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ABSTRACT 

Quantifying actual evapotranspiration (AET) in urbanized watersheds helps water 

managers develop accurate water budgets and aids in predicting future water budgets, especially 

in the face of land-cover and climate change. This paper presents multiple methods, with focus 

on Penman-Monteith approach, to estimate 20 years of daily, monthly, and annual AET totals in 

an urbanized watershed, the South River watershed (SRW), in Atlanta, GA. Land cover analysis 

confirmed NLCD definitions and revealed developed classes 21-24 contain 48.18%, 24.26%, 

13.79%, and 4.43% forest cover, respectively. Additionally, it was found that the annual AET of 

the SRW is approximately 800 mm/yr, with about 10% of coming solely from impervious land 

cover. A decreasing annual AET trend was observed for the SRW, resulting from land cover 

changes and decreasing incoming solar radiation. Finally, TerraClimate reference ET datasets 

overestimated urban ET, while statistical models typically underestimated ET when compared to 

reference water balance ET estimates. 
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1 INTRODUCTION  

Urban watersheds are composed of a more complex array of landscape elements when 

compared to rural watersheds. The heterogeneous composition of greenspace, buildings, and 

other impervious surfaces can make quantifying environmental processes much more difficult 

(Abdullah et al., 2019). New structural additions can be observed in urban environments like 

extensive pipe networks, water treatment/sewer treatment facilities, and built surfaces (Collier & 

Venables, 2016). The urban landscape can be compared to a forest, where the space between 

buildings and trees is considered to be the ‘urban canopy’ (Grimmond & Oke, 1991). These 

spaces are called street canyons, where the height of buildings and resulting size of street 

canyons impact atmospheric processes like wind flow regimes and wind speeds (Kastner-Klein 

et al., 2004; Xie et al., 2005). Hydrologic processes are altered as percent cover of impervious 

surface increases (McMahon et al., 2003), where total runoff is drastically increased, infiltration 

is decreased (Hollis, 1988; McMahon et al., 2003; J. D. Miller et al., 2014), and precipitation 

frequency and intensity are increased (Changnon et al., 1971; Diem, 2007; J. Liu & Niyogi, 

2019). While the main driver of altered hydrology is percent imperviousness, urban lands also 

introduce new methods of water movement like anthropogenic-induced inter-basin transfers, 

pipe systems leaking into groundwater supplies, and increased water inputs by 

residential/commercial irrigation (Bhaskar, Beesley, et al., 2016; Bhaskar, Hogan, et al., 2016; 

Hopkins et al., 2015; Kaushal & Belt, 2012; Kokkonen et al., 2018).  

Heterogeneous land cover coupled with additional water inputs, reservoirs, and outputs can 

complicate quantifying components of an urban water budget, especially evapotranspiration. 

Actual evapotranspiration, or AET, is defined as the combination of evaporative transfer of water 

from open water and transpiration through plant stomata as vapor (Thornthwaite, 1948), where 
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about 97% of terrestrial AET is from land surfaces and the remaining 3% is from open water 

(Dingman, 2002). This is a paramount hydrologic process in most watersheds, accounting for as 

much as 65% of precipitation that falls across global landmasses (Healy et al., 2007). Potential 

ET, PET, can be conceptualized as a reference quantity of water transfer most used for 

estimating agricultural crop water demand that is representative of the ET magnitude when water 

in the environment is not limited (Eagleman, 1967; Thornthwaite, 1948). Total AET is positively 

correlated with temperature, net solar radiation, wind speed, but negatively correlated with 

relative humidity (Y. Fang et al., 2016a; Hamilton et al., 2018; Hao et al., 2018; Hogan et al., 

2020; Thompson et al., 2011; Williams et al., 2012). In humid regions, AET is thought to 

decrease in urban areas due to less vegetative cover and decreased soil moisture (Bhaskar & 

Welty, 2012; Fang et al., 2020; Peters et al., 2011); however, in some suburban areas in summer 

dry climates, AET is observed to increase and create an “oasis” effect because of larger lot sizes, 

more automated irrigation systems, and better-maintained lawns and gardens (Kokkonen et al., 

2018; Oke, 1979). Urban irrigation also leads to seasonal patterns of higher AET in the spring 

and summer months (Grimmond & Oke, 1986; Kokkonen et al., 2018), and can even surpass 

AET rates of local forested regions (Claessens et al., 2006). Decreased AET in urban areas can 

also lead to an effect called the urban dry island (UDI), where urbanization is related to greater 

vapor pressure deficits and lower overall relative humidity when compared to nearby rural areas, 

particularly in humid regions (Hao et al., 2018). 

Urban areas alter many meteorological processes that influence AET rates and magnitudes. 

While there can be distinct temperature variability in proximate areas because of heterogeneous 

land cover, on average cities can be 1-3ᵒC warmer than their rural counterparts, and as much as 

12ᵒC difference has been observed in some locations (Oke, 1981). This is called the urban heat 
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island (UHI), and Oke (1981) found that the magnitude of temperature increase is proportional to 

city size. Percent of impervious cover accounts for most of the land surface temperature 

variation, which indicates that percent impervious cover can be a good indicator of the urban 

heat island effect (F. Yuan & Bauer, 2007). Urbanized areas also display lower albedo, or the 

fraction of radiative energy reflected from the land surface, as a result of decreased vegetative 

cover and increased impervious cover, leading to higher surface temperatures that radiate into the 

atmosphere and further increase air temperatures (Trlica et al., 2017). Urban building density 

also affects the amount of solar radiation certain areas receive because of structural shading 

(Hwang et al., 2011), impacting the growth of vegetation and ecosystem water use.  

Based on the reviewed body of literature, AET in urban areas generally remains a 

complicated and challenging process to quantify for many reasons. Accurate estimates of urban 

AET are dependent on scale of analysis (Aminzadeh & Or, 2017; Famiglietti & Wood, 1995) 

Famiglietti & Wood (1995) showed how representative areas contributing to AET with in a 

catchment vary throughout the day and that dominant processes controlling AET vary with scale 

of analysis. The scale of analysis and degree of heterogeneity also effect the atmospheric 

dynamics of the convective boundary layer, altering spatial AET patterns (Aminzadeh & Or, 

2017). Accuracy of AET estimates also depended on methods used (Fisher et al., 2011; Gao et 

al., 2020; Zhang et al., 2001). Commonly used AET models such as the Thornthwaite approach, 

Priestley–Taylor approach, and the Penman–Monteith can differ by as much as 7%-30% from 

local eddy covariance towers (Fisher et al., 2011). Additionally, it is difficult to adequately 

quantify competing processes that individually have different effects on overall AET rates and 

magnitude. One account indicated that climate change increased AET by 29% due to higher 

temperatures, an increase in precipitation, and a decrease in relative humidity, whereas land 
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cover change decreased AET by 50 % due to conversion of vegetated cover to urban 

developments (Fang et al., 2020), leading to an overall decrease in AET over the study period. 

Finally, there still currently seems to be no consensus in scientific literature as to which methods 

are preferred in estimating urban AET because studies tend to use the method that corresponds to 

the data available (Fisher et al., 2011). 

Historically, many methods to estimate AET have been documented. The most accurate way 

to directly measure AET remains to be through eddy covariance towers (Scott, 2010). This 

approach uses sensors placed on towers of various heights to measure the turbulent exchange of 

carbon dioxide along with latent and sensible heat fluxes in the atmosphere (Baldocchi et al., 

2000, 2001). Direct AET measurements using traditional towers are expensive and in turn limits 

the utility of this method (Hill et al., 2017). It can be also be challenging to interpret 

measurements in regions where the tower footprint includes heterogeneous land cover types, and 

until recently, determining the actual footprint of a tower has been difficult (Barcza et al., 2009; 

Göckede et al., 2004). The most common method to estimate AET is through a water balance 

approach in watersheds with minimal anthropogenic modification, where AET is interpreted as a 

residual with all other terms quantified in a closed system. This is a theoretically simple equation 

that incorporates inflows and outflows of a watershed, but the resulting estimates of AET depend 

on the accuracy of the other quantified terms and should not be used when the goal is to achieve 

water balance closure (Brutsaert, 2005). The accuracy of this method increases as the length of 

temporal resolution increases due to decreasing error in changes in storage (Dingman, 2002). 

When eddy covariance towers and water balance approaches are not possible, the most common 

way to model AET is Penman-Monteith approach because of its ability to represent physically-

based surface characteristics (Allen et al., 1998; Diouf et al., 2016). This equation’s form was 
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created as an adaptation to Penman’s equation for evaporation to include vegetation 

transpiration, and it requires meteorological data of monthly, daily, or hourly temperature, 

humidity, solar radiation, and wind speed (Monteith, 1965). There is significant precedent of 

implementing the Penman-Monteith equation by dividing heterogeneous landcovers into 

homogeneous sub-areas that can be aggregated to areal AET totals (Choi et al., 2012; Grimmond 

& Oke, 1991; Hao et al., 2018; Jia et al., 2001; Kokkonen et al., 2018; Raoufi & Beighley, 2017; 

Stewart, 1989; J. Wang et al., 2008). 

The long-term interannual variability of AET in increasingly urban areas remains unclear. 

Literature shows that interannual patterns of AET are relatively unchanged from year to year in 

vegetated regions as a result of little land cover change, deep water storage, vegetation roots’ 

ability to access water without precipitation events (B. Fang et al., 2020; Fatichi & Ivanov, 2014; 

Hamilton et al., 2018; Oishi et al., 2010). In one recent long-term study, a decreasing AET trend 

of an average of 1.35 mm/year is observed because of land cover change in urban and suburban 

areas; however, this decrease is somewhat offset by residential irrigation (Kokkonen et al., 

2018). While it is known that annual AET is generally reduced in urban areas due to less 

vegetative cover and lower soil moisture (Bhaskar & Welty, 2012; B. Fang et al., 2020; Peters et 

al., 2011), still, little is understood about the interannual variability of urban AET.  

Even considering the known challenges in estimating urban AET, it is now more important 

than ever to understand urban AET patterns and rectify some uncertainties in AET estimation 

methods. As global urban populations increase and urban temperatures continue to increase, it is 

also important to understand the implications of urban sprawl. Much like humans sweat to cool 

their bodies, the land surface can be cooled through AET of water vapor from vegetation into the 

atmosphere (C. Tan et al., 2015). This fact suggests there may be increasing utility in using AET 
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as a tool for reducing urban terrestrial and air temperatures; however, knowledge must be 

acquired about baseline urban AET trends. Reducing urban temperatures can help fight heat 

related illnesses and, in extreme cases, even death (J. Tan et al., 2010). Illuminating the 

interannual variability, or invariability, of urban AET and how it shifts with respect to land cover 

change will aid water resource managers in predicting future watershed water demands and give 

city planners some supporting evidence for the need of green infrastructure development. The 

objectives of this study are as follows: 1) conduct a detailed land cover analysis to analyze the 

composition of developed NLCD classes, 2) quantify long-term AET estimates using the 

Penman-Monteith approach and analyze the interannual variability of AET with respect to 

changes in land cover and atmospheric conditions, and 3) compare Penman-Monteith estimates 

to estimates of actual evapotranspiration from both statistical models and publicly-available 

gridded datasets. 

1.1 Study Area  

This study takes place in the South River watershed, SRW, which is located in the Atlanta, 

Georgia USA metropolitan area and is an ideal study area for an analysis of the interannual 

variability of AET in an urban watershed (Figure 1). The study area encompasses parts of five 

different counties in Georgia: Fulton County, DeKalb County, Clayton County, Henry County, 

and Rockdale County. The SRW is located entirely within the Piedmont physiographical region 

that consists of underlying structures of crystalline metamorphic rocks, like gneiss and schist, 

and igneous rocks, like granite (J. Miller, 1990). The Piedmont region receives between 1143- 

1524 mm of annual precipitation that is evenly distributed throughout the year and experiences 

on average 230 freeze-free days (NRCS Georgia, 2020). The humid subtropical climate supports 

many types of vegetation with increasing growing season lengths and can be observed in many 
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locales across the globe (Belda et al., 2014; Xia et al., 2013), making the results of this study 

useful for urban and urbanizing areas in many countries. Additionally, the Georgia 

Environmental Monitoring Network (GAEMN) operates a vast system of dispersed, long-term 

weather stations across the state that measure data at sub-daily timescales, allowing for 

continuous daily calculations since the beginning of the study period. The study period, January 

2001- December 2020, was chosen because detailed land cover data are available throughout and 

twenty years of continuous AET estimates can help predict hydrologic conditions for the next 

two critical decades in climate change progression. 
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 Figure 1: (a) The state of Georgia, United States, light gray, with county boundaries, dark gray, 

and South River watershed boundary, pink; (b) South River watershed with 14 NLCD land cover 

classes; (c) South River watershed with reference watersheds, Falling Creek and Fausett Creek, 

and each of their respective GAEMN weather stations. 
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2 METHODS 

2.1 Synopsis of Meteorological Trends 

To make interpreting AET results easier, meteorological conditions should be analyzed for 

any possible trends since 2001. This step is imperative to understanding AET, as AET is driven 

by a multitude of meteorological inputs. The most pertinent variables to analyze included 

temperature, precipitation, incoming solar radiation, and vapor pressure deficit. Trends in 

meteorological trends over 2001-2020 were assessed using Kendall-Tau correlation tests (α= 

0.05; one-tailed). Changes in temperature alter net radiation, vapor pressure, and latent heat of 

vaporization. Incoming solar radiation alters the net radiation observed and surface resistance. 

Precipitation alters the runoff and storage in each surface type affecting AET, especially in 

impervious land cover classes. Finally, the vapor pressure deficit is a direct variable in the PM 

equation. The specifics of all PM variables are described in section 2.3. In all, understanding the 

climatic conditions and trends within the SRW can illuminate reasons for any AET trends that 

might be observed. 

2.2 Land Cover Analysis 

Land-cover data sets created in 2019 were obtained from USGS National Land Cover 

Database (NLCD) to complete a more detailed analysis of land-cover in classes that may not be 

as specific as needed, such as “developed open space”, “low-intensity developed”, “medium-

intensity developed”, and “high-intensity developed”. Land-cover classes such as these are not 

descriptive enough to accurately quantify AET, as formulas require specific land-cover 

parameter details, like storage capacity, feature heights, surface albedo, and many more, as 

depicted in Table 2. Each land cover class in the South River Watershed study area was extracted 

in ESRI ArcMap and converted to a polygon. Following layer extraction, 30 random points were 
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created in each developed land cover class (Figure 2), and point data sets were exported as a 

‘.kml’ file to use in Google Earth Pro. A 10 m fishnet was imported as well to aid land cover 

analysis. Using the fishnet, each point location was visited in Google Earth Pro and served as the 

center of a 3x3 grid area where the actual land cover was recorded, meaning each developed land 

cover class was analyzed using 270 total points. We used this fishnet method and number of 

points analyzed to address the increasingly heterogeneous nature of developed land cover. 

Alternatively, 50 random points were created in undeveloped land cover classes at which only 

the land cover at the direct point was recorded (Figure 2). A total of 50 points are used to analyze 

the composition of each undeveloped class. In each land cover class, the number of each land 

cover code was counted to get percentages of cover which was then multiplied by the area of the 

original land cover class area. Forest cover in all classes, except for forest cover in the deciduous 

forest class and the conifer forest class, were assumed to be “mixed forest”. Forest cover in the 

deciduous and conifer forest classes were assumed to be the forest type of their respective 

classes. An example of this procedure is shown in Figure 3 and Table 1. 

The USGS National Land Cover Database (NLCD) could only provide land cover data 

from the years 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019. The Kendall-Theil robust 

line, the median of the slopes between all combinations of two points of actual area of each class 

in the data (Helsel & Hirsch, 2002), was used to estimate annual values for all 20 years. After 

recording and consolidating land use and land cover data, the resulting landcover classes are 

open water, impervious areas, grassland, shrubland, forest, wetland/marsh. Interpolation and 

extrapolation of eight years of landcover information from the National Land Cover Database 

(NLCD) with an examination of 2019 data in conjunction with Google Earth imagery enabled a 

detailed landcover database to be constructed over 2001-2020.  
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Figure 2: Locations and spatial distribution of the spatial sampling sites within each 

NLCD land cover class in the SRW. 

 

 
Figure 3: Example of landcover perception in ArcGIS using the default base map (left) 

and Google Earth Pro (right) using point data sets and a 10 m fishnet (red grid lines). 

This is ‘point 1’ of USGS NLCD land cover class 21, developed open space. 

 

Table 1: Example of ‘point 1’ landcover 3x3 grid using Google Earth Pro and recorded 

in Microsoft Word tables, where 1= forest and 2= paved roads (later combined with 

others and called ‘impervious’). 

 
 

2.3 Penman-Monteith Method 

AET will be estimated using the Penman-Monteith (PM) approach. The updated PM 

equation for urban areas requires data of net solar radiation, anthropogenic heat flux, storage heat 

flux, vapor pressure deficit, aerodynamic resistance, surface resistance, the specific heat of air, 
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and the psychometric constant (Grimmond & Oke, 1991). This equation is a combination model, 

incorporating atmospheric and surface-specific information, and is recommended by the Food 

and Agriculture Organization (FAO) of the United Nations. This approach is useful because it 

incorporates equations and parameters to explicitly represent how different surface types 

influence net radiation, aerodynamic resistance, and surface resistance terms. The PM equation 

addresses that AET is not only affected by atmospheric conditions, like net solar radiation and 

vapor-pressure deficit, but also by the unique properties of surfaces and biological processes of 

plants in the aerodynamic and surface resistance parameters. The PM equation is chosen for use 

in this study because there is increased confidence in final estimates due to the incorporation all 

the environmental parameters that impact AET processes across any land cover type like 

temperature, solar radiation, humidity, and wind speed. Additionally, because the PM equation 

returns chronologically continuous AET estimates and it has been shown to agree with some 

water balance estimates (Mao & Wang, 2017), we can use this method to analyze the interannual 

variability of AET.  Regression models described in later sections only produce long-term 

estimates.  

The PM equation is only one stage of the procedure needed to create AET estimates in 

urban areas. Because the amount of AET varies considerably with surface type, a detailed land 

cover analysis is conducted to determine the actual land cover of the South River watershed, as 

detailed in section 2.2. The PM equation returns an estimate for each land cover class that 

describes the AET if the whole study area was that respective land cover, so the land cover areas 

determined by the analysis procedures are framed as proportions of total areas and multiplied by 

the respective AET estimate to scale AET accordingly. After AET estimates are scaled to the 

proportion of land cover in the study area, a running canopy storage model is implemented to 
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address the water availability in each land cover type. Accounting for surface water availability 

is a procedure that is impactful only on the impervious land cover AET because accounting for 

runoff in urban areas is imperative to getting the most accurate AET estimates. As the PM 

equation does not require any water input data, the estimates are technically a potential ET 

estimate. By using a procedure in Grimmond and Oke (1991), the study can accurately determine 

if the water available in each land cover type would support the AET modeled by the PM 

equation, and therefore adjusted accordingly if the water available is not sufficient to support 

AET. The surface water availability model is detailed in section 2.4. The interannual variability 

of PM AET is assessed over 2001-2020 using Kendall-Tau correlation tests (α = 0.05; one-

tailed). 

Data required for the Penman-Monteith equation were obtained from multiple sources. 

Daily meteorological data from January 1, 2001 to December 31, 2020 were obtained from 

eleven weather stations within GA Environmental Monitoring Network, GAEMN. Regarding the 

SRW, the five stations used include Covington, Jonesboro, Duluth, Dunwoody, and Watkinsville 

(UGA). Reference watersheds’ stations include Byron, Griffin, and Eatonton for Falling Creek 

watershed, and Calhoun, Blairsville, and Gainesville for Fausett Creek watershed. Data acquired 

for the Penman-Monteith method included temperature, total incoming solar radiation, wind 

speed, relative humidity, and atmospheric pressure. For each meteorologic variable, the average 

of the available stations was used in most calculations. The Covington station was not active 

until mid-2002, and some stations had minimal missing data throughout the study period, 

resulting in an average of only four stations in some intervals. Elevation and latitude were 

obtained from Google Earth Pro. Land cover specific constants and pertinent submodels were 

obtained from a multitude of published literature sources and are described hereafter when they 
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are required. Given that the PM model is the most physically intensive AET model, and all 

models show some limitations, the estimation of urban evapotranspiration is solved as seen in 

Grimmond and Oke (1991):  

𝑄𝐸 =  
𝑠(𝑄∗+𝑄𝐹−∆𝑄𝑠)+(𝐶𝑎𝑉)/𝑟𝑎

𝑠+𝛾(1+
𝑟𝑠
𝑟𝑎

 )
                                                                   (1)                  

where s is the slope of the saturation vapor pressure versus temperature curve (Pa/ᵒC), Rn is net 

radiation (W/m2), QF is the anthropogenic heat flux (W/m2), ΔQs is storage heat flux (W/m2), Ca 

is heat capacity of air (J/m3ᵒC), V is the vapor pressure deficit (Pa), γ is the psychometric 

constant (Pa/ᵒC), and ra and rs are aerodynamic resistance (s/m) and surface resistance (s/m), 

respectively. The output of this equation is given as a quantity of energy, not a depth of AET that 

the study requires. A complete PM AET procedure with conversion procedure using dimensional 

analysis with the latent heat of vaporization is shown in Figure 4, and a table of all data required 

for the whole process can be found in Table 6. 

Many of the parameters in the PM equation are land cover specific, meaning that each 

land cover class will have a differing value in their respective calculations. Net radiation is 

landcover specific because of the variability in surface albedo. Each surface type (i.e.., forest 

versus impervious) will reflect and absorb solar radiation differently, allowing for variation in 

how much energy is released back into the atmosphere. The dynamic net radiation variables 

along with landcover specific constants in the objective hysteresis model used from Grimmond 

and Oke (1999) also result in land cover specific storage heat flux. As storage heat flux is a 

measure of how surfaces retain energy, it is intuitive to understand that different surfaces will 

mediate heat transfer differently. Additionally, aerodynamic resistance will change based on 

landcover because of the variability in feature height in each class. Surface resistance will be 

landcover specific because of the dependence on the net radiation in the chosen model and 



Carlton (2022)                                                                                                                                                       25 

possibly from irrigation on certain landcover classes, as surface resistance can be impacted by 

antecedent surface wetness conditions. Finally, anthropogenic heat flux will be landcover 

specific because of the differences in population densities in each class, but we assume in this 

study that only developed land cover classes exhibit anthropogenic heat fluxes.  

Finally, a sensitivity analysis was conducted to assess how error in input parameters 

propagates through AET calculation within four different land covers: grass, mixed forest, low-

intensity developed, and high-intensity developed. The variables temperature, albedo, feature 

height, incoming solar radiation, wind speed, and relative humidity were assessed by 

independently increasing each by 10% or decreasing each by 10%.  

Table 2: Coefficients and land-cover specific variables for the Penman-Monteith model and 

subsequent submodels compiled from a variety of sources. The dashes are instances where the 

data is not needed or applicable to the specified land cover. 

 
a Stathopoulou et al. (2007) 
b Brest (1987) 
c Barnes and Roy (2010) 

 

Area (km
2
) Population

Population 

Density 

(P/km
2
) Albedo a1 a2 (h) a3 (W/m)

Mean 

height of 

buildings 

(m)

Mean height 

of 

vegetation 

(m)

Impervious 113.36 468,481 4132.68

DOS 8.43 — 475 0.16
a

0.7 0.33 -38 8.69 —

LID 42.49 — 1413 0.18
a

0.7 0.33 -38 8.90 —

MID 35.10 — 2777 0.12
a

0.7 0.33 -38 11.34 —

HID 24.73 — 4118 0.2
a

0.7 0.33 -38 10.30 —

Forest 210.65

Deciduous 48.34 0 0 0.136
b

0.11 0.11 -12.3 — 24.04

Coniferous 43.08 0 0 0.123
b

0.11 0.11 -12.3 — 27.71

Mixed 119.22 0 0 0.1295
b

0.11 0.11 -12.3 — 23.15

Grassland 135.78 0 0 0.144
b

0.34 0.31 -31 — 0.12

Short Vegetation 1.86 0 0 0.156
c

0.34 0.31 -31 — 3.99

Wetland 5.71 0 0 0.124
b

0.11 0.11 -12.3 — 8.84

Open water 6.29 0 0 0.0238
b

0.5 0.21 -39.1 — 0

Storage Heat Flux Coefficients
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2.3.1 s, Slope of Vapor Pressure vs Temperature Curve  

The slope of the vapor pressure-temperature curve is a variable that shows how saturation 

vapor pressure of air increases exponentially with increases in temperature. As air temperature 

rises, the water molecule storage capacity rises, creating higher saturation vapor pressures. The 

slope of the curve helps describe the process of vaporization, therefor an important parameter to 

include in the Penman-Monteith equation. It is dependent of surface temperature but can be 

closely approximated by using air temperature (Raupach, 2001). The equation used is the 

derivative of the equation used to quantify vapor pressure and is found as: 

𝑠 =
2508.3

(𝑇+237.3)2 ∗ 𝑒𝑥𝑝
(17.3∗𝑇)

𝑇+237.3)
                                                                            (2) 

where T is temperature (ᵒC). This temperature data was obtained from the average of the five 

weather stations around the South River watershed. Resulting units are in kPa/K. Conversions 

may be required to input into the Penman-Monteith equation.  

2.3.2 Rn, Net Radiation 

Solar radiation is one of the main factors influencing the rate and magnitude of 

evapotranspiration. The sun’s energy physically heats up the atmosphere which transmits energy 

to plants, increasing the transpiration rate from vegetation. The intensity of this energy is 

dependent upon the location, time of year, and degree of cloudiness. In the Penman-Monteith 

approach, the larger term (Rn + QF – ΔQs) represents the total available energy for AET (Mitchell 

et al., 2008), so each quantity is important to include in the model’s calculations. Rn stands for 

net radiation, which is defined as the combination of absorption and reflection of both short- and 

long-wave radiation. It can be quantified as the following equation: 

 𝑅𝑛 = (1 − 𝛼)𝑅𝑠𝑖 −  𝐿 ↑  +𝐿 ↓                                                                      (3) 
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where α is the land surface albedo, Rsi is the incoming solar radiation (W/m2), L↑ is outgoing 

longwave radiation (W/m2), and L↓ is incoming longwave radiation (W/m2). Because only total 

incoming solar radiation is provided by the GAEMN, An et al. (2017) gives a procedure for 

calculating daily net radiation from a few parameters. The equation is as follows:  

𝑅𝑛 = (1 − 𝛼)𝑅𝑠𝑖 − [𝑎𝑐 (
𝑅𝑠𝑖

𝑅𝑠𝑜
) + 𝑏𝑐] (𝑎1 + 𝑏1𝑒𝑑

0.5)𝜎 (
𝑇𝑎𝑣𝑔

4

2
)                        (4) 

 

where α is land surface albedo, Rsi is incoming solar radiation (MJ/m2), ac and bc are cloud 

factors, a1 and b1 are emissivity factors, Rso is clear sky solar radiation (MJ/m2), ed is saturation 

vapor pressure (kPa), σ is the Stefan-Boltzmann constant (5.67 x 10-8 W/m2K4), and Tavg is the 

average air temperature in K. Albedo data of a variety of surfaces were obtained from 

Stathopoulou et al. (2007) for impervious cover, Barnes and Roy (2010) for grassland, wetland, 

short vegetation, open water, and the three types of forest classes. The cloud factor coefficients 

and emissivity factors were duplicated from the An et al. (2017) paper. This model output is 

returned in MJ/m2, which must be converted to the proper units of W/m2 to be used in the PM 

equation, the surface heat storage submodel, and the surface resistance submodel. Overall, this 

net radiation term addresses exchanges of solar energy, not accounting for the anthropogenic 

heat additions in urban areas. Therefore, the anthropogenic heat flux must also be calculated and 

incorporated as shown in the PM equation and subsequent subsections.  

The saturation vapor pressure, ed, can be calculated using:  

 

𝑒𝑑 =  0.611exp (
17.27𝑇

𝑇+237.3
)                                                                              (5) 

 

To quantify Rso we use the formula:  
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𝑅𝑠𝑜 = (0.75 + 0.0002𝐸𝐿)(𝑅𝑠𝑎)                                                                   (6) 

 

where EL is elevation of watershed centroid (m) obtained from Google Earth Pro, and Rsa is 

given by:  

 

𝑅𝑠𝑎 = [
24(60)

𝜋
] 𝐺𝑠𝑐𝑑𝑟(𝑐𝑜𝑠𝜙𝑐𝑜𝑠𝛿𝑠𝑖𝑛𝜔𝑠 +  𝜔𝑠𝑠𝑖𝑛𝜙𝑠𝑖𝑛𝛿)                               (7)                                                                     

 

𝑑𝑟 = 1 + 0.033cos (
2𝜋𝐽

365
)                                                                               (8) 

 

𝛿 = 0.4101cos [
2𝜋(𝐽−172)

365
]                                                                             (9) 

 

𝜔𝑠 = cos−1(−𝑡𝑎𝑛𝜙𝑡𝑎𝑛𝛿)                                                                            (10) 

 

where Gsc is the solar constant (0.08202 MJ/m2/min), dr is the relative distance between the Earth 

and the Sun (m), 𝜙 is the latitude (radians), 𝛿 is the solar declination (radians), 𝜔s is the solar 

time angle (radians), and J is the Julian day, or numbered day between 1 and 365 (366 for leap 

years) indicating the day of year.  

2.3.3 QF, Anthropogenic Heat Flux 

 This term is a measure of the contribution of anthropogenic activities to total heat flux in 

urban areas. It is a quantity that represents the heat released by building air conditioning, vehicle 

transportation, and human metabolism. A study by Sailor et al. (2015) was performed to create a 

national database of anthropogenic heat flux. Regression models were also created to estimate 

the anthropogenic heat flux in any city based on two factors. The equations were created by 

quantifying anthropogenic heat flux in 61 cities across the continuous United States, and through 
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multiple linear regression, heating degree days and population density were revealed to be the 

dominant factors influencing this term. The authors provide the seasonal regression equations 

with seasonal coefficients to estimate a maximum anthropogenic heat flux based on the heating 

degree days in a single month, meaning the daily maximums calculated only apply to that 

specific month. A non-dimensional hourly profile is included that allows for hourly estimates 

that can be summed to calculate daily anthropogenic heat flux and is shown in Table 3. In this 

study, the database created by Sailor et al. (2015) will be used for final monthly estimates of 

anthropogenic heat flux. The regression equations are as follows: 

 𝑄𝐹𝑚𝑎𝑥(𝑠𝑢𝑚𝑚𝑒𝑟) =  𝛽0 + 𝑃𝑜𝑝𝐷𝑒𝑛𝑠 ∗ 𝛽1                                                           (11) 

 𝑄𝐹𝑚𝑎𝑥(𝑤𝑖𝑛𝑡𝑒𝑟, 𝑠𝑝𝑟𝑖𝑛𝑔, 𝑎𝑢𝑡𝑢𝑚𝑛) =  𝛽0 + 𝑃𝑜𝑝𝐷𝑒𝑛𝑠 ∗ 𝛽1 + 𝐻𝐷𝐷 ∗ 𝛽2           (12) 

where β0, β1, and β2 are coefficients for regression models found in Table 4, PopDens is the 

population density of area of interest in persons per square kilometer within the watershed, and 

HDD is monthly heating degree days. Because the study area has less than 4000 ᵒC in a year of 

heating degree days, the South River watershed is considered to have a warm winter climate. The 

formula for HDD is found in Sailor and Vasireddy (2006): 

 𝐻𝐷𝐷 =  𝛾1(𝑇𝑏 − 𝑇)               𝛾1 = 1.0   𝑖𝑓 (𝑇𝑏 − 𝑇) ≥ 0,                                    (13) 

     0.0  𝑖𝑓 (𝑇𝑏 − 𝑇) < 0 

where Tb is the standard base temperature of 18.3 ᵒC (65 ᵒF) and T is air temperature. The unit for 

HDD is ᵒC per unit time, where temperatures can be analyzed at hourly, daily, monthly, or 

annual time scales. Calculations here require units of ᵒC/month, so daily HDD are calculated and 

aggregated for each month of the year because only daily temperature data were available. On a 

plot of temperature vs. time, the area between the base temperature line and the actual 
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temperature represents demand for air conditioning. The area below the base temperature line is 

referred to as the heating degree days (HDD) as it is indicative of demand for heating. 

Conversely, if the air temperatures are above the base temperature line, these are considered 

cooling degree days (CDD). With this fact known, as well as only requiring HDD in the 

regression equations, if the temperature is above the base temperature, the day’s HDD is 

multiplied by a unitless term, y1, of zero and not accounted for in the total monthly HDD. If the 

temperature is below the base temperature, HDD is multiplied by a y1 of one to keep the HDD in 

the aggregated monthly total. Although there is a method presented to model the anthropogenic 

heat flux, the study uses the database of monthly values created by Sailor et al. (2015).  

 

Table 3: Hourly non-dimensional heating profiles used in this study obtained from Sailor et al. 

(2015). 
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Table 4: Coefficients for seasonal anthropogenic heat flux regression models from Sailor et al. 

(2015) with corresponding root mean squared error (RMSE) and coefficient of determination 

(R2). 

Season β0  β1  β2  RMSE (W/m2) R2 

Winter -6.638 0.010 0.009 3.94 0.94 

Spring -0.160 0.007 0.007 2.84 0.95 

Summer 2.554 0.000 0.007 2.89 0.94 

Autumn 0.618 0.006 0.007 2.70 0.95 

 

2.3.4 ΔQs, Storage Heat Flux 

This term describes how land surfaces retain radiant energy from day to day. As AET is 

largely dependent on the magnitude of solar radiation (Monteith, 1965), it is important to address 

antecedent energetic conditions. Storage heat flux is estimated using the objective hysteresis 

model formulated by Grimmond and Oke (1999) that incorporates the delayed nature of the 

storage heat flux and properties of specific land surfaces:  

Δ𝑄𝑠 =  𝑎1𝑅𝑛 + 𝑎2
𝜕𝑅𝑛

𝜕𝑡
+ 𝑎3                                                                                (14) 

𝜕𝑅𝑛

𝜕𝑡
= 0.5(𝑅𝑛𝑡+1

− 𝑅𝑛𝑡−1
)                                                                                   (15) 

where a1, a2, and a3 are constant terms indicated by experimental study and Rn is net radiation. 

The a1 term indicated overall strength of dependance of the storage flux on net radiation. It is 

known to increase with impervious landcover and decrease with vegetative cover. The a2 term 

indicates the degree and direction of the phase relations between Rn and ΔQs. The a3 term is an 

intercept that indicated the relative timing when Rn and ΔQs turn negative. Terms a1, a2, and a3 

chosen for this study are as indicated by Grimmond and Oke (2002) based on landcover. The 

table for these values is included as Table 5. 
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Table 5: Coefficients used in OHM model found in Grimmond and Oke (2002). 

  

 

2.3.5 Ca, Specific Heat of Air 

The specific heat of air represents the amount of energy required to increase the air 

temperature by one dree at a constant pressure and depends on the humidity of the air. The 

specific heat of air is often assumed to be 1.00 x 10-3 MJ/kgK (Dingman, 2002). A more specific 

value of 1006 J/m3/ᵒC is also appropriate and is used in this study. 

2.3.6 V, Vapor Pressure Deficit 

The vapor pressure deficit is the difference between the saturation vapor pressure and the 

vapor pressure of air, which can be an important driver of atmospheric water demand for plants, 

thus effecting AET rates. How AET responds to the vapor pressure deficit depends on climate, 

photosynthesis strategy, and plant type (Massmann et al., 2019). The formula for vapor pressure 

deficit is as follows: 
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𝑉 = 𝑒∗ − 𝑒                                                                                                   (16) 

𝑒∗ =  0.611exp (
17.27𝑇

𝑇+237.3
)                                                                             (17) 

𝑒 =  
𝑅𝐻

100
∗ 𝑒∗                                                                                                 (18) 

where RH is relative humidity as a percentage and T is temperature (ᵒC) obtained from the 

GAEMN.  

2.3.7 Ra, Aerodynamic Resistance 

The aerodynamic resistance term quantifies transfer of heat and water vapor from the 

evaporating surface into the air above canopy. This term is a function of wind speed, 

atmospheric stability, and surface roughness; and the higher the aerodynamic resistance of a 

given feature, the lower final AET estimates will be (Penman & Schofield, 1951). The 

aerodynamic resistance of a surface is inversely proportional to atmospheric wind speed and 

shows considerable diurnal variation (S. Liu et al., 2006). The daily values obtained here will be 

a possible source of error in AET estimates because the diurnal patterns were not addressed. 

Grimmond and Oke (1999) state that the urbanized PM equation is not sensitive to the method of 

calculating ra, therefore, we estimate the term by using the equation found in Shuttleworth 

(2007): 

 𝑟𝑎 =  
ln[

𝑧𝑚−𝑑

𝑧𝑜𝑚
]ln [

𝑧𝑚−𝑑

𝑧𝑜𝑚/10
]

𝑘2𝑢𝑧
                                                                                    (19) 

where zm is the height of wind and humidity measurements [m], d is the zero plane displacement 

height [m], zom is the roughness length governing momentum transfer [m], k is von Karman's 

constant, 0.41, and uz is the wind speed at height z [m/s]. This equation is limited to neutral 

conditions, which is a limitation of this equation. Because the heights of the roughness features 
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are much taller in urban areas, wind speed originally taken at roughly 3 meters above the ground 

must be extrapolated to roughly 30 meters above the ground using the vertical wind profile 

power law in Spera and Richards (1979):  

 𝑢 = 𝑢𝑟 (
𝑧

𝑧𝑟
)

𝛼

                                                                                                 (20) 

where u is the extrapolated wind speed, ur is the original wind speed, z is the height at which the 

new windspeed is calculated for, zr is the height of original wind measurement, and α is 

coefficient that varies depending on stability of the atmosphere. The α coefficient is assumed to 

be 0.143 over land surfaces and 0.11 over open water in neutral conditions, which is used in this 

study. 

         Using the Rule of Thumb method described by Grimmond and Oke (1999), the variables d 

and zom can be estimated using the following equations:  

 𝑑 = 0.5𝑧𝐻                                                                                                      (21) 

 𝑧𝑜𝑚 = 0.1𝑧𝐻                                                                                                  (22) 

where zH is the average height of features in the landcover class.  

2.3.8 rs, Surface Resistance 

The surface resistance describes the resistance of vapor flow exiting through stomata on a 

leaf body, or more generally the resistance to facilitate water vapor transfer into the air from any 

surface. Environmental factors affecting surface resistance includes solar radiation, absolute-

humidity deficit, air temperature, soil-moisture deficit, and leaf area index of vegetation, and as 

surface resistance increases, total AET decreases due stresses on the plant leaf in any number of 

the controlling environmental factors (Boegh et al., 2002; Jarvi, 1976; S. Irmak & D. Mutiibwa, 
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2009; Stewart, 1988). Sumner and Jacobs (2005) conducted a multiple linear regression analysis 

to determine which environmental variables impacted surface resistance the most and found that 

net radiation and vapor pressure deficits are most responsible for variability. The procedure is as 

follows: 

 𝑔𝑚𝑎𝑥 = 5.39𝑥10−5𝑅𝑛 + 0.0033                                                                  (23) 

 𝑓(𝐷) =  −0.166 ln(𝐷) + 0.235                                                                   (24) 

 𝑔𝑠 =
𝑔𝑚𝑎𝑥

𝑓(𝐷)
                                                                                                       (25) 

 𝑟𝑠 =
1

𝑔𝑠
                                                                                                            (26) 

where gmax is the maximum surface conductance (m/s), Rn is net radiation (W/m2), D is the vapor 

pressure deficit (kPa), gs is the surface conductance (m/s), and rs is the surface resistance (s/m).  

 The surface resistance is considerably dependent of the wetness of the surface. It has 

been shown that the surface resistance of a wet surface is always zero (Shuttleworth, 1978). A 

proposed surface resistance model to address the transitions between wet, partially wet, and dry 

surfaces is available in Shuttleworth (1978) and used by Grimmond and Oke (1991), but some 

data parameters required, in addition to data to model those parameters, were not available. An 

example of data not available includes frictional velocity. Therefore, we use the regression 

models presented in equations 23-26 to model surface resistance, regardless of surface wetness. 

Mathematically, setting surface resistance to zero increases PM AET estimates because the 

denominator is decreased. The possible underestimation of AET resulting from the surface 

resistance submodel is thought to be offset by canopy storage accounting as detailed in section 

2.4.  
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2.3.9 𝜸, Psychometric Constant 

The psychometric constant is a term that relates the partial pressure of water in the air to the 

air temperature. Since atmospheric pressure, P, depends on altitude, so does the psychometric 

constant. At higher altitudes water can evaporate and boil at lower temperatures, so this term is 

important to include in the Penman-Monteith equation. Contrary to the name, the psychometric 

constant is not actually a constant. It most readily varies with temperature and is given by the 

expression found in Dingman (2002): 

𝛾 =  
𝑐𝑎𝑃

0.622𝜆𝑣
                                                                                                    (27) 

where ca is the specific heat of air, 1.00 x10-3 MJ/kg/K , P is atmospheric pressure in kPa 

obtained from GAEMN, and λv is latent heat of vaporization MJ/kg. Latent heat of vaporization 

is estimated by the following equation: 

𝜆𝑣 = 2.50 − 2.36𝑥10−3 ∗ 𝑇                                                                          (28) 

where T is temperature in ᵒC obtained for the GAEMN. The resulting units of the psychometric 

constant are in kPa/K. Converting this quantity to Pa/K are required for use in this proposed 

Penman-Monteith approach. 
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Figure 4: PM procedure for daily AET estimation. Diagram includes data required for each 

submodel (purple ovals), component processes (yellow rectangles), Penman-Monteith equation 

(blue rectangle), and procedure to convert from latent heat flux to a depth of AET per day using 

the latent heat of vaporization of water (2,454,000 Joules/kilogram) (red rectangle). 

 

Table 6: All data required for the daily AET estimation presented in this study using the PM 

procedure and regression models. Daily averages of meteorological data from respective 

stations were used. 

 

2.4 Accounting for Land Cover Surface Water Availability 

As mentioned in earlier sections, the PM method alone does not address the water 

availability of each land surface type. This fact can lead to overestimations of AET because the 



Carlton (2022)                                                                                                                                                       38 

AET calculated by the PM equation is not constrained by any possibly water-limiting conditions. 

To accurately represent AET in an urbanized watershed, the surface moisture conditions must be 

considered. A general water balance equation is shown in Equation 29 from Grimmond and Oke 

(1991) to assess the current state of water storage in each land cover.  

𝑑𝐶

𝑑𝑡
= (𝑃 + 𝐼) − (𝐷 − 𝐴𝐸𝑇)                                                                    (29) 

where P is precipitation, I is piped water supply (i.e. irrigation), D is drainage, and AET is 

evapotranspiration. A procedure similar to that found in Grimmond and Oke (1991) and Järvi et 

al. (2011) is used to quantify drainage of each land surface type with respect to surface-specific 

parameters, incoming hourly precipitation, seasonal irrigation, and antecedent water storage 

conditions. When the term (D + I) is larger than (P + I), surface storage becomes negative. Since 

negative storage is not possible, negative storage estimates are taken as 0. In vegetated land 

cover classes, it can be assumed that even if the surface storage is 0 mm, the PM AET comes 

from deep water storage and accessed by root systems, leaving vegetated PM AET estimates 

unchanged. This assumption means that the surface water availability model is not applicable in 

vegetated land covers, only impervious cover. In impervious land cover classes, the surface 

water accountability becomes much more important because water that does not infiltrate into 

the ground surface becomes runoff, moving water to other areas. This water transfer removes 

water from impervious land cover classes that would have evaporated and is no longer there. 

Therefore, if the calculated surface storage for impervious classes is lower than the PM AET 

estimate, PM AET estimates are adjusted down to the storage availability to reflect the water-

limiting conditions of impervious land cover. The equation to calculate drainage on unirrigated, 

vegetated areas is as follows: 

𝐷 = 𝐷𝑜exp [(𝑏𝐶) − 1]                                                                         (30) 



Carlton (2022)                                                                                                                                                       39 

where Do is the drainage rate when the water capacity equals storage, b is an empirical 

coefficient, and C is the storage capacity of that hour, calculated by subtracting the previous 

time-step’s drainage from the current precipitation amount. Forest and short vegetation/shrub 

land were grouped together for the water surface availability procedure to create one canopy 

storage equation because there were not specific parameters for shrubland, in addition to being 

vegetated but not irrigated. In impervious and irrigated (grassland) land cover types, an 

alternative equation is used to quantify the drainage: 

  𝐷 = 𝐷𝑜(𝐶𝑡−1)𝑏                                                                                     (31) 

The water storage equations are executed at an hourly time-step. This detail is crucial 

because the empirical coefficients and initial drainage estimates are calibrated at an hourly time 

step in the referenced papers (Grimmond & Oke, 1991; Järvi et al., 2011). Hourly precipitation 

was obtained from a station within the SRW at Hartsfield-Jackson International Airport. Where it 

is required, daily AET estimates produced by the PM AET method are scaled by incoming 

hourly solar radiation. A proportion of hourly incoming solar radiation to total daily radiation 

was used to create a continuous proportional hourly profile for every day. The daily PM AET 

estimates of each land cover type were distributed by multiplying each day PM estimate by 

hourly proportions of solar radiation, allowing for the creation of a continuous hourly AET 

estimates within each land cover. As shown in Grimmond and Oke (1991), Table 7 shows the 

land cover specific parameters required for the canopy storage models. An average of the 

building and pavement values and forest type values were used for developed land covers and 

forest/shrubland land covers, respectively. It is also assumed that all grass cover in the SRW is 

irrigated since detailed spatial and temporal irrigation information was not available. 
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Table 7: Surface water availability parameters specified by land cover as depicted in Grimmond 

and Oke (1991). 

 
 

Municipal water usage was obtained through open records requests from the Scott 

Candler Water Treatment Facility. Data was acquired as daily estimates of water pumped for 

municipal use, and a ‘baseline’ use was calculated by taking the average of daily uses during the 

winter months for every year (December 1 through March 31). This ‘baseline’ quantity is 

thought to be the amount of water used within households regardless of the season throughout 

the year. At a daily time step, the averaged, baseline water use was subtracted from each day’s 

quantity of water pumped. The number returned from the subtraction is thought to be the amount 

of outdoor water use or irrigation for our purposes. If the result was a negative number, the day’s 

value was set to zero. The volume of water (m3/day) calculated for each day was converted into a 

depth of irrigation water (mm/day) by dividing the outdoor water use by the area of grassland 

and converting the units to mm/day. Hourly estimates were created from dividing the daily 

values by 24 hr/day. It is assumed that the irrigation hourly rate is consistent throughout the day 

because the individual irrigation habits of households are not predictable. Lastly, the irrigation 

amounts from December 1 through March 31 in each year were set to zero as it is assumed no 

irrigation occurs in the winter months.  
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2.5 Regression AET Estimates 

Regression models to estimate AET at a variety of time scales were obtained from 

published literature (Y. Fang et al., 2016a; Lu et al., 2003; Sanford & Selnick, 2013). The 

regression models presented are compared with TerraClimate reference AET estimates and PM 

AET estimates (Abatzoglou et al., 2018). The goal of a model comparison is to investigate if the 

chosen models could be used confidently to estimate AET in urban watersheds with 

heterogeneous landcover in a humid, subtropical climate. 

2.5.1 Monthly AET Estimates 

One monthly AET model employed in this study was created by Fang et al. (2015). Using 

eddy covariance AET and other meteorological parameters, the authors formulated three 

different regression models to estimate AET. These models best exhibit conditions in a monthly 

temporal resolution and separate land cover classes for calculations instead of lumping them. 

Type I models require potential evapotranspiration (PET), precipitation, net radiation, and leaf 

area index (LAI) data, whereas, Type II models only require PET, precipitation, and LAI data. 

LAI data, which were 8-day composites at 500-m resolution, were extracted from the MODIS 

MCD15A2H Leaf Area Index product (Myneni et al., 2015) for large, consistent areas of 

deciduous forest, evergreen forest, shrubland, and combined low-lying vegetation/grass areas in 

the Atlanta region. Type III models require precipitation, LAI, and the Food and Agriculture 

Organization (FAO) grass reference evapotranspiration (ETo). PET can be calculated through the 

Hamon equation detailed in Lu et al. (2005): 

𝑃𝐸𝑇 = 𝑘 ∗ 0.165 ∗ 216.7 ∗ 𝑁 ∗ (
𝑒𝑠

𝑇+273.3
)                                                 (32) 

where k is a unitless proportionality coefficient of 11, N is daytime length (x/12 hours), es 

is saturation vapor pressure calculated previously, and T is average monthly temperature in ᵒC. 
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Long-term records of daytime length in minutes were acquired from the NOAA’s National 

Centers for Environmental Information Global Surface Summary of the Day (GSOD) database.  

The creators of the Fang methods determined that Type I and Type II were the best fitting 

models to reference evapotranspiration measurements but suggest that Type II models be 

employed when net radiation data are not available. Land cover totals can be aggregated and 

weighted at the end of calculations with proportions of land-cover type to get an AET estimate of 

the complete study area. Tables of the Type I and Type II models separated by land cover type 

are depicted in Table 7 and Table 8, respectively. Regardless of type, the Fang et al. (2015) 

models do not have impervious land cover equations. To remedy this, a percentage of 

precipitation is used as ‘impervious AET.’  Based on published literature, impervious surfaces 

contribute varying percentages of precipitation lost to evaporation; it's as low as 16% in one 

location and as much as 29% in another in Zhou et al. (2021). The other papers report 21-24% 

(Ragab et al., 2003), 19% (Davies, 1981), and 17% (Cohard et al., 2018). A median value of 

19% was used, meaning 19% of the precipitation observed each month was added to the Fang 

model estimates to more accurately depict AET in an urbanized watershed. 
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Table 8: Type I models created by Fang et al. (2015) where ET is evapotranspiration (mm), PET 

is potential evapotranspiration (mm), LAI is leaf area index, Rn is net radiation (MJ/m2) , RMSE 

is root mean squared error of the model performance, and R2 is the model residual squared. 

Landcover Type Model by land cover  RMSE R2 

Shrubland ET= 0.51 + 0.03 * PET + 14.73 * LAI + 0.8 * 

Rn 

14.0 0.79 

Cropland ET= 0.87 + 0.19 * Rn + 13.99 * LAI + 0.06 * 

P 

23.9 0.73 

Grassland ET= 5.55 + 7.23 * LAI + 0.20 * Rn 16.3 0.79 

Deciduous Forest ET= -14.22 + 0.74 * PET + 0.10 * Rn 22.2 0.77 

Evergreen needle leaf forest ET= 3.00 + 0.30 * PET + 3.99 * LAI + 0.09 * 

Rn 

17.1 0.71 

Evergreen broad leaf forest  ET= -0.15 + 0.47 * PET + 0.13 * Rn 13.3 0.86 

Mixed forest ET= -8.76 + 0.95 * PET 14.8 0.80 

Savannas ET= -8.07 + 33.46 * LAI +0.07 * Rn 14.0 0.66 

 

Table 9: Type II models created by Fang et al. (2015) where ET is evapotranspiration (mm), 

PET is potential evapotranspiration (mm), LAI is leaf area index, P is precipitation (mm) , 

RMSE is root mean squared error of the model performance, and R2 is the model residual 

squared. 

Landcover Type Model by land cover  RMSE R2 

Shrubland ET= -3.11 + 0.39 * PET + 0.09 * P + 11.127 * 

LAI 

12.5 0.80 

Cropland ET= -8.15 + 0.86 * PET + 0.01 * P + 9.54 * 

LAI 

20.9 0.70 

Grassland ET= -1.36 + 0.70 * PET + 0.04 * P + 6.56 * 

LAI 

16.8 0.66 

Deciduous Forest ET= -14.82 + 0.98 * PET + 2.72 * LAI 23.7 0.74 

Evergreen needle leaf forest ET= 0.10 + 0.64 * PET + 0.04 * P + 3.53 * 

LAI 

17.8 0.68 

Evergreen broad leaf forest  ET= 7.71 + 0.74 * PET + 1.85 * LAI 16.8 0.76 

Mixed forest ET= -8.763 + 0.95 * PET 13.1 0.79 

Savannas ET= -25.66 + 0.18 * PET + 0.10 * P + 44.63 * 

LAI 

11.1 0.68 
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2.5.2 Annual AET Estimates 

The first annual model employed in this study is adopted from Lu et al. (2003) and 

analyzed against watershed water balance AET estimates. This evapotranspiration model is the 

simplest of all the models included in this study. Out of 23 environmental variables, 

extraterrestrial solar radiation, rainfall amount, latitude, elevation, forest cover, and presence of 

water bodies were deemed significant and included in a regression model to estimate annual 

AET. Water bodies were later removed because of their ability to decrease actual AET with 

increasing number of bodies. The remaining 22 variables were analyzed again to find that net 

radiation, rainfall, elevation, and forest are the most influential variables. Given limitations in 

acquiring extraterrestrial solar radiation, the authors postulated that latitude, rainfall, elevation, 

and forest cover were equally as influential on final estimates. Even though this equation is 

created from heavily forested watersheds, the authors show that the model performs well with 

sufficient confidence. In the end, accounting for only forested evapotranspiration may prove to 

be a source of error in final analysis. There is only one equation, and it assumes AET comes 

predominantly from forests in a watershed: 

      ET=1098.786+0.0309 Rainfall-0.289 Elevation-21.840 Latitude+196 Forest        (33) 

where ET is annual actual evapotranspiration (mm), rainfall is mean annual precipitation 

(mm), latitude is the watershed latitude at the outlet (degree), elevation is mean watershed 

elevation (m), and forest is percentage coverage of forest cover of the watershed. 

The model created by Sanford and Selnick (2013) is a regression equation created from 

watershed scale water balance AET data obtained from at least one catchment in each state 

across the continuous United States. Because this model was a long-term study, it was assumed 
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that change in annual water storage was negligible. The authors attempt to create a regression 

using just climate data but deemed that even though climate accounted for a lot of the AET 

variation observed, land cover was very important as well. The final regression equation 

incorporates climate and landcover data with good confidence (R2= 0.882). The data used to 

create the regression equations were from 1971-2000, so this may prove to be a source of error in 

our final analysis. For now, we are assuming the equations will function similarly to their 

performance in the original application time frame. The equation returns a ratio of 

evapotranspiration to precipitation, but evapotranspiration can easily be derived by multiplying 

by precipitation. Table 10 shows the regression equation and other variables and constants one 

will require to complete the computations. 

Table 10: Regression equation and supplemental equations for estimating annual 

evapotranspiration obtained from Sanford and Selnick (2013). 

 

2.6 Rural Watershed AET 

Estimates of AET from all the modelled procedures were compared with the water-budget 

AET at the reference watersheds, using the reference watershed AET to see which procedure was 

most accurate at those watersheds and to adjust the PM-derived estimates. In natural, undisturbed 

watersheds, evapotranspiration is commonly estimated as the difference between precipitation 

and streamflow, neglecting long-term changes in storage (Vörösmarty et al., 1998). For 

simplicity, we assume that there is no net movement of groundwater into or out of the 
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watersheds. The water balance method has been proven to be useful at a watershed scale (Sloto 

& Buxton, 2005). In undeveloped watersheds, infrastructure-mediated flows common to urban 

environments, like irrigation, pipe leakage, reservoir withdrawal, and inflows into sewer systems, 

are not present. Precipitation data are monthly estimates obtained from the PRISM database and 

discharge data are from the United States Geological Survey (USGS). A recent study compared 

PRISM to high-quality gauges and found that in the Southeast PRISM might overestimate 

precipitation by 3.25% (Buban et al., 2020). PRISM precipitation totals were adjusted by 

dividing by 1.0325. Reference watershed PM AET estimates were compared to water-balance 

AET to analyze how urbanization has affects watershed in the Piedmont region.  

Additionally, each AET model’s estimates were aggregated appropriately and compared on 

an annual timescale with remotely sensed TerraClimate data. TerraClimate data has a 4-km 

resolution, and estimates were acquired by placing 1,000 points randomly within the SRW and 

using the mean value of those points. This reference dataset uses interpolation that combines 

high-spatial resolution climatological normals from the WorldClim dataset with coarser spatial 

resolution, but time-varying data from CRU Ts4.0 and the Japanese 55-year Reanalysis (JRA55) 

(Abatzoglou et al., 2018). The result is a high-spatial resolution dataset that covers a broad 

temporal record. 
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3 RESULTS 

3.1 Synopsis of Meteorological Trends 

The SRW has experienced interesting meteorological trends, but firstly, there is no notable 

trend in long-term annual precipitation totals (Figure 5). While there are some notable years of 

high or low precipitation shown in Figure 5, where across years the annual-total precipitation 

varies by a factor of more than two (2007 versus 2009). Precipitation relative differences of 50-

60% among years are also common. There was a strong, positive trend of average annual 

temperature, which was statistically significant (τb = .305, p = .0299) (Figure 5). Average daily 

incoming solar radiation by year is depicted in Figure 6. The graph shows a notable decreasing 

trend in daily incoming solar rates, which tested to be statically significant (τb = -0.411, p = 

0.006). Lastly, Figure 7 shows that vapor pressure deficit stays consistent throughout the study 

period of 2001-2020 (τb = -0.084, p = 0.302). For the reference watersheds described in section 

2.6, adjusting precipitation impacts the water budget AET, but in general changing precipitation 

does not have a large impact on the PM estimates as it is only an input in the surface water 

availability submodel (Section 2.4). Variation in precipitation amount strongly modulates 

evaporation from impervious surfaces as simulated in the PM model due to their marginal water-

storage capacity. As mentioned previously, the vegetation is assumed to evaporate the full PM 

AET estimate due to root-soil water and groundwater access, thus the surface water availability 

model is only applicable to the impervious land cover. These surfaces that are mostly absent 

from the reference watersheds. 

The reference watersheds did not observe the same incoming solar radiation trends. 

Neither Falling Creek watershed or Fausett Creek watershed observed any long-term change in 

incoming solar radiation using an α value of 0.01 or 0.05.  
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Figure 5: Long-term annual average daily temperature and annual precipitation totals of the 

SRW from 2001-2020. Temperature data from GAEMN, and precipitation is data collected at the 

ATL Hartsfield-Jackson Airport. 

 

 
Figure 6: Long-term annual average of SRW daily rates of incoming solar radiation from    

GAEMN weather stations (p = 0.006). 
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Figure 7: Long-term annual average of SRW vapor pressure deficit calculated by 

temperature dependent equations described in section 2.1.6 (p= 0.302). 

 

 

3.2 Land Cover Analysis 

There was considerable heterogeneity within the NLCD land cover classes (Figure 8). 

The composition of each land cover class and the resulting areas of each land cover type from 

2001-2020 can be found in Appendices B and C, while 95% confidence intervals of area 

composition of the developed classes (21-24) can be found in Appendix E. The analysis revealed 

that NLCD developed classes 21-24 had 48.2%, 24.3%, 13.8%, and 4.4% forest cover, 

respectively. Developed classes 21-24 also had 28.5%, 42.9%, 21.5%, and 7.0% grass cover, 

respectively. Finally, it was found that the developed classes 21-24 contained 17.8%, 33.7%, 

64.4%, and 84.8% impervious cover, respectively. These results show that the NLCD developed 

land cover classes contain a considerable amount of heterogeneity, consistent with the land cover 

composition definitions from the NLCD. From class 21 to 24, a stark increase in impervious 

cover is observed, where the amount of forest cover decrease but less drastically. An increase in 
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grass cover was observed in class 22, low-intensity developed, but there was a general decrease 

in grass cover as development intensity increases. 
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Figure 8: NLCD 2019 original classes’ actual land cover (LC) distribution after manual 

land cover analysis (a-n). Proportion is calculated as the proportion of points of 

observed LC to total number of points in sample size. Proportions of each LC type in 

each class is multiplied by original area to calculate estimates of actual LC area within 

the South River watershed (SRW). All areas of the same LC types are aggregated to 

describe 6 total LC types within the entire SRW. 

 

3.3 Penman-Monteith Approach 

Within the SRW and including all land cover types, the PM approach returned a daily 

minimum value of 0.319 mm/day in the winter months and a daily maximum value of 5.12-5.24 

mm/day in the summer months (Figure 9; Figure 10). The results are displayed before and after 

accounting for surface water availability, showing the intra-annual variability throughout the 

study period. It is shown that even before accounting for surface water availability (Figure 9) and 
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after (Figure 10), SRW AET in summer was roughly three times larger than in winter. Overall, 

the surface water availability procedure had a moderate effect on the PM AET estimates, 

decreasing the SRW long-term annual average AET from 866.45 mm/yr to 798.91 (+/- 37.66 

mm/yr, Table 12), approximately a 7.8% reduction. Figure 10 shows a slight suppression in 

maximum AET values when compared to Figure 9, but the minimums remain unchanged. For 

vegetated surfaces, the surface water availability procedure had no effect. It is observed that as 

AET estimates increase, the range of possible estimate also increase (Figure 11), helping to 

illustrate the impact of that water-balance calculation on the AET estimates on days where 

estimates are high, namely the summertime.  

The PM AET reductions came from using the surface water availability procedure on the 

developed cover, where it is known that if the surface has no surface water in storage, there is 

absolutely no water there to evaporate. Too many assumptions for vegetated covers would have 

to be made otherwise, like soil moisture, vegetation rooting depth, and more. Because the 

vegetated AETs are not adjusted when the surface water availability is lower than the PM AET 

estimates, it is assumed that the AET observed for every hour is a result of transpiration, and not 

evaporation from leafed surfaces. Surface water availability procedures were not done on the 

water and wetland land cover types, and therefore the PM AET estimates for those land cover 

classes are used unadjusted, as it is assumed they have water-unlimited conditions. 
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Figure 9: South River watershed daily AET estimates using the PM method from January 1, 

2001 to December 31, 2020 before the surface water availability procedure. 

 

 
Figure 10: South River watershed daily AET estimates using the PM method from January 1, 

2001 to December 31, 2020 after the surface water availability procedure. 
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Figure 11: Scatter plot of PM daily AET before the surface water availability model (SWAM) 

and after SWAM from January 1, 2001- December 31, 2020. A 1:1 line is depicted in black.  

 

The PM AET within the SRW peaks in the month of July with a long-term average of 105.88 

mm (Figure 12). Estimates of monthly PM AET are the lowest in the month of December with a 

long-term average of 28.99 mm. In general, the incorporation of the canopy storage balance 

model decreased the interquartile range of possible monthly values, meaning less variation can 

be expected over time. Throughout the year, the skewness of the resulting estimates changes. In 

the colder months, PM AET is typically negatively skewed, meaning that more estimates are 

above the mean value than below. Alternatively, the data is slightly positively skewed in warmer 

months, meaning that more estimates are below the mean than above.  
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Figure 12: South River watershed average monthly AET estimates of PM without surface 

water availability, blue; PM with surface water availability, green from January 1, 2001, 

to December 31, 2020. 

 

 Additionally, Figure 13 depicts the composition of both total land cover within the SRW 

and contributions of each land cover type to total SRW AET. Our results suggest that while 

developed impervious areas account for 26.5% of the total land cover after manual land cover 

analysis, this land cover type only contributes 9.8% of the total SRW AET annually. The original 

percentage, before the surface water availability model, of developed AET was much larger at 

16.8%. Additionally, it can be observed that grass land cover accounts for 26.5% of total area of 

the SRW, while it contributes a higher percentage to total AET, 33.2%. Forest cover accounts for 

44.2% of total land cover in the SRW, and forests contribute over half the total AET for the 

study area at 52.4%. The remaining land cover types (short vegetation, open water, and wetland) 

display similar land area coverage and contributions to total AET.  
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Figure 13: (a) Average percent coverage of land cover types within the SRW from 2001-2020, 

(b) Average percentage of AET that each land cover type contributes to total AET, within the 

SRW from 2001-2020 after the canopy storage water balance procedure. 

 

Throughout the study period of 2001-2020, there is considerable variability in the SRW 

annual PM AET estimates (Figure 14); however the coefficient of variation only 4.7%. A lower 

coefficient of variation indicates that there is a lower amount of dispersion between all annual 

PM AET estimates. Figure 14 also shows the annual AET values and a trendline to visualize a 

strong, decreasing trend of annual AET throughout the study period within the SRW                

(τb = -0.463, p = 0.002). The maximum and minimum AET observed occurred in 2011 of 864.48 

mm/yr and 2018 of 729.50 mm/yr, respectively, where this range is 10% of the annual average 

precipitation.  

Conversely, the reference watersheds did not observe the same long-term trends in PM 

AET (Figure 15). The year 2001 was omitted in Figure 15 because of erroneous numbers and to 

retain the integrity of the remaining data. No trends were observed in Fausett Creek or Falling 

Creek (τb = -0.205, p= 0.110; τb = -0.064, p= 0.350, respectively) watersheds’ AET or 

meteorologic parameters controlling AET, namely solar radiation. While solar radiation didn’t 

have a significant trend in Fausett Creek watershed (τb = -0.216, p= 0.098) or Falling Creek 

watershed (τb = -0.064, p= 0.350), it was clearly a major cause of the declining AET in the 
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SRW. It was also found that solar radiation does account for approximately 66% of the variance 

in AET at both watersheds. 

 
Figure 14: Annual estimates of PM AET within the SRW from 2001-2020 including the 

surface water availability procedure (p=0.002). 

 

 
Figure 15: Annual estimates of PM AET within each reference watershed from 2002-2020 

including the surface water availability procedure (Falling p=0.350; Fausett p=0.098). 
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3.3.1 Sensitivity Analysis 

The sensitivity analysis reveals that incoming solar radiation has the largest effect on 

AET in all land cover types (Figure 16). The sensitivity analysis supports findings in Figures 6 

and 14; where solar radiation seems to be the most important driver of AET. Wind speed had the 

smallest effect of the final PM estimates in each land cover type. Across all land cover types, 

mixed forest seems to be the most responsive to change in any variable. Conversely, high 

intensity developed land showed the least amount of change with adjustment for all meteorologic 

parameters. Full records of the sensitivity analysis results can be found in Appendix G. 

 
Figure 16: Daily AET before areal weighting and surface water availability model. Visualization 

of adjusting six variables (albedo, feature height, relative humidity, solar radiation, temperature, 

and wind speed) up by 10% and down by 10% on the day with highest ET in entire study (J=168, 

June 17, 2001) within four land cover types. Bars show the original value, while the error line 

depict the AET when variables are adjusted (one at a time).  

 

3.4 Model Comparisons 

Falling Creek watershed had an average annual AET of 948.20 mm/yr, whereas Fausett 

Creek watershed exhibited an average annual AET of 925.13 mm/yr (Table 11). Comparing the 
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regression models and the PM AET approach with the water balance AET of reference 

watersheds revealed the results found in Figure 17, where deviations from the water balance 

‘reference’ AET are displayed. Remotely sensed TerraClimate datasets consistently overestimate 

AET given the positive bars above zero in both watersheds. In both reference watersheds, the 

PM approach returned estimates that were the closest to the water balance AET with estimates of 

960.89 mm/yr in Falling Creek watershed and 855.4 mm/yr in Fausett Creek watershed. The 

Fang Type I-Lumped model performs similarly to the PM AET approach, returning an estimate 

of 921.63 mm/yr in Falling Creek watershed and 852.57 mm/yr in Fausett Creek watershed. As 

seen by the negative bars in Figure 17, the remaining models largely underestimate AET within 

the undeveloped watersheds. PM underestimates AET at both watersheds, with a much larger 

underestimate at Fausett Creek. 

 

Table 11: Average annual precipitation and stream discharge from 2001—2020 for reference 

watersheds: Falling Creek and Fausett Creek. Annual AET is calculated by subtracting 

discharge from precipitation. 

 
 

Watershed

Precipitation 

(mm/yr)

Discharge 

(mm/yr)

AET 

(mm/yr)

Falling Creek 1184.65 236.46 948.20

Fausett Creek 1446.68 521.55 925.13
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Figure 17: (a) Falling Creek models’ deviation from water balance AET of 948.20 mm/yr, 

and (b) Fausett Creek models’ deviation from the water balance AET of 925.13 mm/yr. 

      

 

 The SRW AET model estimates show considerable variation, returning estimates ranging 

from as low as 600 mm/yr to 1000 mm/yr (Figure 18). Before scaling SRW estimates for 

possible underestimation, it can be observed that the PM approach was the second highest model 

estimate after Fang Type II Lumped model. While there is not a definite way to validate the 

TerraClimate dataset within the SRW, it can be assumed that it overestimates watershed AET 

once again, as the SRW estimate is just as high as or higher than reference, undeveloped 

watershed TerraClimate estimates. After scaling, TerraClimate AET was reduced to 916.83 

mm/yr, whereas every other model saw an increase in the long-term annual estimate. Models’ 

annual AET estimates before and after applying the scaling factor can be found in Table 12. The 

standard deviation of the PM model is also shown in Table 12, and because the regression 

models do not estimate AET continuously, a SD cannot be calculated. After the scaling factors 
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were applied to long-term annual PM estimates, the adjusted annual AET estimate for the SRW 

is 826.03 mm/yr.  

 

 
Figure 18: SRW mean annual AET of all models from 2001-2020.  

 

 

Table 12: SRW long-term annual AET computed by each model with reference watershed 

scaling ratios and adjusted SRW AET. Reference watershed scaling ratios were calculated by 

dividing calculated water balance AET by the respective model AET. 

 
  

Model SRW ET (mm/yr)

Standard 

Deviation 

(mm/yr)  

Average 

Scaling Ratio 

(Fasuett and 

Falling 

Watersheds; 

Water Balance 

ET/Model ET)

Adjusted 

SRW ET 

(mm/yr)

TerraClimate 994.50 - 0.92 916.63

Fang Type II Lumped 904.41 - 1.12 1009.75

Penman-Monteith 798.91 37.66 1.03 826.03

Lu 788.33 - 1.11 877.25

Sanford & Selnick Climate-Only 780.96 - 1.17 910.21

Fang Type I 771.92 - 1.08 831.67

Sanford & Selnick Climate-and-LC 749.32 - 1.18 882.79

Fang Type II 697.96 - 1.19 829.58

Fang Type I Lumped 592.01 - 1.06 625.62
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4 DISCUSSION 

4.1 Land cover analysis confirms the composition of developed NLCD classes 

The results of the land cover analysis procedure confirm that the NLCD composition of 

developed classes are accurate. The definitions of each developed class provided by the NLCD 

confirm that the land cover class compositions revealed in this study are accurate and 

representative of the actual land cover in the SRW. ‘Developed, Open Space’ areas are a mixture 

of some built surfaces, but mostly vegetation, where impervious surfaces account for less than 

20% of total cover. ‘Developed, Low Intensity’, ‘Developed, Medium Intensity’, and ‘Developed 

High Intensity’ classes contain 20%-49%, 50%-79%, and 80%-100% of impervious cover, 

respectively.  

Based on the reviewed body of literature to estimate urban watershed AET, this study’s 

land cover analysis is the most intensive method observed because of the validation and 

correction of mixed pixel data from NLCD. Grimmond and Oke (1986) partitioned total land 

cover into impervious and pervious land cover, where 30% of the pervious cover was irrigated, 

and each land cover type required different coefficients for AET equations. Bhaskar and Welty 

(2012) only analyzed percent imperviousness within each analyzed watershed. The more arid 

climate of Los Angeles, California in Litvak et al. (2017) analyzed impervious, trees 

(gymnosperm, angiosperm, palms), irrigated turfgrass, bare soil, where all vegetated cover AET 

was calculated with different regression models dependent on plant type, and AET of non-

vegetative cover was considered negligible. Other studies address multiple types of land covers 

like forest, grass, urban and agricultural lands, but the satellite data acquired with a course 

resolution remains unadjusted for mixed pixel issues (Gyamfi et al., 2016; Jia et al., 2001; Q. 

Wang et al., 2020).  
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4.2 Penman-Monteith approach shows AET is decreasing in a suburbanized watershed 

          The PM AET results illuminated by this study are comparable to results in previously 

published literature. Bhaskar and Welty (2012) conducted a study in Baltimore, Maryland where 

the climate is also considered to be a humid subtropical climate. Their study analyzed many 

watersheds with varying degrees of imperviousness, where rural watersheds had a water budget 

AET of 830 mm/yr and urban watersheds had an water budget AET of 360 mm/yr; however, the 

urbanized watersheds in that study were much more urbanized than the SRW. Irrigation was 

estimated by a different procedure, where 25% of the area classified as grass/scrub is irrigated at 

a rate of 1 in. (25.4 mm) per week for 4 months of the year (Claessens et al., 2006; Milesi et al., 

2005). The SRW summer daily AET estimate of 5.12-5.24 mm/day also aligns with the results of 

Grimmond and Oke (1986), where they estimated the summer daily AET was 5-6 mm/day; 

however, the annual AET of 578 mm/yr in Grimmond and Oke (1986) is much lower than the 

SRW annual average because of Vancouver’s moderate, oceanic climate (Cfb Köppen climate 

classification). Another study analyzed AET in the highly urbanized 64-square mile Wissahickon 

Creek watershed, Pennsylvania, USA, where average annual AET, calculated by water budgets, 

was estimated to be 587.25 mm/yr (Sloto & Buxton, 2005), but land cover types are not 

addressed by their methods. Additionally, AET was found to be 612.90 mm/yr by water budgets 

in the urbanized Cooper River watershed in New Jersey (Sloto & Buxton, 2005), but again it is 

hard to know the accuracy of these methods because they do not account for different land 

surfaces.   

The percent difference between the reference watershed average ‘observed’ AET and the 

PM SRW AET is -17.2%, where the SRW experiences lower AET than undisturbed watersheds. 

Because the annual SRW AET is comparable to other results within another undeveloped, 
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Piedmont region (887.5 mm/yr, (Aulenbach & Peters, 2018)), our results could point to the 

importance of our land cover analysis procedure. During the land cover data collection stage, if 

trees were covering impervious land cover, the land cover was still considered forested. The 

annual AET observed in undeveloped Piedmont watersheds support the idea even when there is 

developed land cover beneath tree canopies the vegetative cover is the land cover that interacts 

with the atmosphere in AET processes.  

SRW has much more vegetation than other urban watersheds where AET has been 

calculated. The original contribution of impervious AET to total AET was 16.8% before the 

surface water availability model and 9.8% following the surface water availability model. 

Although the SRW is considered a true suburban watershed, this contribution is much less than 

previously published work, where the contribution of developed AET ranges from 17%-29% 

(Cohard et al., 2018; Ragab et al., 2003; Zhou et al., 2021). If the entire SRW was converted to 

impervious land cover, the long-term annual average of AET would be 77.87 mm/yr. This can 

lead us to infer that if an entire watershed was developed upon within a humid subtropical 

climate, total annual AET could be reduced to roughly a tenth of the original value. While the 

reviewed urban AET studies have a variety of heterogeneous land cover compositions, the SRW 

is still roughly 72% vegetated, supporting the conclusion that AET will remain higher than many 

other urban AET studies unless drastic land cover composition changes are made (Claessens et 

al., 2006; Grimmond & Oke, 1991; Gyamfi et al., 2016; Kokkonen et al., 2018; Mitchell et al., 

2008; Q. Wang et al., 2020).  
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4.2.1 Decreasing AET is driven by increasing impervious cover and decreasing solar 

radiation 

The interannual variability of AET within the SRW could be explained by land cover 

change and/or long-term changes is meteorological parameters. Throughout the entire study 

period, there is a decrease in annual AET of 3.12 mm/yr, 0.39% of the long-term annual average 

(Figure 14). Kokkonen et al. (2018) similarly observed a decrease in long-term annual AET of 

1.3 mm/yr (roughly 0.43% of the total annual AET with realistic irrigation scenarios), but the 

authors indicate that this estimate was offset by local irrigation practices. While the amount of 

precipitation is relatively unchanged throughout the study period, a general trend of increasing 

incoming solar radiation has occurred in North America since 2000 (M. Yuan et al., 2021). The 

increases in incoming solar radiation can lead to greater vapor pressure deficits and lower overall 

relative humidity when compared to nearby rural areas, particularly in humid regions (Hao et al., 

2018), leading to exacerbated urban dry island (UDI) effects. Based on Figure 7, the observed 

increasing global incoming solar radiation trend is not reflected in the SRW.  

The long-term decrease in annual AET within the SRW can be attributed to an 8.6% 

increase in developed land cover, a 4.3% decrease in total forest cover, and the decreasing 

incoming solar energy that fuels AET processes, which is supported by our sensitivity analysis 

and the fact that the PM model is mostly energy determined (Mao & Wang, 2017). The solar 

radiation is confirmed to be correlated to the annual PM AET estimates, and therefore 

responsible for the AET long-term trend (Figure 19). Aulenbach and Peters (2018) observed little 

interannual variability in AET in the forested Panola Mountain watershed, and the coefficient of 

variation of their estimates is 13.2%. Similarly, Oishi et al. (2010) saw little interannual 

variability in annual AET of the Duke Forest in North Carolina, and the coefficient of variation 
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for their estimates is 4.1%, slightly lower than the SRW PM coefficient of variation (4.7%). The 

lack of PM AET interannual variability in Falling Creek watershed and Fausett Creek watershed 

in this study support the Aulenbach and Peters (2018) and Oishi et al. (2010) findings where 

undeveloped regions observe little interannual variability. Impervious surfaces in urban 

environments have marginal water storage capacity, and AET quickly trends toward zero 

following precipitation events. The transient nature of evaporation from these surfaces is 

suggestive that the temporal variability of AET in urban/suburban watersheds would be greater 

than in completely vegetated watersheds. One of the most important findings, however, is this 

urban/suburban watershed is even more forested than the unaltered NLCD land-cover data would 

suggest. The impact of impervious surfaces on AET, and its variability, was surprisingly 

marginal. 

 
Figure 19: Scatter plot of average daily incoming solar radiation by year and average 

annual PM AET estimates.  

 

 Many uncertainties are associated with PM AET modelling. Firstly, the chosen PM 

submodels could have varying impacts on the accuracy of final AET estimates, especially the net 
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radiation net radiation and resistance parameters. The sensitivity of the PM approach to incoming 

solar radiation could be explained by the utilization of solar radiation data within so many of the 

PM submodels, highlighting its importance in modeling AET. Incoming solar radiation data are 

used to calculate three of the nine variables within the PM equation: net radiation, storage heat 

flux, and surface resistance. Therefore, any changes in incoming solar radiation propagate 

throughout the PM AET process. The surface water availability submodel and the water-storage 

capacity of impervious surfaces are also poorly constrained by observations and data. The 

temporal resolution at which the PM equation is used can have a large impact on accuracy of 

AET estimates. Longer temporal scales can dismiss important fluctuations in meteorological 

variables that would impact AET rates, such as diurnal patterns in solar radiation, temperature, 

wind speed, and vapor pressure. The PM model also does not consider the vegetation 

physiological impacts of elevated atmospheric CO2 concentrations on AET. The trends of global 

warming and concentration of atmospheric CO2 have been proven to have effects on vegetation 

transpiration rates (Kirschbaum & McMillan, 2018). The fact remains that the PM model alone 

does not address water availability within a watershed, so failing to complete the water 

availability storage procedure can overestimate AET.  

 Evaporation from impervious surfaces is likely underestimated in this study. The 

evaporation from impervious services in the SRW is about 6% annually (ETimp/Precip), which is 

considerably lower than previously published field studies. The range of published evaporation 

rates range from as low as 16% in one location and as much as 29% in another (Zhao et al., 

2021). Other papers report 21-24% (Ragab et al., 2003), 19% (Davies, 1981), and 17% (Cohard 

et al., 2018). 
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4.3 Model Comparisons 

The regression models’ results were generally unpredictable and varying degrees of 

accuracy when compared to water balance AET. Within the reference watersheds, the Fang Type 

I-Lumped model performs similarly to the PM AET approach, returning an estimate of 921.63 

mm/yr in Falling Creek watershed and 852.57 mm/yr in Fausett Creek watershed. This leads us 

to believe that the Fang Type I-Lumped regression model could be useful in undeveloped 

watersheds. In all of the Fang models, the 19% fraction used to estimate AET from impervious 

surfaces could have been an underestimate, meaning the AET calculated by these models are 

underestimated as well. One study conducted in France measured that 30-40% of precipitation is 

evaporated when it falls on impervious surfaces (Ramier et al., 2011), so the estimates from the 

Fang models may be artificially low. The remaining regression models consistently 

underestimate watershed AET compared to PM, which could be for a few reasons. The most 

relevant answer could be that the water balance approach overestimates AET in the two 

reference watersheds. The water balance approach makes assumptions about where water travels 

within a watershed. Water flowing to a single outlet point can take many paths, not just through 

the stream channels where gauges are found. Studies have found that water balance approaches 

to estimate AET can be improved by adequately modelling subsurface water movement, as 

fractured bedrock formations can promote increase groundwater seepage (Fan, 2019; Graham et 

al., 2010; Kampf et al., 2020; Safeeq et al., 2021). Additionally, errors in watershed water 

balance approaches increase as basin size increases due to more variation and uncertainty in 

runoff generation, storage areas, and saturated zone connectivity (McGlynn et al., 2004). 

Impervious land covers are neglected in all of the regression models except for the 

Sanford and Selnick (2015) land-cover-and-climate model, limiting their applicability in 
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urbanized watersheds. The Sanford and Selnick model returns an annual SRW AET estimate of 

706.18 mm/yr in a completely impervious watershed. Alternatively, the Lu model would return a 

an annual SRW AET of 701.70 mm/yr because all that changes in the model is the percentage of 

forest cover, not meteorological variables. If the entire SRW was impervious land cover in the 

remaining regression models, the AET would have to be calculated using the published 

proportional values of precipitation lost to evaporation. Using the 19% precipitation to 

evaporation estimate utilized previously in the Fang models, the SRW AET would be 255.86 

mm/yr in completely impervious, contrasting with the 77.87 mm/yr AET estimate returned by 

the PM model after accounting for surface water availability. The 19% estimate used in 

conjunction with statistical models would be considered an overestimate if compared to the 

results from the PM approach. The variability in the AET estimates for a completely impervious 

watershed leads us to believe that these regression models were not entirely suitable for 

urbanized catchments, and if the 19% estimate was reduced to the estimate found in the SRW 

(9.8%) the statistical models may underestimate AET even more than previously calculated.  
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5 CONCLUSIONS 

Many novel conclusions can be made from this research endeavor. Not only were new 

workflows created to accurately model PM equation parameters and validate land cover data, but 

the results of these workflows also support many inferences.  

1. Firstly, manual land cover analysis revealed considerable heterogeneity within each 

of the NLCD developed LC classes. Developed classes (developed open space, low-

intensity developed, medium-intensity developed, and high-intensity developed) had 

48.18%, 24.26%, 13.79%, and 4.43% forest cover, respectively. 

2. Secondly, based on results from the PM model, the annual AET in the SRW is 

roughly 800 mm/yr while undeveloped Falling Creek watershed and Fausett Creek 

watershed nearby observed PM AET estimates of 960.38 mm/yr and 855.12 mm/yr, 

respectively. In addition to being more physically based to include surface-specific 

characteristics, the PM approach also showed closest agreement with water balance 

calculations in reference watersheds. In the humid subtropical climate of the study 

area, SRW summer AET was roughly three times larger than winter estimates, and 

annual AET showed a declining trend over two decades, most likely due to 

decreasing solar radiation and a small increase in the percentage of developed land 

cover. It was found that the over the study period, there was a 10% reduction in total 

annual AET, supporting the fact that long-term interannual variability exists in urban 

watersheds, unlike undisturbed, vegetated watersheds. Within the Piedmont region, 

this semi-urbanized watershed exhibited more interannual variability than was 

observed by completely forested areas. This means that the AET in urban watersheds 

are more sensitive to climatic changes. We also found that impervious surfaces are a 
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small but not-negligible contributor to AET in urban areas, accounting for about 9.8% 

of total urban AET within the SRW annually. 

3.  Third, the statistical approaches underestimate AET in undeveloped watersheds, 

while TerraClimate datasets overestimate watershed AET, especially in urban 

watersheds.  

In future research, AET in humid subtropical watersheds with higher degrees of 

urbanization than the SRW could be investigated. The SRW is considered suburban by the 

USGS, so the implications to AET in more urbanized study areas are limited. Additionally, 

although hard to find and successfully utilize, improved AET datasets to validate results could be 

used. If these data products do not exist in the desired study area, research and development of 

accurate AET acquisition could be a worthwhile task. Future research is also needed to better 

understand the role of groundwater and urban structural additions like leaky pipe networks and 

water treatment/sewer treatment facilities have on urban AET. To accurately measure effect on 

AET from anthropogenic water inputs like irrigation, more surveys or community-based 

outreach could be done to better represent local household water use practices.  
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APPENDICES 

Appendix A: NLCD Developed Classes Land Cover Data Collection 

LC 21: Developed Open Space (Legend Below) 
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LC 22: Low-Intensity Developed 
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LC 23: Medium-Intensity Developed 
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4 

3 3 3 

2 3 3 

2 3 3 

 

5 

2 3 2 

2 3 3 

2 3 2 

 

6 

2 1 1 

2 1 1 

2 1 1 

 

7 

2 3 4 

2 3 4 

2 4 4 

 

8 

3 2 2 

1 1 2 

1 2 3 

 

 

 

 

9 

2 2 2 

1 1 1 

1 1 1 

 

10 

2 2 1 

4 4 1 

4 4 1 

 

11 

2 4 4 

2 4 4 

2 4 4 

 

12 

4 4 2 

4 4 2 

4 4 2 

 

13 

3 4 4 

2 3 3 

2 2 2 

 

14 

2 2 2 

3 2 2 

1 3 2 

 

15 

2 2 2 

2 2 2 

3 2 2 

 

16 

2 2 2 

2 2 2 

2 2 2 

 

 

 

 

17 

2 2 2 

2 2 2 

4 2 2 

 

18 

2 2 1 

2 2 2 

2 2 2 

 

19 

1 2 2 

2 1 4 

2 2 1 

 

20 

2 2 2 

3 3 3 

3 3 3 

 

21 

2 4 2 

1 2 2 

1 1 1 

 

22 

1 1 1 

2 2 1 

2 2 2 

 

23 

4 2 1 

4 2 2 

3 2 2 

 

24 

4 2 2 

4 3 2 

4 3 2 
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25 

3 2 3 

3 3 2 

3 3 2 

 

26 

2 3 3 

2 2 2 

1 1 1 

 

27 

3 3 2 

3 3 2 

3 3 2 

 

28 

3 4 3 

4 4 3 

1 3 4 

 

29 

2 2 3 

2 2 2 

3 2 2 

 

30 

2 2 2 

3 2 2 

2 2 2 

 

Code Count % 

1 36 13.33 

2 142 52.59 

3 58 21.48 

4 34 12.59 

 

 

 

 

 

 

LC 24: High Intensity Developed  

1 

3 3 3 

3 3 3 

3 3 3 

 

2 

2 2 2 

2 2 2 

2 2 2 

 

3 

4 4 4 

4 4 4 

4 4 4 

 

4 

2 2 2 

2 2 2 

2 2 2 

 

5 

4 4 4 

4 4 4 

4 4 4 
 
 

6 

1 1 1 

1 1 1 

1 1 1 

 

7 

2 2 2 

2 2 2 

2 2 2 

 

8 

2 2 2 

2 2 2 

1 2 2 

 

9 

4 4 4 

2 2 2 

2 2 2 

 

10 

2 2 2 

2 2 2 

4 4 4 

 

 

11 

2 2 2 

2 2 2 

2 2 2 

 

12 

3 2 2 

2 2 2 

4 2 2 

 

13 

8 8 8 

8 8 8 

3 3 3 

 

14 

2 2 2 

2 2 2 

2 2 2 

 

15 

2 2 2 

2 2 2 

4 4 4 
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16 

2 2 2 

2 2 2 

2 2 2 

 

17 

2 2 2 

2 2 2 

2 2 2 

 

18 

2 2 2 

4 4 4 

4 4 4 

 

19 

2 2 2 

2 2 2 

2 2 2 

 

20 

2 4 4 

2 2 2 

2 2 2 

 

21 

4 4 4 

4 4 4 

4 4 4 
 

22 

2 2 2 

2 2 2 

2 2 2 

 

23 

4 4 4 

4 4 4 

4 4 4 

 

24 

2 2 2 

2 2 2 

2 2 4 

 

25 

3 3 2 

3 3 2 

2 3 3 

 

26 

2 2 2 

2 2 2 

2 2 2 

 

27 

4 2 2 

3 2 2 

3 2 2 

 

28 

4 2 2 

2 2 2 

2 2 2 

 

29 

4 2 2 

2 2 1 

2 2 1 

 

30 

3 2 2 

4 2 2 

4 4 3 

 

Code Count % 

1 12 4.44 

2 178 65.93 

3 19 7.04 

4 61 22.59 

 

 

 

 

 

 

Appendix B: NLCD Undeveloped Classes Land Cover Data Collection 

 

Codes

Point 11 31 41 42 43 52 71 81 90 95

1 6 4 1 3 1 8 1 12 15 16

2 1 10 1 3 1 11 11 9 15 11

3 2 1 1 1 1 1 3 12 15 16

4 6 9 1 1 1 1 11 8 15 16

5 6 9 1 1 1 1 1 11 15 3

6 6 2 1 1 1 3 8 14 15 11

7 2 9 1 1 3 2 2 3 15 16

8 2 2 3 1 3 3 1 3 15 16

9 6 3 1 1 1 3 11 12 1 3

Undeveloped LC Class
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10 6 3 3 1 3 1 1 1 1 16

11 6 2 1 1 1 3 1 3 15 16

12 1 3 1 1 1 11 1 12 15 16

13 6 10 1 1 1 3 1 12 1 16

14 6 9 3 1 1 11 11 3 15 11

15 1 3 3 3 1 1 11 12 15 16

16 6 9 1 1 1 1 11 1 15 15

17 6 9 1 1 1 11 4 12 1 15

18 6 10 1 1 1 1 10 9 1 3

19 6 3 1 1 1 1 11 3 15 16

20 16 10 1 1 7 1 2 1 15 16

21 1 8 1 1 1 1 1 3 1 16

22 6 3 1 1 1 3 1 2 15 16

23 1 8 3 1 1 11 4 3 15 16

24 16 9 1 1 1 1 11 12 15 16

25 6 9 1 1 1 11 1 12 15 16

26 6 1 1 1 2 11 8 12 1 16

27 6 10 1 1 3 3 1 9 15 16

28 6 2 3 3 1 1 8 1 15 16

29 6 2 3 1 3 1 2 12 15 15

30 6 10 1 1 3 1 3 4 15 16

31 6 10 1 1 1 11 3 3 1 6

32 6 10 1 1 1 11 1 3 15 16

33 6 10 1 1 1 11 8 3 1 3

34 6 10 1 1 1 3 8 3 15 16

35 6 10 1 1 1 3 8 3 15 6

36 6 9 1 1 1 1 8 3 15 16

37 6 2 1 1 1 11 8 3 15 16

38 6 1 1 1 1 1 10 3 1 6

39 6 9 1 1 1 11 1 1 1 3

40 6 9 1 1 1 1 3 3 1 16

41 1 9 1 1 8 1 3 3 1 16

42 6 11 1 1 1 3 3 3 15 3

43 6 11 1 1 1 3 3 3 15 16

44 6 2 1 1 1 1 2 3 15 6

45 6 9 1 1 1 1 3 3 15 8

46 6 11 1 1 1 11 8 3 15 16

47 6 3 1 1 1 11 8 3 15 2

48 6 10 1 1 1 11 8 3 1 16

49 6 10 1 1 1 3 8 3 1 1

50 6 9 1 1 1 8 11 3 15 16
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Counts

11 21 22 23 24 31 41 42 43 52 71 81 90 95

Forest 6 130 66 36 12 3 43 46 41 20 13 5 15 1

Paved Roads 3 40 49 142 178 7 0 0 1 1 4 1 0 1

Grass 0 77 116 58 19 7 7 4 6 12 8 26 0 6

Built Structure 0 8 39 34 61 1 0 0 0 0 2 1 0 0

Golf Course 0 6 0 0 0 0 0 0 0 0 0 0 0 0

Open Water 39 8 0 0 0 0 0 0 0 0 0 0 0 4

Pool 0 1 0 0 0 0 0 0 1 0 0 0 0 0

Bare Soil 0 0 0 0 0 2 0 0 1 2 12 1 0 1

Landfill 0 0 0 0 0 14 0 0 0 0 0 3 0 0

Exposed Rock 0 0 0 0 0 13 0 0 0 0 2 0 0 0

Short Vegetation 0 0 0 0 0 3 0 0 0 15 9 1 0 3

Pasture/Hay 0 0 0 0 0 0 0 0 0 0 0 11 0 0

Crops 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Cemetery 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Woody Wetland 0 0 0 0 0 0 0 0 0 0 0 0 35 3

Herbaceous Wetland 2 0 0 0 0 0 0 0 0 0 0 0 0 31

NLCD LC Class

Percentages

11 21 22 23 24 31 41 42 43 52 71 81 90 95

Forest 0.12 0.48 0.24 0.13 0.04 0.06 0.86 0.92 0.82 0.40 0.26 0.10 0.30 0.02

Paved Roads 0.06 0.15 0.18 0.53 0.66 0.14 0 0 0.02 0.02 0.08 0.02 0 0.02

Grass 0 0.29 0.43 0.21 0.07 0.14 0.14 0.08 0.12 0.24 0.16 0.52 0 0.12

Built Structure 0 0.03 0.14 0.13 0.23 0.02 0 0 0 0 0.04 0.02 0 0

Golf Course 0 0.02 0 0 0 0 0 0 0 0 0 0 0 0

Open Water 0.78 0.03 0 0 0 0 0 0 0 0 0 0 0 0.08

Pool 0 0.004 0 0 0 0 0 0 0.02 0 0 0 0 0

Bare Soil 0 0 0 0 0 0.04 0 0 0.02 0.04 0.24 0.02 0 0.02

Landfill 0 0 0 0 0 0.28 0 0 0 0 0 0.06 0 0

Exposed Rock 0 0 0 0 0 0.26 0 0 0 0 0.04 0 0 0

Short Vegetation 0 0 0 0 0 0.06 0 0 0 0.30 0.18 0.02 0 0.06

Pasture/Hay 0 0 0 0 0 0 0 0 0 0 0 0.22 0 0

Cemetery 0 0 0 0 0 0 0 0 0 0 0 0.02 0 0

Woody Wetland 0 0 0 0 0 0 0 0 0 0 0 0 0.70 0.06

Herbaceous Wetland 0.04 0 0 0 0 0 0 0 0 0 0 0 0 0.62

NLCD LC Class



Carlton (2022)                                                                                                                                                       75 

Appendix C: Areas of NLCD Classes after Interpolation Procedure 2001-2020 

 

 

Pixels

Year LC11 LC21 LC22 LC23 LC24 LC31 LC41 LC42 LC43 LC52 LC71 LC81 LC90 LC95 Sum

2001 2553.7 134975 123917 54382 35460 1249.9 67698 59014 19310 1618.8 7669.1 14003 8450 109.16 530409

2002 2538.9 134997 124194 55041 35705 1232.2 67379 58685 19313 1614.2 7446.6 13771 8453.1 118 530488

2003 2524.1 135020 124472 55700 35950 1214.5 67059 58357 19315 1609.7 7224.2 13539 8456.2 126.85 530566

2004 2509.3 135042 124749 56359 36195 1196.8 66739 58029 19318 1605.1 7001.7 13307 8459.3 135.69 530645

2005 2494.5 135065 125027 57017 36439 1179.1 66420 57701 19320 1600.6 6779.2 13075 8462.4 144.53 530724

2006 2479.7 135087 125304 57676 36684 1161.4 66100 57373 19323 1596 6556.7 12843 8465.5 153.37 530803

2007 2464.9 135110 125581 58335 36929 1143.6 65780 57045 19326 1591.5 6334.2 12611 8468.6 162.21 530881

2008 2450.1 135132 125859 58994 37174 1125.9 65461 56716 19328 1587 6111.7 12379 8471.7 171.05 530960

2009 2435.3 135154 126136 59652 37419 1108.2 65141 56388 19331 1582.4 5889.3 12147 8474.8 179.9 531039

2010 2420.5 135177 126413 60311 37664 1090.5 64821 56060 19333 1577.9 5666.8 11915 8477.9 188.74 531118

2011 2405.7 135199 126691 60970 37909 1072.8 64502 55732 19336 1573.3 5444.3 11684 8481 197.58 531197

2012 2390.9 135222 126968 61629 38154 1055.1 64182 55404 19339 1568.8 5221.8 11452 8484.1 206.42 531275

2013 2376.1 135244 127245 62287 38399 1037.4 63862 55076 19341 1564.2 4999.3 11220 8487.2 215.26 531354

2014 2361.3 135267 127523 62946 38644 1019.6 63543 54747 19344 1559.7 4776.9 10988 8490.3 224.1 531433

2015 2346.5 135289 127800 63605 38889 1001.9 63223 54419 19346 1555.1 4554.4 10756 8493.4 232.95 531512

2016 2331.7 135312 128078 64264 39134 984.21 62904 54091 19349 1550.6 4331.9 10524 8496.5 241.79 531590

2017 2316.9 135334 128355 64922 39378 966.5 62584 53763 19352 1546.1 4109.4 10292 8499.6 250.63 531669

2018 2302.1 135357 128632 65581 39623 948.79 62264 53435 19354 1541.5 3886.9 10060 8502.7 259.47 531748

2019 2287.3 135379 128910 66240 39868 931.07 61945 53107 19357 1537 3664.4 9828.1 8505.8 268.31 531827

2020 2272.5 135402 129187 66899 40113 913.36 61625 52778 19359 1532.4 3442 9596.2 8508.9 277.15 531905

Year LC11 LC21 LC22 LC23 LC24 LC31 LC41 LC42 LC43 LC52 LC71 LC81 LC90 LC95

2001 0.0048 0.2545 0.2336 0.1025 0.0669 0.0024 0.1276 0.1113 0.0364 0.0031 0.0145 0.0264 0.0159 0.0002

2002 0.0048 0.2545 0.2341 0.1038 0.0673 0.0023 0.127 0.1106 0.0364 0.003 0.014 0.026 0.0159 0.0002

2003 0.0048 0.2545 0.2346 0.105 0.0678 0.0023 0.1264 0.11 0.0364 0.003 0.0136 0.0255 0.0159 0.0002

2004 0.0047 0.2545 0.2351 0.1062 0.0682 0.0023 0.1258 0.1094 0.0364 0.003 0.0132 0.0251 0.0159 0.0003

2005 0.0047 0.2545 0.2356 0.1074 0.0687 0.0022 0.1251 0.1087 0.0364 0.003 0.0128 0.0246 0.0159 0.0003

2006 0.0047 0.2545 0.2361 0.1087 0.0691 0.0022 0.1245 0.1081 0.0364 0.003 0.0124 0.0242 0.0159 0.0003

2007 0.0046 0.2545 0.2366 0.1099 0.0696 0.0022 0.1239 0.1075 0.0364 0.003 0.0119 0.0238 0.016 0.0003

2008 0.0046 0.2545 0.237 0.1111 0.07 0.0021 0.1233 0.1068 0.0364 0.003 0.0115 0.0233 0.016 0.0003

2009 0.0046 0.2545 0.2375 0.1123 0.0705 0.0021 0.1227 0.1062 0.0364 0.003 0.0111 0.0229 0.016 0.0003

2010 0.0046 0.2545 0.238 0.1136 0.0709 0.0021 0.122 0.1056 0.0364 0.003 0.0107 0.0224 0.016 0.0004

2011 0.0045 0.2545 0.2385 0.1148 0.0714 0.002 0.1214 0.1049 0.0364 0.003 0.0102 0.022 0.016 0.0004

2012 0.0045 0.2545 0.239 0.116 0.0718 0.002 0.1208 0.1043 0.0364 0.003 0.0098 0.0216 0.016 0.0004

2013 0.0045 0.2545 0.2395 0.1172 0.0723 0.002 0.1202 0.1037 0.0364 0.0029 0.0094 0.0211 0.016 0.0004

2014 0.0044 0.2545 0.24 0.1184 0.0727 0.0019 0.1196 0.103 0.0364 0.0029 0.009 0.0207 0.016 0.0004

2015 0.0044 0.2545 0.2404 0.1197 0.0732 0.0019 0.1189 0.1024 0.0364 0.0029 0.0086 0.0202 0.016 0.0004

2016 0.0044 0.2545 0.2409 0.1209 0.0736 0.0019 0.1183 0.1018 0.0364 0.0029 0.0081 0.0198 0.016 0.0005

2017 0.0044 0.2545 0.2414 0.1221 0.0741 0.0018 0.1177 0.1011 0.0364 0.0029 0.0077 0.0194 0.016 0.0005

2018 0.0043 0.2546 0.2419 0.1233 0.0745 0.0018 0.1171 0.1005 0.0364 0.0029 0.0073 0.0189 0.016 0.0005

2019 0.0043 0.2546 0.2424 0.1246 0.075 0.0018 0.1165 0.0999 0.0364 0.0029 0.0069 0.0185 0.016 0.0005

2020 0.0043 0.2546 0.2429 0.1258 0.0754 0.0017 0.1159 0.0992 0.0364 0.0029 0.0065 0.018 0.016 0.0005

Pixels Proportion
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Year LC11 LC21 LC22 LC23 LC24 LC31 LC41 LC42 LC43 LC52 LC71 LC81 LC90 LC95

2001 2.2961 121.36 111.42 48.896 31.882 1.1238 60.868 53.06 17.362 1.4555 6.8954 12.59 7.5975 0.0981

2002 2.2825 121.36 111.65 49.481 32.098 1.1077 60.572 52.757 17.362 1.4512 6.6944 12.38 7.5992 0.1061

2003 2.2688 121.36 111.88 50.066 32.313 1.0917 60.276 52.454 17.361 1.4469 6.4934 12.169 7.6008 0.114

2004 2.2552 121.36 112.11 50.65 32.529 1.0756 59.98 52.152 17.361 1.4426 6.2925 11.959 7.6025 0.1219

2005 2.2415 121.37 112.35 51.235 32.744 1.0595 59.683 51.849 17.361 1.4383 6.0917 11.749 7.6042 0.1299

2006 2.2279 121.37 112.58 51.819 32.959 1.0434 59.387 51.546 17.361 1.434 5.8909 11.539 7.6058 0.1378

2007 2.2143 121.37 112.81 52.403 33.174 1.0274 59.091 51.244 17.36 1.4297 5.6901 11.329 7.6075 0.1457

2008 2.2007 121.37 113.04 52.987 33.389 1.0113 58.796 50.942 17.36 1.4254 5.4895 11.119 7.6091 0.1536

2009 2.187 121.38 113.28 53.571 33.604 0.9952 58.5 50.639 17.36 1.4211 5.2888 10.909 7.6108 0.1616

2010 2.1734 121.38 113.51 54.154 33.819 0.9792 58.204 50.337 17.36 1.4168 5.0883 10.699 7.6124 0.1695

2011 2.1598 121.38 113.74 54.738 34.034 0.9631 57.909 50.035 17.36 1.4125 4.8878 10.489 7.6141 0.1774

2012 2.1462 121.38 113.97 55.321 34.249 0.9471 57.613 49.733 17.359 1.4082 4.6874 10.279 7.6157 0.1853

2013 2.1326 121.38 114.2 55.904 34.463 0.931 57.318 49.431 17.359 1.4039 4.487 10.07 7.6174 0.1932

2014 2.119 121.39 114.44 56.487 34.678 0.915 57.022 49.129 17.359 1.3996 4.2867 9.8602 7.619 0.2011

2015 2.1054 121.39 114.67 57.069 34.893 0.899 56.727 48.828 17.359 1.3954 4.0864 9.6506 7.6207 0.209

2016 2.0918 121.39 114.9 57.652 35.107 0.883 56.432 48.526 17.358 1.3911 3.8862 9.4412 7.6224 0.2169

2017 2.0782 121.39 115.13 58.234 35.322 0.8669 56.137 48.224 17.358 1.3868 3.6861 9.2317 7.624 0.2248

2018 2.0646 121.39 115.36 58.816 35.536 0.8509 55.842 47.923 17.358 1.3825 3.486 9.0224 7.6257 0.2327

2019 2.051 121.4 115.6 59.398 35.751 0.8349 55.547 47.622 17.358 1.3782 3.286 8.813 7.6273 0.2406

2020 2.0375 121.4 115.83 59.98 35.965 0.8189 55.252 47.32 17.357 1.3739 3.086 8.6038 7.629 0.2485

Area (km2)
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Appendix D: Observed Heights of Buildings and Vegetation in NLCD Classes 

 

Developed Open 

Space (21) 

Low Intensity 

Developed (22)

Medium Intensity 

Developed (23)

High Intensity 

Developed (24)

Points 1 4.86 6.27 14.35 4.86

2 7.48 10.4 6.02 5.54

3 8.91 9.69 11.99 7.1

4 7.14 11.05 9.03 5.65

5 9.58 13.13 8.29 15.24

6 8.52 10.59 11.69 4.41

7 8.95 8.71 10.98 7.08

8 6.03 8.86 10.22 9.2

9 10.44 11.63 30.21 11.04

10 8.02 8.75 4.47 15.74

11 7.92 6.28 5.23 8.95

12 10.89 9.86 9.15 13.2

13 9.47 15.2 7.81 6.87

14 12.57 6.77 5.83 8.25

15 10.5 4.84 6.03 5.23

16 8.2 10.06 22.99 12.47

17 7.25 11.7 7.25 9.41

18 9.52 10.99 61.85 8.3

19 8.38 8.2 6.93 13.85

20 7.04 10.69 7.38 4.11

21 9.39 6.57 5.27 6.4

22 6.71 7.49 17.69 27.6

23 11.21 7.89 5.08 13.07

24 13.25 4.6 7.82 5.47

25 5.35 9.47 6.53 14.01

26 9.38 10.48 7.62 10.93

27 6.77 8.2 5.4 7.19

28 11.29 8.21 8.46 8.41

29 8.23 5.51 7.89 8.17

30 7.51 4.94 10.85 31.26

Average 8.69 8.90 11.34 10.30

Building Heights (m)
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Deciduous 

Forest (41)

Coniferous 

Forest (42)

Mixed Forest 

(43)

Shurb/Scrub 

(52)

Pasture/Grassland 

(71,81)*

Vegetated 

Wetlands (90,95)

Points 1 26.21 24.99 23.77 3.96 0.12 8.45

2 23.47 21.95 22.25 17.07 0.12 9.95

3 33.83 32.00 21.03 7.01 0.12 10.47

4 18.98 27.74 22.86 0.91 0.12 4.06

5 26.21 36.27 21.34 2.44 0.12 3.78

6 22.25 26.82 16.15 6.71 0.12 11.51

7 22.56 27.74 24.38 4.88 0.12 7.79

8 23.77 22.56 23.47 4.57 0.12 12.88

9 19.51 32.61 29.87 2.74 0.12 12.26

10 21.34 27.74 22.86 1.22 0.12 8.86

11 29.57 29.57 24.69 5.79 0.12 13.74

12 25.30 18.90 17.68 7.32 0.12 4.08

13 28.35 26.21 23.77 4.27 0.12 8.27

14 26.21 22.25 19.20 2.74 0.12 7.84

15 28.96 31.39 32.00 4.57 0.12 10.49

16 21.34 26.52 22.56 2.13 0.12 11.35

17 21.34 24.38 15.85 1.83 0.12 12.02

18 15.54 28.65 16.76 3.66 0.12 4.79

19 17.37 23.77 10.67 3.66 0.12 8.3

20 19.51 29.57 25.60 1.22 0.12 8.24

21 27.43 34.14 31.09 7.32 0.12 5.64

22 24.38 26.21 31.09 1.22 0.12 10.17

23 26.52 32.31 27.13 3.35 0.12 13.14

24 23.77 26.21 16.15 0.91 0.12 9.34

25 17.07 22.86 27.74 4.27 0.12 8.88

26 20.73 33.22 24.08 2.13 0.12 4.06

27 23.47 37.49 24.08 3.05 0.12 6.02

28 31.09 23.47 24.69 2.74 0.12 11.42

29 31.39 34.14 28.35 5.18 0.12 10.73

30 23.77 19.51 23.47 0.91 0.12 6.8

Average 24.04 27.71 23.15 3.99 0.12 8.84

Vegetation Height (m)
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Appendix E: NLCD Developed Class Composition 95% Confidence Intervals 

 

  

Developed 

Open Space 

(21)

Low Intensity 

Developed 

(22)

Medium 

Intensity 

Developed 

(23)

High 

Intensity 

Developed 

(24)

Actual Land 

Cover 

Composition Forest Lower Bound 32.88 13.26 5.75 0

Average 48.15 24.44 13.33 4.44

Upper Bound 63.41 35.63 20.91 11.39

Grassland Lower Bound 17.68 33.48 13.03 0.44

Average 30.74 42.96 21.85 10.74

Upper Bound 43.8 52.45 30.67 21.05

Impervious Lower Bound 8.49 24.69 55.77 72.76

Average 17.78 33.7 64.44 84.82

Upper Bound 27.06 42.7 73.12 96.68

Open water Lower Bound 0 0 0 0

Average 3.33 0 0 0

Upper Bound 9.41 0 0 0

NLCD LC Class
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Appendix F: All Models’ Annual ET for All Watersheds 

 

South River Watershed (SRW) 
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Falling Creek Watershed 
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Fausett Creek Watershed 
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Appendix G: Sensitivity Analysis Results 

On the day with highest ET in entire study (J=168, June 17, 2001) 

 

Mixed Forest 

Variable Time-

step and 

source 

Value 

used on 

sensitivity 

date 

ET on that day 

(before surface 

water 

availability and 

areal weighting) 

Low 

value to 

try 

(10%) 

ET 

using 

low 

value 

High 

value 

to try 

(10%) 

ET 

using 

high 

value 

Temperature 

(ᵒC) 

Daily 

mean 

24.48  5.96 22.03 5.70 26.93 6.20 

Albedo Constant 

w/ LC 

0.1295 5.96 0.1165 6.06 0.1425 5.86 

Relative 

Humidity (%) 

Daily 

mean 

62.6 5.96 56.34 5.88 68.86 6.03 

Incoming Solar 

Radiation 

(MJ/m2) 

Daily 

mean 

30.44 5.96 27.40 5.36 33.48 6.57 

30 m Wind 

Speed (m/s) 

Daily 

mean 

2.94 5.96 2.64 5.88 3.23 6.02 

Feature Height 

(m) 

Constant 

w/ LC 

23.15 5.96 20.84 6.12 25.47 5.78 

 

Grass 

Variable Time-

step and 

source 

Value 

used on 

sensitivity 

date 

ET on that day 

(before surface 

water 

availability and 

areal weighting) 

Low 

value to 

try 

ET 

using 

low 

value 

High 

value 

to try 

ET 

using 

high 

value 

Temperature 

(ᵒC) 

Daily 

mean 

24.48 5.391 22.03 5.22 26.93 5.55 

Albedo Constant 

w LC 

0.144 5.391 0.129 5.48 0.158 5.30 

Relative 

Humidity (%) 

Daily 

mean 

62.6 5.391 56.34 5.38 68.86 5.40 

Incoming 

Solar 

Radiation 

(MJ/m2) 

Daily 

mean 

30.44 5.391 27.40 4.92 33.48 5.87 

3 m Wind 

Speed (m/s) 

Daily 

mean 

1.393 5.391 1.253 5.3970 1.53 5.386 

Feature 

Height (m) 

Constant 

w LC 

0.12 5.391 0.108 5.3978 0.132 5.3847 
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Low-Intensity Developed 

Variable Time-step 

and source 

Value 

used on 

sensitivity 

date 

ET on that day 

(before surface 

water 

availability and 

areal weighting) 

Low 

value 

to try 

ET 

using 

low 

value 

High 

value 

to try 

ET 

using 

high 

value 

Temperature 

(ᵒC) 

Daily 

mean 

24.48 2.49 22.03 2.41 26.93 2.54 

Albedo Constant 

w LC 

0.18 2.49 0.162 2.54 0.198 2.44 

Relative 

Humidity (%) 

Daily 

mean 

62.6 2.49 56.34 2.51 68.86 2.43 

Incoming 

Solar 

Radiation 

(MJ/m2) 

Daily 

mean 

30.44 2.49 27.40 2.29 33.48 2.69 

10 m Wind 

Speed (m/s) 

Daily 

mean 

2.02 2.49 1.82 2.51 2.22 2.47 

Feature Height 

(m) 

Constant 

w LC 

8.9 2.49 8.01 2.52 9.79 2.46 

 

High-Intensity Developed  

Variable Time-step 

and source 

Value 

used on 

sensitivity 

date 

ET on that day 

(before surface 

water 

availability and 

areal weighting) 

Low 

value 

to try 

ET 

using 

low 

value 

High 

value 

to try 

ET 

using 

high 

value 

Temperature 

(ᵒC) 

Daily 

mean 

24.48 2.50 22.03 2.42 26.93 2.56 

Albedo Constant 

w LC 

0.2 2.50 0.18 2.56 0.22 2.45 

Relative 

Humidity (%) 

Daily 

mean 

62.6 2.50 56.34 2.52 68.86 2.46 

Incoming 

Solar 

Radiation 

(MJ/m2) 

Daily 

mean 

30.44 2.50 27.40 2.35 33.48 2.70 

30 m Wind 

Speed (m/s) 

Daily 

mean 

2.94 2.50 2.64 2.52 3.23 2.49 

Feature Height 

(m) 

Constant 

w LC 

10.3 2.50 9.27 2.53 11.33 2.48 
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