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Recently, in an effort to solve more realistic problems in quantum dynamics, 

much attention has been directed into numerically integrating the quantum hydrodynamic 

equations of motions (QHEM), as opposed to directly solving the time-dependent 

Schrödinger equation (TDSE).  Such efforts have been provoked by the many numerical 

drawbacks encountered when solving the TDSE on a fixed-grid.  In this dissertation, one 

trajectory method for integrating the QHEM is reviewed, and two novel trajectories 

methods are described.  The first of these, the quantum trajectory method (QTM), was 

introduced in 1999 and has been used to solve many problems in quantum dynamics 

since then.  However, severe numerical problems are encountered when this method is 

applied to problems that form wave function nodes.  To get around this problem, new 

methods for numerically integrating the QHEM are needed.  In the first novel method 

described, the arbitrary Lagrangian-Eulerian (ALE) method, particle trajectories are 

governed by a predetermined equation of motion that is user-supplied.  The ALE method 

remedies inflation and compression problems encountered in the pure Lagrangian QTM.  

 vi



In the second new method discussed, the derivative propagating method (DPM), single 

quantum trajectories can be calculated one at a time, as opposed to the ensemble 

propagation of the QTM and ALE method.  Using these two methods, new solutions to 

the QHEM are obtained where the QTM fails.  In addition to solving the QHEM, the 

DPM is also used to solve the classical Klein-Kramers equation in this dissertation.  This 

equation governs the Markovian phase space evolution of a system coupled to an 

environment such as a heat bath.  This marks the first time single trajectories have been 

used to solve both the QHEM and the Klein-Kramers equations. 
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Chapter 1:  Introduction 

A central goal of chemistry is to understand molecular change.  How do 

molecules interact with each other and evolve into new chemical species?  For those who 

study molecular dynamics, the answer to this question is the ‘holy grail’.  By 

understanding the detailed mechanical processes that govern the dynamics of a chemical 

reaction, ‘controls’ can be used to suppress, enhance, or completely alter its productivity.  

In turn, this understanding can result in more efficient, safe, and economical methods of 

production.  In addition to controlling the desired evolution, the study of molecular 

dynamics offers a refined means for learning about the behavior of the systems 

themselves. 

In most molecular reactions, quantum mechanical effects such as tunneling, 

interference, and non-adiabatic excitations cannot be ignored.  In fact, the study of 

molecular dynamics on its most fundamental level leads to the study of quantum 

dynamics.  In quantum mechanics, the time-dependent Schrödinger equation (TDSE) is 

used to study the evolution of a molecular species.  Unfortunately, few analytic solutions 

to this equation of motion are available, especially for complicated potential energy 

surfaces and numerous coupled degrees of freedom.  Because of this, the majority of the 

TDSE’s solutions are obtained through numerical methods.  Traditional numerical 

techniques involve solving the TDSE using spatial grids (see Appendix A), basis sets, or 

combinations thereof.  This is followed by the use of efficient propagation methods, such 

as expansions of the evolution operator in Chebyshev or other special functions.  The 

multi-configurational time-dependent Hartree method is an example where impressive 
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results have been reported [1].  The efficiency and accuracy of some of these methods are 

compared by Truong, Lesyng, and Hoffman [2].  In addition to solving the exact quantum 

dynamics of a system, semi-classical methods [3] continue to receive considerable 

attention.  Despite many recent advances in theoretical and numerical approaches, the 

current state-of-the-art full-dimensional quantum mechanical calculations have only been 

performed for up to four-atom systems.  This is in contrast to classical methods of 

molecular dynamics, which are applicable to large-scale molecular reactions.  The 

difference between the two is the equation of motion solved.  In classical mechanics, 

Newton’s equations of motion are solved, and single trajectories are evolved 

independently without requiring information from surrounding particles.  These particles 

evolve according to a preassigned potential energy function.  On the other hand, when 

solving the TDSE, single trajectories cannot be calculated so easily, since this equation 

has a nonlocal kinetic energy term that requires simultaneous information from 

surrounding particles.  When propagating Newton’s equations, the computational storage 

and CPU time scale linearly with the system’s dimensionality.  When solving the TDSE, 

the storage and CPU time scale exponentially with the system’s dimensionality.  Because 

of this scaling and the importance of quantum effects, there is motivation to discover 

alternative numerical methods for solving problems in quantum dynamics.   

Over the past several years, computational approaches based upon the 

hydrodynamic formulation of quantum mechanics have been actively pursued.  In this 

new formalism, two coupled nonlinear partial differential equations (PDE) governing the 

evolution of the wave function amplitude and phase are used.  This is in contrast to 

evolving the complex wave function with the TDSE.  These equations of motion are 
 2



called the quantum hydrodynamic equations of motion (QHEM), and were first 

introduced by Madelung [4], de Broglie [5], Takabayasi [119], and Bohm [6].  The 

QHEM are derived directly from the TDSE, and their solutions are equivalent to it.  

Because of its numerous advantages over the TDSE (these will be discussed in Chapter 

3), many recent efforts have been focused on developing robust algorithms for numerical 

integration of the QHEM.  Three examples of such methods are the quantum trajectory 

method (QTM), the arbitrary Lagrangian-Eulerian (ALE) method, and the derivative 

propagation method (DPM).   

The first of these methods, the quantum trajectory method, was introduced by 

Wyatt and coworkers in 1999 [7].  (Rabitz and coworkers developed a related approach, 

quantum fluid dynamics (QFD), which was also reported in the same year [20]).  In the 

QTM, the wave function probability density is discretized and propagated in time as a 

compressible fluid according to the QHEM.  An ensemble of particles, each representing 

a possible location and momentum of the system, must be simultaneously propagated in 

order to evaluate the spatial derivatives in the nonlocal terms of the hydrodynamic 

equations of motion.  The particles in this ensemble move in time according to the flow 

velocity of the probability fluid and are called fluid elements.  The trajectories of many of 

the fluid elements follow regions of significant wave function density, and computation is 

consequently concentrated in regions of interesting dynamics.  Over the past few years, 

the QTM has been used to solve many quantum problems [7-24].  For the first half of 

Chapter three in this dissertation, the theory behind the QTM will be discussed and four 

of its applications will be reviewed.  Using these applications, the advantages and 

disadvantages of this method will be described. 
 3



In order to remedy some of the inadequacies of the QTM, the arbitrary 

Lagrangian-Eulerian method was introduced as another method for integrating the 

QHEM in 2002 [25-28].  This numerical scheme is quite similar to the QTM, only 

instead of propagated the QHEM in the Lagrangian frame, the particle velocities in the 

ensemble are governed according to a user-defined equation of motion.  This velocity 

guidance equation is completely arbitrary and can, for example, be used to guide the 

particles according to the evolving hydrodynamic fields.  Although this method has only 

been applied to a few problems, the results obtained with ALE method are very 

promising.  The second half of Chapter three is devoted to the theory and applications of 

this method.  

The third and most recent method for numerically integrating the QHEM is the 

derivative propagating method.  This method was recently developed by Trahan, Hughes, 

and Wyatt in 2003 [29] and then later used by Bittner in combination with the initial 

value representation [30].  In the DPM, equations of motion for the spatial derivatives 

that appear in the QHEM are derived, and these derivatives are propagated along 

quantum trajectories concurrently with the hydrodynamic fields themselves.  The various 

orders of derivatives are coupled together in an infinite hierarchy, but low order 

truncations of this set leads to useful and relatively accurate approximations.  An 

enormous benefit of the DPM is that single quantum trajectories may be propagated 

instead of ensembles, and fitting is no longer required to compute the spatial derivatives 

needed to integrate the equations of motion.  This, in turn, can lead to a reduction in CPU 

time.  Because this method was developed very recently, it has only been applied to the 

 4



QHEM for a few problems.  In the first half of Chapter four, the theory and methodology 

of the DPM is discussed, and it is used to solve the QHEM for two chemical problems. 

One attribute of the DPM is that it is not limited in application to the QHEM.  In 

fact, it will be shown that the DPM can be applied to any evolutionary partial differential 

equation (PDE), as long as its solutions are not highly oscillating functions in space or 

time.  In the second half of Chapter four, the DPM is used to obtain solutions to a 

completely different initial value PDE.  In these sections, the DPM is used to obtain 

trajectory solutions for the classical Klein-Kramers (KK) equation.  This equation 

governs the deterministic Markovian evolution of a phase space distribution for a 

subsystem in contact with an environment, the heat bath, which is maintained at some 

equilibrium temperature.  In these sections, a brief introduction of phase space in given, 

and the DPM is used to obtained solutions to the KK equation for the relaxation of an 

oscillator in contact with a thermal bath and for the decay of a meta-stable state.   

In each of these applications, quantum mechanical Gaussian wave packets are 

used as the initial wave function amplitude (or probability distribution in the KK 

problem).  These packets are frequently used to model a free particle with a finite 

uncertainty in both position and momentum.  (In a given experiment there is probably 

some idea of where the particle is and how fast it is moving.)  The numerical propagation 

of these wave packets can yield considerable insight into many chemical problems, such 

as reactive scattering, photodissociation, electronic nonadiabatic dynamics, and the 

overall field of femtochemistry [31].  Mathematically, the free particle wave packet is 

created by superimposing plane waves of different frequencies (or momenta) using a 

Fourier transform.  These plane waves destructively and constructively interfere so that 
 5



the wave function becomes localized in one region of space.  In the laboratory, 

nonstationary wave packets can now be created and observed using femtosecond laser 

pulses.  Recently, controls have been used to modify the initiation and observation of 

these quantum wave packets in molecular systems.  In these experiments, a laser pulse 

can be used to control a quantum system’s degrees of freedom.  When a laser pulse is 

used to control a molecule, for example, the electromagnetic field may drive electronic 

excitations though a dipole interaction.  These excitations may be transferred to the 

molecules vibrational or rotational degrees of freedom.  In this manner, techniques such 

as ‘pump-probe’ spectroscopy can be used to direct the products into a desired chemical 

species.  Although these methods are only in their infancy, the number of successful 

experiments using femtosecond pulses to create and control quantum mechanical wave 

packets is on the rise.  Ideally, computer simulations of wave packet dynamics should be 

used to guide experimental procedures, since this may be much less expensive. 

The purposes of this dissertation are to review the QTM and to describe and apply 

the newly developed ALE method and the DPM.  All three of these methods will be used 

to simulate the evolution of nuclear wave packets.  The overall goal is to develop a 

numerical algorithm that will robustly solve the nuclear dynamics of any multi-

dimensional quantum problem.  This is indeed a difficult objective to accomplish, due to 

the aforementioned scaling problems encountered in the TDSE (and to a much lesser 

extent, the QHEM).  Nevertheless, with the computational advancements that are being 

made today and a successful numerical algorithm that can alleviate the scaling dilemma, 

it is a goal that may be attained. 
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Before further discussing these three methods in detail, an appropriate way to 

simplify the full molecular Schrödinger equation must be given.  Chapter two of this 

dissertation reviews the adiabatic and Born-Oppenheimer approximations.  These 

approximations are used to separate the full quantum Hamiltonian into its nuclear and 

electronic parts.  This is an important approximation, unless one intends to solve for the 

electronic and nuclear degrees of freedom simultaneously!  In addition to this, chapter 

two also reviews some of the most widely used potential energy surfaces.  These surfaces 

will be used as tests problems for the three methods discussed. 
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Chapter 2:  The Born-Oppenheimer Approximation and Potential 
Energy Surfaces 

2.1.  THE BORN-OPPENHEIMER APPROXIMATION 
The full non-relativistic Hamiltonian for a molecule can be written as a sum of 

five terms, 

          ∑ ∑∑∑∑
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where i, j refer to the molecules electrons and A, B refer to the nuclei.  This can be 

written in more compact operator notation as  

                    )(ˆ)(ˆ),(ˆ)(ˆ)(ˆˆ
,,, rVRVRrVrTRTH eeNNNeeN
rrrrrr

++++= ,                      (2.2) 

where R
r

 is the set of nuclear coordinates and rr is the set of electronic coordinates.  A 

general method for solving multi-dimensional differential equations such as the TDSE is 

to separate the solution into product functions, isolating uncoupled degrees of freedom.  

This procedure greatly simplifies the process of obtaining both analytical and numerical 

solutions to complicated equations of motion.  Unfortunately, the V ),(ˆ
, RrNe

rr  terms 

prevent separation in the solution of the above Hamiltonian.  If the coupling terms are 

absent, however, the Schrödinger equation can be separated, and the molecular wave 

function can be written as a product of its nuclear and electronic components, 

)()(,( RrRr )
rrrr ψχΨ = .  Since these terms are generally too large to be neglected, another 

approximation must be made. 
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The most widely accepted method of separating the Schrödinger equation is the 

Born-Oppenheimer approximation.  This approximation uses the fact that the nuclei are 



much more massive than the electrons and are relatively motionless with respect to the 

electron’s velocities.  Since, within this approximation, the reaction of the electrons to 

any nuclear movement is nearly instantaneous, the coupling term is now parametrically 

dependent on the nuclear coordinates, V );(ˆ
, RrNe

rr .  This vital feature allows a solution of 

the Schrödinger equation in two steps.  The first step is to calculate the electronic energy 

for many values of the parameter R
r

 using the electronic part of Eq. (2.2),  

                                       );();(ˆ RrERrH nnnel

rrrr χχ = ,                                          (2.3) 

where 

                           )(ˆ)(ˆ);(ˆ)(ˆˆ
,,, rVRVRrVrTH eeNNNeeel
rrrrr

+++= .                          (2.4) 

(note: the nuclear-nuclear repulsion term is included here though it depends only on the 

parametric R
r

 value.  It is sometimes neglected when solving the electronic Hamiltonian, 

since its effect is to only shift eigenvalues by some constant).  Step two involves solving 

the nuclear part of the total Hamiltonian, )()(ˆˆ RVRTH Nnuc

rr
+= , utilizing the electronic 

potential energy surface, V )(R
r

, constructed from the energies  obtained from step 

one. 

nE

Simply put, both the Born-Oppenheimer approximation eliminates any coupling 

between the electronic eigenstates determined from Eq. (2.3).  This allows for solutions 

of the nuclear Hamiltonian on individual potential energy surfaces.  For ground states and 

low-energy excited states, where the energy spacing is relatively large, this is a decent 

approximation.  However, for high-energy excited states, where the spacings are smaller, 
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coupling between electronic energy surfaces are likely to occur, and one must make the 

appropriate corrections. 

For the rest of this dissertation, this approximation will be assumed and the 

subscripts on the nuclear Hamiltonian dropped (i.e. ).   Since the focus here is 

on nuclear dynamics, the hereafter-utilized electronic potentials are assumed to be 

calculated prior via Eq. (2.3).  As mentioned previously, some electronic potentials for 

certain models are used as “test potentials” for new numerical methods.  These model 

potentials are typically simple in functional form and are usually only an approximate to 

the true potential energy surface.  In the following section, some commonly used model 

potentials are discussed.  

HH nuc
ˆˆ =

2.2.  POTENTIAL ENERGY SURFACES 
One method of approximating a potential energy surface is by fitting an analytical 

function (such a low order polynomial) to the discrete electronic energy data obtain from 

solving the R
r

-parametric electronic Hamiltonian.  For example, the potential for a 

vibrating diatomic oscillator is given by a Morse potential seen in Fig. 2.1.  As long as 

the total wave function energy is much less than the dissociation energy of the molecule, 

this electronic potential can be fit to a quadratic polynomial, V 2  2/1)( RkR
rr

= , where k  

is the harmonic oscillator force constant.   

Most of the time, multi-dimensional potential energy surfaces are required for 

realistic problems.  In order to make numerical integration of these problems feasible,
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Figure 2.1.  This plot displays the Morse potential for a generic diatomic molecule (in 
pink).  The blue curve is the low-energy quadratic polynomial fit to the 
Morse potential.   

 11



certain degrees of freedom are frozen to reduce the dimensionality of the problem.  An 

important example of this is the dynamics of a three-atom (A, B, and C) reaction.  The 

most common coordinate system in this problem are , , and BCR ABR θ , representing the 

two bond lengths and the bond angle between the BC and AB bonds (see Fig. 2.2, plot 

(a)).  The potential energy surface for the three-atom system is therefore function of three 

coordinates.  However, if the bond angle is fixed at , the reaction is collinear, 

and the potential energy can be plotted as a function of two bond lengths as seen in Fig. 

2.2, plot (b).  An even further simplification is to follow the dynamics only along the 

minimum energy path (represented by the dashed line in this figure).  This path is what is 

known as the reaction coordinate.  The variation of the potential along this path is the 

well-known one-dimensional Eckart barrier.  An example Eckart potential is displayed in 

Fig. 2.2, plot (c).   

o180=θ

Many other model potential energy surfaces will be referenced throughout the 

remainder of this dissertation due to their simple functional form and in some cases their 

analytic solutions.  Although only low-dimensional potential energy surfaces are used in 

this dissertation, all three of the methods discussed can be applied to problems with many 

degrees of freedom, though easier than others.  The total dimensionality applicable for 

each method depends on a number of factors.  Some of these include the particular 

potential energy surface, the method of integration itself, and of course, the computer 

used to solve the problem. 
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Figure 2.2.  This figure gives details on a tri-atomic chemical reaction.  The most 
commonly used coordinate set for this problem is given in plot (a).  If the 
reaction angle, θ , is fixed at 180 , then the potential energy surface in these 
coordinates is given in plot (b).  Plot (c) displays the Eckart barrier, obtained 
by following the minimum energy path on the potential surface. 

o
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Chapter 3:  The Quantum Hydrodynamic Equations of Motion 

3.1.  INTRODUCTION TO BOHMIAN MECHANICS 
Bohr once stated [32], “There is no quantum world, there in only an abstract 

quantum physical description.  It is wrong to think the task of physics is to find out how 

nature is.  Physics only concerns what we can say about nature.”  As one of the principal 

founders of the Copenhagen interpretation of quantum mechanics, Bohr, along with 

Heisenberg and Von Neumann, assumed “completeness” of the wave function and 

emphasized its intrinsic indeterministic nature.  By completeness, it was understood that 

the wave function is associated with an individual physical system and provides the most 

detailed and complete description of the system that is possible.  This description is 

purely a statistical one, and the TDSE governs the dynamics of the wave function, which 

in turn, contains all the information needed to compute probabilities of measuring 

physical observables, as opposed to individual particles.  Bohr recognized that if the 

wave function is complete, then a statistical representation of the quantum world is all 

there truly is.  He thus believed that it is impossible to question how nature is, since the 

individual processes governing the statistics are not described by the wave function or the 

Schrödinger equation.  After coming to this conclusion, Bohr gave up on any attempt to 

interpret the quantum world in a deterministic or causal way, and he believed that any 

attempt at doing so through the “complete” Copenhagen formulation would eventually 

lead to “ambiguity and confusion.”   

Bohr’s completeness postulate was very controversial, however, since it took for 

granted the theory developed was closed and would not be advanced any further.  In 
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addition, there was much dissatisfaction with the untraditional interpretation of such a 

fundamental physical theory.  The problem being that many are not satisfied with simply 

knowing what nature can tell them in probabilities, indeed, many strive to know exactly 

how nature truly is.  Einstein, for example, once said (as quoted by Holland [33]), “God 

does not play dice.”  In this statement, Einstein expressed his dissatisfaction with Bohr’s 

elimination of determinism from fundamental physics.  If the wave function is considered 

complete, then classical concepts such as “particles”, “trajectories”, or “forces” have no 

place in its interpretation, and they must be abandoned to unphysical and abstract 

statistical descriptions.  For example, in the purely statistical representation, the term 

“electron” means nothing more than a mathematical function. 

Instead of accepting the completeness postulate, many regard the 

“incompleteness” of the wave function, or its inability to describe individual processes, 

and they search for a causal formulation of quantum mechanics not based upon statistics 

or “dice”.  Even today, the search for a quantum theory that can be understood from a 

more classical, deterministic perspective goes on, and some often turn to hidden variable 

and pilot wave theories for classical insight into quantum phenomenon.  One of the most 

persistent of these theories is the de Broglie-Bohm causal hydrodynamic formulation of 

quantum mechanics, often called Bohmian mechanics. 

In Bohmian mechanics the completeness postulate is discarded, and there is an 

attempt to delve into the heart of what governs the statistics of the Schrödinger 

formalism.  This formalism entertains the notion that the quantum mechanical wave 

function is not just a statistical tool for predicting quantum outcomes, but it has a direct 

significance in individual processes.  In fact, the statistical meaning of the wave function 
 15



can even be considered a secondary property in this approach.  The fundamental ideas of 

Bohmian mechanics can be summarized by the following postulates [33]: 

1. An individual physical system comprises a wave propagating in space and 

time together with a point particle, which moves continuously under the 

guidance of the wave. 

2. The wave is mathematically described by ),( trrψ , and it is a solution to 

the Schrödinger equation. 

3. The velocity of the particle depends on the gradient of the wave function 

phase, ),( trS r .  More specifically, the particle motion is obtained as the 

solution to the equation, ),(1 trS
m

vr rrr&r ∇==

or

.  To solve this equation, 

initial conditions are needed ( r ).  This specification constitutes the only 

extra information introduced by the theory that is not contained in ψ  (the 

initial velocity is fixed once we know ).  An ensemble of possible 

motions associated with the same wave is generated by varying 

S

orr . 

4. The probability that a particle in the ensemble lies between the points rr  

and  at time t  is given by rdr dr *ψψ . 

In the first two postulates, the completeness of the Copenhagen interpretation is 

abandoned and the particle is introduced.  The total Bohmian system now constitutes 

both the complex-valued wave function and the particle.  The TDSE determines both the 

space-time dependence of the ψ -field and how the physical properties of the particle 

associated with that field evolve.  In this respect, Bohmian mechanics is called a pilot 
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wave theory, since the wave function acts as a guide for the particle according to the 

dynamics of the Schrödinger equation.  Because the particle moves under the guidance of 

the ψ -field, which is non-local by definition, Bohmian mechanics is also considered a 

non-local theory.  This means that there is no arbitrary division into subject and object, or 

observer and observed.  In classical mechanics, measurements can be made on a system 

without perturbing its state, and the system can be considered completely independent of 

the observer.  In quantum mechanics, however, the observer plays a fundamental role in 

the state of the system, and any action to measure the system’s properties will affect its 

subsequent evolution.  This feature yields what Bohm called “the undivided universe”.  

This non-locality will become more apparent when the quantum hydrodynamic equations 

of motion are derived later in this chapter. 

In postulate three, an additional equation of motion governing the particle’s 

trajectory in space is given.  This equation is called the guidance condition and must be 

solved simultaneously along with the TDSE (or as will soon be shown, the QHEM).  

According to this condition, the particle is guided by the gradient of the wave function 

phase.  Through this equation of motion, the particle is linked to the wave, and the two 

are interdependent on one another.  To integrate this equation along a trajectory, initial 

particle positions must be given.   
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Within postulates 1-3, a new formalism is developed that gives further insight into 

our understanding of the quantum world.  In this formalism, particles follow deterministic 

dynamics guided by the wave function.  This is true, however, only if the particles 

described in this postulate actually do exist and have simultaneously well-defined 

positions and momenta.  Many argue that this contradicts the Heisenberg uncertainty 



principle, which states that a system is not allowed to be in a state where the momentum 

and position are simultaneously known, since  and  do not commute, x̂ p̂ [ ] 0ˆ,ˆ ≠px .  

However, in his book, Holland [33] offers an explanation of this discrepancy.  He states 

that quantum mechanics is constructed so that one cannot observe position and 

momentum simultaneously, but this fact does not have any bearing on whether a particle 

actually exists in a well-defined track in reality.  In this respect, though one cannot make 

an exact measurement on a quantum trajectory, these trajectories could in fact exist in 

reality as “hidden variables”. 

Although it is devoid of anything other than a statistical representation of the 

quantum world, the quantum mechanical wave function has proven to be a valuable and 

accurate resource for outcome predictions.  Since Bohmian mechanics incorporates the 

Schrödinger equation and the wave function as part of its fundamental structure, it must 

not, and does not, violate their corresponding statistical results.  Postulate four insures the 

compatibility of Bohmian mechanics with the statistics of the Schrödinger formalism. 

3.2.  DERIVATION OF THE QHEM  
Inherent to Bohmian mechanics are the quantum hydrodynamic equations of 

motion (QHEM), derived directly from the TDSE.  It is these equations that allow 

Bohm’s formalism to be interpreted in a classical-like manner and form the heart of the 

Bohmian mechanics.  In this section, the QHEM will be derived and further mathematical 

details of the above postulates will be described.  For the rest of chapter three and part of 

chapter four, three novel numerical integration methods will be used to solve these 

equations of motion. 
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To derive the QHEM for a particle of mass, , in an external potential V(m rr ,t) 

(this potential may be an adiabatic electronic energy surface for example), the polar form 

of the complex-valued wave function, h
rrr /),((),( triSeRtr =Ψ ), tr , is substituted into the 

time-dependent nuclear Schrödinger equation, 

                                 
t

tritrtrV
m ∂
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and separated into real and imaginary parts.  The result is the coupled pair of nonlinear 

PDEs 
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where the probability density is defined as the square of the wave function amplitude, 

2),(),( trRtr rr
=ρ .   

The first of the two equations is called the quantum Hamilton-Jacobi equation 

and is identical in form to its classical counterpart except for the addition of the purely 

quantum term 
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David Bohm has named this term the quantum potential [34].  To show that it is 

consistent to call this term a potential, the gradient operator can be applied to Eq. (3.2), 

and after some rearrangement, this equation can be given in Newton’s form (i.e. 

), VF −∇=
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∂
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
 .                         (3.5) 

Here, postulate 3 was used to relate the phase-gradients to the particle’s velocity, and the 

total or substantial time derivative, ∇⋅+∂∂=
r

&rxtdtd // , was substituted so that the 

particle now moves along a trajectory guided by the probability density flow velocity, 

),( trvx r&r = .  (For this case, that which the speed of the particle, x&r , is equal to the density 

flow velocity, the particles are often called “fluid elements” and the associated dynamics 

are Lagrangian “go with the flow” dynamics.  Alternative particle speeds are discussed 

later in the section on arbitrary Lagrangian-Eulerian dynamics.) 

The quantum potential is the source of all quantum effects in Eq. (3.2), since it is 

the only term in this equation with an , and in the limit that Q , the classical 

Hamilton-Jacobi equation is recovered.  It is a mysterious addition to the classical 

equations of motion, since the source of this potential is unknown.  However, a few 

things can be deduced from its form.   One important feature of Q is that it depends only 

on the curvature of the wave function amplitude and not on its magnitude, and therefore 

amplitude scaling does not alter it.  This means that a particle does not respond to the 

intensity of the wave in its vicinity, but instead on its form.  Because of this, the quantum 

potential can have a complicated structure in regions where the wave function amplitude 

becomes insignificant. Also imbedded in this term, due to its 

h 0→

−R field second order 

spatial derivative, is a mathematical representation of the non-locality intrinsic in 

Bohmian mechanics.  Derivatives are non-local by nature, and whenever they are present 

in an equation of motion, the solutions at discrete points are allowed to “interact” or 
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“communicate” with one another through these terms.  Particles can, for example, borrow 

energy from one another to surmount otherwise insurmountable potential energy barriers.  

(Such is the Bohmian mechanics explanation of how quantum tunneling occurs in some 

systems [13]). It should be noted that because of this non-local “borrowing”, some 

system properties, such as energy in the tunneling example, are not conserved along a 

particular Bohmian trajectory, as they would be classically.  Instead, these properties are 

only globally conserved.  Another feature of the quantum potential is that it is not a 

preassigned function of the coordinates and does not remain separated from the process it 

influences, such as the classical potential.  As the system evolves in time, the quantum 

potential is aware of the wave function’s evolution and can have an infinite number of 

different forms for the same physical problem. 

The second of the two equations obtained from separating the Schrödinger 

equation, Eq. (3.3), is called the quantum continuity equation.  This equation acts to 

globally conserve probability density.  This is an important property of Bohmian 

mechanics, since its equivalence to the Schrödinger formalism requires unitary.  Once 

again, because of the non-local spatial derivatives present in this equation, density may 

not be conserved along individual trajectories. 
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Great efforts have been focused on solving Eqs. (3.2) and (3.3)  for two reasons.  

The first, and most important reason, is the numerical benefit of propagating the smooth 

(non-oscillating) functions R  and , as opposed to propagating the highly oscillating S ψ  

in time.  It will be shown that fitting and interpolation methods are often used to obtain 

spatial derivatives needed for substitution into the QHEM at each time step.  These 

methods are much more accurate and require fewer grid points when the solutions are 



smooth in space.  Generally, R  and  are a great deal smoother in time and space than S

ψ .  Because of this, relatively low-resolution spatial grids are needed to accurately 

capture wave packet dynamics when solving the QHEM.  This is a marvelous benefit 

when solutions are required for multi-dimensional, high-energy, and unbound problems.  

ψ

Another numerical benefit of the solving the QHEM relies on its inherent 

Lagrangian framework.  Because particles are not fixed in space and are able to move 

along with the dynamics of the wave packet, the spatial domain needed for propagation is 

much smaller than in typical Eulerian fixed-grid problems.  For these algorithms (see 

Appendix A), a finely resolved grid or lattice must be constructed over the entire range of 

the wave packet propagation1.  At each time step in the Eulerian scheme, many 

calculations are wasted on regions where nothing interesting is happening. Because of 

this, the usual methods for propagating ψ  are only feasible for up to four-dimensional 

problems.  Beyond four dimensions, problems with data storage and calculation times can 

become overwhelming.  For example, if 100 grid points are need to capture the 

oscillating functional form of  in each dimension, a 4-dimensional problem would need 

one-hundred million grid points!  Even for today’s computers, this can become quite a 

burden.   

The second reason why efforts have been focused on solving the QHEM is that 

their solutions give insight into the causal dynamics of an individual system, as discussed 

previously.  In Bohmian mechanics, classical descriptions such as “forces”, “particles”, 

and “trajectories” have actual physical meanings that are derived directly from the 

                                                 
1 Although, some studies have incorporated grid adaptation into −ψ propagators [27]. 
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QHEM.  This is a very important contribution to our understanding of quantum 

mechanics, since the Schrödinger equation gives no detail on individual dynamics.   

Unfortunately, few analytic solutions of the QHEM are available, and a suitable 

numerical algorithm must be used to solve these nonlinear equations.  In 1999, the 

quantum trajectory method (QTM) was introduced by Lopreore and Wyatt as a means for 

doing just this [12].  This method will now be described in detail. 

3.3.  THE QUANTUM TRAJECTORY METHOD (QTM) 

3.3.1.  QTM background 
In the QTM, the continuous probability distribution ),( txρ  is space-discretized 

into  grid points or particles2 at np 0=t .  Each particle has a mass equal to that of the 

system, a unique initial value location )0( =tir
r , and is identified by a descriptor, 

{ etcSvrtD iiiii ,,,,( }) ρ= , which stores the ith  state of the particle at future times.  These 

particles can be conceived as pursuing a definite, continuous track in space and time 

according to the discrete version of the guidance equation given in postulate three of 

Bohmian mechanics,  

                                           ),(1 trS
m

v iii
rr

rr&r ∇== .                                               (3.6) 

An important feature of the QTM is that upon discretization, Eq. (3.6) provides a 

description of an ensemble of coupled trajectories, each with different initial conditions.  

These trajectories are coupled by the non-local quantum potential defined in Eq. (3.4). 
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in contrast to “fluid element”, which is only used to describe particles moving in the Lagrangian frame of 
reference. 



Along each particle’s trajectory the density and phase are obtained by integrating 

the discrete, Lagrangian versions of  Eqs. (3.2) and (3.3),  
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A few remarks must be made concerning Eqs. (3.6)-(3.8).  Although the phase function 

 is multi-valued, ∇  is a single-valued function of position.  This means, from Eq. 

(3.6), that the particle velocities are also single-valued, and consequently, only one 

trajectory can pass through a given point in space at each instant.  Bohmian trajectories, 

therefore, cannot cross or overlap.  In addition, no Lagrangian particle is allowed to pass 

through a wave function node (where 

iS iS
r

0=ψ ), since at these points, the quantum potential 

becomes singular and the quantum forces and particle velocities are undefined.  

Frequently, these conditions are used to qualitatively evaluate the accuracy of a quantum 

trajectory algorithm.  For example, if trajectories cross at some instant, then numerical 

errors have developed and the solution may not be reliable. 

To concurrently propagate Eqs. (3.6)-(3.8), an appropriate time-integrator and a 

suitable method for approximating spatial derivatives from discrete data must be used.  

Some numerical algorithms for accomplishing both of these tasks will be presented now. 
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3.3.2.  QTM methodology 

3.3.2.1.  Space discretization and derivative approximation 
A key element of the QTM is accurately approximating at each time step the 

spatial derivatives needed in the QHEM (i.e.∇ ,S
r

,2 R∇

t

 etc.).  These derivatives must be 

calculated given only the discrete particle locations and their corresponding function 

values.  This is, by far, the most challenging facet of the QTM.  The challenge comes 

from estimating derivatives on the unstructured grid encountered from the Lagrangian 

dynamics.  More specifically, in regions where the amplitude has a large curvature, the 

quantum potential and quantum forces can be extremely large, resulting in complicated 

and “stiff” particle dynamics3.  These regions may form around amplitude nodes or quasi-

nodes, where the wave function amplitude is either zero or approaching so.  The quantum 

potential around these nodes can become nearly singular and is very difficult to handle 

numerically.  Under-sampling, or inflation occurs in these nodal regions, since the 

particles are forced away from the nodes at high velocities.  Ironically, these regions 

sometimes occur where most of the interesting quantum effects (producing interference 

and thus nodes) are taking place.  The results of particle inflation are fitting errors that 

accumulate and propagate in time throughout the grid until numerical breakdown 

terminates the algorithm.  In the opposite scenario, over-sampling or compression may 

occur in regions where the particles are forced together.  The excessive clustering 

decreases the minimum distance between the grid points until a violation in the time-

integrator stability requirement between  and minr ∆  can occur.  Also, as the trajectories 
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could make hard turns or be highly oscillatory.  Stiff solutions create integration problems. 



are forced very close together, global errors from the time integrators and derivative 

approximations can ‘wash out’ grid resolution until trajectory crossing occurs, leading to 

numerical break down.  More difficulties emerge when spatial fitting subroutines require 

the solution of a linear system involving collocation matrices (i.e. polynomial least 

squares and radial basis function interpolation).  As the particle separations decrease, the 

collocation matrix rows/columns become numerically less independent, resulting in a 

poorly conditioned system of equations and unreliable derivative approximations.  

One of the most widely used methods for obtaining function and derivative 

approximations in the QTM has been the moving weighted least squares algorithm using 

a local polynomial basis.  In this method, like all non-local methods for derivative 

approximation, a stencil or small collection of data points closely surrounding the data 

point of interest is used.  Each of the points can be weighted according to a preassigned 

weight function dependent on the radial distance from the point of expansion.  Low order 

polynomials (quadratic, cubic, etc.) are fit to these stencil points so that an overall error 

function is minimized.  After fitting, analytical derivatives are then taken of the 

approximate polynomial function.  For further details on the method of weighted least 

squares, see Appendix C.  

The weighted least squares method has been quite accurate for a limited number 

of models in the QTM (see Lopreore and Wyatt’s publications on electronic transitions 

with quantum trajectories [14-15], Bittner’s analysis of the double well potential [17], 

Wyatt and Na’s analysis of multimode subsystem-bath dynamics [10-18], and Sales-

Mayor et. al. work on the molecular photodissociation [20]).  However, some problems 

can arise while using polynomials that present possible limitations to its application.  
 26



According to Kansa [35], two drawbacks to polynomial schemes include polynomial 

oscillations in higher order approximations, leading to poor derivative estimates, and the 

slow convergence of low order polynomial approximations.  Also, as the dimensionality 

of the model increases, the number of polynomial basis functions increases exponentially, 

significantly slowing down the solution of the linear system in multi-dimensional 

problems.  Lastly, polynomial methods often give poor derivative estimates at the grid 

edges, since there are not outer grid points to ‘lock’ down the approximate. 

Because of the difficulties associated with polynomial methods, other derivative 

approximation schemes have been investigated for use in the QTM.  One such method 

includes radial basis function interpolation first investigated by Hu, Ho, and Rabitz [21] 

and then later studied by Trahan and Wyatt [19].   Radial basis function interpolation will 

be used for various applications throughout this dissertation.  The details of this method 

are given in Appendix D.  Other methods involve fitting the quantum potential to a linear 

combination of Gaussian functions [36-37], trial optimization of the non-classical 

component of the momentum operator [38], and obtaining derivatives using distributed 

approximating functionals [9].   

In the past, to further alleviate the difficulty of obtaining accurate derivatives for 

substitution into the equations of motion, the function (R)C ln=  has been propagated 

instead of the amplitude directly.  This transformation can be beneficial for two reasons.  

First, C can sometimes be represented by low-order polynomials.  For example, the 

typical Gaussian wave packet reduces to a quadratic polynomial if the logarithm is taken.  

Secondly, the range of C may be much smaller than R.  For example, if R ranges from 
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110 7 ≤≤− R , the range for the C is only 016 ≤≤− R .  Using the C amplitude, the 

Lagrangian QHEM become   
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In Eq. (3.10), the quantum potential is the negative of the term containing .  For all 

problems addressed in this dissertation, the amplitude will be propagated in C .  

When discussing the derivative propagating method in Chapter four, this transformation 

will become a necessity. 

h

space−

3.3.2.2.  Time discretization and integration 
After spatial discretization, Eqs. (3.6), (3.9), and (3.10) become a set of ordinary 

differential equations in time and can be numerically integrated using one of the many 

ODE integrators available.  Five of these integrators were studied and compared to test 

their accuracy and time efficiency in the QTM.  To do this, a symmetric 2D free Gaussian 

wave packet, initially of the form 

                          (
 +−= 2

2 4
1(exp

2
1)0,,( xkiyx

σπσ
Ψ ,             (3.11)      )
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was propagated using the QTM.  According to the De Broglie relation,  in Eq. (3.11) is 

related to the velocity of the wave packet by 

k

mkv /
r

h
r
= .  For this free packet the 

following parameters were used; 2000=m , 0045.0== yvxv , and 18.0=σ  (All units in 

this dissertation are atomic unless otherwise mentioned.  Conversion to atomic units are 

given in Appendix E).   



At each time step, the QTM solutions to the QHEM were compared to the 

analytical solutions for the 2D free wave packet.  These analytical solutions are discussed 

in detail in the QTM applications section of this chapter.  It will be shown that for a free 

wave packet, the - amplitude and phase are quadratic at all times, and the spatial 

derivatives needed in both the  and  equations of motion can be exactly fit to a 2D 

quadratic polynomial basis.  Because of this, all errors accumulated in time larger than 

round-off error were isolated as time-integration errors.   

C

C S

The accuracies of the five time integrators tested are compared in Table I.  

Average errors were calculated according to the equation 
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Also, all methods described as being implicit in Table I are only implicit in the amplitude 

update.  The new phase, position, and velocities are obtained explicitly by the integrator 

labeled before the backward slash.  The amplitude can be updated implicitly by 

evaluating  of Eq. (3.10) using the updated phase values.  Typically, when multiple 

schemes are used to integrate coupled partial differential equations, the overall accuracy 

of the algorithm is that of the least accurate integrator.  For this reason, all of the 

integration given in this table can be considered explicit.      

S2∇
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Table I.  A comparison of five time integrators for a 2D free wave packet. 

                Integration Scheme                                      Error* 

                               Euler / trapezoid **                                         1.0078×  410−

                           Leap Frog (multi-step) ***                                 2.6352×  710−

                4th Order Adams-Bashforth (multi-step)                        1.9777×  1010−

4th Order Adams-Bashforth / Adams-Moulton (multi-step) **      1.5274×  1010−

                            4th Order Runge-Kutta                                        1.7718×                          1210−

 
 

* Errors are taken after 2500 time steps.      

** These time integrators use implicit routines for amplitude update.                                                            

*** Multi-step integrators initiated with analytical solution for a free 2D wave packet.    
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The first time-integrator studied, the Euler/trapezoid method, was very time efficient.  

However, it was also the least accurate, having a truncation error of O .  In this 

method, an equation of motion of the form df

)( t∆

.),'',';,(/ etcfftxFdt =  is discretized in 

time and approximated by 

                                        ttxFtfttf ∆+=∆+ ),()()( .                                    (3.13) 

Because initiating steps or intermediate steps are not needed, the Euler/trapezoid code 

can be executed as fast as the spatial discretization and derivative evaluations will allow.  

Unfortunately, very small time steps may be needed if the phase and amplitude become 

less smooth in time.  By decreasing the time step, the time-efficiency of the 

Euler/trapezoid method can be compromised to the point where it could no longer be a 

viable integration technique.  Such was the motivation for studying more accurate 

integration methods. 

Another commonly used method of integration is the “leap frog” technique [39].  

It is one of the many multi-step methods utilizing information from previous time steps to 

advance the solution to new times.  Other examples of multi-step methods include the 

explicit Adams-Bashforth and implicit Adams-Moulton algorithms.  Such methods are 

particularly attractive since a predetermined order of accuracy can be obtained by 

increasing the number of prior time steps used in the extrapolation.  The difficulty in the 

multi-step methods, however, is initiating the integrator.  Depending on the order of 

accuracy needed, a given number of steps must be initiated with the same order of 

accuracy by either a highly accurate one-step method, or by taking many smaller Euler 

steps within the given time step.  In the results of Table I, the analytical time-dependent 
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expressions for the phase and amplitude are used to propagate the wave packet to obtain 

the initial time steps needed for extrapolation.  According to the results obtained, the 

increased accuracy of the “leap frog” two-step routine over the Euler/trapezoid method is 

approximately three orders of magnitude.  The increased accuracy is primarily due to the 

two-step method having a truncation error of  instead of O)( 2tO ∆ )( t∆ .  On moving from 

the two-step “leap frog” method to the four-step Adam’s-Bashforth/Adam’s-Moulton 

method, the accuracy was increased by approximately six orders of magnitude from the 

Euler/trapezoid method, a very dramatic improvement due to the new truncation error of 

.  It should be emphasized that apart from initiating the above multi-step 

algorithms, each requires about the same propagation time as an Euler/trapezoid step. 

)( 4tO ∆

The last numerical integration method studied was the fourth order Runge-Kutta 

(RK4) algorithm.  Although RK4 is the least time efficient of the five methods studied, 

requiring four spatial derivative evaluations at each time step, it is a one-step procedure 

and does not need to be initiated.  More importantly, RK4 is known for its robust ability 

to obtain accurate results for PDEs with smooth to relatively stiff solutions [39].  As can 

be seen from the table, RK4 produced highly accurate solutions for the free 2D wave 

packet.  Although the results obtained using this method were the best of all the 

algorithms tried, it was not often used as a primary time integrator, since evaluating four 

spatial derivatives at each time step can become very time consuming when fitting and 

interpolation methods are required. 

For most of the problems discussed in this dissertation, the Euler or multi-step 

integrators were used.  When needed, Runge-Kutta methods were used to initiate the 
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multi-step integrators.  These integrators were chosen for their relatively fast and accurate 

solutions.  In Chapter four of this dissertation, more accurate time-integrators are needed 

for the derivative propagation method, and the time-adaptive Cash-Karp/Runge-Kutta 

method was used.  In time-adaptive methods, an approximate error is calculated at the 

end of each time-step, and the preceding time step is chosen to reduce this error below a 

user-defined tolerance.  For more information on the Cash-Karp/Runge-Kutta method, 

see Numerical Recipes in FORTRAN 90 [39].        

3.3.3.  QTM applications 
In this section, the QTM results for four problems will be reviewed.  These are the 

free wave packet, the harmonic oscillator, the downhill ramp, and the Eckart barrier.  The 

first three of these examples were chosen because the solutions are smooth enough to 

accurately apply the QTM without significant spatial fitting errors.  Excellent results for 

these problems have been obtained in numerous studies.  The Eckart barrier example, on 

the other hand, gives poor QTM results.  This problem will be used to point out the 

setbacks encountered in the QTM when nodes begin to form in the wave function 

amplitude. 

3.3.3.1. The free wave packet 
In the time-integration section, the evolution of a free 2D wave packet was used 

as a test.  This is because the unconstrained, free translation of a particle in space is one 

of the most well-known and easily solved problems in quantum mechanics.  Of course, 

analytic solutions of the QHEM for the free wave packet are known.  However, before 
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more sophisticated potential energy surfaces are discussed, the free wave packet problem 

presents a good solid ground on which to make future leaps with the QTM. 

The solutions to R  and  are given analytically for an initial D-dimensional 

Gaussian distribution by 
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In the above equations,  and ioioioi xpvm ,,,  ,,  , iσ  are the mass, initial velocity, 

momentum, position, and RMS positions widths along dimension , respectively.  All 

units are in atomic units described in Appendix E.  From Eq. (3.14) it can be seen that if 

the initial amplitude is a Gaussian distribution, then it remains so for all subsequent 

times.  In addition, the amplitude and the phase are both quadratic functions in space 

for all times.  According to the gradient of Eq. (3.15), the free particle velocity field, 

i

−C

),()/1( trSmv rrr
∇= , is linear in space.  Each of these functions can be exactly represented 

by D-dimensional quadratic polynomial interpolation. 
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In this section, the QTM will be applied to an initial 1D stationary Gaussian wave 

packet (i.e. ).  The system mass used was 0=ov 2000=m , and the RMS width of the 

initial Gaussian was 18.0=σ .  Since the free packet solutions are smooth in time, a 

relatively large time step of 1  was used along with an Euler time-integrator.  To 

obtain spatial derivatives, the MWLS algorithm described in Appendix C was used with a 

quadratic basis set and a unitary weight matrix for exact interpolation.  Figure 3.1, plot 

(a) displays the particle trajectories obtained using the QTM for this problem.  The 

analytical solution to these trajectories is given by 
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The first term on the right hand side of Eq. (3.17), , is the classical translation 

of a particle with initial conditions  and .  This term is set to zero in this problem, 

since the initial wave packet is at rest.  The remaining term involving the square root is a 

result of the wave packet “spreading” in space as it evolves in time.  This amplitude 

spreading is displayed in Fig. 3.1, plot (b).  If the wave packet remains free, then it will 

continue to spread until it is completely delocalized.  This is a well-known attribute of 

quantum mechanical wave packets. 

tvo

ox ov

To understand the origin of these mysterious (non-classical) particle accelerations 

leading to wave packet spreading, the free packet quantum potential is given in Fig. 3.2,  
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Figure 3.1.  Trajectory (a) and amplitude (b) plot for a free 1D wave packet.  These 

solutions were obtained using the QTM.  (Unless otherwise stated, all units in each of the 

figures in this dissertation are atomic.) 
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plot (a).  From the quantum potential, the total force acting on a particle can be obtained 

using 

                                 
x
QQV

x
fff QCtotal ∂

∂
−=+

∂
∂

−=+= )( .                          (3.18) 

The analytical solution for the 1D free packet quantum force is given as 

                                              )(
4 4

2

tvx
m

f oQ −=
σ
h .                                         (3.19) 

A plot of this function in time is given in Fig. 3.2, plot (b).  In this figure, the arrows 

indicate the direction of the force.  From Eq. (3.19) it can be seen that the magnitude of 

the quantum force acting on a particle at location x  increases as the RMS width of the 

packet decreases.  This means that as the wave packet spreads in space, the quantum 

force decreases in magnitude, as depicted in Fig. 3.2 (b).  Also, according to this figure 

and Eq. (3.19), the quantum force is greater as the particles are positioned further away 

from the wave packet center.  At the exact center of the wave packet, the quantum force 

is zero, and any motion of a particle at this location is purely classical.  In this problem, 

the center particle is initially at rest, and because there is no classical force, it does not 

move in time. 

It is important to note that all particle accelerations in this problem are a direct 

result of the quantum potential.  Classically, each particle would remain at rest until acted 

upon by an external force.  It is the quantum potential that causes the particle trajectories 

to diverge from one another and the wave packet amplitude to spread in space. 
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Figure 3.2.  A plot of the quantum potential (a) and quantum force (b) for a free 1D wave 
packet.  These solutions were obtained using the QTM. 
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3.3.3.2.  The harmonic oscillator 
For the second QTM example, a two-dimensional Gaussian wave packet was 

propagated inside an anisotropic harmonic oscillator potential of the form 

                                              V ,                                        (3.20) 2
2

2
1),( ykxkyx +=

with force constants  and 009.01 =k 036.02 =k  (in a.u.).  The wave packet was initially 

centered at the potential minimum (  and given initial velocities and 

.  The RMS widths of the initial 2D Gaussian were 

)0,0  3000=xv

25.0= 5000=yv = yx σσ , and the 

mass of the system was set to 2000=m .  The same time-integration and derivative 

approximation methods used to propagate the free wave packet were used in this 

problem.  Once again, analytical solutions to the QHEM for this potential have been 

previously obtained [33]. 

Since, in this case, there is an external potential present, the overall force acting 

on the QTM particles is a combination of both the quantum and classical forces, 

                                          )( QVfff QCtotal +∇−=+=
rrrr

.                                (3.21) 

It is well known that for this problem (as it will be for all problems with a linear or 

constant classical force), an initial Gaussian amplitude will remain so for all times, just as 

for the free packet.  Consequently, the quantum potential remains parabolic, and the 

quantum force is a linear function equal to zero at the wave packet center.  Since the 

classical and quantum forces for a harmonic oscillator are linear, then the total force 

acting on each particle is a linear function in space, just as for the free packet.  Once 

again, the further the particles are away from the center of the packet, the greater the 
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quantum force acting on that particle.  The center particle will again follow a purely 

classical trajectory, since the quantum force is zero along this path.  This center-particle 

trajectory for this problem was calculated using the QTM and is displayed in Fig. 3.3.  

The same trajectory was obtained when Newton’s equations of motion were solved for 

this anisotropic oscillator problem. 

The results of the time propagation can be seen in Fig. 3.4, plots (a) and (b).  In 

these plots, two cross-sections are shown emphasizing the anisotropic symmetry of the 

harmonic well.  Upon comparison, the x-trajectories of the y cross-section have larger 

amplitudes and a shorter period than the y-trajectories of the x cross-section.  This was 

expected since the x-width of the oscillator potential is larger than that of the y-width.  

An important feature of Bohmian mechanics is that trajectories are not allowed to cross.  

This feature can be seen by comparing the results of the QTM with those obtained 

classically from Newton’s equations of motion (see Fig. 3.5).  In the classical solution to 

this problem, all trajectories cross at focus points located at the peaks and troughs of the 

oscillations.  This does not occur with the Bohmian trajectories.  Also, the maximum and 

minimum amplitudes of the classical trajectories are significantly smaller than that of the 

Bohmian trajectories.  This is due to the additional quantum forces acting on those 

particles away from the wave packet center.  

3.3.3.3.  The downhill ramp 
In the third example, the QTM was used to follow the evolution of an initial 1D 

Gaussian wave packet on a downhill ramp potential energy surface of the form 

                                            )1(5.21
)( −−+
= x

o

e
V

xV  ,                                             (3.22) 
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Figure 3.3.  This plot displays the time-evolution of the trajectory initially located at the 
center of the wave packet.  The contour lines represent the anisotropic 
classical potential that guides the particle.   This same trajectory was 
obtained when Newton’s equations of motion where solved for this potential 
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Figure 3.4.  Plot (a) displays the x -dependent oscillator trajectories at the  cross 
section.  Plot (b) shows the -dependent trajectories at the  cross 
section.  Both plots were calculated using the QTM. 

0=y
0=xy
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Figure 3.5.  Plot (a) displays the x -dependent oscillator trajectories at the  cross 
section.  Plot (b) shows the -dependent trajectories at the  cross 
section.  Both plots were calculated using Newton’s equations of motion for 
the harmonic oscillator. 

0=y
0=xy
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with cm  (see Fig. 3.6).  This particular model provides insight into the 

nature of exothermic chemical reactions and photodissociations on excited state potential 

energy surfaces.  For this problem, four wave packets, initially centered at ( , were 

launched with energies of 0, 500, 1500, and 8000 cm .  A total of merely 17 particles 

were used for each wave packet!  (This number is many orders of magnitude smaller than 

what would be needed with a 

1500−=oV 1−

)0,0

1−

−ψ propagator for the same unbound problem.)  The RMS 

width of each initial 1D Gaussian was 25.0=σ , and the system mass used was 

.  To integrate the QHEM for this potential in time, the Adam’s Bashforth 

multi-step procedure, initiated with RK4, was used with a time step of .  To 

obtain the spatial derivatives at each time step, radial basis function interpolation was 

used (see Appendix D).   

2000=m

5.0=dt

The time-dependent transmission probabilities for each of the four wave packets 

are shown in Fig. 3.7, plot (a).  To calculate this, the trapezoid method was used for 

integration.  In this numerical procedure, calculation of the time-dependent transmission 

probabilities is given by 

            .         (3.23) 2.2      )(),()( 1 =>−== +

∞

∑∫ biii
i

ixbtrans xxallforxxdxtxtP ρρ

The solid line in Fig. 3.7, plot (a) refers to results obtained using a fixed grid, 

−ψ propagator (see Appendix A).  The two curves are in excellent agreement.  This plot 

displays results for only 70 fs.  After this time, inaccuracies in the trapezoid method give 

incorrect transmission probabilities, though the actual QTM solutions were fine.  This is  
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Figure 3.6.  Downhill ramp potential energy surface and initial Gaussian wave packet 
position used in the second QTM application.  
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Figure 3.7.  Plot (a) of this figure displays the time-dependent transmission probabilities 
obtained by applying the QTM to the uphill ramp problem.  Four different 
energy wave packets were propagated.  In plot (b), trajectories are plotted 
for the wave packet with an initial energy of 1500 . 1  −cm
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because the accuracy of the trapezoid method is determined by the particle spacings, and 

when these spacings become large, errors can develop.  As time moves on, the particles 

spread apart due to the quantum potential, causing numerical breakdown of the trapezoid 

method.  If accurate transmission probabilities are needed for longer times, either more 

particles can be used to decrease spacings or more accurate density integration methods 

can be used.   

Plot (b) of Fig. 3.7 shows trajectories for the wave packet with an energy of 1500 

cm .  One important feature of this plot is the reflection of the first three particles to the 1−

x−  direction.  Two asymmetric ensembles are formed from this bifurcation, representing 

the reflected and transmitted portion of the wave packet amplitude.  Classically, there is 

no turning point, and all the particles will proceed down the potential ramp with 

increasing velocity.  However, it is well known that in the quantum case, above the 

barrier reflection can occur, resulting in only partial transmission of the total probability.  

These unusual accelerations on the reflected particles are due to the quantum potential 

displayed in Fig. 3.8.  Initially, the quantum potential is similar to that of a free wave 

packet, and the corresponding quantum forces work to spread the packet in space.  

According to Lopreore and Wyatt [13], it is the initial boost in kinetic energy, resulting 

from the quantum force, that pushes some particles in the x−  direction, thus preventing 

them from transmitting at future times.  Whether the particle is transmitted or not 

depends upon its initial velocity and this push from the quantum force.  If the particle is 

given enough positive velocity to overcome the quantum forces acting against it, it will 

transmit.  If not, the particle will reflect. 
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Figure 3.8.  The time-dependence of the quantum potential for the downhill ramp. 
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As the quantum potential evolves in time, it loses magnitude and ripples begin to 

form in the region of reflected amplitude.  In the transmitted regions, on the other hand, 

the quantum potential remains approximately quadratic.  Although it is not shown here, 

the quantum force also has ripples in the reflected region.  These ripples form due to 

amplitude interference between the remaining incoming waves and those already 

reflected.  In such regions of interference, particles can have very complicated dynamics, 

and solutions to the QHEM can be difficult to calculate numerically, even though good 

results were obtained in this example. 

3.3.3.4.  The Eckart barrier 
For the applications discussed so far, the QTM numerically dominates over 

integration of the TDSE on a fixed grid.  This is because very few particles were used to 

obtain extremely accurate solutions to the QHEM.  This is especially so for the unbound, 

uphill ramp potential, since propagating the complex wave function in this case requires 

many grid points spread over a large highly-resolved lattice.  In addition, relatively large 

time steps were used to integrate the QHEM for these problems.  In fact, for the first two 

cases, the hydrodynamic solutions were smooth enough in time to use the first order 

accurate Euler integrator.  The QTM in these applications thus outperforms direct 

numerical integration of the TDSE on various computational fronts.  We will now see, 

however, that the QTM does not always yield such superiority.  In fact, for the last 

application presented, exact converging solutions to the QHEM have not yet been 

obtained using the QTM.  

In this application, an Eckart barrier potential of the form 
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was used.  This potential represents the variation of 2D reaction potential along its 

minimum energy path, as discussed in Chapter two.  In this problem, the barrier height is 

, the center of the barrier is located at 1  8000 −= cmVo 6=bx , and the width of the barrier 

is .  An initial 1D Gaussian wave packet with energy  was 

launched in the direction of the barrier.  This setup is displayed in Fig. 3.9.  The wave 

packet parameters were , 

5.0=a 1  8000 −= cmE

2000=m 006.0=v , and 16.0=σ .   The same time-integration 

and derivative approximation methods used to solve the uphill ramp problem were used 

in this problem.  The QTM FORTRAN 90 code used to solve this problem is given in 

Appendix F. 

For the first 45 fs of the QTM calculation of the Eckart barrier problem, the 

solutions are very accurate.  However, after 47 fs, the algorithm “blows-up” and the 

propagation is thereafter terminated.  Typically, blow-ups occur when numerical 

solutions become unstable or there is division by a number close to zero.  To investigate 

why this happens in the Eckart problem, the probability density is followed in time up to 

the point where strange things start to happen.  In Fig. 3.10, the density is plotted at 47 fs.  

The solid blue line in this plot is the density obtained by numerically solving the TDSE 

equation.  From this plot, it is easy to see the source of the blow-up.   

Encircled in red in Fig. 3.10 is a density pseudo-node.  One important attribute of 

the QHEM is that in these nodal regions, the quantum potential and the quantum force 

have extremely large magnitudes4.  The quantum force in this nodal region can be seen in  

                                                 

 50
4 At a true node, the quantum potential is singular and the quantum force is undefined. 



 

 
 
 

 

 

Figure 3.9.  The Eckart barrier potential and initial Gaussian used in the last QTM 
application. 
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Figure 3.10.  In the bottom part of this figure, QTM trajectories for the Eckart barrier 
problem are plotted in time until numerical breakdown occurs.  At the point 
of breakdown, the density is plotted vs. position (the top part).  The solid 
blue curve in the top plot is the probability density as calculated from the 
TDSE.  The solid yellow line indicates the Eckart barrier maximum.  A 
psuedo-node is circled in red. 
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Figure 3.11.  In this figure, the region of the pseudo-node is further examined.  In the top 
plot, a close-up on the probability density is given.  The pink dots indicated 
values obtained from the QTM, and the solid blue line displays results 
obtained from solving the TDSE.  In the bottom plot, the quantum force is 
plotted at the same breakdown time.  Here, the quantum force was 
calculated by integrating the TDSE. 
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Fig. 3.11.  This plot was calculated from the wave function solutions obtained by 

integrating the TDSE on a very fine grid.  The results are indeed not pretty.  The quantum 

potential is no better. The unfortunate effects of the quantum potential and force in the 

region of the pseudo-node can be further examined by looking at the particle trajectories.    

If the trajectories are followed in time up to the breakdown point, a number of 

things can be deduced.  Until approximately 30 fs, the particles sweep out very smooth 

paths in space.  After this time, wave packet bifurcation begins to occur, and some of the 

inner trajectories are reflected from the center position of the barrier, represented by the 

yellow solid line.  As times moves on, the pseudo-node begins to develop and particles 

are forced away from this region as well.  After 40 fs, the trajectories are squeezed 

between the potential barrier and the node.  These trajectories are trapped in this region 

until the node disappears and they are free to reflect.  In the ‘trapped’ region, 

compression occurs, meaning that the particle density is large.  Around the barrier center, 

inflation occurs, meaning that there are too few particles.  Both of these can give 

problems when trying to obtain spatial derivatives from fitting and interpolation methods.  

In addition, because this node forms rather quickly, stiff equations of motion for the C  

and  fields are encountered.  Consequently, even if a suitable method for derivative 

approximation could be found that gave accurate fits in this region, an implicit time-

integrator would be needed.  This would significantly slow down the computational time, 

since implicit integrators require the decomposition of a matrix.  Also, for multi-

dimensional problems, implicit solvers can be impractical.  

S

In this problem, time-stiff trajectories in the compressed region and the large 

amplitude gradients and curvatures in the pseudo-nodal region cause numerical 
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breakdown of the QTM.   The Eckart barrier is just one of the many potential energy 

surfaces in which these problems can arise.  It is important to note that problems in nodal 

regions are not encountered when integrating the TDSE.  These problems are solely due 

to the quantum potential encountered in the QHEM.   

3.3.4.  QTM discussion 
In the preceding sections of this chapter, a novel numerical method for integrating 

the quantum hydrodynamic equations of motion was discussed.  This method, the QTM, 

was used to solve the QHEM for four model potential energy surfaces.  In the first three 

models, excellent results were obtained with fewer grid points and larger time steps than 

needed when integrating the TDSE on a fixed grid.   Of these three models, the only 

amplitude interferences encountered where in the uphill ramp problem, and these were 

very small in magnitude and only truly visible when looking at the quantum potential.  

No nodes or pseudo-nodes were obtained. 

In the last example given, a wave packet was propagated into an Eckart barrier 

potential.  In this problem, the QTM gave early numerical breakdown, and a convergent 

transmission probability was not obtained.  One source of the numerical blow-up was 

interpolation errors resulting from compression and inflation in the vicinities of the 

pseudo-nodes and the potential barrier center.  In addition, the hydrodynamic solutions in 

these regions were stiff in time, and explicit time-integrators may have exacerbated 

interpolation errors.   

To fully cure the problems associated with the QTM, both derivative 

approximation and time-integration problems near nodal regions must be addressed.  
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However, it is speculated that the immediate source of the numerical errors in the QTM 

arises from fitting or interpolation.  If this is indeed the case, better results might be 

obtained if a new method is developed that would allow for more accurate derivative 

approximations.  In the next section, a new numerical method for integrating the QHEM 

is discussed that eliminates the compression and inflation problems encountered in the 

QTM.  This method is called the arbitrary Lagrangian Eulerian (ALE) method.  Using 

this method, more accurate derivative approximations can be made, and the propagation 

time of the QHEM solutions can be lengthened tremendously. 

3.4.  THE ARBITRARY LAGRANGIAN-EULERIAN (ALE) METHOD 

3.4.1.  ALE background 
To alleviate the inflation and compression complications encountered in the 

Lagrangian QTM, a suitable control on the particle trajectories must be implemented.  

Ideally, one would like to eliminate under-sampling and clustering while guiding the 

particles to locations that will help minimize fitting errors in the approximate spatial 

derivatives (i.e. guiding the grid points to regions where gradients and curvatures are 

large).  It is quite obvious that this cannot be done using the Lagrangian QTM, however, 

for the arbitrary Lagrangian Eulerian (ALE) method, in which the particle velocities are 

not equal to the flow velocity of the probability fluid, absolute control over the particle’s 

trajectory can be obtained.  Using the ALE, particle velocities can be specified in various 

ways, including coupling to a boundary velocity, adaptive adjustment at the end of each 

time step, or through some combination of the above.  ALE methods have proven 

extremely successful in many classical fluid and solid dynamical problems [40-49].   
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3.4.2.  ALE methodology 
Recall the fixed-grid versions of the QHEM given in Eqs. (3.2) and (3.3).  To 

move this grid in time, a suitable transformation from the partial derivative to the total 

time derivative must be made.  By introduction of a grid velocity term, , which is not 

necessarily equal to the flow velocity of the probability fluid, the relationship between the 

two time-derivatives becomes 

x&r

                                                 ∇⋅+
∂
∂

=
r

&rx
tdt

d .                                                (3.25) 

Upon substitution of this total time derivative, the moving grid form of the hydrodynamic 

equations of motion become 
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where  is the quantum Lagrangian defined as QL

                                          )(
2
1 QVvvmL T

Q +−⋅=
rr .                                      (3.28) 

Both Eqs. (3.26) and (3.27) contain the term vxw r&vr
−=  called the slip velocity.  

When the slip is non-zero, the particle either falls behind or advances on the Lagrangian 

fluid elements.  Three conditions that depend upon the slip velocity can arise: 

                                           1. vw rr
−=  , ,0  =x&r                                                 (3.29) 

                                                       2. 0  =wr , ,vx  r& =  

                            3. vw rr
−≠   and 0 ≠wr , vx r&r ≠  and ,0≠x&r  
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Under the first condition the grid point locations are fixed in time, and the original 

equations for the action and amplitude update, Eqs. (3.2) and (3.3), are recovered.  Fixed-

grid Eulerian schemes can provide very accurate solutions.  However, as stated before, 

they often require large grid-lattice and can be computationally inefficient in regions of 

low wave function activity.  In unbound problems, very large grids are needed for long 

time propagations, and if a high resolution is required for the wave function dynamics in 

certain regions, that resolution is often used throughout the entire grid domain.  This is 

not computationally efficient, since such resolution may not be required throughout the 

entire domain.  This problem becomes greatly amplified for long wave packet 

propagation times, high-energy dynamics, and high dimensionality problems. 

In the second condition, the grid points are locked in concerted motion with the 

fluid and move along with the flow velocity.  Under this Lagrangian condition, fewer grid 

points are needed, as the trajectories tend to follow regions of high density and complex 

dynamics.  This condition gives Eqs. (3.7) and (3.8) and leads to the QTM.  One 

advantage of employing the QTM in this way is that Bohmian trajectories are governed 

by a physical law and can be subject to physical interpretations.  However, as mentioned 

previously, this method does not always provide a robust algorithm for obtaining 

solutions of wave packet dynamics, and the stability and accuracy of the method are 

almost completely governed by the dynamics of the trajectories as time proceeds. 

Lastly, it is condition three, the ALE method, which will help resolve many of the 

problems encountered in the pure Lagrangian version of the QTM, while maintaining its 

superiority over fixed-grid methods in the relatively small number of grid points needed 

for wave packet propagation.  In the ALE method, grid velocities can be assigned to 
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dynamically adapt to the hydrodynamic fields as they advance in time.  This technique is 

also denoted by the term r-refinement [50] (redistribute or relocate), and it often involves 

coupling a new partial differential equation for solving the grid velocities at each time 

step to the original equations of motion.  It should be noted that the paths taken by the 

grid points in the ALE method are no longer the physical Bohmian trajectories 

encountered in the pure Lagrangian scheme, since the grid velocities are not given by Eq. 

(3.6).  This is a small sacrifice, since it is now possible to have complete control (via the 

grid velocities) over when and where the grid points dynamically react to the solution. 

Once the moving path transformations of the QHEM are derived, it is then left to 

determine exactly how to prescribe the particle velocities in time.  There are many ways 

of doing this.  One of the most popular ways of calculating these velocities is by using the 

equidistribution method.  Using this scheme, grid points can dynamically adapt in time 

according to properties of the solution (i.e. it’s gradient, curvature, etc.).  This method 

will now be described in detail.  

3.4.2.1.  The equidistribution method and dynamic grids  
Consider  time-dependent grid points defining a one-dimensional spatial 

grid at t  with the ordering 

1+np

0> 1,...,2,1for    )()( 1 −=< + npitxtx ii .  A number of studies 

[50-56] have shown that spatial fitting errors can be reduced by distributing the grid 

points so that a positive weight or monitor function is equally distributed over the field, 

                                                        ,                                          (3.30) ∫
+

=
1

ix

constant)(
ix

dxxM

or in its discrete form, 
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                                           constant)( 1 =−+ iii xxM .                                      (3.31) 

This equidistribution method is equivalent to the equilibrium conditions for a system of 

classical springs where the monitor functions play the role of spring constants.  Spring 

analogies for spatial adaptation have been recently used to obtain solutions of the Navier-

Stokes equations for a number of classical fluid dynamic problems.  A few examples of 

these include the following: the utilization of tension and torsion springs for two and 

three-dimensional adaptive grids in fluid flow simulations [53,55,51]; springs used for 

spatial adaptation of the coupled equations resulting from an unsteady, compressible fluid 

flow over a rigid-body [56]; springs used for a grid adaptation algorithm simulating the 

laminar flow of perfect gas [54]; and spring systems combined with “pseudo-pressure” 

penalty terms for preventing mesh overlapping in a 1-D shock tube and in 2-D and 3-D 

steady flow calculations [50]. 

To obtain the equilibrium positions, { }ix , a homogenous tri-diagonal system of 

equations of dimension  must be solved.  The elements of the spring coefficient 

matrix will depend on the monitor values at the corresponding grid points.  By solving 

this system of equations, the grid points can be instantaneously adapted according to the 

specific monitor function used. 

npnp×

Most monitors are designed to sense specific information about the hydrodynamic 

fields at each time step, and subsequently, use this information to redistribute the 

positions of the grid points.  It is the non-uniformity in the nearest neighbor monitor 

values,  and , that cause the grid points to move relative to one another.  For 

example, if the monitor function is gradient/curvature dependent, then the grid points will 

1−iM 1+iM
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be redistributed with a greater density in regions of large gradients/curvatures.  If all of 

the monitor functions are set to the same value, the grid points will sweep out paths with 

equal spacing, thus forming an expanding/contracting uniform grid of spacing h .  

Some typical monitor functions are the following: (1) 

)(t

1+kk uh ; (2) 1 )/( xu ∂∂+ β ; (3)  

; and (4) the truncation error of the solution divided by h  (where 

indicates the k  x-derivative of the solution, h is the local point spacing, and 

)/(1 22 xu ∂∂+ β

ku th− β  is 

an input parameter). 

)ln(RCu ==

x )( xt →

Initially, an algorithm was developed to solve the hydrodynamic equations of 

motion with the equidistribution method using monitor functions (2) and (3) using 

.  The algorithm was implemented in the following way: 

 

I. A predictor step was taken to advance the grid points in time from 

, where  is the new temporary coordinate found using 

the density flow velocities, 

)( ttL ∆+ Lx

vr .  This is the trajectory that a particle would 

follow in the pure Lagrangian description.  It is not likely that the new 

particle positions, { }L
ix , create the optimal configuration of grid points 

(the optimal configuration can be defined as the grid point distribution that 

minimizes fit or interpolation errors). 

II. The tri-diagonal system representing the discrete equidistribution 

equations, Eqs. (3.31), were then solved with given monitor functions, 

.  The boundary conditions for particles 1 and  in the spring )(tM i np
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equations were set to be the solutions of the pure Lagrangian equations of 

motion, i.e.  and .  All of 

the internal (  grid points were distributed according to the monitor 

function. 

)()( 11 ttxttx L ∆+=∆+

)2−np

t∆+

)()( ttxttx L
npnp ∆+=∆+

{ }L
ix

t
x L

i

∆
−

vx ii =&

III. This is the corrector step.  After predicting where the grid point positions 

should be at t  from step 2, the grid velocities were then calculated.  If 

the  are the adapted positions from step 2, and { }ix  are the positions 

developed along the pure Lagrangian trajectories, the grid velocities can 

be calculated from the equation, 

                                               
xi+ ,                                  (3.32)   

where the second term is an approximation of the slip velocity. 

 

Step two of the above algorithm lead to problems, however, since there is no limit 

placed on the separation between adjacent grid points.  Since Bohmian trajectories are not 

allowed to cross, any grid velocity equations coupled to the hydrodynamic equations of 

motion should also satisfy this condition.  In fact, as can be seen from the pure 

Lagrangian version of the QTM, computational problems are encountered even as the 

trajectories become close to one another.  Ideally, grid velocity equations should be 

devised to keep the grid points a minimum distance away from one another while 

simultaneously adapting the grid to the evolving hydrodynamic fields.  It was therefore 
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determined that a new set of equations for obtaining the adapted positions, { , must be 

derived to restrict the particles to a minimum separation, 

}ix

min1 xxx ii δ>−+ . 

For this purpose, consider the three grid points { }11 ,, +− iii xxx  and a set of two 

harmonic potentials of the form 

                                              2)(
2
1)( left

oiiL xxx −=V ,                                       (3.33) 

                                              2)(
2
1)( right

oiiR xxx −=V .                                     (3.34) 

To derive equations for the {  that include a minimum separation parameter,  is 

defined in the limit that  for  to be 

}ix

/ −iM

left
ox

011 →+iM 11 +− > ii MM

                                              .                                   (3.35) min1 xxXx ileft
left
o δ+== −

Likewise, in the limit that   for  0/ 11 →+− ii MM 11 −+ > ii MM

                                             .                                 (3.36) min1 xxXx iright
right
o δ−== +

For 0/  and  0/ 1111 ≠≠ +−−+ iiii MMMM

o
left
o Xx << right

right
oo XxX <<

, the two potential minima can be set such that 

 and , where the midpoint is  

(see Fig. 3.12).  

leftX ) ( 2/1 11 +− += iio xxX

If the centers of the quadratic potentials are defined as 
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Figure 3.12.  Spring setup for inclusion of the minimum separation parameter, minxδ . 
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1
lefto
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+ ,  for ,                 (3.37) 11 +− ≥ ii MM

and  

                         )(
1

1
oright

i

i
right

right
o XX

M
M

Xx −−=
+

− ,  for 11 +− ≤ ii MM ,             (3.38) 

then either Eq. (3.37) or (3.38) can be solved for its minimum (i.e. setting 

).  It should be emphasized that either of these equations is solved for the 

position , depending on the larger value of .  By utilizing the same 

boundary conditions as before, a tri-diagonal system of equations of dimension np

0/ =∂∂− ii xV

ix 11 or    −+ ii MM

np×  

was derived and incorporated into step two of the algorithm for determining grid 

velocities.  Figure 3.13 displays an example of how the grid points are allocated using the 

above spring system according to an analytical and arbitrary monitor function.  At this 

point it should be stated that although the ratios  where used to 

obtain the computational results discussed later in this study, they are very sensitive to 

small variations between the two adjacent monitors functions, and small differences can 

lead to large shifts in the grid point positions.  This is not desirable, since excessive 

movement in the grid points destroys the smooth time progression of the solutions to the 

equations of motion.  In the future, Gaussian functions of the form 

 could be used instead of the previously used ratio 

as long as the appropriate limits are upheld.  In this function, 

11 / +− ii MM11   and  / −+ ii MM

])(exp[ 2
11 +− −−= ii MMβ),( 11 +− ii MMf

β  can be used as a 

parameter affecting the magnitude of the grid point shift towards adjacent grid points. 
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Figure 3.13.  An example of a monitor function, , and the new coordinates 
calculated using the spring system algorithm with the separation parameter.  
The impulses represent particle spacing.  Notice that the grid points do not 
collapse to zero separation as  increases. 

)(xM
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Results from a number of trials of different separation parameters indicated that a 

time-dependent parameter, )(min txδ , was better suited for unbound problems.  An 

explanation for this would be that initially the wave packet domain is relatively compact, 

and a small parameter is needed.  As time advances, however, global errors increase, as 

does the grid size, and the original minimal separation may not be resolvable.  The only 

restriction on the choice of minxδ  is that  

                        .                    (3.39) )()()()1( 1min ttxttxttxnp LL
np ∆+−∆+<∆+×− δ

By setting the separation parameter to some fraction of the logical grid spacing, i.e. 

                           












−

∆+−∆+
=∆+

1
)()(

)( 1
min np

ttxttx
Fttx

LL
npδ ,                         (3.40)   

where 0 , then a time-dependent separation parameter was created. 1≤< F

For the ALE results described in the next section, the predictor/corrector 

algorithm was used along with the matrix forms of Eqs. (3.37) and (3.38).  The monitor 

function used was 22 /1)( xuxM ∂∂+= β , with RCu ln== .  This particular monitor 

function was well suited for the time-evolution of an initial Gaussian wave packet for two 

reasons.  In space, the Gaussian is a quadratic function and can be exactly fit for 

spatial derivatives.  No spatial adaptation is therefore needed as long as the packet is 

Gaussian, and since ∂  is reduced to the same constant for all monitor values, the 

grid points will follow equally spaced paths until some deviation from this form occurs.  

Another reason this monitor was used was to eliminate the need for “pre-processing” of 

the grid points.  Because the initial wave packet form was Gaussian, a regular spaced grid 

Log

22 / xC ∂
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was all that was required for initialization, and redistribution of the initial grid point 

locations was not needed before launching the grid points. 

3.4.3.  The ALE applied to an uphill ramp 
As mentioned previously, many quantum mechanical problems have not yet been 

treated successfully using the pure Lagrangian QTM.  An example in which difficulties 

have emerged and resulted in the computational breakdown of this method include wave 

packet scattering from steep uphill ramps.  Typically, in these problems, the wave packet 

is ‘squeezed’ against the ramp (resulting in compression of the particles), and a portion of 

the density is reflected backwards, sometimes resulting in the formation of ‘ripples’ in the 

tail of the reflected wave packet.  Although the transmitted density is generally smooth in 

space, the dynamics of those particles reflected from the barrier can be extremely 

complicated due to the large quantum forces, and inflation/compression can occur.  To 

emphasize the advantages of the ALE/spring method over the Lagrangian QTM in such 

scattering problems, a ‘steep’ uphill ramp potential of the form 

                                            )1(5.11
)( −−+
= x

o

e
V

xV ,                                              (3.40) 

was substituted into the QHEM (V  is the potential maximum at large values of o x , see 

Fig. 3.14).  The equations of motion were then solved using the adaptive ALE/spring 

algorithm with a one-dimensional initial Gaussian wave packet 

                )](exp[])(
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1exp[
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1)0,( 2
2
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


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Figure 3.14.  The initial Gaussian wave packet and the uphill ramp potential. 
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The initial parameters were as follows; 17.0=σ , 0=ox , 2000=m , and translational 

energy = 8000 .  Time integration for both the QTM and the ALE method was done 

using the first order explicit Euler method with 

1−cm

085.0=dt .  A total of 151 grid points 

were used with the initial uniform grid spacing 01.0=h .  Spatial derivatives were 

obtained using radial basis function interpolation. 

When the pure Lagrangian QTM was used to compute transmission probabilities 

for uphill ramp potentials of heights V , 

computational breakdown occurred at 

1  12000  and  ,10000  ,8000  ,6000 −= cmo

50  and  ,56  ,66  ,76=t  fs, respectively.  Thus, as 

the height of the uphill ramp increases, the computational break down time of the 

Lagrangian QTM decreases.  One explanation for this trend is that as the potential is 

increased, the wave packet is squeezed tighter (smaller width, larger amplitude) as it 

encounters the potential, and the particle compression is exacerbated.  Also, as the height 

of the potential is increased, the magnitude and frequencies of the amplitude ripples in 

the reflected wave packet also increase.  The consequences of these amplitude 

deformations are poor derivative approximation and eventual trajectory crossing. 

Problems with break down were not encountered when the ALE/spring method 

was applied to the same uphill ramp models.  Figure 3.15 is a plot of the transmission 

probability versus time for these ramp potentials using the ALE/spring method.  All 

transmission probabilities were calculated by interpolating { }iρ  with piecewise cubic 

polynomials and integrating the polynomials for .  Although the plot extends for 

only 400 fs (approximately 220,000 time steps), the transmission probabilities were  

5>x
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Figure 3.15.  Transmission probabilities for the uphill ramp with four barrier heights 
calculated using the ALE/spring method.  These values were obtained using 
an initial wave packet translation energy of 8000 cm . 1−
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stable for over one picosecond.  Such results are a profound improvement from the 

Lagrangian QTM. 

     Figure 3.16 displays the probability density at 125=t  fs.  This figure provides 

one explanation of why the ALE/spring method yields computational results that are both 

accurate and stable for long times.  The most important feature in this figure is the 

locations of the grid points.  Although the grid points are allowed to adapt to regions of 

large curvature in the C-amplitude, the minimum separation parameter constrains the 

local grid point density to a maximum value and eliminates grid point clustering.  In 

return, the grid points are spread throughout the domain, decreasing the chances of 

inflation near regions of low density.  It is highly probable that the traditional Lagrangian 

QTM experienced most, if not all, of its computational difficulties when attempting to 

approximate spatial derivatives in the region of ripple formation in the reflected wave 

packet .  To obtain accurate approximations to the spatial derivatives of R 

and S in this critical region, the grid points must be properly positioned to capture the 

function’s local oscillating behavior.  Excessive inflation or compression in these regions 

will result in large-scale errors in the derivative approximations, and this is believed to 

have caused the numerical break down of the QTM after 76 fs into the computation.  This 

is avoided in the ALE/spring algorithm, however, since the grid points are constrained to 

prevent over-clustering and excessive inflation. 

)016( <<− x
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     Lastly, in Fig. 3.17 one can see how the accuracy of the probability density 

increases as the number of grid points in the ALE/spring method is increased from 151 to 

251.  In this figure, the probability density in the ripple region is plotted at t  fs.  

The accuracy of the action and amplitude is predominantly governed by the errors in the 

110=



 

Figure 3.16.  Density plots at t  fs for the uphill ramp potential of maximum height 
 .  Part (a) displays the results obtained with the ALE/spring 

method, while part (b) shows results obtained using the Eulerian (fixed-grid) 
method.  The Eulerian results (solid line) were obtained using 4

125=
0.6000 1−cm

th order 
Runge-Kutta for time integration and 4th order finite differences for spatial 
derivatives.  The circles connected by linear splines represent the results of 
the ALE/spring method and are the positions of the grid points at this time. 
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Figure 3.17.  Density plots at 110=t  fs for the uphill ramp potential with a height of 
6000 .  Part (a) shows the results for the ALE/spring method with 251 
grid points, while part (b) displays the results for the ALE/spring method 
with 151 grid points.  The solid line was calculated from a fixed-grid, finite 
difference method with 7,150 grid points. 

1−cm
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 interpolation routine, which are greatest in regions of large gradient/curvature.  By 

increasing the number of grid points in these regions, interpolation errors are decreased 

and more accurate solutions can be obtained.  It should be noted that, although the 

number of grid points in the ALE/spring method was increased to 251, this was still only 

a fraction of the total number of grid points used for the Eulerian fixed-grid results. 

3.4.4.  ALE discussion 
The results of implementing the ALE/spring method on the uphill ramp potential 

confirm its superiority over both the Lagrangian QTM and the Eulerian ψ -propagator for 

this problem.  It has been shown that the ALE method can provide accurate transmission 

probabilities for very long times when applied to the uphill ramp, whereas the QTM gives 

early computational break down.  Also, the ALE/spring method requires only a fraction 

of the number of grid points of the Eulerian calculations while providing nearly the same 

accuracy in the solution.  In two recent studies by B. Kendrick and D. Pauler at Los 

Alamos [57-58], this exact ALE algorithm was applied to the Eckart Barrier problem in 

one and two-dimensions.  In addition, Kendrick added an artificial viscosity term to 

smooth out singularities in nodal regions.  This combination of ALE and “artificial 

viscosity” had never been used before to solve the QHEM.  Many trial wave packet 

energies were launched against the Eckart barrier, and excellent agreement was obtained 

when the time-dependent transmission probabilities were compared to that of a fixed-

grid, ψ -propagator.  Although the exact quantum potential was not solved for in this case 

(because of the artificial viscosity term), Kendrick’s results are very promising. 
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Although the ALE method can be utilized for some problems where QTM fails, it 

is to date, not fully capable of representing the exact solutions of R and S in nodal regions 

without spatial smoothing.  In the end, the ALE method continues to have the same 

problems as the QTM, amplitude nodes and quasi-nodes.  These QTM problems were 

elaborated on previously using an Eckart barrier example.   

3.5. CHAPTER CONCLUSION 
In this chapter, two numerical methods for solving the quantum hydrodynamic 

equations of motion were discussed.  These methods are the quantum trajectory method 

and the arbitrary Lagrangian-Eulerian method.  For wave function dynamics on simple 

potential energy surfaces (those without much interference), the QTM works wonderfully 

and the numerical benefits of solving the QHEM are overwhelming when compared to 

standard wave function propagators.  However, in problems where nodes and quasi-nodes 

are encountered, the QTM quickly breaks down.  If these nodal problems are aggravated 

by inflation and compression, the ALE method can be used.  In some cases, such as the 

uphill ramp potential, the ALE method can greatly extend the survival time of the 

algorithm.  Nevertheless, simply eliminating inflation and compression does not always 

solve the node problem.  Today, many continue to advance these methods in hopes to one 

day circumvent the nodal problem.   

In one such attempt, a series of hybrid methods using both the Schrödinger 

equation and the QHEM were developed.  In the first of these methods, presented by 

Wyatt [25], moving external grid points follow Lagrangian trajectories calculated by the 

QTM.  These particles constitute what is called a “frame”.  Internal grid points, within 
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one or more “windows” follow non-Lagrangian paths of equal spacings between the 

Lagrangian frame (see Fig. 3.18).  Within these windows, problems encountered with 

quantum trajectories near amplitude nodes are circumvented by solving the moving path 

transform of the Schrödinger equation, 

                    ),(  ),(
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
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∇⋅++∇−=i .                    (3.42) 

(Note that if  in this equation, the standard fixed-grid Schrödinger equations is 

obtained.)  Using this method, excellent results were obtained for the evolution of a wave 

packet in a double well potential. 

0=x&r

In another similar study [28], Hughes and Wyatt used the same frame and window 

method.  Only this time, a spatially and temporally smoothed equidistribution algorithm 

was used to guide the −ψ window grid points into regions where high wave function 

resolution was needed (inside the window).  In addition, the ALE method was used to 

guide all external frame points to be equally spaced.  The only Lagrangian points used  

were the first and last grid points.  Good results were obtained when this method was 

applied to an Eckart barrier. 

One setback in progression of these hybrid methods is that they are not trivially 

extended into multi-dimensions.  While opening and closing windows is not a problem in 

1D, it can be difficult on multi-dimensional grids.  In addition, it is very difficult to “link” 

the QTM frame points with those in the −ψ window.  This is because two different 

equations of motions are used, and they may not be accurately time integrated using the 

same time-step and methods of derivative approximation. However, the 1D results  
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Figure 3.18.  A pictorial description of the hybrid method used by Wyatt and Hughes to 
calculate wave packet dynamics in nodal regions.  Particle grid velocities 
calculated using the QTM were Lagrangian (QHEM), while the particles 
velocities inside the windows were non-Lagrangian (TDSE). −ψ
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obtained using these hybrid methods are very promising, and currently these algorithms 

are being further developed.      

In the next chapter, yet another method for integrating the QHEM, called the 

derivative propagating method (DPM), will be described.  In this method, the 

hydrodynamics fields, R(C) and S, are propagated in time along with their spatial 

derivatives.  In this manner, trajectories can be solved independently of one another and 

calculated one at a time.  In the QTM and ALE method, the entire ensemble of particles 

must be propagated simultaneously, since the evolution of each trajectory depends 

algorithmically on its neighbors from the fitting routines.   

 79



Chapter 4:  The Derivative Propagating Method (DPM) 

4.1.  DPM BACKGROUND 
In chapter three, the quantum hydrodynamic equations of motion were derived 

and the QTM and ALE method were used to obtain their numerical solutions.  In these 

methods, fitting or interpolation algorithms were utilized to calculate the spatial 

derivatives needed for substitution into the QHEM.  Although these methods for 

derivative approximation can provide excellent results for some problems, it was shown 

that terminal problems can arise with their utilization.  The first of these problems is 

encountered when fitting is required in a non-Eulerian propagation scheme.  In moving 

frames, particles follow trajectories governed by a pre-determined equation of motion.  If 

the propagation scheme is Lagrangian, for example, the particle velocities are the same as 

the flow velocity of the fluid, as discussed in chapter three.  In time, these Lagrangian 

particles can form an unstructured mesh.  The irregularity in the grid point locations 

increases the chances that terminal errors will occur in the derivative approximation 

methods.  These errors, as previously discussed, are due to inflation and compression.  In 

addition to this difficulty, fitting and interpolation methods are algorithmically non-local.  

This means that in order to accurately approximate derivatives at specific trajectory 

locations, information from nearby particles is needed.  The problem created by this type 

of non-locality is that all particles must be propagated simultaneously as a correlated 

ensemble, and if one trajectory goes bad, the propagation of the entire ensemble is 

terminated. Lastly, these routines can consume a great deal of computational time, 

depending on the number of particles used and whether matrix decomposition is needed.  
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In this chapter, a new method for obtaining solutions to smooth, initial value 

PDEs is described.  It is called the derivative propagating method (DPM).  This method 

was first described by Trahan, Hughes, and Wyatt in 2003 [29].  In the DPM, equations 

of motion for both the PDE of interest and its spatial derivatives are propagated in time 

concurrently.  The various orders of derivatives are coupled together in an infinite 

hierarchy, but low order truncations of this set can lead to useful and accurate 

approximations.  An enormous benefit of the DPM is that single quantum trajectories 

may be propagated, and fitting is no longer required to compute the spatial derivatives of 

the time-dependent PDE.  This in turn can lead to orders of magnitude reduction in the 

propagation time.  In the next section the DPM will be described in detail.   

4.2. DERIVATION OF THE DPM 
In the DPM, the spatial derivatives are propagated in time along trajectories 

according to exact equations of motion.  The equations of motion for these derivatives are 

easy to derive for any partial differential equation. As an example, the DPM will be 

formulated for a generic evolutionary equation given by                                            
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To begin, both sides of Eq. (4.1) are spatially differentiated and the order of the  and t  

partial derivatives switched. By doing this, the analytical equation of motion for an 

arbitrary  order spatial derivative becomes                                      
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To demonstrate how this procedure leads to an infinite hierarchy of coupled equations, 

consider a one-dimensional diffusion equation of the form 
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In order to apply the DPM and differentiate the products of functions in Eqs. (4.3), the 

Liebnitz theorem is used.  This theorem gives the  derivative of the product of two 

functions, , as  

nth
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where  are called the binomial coefficients given by .  

(For the rest of this chapter, the order of each spatial derivative will be denoted by a 

subscript, i.e. ).  As an example of this theorem, the fourth derivative of 

Eq. (4.4) is given by the sum of six terms, 
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Using this relation, the equations of motion for the spatial derivatives of Eq. (4.3) become 

                                   ∂ .                        (4.6) ∑
=
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j
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0
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It can be seen from this equation that not only is there up-coupling to higher order 

derivatives, but there is also down-coupling in the summation. It is the up-coupling, 

however, that leads to the infinite hierarchy.  For arbitrary evolutionary equations, this 

chain of equations is impossible to solve exactly, however, for a range of problems a 

suitable truncation can be imposed. 
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To illustrate the conditions under which truncation allows for accurate solutions, 

one can approximate the solution of Eq. (4.3) at a given location by the local Taylor 

polynomial expansion  

                                          k
o

K

k
k qqtW

k
tq )( )(

!
1),(

0
−≈ ∑

=

W .                                (4.7) 

If the spatial dependence of the solution is smooth (non-oscillating), only a low-order 

polynomial is needed and the higher order spatial derivatives will be negligible.  

Approximating solutions as low-order polynomials to obtain spatial derivatives about a 

reference trajectory is a common task for those utilizing local least squares, interpolation, 

and finite-difference methods.  In theory, as long as the solution can be fit or expanded to 

a local polynomial of order K  in the spatial coordinate using any of these methods, the 

DPM can be accurately truncated so that the partial derivatives  can be set to 

zero for .  

nn qW ∂∂ /

Kn >

In our studies we have found that the DPM is not particularly sensitive to any 

specific genre of initial value PDEs.  It was found, however, that certain initial conditions 

(especially those that are highly oscillatory in space, such as the complex-valued wave 

function) would not propagate with any order of the DPM.  The reasons for this are still 

under investigation.  However, as long as the PDE’s solutions were smooth for all times, 

the DPM can be successfully used.  

4.3.  THE DPM AND THE QHEM 

4.3.1.  Derivation the DPM/QHEM 
Recall the fixed-grid versions of the QHEM presented in chapter three, 
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If the hydrodynamic solutions are Taylor expanded about ,  ox
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(where ) substituted into Eqs. (4.8), and the limit is then taken as , a 

hierarchy of coupled equations of motion for the expansion coefficients can be derived.  

If both expansions are truncated at the quadratic level, these equations are given 

explicitly by 
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These equations are rather simple in form and can be integrated extremely fast.  Using the 

Liebnitz relation, the generalized one-dimensional DPM equations of motion for the 

QHEM are 
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Again, both up-coupling and down-coupling are present in both equations.  In these 

equations is not necessary that mn = .  For example, zero order in C and first order in S 

will give a time-dependent WKB type approximation in which the particles follow a 

classical trajectory. 

Equations (4.11) are a system of coupled, non-linear differential equations 

expressed in the Eulerian frame.  To apply the DPM in the Lagrangian or ALE reference 

frames, the relation d )/( )(// xtxtdt ∂∂+∂∂= &  is substituted into these equations.  Upon 

doing this, the DPM solutions along an arbitrary path  become, )(tx

                                          1)( ++
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For the special but important case of a Lagrangian path, the path velocity is gradient 

driven and matches that of the fluid, 1)/1()( Smtx =& . 

With quadratic expansions for C  and  the wave function synthesized 

around each fluid element is a local Gaussian.  However, this does this imply that the 

global wave function is of the Gaussian form.  Beginning with Heller’s studies just over 

25 years ago [59], frozen or thawed (fixed or variable width) Gaussians have been used in 

many semi-classical studies of time-dependent processes.  A significant difference 

between the latter studies and this one is that in the DPM, quadratic expansions (or 

higher, if necessary) for the amplitude and phase of the wave function are propagated 

),( tx ),( txS
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along each trajectory, rather than for the global wave function.  In this sense, the DPM is 

an extension of Heller’s earlier studies. 

Within the hydrodynamic formulation, a different infinite hierarchy of equations 

has been described [60-61]. In that study, position space equations of motion were 

derived for momentum moments of the Wigner function.  For pure states, the hierarchy 

terminates at the second moment, but the formalism is also applicable to mixed states, 

where all moments are coupled.  The hierarchy described in these studies is different 

from that developed in the DPM, since in this method, the spatial derivatives are 

propagated rather than momentum moments of a phase space distribution function. 

The DPM may be readily extended to solve the QHEM in D-dimensions, although 

the resulting equations are more complicated than those presented earlier.  For example, 

in two degrees of freedom, the partial derivative of the dot product of two gradients, 

)1,0()1,0()0,1()0,1( CSCSCS +=∇⋅∇
rr

, is given by 

[ ]∑∑
= =

−+−+−−++ +=∇⋅∇
n

j

m

k
kmjnkjkmjnkjmn CSCSkmbjnbCS

0 0
)1,()1,(),1(),1(),( ),(),()(

rr
,     (4.13) 

where the following notation is used for the partial derivatives: 

.  In terms of the derivative in Eq. (4.13), equations of 

motion for the derivatives of C and S are 
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These equations, and their multi-dimensional extensions, can be readily programmed.  
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Of course, because of the increasing number of derivatives, the computational 

cost for each trajectory increases with dimensionality.  For example, using quadratic 

expansions for C and S in D-dimensions, we can work out that there are 

 equations of motion for each function and its derivatives. As an 

example, in four dimensions C has 14 spatial derivatives that need to be propagated in 

time.  These derivatives are 

2/)2)(1( ++ DD

                                   C                                 (4.15) 
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At the second order, there will thus be 15 equations of motion for C, those in Eq. (4.15) 

and the original C-equation. 

For this reason, use of DPM expansions beyond the quadratic or cubic level may 

not be practical in high dimensionality, since a large number of derivatives must be 

propagated.  However, implementation at the ‘cheap’ quadratic level dresses what would 

otherwise be a bare classical trajectory with an approximate quantum potential and its 

derivatives.  Propagation at the quadratic level is feasible and, as an example, this 

approach has been implemented in a scattering code that handles ten degrees of freedom!   

4.3.2.  Implementation and DPM/QHEM 
The following steps can be followed in order to build a computer code to run the 

DPM.  To be specific, assume that we are operating at the quadratic level, so that the six 

functions and derivatives, denoted { }2121 ,,,,, SSSCCC=Φ , are computed along each 
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trajectory at each time step.  At 0=t , the start of the trajectory, these six quantities must 

be specified; we will return to the initial conditions at the end of this section.  For now, 

assume that one trajectory has been followed for  time steps, where the time step is 

denoted .  At this time, the trajectory is located at position 

n

t∆ x , and it has the 

momentum 1SSp =∇=
r

.   In order to advance one time-step, the following procedure 

can be followed (as taken from [120]). 

∂Φ∂ /

Φ

t n∆+ /)

poldx + ( tp ∆

)xoldold VF ∂−=

1. Using information provided by the set Φ , compute the set of Eulerian time 

derivatives, .  Equations (4.8) and (4.10) are used for this purpose. t

2. Convert the time derivatives to the moving frame using Eqs. (4.12). 

3. Using the current functions and their derivatives in the moving frame, update the 

set .  In the simplest integration scheme, first order Euler, this can be done 

using the equation C tdtdCtCt nn ∆+= )()(( .  The same equation is used 

for the S update.  (For more accurate solutions, a higher order time-integrator 

should be used.) 

4. Update the trajectory.  With an Euler integrator this can be done using the 

equations:  

                               tmx oldnew ∆= )/  and Fp oldoldnew += ,               (4.16) 

where .  Again, a higher order integrator could be used for this 

update as well.  

( x∂/

5. After both the trajectory and the set of functions and derivatives have been 

updated, the algorithm is returned to step 1, assuming that solutions are needed at 
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longer propagation times.  This loop is repeated until the final propagation time is 

reached. 

 

The conditions on the functions and derivatives at the start of the trajectory are 

determined from the initial wave function.  Assume a normalized Gaussian wave packet 

given by 

                       [ ] [ ])(exp )(exp2)0,( 2
4/1

oo xxikxxx −−−





= β
π
βψ ,               (4.17) 

where .  In this equation, the  and  amplitudes are given by  )4/(1 2σβ = C S

            C , 24/1 )()/2ln()0,( oxxx −−= βπβ

                         S )(  )0,( oxxkx −= h .                                        (4.18) 

As a result, the only non-zero initial x -derivatives are  

                        ββ 2   ),(2 21 −=−−= Cxx oC ,                                     (4.19) 

                                                    S kh=1 .                                                        (4.20) 

With the values given in Eqs. (4.19) and (4.20), the trajectory may be launched from 

position x  at t .  0=

4.3.3. Applications of the DPM/QHEM 

4.3.3.1.  The meta-stable well 
In order to demonstrate some features of the derivative propagation method, 

computational results will be presented for two model problems.  The first of these 

concerns the decay of a wave packet launched from the quasi-bound region of the 
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potential V .  The force constant  is chosen so that the 

harmonic term reaches 2000 cm

32  )2/1()( kxkxx γ−= 31005.4 −⋅=k

-1 when 5.1=x

14.0

. (Once again, unless otherwise stated all 

units are atomic)  In addition, the value =γ  was used.  The resulting potential, see 

Fig. 4.1, displays a near-harmonic bowl around 0=x  and reaches a local maximum near 

, where the potential is 1680 .  The potential drops to zero at  and 

becomes increasingly negative as 

4.2=x 1−  cm 57.3* =x

x  increases.  The center of the initial Gaussian 

distribution is , the width parameter 5.0−=ox 6=β , the initial translational energy is set 

to zero, and the mass is .    2000=m

In this example, the aim is to compute the time-dependent correlation function.  

This function measures the degree of overlap between the complex wave function and a 

predetermined test function, which will be centered at .  The correlation function is 

given in one-dimension by                           

*x

                        ∫
∞

∞−
=〉〈= dxxtxxtxt )(),()(  ),()( φψφψC ,                               (4.21) 

where )(xφ , the test function,  is chosen as a delta function at  for this application (i.e. *x

),()(  ),)( ** txxxttC ψδ =〉−= (xψ〈 ).  Correlation functions are often used in wave 

packet dynamics to obtain absorption spectra and energy resolved transmission 

probabilities.  

Because the time dependence of the wave function was computed at a single fixed 

grid point, the hydrodynamic DPM equations of motion were integrated in the Eulerian, 

fixed in space, representation.  Using the third order DPM, eight coupled equations of 

motion for C and S and their first three spatial derivatives were propagated.  The resulting 
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Figure 4.1.  The cubic potential used to study the decay of a metastable state (the 
potential is in cm-1).  The initial Gaussian wave function (multiplied by 103 
and then shifted up by 253 cm-1)  is also shown. 
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correlation function is shown in Fig. 4.2.  It is in excellent agreement with results 

obtained when propagating the TDSE on a fixed grid of 3000 points.  Use of the DPM 

thus permitted the correlation function to be obtained through the ultimate 

compactification of the Eulerian grid to a single point!  This is quite an unbelievable 

accomplishment. 

4.3.3.2.  The Eckart barrier  
The second application of the DPM concerns computation of the energy resolved 

transmission probability  from the time-dependent scattering of a wave packet off a 

repulsive barrier.  Equations relating time-dependent scattering to energy resolved 

quantities were developed and applied by Tannor and Weeks [62].  This topic is also 

described in the books by Tannor [63] and by Zhang [64].  Tannor and Weeks showed 

that  may be computed from the Fourier transform of the cross-correlation function  
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where the wave number corresponding to translational energy E  is given by 

2/2 hmEk =

/(1β =

),()( tx+
α

,  is the wave number corresponding to the initial wave packet 

translational energy , and the width parameter for the initial Gaussian  wave packet is 

denoted . The cross-correlation function, , between the wave packet 

ok

)2σ

oE

4 )(, tC χα

ψ  launched from the reactant region ( −∞→x ) and a stationary test function, 

, located at position  on the product side of the barrier 

(centered at ) is given by 

[ xki   ]x

0

xx ()()( −=− δφχ

=x

exp − )* *x

〉〈 −+ )()(
βα φψ . In this example, the Eckart potential 
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Figure 4.2.  This figure displays the correlation function calculated at one point by the 
Eulerian version of the DPM for the cubic potential.  The real and imaginary 
parts of C t  are shown by dashed and dotted lines, respectively. ( )
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)(sec)( 2 xhVxV o κ=  is used with a height V  and width parameter 1  3000 −= cmo 2.1=κ .  

The initial Gaussian wave packet was given a translational energy  and 

was centered at .  The test function used to monitor the wave function in the 

product region was located at .   

-1cm  3000Eo =

6−=ox

5* =x

Originally, many trajectories representing the whole initial wave packet were 

propagated in time.  However, those DPM trajectories that were guided close to 

amplitude nodes in the reflected region did not survive.  The reason for this failure is still 

under investigation. There are several possibilities.   One possible explanation is that 

when a trajectory traverses close to a node or quasi-node, the hydrodynamic solutions 

may not only have large gradients and curvatures, but they may also have significant 

high-order derivatives not represented by a truncated low order DPM algorithm.  In fact, 

these high-order derivatives could be quite large in magnitude.  In addition to this, the 

truncated system of DPM differential equations for C and S and their derivatives may 

become stiff in these regions, with different scales and rates of change for the functions 

and their various derivatives.  If this is the case, then special numerical integration 

algorithms for stiff systems (i.e., implicit integrators) should be used.   

Because the reflected trajectories did not survive and were completely useless, a 

second attempt was made to follow only those trajectories transmitted into the product 

region, since this was the region of the test function, and the hydrodynamic solutions 

were quite smooth there.  In this approach, quantum trajectories were fired, one-at-a-time, 

toward the barrier with initial position values in the interval , where 

 is a point on the leading edge of the wave packet where the density is very low.  

frontback xxx ≤≤

frontx
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The starting point for each successive trajectory was then moved back, away from the 

barrier, until the bifurcation point  was found. For all starting positions , the 

trajectories make it over the barrier.  However, for starting positions , the 

trajectories evolve to form the non-reactive portion of the wave packet.  For these 

calculations, , and it was found that 

backx backxx >

backxx <

5.3−=frontx 0001.6−=backx . 

fs  147

)(E ,C χα

Using second order DPM trajectories, the cross-correlation function over the time 

interval  was computed using the reactant trajectories and is shown in Fig. 

4.3.  The peak of the transmitted wave packet passes the monitor point in the product 

channel about 70 fs after launching the packet from the reactant side of the barrier.  At 

this point,  was calculated using Eq. (4.22) and the Fourier transform of .  

The analytical transmission probability for the Eckart barrier (this is worked out as an 

exercise in Landau and Lifshitz [65]) is shown in Fig. 4.4.  This figure also shows the 

DPM results for both second and third order expansions.  The DPM curves capture the 

energy dependence of the transmission probability, including the low-energy tunneling 

region, but the curve for second order DPM slightly over-estimates  in the energy 

range 3200-4500 cm

14 −

P )(t

)(EP

-1.  However, the curve obtained using third order DPM is in good 

quantitative agreement with the analytic result.  Some of the reactive quantum trajectories 

were propagated for long times, up to 2.5 ps, and they were completely stable. 

4.3.4.  DPM/QHEM discussion 
In this section, it was demonstrated for the first time that quantum trajectories can 

be propagated one-at-a-time using a new method for wave packet propagation called the  
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Figure 4.3.  This figure displays the correlation function for the Eckart barrier.  The real 
part of the correlation is in red, and the imaginary part is in blue. 
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derivative propagating method.  Non-locality is introduced into the QHEM by 

propagating the spatial derivatives of the fields surrounding each quantum trajectory.  

Two one-dimensional examples were presented, one of which used a non-polynomial 

potential energy function which could not be naturally truncated.   The results were in 

good agreement with solutions obtained from standard TDSE integrators.  In addition to 

these examples, Bittner combined the DPM with an initial value representation to 

compute the autocorrelation and spectral functions for a wave packet in a Gaussian well 

[30]. 

The DPM, however, is not always able to calculate every trajectory for some 

potentials, even those represented by low order polynomials.  For some problems, the 

solutions about specific trajectories become oscillatory and stiff, preventing low-order  

truncations from being accurate.  This is because the surrounding fields are not brought in 

to all orders of derivative (or smoothness).  The order of the DPM constrains the quantum 

potential and other spatial derivatives from being completely non-local.  In affect, a 

‘tube’ can be built around each trajectory that brings in a sort of regional non-locality.  In 

regional non-locality, the particle is not aware of the hydrodynamic fields and their 

changes beyond a limited horizon.  This is in contrast to full non-locality, where a 

particle at some position in space can be influenced by another particle extremely far 

away.  In general, the higher the order of the DPM, the more truly non-local it becomes.  

An example that brings out one way that DPM trajectories can fail using low-order 

truncation is the familiar two-slit diffraction experiment.  

At present, there is not a way to predict what order of DPM should be used to  
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Figure 4.4.  Energy resolved transmission probabilities for the Eckart barrier (barrier 
height ).  Second order (dashed red curve) and third order 
(dotted blue curve) DPM results are compared with the analytic result (solid 
curve). 
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generate acceptable results5.  It would be useful to systematically investigate how the 

order of the DPM affects the results of some different problems.  In addition, to increase 

the adaptability of the DPM algorithm, the order for each trajectory should be calculated 

on the fly by monitoring the solution smoothness in some manner.  This could be done, 

for example, by monitoring the change in solutions as the DPM order is increased by one.  

If the solutions are the same in both orders, then the current approximation is fine.  It may 

in fact be that for some trajectories, such as those encountered in the nodal regions of the 

Eckart barrier, it is not possible to truncate.  In this case, a hybrid method should be 

developed to incorporate the DPM and the QTM, ALE, or TDSE.  The combination 

possibilities are endless. 

To end on a positive note, thousands of trajectories needed for multi-dimensional 

problems are now being calculated using parallel DPM codes.  This process has never 

been so easy.  In addition, in problems that require integration and solutions in regions 

where the hydrodynamic solutions are smooth, such as the Eckart barrier product region, 

the DPM can give excellent results.  The QTM and ALE method for these problems fail, 

since blow-ups in the reflected regions terminate the entire algorithm.  In the DPM, it 

does not matter if the trajectories in the reflected region are inaccurate, since they are 

completely decoupled from each other and those transmitted. 
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4.4.  THE DPM AND PHASE SPACE DYNAMICS 

4.4.1.  Phase space background 
In the previous section of this chapter, the DPM was used to propagate solutions 

of the QHEM.  Implementation of this method, however, is not limited to these equations 

of motion.  In this section, the DPM will be applied to a completely different kind of 

initial value PDE.  In this manner, the point is emphasized that the application of the 

DPM is not governed by a specific genre of PDEs, but rather the smoothness of thier 

solution and initial conditions. 

The time evolution of quantum systems is frequently computed and analyzed in 

position or configuration space.  The quantum trajectories described in the preceding 

sections of this dissertation were developed in this way.  For isolated systems, this is a 

natural way to proceed.  However, for open quantum systems, or those coupled to an 

environment such as a thermal reservoir, equations of motion are often developed and 

solved in phase space.  This is because in configuration space, the equations of motion 

are randomly fluctuating due to Brownian forces that arise from the thermal reservoir.  

These stochastic terms make numerical integration extremely difficult, since their 

corresponding solutions are erratic and non-smooth.  It will be shown, that these 

indeterministic forces are averaged out, and deterministic solutions to the same problem 

can be propagated in phase space. 

In phase space, a set of coordinates consists of all position and momentum 

degrees of freedom.  For example, if the problem is one-dimensional in configuration 

space, a two-dimensional phase space distribution, W , is needed.  In two-

dimensional configuration space, a four-dimensional phase space distribution must be 

),,( tpx
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solved, corresponding to W .  This two-fold increase in dimensionality is 

one deterrent of phase space dynamics.  However, two important advantages of phase 

space calculations over those in configuration space, other than these calculations being 

deterministic as opposed to stochastic, are that they provide a more detailed visualization 

of the underlying dynamics of a problem, and many more average values can be 

calculated directly in terms of W . 

),,,( yx ppyx

),,( tpx

There are many phase space equations of motion, depending on whether the 

distribution evolution is closed, open, classical, quantum, or in some cases, positive 

definite.  For an isolated classical system, the Liouville equation describes the evolution 

of the distribution function.  This equation and some characteristics of its phase space 

flow are described in the next section.  When the classical system is allowed to interact 

through friction terms with a thermal bath, the distribution function evolves according to 

the Klein-Kramers (KK) equation.  For an isolated quantum system, the Wigner equation 

is used to propagate phase space Wigner distributions.  Because this function may 

develop negative basins, smooth positive semi-definite distributions, such as the Husimi 

function, are also frequently propagated.  When the quantum subsystem is coupled to an 

environment, the equations of motion become more complicated.  For this case, the 

Caldeira-Leggett evolutionary equation is widely studied.  The derivation and study of 

those equations of motion for open systems remains an active area of research. 

It has only been within the past few years that quantum trajectories have been 

used to solve phase space equations of motion.  This area of research was stimulated 

when Donoso and Martens (DM) described a novel method for evolving both classical 
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and quantum phase space distributions using an ensemble of “entangled” trajectories [66-

68].  These trajectories are entangled through coupling terms in the equations of motion 

that depend upon q  and p  derivatives of the phase space density riding along each 

trajectory.  These coupling terms, in both classical and quantum mechanics, introduce 

non-locality and contextuality (dependence upon the initial state) into the equations of 

motion.  In this respect, non-local terms in the phase space equations of motion are 

similar to density dependent terms that occur in the quantum potential of the QHEM.  

Because of this non-local interaction, the trajectory solutions evolve as a unified whole, 

with each part both influencing and dependent upon the dynamics of every other part.   

Shortly after Donoso and Marten’s study, Trahan and Wyatt used the DPM to 

obtain Lagrangian trajectory solutions for the Klein-Kramers equation, the Husimi 

equation, and for a smoothed version of the Caldeira-Leggett equation derived by the 

Diosi [69].  Trajectory solutions for these equations of motion were obtained for the 

relaxation of an oscillator in contact with a thermal bath and for the decay of a meta-

stable state.  The DPM solutions for the Klein-Kramers and Caldeira-Leggett equations 

were compared to accurate fixed grid, finite-difference results in a follow-up study [70].  

In addition to this, Hughes and Wyatt studied Eckart barrier transmission as a function of 

the friction coefficient and temperature for the modified Caldeira-Leggett equation and 

obtained excellent agreement when the DPM was compared to fixed-grid results [71]. 

In the proceeding sections of this chapter, the results of the DPM applied to the 

classical Klein-Kramers’ equation of motion will be reviewed.  Before doing this, 

however, the Liouville, Langevin, and KK equations of motion will be described in more 
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detail.  Although all details on these equations cannot be given here (that would take a 

whole text book!), they are summarized and their major characteristics discussed.  

4.4.2.  The Liouville, Langevin, and Klein-Kramers equations 
In classical mechanics, the evolution of an ensemble of trajectories can be 

described in several ways.  One way is by integrating the classical equations of motion to 

obtain the coordinate and momentum for each trajectory.  These are {  in one-

dimensional configuration space.  This trajectory can then be plotted in two-dimensional 

phase space with axes { .  The orbit of each of the  trajectories are initiated at 

, with { , and can then be followed until a specified time  is reached.  In a 

small box of area ∆  around the point , the number of trajectories at this time 

can be given as , and the fraction of the total trajectories located in this box is 

.  The probability density in phase space is then defined as  

}

}

}
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Because of the way it is defined, the density is normalized at all times so that 
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The flow of the classical probability density in phase space was addressed by 

Liouville.  He derived an equation, now called the Liouville equation [72], for the rate of 

change in the density at a fixed point, , given by ),( px
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From the classical equations of motion, mpx /=&  and xVp ∂−∂= /& , two components of 

the phase space velocity vector can be defined.  These components are v  and .  In 

addition, the gradient operator, ∇ , has two components in 1D phase space, { }

x pv

r
px ∂∂ /,∂/∂ . 

Using these relations, the Liouville equation may be written in the compact form as 

                                                  Wv
t

W
∇⋅−=

∂
∂ rr .                                             (4.26) 

Equation (4.26) expresses the Liouville equation in the Eulerian frame.  This 

equation can be converted into the Lagrangian frame using  
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If the Eulerian time-derivative, Eq. (4.26), is substituted into Eq. (4.27), it is found that 

the density does not change along the flow, 

                                                         0=
dt

dW ,                                                  (4.28) 

or stated another way, the density at time t along the flow is the same value that was 

specified by the initial conditions, W )()( otWt = .  

Liouville’s equation governs the evolution of the classical phase space density in 

an isolated system.  We now turn to open systems, those which can exchange energy with 

the surroundings.  One example is a system in contact with a ‘heat bath’, which is always 

assumed to be maintained at a temperature T.  A classical trajectory evolving in such a 

system is subject to friction forces that dampen its velocity.  These forces are due to 

coupling between the system and the bath degrees of freedom.  The friction force is 

defined as vmFfriction   γ−= , where γ  (units of 1/ time) is the phenomenological friction 
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coefficient.  This term acting alone would cause the particle to settle to zero velocity in a 

minimum on the classical potential surface. 

In addition to friction, the system evolves under the influence of the two other 

contributions to the total force.  As usual, there is the classical force arising from the 

potential , plus an additional random force due to interaction with the bath.  The 

latter is also called the stochastic force, .  For an ensemble of trajectories evolving 

from the same initial position and momentum conditions, the ensemble average of the 

stochastic force is assumed to be zero, 

)(xV

)(tF

)( 0=〉〈 tF .  However, the two-time correlation 

function (force autocorrelation function) is not necessarily zero, 

                                           )'()'()( ttCtFtF −=〉〈 .                                        (4.29) 

This expression states that the force at the time '  might be related to the force at some 

other time t.  An important special case occurs when the correlation function is non-zero 

only when , so that the right side of Eq. (4.29) is proportional to a 

t

tt =' −δ function, 

)')'()( tttFtF −〉〈 (= δ .  It can be shown, for this case, that the friction coefficient and the 

correlation function are related through the fluctuation-dissipation theorem 

                                     )'( 2)'()( ttTkmtFtF B −=〉 δγ〈 ,                                 (4.30) 

where  is Boltzmann’s constant.  This theorem is discussed in textbooks on statistical 

mechanics [72] and will not be derived here. When the stochastic force is 

Bk

−δ correlated, 

it is referred to as white noise because the Fourier transform of Eq. (4.30) is flat in 

frequency space.  Colored noise refers to the more general case where the correlation 
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function is not δ -spiked, so that the Fourier transform acquires some frequency 

dependence. 

The stochastic process for a particle influenced by the three force terms 

mentioned previously is governed by the Langevin equation, which is used to describe 

Brownian motion in phase space.  This equation is given by 

                                          )(  tFvm
x
V

dt
dv

+−
∂

m ∂
−= γ .                                  (4.31) 

One approach to modeling system-bath dynamics is to treat the fluctuating force in Eq. 

(4.31) as an additive Gaussian noise and solve this equation computationally for each 

member in an ensemble of np  trajectories.  Another approach to the stochastic dynamics 

of an ensemble of particles is to propagate the density in phase space using an 

appropriate equation of motion.  By doing this, the stochastic term in the Langevin 

equation is replaced by a deterministic term proportional to the second-order derivative in 

momentum.  In 1940, Kramers derived an important equation [73] that governs the phase 

space evolution of a subsystem in contact with a heat bath maintained at an equilibrium 

temperature T.  To do this, Kramers invented a model for a condensed phase chemical 

reaction involving a particle moving in a one-dimensional potential with the remaining 

degrees of freedom for both the reacting and solvent molecules constituting a heat bath. 

With this description, he derived what is now called the Klein-Kramers equation given 

by6 
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where the first of the two terms involving γ  is the dissipative term and the second one 

leads to momentum diffusion.  The first two terms on the right side are recognized as the 

convective terms from the Liouville equation.  Kramers obtained steady state solutions to 

this equation for two limiting cases, weak and strong friction.  In these limits, Kramers 

thoroughly investigated the double well potential and was able to analytically derive 

reaction rate constants for this problem.  Since his work, a number of analyses have 

focused upon determination of the escape rate of a particle initially trapped in a meta-

stable well as a function of both temperature and the friction coefficient.  These and other 

results are described in a comprehensive review article [75].  

4.4.3.  The DPM/KK equations of motion 
In the setup used by Donoso and Martens, phase space Lagrangian trajectories 

were used to calculate solutions to the KK equation of motion.  In order to do this, the 

Lagrangian velocity vector is needed in phase space.  To obtain this, Eq. (4.32) is written 

in the form of a continuity equation involving the divergence of the probability flux 

vector, ),,( tpxJ
r

.  This gives the equation 

                                                0=⋅∇+
∂
∂ J
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.                                                (4.33) 

If Eq. (4.32) is substituted into Eq. (4.33), the divergence of the flux can be given by 
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From this equation, the flux vector can be easily deduced as 

                                                    W
m
pJ x = ,                                                    (4.35) 
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If the probability flux vector is defined as vWJ rr
 = , where the velocity phase space 

vector is ),( px vvv =
r , the velocities can be given by  
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= .                                  (4.36) 

Upon substitution of Eqs. (4.35) into Eq. (4.36), the Lagrangian velocity components of 

the KK equation are found to be 
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The momentum velocity component in the above equation can be decomposed into a 

local classical and non-local density dependent part, giving 

                                        )(WFF
dt
dp

nonlocallocalp +==v .                                 (4.38) 

In this equation, the local force term includes the classical force, , plus the 

dissipative term, 

xV ∂∂− /

p γ− .  The non-local force in this equation involves derivatives of the 

density field, just as in the quantum potential. 

After deriving the KK Lagrangian velocity components, a transformation from the 

fixed-grid equation, given in Eq. (4.32), to the Lagrangian frame can be made using the 

relation 
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This equation can be integrated along the trajectory to give the updated density 

            W                        (4.40) )).0(),0((  ))(),((
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Equation (4.40) leads to non-Hamiltonian dynamics, in which the flow is generally 

compressible (expansive or contractive), with ∇ 0≠⋅ vr
r

.  There are two important non-

crossing rules that follow directly from this equation (1) a trajectory cannot cross a 

surface on which the density is zero; (2) the sign of the density riding along the trajectory 

cannot change. 

In the computational algorithm used by Donoso and Martens, the non-local 

density dependent force acting on a specific trajectory was calculated by fitting Gaussian 

functions to the known density values using a set of nearby trajectories.  A moment 

method was employed to fit the parameters in the Gaussian exponent.  From this fit, 

derivatives of the density were evaluated, and these were then used to calculate the non-

local terms in the equations of motion for each of the entangled trajectories.  Over the 

course of time, however, errors develop in the trajectories due to unavoidable 

inaccuracies arising from this fitting procedure.  To help resolve these issues by 

completely eliminating the need for function fitting, the DPM was used to propagate 

DM’s “interacting” trajectories. 

Before doing this, however, the phase space density, , was transformed 

into space using the equation C

),( txW

−C )( ln W= .  In this manner, the initial Gaussian 
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distribution can be naturally truncated at third order7, since it is quadratic in this space.  

Using this transformation, the KK equation of motion becomes  

      ( )[ ]2
)1,0()2,0()1,0()1,0()0,1()0,1()0,0( 1 CCTmkpCCVC

m
pC Bt +++++−= γ∂ .      (4.41) 

Here, the subscript notation described previously is used for the spatial derivatives.  The 

transformed KK equation was propagated using the DPM instead of Eq. (4.32) 

directly.  In addition to this equation of motion, the phase space partial derivatives were 

propagated as well.  These were obtained by application of the operator  

to Eq. (4.41), where n  and  are positive integers taking on values up to the truncation 

order chosen.  These equations were not coded explicitly; rather, they were generated 

directly within recursion loops.  The DPM equation of motion for the  and mth  

partial derivative in this frame is given by 
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Using the velocity components given in Eq. (4.37), the phase space, DPM, Lagrangian 

equations of motions are given as 
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C
dt

dC
.                         (4.43) 

The extra terms in Eq. (4.43) always cancel some of the terms in the Eulerian derivative, 

so that the Lagrangian equations of motion are actually simpler that those calculated by a 
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fixed observer.  For example, for the KK equation, the Lagrangian time derivative of the 

C-density is given by 

                    )2,0(
)0,0( TCmk

dt
dC

Bγγ += .                                 (4.44) 

This is much simpler than its Eulerian version. 

To summarize the DPM procedure, Eq. (4.44) and Eqs. (4.43) were propagated in 

time for all derivative combinations up to a predetermined truncation value.  In addition 

to this, Eqs. (4.37) were also propagated concurrently to update the fluid element/particle 

positions in time.  Because no fitting is required in the DPM, the time-adaptive, Cash-

Carp/Runge-Kutta time-integrator was used in the two applications discussed in the next 

section.  This integrator is fourth order accurate in time and is able to adaptively adjust its 

time-step to decrease the chance of numerical ‘blow-ups’.  In the two problems 

discussed, the DPM will be used to obtain phase space solutions that are comparable to 

those obtained in DM’s study.  

4.4.4.   DPM/KK applications 

4.4.4.1.  The damped harmonic oscillator 
The first test case is the damped harmonic oscillator (frequency ω ), which is 

frequently used to model vibrational relaxation in a thermal bath.  An initial minimum 

uncertainty Gaussian distribution was constructed with position and momentum widths 

mwx 2/)0( h=σ  and 2/)0( hmwp =σ , a mean energy of ( 0 1.E t ) 0< = >

=

=

B

, and a 

center at , .  The bath temperature was defined to be k T .  A 

total of 625 trajectories were launched from randomly selected points in an ellipse 

3)0( −=x 0)0 =(p 0.05
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centered about the initial distribution.  To compare with results presented in the DM 

study, a dimensionless friction constant vibτγγ  0 =  was used, where vibτ  is the period of 

the undamped harmonic oscillator, w/2vib πτ = . 

0γ

Figure 4.5 displays the energy decay of the initial density in the harmonic 

oscillator potential as a function of .  Both parts of this figure illustrate how the rate of 

energy decay is dependent upon the strength of the friction coefficient.  The results 

obtained from the DPM in the low-friction (weakly damped) and high-friction (over-

damped) cases were identical to those presented in the DM study.  

In Fig. 4.6 the evolution of the non-equilibrium distribution was followed for 

4,100 a.u. using 1000 =γ .  Due to the strong coupling constant in this high friction case, 

the distribution is expected to reach thermal (momentum) equilibrium with the bath on a 

very short time scale relative to its spatial relaxation.  This can be seen from the figure in 

the large spread along the momentum axis after only 5 a.u.  During this time interval, the 

motion along x  is nearly frozen.  As the distribution evolves to longer times, there is 

coordinate relaxation to the thermal distribution, where the packet is centered about the 

well minimum.  After 4,100 a.u., the final equilibrium phase space distribution is 

reached. 

The results obtained for this potential were most likely exact to machine 

precision.  This is because, for a harmonic oscillator problem, the initial Gaussian 

distribution was Gaussian for all times, and could be accurately truncated in C-space at 
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Figure 4.5.  Mean energy decay for the Klein-Kramers harmonic oscillator problem.  Part 
(a) displays the energy decay in the low friction limit as a function of the 
dimensionless friction parameter oγ , and part (b) displays the same in the 
high friction limit. 
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Figure 4.6.  Density maps at four time steps for the DPM solution of the Klein-Kramers 
equation for a harmonic potential ( 1000 ). =γ

 

 114



third order (since in C-space a Gaussian is represented by a quadratic polynomial).  In the 

next problem, however, this is not so.  In fact, the evolving phase space density becomes 

quite complicated as time progresses. 

4.4.4.2.  The meta-stable well   
This model concerns the thermally activated escape from a meta-stable potential 

well.  It has been frequently used to simulate chemically and physically activated 

processes in condensed phase chemistry.  Kramers [73] thoroughly studied the double 

well potential and found that the dependence of the escape rate from the potential well on 

the damping can be separated into three regions.  For weak damping, the rate-determining 

step is the slow activation of the trajectories by the bath, and the rate constant is 

proportional to the friction constant.  When the damping is large, energy is lost to the 

bath quickly due to the frictional force, and the trajectories move slowly in configuration 

space.  In this case, the escape rate is inversely proportional to the friction constant.  In 

the turnover region, the rate of escape reaches a maximum value.  For double well 

potentials, Kramers derived equations for rate constants in the high and low friction limits 

under the restriction that the barrier height, V , satisfy the condition V .  These 

early results have been greatly extended in more recent studies [76-80]. In their study, 

DM used trajectories to solve the KK equation for the double well potential and obtained 

good results in comparison to Kramers’ analytic derivation of the high and low friction 

limit rate constants. 

* *
Bk>> T

In this problem, however, a different meta-stable potential of the form 

 will be investigated, with the parameter values 32   )( xxxV βα −= 01.0=α  and 
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60.0=β .  These values were chosen to insure that there is little probability of escape 

from the well when the interaction with the bath is turned off.  This potential has a 

minimum at  and a barrier height of 0q = 30.0* =

1

V  at .  The bath temperature, 

, is only slightly higher than the barrier maximum.  Initially, a minimum 

uncertainty phase space distribution centered at (0,0) was used.  A total of 10,000 

trajectories were launched from initial positions selected randomly about the center of the 

distribution.  Fifth-order DPM was used to propagate the equations of motion for a large 

range of friction coefficients.  Using multiquadric radial basis function interpolation (see 

appendix D), the density within the well (

1* =x

0.035Bk T =

<x ) at each time step was interpolated onto a 

regular grid, where it could be integrated over  and p x  using the trapezoid rule.  

(tk−exp()(well tW =

The results for the low friction limit are displayed in Fig. 4.7 (a).   In this limit, 

the rate of probability decay inside the well increases with increasing friction constant.  

In the high friction limit, part (b) of this figure, the escape rate decreases as the friction 

constant is increased, as expected.  Because of the coherent motion of the wave packet 

inside the well, it was difficult to evaluate a rate constant using 

for all times.  The reason for this can be seen in Fig. 4.8.  At 

early times, the packet is thermally excited by the bath and spreads in momentum space.  

After 150 fs, the wave packet has turned and a tail of particles has escaped from the well.  

After this time, the distribution rotates in phase space until the tail reaches the barrier 

maximum again.  During the time it takes for the tail to reach the barrier again, few 

particles escape.  There is not, therefore, a steady probability decay in time for this 

problem.  For short times, however, the probability decay was exponential, and rate 

))ot−
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(a) 

 
(b) 

 
 

 

Figure 4.7.  This figure displays the time decay of the probability inside the meta-stable 
well as a function of the dimensionless friction parameter 0γ .  In the low 
friction limit, the decay rate is proportional to the friction parameter as 
shown in plot (a).  In the high friction limit, plot (b), the decay rate becomes 
inversely proportional to 0γ . 
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Figure 4.8.  This figure displays the time evolution of a phase space Gaussian wave 
packet in a meta-stable well.  The Gaussian is coupled to a thermal bath 
using a dimensionless friction parameter of  100 .  For these results, the 
DPM was used to integrate the Klein-Kramers equation. 

=γ
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constants were obtained that were reasonably comparable to Kramers’ analytic equations 

(though the condition V  was not satisfied).  Figure 4.9 displays the 

exponentially fit rate constants as a function of the dimensionless friction parameter.  

From this figure it can be seen that the DPM was able to qualitatively capture Kramers’ 

turnover in the unbound meta-stable potential.  It should be noted that these calculations 

were carried out with the DPM for much longer times than 4,500 a.u., however, 

integration of the density within the well region became intractable, since most of the 

trajectories exit from the well at early times.  At late times, all of the trajectories will 

eventually escape due to thermal fluctuations. 

*
Bk>> T

4.4.5.  DPM/KK discussion 
In this section a Lagrangian method, very similar to the QTM, was applied to the 

Klein-Kramers equation of motion for dissipative phase space dynamics.  This method is 

entirely deterministic and provides an alternative to the Langevin method of integrating 

stochastic differential equations for the system coordinate.  The randomness of the 

Langevin equation is replaced here by a non-local density dependent term that allows 

interactions between the individual trajectories.  This term has similar properties to the 

quantum potential discussed in chapter three.  In this approach, for example, particles are 

guided by local (classical and dissipative) and non-local forces just as in the QTM.  

Because of these non-local forces, the particles are allowed to interact, causing a 

breakdown in the otherwise classical statistical independence of the ensemble.  

Previously, Donoso and Martens solved the KK using what they called an “interacting  
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Figure 4.9.  This figure plots the rate constant against the dimensionless friction 
parameter for the cubic potential.  The DPM results are shown by solid 
squares, and the continuous curve is a fit through these points.  Kramers’ 
turnover occurs around 5.20 . =γ
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trajectory” approach.  To obtain the density derivatives needed in the non-local term of 

the KK, DM used a fitting method called density estimation which involved fitting local 

Gaussians to the discrete data set.  This fitting method gave errors in regions of low 

density, however, and can be quite time-consuming in multi-dimensions. 

As an alternative to DM’s method, the DPM was applied to the KK equation.  In 

the DPM, the Lagrangian trajectories were calculated by solving equations of motion for 

the phase space density concurrently with its various partial derivatives.  In this manner, 

fitting methods such as density estimation were no longer needed.  Using the DPM, 

trajectories were computed for the relaxation of an oscillator and for the decay of a meta-

stable state, both of which were in contact with a thermal bath.  To test the accuracy of 

these results and other DPM applications to phase space equations of motion, a fixed-

grid, finite difference method was recently developed for comparison [70].  Good 

agreement was achieved between the fixed-grid results and those obtained from the DPM 

for the KK applications studied in the chapter.  Currently, the DPM is being extended to 

phase space dynamics in higher dimensionality.  

4.5.  CHAPTER CONCLUSIONS 

Trajectory approaches to evolutionary partial differential equations are 

complicated by the presence of algorithmic non-locality.  Because of this, spatial 

derivatives must be evaluated along the time-evolving trajectory.  In this chapter, the 

derivative propagation method for evaluating these derivatives was presented.  Rather 

than the lockstep propagation of an ensemble of linked trajectories, analytic equations of 

motion for the solution’s partial derivatives were derived, and these derivatives were 
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propagated along Lagrangian trajectories concurrently with the original PDE itself.  In 

the DPM, the various orders of derivatives are coupled together in an infinite hierarchy, 

but low order truncations of this system yields useful and accurate approximations.  The 

lowest-order spatial derivatives computed along the trajectory introduce regional non-

locality into the dynamics.  For smooth solutions, or those solutions that do not change 

much from region to region, this can provide accurate solutions.  An enormous benefit of 

the DPM is that single trajectories may be propagated and function fitting is no longer 

required to compute spatial derivatives that are required in the equations of motion.  A 

number of truncation schemes are possible, but only a limited number have yet to be 

explored.    

In this chapter, the DPM was successfully used to solve the quantum 

hydrodynamic equations of motion and the classical phase space Klein Kramers equation.  

For the QHEM, a number of different problems involving different classical potentials 

have been solved using the QTM, though only two were given in this dissertation.   For 

some of these problems, such as the Eckart barrier, the DPM trajectories ‘blow-up’, but 

stable trajectories in the product regions allow for calculation of density transmission 

probabilities.  This cannot be done using the QTM or ALE method, since a blow-up in 

any region of the dynamics will cause the entire ensemble propagation to stop.  In phase 

space, the DPM has been used to accurately solve the Wigner, Husimi, Caldeira-Legget, 

and modified Caldeira-Legget equations of motion.  These examples display the robust 

ability of the DPM to solve many different initial value PDEs, as long as their solutions 

are smooth in time and space. 
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Chapter 5:  Conclusions 

Traditionally, quantum mechanical wave packet solutions have been calculated 

using the fixed-grid form of the time-dependent Schrödinger equation.  When 

propagating the fixed-grid TDSE, a grid lattice must be constructed to cover the whole 

propagation domain.  Because of this, the computational cost of numerically integrating 

the TDSE scales too rapidly with dimensionality and numerical solutions with over three 

or four degrees of freedom are nearly unsolvable for most problems.  This scaling 

problem is exacerbated when wave function solutions are required in unbound problems, 

where the wave packet is free to propagate to large distances.  In addition to this, if the 

wave packet has a large energy, a highly resolved lattice is needed to evaluate the kinetic 

energy operator in the Hamiltonian.  This is opposed to low-energy calculations, where a 

relatively coarse lattice resolution is needed.   

The purpose of this dissertation was to describe two new methods for wave packet 

propagation that alleviate the problems encountered with traditional wave function 

solvers.  Ideally, a robust method should not have computational costs that increase too 

dramatically in large dimensionality, unbound, and high-energy problems.  In addition, 

any physical insight that can be gained is an added bonus.  It may be that more than just a 

new algorithm for solving the TDSE is required to remedy all of these issues.  Indeed, a 

completely new formalism may be needed.  In chapter three of this dissertation, Bohmian 

mechanics was introduced as a new perspective on an old problem.  Although this 

formalism, in fact, is not really ‘new’, only recently, with the advent of the quantum 

trajectory method, has it been widely studied and applied.  In the QTM, Lagrangian 

 123



trajectories are used to integrate the quantum hydrodynamic equations of motion, derived 

exactly from the TDSE.  These trajectories follow regions of significant probability 

density, thus eliminating the need to calculate solutions in unimportant regions.  Also, in 

Bohmian mechanics, the highly oscillating wave function is not propagated.  Instead, the 

real-valued amplitude and phase functions, governed by the QHEM, are solved.  Because 

these functions are generally much smoother in space and time than the wave function, 

fewer grid points are needed to capture their form.  In addition, the Lagrangian 

trajectories used in the QTM can be analyzed for insight into quantum phenomenon such 

as barrier tunneling.  For example, classical descriptions such as ‘forces’, ‘momentum’, 

and ‘position’ can be used to describe these moving particles.   

The solutions of the QHEM, however, are not always so smooth and easily 

calculated.  In chapter three it was shown that amplitude nodes create singularities, and 

that in regions around these nodes, the hydrodynamic equations become stiff in time.  In 

addition to this problem, inflation and compression can create inaccuracies in derivative 

approximations.  The results of both of these are termination of the entire ensemble’s 

propagation.  For the first problem, that of stiff time-dependence, better time integrators 

are needed (maybe implicit ones).  The inflation and compression problems, on the other 

hand, are impossible to handle using the Lagrangian QTM.  However, later in this chapter 

the first novel method was described called the arbitrary Lagrangian-Eulerian method.  In 

this method, particle trajectories are completely governed by the user.  Equations of 

motion for the particle velocities can be derived that guide the particles wherever they are 

needed.  The particles can, for example, flow to regions of large amplitude gradients and 

curvatures to decrease fitting and interpolation errors.  In most cases, however, the ALE 
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method has been used to sweep out trajectories of equal grid spacings, so that a uniform 

grid of expanding or contracting spacings is propagated. To move the grid, the edge point 

velocities are assigned to be completely Lagrangian.  This new method was used to solve 

an uphill ramp problem for which the QTM fails.  Although by using the ALE method, 

all compression and inflation problems are resolved, problems still persist in nodal 

regions.  Since node singularities are not encountered when the TDSE is solved, several 

hybrid methods have been developed that combine the ALE and quantum trajectory 

methods with a TDSE propagator.  The results presented in these studies seem very 

promising. 

In chapter four of this dissertation, another new method for solving the QHEM 

was described, the derivative propagating method.  In this method, the time-evolution of 

the phase and amplitude can be computed along discrete trajectories without requiring 

explicit input from surrounding points, even though spatially non-local terms are present 

in the quantum potential of the QHEM.  This is done by propagating the spatial 

derivatives in time according to their own equations of motion, and this method can be 

readily applied in either Lagrangian (moving grid) or Eulerian (stationary grid) schemes.  

The advantage of this approach is that individual trajectories can be propagated, one-at-a-

time, and function fitting is not required to evaluate the non-local terms.  Regional non-

locality can be incorporated at various levels of approximation to ‘dress’ what would 

otherwise be ‘thin’ locally propagating trajectories.   

To show that this method is robust and can be used to solve many evolutionary 

PDEs, the DPM was used to obtain trajectory solutions to the dissipative, phase space 

Klein-Kramers equation later in the chapter.  Trajectory solutions in two-dimensional 
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phase space were obtained for the relaxation of an oscillator in contact with a thermal 

bath and for the decay of a meta-stable state.  In addition to this phase space equation of 

motion, the DPM has been used to propagate the Wigner, Husimi, Caldeira-Leggett, and 

smoothed Caldeira-Leggett equations of motion.  Accurate solutions were obtained for 

each of these for some simple models. 

The three methods discussed in this dissertation share one common theme: nodal 

problems.  This problem is intrinsic to the QHEM, and it cannot be resolved with any 

propagation method.  When nodal regions develop in the QTM and ALE method, 

breakdown is sure to follow, and the entire propagation is halted.  Results past this point 

cannot be obtained.  The same problems occur in the DPM, only in this method, single 

trajectories that pass this region blow-up, the others remain unaffected.  All three of these 

methods work very well, however, when nodes are not present.  Unfortunately, the goal 

here is to produce an algorithm that will robustly calculate wave packet dynamics on any 

potential energy surface, with nodes or without, since it is impossible to know if nodal 

regions will occur beforehand. 

The ALE method and DPM are still embryonic, each less than a year old.  

Currently, these methods are being further developed and extended into higher 

dimensions.  In addition to this, hybrid methods combining the QTM, ALE, DPM, and 

TDSE are now being developed.  Other variables, such as Kendrick’s artificial viscosity 

are being studied as well.  Many advances to these methods are being made from a wide 

range of disciplines.  As the algorithms are advanced, increasing attention is given to the 

numerical advantages and physical insight to be gained from solving the QHEM.  
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Although the future of these two new methods is uncertain, they will surely serve as 

stepping-stones for future progress in quantum nuclear dynamics.
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Appendix A:  Numerical Integration of the Time-Dependent 
Schrödinger Equation 

One of the oldest and most traditional ways of solving for the evolution of a 

quantum system is to integrate the time-dependent Schrödinger equation directly using a 

grid-based numerical method.  In such routines, the wave function, ),( txψ  in one-

dimension, is represented on a discrete set of np  points, { }ix

2 ) ∂ ψ

, which define a spatial grid 

(or lattice in multi-dimensions).  This spatial grid is usually fixed for all times.  After the 

wave function’s initial conditions are given, it is propagated on the grid according to the 

TDSE.  At each time step, a second order spatial derivative is needed for substitution into 

the kinetic energy term of the Hamiltonian, .  This second order 

derivative is often approximated using finite difference (see Appendix B) or finite 

element methods.  If a one-sided difference is used for the time derivative, corresponding 

to the Euler integrator discussed in section 3.3.2.2, and a second order difference is used 

for the spatial derivative, the differenced TDSE becomes 
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where  is the constant spacing between adjacent grid points, x∆ t∆  is the time step used 

for propagation, and V  is the classical potential.  In this equation, the subscripts 

indicate the grid point’s position in space, 

)( jj xV=

)( jj xψψ = , and the superscripts indicate the 

time step of evaluation, ), titx oj ∆+(i
j =ψψ .  By solving Eq. (A.1) for 1+i

jψ , each spatial 

grid point can be updated by one time step.  To evaluate this equation at the grid edges, 
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suitable boundary conditions must be imposed, since Eq. (A.1) uses centered finite 

differences for the spatial derivative.  A commonly used boundary condition applied to 

the TDSE is to set the wave function equal to zero at the grid edges (Dirichlet boundary 

conditions).  As long as the grid is sufficiently large enough so that all of the wave 

function’s density remains inside the grid, these boundary condition will be valid.  

Unfortunately, to enforce these conditions, very large fixed-grids are required, especially 

for unbound problems.  

 When the predetermined grid lattice is too small, the edges act as artificial barriers 

that will cause reflections in the wave function amplitude.  In this case, the solutions 

obtained do not truly reproduce the evolution of the system.  Instead, contain unwanted 

numerical artifacts.  To solve this problem, and subsequently use smaller grids, the TDSE 

is often solved using an absorbing potential at the grid edges.  In this case, any 

significant amplitude that reaches the grid edges will be ‘eaten’.  Of course, the total 

density probability is no longer conserved with the use of these boundary conditions. 

Equation (A.1) can be a stable propagator, depending on the chosen values for x∆  

and .  However, this equation is not unitary, meaning that it does not conserve the 

systems total probability.  To properly difference the TDSE so that it does conserve 

probability, other time-integrators, such as the implicit Crank-Nicolson [39], should be 

used.  These integrators require the decomposition of a 

t∆

npnp×  matrix, where np  is the 

total number of grid points.  In two-dimensions, a  matrix must be decomposed, 

and so on.  Because of this exponential scaling, implicit methods like the Crank-Nicolson 

are difficult to apply in multi-dimensional problems. 

2np2np ×
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Throughout this dissertation, many of the results obtained from numerically 

integrating the QHEM are compared to fixed-grid, wave function solutions of the TDSE.  

These solutions are very accurate and easy to obtain for one and two-dimensional 

problems.  In our studies, we found that if a high-order explicit time integrator is used, 

such as the Cash-Carp time-adaptive Runge-Kutta integrator, the total grid probability 

was conserved to machine precision.  This may not be true for all problems, however.  In 

addition to the time adaptive integrator, fourth order finite-differences were used to 

approximate the kinetic energy’s second order spatial derivative for all fixed-grid results 

presented. 
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Appendix B:  The Finite Difference Method 

One of the most widely used methods for solving differential equations on an 

Eulerian, fixed-grid is the finite difference method.  This method, although it can be 

applied to many types of problems, is especially useful for regular grids with small 

spacings.  The advantage of the finite difference method is that matrix solutions are not 

needed.  This is opposed to interpolation and least squares methods, where LU 

decompositions of coefficient/collocation matrices are often required.  In the finite 

difference method, each of the derivatives in the differential equation are approximated 

by the appropriate difference equation and solved for explicitly.  This is generally an 

extremely fast procedure. 

Assume a set of np  discrete function values, { },...2,1),( npixf i = , is given on 

a one-dimensional grid, { , of constant spacing h}ix x∆= .  To obtain the difference 

equations for the first order spatial derivative of an arbitrary function at grid point , the 

solution can be expanded in a Taylor series to the nearest neighbor grid points, 
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If the two expansions are subtracted from one another and subsequently divided by , a 

finite difference representation of the first derivative is obtained, 
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If the two expansions are added and divided by , a finite difference representation for 

the second order derivative is obtained,  

2h
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In both of these difference equations, the approximations are accurate to second 

order, since the leading error term is proportional to .  These low order approximations 

can give excellent results for high-resolution grids or extremely smooth solutions.  

However, for more accurate approximations, higher order finite differences should be 

used.  These high order schemes require more stencil points to obtain more accurate 

approximations than those obtained using lower order differences.  Throughout this 

dissertation, fourth order differences will often be used.  If the appropriate linear 

combinations of Eqs. (B.1) and (B.2) are taken, then the fourth order centered difference 

for the first and second derivatives are 
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When applying the finite difference method to a differential equation, two 

common boundary conditions are used.  In the first of the two, called Dirichlet boundary 

conditions, a function is assigned a constant value at the edge points for all times.  When 

this function is assigned to be zero, the conditions are called homogeneous Dirichlet.  

This condition is the easiest to apply, and it was used for all finite difference applications 
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in this dissertation.  In the second type of boundary condition, the edge points are 

assigned constant derivatives.  This condition will not be used. 

Given Dirichlet boundary conditions, the second order finite difference method 

can be directly applied.  However, since the fourth order scheme requires more function 

values (a representation of its nonlocal character), an asymmetric difference equation is 

needed for the function values at locations  and .  The difference equations at 

these locations are given by  
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These equations, along with the centered-difference formulas given in Eq. (B.5) 

constitute all that is needed to apply the fourth order finite-difference method when 

Dirichlet boundary conditions are given. 

 133



Appendix C:  The Moving Weighted Least Squares Method (MWLS) 

Many methods of function approximation involve fitting low order polynomials to 

a discrete set of function values. One of these is the polynomial least squares method.  To 

describe this method, consider a one-dimensional grid, { }ix , with np  grid points.  In this 

scheme, the function at grid point  is expanded to another grid point  by the 

equation, 

jx ix

                                         .                                        (C.1) )()(
1

j

nb

j
ijji xxpaxf −≈ ∑

=

In the above equation,  are the polynomial basis functions centered at ,  are the 

coefficients for this basis set, and  is the total number of basis functions used in the 

expansion.  To solve for the coefficients of Eq. (C.1), a group of  grid points 

closest to the expansion point is chosen.  This group of points is called an expansion 

stencil.   

jp jx

nb

ja
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np ≥

After the stencil is chosen, a least squares analysis [39] is then used to minimize 

the square of the error between the  expansions and the actual stencil function values 

to give a maximum likelihood approximation.  The minimization equations for this 

approximation are of the form, 
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The above equation can be given in matrix notation by,  

                                                fPaPP tt =)( .                                                  (C.3) 
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The coefficients of Eq. (C.3) can then be solved using one of the many linear algebra 

solvers.  One important feature of this matrix equation is that when P  is square, all of the 

stencil function values are exactly recovered.  This procedure is called interpolation.  On 

the other hand, when , the matrix is rectangular and the function values are only 

approximately fit at the stencil point locations.  

nbnp >

For a polynomial least squares method, the one-dimensional truncated Taylor 

basis  
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if frequently used, where ixx −=ξ  and  is the expansion point.  In two-dimensions, 

this basis (expanded about ( ) is  
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where iyy −=η .  It is easy to formulate a D-dimensional basis using the appropriate 

Talyor series. 

Occasionally all of the particles inside the expansion stencil are not given the 

same weight when calculating their contribution to the least squares approximation.  

When different weights are assigned to each particle inside the stencil, the routine is 

called moving weighted least squares.  In this case, the least squares equations are  
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and the corresponding matrix equation is  
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where W  is the diagonal weight matrix.  In Eq. (C.6),  is the radial distance between 

two particles and is given in D-dimensions by  
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It is an important fact that in the case of MWLS, square matrices do not interpolate as 

they do in regular least squares algorithms.   

When the MWLS method was used to obtained spatial derivatives in this 

dissertation, it is called once for every particle, and a stencil of  particles was used.  

For each call, a  matrix was decomposed.  The weights used are calculated 

according to the exponential function, 

nb

nbnp×

                                              ( )jiji rrw ,,  exp)( γ−= ,                                          (C.9) 

where γ  is calculated to give a specific weight at the edge of the stencil. 
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Appendix D:  Radial Basis Function Interpolation 

In the last decade or so, radial basis function interpolation has attracted 

considerable interest due to its ability to interpolate multivariate scattered data relatively 

accurately [81-118].  In the typical interpolation scenario, a set of  discrete function 

values, 

np

},...2,1),({ npirf i =
r , is given at scattered grid point locations.  For a D-

dimensional grid, these points are defined as {{ R .  Any 

interpolation procedure requires that   

∈= }1},,..., 21 npixxx D
iii ,...2, D

                                          npiforfrF ii ,...,2,1    )( ==
r .                                   (D.1) 

Here, )( irF r  is called the interpolate of the data set { }if .  According to Eq. (D.1), the 

interpolate should exactly represent the function values at the grid point locations.  This 

is opposed to least squares routines, which may only approximately fit function values at 

these locations.   

In radial basis function interpolation (RBF), the interpolate has the form 
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where ⋅  denotes the Euclidean norm, and )( ji rr rr
−φ  are the radial basis functions.  The 

coefficients of Eq. (D.2), , are found by solving the linear system  ar

                                                          fa
rr

=Φ ,                                              (D.3) 

where Φ  is a collocation matrix with elements )( jiij rr rr
−= φφ .  A few examples of the 

some well-known RBFs are 
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            ,  (2/22 )()( βδφ −+= rr )0>β                             inverse multiquadrics, 

                                                    thin-plate splines, )ln()1()( 22 rrr mm −−=φ

                          shifted thin-plate splines, 2/122122 )ln()()1()( rrr mm ++−= − δδφ

                                                                    gaussians.                  (D.4) 
2)()( rer δφ −=

 

One of the most popular of these is the multiquadric (MQ) developed by Hardy 

[92].   Micchelli [103] has proved that the multiquadric is always solvable for distinct 

data, and that the MQ coefficient matrix of rank  has one positive real eigenvalue and 

 negative real eigenvalues.   The multiquadric with 

np

)1( −np 1=β  is the most widely used 

and has the form 

                                              2/122 )()( δφ +=− ijji rrr rr ,                                   (D.5) 

where 

                                                ,                                     (D.6) ∑
=

−=
d

k

k
j

k
iij xxr

1

2/12 ))((

and where, for the purposes of this dissertation, δ  is a parameter that is independent of 

the basis function.  Because the multiquadrics have exponential convergence properties 

[102] and have been ranked the best in accuracy of all RBFs according to Franke’s 

review paper [86], it was the RBF of choice when this interpolation method was applied. 

It is well known that the choice of the parameter in Eq. (D.5) has a large influence 

on the interpolation ability of the RBF basis [115].  To examine how the δ  parameter 
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affects the shape of the multiquadric basis function, the limit of the multiquadric function 

can be taken as ∞→δ  and 0→δ .  It can be seen that as δ  increases, so does the 

relative smoothness of the basis function.  However, at relatively large values of δ , the 

function becomes linear near the center and begins to “wash out” the coordinate 

dependence of the basis function.  This can lead to difficulties when trying to obtain 

distinct entries in the coefficient matrix for better conditioning.  On the other hand, as 

0→δ  the multiquadric begins to have the shape of a cone with a cusp or discontinuous 

derivative at the center.  It is, therefore, easy to visualize why extremely small shape 

parameters do not give very smooth interpolates and are generally not preferred.  

Understanding these features and how they relate in the collocation-like scheme of RBF 

interpolation is vital when considering optimization of the free parameter RBFs.  

Tarwater [115] has shown that the RMS errors of the interpolates decrease with 

increasing δ  until an optimum value is obtained, and that beyond this optimum value the 

collocation matrix becomes extremely ill-conditioned, resulting in increasing errors.  This 

optimum shape parameter thus represents the best compromise between the smoothness 

of the interpolate and the conditioning of the coefficient matrix.  Obtaining optδ  continues 

to be an active area of investigation in RBF interpolation, and many papers have been 

written on circumventing the ill-conditioning of the coefficient matrix to assuage this task 

(see [99]).  A few of the proposed methods for determining good shape parameters 

include the following: Hardy’s use of the equation d815.0=δ , where  is the average 

distance between the  data point and its nearest neighbor [92], Foley’s scheme for 

selecting 

d

thi −

δ  by minimizing the average root-mean square (RMS) difference between the 
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multiquadric and inverse multiquadric [85], Kansa and Carlson’s method of selecting 

local shape parameters (shape parameters that are basis function dependent) [98], and 

lastly, Rippa’s method of  “cost” minimization [105], which is similar to Goldberg’s 

method of cross-validation [87].  When RBF interpolation was used in this dissertation, 

the shape parameter was optimized using the initial conditions of the system, and this 

parameter was used constantly throughout the propagation. 
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Appendix E:  Atomic Units 

Oftentimes, it is convenient to use atomic units to describe nuclear motion. These 

units have been chosen such that all of the fundamental electron properties are equal to 

one.  Given below is a listing of the appropriate atomic unit conversion factors used 

throughout this dissertation.  

 

Atomic Units and Their SI Equivalents 

Quantity Conversion Factor Name 

1 au = 9.10939 x 10^-31 kg 
Mass 

= 5.48580 x 10^-4 g/mol 
Electron mass 

Charge 1 au = 1.60218 x 10^-19 C Electron charge 

Length 1 au = 5.29177 x 10^-11 m Bohr radius 

1 au = 4.35975 x 10^-18 J 

= 27.2114 eV 

= 219475 cm-1 

= 2625.50 kJ/mol 

Energy 

= 2 Rydbergs 

Hartree 

Angular 

Momentum 

1 au = 1.05457 x 10^-34 J 

s/rad 

 

 

Time 1 au = 2.42 x 10^-17 s  
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Using this list, the mass of a proton (1.6726 x 10^-27 kg) in atomic units is 

1836.15 au, and the reduced mass of the hydrogen molecule (0.503913 g/mol) is 925.260 

au.  These units are frequently used to simplify the Schrödinger equation. For example, 

the Hamiltonian for an electron in the Hydrogen atom is given in atomic units by 

.  Most of the quantities used in this dissertation are presented 

in atomic units. 

rH electron /1)2/1(ˆ 2 −∇−=
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Appendix F:  Example QTM Code 

 
 
Program QTM 
Implicit none 
 
!----------------------------------------------------------------------------------------------------------! 
!    This codes numerically integrates the quantum hydrodynamic equations of motion.    !  
!     For time-integration, the first order Euler method is used. An Eckart barrier               ! 
!     potential is used.                                                                                                             ! 
!                                                                                                                                             !                            
!    np = the total number of particles                                                                                   !                 
!    ntime = maximum number of time steps to propagate                                                    !                               
!----------------------------------------------------------------------------------------------------------! 
 
integer, parameter :: np = 63, ntime = 150000 
integer i,j,k 
real(kind=16) 
delv(np),c(np),d1x(np),d2x(np),quantum(np),pot(np),x(np),rho(np),vx(np),phase(np) 
real(kind=16) dt,x0,beta,energy,conv,am,vb,xb,wx,xmin,xmax,h,pi,anorm,total_density 
real(kind=16) kinetic_energy,lagrange 
 
!---------------- Defining Initial Wave Packet and External Potential Parameters -----------! 
 
!     Time step in au 
     dt = 0.5d0 
!     Center of Gaussian Distribution 
      x0 = 0.d0     
!     Width of Gaussian Distribution ( beta  ))4/(1 2σ=
      beta = 9.d0 
!     Initial translational energy of Wave Packet in cm  1−

      energy = 8000.d0 
!     Conversion factor from  to au 1−cm
      conv = 219474.6d0 
!     Translational energy in au 
      energy = energy/conv 
!     System mass in au 
      am = 2000.d0 
!     Eckart barrier height in  1−cm
      vb = 8000.d0 
!     Eckart barrier height in au 
      vb = vb/conv 
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!     Center of Eckart barrier 
      xb = 6.d0 
!     Width parameter for Eckart barrier 
      wx = 5.d0 
 
!     Initial grid minimum and maximum 
      xmin = -0.6d0 
      xmax = 0.6d0 
!     Initial particle spacings 
      h = (xmax - xmin)/dble(np-1) 
!     Initial particle positions 
      do i = 0,np-1 
       x(i+1) = xmin + i* h 
      enddo     
 
!------------------------- -- Initializing Wave Packet Propagation ----------------------------! 
 
!     Normalization for the initial Gaussian distribution  
      pi = 4.d0*atan(1.d0) 
      anorm = (2.d0*beta/pi)**(1.d0/4.d0) 
 
!     Building Initial Wave Packet   
      do i =1,np 
        R(i) = anorm*exp(-beta*((x(i) - x0)**2)) 
        rho(i) = R(i)**2 
      enddo 
 
!     Initial particle velocities (all particles are initially the same velocity) 

!     These velocities are obtained from the equation 2

2
1 mvEtrans = . 

      do i =1,np 
        vx(i) = sqrt(2.d0*energy/am) 
        delv(i) = 0.d0 
      enddo 
 
!     Initial phase (action function) for each particle 
      do i = 1,np 
        phase(i)= sqrt(2.d0*am*energy)*x(i) 
      enddo 
 
!     Total initial grid density 
      total_density = sum(rho)*h 
 
!---------------------------------- ----- Time Propagation -------------------------------------------! 
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do k = 1,ntime 
! Time in au. 

time = dble(k)*dt 
! Conversion from au to fs 

tfs = time*0.0242d0 
 
 
!      Defining -amplitude C
      do i = 1,np 
      c(i) =log(sqrt(rho(i))) 
      enddo 
 
!     Calling subroutine for C amplitude spatial derivative approximations −
      call fit_it(np,x,c,d1x,d2x) 
 
!     Calculating quantum and classical potentials 
      do i = 1,np 
        ! Quantum Potential. 
          quantum(i) = -1.d0/(2.d0*am)*(d2x(i) + d1x(i)**2) 
        ! Classical Eckart Potential. 
          pot(i) = vb*sech(wx*(x - x0))**2 
      enddo 
 
!     Calculating phase (S) using potentials (Quantum Lagrangian:  T-(V+Q)) 
      do i = 1,np 
        kinetic_energy = 0.5d0*am*vx(i)**2 
        lagrange = kinetic-(pot(i)+quantum(i)) 
        phase(i) = phase(i) + lagrange*dt 
      enddo 
 
!     Updating particle positions 
       do i = 1,np 
        x(i) = x(i) + vx(i)*dt 
      enddo 
 
!     Calling subroutine for amplitude spatial derivative approximations −S
      call fit_it(np,x,phase,d1x,d2x) 
 
!     Updating velocities and probability density 
      do i = 1,np 
        vx(i) = (1.d0/am)*d1x(i) 
        delv(i) = (1.d0/am)*d2x(i) 
        rho(i)  = rho(i)*exp(-delv(i)/2.d0*dt) 
      enddo 
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!--------------------------------------- End Time Propagation --------------------------------------! 
                                                                 ENDDO 
 
END PROGRAM QTM 
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