salt 2.30.  

Finally, the receptor was attached to two different solid supports to determine 

which matrix would work the best.  The glyoxal activated 6% cross linked 

agarose beads (Scheme 2.12) was chosen for its water like interior.  The host was 

attached through a reductive amination in a buffered solution by Dr. Anuradha 

Kachhar to obtain 2.28-Ag.  Tentagel MB FMP acid labile resin was the second 

resin that was investigated.  Compound 2.30 was again reductively aminated to 

the aldehyde resin in dry methanol (Scheme 2.13) to give 2.28-TG.56   
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Scheme 2.13  
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2.6.2 Platforms 

 

Once the hosts were attached to the resins, the first item to be investigated 

was whether the receptors (2.28-Ag and 2.28-TG) still bound the indicator (2.24), 

and whether the indicator still behaved in the same manner as in solution.  Upon 

addition of a solution of 2.24 in 50% methanol in water (v/v), the yellow indicator 
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turned maroon upon binding 2.28-Ag (Figure 2.25B) and 2.28-TG (not shown).  

It is essential that the blank beads (Figure 2.25A) do not interact with any of the 

compounds introduced into the flow cell.  In the case of the glyoxal activated 

agarose beads, the indicator easily washed out of the blank resin indicating that 

the color change associated with 2.28-Ag is from the binding of the indicator to 

the host and not the beads.  When the same test was performed on the Tentagel 

beads, the blank beads turned yellow upon addition of 2.24, and the color 

remained over a series of several washes.  Therefore, out of the two beads 

synthesized 2.28-Ag were the ones that were used for further studies.   

 

A B CA B C  
FIGURE 2.25.  PICTURES OF RESIN BEADS (AGAROSE)  IN ARRAY PLATFORM.  

A. Blank beads (no host).  B. Resin 2.28-Ag after 2.24 has been 
added.  The indicator is originally yellow and upon binding the 
receptor turns maroon.  C. The response of the sensing ensemble 
2.28-Ag/2.24 upon addition of tartrate resulting in an increase in 
transmitted light.   

 

The platform used for the sensing array was developed in the McDevitt 

group at the University of Texas at Austin.  Figure 2.26 shows a schematic of the 

flow cell used to house the beads under investigation.  The flow cell is designed to 

deliver the solvent to the top of the beads, force the solvent over the beads, and  
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FIGURE 2.26.  DRAWING OF THE SENSOR ARRAY FLOW CELL.  The flow cell 

delivers the solvent over the top of the beads.  The solvent is then 
forced down through the beads and it exits on the opposite side.  
The flow cell consists of multiple layers where the beads are 
housed in the silicon wafer, a clear cover slip through which the 
solvent is delivered, and spacers and a threaded retainer are used 
to seal the system together.   

 

send the solvent to waste from the bottom.  The beads sit in micromachined wells 

in a silicon wafer that is immobilized on a disc composed of PMMA 

(polymethylmethacrylate) plastic.  PEEK tubing is imbedded in the disc for the 

solvent outlet.  A second disc is placed on top of the first disc, acting as a cover 

slip.  This also is imbedded with PEEK tubing for the solvent inlet.  These two 
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plastic plates slip into a metal housing unit, and an internal threaded retainer is 

used to tighten everything down in order to compress the cover slip to the bottom 

disc, sealing the two together.   

In order to flow a steady stream of solvent over the beads, an FPLC pump 

was incorporated for solvent delivery.  The FPLC was also equipped with a 

sample injection valve with a 2 mL loop for delivery of indicator and analytes.  

The array platform was placed on a microscope with illumination from the bottom 

and red/green/blue (RGB) images were captured with an 8-bit CCD camera. 

 

2.6.3 Studies 

 

The beads were placed in the micromachined wells of the silicon chip in 

the pattern shown in Figure 2.27.  Derivatized beads were placed in the first four 

rows of the chip, while the last row was reserved for blank beads.  The  

 
1 2 3 4 5 6 7

8 9 10 11 12 13 14

15 16 17 18 19 20 21

22 23 24 25 26 27 28

29 30 31 32 33 34 35

derivatized beads

blank beads
 

 
FIGURE 2.27.  LAYOUT OF THE SILICON WAFER AND BEAD PLACEMENT.  The 

chip is micromachined with 35 wells.  Derivatized beads are 
placed in the first four rows, while blanks beads are placed in the 
last row.   
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underivatized beads were used as a reference to the amount of light that is 

transmitted through the beads.  Also, they are a good standard for determining if 

reagents are lingering in the beads.   

Once the beads were locked in their wells, the selectivity of the beads 

needed to be investigated, and the signaling motif needed to be incorporated.  The 

indicator 2.24 needed to be loaded into the beads for the receptors to bind.  When 

a continuous flow of 2.24 (3.0 mM, 0.2 mL/min, 25 mM HEPES, 1:1 

methanol:water, pH 7.4) was introduced to the beads, the yellow indicator turned 

maroon upon binding 2.28-Ag, but over time the receptors in the beads bound so 

much indicator that the beads appeared black and no light was able to pass 

through.  When a small aliquot of 2.24 was added (0.5 mM, 2 mL, 1.0 mL/min) 

instead of a continuous flow, the beads turned a level of maroon (Figure 2.25B) 

that appeared to be reproducible.   

Upon addition of a concentrated aliquot of tartrate (14 mM, 2 mL, 0.5 

mL/min, 1:1 methanol:water) to the sensing ensemble beads, the indicator was 

displaced and the color of the beads diminished (Figure 2.25C).  When the same 

experiment was run in 100% water, the indicator was not displaced; hence the 

presence of methanol was needed for the assay to work.  Further investigations 

should incorporate a study of the selectivity with the concentration of methanol.  

In between the addition of tartrate and loading the indicator again, the beads were 

washed to remove the excess tartrate and 2.24.  Washing with acidic solutions had 

no affect on the intensity of transmittance; therefore 2 mL injections of sodium 

hydroxide solutions were washed through the array.  The color of the beads 
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diminished greatly, indicating that the sodium hydroxide solution was breaking up 

the boronate esters.  The change in transmitted light throughout this whole cycle 

is shown in Figure 2.28, and the distinct changes upon the addition of each 

reagent is illustrated.  The first portion shows the addition of indicator with a  
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FIGURE 2.28.  THE CHANGE IN TRANSMITTED LIGHT OF ONE INDICATOR, 

TARTRATE, WASH CYCLE FOR 2.28-AG.  RGB is color coded.  
(0.5 mM 2.24, 9.0 mM tartrate, 0.5 M NaOH, 25 mM HEPES, 
1:1 methanol:water). 

 

decrease in transmitted light as the indicator becomes bound to the receptor.  

Upon addition of tartrate, the transmitted light increases as the indicator is 

displaced and washed away, and a final wash with sodium hydroxide removes 

tartrate and 2.24 from the resin, returning the transmitted light to the beginning 

level, such that the cycle can be repeated.   
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The next step was to determine the selectivity of the sensing ensemble by 

introducing different concentrations of tartrate and recording the absorbance 

changes upon displacement of 2.24.  Figure 2.29 illustrates the RGB delta 

absorbance of 2.28-Ag-2.24 for one bead showing the change in absorbance in 

response to the varying concentrations of tartrate.  Each bead is different, due to a 

high degree of bead to bead variance.  The high end of the working concentration 

range is about 2 mM for this bead.  The large delta absorbance at 5 mM appears to 

be due to human error since it is present in the other beads that were studied.  

Since every bead has a different loading of host and ultimately indicator, every 

bead requires its own calibration curve.   
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FIGURE 2.29.  THE CHANGE IN ABSORBANCE OF 2.28-AG/2.24 UPON ADDITION 

OF TARTRATE.  The calibration curves are shown in the separate 
RGB channels.   

 

Receptor 2.1 was selective for tartrate over malate, and investigations 

were undertaken to determine if this same selectivity was true for 2.28-Ag.  

Indeed upon addition of a couple of different concentrations of malate, the change 

in absorbance was significantly less (Figure 2.30) indicating that 2.28-Ag has a 

higher affinity for tartrate over malate.   
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FIGURE 2.30.  THE CHANGE IN ABSORBANCE IN THE RED CHANNEL IN 

RELATION TO TARTRATE AND MALATE for 2.28-Ag/2.24.   
 

Once it was determined that 2.28-Ag was selective for tartrate over 

malate, we set out to develop a full calibration curve for tartrate and malate in 

order to quantify tartrate in some grape derived beverages.  Figure 2.31 shows the 

change in absorbance in the red channel of one bead upon addition of various 

concentrations of tartrate and malate.  Due to the length of each cycle, the 

experiment lasted for a series of days.  Graph A in Figure 2.31 shows the 

calibration points obtained in day one for tartrate (blue).  Despite some variance, 

the points lie in a line.  During day two, both tartrate and malate were investigated 

with the system.  These points from day two are shown in Figure 2.31B in the red.  

A distinct selectivity can be seen for the tartrate over the malate.  On day three, 

more points were added to the malate calibration curve, shown in green in Figure 

2.31C.  Instead of lying on a line, the points appear to be random.  This suggests 

that the beads or the receptor attached to them may be decomposing.   
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FIGURE 2.31.  CALIBRATION CURVES FOR ADDITION OF TARTRATE (◆ ) AND 
MALATE (□) TO 2.28-AG. (Data taken in the red channel, 
difference between 1000 sec and 1700 sec)  A. The calibration 
curve points taken on day one.  B. The blue calibration points 
were taken day one; the red points were taken day two.  C. The 
calibration curve from day two, plus calibration points from day 
three (green).  Over time, the selectivity of the beads degrades.   

 

2.6.4 Wines 

 

Even though the calibration curves were not as expected, three different 

wines were examined with the platform anyway.  The wines chosen were a 

Marqués de Caceras Rioja, a Rabbit Ridge Chardonnay, and a Rabbit Ridge 

Merlot.  The concentrations of the tartrate and malate were determined through 
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analysis by 1H NMR with a standard.  The wines were buffered, the pH adjusted, 

and diluted till the concentration of the tartrate was around 2 mM.  Two milliliter 

aliquots of wine were added to the sensing platform and the change in absorbance 

was determined.  Each wine was run through the platform twice.  Using each bead 

as its own calibration curve, the concentration of the tartrate was determined for 

each bead and the outcomes were averaged together (Table 2.3).  For two out of 

three wines, there was an error of about 25% between the predicted and the actual 

value of tartrate.  The concentration of the Rioja was the only one with a 

reasonable value.  But due to the erratic behavior of the beads near the end of the 

experiment, it seems reasonable that the sensing ensemble was not able to 

quantify the concentration of tartrate.   

 
TABLE 2.3. CONCENTRATIONS OF TARTRATE AND MALATE DETERMINED BY 

SENSOR ARRAY AND 1H NMR.   
 

 Tartrate (mM) 

 2.28-Ag-2.24 

Tartrate (mM) 

 1H NMR 

Malate (mM) 

 1H NMR 

Rioja 11.8 11.9 5.6 

Merlot 9.7 13.2 12.3 

Chardonnay 20.5 15.7 8.6 
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2.6.5 Future 

 

Now that initial investigations are complete, efforts need to be put forth to 

improve the experiments.  Items needing improvement are loading of the 

indicator, removal of the indicator, and the deterioration of the selectivity over 

time.  In regards to loading the indicator, it is obvious that there is some 

variability in this process.  Over the length of the aforementioned experiment, it 

became apparent that the absorbance of the beads increased slowly, indicating that 

more and more indicator was present in the resin.  This could inevitably affect the 

amount of indicator that is displaced upon addition of analyte.  It also became a 

problem with regards to such a small amount of transmitted light passing through 

the resin to the detector.  There is a large error associated with the camera when 

the transmitted light is so low.  This is mainly a factor in the blue channel.  We 

had already learned that the loading of the indicator on the resin was not at 

maximum capacity.  The concentration of the host on the resin is far in excess 

than what is needed, which could also affect the sensitivity.  If there is a large 

concentration of host present within the resin not loaded with indicators, there are 

many free sites for tartrate to bind that will not illicit a colorimetric response from 

2.24.  One way to alleviate this variability would be to reduce the number of 

receptors on the resin.  In order to reduce the host concentration one could use an 

agarose resin with less activated sites.  The resin used in this experiment was 6% 

activated.  Perhaps a resin that was only 2% activated would be better.  Also, 
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“capping” some of the aldehydes such that reductive amination with the host is 

reduced can be used in conjunction.   

Another item that needs investigation is removal of tartrate and 2.24 from 

complexation with the boronic acids in the receptor.  The studies shown within 

used a concentrated solution of sodium hydroxide to break up the boronate esters, 

but with such a strong basic solution the resins may be destroyed over time.  One 

method might be a reverse competition assay, where the presence of excess 

indicator would displace tartrate from the binding pocket.  In essence, we would 

be combining the “cleaning” step with loading the indicator.  When the 

absorbance returned to the same level you would know the “cleaning” was 

complete.  This was attempted previously, but due to the fact that the receptor was 

in such a large excess, one had no way of knowing if the tartrate was being 

removed.  This might work better if the receptor was loaded on the resin at a 

lower concentration, such that when every receptor is loaded with indicator there 

is still a working amount of transmitted light.   

In conclusion, we have transformed a solution based sensing ensemble to a 

solid phase sensing ensemble for the detection of tartrate.  Further we have shown 

that the selectivity of tartrate over malate still holds true for the solid phase 

receptor.  This new endeavor holds exciting opportunities in the area of 

differential sensing arrays.  The first major effort will be focused on the 

simultaneous detection of tartrate and malate with the incorporation of the 

enzyme based sensing ensemble along side the synthetic sensing ensemble.   
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2.7 CONCLUSIONS 

 

Throughout the last two chapters the idea has been put forth that synthetic 

receptors/sensors do not need to be highly selective to be useful to the scientific 

community.  Just as our sense of taste and smell are based on differential 

receptors and pattern recognition, these methods can also be used with synthetic 

receptors.  We have also shown that receptors that are sensitive to classes of 

analytes can be a useful endeavor.  Receptor 2.1 was used in a sensing ensemble 

to determine the age of scotch whiskies by responding to a class of age related 

analytes.  This was proven to be more effective than just determining the 

concentration of one of the age related analytes.  The next differential sensing 

project focused on the receptor’s selectivity for tartrate over malate.  Due to this 

selectivity, differential sensing in solution was examined by placing two receptors 

(2.1 and 1.34) and two indicators in one cuvette.  Since the receptors displayed 

differential responses to tartrate and malate and to the indicators, a neural network 

algorithm was trained to simultaneously determine the concentrations of the two 

structurally similar analytes.  Finally, initial efforts were put forth to incorporate 

receptor 2.1 into a sensing array.  An analogous receptor was synthesized on a 

solid support and the selectivity of the receptor was examined for tartrate and 

malate.  Even though there is still much work to be done, initial studies show that 

the receptor does have a higher affinity for tartrate over malate.  All of these 

experiments have contributed to the advancement of differential sensing in 

supramolecular chemistry.  In order to have a differential sensor, the “tongue” 
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platform is not absolutely necessary.  We have shown that through UV/visible 

absorption differential sensing arrays are possible in solution.   

 

2.8 EXPERIMENTAL 

 

General.  The chemicals were obtained from Aldrich, and no further purification 

was done unless otherwise noted.  Methyl alcohol was distilled from magnesium, 

and triethylamine was distilled from calcium hydride when noted.  Products were 

placed under high vacuum for at least 12 hours before spectra were obtained.  1H 

and 13C NMR spectra were obtained on a Varian Unity Plus 300 MHz 

spectrometer.  11B NMR spectra were obtained on a Bruker AMX-500 

spectrometer.  A Finnigan VG analytical ZAB2-E spectrometer was used to 

obtain high resolution mass spectra.  UV/Visible spectra were collected on a 

Beckman DU640 spectrophotometer.  Potentiometric measurements were taken 

with an Orion 720A pH meter.   

 

UV/Visible titrations of indicator and receptor: 

All solutions were buffered at pH 7.4 with HEPES buffer (10 mM) in 75% 

methanol in water (v/v).  A solution of 2.24 (60 µM) was prepared in the cuvette 

and into this was titrated a stock solution of 2.1 (1.2 mM) and 2.24 (60 µM) 

keeping the indicator concentration constant.  The data was collected at 510 nm to 

determine the association constant.   
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UV/Visible titrations of receptor/indicator ensemble and guests: 

All solutions were buffered at pH 7.4 with HEPES buffer (10 mM) in 75% 

methanol in water (v/v).  A solution of indicator (2.24, 60 µM) and receptor (2.1, 

260 µM) was prepared in the cuvette and into this was titrated a stock solution of 

indicator, host, and guest, keeping the indicator and host concentrations constant.  

The data was collected at 605 nm to determine the association constant.  The 

guest concentration in the stock solution varies between 5-80 times the 

concentration of host.   

 

UV/visible titrations of receptor/indicator ensembles with scotch whiskies: 

The solvent of 30 mL scotch whiskey was removed under reduced pressure and 

the resulting solid was redissolved to10 mL in 75% methanol in water and 

buffered at pH 7.4 (10 mM HEPES).  A stock solution of scotch (0.96 mL of 

aforementioned solution) was prepared which included pyrocatechol violet (0.023 

mL, 0.06 mM) and 2.1 (0.017 mL, 0.26 mM).  In the cuvette, a solution of 2.24 

and 2.1 was prepared at the same concentrations.  The change in absorbance of 

the sensing ensemble was measured upon addition of small aliquots of the stock 

solution of scotch.  The identical titration was performed a second time, with the 

same concentrations minus the indicator.  The absorbance of the scotch/host 

ensemble was subtracted from the absorbance of the sensing ensemble, and the 

“response number” was read off of a gallate calibration curve with the resulting 

absorbance.   
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HPLC analysis of scotch whiskies. 

To determine the concentration of gallate in the scotch whiskies, the solvent of 10 

mL of scotch was removed, and through a series of dilutions the scotch was 

diluted 20 times with a result of 2% methanol.  The diluted scotch and the gallate 

standard were run through a reverse phase HPLC column, with a flow rate of 0.25 

mL/min.  The separation was run with a gradient starting with 20 minutes at 80% 

acidic water (1.5 mL trifluoroacetic acid and 498.5 mL water) and 20% methanol.  

The next 20 minutes was a gradient over to 100% methanol, with the final 20 

minutes at pure methanol.   

 
1H NMR of wines: 

The concentrations of tartrate and malate were determined by taking 10 mL of 

each of the wines, removing the solvent, and lyophilizing the samples.  Each of 

the dehydrated wines was dissolved into 10 mL of D2O and the pH was adjusted 

to 7.0.  Samples of tartrate and malate were made in the same solvent conditions 

and pH, to be used as a reference.  The final NMR samples were comprised of 0.9 

mL of wine and 0.05 mL of a concentrated solution of dichloroacetic acid as a 

reference.  Around 1000 scans were collected, the peaks were integrated, and 

concentrations of tartrate and malate were calculated. 

 
11B NMR Titrations. 

Solutions of 2.18 and 2.19 were prepared in protic water with 10% deuterated 

methanol ranging in concentration between 20-40 mM.  Sodium chloride was 
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added as the electrolyte and the pH of the solutions were adjusted between 1.6 

and 12 with aqueous sodium hydroxide and hydrochloric acid.  Quartz NMR 

tubes were used to limit background noise, but some residual noise was still 

present from the glass in the probe. 

 

pH Titrations: 

Solutions of 2.18 and 2.19 were made in water (4.5 mM) in the presence of 0.15 

M NaCl and 0.1 M NaOH.  Perchloric acid (0.1 M) was titrated into the solution 

in 50 µL aliquots.  Potentiometric studies were conducted with a Brinkmann 

Titrino 702 autotitrator.  A Metrohm combined pH glass electrode (Ag/AgCl) 

with 3 M NaCl internal filling solution was used.  Measurements were taken at 

25°C under nitrogen.  About 100 data points were collected for each titration and 

the analysis was carried out as described by Martell,21 and equilibrium constants 

were calculated using the program BEST.  All constants were determined using at 

least two independent titrations.   
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1,3-Bis[(2-benzeneboronic acid)aminomethyl]-5-(4,5-dihydro-1H-imidazol-2-

yl)aminomethyl-2,4,6-triethylbenzene (2.1) 
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Dry triethylamine (1.0 mL) and 2-formylbenzene boronic acid (0.37 g, 2.44 

mmol) was added to a solution of 2.11 (0.58 g, 0.16 mmol) in dry methanol over 

3Å molecular sieves in an inert atmosphere.  The reaction was heated to 30-40 °C 

for 4 hours.  Sodium borohydride (0.11 g, 2.78 mmol) was then added and the 

mixture was filtered through celite.  The solvent was removed and the resulting 

solid was put under vacuum for two days.  The solid was then dissolved in water 

and filtered through celite again, and lyophilized.  To dispose of any unwanted 

salts, the compound was dissolved in 9:1 ethyl acetate:methanol (v/v) and filtered 

through celite.  Solvent removal and lyophilization resulted in a white fluffy 

powder.  (0.61 g, 82%). M.P. = 190 °C (decomp.), 1H NMR (300MHz, CD3OD): 

δ 7.48 (d, 2H, Ph), 7.20 (m, 4H, Ph), 7.10 (d, 2H, Ph), 4.43 (s, 2H, CH2), 4.14(s, 

4H, CH2), 3.95 (s, 4H, CH2), 3.79 (s, 4H, CH2), 2.85 (q, 6H, CH2), 1.16 (t, 9H, 

CH3); 13C NMR (75MHz, CD3OD): 161.16, 147.30, 146.71, 142.40, 131.82, 

131.33, 131.00, 128.37, 127.77, 124.57, 53.75, 44.40, 44.19, 42.04, 24.24, 16.74, 
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16.63; HRMS-FAB+ m/z: calcd for C38H54B2N5O6 (Glycerol matrix): 698.426; 

obsd: 698.426: 11B NMR (160MHz, CD3OD, ref. BF3-Et2O 0.0 ppm): δ 10.16. 

 

1,3,5-Tris(chloromethyl)-2,4,6-triethylbenzene (2.6) 

Cl

Cl

Cl

 

Into a 3-neck 200 mL round bottom flask, equipped with a condenser, dispersion 

tube, and a septum, 35 mL carbon disulfide and 1,3,5-triethylbenzene (2.2) 

(6.52g, 40.25 mmol) was added and nitrogen was bubbled through for 30 minutes.  

The dispersion tube was removed and under an inert atmosphere tin tetrachloride 

(99%) (12 mL, 102.54 mmol) was added along with chloromethylmethyl ether 

(29 mL, 381.82 mmol).  The reaction was stirred for two hours.  The mixture was 

poured over ice and aqueous sodium bicarbonate was added to neutralize the 

solution.  The precipitant was filtered off and the carbon disulfide layer was 

separated from the aqueous layer and the solvent was removed.  Purification was 

accomplished by loading the impure compound on silica gel (50 g) and the silica 

gel was placed in a fritted funnel and washed with a 3:1 hexanes:dichloromethane 

mixture.  The solvent of the filtrate was removed, and the resulting solid was 

washed with ethanol to obtain the final purified compound.  (9.7g, 78%).  M.P. 

130 ˚C. 1H NMR (300 MHz, CDCl3): δ 4.69 (s, 6H, CH2), 2.92 (q, 6H, CH2), 1.31 

(t, 9H, CH3); 13C NMR (75 MHz, CDCl3): δ 145.7, 130.3, 41.3, 23.4, 16.8; 

HRMS-EI+ m/z: calcd for C15H21Cl3: 306.071; obsd: 306.072 
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1,3-Bis[[(1,1-Dimethylethoxy)carbonyl]aminomethyl]-5-aminomethyl-2,4,6-

triethylbenzene (2.8) 

HN

H2N

NH

O O

O

O

 

A solution of di-tert-butyl dicarbonate (1.74 g, 7.8 mmol) in chloroform was 

added dropwise to 2.7 (2.48 g, 10.0 mmol) in chloroform.  The mixture was 

allowed to stir for 12 hours.  The solvent was removed and separation was 

performed by column chromatography (silica gel, gradient of 1-20% ammonia sat. 

methanol in CH2Cl2 (v/v)). (1.25 g, 28%)  M.P. = 150-154 °C; 1H NMR 

(300MHz, CD3OD): δ 4.27 (s, 4H), 3.84 (s, 2H), 2.75 (q, 6H), 1.45 (s, 18H), 1.16 

(t, 9H); 13C NMR (75MHz, CDCl3): δ 156.17, 143.41, 138.08, 133.03, 80.17, 

40.19, 39.57, 29.17, 23.49, 17.42; HRMS-CI+ m/z: calcd for C25H43N3O4: 

450.333; obsd: 450.332 
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1,3-Bis[[(1,1-dimethylethoxy)carbonyl]aminomethyl]-5-(4,5-dihydro-1H-

imidazol-2-yl)aminomethyl-2,4,6-triethylbenzene hydroacetate (2.10) 

 

NHBOC

H
N

NHBOC

H
N

NH

AcO

 

Aqueous acetic acid (5 %) was used to dissolve 2.8 (0.305 g, 0.678 mmol) and the 

solution was lyophilized twice to give the ammonium salt.  This was ground 

together with free based 2-methylthio-2-imidazoline (0.294 g, 1.2 mmol) and the 

resulting sticky solid was packed in a conical vial, sealed, and heated to 100°C for 

3 days.  The vial was cooled to room temperature and dissolved in 5% acetic acid 

(aq.) and lyophilized.  Purification was done by FPLC (reversed phase resin RP 

18; C18 modified silica gel; particle size 55-105µm) and eluted with an 

NH4Ac/CH3CN gradient from 25 mM NH4Ac to neat CH3CN.  (0.120 g, 32%)  

M.P. = 250 °C (decomp.);  1H NMR (300MHz, CDCl3): δ 4.39 (s, 2H, CH2), 4.30 

(s, 4H, CH2), 3.76 (s, 4H, CH2), 2.74 (q, 6H, CH2), 1.85 (s, 3H, CH3), 1.44 (s, 

18H, CH3), 1.17 (t, 9H, CH3); 13C NMR (75MHz, CDCl3): 161.04, 158.03, 

146.06, 144.95, 133.69, 130.49, 80.31, 44.17, 42.04, 39.64, 28.81, 23.85, 16.64, 

16.57; HRMS-CI+ m/z: calcd for C28H48N5O4: 518.370; obsd: 518.369 
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1-(4,5-Dihydro-1H-imidazol-2-yl)aminomethyl-3,5-bis(aminomethyl)-2,4,6-

triethylbenzene trihydrotriacetate(2.11) 

NH3

H
N

NH3

AcO 3

H
N

NH

 

To a solution of 2.10 (0.767 g, 1.24 mmol) in dichloromethane, 15 mL of 

trifluoroacetic acid was added and the solution was allowed to stir for 2 hours.  

The solvent was removed and the anions were exchanged with an anion exchange 

resin to acetates.  The water solution was then lyophilized to yield a white solid. 

(0.610 g, 98%)  M.P. = 250 °C (decomp.),  1H NMR (300MHz, CD3OD): δ 4.46 

(s, 2H), 4.26 (s, 4H), 3.78 (s, 4H), 2.80 (q, 6H), 1.84 (s, 9H), 1.21 (t, 9H); 13C 

NMR (75MHz, CDCl3): 180.20, 161.42, 147.14, 146.63, 131.83, 130.58, 44.16, 

41.86, 37.69, 24.28, 24.12, 16.40; HRMS-CI+ m/z: calcd for C18H32N5: 318.266; 

obsd: 318.266. 

 

N-(1,1-Dimethylethoxycarbonyl)-2-methylthio-2-imidazole (2.12) 

N
N

S

O

O

 

Into a 50 mL RBF, 2.9 (4.6 g, 18.96 mmol) and triethylamine (2.8 mL, 20.1 

mmol) was dissolved in 15 mL dichloromethane and cooled to 00 C.  Through an 
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addition funnel di-tert-butyl dicarbonate (4.6 g, 21.01 mmol) dissolved in 5 mL 

dichloromethane was slowly added to the mixture.  After completion, the mixture 

was allowed to warmed to room temperature and stirred for 24 hours.  The solvent 

was removed and residue was dissolved in ethyl acetate and filtered through celite 

to remove the insoluble salts. Separation was performed by column 

chromatography (silica gel, 1-2% ammonia sat. methanol in  CH2Cl2 (v/v)) to 

yield white crystals. (3.9 g, 99%) M.P. 33-37 °C;  1H NMR (CDCl3, 300 MHz) δ 

3.82 (s, 4H, CH2), 2.36 (s, 3H, CH3), 1.48 (s, 9H, CH3); 13C NMR (CDCl3, 75 

MHz) δ 151.09, 82.87, 53.64, 47.87, 28.38, 15.35; HRMS-CI+ m/z: calcd for 

C9H17N2O2S1: 217.101; obsd: 217.101 

 

1,3-Bis[[(1,1-dimethylethoxy)carbonyl]aminomethyl]-5-(4,5-dihydro-N-(1,1-

dimethylethoxy)carbonyl-imidazol-2-yl)aminomethyl-2,4,6-triethylbenzene 

(2.13) 

HN

H
N

NH

N

N

O

O

O O

O O

 

To a solution of 2.8 (1.10 g, 2.5 mmol) in 20 mL ethanol and 2.5 mL glacial 

acetic acid, 2.12 (0.72 g, 3.3 mmol) was added.  The mixture was heated to 600 C 

for 10 hours, then allowed to cool to room temperature for additional 10 hours.  
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After removal of the solvent, the mixture was purified by column chromatography 

(silica gel, 1-4% NH3 sat. methanol in dichloromethane (v/v)).  An impurity was 

still present with the compound, so recrystallization was performed with 

dichloromethane.  (0.77 g, 51 %)  M.P. = 165-167 °C, 1H NMR (300MHz, 

CDCl3): δ 6.70 (broad s, 1H), 4.44 (s, 2H), 4.40 (broad s, 2H), 4.32 (s, 4H), 3.84 

(m, 4H), 2.70 (q, 6H), 1.43 (s, 27H), 1.17 (t, 9H); 13C NMR (75MHz, CDCl3): δ 

155.64, 153.9, 153.3, 144.2, 132.54, 82.80, 48.19, 46.93, 41.37, 39.01, 28.41, 

23.21, 16.74; HRMS-CI+ m/z: calcd for C33H56N5O6: 618.423; obsd: 618.423 

 

Synthesis of receptor 2.28 on the tentagel resin (2.28-PS) 

To a solid phase reaction shaker was added dry methanol, trimethylortho formate, 

2.30 (0.017 g, 0.03 mmol), and 200-250 µm Tentagel MB FMP acid labile resin 

(0.054 g, 0.015 mmol by a loading of 0.28 mmol/g).  This was allowed to shake 

for 4 hours.  Sodium borohydride (0.0095 g, 0.25 mmol) was added and the 

mixture shook overnight.  The methanol was removed, and the resin was washed 

three more times with methanol.  Upon addition of 2.24 to a small amount of the 

beads they turned pink, indicating that the resin was present.   
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1,3-Bis[(2-benzeneboronic acid)aminomethyl]-5-[[(1,1-dimethylethoxy) 

carbonyl] aminomethyl]-2,4,6-triethylbenzene (2.29) 

H
N

N

B

N

H

H

B OH
OH

HO
HO

O

O

 

Dry methanol was added to a flame dried round bottom flask with sieves.  To this 

was added 2.25 (0.202 g, 0.58 mmol), 2.14 (0.191 g, 1.27 mmol), triethylamine 

(dry) (1.0 mL, 7.2 mmol), and trimethylorthoformate.  The reaction mixture was 

heated to 40° C under argon and was allowed to stir slowly for 3 hours.  Sodium 

borohydride (0.06 g, 1.59 mmol) was then added.  The mixture was filtered 

through celite and the methanol was removed.  To dispose of any unwanted salts, 

the compound was dissolved in 9:1 ethyl acetate:methanol (v/v) and filtered 

through celite.  The solvent was removed from the filtrate and the resulting solid 

was loaded onto a silica gel column.  The column was run with 1.) 100 mL 9:1 

ethyl acetate: NH3 sat. methanol, 2.) 100 mL 8:2 ethyl acetate: NH3 sat. methanol, 

and finally 3.) 200 mL1:1 ethyl acetate: NH3 sat. methanol.  The silica gel that 

was present with the product as a result of being dissolved in the conditions used 

was precipitated out of solution by dissolving the solid in a small amount 9:1 

ethyl acetate:methanol.  The precipitant was filtered off.  The final product after 

lyophilization was a white fluffy solid.  (0.257 g, 72 %).  M.P. decomp.; 1H NMR 
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(CD3OD, 300 MHz) δ 7.49 (m, 2H), 7.21 (m, 4H), 7.11 (m, 2H), 4.31 (s, 2H), 

4.07 (s, 4H), 3.90 (s, 4H), 2.80 (m, 6H), 1.44 (s, 9H), 1.12 (t, 6H), 1.05 (t, 3H); 
13C NMR (75MHz, CD3OD): δ 157.06, 147.46, 146.96, 143.14, 132.72, 131.61, 

129.18, 128.62, 125.47, 80.30, 45.30, 29.67, 24.94, 22.94, 17.52;. 11B NMR 

(CD3OD, 160 MHz, 25oC) δ 11.0; HRMS-FAB+ m/z: calcd for C40H58B2N3O8 

(glycerol matrix): 730.441; obsd: 730.440. 

 

1,3-Bis[(2-benzeneboronic acid)aminomethyl]-5-aminomethyl]-2,4,6-

triethylbenzene hydroacetate (2.30) 

H3N

N

B

N

H

H

B OH
OH

HO
HO

AcO

 

Trifluoroacetic acid was added to a solution of 2.29 (0.133 g, 0.22 mmol) in water 

and the mixture was allowed to stir for five hours.  The solvent was subsequently 

removed and the counterions were exchanged to acetates by ion exchange 

chromatography.  The aqueous solution of 2.30 was lyophilized to give a fluffy 

white powder. (0.114 g, 7292 %).  M.P. decomp.; 1H NMR (CD3OD, 300 MHz) δ 

7.47 (m, 2H), 7.19 (m, 4H), 7.11 (m, 2H), 4.17 (s, 6H), 3.98 (s, 4H), 2.91 (m, 6H), 

1.92 (s, 3H), 1.16 (m, 9H); 13C NMR (75MHz, CD3OD): δ 149.61, 137.17, 

136.80, 134.01, 132.56, 131.03, 129.18, 45.66, 38.52, 25.87, 16.99;. 11B NMR 
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(CD3OD, 160 MHz, 25oC) δ 9.97; HRMS-FAB+ m/z: calcd for C35H50B2N3O6 

(glycerol matrix): 630.389; obsd: 630.389. 

 

X-Ray crystal structure determination for C33H37B2N7O4 (2.17):  Crystals 

grew as pale yellow needles by slow evaporation in deuterated methanol.  The 

data crystal was a long needle that was broken from a cluster of crystals and had 

approximate dimensions; 0.46 x 0.10 x 0.10 mm.  The data were collected on a 

Nonius Kappa CCD diffractometer using a graphite monochromator with MoKα 

radiation (λ = 0.71073Å).  A total of 192 frames of data were collected using ω-

scans with a scan range of 2° and a counting time of 324 seconds per frame.  The 

data was collected at -150 °C using an Oxford Cryostream low temperature 

device.  Details of crystal data, data collection and structure refinement are listed 

in Table 1.  Data reduction was performed using DENZO-SMN.57  The structure 

was solved by direct methods using SIR9258 and refined by full-matrix least-

squares on F2 with anisotropic displacement parameters for the non-H atoms 

using SHELXL-97.59 The hydrogen atom positions were observed in a ∆F map 

and refined with isotropic displacement parameters.  The function, Σw(|Fo|2 - 

|Fc|2)2, was minimized, where w = 1/[(�(Fo))2 + (0.0469*P)2 + (1.8623*P)] and 

P = (|Fo|2 + 2|Fc|2)/3.  Rw(F2) refined to 0.119, with R(F) equal to 0.0549 and a 

goodness of fit, S, = 1.050.  Definitions used for calculating R(F),Rw(F2) and the 

goodness of fit, S, are given below.60  Neutral atom scattering factors and values 

used to calculate the linear absorption coefficient are from the International 

Tables for X-ray Crystallography (1992).  All figures were generated using 
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SHELXTL/PC.  Tables of positional and thermal parameters, bond lengths and 

angles, figures and lists of observed and calculated structure factors are located in 

Tables 1 through 6. 

 

X-Ray crystal structure determination for C16H20BNO2 (2.18):  Crystals grew 

as large colorless prisms by crystallization from methanol.  The data crystal was 

cut from a much larger crystal and had approximate dimensions; 0.1x0.1x0.1 mm.  

The data were collected on a Nonius Kappa CCD diffractometer using a graphite 

monochromator with MoKα radiation (λ = 0.71073Å).  A total of 298 frames of 

data were collected using ω-scans with a scan range of 1° and a counting time of 

51 seconds per frame.  The data were collected at 153 K using an Oxford 

Cryostream low temperature device.  Details of crystal data, data collection and 

structure refinement are listed in Table 1.  Data reduction were performed using 

DENZO-SMN.57  The structure was solved by direct methods using SIR9261 and 

refined by full-matrix least-squares on F2 with anisotropic displacement 

parameters for the non-H atoms using SHELXL-97.59  The hydrogen atoms on 

carbon were calculated in ideal positions with isotropic displacement parameters 

set to 1.2xUeq of the attached atom (1.5xUeq for methyl hydrogen atoms).  The 

hydrogen atom bound to the nitrogen atom was found in a ∆F map and refined 

with an isotropic displacement parameter.  The function, Σw(|Fo|2 - |Fc|2)2, was 

minimized, where w = 1/[(σ(Fo))2 + (0.0537*P)2 + (0.4446*P)] and P = (|Fo|2 + 

2|Fc|2)/3.  Rw(F2) refined to 0.119, with R(F) equal to 0.0446 and a goodness of 

fit, S, = 1.01.  Definitions used for calculating R(F),Rw(F2) and the goodness of 
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fit, S, are given below.62  The data were corrected for secondary extinction 

effects.  The correction takes the form:  Fcorr = kFc/[1 + (1.7(4)x10-5)* Fc2 

λ3/(sin2θ)]0.25 where k is the overall scale factor.  Neutral atom scattering factors 

and values used to calculate the linear absorption coefficient are from the 

International Tables for X-ray Crystallography (1992).63  All figures were 

generated using SHELXTL/PC.59  Tables of positional and thermal parameters, 

bond lengths and angles, torsion angles, figures and lists of observed and 

calculated structure factors are located in tables 1 through 7. 
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reflections were collected, 3535 were unique (Rint = 0.028).  The 
structures were refined on F2 to a wR2 = 0.119 with an R1 [for 2497 
reflections with Fo > 4( (Fo))] = 0.0549 and a goodness of fit = 1.05.  The 
molecule lies on a crystallographic two-fold rotation axis passing through 
the central pyridine ring.  Full X-ray experimental details are located in 
the Supplementary data. 
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Chapter 3:  Thermodynamic Analysis of Guanidinium/Boronic 
Acid Based Receptors for the Complexation of Carboxylates and 

Diols   

 

3.0 INTRODUCTION 

 

Due to the prevalence of natural products that contain carboxylates and 

diols, our group has developed a series of receptors that target these types of 

analytes.  Examples of these receptors have been discussed in Chapters 1 and 2, in 

which many of them possess guanidiniums1 and/or boronic acids.2  To further 

understand the binding selectivities and the thermodynamics of the guanidinium3 

and boronic acid groups, three of these previous receptors were stinvestigated, 

along with a new one.  The first receptor 1.26, a tris-guanidinium host, was 

designed to bind citrate (Chapter 1, Section 1.6.4.2), a tris-carboxylate anion 

found in citrus fruits and beverages.4,5  The second receptor (1.34) contained a 

boronic acid and two guanidiniums and was designed to selectively bind tartrate 

in grape derived beverages (Chapter 1, Section 1.6.4.6), yet it also had a high 

affinity for the structurally similar analyte malate.6,7  The third receptor (2.1) 

incorporated two boronic acids and one guanidinium to bind a class of age related 

analytes found in scotch whiskies8,9 (Chapter 2, Section 2.3-2.4).  In order to have 

a series of receptors that contain all the possible combinations of guanidinium and 

boronic acid groups, the fourth receptor (3.1) was synthesized which contained 

three boronic acids.  The binding constants of a large variety of guests with these  



 171

NH
NH

N
H

HN

HN
N
H

HN

N
H

HN

N

N
N
H

NN

B OH
OH

H
H

H

B
HO

HO

H

N

N N
H

N
NH

N

N

B OH
OH

H
H

H

H

H

N

N

B OH
OH

H

B
HO

HO

H

N

BHO
HO

H

1.26 1.34

2.1 3.1  

hosts were determined to show the selectivity of each of these.  The guests chosen 

for this experiment all contained a variety of carboxylates and diols.  

Cooperativity of two of the hosts with tartrate was also investigated from the 

UV/vis data, along with ITC analysis to determine the components of the Gibbs 

free energy of binding.  The selectivity of boronic acids for more than just diols 

was investigated.  A variety of compounds were tested such as amino acids, α-

hydroxycarboxylates, and dicarboxylates with a simplified boronic acid 

compound (2.18).10  From the ITC data, an entropy/enthalpy compensation effect 

is found for all the hosts and guests.  The data is combined to present a unified 

picture of how the four hosts recognize and bind diol/carboxylate containing 

guests. 
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3.1 DESIGN AND SYNTHESIS OF RECEPTORS 

 

All of the receptors used in this study are based on the 1,3,5-trisubstituted-

2,4,6-triethylbenzene scaffold seen throughout the previous two chapters, where 

the groups attached to the methylene groups alternate up and down around the 

ring, allowing the binding sites to be preorganized on one face of the benzene 

ring.11  This preorganization of the binding sites forms a binding pocket which 

helps to increase association constants. 

Since the synthesis of 1.34 (Chapter 2, Section 2.5.1),6 2.1 (Chapter 2, 

Section 2.1.2), and 2.18 (Chapter 2, Section 2.2.1) have been discussed already, 

only the synthesis of 1.26 and 3.1 will be discussed here.  Receptor 1.26 was 

synthesized by our previously reported procedure (Scheme 3.1),5 by coupling 2-

methylthio-2-imidazoline with the acetate salt of 2.7 in a solid melt to obtain the 

final compound.  The tris-boronic acid compound 3.1 was synthesized by 

reductive amination of 2.7 with 2-formylbenzene boronic acid (2.14) (Scheme 

3.2)  
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3.2 BINDING AND STRUCTURAL STUDIES 

 

To determine binding constants, a mechanism to signal the binding, such 

as the modulation of spectroscopic properties of a chromophore or fluorophore, is 

needed.  Since dye displacement assays12 have been proven to work with three of 
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the four receptors, this method was chosen for determining association constants 

with the guests.  The same pH sensitive indicators were used with the hosts that 

they have been proven to work with.4,7,8  Therefore 1.26 was paired with 5-

carboxyfluorescein (1.27), 1.34 was used with alizarin complexone (1.35), and 

pyrocatechol violet (2.24) was used with 2.1.  Receptor 3.1 was originally tested 

with pyrogallol red (3.2), but due to the instability of the indicator, alizarin 

complexone was finally chosen.  All of the indicator/host affinity constants were 

determined in 75% methanol in water buffered with HEPES (4-(2-hydroxyethyl)-

1-piperazineethane-sulfonic acid) buffer at pH 7.4 with a 1:1 binding algorithm.13  

The binding affinities were determined to be: 4.7 x 103 M-1 between 1.26 and 

1.27, 2.7 x 104 M-1 between 1.34 and 1.35, 6.2 x 104 M-1 between 2.1 and 2.24, 

and 4.6 x 104 M-1 for the association of 3.1 and 1.35.  
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3.2.1 Binding Studies of 1.26 

 

A competition assay was used to determine the binding constant of the 

guests to the receptors.  Each of the hosts 1.26, 1.34, 2.1, and 3.1 were tested with 

a variety of guests (Figure 3.1) using the indicator displacement method. The  



 175

O O

O OHOO O

O
O

O

OH

OH

O
O

O
O

OH O
O

O
O

O

HO

HO

HO
O

O
HO

HO
O

O

CH2OH

OH

H

CH2OH

OH H

H OHO O
H

HO

H
HO

H

H
OHH

OH

OH

O

OH
OH

HO

OH

OH O

O
OH

HO

OH

OH

OH

O

OH
OH

OH

O

O

OH

citrate tartrate malate succinate

gallate 3,4-dihydroxybenzoate fructose glucose

catechin epigallocatechin gallate lactate  

 
FIGURE 3.1. GUESTS TESTED FOR AFFINITIES WITH RECEPTORS 1.26, 1.34, 

2.1, AND 3.1.   
 

work was completed through a combined effort by Dr. Axel Metzger, Dr. John 

Lavigne, and myself.  All of the binding constants, determined with a competitive 

binding algorithm,13 are listed in Table 3.1.  Due to the design of 1.26, it was 

expected that the guests that were highly anionic would give the strongest 

interactions and the guests that were neutral would not bind.  It was found that 

citrate, which has three carboxylates, was the guest with the highest binding 

constant.  Scheme 3.4 depicts one possible binding motif (A), which was 

observed in the crystal structure obtained,5 where all three carboxylates of citrate  
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TABLE 3.1.  THE BINDING CONSTANTS (M-1) DETERMINED FOR RECEPTORS 

1.26, 1.34, 2.1, AND 3.1, using the competition assay. (75% 
methanol in water, 5-10 mM HEPES, pH 7.4) 

 

 1.26 1.34 2.1 3.1 
Citrate 6.2 x 104 2.0 x 105 1.8 x 105 2.7 x 104 

Tartrate 1.7 x 104 5.5 x 104 1.4 x 105 4.0 x 104 

Malate 1.3 x 104 4.8 x 104 1.5 x 104 8.5 x 103 

Succinate 3.6 x 103 3.5 x 102 <1.4 x 102  No Binding 

Gallate <100 2.0 x 104 1.0 x 104 1.0 x 104 

3,4-Dihydroxybenzoate <100 1.0 x 104 4.5 x 103 9.0 x 103 

Lactate Not 1:1 5.0 x 102 5.0 x 102 1.1 x 103 

Glucose No Binding 1.6 x 102 1.4 x 102 9.0 x 102 

Fructose No Binding 3.0 x 102 4.0 x 102 6.0 x 102 

Catechin No Binding 8.0 x 102 5.7 x 102 5.0 x 102 

EGCg No Binding 4.5 x 103 5.2 x 103 6.0 x 103 
 

are hydrogen bonded to the guanidiniums of 1.26.  Guests that have two 

carboxylates, such as tartrate, malate, and succinate were also strong binders with 

1.26, where tartrate, which also possesses a vicinal diol functional group, and 

malate, a mono alcohol, had 3 to 4 times smaller binding constants than the three 

carboxylate counterpart.  Succinate, which has no hydroxyl groups, had a binding 

constant with 1.26 that was over an order of magnitude less than citrate.  The 

binding affinities of 1.26 with mono carboxylate containing guests such as 3,4-

dihydroxybenzoate and gallate were so low that they were estimated to be less 
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than 100 M-1.  The other mono carboxylate guest, lactate, was determined to bind 

1.26 with a higher stoichiometry, where more than one guest bound in the cavity.  

Other analytes that only contain hydroxyl or catechol functionalities were not 

expected to bind to 1.26, such as fructose, glucose, catechin, and epigallocatechin 

gallate (EGCg), and they indeed had no detectable binding interactions.   

 

SCHEME 3.4.   
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3.2.2 Determining the Selectivity of 1.34   

 

With receptor 1.34 it was expected that guests that possess two 

carboxylates and one diol would show optimum binding.  Tartrate was the guest 

of choice, which indeed bound strongly to the receptor.  But malate, which is 

similar in structure to tartrate, minus one hydroxyl group, had an affinity to the 

receptor that was almost identical.  Citrate bound 1.34 with an affinity that was 

almost 4 times stronger than tartrate, indicating that the carboxylates of citrate 

were interacting with the boronic acid.  Succinate, the malate equivalent minus a 
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single hydroxyl group, had a significantly decreased affinity for 1.34, by almost 

two orders of magnitude.  This indicated that the α-hydroxycarboxylate 

functionality has a greater affinity for boronic acids14 than 1,2-alkane diols.  

Possible conformations for binding are depicted in Scheme 3.5.  Here the binding 

of the α-hydroxycarboxylate of tartrate to the boronic acid of 1.34 (B) is depicted 

in equilibrium with the formation of the boronate ester between the boronic acid 

and the diol (C).  The fact that tartrate and malate have very similar binding 

constants with 1.34, gives evidence for B being a more favorable binding motif 

for tartrate.  However, it is likely that both binding modes exist in solution.  

Structure D is proposed for malate bound to 1.34 in solution.  

  

SCHEME 3.5.   
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The binding constants of gallate and 3,4-dihydroxybenzoate with receptor 

1.34 were also on the same order of magnitude as tartrate and malate.  This is due 

to the catechol/boronic acid interactions, which are know to be stronger than 

vicinal diols.15  The larger neutral catechol containing guests (catechin and EGCg) 

had binding affinities with 1.34 that were decreased by an order of magnitude 

over the aromatic carboxylates.  Simple sugars such as fructose and glucose 

bound with even lower binding constants, since the main interaction with the 

receptor is with the boronic acid.   

 

3.2.3 Binding Investigations of 2.1 

 

Receptor 2.1 was tested with all the same guests.  Both citrate and tartrate 

had the strongest affinities for the receptor, while malate’s affinity was an order of 

magnitude less.  Again, this indicates that the boronic acids are preferentially 

interacting with the α-hydroxycarboxylates.  This can be seen in Scheme 3.6, 

where the binding of tartrate and malate with 2.1 is depicted.  With tartrate, two 

α-hydroxycarboxylate interactions can be drawn with the two boronic acids (E), 

along with a structure in equilibrium that possesses a boronate ester (F).  With 

malate’s interaction (G) only one α-hydroxycarboxylate interaction with a boronic 

acid can be formed, which results in the lower binding affinity with 2.1.   

 

 

SCHEME 3.6.   



 180

N

N
N
H

NN

B O
O

H
H

H

BO
O

H

OO

N

N
N
H

NN

B O
O

H
H

H

BHO
HO

HO
O

O
O

E F
vs.

N

N
N
H

NN

B O
O

H
H

H

BHO
HO

H

O

G

O
O

 

 

Gallate bound 2.1 with an affinity on the same order of magnitude as 

malate, showing the large role the 1,2-hydroxyphenyl groups play over the 1,2-

alkane diols since the association of 2.1 with simple sugars were much lower.  

When testing a guest with one less hydroxyl group, 3,4-dihydroxybenzoate, the 

binding affinity of 2.1 for the guest dropped by a factor of 2, indicating the third 

hydroxyl is also involved in binding to the second boronic acid.  EGCg was an 

order of magnitude higher in its binding constant with 2.1 over catechin and 

epicatechin (Figure 3.2), presumably due to the increased number of hydroxyl 

groups.  Once again, we postulate that this increase in affinities is related to an 

increase in hydroxyl groups through comparison of epicatechin and 
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epigallocatechin (EGC) bound to 2.1.  The association constant of EGC was 

double that of epicatechin by the addition of one hydroxyl group.  Receptor 2.1 

had similar affinities for epicatechin gallate (ECg) and ECG due to the structural 

similarities of the two guests.  EGCg’s similar binding affinity to 3,4-

dihydroxybenzoate again shows the importance of the catechol functionalities, 

where the affinities of glucose and fructose were an order of magnitude less.  This 

can be attributed to the geometry of the two boronic acids around the binding 

pocket, which is not conducive for binding poly alkane diols.  Finally, guests that 

were not expected to bind such as caffeine and sorbate showed no affinity for 2.1. 
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FIGURE 3.2.  ADDITIONAL ANALYTES TESTED WITH 2.1. 

 

3.2.4 Binding Studies of 3.1 

 

Receptor 3.1 which has three boronic acids, again showed selectivity for 

the guests with α-hydroxycarboxylates, such as tartrate.  Citrate, which only has 

one α-hydroxycarboxylate, had a comparable binding constant with 3.1, which 

was attributed to the added interactions of the other two carboxylates with the 
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other boronic acid and the guanidinium.  The affinity of 3.1 to malate was five 

times less than 3.1 to tartrate, due to the one less hydroxyl group.  The possible 

binding modes of tartrate are illustrated in Scheme 3.7, showing the formation of 

a boronate ester (I) versus the binding of the α-hydroxycarboxylates (H).  A 

similar binding mode for malate as in Schemes 3.5 and 3.6 can be assumed, 

highlighting the increased number of favorable binding interactions for tartrate.  

Importantly, upon removal of the alcohols (succinate), no binding could be 

detected to the receptor suggesting that the di-carboxylates are not interacting 

with the boronic acids.   

 

SCHEME 3.7.  
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Both gallate and 3,4-dihydroxybenzoate had affinity constants with 3.1 

that were on the same order of magnitude as malate, showing the strong 

interactions of the boronic acids with the catechols.  The simple alkane diols 

(glucose and fructose) had the lowest affinities with 3.1, while EGCg had a 

binding constant that was almost seven times as strong. 
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3.2.5 Binding Studies with the Boronic Acid Model 

 

Upon analyzing all of these binding constants, it became clear that the 

boronic acids were playing more of a role than just binding vicinal diols.14  

Therefore, we turned our attention more closely on the role of the boronic acids.  

After analyzing the guests that were tested with hosts 1.34, 2.1, and 3.1, a series 

of simpler guests (Figure 3.3) were analyzed with a simplified boronic acid 

compound (2.18).  Since 2.18 does not possess a signaling site, the competition 

assay was also employed, using 1.35 as the indicator.  The binding constants that 

were determined are shown in Table 3.2, along with the binding constant of 2.18 

with 1.35.  Aliphatic diols have been widely examined with boronic acids, but 

catechols have not been as widely tested,15 so this was our starting point.  

Catechol proved to be one of the stronger binding guests, which is part of the 

functionality present in alizarin complexone.  Since 1.35 bound so strongly with  
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FIGURE 3.3. GUESTS TESTED FOR AFFINITY TO RECEPTOR 2.18.   
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2.18, the iminodiacetate16 functionality was tested to see if the boronic acid was 

binding through the catechol or the side arm of 1.35.  However, the binding of this 

guest with 2.18 was too weak to be determined.  Diethanolamine, the alcohol 

equivalent to iminodiacetate was also tested, but also had weak binding.  Because 

citrate bound hosts 1.34, 2.1, and 3.1 better than expected, the interaction of 

lactate, an α-hydroxycarboxylate was tested.  It was shown to have an excellent 

binding affinity for the boronic acid of 2.18.  The amino acid17 equivalent alanine, 

had very little affinity with the receptor, showing the alcohol is required over an 

amine.  Malonate also showed a strong affinity for 2.18, indicating that binding 

was also possible through the two carboxylates,18 forming a six membered ring.  

When any simple aliphatic diols were attempted such as ethylene glycol, cis-1,2- 

 
TABLE 3.2.  THE BINDING CONSTANTS (M-1) DETERMINED FOR 2.18, by using 
the competition assay with the indicator alizarin complexone. (75% methanol in 
water, 10 mM HEPES, pH 7.4)  
 
 2.18  

alizarin complexone (1.35) 4.4 x 103  

malonate 8.6 x 102  

lactate 3.1 x 102  

alanine < 50  

iminodiacetate < 50  

catechol 4.0 x 102  

cis-1,2-cyclohexanediol No Binding 

diethanol amine 75  
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cyclohexane diol, trans-1,2-cyclohexane diol, or neopentyl glycol, binding was 

always too low to be determined.  Therefore, it was determined that a simple 

boronic acid (2.18) has high affinities for α-hydroxycarboxylates, catechols, and 

di-carboxylates that can form 6-membered rings, over amino acids and simple 

1,2-alkane diols. 

 

3.3 ENTHALPY AND ENTROPY 

 

Given that the selectivities of the hosts were determined, along with some 

structural insight, we were interested in the driving force for binding of hosts 

1.26, 1.34, 2.1, 3.1, and 2.18.  The Gibbs free energy of binding can be calculated 

from the Ka’s, but in order to divide ∆Go into its parts, enthalpy and entropy, 

isothermal titration calorimetry (ITC) was used.  This method measures the heat 

evolved or absorbed upon binding, and in a single experiment derives Ka, ∆Go, 

∆Ho, and ∆So.19  The instrument measures the change in heat of a system upon 

addition of an aliquot of guest into a solution of host.  This is shown in the top 

part of Figure 3.4 for the addition of tartrate into a solution of 1.34 at pH 7.4 

(100% water, 50 mM HEPES buffer, 25 oC).  Integration of the exothermic peaks 

leads to the binding curve shown in the bottom part of Figure 3.4.  Using a one-

site binding model to fit the data, leads to the values shown in Table 3.3.  The 

association constant between tartrate and 1.34 has dropped significantly from the 

one reported in Table 3.1.  This can be attributed to performing the ITC 

experiments in 100% water compared to performing the UV/visible studies in 
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75% methanol in water.  Ion-pairing interactions are reduced in pure water, and in 

addition the increased buffer concentration can lower binding interactions.   
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FIGURE 3.4.  ITC ANALYSIS OF 1.34 WITH TARTRATE (100% water, 50 mM 

HEPES buffer, pH 7.4). 

 

The data shows that binding is driven by a combination of entropy and 

enthalpy, both being favorable.  In many systems, enthalpy that is exothermic is 

associated with charge pairing interactions or tight binding interactions that result 

in structural tightening, while positive entropy is generally associated with a 

release of solvent into bulk solution.  Negative entropy can result from the cost of 

freezing intermolecular motion.20  When looking at the binding of 1.26 and citrate 
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in pure water, with a phosphate buffer, the majority of the driving force is derived 

from entropic contributions.21  This indicates a large release of solvent upon 1.26 

binding citrate.  Also, the use of phosphate as a buffer can reduce the 

carboxylate/guanidinium interactions due to competition for the binding site.5   

 
TABLE 3.3.  ITC ANALYSIS of 1.26 (100% water, pH 7.4, 103 mM phosphate 
buffer),21 1.34, 2.1, and 3.1 (100% water, pH 7.4, 50 mM HEPES) and 2.18 
(100% water, pH 7.4, 250 mM HEPES).  
 

 1.26 and  

Citrate 

1.34 and 

Tartrate 

2.1 and 

Tartrate 

3.1 and 

Tartrate 

2.18•and 

Catechol 

2.18•and 

Malonate 

∆Ho 

(kcal/mol) 
-0.2 -1.6 -2.9 -1.5 -1.4 0.02 

T∆So 

(kcal/mol) 
3.3 2.1 0.6 1.8 1.8 4.2 

∆Go 

(kcal/mol) 
-3.6 -3.7 -3.5 -3.3 -3.2 -4.2 

Ka  (M-1) 4.4 x 102 5.2 x 102 3.7 x 102 2.6 x 102 2.2 x 102 1.2 x 103 

 

The binding between 1.34 and tartrate was determined to be exothermic 

with positive entropy.  The increase in the enthalpic component versus 1.26 

binding citrate indicates stronger interactions between 1.34 and tartrate.  The 

covalent bonds between the boronic acid and tartrate (Scheme 3.5, B and C) could 

impart this added rigidity over the hydrogen bonding and charge pairing 

interactions of 1.26.  Further, the entropic component is still present with 1.34, 

which could result from the release of solvent from the binding pocket and the 



 188

guest.  The binding of the carboxylates of tartrate to the guanidiniums of 1.34 

displace water into bulk solvent.  Further, two water molecules are released for 

each boronate ester formed (Eq. 3.1) from either the diol or the α-

hydroxycarboxylates.  

 

B

N

OH
OH

R2
R1

B

N

O
O

R2
R1

OHHO
2 H2O+ Eq. 3.1

 

 

A large enthalpic component with a small entropic component was 

determined for the binding of 2.1 to tartrate.  This receptor is now comprised of 

two boronic acids and one guanidinium.  The possibility of forming four 

reversible, covalent bonds to tartrate exists (Scheme 3.6, E) making the 

complexation exothermic, but results in a rigid host/guest complex, which is less 

disordered, resulting in lower entropy of binding relative to 1.26 and 1.34.  The 

rigidity of the host/guest complex induces the loss of translational and rotational 

entropy, which may out weigh the increased entropy from the displacement of 

solvent from the binding cavity, lowering the overall entropy. 

The binding of 3.1 with tartrate had a similar driving force to receptor 1.34 

binding tartrate, where the enthalpy and entropy were both favorable.  Scheme 3.6 

shows 3.1 binding tartrate (Complex H) in a similar orientation as 2.1 (Scheme 

3.6, E), yet the exothermicity with 3.1 has decreased and there is more entropy.  

Perhaps, the rigidity in the binding of tartrate to 3.1 is not as pronounced as 

tartrate to 2.1, due to subtle size and shape differences of the binding cavity.  
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Without the increase in rigidity, not as much entropy is lost and the displacement 

of solvent into bulk solution has a more pronounced effect.   

Using the boronic acid model compound 2.18, the association of catechol, 

malonate, and lactate were all analyzed by ITC.  Catechol was both entropy and 

enthalpy driven, with exothermic binding and positive entropy.  Malonate on the 

other hand was primarily entropy driven (positive), with enthalpy being slightly 

endothermic.  Looking at these two studies from the point of rigidity, it would 

appear that the formation of the boronate ester with catechol results in a more 

rigid complex than malonate binding 2.18.  This rigidity reduces the entropy of 

the system, even though two solvent molecules are being released for each 

boronate ester formed.  Lactate was not reported due to the fact that an accurate 

association constant could not be measured due to small changes in the heat of the 

system, which means that the binding is primarily entropy driven. 

When the entropy and enthalpy for each of the receptors are plotted 

together (Figure 3.5), a straight line is the result.  This phenomenon is termed 

enthalpy/entropy compensation (EEC),20,22,23 and is an effect that reflects how 

increasing favorable enthalpy is offset by a change in entropy or vice versa, 

resulting in a small change in free energy.  For example, as the rigidity of the 

host/guest complexes increase, the disorder of the complexes decreases, resulting 

in a compensation of the entropy.  This can be seen in receptors 1.26, 1.34, and 

2.1, as the binding sites of the receptors change from three guanidiniums to two 

boronic acids and one guanidinium.  The slope of the EEC graph is determined to 

be 0.8, which means that the free energy of binding is more sensitive to changes is 



 190

entropy.23,24  A slope less than one suggests that by rationally designing a receptor 

that is a tight binder to an guest, the exothermicity of the receptor (-∆H°) would 

eventually be defeated by the compensating entropy (T∆S°). 

It is interesting that receptors containing both boronic acids and 

guanidinium groups lie on the same plot, having the same slope.  This means the 

extent to which the increased enthalpy of binding is offset by lower entropy is 

identical for the two molecular recognition motifs.  Ion pairing a carboxylate with 

a guanidinium and the reversible binding of α-hydroxycarboxylates with boronic 

acids act similarly in this regard, at least in the series of receptors studied.  More 

work is required to see if this is a general phenomenon.   

 

 

 
FIGURE 3.5.  ENTROPY (T∆S) VS. ENTHALPY (∆H) COMPENSATION PLOT for 

hosts 1.26, 1.34, 2.1, 3.1, and 2.18, binding different guests. 
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3.4 COOPERATIVITY 

 

Studies were done to explore the cooperativity of receptors 1.34 and 2.1 in 

binding various guests.  Cooperativity in the case of receptor 1.34 is defined as 

enhanced or diminished binding interactions of the boronic acid and the two 

guanidiniums to the diol and carboxylates of tartrate, respectively.  The method 

proposed by Jencks25 was used to analyze the two receptors.  The guest to be 

studied is divided into parts A and B where the receptor can independently bind 

both of these, such that the parts can be compared to the whole to determine if the 

binding is cooperative when they are connected.  Here, the Gibbs free energy of 

connection (∆Gs
º) is defined as the change that results from the connection of A 

and B, and can be determined from the difference between the Gibbs free energy 

of the parts minus the Gibbs free energy of the whole (Eq. 3.2) or the binding 

constants (Eq. 3.3).  Positive cooperativity would be shown by a positive ∆Gs
º, 

which is a gain in free energy from binding AB vs. binding A and B separately.  

The opposite is true with a value for ∆Gs
º that is negative.   

 
°°°° ∆−∆+∆=∆ ABBAs GGGG                                 Eq. 3.2 

 

BA

AB
s KK

KRTG ln=∆ °                                       Eq. 3.3 

 

For receptors 1.34 and 2.1, the binding of tartrate was studied.  The study 

of the parts of tartrate was performed two different ways.  Glucose and succinate 
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were chosen as one break down of tartrate, separating the boronic acid/diol 

interactions from the guanidinium/carboxylate interactions.  Two lactates were 

chosen for the second study to investigate the α-hydroxycarboxylate interactions 

with the boronic acids and the guanidiniums.  The binding constants of 1.34 with 

glucose and succinate were 160 M-1 and 350 M-1, respectively.  Using Eq. 3.3, the 

∆Gs
º was determined to be -0.1 kcal/mol, which is indicative of negative 

cooperativity, but close to no cooperativity.  Lactate’s binding constant with 1.34 

was determined to be 500 M-1, which gave a ∆Gs
º of -0.9 kcal/mol, which is also 

indicative of negative cooperativity. 

The cooperativity of binding with regards to receptor 2.1 and tartrate was 

also analyzed, using the two different methods just discussed for 1.34.  The 

complex 2.1 with glucose had an affinity constant of 140 M-1, and succinate’s 

affinity to 2.1 was so low that a binding constant of less than 140 M-1 was 

estimated.  The ∆Gs
º for this scenario was determined to be +1.2 kcal/mol, which 

indicates positive cooperativity between the boronic acids and the guanidinium. 

This represents a significant gain in free energy due to the connection of the 

binding sites.  However, when tartrate is broken down into two lactates, the 

association constant between 2.1 and lactate was determined to be 500 M-1, which 

resulted in a ∆Gs
º of -0.3 kcal/mol, negative but close to no cooperativity.   

We interpret these results to further show the favorable interactions of 

boronic acids with α-hydroxycarboxylates over alkane diols.  The positive 

cooperativity determined from comparing the diol/carboxylate interactions with 

tartrate is likely false because the assumed binding geometry is for boronate ester 
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formation and guanidinium/carboxylate ion pairing.  It is actually very rare using 

the Jencks method of determining cooperativity to achieve positive 

cooperativity.26  One must remember that both negative and positive 

cooperativity, both can give enhancements in the binding affinities.  Negative 

cooperativity merely suggests that the enhancement was not as large as could 

have been achieved.  In this example, the two experiments are comparing two 

different interactions of the guests with the host.  Our earlier analysis showed that 

tartrate is most likely binding through α-hydroxycarboxylates to the boronic acids, 

and therefore using two lactates as the parts is a better model.  The fact that there 

is only a small negative cooperativity in free energy with the lactate as the parts, 

suggests equal enthalpic interactions from each of the α-hydroxycarboxylates of 

the lactate, when binding to 2.1, which is accompanied by a loss in entropy by 

tethering the parts.  Hence, this cooperativity study is in agreement with the ∆Ho 

and ∆So evaluation of tartrate binding 2.1 given above. 

 

3.5 CONCLUSIONS 

 

Guanidiniums and boronic acids have been widely investigated in their 

role of binding carboxylates and diols, respectively.  We have analyzed four 

receptors (1.26, 1.34, 2.1, and 3.1) that incorporate these functionalities by 

themselves and together, examining the thermodynamics of binding, selectivities, 

and cooperativity.  The tris-guanidinium receptor (1.26) gave a predictable 

selectivity for highly anionic guests.  However, receptors 1.34, 2.1, and 3.1, which 
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incorporated boronic acids, displayed high affinities for guests that possessed α-

hydroxycarboxylates and catechol functionalities over simple alkane 1,2-diols.  

Due to this, a mono boronic acid compound 2.18 was studied to further 

investigate the role that boronic acids play in binding guests other than diols, 

confirming high affinity for α-hydroxycarboxylates and catechols.  Isothermal 

titration calorimetry revealed that the binding of citrate and tartrate with all the 

hosts was exothermic, with positive entropy.  The boronic acids appear to add an 

enthalpic component to the thermodynamics of binding along with an entropy 

component due to the release of water.  However, the binding with the boronic 

acids also leads to tighter bound complexes, while the complexes with 

guanidiniums are looser and also have a larger entropic component related to 

solvent release.  An enthalpy/entropy compensation phenomenon was determined 

to exist between the guanidinium and boronic acid hosts.  This indicated that the 

offset of enthalpy for losses in entropy for guanidiniums and boronic acids were 

essentially the same for our hosts.  The cooperativity of tartrate binding to 1.34 

and 2.1 was also investigated.  It was determined that 2.1 had a binding pocket 

that was complimentary for the binding of tartrate, only showing small negative 

cooperativity.   

 

3.6 EXPERIMENTAL 

 

General.  The chemicals were obtained from Aldrich, and no further 

purification was done unless otherwise noted.  Methanol was distilled from 
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magnesium, and triethylamine was distilled from calcium hydride when noted.  

Products were placed under high vacuum for at least 12 hours before spectra were 

obtained.  1H and 13C NMR spectra were obtained on a Varian Unity Plus 300 

MHz spectrometer.  11B NMR spectra were obtained on a Bruker AMX-500 

spectrometer.  A Finnigan VG analytical ZAB2-E spectrometer was used to 

obtain high resolution mass spectra.  UV/Visible spectra were collected on a 

Beckman DU640 spectrophotometer.  Isothermal titration calorimetry was 

performed on a VP-ITC MicroCalorimeter instrument by MicroCal.   

 

UV/Visible titrations of indicator and receptor: 

All solutions were buffered at pH 7.4 with HEPES buffer (5 mM) in 75% 

methanol in water (v/v).  A solution of 5-carboxyfluorescein (23 µM) was 

prepared in the cuvette and into this was titrated a stock solution of 1.26 (500 µM) 

and 5-carboxyfluorescein (23 µM) keeping the indicator concentration constant.  

The data was taken at 498 nm to determine the association constant.  The rest of 

the host/indicator association constants were determined in a similar manner with 

differences in concentrations.  Alizarin complexone-1.34 (10 mM HEPES, 150 

µM of indicator, 1.6 mM of 1.34, 525 nm); pyrocatechol violet-2.1 (10 mM 

HEPES, 60 µM of indicator, 1.2 mM  of 2.1, 510 nm); alizarin complexone-3.1 

(10 mM HEPES, 150 µM of indicator, 1.2 mM  of 3.1, 525 nm); and alizarin 

complexone-2.18 (10 mM HEPES, 150 µM of indicator, 2.8 mM of 2.18, 525 nm) 
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UV/Visible titrations of receptor/indicator ensemble and guests: 

All solutions were buffered at pH 7.4 with HEPES buffer (5-10 mM) in 75% 

methanol in water (v/v).  A solution of indicator (1.27, 14 µM) and receptor (1.26, 

74 µM) was prepared in the cuvette and into this was titrated a stock solution of 

indicator, host, and guest, keeping the indicator and host concentrations constant.  

The data was taken at the appropriate wavelength to determine the association 

constant.  The guest concentration in the stock solution varies between 5-80 times 

the concentration of host.  Alizarin complexone-1.34 (10 mM HEPES, 150 µM of 

indicator, 170 µM of 1.34, 525 nm); pyrocatechol violet-2.1 (10 mM HEPES, 60 

µM of indicator, 260 µM of 2.1, 510 or 605 nm); alizarin complexone-3.1 (10 

mM HEPES, 150 µM of indicator, 185 µM of 3.1, 525 nm); and alizarin 

complexone-2.18 (10 mM HEPES, 150 µM of indicator, 470 µM of 2.18, 525 

nm). 

 

Isothermal titration calorimetry of receptors 1.34, 2.1, and 3.1 with tartrate: 

All solutions were buffered at pH 7.4 with HEPES buffer (50 mM) in 100% 

water.  The calorimetry cell contained the receptor (1.0 mM), and tartrate (21.4 

mM) was titrated into the cell.  A total of 30 injections were made at a volume of 

6 µL per injection and a spacing of 300 seconds between injections.  The solution 

is constantly stirred and kept at 25 ◦C.  The heat of dilution is measured by 

titrating the tartrate solution, in the same experiment as above into a solution of 

just buffer.  The heat of dilution data is subtracted from the raw titration data to 

produce the final binding curve.  The data was fit with a one-site binding model 
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using the Origin software Version 5.0.  The other ITC experiments were all 

performed in a similar manner, with variations in buffers and concentrations.   

 

1,3,5-Tris[(2-benzeneboronic acid)aminomethyl]-2,4,6-triethylbenzene. (3.1) 

N
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Dry triethylamine (1.0 mL) and 2-formylbenzene boronic acid (0.33 g, 

2.19 mmol) was added to a solution of 2.7 (0.16 g, 0.63 mmol) in dry methanol 

over 3Å molecular sieves in an inert atmosphere.  The reaction was heated to 45 
oC for 6 hours.  Sodium borohydride (0.18 g, 4.76 mmol) was added and the 

reaction was cooled to room temperature.  The mixture was filtered through celite 

and the solvent was removed. The solid was dissolved in water, filtered through 

celite, and lyophilized.  Trimethylorthoformate (2 mL) and dry methanol were 

then added and stirred for 2 hours, and the resulting residue was placed under 

vacuum for an additional 24 hours.  The final purification step involved 

dissolving the solid with a mixture of 9:1 ethyl acetate:methanol (v/v) and 

filtering through celite.  The solvent was removed to yield a white solid.  (0.12 g, 

28%)  M.P. = 230 °C (decomp.); 1H NMR (CD3OD, 300 MHz) δ 7.49 (d, 3H), 

7.1-7.2 (m, 9H,, 4.05 (s, 6H), 4.02 (s, 6H), 2.98 (q, 6H), 1.07 (t, 9H); 13C NMR 
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(CD3OD, 75 MHz) δ 157.1, 148.2, 143.2, 132.7, 129.2, 128.7, 125.6, 54.8, 45.3, 

25.3, 17.6; 11B NMR (CD3OD, 160 MHz, 25oC) δ 10.0; HRMS-CI+ m/z calcd. for 

C39H48B3N3O3: 639.399, obsd.:639.397 (dehydrated methoxy form) 
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Chapter 4:  Siderophores 

 

4.0 INTRODUCTION 

 

The binding of catechol functionalities was described in Chapters 2 and 3 

using receptors functionalized with boronic acids.  In this chapter we set out to 

develop a new sensor for catchol containing compounds through complexation by 

a metal center.  Receptors 4.1 and 4.2 were designed to detect the presence of 

simple catechol compounds.  The two hosts are modeled after siderophores, 

where iron(III) is complexed by three catecholates.  Our design incorporates the 

same iron(III) center, but  with two catecholates and one 2,4-pentanedione (acac) 

ligand.  The idea being that in the presence of a catechol containing guest, the 

acac would be replaced by the diol.  An ammonium was incoroporated into 4.1 

and a guanidinium into 4.2 for charge pairing and hydrogen bonding to any anion 

containing guests.   
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4.1 PHENOLIC COMPOUNDS 

 

One important class of analytes found in red wines are phenolic 

compounds.  Their concentration in the beverage affects many characteristics 

such as appearance, taste, and fragrance, and they are derived from a combination 

of the grapes, the vines, and the wood casks they are fermented in.1  The two 

major groups present are flavanoids and nonflavanoids.  Examples of 

nonflavanoids are caffeic acid and gallic acid, while flavanoid examples consist of 

catechin and leucoanthocyanidin (shown below).  Flavanoids are found in 

monomeric and polymeric forms, making a very diverse family of compounds.   
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Therefore due to their assorted presence in wines, the development of a sensor 

array to detect and quantify these compounds would be an interesting endeavor.  

In order to do this, a sensor that is selective for the catechol functionality must be 

developed.  Even though receptors 2.1 and 1.34 bind catechols, they bind tartrate 
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and malate with a high affinity, which is also in high concentrations in these grape 

derived beverages.   

 

4.2 SIDEROPHORES 

 

Natural siderophores are low molecular weight compounds that 

microorganisms have developed to aid in the solubilization and transport of 

iron(III) into cells.2  The microorganism produces these compounds when it is 

iron deprived, due to the siderophore’s abilities to form strong complexes with the 

metal.  Enterobactin (4.3) is one of the most effective iron chelating agents with 

an association constant of around 1049 M-1, and upon absorption of the complex 

into the cell the iron is removed from the ligand, possibly through hydrolysis of 

the ligand.3  Many synthetic iron sequestering agents have been designed4 due to 

the need to detect trace amounts of iron in complex systems or in medicine for the 

treatment of iron overload.5  Raymond and coworkers developed receptor 4.4, 

which actually rivals the binding affinity of enterobactin6 with a Ka of 1047 M-1 for 

the ligand to iron.  The receptor was designed with the 1,3,5-trisubstituted-2,4,6-

triethylbenzene scaffold that the Anslyn group is familiar with,7 which 

preorganizes the catecholate binding sites to one face of the benzene ring.   
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4.3 SYNTHESIS 

 

The design of our receptors 4.1 and 4.2 are based on Raymond’s iron 

receptor (4.4) with the idea of leaving off one of the catecholate arms in order to 

leave a binding site for our catechol containing guests.  An ammonium and a 

guanidinium was incorporated in place of the catecholate to aid in binding guests 

such as 2,3-dihydroxybenzoate or gallate.   

The synthesis of ligand 4.5 (Scheme 4.1) begins with amide formation 

between bis-amine/mono-BOC protected compound 2.26 and 2,3-

dihydroxybenzoic acid (4.3) with 1,3-dicyclohexylcarbodiimide (DCC) to obtain 

compound 4.4.  Purifying 4.4 was completed through column chromatography, 

followed by a series of crystallizations to remove the urea byproduct of the DCC 

that coeluted.  A final crystallization produced the product with only a fifty 

percent yield.  The protecting group of 4.4 was subsequently cleaved with 

trifluoroacetic acid to obtain the TFA salt of 4.5.  When an attempt was made to 

perform this synthesis again, the product 4.4 was never obtainable in a yield that 
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was reasonable.  Problems accrued with regards to the amide formation and the 

purification resulting in little to no yields of 4.4.  Even though the product was 

forming and could be seen by TLC, the isolation proved to be difficult due to 

decomposition on the column.  Other coupling agents were tested in an attempt to 

obtain the bis-amide product in near quantitative yields in order to avoid the 

purification through chromatography, but the result was always a mixture of 

products.  Therefore, a new route was chosen, shown in Scheme 4.2. 
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Due to the apparent instability of the catechol functionality, a route was 

chosen that protected them as methyl ethers similar to literature precedures.8,9  

Therefore, the purchasable 2,3-dimethoxybenzoic acid (4.6) was coupled to 2.26 

with DCC.  The carbamate of the resulting compound 4.7 was deprotected with 

trifluoroacetic acid.  This deprotection was performed even though the 

deprotection of both the catechols and the amine could have been accomplished in 

one step with the boron tribromide.  With the free amine, a final attempt to purify 

the compound and remove any excess DCU was performed before the ethers were 
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cleaved.  Finally, boron tribromide in dry dichloromethane9,10 was added to a 

solution of 4.8 to obtain the bromide salt of the ammonium compound 4.5.   
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To form the guanidinium receptor 4.2, compound 4.8 was coupled with 

the N-BOC protected 2-methylthioimidazoline derivative11 in an acetic 

acid/ethanol solution to obtain 4.9.  Both the BOC protecting group and the 

methyl ethers were cleaved by the addition of boron tribromide to obtain 

guanidinium product 4.10.   
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Scheme 4.3 
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4.4 FORMATION OF THE IRON-LIGAND COMPLEX 

 

After the ligands were synthesized, the iron ligand complexes needed to be 

formed.  In order to determine the stoichiometry of the iron/ligand complex, it 

was necessary to titrate the iron into a solution of the ligand.  When an attempt 

was made to adjust the pH of FeCl3 and Fe(NO3)3 solutions in the presence of 

HEPES (75% methanol in water) a precipitate immediately formed due to 

hydrolysis.  When a solution of pure FeCl3 (no pH adjustment) was titrated into a 

buffered solution of ligand the complex 4.1 formed, but the pH of the solution 

was altered due to the unbuffered iron.  Therefore, an iron species that is more 

stable in aqueous solutions was chosen, iron(III) acetylacetonate (Fe(acac)3).9  

Upon addition of Fe(acac)3 to a solution of 4.5, there was a strong increase in 

absorbance with a wavelength maximum at 575 nm (Figure 4.1A).  This results in 

a deep purple colored solution.  The mole ratio plot (Figure 4.1B) shows a distinct 

break in the delta absorbance at one, indicating a 1:1 complex formation.  From 

the data, an association constant of iron to 4.5 was determined to be near 107 M-1 
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using a 1:1 binding algorithm.12  Two other metals were investigated, 

titanium(IV) oxide bis(2,4-pentanedionate) and vanadium(IV) oxide bis(2,4-

pentanedionate),9 but neither one showed binding to 4.5 through a spectral 

change.   

The stoichiometry of the binding of ligand 4.10 to iron was also 

investigated.  Under the same conditions, a very similar absorbance and mole 

ratio plot was obtained.  The association constant was again determined to be 107 

M-1 for 4.2.   
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FIGURE 4.1. THE CHANGE IN ABSORBANCE AS LIGAND 4.5 BINDS IRON.  A. 

The increase in absorbance as Fe(acac)3 is added to a solution of 
4.5.  B. The mole ratio of the formation of 4.1 shows that a 1:1 
complex is formed (75% methanol in water, 10 mM HEPES buffer, 
pH 7.4).   

 

4.5 BINDING STUDIES 

 

Now that we have investigated the formation of the iron/ligand complexes, 

the next step was to determine if the hosts were selective for any particular guests.  
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The group of guests that were investigated (shown below) were comprised of 

catechol, 2,3-dihydroxybenzoic acid, 3,4-dihydroxybenzoic acid, and gallic acid.  

We were interested in developing a receptor that worked in water, but due to the 

limited solubility of the host in water, the solvent system chosen was 25% 

methanol in water.  The stoichiometry of the iron/ligand complex was also 

determined to be 1:1 in the new solvent system.  Therefore, the guests were 

titrated into a solution of 4.1 (10 mM HEPES, 25% methanol in water, pH 7.4), in 

which a small spectral change resulted.  Initial studies indicated that binding was 

occurring, yet further examination yielded results that were not reproducible.  For 

example, Figure 4.2A shows the change in absorbance of 4.1 upon addition of 

2,3-dihydroxybenzoate.  The color of the solution changes from a deep purple to a 

reddish purple.  Figure 4.2B shows the data fit to a 1:1 binding algorithm at 580 

nm.  The affinity constant for this experiment was determined to be 1.6 x 103 M-1, 

yet when the experiment was repeated, the resulting Ka was calculated to be 1.0 x 

104 M-1.  In a third experiment, the changes in absorbance appeared to be random, 

where no binding curve was obtained.  This pattern was repeated for all the 

analytes, where the association constants and the change in absorbance varied.  

Similar results were obtained with the titration of 4.2 with the same analytes.  
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FIGURE 4.2.  CHANGE IN ABSORBANCE OF 4.1 (240 µM) upon addition of 2,3-

dihydroxybenzoic acid.  A. The UV/vis spectra at different 
concentrations of 2,3-dihydroxybenzoic acid.  B. The binding 
curve at 580 nm fit with a 1:1 binding algorithm.  

 

Investigations were next undertaken to try to determine what was occuring 

in solution.  First, we knew what the spectra of the bis-catecholate host 4.1 looked 

like, but we wanted to know what the spectra looked like with three catecholates 

bound to the iron in our solvent system.  Therefore, the synthesis of Raymond’s 

iron/ligand complex (4.4) was undertaken (Scheme 4.4).  The tris amine 
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compound 2.7 is coupled to 4.6 three times with DCC in methylene chloride to 

give 4.11.  The methyl protecting groups are subsequently removed with boron 

tribromide to obtain 4.12.  One equivalent of Fe(acac)3 was added to a solution of 

4.12 in 25% methanol in water and a UV/vis spectrum was obtained.  This 

spectrum was compared with the one taken of 4.1 (Figure 4.3).  When another 

catecholate is complexed to the iron, the result is a hypsochromic shift in the 

absorbance.  This suggests that the complexation of 2,3-dihydroxybenzoic acid to 

4.1 is a similar to the complexation of the three catecholates of 4.4 to iron, due to 

the similar absorbance shift of 4.1 upon addition of the guest.  This has also been 

confirmed by Raymond and coworkers where they observed a typical red 

complex when three catecholates were bound to iron, versus a blue complex 

typical of ferric bis(catecholate).3   
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FIGURE 4.3.  THE UV/VIS SPECTRA OF 4.1 AND 4.4.  This shows the difference 

in the absorbance of three catecholates around iron versus two.   

 

In order to confidently confirm this binding motif, a crystal structure was 

needed, but all attempts to obtain crystallographic quality crystals of 4.1 and 4.1 

bound to guests failed.  The solvent systems were selected based on past 

precedent of growing crystals of other siderophore compounds.9,13  At first an 

attempt was made to form the iron/ligand complex directly in the chosen solvent 

system by adding the ligand to the Fe(acac)3.  The problem is that upon formation 

of 4.1, two equivalents of 2,4-pentanedione are released.  This creates an impure 

environment to attempt to grow crystals in.  Another approach focused on 

forming the complex 4.1, isolating it, then attempting to recrystallize it from a 

pure environment.  Upon attempting to redissolve the isolated complex problems 

in solubility occurred.  Even though it was evident that some of the complex was 

going into solution, a fine powder was also present.  Even though the precipitant 

was removed, no crystals were obtained from this batch either.  The problem of 

identifying the complex was also approached with the idea of using mass 



 215

spectroscopy.  The complex 4.1 that was isolated was submitted for analysis along 

with a sample in a buffered solution.  But neither sample resulted in a peak 

corresponding to the molecular weight of the complex.   
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In an effort to simplify what is happening in solution, a BOC protected 

version of 4.1 was synthesized (4.13).  Therefore, we investigated the 

catechol/iron binding interactions without being concerned about how the 

ammonium comes into play.  The synthesis involved taking the mono amine bis 

catecholate compound 4.5 and protecting the amine with di-t-butyl dicarbonate to 

obtain 4.4 (Scheme 4.5).   
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 Complex 4.13 was formed in the same manner discussed above by 

titrating Fe(acac)3 into a solution of 4.4 which indicated a binding stoichiometry 

of 1:1.  In order to help confirm this, appropriate UV/vis spectra were obtained for 

the creation of a Job plot,12 which also indicated the formation of a 1:1 complex 

(Figure 4.4).  The complex 4.13 was seen in an electrospray ionization mass 

spectrum, where the solvent was buffered at pH 7.4.  There were also peaks 

indicating higher molecular weight species, but their source was never 

determined.  Since the complex had been characterized, binding studies were 

undertaken.  Yet, upon titrating guests into solutions of 4.13 the absorption 

spectra did not show a reproducible response.  Any spectral change was very 

small and appeared random rather than forming a binding isotherm.  The 

difference between 4.1 and 4.13 was the protected amine.  One hypothesis might 

be that the BOC group was sterically hindering the binding of the guests.   
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FIGURE 4.4.  JOB PLOT OF 4.4 AND FE(ACAC)3.   
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Due to the small and irreproducible spectral response of 4.1 upon addition 

of guests, another method of signaling their binding was explored.  Indicator 

displacement assays have been discussed frequently throughout Chapters 1, 2, and 

3, and recently there has been evidence from the Anslyn group that it also works 

with metallated hosts.14  The two indicators that were investigated were 

pyrocatechol violet (2.24) and bromopyrogallol red (2.23).  They were chosen 

because they both possess catechol functionalities.  When Fe(acac)3 was added to 

a solution of 2.24, the indicator changed color from yellow to blue, but when 4.1 

was added to the same indicator, there essentially was no color change.  This 

indicated that the indicator was not binding to the host.  The next indicator 

investigated, 2.23, displayed a detectable color change upon addition of 4.1.  The 

indicator turned from a pink to a purple upon complexation of the host.  But upon 

addition of an analyte such as 2,3-dihydroxybenzoate to the complex, the 

indicator was never displaced.   

As discussed above, it was known from earlier titrations that 4.1 was 

binding the guests, but the change in absorbance was not consistent and 

reproducible.  Attempts were made in obtaining a crystal structure with the guest 

bound to the host using similar strategies shown earlier, but all of these attempts 

failed.  Therefore, again the formation of a Job plot was attempted to investigate 

the binding of 2,3-dihydroxybenzoate to 4.1.  This is shown in Figure 4.5, but this 

data was actually manipulated so it is hard to tell if this is a true 1:1 complex.  In a 

Job plot only the absorbance of the host/guest is to be plotted on the y-axis, but in 

this case the host itself has a strong absorbance.  In order to only plot the 
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absorbance of the complex, we took the association constant that was determined 

earlier and calculated the amount of free host at each point, and subtracted its 

absorbance.  Due to all of these assumptions, the indication of 1:1 binding cannot 

be trusted.   
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FIGURE 4.5.  JOB PLOT OF THE ASSOCIATION OF 4.1 AND 2,3-BA.   

 

4.6 CONCLUSION 

 

The development of a receptor for the detection of catechol containing 

compounds was attempted.  But due to the inherent low changes in absorbance 

and the irreproducibility of the data, binding constants were not obtainable.  Many 

of the experiments resulted in conflicting conclusions as to the stoichiometry and 

the form of the iron/ligand complex.  Titrating the iron into a solution of the 

ligand suggested a 1:1 complex, but this complex was not evident in the mass 

spectrum obtained.  There were, however, peaks corresponding to higher 
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molecular weight complexes present.  Also, when the iron/ligand complex was 

formed, the species that was formed was highly insoluble even in 

dimethylformamide.  Without a crystal structure, it is difficult to know what is 

actually happening.  Perhaps due to the strong association constants related to 

siderophore formation, oligomer type complexes are forming.  In conclusion, after 

many investigations into the binding of host 4.1 to catechol related analytes, there 

is still an uncertainty present as to what is happening.   

 

4.7 EXPERIMENTAL  

 

General.  The chemicals were obtained from Aldrich, and no further purification 

was done unless otherwise noted.  Dichloromethane was distilled from calcium 

hydride when noted, and triethylamine was run down a plug of alumina.  Products 

were placed under high vacuum for at least 12 hours before spectra were obtained.  
1H and 13C NMR spectra were obtained on a Varian Unity Plus 300 or 400 MHz 

spectrometer.  A Finnigan VG analytical ZAB2-E spectrometer was used to 

obtain high resolution mass spectra.  UV/Visible spectra were collected on a 

Beckman DU640 spectrophotometer. 
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1-[[(1,1-dimethylethoxy)carbonyl]aminomethyl]-3,5-N,N’-Bis(2,3-

hydroxybenzoyl)aminomethyl-2,4,6-triethylbenzene (4.4) 

NH

HN

H
N

O

O

OH
OH

O

OH
OH

O

 

From 2.26: 

A solution of dry dichloromethane, 2.26 (0.1035 g, 0.296 mmol), and 4.3 (0.0905 

g, 0.587 mmol) was cooled to 0 °C.  To this was added dicyclohexylcarbodiimide 

(DCC) (0.1387 g, 0.672 mmol) and 1-hydroxybenzotriazole hydrate (HOBt) 

(0.1364 g, 1.009 mmol).  The mixture was stirred for one hour at 0 °C, then it was 

allowed to warm to room temperature to stir an additional 12 hours.  The solvent 

was removed and an attempt was made to purify the product through silica gel 

column chromatography (3-10% methanol in dichloromethane with a few drops 

acetic acid).  Some of the first fractions contained the product plus 

dicylcohexylurea.  The product was then recrystallized from dichloromethane. 

(0.091 g, 50%) 

 

From 4.5: 

To a solution of 4.5 (0.034 g, 0.057 mmol) in methanol was added triethylamine 

(0.008 mL, 0.058 mmol) and (BOC)2O (0.012 g, 0.055 mmol).  The mixture was 



 221

stirred at room temperature for two hours, the solvent was subsequently removed 

and purification was obtained through recrystallization from dichloromethane. 

(0.016 g, 46%).  1H NMR (300MHz, CD3OD): δ 7.26 (d, 2H, Ar), 6.90 (d, 2H, 

Ar), 6.68 (t, 2H, Ar), 4.67 (s, 4H, CH2), 4.34 (s, 2H, CH2), 2.83 (q, 4H, CH3), 1.44 

(s, 9H, CH3), 1.20 (t, 9H, CH3); 13C NMR (75MHz, CD3OD): 169.70, 157.06, 

149.50, 147.59, 145.78, 133.66, 129.37, 119.78, 119.31, 117.43, 80.31, 38.98, 

28.81, 24.93, 24.01, 16.44; HRMS-CI+ m/z: calcd for C34H43N3O8: 621.305; obsd: 

621.305 

 

1-aminomethyl-3,5-N,N’-Bis(2,3-hydroxybenzoyl)aminomethyl-2,4,6-

triethylbenzene hydroanion (4.5) 

NH

NH3

H
N

OH
OH

O

OH
OH

O anion  

From 4.4: 

Trifluoroacetic acid (2 mL) was added to a solution of 4.4 (0.09 g, 0.145 mmol) in 

dichloromethane (5 mL).  The reaction was allowed to stir for two hours and the 

solvent was removed.  The resulting solid was still contaminated with DCU from 

the previous coupling reaction, so it was recrystallized from methanol to yield the 

product.  (0.052 g, 57 %) 
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From 4.8: 

To a solution of 4.8 (0.09 g, 0.156 mmol) in dry dichloromethane (0 °C) under 

argon was added boron tribromide in dichloromethane (4.0 mL, 4.0 mmol, 6.4 eq. 

per methoxy).  The mixture was allowed to warm to room temperature and the 

reaction was allowed to proceed for 15 hours.  Methanol was added to quench the 

reaction.  The solvent was removed and methanol was added three more times in 

an attempt to remove B(OCH3)3.  The resulting solid was washed by adding water 

and dichloromethane.  The solid did not dissolve, but remained mostly in the 

water layer, such that the organic layer could be removed.  The water layer was 

brought to a boil and cooled to room temperature, and the resulting precipitate 

was collected.  (0.073 g, 78%).  1H NMR (300MHz, CD3OD): δ 7.29 (d, 2H, Ar), 

6.90 (d, 2H, Ar), 6.70 (t, 2H, Ar), 4.72 (s, 4H, CH2), 4.25 (s, 2H, CH2), 2.97 (q, 

2H, CH3), 2.87 (q, 4H, CH3), 1.22 (m, 9H, CH3); 13C NMR (75MHz, CD3OD): 

170.34, 149.61, 147.62, 145.84, 133.72, 129.42, 119.85, 119.38, 117.49, 39.02, 

37.96, 24.07, 16.50; HRMS-CI+ m/z: calcd for C29H36N3O6: 522.260; obsd: 

522.260 
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1-[[(1,1-dimethylethoxy)carbonyl]aminomethyl]-3,5-N,N’-Bis(2,3-

dimethoxybenzoyl)aminomethyl-2,4,6-triethylbenzene (4.7) 

NH

HN

H
N

O

O

O
O

O

O
O

O

 

Dry dichloromethane (1 mL) was used to dissolve 2.26 (0.1544 g, 0.442 mmol) 

and 4.6 (0.17 g, 0.933 mmol).  Note: DCC was purified with dichloromethane.  

DCC is soluble in CH2Cl2, but the urea is not.  A solution of DCC (0.1905 g, 

0.923 mmol) in dry dichloromethane (1 mL) was added dropwise and the 

resulting solution quickly turned cloudy and stirring was continued for 12 hours.  

A few drops of acetic acid were added at the end and after 20 minutes the 

precipitate was filtered off (DCU).  The filtrate’s solvent was removed and a 

second cropping of DCU was removed through precipitation with 

dichloromethane.  After the solvent was again removed from the filtrate, the 

resulting solid was purified by column chromatography (silica gel, elutant: 

gradient 1-10% ammonia saturated methanol in dichloromethane).  ).  (0.223 g, 

75%)  1H NMR (300MHz, CDCl3): δ 7.77 (broad s, 2H, NH), 7.69 (d, 2H, Ar), 

7.15 (t, 2H, Ar), 7.01 (d, 2H, Ar), 4.67 (s, 4H, CH2), 4.36 (s, 2H, CH2), 3.84 (s, 

6H, CH3), 3.71 (s, 6H, CH3), 2.78 (q, 6H, CH3), 1.43 (s, 9H, CH32), 1.22 (t, 9H, 

CH3); 13C NMR (75MHz, CDCl3): 165.05, 157.48, 152.80, 147.54, 144.04, 
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132.77, 132.55, 126.92, 124.81, 122.92, 115.56, 79.77, 61.51, 56.28, 38.59, 28.65, 

23.18, 16.75; HRMS-CI+ m/z: calcd for C38H52N3O8: 678.375; obsd: 678.375 

 

1-aminomethyl-3,5-N,N’-Bis(2,3-dimethoxybenzoyl)aminomethyl-2,4,6-

triethylbenzene (4.8) 

NH

NH2

H
N

O
O

O

O
O

O  

To a solution of 4.7 (0.087 g, 0.13 mmol) in 2 mL dichloromethane was added 2 

mL trifluoroacetic acid, and the mixture was stirred at room temperature of two 

hours.  The resulting salt was free based with a solution of sodium hydroxide (1 

M) and the dichloromethane layer was dried with sodium sulfate.  Upon solvent 

removal, the resulting solid was purified from any excess DCU present by 

running it through a silica gel column (1-2% ammonia saturated methanol in 

dichloromethane).  (0.69 g, 93%)  1H NMR (400MHz, CDCl3): δ 7.77 (broad s, 

2H, NH), 7.67 (d, 2H, Ar), 7.11 (t, 2H, Ar), 6.99 (d, 2H, Ar), 4.67 (s, 4H, CH2), 

3.89 (s, 2H, CH2), 3.83 (s, 6H, CH3), 3.69 (s, 6H, CH3), 2.81 (m, 6H, CH3), 1.59 

(broad s, 2H, NH2), 1.24 (m, 9H, CH3); 13C NMR (75MHz, CDCl3): 165.05, 

152.82, 147.59, 142.99, 137.86, 132.37, 127.03, 124.75, 122.92, 115.55, 61.48, 

56.28, 39.88, 38.64, 23.03, 16.91; HRMS-CI+ m/z: calcd for C33H44N3O6: 

578.323; obsd: 578.323 
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1-(4,5-dihydro-N-(1,1-dimethylethoxy)carbonyl-imidazol-2-yl)aminomethyl-

3,5-N,N’-Bis(2,3-dimethoxybenzoyl)aminomethyl-2,4,6-triethylbenzene (4.9) 

NH

HN

H
N

O
O

O

O
O

O

N

N

O O

 

To a solution of 4.8 (0.067 g, 0.12 mmol) in ethanol (0.9 mL) was added 0.1 mL 

acetic acid and 2.12 (0.049 g, 0.228 mmol) and the mixture was heated to 60 °C 

for 10 hours.  The solvent was removed and purification was accomplished by 

silica gel chromatography. (1-2% ammonia saturated methanol in 

dichloromethane).  (0.071 g, 82%)  1H NMR (300MHz, CDCl3): δ 7.83 (broad s, 

2H, NH), 7.66 (d, 2H, Ar), 7.11 (t, 2H, Ar), 6.99 (d, 2H, Ar), 4.66 (s, 4H, CH2), 

4.43 (s, 2H, CH2), 3.80 (s, 6H, CH3), 3.72 (m, 4H, CH2), 3.66 (s, 6H, CH3), 2.77 

(q, 6H, CH3), 1.41 (s, 9H, CH3), 1.21 (t, 9H, CH3); 13C NMR (75MHz, CDCl3): 

165.07, 153.74, 152.83, 147.71, 144.20, 132.78, 132.49, 126.84, 124.65, 122.89, 

115.66, 82.24, 61.41, 56.27, 48.91, 46.95, 41.11, 38.59, 28.38, 23.21, 16.77; 

HRMS-CI+ m/z: calcd for C41H56N5O8: 746.413; obsd: 746.413 
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1-(4,5-dihydro-imidazol-2-yl)aminomethyl-3,5-N,N’-Bis(2,3-

dihydroxybenzoyl)aminomethyl-2,4,6-triethylbenzene hydrobromide (4.10) 

NH

HN

H
N

OH
OH

O

OH
OH

O

N

H
N Br

 

To a solution of 4.9 (0.071 g, 0.095 mmol) in dry dichloromethane (0 °C) was 

added boron tribromide in dichloromethane (2.5 mL, 2.5 mmol, 4.4 eq. per 

methoxy).  The mixture was allowed to warm to room temperature and the 

reaction was allowed to proceed for 15 hours.  Methanol was added to quench the 

reaction.  The solvent was removed and methanol was added three more times in 

an attempt to remove B(OCH3)3.  The resulting solid was washed by adding water 

and dichloromethane.  The solid did not dissolve, but remained mostly in the 

water layer, such that the organic layer could be removed.  The water layer was 

brought to a boil and cooled to room temperature, and the resulting precipitate 

was collected.  (0.056 g, 93%).  1H NMR (300MHz, CD3OD): δ 8.14 (broad s, 

2H, NH), 7.31 (d, 2H, Ar), 6.91 (d, 2H, Ar), 6.69 (t, 2H, Ar), 4.70 (s, 4H, CH2), 

4.46 (s, 2H, CH2), 3.76 (s, 4H, CH2), 2.93 (q, 2H, CH3), 2.82 (q, 4H, CH3), 1.22 

(t, 9H, CH3); 13C NMR (75MHz, CD3OD): 169.09, 159.69, 155.06, 147.97, 

145.98, 144.53, 132.25, 129.67, 118.73, 118.42, 116.33, 43.03, 41.00, 37.93, 

22.84, 15.45; HRMS-CI+ m/z: calcd for C32H40N5O6: 590.298; obsd: 590.299 
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