Signed Graphs with Maximum Nullity at Most Two

Fredrick S. Dahlgren
Georgia State University

Follow this and additional works at: https://scholarworks.gsu.edu/math_diss

Recommended Citation

Dahlgren, Fredrick S., "Signed Graphs with Maximum Nullity at Most Two." Dissertation, Georgia State University, 2022.
doi: https://doi.org/10.57709/28777057

This Dissertation is brought to you for free and open access by the Department of Mathematics and Statistics at ScholarWorks @ Georgia State University. It has been accepted for inclusion in Mathematics Dissertations by an authorized administrator of ScholarWorks @ Georgia State University. For more information, please contact scholarworks@gsu.edu.

Signed Graphs with Maximum Nullity at Most Two

by

F. Scott Dahlgren

Under the Direction of Hein van der Holst, PhD and Marina Arav, PhD

Abstract

A signed graph is an ordered pair (G, Σ), where $G=(V, E)$ is a graph and $\Sigma \subseteq E$. The edges in Σ are called odd, and the edges in $E \backslash \Sigma$ are called even. The family of matrices $\mathcal{S}(G, \Sigma)$ is defined such that if $\left[a_{i, j}\right]=A \in \mathcal{S}(G, \Sigma)$, then $a_{i, j}<0$ if there is at least one edge between i and j and if all edges between i and j are even; $a_{i, j}>0$ if there is at least one edge between i and j and if all edges between i and j are odd; $a_{i, j} \in \mathbb{R}$ if there is at least one even edge and at least one odd edge between i and j; and $a_{i, j}=0$ if there are no edges between i and j. The maximum nullity of a signed graph $M(G, \Sigma)$ is the largest corank (A) for $A \in \mathcal{S}(G, \Sigma)$. The matrix $A \in \mathcal{S}(G, \Sigma)$ has the Strong Arnold Property with respect to (G, Σ) if $X=0$ is the only matrix such that $A X=0$, and $x_{i, j}=0$ if i is adjacent to j or

$i=j$. The stable maximum nullity of a signed graph $\xi(G, \Sigma)$ is the largest corank (A) for $A \in \mathcal{S}(G, \Sigma)$ where A has the Strong Arnold Property. Here, we present a combinatorial characterization of signed graphs with maximum nullity at most two, extending a result of Johnson, Loewy, and Smith. We also find the forbidden minors for signed graphs with stable maximum nullity at most two, extending a result of Hogben and van der Holst. We generalize the notion of zero forcing to signed graphs. We find the zero forcing number of signed graphs with maximum nullity at most two, extending a result of Row.

INDEX WORDS: Signed graphs, maximum nullity, zero forcing, inverse eigenvalue problem for a graph, linear algebra, combinatorial matrix theory.

Signed Graphs with Maximum Nullity at Most Two

 by
F. Scott Dahlgren

A Dissertation Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in the College of Arts and Sciences Georgia State University

Copyright by
F. Scott Dahlgren

2022
by

F. Scott Dahlgren

Committee Chairs:

Committee:

Hein van der Holst
Marina Arav

Guantao Chen
Frank J. Hall
Zhongshan Li

Electronic Version Approved:

Office of Graduate Studies
College of Arts and Sciences
Georgia State University
May 2022

DEDICATION

To my family, for their love, patience, and support.

ACKNOWLEDGMENTS

I would like to thank the Faculty of the Department of Mathematics and Statistics for their continued support and for all they have taught me. I am forever in their debt. In particular, I would like to thank Dr. Hein van der Holst and Dr. Marina Arav, who have shown me great kindness and patience over the years. I am grateful for their support and care. I would also like to thank Dr. Zhongshan Li, Dr. Frank J. Hall, and Dr. Guantao Chen who were kind enough to give their time as committee members. I would again like to thank Dr . Li, as well as Dr. Michael Stewart, Dr. Florian Enescu, and Dr. Yi Jiang, for their service as Graduate Advisor. I would also like to thank Ms. Sandra Ahuama-Jonas and Ms. Katina Akins for their work ensuring each semester went smoothly for me. I would like to thank Dr. Alexandra Smirnova and again thank Dr. Guantao Chen for their leadership of the Department as Chair Professor. Finally, I would like to thank the many students of Georgia State University who I have had the pleasure to know and study with.

TABLE OF CONTENTS

ACKNOWLEDGMENTS v
LIST OF FIGURES viii
LIST OF ABBREVIATIONS ix
1 Background 1
1.1 Matrices 5
1.2 Graphs 9
1.3 Signed Graphs 13
$1.4 \Delta Y$-Transformations 18
1.5 Zero Forcing 22
1.6 Graph Structures and Maximum Nullity 25
1.6.1 1-Separations 25
1.6.2 Trees and Forests 26
1.6.3 Linear 2-Trees 27
1.6.4 Graph of Two Parallel Paths 27
1.6.5 Thin Outs 29
1.6.6 T_{3}-Family of Graphs 30
1.7 2-Connected Signed Graphs with $M(G, \Sigma) \leq 2$ 32
1.8 Sign-Nonsingular Matrices 35
2 Signed Graphs with $\xi(G, \Sigma) \leq 2$ 38
2.1 The Signed Four-Wheel 40
2.2 The $K_{3}^{=}$-Family of Signed Graphs 43
2.3 Partial Wide 2-Paths 47
2.3.1 Two Wide Separations 49
2.3.2 One Wide Separation 60
2.3.3 No Wide Separations 67
2.4 Proof of the Main Result 69
3 Signed Graphs with $M(G, \Sigma) \leq 2$ 71
3.1 Global Structure of Signed Graphs (G, Σ) with $M(G, \Sigma) \leq 2$ 73
3.2 Pendant Paths on an Odd 4-Wheel 76
3.3 Pendant Paths Attached to 2-Connected Partial Wide 2-Paths 77
3.3.1 Two Wide Separations 79
3.3.2 One Wide Separation 88
3.3.3 No Wide Separations 98
3.4 Proof of the Main Result 105
$4 Z(G, \Sigma)$ for Signed Graphs with $M(G, \Sigma) \leq 2$ 108
4.1 Zero Forcing on Signed Graphs 109
4.2 Signed Graphs with $M(G, \Sigma)=Z(G, \Sigma)=2$ 117
4.3 Signed Graphs with $M(G, \Sigma)=2 \leq Z(G, \Sigma)$ 120
REFERENCES 126

LIST OF FIGURES

Figure 1.1 A ΔY-transformation on a simple graph. 18
Figure 1.2 The T_{3}-family from Hogben and van der Holst [14]. 31
Figure 1.3 The odd 4-wheel. Solid edges are even, and dotted edges are odd. . . 32
Figure 1.4 The signed digraph of the maximal SNS-matrix of order 3 and the corresponding signed graph, where odd edges are dashed and even edges are solid.

Figure 2.1 The $K_{3}^{=}$-family of signed graphs. Solid edges are even; dotted edges are odd; and dashed lines may be odd or even.43

Figure 2.2 The $K_{3}^{=}$-family and their minors. The first row are the members of the $K_{3}^{=}$family. Below the horizontal rule, each column are proper minors of the member of the $K_{3}^{=}$-family in that column. Arrows to the right represent a subdivision of an edge followed by a ΔY-transformation.46

Figure 2.3 The $K_{2,4} e_{i}^{j}$ family of signed graphs, for $i=e, o$ and $j=0,1,2,3,4,5$. Solid edges are even, and dotted edges are odd. Dashed edges are even for $K_{2,4} e_{e}^{j}$ and are odd for $K_{2,4} e_{o}^{j}$.

Figure 3.1 Examples of signed graphs with maximum nullity at most two. Solid edges are even; dotted edges are odd; and dashed lines may be even or odd. .

Figure 4.1 A signed graph (G, Σ) with $Z(G, \Sigma)<Z(G)$. Even edges are solid, and odd edges are dashed.113

LIST OF ABBREVIATIONS

SAP	Strong Arnold property
SNS	Sign nonsingular
w.r.t.	With respect to
Δ	The symmetric difference
T	Matrix transpose
${ }^{-1}$	Matrix inverse
\times	Cartesian product
\bigcirc	Hadamard product
\oplus	Direct sum
\preceq	Minor relationship
\prec	Proper minor relationship
\leftrightarrow	Adjacency relationship in graphs
\rightarrow	Adjacency relationship in directed graphs
$\delta(V)$	Edges incident on V
\bar{S}	The complement of S

$A / A_{2,2}$	The Schur complement of $A_{2,2}$ in A
$A[\alpha, \beta]$	The submatrix of A with rows indexed by α and columns by β
$A[\alpha]$	The submatrix of A with rows indexed by α and columns by α
$\operatorname{corank}(A)$	The dimension of the kernel of a matrix A
$d_{G}(v)$	The degree of a vertex v in the graph G
$d_{G}(a, b)$	The distance between the vertex a and b in the graph G
$\operatorname{dim}(U)$	The dimension of a subpace U
$G=(V, E)$	A graph with vertex set V and edge set E
(G, Σ)	A signed graph on G with signature Σ
$G[\alpha]$	The induced subgraph of G on the vertices α
K_{n}	The complete graph on n vertices
$K_{n, m}$	The complete bipartitie graph on n and m vertices
$K_{i, j, k}$	The complete tripartitie graph on i, j, and k vertices
$\operatorname{ker}(A)$	The kernel of a matrix A
$l(P)$	The length of the path $P, l(P)=\|E(P)\|$
$\mathcal{N}(n \times m)$	The family of matrices with n rows and m columns

$\operatorname{rank}(A) \quad$ The dimension of the range of a matrix A
$\mathcal{S}(G) \quad$ A family of symmetric matrices defined by the simple graph G
$\mathcal{S}(G, \Sigma) \quad$ A family of symmetric matrices defined by the signed graph (G, Σ)

CHAPTER 1

Background

We start with a graph. We place real numbers as weights on the vertices and place weights on the edges. Then, we know the eigenvalues for our problem. The inverse eigenvalue problem for a graph asks 'which graphs have the real numbers $\lambda_{1}, \ldots, \lambda_{n}$ as eigenvalues?' An instructive question to start is 'which graphs can achieve any set of real numbers as their eigenvalues?'

Observation 1.1. The empty graph on n vertices is the only simple graph which may achieve any n-tuple of real numbers as eigenvalues.

Proof. First, we consider a matrix A with eigenvalues all equal to 1 . Then, A is similar to the identity matrix I. That is, for some nonsingular matrix V, we have

$$
A=V I V^{-1}=V V^{-1}=I
$$

Therefore, the empty graph is the only simple graph which has eigenvalues all equal to 1 .
Next, we consider any n-tuple of real numbers $\lambda_{1}, \ldots, \lambda_{n}$, and we place them along the diagonal of Λ, where Λ is a diagonal matrix. The eigenvalues of Λ are exactly our n-tuple of real numbers. As Λ is diagonal and as our graph is simple, the graph of Λ is the empty graph on n vertices. Therefore, the empty graph on n vertices may achieve any n-tuple of real numbers as eigenvalues. Because the empty graph is the only simple graph with all eigenvalues equal to 1 , the empty graph is the unique simple graph which may achieve any n-tuple of real numbers as eigenvalues.

Observation 1.1 shows us that adding a single edge e to the empty graph limits which eigenvalues are possible. In general, the inverse eigenvalue problem for a graph is very chal-
lenging. Related problems include the multiplicity of eigenvalues, inertia sets, and minimum rank. In this dissertation, we are primarily interested in the category of signed graphs with the possibility of parallel edges, instead of the category of simple graphs. Unlike for a simple graph, the family of matrices for a signed graph is closed under addition, which feels more natural in certain settings. While many results carry over nicely from simple graphs to signed graphs, others do not. As an example, we may add an odd edge f and a parallel even edge e to the empty graph; and, the resulting signed graph shows that Observation 1.1 does not hold for signed graphs with multiple edges.

Here, we build upon previous work of Arav, Hall, Li, and van der Holst who characterized 2-connected signed graphs with maximum nullity at most two [4]. In 2007, Hogben and van der Holst found the forbidden minors for graphs with stable maximum nullity at most two [14]. The existence of forbidden minors is guaranteed by the Graph Minor Theorem of Robertson and Seymour, which proves Wagner's Conjecture that every infinite family of graphs has a finite number of forbidden minors [18]. Geelen, Gerards, and Whittle extended the Graph Minor Theorem to include signed graphs; so, we may find a finite number of forbidden minors for signed graphs with stable maximum nullity at most two [11]. Here, we extend the results of Hogben and van der Holst [14] to signed graphs by finding the forbidden minors of signed graphs with stable maximum nullity at most two. In 2009, Johnson, Loewy, and Smith provided a combinatorial characterization of graphs with maximum nullity at most two [16]. Here, we extend their result to signed graphs with maximum nullity at most two. In 2012, Row found the zero forcing number of graphs with maximum nullity at most two
[20]. Here, we extend this result by finding the zero forcing number of signed graphs with maximum nullity at most two. We also generalize the notion of zero forcing on signed graphs by finding new color change rules for signed graphs, which may be of interest outside the inverse eigenvalue problems.

1.1 Matrices

We consider the family of real matrices $\mathcal{M}(n \times m)$ with n rows and m columns. We write $A=\left[a_{i, j}\right] \in \mathcal{M}(n \times m)$ when we wish to detail the entries of A : the entry $a_{i, j}$ lies in the i-th row and j-th column. If $n=m$, then we write $\mathcal{M}(n \times n)$ for the family of square matrices. We may find a submatrix of $A \in \mathcal{M}(n \times m)$ which includes $\alpha \subseteq\{1,2, \ldots, n\}$ rows and $\beta \subseteq\{1,2, \ldots, m\}$ columns, denoted $A[\alpha, \beta]$. If $A \in \mathcal{M}(n \times n)$ and $\alpha=\beta$, then we write $A[\alpha]$ instead of $A[\alpha, \alpha]$ when convenient. Recall that we may consider $A \in \mathcal{M}(n \times n)$ as a linear transformation from the vector space \mathbb{R}^{n} into \mathbb{R}^{n}. The range of A are all those vectors $y \in \mathbb{R}^{n}$ for which there exists a vector $x \in \mathbb{R}^{n}$ such that $y=A x$. In general, we write $\operatorname{dim}(U)$ for the dimension of a linear subspace U of \mathbb{R}^{n}, and $\operatorname{rank}(A)$ is the dimension of the range of the matrix $A \in \mathcal{M}(n \times n)$. The $\operatorname{dim}(U)$ is also the number of vectors in a basis of U. The kernel of A are all those vectors $x \in \mathbb{R}^{n}$ such that $A x=0$, denoted $\operatorname{ker}(A)$. The $\operatorname{ker}(A)$ is also a subspace of \mathbb{R}^{n}.

Definition 1.2. Suppose $A \in \mathcal{M}(n \times m)$. We name the dimension of the $\operatorname{ker}(A)$ the corank of A, denoted $\operatorname{corank}(A)$.

Lemma 1.3. Suppose $A \in \mathcal{M}(n \times n)$, and $\operatorname{corank}(A)=k$ with $0<k \leq n$. Let $\alpha \subset$ $\{1, \ldots, n\}$ be an index set such $|\alpha|=k-1$. Define $U \subseteq \mathbb{R}^{n}$ where $u \in U$ if and only if $u[\alpha]=0$. Then, we may find a vector $x \in \operatorname{ker}(A) \cap U$ such that $x \neq 0$.

Proof. As U and $\operatorname{ker}(A)$ are subspaces of \mathbb{R}^{n},

$$
\operatorname{dim}(U \cap \operatorname{ker}(A))=\operatorname{dim}(U)+\operatorname{dim}(\operatorname{ker}(A))-\operatorname{dim}(U \cup \operatorname{ker}(A)) .
$$

As, $\operatorname{dim}(U \cup \operatorname{ker}(A)) \leq n$,

$$
\operatorname{dim}(U \cap \operatorname{ker}(A)) \geq \operatorname{dim}(U)+\operatorname{dim}(\operatorname{ker}(A))-n
$$

As $\operatorname{dim}(U)=n-(k-1)$ and $\operatorname{dim}(\operatorname{ker}(A))=k$,

$$
\operatorname{dim}(U \cap \operatorname{ker}(A)) \geq(n-k+1)+k-n=1
$$

As $\operatorname{dim}(U \cap \operatorname{ker}(A))>0$, we may find $x \in U \cap \operatorname{ker}(A)$ such that $x \neq 0$.

A matrix $D=\left[d_{i, j}\right] \in \mathcal{M}(n \times n)$ is a diagonal matrix if $i \neq j$ implies $d_{i, j}=0$, and the diagonal of D has real entries $d_{i, i}$. The identity matrix I is a diagonal matrix with a diagonal of all ones. When convenient, we write I_{n} to clarify that $I_{n} \in \mathcal{M}(n \times n)$. A matrix $U \in \mathcal{N}(n \times n)$ is real orthogonal if $U^{T} U=U U^{T}=I$. For $A \in \mathcal{N}(n \times n)$, if there exists $B \in \mathcal{M}(n \times n)$ such that $A B=I$, then B is the inverse of A, and we write $B=A^{-1}$. If A^{-1} exists, we say that A is full rank.

The complement of a subset $\alpha \subseteq\{1,2, \ldots, n\}$ is the subset $\bar{\alpha}=\{i \in\{1,2, \ldots, n\} \mid i \notin \alpha\}$. We partition a matrix A with index sets α, β such that

$$
A=\left[\begin{array}{cc}
A[\alpha, \beta] & A[\alpha, \bar{\beta}] \\
A[\bar{\alpha}, \beta] & A[\bar{\alpha}, \bar{\beta}]
\end{array}\right]=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right] .
$$

The result is a 2×2 block matrix. In a similar process, we may partition A into an $n^{\prime} \times m^{\prime}$ block matrix so long as $n^{\prime} \leq n$ and $m^{\prime} \leq m$. A block diagonal matrix is a block matrix where $A_{i, j}=0$ whenever $i \neq j$. The direct sum of two matrices A and B is the block diagonal matrix D where A and B appear along the diagonal, and we write $D=A \oplus B$.

A matrix $A=\left[a_{i, j}\right] \in \mathcal{M}(n \times n)$ is a symmetric matrix if $A=A^{T}$; that is, if $a_{i, j}=$
$a_{j, i} \forall i, j \in\{1, \ldots, n\}$. An eigenvalue λ of A and an eigenvector $x \neq 0$ of A satisfy $A x=$ λx. We limit our discussion of eigenvalues and eigenvectors to symmetric matrices. A symmetric matrix has only real eigenvalues. If A is a symmetric matrix, then there exists a real orthogonal matrix U such that $U A U^{T}$ is a diagonal matrix. Further, the diagonal entries of $U A U^{T}$ are the n eigenvalues of A. The multiplicity of an eigenvalue is the number of times the eigenvalue appears on the diagonal of $U A U^{T}$. For symmetric matrices, the multiplicity of zero as an eigenvalue of A is exactly the $\operatorname{corank}(A)$. If the symmetric matrix A has an eigenvalue λ with multiplicity k, then $\operatorname{corank}(\lambda I-A)=k$.

Definition 1.4. Suppose we partition $A \in \mathcal{M}(n \times n)$ such that

$$
A=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right] .
$$

If $A_{2,2}$ is full rank, then the S chur complement of $A_{2,2}$ in A is

$$
A / A_{2,2}=A_{1,1}-A_{1,2} A_{2,2}^{-1} A_{2,1} .
$$

When the matrix $A_{2,2}$ is a single nonzero entry $a_{n, n}$, then we denote $A / A_{2,2}=A / a_{n, n}$ when convenient.

Observation 1.5. If A is a symmetric matrix, $\operatorname{then} \operatorname{corank}(A)=\operatorname{corank}\left(A / A_{2,2}\right)$

Proof. We may write A as a product of an upper triangular matrix, a block diagonal matrix, and a lower triangular matrix.

$$
A=\left[\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right]=\left[\begin{array}{cc}
I & A_{1,2} A_{2,2}^{-1} \\
0 & I
\end{array}\right]\left[\begin{array}{cc}
A / A_{2,2} & 0 \\
0 & A_{2,2}
\end{array}\right]\left[\begin{array}{cc}
I & 0 \\
A_{2,2}^{-1} A_{2,1} & I
\end{array}\right] .
$$

As the triangular matrices have non-zero diagonal, each is full rank. As A and $A / A_{2,2}$ are real symmetric, the $\operatorname{corank}(A)=\operatorname{corank}\left(A / A_{2,2} \oplus A_{2,2}\right)=\operatorname{corank}\left(A / A_{2,2}\right)+\operatorname{corank}\left(A_{2,2}\right)$. As $A_{2,2}$ is full rank, $\operatorname{corank}\left(A_{2,2}\right)=0$. Therefore, $\operatorname{corank}(A)=\operatorname{corank}\left(A / A_{2,2}\right)$.

The Hadamard product of $A=B \circ C$ is the entrywise product $a_{i, j}=b_{i, j} c_{i, j}$. The following definition is from Barioli, Fallat, and Hogben [6].

Definition 1.6. Suppose $A, X \in \mathcal{M}(n \times n)$. We say X fully annihilates A if

- $A X=0$,
- $A \circ X=0$, and
- $I \circ X=0$.

1.2 Graphs

A graph is an ordered pair $G=(V, E)$ where V is the vertex set and E is the edge set. When convenient, the vertex set is assumed to be $V=\{1,2, \ldots, n\}$. If a graph has more than one edge between a pair of vertices, then these are parallel edges; the graph is a multigraph; and the graph has multiple edges. If an edge $e=i i$ for some vertex i, then e is a loop. A graph with no multiple edges and no loops is a simple graph.

An edge e is incident on the two endvertices u, v if $e=u v$. Two vertices u, v are adjacent if there is an edge between them, denoted $u \leftrightarrow v$. The degree of a vertex v is the number of edges incident on v, denoted $d_{G}(v)$ or simply $d(v)$. A pendant vertex is a vertex with $d(v)=1$. Similarly, a pendant edge is an edge incident on a pendant vertex. A path is an alternating sequence of vertices and edges, $v_{1} e_{1} v_{2} e_{2} \ldots e_{k-1} v_{k}$, where each vertex is unique; and P has endvertices v_{1} and v_{k}. The length of a path P is the number of edges in P, denoted $l(P)=|E(P)|=k-1$. The distance between two vertices $a, b \in V$ is $d_{G}(a, b)=\min \{l(P): P$ has endvertices a and $b\}$. Similarly, if $U, W \subseteq V, d_{G}(U, W)=$ $\min \left\{d_{G}(a, b): a \in U, b \in W\right\}$.

Definition 1.7. A k-separation in a graph G is an ordered pair $\left(G_{1}, G_{2}\right)$ such that

- $\left|V\left(G_{1}\right) \cap V\left(G_{2}\right)\right|=k$,
- $V\left(G_{1}\right) \cup V\left(G_{2}\right)=V(G)$, and
- $E\left(G_{1}\right) \cup E\left(G_{2}\right)=E(G)$.

Definition 1.8. Let $G=(V, E)$ be a simple graph with a cut vertex v. Suppose $G_{1}=$ $\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ are subgraphs of G. If

- $E_{1} \neq \emptyset$,
- $E_{2} \neq \emptyset$,
- $V=V_{1} \cup V_{2}$,
- $E=E_{1} \cup E_{2}$, and
- $V_{1} \cap V_{2}=\{v\} ;$
then, G is the 1 -sum of G_{1} and G_{2} at v.

Notice that a 1-sum of G at v defines a particular 1-separation of G.

Definition 1.9. The adjacency matrix A of the simple graph $G=(V, E)$ has entries

- $a_{i, j}=0$ if $i j \notin E$, and
- $a_{i, j}=1$ if $i j \in E$.

If $V^{\prime} \subseteq V$ and $E^{\prime} \subseteq E$ where E^{\prime} has endvertices in V^{\prime}, then $H=\left(V^{\prime}, E^{\prime}\right)$ is a subgraph of G. Further, H is an induced subgraph of G if E^{\prime} includes all edges from E with endvertices in V^{\prime}. That is, we may construct a subgraph by deleting edges and vertices from a graph; and, whenever we delete an endvertex v, we also delete all edges of the form $u v$ for $u \in V$. We may define an induced subgraph more precisely in terms of the adjacency matrix. If $\alpha \subseteq\{1,2, \ldots, n\}$ and A is the adjacency matrix of G, then $A[\alpha, \alpha]$ is the adjacency matrix of the induced subgraph H of G on the vertex set α, denoted $H=G[\alpha]$.

Definition 1.10. The Laplacian matrix A of the simple graph $G=(V, E)$ has entries

- $a_{i, j}=0$ if $i \neq j$ and $i j \notin E$,
- $a_{i, j}=-1$ if $i \neq j$ and $i j \in E$, and
- $a_{i, j}=d(i)$ if $i=j$.

Definition 1.11. The generalized Laplacian matrix A of the simple graph $G=(V, E)$ has entries

- $a_{i, j}=0$ if $i \neq j$ and $i j \notin E$, and
- $a_{i, j}<0$ if $i \neq j$ and $i j \in E$.

Definition 1.12. Let $G=(V, E)$ be a simple graph. Define $\mathcal{S}(G)$ to be the family of matrices such that $A \in \mathcal{S}(G)$ has entries

- $a_{i, j}=0$ if $i \neq j$ and $i j \notin E$, and
- $a_{i, j} \neq 0$ if $i \neq j$ and $i j \in E$.

So, the adjacency matrix, the Laplacian matrix, and the generalized Laplacian matrices all belong to $\mathcal{S}(G)$.

Definition 1.13. The maximum nullity of a simple graph G is

$$
M(G)=\max _{A \in \mathcal{S}(G)}\{\operatorname{corank}(A)\} .
$$

The following theorem rephrases the results of Fiedler about tridiagonal matrices in terms of simple graphs [10].

Theorem 1.14. G is a path if and only if $M(G)=1$.

The contraction of an edge $u v \in E(G)$ results in a graph H where $V(H)=(V(G) \backslash$ $\{u, v\}) \cup w$ and $E(H)=E(G) \backslash u v$, where the edges in $E(G)$ which were adjacent to $\{u, v\}$ in G are now adjacent to $w \in V(H)$. We say H is a minor of G if we may obtain H from G by a sequence of contracting edges, deleting edges, or deleting isolated vertices, denoted $H \preceq G$. If $H \preceq G$ and H is not isomorphic to G, then H is a proper minor of G, denoted $H \prec G$.

Definition 1.15. We say $A \in \mathcal{S}(G)$ has the Strong Arnold Property (SAP) with respect to the simple graph G if X fully annihilates A implies $X=0$.

The following lemma is from van der Holst [22].

Lemma 1.16. Suppose $G=(V, E)$ is a simple graph, $|V|=n, A \in \mathcal{S}(G)$, and $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ is a basis for $\operatorname{ker}(A)$. Form the matrix U such that

$$
U=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1}^{T} \\
y_{2}^{T} \\
\vdots \\
y_{k}^{T}
\end{array}\right] .
$$

A has the SAP if and only if the matrices $\left\{u_{i} u_{i}^{T} \mid i \in V\right\}$ and $\left\{u_{i} u_{j}^{T}+u_{j} u_{i}^{T} \mid i j \in E\right\}$ form a basis for $\mathcal{M}(k \times k)$.

The following definition is from Barioli, Fallat, and Hogben [7].

Definition 1.17. The stable maximum nullity of a simple graph G is

$$
\xi(G)=\max \{\operatorname{corank}(A) \mid A \in \mathcal{S}(G), A \text { has the } \mathrm{SAP}\}
$$

1.3 Signed Graphs

A signed graph is an ordered pair (G, Σ), where G is a graph and $\Sigma \subseteq E$. We call Σ the signature of (G, Σ). Edges in Σ are odd edges, and edges in $E \backslash \Sigma$ are even edges. While we do not allow loops, we do allow multiple edges.

Definition 1.18. Let (G, Σ) be a signed graph. Define $\mathcal{S}(G, \Sigma)$ to be the family of matrices such that $A \in \mathcal{S}(G, \Sigma)$ has entries

- $a_{i, j}<0$ if $i \leftrightarrow j$ and all edges between i and j are even,
- $a_{i, j}>0$ if $i \leftrightarrow j$ and all edges between i and j are odd,
- $a_{i, j} \in \mathbb{R}$ if there as at least one even edge and at least one odd edge between i and j, and
- $a_{i, j}=0$ if $i \neq j$ and there are no edges between i and j.

For signed graphs, $A, B \in \mathcal{S}(G, \Sigma)$ implies that $A+B \in \mathcal{S}(G, \Sigma)$; that is, $\mathcal{S}(G, \Sigma)$ is a cone. The corresponding statement is not true for simple graphs, because $A,-A \in \mathcal{S}(G)$.

Definition 1.19. The maximum nullity of a signed graph is

$$
M(G, \Sigma)=\max \{\operatorname{corank}(A) \mid A \in \mathcal{S}(G, \Sigma)\}
$$

Observation 1.20. Let (G, Σ) be a signed graph where G is a simple graph. If $A \in \mathcal{S}(G, \Sigma)$, then $A \in \mathcal{S}(G)$. So, $M(G, \Sigma) \leq M(G)$.

Definition 1.21. The matrix $A \in \mathcal{S}(G, \Sigma)$ has the Strong Arnold Property (SAP) with respect to (w.r.t) (G, Σ) if $X=0$ is the only matrix such that

- $A X=0$, and
- $x_{i, j}=0$ if $i \leftrightarrow j$ or $i=j$.

Definition 1.22. The stable maximum nullity of a signed graph (G, Σ) is

$$
\xi(G, \Sigma)=\max \{\operatorname{corank}(A) \mid A \in \mathcal{S}(G, \Sigma), A \text { has the SAP w.r.t. }(G, \Sigma)\}
$$

If (G, Σ) has no parallel edges of opposite sign, then $\xi(G, \Sigma) \leq \xi(G)$ because $\mathcal{S}(G, \Sigma) \subseteq$ $\mathcal{S}(G)$. The following lemma is from Arav, Hall, Li, and van der Holst (Corollary 20 in [3]).

Lemma 1.23. If $(H, \Omega) \preceq(G, \Sigma)$, then $\xi(H, \Omega) \leq \xi(G, \Sigma)$.

If we switch around a vertex v, then the resulting signed graph is $(G, \Sigma \Delta \delta(v))$, where $\delta(v)$ are the edges incident on v and Δ is the symmetric difference. Similarly, if $U \subseteq V$, then we may also switch around U to obtain $(G, \Sigma \Delta \delta(U))$, where $\delta(U)$ are the edges between U and $V \backslash U$. Two signed graphs $\left(G, \Sigma_{1}\right)$ and $\left(G, \Sigma_{2}\right)$ are switching equivalent if there exists $U \subseteq V$ such that $\Sigma_{2}=\Sigma_{1} \Delta \delta(U)$.

Lemma 1.24. Switching around vertices does not change the maximum nullity nor the stable maximum nullity of a signed graph.

Proof. Let $A \in \mathcal{S}(G, \Sigma)$. Let $U \subseteq V(G)$. Take D to be a diagonal matrix with $d_{i, i}=-1$ if $i \in U$; otherwise, $d_{i, i}=1$. Define $B=D A D$.

For all $i, j \in V$, the entry $b_{i, j}=d_{i, i} a_{i, j} d_{j, j}= \pm a_{i, j}$. Further, $b_{i, j}=-a_{i, j}$ if and only if $i j \in \delta(U)$. Therefore, $B \in \mathcal{S}(G, \Sigma \Delta \delta(U))$. As D is real orthogonal, $\operatorname{corank}(B)=\operatorname{corank}(A)$. Suppose $\operatorname{corank}(A)=M(G, \Sigma)$. Then, $M(G, \Sigma)=\operatorname{corank}(B) \leq M(G, \Sigma \Delta \delta(U))$. Using the same argument, we may switch around U in $(G, \Sigma \Delta \delta(U))$ to obtain

$$
M(G, \Sigma) \leq M(G, \Sigma \Delta \delta(U)) \leq M(G, \Sigma \Delta \delta(U) \Delta \delta(U))=M(G, \Sigma \Delta \emptyset)=M(G, \Sigma)
$$

Therefore, $M(G, \Sigma)=M(G, \Sigma \Delta \delta(U))$.
Suppose A has the SAP with respect to (G, Σ). Suppose for a contradiction that B does not have the SAP. Then, we may find $X \neq 0$ such that such that $B X=0$ and $x_{i, j}=0$ if $i \leftrightarrow j$ or $i=j$. Because $D A D X=B X=0$, we have $A(D X D)=0$. That is, A does not have the SAP. Hence, A has the SAP if and only if B has the SAP. Therefore, $\xi(G, \Sigma)=\xi(G, \Sigma \Delta \delta(U))$.

A subgraph of a signed graph is odd if it has an odd number of odd edges. In particular, an odd cycle in a signed graph is a cycle with an odd number of odd edges. Similarly, an even cycle is a cycle with an even number of odd edges.

Zaslavsky proved the following theorem about signed graphs (Proposition 3.2 in [23]).

Theorem 1.25. Two signed graphs $\left(G, \Sigma_{1}\right)$ and $\left(G, \Sigma_{2}\right)$ are switching equivalent if and only if they have the same set of odd cycles.

The following theorem is from Arav, Hall, Li, and van der Holst (Theorem 49 in [3]).

Theorem 1.26. A signed graph (G, Σ) has $\xi(G, \Sigma) \leq 1$ if and only if (G, Σ) is switching equivalent to (H, \emptyset), where H is a graph whose underlying simple graph is a disjoint union of paths.

Later, we use the following corollary about trees, and we provide a proof here for completeness.

Corollary 1.27. If T is a tree, then $M(T, \Sigma)=M(T)$ for any signature Σ.

Proof. Let (T, Σ) be a signed graph where T is a tree. Suppose $A \in \mathcal{S}(T)$ with $\operatorname{corank}(A)=$ $M(T)$. Because $M(T) \geq M(T, \Sigma)$, we only need to show $M(T) \leq M(T, \Sigma)$.

Define the signature Ω_{0} such that $A \in \mathcal{S}\left(T, \Omega_{0}\right)$. Denote $k=\left|\Omega_{0} \Delta \Sigma\right|$. If $k=0$, then our proof is complete. So, we may assume there exists an edge $e_{0} \in \Omega_{0} \Delta \Sigma$. If we define $\Omega_{1}=$ $\Omega_{0} \Delta e_{0}$, then we may find a real orthogonal diagonal matrix D_{0} such that $D_{0} A D_{0} \in \mathcal{S}\left(T, \Omega_{1}\right)$. As $\left|\Omega_{1} \Delta \Sigma\right|=k-1$, we may repeat this process for the sequence of edges $\left\{e_{0}, \ldots e_{k-1}\right\}$, and $\Omega_{k}=\Sigma$. Finally, we observe that

$$
M(T)=\operatorname{corank}(A)=\operatorname{corank}\left(D_{k} \ldots D_{0} A D_{0} \ldots D_{k}\right) \leq M(T, \Sigma)
$$

From Theorem 1.14, we know that $M(G)=1$ implies that G is a path. Together with Corollary 1.27 above, we also know that $M(G, \Sigma)=1$ implies G is a path. This result is the prototype for our work: a complete characterization of the signed graphs with $M(G, \Sigma)=1$.

A signed graph (H, Ω) is a minor of (G, Σ) if (H, Ω) may be obtained from (G, Σ) by a sequence of sign switchings, deleting edges, deleting isolated vertices, or contracting an edge. We write $(H, \Omega) \preceq(G, \Sigma)$ when (H, Ω) is a minor of (G, Σ). If $(H, \Omega) \preceq(G, \Sigma)$ but $G \neq H$, then (H, Ω) is a proper minor of (G, Σ), denoted $(H, \Omega) \prec(G, \Sigma)$.

Arav, Hall, Li, and van der Holst showed that $\xi(G, \Sigma)=1$ implies that G is a disjoint union of paths [3]. Additionally, they proved the following theorem which we use later.

Lemma 1.28. Suppose (G, Σ) is a signed graph, $|V|=n, A \in \mathcal{S}(G, \Sigma)$, and $\left\{y_{1}, y_{2}, \ldots, y_{k}\right\}$ is a basis for $\operatorname{ker}(A)$. Form the matrix U such that

$$
U=\left[\begin{array}{llll}
u_{1} & u_{2} & \cdots & u_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1}^{T} \\
y_{2}^{T} \\
\vdots \\
y_{k}^{T}
\end{array}\right]
$$

A has the SAP with respect to (G, Σ) if and only if the matrices $\left\{u_{i} u_{i}^{T} \mid i \in V\right\}$ and $\left\{u_{i} u_{j}^{T}+u_{j} u_{i}^{T} \mid i j \in E\right\}$ form a basis for $\mathcal{M}(k \times k)$.

Lemma 1.29. Let (G, Σ) be a signed graph. Then, $M(G, \Sigma)=M(G, E \backslash \Sigma)$ and $\xi(G, \Sigma)=$ $\xi(G, E \backslash \Sigma)$.

Proof. Let $A \in \mathcal{S}(G, \Sigma)$ such that $\operatorname{corank}(A)=M(G, \Sigma)$. Because $-A \in \mathcal{S}(G, E \backslash \Sigma)$ and because $\operatorname{corank}(A)=\operatorname{corank}(-A), M(G, \Sigma) \leq M(G, E \backslash \Sigma)$. If $A \in \mathcal{S}(G, \Sigma)$ has the SAP with respect to (G, Σ), then $-A \in \mathcal{S}(G, E \backslash \Sigma)$ has the SAP with respect to ($G, E \backslash \Sigma$). Otherwise, we found a matrix $X \neq 0$ such that $x_{i, j}=0$ if $i \leftrightarrow j$ or $i=j$ and $-A X=0$; yet, $A X \neq 0$. So, $\xi(G, E) \leq \xi(G, E \backslash \Sigma)$. Because $\Sigma=E \backslash(E \backslash \Sigma)$, a second application of our argument implies $M(G, \Sigma) \geq M(G, E \backslash \Sigma)$ and $\xi(G, \Sigma) \geq \xi(G, E \backslash \Sigma)$. Therefore, $M(G, \Sigma)=M(G, E \backslash \Sigma)$ and $\xi(G, \Sigma)=\xi(G, E \backslash \Sigma)$

Figure 1.1 A ΔY-transformation on a simple graph.

$1.4 \Delta Y$-Transformations

Suppose G is a simple graph, and G has a triangle $\left(K_{3}\right)$ which we label T. Then, we may perform a ΔY-transformation on G to obtain a new graph H by deleting the edges of T, adding a new vertex v, and adding edges between v and the vertices of T (Figure 1.4).

The following lemma from Hogben and van der Holst shows that ΔY-transformations do not decrease the stable maximum nullity of a graph (Lemma 2.1 in [14]).

Lemma 1.30. Let G be a simple graph, and let H be obtained from G by applying a ΔY-transformation. Then, $\xi(G) \leq \xi(H)$.

Their proof of this lemma relies on building a matrix in $\mathcal{S}(H)$ with the SAP, beginning with a matrix in $\mathcal{S}(G)$ which has the SAP. We adapt these proofs to signed graphs with triangles for the maximum nullity and stable maximum nullity. First, we provide the corresponding definition for signed graphs.

Definition 1.31. Suppose (G, Σ) is a signed graph, and (G, Σ) has a triangle which we label T. Then, we may perform a ΔY-transformation on (G, Σ) to obtain a new signed graph
(H, Ω) by deleting the edges of T, adding a new vertex v, and adding odd edges between v the vertices of T.

Lemma 1.32. Let (G, Σ) be a signed graph, and let (H, Ω) be obtained from G by applying a ΔY-transformation. Then, $M(G, \Sigma) \leq M(H, \Omega)$ and $\xi(G, \Sigma) \leq \xi(H, \Omega)$.

Proof. Let (G, Σ) be a signed graph on n vertices with a triangle T. For clarity, we assume that $V(T)=\{1,2,3\}$ and denote $\overline{V(T)}=V(G) \backslash V(T)=\{4,5, \ldots, n\}$. First, we want to show that we may assume that T has no odd edges. If T is an odd cycle, then we may instead consider $(G, E(G) \backslash \Sigma)$ where T is an even cycle. By Lemma 1.29, $M(G, \Sigma)=M(G, E(G) \backslash \Sigma)$ and $\xi(G, \Sigma)=\xi(G, E(G) \backslash \Sigma)$. So, we assume that T is an even cycle. If T has two odd edges, then they must be incident on a vertex $t \in T$. Then, we may switch around t, and $M(G, \Sigma)=M(G, \Sigma \Delta \delta(t))$ and $\xi(G, \Sigma)=\xi(G, \Sigma \Delta \delta(t))$ by Lemma 1.24. As T has no odd edges in $(G, \Sigma \Delta \delta(t))$, we may assume T has no odd edges in (G, Σ) for the rest of the proof.

Let (H, Ω) to be the result of applying a ΔY-transformation on T in (G, Σ). Let $A \in$ $\mathcal{S}(G, \Sigma)$. Then, we may partition A as

$$
A=\left[\begin{array}{cc}
K+R & A[V(T), \overline{V(T)})] \\
A[\overline{V(T)}, V(T)] & A[\overline{V(T)}]
\end{array}\right]
$$

where K and R describe the adjacency of T, as follows:

- $r_{i, j}<0$ if $i j$ is an edge in T,
- $k_{i, j}=0$ if there are no edges between $\{i, j\}$ and $\overline{V(T)}$,
- $k_{i, j}>0$ if there are only even edges between $\{i, j\}$ and $\overline{V(T)}$,
- $k_{i, j}<0$ if there are only odd edges between $\{i, j\}$ and $\overline{V(T)}$, and
- $k_{i, j} \in \mathbb{R}$ if there is both an even edge and an odd edge between $\{i, j\}$ and $\overline{V(T)}$.

We want to construct a matrix in $\mathcal{S}(H, \Omega)$ with the same corank as A. Because the edges of T are even, $r_{1,2} r_{2,3} r_{1,3}<0$. So, we want to find positive real numbers b, c, d such that $r_{1,2}=-b c, r_{1,3}=-b d$, and $r_{2,3}=-c d$. The solution follows from $b=\sqrt{-r_{1,2} r_{1,3} / r_{2,3}}$, $c=\sqrt{-r_{1,2} r_{2,3} / r_{1,3}}$, and $d=\sqrt{-r_{2,3} r_{1,3} / r_{1,2}}$. With these real numbers a, b, c we augment A with an $(n+1)$-th row and column, to construct a matrix B :

$$
B=\left[\begin{array}{ccccc}
r_{1,1}+b^{2} & k_{1,2} & k_{1,3} & A[1, \overline{V(T)} & b \\
k_{2,1} & r_{2,2}+c^{2} & k_{2,3} & A[2, \overline{V(T)} & c \\
k_{3,1} & \frac{k_{3,2}}{} & r_{3,3}+d^{2} & A[3, \overline{V(T)} & d \\
A[\overline{\overline{V(T)}}, 1] & A[\overline{V(T)}, 2] & A[\overline{V(T)}, 3] & A[\overline{V(T)}] & 0 \\
b & c & d & 0 & 1
\end{array}\right] .
$$

Then, the Schur complement of $b_{n+1, n+1}$ in B is:

$$
B / b_{n+1, n+1}=\left[\begin{array}{cccc}
r_{1,1}+b^{2} & k_{1,2} & k_{1,3} & A[1, \overline{V(T)} \\
k_{2,1} & r_{2,2}+c^{2} & k_{2,3} & A[2, \overline{V(T)} \\
k_{3,1} & k_{3,2} & r_{3,3}+d^{2} & A[3, \overline{V(T)} \\
A[\overline{V(T)}, 1] & A[\overline{V(T)}, 2] & A[\overline{V(T)}, 3] & A[\overline{V(T)}]
\end{array}\right]-\left[\begin{array}{cccc}
b^{2} & b c & b d & 0 \\
c b & c^{2} & c d & 0 \\
d b & d c & d^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=A .
$$

From Lemma 1.5, corank $(A)=\operatorname{corank}(B)$ because $B / b_{n+1, n+1}=A$. Further, $B \in \mathcal{S}(H, \Omega)$, so $M(G, \Sigma) \leq M(H, \Omega)$.

Next, we want to investigate ξ and the SAP. Let Y be a symmetric matrix such that $y_{i, j}=0$ if $i \leftrightarrow j$ or $i=j$ and such that $B Y=0$. Then we may partition Y :

$$
Y=\left[\begin{array}{ccccc}
0 & y_{1,2} & y_{2,3} & Y[1, \overline{V(T)}] & 0 \\
y_{2,1} & 0 & y_{2,3} & Y[2, \overline{V(T)}] & 0 \\
y_{3,1} & y_{3,2} & 0 & Y[3, \overline{V(T)}] & 0 \\
Y[\overline{V(T)}, 1] & Y[\overline{V(T)}, 2] & Y[\overline{V(T)}, 3] & Y[\overline{V(T)}] & Y[\overline{V(T)}, n+1] \\
0 & 0 & 0 & Y[n+1, \overline{V(T)}] & 0
\end{array}\right]
$$

As $B Y=0$, the entries $y_{1,2}=y_{2,3}=y_{3,1}=0$. Let $X \in \mathcal{M}(n \times n)$ such that

$$
X=\left[\begin{array}{cccc}
0 & 0 & 0 & Y[1, \overline{V(T)}] \\
0 & 0 & 0 & Y[2, \overline{V(T)}] \\
0 & 0 & 0 & Y[3, \overline{V(T)}] \\
Y[\overline{V(T)}, 1] & Y[\overline{V(T)}, 2] & Y[\overline{V(T)}, 3] & Y[\overline{V(T)}]
\end{array}\right] .
$$

Because $B Y=0, A X=0$. Suppose A has the SAP. Because $x_{i, j}=0$ if $i \leftrightarrow j$ or $i=j$ and because A has the SAP, we have $X=0$. Because $X=0$ and $B Y=0, Y[\overline{V(T)}, n+1]=0$. Hence, $Y=0$, and B has the SAP. Therefore, $\xi(G, \Sigma) \leq \xi(H, \Omega)$.

1.5 Zero Forcing

We start this section with a game on a simple graph $G=(V, E)$, taken from [1]. Before the game begins, all the vertices of G are colored white. First, we color some nonempty subset of vertices $B \subseteq V$ blue. Then, we apply the color change rule: if b is a blue vertex and if w is the only white vertex in the neighborhood of b, then we color w blue. We have a new set of blue vertices after applying the color rule once, $B^{(1)}=B \cup w$. We keep applying the color change rule until we may no longer color any white vertices blue. The game ends after $s<n$ steps. If $B^{(s)}=V$, then B is a zero forcing set of G. Denote the family of all zero forcing sets of G with \mathcal{B}. We say B is a minimum zero forcing set if $|B|=\min _{X \in \mathcal{B}}|X|$, and the zero forcing number of G is $Z(G)=|B|$.

Next, we tie zero forcing to the algebraic properties of $A \in \mathcal{S}(G)$. The following lemma is from the Special Graphs Workshop [1].

Lemma 1.33. For a simple graph $G, M(G) \leq Z(G)$.

Proof. Let $G=(V, E)$ be a simple graph. Suppose for a contradiction that $M(G)>Z(G)$. Then, we may find a zero forcing set B and a matrix $A \in \mathcal{S}(G)$ with $n \geq \operatorname{corank}(A)=$ $M(G)>Z(G)=|B|$. As corank $(A)>|B|$, from Lemma 1.3, we may find $x \in \operatorname{ker} A$ such that $x_{b}=0$ for all $b \in B$, but $x \neq 0$.

Here, we begin an iterative argument using the size of B. As B is a zero forcing set and $|B|<n$, there is some blue vertex $v \in B$ which colors some white vertex $w \notin B$ when applying the color change rule: $w \in B^{(1)}$. As $x \in \operatorname{ker} A$, we have $\sum_{j=1}^{n} a_{v, j} x_{j}=0$. Because $x_{b}=0$ for all $b \in B$, we have $a_{v, w} x_{w}=0$. As $v w \in E$, we have $a_{v, w} \neq 0$. So, $x_{w}=0$. That is,
$x_{b}=0$ for all $b \in B^{(1)}$. As B is a zero forcing set, $B^{(s)}=V$ after applying the color change rule s times. So, we may repeat the same argument until $x_{b}=0$ for all $b \in B^{(s)}=V$. That is, $x=0$. Because we assumed $x \neq 0$, we have our contradiction. Therefore, $M(G) \leq Z(G)$.

The proof of Lemma 1.33 clarifies the choice of the color change rule for simple graphs. We make use of a simple corollary, which follows directly from Lemma 1.33 and Observation 1.20 .

Corollary 1.34. If (G, Σ) is a signed graph and G is a simple graph, then

$$
\xi(G, \Sigma) \leq M(G, \Sigma) \leq M(G) \leq Z(G)
$$

Definition 1.35. The path covering number of a graph G, denoted $P(G)$, is the minimum number of vertex-disjoint paths that cover $V(G)$, such that each path in the covering is an induced subgraph of G.

The following theorem is from Hogben (Theorem 2.13 in [13]) and follows from the fact that applying the color change rule to a zero forcing set constructs a path cover.

Theorem 1.36. For any graph $G, P(G) \leq Z(G)$.

Goldberg and Berman studied a variant of zero forcing for sign pattern matrices [12]. We will define sign pattern matrices in section 1.8, and we will use a different definition than Goldberg and Berman. For this section alone, a sign pattern matrix P is a matrix whose entries are from the set $\{-, 0,+, ?\}$. Their rules for zero forcing require the diagonal entries to have known signs (that is, from the set $\{-, 0,+\}$), which they call a sign pattern
matrix with fixed periphery. So, their results are not perfectly applicable to our work, as $A \in \mathcal{S}(G, \Sigma)$ has no restriction on the diagonal entries. They derive new zero forcing rules for sign pattern matrices with fixed periphery and a zero forcing number $Z_{ \pm}(P)$. We are interested in the zero forcing number

$$
Z(G, \Sigma)=\min \{|\alpha|: \alpha \subseteq V(G), \forall A \in \mathcal{S}(G, \Sigma) \forall x \in \operatorname{ker} A, x[\alpha]=0 \Longrightarrow x=0\}
$$

Similar to here, they define the maximum nullity $M(P)=\max \{\operatorname{corank}(A) \mid \operatorname{sign}(A)=P\}$. Despite these differences, we can apply one result from their work (Theorem 3.2 and Rule 2 in [12]):

Lemma 1.37. If P is a sign pattern matrix, then $M(P) \leq Z_{ \pm}(P)$.

Translating this to our work, we have the following lemma.

Lemma 1.38. If (G, Σ) is a signed graph, then $M(G, \Sigma) \leq Z(G, \Sigma) \leq Z(G)$.

Proof. Let (G, Σ) be a signed graph. Let P be a sign pattern matrix with fixed periphery such that (G, Σ) is the signed graph of P and $M(P)=M(G, \Sigma)$. If $\operatorname{sign}(A)=P$, then $A \in \mathcal{S}(G, \Sigma)$; hence $Z_{ \pm}(P) \leq Z(G, \Sigma)$. Because $\mathcal{S}(G, \Sigma) \subseteq \mathcal{S}(G)$, we have $Z(G, \Sigma) \leq Z(G)$. From Lemma 1.37, we have $M(P) \leq Z_{ \pm}(P)$. Hence, we may write

$$
M(G, \Sigma) \leq M(P) \leq Z_{ \pm}(P) \leq Z(G, \Sigma) \leq Z(G)
$$

1.6 Graph Structures and Maximum Nullity

This section details combinatorial structures of graphs and signed graphs related to the maximum nullity or stable maximum nullity.

1.6.1 1-Separations

Originally in terms of the partial inertia sets of a signed graph allowing loops, the following is from Arav, van der Holst, and Sinkovic (Formula (3) in [5]).

Lemma 1.39. Let $\left[\left(G_{1}, \Sigma_{1}\right),\left(G_{2}, \Sigma_{2}\right)\right]$ be a 1 -separation of a signed graph (G, Σ) with $v=$ $V\left(G_{1}\right) \cap V\left(G_{2}\right)$. Then,

$$
M(G, \Sigma)=\max \left\{M\left(G_{1}, \Sigma_{1}\right)+M\left(G_{2}, \Sigma_{2}\right)-1, M\left(\left(G_{1}, \Sigma_{1}\right)-v\right)+M\left(\left(G_{2}, \Sigma_{2}\right)-v\right)-1\right\}
$$

Proof. Let $|V(G)|=n$. Taking Formula (3) in [5], we have

$$
\begin{aligned}
& \min \{\mathcal{J}(G, \Sigma)\}=\min \left\{\left(\mathcal{J}\left(\left(G_{1}, \Sigma_{1}\right)-v\right)+\mathcal{J}\left(\left(G_{2}, \Sigma_{2}\right)-v\right)+\{(1,1)\}\right)\right. \\
&\left.\cup\left(\mathcal{J}\left(G_{1}, \Sigma_{1}\right)+\mathcal{J}\left(G_{1}, \Sigma_{1}\right)\right)\right\}
\end{aligned}
$$

where $\mathcal{J}(G, \Sigma)$ are all possible ordered pairs (p, q) such that there exists $A \in \mathcal{S}(G, \Sigma), A$ has p positive eigenvalues, and A has q negative eigenvalues. As $|V(G)-M(G, \Sigma)|$ is the sum of the number of positive eigenvalues and the number of negative eigenvalues, we have

$$
\begin{gathered}
n-M(G, \Sigma)=\min \left\{\left|V\left(G_{1}-v\right)\right|+\left|V\left(G_{2}-v\right)\right|-M\left(\left(G_{1}, \Sigma_{1}\right)-v\right)-M\left(\left(G_{2}, \Sigma_{2}\right)-v\right)+2,\right. \\
\left.\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-M\left(G_{1}, \Sigma_{1}\right)-M\left(G_{2}, \Sigma_{2}\right)\right\}
\end{gathered}
$$

Because $\left[\left(G_{1}, \Sigma_{1}\right),\left(G_{2}, \Sigma_{2}\right)\right]$ is a 1-separation, we count each vertex of $G-v$ exactly one time in $\left|V\left(G_{1}-v\right)\right|+\left|V\left(G_{2}-v\right)\right|$. Similarly, we count v twice and all other vertices of G once in $\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|$. So, we have

$$
\begin{gathered}
n-M(G, \Sigma)=\min \left\{n-1-M\left(\left(G_{1}, \Sigma_{1}\right)-v\right)-M\left(\left(G_{2}, \Sigma_{2}\right)-v\right)+2,\right. \\
\left.n+1-M\left(G_{1}, \Sigma_{1}\right)-M\left(G_{2}, \Sigma_{2}\right)\right\}
\end{gathered}
$$

Now, we simplify to obtain our result:

$$
\begin{aligned}
-M(G, \Sigma) & =\min \left\{-M\left(\left(G_{1}, \Sigma_{1}\right)-v\right)-M\left(\left(G_{2}, \Sigma_{2}\right)-v\right)+1,-M\left(G_{1}, \Sigma_{1}\right)-M\left(G_{2}, \Sigma_{2}\right)+1\right\} . \\
M(G, \Sigma) & =\max \left\{M\left(\left(G_{1}, \Sigma_{1}\right)-v\right)+M\left(\left(G_{2}, \Sigma_{2}\right)-v\right)-1, M\left(G_{1}, \Sigma_{1}\right)+M\left(G_{2}, \Sigma_{2}\right)-1\right\}
\end{aligned}
$$

1.6.2 Trees and Forests

Barioli, Fallat, and Hogben proved the following theorem about forests (Theorem 3.7 in [7]).

Theorem 1.40. If F is a forest, then $\xi(F) \leq 2$.

The following Theorem is the main result of Johnson and Duarte and relates the path covering number to the maximum nullity for trees [15].

Theorem 1.41. If T is a tree, then $M(T)=P(T)$.

1.6.3 Linear 2-Trees

We may iteratively construct a tree on $n>2$ vertices, as follows. We start with a K_{2}, two vertices joined by a single edge. Then, we grow the tree by identifying one of the vertices in the graph with one of the vertices of a second copy of K_{2}. So, we have a P_{3}. We continue identifying vertices of our graph with a vertex of a new copy of K_{2} until we have our tree.

Instead of using copies of K_{2} to build a 1-tree, we may use copies of K_{k+1} to build a k-tree using the same process. At each step, we identify a K_{k} in the graph with a K_{k} in the new copy of K_{k+1}. In particular, we are interested in 2-trees, built by identifying a K_{2} in the graph with a K_{2} in a new copy of a triangle. A 2-path is a 2-tree whose dual is a path. A partial 2-path is a subgraph of a 2-path. A linear 2-tree is a 2-connected partial 2-path, introduced by Hogben and van der Holst in [14] and under another name by Johnson, Loewy, and Smith in [16]. Sinkovic proved the following theorem (Theorem 3.13 in [21]).

Theorem 1.42. If G is a partial 2-path, then $M(G)=P(G)$.

1.6.4 Graph of Two Parallel Paths

Johnson, Loewy, and Smith provided two equivalent definitions of a graph of two parallel paths [16]. First, we provide their definition using matrices from $\mathcal{S}(G)$.

Definition 1.43. A graph G is a graph of two parallel paths if there exists $A \in \mathcal{S}(G)$ such that

$$
A=\left[\begin{array}{cc}
T_{1} & B \\
B^{T} & T_{2}
\end{array}\right]
$$

where T_{1} and T_{2} are irreducible and tridiagonal. Further, B satisfies the following:

- If $b_{i, j} \neq 0$, then $b_{k, l}=0$ for $k>i$ and $l<j$, and for $k<i$ and $l>j$.
- If $B \neq 0$ and $b_{k_{1}, k_{1}+1} \neq 0$, then B has a nonzero entry other than $b_{k_{1}, k_{1}+1}$.

Their other definition of a graph of two parallel paths uses the existence of a particular embedding in the plane [16]. Specifically, a graph G is a graph of two parallel paths if we may draw G such that

- the two paths P_{1} and P_{2} cover the vertices of G,
- P_{1} and P_{2} are independent, induced paths,
- any edges between P_{1} and P_{2} do not cross, and
- the vertices of G are all drawn on the infinite face.

Together with a family of exceptional graphs, Johnson, Loewy, and Smith showed the graphs of two parallel paths are the only graphs with $M(G)=2[16]$. They used the following lemma in the proof of their main result (Lemma 3.7 in [16]).

Lemma 1.44. Suppose G is a graph of two parallel paths. Then, $M(G)=2$.

The following theorem from Row fully characterizes graphs with a zero forcing number of two (Theorem 2.3 in [20]).

Theorem 1.45. For a simple graph $G, Z(G)=2$ if and only if G is a graph of two parallel paths.

1.6.5 Thin Outs

The blocks of a 1-connected simple graph G are the maximal connected subgraphs with no cut vertex. At one extreme, a 2-connected graph has only a single block. At the other extreme, every K_{2} of a tree is a block. A thin out of G is a block B of G with a pendant vertex added to each vertex of B which is also a cut vertex of G. At one extreme, a 2 connected graph is isomorphic to its own thin out. At the other extreme, every thin out of a tree with at least 3 vertices is either a P_{3} or a P_{4}. The following lemma is from Arav, Hall, Li, and van der Holst (Corollary 42 in [3]).

Lemma 1.46. If (G, Σ) is the disjoint union of $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$, then

$$
\xi(G, \Sigma)=\max \left\{\xi\left(G_{1}, \Sigma_{1}\right), \xi\left(G_{2}, \Sigma_{2}\right)\right\}
$$

The following lemma follows from a result of Arav, Hall, Li, and van der Holst, originally phrased in terms of inertia sets (Theorem 43 in [3]).

Lemma 1.47. Let (G, Σ) be a connected signed graph and suppose (G, Σ) is the 1 -sum of $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ at v, with both $E\left(G_{1}\right)$ and $E\left(G_{2}\right)$ nonempty. For $i=1,2$, let $\left(H_{i}, \Omega_{i}\right)$ be the signed graph obtained from G_{i} and K_{2} by identifying the vertex v with a vertex of K_{2}. Then,

$$
\xi(G, \Sigma)=\max \left\{\xi\left(H_{1}, \Omega_{1}\right), \xi\left(H_{2}, \Omega_{2}\right)\right\}
$$

Lemma 1.48. Let (G, Σ) be a signed graph with $\xi(G, \Sigma) \geq 3$. Then, there exists a 2 connected block B of G such that a thin out (H, Ω) of B in (G, Σ) satisfies $\xi(H, \Omega) \geq 3$.

Proof. Let (G, Σ) be a signed graph with $\xi(G, \Sigma) \geq 3$. By Lemma 1.46, we may assume (G, Σ) is connected. If (G, Σ) is 2-connected, then (G, Σ) is exactly one block. So, we may assume that G has at least 1 cut vertex v. If $v \in V\left(G_{1}\right)$ for some block of G, then we found a 1-sum $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ at v. If we identify a vertex of K_{2} with v in $\left(G_{i}, \Sigma_{i}\right)$, then we obtain the signed graph $\left(H_{i}, \Omega_{i}\right)$ for $i=1,2$. By Lemma 1.47 , we may assume that $\xi\left(H_{1}, \Omega_{1}\right) \geq 3$. We repeat this process for a new cut vertex of H_{1} until we have our thinout (H, Ω).

1.6.6 T_{3}-Family of Graphs

Hogben and van der Holst introduced the T_{3}-family to fully characterize the graphs with $\xi(G) \leq 2[14]$. They defined the T_{3} graph as the result of deleting the edges of a triangle from $K_{2,2,2}$. The graphs $T_{3}(\Delta Y)^{i}$ are the result of applying a series of $i \Delta Y$-transformations to T_{3}. The T_{3}-family includes $K_{4}, K_{2,3}$, and $T_{3}(\Delta Y)^{i}$ (Figure 1.2).

The following theorem and corollary are some of the main results of Hogben and van der Holst [14].

Theorem 1.49. Let $G=(V, E)$ be a simple graph. Then, $\xi(G) \leq 2$ if and only if G has no minor isomorphic to a graph in the T_{3}-family.

Corollary 1.50. Let $G=(V, E)$ be a 2-connected simple graph on n vertices. The following are equivalent:

- $\xi(G)=2$.
- $M(G)=2$.

Figure 1.2 The T_{3}-family from Hogben and van der Holst [14].

- G has no K_{4}-minor, no $K_{2,3}$-minor, nor T_{3}-minor.
- G is a linear 2-tree.

Figure 1.3 The odd 4-wheel. Solid edges are even, and dotted edges are odd.

1.7 2-Connected Signed Graphs with $M(G, \Sigma) \leq 2$

The main result of Arav, Hall, Li, and van der Holst fully characterizes 2-connected signed graphs with $M(G) \leq 2$ [4]. First, we need to define several signed graphs. The odd 4-wheel or W_{4}^{o} is drawn in Figure 1.3. We denote the signed graph $\left(K_{n}, \emptyset\right)$ by K_{n}^{e}; the signed graph $\left(K_{n}, E\left(K_{n}\right)\right)$ by $K_{n}^{o} ;\left(K_{2,3}, \emptyset\right)$ by $K_{2,3}^{e} ;$ and $\left(K_{4},\{e\}\right)$ for a single $e \in E\left(K_{4}\right)$ by K_{4}^{i}. By $K_{n}^{=}$, we denote the signed graph on n vertices where there is exactly one even edge and exactly one odd edge between each pair of vertices. The following lemma is from Arav, Hall, Li, and van der Holst (Lemmas 1-4 in [4]), and it follows more general results in their previous work [3].

Lemma 1.51.

1. $M\left(K_{n}^{=}\right)=\xi\left(K_{n}^{=}\right)=n$,
2. $M\left(K_{n}^{e}\right)=\xi\left(K_{n}^{e}\right)=n-1$,
3. $M\left(K_{4}^{i}\right)=\xi\left(K_{4}^{i}\right)=2$,
4. $M\left(K_{2,3}^{e}\right)=\xi\left(K_{2,3}^{e}\right)=3$, and
5. $M\left(K_{2,3}^{i}\right)=\xi\left(K_{2,3}^{i}\right)=2$.

Next, we need to define a class of signed graphs which we construct similarly to a linear 2-tree. A pair of edges $\{e, f\} \in E\left(K_{4}\right)$ are split if both e and f belong to an even and odd triangle in K_{4}^{i}. We construct a sided wide 2-path $[(G, \Sigma), \mathcal{F}]$ recursively:

1. Let (G, Σ) be an even cycle, an odd cycle, or a K_{4}^{i}.
(a) If (G, Σ) is a cycle, let \mathcal{F} be two distinct edges in G.
(b) If (G, Σ) is a K_{4}^{i}, let \mathcal{F} be a split pair of edges in K_{4}^{i}.

Then, $[(G, \Sigma), \mathcal{F}]$ is a sided wide 2-path.
2. Let $[(G, \Sigma), \mathcal{F}]$ be a sided wide 2 -path. Let e and f be distinct edges in an even or odd cycle C. If (H, Ω) is obtained from (G, Σ) by identifying the edge f of C with an edge h in \mathcal{F}, then $[(H, \Omega),(F-h) \cup e]$ is a sided wide 2-path.
3. Let $[(G, \Sigma), \mathcal{F}]$ be a sided wide 2-path. Let $\{e, f\}$ be a split pair in K_{4}^{i}. If (H, Ω) is obtained from (G, Σ) by identifying the edge f of K_{4}^{i} with an edge h in \mathcal{F}, then $[(H, \Omega),(F-h) \cup e]$ is a sided wide 2-path.

For a sided wide 2-path $[(G, \Sigma), \mathcal{F}]$, the edges in \mathcal{F} are the sides of $[(G, \Sigma), \mathcal{F}]$. For a signed graph (G, Σ), if there exists a set \mathcal{F} of two distinct edges such that $[(G, \Sigma), \mathcal{F}]$ is a sided wide 2-path, then (G, Σ) is a wide 2-path. A partial wide 2-path is a spanning subgraph of a wide 2-path. We note that if G is a partial 2-path, then (G, Σ) is a partial wide 2-path.

Now, we may state the main result of Arav, Hall, Li, and van der Holst [4].

Theorem 1.52. Let (G, Σ) be a 2 -connected signed graph. Then, the following are equivalent:

- $M(G, \Sigma) \leq 2$.
- $\xi(G, \Sigma) \leq 2$.
- (G, Σ) has no minor isomorphic to $K_{3}^{=}, K_{4}^{e}, K_{4}^{o}$, or $K_{2,3}^{e}$.
- (G, Σ) is a partial wide 2-path or is isomorphic to W_{4}^{o}.

1.8 Sign-Nonsingular Matrices

We take this section largely from Brualdi and Shader's text [8]. A sign pattern matrix is a matrix with entries from the set $\{0,+,-\}$. The qualitative class of an $n \times m$ sign pattern matrix S is

$$
\mathcal{Q}(S)=\left\{A \in \mathcal{M}(n \times m): \operatorname{sign}\left(a_{i, j}\right)=s_{i, j} \forall i \in\{1, \ldots, n\}, \forall j \in\{1, \ldots, m\}\right\}
$$

If for every matrix $A \in \mathcal{Q}(S)$, A has independent rows and independent columns, then S is a sign-nonsingular matrix, abbreviated SNS-matrix. That is, the linear system $A x=b$ has a unique solution if $A \in \mathscr{Q}(S)$ and S is a SNS matrix. A SNS-matrix is a maximal SNS-matrix if changing any 0 to either + or - results in a sign pattern matrix which is not a SNS-matrix.

A directed graph or digraph is an ordered pair $D=(V, E)$, where V are the vertices and E are the directed edges. Here, we do not allow loops. The directed edges are ordered pairs from the Cartesian product $V \times V$. If $i j \in E$, then we say i is incident on j and write $i \rightarrow j$. A signed digraph is a digraph where we label each directed edge with one sign from the set $\{+,-\}$. If S is a sign pattern matrix, then $D(S)$ is the signed digraph of S, a digraph where the directed edge $i j$ is labeled with the $\operatorname{sign} s_{i, j}$ whenever $s_{i, j} \neq 0$. A directed cycle in a digraph is a sequence of directed edges such that

$$
i_{1} \rightarrow i_{2} \rightarrow \ldots \rightarrow i_{k} \rightarrow i_{1}
$$

and the vertices $i_{1}, i_{2}, \ldots, i_{k}$ are all distinct. The sign of a directed cycle $i_{1} \rightarrow i_{2} \rightarrow \ldots i_{k} \rightarrow i_{1}$ is the product

$$
\operatorname{sign}\left(i_{1} i_{2}\right) \operatorname{sign}\left(i_{2} i_{3}\right) \cdots \operatorname{sign}\left(i_{k-1} i_{k}\right) \operatorname{sign}\left(i_{k} i_{1}\right)
$$

The following theorem defines the relationship between signed digraphs and SNS matrices (Theorem 3.2.1 in [8]).

Theorem 1.53. Let S be a square sign pattern matrix with negative diagonal entries, that is $s_{i, i}=-$ for all i. Then, S is a SNS-matrix if and only if every directed cycle of the signed digraph $D(S)$ is negative.

We illustrate an application of this theorem to a maximal SNS-matrix (6.5 in [8]),

$$
\left[\begin{array}{lll}
- & + & 0 \tag{1.1}\\
- & - & + \\
- & - & -
\end{array}\right]
$$

with Figure 1.4. The sign pattern in (1.1) also corresponds to a signed graph as shown in Figure 1.4, as follows. The rows of (1.1) index the vertices u_{i}, and the columns index the vertices v_{j}. We place an odd edge between u_{i} and v_{j} if the corresponding entry of (1.1) is positive, and an even edge if the corresponding entry is negative. We may also construct the sign pattern in (1.1) from our bipartite signed graph, using a method originally from Little, as follows [17]. First, we switch around vertices so that we have a perfect matching with odd edges. Then, we label our edges with + if the edge is odd and - if the edge is even. Next, we direct each edge in our signed graph from the vertices u_{i} to the vertices v_{j}. Finally, we contract the edges in our perfect matching. We will use this construction to obtain zero forcing rules on signed graphs.

Little found a characterization of SNS-matrices [17], but first we need a definition. We may subdivide a graph G by replacing a $P_{2}=u e_{0} w$ with a $P_{3}=u e_{1} v e_{2} w$ to obtain a subdivision of G, the resulting graph H. If we subdivide each edge an even number of times,

Figure 1.4 The signed digraph of the maximal SNS-matrix of order 3 and the corresponding signed graph, where odd edges are dashed and even edges are solid.
then H is an even subdivision of G. Although originally a result of Little, we also rely on results of Robertson, Seymour, and Thomas to state the following theorem [17, 19].

Theorem 1.54. Let S be a sign pattern matrix. Let (G, Σ) be the bipartite signed graph corresponding to S. Suppose G has a perfect matching. Then, $D(S)$ has no positive directed cycle if and only if G has no even subdivision of $K_{3,3}$.

CHAPTER 2

Signed Graphs with Stable Maximum Nullity at Most Two

This chapter contains the results of Arav, Dahlgren, and van der Holst [2]. The following theorem is the main result of this chapter. The last section of this chapter contains the proof.

Theorem 2.1. A signed graph (G, Σ) has $\xi(G, \Sigma) \leq 2$ if and only if (G, Σ) has no minor isomorphic to K_{4}^{e}, K_{4}^{o}, or a signed graph in the $K_{3}^{=}$-family.

The above theorem extends the result of Hogben and van der Holst, where they found the forbidden minors for graphs with stable maximum nullity at most two [14].

2.1 The Signed Four-Wheel

Lemma 2.2. Let (G, Σ) be a signed graph with a pendant vertex v, such that $\xi(G, \Sigma)=k$. Suppose $A \in \mathcal{S}(G, \Sigma)$ has the SAP, and $\operatorname{corank}(A)=k$. If $a_{v, v} \neq 0$, then $\xi(G-v, \Sigma \backslash \delta(v))=k$.

Proof. Let (G, Σ) be a signed graph with a pendant vertex v. Denote with $(H, \Omega)=(G-$ $v, \Sigma \backslash \delta(v))$. Suppose there exists a matrix $A \in \mathcal{S}(G, \Sigma)$ such that $\operatorname{corank}(A)=\xi(G, \Sigma)=k$ and $a_{v, v} \neq 0$. Suppose A has the SAP with respect to (G, Σ). Write A as

$$
A=\left[\begin{array}{cc}
a_{v, v} & A[v, \bar{v}] \\
A[\bar{v}, v] & A[\bar{v}]
\end{array}\right] .
$$

The Schur complement of $a_{v, v}$ in A is

$$
B=A / a_{v, v}=A[\bar{v}]-a_{v, v}^{-1} A[\bar{v}, v] A[v, \bar{v}] .
$$

From Observation 1.5, $\operatorname{corank}(B)=k$. As $A[\bar{v}, v] A[v, \bar{v}]$ is zero except for one diagonal entry and as $A[\bar{v}] \in \mathcal{S}(H, \Omega)$, we also have $B \in \mathcal{S}(H, \Omega)$.

Suppose for a contradiction that B does not have the SAP with respect to (H, Ω). Then, there exists a non-zero real symmetric matrix X such that $B X=0$ and $x_{i, j}=0$ if $i \leftrightarrow j$ or $i=j$. Take Y such that

$$
Y=\left[\begin{array}{cc}
0 & -a_{v, v}^{-1} A[v, \bar{v}] X \\
-a_{v, v}^{-1} X A[\bar{v}, v] & X
\end{array}\right] .
$$

As X has a zero diagonal and $A[v, \bar{v}]$ has one non-zero element, $A[v, \bar{v}] X A[\bar{v}, v]=0$. Further, $A[\bar{v}] X A[\bar{v}, v]=B X A[\bar{v}, v]+a_{v, v}^{-1} A[\bar{v}, v] A[v, \bar{v}] X A[\bar{v}, v]=0$. So,

$$
A Y=\left[\begin{array}{cc}
a_{v, v} & A[v, \bar{v}] \\
A[\bar{v}, v] & A[\bar{v}]
\end{array}\right]\left[\begin{array}{cc}
0 & -a_{v, v}^{-1} A[v, \bar{v}] X \\
-a_{v, v}^{-1} X A[\bar{v}, v] & X
\end{array}\right]
$$

$$
=\left[\begin{array}{cc}
-a_{v, v}^{-1} A[v, \bar{v}] X A[\bar{v}, v] & -A[v, \bar{v}] X+A[v, \bar{v}] X \\
-a_{v, v}^{-1} A[\bar{v}] X A[\bar{v}, v] & B X
\end{array}\right]=0 .
$$

Because X has a zero diagonal, by construction $y_{i, j}=0$ if $i=j$. As X has a zero diagonal, $A[v, \bar{v}] X$ has a zero corresponding to the pendant edge of $v: y_{v, j}=0$ if $v \leftrightarrow j$. Because $x_{i, j}=0$ if $i \leftrightarrow j$ for the vertices of H, we have $y_{i, j}=0$ if $i \leftrightarrow j$. That is, A does not have the $S A P$ with respect to (G, Σ). Thus, we have our contradiction, and B has the SAP with respect to (H, Ω). Hence, $\xi(H, \Omega) \geq k$. As (H, Ω) is a minor of $(G, \Sigma), \xi(H, \Omega) \leq k$. Finally, $\xi(G-v, \Sigma \backslash \delta(v))=k$.

Lemma 2.3. Let (G, Σ) be a W_{4}^{o} with single pendant edges attached to some of the vertices of W_{4}^{o}. Then, $\xi(G, \Sigma)=2$.

Proof. We may take $A \in \mathcal{S}(G, \Sigma)$ which has the SAP and $\operatorname{corank}(A)=\xi(G, \Sigma)$. By Lemma 2.2, the entry $a_{v, v}=0$ whenever v is a pendant vertex. If (G, Σ) has no pendant vertices, then $(G, \Sigma)=W_{4}^{o}$. From Theorem 1.52, $\operatorname{corank}(A)=\xi\left(W_{4}^{o}\right) \leq 2$. If (G, Σ) has exactly 1 pendant vertex v adjacent to u, then we may take the the matrix B to be the Schur complement of the submatrix with columns and rows $\{u, v\}$ in $A \in \mathcal{S}(G, \Sigma)$. The graph of B is either a 4 -cycle or a 4 -cycle with a chord edge, and $\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2$. If (G, Σ) has more than 1 pendant vertex, then we may sequentially apply the Schur complement as in the previous case to obtain the matrix B. The graph of B is a subgraph of either a 4 -cycle or a 4-cycle with a chord edge, and $\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2$. For all our cases, $\operatorname{corank}(A) \leq 2$ and A has the SAP, so $\xi(G, \Sigma) \leq 2$. Because (G, Σ) has an odd cycle, Theorem 1.26 implies
$\xi(G, \Sigma) \geq 2$. Therefore, $\xi(G, \Sigma)=2$.

Figure 2.1 The $K_{3}^{=}$-family of signed graphs. Solid edges are even; dotted edges are odd; and dashed lines may be odd or even.

2.2 The $K_{3}^{=}$-Family of Signed Graphs

Starting with $K_{3}^{=}$, we construct the $K_{3}^{=}$-family of signed graphs by repeating the following: selecting a pair of parallel edges, subdividing one of these parallel edges, assigning the resulting two edges any sign, and applying a ΔY-transformation on the the resulting triangle. Figure 2.1 depicts the members of the $K_{3}^{=}$-family. When convenient, we keep track of the members of the $K_{3}^{=}$-family by the number of ΔY-transformations: $K_{3}^{=}, K_{3}^{=}(\Delta Y), K_{3}^{=}(\Delta Y)^{2}$, and $K_{3}^{=}(\Delta Y)^{3}$.

Lemma 2.4. Every member (G, Σ) of the $K_{3}^{=}$-family has $\xi(G, \Sigma)=3$.

Proof. From Theorem 1.52, we know $\xi\left(K_{3}^{=}\right) \geq 3$ because $K_{3}^{=}$is 2 -connected. By definition, every (G, Σ) in the $K_{3}^{=}$-family may be formed from $K_{3}^{=}$by a sequence of the following on pairs of multiple edges: subdivide an edge and perform a ΔY-transformation on the subsequent triangle. As a signed graph is a proper minor of its own subdivision, Lemmas 1.32 and 1.23 imply $\xi\left(K_{3}^{=}(\Delta Y)^{3}\right) \geq \xi(G, \Sigma) \geq \xi\left(K_{3}^{=}\right) \geq 3$.

Consider the simple graph H associated with $K_{3}^{=}(\Delta Y)^{3}$. We construct a zero forcing set
B to show $Z(H) \leq 3$. First, we select two pendant vertices u and v. Next, we select the vertex w along the shortest path from u to v with $d(w)=2$. So, $B=\{u, v, w\}$ is a zero forcing set for H. From Corollary 1.34, we have $\xi\left(K_{3}^{=}(\Delta Y)^{3}\right) \leq Z(H) \leq|B|=3$. Because $3 \leq \xi(G, \Sigma) \leq \xi\left(K_{3}^{=}(\Delta Y)^{3}\right)$, we conclude $\xi(G, \Sigma)=3$.

The following corollary is immediate from Lemma 2.4

Corollary 2.5. If (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family, then $M(G, \Sigma) \geq \xi(G, \Sigma) \geq 3$.

Lemma 2.6. If (G, Σ) is a member of the $K_{3}^{=}$-family and $(H, \Omega) \prec(G, \Sigma)$, then $\xi(H, \Omega)<3$.

Proof. Suppose (H, Ω) is a proper minor of a member of the $K_{3}^{=}$-family. We only need to consider the components of (H, Ω) with at least 3 vertices to show $\xi(H, \Omega)<3$. We proceed by a case study on whether (H, Ω) has multiple edges.

Suppose (H, Ω) has no multiple edges. From Theorem 1.40, every forest F has $\xi(F) \leq 2$. So we may assume (H, Ω) has exactly one cycle C; otherwise, $\xi(H, \Omega) \leq 2$. If there exists two pendant vertices a and b such that $d_{H}(a, b)=3$, then $\{a, b\}$ form a zero forcing set for (H, Ω). Otherwise (H, Ω) has at least one pendant vertex a, and $\{a, b\}$ form a zero forcing set where $d_{H}(a, b)=2$. So the zero forcing number of (H, Ω) is at most 2 when (H, Ω) has a cycle, and Corollary 1.34 implies $\xi(H, \Omega) \leq 2$. Therefore, $\xi(H, \Omega)<3$ when (H, Ω) has no multiple edges.

Suppose (H, Ω) has multiple edges. For each pair of multiple edges, replace the odd edge with a path of length two consisting of odd edges and apply a ΔY-transformation on the
resulting triangle to form the signed graph $\left(H^{\prime}, \Omega^{\prime}\right)$. As $\left(H^{\prime}, \Omega^{\prime}\right)$ has no multiple edges and is again a proper minor of (G, Σ), the above argument holds and $\xi\left(H^{\prime}, \Omega^{\prime}\right)<3$. Lemmas 1.32
and 1.23 imply $\xi(H, \Omega) \leq \xi\left(H^{\prime}, \Omega^{\prime}\right)<3$ when (H, Ω) has multiple edges.

Figure 2.2 illustrates the case study of the proof of Lemma 2.6.

Figure 2.2 The $K_{3}^{=}$-family and their minors. The first row are the members of the $K_{3}^{=}$ family. Below the horizontal rule, each column are proper minors of the member of the $K_{3}^{=}$-family in that column. Arrows to the right represent a subdivision of an edge followed by a ΔY-transformation.

2.3 Partial Wide 2-Paths

Definition 2.7. Let (G, Σ) be a signed graph. A pair $\left[G_{1}, G_{2}\right]$ of subgraphs of G is a wide separation of (G, Σ) if there exists an odd 4-cycle C_{4} such that

- $G_{1} \cup C_{4} \cup G_{2}=G$,
- $E\left(G_{1}\right) \cap E\left(C_{4}\right)=\emptyset$,
- $E\left(G_{2}\right) \cap E\left(C_{4}\right)=\emptyset$,
- $V\left(G_{1}\right) \cap V\left(G_{2}\right)=\emptyset$,
- $V\left(G_{1}\right) \cap C_{4}=\left\{r_{1}, r_{2}\right\}$, and
- $V\left(G_{2}\right) \cap C_{4}=\left\{s_{1}, s_{2}\right\}$;
where r_{1} and r_{2} are not adjacent in C_{4}; and, s_{1} and s_{2} are not adjacent in C_{4}. We call r_{1}, r_{2} the vertices of attachment of G_{1} and s_{1}, s_{2} the vertices of attachment of G_{2}.

Lemma 2.8. Let (G, Σ) be a signed graph with pendant vertices s_{1}, s_{2} adjacent to u_{1}, u_{2} where $u_{1} \neq u_{2}$. If

- there exists $A \in \mathcal{S}(G, \Sigma)$ such that
$-\operatorname{corank}(A)=\xi(G, \Sigma)$,
- A has the SAP, and
$-a_{s_{1}, s_{1}}=a_{s_{2}, s_{2}}=0 ;$ and
- $G-\left\{u_{1}, u_{2}, s_{1}, s_{2}\right\}$ has three components, each a path,
then $\xi(G, \Sigma) \leq 2$.

Proof. We relabel the vertices $u_{1}, u_{2}, s_{1}, s_{2}$ as $n-3, n-2, n-1, n$. We take the Schur complement $B=A / A[\{n-3, n-2, n-1, n\}]$. From Observation 1.5, $\operatorname{corank}(A)=\operatorname{corank}(B)$. The graph $H=G(B)$ has three components, each a path: P_{1}, P_{2}, and P_{3}. We again relabel the vertices such that $i \in P_{j}, i^{\prime} \in P_{j^{\prime}}$, and $j<j^{\prime}$ implies $i<i^{\prime}$.

From Theorem 1.14, $\operatorname{corank}(B) \leq M(H)=3$. Suppose for a contradiction that $\operatorname{corank}(B)=$ 3. Then, we may find non-zero vectors $x_{1} \in \operatorname{ker}\left(B\left[P_{1}\right]\right), x_{2} \in \operatorname{ker}\left(B\left[P_{2}\right]\right)$, and $x_{3} \in$ $\operatorname{ker}\left(B\left[P_{3}\right]\right)$. Because $B=B\left[P_{1}\right] \oplus B\left[P_{2}\right] \oplus B\left[P_{3}\right]$, the vectors $\left\{\left[\begin{array}{lll}x_{1} & 0 & 0\end{array}\right]^{T},\left[\begin{array}{lll}0 & x_{2} & 0\end{array}\right]^{T},\left[\begin{array}{lll}0 & 0 & x_{3}\end{array}\right]^{T}\right\}$ form a basis for $\operatorname{ker} B$. Then, we may write U

$$
U=\left[\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3} \\
y_{n-3,1} & y_{n-3,2} & y_{n-3,3} \\
y_{n-2,1} & y_{n-2,2} & y_{n-2,3} \\
y_{n-1,1} & y_{n-1,2} & y_{n-1,3} \\
y_{n, 1} & y_{n, 2} & y_{n, 3}
\end{array}\right] .
$$

where the columns of U are a basis for $\operatorname{ker}(A)$ for some choice of $y_{i, j}$ for $i=n-3, n-2, n-1, n$ and $j=1,2,3$. As $a_{n-1, n-1}=0$, the pendant edge $(n-1)(n-3)$ forces $y_{n-3, j}=0$. Similarly, $a_{n, n}=0$, and the pendant edge $(n-2)(n)$ forces $y_{n-2, j}=0$. So, we have

$$
U=\left[\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
y_{n-1,1} & y_{n-1,2} & y_{n-1,3} \\
y_{n, 1} & y_{n, 2} & y_{n, 3}
\end{array}\right]
$$

We denote the i-th row of U with u_{i}. Because each edge is incident on $\{n-3, n-2\}$ or within the paths P_{1}, P_{2}, P_{3}, the span of the matrices $\left\{u_{i} u_{i}^{T} \mid i \in V\right\}$ and $\left\{u_{i} u_{j}^{T}+u_{j} u_{i}^{T} \mid i j \in E\right\}$ has $\operatorname{dim} \leq 5$. Because $\operatorname{corank}(A)=3$ and A has the SAP, Lemma 1.28 implies this dimension must be 6 . We have our contradiction; and $\operatorname{corank}(B) \leq 2$. Therefore, we have

$$
\xi(G, \Sigma)=\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2
$$

2.3.1 Two Wide Separations

The $K_{2,4} e_{i}^{j}$ family of signed graphs is presented in Figure 2.3.

Lemma 2.9. $\xi\left(K_{2,4} e_{i}^{0}\right)=2$ for $i=o, e$.

Proof. Because $K_{2,4} e_{i}^{0}$ has an odd cycle for $i=o, e$, Theorem 1.26 implies $\xi\left(K_{2,4} e_{i}^{0}\right) \geq 2$ for $i=o, e$. Because $K_{2,4} e_{i}^{0}$ is a partial wide 2-path for $i=o, e$, Theorem 1.52 implies $\xi\left(K_{2,4} e_{i}^{0}\right) \leq 2$ for $i=o, e$.

Lemma 2.10. $\xi\left(K_{2,4} e_{i}^{1}\right) \leq 2$ for $i=o, e$.

Proof. Let $A \in \mathcal{S}\left(K_{2,4} e_{i}^{1}\right)$ such that A has the SAP and $\operatorname{corank}(A)=\xi\left(K_{2,4} e_{i}^{1}\right)$. If $a_{12,12} \neq 0$, then we may take the Schur complement $A / a_{12,12}$. The signed graph of $A / a_{12,12}$ is exactly

Figure 2.3 The $K_{2,4} e_{i}^{j}$ family of signed graphs, for $i=e, o$ and $j=0,1,2,3,4,5$. Solid edges are even, and dotted edges are odd. Dashed edges are even for $K_{2,4} e_{e}^{j}$ and are odd for $K_{2,4} e_{o}^{j}$.
$K_{2,4} e_{i}^{0}$, and Lemmas 2.2 and 2.9 imply $\xi\left(K_{2,4} e_{i}^{1}\right)=\xi\left(K_{2,4} e_{i}^{0}\right)=2$. If $a_{12,12}=0$, then we consider the Schur complement $B=A / A[\{9,12\}]$. The graph of B is a tree T with $P(T)=2$, and Theorem 1.41 implies $\operatorname{corank}(B) \leq 2$. Therefore, we have

$$
\xi\left(K_{2,4} e_{i}^{1}\right)=\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2 .
$$

Lemma 2.11. $\xi\left(K_{2,4} e_{i}^{2}\right) \leq 2$ for $i=o, e$.

Proof. Let $A \in \mathcal{S}\left(K_{2,4} e_{i}^{2}\right)$ such that A has the SAP and $\operatorname{corank}(A)=\xi\left(K_{2,4} e_{i}^{2}\right)$. If $a_{12,12} \neq 0$, then we may take the Schur complement $A / a_{12,12}$. The signed graph of $A / a_{12,12}$ is exactly $K_{2,4} e_{i}^{0}$, and Lemmas 2.2 and 2.9 imply $\xi\left(K_{2,4} e_{i}^{2}\right)=\xi\left(K_{2,4} e_{i}^{0}\right)=2$. If $a_{12,12}=0$, then we consider the Schur complement $B=A / A[\{9,12\}]$. The graph of B is a graph on two parallel paths, denoted H. So, we may apply Lemma 1.44, and $\operatorname{corank}(B) \leq M(H)=2$. Therefore, we have

$$
\xi\left(K_{2,4} e_{i}^{2}\right)=\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2
$$

Lemma 2.12. $\xi\left(K_{2,4} e_{i}^{3}\right) \leq 2$ for $i=o, e$.

Proof. Let $A \in \mathcal{S}\left(K_{2,4} e_{i}^{3}\right)$ such that A has the SAP and $\operatorname{corank}(A)=\xi\left(K_{2,4} e_{i}^{3}\right)$. If $a_{12,12} \neq 0$, then Lemma 2.10 implies $\operatorname{corank}(A) \leq 2$. If $a_{13,13} \neq 0$, then Lemma 2.11 implies corank $(A) \leq$ 2. So, we may assume both $a_{12,12}=a_{13,13}=0$. We take the Schur complement $B=$ $A / A[\{10,11,12,13\}]$. The graph $H=G(B)$ has three components, each a path. Therefore, Lemma 2.8 implies $\xi\left(K_{2,4} e_{i}^{3}\right) \leq 2$.

Lemma 2.13. $\xi\left(K_{2,4} e_{i}^{4}\right) \leq 2$ for $i=o, e$.

Proof. Let $A \in \mathcal{S}\left(K_{2,4} e_{i}^{3}\right)$ such that A has the SAP and $\operatorname{corank}(A)=\xi\left(K_{2,4} e_{i}^{3}\right)$. If $a_{12,12} \neq 0$, then Lemma 2.12 implies $\operatorname{corank}(A) \leq 2$. If $a_{13,13} \neq 0$, then Lemma 2.12 implies corank $(A) \leq$ 2. So, we may assume both $a_{12,12}=a_{13,13}=0$. We take the Schur complement $B=$ $A / A[\{10,11,12,13\}]$. Then, we may obtain the tree $T=G(B)$ by subdividing each edge of $K_{1,4}$ exactly once. As $P(T)=3$, Theorem 1.41 implies $\operatorname{corank}(B) \leq P(T)=3$.

If $B[\{7,8\}]$ is full rank, then we may take the Schur complement $C=B / B[\{7,8\}]$. The resulting tree $T^{\prime}=G(C)$ has $P\left(T^{\prime}\right)=2$. From Theorem 1.41, $\operatorname{corank}(C) \leq M\left(T^{\prime}\right)=2$. Therefore,

$$
\operatorname{corank}(A)=\operatorname{corank}(B)=\operatorname{corank}(C) \leq M\left(T^{\prime}\right)=2 .
$$

So, we may assume $\operatorname{corank}(B[\{7,8\}]) \geq 1$ for the remainder of the proof. As corank $(B[\{7,8\}]) \geq$ 1 and as $b_{7,8} \neq 0$, all entries of $B[\{7,8\}]$ are nonzero. Then, the $\operatorname{det} B[\{7,8,9\}]=b_{7,9}^{2} b_{8,8} \neq 0$. By symmetry, the same argument applied to the other branches of T implies $\operatorname{corank}(B[\{1,2\}]) \geq$ $1, \operatorname{corank}(B[\{3,4\}]) \geq 1$, and $\operatorname{corank}(B[\{5,6\}]) \geq 1$.

Take the Schur complement $C^{\prime}=B / B[\{7,8,9\}]$ and the graph $F=G\left(C^{\prime}\right)$. The forest F is three disjoint paths each on two vertices. Suppose for a contradiction that corank $(B)=3$. Then, the $\operatorname{corank}\left(C^{\prime}\right)=\operatorname{corank}(B)=3$. We may find non-zero vectors $x_{1} \in \operatorname{ker}\left(C^{\prime}[\{1,2\}]\right)$, $x_{2} \in \operatorname{ker}\left(C^{\prime}[\{3,4\}]\right)$, and $x_{3} \in \operatorname{ker}\left(C^{\prime}[\{5,6\}]\right)$. Because $C^{\prime}=C^{\prime}[\{1,2\}] \oplus C^{\prime}[\{3,4\}] \oplus$ $C^{\prime}[\{5,6\}]$, the vectors $\left\{\left[\begin{array}{lll}x_{1} & 0 & 0\end{array}\right]^{T},\left[\begin{array}{lll}0 & x_{2} & 0\end{array}\right]^{T},\left[\begin{array}{lll}0 & 0 & x_{3}\end{array}\right]^{T}\right\}$ form a basis for $\operatorname{ker} C^{\prime}$. Then, the
columns of W,

$$
W=\left[\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3} \\
y_{7,1} & y_{7,2} & y_{7,3} \\
y_{8,1} & y_{8,2} & y_{8,3} \\
y_{9,1} & y_{9,2} & y_{9,3}
\end{array}\right],
$$

form a basis for ker B for some $y_{i, j}, i=7,8,9$ and $j=1,2,3$, where we may take $\left[y_{7,1} y_{7,2} y_{7,3}\right] \propto$ $\left[\begin{array}{lll}y_{8,1} & y_{8,2} & y_{8,3}\end{array}\right]$. Because $b_{2,9} \neq 0$, the coordinates $y_{9, j}=0$ for $j=1,2,3$. Then, the columns of U,

$$
U=\left[\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3} \\
y_{7,1} & y_{7,2} & y_{7,3} \\
y_{8,1} & y_{8,2} & y_{8,3} \\
0 & 0 & 0 \\
y_{10,1} & y_{10,2} & y_{10,3} \\
y_{11,1} & y_{11,2} & y_{11,3} \\
y_{12,1} & y_{12,2} & y_{12,3} \\
y_{13,1} & y_{13,2} & y_{13,3}
\end{array}\right],
$$

form a basis for $\operatorname{ker}(A)$, where we may take $\left[\begin{array}{ll}y_{12,1} & y_{13,1}\end{array}\right] \propto\left[\begin{array}{ll}y_{12,3} & y_{13,3}\end{array}\right]$. As $a_{12,12}=0$, the pendant edge $v_{10} v_{12}$ forces $y_{10, j}=0$. Similarly, $a_{13,13}=0$, and the pendant edge $v_{11} v_{13}$ forces $y_{11, j}=0$. As $\operatorname{dim}(U)=3$, we may take $y_{12,2}=0$, and we may write:

$$
U=\left[\begin{array}{ccc}
x_{1} & 0 & 0 \\
0 & x_{2} & 0 \\
0 & 0 & x_{3} \\
y_{7,1} & y_{7,2} & y_{7,3} \\
y_{8,1} & y_{8,2} & y_{8,3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
y_{12,1} & 0 & y_{12,3} \\
y_{13,1} & y_{13,2} & y_{13,3}
\end{array}\right]
$$

We denote the i-th row of U with u_{i}. The span of the matrices $\left\{u_{i} u_{i}^{T} \mid i \in V\right\}$ and $\left\{u_{i} u_{j}^{T}+\right.$
$\left.u_{j} u_{i}^{T} \mid i j \in E\right\}$ has $\operatorname{dim} \leq 5$. Because $\operatorname{corank}(A)=3$ and A has the SAP, Lemma 1.28 implies this dimension must be 6 . We have our contradiction; and $\operatorname{corank}(B) \leq 2$. Therefore, we have

$$
\xi\left(K_{2,4} e_{i}^{4}\right)=\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2 .
$$

Lemma 2.14. $\xi\left(K_{2,4} e_{i}^{5}\right) \leq 2$ for $i=o, e$.

Proof. Let $A \in \mathcal{S}\left(K_{2,4} e_{i}^{5}\right)$ such that A has the SAP and $\operatorname{corank}(A)=\xi\left(K_{2,4} e_{i}^{5}\right)$. If $a_{14,14} \neq 0$, then Lemmas 2.2 and 2.13 imply $\operatorname{corank}\left(A / a_{14,14}\right) \leq 2$. If $a_{13,13} \neq 0$, then Lemmas 2.2 and 2.12 imply $\operatorname{corank}\left(A / a_{13,13}\right) \leq 2$. If $a_{12,12} \neq 0$, then Lemmas 2.2 and 2.12 imply $\operatorname{corank}\left(A / a_{12,12}\right) \leq 2$. So, we may assume $a_{12,12}=a_{13,13}=a_{14,14}=0$. Take the Schur complement $B=A / A[\{9,10,11,12,13\}]$. Then, the graph of B is four copies of K_{2}, and Corollary 1.14 implies $\operatorname{corank}(B) \leq 4$.

Suppose for a contradiction that $\operatorname{corank}(B)=4$. Then, we may find nonzero vectors $x_{1} \in \operatorname{ker}(B[\{1,2\}]), x_{2} \in \operatorname{ker}(B[\{3,4\}]), x_{3} \in \operatorname{ker}(B[\{5,6\}])$, and $x_{4} \in \operatorname{ker}(B[\{7,8\}])$. Then, the columns of U,

$$
U=\left[\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & x_{2} & 0 & 0 \\
0 & 0 & x_{3} & 0 \\
0 & 0 & 0 & x_{4} \\
y_{9,1} & y_{9,2} & y_{9,3} & y_{9,4} \\
y_{10,1} & y_{10,2} & y_{10,3} & y_{10,4} \\
y_{11,1} & y_{11,2} & y_{11,3} & y_{11,4} \\
y_{12,1} & y_{12,2} & y_{12,3} & y_{12,4} \\
y_{13,1} & y_{13,2} & y_{13,3} & y_{13,4} \\
y_{14,1} & y_{14,2} & y_{14,3} & y_{14,4}
\end{array}\right],
$$

form a basis for the $\operatorname{ker}(A)$ for $y_{i, j}$ where $i=9, \ldots, 14$ and $j=1,2,3,4$. Because $a_{12,12}=0$, the pendant edge $v_{9} v_{12}$ forces $y_{9, j}=0$ for $j=1,2,3$, 4. Similarly, $y_{10, j}=y_{11, j}=0$ for $j=1,2,3,4$. So, we may write

$$
U=\left[\begin{array}{cccc}
x_{1} & 0 & 0 & 0 \\
0 & x_{2} & 0 & 0 \\
0 & 0 & x_{3} & 0 \\
0 & 0 & 0 & x_{4} \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
y_{12,1} & y_{12,2} & y_{12,3} & y_{12,4} \\
y_{13,1} & y_{13,2} & y_{13,3} & y_{13,4} \\
y_{14,1} & y_{14,2} & y_{14,3} & y_{14,4}
\end{array}\right] .
$$

We denote the i-th row of U with u_{i}. The span of the matrices $\left\{u_{i} u_{i}^{T} \mid i \in V\right\}$ and $\left\{u_{i} u_{j}^{T}+\right.$ $\left.u_{j} u_{i}^{T} \mid i j \in E\right\}$ has $\operatorname{dim} \leq 7$. Because $\operatorname{corank}(B)=\operatorname{corank}(A)=4$ and A has the SAP, Lemma 1.28 implies this dimension must be 10. We have our contradiction; and corank $(B) \leq$ 3.

We assume for a contradiction that $\operatorname{corank}(B)=3$. So, one of the four paths in the graph of B corresponds to a full rank 2×2 matrix, and we may assume that $\operatorname{corank}(B[\{7,8\}])=$ 0. So, we may find nonzero vectors $q_{1} \in \operatorname{ker}(B[\{1,2\}]), q_{2} \in \operatorname{ker}(B[\{3,4\}])$, and $q_{3} \in$
$\operatorname{ker}(B[\{5,6\}])$. With a similar argument, the columns of W,

$$
W=\left[\begin{array}{ccc}
q_{1} & 0 & 0 \\
0 & q_{2} & 0 \\
0 & 0 & q_{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
z_{12,1} & 0 & z_{12,3} \\
z_{13,1} & z_{13,2} & 0 \\
z_{14,1} & 0 & z_{14,3}
\end{array}\right]
$$

form a basis for $\operatorname{ker}(A)$ for some $z_{12,1}, z_{12,3}, z_{13,1}, z_{13,2}, z_{14,1}, z_{14,3}$. We denote the i-th row of W with w_{i}. The span of the matrices $\left\{w_{i} w_{i}^{T} \mid i \in V\right\}$ and $\left\{w_{i} w_{j}^{T}+w_{j} w_{i}^{T} \mid i j \in E\right\}$ has $\operatorname{dim} \leq 5$. Because $\operatorname{corank}(B)=\operatorname{corank}(A)=3$ and A has the SAP, Lemma 1.28 implies this dimension must be 6 . We have our contradiction; and $\operatorname{corank}(B) \leq 2$. Therefore, we have

$$
\xi\left(K_{2,4} e_{i}^{5}\right)=\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2 .
$$

Lemma 2.15. Let (G, Σ) be a signed graph such that the removal of pendant vertices yields a 2-connected partial wide 2-path (H, Ω). Let $\left[H_{1}, H_{2}\right]$ and $\left[H_{3}, H_{4}\right]$ be distinct wide separations of (H, Ω) such that $H_{1} \subseteq H_{3}$ and $H_{4} \subseteq H_{2}$. Let r_{1}, r_{2} be the vertices of attachment of H_{2} and let s_{1}, s_{2} be the vertices of attachment of H_{3}. Let P_{1} and P_{2} be disjoint paths between $\left\{r_{1}, r_{2}\right\}$ and $\left\{s_{1}, s_{2}\right\}$, where P_{i} has endvertices r_{i} and s_{i} for $i=1,2$. If a pendant edge is incident with a vertex on P_{1} or P_{2}, then either

- (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family or
- $\xi(G, \Sigma) \leq 2$ and both H_{1} and H_{2} are disconnected.

Proof. If (G, Σ) has a pendant vertex adjacent to an internal vertex of P_{1} or P_{2}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. So, we may assume every pendant vertex is adjacent to an endvertex of P_{1} or P_{2}.

Suppose that a pendant vertex is adjacent to an endvertex of P_{1}. If P_{1} has at least two edges, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that P_{1} has 1 edge or $r_{1}=s_{1}$. If P_{2} has at least two edges, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that P_{2} has 1 edge or $r_{2}=s_{2}$. If both P_{1} and P_{2} each have exactly 1 edge, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. So, we may assume that $r_{1}=s_{1}$ or $r_{2}=s_{2}$.

Suppose that P_{1} has exactly 1 edge and $r_{2}=s_{2}$. If H_{1} or H_{4} is connected and if a pendant vertex is adjacent to r_{1} or s_{1}, then (G, Σ) has a minor isomorphic to $K_{3}^{=}(\Delta Y)$. If H_{1} or H_{4} is connected and if a pendant vertex is adjacent to $r_{2}=s_{2}$, then (G, Σ) has a minor isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. So, we may assume that both H_{1} and H_{4} are disconnected. Then, (G, Σ) is isomorphic to a minor of $K_{2,4} e_{i}^{5}$, and Lemma 2.14 implies $\xi(G, \Sigma) \leq \xi\left(K_{2,4} e_{i}^{5}\right) \leq 2$. We may apply the same argument by symmetry for the case that P_{2} has exactly 1 edge and $r_{1}=s_{1}$.

Next, we assume that $r_{1}=s_{1}$ and $r_{2}=s_{2}$. If H_{1} and H_{4} are connected, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. If both H_{1} and H_{4} are disconnected, then we found a minor of (G, Σ) isomorphic to $K_{2,4} e_{i}^{5}$. Lemma 2.14 implies $\xi(G, \Sigma) \leq \xi\left(K_{2,4} e_{i}^{5}\right) \leq 2$. So, we may assume that H_{1} is disconnected and H_{4} is connected.

By symmetry, we may assume that (G, Σ) has a pendant edge $t_{1} r_{1}$ incident on P_{1}. If H_{4} contains a cycle, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. So, we may assume that H_{4} has no cycles. As H_{4} is connected, we may find a path Q between q_{1} and q_{2}, the vertices of attachment of H_{4} in $\left[H_{3}, H_{4}\right]$. If (G, Σ) has a pendant edge incident on an internal vertex of Q, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. If Q has at least two edges and (G, Σ) has pendant edges incident on both q_{1} and q_{2}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. So, we may assume that Q has exactly one edge or that (G, Σ) has at most one pendant vertex adjacent to Q.

Let $A \in \mathcal{S}(G, \Sigma)$ such that $\operatorname{corank}(A)=\xi(G, \Sigma)$ and A has the SAP. If the entry $a_{t_{1}, t_{1}} \neq 0$, then Lemma 2.2 implies $\xi(G, \Sigma)=\xi\left(G-t_{1}, \Sigma \backslash t_{1} r_{1}\right)$. As $\left(G-t_{1}, \Sigma \backslash t_{1} r_{1}\right)$ is a minor of a 2-connected partial wide 2-path, Theorem 1.52 and Lemma 1.23 imply $\xi\left(G-t_{1}, \Sigma \backslash t_{1} r_{1}\right) \leq 2$. Hence, $\xi(G, \Sigma) \leq 2$. So, we may assume that $a_{t_{1}, t_{1}}=0$. We take the Schur complement $B=A / A\left[\left\{t_{1}, r_{1}\right\}\right]$. Next, we construct a zero forcing set for $G-\left\{t_{1}, r_{1}\right\}$. Let v_{1}, v_{2} be the vertices of attachment of H_{1} for the wide separation $\left[H_{1}, H_{2}\right]$. If (G, Σ) has a pendant vertex adjacent to v_{1}, then we take z_{1} to be this pendant vertex; otherwise, we take $z_{1}=v_{1}$. If (G, Σ) has a pendant vertex adjacent to q_{1} or q_{2}, then we take z_{2} to be this pendant vertex; otherwise, we take $z_{2}=q_{2}$. Then, $Z=\left\{z_{1}, z_{2}\right\}$ is a zero set for $G-\left\{t_{1}, r_{1}\right\}$, and by Lemma $1.33 \operatorname{corank}(B) \leq M\left(G-\left\{t_{1}, r_{1}\right\}\right) \leq Z\left(G-\left\{t_{1}, r_{1}\right\}\right) \leq|Z|=2$. From Observation 1.5, we have $\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2$. Therefore, $\xi(G, \Sigma)=\operatorname{corank}(A) \leq 2$.

Suppose (G, Σ) has a pendant edge $t_{2} r_{2}$ incident on P_{2}. By Lemma 2.2, we may assume that entries $a_{t_{1}, t_{1}}=a_{t_{2}, t_{2}}=0$, corresponding to the pendant vertices t_{1} and t_{2}. Then,
$G-\left\{t_{1}, r_{1}, t_{2}, r_{2}\right\}$ has three components, each a path. From Lemma 2.8, $\xi(G, \Sigma) \leq 2$.

Lemma 2.16. Let (G, Σ) be a signed graph such that removing pendant vertices yields a 2-connected partial 2-path (H, Ω) with at least two wide separations. Then, either (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$.

Proof. Let $\left[H_{1}, H_{2}\right]$ and $\left[H_{3}, H_{4}\right]$ be two distinct wide separations of (H, Ω) such that there are no wide separations $\left[F_{1}, F_{2}\right]$ and $\left[F_{3}, F_{4}\right]$ with $F_{1} \subset H_{1}$ and $F_{4} \subset H_{4}$. Let u_{1}, u_{2} be the vertices of attachment of H_{1}; let r_{1}, r_{2} be the vertices of attachment of H_{2}; let s_{1}, s_{2} be the vertices of attachment of H_{3}. Because (H, Ω) is 2-connected, we may find disjoint paths P_{1} and P_{2} between $\left\{r_{1}, r_{2}\right\}$ and $\left\{s_{1}, s_{2}\right\}$ in (G, Σ). If any pendant vertex is adjacent to P_{1} or P_{2}, then Lemma 2.15 implies (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$. So, we may assume no pendant vertex is adjacent to P_{1} or P_{2}.

Suppose H_{1} contains a cycle C. Without loss of generality, we may assume that C is at the end of the partial wide 2-path H, and we have a 2-separation (C, F) of H. So, we may find exactly two vertices $\left\{v_{1}, v_{2}\right\}=V(C) \cap V(F)$, and we may assume that $v_{1} \leftrightarrow v_{2}$. Let Q_{1} be a path from v_{1} and u_{1}; let Q_{2} be a path from v_{2} and u_{2}. As (H, Ω) is 2-connected, we may take Q_{1} disjoint from Q_{2}. If (G, Σ) has a pendant vertex adjacent to $\left(Q_{1}-v_{1}\right) \cup\left(Q_{2}-v_{2}\right)$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. We take the path P from C by removing the edge $v_{1} v_{2}$, and P has endvertices v_{1} and v_{2}.

Suppose H_{1} contains no cycle. Then, we take the path $P \subseteq H_{1}$ with endvertices u_{1} and u_{2}.

If (G, Σ) has two pendant vertices adjacent to vertices $p_{i}, p_{i+2} \in V(P)$ and $d_{P}\left(p_{i} p_{i+2}\right) \geq 2$,
then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, (G, Σ) has at most two pendant vertices adjacent to $p_{j}, p_{j+1} \in V(P)$ where $d_{P}\left(p_{j}, p_{j+1}\right)=1$. If there are two such pendant vertices $w_{1} \leftrightarrow p_{j}$ and $w_{2} \leftrightarrow p_{j+1}$, then we add the edge $w_{1} w_{2}$ to obtain $\left(G^{(1)}, \Sigma^{(1)}\right)=\left(G, \Sigma \cup w_{1} w_{2}\right)$. If there is only one such pendant vertex $w_{1} \leftrightarrow p_{j}$, then we add the edge $w_{1} p_{j+1}$ to obtain $\left(G^{(1)}, \Sigma^{(1)}\right)=\left(G, \Sigma \cup w_{1} p_{j+1}\right)$. If H_{1} is disconnected, then H_{1} consists of two isolated vertices $\left\{v_{1}, v_{2}\right\}$, because (H, Ω) is 2 -connected. If (G, Σ) has no pendant edge at v_{1}, then take $x_{1}=v_{1}$; otherwise, we take this pendant vertex to be x_{1}. Define x_{2} similarly. Take $\left(G^{(2)}, \Sigma^{(2)}\right)=\left(G^{(1)}, \Sigma^{(1)} \cup x_{1} x_{2}\right)$.

We apply our argument on H_{1} to H_{4} in $\left(G^{(2)}, \Sigma^{(2)}\right)$. The resulting signed graph $\left(G^{(3)}, \Sigma^{(3)}\right)$ is a 2-connected partial wide 2-path. By Theorem 1.52, we have $\xi\left(G^{(3)}, \Sigma^{(3)}\right) \leq 2$. As $(G, \Sigma) \preceq\left(G^{(1)}, \Sigma^{(1)}\right) \preceq\left(G^{(2)}, \Sigma^{(2)}\right) \preceq\left(G^{(3)}, \Sigma^{(3)}\right)$, Lemma 1.23 implies $\xi(G, \Sigma) \leq\left(G^{(3)}, \Sigma^{(3)}\right)$. Therefore, $\xi(G, \Sigma) \leq 2$.

2.3.2 One Wide Separation

Lemma 2.17. Let (G, Σ) be a signed graph such that the removal of all pendant vertices yields a partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right]$. Let u_{1}, u_{2} be the vertices of attachment of H_{1}; let w_{1}, w_{2} be the vertices of attachment of H_{2}. Suppose that

- H_{1} and H_{2} are paths;
- there are pendant vertices adjacent to u_{1} and u_{2};
- there are no pendant vertices adjacent to the internal vertices of H_{2};
- if there is a pendant vertex adjacent to an internal vertex of H_{1}, then $l\left(H_{1}\right)=2$ and either
- at most one pendant vertex is incident with $\left\{w_{1}, w_{2}\right\}$ or
- H_{2} has one edge $w_{1} w_{2}$.

Then, $\xi(G, \Sigma) \leq 2$.

Proof. Let $A \in \mathcal{S}(G, \Sigma)$ such that $\operatorname{corank}(A)=\xi(G, \Sigma)$ and A has the SAP. Let s_{1}, s_{2} be the pendant vertices such that $s_{1} \leftrightarrow u_{1}$ and $s_{2} \leftrightarrow u_{2}$.

Suppose $a_{s_{1}, s_{1}}=a_{s_{2}, s_{2}}=0$. Then, we may take the Schur complement $B=A / A\left[s_{1}, s_{2}, u_{1}, u_{2}\right]$, and by Observation 1.5 we have $\operatorname{corank}(A)=\operatorname{corank}(B)$. The forest $F=G(B)$ consists of two disjoint paths, and Theorem 1.41 implies $\operatorname{corank}(B) \leq P(F)=2$. Hence, $\xi(G, \Sigma)=\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2$. So, we may assume that $a_{s_{1}, s_{1}} \neq 0$. We take $\left(G^{(1)}, \Sigma^{(1)}\right)=\left(G-s_{1}, \Sigma \backslash s_{1} u_{1}\right)$. By Lemma 2.2, we know that $\xi(G, \Sigma)=\xi\left(G^{(1)}, \Sigma^{(1)}\right)$. If a pendant vertex of (G, Σ) is adjacent to an internal vertex of H_{1}, then we may add edges to $\left(G^{(1)}, \Sigma^{(1)}\right)$ to obtain a 2-connected partial wide 2-path $\left(G^{(2)}, \Sigma^{(2)}\right)$. By Theorem 1.52, $\xi\left(G^{(2)}, \Sigma^{(2)}\right) \leq 2$. Because $\left(G^{(1)}, \Sigma^{(1)}\right) \preceq\left(G^{(2)}, \Sigma^{(2)}\right)$, Lemma 1.23 implies $\xi\left(G^{(1)}, \Sigma^{(1)}\right) \leq$ $\xi\left(G^{(2)}, \Sigma^{(2)}\right)$. Hence, $\xi(G, \Sigma)=\xi\left(G^{(1)}, \Sigma^{(1)}\right) \leq \xi\left(G^{(2)}, \Sigma^{(2)}\right) \leq 2$. We may therefore assume no pendant vertex of (G, Σ) is adjacent to an internal vertex of H_{1}. Similarly, if at most one pendant vertex of (G, Σ) is adjacent to $\left\{w_{1}, w_{2}\right\}$, then we may add edges to extend $\left(G^{(1)}, \Sigma^{(1)}\right)$ to a 2-connected partial wide 2-path $\left(G^{(3)}, \Sigma^{(3)}\right)$. With a similar argument, $\xi(G, \Sigma)=\xi\left(G^{(1)}, \Sigma^{(1)}\right) \leq \xi\left(G^{(3)}, \Sigma^{(3)}\right) \leq 2$. We may therefore assume that (G, Σ) has pen-
dant vertices t_{1} and t_{2} adjacent to w_{1} and w_{2}, where $t_{1} \leftrightarrow w_{1}$ and $t_{2} \leftrightarrow w_{2}$. If $a_{t_{1}, t_{1}}=a_{t_{2}, t_{2}}=0$, then we may take the Schur complement $C=A / A\left[\left\{t_{1}, t_{2}, w_{2}, w_{2}\right\}\right]$. By Observation 1.5, we have $\operatorname{corank}(A)=\operatorname{corank}(C)$. The forest $F^{\prime}=G(C)$ consists of two disjoint paths. So, we may apply Theorem 1.41 to obtain $\operatorname{corank}(C) \leq P\left(F^{\prime}\right)=2$. Hence, we have $\xi(G, \Sigma)=\operatorname{corank}(A)=\operatorname{corank}(C) \leq 2$. We may therefore assume that $a_{t_{1}, t_{1}} \neq 0$. We may delete vertex t_{1} from (G, Σ) and apply Lemma 2.2 to obtain $\xi(G, \Sigma)=\xi\left(G-t_{1}, \Sigma \backslash \delta\left(t_{1}\right)\right)$. We may extend $\left(G-t_{1}, \Sigma \backslash \delta\left(t_{1}\right)\right)$ by adding edges to obtain a 2-connected partial 2path; and by Theorem 1.52 and Lemma 1.23 we have $\xi\left(G-t_{1}, \Sigma \backslash \delta\left(t_{1}\right)\right) \leq 2$. Therefore, $\xi(G, \Sigma)=\xi\left(G-t_{1}, \Sigma \backslash \delta\left(t_{1}\right)\right) \leq 2$.

Lemma 2.18. Let (G, Σ) be a signed graph such that removal of all pendant vertices yields a partial wide 2-path (H, Ω) with exactly one wide separation [H_{1}, H_{2}]. If both H_{1} and H_{2} are connected, then either (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$.

Proof. Let u_{1}, u_{2} be the vertices of attachment of H_{1}, and let w_{1}, w_{2} be the vertices of attachment of H_{2}.

Suppose that H_{1} contains a cycle C. We may assume that C is the cycle at the end of the partial wide 2-path (H, Ω), and we found a 2-separation (C, F) of H. Let $\left\{v_{1}, v_{2}\right\}=V(C) \cap$ $V(F)$. Because (H, Ω) is 2-connected, we may find disjoint paths Q_{1} and Q_{2} between $\left\{v_{1}, v_{2}\right\}$ and $\left\{u_{1}, u_{2}\right\}$. If a pendant vertex of (G, Σ) is adjacent to $V\left(H_{1}\right) \backslash V(C)$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$ (and another minor of (G, Σ) isomorphic to $\left.K_{3}^{=}(\Delta Y)^{2}\right)$.

So, we may assume that any pendant vertices adjacent to H_{1} are adjacent to $V(C)$. Let $P_{1} \subset C$ be the path obtained from C by removing the edge $v_{1} v_{2}$. If (G, Σ) has two pendant vertices adjacent to vertices $a_{1}, a_{2} \in V\left(P_{1}\right), d_{P_{1}}\left(a_{1}, a_{2}\right) \geq 2$, and $\left\{a_{1}, a_{2}\right\} \backslash\left\{u_{1}, u_{2}\right\} \neq \emptyset$; then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, either

- there are at most two pendant vertices adjacent to vertices $a_{1}, a_{2} \in V\left(P_{1}\right)$ and $d_{P_{1}}\left(a_{1}, a_{2}\right)=$ 1 ;
- there are three pendant vertices adjacent to the vertices of $P_{1}, l\left(P_{1}\right)=2$, and the endvertices of P_{1} are u_{1} and u_{2}; or
- there are two pendant vertices of (G, Σ) adjacent to the endvertices of P_{1}, and the endvertices of P_{1} are u_{1} and u_{2}.

Suppose that H_{1} has no cycle. Then, H_{1} is a path from u_{1} to u_{2}. We take $P_{1}=H_{1}$. If (G, Σ) has two pendant vertices adjacent to vertices $b_{1}, b_{2} \in V\left(P_{1}\right), d_{P_{1}}\left(b_{1}, b_{2}\right) \geq 2$, and $\left\{b_{1}, b_{2}\right\} \backslash\left\{u_{1}, u_{2}\right\} \neq \emptyset$; then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, either there are at most two pendant vertices adjacent to vertices $b_{1}, b_{2} \in V\left(P_{1}\right)$ and $d_{P_{1}}\left(b_{1}, b_{2}\right)=1$; there are three pendant vertices adjacent to the vertices of $P_{1}, l\left(P_{1}\right)=2$, and the endvertices of P_{1} are u_{1} and u_{2}; or there are two pendant vertices of (G, Σ) adjacent to the endvertices of P_{1}, and the endvertices of P_{1} are u_{1} and u_{2}.

We apply our case study on H_{1} to H_{2}, and we have defined $P_{2} \subseteq H_{2}$. For $i=1,2$, if (G, Σ) has at most two pendant vertices adjacent to $c_{1}, c_{2} \in V\left(P_{i}\right)$ and $d_{P_{i}}\left(c_{1}, c_{2}\right)=1$, then (G, Σ) is a minor of a partial wide 2-path. Hence, Theorem 1.52 and Lemma 1.23 imply
$\xi(G, \Sigma) \leq 2$. So, we may assume that either there are pendant vertices adjacent with both endvertices of P_{1}, the endvertices of P_{1} are u_{1} and u_{2}, and $l\left(P_{1}\right) \geq 2$; or there are pendant vertices adjacent with both endvertices of P_{2}, the endvertices of P_{2} are w_{1} and w_{2}, and $l\left(P_{2}\right) \geq 2$. By symmetry, we may assume that there are pendant vertices adjacent with both endvertices of P_{1}, the endvertices of P_{1} are u_{1} and u_{2}, and $l\left(P_{1}\right) \geq 2$. If H_{2} has a cycle, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. So, we may assume that H_{2} has no cycle, and $P_{2}=H_{2}$ is a path with endvertices w_{1} and w_{2}.

If (G, Σ) has a pendant vertex adjacent to $V\left(P_{2}\right) \backslash\left\{w_{1}, w_{2}\right\}$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that any pendant vertex of (G, Σ) adjacent to P_{2} is adjacent to w_{1} or w_{2}. If $l\left(P_{1}\right) \geq 3$ and (G, Σ) has a pendant vertex adjacent to $P_{1}-\left\{u_{1}, u_{2}\right\}$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. If $l\left(P_{1}\right)=2$, then (G, Σ) has a pendant vertex adjacent to $P_{1}-\left\{u_{1}, u_{2}\right\},(G, \Sigma)$ has pendant vertices adjacent to w_{1} and w_{2}, and $l\left(P_{2}\right) \geq 2$; and we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that $l\left(P_{2}\right)=1$. Hence, if $l\left(P_{1}\right)=2$ and (G, Σ) has a pendant vertex adjacent $P_{1}-\left\{u_{1}, u_{2}\right\}$, then either $l\left(P_{2}\right)=1$ or (G, Σ) has at most one pendant vertex adjacent to $\left\{w_{1}, w_{2}\right\}$. By Lemma 2.17, we have $\xi(G, \Sigma) \leq 2$.

Lemma 2.19. Let (G, Σ) be a signed graph such that the removal of pendant vertices yields a 2-connected partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right]$. Let u_{1} and u_{2} be the vertices of attachment of H_{1}. Let P be a path in $l\left(H_{1}\right) \geq 2$, with endvertices u_{1} and u_{2}. If H_{2} is disconnected, then either (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$.

Proof. Suppose that H_{1} contains a cycle C. As (H, Ω) is 2-connected, we may find disjoint paths Q_{1} and Q_{2} between $\left\{u_{1}, u_{2}\right\}$ and $V(C)$. Let $v_{i}=V\left(Q_{i}\right) \cap V(C)$ for $i=1,2$. If (G, Σ) has a pendant vertex adjacent to an internal vertex of Q_{1} or Q_{2}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$.

Lemma 2.20. Let (G, Σ) be a signed graph such that the removal of pendant vertices yields a 2-connected partial wide 2-path (H, Ω) with exactly one wide separation. Then, either (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$.

Proof. Let $\left[H_{1}, H_{2}\right]$ be the wide separation of (G, Σ). If H_{1} and H_{2} are connected, then Lemma 2.19 implies either (G, Σ) has a minor in the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$. So, we may assume that H_{2} is disconnected. Let u_{1} and u_{2} be the vertices of attachment of H_{1}. If $l\left(H_{1}\right) \geq 2$, then Lemma 2.20 implies either (G, Σ) has a minor in the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$. Hence, we may assume either $E\left(H_{1}\right)=\left\{u_{1} u_{2}\right\}$ or H_{1} is disconnected. That is, H is a graph of two parallel paths. Lemma 1.44 implies $\xi(H, \Omega) \leq M(H) \leq 2$. From Lemma 2.2, $\xi(G, \Sigma)=\xi(H, \Omega) \leq 2$. So for $i=1,2$, we may assume that any pendant vertex of (G, Σ) which is adjacent to $Q_{i}-v_{i}$ is adjacent to u_{i}.

Suppose (G, Σ) has a pendant vertex s_{1} adjacent to u_{1}. Then, $v_{1} \neq u_{1}$, and $l\left(Q_{1}\right) \geq 1$. If both $l\left(Q_{1}\right) \geq 1$ and $l\left(Q_{2}\right) \geq 1$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. So, we may assume that $l\left(Q_{2}\right)=0$, and $u_{2}=v_{2}$. Then, $H_{1}-\left\{u_{1}, u_{2}\right\}$ has no cycle. If $H_{1}-\left\{u_{1}, u_{2}\right\}$ is not a path, then it contains a $K_{1,3}$, and we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that $H-\left\{u_{1}, u_{2}\right\}$ is a path. Suppose that no pendant vertex is adjacent to u_{2}.

Let $A \in \mathcal{S}(G, \Sigma)$ with $\operatorname{corank}(A)=\xi(G, \Sigma)$ such that A has the SAP. We may assume that $a_{s_{1}, s_{1}}=0$; otherwise, we may delete the pendant vertex s_{1} by Lemma 2.2. Then, we may take the Schur complement $B=A / A\left[\left\{u_{1}, s_{1}\right\}\right]$. By Lemma 1.5, $\operatorname{corank}(A)=\operatorname{corank}(B)$. Because $G-\left\{u_{1}, s_{1}\right\}$ is a partial 2-path with a path cover number of two, by Theorem 1.42, $\operatorname{corank}(B) \leq 2$; and $\xi(G, \Sigma)=\operatorname{corank}(A)=\operatorname{corank}(B) \leq 2$. If (G, Σ) has a pendant vertex s_{2} adjacent to u_{2}, then we may assume that $a_{s_{2}, s_{2}}$ by Lemma 2.2. Because $G-\left\{u_{1}, u_{2}, s_{1}, s_{2}\right\}$ consists of three paths, we may apply Lemma 2.8 , and $\xi(G, \Sigma) \leq 2$. Therefore, (G, Σ) has no pendant vertex adjacent to $V\left(Q_{i}\right) \backslash v_{i}$ for $i=1,2$. So, any pendant vertex of (G, Σ) adjacent to H_{1} is adjacent to $V(C) \backslash\left\{u_{1}, u_{2}\right\}$.

Let P_{1} be the path obtained from C by deleting the edge $v_{1} v_{2}$. If (G, Σ) has pendant vertices adjacent to v_{1} and v_{2} and if $l\left(P_{1}\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. If (G, Σ) has two pendant vertices adjacent to $a_{1}, a_{2} \in V\left(P_{1}\right),\left\{a_{1}, a_{2}\right\} \neq\left\{v_{1}, v_{2}\right\}$, and $d_{P_{1}}\left(a_{1}, a_{2}\right) \geq 2$; then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, (G, Σ) has at most two pendant vertices adjacent to $a_{1}, a_{2} \in V\left(P_{1}\right)$ and $d_{P_{1}}\left(a_{1}, a_{2}\right)=1$. We may add an edge between our pendant vertices to (G, Σ), and the resulting signed graph is a 2-connected partial wide 2-path. By Theorem $1.52, \xi(G, \Sigma) \leq 2$. So, whenever H_{1} contains a cycle, either $\xi(G, \Sigma) \leq 2$ or (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family.

Suppose that H_{1} contains no cycle. As (H, Ω) is 2-connected, H_{1} must be a path with endvertices u_{1} and u_{2}. Suppose there are pendant vertices adjacent to $b_{1}, b_{2} \in V\left(H_{1}\right)$ and $d_{H_{1}}\left(b_{1}, b_{2}\right) \geq 2$. Suppose $b_{1}=u_{1}$. If $H_{1}-\left\{u_{1}, u_{2}\right\}$ is not a path, then it must contain $K_{1,3} ;$ and we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that (G, Σ)
has no pendant vertex adjacent to u_{1} or u_{2}; and we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, we may assume that $d_{H_{1}}\left(b_{1}, b_{2}\right)=1$. We may add an edge between our pendant vertices to (G, Σ), and the resulting signed graph is a 2-connected partial wide 2-path. By Theorem 1.52, we have $\xi(G, \Sigma) \leq 2$. So, whenever H_{1} contains no cycle, either $\xi(G, \Sigma) \leq 2$ or (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family.

2.3.3 No Wide Separations

The proof of the following lemma, originally in terms of simple graphs, is from Hogben and van der Holst (Theorem 5.1 in [14]).

Lemma 2.21. Let (G, Σ) be a signed graph such that the removal of pendant vertices yields a 2-connected partial 2-path (H, Ω). If (G, Σ) has no wide separation, then either (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family or $\xi(G, \Sigma) \leq 2$.

Proof. Let $A \in \mathcal{S}(G, \Sigma)$ such that $\operatorname{corank}(A)=\xi(G, \Sigma)$ and A has the SAP. Let $W \subseteq V(G)$ be the pendant vertices of (G, Σ), and let $S \subseteq V(G)$ be those vertices adjacent to the pendant vertices W. By Lemma 2.2, we may assume that $a_{s, s}=0 \forall s \in S$.

Because (H, Ω) is a partial 2-path with no wide separations, H is outerplanar; therefore, G is outerplanar. So, we may embed G in the plane with every vertex on the infinite face. Let \mathcal{B} be the collection of cycles bounding the finite faces. Then, the dual of G is a path P whose vertices correspond to the finite faces of our embedding with an edge $p q \in E(P)$ whenever p and q share a common edge in our embedding of G. Let p_{1}, p_{2} be the endvertices of P.

If (G, Σ) has a pendant vertex $s \in\left(\underset{q \neq p_{1}, p_{2}}{ } B_{q}\right) \backslash\left(B_{p_{1}} \cup B_{p_{2}}\right)$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. Hence, we may assume $S \subseteq B_{p_{1}} \cup B_{p_{2}}$.

Suppose there is a vertex $s_{1} \in S$ such that $s_{1} \in \bigcap_{B \in \mathcal{B}} V(B)$. Let $w_{1} \in W$ such that $w_{1} \leftrightarrow s_{1}$. Take the Schur complement $A^{\prime}=A / A[S \cup W]$. If the graph $F=G\left(A^{\prime}\right)$ has at least 3 components, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, F has at most 2 components. Because $s_{1} \in \bigcap_{B \in \mathcal{B}} V(B)$, these two components are both paths. By Theorem 1.41, $\operatorname{corank}\left(A^{\prime}\right) \leq M(F)=P(F)=2$. By Lemma 1.5, $\operatorname{corank}(A)=\operatorname{corank}\left(A^{\prime}\right) \leq 2$. Hence, we may assume that $S \cap\left(\bigcap_{B \in \mathcal{B}} V(B)\right)=\emptyset$.

If $p_{1}=p_{2}$, then $S=\emptyset$ and (G, Σ) has no pendant vertices. So, (G, Σ) is a 2 -connected partial wide 2-path, and Theorem 1.52 implies $\xi(G, \Sigma) \leq 2$. Hence, we may assume that $p_{1} \neq$ p_{2}. If there are two vertices $s_{2}, s_{3} \in S \cap V\left(B_{p_{1}}\right)$ with $d_{H}\left(s_{2}, s_{3}\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Similarly, if there are two vertices $s_{4}, s_{5} \in S \cap V\left(B_{p_{2}}\right)$ with $d_{H}\left(s_{4}, s_{5}\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, there is an edge $e_{1} \in E\left(B_{p_{1}}\right)$ and an edge $e_{2} \in E\left(B_{p_{2}}\right)$ such that $\left\{e_{1}, e_{2}\right\}$ is incident on every vertex of S. If we identify an edge of a copy of C_{4} with e_{1} and identify an edge of another copy of C_{4} with e_{2}, then the resulting signed graph $\left(G^{(1)}, \Sigma^{(1)}\right)$ is a 2-connected 2-path. By Theorem 1.52, $\xi\left(G^{(1)}, \Sigma^{(1)}\right) \leq 2$. As $(G, \Sigma) \preceq\left(G^{(1)}, \Sigma^{(1)}\right)$, Lemma 1.23 implies $\xi(G, \Sigma) \leq \xi\left(G^{(1)}, \Sigma^{(1)}\right) \leq 2$.

2.4 Proof of the Main Result

Proof. Suppose (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family, K_{4}^{e}, K_{4}^{o}, or $K_{2,3}^{e}$. If (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family, then Lemma 2.4 implies that $\xi(G, \Sigma) \geq 3$. From Lemma 1.51, if (G, Σ) has a minor isomorphic to K_{4}^{e}, K_{4}^{o}, or $K_{2,3}^{e}$, then $\xi(G, \Sigma) \geq 3$.

Suppose $\xi(G, \Sigma) \geq 3$. By Lemma 1.48, there exists a thin out (H, Ω) of a block of (G, Σ) with $\xi(H, \Omega) \geq 3$. Let $\left(H^{\prime}, \Omega^{\prime}\right)$ be obtained from (H, Ω) by removing pendant vertices. If $\left(H^{\prime}, \Omega^{\prime}\right)$ has a minor isomorphic to a member of the $K_{3}^{=}$-family, K_{4}^{e}, K_{4}^{o}, or $K_{2,3}^{e}$, then (G, Σ) has a minor isomorphic to a member of the $K_{3}^{=}$-family, K_{4}^{e}, K_{4}^{o}, or $K_{2,3}^{e}$. Therefore, we may assume that $\left(H^{\prime}, \Omega^{\prime}\right)$ has no minor isomorphic to $K_{3}^{=}$-family, K_{4}^{e}, K_{4}^{o}, or $K_{2,3}^{e}$. By Theorem 1.52, we know that $\left(H^{\prime}, \Omega^{\prime}\right)$ is either a W_{4}^{o} or a partial wide 2-path. From Lemma 2.3, we know that $\left(H^{\prime}, \Omega^{\prime}\right)$ is not W_{4}^{o}. Therefore, $\left(H^{\prime}, \Omega^{\prime}\right)$ is a partial wide 2-path. If ($H^{\prime}, \Omega^{\prime}$) has at least two wide separations, then Lemma 2.16 implies (H, Ω) has a minor isomorphic to a member of the $K_{3}^{=}$-family. If $\left(H^{\prime}, \Omega^{\prime}\right)$ has exactly one wide separation, then Lemma 2.20 implies that (H, Ω) has a minor isomorphic to a member of the $K_{3}^{=}$-family. If $\left(H^{\prime}, \Omega^{\prime}\right)$ has no wide separations, then Lemma 2.21 implies (H, Ω) has a minor isomorphic to a member of the $K_{3}^{=}$-family. Because $(H, \Omega) \preceq(G, \Sigma)$, no matter how many wide separations are in $\left(H^{\prime}, \Omega^{\prime}\right),(G, \Sigma)$ has a minor isomorphic to a member of the $K_{3}^{=}$-family.

CHAPTER 3

Signed Graphs with Maximum Nullity at Most Two

The following theorem is the main result of this chapter. The last section of this chapter contains the proof.

Theorem 3.1. Let (G, Σ) be a signed graph. Then, $M(G, \Sigma) \leq 2$ if and only if one of the following holds:

1. (G, Σ) is a signed graph with two parallel paths;
2. (G, Σ) is a Seahorse;
3. (G, Σ) is a Starfish;
4. (G, Σ) is a Sea Anemone;
5. (G, Σ) is a Mollusk;
6. (G, Σ) is a Stingray;
7. (G, Σ) is obtained from W_{4}^{o} by attaching single pendant paths to some of the vertices of W_{4}^{o};
8. (G, Σ) is obtained from attaching at most two pendant paths to each vertex of K_{2}; or
9. (G, Σ) is obtained from attaching at most two pendant paths to each vertex of $K_{2}^{=}$.

The above theorem extends the result of Johnson, Loewy, and Smith, a combinatorial characterization of the graphs with maximum nullity at most two [16]. We depict examples in Figure 3.1.
3.1 Global Structure of Signed Graphs (G, Σ) with $M(G, \Sigma) \leq 2$

Lemma 3.2. Let (G, Σ) be the disjoint union of $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$. Then,

$$
M(G, \Sigma)=M\left(G_{1}, \Sigma_{1}\right)+M\left(G_{2}, \Sigma_{2}\right)
$$

Proof. First, we observe that $\operatorname{corank}(A)=\operatorname{corank}\left(A_{1}\right)+\operatorname{corank}\left(A_{2}\right)$ whenever $A=A_{1} \oplus A_{2}$. If $A_{1} \in \mathcal{S}\left(G_{1}, \Sigma_{1}\right)$ and $A_{2} \in \mathcal{S}\left(G_{2}, \Sigma_{2}\right)$, then $A_{1} \oplus A_{2} \in \mathcal{S}(G, \Sigma)$. Hence, $M\left(G_{1}, \Sigma_{1}\right)+$ $M\left(G_{2}, \Sigma_{2}\right) \leq M(G, \Sigma)$. If $A \in \mathcal{S}(G, \Sigma)$, then we may partition $A=A_{1} \oplus A_{2}$ such that $A_{1} \in \mathcal{S}\left(G_{1}, \Sigma_{1}\right)$ and $A_{2} \in \mathcal{S}\left(G_{2}, \Sigma_{2}\right)$. Hence, $M(G, \Sigma) \leq M\left(G_{1}, \Sigma_{1}\right)+M\left(G_{2}, \Sigma_{2}\right)$.

Lemma 3.3. Let (G, Σ) be a disconnected signed graph with $M(G, \Sigma)=2$. Then, (G, Σ) is a disjoint union of two paths.

Proof. For each component $\left(G_{i}, \Sigma_{i}\right)$ of (G, Σ), we know $M\left(G_{i}, \Sigma_{i}\right) \geq 1$. From Lemma 3.2, we know that $M\left(G_{i}, \Sigma_{i}\right)=1$ for each component. So, (G, Σ) has exactly two components. From Theorem 1.14, $\left(G_{i}, \Sigma_{i}\right)$ is a path for $i=1,2$. That is, (G, Σ) is the disjoint union of two paths.

Definition 3.4. Let $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ be signed graphs. We may form the signed graph (G, Σ) by identifying a vertex $v_{1} \in V\left(G_{1}\right)$ with a vertex $v_{2} \in V\left(G_{2}\right)$ and name the vertex $v \in V(G)$. Then, (G, Σ) is the 1 -sum of $\left(G_{1}, \Sigma_{1}\right)$ and $\left(G_{2}, \Sigma_{2}\right)$ at v. We say that (G, Σ) is obtained by attaching v_{2} in $\left(G_{2}, \Sigma\right)$ to v_{1} in $\left(G_{1}, \Sigma\right)$. If G_{2} is a path, then we say that (G, Σ) is obtained by attaching a path to $\left(G_{1}, \Sigma_{1}\right)$. If G_{2} is a path and $d_{G_{2}}\left(v_{2}\right)=1$, then we say that (G, Σ) is obtained by attaching a pendant path to $\left(G_{1}, \Sigma_{1}\right)$; and (G, Σ) has a pendant path attached to v.

Lemma 3.5. Let (G, Σ) be a connected signed graph containing a cycle. If $M(G, \Sigma) \leq 2$, then either

1. (G, Σ) is obtained from a 2-connected signed graph (H, Ω) with $M(H, \Omega) \leq 2$ by attaching pendant paths at vertices of (H, Ω); or
2. (G, Σ) is obtained from a $K_{2}^{=}$by attaching pendant paths to $K_{2}^{=}$.

Further, at each vertex of H at most two pendant paths can be attached.

Proof. If (G, Σ) has no cut vertex, then we may apply Theorem 1.52 to the case where $(G, \Sigma)=(H, \Omega)$. So, we may assume that (G, Σ) has a cut vertex, and we may find a 1 separation of (G, Σ). Suppose for a contradiction that $\left[\left(H_{1}, \Omega_{1}\right),\left(H_{2}, \Omega_{2}\right)\right]$ is a 1-separation of (G, Σ) such that H_{1} contains a cycle and H_{2} contains a cycle. From Lemma 1.39, we have $M(G, \Sigma) \geq M\left(H_{1}, \Omega_{1}\right)+M\left(H_{2}, \Omega_{2}\right)-1 \geq 2+2-1=3$, but $M(G, \Sigma) \leq 2$. So, we may assume that H_{1} has a cycle; and we may assume H_{2} has no cycle. From Lemma 1.39, we have $M\left(H_{1}, \Omega_{1}\right) \leq M(G, \Sigma)-M\left(H_{2}, \Omega_{2}\right)+1 \leq 2-1+1=2$.

Suppose for a contradiction that H_{2} contains a vertex v such that $d_{H_{2}}(v) \geq 3$. Hence, we have $P\left(H_{1}\right) \geq 2$. As H_{2} is a tree, Theorem 1.41 implies $M\left(H_{1}\right)=P\left(H_{1}\right) \geq 2$. From Lemma 1.27, we have $M\left(H_{1}, \Omega_{1}\right)=M\left(H_{1}\right) \geq 2$. From Lemma 1.39, we have

$$
M(G, \Sigma) \geq M\left(H_{1}, \Omega_{1}\right)+M\left(H_{2}, \Omega_{2}\right)-1 \geq 2+2-1=3
$$

Therefore, H_{2} has no vertex v with $d_{H_{2}}(v) \geq 3$. That is, H_{2} is a path. If (G, Σ) is the 1 -sum of $\left(H_{1}, \Omega_{1}\right)$ and $\left(H_{2}, \Omega_{2}\right)$ at w, then w is either a pendant vertex of H_{2} or an internal vertex of H_{2}. So, at most two pendant paths may be attached to H_{1} at w.

Lemma 3.6. Let (G, Σ) be the 1 -sum of $\left(G_{1}, \Sigma_{1}\right)$ and $\left(P, \Sigma_{2}\right)$ at v, where P is a path with endvertex v. Then,

$$
M(G, \Sigma)=\max \left\{M\left(G_{1}, \Sigma_{1}\right), M\left(G_{1}-v, \Sigma_{1} \backslash \delta(v)\right)\right\} \geq M\left(G_{1}, \Sigma_{1}\right) .
$$

Proof. From Lemma 1.39, we have
$M(G, \Sigma)=\max \left\{M\left(G_{1}, \Sigma_{1}\right)+M\left(P, \Sigma_{2}\right)-1, M\left(G_{1}-v, \Sigma_{1} \backslash \delta(v)\right)+M\left(P-v, \Sigma_{2} \backslash \delta(v)\right)-1\right\}$.

Because $P-v$ is a path, $M\left(P, \Sigma_{2}\right)=M\left(P-v, \Sigma_{2} \backslash \delta(v)\right)=1$. So,

$$
M(G, \Sigma)=\max \left\{M\left(G_{1}, \Sigma_{1}\right), M\left(G_{1}-v, \Sigma_{1} \backslash \delta(v)\right)\right\} \geq M\left(G_{1}, \Sigma_{1}\right)
$$

3.2 Pendant Paths on an Odd 4-Wheel

Lemma 3.7. If (G, Σ) is obtained from W_{4}^{o} by attaching single pendant paths to some of the vertices of W_{4}^{o}, then $M(G, \Sigma)=2$. If (G, Σ) is obtained from W_{4}^{o} by attaching two pendant paths to a vertex of W_{4}^{o}, then $M(G, \Sigma)>2$.

Proof. Suppose first that no vertex of W_{4}^{o} has more than one pendant path attached. Let $S \subseteq V\left(W_{4}^{o}\right)$ be the vertices with single pendant paths attached. If $S=\emptyset$, then Theorem 1.52 implies $M\left(W_{4}^{o}\right)=2$. If $S \neq \emptyset$, then $W_{4}^{o}-S$ is a graph on two parallel paths, and Lemma 1.44 implies $M\left(W_{4}^{o}-S\right) \leq 2$. As (G, Σ) is formed from W_{4}^{o} adding single pendant paths, Lemma 3.6 implies $M(G, \Sigma) \leq 2$. Because G is not a path, Theorem 1.14 implies $M(G, \Sigma)=2$.

Suppose next that we form (G, Σ) by attaching two pendant paths to $v \in V\left(W_{4}^{o}\right)$. Then, (G, Σ) is the 1 -sum of W_{4}^{o} and P at v, where $P-v$ consists of two disjoint paths. So, $M(P-v)=2$. From Lemma 1.39,

$$
\begin{aligned}
M(G, \Sigma) & =\max \left\{M\left(W_{4}^{o}\right)+M(P)-1, M\left(W_{4}^{o}-v\right)+M(P-v)-1\right\} \\
& =\max \{2+1-1,2+2-1\}=3
\end{aligned}
$$

3.3 Pendant Paths Attached to 2-Connected Partial Wide 2-Paths

Signed graph with two parallel paths.

Stingray with $l\left(P_{1}\right)+l\left(P_{2}\right)=0$.

A Seahorse.

A Sea Anemone with $l(P)=2$.

A Starfish.

Figure 3.1 Examples of signed graphs with maximum nullity at most two. Solid edges are even; dotted edges are odd; and dashed lines may be even or odd.

3.3.1 Two Wide Separations

Definition 3.8. Let (G, Σ) be a signed graph obtained from adding pendant paths to (H, Ω), where (H, Ω) is a 2-connected partial wide 2-path. Suppose

- $\left[H_{1}, H_{2}\right]$ and $\left[H_{3}, H_{4}\right]$ are distinct wide separations of (H, Ω);
- $H_{1} \subseteq H_{3}$ and $H_{2} \subseteq H_{4}$;
- $\left\{r_{1}, r_{2}\right\}$ are the vertices of attachment of H_{2};
- $\left\{s_{1}, s_{2}\right\}$ are the vertices of attachment of H_{3}; and
- P_{1} and P_{2} are vertex disjoint paths where
- P_{1} has endvertices r_{1} and s_{1}, and
- P_{2} has endvertices r_{2} and s_{2}.

We call (G, Σ) a Stingray if the following hold:

1. No vertex of H is attached to two or more pendant paths.
2. There is exactly one pendant path attached to a vertex of P_{1} or P_{2}.
3. $l\left(P_{1}\right)+l\left(P_{2}\right) \leq 1$.
4. If $l\left(P_{1}\right)+l\left(P_{2}\right)=1$, then H_{1} and H_{4} are disconnected.
5. If $l\left(P_{1}\right)+l\left(P_{2}\right)=0$, then

- exactly one of H_{1} or H_{4} is disconnected, and the other one is a path Q;
- if $l(Q) \geq 2$, then there is at most one pendant path attached to an endvertex of Q, and there are no pendant paths attached to an internal vertex of Q.

Lemma 3.9. If (G, Σ) is a Stingray, then $M(G, \Sigma)=2$.

Proof. Because (G, Σ) is not a path, Theorem 1.14 implies $M(G, \Sigma) \geq 2$. Let P be the pendant path attached to the vertex $v \in V\left(P_{1}\right) \cup V\left(P_{2}\right)$. Let $\left[G_{1}, P\right]$ be a 1-separation of G at v. By definition, $\left(G_{1}, E\left(G_{1}\right) \cap \Sigma\right)$ is a 2-connected partial wide 2-path, and Theorem 1.52 implies $M\left(G_{1}, E\left(G_{1}\right) \cap \Sigma\right) \leq 2$. Because $P\left(G_{1}-P\right)=2$, Theorem 1.42 implies $M\left(G_{1}-\right.$ $\left.P, E\left(G_{1}-P\right) \cap \Sigma\right) \leq M\left(G_{1}-P\right)=P\left(G_{1}-P\right)=2$. Hence, we may apply Lemma 3.6 to the 1 -separation at v, and we have

$$
M(G, \Sigma)=\max \left\{M\left(G_{1}, E\left(G_{1}\right) \cap \Sigma\right), M\left(G_{1}-P, E\left(G_{1}-P\right) \cap \Sigma\right)\right\} \leq 2
$$

Lemma 3.10. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with at least two wide separations. If there is a vertex with at least two pendant paths attached in (G, Σ), then $M(G, \Sigma) \geq 3$.

Proof. Let v be the vertex of (G, Σ) with at least two pendant paths attached. Let $\left(G_{1}, \Sigma_{1}\right)$ be a path with endvertices on these pendant paths. Then, we have a 1 -separation $\left[\left(G_{1}, \Sigma_{1}\right),\left(G_{2}, \Sigma_{2}\right)\right]$ at v. For $i=1,2$, let $\left(G_{i}^{(1)}, \Sigma_{i}^{(1)}\right)$ be the signed graph obtained from $\left(G_{i}, \Sigma_{i}\right)$ by deleting the vertex v. Then, $G_{1}^{(1)}$ is a disjoint union of two paths. From Theorem 1.14 and Lemma 3.2, we have $M\left(G_{1}^{(1)}, \Sigma_{1}^{(1)}\right)=2$. Because (G, Σ) has two wide separations, $G_{2}^{(1)}$ is not a path, so
we have $M\left(G_{2}^{(1)}, \Sigma_{2}^{(1)}\right) \geq 2$. From Lemma 1.39, we have

$$
M(G, \Sigma) \geq M\left(G_{1}^{(1)}, \Sigma_{1}^{(1)}\right)+M\left(G_{2}^{(1)}, \Sigma_{2}^{(1)}\right)-1 \geq 2+2-1=3
$$

Lemma 3.11. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω). Let $\left[H_{1}, H_{2}\right]$ and $\left[H_{3}, H_{4}\right]$ be distinct wide separations in (H, Ω) such that $H_{1} \subseteq H_{3}$ and $H_{4} \subseteq H_{2}$. Let

- r_{1}, r_{2} be the vertices of attachment of H_{2},
- s_{1}, s_{2} be the vertices of attachment of H_{3}, and
- P_{1} and P_{2} be vertex-disjoint paths between $\left\{r_{1}, r_{2}\right\}$ and $\left\{s_{1}, s_{2}\right\}$, where P_{i} has endvertices r_{i} and s_{i} for $i=1,2$.

Suppose a pendant path is incident with a vertex on P_{1} or P_{2}. Then, $M(G, \Sigma)=2$ if and only if (G, Σ) is a Stingray.

Proof. From Lemma 3.9, if (G, Σ) is a Stingray, then $M(G, \Sigma)=2$.
Suppose $M(G, \Sigma)=2$. We want to show that (G, Σ) is a Stingray. Because $\xi(G, \Sigma) \leq$ $M(G, \Sigma) \leq 2$, Theorem 2.1 implies (G, Σ) has no minor isomorphic to a member of the $K_{3}^{=}$family. From Lemma 3.10, no vertex of (G, Σ) has more than one pendant path attached.

Suppose a pendant path is attached to an internal vertex of P_{1} or P_{2}. Then, we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. So, we may assume that any pendant path attached to a vertex of P_{1} or P_{2} is attached to an endvertex of P_{1} or P_{2}.

Next, we want to prove that $l\left(P_{1}\right)+l\left(P_{1}\right) \leq 1$. By symmetry, we assume that (G, Σ) has a pendant path attached to an endvertex of P_{1}. If $l\left(P_{1}\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that $l\left(P_{1}\right) \leq 1$. If $l\left(P_{2}\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. So, we may assume that $l\left(P_{2}\right) \leq 1$. If $l\left(P_{1}\right)=l\left(P_{2}\right)=1$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. So, we have $l\left(P_{1}\right)+l\left(P_{2}\right) \leq 1$.

Suppose that $l\left(P_{1}\right)+l\left(P_{2}\right)=1$. By symmetry, we may assume that $l\left(P_{1}\right)=1$ and $l\left(P_{2}\right)=0$. Because $l\left(P_{2}\right)=0$, we have $r_{2}=s_{2}$. If H_{1} is connected and there is a pendant path attached to $\left\{r_{1}, r_{2}=s_{2}\right\}$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. If H_{1} is connected and there is a pendant path attached to s_{1}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. Hence, H_{1} is disconnected. By symmetry, we may apply the same argument to H_{4}. Hence, both H_{1} and H_{4} are disconnected. Suppose for a contradiction that more than one pendant path is attached to $V\left(P_{1}\right) \cup V\left(P_{2}\right)$. Let $\left(G^{(1)}, \Sigma^{(1)}\right)$ be the graph obtained by removing these pendant paths and their vertices of attachment. Then, $P\left(G^{(1)}, \Sigma^{(1)}\right) \geq 3$. As $\left(G^{(1)}, \Sigma^{(1)}\right)$ is a partial 2-path, Theorem 1.42 implies $M\left(G^{(1)}, \Sigma^{(1)}\right)=$ $P\left(G^{(1)} \Sigma^{(1)}\right) \geq 3$. From Lemma 1.39, we have $M(G, \Sigma) \geq M\left(G^{(1)}, \Sigma^{(1)}\right) \geq 3$. Hence, there is at most one pendant path attached to $V\left(P_{1}\right) \cup V\left(P_{2}\right)$. That is, (G, Σ) is a Stingray.

Suppose that $l\left(P_{1}\right)+l\left(P_{2}\right)=0$. Then, $r_{1}=s_{1}$ and $r_{2}=s_{2}$. If both H_{1} and H_{4} are connected, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. Suppose that both H_{1} and H_{4} are disconnected. Let $\left(G^{(1)}, \Sigma^{(1)}\right)$ be the signed graph obtained by removing the pendant path P and its vertex of attachment from (G, Σ). Because $P\left(G^{(1)}, \Sigma^{(1)}\right) \geq 3$,

Theorem 1.42 implies $M\left(G^{(1)}, \Sigma^{(1)}\right)=P\left(G^{(1)}, \Sigma^{(1)}\right) \geq 3$. From Lemma 1.39, we have $M(G, \Sigma) \geq M\left(G^{(1)}, \Sigma^{(1)}\right) \geq 3$. Because $M(G, \Sigma)=2$, we may assume that H_{1} is disconnected and H_{4} is connected or that H_{1} is connected and H_{4} is disconnected. By symmetry, we may assume that H_{1} is disconnected and H_{4} is connected. Suppose (G, Σ) has more than one pendant path attached to $V\left(P_{1}\right) \cup V\left(P_{2}\right)$. Then, there must be one pendant path attached to r_{1} and one pendant path attached to r_{2}. Let $\left(G^{(2)}, \Sigma^{(2)}\right)$ be the signed graph obtained by removing these pendant paths and their vertices of attachment. Because $P\left(G^{(2)}, \Sigma^{(2)}\right) \geq 3$, Theorem 1.42 implies $M\left(G^{(2)}, \Sigma^{(2)}\right)=P\left(G^{(2)}, \Sigma^{(2)}\right) \geq 3$. From Lemma 1.39, we have $M(G, \Sigma) \geq M\left(G^{(2)}, \Sigma^{(2)}\right) \geq 3$. Hence, (G, Σ) has exactly one pendant path P attached to a vertex in $V\left(P_{1}\right) \cup V\left(P_{2}\right)$.

By symmetry, we may assume that (G, Σ) has a pendant path P attached to P_{1}. If H_{4} has a cycle, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, we may assume that H_{4} has no cycle. Let Q be the path in H_{4} connecting the vertices of attachment of the wide separation $\left[H_{3}, H_{4}\right]$. If Q has a pendant path attached to an internal vertex of Q, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. Hence, we may assume any pendant path attached to a vertex of Q is attached to an endvertex of Q. If $l(Q) \geq 2$ and (G, Σ) has pendant paths attached to both endvertices of Q, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, we may assume that $l(Q)=1$ or that (G, Σ) has at most one pendant path attached to an endvertex of Q. That is, (G, Σ) is a Stingray.

Lemma 3.12. Let (G, Σ) be a signed graph without multiple edges. Suppose some vertices are colored blue and other vertices are colored white. Suppose $\left(C_{4},\{14\}\right)$ is a subgraph of
(G, Σ), where $V\left(C_{4}\right)=\{1,2,3,4\}$ and $E\left(C_{4}\right)=\{14,42,23,31\}$. If the vertices $\{1,2\}$ are colored blue and $\{3,4\}$ are the only white vertices adjacent to $\{1,2\}$ in (G, Σ), then we may color the vertices $\{3,4\}$ blue in (G, Σ).

Proof. Let (H, Ω) be the induced subgraph on the vertices $\{1,2,3,4\}$. Further, let (H, Ω) have an odd edge $\{14\}$ and even edges $\{42,23,31\}$. Let $\left[a_{i, j}\right]=A \in \mathcal{S}(H, \Omega)$. If $x \in \operatorname{ker}(A)$, then

$$
A x=\left[\begin{array}{llll}
a_{1,1} & a_{1,2} & a_{1,3} & a_{1,4} \\
a_{1,2} & a_{2,2} & a_{2,3} & a_{2,4} \\
a_{1,3} & a_{2,3} & a_{3,3} & a_{3,4} \\
a_{1,4} & a_{2,4} & a_{3,4} & a_{4,4}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=0
$$

We color the vertices $\{1,2\}$ blue. That is, $x_{1}=x_{2}=0$. Then, we have the following equations

$$
\begin{align*}
& a_{1,3} x_{3}+a_{1,4} x_{4}=0 \tag{3.1}\\
& a_{2,3} x_{3}+a_{2,4} x_{4}=0 \tag{3.2}
\end{align*}
$$

Because $a_{1,3}<0$ and $a_{1,4}>0, x_{3}$ and x_{4} have the same sign. Because $a_{2,3}<0$ and $a_{2,4}<0$, x_{3} and x_{4} have opposite signs. Hence, $x_{3}=x_{4}=0$; and, $x=0$. That is, we may color $\{3,4\}$ blue in (H, Ω). Let $B \in \mathcal{S}(G, \Sigma)$. Then, we may write

$$
B y=\left[\begin{array}{cc}
A & R \\
R^{T} & S
\end{array}\right]\left[\begin{array}{l}
x \\
z
\end{array}\right]=\left[\begin{array}{c}
R z \\
R^{T} x+S z
\end{array}\right] .
$$

If $\{3,4\}$ are the only white neighbors of $\{1,2\}$ in (G, Σ), then the nonzero entries of R correspond to blue vertices. If $y \in \operatorname{ker}(A)$, then we may assume the coordinates of y which correspond to these blue vertices are forced to be zero; that is, $r_{i, k} \neq 0$ implies $z_{k}=0$.

Hence, $R z=0$. Therefore, we may color $\{3,4\}$ blue in (G, Σ) whenever $\{3,4\}$ are the only neighbors of $\{1,2\}$ which are colored white in (G, Σ).

Definition 3.13. A signed graph has two parallel paths if there exist two pairs of vertices $\left\{u_{1}, u_{2}\right\}$ and $\left\{v_{1}, v_{2}\right\}$ such that (G, Σ) is a spanning subgraph of a sided wide 2 -path with sides $u_{1} u_{2}$ and $v_{1} v_{2}$, and there exists two disjoint paths with endvertices $\left\{u_{1}, v_{1}\right\}$ and $\left\{u_{2}, v_{2}\right\}$, respectively.

Lemma 3.14. Let (G, Σ) be a signed graph with two parallel paths. Then, $M(G, \Sigma) \leq 2$. If G is not a path, then $M(G, \Sigma)=2$ and $Z(G, \Sigma)=2$.

Proof. By definition, we may find a sided wide 2 -path with sides $u_{1} u_{2}$ and $v_{1} v_{2}$ such that (G, Σ) is a spanning subgraph. If (G, Σ) has no wide separation, then $\left\{u_{1}, u_{2}\right\}$ is a zero forcing set for (G, Σ). Otherwise, we may continue coloring vertices blue until we color the vertices $\left\{r_{1}, r_{2}\right\}$ blue, where $\left\{r_{1}, r_{2}\right\}$ are the vertices of attachment for some wide separation. From Lemma 3.12, we may also color the other two vertices of attachment blue. Hence, $\left\{u_{1}, u_{2}\right\}$ is a zero forcing set for (G, Σ), and $Z(G, \Sigma) \leq 2$. From Lemma 1.38, $M(G, \Sigma) \leq Z(G, \Sigma) \leq 2$. If (G, Σ) is not a path, Theorem 1.14 implies $M(G, \Sigma)=2$, and we also have $Z(G, \Sigma)=2$.

Lemma 3.15. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω), with at least two distinct wide separations. Then, $M(G, \Sigma)=2$ if and only if

1. (G, Σ) is a signed graph with two parallel paths, or
2. (G, Σ) is a Stingray.

Proof. If (G, Σ) is a signed graph with two parallel paths, then Lemma 3.14 implies $M(G, \Sigma)=$ 2. If (G, Σ) is a Stingray, then Lemma 3.9 implies $M(G, \Sigma)=2$.

Suppose next that (G, Σ) is a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with at least two distinct wide separations. Let $\left[H_{1}, H_{2}\right.$] and $\left[H_{3}, H_{4}\right]$ be distinct wide separations in (H, Ω) such that $H_{1} \subseteq H_{3}$ and $H_{4} \subseteq H_{2}$. We take $\left[H_{1}, H_{2}\right]$ in (H, Ω) such that there is no wide separation $\left[H_{1}^{(1)}, H_{2}^{(1)}\right]$ with $H_{1}^{(1)}$ a proper subgraph of H_{1}. Similarly, we take $\left[H_{3}, H_{4}\right]$ such that there is no wide separation $\left[H_{3}^{(1)}, H_{4}^{(1)}\right]$ with $H_{4}^{(1)}$ as a proper subgraph of H_{4}. Let $\left\{u_{1}, u_{2}\right\}$ be the vertices of attachment of H_{1}; let $\left\{r_{1}, r_{2}\right\}$ be the vertices of attachment of H_{2}; and let $\left\{s_{1}, s_{2}\right\}$ be the vertices of attachment of H_{3}. Let P_{1} and P_{2} be disjoint paths between $\left\{r_{1}, r_{2}\right\}$ and $\left\{s_{1}, s_{2}\right\}$ such that P_{i} has endvertices r_{i} and s_{i} for $i=1,2$. If a pendant path is attached to a vertex in $V\left(P_{1}\right) \cup V\left(P_{2}\right)$, then Lemma 3.11 implies that (G, Σ) is a Stingray. So, we may assume that no pendant path is attached to $V\left(P_{1}\right) \cup V\left(P_{2}\right)$.

Suppose H_{1} contains a cycle C. We may assume that C is at the end of the partial wide 2-path H. That is, there is a 2-separation $[C, F]$ of H. Let $\left\{v_{1}, v_{2}\right\}=V(C) \cap V(F)$. Let Q_{1} and Q_{2} be two disjoint paths between $\left\{v_{1}, v_{2}\right\}$ and $\left\{u_{1}, u_{2}\right\}$, such that Q_{i} has endvertices v_{i} and u_{i} for $i=1,2$. If a pendant path is attached to a vertex of $Q_{1}-v_{1}$ or to a vertex of $Q_{2}-v_{2}$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. So, any pendant path of (G, Σ) attached to Q_{i} is attached to v_{i}. Let P be the path obtained from C by removing the edge between v_{1} and v_{2}.

Suppose H_{1} contains no cycle. As H is 2-connected, H_{1} is connected. Let P be the path
in H_{1} with endvertices u_{1} and u_{2}.
Suppose there are two pendant paths attached to vertices $w_{1}, w_{2} \in V(P)$. If $d_{P}\left(w_{1}, w_{2}\right) \geq$ 2, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. Hence, there are at most two pendant paths attached to vertices $\left\{w_{1}, w_{2}\right\}$, and $d_{P}\left(w_{1}, w_{2}\right)=1$. By symmetry, we may apply the same argument to the wide separation $\left[H_{3}, H_{4}\right]$. Hence, (G, Σ) is a signed graph with two parallel paths.

3.3.2 One Wide Separation

Definition 3.16. Let (G, Σ) be a signed graph obtained from adding pendant paths to (H, Ω), where (H, Ω) is a 2-connected partial wide 2-path with exactly one wide separation [H_{1}, H_{2}]. Let $\left\{u_{1}, u_{2}\right\}$ be be the vertices of attachment of H_{1}, and let $\left\{w_{1}, w_{2}\right\}$ be the vertices of attachment of H_{2}. We call (G, Σ) a Sea Anemone if the following hold:

1. H_{2} is a path.
2. The removal of any edge between u_{1} and u_{2} in H_{1} yields a path P.
3. There is a single pendant path attached to each vertex in $\left\{u_{1}, u_{2}\right\}$.
4. If there is a pendant path attached to an internal vertex of P, then $l(P)=2$.
5. There are no pendant paths attached to the internal vertices of H_{2}.
6. If $l\left(H_{2}\right) \geq 3$ and there are pendant paths attached to each vertex in $\left\{w_{1}, w_{2}\right\}$, then there is no pendant path attached to any internal vertex of P.
7. There is no vertex of (H, Ω) with two pendant paths attached in (G, Σ).

Lemma 3.17. If (G, Σ) is a Sea Anemone, then $M(G, \Sigma)=2$.

Proof. Let P_{1} and P_{2} be the pendant paths attached to u_{1} and u_{2}, respectively. Let $\left(G^{(1)}, \Sigma^{(1)}\right)=\left(G-P_{1}, \Sigma \backslash E\left(P_{1}\right)\right)$, and let $\left(G^{(2)}, \Sigma^{(2)}\right)=\left(G-\left(P_{1}-u_{1}\right), \Sigma \backslash E\left(P_{1}-u_{1}\right)\right)$. Then, $G^{(1)}$ is a partial 2-path with $P\left(G^{(1)}\right)=2$. From Theorem 1.42, $M\left(G^{(1)}, \Sigma^{(1)}\right) \leq M\left(G^{(1)}\right)=2$. From Lemma 1.39, we have $M(G, \Sigma)=\max \left\{M\left(G^{(1)}, \Sigma^{(1)}\right), M\left(G^{(2)}, \Sigma^{(2)}\right)\right\}$. Hence, we may assume that $M(G, \Sigma)=M\left(G^{(2)}, \Sigma^{(2)}\right)$.

Suppose $\left(G^{(2)}, \Sigma^{(2)}\right)$ has a pendant path Q attached to a vertex $w \in\left\{w_{1}, w_{2}\right\}$. Let $(H, \Omega)=\left(G^{(2)}-Q, \Sigma^{(2)} \backslash E(Q)\right)$, and let $\left(H^{(1)}, \Omega^{(1)}\right)=\left(G^{(2)}-(Q-w), \Sigma^{(2)} \backslash E(Q-w)\right)$. Then, H is a partial 2-path with $P(H)=2$. From Theorem 1.42, we have $M(H, \Omega) \leq M(H)=$ $P(H)=2$. From Lemma 1.39, we have $M\left(G^{(2)}, \Sigma^{(2)}\right)=\max \left\{M(H, \Omega), M\left(H^{(1)}, \Omega\right)\right\}$. Hence, we may assume that $M(G, \Sigma)=M\left(G^{(2)}, \Sigma^{(2)}\right)=M\left(H^{(1)}, \Omega^{(1)}\right)$. If there is a pendant path attached to an internal vertex of P, then the pendant vertex of the pendant path attached to P and the pendant vertex of P_{2} are a zero forcing set of $\left(H^{(1)}, \Omega^{(1)}\right)$ by Lemma 3.12. Otherwise, the pendant vertex of P_{2} and v, where $d_{P}\left(v, u_{2}\right)=1$, are a zero forcing set of $\left(H^{(1)}, \Omega^{(1)}\right)$ by Lemma 3.12. By Lemma 1.38, we have $M\left(H^{(1)}, \Omega^{(1)}\right) \leq Z\left(H^{(1)}, \Omega^{(1)}\right) \leq 2$. Hence, $M(G, \Sigma)=M\left(G^{(2)}, \Sigma^{(2)}\right)=M\left(H^{(1)}, \Omega^{(1)}\right)=2$. So, we may assume that no pendant path Q is attached to a vertex $w \in\left\{w_{1}, w_{2}\right\}$. Whenever there is no pendant path Q, the same zero forcing sets for our argument on $\left(H^{(1)}, \Omega^{(1)}\right)$ are also zero forcing sets for $\left(G^{(2)}, \Sigma^{(2)}\right)$; and $M(G, \Sigma)=M\left(G^{(2)}, \Sigma^{(2)}\right)=2$. Therefore, $M(G, \Sigma)=2$.

Lemma 3.18. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right]$. Suppose H_{1} and H_{2} are connected. Then, $M(G, \Sigma)=2$ if and only if one of the following holds:

1. (G, Σ) is a signed graph with two parallel paths, or
2. (G, Σ) is a Sea Anemone.

Proof. If (G, Σ) is a Sea Anemone, then Lemma 3.17 implies $M(G, \Sigma)=2$. If (G, Σ) is a signed graph with two parallel paths, then Lemma 3.14 implies $M(G, \Sigma)=2$.

Suppose (G, Σ) is a signed graph with exactly one wide separation $\left[H_{1}, H_{2}\right]$ such that $M(G, \Sigma)=2$. Let u_{1}, u_{2} be the vertices of attachment of H_{1}, and let w_{1}, w_{2} be the vertices of attachment of H_{2}. Suppose for a contradiction that two pendant paths R_{1} and R_{2} are attached to a vertex s. Let $\left(G^{(1)}, \Sigma^{(1)}\right)=\left(G-R_{1}, \Sigma \backslash E\left(R_{1}\right)\right)$. Then, $G^{(1)}$ has at least two components, one of which is a not path; and Lemma 3.3 implies $M\left(G^{(1)}, \Sigma^{(1)}\right) \geq 3$. As (G, Σ) is the 1 -sum of R_{1} and $\left(G^{(1)}, \Sigma^{(1)}\right)$ at s, Lemma 1.39 implies $M(G, \Sigma) \geq M\left(G^{(1)}, \Sigma^{(1)}\right) \geq 3$. Hence, no vertex of (G, Σ) has two or more pendant paths attached.

Suppose that H_{1} has a cycle C. We may assume that C is at the end of the partial wide 2-path H. That is, there is a 2-separation (C, F) of H. Let $\left\{v_{1}, v_{2}\right\}=V(C) \cap V(F)$. Let Q_{1} and Q_{2} be disjoint paths between $\left\{v_{1}, v_{2}\right\}$ and $\left\{u_{1}, u_{2}\right\}$ such that Q_{i} has endvertices v_{i} and u_{i} for $i=1,2$. Suppose a pendant path in (G, Σ) is attached to a vertex in $V\left(H_{1}\right) \backslash V(C)$. That is, the pendant path is attached to a vertex of $V\left(Q_{i}\right) \backslash v_{i}$ for $i=1$ or $i=2$. Hence, we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. From Theorem 2.1, we have $M(G, \Sigma) \geq \xi(G, \Sigma) \geq 3$. Hence, we may assume that any pendant path attached to a vertex of H_{1} is attached to a a vertex of C. Let $P_{1}=C-\left\{v_{1} v_{2}\right\}$. If there are two pendant paths attached to vertices $x_{1}, x_{2} \in V(P)$ with $d_{P}\left(x_{1}, x_{2}\right) \geq 2$ and $\left\{x_{1}, x_{2}\right\} \neq\left\{u_{1}, u_{2}\right\}$, then we found a minor of (G, Σ) isomorphic to a $K_{3}^{=}(\Delta Y)^{2}$. From Theorem 2.1, we may assume that either

- (G, Σ) has at most two pendant paths attached to vertices of P_{1};
- (G, Σ) has three pendant attached to vertices of $P_{1}, l\left(P_{1}\right)=2$, and the endvertices of P_{1} are u_{1} and u_{2}; or
- (G, Σ) has two pendant paths attached to the endvertices of P_{1}.

Because both H_{1} and H_{2} are connected, we apply the same argument to H_{2}, and the above is also true for $P_{2} \subseteq H_{2}$.

Suppose (G, Σ) has at most two pendant paths attached to the vertices $x_{1}, x_{2} \in V\left(P_{1}\right)$ and at most two pendant paths attached to the vertices $y_{1}, y_{2} \in V\left(P_{2}\right)$. If $d_{P_{1}}\left(x_{1}, x_{2}\right)=$ $d_{P_{2}}\left(y_{1}, y_{2}\right)=1$, then (G, Σ) has two parallel paths. Lemma 3.14 implies $M(G, \Sigma)=2$. Hence, we may assume that either

- (G, Σ) has pendant paths attached to both endvertices of P_{1}, the endvertices of P_{1} are u_{1} and u_{2}, and $l\left(P_{1}\right) \geq 2$; or
- (G, Σ) has pendant paths attached to both endvertices of P_{2}, the endvertices of P_{2} are w_{1} and w_{2}, and $l\left(P_{2}\right) \geq 2$.

By symmetry, we may assume that (G, Σ) has pendant paths attached to both endvertices of P_{1}, the endvertices of P_{1} are u_{1} and u_{2}, and $l\left(P_{2}\right) \geq 2$. If H_{2} contains a cycle, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. From Theorem 2.1, we may assume that H_{2} has no cycle. Because H is 2-connected and because H_{2} is connected, H_{2} is a path with endvertices w_{1} and w_{2}.

Suppose a pendant path of (G, Σ) is attached to an internal vertex of P_{2}. Then, we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. From Theorem 2.1, we may assume that no pendant path of (G, Σ) is attached to an internal vertex of P_{2}. If $l\left(P_{1}\right)>2$ and there is a pendant path attached to an internal vertex of P_{1}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. From Theorem 2.1, we may assume that if a pendant path is attached to an internal vertex of P_{1}, then $l\left(P_{1}\right)=2$. Suppose that $l\left(P_{1}\right)=2$, that (G, Σ)
has a pendant path attached to an internal vertex of P_{1}, and that $l\left(P_{2}\right) \geq 2$. If (G, Σ) has a pendant path attached to w_{1} or w_{2}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. From Theorem 2.1, we may assume that if (G, Σ) has a pendant path attached to an internal vertex of P_{1} and if P_{2} has an internal vertex, then (G, Σ) has no pendant paths attached to either w_{1} or w_{2}. That is, (G, Σ) is a Sea Anemone.

Definition 3.19. Let (G, Σ) be a signed graph such that removing all pendant paths yields a 2-connected partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right]$. Let u_{1} and u_{2} be the vertices of attachment of H_{1}. Suppose H_{1} contains a path of length at least two with endvertices u_{1} and u_{2}. Suppose H_{2} is disconnected. We call (G, Σ) a Mollusk if each of the following hold.

1. There is a pendant path at u_{1}.
2. There is no pendant path at u_{2}.
3. $H_{1}-\left\{u_{1}, u_{2}\right\}$ is a path.
4. Each pendant path attached to a vertex of $H_{1}-\left\{u_{1}, u_{2}\right\}$ is attached to an endvertex of $H_{1}-\left\{u_{1}, u_{2}\right\}$.
5. No vertex of H is attached to more than one pendant path.

Lemma 3.20. If (G, Σ) is a Mollusk, then $M(G, \Sigma)=2$.

Proof. Let v_{1} and v_{2} be the vertices of attachment of H_{2}. Let P be the pendant path at u_{1}; let $\left(G^{(1)}, \Sigma^{(1)}\right)$ be the signed graph obtained from (G, Σ) by removing the vertices
$V\left(P-u_{1}\right)$; and let $\left(G^{(2)}, \Sigma^{(2)}\right)$ be the signed graph obtained from (G, Σ) by removing the vertices $V(P)$. As G is the 1 -sum of $G^{(2)}$ and P at u_{1}, Lemma 3.6 implies $M(G, \Sigma)=$ $\max \left\{M\left(G^{(1)}, \Sigma^{(1)}\right), M\left(G^{(2)}, \Sigma^{(2)}\right)\right\}$. Because $\left(G^{(1)}, \Sigma^{(1)}\right)$ has two parallel paths, Lemma 3.14 implies $M\left(G^{(1)}, \Sigma\right)=2$. Hence, we may assume that $M(G, \Sigma)=M\left(G^{(2)}, \Sigma^{(2)}\right)$.

The signed graph $\left(G^{(2)}, \Sigma^{(2)}\right)$ has two pendant paths attached to u_{2}. Let Q be one of these pendant paths. Let $\left(F^{(1)}, \Psi^{(1)}\right)$ be the signed graph obtained from $\left(G^{(2)}, \Sigma^{(2)}\right)$ by removing the vertices $V\left(Q-u_{2}\right)$, and let $\left(F^{(2)}, \Psi^{(2)}\right)$ be the signed graph obtained from $\left(G^{(2)}, \Sigma^{(2)}\right)$ by removing the vertices $V(Q)$. Because $\left(F^{(1)}, \Sigma^{(1)}\right)$ has two parallel paths, Lemma 3.14 implies $M\left(F^{(1)}, \Psi^{(1)}\right)=2$. Because $\left(F^{(2)}, \Sigma^{(2)}\right)$ has two parallel paths, Lemma 3.14 implies $M\left(F^{(2)}, \Psi^{(2)}\right)=2$. Because $G^{(2)}$ is the 1 -sum of $F^{(2)}$ and Q, Lemma 3.6 implies $M\left(G^{(2)}, \Sigma^{(2)}\right)=\max \left\{M\left(F^{(1)}, \Psi^{(1)}\right), M\left(F^{(2)}, \Psi^{(2)}\right)\right\}=2$. Therefore, $M(G, \Sigma)=$ $M\left(G^{(2)}, \Sigma^{(2)}\right)=2$.

Lemma 3.21. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with exactly one wide separation $\left[H_{1}, H_{2}\right]$. Suppose that H_{2} is disconnected and H_{1} is connected. Then, $M(G, \Sigma)=2$ if and only if

1. (G, Σ) is a signed graph with two parallel paths; or
2. (G, Σ) is a Mollusk.

Proof. Suppose (G, Σ) is a signed graph with two parallel paths. Because (G, Σ) is not a path, Lemma 3.14 implies $M(G, \Sigma)=2$. Suppose (G, Σ) is a Mollusk. Then, Lemma 3.20 implies $M(G, \Sigma)=2$.

For the converse, suppose that $M(G, \Sigma)=2$. Let u_{1} and u_{2} be the vertices of attachment of H_{1}. We proceed with a case study on whether H_{1} has a cycle or not.

Suppose that H_{1} contains a cycle C. Let Q_{1} and Q_{2} be disjoint paths between $\left\{u_{1}, u_{2}\right\}$ and $V(C)$ such that Q_{i} has endvertices $\left\{u_{i}, v_{i}\right\}$ for $i=1,2$ and $v_{1}, v_{2} \in V(C)$. We proceed with a case study on whether (G, Σ) has a pendant path attached to a vertex in $V\left(Q_{1}\right) \backslash v_{1}$ or a vertex in $V\left(Q_{2}\right) \backslash v_{2}$.

Suppose there is a pendant path attached to a vertex in $V\left(Q_{1}\right) \backslash v_{1}$ or attached to a vertex in $V\left(Q_{2}\right) \backslash v_{2}$. If the pendant path is attached to an internal vertex of Q_{1} or an internal vertex of Q_{2}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. From Theorem 2.1, we have $M(G, \Sigma) \geq \xi(G, \Sigma) \geq 3$. So, the pendant path must be attached to u_{1} or u_{2}. By symmetry, we may assume that a pendant path P_{1} is attached to u_{1} in (G, Σ). Then, $l\left(Q_{1}\right) \geq 1$. From Lemma 3.5, we know that P_{1} is the only pendant path attached to u_{1} in (G, Σ). If $l\left(Q_{2}\right)>0$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. From Theorem 2.1, we may assume that $l\left(Q_{2}\right)=0$ and $u_{2}=v_{2}$. If $H_{1}-\left\{u_{1}, u_{2}\right\}$ has a cycle, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. From Theorem 2.1, we may assume than $H_{1}-\left\{u_{1}, u_{2}\right\}$ has no cycle. If there is a pendant path attached P_{2} to u_{2} in (G, Σ), then $G-\left\{P_{1}, P_{2}\right\}$ is a forest with $P\left(G-\left\{P_{1}, P_{2}\right\}\right)=3$. From Theorem 1.41, $M\left(G-\left\{P_{1}, P_{2}\right\}\right)=P\left(G-\left\{P_{1}, P_{2}\right\}\right)=3$. From Lemma 1.39, we have

$$
M(G, \Sigma) \geq M\left(G-\left\{P_{1}\right\}, \Sigma \backslash E\left(P_{1}\right)\right) \geq M\left(G-\left\{P_{1}, P_{2}\right\}, \Sigma \backslash\left(E\left(P_{1}\right) \cup E\left(P_{2}\right)\right)\right)=3
$$

Hence, we may assume that no pendant path is attached to u_{2}. Let G_{1} be the graph obtained from H_{1} by attaching the pendant paths of (G, Σ) to the vertices of H_{1}. If $G_{1}-\left\{u_{1}, u_{2}\right\}$ is
not a path, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. Hence, $H_{1}-\left\{u_{1}, u_{2}\right\}$ is a path. That is, (G, Σ) is a Mollusk.

Suppose next that there are no pendant paths attached to any vertex in $V\left(Q_{1}\right) \backslash v_{1}$ nor any vertex in $V\left(Q_{2}\right) \backslash v_{2}$. Hence, any pendant path in (G, Σ) attached to a vertex of H_{1} is attached to $V(C) \backslash\left\{u_{1}, u_{2}\right\}$. Let P be the path formed by removing any edges between v_{1} and v_{2} in C. If there are pendant paths attached to $w_{1}, w_{2} \in V(P)$ such that $d_{P}\left(w_{1}, w_{2}\right) \geq 2$ and $\left\{w_{1}, w_{2}\right\} \neq\left\{u_{1}, u_{2}\right\}$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. From Theorem 2.1, we may assume that there are at most two pendant paths attached to $V(P)$ in (G, Σ) and $d_{P}\left(w_{1}, w_{2}\right)=1$. That is, (G, Σ) is a signed graph with two parallel paths. Therefore, if H_{1} has a cycle, then either (G, Σ) is a Mollusk or (G, Σ) is a signed graph with two parallel paths.

Suppose next that H_{1} contains no cycle. Then, H_{1} is a path P with endvertices u_{1} and u_{2}. Suppose there are pendant paths attached to vertices $w_{1}, w_{2} \in V(P)$ such that $d_{P}\left(w_{1}, w_{2}\right) \geq 2$. Then, $l(P) \geq 2$. Suppose that a pendant path P_{1} is attached to u_{1}. If there is a pendant path P_{2} attached to u_{2}, then $G-\left\{P_{1}, P_{2}\right\}$ is a forest with $P\left(G-\left\{P_{1}, P_{2}\right\}\right)=3$. From Theorem 1.41, $M\left(G-\left\{P_{1}, P_{2}\right\}\right)=P\left(G-\left\{P_{1}, P_{2}\right\}\right)=3$. From Lemma 1.39, we have

$$
M(G, \Sigma) \geq M\left(G-\left\{P_{1}\right\}, \Sigma \backslash E\left(P_{1}\right)\right) \geq M\left(G-\left\{P_{1}, P_{2}\right\}, \Sigma \backslash\left(E\left(P_{1}\right) \cup E\left(P_{2}\right)\right)\right)=3
$$

Hence, we may assume that no pendant path is attached to u_{2}. Let G_{1} be the graph obtained from H_{1} by attaching the pendant paths of (G, Σ) to the vertices of H_{1}. If $G_{1}-\left\{u_{1}, u_{2}\right\}$ is not a path, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. From Theorem 2.1, we may assume that $G_{1}-\left\{u_{1}, u_{2}\right\}$ is a path. Hence, $H_{1}-\left\{u_{1}, u_{2}\right\}$ is a path. That is, (G, Σ)
is a Mollusk.
Suppose next that no pendant path is attached to the endvertices of P, which are u_{1} and u_{2}. Then, we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. By Theorem 2.1, we may assume that $d_{P}\left(w_{1}, w_{2}\right)=1$. Then, (G, Σ) has at most two pendant paths attached to two internal vertices of P and these two internal vertices of P are also neighbors in P. That is, (G, Σ) is a signed graph with two parallel paths. Therefore, if H_{1} has no cycle then either (G, Σ) is a Mollusk or (G, Σ) is a signed graph with two parallel paths.

Lemma 3.22. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω) with exactly one wide separation. Then, $M(G, \Sigma) \leq 2$ if and only if one of the following holds:

1. (G, Σ) is a signed graph with two parallel paths;
2. (G, Σ) is a Sea Anemone; or
3. (G, Σ) is a Mollusk.

Proof. If (G, Σ) is a signed graph with two parallel paths, then Lemma 3.14 implies $M(G, \Sigma) \leq$ 2. If (G, Σ) is a Sea Anemone, then Lemma 3.17 implies $M(G, \Sigma)=2$. If (G, Σ) is a Mollusk, then Lemma 3.20 implies $M(G, \Sigma)=2$.

Suppose that $M(G, \Sigma) \leq 2$. Let $\left[H_{1}, H_{2}\right]$ be the wide separation of (H, Ω). Let u_{1} and u_{2} be the vertices of attachment of H_{1}. If H_{1} is connected and H_{2} is connected, then Lemma 3.18 implies (G, Σ) is a Sea Anemone or (G, Σ) is a signed graph with two parallel paths. If H_{1} is connected and H_{2} is disconnected, then Lemma 3.21 implies (G, Σ) is a Mollusk or
(G, Σ) is a signed graph with two parallel paths. If H_{1} is disconnected and H_{2} is connected, then Lemma 3.21 implies (G, Σ) is a Mollusk or (G, Σ) is a signed graph with two parallel paths. If H_{1} is disconnected and H_{2} is disconnected, then Lemma 3.5 implies (G, Σ) is a signed graph with two parallel paths.

3.3.3 No Wide Separations

Definition 3.23. Let (G, Σ) be a signed graph obtained from adding pendant paths to (H, Ω), where (H, Ω) is a 2-connected partial 2-path. Suppose

- C_{1} and C_{2} are distinct cycles in H such that there exists two 2-separations of H : $\left(C_{1}, H_{1}\right)$ and $\left(C_{2}, H_{2}\right) ;$
- P_{1} and P_{2} are disjoint paths between C_{1} and C_{2} in H;
- $u_{1}=P_{1} \cap C_{1}$ and $u_{2}=P_{2} \cap C_{1}$; and
- $v_{1}=P_{1} \cap C_{2}$ and $v_{2}=P_{2} \cap C_{2}$.

We call (G, Σ) a Seahorse if the following hold:

1. $l\left(P_{1}\right)=0$ and $l\left(P_{2}\right)=1$.
2. There is a single pendant path attached to each vertex in $\left\{u_{1}=v_{1}, u_{2}, v_{2}\right\}$.
3. If $l\left(C_{1}-u_{1} u_{2}\right) \geq 3$, then no pendant path is attached to $C_{1} \backslash\left\{u_{1}, u_{2}\right\}$.
4. If $l\left(C_{2}-v_{1} v_{2}\right) \geq 3$, then no pendant path is attached to $C_{2} \backslash\left\{v_{1}, v_{2}\right\}$.

Lemma 3.24. If (G, Σ) is a Seahorse, then $M(G, \Sigma)=2$.

Proof. Let P be the pendant path attached to u_{1}. Let

$$
\left(G^{(1)}, \Sigma^{(1)}\right)=(G-P, \Sigma \backslash E(P))
$$

and let

$$
\left(G^{(2)}, \Sigma^{(2)}\right)=\left(G-\left(P-u_{1}\right), \Sigma \backslash E\left(P-u_{1}\right)\right)
$$

Because $G^{(1)}$ is a tree with $P\left(G^{(1)}\right)=2$, Theorem 1.41 implies $M\left(G^{(1)}, \Sigma^{(1)}\right) \leq M\left(G^{(1)}\right)=$ $P\left(G^{(1)}\right)=2$. Because $\left(G^{(2)}, \Sigma^{(2)}\right)$ is a signed graph with two parallel paths, Lemma 3.14 implies $M\left(G^{(2)}, \Sigma^{(2)}\right) \leq 2$. From Lemma 1.39, we have

$$
M(G, \Sigma)=\max \left\{M\left(G^{(1)}, \Sigma^{(1)}\right), M\left(G^{(2)}, \Sigma^{(2)}\right)\right\} \leq 2
$$

As (G, Σ) is not a path, Theorem 1.14 implies $M(G, \Sigma)=2$.

Definition 3.25. If (G, Σ) is a signed graph obtained by either

- adding a single pendant path to each vertex of a signed C_{5};
- adding a single pendant path to each vertex of a signed house graph; or
- adding a single pendant path to each vertex of a signed C_{4} and identifying an edge of the signed C_{4} with an edge of a signed cycle;
then (G, Σ) is a Starfish.

Lemma 3.26. If (G, Σ) is a Starfish, then $M(G, \Sigma)=2$.

Proof. If (G, Σ) is formed from adding pendant paths to C_{5}, then let $v \in V\left(C_{5}\right)$ of (G, Σ).
Otherwise, we let $v \in V(G)$ such that $d_{G}(v)=4$. Let P be the pendant path attached to v. Let

$$
\left(G^{(1)}, \Sigma^{(1)}\right)=(G-P, \Sigma \backslash E(P))
$$

and let

$$
\left(G^{(2)}, \Sigma^{(2)}\right)=(G-(P-v), \Sigma \backslash E(P-v))
$$

Because $G^{(1)}$ is a tree with $P\left(G^{(1)}\right)=2$, Theorem 1.41 implies $M\left(G^{(1)}, \Sigma^{(1)}\right) \leq M\left(G^{(1)}\right)=$ $P\left(G^{(1)}\right)=2$. Because $\left(G^{(2)}, \Sigma^{(2)}\right)$ is a signed graph with two parallel paths, Lemma 3.14 implies $M\left(G^{(2)}, \Sigma^{(2)}\right) \leq 2$. From Lemma 1.39, we have

$$
M(G, \Sigma)=\max \left\{M\left(G^{(1)}, \Sigma^{(1)}\right), M\left(G^{(2)}, \Sigma^{(2)}\right)\right\} \leq 2
$$

As (G, Σ) is not a path, Theorem 1.14 implies $M(G, \Sigma)=2$.

Lemma 3.27. Let (G, Σ) be a signed graph such that the removal of pendant paths yields a 2-connected partial wide 2-path (H, Ω). Suppose (H, Ω) has no wide separation. Then, $M(G, \Sigma) \leq 2$ if and only if one of the following holds:

- (G, Σ) is a signed graph with two parallel paths;
- (G, Σ) is a Seahorse; or
- (G, Σ) is a Starfish.

Proof. If (G, Σ) is a signed graph with two parallel paths, then Lemma 3.14 implies $M(G, \Sigma) \leq$ 2. If (G, Σ) is a Seahorse, then Lemma 3.24 implies $M(G, \Sigma)=2$. If (G, Σ) is a Starfish, then Lemma 3.26 implies $M(G, \Sigma)=2$.

Suppose $M(G, \Sigma) \leq 2$. From Lemma 3.5, we know that no vertex in $V(H)$ has more than one pendant path attached in (G, Σ). We proceed with a case study on the number of cycles in (H, Ω). Suppose (H, Ω) has at least two distinct cycles. Let C_{1} and C_{2} be distinct cycles in (H, Ω). Then, we have two 2 -separations of $H:\left(C_{1}, H_{1}\right)$ and $\left(C_{2}, H_{2}\right)$. We may find two disjoint paths P_{1} and P_{2} between C_{1} and C_{2} such that P_{1} has endvertices u_{1} and $v_{1} ; P_{2}$ has endvertices u_{2} and $v_{2} ; u_{1}, u_{2} \in V\left(C_{1}\right) ;$ and $v_{1}, v_{2} \in V\left(C_{2}\right)$.

If (G, Σ) has a pendant path attached to an internal vertex of P_{1} or an internal vertex of P_{2}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)$. By Theorem 2.1, $M(G, \Sigma) \geq$ $\xi(G, \Sigma) \geq 3$. So, we may assume that any pendant path of (G, Σ) is attached to C_{1} or C_{2}. If there are no pendant paths attached to $w_{1}, w_{2} \in V\left(C_{1}\right)$ such that $d_{C_{1}-u_{1} u_{2}}\left(w_{1}, w_{2}\right) \geq 2$ and there are no pendant paths attached to $x_{1}, x_{2} \in V\left(C_{2}\right)$ such that $d_{C_{2}-v_{1} v_{2}}\left(x_{1}, x_{2}\right) \geq 2$, then (G, Σ) is a signed graph with two parallel paths. Hence, we may assume that there is a pair of vertices w_{1}, w_{2} with pendant paths attached in (G, Σ) such that $d_{C_{1}-u_{1} u_{2}}\left(w_{1}, w_{2}\right) \geq 2$ or there is a pair of vertices x_{1}, x_{2} with pendant paths attached in (G, Σ) such that $d_{C_{2}-u_{1} u_{2}}\left(x_{1}, x_{2}\right) \geq$ 2. By symmetry, we assume that the vertices w_{1} and w_{2} have pendant paths attached to $d_{C_{1}-u_{1} u_{2}}\left(w_{1}, w_{2}\right) \geq 2$. Let R_{i} be the pendant path attached to w_{i} for $i=1,2$. Because of our construction of P_{1}, we may assume that $w_{1}=u_{1}$ or that w_{1} is between u_{1} and w_{2} along the path $C-u_{1} u_{2}$. If $w_{1} \neq v_{1}$ and $w_{2} \neq v_{2}$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. From Theorem 2.1, we may assume either $w_{1}=v_{1}$ or $w_{2}=v_{2}$. By symmetry, we may assume $w_{1}=v_{1}$. From our definition of P_{1}, we have that $u_{1}=w_{1}=v_{1}$. If there exists two distinct vertices $y_{1}, y_{2} \in V\left(C_{1}\right) \backslash u_{1}$ attached to pendant paths in (G, Σ) such that $d_{G}\left(y_{1}, y_{2}\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. From Theorem 2.1, we may assume that $d_{G}\left(y_{1}, y_{2}\right)=1$ for any two distinct vertices $y_{1}, y_{2} \in V\left(C_{1}\right) \backslash u_{1}$ attached to pendant paths in (G, Σ).

We continue with the case that (G, Σ) has at least two cycles, and we proceed with a case study on $l\left(P_{2}\right)$. Suppose $l\left(P_{2}\right) \geq 1$. Suppose a pendant path Q_{2} is attached to a vertex in C_{2} such that $d_{C_{2}-v_{1} v_{2}}\left(Q_{2}, u_{1}\right) \geq 2$. If R_{2} is not attached to u_{2}, then we found a minor of (G, Σ)
isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. From Theorem 2.1, the pendant path R_{2} is attached to u_{2}. That is, $w_{2}=u_{2}$. Because of the symmetry from $u_{1}=v_{1}$, the same argument implies that Q_{2} is attached to v_{2}. If $l\left(P_{2}\right)>1$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. From Theorem 2.1, we may assume $l\left(P_{2}\right)=1$. If $l\left(C_{1}-u_{1} u_{2}\right) \geq 3$ and a pendant path is attached to a vertex in $V\left(C_{1}\right) \backslash\left\{u_{1}, u_{2}\right\}$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. From Theorem 2.1, we assume that if $l\left(C_{1}-u_{1} u_{2}\right) \geq 3$, then no pedant path is attached to $C_{1}-\left\{u_{1}, u_{2}\right\}$. By symmetry, we may assume that if $l\left(C_{2}-v_{1} v_{2}\right) \geq 3$, then no pedant path is attached to $C_{2}-\left\{v_{1}, v_{2}\right\}$. That is, (G, Σ) is a Seahorse. Hence, we may assume that $d_{C_{2}-v_{1} v_{2}}\left(Q_{2}, u_{1}\right)=1$. Because for any two distinct vertices $y_{1}, y_{2} \in V\left(C_{1}\right) \backslash u_{1}$ attached to pendant paths in (G, Σ) we know $d_{G}\left(y_{1}, y_{2}\right)=1$. That is, (G, Σ) is a signed graph with two parallel paths.

We continue with the next case when $l\left(P_{2}\right)=0$. Then, $u_{2}=v_{2}$. Recall that there is a pendant path R_{i} attached to w_{i} in (G, Σ) for $i=1,2$ such that $d_{C_{1}-u_{1} u_{2}}\left(w_{1}, w_{2}\right) \geq 2$. If (G, Σ) has no pendant path attached to u_{1} and no pendant path attached to u_{2}, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{2}$. If $w_{1}=u_{1}$ and (G, Σ) has a pendant path attached to the vertex $v \in V\left(C_{2}\right) \backslash v_{2}$ such that $d_{C_{2}-v_{1} v_{2}}\left(v, u_{1}\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. If no pendant path is attached to u_{2} and all pendant paths are attached to $\left\{u_{1}, v\right\} \in V\left(C_{2}\right) \backslash\left\{v_{1}, v_{2}\right\}$ such that $d\left(v, u_{1}\right)=1$, then (G, Σ) is a signed graph with two parallel paths.

Hence, we may assume that (G, Σ) has a pendant path attached to u_{1} and a pendant path attached to u_{2}. If (G, Σ) has a pendant path attached to a vertex $v \in V\left(C_{1}\right) \backslash\left\{u_{1}, u_{2}\right\}$ such
that $d_{C_{1}-u_{1} u_{2}}\left(\left\{u_{1}, u_{2}\right\}, v\right) \geq 2$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. By Theorem 2.1, we may assume that if a pendant path in (G, Σ) is attached to a vertex $v \in V\left(C_{1}\right) \backslash\left\{u_{1}, u_{2}\right\}$, then $d_{C_{1}-u_{1} u_{2}}\left(u_{1}, v\right)=1$ or $d_{C_{1}-u_{1} u_{2}}\left(u_{2}, v\right)=1$. By symmetry, we may assume if a pendant path in (G, Σ) is attached to a vertex $v \in V\left(C_{2}\right) \backslash\left\{u_{1}, u_{2}\right\}$, then $d_{C_{2}-v_{1} v_{2}}\left(v_{1}, v\right)=1$ or $d_{C_{2}-v_{1} v_{2}}\left(v_{2}, v\right)=1$. If either pair of the following statements holds, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$:

1. - (G, Σ) has a pendant path S_{1} attached to a vertex in $V\left(C_{1}\right) \backslash\left\{u_{1}, u_{2}\right\}$ such that $d_{C_{1}-u_{1} u_{2}}\left(S_{1}, u_{1}\right) \geq 2$, and

- (G, Σ) has a pendant path S_{2} attached to a vertex in $V\left(C_{2}\right) \backslash\left\{u_{1}, u_{2}\right\}$ such that $d_{C_{2}-u_{1} u_{2}}\left(S_{2}, u_{1}\right) \geq 2$; or

2. - (G, Σ) has a pendant path S_{1} attached to a vertex in $V\left(C_{1}\right) \backslash\left\{u_{1}, u_{2}\right\}$ such that $d_{C_{1}-u_{1} u_{2}}\left(S_{1}, u_{2}\right) \geq 2$, and

- (G, Σ) has a pendant path S_{2} attached to a vertex in $V\left(C_{2}\right) \backslash\left\{u_{1}, u_{2}\right\}$ such that $d_{C_{2}-u_{1} u_{2}}\left(S_{2}, u_{2}\right) \geq 2$.

From Theorem 2.1, if (G, Σ) has two pendant path attached to $V\left(C_{1}\right) \backslash\left\{u_{1}, u_{2}\right\}$, then $l\left(C_{1}-\right.$ $\left.u_{1} u_{2}\right)=3$, and in addition, if there is a pendant path attached to a vertex of $V\left(C_{2}\right) \backslash\left\{u_{1}, u_{2}\right\}$, then $l\left(C_{2}-u_{1} u_{2}\right)=2$. If $l\left(P_{1}\right)=0$, then (G, Σ) is a Starfish. If $l\left(P_{1}\right)>0$, then (G, Σ) is a Seahorse. Similarly, if (G, Σ) has two pendant path attached to $V\left(C_{2}\right) \backslash\left\{u_{1}, u_{2}\right\}$, then $l\left(C_{2}-u_{1} u_{2}\right)=3$, and in addition, if there is a pendant path attached to a vertex of $V\left(C_{1}\right) \backslash$ $\left\{u_{1}, u_{2}\right\}$, then $l\left(C_{1}-u_{1} u_{2}\right)=2$. If $l\left(P_{1}\right)=0$, then (G, Σ) is a Starfish. If $l\left(P_{1}\right)>0$, then (G, Σ) is a Seahorse.

We continue with the case when H has at most one cycle. Because H is 2-connected, $V(H)$ are on a cycle C and $|V(H)| \geq 3$. Let P_{1}, \ldots, P_{k} be the pendant paths attached to the vertices of H, ordered around C. If $k \geq 6$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. By Theorem 2.1, we may assume that $k \leq 5$. Suppose $k=5$. If $d_{C}\left(P_{i}, P_{i+1}\right)=2$ for some i, where $k+1=1$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. By Theorem 2.1, $d_{C}\left(P_{i}, P_{i+1}\right)=1$ for all $i=1, \ldots k$. That is, (G, Σ) is a Starfish. Suppose next that $k=4$. If $d_{C}\left(P_{i}, P_{i+1}\right) \geq 2$ and $d_{C}\left(P_{i}, P_{i-1}\right) \geq 2$ for some i, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. By Theorem 2.1, we may assume that $d_{C}\left(P_{i}, P_{i+1}\right)=$ $d_{C}\left(P_{i+2}, P_{i+3}\right)=1$ for some i. That is, (G, Σ) is a signed graph with two parallel paths. Suppose next that $k=3$. If $d_{C}\left(P_{1}, P_{2}\right) \geq 2, d_{C}\left(P_{2}, P_{3}\right) \geq 2$, and $d_{C}\left(P_{3}, P_{1}\right) \geq 3$, then we found a minor of (G, Σ) isomorphic to $K_{3}^{=}(\Delta Y)^{3}$. If $d_{C}\left(P_{i}, P_{i+1}\right)=1$ for some i, then (G, Σ) is a signed graph with two parallel paths. Finally, suppose $k \leq 2$. Then, (G, Σ) is a signed graph with two parallel paths.

3.4 Proof of the Main Result

Proof. First, we prove the forward direction. If (G, Σ) is a signed graph with two parallel paths, then Lemma 3.15 implies $M(G, \Sigma) \leq 2$. If (G, Σ) is a Seahorse or a Starfish, then Lemma 3.27 implies $M(G, \Sigma)=2$. If (G, Σ) is a Sea Anemone or a Mollusk, then Lemma 3.22 implies $M(G, \Sigma)=2$. If (G, Σ) is a Stingray, then Lemma 3.15 implies $M(G, \Sigma)=2$. If (G, Σ) is obtained from attaching single pendant paths to W_{4}^{o}, then Lemma 3.7 implies $M(G, \Sigma)=2$. If (G, Σ) is obtained from attaching at most two pendant paths to each vertex of K_{2}, then G is a tree, and Lemma 1.41 implies $M(G, \Sigma) \leq M(G)=P(G) \leq 2$. If (G, Σ) is obtained from attaching at most two pendant paths to each vertex of $K_{2}^{=}$, then Lemma 3.5 implies $M(G, \Sigma) \leq 2$.

Next, we suppose that $M(G, \Sigma) \leq 2$. If $M(G, \Sigma)=1$, then G is a path by Theorem 1.14. So, we may draw (G, Σ) as a signed graph with two parallel paths. So, we may assume that $M(G, \Sigma)=2$. If G is disconnected, then Lemma 3.3 implies (G, Σ) consists of two disjoint paths; and, we may draw (G, Σ) as a signed graph with two parallel paths. So, we may assume that G is connected. If G has no cycle, then G is a tree. From Lemma 1.41, we may minimally cover the vertices of G with two paths; and, we may draw (G, Σ) as a signed graph with two parallel paths. So, we may assume that G has a cycle. By Lemma 3.5 , we may assume that (G, Σ) is obtained from attaching pendant paths either (1) to K_{2}, (2) to $K_{2}^{=}$, or (3) to a 2-connected signed graph (H, Ω) with $M(H, \Omega) \leq 2$. Further, we may assume that no vertex has more than two pendant paths attached. The first two cases are listed. For the third case, Theorem 1.52 implies that (H, Ω) is either W_{4}^{o} or a partial
wide 2-path. If $(H, \Omega)=W_{4}^{o}$, then Lemma 3.7 implies that no vertex has more than one pendant path attached. If (H, Ω) is a 2-connected partial wide 2-path, then we finish our proof with a case study on the number of wide separations in (H, Ω). If (H, Ω) has two wide separations, then Lemma 3.15 implies (G, Σ) is either a Stingray or a signed graph with two parallel paths. If (H, Ω) has exactly one wide separation, then Lemma 3.22 implies (G, Σ) is either a Sea Anemone, a Mollusk, or a signed graph with two parallel paths. If (H, Ω) has no wide separations, then Lemma 3.27 implies (G, Σ) is either a Seahorse, a Starfish, or a signed graph with two parallel paths.

CHAPTER 4

Zero Forcing Number for Signed Graphs with Maximum Nullity at Most Two

4.1 Zero Forcing on Signed Graphs

In this section, we generalize the notion of zero forcing on graphs by finding new color change rules for signed graphs. In the remaining sections of this chapter, we find the zero forcing number of signed graphs with maximum nullity at most two.

Consider a simple graph G. We let $A \in \mathcal{S}(G)$, and we let $x \in \operatorname{ker}(A)$. The color change rule for simple graphs comes from the fact that

$$
a_{i, j} x_{j}=0
$$

implies $x_{j}=0$ whenever the white vertex j is the only neighbor of the blue vertex i. For parallel edges, we have the possibility that $a_{i, j}=0$ whenever there is an edge between i and j, which allows $x_{j} \neq 0$. For signed graphs, we may also consider a system of equations derived from the null space

$$
\begin{aligned}
& a_{i, j} x_{j}+a_{i, k} x_{k}=0 \\
& a_{l, j} x_{j}+a_{l, k} x_{k}=0
\end{aligned}
$$

Here, we may also force $x_{j}=x_{k}=0$, depending on the signature of our signed graph. In particular, we need to exclude the possibility that the determinant is zero.

Definition 4.1. Suppose (G, Σ) is a signed graph with some vertices colored blue and others colored white. If $S \subseteq V(G)$, then we partition the neighborhood $N(S)$ into the blue vertices $N_{B}(S)$ and the white vertices $N_{W}(S)$.

Lemma 4.2. Let (G, Σ) be a signed graph without parallel edges. Let S be the sign pattern matrix of $A \in \mathcal{S}(G, \Sigma)$. Suppose some vertices $B \subseteq V(G)$ are colored blue and the others are colored white. Then, we may color the vertices in $N_{W}(B)$ blue if and only if there exists a subset $B_{0} \subseteq B$ such that $S\left[B_{0}, N_{W}(B)\right]$ is a SNS-matrix.

Proof. First, we observe that $S\left[B, N_{W}(B)\right] x=0$ always has the solution $x=0$. If $S\left[B_{0}, N_{W}(B)\right]$ is a SNS-matrix for some $B_{0} \subseteq B$, then by definition, $x=0$ is the only solution. That is, we may color the vertices in $N_{W}(B)$ blue.

Suppose next that we may color the vertices of $N_{W}(B)$ blue. That is, $x=0$ is the unique solution to $S\left[B, N_{W}(B)\right] x=0$. Then, $S\left[B, N_{W}(B)\right]$ has full column rank. Hence, we have $|B| \geq\left|N_{W}(B)\right|$. If $|B|=\left|N_{W}(B)\right|$, then $S\left[B, N_{W}(B)\right]$ also has full row rank, and $S\left[B, N_{W}(B)\right]$ is a SNS-matrix. If $|B|>\left|N_{W}(B)\right|$, then we found linear dependent rows in $S\left[B, N_{W}(B)\right]$. So, there is a subset of blue vertices $B_{0} \subseteq B$ such that $S\left[B_{0}, N_{V}(B)\right]$ has full row rank. That is, $S\left[B_{0}, N_{V}(B)\right]$ is a SNS-matrix.

Observation 4.3. There is a natural bijection between the signed digraphs without a positive cycle and the coloring rules on signed graphs without parallel edges.

Proof. Suppose D is a signed digraph with no positive cycles. Let (H, Ω) be the signed graph obtained by decontracting the vertices of D. From Theorem 1.53 , we have a SNS-matrix S. If we identify the rows of S as blue vertices and the columns of S as white vertices, then by Lemma 4.2, we may color all vertices blue. Suppose we have a signed graph (G, Σ) with some vertices B colored blue. If for some blue vertices $B_{0} \subseteq B$, the induced subgraph on
$B_{0} \cup N_{W}\left(B_{0}\right)$ is isomorphic to (H, Ω), then we may color the vertices $N_{W}\left(B_{0}\right)$ blue in (G, Σ). That is, D defines a unique coloring rule.

Suppose we may apply a coloring rule to the blue vertices B and color the white vertices $N_{W}(B)$ blue in a signed graph (G, Σ). Let $A \in \mathcal{S}(G, \Sigma)$, and let S be the sign-pattern matrix of A. From Lemma 4.2, we may find vertices $B_{0} \subseteq B$ such $S\left[B_{0}, N_{W}(B)\right]$ is a SNSmatrix. Because $S\left[B_{0}, N_{W}(B)\right]$ is a SNS-matrix, $A\left[B_{0}, N_{W}(B)\right]$ is non-singular. So, the determinant of $A\left[B_{0}, N_{W}(B)\right]$ is non-zero. Hence, at least one term in the alternating sum of the determinant is nonzero for some permutation π of the vertices in $N_{W}(B)$:

$$
a_{b_{1}, \pi\left(N_{W}(B)\right)_{1}} a_{b_{2}, \pi\left(N_{W}(B)\right)_{2}} \cdots a_{b_{|B|}, \pi\left(N_{W}(B)\right)_{|B|}}
$$

We may resign around vertices of B_{0} such that these edges are even, and we have a SNSmatrix with negative entries along the diagonal. By Theorem 1.53, we have a signed digraph $D\left(S\left[B_{0}, N_{W}(B)\right]\right)$ with no positive cycles.

Lemma 4.4. Suppose (G, Σ) is a signed graph, and suppose the vertices $B=\left\{b_{1}, b_{2}, b_{3}\right\}$ are colored blue. If a subgraph on the vertex set $B \cup N_{W}(B)$ is isomorphic to $K_{3,3}$, such that one vertex partition is blue and the other is white, then no color change rule allows us to color the vertices in $N_{W}(B)$ blue.

Proof. We may always switch around a blue vertex such that we have negative entries along the diagonal of S, a 3×3 sign pattern matrix with no zeros. By Theorem 1.53, S is a SNSmatrix if and only if $D(S)$ has no positive cycle. So, $i j$ and $j i$ must be of opposite sign. Then, the signed digraph in Figure 1.4 is a subgraph of $D(S)$. That is, we have replaced a zero in
the maximal SNS-matrix (1.1) with a + to obtain S. Therefore, S is not a SNS-matrix. By Lemma 4.2, there is no color change rule allowing us to color the vertices $N_{W}(B)$ blue.

We note that the previous Lemma also follows from Little's result in Theorem 1.54 because G contains an even subdivision of $K_{3,3}$.

Observation 4.5. The signed graph (G, Σ) in Figure 4.1 has $M(G, \Sigma)=Z(G, \Sigma)=3$, while $Z(G)=4$.

Proof. The vertices $\{7,9,11\}$ are a minimum zero forcing set for (G, Σ), which requires an application of (1.1), when the blue vertices $\{1,3,5\}$ color the white vertices $\{2,4,6\}$ blue. As (G, Σ) has a minor isomorphic to $K_{3}^{=}(\Delta)^{3}$, Theorem 2.1 implies $M(G, \Sigma) \geq \xi(G, \Sigma) \geq 3$. Therefore,

$$
\xi(G, \Sigma)=M(G, \Sigma)=Z(G, \Sigma)=3
$$

The vertices $\{1,8,10,12\}$ are a minimum zero forcing set for G, by brute force [9].

Lemma 4.6. Suppose (G, Σ) is a signed graph with $M(G, \Sigma) \leq 2$. The color change rule corresponding to the maximal SNS-matrix of order 3 is never applied to (G, Σ).

Proof. We consider the maximal SNS-matrix in (1.1) and the corresponding signed graph $\left(K_{3,3}-e, \Omega\right)$ in Figure 1.4. If we contract the even edges of $\left(K_{3,3}-e, \Omega\right)$, then we have a K_{4}^{o}. That is, $K_{4}^{o} \preceq\left(K_{3,3}-e, \Omega\right) \preceq(G, \Sigma)$. From Theorem 2.1, we have

$$
M(G, \Sigma) \geq \xi(G, \Sigma) \geq \xi\left(K_{4}^{o}\right) \geq 3
$$

Yet, $M(G, \Sigma) \leq 2$; so, we never apply this rule to (G, Σ).

Figure 4.1 A signed graph (G, Σ) with $Z(G, \Sigma)<Z(G)$. Even edges are solid, and odd edges are dashed.

Lemma 4.7. Suppose we have a signed graph (G, Σ) with some vertices B colored blue. Suppose the white vertices $N_{W}(B)$ are on a cycle C_{n}. Suppose the vertices of C_{n} alternate blue and white: $w_{1} \leftrightarrow b_{1} \leftrightarrow w_{2} \leftrightarrow \ldots \leftrightarrow b_{n} \leftrightarrow w_{1}$. Suppose no cord edge on C_{n} has a blue endvertex and a white endvertex. If $n=4 k$ and C_{n} is odd, then we may color $N_{W}(B)$ blue. If $n=4 k+2$ and C_{n} is even, then we may color $N_{W}(B)$ blue.

Proof. Let D be a signed digraph which is a negative directed cycle. By Lemma 4.3, D defines a color change rule. If D has $2 k$ vertices, then D has an odd number of directed edges labeled with + . Then, the corresponding signed graph $\left(C_{n}, \Sigma\right)$ has an odd number of odd edges and $n=4 k$. If D has $2 k+1$ vertices, then D has an even number of directed edges labeled with + . Then, the corresponding signed graph $\left(C_{n}, \Sigma\right)$ has an even number of odd edges and $n=4 k+2$.

Lemma 4.8. Let (G, Σ) be a signed graph without parallel edges. Suppose $M(G, \Sigma) \leq 2$,
and $Z(G, \Sigma) \leq 2$. We color some vertices of (G, Σ) blue and color others white. Then, we may apply the following color change rules to (G, Σ).

Rule 1 If w is the only white vertex adjacent to a blue vertex, then we may color w blue.

Rule 2 If $\left\{w_{1}, w_{2}\right\}$ are the only white neighbors of the blue vertices $\left\{b_{1}, b_{2}\right\}$ such that $b_{1} w_{1}$ is even, $b_{1} w_{2}$ is even, $b_{2} w_{1}$ is even, and $b_{2} w_{2}$ is odd, then we may color the vertices $\left\{w_{1}, w_{2}\right\}$ blue.

Rule 3 If $\left\{w_{1}, w_{2}\right\}$ are the only white neighbors of the blue vertices $\left\{b_{1}, b_{2}\right\}$ such that $b_{1} w_{1}$ is even, $b_{1} w_{2}$ is odd, $b_{2} w_{1}$ is odd, and $b_{2} w_{2}$ is odd, then we may color the vertices $\left\{w_{1}, w_{2}\right\}$ blue.

Proof. The first rule is the usual zero forcing rule for simple graphs. The other two rules follow from Lemma 3.12. Because $Z(G, \Sigma) \leq 2$, we do not consider cases where $\left|N_{W}\left(B_{k}\right)\right|>$ 2, where B_{k} are the blue vertices after the k-th application of a coloring rule. Otherwise, we applied some coloring rule at step $j<k$ but did not color all the vertices in $N_{W}\left(B_{j}\right)$ blue.

Lemma 4.9. Let (G, Σ) be a signed graph without parallel edges. Suppose $M(G, \Sigma) \leq 2$, and $Z(G, \Sigma) \leq 3$. We color some vertices of (G, Σ) blue and color others white. Suppose the vertices are on an even cycle

$$
C_{6}=b_{1} \leftrightarrow w_{1} \leftrightarrow b_{2} \leftrightarrow w_{2} \leftrightarrow b_{3} \leftrightarrow w_{3} \leftrightarrow b_{1} .
$$

Suppose $N_{W}\left(\left\{b_{1}, b_{2}, b_{3}\right\}\right)=\left\{w_{1}, w_{2}, w_{3}\right\}$, Then, we may apply the following color change rule to (G, Σ).

Rule 4 If no cord edge between a blue and a white vertex of C_{6} is on an even C_{4}, then we may color $\left\{w_{1}, w_{2}, w_{3}\right\}$ white.

Proof. As $Z(G, \Sigma) \leq 3$, we need not consider the case where the blue vertices B have $\left|N_{W}(B)\right|>3$.

Because $M(G, \Sigma) \leq 2$, Lemma 4.6 implies we need not consider the maximal SNS-matrix on 3 vertices nor the corresponding signed digraph D, where D is edge maximal for having no positive cycle. Suppose we remove exactly one directed edge e from D. If e is $1 j$, then we may apply rule 1 to b_{1} and color w_{j} blue. If e is $i 3$, then we may apply rule 1 to b_{i} and color w_{1} blue. The only corresponding even cycle in C_{6} is $b_{2} \leftrightarrow w_{1} \leftrightarrow b_{3} \leftrightarrow w_{2} \leftrightarrow b_{2}$. So, removing e from D corresponds to removing all even cycles from C_{6}. From Lemma 4.7, we may continue removing cord edges of C_{6}, and we may still color the vertices $\left\{w_{1}, w_{2}, w_{3}\right\}$ white.

To show that C_{6} is minimal, we remove a single edge $b_{i} w_{i}$. Then, we apply rule 1 to b_{i} and color the white vertex w_{i-1} blue, where $w_{0}=w_{3}$.

Lemma 4.10. Let (G, Σ) be a signed graph with $M(G, \Sigma) \leq 2$. If (G, Σ) has no wide separation and no parallel edges, then $Z(G)=Z(G, \Sigma)$.

Proof. As (G, Σ) has no wide separation and no parallel edges, then only the first color change rule from Lemma 4.8 applies. That is, the collection of zero forcing sets for G is exactly the same collection as for (G, Σ), and $Z(G)=Z(G, \Sigma)$.

Lemma 4.11. Let (G, Σ) be a signed graph with $M(G, \Sigma) \leq 2$. If $\left[G_{1}, G_{2}\right]$ is a wide separation, then $G_{1} \cup C_{4} \cup G_{2}$. Let the vertices of attachment of G_{1} be $\left\{b_{1}, b_{2}\right\}$, and let
$\left\{w_{1}, w_{2}\right\}$ be the vertices of attachment of G_{2}. Let (H, Ω) be obtained by removing all edges from C_{4} except $u_{1} v_{1}$ and $u_{2} v_{2}$. Then, $Z(G, \Sigma)=Z(H, \Omega)$.

Proof. Suppose $\left\{b_{1}, b_{2}\right\}$ are colored blue in both (G, Σ) and (H, Ω). Suppose $N_{W}\left(\left\{b_{1}, b_{2}\right\}\right)=$ $\left\{w_{1}, w_{2}\right\}$ in both (G, Σ) and (H, Ω). In (G, Σ), we may apply rule 2 or 3 to $\left\{b_{1}, b_{2}\right\}$ and color $\left\{w_{1}, w_{2}\right\}$ blue. In (H, Ω), we first apply rule 1 to b_{1} to color w_{1} blue and again apply rule 1 to color w_{2} blue.

4.2 Signed Graphs with $M(G, \Sigma)=Z(G, \Sigma)=2$

Lemma 4.12. $Z\left(K_{4}^{i}\right)=2$.

Proof. Let the vertices of K_{4} be $\{1,2,3,4\}$. Let the only odd edge of K_{4}^{i} have endvertices 1 and 4 . We start by coloring the vertices $\{1,2\}$ blue. Then, we may apply Lemma 3.12 and color the vertices $\{3,4\}$ blue. Because $M\left(K_{4}^{i}\right)=2$, we may apply Lemma 1.38, and we have $2=M\left(K_{4}^{i}\right) \leq Z\left(K_{4}^{i}\right) \leq 2$. Hence, $Z\left(K_{4}^{i}\right)=2$

Observation 4.13. $Z\left(K_{4}^{i}\right)<Z\left(K_{4}\right)$

Proof. From the previous Lemma 4.12, we know that $Z\left(K_{4}^{i}\right)=2$. If we color two vertices of K_{4} blue, then each blue vertex has two white neighbors. So, $Z\left(K_{4}\right) \geq 3$. If we color three vertices of K_{4} blue, then each blue vertex has exactly one white neighbor. So, $Z\left(K_{4}\right)=3$.

Lemma 4.14. Let $[(G, \Sigma), \mathcal{F}]$ be a sided wide 2-path. Then, the endvertices of either edge in \mathcal{F} are a zero forcing set for (G, Σ).

Proof. First, we start with $\left(G_{1}, \Sigma_{1}\right)$ which is either an even cycle, an odd cycle, or a K_{4}^{i}. Then, $\left[\left(G_{1}, \Sigma_{1}\right), \mathcal{F}_{1}\right]$ is a sided wide 2 -path with sides \mathcal{F}_{1}. If G_{1} is a cycle, then the endvertices of $e \in \mathcal{F}_{1}$ are a zero forcing set. If $\left(G_{1}, \Sigma_{1}\right)=K_{4}^{i}$, then \mathcal{F}_{1} is a split pair of edges. So, the endvertices of $e \in \mathcal{F}_{1}$ are a zero forcing set by Lemma 3.12. Next, we consider $\left(G_{2}, \Sigma_{2}\right)$, which is either an even cycle, an odd cycle, or a K_{4}^{i}. If G_{2} is a cycle, then we identify an edge $e \in E\left(G_{2}\right)$ with an edge in \mathcal{F}_{1}, and we may color the vertices of $V\left(G_{2}\right)$ blue. If $\left(G_{2}, \Sigma_{2}\right)=K_{4}^{i}$, then we identify an edge in \mathcal{F}_{1} with an edge in a split pair of $\left(G_{2}, \Sigma_{2}\right)$, and we may color the vertices of $V\left(G_{2}\right)$ blue. By definition, any sided wide 2-path may be constructed iteratively
in this way. Therefore, the endvertices of either edge in the sides of a wide sided 2-path are a zero forcing set.

Corollary 4.15. If (G, Σ) is a wide 2 -path, then $Z(G, \Sigma)=2$.

Proof. If (G, Σ) is a wide 2-path, then by definition there exists two distinct edges \mathcal{F} such that $[(G, \Sigma), \mathcal{F}]$ is a sided wide 2-path. From Lemma 4.14, $Z(G, \Sigma) \leq 2$. From Theorems 1.14 and 1.52, $M(G, \Sigma)=2$. From Lemma 1.38, $2=M(G, \Sigma) \leq Z(G, \Sigma) \leq 2$. Therefore, $Z(G, \Sigma)=2$.

Lemma 4.16. If (G, Σ) is a 2-connected partial wide 2-path, then $Z(G, \Sigma)=2$.

Proof. We begin with a wide 2-path (H, Ω) such that $V(G)=V(H), E(G) \subseteq E(H)$, and $\Sigma \subseteq$ Ω. There exists a sided wide 2-path $[(H, \Omega), \mathcal{F}]$. For $e \in \mathcal{F}, H-e$ is not 2-connected. So, the side edges in \mathcal{F} are edges of G. Let $\left\{u_{1}, u_{2}\right\}$ be the endvertices for an edge in \mathcal{F}. Color $\left\{u_{1}, u_{2}\right\}$ blue. For our first case, $\left\{u_{1}, u_{2}\right\}$ are vertices of attachment for a wide separation of (G, Σ). Then, we may color $\left\{v_{1}, v_{2}\right\}$ blue, where $\left\{v_{1}, v_{2}\right\}$ are the other two vertices of attachment in our wide separation blue, because of Lemma 3.12. For our second case, we assume that $\left\{u_{1}, u_{2}\right\}$ belong to a cycle C that has no vertices of attachment to a wide separation of (G, Σ). Then, we found a 2-separation of $G,\left[G_{1}, G_{2}\right]$ where G_{1} is a cycle. We may color the vertices of G_{1} blue, and we name the vertices $\left\{v_{1}, v_{2}\right\}=V\left(G_{1}\right) \cap V\left(G_{2}\right)$. If neither the first nor the second case is true, then we found a wide separation $\left[\left(G_{1}, \Sigma_{1}\right),\left(G_{2}, \Sigma_{2}\right)\right]$ where G_{1} is a path or a cycle and $\left\{u_{1}, u_{2}\right\} \subseteq V\left(G_{1}\right)$. So, we may color the vertices of G_{1} blue, and we apply rule 2 or 3 to the blue vertices of G_{1} to color the vertices $\left\{v_{1}, v_{2}\right\}$ blue, where $\left\{v_{1}, v_{2}\right\}$ are
the vertices of attachment of G_{1}. We may repeat our case study again starting with the blue vertices $\left\{v_{1}, v_{2}\right\}$ and ignoring all the other blue vertices. Eventually, we color all the vertices of (G, Σ) blue. That is, $\left\{u_{1}, u_{2}\right\}$ is a zero forcing set for (G, Σ), and Lemma 1.38 implies $2=M(G, \Sigma) \leq Z(G, \Sigma) \leq 2$. Therefore, $Z(G, \Sigma)=2$.

4.3 Signed Graphs with $M(G, \Sigma)=2 \leq Z(G, \Sigma)$

Lemma 4.17. $Z\left(W_{4}^{o}\right)=3$

Proof. As $\{1,2,3\}$ is a zero forcing set of W_{4}, Lemma 1.38 implies $Z\left(W_{4}^{o}\right) \leq Z\left(W_{4}\right)=3$.
We may apply Rule 2 to $\{1,3\}$ to color $\{4,5\}$ blue only if 2 is also colored blue. By symmetry, other applications of Rule 2 are the same. As there are only two odd edges in W_{4}^{o}, we never apply Rule 3 . Hence, the zero forcing sets for W_{4} are the same as for W_{4}^{o}. That is, $Z\left(W_{4}^{o}\right)=3$.

Lemma 4.18. Let (G, Σ) be obtained by attaching pendant paths to vertices of W_{4}^{o}. If $M(G, \Sigma)=2$, then $Z(G, \Sigma)=3$

Proof. From Lemma 3.7, $M(G, \Sigma)=2$ implies that no vertex of W_{4}^{o} has more than one pendant path attached in (G, Σ). If $Z(G, \Sigma)=2$, then we found a zero forcing set with two vertices in W_{4}^{o}. However, Lemma 4.17 forbids a zero forcing set with only two vertices in W_{4}^{o}. We label the first five vertices of (G, Σ) as in Figure 1.3. For $i=1,2,3$, we take v_{i} as i if no pendant path is attached to i in (G, Σ); otherwise, we take v_{i} as the pendant vertex of the pendant path attached to i. So, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a zero forcing set of G, and Lemma 1.38 implies $3 \leq Z(G, \Sigma) \leq Z(G)=3$.

Lemma 4.19. If (G, Σ) is a Stingray, then $Z(G, \Sigma)=3$.

Proof. We use the notation from Definition 3.8. For $i=1,3$, we replace the C_{4} in the wide separations $\left[H_{i}, H_{i+1}\right]$ of G with two edges. The resulting graph H is not a graph on two parallel paths. From Theorem 1.45, $Z(H)>2$. From Lemma 4.11, $Z(G, \Sigma)=Z(H) \geq 3$.

Suppose $l\left(P_{1}\right)+l\left(P_{2}\right)=1$. Then we take $v_{1}, v_{2} \in V\left(H_{1}\right)$ such that v_{i} is the furthest vertex from the vertex of attachment a_{i} in H_{1} for $i=1,2$. We take v_{3} to be the pendant vertex of the pendant path attached to a vertex of P_{1} or P_{2}. Then, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a zero forcing set of (G, Σ). So, $Z(G, \Sigma) \leq 3$. Hence, $Z(G, \Sigma)=3$

Suppose $l\left(P_{1}\right)+l\left(P_{2}\right)=0$. If there is a pendant path attached to the vertex of attachment q on the path Q, then we take v_{1} to be the pendant vertex. If there is no pendant path attached to Q, then we take $v_{1}=q$. We take v_{2} to be the unique vertex such that $d_{Q}\left(v_{1}, v_{2}\right)=$ 1. We take v_{3} to be the pendant vertex of the pendant path attached to a vertex of P_{1} or P_{2}. Then, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a zero forcing set of (G, Σ). So, $Z(G, \Sigma) \leq 3$. Hence, $Z(G, \Sigma)=3$.

Lemma 4.20. If (G, Σ) is a Sea Anemone, then $Z(G, \Sigma)=3$.

Proof. We use the notation from Definition 3.16. First, we replace the C_{4} in the wide separations of G with two edges. The resulting graph H is not a graph on two parallel paths. From Theorem 1.45, $Z(H)>2$. From Lemma 4.11, $Z(G, \Sigma)=Z(H) \geq 3$.

Suppose first that (G, Σ) has a pendant path attached to an internal vertex of the path P in H_{1}. Name the pendant vertex of this pendant path p_{1}. By definition, there is a single pendant path attached to the vertex of attachment u_{1} of the wide separation H_{1}. Similarly, name the pendant vertex of this pendant path p_{2}. If (G, Σ) has a pendant path attached to the vertex of attachment w_{1} of H_{2}, then name this pendant vertex p_{3}. Then, $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a zero forcing set of (G, Σ). If (G, Σ) has no pendant path attached to w_{1}, then $\left\{p_{1}, p_{2}, w_{1}\right\}$ is a zero forcing set of (G, Σ). So, $3 \leq Z(G, \Sigma) \leq 3$. Hence, $Z(G, \Sigma)=3$.

Suppose next that (G, Σ) has no pendant path attached to an internal vertex of the
path P in H_{1}. Then, we take the pendant vertex p_{i} of the pendant path attached to u_{i} for $i=1,2$. If (G, Σ) has a pendant path attached to the vertex of attachment w_{1}, then name this pendant vertex p_{3}. Then, $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a zero forcing set of (G, Σ). If (G, Σ) has no pendant path attached to w_{1}, then $\left\{p_{1}, p_{2}, w_{1}\right\}$ is a zero forcing set of (G, Σ). So, $3 \leq Z(G, \Sigma) \leq 3$. Hence, $Z(G, \Sigma)=3$.

Lemma 4.21. If (G, Σ) is a Mollusk, then $Z(G, \Sigma) \leq 3$. Further, $Z(G, \Sigma)=2$ if and only if (G, Σ) is also a signed graph with two parallel paths.

Proof. We use the notation from Definition 3.19. First, we replace the C_{4} in the wide separations of (G, Σ) with two edges. Name the resulting signed graph (H, Ω).

Suppose that there are two pendant paths attached to vertices of $H_{1}-\left\{u_{1}, u_{2}\right\}$. Then, H is not a graph on two parallel paths, and (G, Σ) is not a signed graph with two parallel paths. From Theorem 1.45, $Z(H)>2$. From Lemma 4.11, $Z(G, \Sigma)=Z(H) \geq 3$. We take v_{1} and v_{2} to be the pendant vertices of these two pendant paths. We take v_{3} to be the pendant vertex of the pendant path attached at u_{1}. Hence, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a zero forcing set of (G, Σ). So, $3 \leq Z(G, \Sigma) \leq 3$. Hence, $Z(G, \Sigma)=3$.

Suppose that there is exactly one pendant path attached to a vertex w of $H_{1}-\left\{u_{1}, u_{2}\right\}$ such that $w \leftrightarrow u_{1}$. Then, H is a graph on two parallel paths, and (G, Σ) is a signed graph with two parallel paths. From Theorem 1.45, $Z(H)=2$. From Lemma 4.11, $Z(G, \Sigma)=Z(H)=2$. Hence, $Z(G, \Sigma)=2$.

Suppose that there is exactly one pendant path attached to a vertex w of $H_{1}-\left\{u_{1}, u_{2}\right\}$
such that $w \leftrightarrow u_{2}$. Then, H is not a graph on two parallel paths, and (G, Σ) is not a signed graph with two parallel paths. From Theorem 1.45, $Z(H) \geq 3$. From Lemma 4.11, $Z(G, \Sigma)=$ $Z(H) \geq 3$. Take v_{1} to be the pendant vertex of the pendant path attached at w. Take v_{2} to be the pendant vertex attached at u_{1}. Take $v_{3}=u_{2}$. Then, $\left\{v_{1}, v_{2}, v_{3}\right\}$ is a zero forcing set of (G, Σ). So, $3 \leq Z(G, \Sigma) \leq 3$. Hence, $Z(G, \Sigma)=3$.

Suppose that there is no pendant path attached to any vertex of $H_{1}-\left\{u_{1}, u_{2}\right\}$. Then, H is a graph on two parallel paths, and (G, Σ) is a signed graph with two parallel paths. From Theorem 1.45, $Z(H)=2$. From Lemma 4.11, $Z(G, \Sigma)=Z(H)=2$. Hence, $Z(G, \Sigma)=2$.

Therefore, $Z(G, \Sigma) \leq 3$ if (G, Σ) is a Mollusk. Further, $Z(G, \Sigma)=2$ if and only if (G, Σ) is also a signed graph with two parallel paths.

Lemma 4.22. If (G, Σ) is a Seahorse, then $Z(G, \Sigma)=3$.

Proof. Because G is not a graph on two parallel paths, Theorem 1.45 implies $Z(G)>2$. As the pendant vertices of G are a zero forcing set, $Z(G)=3$. As (G, Σ) has no parallel edges or wide separations, Lemma 4.10 implies $Z(G, \Sigma)=Z(G)=3$.

Lemma 4.23. If (G, Σ) is a Starfish, then $Z(G, \Sigma)=3$.

Proof. We use the notation from Definition 3.25. For our first case, we suppose that (G, Σ) has 5 pendant paths. We take the pendant vertices $\left\{p_{1}, p_{2}, p_{3}\right\}$ of the pendant paths attached to $\left\{v_{1}, v_{2}, v_{3}\right\}$ such that $d_{G}\left(v_{1}, v_{2}\right)=d_{G}\left(v_{2}, v_{3}\right)=1$ and $d\left(v_{1}\right)=d\left(v_{3}\right)=\max _{v \in V} d(v)$. Then, $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a zero forcing set, and $Z(G) \leq 3$. As G has 5 pendant vertices, $P(G) \geq 3$.

For our second case, suppose that (G, Σ) has only 4 pendant paths. Then, we may find a 2-separation $\left(C_{4}, C_{k}\right)$ of G where $\left\{v_{1}, v_{2}\right\} \in V\left(C_{4}\right) \cap V\left(C_{k}\right)$. We take $v_{3} \in V\left(C_{4}\right)$ such
that $v_{3} \notin\left\{v_{1}, v_{2}\right\}$. Then, (G, Σ) has pendant paths attached to $\left\{v_{1}, v_{2}, v_{3}\right\}$, and we take the pendant vertices to be $\left\{p_{1}, p_{2}, p_{3}\right\}$. Then, $\left\{p_{1}, p_{2}, p_{3}\right\}$ is a zero forcing set for $Z(G)$. Suppose for a contradiction that $P(G)=2$. Then, each path in the covering must end on a pendant vertex of G. If the edge $v_{1} v_{2}$ is along one of these two paths, then the path must have endvertices p_{1} and p_{2}. Yet, any path covering with the edge $v_{1} v_{2}$ must have more than two path. If the edge $v_{1} v_{2}$ is not in a path of our covering, then p_{1} and p_{2} are covered by different paths because the paths must be induced. Because the paths in our covering must have endvertices which are pendant vertices in G, the two paths cannot cover $V\left(C_{k}\right) \backslash\left\{v_{1}, v_{2}\right\}$. So, we have our contradiction, and $P(G) \geq 3$.

So, if (G, Σ) is a Starfish then $Z(G) \leq 3$ and $P(G) \geq 3$. From Theorem 1.36, $3 \geq Z(G) \geq$ $P(G) \geq 3$. Hence, $Z(G)=3$. Because (G, Σ) has no parallel edges and no wide separation, Corollary 4.10 implies $Z(G, \Sigma)=Z(G)=3$.

We conclude this chapter with an extension of a result of Row to signed graphs [20].

Theorem 4.24. Let (G, Σ) be a signed graph where G is not a path. Then, (G, Σ) has $M(G, \Sigma)=Z(G, \Sigma)=2$ if and only if (G, Σ) is a signed graph with two parallel paths.

Proof. First, suppose that (G, Σ) is a signed graph with two parallel paths and that G is not a path. From Lemma 3.14, we have that $M(G, \Sigma)=Z(G, \Sigma)=2$.

Next, suppose that (G, Σ) is a signed graph such that $M(G, \Sigma)=Z(G, \Sigma)=2$. Theorem 1.14 implies G is not a path. From Theorem 3.1, we know that (G, Σ) is a signed graph with two parallel paths, a Seahorse, a Starfish, a Sea Anemone, a Mollusk, a Stingray, or
obtained from W_{4}^{o} by adding single pendant paths to some of the vertices of W_{4}^{o}. Because $Z(G, \Sigma)=2$, Lemmas 4.22, 4.23, 4.20, and 4.19 implies (G, Σ) is not a Seahorse, a Starfish, a Sea Anemone, or a Stingray. Similarly, Lemma 4.18 implies (G, Σ) may not be obtained from W_{4}^{o} by adding single pendant paths to some of the vertices of W_{4}^{o}. If (G, Σ) is a Mollusk, then Lemma 4.21 implies that (G, Σ) is also a signed graph with two parallel paths; otherwise, $Z(G, \Sigma)=3$. Therefore, $M(G, \Sigma)=Z(G, \Sigma)=2$ implies (G, Σ) is a signed graph with two parallel paths.

REFERENCES

[1] AIM Minimum Rank - Special Graphs Work Group, Zero forcing sets and the minimum rank of graphs, Linear Algebra and its Applications 428 (2008), no. 7, 1628-1648.
[2] Marina Arav, F. Scott Dahlgren, and Hein van der Holst, Signed graphs with stable maximum nullity at most two, Linear Algebra and its Applications 620 (2021), 124146.
[3] Marina Arav, Frank J. Hall, Zhongshan Li, and Hein van der Holst, The inertia set of a signed graph, Linear Algebra and its Applications 439 (2013), no. 5, 1506-1529.
[4] __ Two-connected signed graphs with maximum nullity at most two, Linear Algebra and its Applications 611 (2021), 82-93.
[5] Marina Arav, Hein van der Holst, and John Sinkovic, On the inertia set of a signed graph with loops, Linear Algebra and its Applications 471 (2015), 169-183.
[6] Francesco Barioli, Shaun M. Fallat, and Leslie Hogben, Computation of minimal rank and path cover number for certain graphs, Linear Algebra and its Applications 392 (2004), 289-303.
[7] _ A variant on the graph parameters of Colin de Verdière: Implications to the minimum rank of graphs, Electronic Journal of Linear Algebra 13 (2005), 387-404.
[8] Richard A. Brualdi and Bryan L. Shader, Matrices of Sign-Solvable Linear Systems, Cambridge University Press, New York, USA, 1995.
[9] Steve Butler, Laura DeLoss, Jason Grout, H. Tracy Hall, Josh LaGrange, Jephian C-H.

Lin, Tracy McKay, Jason Smith, and Geoff Tims, Zero Forcing, https://github.com/ jephianlin/mr_JG/blob/master/zero_forcing_64.pyx, Sage Script, 2008.
[10] Miroslav Fiedler, A characterization of tridiagonal matrices, Linear Algebra and its Applications 2 (1969), no. 2, 191-197.
[11] Jim Geelen, Bert Gerards, and Geoff Whittle, Solving Rota's Conjecture, Notices of the American Mathematical Society 61 (2014), no. 7, 736-743.
[12] Felix Goldberg and Abraham Berman, Zero forcing for sign patterns, Linear Algebra and its Applications 447 (2014), 56-67.
[13] Leslie Hogben, Minimum rank problems, Linear Algebra and its Applications 432 (2010), no. 8, 1961-1974.
[14] Leslie Hogben and Hein van der Holst, Forbidden minors for the class of graphs G with $\xi(G) \leq 2$, Linear Algebra and its Applications 423 (2007), no. 1, 42-52.
[15] Charles R. Johnson and António Leal Duarte, The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, Linear and Multilinear Algebra 46 (1999), no. 1-2, 139-144.
[16] Charles R. Johnson, Raphael Loewy, and Paul Anthony Smith, The graphs for which the maximum multiplicity of an eigenvalue is two, Linear and Multilinear Algebra 57 (2009), no. 7, 713-736.
[17] Charles H. C. Little, A characterization of convertible (0, 1)-matrices, Journal of Combinatorial Theory (B) 18 (1975), no. 3, 187-208.
[18] Neil Robertson and Paul D. Seymour, Wagner's Conjecture, Journal of Combinatorial

Theory (B) 92 (2004), no. 2, 325-357.
[19] Neil Robertson, Paul D. Seymour, and Robin Thomas, Permanents, Pfaffin orientations, and even directed circuits, Annals of Mathematics 150 (1999), no. 3, 929-975.
[20] Darren D. Row, A technique for computing the zero forcing number of a graph with a cut-vertex, Linear Algebra and its Applications 436 (2012), no. 12, 4423-4432.
[21] John Sinkovic, Maximum nullity of outer planar graphs and the path cover number, Linear Algebra and its Applications 432 (2010), no. 8, 2052-2060.
[22] Hein van der Holst, On the Strong Arnold Hypothesis and the connectivity of graphs, Electronic Journal of Linear Algebra 20 (2010), 574-585.
[23] Thomas Zaslavsky, Signed graphs, Discrete Applied Mathematics 4 (1982), no. 1, 47-74.

