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ABSTRACT 

Vaccination is the preventative measure that effectively decelerates the virus proliferation 

in a community. A successful response strategy toward pandemics can be obtained through 

selecting the optimal vaccine distribution route and minimizing the casualties by lowering the 

death rate and infection rate. In this thesis paper, we propose the Epidemic Vulnerability Index 

(EVI) that quantifies the potential risk of the subject via analyzing the COVID-19 patient dataset 

that correlates with mortality and social network analysis that affects the infection rate. We 

propagate the virus and vaccination in an Agent-based model based on real-world statistics of 

physical connections and features to 300,000 agents with nine vaccination criteria, including EVI. 

Vaccination through descending order of EVI has shown the best performance with the numerical 

outcome of 5.0% lower infection cases, 9.4% lower death cases, and 3.5% lower death rates than 

the average of other vaccination dissemination criteria. 
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1 INTRODUCTION  

In late 2020, a novel virus COVID-19 (SARS-CoV-2) [1,2] has been proliferated and deranged 

the world, changing the diverse scene of the modern systems. Hundreds of variant types have been 

reported to academia and have been dispersed by mutation inside the host (Alpha (2020.09.03), 

Beta (2020.09.01), Delta (2021.03.01), Delta+ (2021.03.31), Omicron (2021.11.12), Stealth 

Omicron (2021.11.17), Deltacron (2022.01.09), etc.), rapidly escalating the infection and death 

cases in worldwide level. Scientists and researchers have successfully invented the COVID-19 

vaccines, and vaccines were inoculated at an urgent pace. However, due to the increasing demand 

and the limited supply, insufficient resources were given to the governments. Furthermore, more 

and more variants have appeared, simultaneously increasing the inoculation doses of vaccines, and 

many nations suffer from severe deficiency of vaccines. This is a common phenomenon, especially 

during the preliminary stages after the outbreak, and while new variants are constantly being 

propagated, the optimal distribution of vaccines should be highly encouraged. Due to this situation, 

an effective vaccine distribution strategy must be established through multi-perspective analyses 

of virus dissemination dynamics and COVID-19 statistics. The main objective is to successfully 

gain control via decreasing the current infection rate and death rate by determining proper 

vaccination routes followed by other preventative measures.  

This thesis paper presents the Epidemic Vulnerability Index (EVI), which quantitatively 

calculates the potential risk of an individual subject through its unique clinical and social factors. 

Internal clinical factors such as age, gender, underlying diseases, etc., have statistically shown the 

relationships with the level of factors, indicating the potential mortality after the subject is infected. 

Various research was reported concerning the correlation between the internal characteristics of 

the COVID-19 patient and its impact, measuring the severity of the disease for the subject’s health 
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levels. Clinical factors indicate the risk level, which is quantifiable by a statistical dataset from 

past COVID-19 patients. The social factor is an external property that directly affects the infection 

rate compared to the clinical factor. By assessing the importance of the subject among its affiliated 

community, it offers the information of quantifying the potential risk of being infected. By 

implementing social network analysis, we compute the centrality of the nodes that compose the 

agent-based graph network. Discovering the nodes considered to have a relatively significant 

impact that accelerates the infection in advance is critical, as evading those nodes will appreciably 

lower the casualties. By collecting and analyzing the statistical attributes of the dataset involving 

past COVID-19 patient and their social network, this thesis numerically organizes the potential 

effect of internal factors and external factors through multiple simulations. 

Through the EVI’s risk assessment, we experimentally search the effective vaccination 

route based on the graph network by leveraging the EVI. Bringing the pandemic to an end means 

minimizing the death cases that were already infected, and gradually the number of infected hosts 

converges to zero. EVI is specifically designed to estimate the degree of possible mortality and 

infection rate by incorporating the unique factors of each subject; thus, considering EVI when 

devising vaccine distribution strategy is suitable. In order to show the viability, we design the 

simulation with an Agent-based Model (ABM) for validation. Our constructed ABM is graph-

structured with 300,000 agents (subjects; nodes) and its physical interconnection (directed edges). 

In an ABM, the nodes indicate the hosts that the virus inside the community can infect. The nodes 

are statistically allocated with the designated clinical factors and set the edges based on their age. 

Edges represent the physical contacts, and the number of edges is determined based on the number 

of physical connections under the geographical constraints. During the initial steps, all nodes start 

with non-infected. Our simulation randomly selects the number of initial spreaders and injects the 
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vaccines into the specific targets through the nine simulation criteria. We adjust the parameters to 

observe the variation and outcome of infection cases, death cases, and death rates as the virus 

spreads throughout the community. 

Contributions of this thesis can be narrowed down to three categories: 

1. This thesis proposes the Epidemic Vulnerability Index that numerically estimates the 

potential risk of the subject, primarily focusing on quantifying the risk of death rate (clinical 

factors) and the infection rate (social factors) through statistical analysis associated with 

corresponding attributes. By fine-tuning the parameters, EVI could be optimized in given scenarios 

and heterogeneous settings. 

2. This thesis suggests the stochastic proliferation simulation algorithm in the predefined 

ABM. ABM is constructed under real-world statistics, which allocates the embedded features with 

statistical properties of real-life to enhance confidence. Simulation-based ABM offers estimation 

and inference towards making prognosis of future pandemic processes. Also, it serves as a 

reference model for establishing an effective vaccine distribution route through predictive analysis.  

3. By conducting nine vaccine distribution simulation scenarios, including the previously 

suggested metrics such as CVI [3], SVI [4], and PVI [5], this thesis offers the comparison of three 

metrics among the ABM: infection cases, death cases, and death rate. The results show that 

vaccination through descending order of EVI is shown to have the lowest value in those metrics. 

4.  We suggest the practical analysis based on simulation results, interpreting the difference 

between the COVID-19 statistics shown until the present time, and explicating the valid vaccine 

dissemination approach to inaugurate an effective impact. 

Predicting and modeling the dynamics of pandemic proliferation is a complex 

mathematical task, for it is not clearly defined whether it is a deterministic process or a 
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probabilistic process. Furthermore, the estimation accuracy may not be robust for intrinsic features 

of the existing community comprehensively varies, and fine-tuning the parameters for regional 

prognosis approximation is required. In addition, parameters should not be static with respect to 

time (i.e., random walk) but should dynamically be changed. Moreover, new variables are 

constantly emerging with the occasional period not only in statistics concerning clinical & social 

attributes but in cross domains such as political agenda, economic affairs, natural incidents, 

locational environments, etc. Therefore, an accurate prediction along with estimating a vaccine 

distribution impact with diverse circumstances is an uneasy task. In such a convoluted setting, 

possible results based on a simulation model through multiple empirical results offer us greedy-

based options. It directs the value of coordinating the parameters in the search space, although a 

global minimum is not guaranteed. In addition, conducting data analysis aids when discovering 

the shape of the search space, providing insights and references. Likewise, this thesis presents the 

possibility of options when deriving the optimal solutions, especially with respect to locating the 

optimal path for vaccine dispersion to minimize death cases and infection cases compared to the 

existing vaccine distribution method and other pre-defined indexes. Through a comprehensive 

analysis of the past COVID-19 patient dataset among the 50 States of the United States, we 

aggregate the independent risks of each feature with respect to infection rate and death rate. We 

normalize the values through the linear combination of the risks based on multiple feature criteria. 

With the ABM consisting of 300,000 agents with the real-world statistical dataset, we 

experimentally spread the virus in our diffusion algorithm as well as vaccines with nine criteria, 

including EVI, and observed the outcome of infection cases, death cases, and cured cases, and 

agents with no virus. Finally, we evaluate the numerical ramifications of each vaccination scenario 

and validate our assertion. 
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This thesis paper is organized as follows. In section 2, the precedented researches were 

explicated in three sub-sections: Vaccine distribution in epidemiological cases, risk evaluation in 

pandemics, and the SIR model. In section 3, we present the mortality computation based on the 

clinical statistical dataset of COVID-19 patients in the US. Section 4 calculates the infection rate 

with the social statistical dataset and designs the simulation and the ABM analogous to reality for 

accurate dynamics. Section 5 introduces the proliferation algorithm and nine vaccine distribution 

simulation results, comparing the infection, death cases, and death rates that validate the impact. 

In addition, we suggest interpretations of the empirical result, followed by reflecting the 

explanation of the real-world COVID-19 statistics. Finally, we conclude this thesis paper by 

proposing feasible future applications and limitations in the real-practice concerning the current 

pandemic trend. 
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2 RELATED WORKS 

According to the World Health Organization (WHO), the novel virus that incurs fatal 

diseases has constantly emerged, threatening the world's safety. Several global-scale pandemics 

have struck the world throughout the past two decades, such as SARS, Ebola, and COVID-19. 

Accordingly, epidemiological studies that evaluate the potential risk based on the statistical 

biological dataset were conducted, suggesting the index that assesses the relative risk [3-11]. These 

indices serve as a reference model that can be considered when making virus-preventative 

strategies [12-16], which helps as an auxiliary method for modeling more comprehensive and 

accurate virus dynamics. Furthermore, strategic approaches to allocating medical supplies such as 

vaccines, masks, sanitizers, and medicine in a suitable time and place have been studied [17-20] 

concerning the current environmental status (e.g., regional factors, infra status, etc.) for an 

effective propagation. The previous research that defines the index that estimates the risk primarily 

concentrates on the clinical risk, which considers the internal biometric attributes of the patient 

infected by the target virus. However, this thesis paper presents the risk that aggregates the 

infection rate and vaccine distribution effect based on death rate and infection rate. This section is 

composed of three subsections. In the first subsection, related works concerning vaccine 

distribution methodology were introduced. In the second subsection, past studies evaluating the 

internal risk when the host is infected were explained. Finally, the SIR model analogous to the 

vaccination distribution simulation is analyzed in detail in the final subsection.  

 

2.1 Optimal Vaccine Distribution 

Among the various preventative measures against pandemics, the vaccine is a medically 

validated option and thus recommended to contain the virus dispersion among the community 
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effectively. The most effective way is to inject the vaccines [21] into every possible host, but the 

limited production is a constraint that hinders while the infection is an ongoing process. This 

phenomenon is evident, especially during the initial phase after the vaccine starts being 

propagated. Thus, an effective diffusion scheme is crucial through diverse analysis to make the 

best use of the existing resources.  

Many studies assume that the epidemic proliferation process is deterministic and develop 

models using Ordinary Differential Equation (ODE). On the other hand, research is underway to 

construct probabilistic predictive models. Matrajt et al. [22] suggested evidence-based guidance 

that shows the effect of the vaccination route through empirical studies. It focused on the analysis 

of vaccination by age group throughout the time period. Various empirical studies that illustrate 

the vaccination effect were suggested in order to discover the optimal vaccination trajectory. 

Frequently, the vaccination process conducted the simulations on the Agent-Based Model process 

[23, 24], which is composed of unique entities (agents), and their stochastic interaction triggers 

the dissemination of the virus throughout the community model. Kerr et al. [15] proposed the 

agent-based COVID-19 simulator that can be adjusted to specific locational properties and 

hyperparameters, which offers adaptability to a practical scenario. Silva et al. [25] devised seven 

social activities of the designated regional community. This research correlated with the economic 

impact and the death cases in the predefined ABM. Studies that formulated AGM under regional 

constraints that incorporate the indigenous characteristics were suggested, such as the city of 

Bogatá, Columbia (Gomez et al. [26]), and New York City, USA (Hoertel et al. [27]). Subsequent 

to constructing a real-world-based ABM structure, the predictions and measuring of the variations 

of casualties and other factors have been studied via simulations using disease dynamics. Hinch et 

al. [28] designed the traceable ABM model based on the COVID-19 patients of England with the 
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age-stratified patient’s physical contact dataset. In a similar context, one of the criteria that this 

thesis implemented the analysis was the age-stratified groups since the open dataset that provides 

the information of physical contact per time unit that we collected was evidently categorized by 

age groups. Furthermore, interconnection via age group is a decisive criterion that has been 

validated [29] as a useful measure. The recent vaccination distribution studies’ major limitation is 

that it only concentrates on the criteria of age-stratified group feature. This is due to most of the 

COVID-19 open-source datasets being assorted via age groups; however, this thesis endeavors to 

collect more datasets concerning other features. Apart from the age-level feature, we consider 22 

types of underlying disease, centrality, locational factors, and gender to enhance the accuracy of 

scoring the potential risk or EVI. Through this estimation, we implement the EVI for designing an 

effective vaccine distribution route that triggers a lower number of cases of infection and death in 

the ABM assembled from real-world statistics. 

 

2.2 Risk Evaluation based on Statistical Data 

As previously described, various studies were conducted to accurately assess possible 

dangers that the subject may involve after the host was infected. This is considered critical research 

for categorizing the degree of risk will lead to effectively determining the target set, which will 

broadly impact the number of casualties. These studies measured the future statistics based on the 

current risk scenarios for successful countermeasures to stagnate the negative impact. These 

studies were conducted not only in disease proliferation but other natural disasters. For example, 

The Centers for Disease Control (CDC) proposed the universal index (Social Vulnerability Index, 

SVI) [4] to quantify the potential vulnerability when exposed to a natural disaster. It was initially 

designed based on the accounted damage of the casualties from Hurricane Katrina in 2005. This 
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served as an impactive criterion to classify the social vulnerability and the risk that may follow 

when exposed to danger, as the socially vulnerable are highly prone to be adversely affected. 

Likewise, weighing the vulnerabilities with the age relation has been indexed (Frailty Index, FI 

[9]), measuring the relative status of physical and mental health. Several studies were introduced 

that discovered the relationships between FI and the COVID-19 risk [10, 11], primarily focused 

on elderly citizens. However, some research asserts that the FI is not sufficiently suitable to define 

the internal threat of COVID-19 patients. Based on the COVID-19 patient diagnosis rate in the 

state of Washington in the US, Amram et al. [6] graphically visualized the geographical maps that 

offer intuitive statistics that are plainly opened to the public. It displays the county-level risk and 

the current statistics of COVID casualties of infection and death cases. Decaprio et al. [3] 

suggested the COVID-19 index (C-19 Index), which computed the risk, utilizing the XGBoost 

machine learning algorithm via training the respiratory disease patient dataset. The respiratory 

patient shares similar clinical symptoms to the COVID-19 patient and is linearly proportional to 

the death cases of the COVID-19 patient, but implementing another target dataset lacks credibility 

when adopting the response strategies. Marvel et al. [5] proposed a similar index: Pandemic 

Vulnerability Index (PVI), which calculates the risk scores with the Bayesian model by training 

the US county-level COVID-19 patient dataset. The authors also presented the dashboard of 

statistical visualization in a geographical display that shows the numerical casualties. Previously 

suggested indexes mainly were trained through the county-unit risk related to death, offering the 

current risk scores of the county [30]. Furthermore, studies were presented that analyzed the 

economic and financial impact and quantified the degree [8], such as Global Fear Index [7]. Most 

of the studies are concentrated on identifying the hidden threats when the host is infected; thus, 

only clinical factors were taken into account. Also, geographical units such as state-level and 
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county-level death rates were statistically verified, which is also related to clinical aspects. This 

thesis takes further steps, considering biological and social factors, covering the death rate and 

infection rate simultaneously. Since infection rate and the death rate have a negative linear 

correlation in the perspective of entity features (which will be further explained in section 4~5), 

both factors must coexist when distributing vaccines in order to eradicate the virus in the 

community successfully. By optimally adjusting the contribution weights of each attribute 

depending on the current situation, establishing the adaptive measure for effective response can be 

obtained. 

 

2.3 SIR Model 

SIR model is a well-known and widely used mathematical model that was proposed by 

William. O. Kermack and A. G. McKendrick (1927), and along with the basic reproduction 

number (𝑅0), it has been a fundamental model that has been applied to prognose the variation of a 

number of the Susceptible, Infectious, and Recovered throughout the time. 𝑅0  offers the 

quantitative measurement of the number of infections from the patient zero. When 𝑅0 > 1, it 

becomes a pandemic, spreading the infection exponentially during the initial steps. Additionally, 

the virus that shows 𝑅0 ≈ 1 is known to be endemic that spreads only in a specific region. On the 

contrary, the infection cases decrease when 𝑅0 < 1, the virus perishes from the community, with 

every host recovered. The epidemiologists from the seven authoritative medical institutions have 

declared that the 𝑅0 ranges from 2.2 to 3.3 (2020. May), which is sufficient to be a pandemic. The 

Spanish flu (H1N1 virus) influenza from 1918 had approximately 1.8 𝑅0 score, SARS (Severe 

Acute Respiratory Syndrome, 2002) had 3.0 𝑅0 score, and the MERS (Middle East Respiratory 
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Syndrome, 2012) had 0.8 ~ 1.3 𝑅0 score. MERS was known as an epidemic, which entails a lower 

𝑅0 value compared to the pandemic virus.  

𝑅0  is defined through the aggregation of the following terms: 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒 (𝜏) ×

𝑐𝑜𝑛𝑡𝑎𝑐𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 (𝑘) × 𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛 𝑝𝑒𝑟𝑖𝑜𝑑 (𝛿) . Mostly, 𝜏  and 𝛿  approximates to the constant 

(i.e., max(𝛿) ≈ 14 𝑑𝑎𝑦𝑠 ), whereas 𝑘  may differ by surrounding factors such as regional 

population density, patient’s trajectory, etc. When 𝑅0  explains the numerical value for initial 

patient zero, another index called Effective Reproduction Number was suggested 𝑅𝐸  which 

implies the average of infection cases from the patient. 𝑅𝐸 differs from the 𝑅0 from the fact that it 

may vary from the factors that hinders the virus transmission such as vaccination or other 

preventative endeavors. Moreover, 𝑅𝑇 was proposed which indicates the 𝑅𝐸 in certain time period 

𝑇, and most studies refer to the combination of 𝑅𝐸 and 𝑅𝑇 as 𝑅 [31], such that 𝑅 ≠ 𝑅0. In order to 

decrease the virus proliferation and bring an end to the infection towards the susceptible is to 

discover an effective scheme to make 𝑅 < 𝑅0 . To elaborate, infection cases from 𝑅  should 

gradually be lower than initial 𝑅0, until lim
𝑡→𝑇

𝑅𝑡 < 1 where 𝑇 is a time period. Thus, government 

and health authorities invest their full efforts with respect to decrease the value of 𝜏, 𝑘, 𝛿. A well-

known method to decrease 𝜏  is to encourage washing hands and wear masks, and there are 

measures such as quarantines for the infected and social distancing to diminish 𝑘 . Hospital 

treatment and enhancing immune system would minimize 𝛿 . Let 𝑤𝜏 ⋅ 𝜏 + 𝑤𝑘 ⋅ 𝑘 + 𝑤𝛿 ⋅ 𝛿 = 𝑐, 

which connotates the ratio of prevention. The 𝑅 can be defined with the following function 𝑅 =

𝑅0(1 − 𝑐)(1 − 𝑝) where 𝑝 is the population ratio (%) who maintains the immune system towards 

the virus. This informs that increasing the 𝑐, 𝑝 will impede the spread. Assume that 𝑐 = 0, and we 

have 𝑅 = 𝑅0(1)(1 − 𝑝). Let 𝑅0 = 3 and our objective is to become 𝑅 to be lower than 1. In this 

case, 1 < 3(1 − 𝑝), and 𝑝 >
1

3
, which implies that the 

1

3
 of population is infected, it will downturn 
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the infection having 𝑅 < 1. However, 𝑅 model is inferior to the super spreader; the spreader who 

infects others with much larger than 𝑅 or 𝑅0, and this indicates that the 𝑅 is susceptible to outliers. 

SIR model is composed of three following terms: S, I, R, each indicating number of susceptible, 

infected, and recovered, respectively. 𝑆 + 𝐼 + 𝑅 = 𝑁, where 𝑁 refers to the number of populations 

in the target community. Through derivatives of each term by time t, we know that 
𝑑𝑆

𝑑𝑡
+

𝑑𝐼

𝑑𝑡
+
𝑑𝑅

𝑑𝑡
=

0 , also |
𝑑𝑆

𝑑𝑡
| = |

𝑑𝐼

𝑑𝑡
| + |

𝑑𝑅

𝑑𝑡
| . Note that when 

𝑑2𝐼

𝑑𝑡2
> 0 , the number of patients accumulates 

exponentially, and 
𝑑2𝐼

𝑑𝑡2
< 0  refers that the increasing speed of accumulation are decreasing. 

Furthermore, 
𝑑𝐼

𝑑𝑡
= 𝛽𝑆𝐼 − 𝛾𝐼, where 𝛽 indicates the probability of contact resulting infection, and 

𝛾 is the recovery time such that 𝛾 =
1

𝑝𝑒𝑟𝑖𝑜𝑑 𝑜𝑓 𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛
. 𝛾𝐼 =

𝑑𝑅

𝑑𝑡
, which makes 

𝑑𝑆

𝑑𝑡
= −𝛽𝑆𝐼. This 

leads to when 𝛽𝑆𝐼 − 𝛾𝐼 > 0, the number of infections increases, and 𝛽𝑆𝐼 > 𝛾𝐼, dividing each term 

with I, and then 𝛾, we have the following form: (
𝛽𝑆

𝛾
> 1) ≡ (𝑅0 > 1), which shows that 𝑅0 ≈

𝛽𝑆

𝛾
. 

Let 𝑆̃, 𝐼, 𝑅̃ ∈ ℝ be the percentage of overall population such that 𝑆̃ =
𝑆

𝑁
, 𝐼 =

𝐼

𝑁
, 𝑅̃ =

𝑅

𝑁
 and 𝑆̃ + 𝐼 +

𝑅̃ = 1. Note that the 𝑆̃ = 1 during the initial phases. When integrating the three derivative terms, 

we can measure the differences affecting the overall population throughout the time. We observe 

the two cases when the proportion of the patient zero ∈ 𝐼 is 0.0001 (0.01%, case 1) and 0.01 (1%, 

case 2). The observation after multiple simulation offers that the two of the time frames 𝑡 and 𝑡′ 

where 
𝑑𝐼

𝑑𝑡
= 0 in case 1 and 𝑡′ where 

𝑑𝐼

𝑑𝑡′
= 0 has the relationship of 𝑡 > 𝑡′. However, the results 

have shown that ∑ 𝑅𝑡∀𝑡 ≈ ∑ 𝑅𝑡′∀𝑡′  where 𝑅𝑡 notes the number of recovered at the time t. To be 

specific, |∑ 𝑅𝑡∀𝑡 | − |∑ 𝑅𝑡′∀𝑡′ | ≈ 0.1, which does not hold relatively large difference compared to 

the significant gap between the two inputs.  
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In order to obtain further explainability, merging additional terms based on the SIR model 

would increase the credibility of the primary model. For instance, adding a number of exposed (E) 

into the model makes it an SEIR model where E indicates that the host is indeed infected, but it 

does not transmit the virus to others for a certain preliminary period. Also, multiple terms were 

added, such as the SEIQRS model which Q indicates the number of Quarantine and the last letter 

S is identical to the initial S (Susceptible). This implies that the patient who survived the infected 

set loses the immune system or does not produce the immune system, which directs the patient 

into set S. These settings are considered typical in the real-world scenario since the COVID-19 era 

is being elongated, and new variant virus types are emerging every day. The variations of the terms 

from this expanded model incorporate significant and distinct phases compared to the original SIR 

model. The notable difference is that it possesses the waves of the surge in infection cases, such 

that stochastic inference implies reinfection. Thus, new waves of explosive infection occur 

repeatedly up to 𝑛 waves (i.e., 𝑛 = 3 in the SEIQRS model).  

Fundamentally, accurate prediction of the target variables is an arduous task since the 

variation of variables is a dynamic process that is constantly being changed. For example, variables 

𝛽, 𝛾 are directly being affected by the current preventive measures and other factors that might 

alter the values of 𝑘 in terms of the 𝑅 and 𝑅0. Types of research were conducted to enhance the 

predictability of the metrics. Bubar et al. [12] suggested five vaccination distribution schemes 

analyzed based on the standard of age stratification and showed the coinciding result efficacy after 

vaccination simulations with SEIR [21] (Susceptible, Exposed, Infectious, Recovered) simulation 

model. Our work is similar to what this manuscript presents, concerning the derivatives throughout 

the time of major factors such as infection, death, vaccinated, and recovered cases. Our simulation 
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considers the various properties of the subjects, and more experimental cases were reflected 

compared to [21] to organize a realistic simulation framework.  

Nguemdjo et al. [32] suggested the 𝑅0 index based on the COVID-19 patient during the 

March-April 2020 in the city of Cameroon. It utilized the SIR model to observe the constant 𝑐, and 

with different input values, the authors have empirically suggested the diverse outcome and their 

descriptive statistics of the infection cases result. Similarly, Ajbar et al. [33, 34] applied the classic 

SIR model but merged it with other factors of non-linear removal rates and effects of media on 

public awareness based on the COVID-19 patient data of Saudi Arabia. The authors conducted an 

analysis of computing the statistics implementing the Hopf bifurcations of upper and lower cycles. 

Another interesting research was proposed (Alanazi et al., 2020) [35] that simulates forecasting 

the three COVID-19 scenarios: No actions, Lockdown, and new medicine, and these categories 

are fundamental scenarios that help to measure the baselines of ongoing pandemics. They 

suggested the new SIR-F model, where F indicates the ‘fatal with the confirmation’ based on the 

time-series forecasting machine learning algorithm. Chen et al. [36] numerically analyzed the 

overall progress of spreading COVID-19 in the affiliated community with an adaptive time-

dependent SIR model and the period of turning the reproduction number less than 1 with the 

COVID-19 dataset of China. Moreover, the authors attempted to explain the impact of social 

distancing on asymptomatic COVID-19 patients, adding two factors: detectable infection and 

undetectable cases. By the same token, SIR models calibrating the time-dependent parameters 

based on the deep learning model were proposed (Jo et al., 2020) [37], validating their model 

dynamics with the South Korea COVID-19 dataset. Likewise, diverse enhanced SIR models for 

COVID-19 were suggested, and Ram et al. [38] devised a modified age-structured SIR model 

implementing the COVID-19 dataset from the state of Washington in the US, including their 
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affiliated counties. Through the county level age-stratified analysis of multiple perspectives such 

as social distancing, population statistics, and the operation of public service (school, work) 

policies. On the contrary, Moein et al. [39] proposed their work, arguing the low performance of 

the SIR model with the dataset of Iran, Isfahan province, during Feb. 14th to April 11th, raising 

refutations of the current research about predicting the overall phase of COVID-19 transmission 

progress. 

Based on the SIR model analysis, this research adds another metric of vaccination, and we 

validate the proliferation of the immunization through the simulation on the ABM. Our research 

is the first research to construct the ABM that is analogous to real-world and simulate the 

vaccination to observe the statistical impact that offers dynamics of COVID-19 dispersion. 

Through thorough COVID-19 patient analysis concerning clinical features and social features, we 

compute the potential risk (EVI) that quantifies the internal (mortality) and external (infection rate) 

risk levels. Through ABM-based simulation, we estimate the vaccination effect among the given 

randomly convoluted ABM-model benchmark dataset and compare the impact of essential metrics 

between other vaccination criteria: infection cases, death cases, and death rate. The validation 

standard offers a numerical comparison of existing metrics and demonstrates the effectiveness with 

respect to propagating the vaccines into the optimal subjects concerning both infection rate and 

death rate regarding its internal and external factors. 
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3 MORTALITY AND CLINICAL FACTORS 

The death rate of the infected host has been shown to involve a high impact concerning 

internal conditions. In a general perspective, fatality, when contracted by an infectious disease 

such as COVID-19, corresponds with the pertaining intrinsic health issues. In a similar context, 

the correlation between the lethality of the disease and the level of health is shown to have a 

positive correlation, which can be interpreted as the risk accumulates, depending on the internal 

basis. In addition, the immune system that produces the antibody when the virus is injected differs 

from the independent subject, and to constantly generate the profitable cells, fully activating the 

immune system is imperative. This section concentrates on the statistics of the three fundamental 

and influential factors concerning the death rate: age-stratified groups, types of comorbidities, and 

gender. Based on the COVID-19 benchmark dataset with those factors, our aim is to estimate the 

internal risk by statistically measuring the susceptibility.  

 

3.1 Mortality of Age-stratified Groups and Gender  

The existing medical institutions, such as CDC and WHO, have announced that there is a 

clear sign that age and gender are vital properties to measure the subject’s risk [40, 41]. Most 

patients that show acute symptoms tend to possess relatively higher ages than patients with a lower 

fatality, which causes a higher level of death rate. Among the rate indexes that were posted by the 

Worldometer, 2021; Case Fatality Rate (CFR), Infection Fatality Rate (IFR), Crude mortality Rate 

(CMR) that was computed based on the age groups, the result has shown that the groups with more 

significant age level are susceptible to the disease with high mortality rate. In a sense, the age 

group does offer a precise risk level, as the most disease does. Furthermore, from the Global Health 

50/50, most of the countries with open COVID-19 patient datasets had shown to have a higher 
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death rate for male patients instead for female patients. Several nations have shown this in drastic 

statistics. For example, until 2020 December, Thailand, Nigeria, Yemen, Bangladesh, 

Afghanistan, Pakistan, and Malawi had shown that almost 75% of the death cases have occurred 

from male patients. India and Mexico had around 64% death cases for males and 58% for Brazil. 

There are diverse perspectives assert a valid explanation related to this statistical observation. First, 

many scientists suggest that females possess a relatively more robust immune system. Males are 

more frequently born (105:100); however, a year after the infants are born, the ratio approximates 

to equivalent proportion in worldwide statistics. Also, it is undoubtedly true that the lifespan of 

females much higher than males (i.e., around 6~8 years), and the ratio of gender population after 

the age of 100, females are four times larger than males. This phenomenon was validated in another 

pandemic SARS in 2003 and during the Spanish flu. There are assertions that this originates from 

daily habits, such as the male ratio of smokers being significantly large or males tend to involve 

in hazardous affairs. Also, females possess two X chromosomes, and this functions as an advantage 

for performing better tasks when one X chromosome is vulnerable; the other entity can operate as 

a substitution, whereas having a single X chromosome mainly illustrates a clear sign of weakness. 

Moreover, hormones that secrete primarily from the male, such as testosterone, tend to debilitate 

the immune system. 

Let 𝑠𝑖 be an individual subject, with 𝑆 = ⋃ 𝑠𝑖∀𝑖  where S refers to the population. We set 

notation of the mortality of subject 𝑠𝑖  as 𝕄(⋅) , and 𝕄(𝑠∃𝑖) ≔ 𝑟/𝑆  where the 𝑟  indicates the 

number of death cases. As the statistical data presents, subjects that are affiliated with relatively 

higher age groups have greater mortality, as shown in Figure 3.1 (b), in four countries during the 

given period. Let age group 𝐴 ∶= {𝑎𝑘|1 ≤ 𝑘 ≤ 9, 𝑘 ∈ ℕ} , where 𝑎𝑘  denotes the number of 

subjects among the age range of 0-4, 5-17, 18-29, 30-39, 40-49, 50-64, 65-74, 75-84, 85+ 
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respectively. We denote that 𝑎∃𝑘 = ⋃ 𝑠(𝑘,𝑖′)∀𝑖′ , and 𝑠(𝑘,𝑖′) refers to a subject with the age range of 

corresponding 𝑎𝑘  where 𝑖′  indicates the index. Currently, 𝑛(𝑆) = 𝑛(𝐴) = ∑ 𝑛(𝑎𝑘)∀𝑘  and 

𝕄(𝑠(𝑘,𝑖)) ∶= 𝑟𝑘/𝑎𝑘. 

 

 

(a) 

 

(b) 

Figure 3.1 (a) COVID-19 patients in USA assorted by sex (b) COVID-19 Mortality by 

given age-stratified groups in corresponding countries by a given period 
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Based on the collected raw COVID-19 patient dataset [42, 43], we generalize the required 

parameters by processing the data, and the mechanisms are as follows. As of March 31, 2021, the 

accumulated proportion of COVID-19 cases in gender (male and female) is 6,277,679 (Female; 

𝐼𝐹 ) and 5,750,585 (male, 𝐼𝑀). The relationship of those values shows that 𝐼𝐹 = 𝐼𝑀 ⋅ 1.09, and 

𝐼𝐹: 𝐼𝑀 = 52.2: 47.8, having approximately 4.4% higher for the 𝐼𝐹 as other studies have specified 

such as [40]. Let the conditional probability 𝑃(𝑟𝐺|𝐼) ∶= 𝜇(𝑠𝐺) such that 𝐼𝐹 ⋃𝐼𝑀 = 𝐼, 𝐺 ∈ 𝑠𝑒𝑥 =

{𝐹,𝑀}. The input 𝑠𝐺 indicates the subject that has the corresponding sex 𝐺 and 𝑟𝐺 refers to the 

number of death cases in assigned sex types, with the ratio of 𝕄(𝑠𝐹):𝕄(𝑠𝑀) = 0.559: 0.441. 

Proportionally, both terms differ by the values of 0.5 ± 0.059, where we denote ±0.059 = 𝑃𝐺  as 

shown in equation (1). The indicating subject’s death rate that was allocated with the age index k 

and sex G can be defined as 𝕄(𝑠𝐺) ⋅ (1 + 𝑃𝐺) ≔ 𝕄(𝑠(𝑘,𝐺)) , followed by normalizing the 

component with min-max normalization, assigning the values 𝕄(𝑠(𝑘,𝐺)) ∈ [0,1]. Although the 

min-max normalization computation is known to be less productive when indicating the 

relationship if the dataset incorporates outliers, however, our case is suitable to use it for no outliers 

exist since G is deterministic. Equation (2) defines the statistical risk of 𝕄(𝑠(𝑘,𝐺)) as follows. 

𝑃𝐺 ∶=
𝕄(𝑠𝐺)

∑ 𝑠𝐺𝐺∈𝑠𝑒𝑥
− 0.5 

(1) 

𝕄(𝑠(𝑘,𝐺)) ∶=
𝕄(𝑠𝑘)(𝑃𝐺 + 1) − 𝑚𝑖𝑛 (𝕄(𝑠𝑘)(𝑃𝐺 + 1))

𝑚𝑎𝑥(𝕄(𝑠𝑘)(𝑃𝐺 + 1)) − 𝑚𝑖𝑛 (𝕄(𝑠𝑘)(𝑃𝐺 + 1))
 

(2) 
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3.2 Comorbidities and Mortality 

If the patient possesses Comorbidities, the death rate is relatively much higher than the 

patient with no underlying disease [44-48]. Past COVID-19 studies have observed this 

phenomenon, and researchers have asserted that there is a strong correlation between the death 

rate and several underlying diseases, which implies that comorbidities escalate the potential risk. 

In [44], the research shows that up to 90% of hospitalized COVID-19 patients have suffered from 

comorbidities before the infection. For example, according to the Korea Disease Control and 

Prevention Agency, COVID-19 patient death cases (5,382, Jan. 2022) accompanied underlying 

diseases in a total of 10,366, having 1.9 comorbidities per patient. Among 5,382 cases, only 169 

cases did not have any comorbidities. Depending on the country, the comorbidity types that 

lethally effects the COVID-19 patients are observed as respiratory disease (i.e., chronic lung 

problems, asthma) that directly correspond to the COVID-19 (respiratory disease) impact, and 

circulatory system disease (i.e., heart disease, artery disease), which prevents building the immune 

system. In general, patients who suffered from diseases, especially respiratory disease, cardiac 

disease, and cardiovascular disease, were found to have relatively higher death rates from the 

previous statistics. Likewise, the comorbidity of the patient provides diverse information and 

evidence of future prognosis when estimating the risk. The COVID-19 patient dataset [42] used in 

this research categorizes the types of illness into 22 large-scale categories established in WHO’s 

International Statistical Classification of Disease and Related Health Problems (ICD, 2020) [49], 

which was shown in Table 3.1. Moreover, the disease types can be further be classified into more 

detailed disease types via ICD criteria. 

𝕄(𝑠(𝑘,𝐺,𝐷)) indicates the subject’s mortality with three internal attributes of k, G, and D. 

Let 𝐷 ∶= ⋃ ℂ𝑖
22
𝑖=0 , and through ∃ℂ𝑖, we measure the Pearson correlation coefficient (PCC) among 
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given age group as shown in Figure 3.2. PCC is expressed with 𝜌(𝑘,𝐷) ∶=
𝐶𝑜𝑣(𝕄(𝑠,𝑘),𝕄(𝑠,𝑘))

𝜎(𝕄(𝑠𝐷))
. Mostly, 

it shows 𝜌(𝑘,𝐷′′) ≥ 0.8  where 𝜎(𝑞)  expresses the standard deviation of input list 𝑞 , and 𝐷′′

∶= 𝐷 − {ℂ3, ℂ14, ℂ15, ℂ16, ℂ17, ℂ18, ℂ19} . For most of 𝜌(𝑘,𝐷′) ≥ 0.7 , where 𝐷′ ≔ 𝐷′′ +

{ℂ3, ℂ14, ℂ15, ℂ16}. This diversity is due to the category of disease shows slightly different statistics 

among the age groups. Representatively, ℂ17 indicates the group of obesity patients with the age-

stratified group of 55~64 had the highest number of death cases. On the contrary, ℂ18(Alzheimer) 

and ℂ19(Dementia) show to have an exponential relationship as the age increments linearly. Apart 

from those features, most of the 𝕄(𝑠𝐷) shows a positive correlation relationship with 𝕄(𝑠𝑘) when 

aligned by age. Until the age group of 55~64, the ∆𝑠(𝑘,𝑘+1) tend to have an incremental phase 

where ∆𝑠(𝑘,𝑘+1,𝐷′) = |𝕄(𝑠(𝑘,𝐷′)) −𝕄(𝑠𝑘+1,𝐷′))| . After ∆𝑠(𝑘,𝑘+1,𝐷′) = 0 , the ∆𝑠(𝑘,𝑘+1) < 0 

starts to decrease, having ∆𝑠(𝑘̃,𝑘̃+1,𝐷′) > ∆𝑠(𝑘̅,𝑘̅+1,𝐷′) where 𝑘̅ ∶= 𝑖𝑛𝑑𝑒𝑥 > 65, and 𝑘̃ ∶= 𝑖𝑛𝑑𝑒𝑥 ≤

65. In Figure 3.3, it displays that the linear correlation 𝑃𝐶𝐶(𝕄𝑘(𝑠𝐷)) (i.e., 𝕄(𝑠𝐷) sorted by the 

order of 𝑘), which implicates that 𝜇(𝕄𝑠(𝐷,∃𝑘)) and 𝜇(𝕄𝑠(𝐷,∃𝑘+𝐿)) where 𝜇(𝑞) denotes the average 

of set of inputs of 𝑞 and (𝐿 ≠ 0) ∈ ℝ, 1 ≤ (𝑘 + 𝐿) ≠ 𝑘 ≤ 9 gradually inclines to be distinct as 

|𝐿𝑘| ≫ |𝐿𝑘−𝑐|  and 𝑘 ≫ 𝑐 ∈ ℕ . Table 3.1 displays the COVID-19 death cases sorted by the 

corresponding comorbidity by age groups. Note that the comorbidity types indicated in Table 3.1 

are categorized in Table 3.2. Equation (3) shows the mortality with respect to 𝑘, 𝐷: (i.e., 𝛽𝑠(𝑘,𝐷)) 

based on the statistics of Table 3.1. 

𝛽(𝑠(𝑘,𝐷)) ∶=
𝕄(𝑠(𝑘,𝐷))

2

𝕄(𝑠𝑘)𝕄(𝑠𝐷)
 

(3) 
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Figure 3.2 Heatmap indicating the correlations between each age group based on 𝕄(𝑠𝑘) 
 

Table 3.1 Comorbidity Types and Corresponding Number of Casualties in each Age-

Stratified Groups (Comorbidity Types are explained in Table 3.2) 

Comorbidity 0-24 25-34 35-44 45-54 55-64 65-74 75-84 85+ 

ℂ1 175 853 2,174 6,220 15,295 25,749 30,258 30,239 

ℂ2 36 88 203 594 2,334 5,577 7,551 6,749 
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ℂ3 86 328 895 2,527 5,582 8,367 7,667 5,659 

ℂ4 153 613 1,582 4,726 11,840 21,324 25,811 24,738 

ℂ5 10 38 88 234 580 1,062 1,427 1,837 

ℂ6 25 89 211 530 1,273 2,267 2,717 2,787 

ℂ7 25 163 667 2,261 6,375 11,807 14,966 17,828 

ℂ8 5 38 154 692 2,640 6,085 9,088 10,804 

ℂ9 76 278 678 1,930 4,344 6,869 7,442 7,944 

ℂ10 14 36 107 375 1,238 3,107 5,240 7,144 

ℂ11 9 54 126 444 1,442 3,113 5,130 7,899 

ℂ12 9 41 137 466 1,452 2,885 3,737 4,209 

ℂ13 65 160 361 845 1,945 3,380 3,970 4,688 

ℂ14 56 223 560 1,697 4,030 6,652 6,177 4,435 

ℂ15 39 54 150 438 1,650 3,242 3,711 3,886 

ℂ16 64 257 899 2,723 6,714 11,198 11,391 8,427 

ℂ17 123 430 960 1,670 2,418 2,446 1,321 358 

ℂ18 0 0 0 6 77 670 2,848 6,308 

ℂ19 0 1 2 31 413 2,605 8,548 17,068 

ℂ20 29 180 463 1,388 3,426 5,891 6,249 5,574 

ℂ21 90 262 337 550 1,103 1,759 2,225 3,017 

ℂ22 435 1,175 2,631 6,997 17,581 31,390 36,470 38,705 
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Figure 3.3 Heatmap indicating the correlations between each age group based on 𝕄(𝑠𝐷) 
 

Table 3.2 Comorbidity Types and corresponding Index 

Comorbidity Name Index 

Influenza and Pneumonia ℂ1 

Chronic lower respiratory diseases ℂ2 

Adult respiratory distress syndrome ℂ3 

Respiratory failure ℂ4 

Respiratory arrest ℂ5 

Other respiratory diseases ℂ6 

Hypertensive disease ℂ7 

Ischemic heart disease ℂ8 

Cardiac arrest ℂ9 
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Cardiac arrhythmia ℂ10 

Heart failure ℂ11 

Cerebrovascular diseases ℂ12 

Other circulatory diseases ℂ13 

Sepsis ℂ14 

Malignant neoplasms ℂ15 

Diabetes ℂ16 

Obesity ℂ17 

Alzheimer disease ℂ18 

Vascular and unspecified dementia ℂ19 

Renal failure ℂ20 

Injury poisoning other events ℂ21 

Other conditions and causes ℂ22 

 

Although there are evident statistics that comorbidity operates as a fatal factor in 

aggravating the patient’s status, the exact influence regarding the number of comorbidities is not 

yet clearly suggested. However, we assume that the patients may possess multiple comorbidities 

and set the maximum number of underlying diseases as three. The exact database for the disorder 

for the comorbidity types of the COVID-19 patient is not currently publicly opened (i.e., most of 

the open dataset publicity opened the total number of comorbidities among the total patients). In 

this thesis, we randomly assigned the number of comorbidities 𝑞𝑖, where 𝑞𝑖 ∈ [0,3] and 𝑞𝑖 ∈ ℕ. 

We explain the additional comorbidity part regarding how we implemented in our algorithms in 

detail in section 4.3. After the aggregation, the outcome normalizes the value using the min-max 
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scaler. Each gathered factor is considered independent and we linearly aggregate the factors to 

numerically define the risk. The final mortality 𝕄(𝑠(𝐷,𝐺,𝑘)) computation sequence is shown in 

equation (4). 𝕄(𝑠(𝐷,𝐺,𝑘)) evaluates the risk that the subject possesses is statistically shown from 

the past COVID-19 patients. Another meaning that 𝕄(𝑠(𝐷,𝐺,𝑘)) connotates is the death rate of the 

subject with its internal conditions, and this offers the advantage of leveling the risk with given 

features compared to the other past patients.  

 

𝕄(𝑠(𝐷,𝐺,𝑘)) ≔
𝕄(𝑠(𝐺,𝑘)) + ∑ 𝛽(𝑠(𝐷,𝑘))∀𝑞𝑖

−min (𝕄(𝑠(𝐺,𝑘)) + ∑ 𝛽(𝑠(𝐷,𝑘))∀𝑞𝑖
)

𝑚𝑎𝑥(𝕄(𝑠(𝐺,𝑘)) + ∑ 𝛽(𝑠(𝐷,𝑘))∀𝑞𝑖
) − 𝑚𝑖𝑛 (𝕄(𝑠(𝐺,𝑘)) + ∑ 𝛽(𝑠(𝐷,𝑘)∀𝑞𝑖

)
 

 (4) 

Machine learning-based approaches that train the classifier model to predict the soft label 

(probability) of death require a significantly higher computational amount by locating the non-

linear decision boundary, also detecting the outliers such as a death, in this case, is likely to produce 

an overfitting model since a number of cured cases is notably more significant than the death cases, 

which may not function properly when it comes to actual practice. Finally, the purpose of the 

machine learning model is to make classification, whereas our objective is to observe the level of 

the risk by aggregating multiple features. Thus, we linearly aggregated the given risks on each 

feature independently, which explicitly reflects the death rates of each given feature. 
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4 INFECTION RATE AND NETWORK CENTRALITY 

In this section, we cover the infection rate, which is another factor that we must downsize. 

When predicting the virus proliferation dynamics, computing the infective trajectory and its 

probability of infection through the routes are major objectives. Diverse epidemiological research 

was conducted to define the computation model, mathematically approximating the authentic 

dispersion trend. Contrary to the death rate, external factors such as the environments trigger the 

correlation of the infection rate. In this thesis, we assume that when the virus is being transmitted 

from the patient to the non-infected, the internal immune system effect of contracting the disease 

is neglected. After the virus infects the host, it is a deterministic process with clear vital signs to 

be observed. However, releasing the information about the infection without any symptoms or 

specific measures to clarify whether the virus was inside the host is a complex matter. Therefore, 

we only focus on the deterministic virus injection and regulate the infection in a stochastical 

fashion. According to the 𝑅 index in section 2.3, metric c differs in the effect of the infection-

preventative measures such as quarantine, social distancing, and encouraging hygienic activities 

(e.g., wearing masks, washing hands). Apart from directive schemes, inherent characteristics such 

as depending the regional features, population density, local lifestyle, age variance, GDP per 

capita, etc., tend to affect the spread indirectly.  

The infection dynamics are deemed a fundamentally convoluted process, consisting of 

diverse dependent and independent variables. Various researchers tend to adopt datasets under the 

assumption with a significant level of statistics in regional boundaries, locating environmental 

hyperparameters. In this research, our interest focuses on discovering the impact of the host 

concerning their social network. Intuitively, when the person who holds an impactive role with 

relatively more extensive physical contact among its associated community gets infected, its 
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impact will likely be significantly more extensive than that of an ordinary person. In other words, 

we lead to the question of the quantitative difference between super spreaders and standard 

spreaders with respect to the infection ratio among the overall community. To track down the 

answer to this question, we implement the vaccine propagation simulation in the ABM to infer the 

variations of three target metrics and validate the performance by comparing it with the other 

vaccination sequences’ metric ratio. 

 

4.1 Agent-Based Model with Graph-Network Structure 

Essentially, a virus is diffused through physical contact from the infected host to another. 

In our research, we assume that the virus is infected under the constraints of proximate distance, 

similar to COVID-19. Since infection is one-way propagation perpetrated from the infected to the 

non-infected, it is feasible to define this relationship through graph network structure [50]. 

Through distributed environments with numerous potential hosts and each host with various types 

of features, the physical contacts are dynamically and perpetually occurring in real-time. This 

situation can be modeled via graph networks, with dissemination models such as probabilistic 

model (random walk, stochastic model) or deterministic model.  

Let 𝑔 = (𝑉, 𝐸) where 𝑉 is a set of vertices, and 𝐸 is a set consisted of edges where 𝑉 =

{𝑣𝑖|1 ≤ 𝑖 ≤ 𝑁, (𝑖, 𝑁) ∈ ℕ }, 𝑁 refers to the total number of agents (nodes) that is a subset of 𝑔 and 

𝐸 = {< 𝑣𝑎 , 𝑣𝑏 > |(𝑣𝑎, 𝑣𝑏) ∈ 𝑉 × 𝑉, 1 ≤ (𝑎, 𝑏) ∈ ℕ × ℕ ≤ 𝑇 ∈ ℕ} . 𝑔  is a finite graph, and  <

𝑣𝑎 , 𝑣𝑏 > denotes the directed edges with source node 𝑣𝑎 and sink node 𝑣𝑏. Recall that the infection 

transmission is a one-way directive process, with a source and destination where infected agents 

transmit the virus to the physically connected non-infected. Thus, we select the directed graph 

structure, and let 𝐸𝑎 = ⋃ < 𝑣𝑎 , 𝑣𝑏 >∀𝑏 . 𝑛(𝐸𝑎) is the number of edges which the initial node is 𝑣𝑎, 
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and it is connected to ∃𝑣𝑏 where 𝑏 specifies the index of i, the neighbor node of the 𝑣𝑎. If 𝑣𝑎 that 

has max𝑛(𝐸∀𝑎) is infected from the neighbor 𝑣𝑏 such that 𝑣𝑎 = 𝑇𝑟𝑢𝑒, the 
𝑑𝐸𝑎

𝑑𝑡
> 0; this escalates 

the diffusion pace with a high probability due to the significant centrality value among the 

affiliated community compared to other nodes with relatively lower 𝐸𝑎.   

Each agent in the associated ABM occupies a certain portion of importance [50], and we 

adopt the five network centrality schemes to evaluate the importance or possible degree of impact 

that the target node is capable of invoking. The five centralities are as follows: Degree centrality 

[52], Closeness centrality [51], Betweenness centrality [53], Eigenvector centrality [54], and 

PageRank [55]. Each brief computation schemes are as follows. Degree centrality evaluates its 

index through the number of degrees; 𝑛(𝐸𝑎). Closeness centrality normalizes the standard distance 

to each connected node in the shortest path, which follows the basis of ‘important node is 

proximate to other nodes’. In mathematical values, we have 
𝑛(𝑉)−1

∑ 𝐸𝑎
𝑛(𝑉)
𝑎≠𝑏

 , which is an equation of the 

normalized Closeness centrality. Betweenness centrality focuses on the paths that a source node 

visits in order to reach the sink node. Then, it linearly accumulates the number of probabilities of 

visiting a particular node. To express Betweenness centrality (BC) into mathematical form, we 

have centrality of node c as follows: 𝐵𝐶(𝑣𝑐) = ∑
𝜀(𝑎,𝑏)(𝑣𝑎)

𝜀(𝑎,𝑏)
𝑣𝑎≠𝑣𝑏≠𝑣𝑐,𝑎>𝑏 , where 𝜀(𝑎,𝑏) indicates the 

number of shortest paths between the node a and b, and 𝜀(𝑎,𝑏)(𝑣𝑎) denotes the number of shortest 

paths between the node a and b that passes node 𝑣𝑎. Eigenvector Centrality (CE) implies that the 

importance of the target node is set by the significance level of the neighbors, indicating that if 

such a target node possesses many popular nodes, then this target is also important. It computes 

the largest eigenvalue and corresponding eigenvector, having 𝐶𝐸(𝑣𝑎) ∝ ∑ 𝐴(𝑎,𝑏)𝐶𝐸(𝑣𝑏)𝑣𝑏  where 

𝐴(∃𝑎,∃𝑏) is an adjacency matrix with existing nodes a, b. The PageRank score is an upgraded 
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version of the Eigenvector centrality. Thus, Eigenvector centrality and PageRank share a similar 

high-level idea: it evaluates the connected neighbor nodes without directly assessing the number 

of interconnections. We explain PageRank in detail in section 4.2. In the collection of five 

centrality metrics, we take the worst-case scenario, a centrality that propagates the virus within the 

shortest amount of time unit when the equivalent ABM setting was given. 

 

4.2 Selecting Optimal Centrality 

Among multiple centrality criteria, our objective is to select the metric shown to have the 

worst effect in our proliferation scenario. In order to choose the worst-case centrality, we measure 

and compare the amount of period that takes to be infected from the initial spreaders until the edges 

reach the leaf node, which halts the dissemination. To start, we build the three ABM with 𝑛(𝑉) =

1000, 5000, 10000. By using the physical contact per day dataset collected and suggested by the 

Del Valle et al. [26], we set the 𝑛(𝐸)  for each node based on the feature of the node and 

corresponding value in [26]. Recall that we assumed that the infection spreads through close 

contact exposure. The number of edges was allocated based on the ratio of US population 

demographics by age-stratified groups in 2020 [56]. Each age group has a designated contact 

frequency, based on the statistics shown in [26], which is shown in Table 4.1. Between the range 

of 1 ≤ 𝑛(𝐸𝑎) ≤ 2 ⋅ 𝑅𝐶𝐹, we randomly assign the 𝑛(𝐸𝑎). RCF (Round-up Contact Frequency) 

denotes the frequency values for the coinciding age group that was rounded up to an integer. for 

the coinciding age group that was rounded up to an integer. This simulation is to select the worst-

case centrality that has the fastest dispersion velocity, and we use a 100% infection rate as a default 

setting when transmitting the virus. In the simulation, nodes 𝑣∃𝑎 that are connected to the infected 

nodes 𝑣∃𝑏 are being contaminated in each time step t; where we denote this as < 𝑣𝑎 , 𝑣𝑏 >𝑡. We 
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visualize the diffusion in Figure 4.1, and display the pseudocode of the spreading algorithm in 

section 5.1. 

Table 4.1 Population Ratio and Corresponding Contact Frequency 

Age Population Ratio Contact Frequency RCF 

0-4 0.068 10.216 10 

5-9 0.061 14.812 15 

10-14 0.063 18.224 18 

15-19 0.064 17.582 18 

20-29 0.137 13.573 14 

30-39 0.135 14.142 14 

40-49 0.123 13.830 14 

50-59 0.129 12.308 12 

60-69 0.116 9.216 9 

70+ 0.112 6.898 7 

 

 

Figure 4.1 Time steps t (=1,2,3) of spreading disease in given Graph Network 
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A single edge can be taken from the source node during a one-time step unit, reaching other 

connected nodes. This random walk-based algorithm is designed via recursion and depth-first-

search. For the pseudocode, authors can refer to algorithm 1 in section 5.1 for more details. When 

the initial nodes have significant centrality, it leads to a faster spread. The initial ten spreaders are 

𝜌̃ = ⋃ 𝑣̃𝑖10  where 𝑣̃𝑖 = max(⋃ 𝜙(𝑣𝑖)∀𝑖 ), and 𝜙(𝑣𝑖) denotes the centrality of the input 𝑣𝑖 and 𝑣̃𝑖 

is sampled without replacement. We experimentally validate the selection of max(⋃ 𝜙(𝑣𝑖)∀𝑖 ) with 

comparing min(⋃ 𝜙(𝑣𝑖)∀𝑖 ) in the next section. After 50 trials of each virus dispersion when 

setting the ten initial patients with the maximum degree of centrality metrics on three different 

numbers of ABMs, the results are shown in Table 4.2. Values indicated in Table 4.2 are the average 

of 50 trials. Each value is the average value of 50 trials (updated to a new graph structure of each 

trial), and the number inside the parenthesis illustrates the standard deviation. Each attempt was 

conducted with the newly generated random graph structure, 𝑔𝑖 ≠ 𝑔𝑖′, where 𝑖 ≠ 𝑖′. The results 

show that initial patients with the highest PageRank spread the virus within the shortest amount of 

time unit, which verifies the worst-case scenario. Thus, we select the PageRank scheme for 

measuring the infection rate and compute the EVI. PageRank was suggested by the founders of 

Google, and it is widely known as the mechanism for Google’s web search engine [55]. It ranks 

and judges the importance of the node in the graph structure by computing the quantity of the 

edges also the quality of the connected neighbor nodes. The original format of the PageRank is 

shown in equation (5), where 𝑃𝑅(⋅) refers to the PageRank value, and we set the damping factor 

(𝑞) to 0.85.  

𝑃𝑅(𝑣𝑖) =
1 − 𝑞

𝑁
+ 𝑞∑

𝑃𝑅(𝑣𝑖)

𝑁𝑢𝑚𝐿𝑖𝑛𝑘𝑠(𝑣𝑖)
𝑖

 

(5) 
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Table 4.2 Average Period Duration among given Centrality 

Centrality 

Number of Nodes 

Average 

1,000 5,000 10,000 

Degree 271.8 (±4.2) 331.4 (±3.3) 332.3 (±2.9) 311.8 (±3.5) 

Closeness 129.5 (±20.7) 145.5 (±22.1) 143.2 (±12.0) 139.4 (±18.3) 

Betweenness 129.5 (±20.7) 145.5 (±22.1) 143.2 (±12.0) 139.4 (±18.3) 

Eigenvector 130.4 (±19.9) 144.4 (±31.1) 156.4 (±11.2) 143.8 (±20.7) 

PageRank 116.9 (±19.4) 139.4 (±14.3) 103.7 (±10.7) 123.1 (±14.8) 

 

4.3 Simulation construction and EVI 

To conduct the empirical simulation for the pandemic propagation procedure, this section 

constructs the ABM and computes the final EVI. The descending order of PageRank efficiently 

suppresses the contamination speed. We assemble the calculated factors to evaluate the final EVI. 

Similar to the three different agent numbers of ABM, we use 300,000 agents, appointing unique 

features to each agent based on the statistical ratio [42, 43]. For example, let the male population 

of age group 35~44% take 𝑝%, and by assigning 𝑛(𝑉) ⋅ 𝑝 ⋅ 0.01 nodes with a gender of male, and 

random age between 35~44. The distribution of a set that is composed of similar features has a 

uniform distribution. Also, the allocation of underlying disease types with a maximum number of 

three utilizes the dataset (i.e., death cases of the COVID-19 patient database) in section 3.2. By 

calculating the death rate among the infected population, we have 1.45% of mortality. However, 

we intentionally increase this value to 7.25% (1.45 × 5) because this value triggers sparsity among 

the ABM, and comprehensible variations can be observed after the variation ends. Likewise, 

comorbidity types were selected for the agents with optimal statistical proportions. Recall that the 
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number of comorbidities was randomly chosen between 1~3 since a patient may have multiple 

underlying diseases. Graph edges are given with the format of section 4.2., based on the physical 

contact by age group statistics. Furthermore, the graph structure was subdivided to incorporate 

geographical constraints. By segregating the graph into five large clusters: 𝐶̃1≤𝑢≤5, and each ∃𝐶𝑢 

is subdivided again into six groups 𝑐̃(∃𝑢,𝑖) ∈ 𝐶̃∃𝑢  where 1 ≤ 𝑖 ≤ 6  (refer to Figure 4.2 for 

visualization). This partition is reasonable since the virus is initially dispersed in regional 

boundaries since physical contacts occur only at a close distance within the spatial constraints, and 

gradually it moves on to other regions. Also, note that each region consists of a statistical ratio of 

incorporated features such as age groups, in order to accommodate the diversity of regional 

properties. In addition, 𝑐̃(∃𝑢,𝑖) are intermittently connected by 20% of the original edges. Figure 

4.2 displays the general visualization that shows the interaction (edges) inside the dense 

community cluster and the connection between ∃𝑐(𝑢,𝑖), as well as ∃𝐶̃𝑢. The edge density becomes 

sparser from 𝑐̃(𝑢,𝑖) to 𝐶̃𝑢, which denotes comparatively low physical interaction frequency. 

 

Figure 4.2 The constructed graph network structure for future simulations 
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Our experiment compares the two cases. In the first case, we select the 𝜌̅ = ⋃ 𝑣𝑖20 , whereas 

the second case selects the 𝜌̃ = ⋃ 𝑣̃𝑖20 . This 𝜌̅, 𝜌̃  refers to initial spreaders where 𝑣̅𝑖 =

min (⋃ 𝜙(𝑣𝑖)∀𝑖 )  and 𝑣̃𝑖 = max (⋃ 𝜙(𝑣𝑖)∀𝑖 ) with 𝜙(𝑣𝑖) denotes PageRank of 𝑣𝑖 . The infected 

node iteratively contaminates other connected nodes, and we measure the cumulative period until 

the status of the graph does not change. When case 𝜌̃, the mean of 100 diffusion periods was 

456.607-time steps and 485.642-time steps for 𝜌̅. The density distribution of the two cases is 

displayed in Figure 4.3. This entails that the descending order of diffusion (𝑣̃𝑖) will lead to faster 

stabilization, validating the advantage of vaccination based on 𝑣̃𝑖. Equation (6) shows the EVI is 

computed individually through aggregating the independent ∃𝕄(𝑠(𝐷,𝐺,𝑘))  and ∃𝜙(𝑣𝑖) , 

normalizing factors with the standard normalization and we scale the accumulation with the min-

max scaler. 

In equation (6), the EVI aggregates both death rate and infection rate for harmonical 

minimization by calibrating the weights to each term with 𝑊1:𝑊2  portions. Each weight 

determines the degree of influence of each factor by adjusting the values where 𝑊1 +𝑊2 = 1; 

such that 1 −𝑊1 = 𝑊2, and (𝑊1,𝑊2) > 0.  

𝐸𝑉𝐼 =
𝑊1𝐴 +𝑊2𝐵 −min (𝑊1𝐴 +𝑊2𝐵)

max(𝑊1𝐴 +𝑊2𝐵) − min (𝑊1𝐴 +𝑊2𝐵)
 

𝑠. 𝑡.    𝐴 =
𝕄(𝑠(𝐷,𝐺,𝑘)) − 𝜇(𝕄(𝑠𝐺,𝑘) + ∑ 𝛽(𝑠(𝐷,𝑘))∀𝑞𝑖

) 

𝜎(𝕄(𝑠(𝐺,𝑘)) + ∑ 𝛽(𝑠(𝐷,𝑘))∀𝑞 )
 𝑎𝑛𝑑 𝐵 =

𝜙(𝑣𝑖) − 𝜇(𝜙(𝑉))

𝜎(𝜙(𝑉))
 

(6) 
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(a) 

 

(b) 

Figure 4.3 Distribution results of period visualization using box plot (a) and density plot (b) 

 

Every agent in the ABM possesses their individual EVI computed unique personal 

properties, which can be expressed through the matrix form. For the number of agents in the ABM 

is 300,000 (𝑛 = 300,000), we build 𝑀1 = 𝑛 × 𝑛 matrix form with row 𝑖 and column 𝑗. The edges 

are 𝑛(𝑖≠𝑗,𝑗≠𝑖) = 𝑒(𝑖,𝑗) = 1 or 0, and the diagonal components 𝑛(𝑖=𝑗,𝑗=𝑖) = EVI(𝑛(𝑖,𝑗)). Note that 

𝑒(𝑖,𝑗)  may be equivalent or different since the graph structure is composed of directed edges. 

Simplex matrix form can be denoted as equation (7), and in section 5.1, we use this matrix basic 

form to define relationships and extract knowledge. 
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𝑀1 = [

𝐸𝑉𝐼(𝑛(𝑖,𝑗)) ⋯ 𝑒(𝑖,𝑗)
⋮ ⋱ ⋮

𝑒(𝑖,𝑗) ⋯ 𝐸𝑉𝐼(𝑛(𝑖,𝑗))
]  s. t. 𝑒(𝑖,𝑗) {

1  𝑖𝑓 < 𝑣𝑖, 𝑣𝑗 >= 𝑇𝑟𝑢𝑒  

0  𝑖𝑓 < 𝑣𝑖 , 𝑣𝑗 >= 𝐹𝑎𝑙𝑠𝑒
 

(7) 

Since EVI is a linear aggregation, simplex matrix computation is feasible by metricizing 

the independent multivariate values by combining them into the matrix form. Based on the (6), the 

matrix form of EVI such as the following equation (8). Through matrix calculation, deriving EVI 

values can be obtained in an efficient manner. Section 5.1 further utilizes this matrix form to update 

the virus proliferation status among the ABM. 

𝑀(𝐸𝑉𝐼) =
{𝑀(𝑊1)𝑀(𝐴) + 𝑀(𝑊2)𝑀(𝐴) − min(𝑀(𝑊1)𝑀(𝐴) + 𝑀(𝑊2)𝑀(𝐵))}

{max(𝑀(𝑊1)𝑀(𝐴) + 𝑀(𝑊2)𝑀(𝐵)) − min(𝑀(𝑊1)𝑀(𝐴) + 𝑀(𝑊2)𝑀(𝐵))}
 

(8) 

Figure 4.4 shows the correlation values of combinations of each feature. The labels inside 

Figure F1~F11 are as follows: {population, population density, land area, infection cases, death 

cases, infection rate, death rate, GDP per capita, Median age, race variance, age variance} with 

regards to 50 state-level open datasets of United States. Since our primary concern is to track the 

characteristics of the death rate and the infection rate, we explore the relationship between those 

two major properties. The linear correlation coefficient between the infection rate and death rate 

indicates a value of -0.3. The existing studies have inferred a current trade-off between the 

infection rate and mortality among the identical population [57-60]. Among the diverse 

perspectives that explained the causality of this phenomenon, one of the most reliable 

interpretations is the relation of the age groups. The older generations are mostly the death victims, 

increasing the death rate. Whereas the younger generations are easily infected, occupying a high 

infection rate. This shows the trade-off between the generations, with a negative correlation value. 

Especially when it comes to the problem of which candidate we should inject first leaves us the 
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dilemma of decreasing the infection rate or decreasing the death rate by focusing on which target. 

Fundamentally, this incurs due to the inclination difference between age groups. Similarly, when 

there are specific groups that tend to have a higher immune system, their physical activities are 

likely to enlarge, leading to a higher infection rate for a total number of hosts increases. As a result, 

distributing vaccines through those factor analyses with computing the optimal ratio will serve as 

a key to balancing the casualties in the long run.  

 

 

Figure 4.4 Pearson correlation coefficient of the combination of factors using Heatmap 

visualization 

 

Based on the given features (F1~F11), our primary concern is to discover the significant 

relationship between the infection rate and the death rate, which may provide us with the feature-

related statistical property while providing us the clue to comprehending the disease proliferation. 
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Figure 4.5 displays the density distribution, and 𝜎(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒) > 𝜎(𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒) and several 

outliers exist that are higher than 3/2 times of upper quartile. This implies that the infection rate of 

the States is comparatively dispersed in a diverse range in general, which can be interpreted that it 

is highly being affected by diverse variables which differ by the properties of each State. In 

contrast, the death rate is denser with shorter distribution x-axis range, which asserts that it is not 

being strongly impacted than the infection rate. In addition, the average values in both factors show 

𝜇(𝑖𝑛𝑓𝑒𝑐𝑡𝑖𝑜𝑛 𝑟𝑎𝑡𝑒) > 𝜇(𝑑𝑒𝑎𝑡ℎ 𝑟𝑎𝑡𝑒).  

 

 

Figure 4.5 Distribution density of infection and death rate in 50 US states 

 

Figure 4.6 shows the top five and bottom five states between the infection rate (x-axis) and 

other features (land area, GDP per capita, Median age, Population Density) of the y-axis. Figure 

4.7 also displays the top five and bottom five states for the death rate (x-axis). From the y-axis, it 

has unsatisfying results without precise classification. Thus, we increase the function order higher 

than the first-order regression function.  
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Figure 4.6. Top five and bottom five states in infection rates 

 

Figure 4.7 Top five and bottom five states in death rates 

Figure 4.8 indicates the linear regression outcome (blue line), referring to the overall 

correlation between the two designated features. Figure 4.9 ~ 4.13 shows the polynomial 

regression based on the second-order, third-order, fourth-order, fifth-order, and tenth-order 

polynomial regression. Finding the order that evades the overfitting is critical, and since there are 

no further datasets that we can calibrate the n-th order of function, we compute their mean squared 

error and compare the result in Figure 4.14. In Figure 4.14, the coherency of the results is unstable, 

having a different phase of diminishing the error value. Generally, the error should exponentially 

decrease, with an urgent pace during the initial steps and slowing down at a certain point in the x-

axis, which is the n-th order in the polynomial function. That specific point should be the optimal 

selection of order. For example, in MSE 7 in the subgraph of Figure 4.14, third-order is considered 

optimal. However, as the relationships show no coherent characteristic, features should be 

considered independently. It leads to the interpretation that considering features independently to 

reduce infection and death rates is practical. 
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Figure 4.8 Linear regression visualization result of the infection rate (row 1) and death rate 

(row 2) dataset 

 

 

Figure 4.9 Second-order quadratic regression visualization result of the infection rate (row 1) 

and the death rate (row 2) dataset 
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Figure 4.10 Third-order polynomial regression visualization result of the infection rate (row 1) 

and the death rate (row 2) dataset 

 

 

Figure 4.11 Fourth-order polynomial regression visualization result of the infection rate (row 1) 

and the death rate (row 2) dataset 
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Figure 4.12 Fifth-order polynomial regression visualization result of the infection rate (row 1) 

and death rate (row 2) dataset 

 

 

Figure 4.13 Tenth-order polynomial regression visualization result of the infection rate (row 1) 

and death rate (row 2) dataset 
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Figure 4.14 Mean Squared Error visualization in n-th polynomial regression result 
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5 EXPERIMENTS 

In the experiment section, we conduct thorough experiments for validating the EVI by 

comparing it with the other criteria and indexes in the predetermined simulation environment and 

settings. Table 5.1 lists the assigned feature in each agent based on the proportion of statistics, 

where Mor refers to the mortality, and Iftr indicates the infection rate. Through the nine vaccination 

distribution trajectories, we evaluate three metrics: variation of infection cases, death cases, and 

the death rate. Based on the results, we reflect on the outcome in the real-practice and interpret the 

statistical phenomenon of the past COVID-19 cases. 

 

Table 5.1 Calculated and assigned feature dataset for 300,000 nodes based on real-world statistics 

Index 𝐶̃  𝑐̃ Age Sex 𝑅1 𝑅2 𝑅3 … Mor 𝜙 Iftr EVI 

1 𝐶̃1 𝑐̃1 0 F ℂ12 ℂ3 𝑁𝑜𝑛𝑒 … 0.164 0.238 0.712 0.261 

2 𝐶̃1 𝑐̃1 1 M ℂ7 𝑁𝑜𝑛𝑒 ℂ19 … 0.238 0.408 0.364 0.402 

… … … … … … … … … … … … … 

300,000 𝐶̃5 𝑐̃5 85 M ℂ22 ℂ21 ℂ5 … 0.714 0.457 0.308 0.597 

 

5.1 Experiment Settings 

The vaccination simulation is mainly conducted through the highest to the lowest order of 

EVI, including eight other criteria (CVI [3], SVI [4], PVI [5], Age, Comorbidity risk, Age with 

Comorbidity risk, Random distribution, no vaccination) shown in Table 5.2. Note that each agent 

has its own unique corresponding index value. From the three metrics given, it is possible to infer 

the other indexes (e.g., death cases + cured cases = infection cases); thus, we present those three 

metrics in the result. In the ABM, propagation methodology through EVI is explained in 
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pseudocode in Algorithm 1. Algorithm 1 functions similar to a stochastic random walk. Recall that 

this algorithm uniformly selects the node in binary method (i.e., True or False) in each connected 

node from the source node. The probability of choosing, in other words, infecting the virus is 

uniform with a 50% probability. Recall that no precise data has been released for contracting the 

disease after the virus was injected. Therefore, we set the possibility of infection at 50% when 

there was a physical connection between the infected and the non-infected. The virus is dispersed 

to the connected sink node starting from the random source node, determining the infection based 

on the probabilistic value. The algorithm iteratively calls the recursion function in each time step, 

and the auxiliary buffer stores the status of each node (subject). If the node contracted the virus 

with a certain probability, it computes the death rate based on the assigned features and determines 

the status with a corresponding death rate. 

 

Table 5.2 Vaccination simulation types 

Simulation Type 

Type Vaccine Distribution Type 

Type 1 No Vaccination 

Type 2 Random Vaccination 

Type 3 Vaccination by Age 

Type 4 Vaccination by Comorbidity Risk 

Type 5 Vaccination by Age, Comorbidity Risk 

Type 6 Vaccination by Social Vulnerability Index (SVI) 

Type 7 Vaccination by COVID-19 Vulnerability Index (CVI) 

Type 8 Vaccination by Pandemic Vulnerability Index (PVI) 
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Type 9 Vaccination by Epidemic Vulnerability Index (EVI) 

 

Every agent has its status (Infected_Dead (D), Infected_Cured (C), Vaccinated (V), No virus 

(A)), and for efficient computation, we use matrix calculation that explains the status in the graph. 

We have equation (7) that assigns elements with 𝑛(𝑖,𝑗)  having 𝑛(𝑖,𝑗) = 𝐸𝑉𝐼(𝑛(𝑖,𝑗)) if 𝑖 = 𝑗, and 

𝑛(𝑖,𝑗) = 𝑒(𝑖,𝑗)  if 𝑖 ≠ 𝑗 . This matrix was to compute the diagonal elements; 𝐸𝑉𝐼(𝑛(𝑖,𝑗)) and we 

define additional eight Matrixes (𝑀2~𝑀9) that has the same size from 𝑀1. For those eight Matrixes, 

the element of 𝑛(𝑖,𝑗)
(𝑜) = 𝑛(𝑖,𝑗) where 𝑖 ≠ 𝑗 and 𝑜 denotes the matrix index. However, 𝑛(𝑖,𝑗)

(𝑜)
 with 𝑖 =

𝑗, which are diagonal elements they possess different values with No vaccination (𝑜 = 2;𝑀2), 

random vaccination (𝑜 = 3;𝑀3), vaccination by age (𝑜 = 4;𝑀4), vaccination by comorbidity risk 

(𝑜 = 5;𝑀5), vaccination by age + comorbidity risk (𝑜 = 6;𝑀6), vaccination by SVI [4] (𝑜 =

7;𝑀7), vaccination by CVI [3] (𝑜 = 8;𝑀8), vaccination by PVI [5] (𝑜 = 9;𝑀9). 

We define another matrix 𝑀𝑠 that has equivalent size (300,000 × 300,000) and values of 

𝑛(𝑖,𝑗) when 𝑖 ≠ 𝑗, but for 𝑛(𝑖=𝑗,𝑗=𝑖), we implement the status of each agent. For these diagonal 

elements, let 𝑀(𝑠)  be 1 × 300,000  matrix size such that 𝑀(𝑠) = [⋃ 𝑠𝑡𝑎𝑡𝑢𝑠(𝑛(𝑖=𝑗,𝑗=𝑖))∀𝑖 ]  in 

equation (9) where (𝑉, 𝐷) ∈ 𝐼 , 𝑐𝐼 , 𝑐𝐷  indicate the threshold on infection and death rate, 𝐼(𝑥) 

denotes the infection rate of input x, and 𝐷(𝑥) illustrates the death rate of input x. 𝑀𝑠 offers to 

track the status of each agent and through which route it is being spread. 

𝑠𝑡𝑎𝑡𝑢𝑠(𝑛(𝑖=𝑗,𝑗=𝑖))

{
 
 

 
 

0  𝑖𝑓 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐴
1  𝑖𝑓 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑉

𝑡𝑚𝑝 𝑖𝑓 𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐼, 𝑡𝑚𝑝 {
−1 𝑖𝑓 𝐼(𝑛𝑖) ≥ 𝑐𝐼 , 𝑛(𝑖=𝑗,𝑗=𝑖) {

−1 𝑖𝑓 𝐷(𝑛𝑖) ≥ 𝑐𝐷
1   𝑖𝑓 𝐷(𝑛𝑖) < 𝑐𝐷

0   𝑖𝑓 𝐼(𝑛𝑖) < 𝑐𝐼

 

(9) 
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Each condition assigns the 𝑠𝑡𝑎𝑡𝑢𝑠(𝑛(𝑖,𝑗)), and ultimately, we have 𝑀(𝑠). With 𝑀1~9, we 

sort the rows by the descending order of diagonal elements 𝑛(𝑖,𝑗)
(𝑜)

. Based on sorting output, we start 

the simulation, releasing the vaccine distribution with the order of initial sequence with the specific 

amount per time unit. 

To explain the notations used in Algorithm 1, R([a,b],w=c) indicates the random function 

that generates the random integer value between [a,b], with the biased selection based on the given 

hyperparameter(i.e., weight) on choosing possible element. Also, ⊖  and ⨁  notation imply 

removing a designated element from the list and appending an element, respectively. For instance, 

𝑋⊖ 𝑥 denotes that the element 𝑥 ∈ 𝑋 is removed from the population list X, and 𝑋 ⨁𝑥 function 

indicates to add the element x at the end of list X. Simulations were performed with the 50% of 

infection rate when the edges touched the infected node to another, 20 initial spreaders were 

randomly given, and 500 vaccines were allocated per time unit. The simulations were 

demonstrated 100 times each in nine different criteria listed in Table 5.2. During each trial, the 

ABM was randomly reconstructed, generating with the formation of edge connection. 

 

Algorithm 1: Vaccination through EVI 

Input: Graph g, list of integers patients, list of strings stat, list of list Dataset, integer vpt 

(vaccine per time-unit) 

Output: list of integers time_unit, list of strings stat 

1 Initialization (𝐷, 𝐶, 𝑉) ← 0, (𝑛𝑜𝑑𝑒_𝑙𝑠𝑡, 𝐷_𝑙𝑠𝑡, 𝐶_𝑙𝑠𝑡, 𝑉_𝑙𝑠𝑡) ← 𝑒𝑚𝑝𝑡𝑦 𝑙𝑖𝑠𝑡 

2 While V ! = vpt do 

3  if EVI_sort = ∅ then 

4   Break 
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5  else 

6   if stat[EVI_sort[cnt]] = ‘No Virus’ then 

7    stat[EVI_sort[cnt]] ← ‘V’     //vaccinated 

8    (V++) and (EVI_sort ⊖ EVI_sort[cnt]) 

9 for node ∈ {1,2, … , 𝑛(𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠)} do 

10  if stat[patients[node]] = ‘No Virus’ then 

11   if R([0,1], weight = [0.5, 0.5]) = 0 then   //infection rate 50% 

12    tmp ← R([0,1], weight = death rate in Dataset) 

13    if tmp = 0 then 

14     stat[patients[node]] ← ‘D’      // Dead 

15     (D++) and (EVI_sort ⊖ EVI_sort[cnt]) 

16    else 

17     stat[patients[node]] ← ‘C’      // Cured 

18     (C++) and (EVI_sort ⊖ EVI_sort[cnt]) 

19    for n ∈ {1,2, … , # 𝑜𝑓 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 𝑜𝑓 𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠[𝑛𝑜𝑑𝑒]} do 

20     node_lst ⊕ list of neighbors of patients[node][n] 

21 (D_lst ⊕ D) and (C_lst ⊕ C) and (V_lst ⊕ V) 

22 for node ∈ {1,2, … , 𝑛(𝑝𝑎𝑡𝑖𝑒𝑛𝑡𝑠)} do  

23  for neighbor ∈ {1,2, … , 𝑛(𝑛𝑜𝑑𝑒_𝑙𝑠𝑡)} do 

24   if stat[node_lst[neighbor]] = ‘D’ or ‘C’ or ‘V’ then  

25    pass 

26   else 

27    time_unit ⊕ ‘O’        // n(time_unit) = time passed 
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28    Vaccination through EVI(g, patients, stat, Dataset, vpt) 

 

 

5.2 Experiment Result and Analysis 

The cumulative result of death, cured, no virus, and vaccinated cases are shown in figure 

5.1. In the figure, variations indicate the values are altered throughout the time and experience 

sharp conversions during the initial time periods. Figure 5.2 displays the acceleration; |𝑥𝑡 − 𝑥(𝑡+1)| 

where x refers to the numerical value. The dynamics show the variance of the overall graph 

structure with respect to each criterion. The dispersion can mainly be divided into three phases: 

Increment, Decrement, and Stabilize. What we can deduce from this dispersion is the density of 

the graph. During the increment phase (10~30 time-steps), the infection and death cases surge until 

a certain point with 
𝑑𝐶

𝑑𝑡
> 0 and 

𝑑𝐷

𝑑𝑡
> 0 where C denotes the Cured and D indicates the dead. When 

lim
𝑡→𝑇

𝑑𝐷

𝑑𝑡
= 0, after T + 1, it shows 

𝑑𝐶

𝑑𝑡
< 0 and 

𝑑𝐷

𝑑𝑡
< 0. As it gradually becomes 

𝑑𝐷

𝑑𝑡
>

𝑑𝐷

𝑑𝑡′
 where 𝑡 <

𝑡′ , we have lim
𝑡′→𝑇

𝑑𝐷

𝑑𝑡′
= 0 which becomes stabilized, with a linear variation in each factor. The 

variation graph entails a long-tail distribution format, which expands the right-side in Figure 5.2 

(Note that Figure 5.2. is suggested to enlarge the view). The exponential increment of propagation 

asserts that the focus of the nodes is significant via edges, and in this time period, the contagious 

level is being maximized, following the equation (10), where ∀< 𝑛𝑖 , 𝑛𝑖′ > indicates the for all 

neighbor edges that are connected to current node 𝑛𝑖.  

max𝐶𝑜𝑛𝑡𝑎𝑔𝑖𝑜𝑢𝑠 𝐿𝑒𝑣𝑒𝑙 = max⋃𝑛(𝑞𝑖)

∀𝑖

   𝑠. 𝑡.   𝑞𝑖 = {< 𝑛𝑖, 𝑛𝑖′ > |𝑖 ≠ 𝑖′, (𝑛𝑖, 𝑛𝑖′) ∈ 𝑔} 

(10) 



                                                                                                                        51 

The amount of infection cases during the incremental phase is 

∑ (number of nodes at 𝑡)30
𝑡=10 ≈ 37,000, which holds 12.33% for all populations. This value may 

not fit into the actual practice since we assumed that the subject becomes immune to the virus after 

single vaccination and also when naturally cured. In a real-world scenario, the immune system 

fades in time, and diverse conditions, as well as factors affect the infection, which leads to our 

problem into approximation.  

To implement this into a real-world scenario, a single peak exists in each new COVID 

variant virus, whereas the period of the peak differs in each country based on diverse factors such 

as national disease control policy. For instance, the new variant Omicron (B.1.1.529), which was 

discovered in 2021 November, has a contagion rate of 613%, and around two months later, it 

surged the infection cases in the US. Currently, the statistics in the US have downsized, but other 

countries such as Japan and Korea are dealing with immense infection cases that they never 

experienced until now. Similarly, variant Delta+ (B.1.617.2.1) was found in 2021 June, and it 

struct the US during the following August, escalating the casualties. Therefore, each new variant 

causes an inevitable at least single impact surge due to its tolerance to a current vaccine and 

immune system or high infection rate. The overall trend is stabilized without any residual noise. 

This is due to the static graph structure, and since no viable benchmark dataset exists, expressing 

dynamic interactions had a minor limitation. Algorithm 1 runs on a graph model that is constructed 

as a real-world statistic. The numerical result throughout the time is analogous to the SEIR model 

[21], with indexes composing the entities with Susceptible, Exposed, Infected, and Recovered. In 

our simulation, recall that we compose the indexes with Cured (C), Dead (D) (Cured + Dead = 

Infected), No virus (A), and Vaccinated (V). With respect to the numerical result, the summation 
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would have 300,000 with the following equation (11), and the relationship of factors is shown in 

equation (12). 

 

 

Figure 5.1 Cumulative visualization of four factors: Dead, Cured, No virus, and Vaccinated 

when distributing the vaccines through descending order of EVI 

 

 

Figure 5.2 Variational visualization of four factors: Cured, Dead, Absolute value of no virus, 

and Vaccinated with time step 0~50 when distributing the vaccines through descending order of 

EVI  
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(11) 

|
𝑑𝐶

𝑑𝑡
| + |

𝑑𝐷

𝑑𝑡
| + |

𝑑𝑉

𝑑𝑡
| = |

𝑑𝐴

𝑑𝑡
| 

(12) 

The equation should be altered in an authentic world as (13) since subjects may be 

recontracted to the identical infection. In addition, the dt is larger than the single time unit since 

the maximum incubation period lasts more than a single time unit, for there exists a certain amount 

of period between the onset of the illness after the exposure. Furthermore, the advent of stronger 

variants increases the complexity, and analyzing whether variants are dependent or independent in 

parameter space or solution space takes much research. 

|
𝑑𝐶

𝑑𝑡
| + |

𝑑𝐷

𝑑𝑡
| + |

𝑑𝑉

𝑑𝑡
| ≈ |

𝑑𝐴

𝑑𝑡
| 

(13) 

Redesigned graph structure in every trial covers the diversity, and the following results are 

shown in Figures 5.3 ~ 5.8. The bar graph in Figures 5.3, 5.5, and 5.7 indicates the average value 

(bar) and the standard deviation (i.e., black line in the center) of each criterion: death cases, 

infection cases, and death rate after the 100 trials of simulations. In every figure, ‘no virus’ criteria 

were omitted since its infection reached almost 100% (=1.0), and the decimal points in every figure 

illustrate the percentage of the infection compared to the no virus result. For example, the EVI 

value in a death case has 0.403, which is equivalent to 40.3%, compared to the no vaccination case 

has 100%. Additionally, the quartiles of the density graph of all the trials are displayed in Figures 

5.4, 5.6, and 5.8, where the green rhombus shape value indicates the statistical outlier. In most 

cases, EVI incorporates the lower casualties: an average of 9.4% lower in death cases, 5.0% lower 

in infection cases, and 3.5% lower in death rates than other distribution criteria. 
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Figure 5.3 Death case results when distributing the vaccines based on each criteria 

  

 

Figure 5.4 Boxplot showing the distribution after 100 simulation trials in death cases 
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Figure 5.5 Infection case results when distributing the vaccines based on each criteria 

 

 

Figure 5.6 Boxplot showing the distribution after 100 simulation trials in infection cases 
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Figure 5.7 Death rate results when distributing the vaccines based on each criteria 

 

 

Figure 5.8 Boxplot showing the distribution after 100 simulation trials in death rate 
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6 CONCLUSION 

This thesis paper proposes the novel Epidemic Vulnerability Index, which is an optimal 

criterion that estimates the potential threat of the uninfected subject, utilizing the internal clinical 

attributes and external social attributes. Determining the routes of the vaccine propagation is a 

sensitive task that requires thorough analyses concerning the impact with respect to various 

conditions such as age, region, infection rate, death rate, etc. Through our analysis, we have 

estimated the potential risk that the subject incorporates based on their biological and social factors 

and shown that a trade-off exists when distributing vaccines, for there is a negative correlation 

between the infection rate and the death rate. This is a severe dilemma that attempts to diminish 

the death rate; when concentrating the vaccination on the elderly person also, subjects with high 

comorbidities would indeed decrease the death rates but increment the infection cases. On the 

contrary, controlling the infection rate that targets the vaccination to the younger generation would 

enhance the current death rate. Our solution to this problem is to adaptively control the weights of 

both cases based on the present and predicted trends via EVI. In order to validate the performance 

of the EVI, this thesis proposes a simulation-based inference that estimates the impact of the 

vaccination scenario. Through the graph-structured Agent-Based Model (ABM) that was 

formalized based on real-world statistics, we assign the features to every 300,000 agents 

representing the community. In the ABM, we conduct multiple virus & vaccine proliferation 

simulations with nine scenarios, including the vaccination through the descending order of EVI. 

The simulation is similar to the Markov Chain Monte Carlo simulation, where it stochastically 

disperses the virus and injects the vaccines to the optimal agents and observes the variations of the 

metrics of infection cases, death cases, cured cases, vaccinated cases, and no-virus cases. 

Compared to the existing indexes and other vaccination routes, vaccination via EVI has shown to 
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have a 5.0% lower number of infection cases, 9.6% lower number of death cases, and 3.5% lower 

death rates. 

EVI is designed to integrate the different propensity of our two main targets that must be 

controlled: infection rate and death rate. In addition, the evaluation has shown to be effective in 

the ABM through empirical simulations of various vaccination scenarios. However, dynamics in 

epidemiology require complex modeling. The environmental system that we currently live in 

consists of multivariate factors and complicated issues that cannot be predicted, including 

randomness, dynamic and heterogeneous entities, vaccine performance, etc. Estimating the future 

variations with high accuracy is an arduous task, and our limitation dwells in this domain. 

Especially, the ABM in this thesis has static factors compared to the real-practice system that 

evolves dynamically. Therefore, constructing the ABM analogous to the real-world system would 

overcome the limitations and enhance the accuracy. 

In reality, the decision-making process analyzes the feasible candidates and selects the 

options in accordance with the response to the current and future situation. It combines multiple 

strategies, establishing a method that covers the various problem. Likewise, this study can be 

applied when constructing the successful vaccination for other future pandemics that may occur. 

It could also be utilized when predicting the medical supply in the region, such as regional vaccine 

distribution scenarios, via adopting and finetuning novel attributes. Ultimately, these endeavors 

would come as obliging studies when organizing the optimal response strategy for the pandemic 

at the right time and place.  
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