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The Maracaibo basin of Venezuela is one of the most prolific hydrocarbon 

basins in the world. During the Paleogene, oblique collision between the 

Caribbean and South American plates produced a 4-km-thick wedge of clastic 

sediments, where over 40 billion barrels of hydrocarbons have been produced. 

Previous studies in the Eocene interval are focused either at a large 

regional scale or a field-size reservoir scale. Integration between both scales of 

observation has not been previously done, and, as a consequence, the effect of 

regional tectonics is not considered in the small-scale stratigraphic record. The 

aim of this dissertation is to study the interplay of tectonic and stratigraphic 

variables that controlled the Eocene sedimentation in the Maracaibo basin, and to 

establish a geologic model that incorporates data from a regional to reservoir 

scale. 
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Interpretation of 2-D and 3-D seismic data in the central and eastern 

Maracaibo basin reveals two major tectonic features formed during Paleogene 

collision between the Caribbean and the South American plates: 1) a late 

Paleocene-early Eocene foreland basin; and 2) a middle-late Eocene lateral ramp 

fault. The lateral ramp fault forms a paleogeographic facies boundary separating a 

less faulted and folded shelf area to the west from a fold-thrust belt to the east. 

In the Eocene Maracaibo shelf area, intraplate deformation occurs by N-

NE-striking left-lateral faulting with pull-apart basins localized at fault stepovers. 

Three-dimensional seismic time slice interpretation of more than 2000 km² of 3-D 

seismic data allows mapping of the Icotea pull-apart basin. Extension of the 

Icotea pull-apart basin is localized on pre-existing NW-SE-striking normal faults, 

formed by Paleocene-Eocene plate flexure during the foreland basin period.  

Detailed sequence stratigraphic interpretation of the central Maracaibo 

basin was carried out using 330 wells and 3-D visualization methods that 

combined well and 3-D seismic data techniques providing greater vertical and 

lateral resolution (pseudo-seismic). These data reveal that Eocene clastic 

sedimentation is controlled by tectonic subsidence and to a lesser degree by 

changes in sediment supply and eustasy.   

Hydrocarbon reservoirs of the central Maracaibo basin are concentrated in 

distributary channels and tidal sand bar facies on structural highs produced by 

strike-slip motion of N-NE-striking faults. Depositional environments and fluid 

content of Eocene reservoirs are inferred from cross sections based on closely 

spaced well logs. 
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CHAPTER 1 

Introduction and overview 

Venezuela has the fifth largest hydrocarbon reserve in the world with 

more than 30 known giant hydrocarbon fields with proven hydrocarbon reserves 

greater than 70 billion bbl (as compiled by Mann et al., in press; BP 2002).  Most 

of these giant fields occur in the onland foreland basins (Maracaibo, Barinas and 

Eastern Venezuela basins), south of the presently active Caribbean-South 

America strike-slip plate boundary. 

Northern South America experienced Late Jurassic-early Cretaceous 

rifting from southern North America and the Yucatan block followed by 

prolonged Cretaceous subsidence in a passive margin setting (Bartok, 1993; 

Pindell et al., 1998; Mann, 1999b).  The passive margin phase was interrupted by 

progressive west-to-east collision of the Caribbean arc with the passive margin in 

late Cretaceous in Colombia (Cooper et al., 1995); in Paleogene in the Maracaibo 

basin region (Pindell and Barrett, 1990; Lugo and Mann, 1995); and in Neogene 

in the area of eastern Venezuela and Trinidad (Erlich and Barrett, 1992; Pindell et 

al., 1998; Babb and Mann, 1999b; Di Croce et al., 1999) (Fig. 3).   

The structural evolution of the Maracaibo basin is complex because of 

multiple tectonic events occurring from the Jurassic to Present. For this reason, 

characterization of Cretaceous-Miocene hydrocarbon reservoirs is challenging. 

During the early-middle Eocene, the Misoa Formation was deposited within the 

Maracaibo foreland basin (Lugo and Mann, 1995; Parnaud et al. 1995b). The 
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lower-middle Eocene in the Lake Maracaibo area is a deltaic complex (Zambrano 

et al., 1971; Van Veen, 1972), with significant tidal influence (Maguregui, 1990). 

The Maracaibo basin has previously been the subject of previous studies 

of, its tectonic origin (e.g. Audemard, 1991; Lugo and Mann, 1995; Parnaud et al., 

1995), and its Cretaceous-Miocene reservoirs (e.g. Maguregui, 1990; Ambrose et 

al., 1995). Depositional systems based on chronostratigraphic units are essential 

to fully understand the sedimentation patterns within the Maracaibo basin. 

Interpretation of the Maracaibo basin geology and petroleum systems, with its 

structural complexity and vertical and lateral stratigraphic heterogeneities, 

requires a deep understanding of the different processes that affect stratigraphic 

sequences, such as eustasy, sediment supply and subsidence. Detailed analysis of 

the stacking patterns in a sequence stratigraphic framework can improve the 

description of reservoir architecture and facies content down to the bedset scale 

(Carter et al., 1997). But, stratigraphic interpretation involves analysis of the 

regional evolution of the basin, and mechanisms of depocenter formation.  

The main goal of this project is to document the Eocene stratigraphic and 

structural evolution of the Maracaibo basin, from the plate tectonic scale to the 

reservoir scale. High-resolution sequence stratigraphy and seismic interpretation 

form the basis of this study. A principal objective of this study is to use a dense 

well database control to offset the vertical resolution limitations of the 3-D 

seismic reflection data.  

This dissertation is structured in four main chapters, where each chapter 

considers a particular geological problem in the basin at a different scale of 
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observation. The data available for this study include 3-D and 2-D seismic data of 

a representative area of the central Maracaibo basin, more than 330 wells with 

suitable wireline log data and a review of previous studies. 

 These chapters are organized as follow: 

• Chapter 2 discusses two different tectonic models proposed for the 

thick Eocene depocenter located along the northeastern margin of the Maracaibo 

basin. The first model proposes that the northeast sedimentary wedge was 

controlled by a large lateral ramp fault (Burro Negro fault), separating SE-

directed, but independently moving thrust sheets, whereas the second model 

proposes that the depocenter is a foreland basin controlled by southwestward-

directed overthrusting during late Paleocene-middle Eocene collision between the 

Caribbean and South American plates. The present configuration of the basin and 

faults is more supportive of a tear or lateral ramp fault origin than other 

interpretations.  

• Chapter 3 discusses three-dimensional seismic mapping of 

interpretative subsurface time slices 3. The main objective of this chapter is to 

place constraints on the structure of the Icotea fault and its stratigraphic control of 

the Icotea pull-apart basin, located at a left-step on the fault. These 3-D data 

provide an excellent observational basis for understanding the structural history of 

three sets of regionally-extensive faults and testing two models for the formation 

of pull-apart basins in general.  

Interpretation of the sense of displacement along the Icotea fault is 

controversial. It has been interpreted as a left-lateral strike-slip, thrust with a 
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right-lateral oblique-slip component, and inverted normal fault lacking strike-slip 

displacement.  

The structural and stratigraphic architecture of the Icotea basin interpreted 

from five time slices through the basin and its flank areas supports the simple 

pull-apart model for the Eocene opening of the Icotea basin.  The amount of 

extension along the Icotea fault is consistent with some previous estimates of 

minor left-lateral displacement (0.8 to 2.25 km), but is inconsistent with either 

low-angle or high-angle thrusting during Eocene time, as inferred from previous 

interpretations of widely spaced 2-D seismic lines.  The normal faults that formed 

the pull-apart basin reactivated pre-existing faults due to plate flexure during the 

foreland stage that affected the Maracaibo shelf.   

• Chapter 4 focuses on the stratigraphic record of the central Maracaibo 

basin by interpreting the main Eocene chronostratigraphic surfaces and clastic 

depositional cycles. This analysis assumes that the Eocene sedimentary record of 

the basin was formed as a foreland basin during an oblique collisional event 

between the Caribbean and South American plates (Chapters 2 and 3). High rates 

of subsidence controlled the formation of the main depocenter and long term 

relative sea-level. Sediment supply and eustasy were less important than tectonics 

in controlling the stratigraphic framework. 

In contrast to previous stratigraphic interpretations done in the Maracaibo 

basin, this chapter uses visualization methods applied to 3-D seismic data and 

large numbers of wells to maximize lateral correlations and interpretation 

methods (pseudo-seismic transform technique of Carr et al., 1995). Seismic data 
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resolution and quality are not satisfactory to rely entirely on seismic stratigraphic 

analysis and to confidently perform well-to-well correlations. The Eocene 

stratigraphic succession in the study area is characterized by an aggradational 

package overlain by regressive and transgressive cycles in a retrogradational trend 

and a regressive sequence capped by the Eocene unconformity. The lack of 

erosional sequence boundaries reveals that the Maracaibo basin shelf was not sub-

aerially exposed during the early and most of the middle Eocene.  

Fluvial and tidal processes dominate Eocene facies architecture. Further 

effort is required to better understand the lateral and vertical distribution of the 

depositional systems and the interplay between forebulge, shelf and deep basin.  

• Chapter 5 consists of two parts: an overview of the distribution of the 

Eocene reservoirs in the central Lake Maracaibo area, and a feasibility analysis 

for correlating seismic and petrophysical properties of the rocks. The objective of 

this chapter is to estimate the degree to which the spatial continuity of the 3-D 

seismic data can be used in combination with the vertical resolution of the well 

data in predicting poorly imaged interwell reservoir areas. Prediction of reservoir 

facies and the petrophysical properties is very poor in the interwell areas.  

Main reservoirs are concentrated in distributary channels and tidal sand 

bar facies, which originate good quality fluid flow units. Even though lithology 

and fluid content can be differentiated by acoustic impedance in the well logs, the 

low vertical resolution of the seismic data available (25 Hz dominant frequency), 

is unable to resolve the lateral and vertical continuity of the reservoirs. Most of 
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the reservoirs are below the limit of resolution of the seismic data for the study 

area. 
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CHAPTER 2 

Eocene structure and stratigraphy along an exhumed lateral 
ramp fault, eastern Maracaibo Basin, Venezuela 

2.1 INTRODUCTION 

A “tear fault” is defined as a steep to vertical fault with horizontal motion, 

located in the hanging wall of a low-angle overthrust fault (Bates and Jackson, 

1984).  Its strike is generally perpendicular to that of the overthrust. Linzer et al. 

(1995) applied the term “tear faults” as displacement transfer structures in the 

Alps, where oblique convergence to the foreland basin resulted in en-echelon 

arrays of thrust faults displaced by dextral strike-slip faults. Both thrust and tear 

fault systems are kinematically connected to each other. Possible geological 

controls on the location of transfer structures are: Sub-thrust basement faults, 

basement rooted faults and/or stratigraphic variations (Thomas, W. A., 1990). 

Mann (1999a) proposed that areas of the Caribbean-arc continental collision 

resulted in several examples of tear faults. He used the term “lateral ramp” as a 

transtensional, strike-slip fault that formed as tears between collided and 

uncollided parts of the diachronously forming, circum-Caribbean fold-thrust belt.  

In northern Venezuela, a west-to-east younging pattern of thrusts and 

lateral ramp faults are developed along the Caribbean–South American margin 

(Fig. 2.1A). In the present day, these lateral ramps and thrusts are inactive or 

reactivated by mainly EW plate motion (Pérez et al., 2001; Trenkamp et al., 

2002). Younger faults in eastern Venezuela have been studied by Munro and 
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Smith (1984), Parnaud et al. (1995a), Roure et al. (1997) and Di Croce et al. 

(1999). Lateral ramp faults in eastern Venezuela are typically buried beneath 

thick, fluvial and shallow marine sediments, or exposed in the Serranía del 

Interior range of eastern Venezuela or Trinidad. In western Venezuela, lateral 

ramp faults and thrusts are exposed by later tectonic inversion related to Neogene 

motion along the Maracaibo block and the Neogene North Andean orogeny in the 

Falcón basin area. Topographic/bathymetry maps (Fig. 2.1A) and Geosat marine 

free-air gravity data (Fig. 2.1B) reveals that the structure of the northern South 

America and Caribbean margin is composed of a regular pattern of elongated 

volcanic-arc-related and basins that are compressed against the South American 

continental margin. These collapsed terranes are continuous features formed with 

the intraoceanic Caribbean island arc. The Lesser Antilles segment of the 

Caribbean volcanic arc is unopposed in its progressive, eastward displacement 

over Atlantic oceanic crust (Fig. 2.1). 

In this chapter, I focus on the Burro Negro fault zone, an exhumed Eocene 

age lateral ramp fault partially exposed along the eastern edge of the Maracaibo 

basin. The main objective of this chapter is to illustrate the overall structure of the 

Burro Negro zone fault and the two different areas of the Eocene sedimentation 

that it separates (Maracaibo shelf to the west, and Maracaibo deep basin to the 

east). This study is the first time a compilation of outcrop and subsurface 

observations derived from previous works and regional seismic data were used 

into a complete regional interpretation. 
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2.2 REGIONAL SETTING  

During late Paleocene to Eocene time, oblique collision between the 

Caribbean plate and the northwestern continental margin of South America 

produced a complex wedge of Paleogene clastic sediments and accretionary 

terranes in the northeastern part of the Maracaibo basin (Kellogg, 1984; Lugo, 

1991; Audemard, 1991; Parnaud et al, 1995b; Mann, 1999b). This oblique 

collisional event, that was diachronous from west to east, severely modified the 

configuration of lithologic facies belts along the South America passive margin. 

The Maracaibo basin developed a thick (> 4 km) Eocene depocenter in the north-

northeast of the present-day Maracaibo basin (Fig. 2.2). The shape of post-Eocene 

sedimentary rocks of the basin was influenced by the uplift of the main mountain 

ranges (Mérida Andes and Sierra de Perijá) from the Oligocene to Present.  

Figure 2.2 shows the present-day configuration of the Maracaibo basin.  

The basin is an elongate intermontane depression bounded by the NE-trends of 

the Mérida Andes and Sierra de Perijá. The Oca fault is interpreted as a dextral 

strike-slip fault, with estimates of Oligocene-Recent lateral offset ranging from 20 

to 100 km (Rod, 1956; Kellogg, 1984). The Mérida Andes bounds the basin to the 

south, and its topographic axis is closely controlled by the Boconó fault, also 

interpreted as a right-lateral strike-slip fault (Schubert, 1982). Toward the east the 

Maracaibo depression is bounded by the Trujillo Mountains, located east of the 

Burro Negro and Ballenato faults. These parallel faults strike northwest-southeast 

and terminate near the Valera fault. East of the Trujillo Mountains are the Lara 

nappes forming an anticlinorium striking northeast-southwest (Stephan,  



Figure 2.2. Surface geologic map of the Maracaibo basin region (modified from Borges, 1984) and seismic time 
slice at depth of 3.4 seconds beneath the Lake Maracaibo area. The present-day topographic and geological 
configuration of the Maracaibo basin is controlled by uplift of the Mérida Andes and Sierra de Perijá. Interpreted 
regional seismic time slice at 3.4 seconds shows the main structural styles in the Eocene, Paleocene, Cretaceous 
and Pre-Cretaceous stratigraphic levels (modified from Castillo, 2001). All sequences are dipping towards the 
south or southeast. An asymmetric, Eocene pull-apart basin formed along the Eocene Icotea left-lateral fault.  The 
Burro Negro fault bounds the present-day Marcaibo basin to the northeast. The Lara nappes are located east and 
northeast of the Burro Negro fault. The dashed boxed located in the central part of Lake Maracaibo is the area 
covered by the 3D seismic survey presented in this chapter. The color lines represent the regional 2D seismic 
transects also presented in this chapter. 
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1977, Kellogg, 1984, Mathieu, 1989). The Lara nappes are composed of 

Paleocene-Eocene sandstones and shales, igneous and bioclastic olistoliths of 

Cretaceous age (Mathieu, 1989). The present-day stress field analysis 

(Colmenares and Zoback, in press) reveals that western Venezuela is undergoing 

NW-SE shortening as a result of plate convergence between the South American 

and Caribbean plates. 

Interpretation of a regional seismic time slice at 3400 ms, comprising most 

of the Lake Maracaibo area and part of the eastern coastal plain of the lake, 

intersect Cretaceous to Miocene rocks (Fig. 2.2). Prominent structural features 

seen on this seismic time slice include N-NE-striking faults (e.g. Icotea and 

Pueblo Viejo faults) that terminate before reaching the southern Maracaibo basin 

(Castillo, 2001). These faults originated as Jurassic half-grabens and were 

reactivated as strike-slip faults during the Eocene. Another family of east-west-

striking faults is observed, mainly in the central part of the Maracaibo basin. 

These faults have been previously interpreted as a flexural response to the 

subsidence of the South American plate due to load of the Caribbean plate during 

the Paleogene (Roure et al., 1997; Castillo, 2001; Chapter 3). Major regional 

unconformities interpreted in the Maracaibo basin include the Pre-Cretaceous-

Cretaceous unconformity, the Paleocene unconformity, the Eocene unconformity, 

and the middle Miocene unconformity. 

The emplacement of the Lara nappes followed oblique collision between 

the Caribbean and South America plates, forming a more than 4 km thick foreland 

basin during the Paleogene in the N-NE areas of the Maracaibo basin. An isopach 
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map of the Eocene on Figure 2.3 shows several important features of this Eocene 

basin: 1) Thickening toward the NE part of the Maracaibo basin, 2) appearance of 

localized depocenters along the trace of N-NE trending faults (Chapter 3), 3) 

thickness changes along the Burro Negro fault; and 4) the Barinas Basin located 

in the south of the Maracaibo basin has no more than 500 m (~1500 feet) of 

Eocene rocks (Gonzáles de Juana et al., 1980).  

Due to late Tertiary uplift of the Mérida Andes preservation of Paleogene 

rocks in the mountain range separating the Maracaibo and Barinas basins is poor. 

Paleographic maps of the Maracaibo basin reveal that the Paleogene shelf edge 

trended to the northwest along the northeastern coast of the present-day 

Maracaibo Lake (Gonzáles de Juana et al., 1980; Mathieu, 1989; Lugo, 1991; 

Parnaud et al., 1995b) (Fig. 2.4). 

 

2.3 PREVIOUS INTERPRETATIONS OF THE MARACAIBO BASIN 

Two models for the Paleogene tectonic evolution of the Maracaibo basin 

and the development of the deep Eocene depocenter located in the northeast-east 

part of the basin have been proposed by previous workers (Fig. 2.5): 

1. TEAR FAULT, LATERAL RAMP OR TRANSVERSAL FAULT MODEL 

(Stephan, 1977; Stephan, 1985; Mathieu, 1989; Fig. 5A): This model proposes 

that the Maracaibo Eocene depocenter developed parallel to a tear fault or lateral 

ramp fault striking NW-SE. Right-lateral strike-slip displacement along the tear 

fault allowed independent motion of the thrust front east of the tear fault (Lara 

Nappes) (Fig. 2.5A). Oblique Caribbean-South America convergence led to  
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Figure 2.5. Two previous interpretations of Paleogene tectonics and sedimentation in the Maracaibo 
basin: A) Tear fault or “transversal fault” model of Stephan (1985); and B) Foreland basin model of 
Lugo and Mann (1995).
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emplacement of the Lara nappes toward the southeast (Stephan, 1977; Kellogg, 

1984, Stephan, 1985; Mathieu, 1989; Parnaud et al., 1995b). Parnaud et al. 

(1995b) propose a side thrust front or a lateral ramp thrust front in the 

northeastern margin of the Maracaibo basin instead of a tear or strike-slip fault. 

This model is based on the following observations (Fig. 2.5A): 

• Orientation of Paleocene and Eocene folds between N45º and N60º in 

the E-NE area of the Maracaibo basin indicates right-lateral shear along the lateral 

fault (Burro Negro fault) (Kellogg, 1984; Mathieu, 1989). 

• A complete absence of olistoliths and SW-NE folds in the Eocene 

rocks west of the Burro Negro fault indicates that this lateral ramp fault separated 

two areas of different deformation style (Mathieu, 1989). 

• Early to middle Eocene rocks prograding from SW to NE have distal 

facies toward the NE parts of the basin (Stephan, 1977). A shelf edge located 

along the trend of the Burro Negro fault zone represents the paleogeographic 

boundary between shallow and deep water sedimentary environments (González 

de Juana et al., 1980). Paleocurrents flow shows a NE to SW direction for 

turbidites of the Eocene Trujillo formation east of the Burro Negro fault (Mathieu, 

1989). 

• Offset of more than 100 km of the front of the Lara nappes is 

interpreted, east of the Maracaibo basin. Major thrusting occurred during the 

Paleocene-Eocene.  

• The Barinas middle-late Eocene depocenter seems to be offset 

between 50 to100 km to the SW from the Maracaibo basin equivalent Eocene 
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depocenter located along the trend of the Burro Negro fault zone. Stephan (1977) 

interpreted the leading edge thrust front of the Lara nappes to be located south of 

the Mérida Andes in the Barinas Basin and displaced toward the southwest by 

more than 50 km of Neogene right-lateral offset on the Boconó fault zone (Fig. 

2.6B). 

2. FORELAND BASIN MODEL (Audemard, 1991; Lugo and Mann, 1995; 

Fig. 5B): A thrust fault was located in the northern part of the basin and created 

an Eocene foredeep that paralleled the thrust front. The thrust front migrated 

southeastward and culminated with the emplacement of the Lara nappes (Stephan, 

1985). The source of clastic sediments changed in the Eocene foredeep from the 

southwest (proto-Magdalena or proto Orinoco-rivers; Díaz de Gamero, 1996) 

toward the northeast (Audemard, 1991; Lugo and Mann, 1995; Castillo, 2001).  

This model is based on the following observations (Fig. 2.5B): 

• A thick Eocene depocenter (> 4 km) developed along the eastern 

margin of the lake (Audemard, 1991; Lugo and Mann, 1995; Parnaud et al. 1995). 

Because the area of isopach mapping by Lugo (1991), Audemard (1991) and 

Lugo and Mann (1995) just reached the eastern margin of the Lake Maracaibo, 

there is scarce information available for the Eocene isopach beyond the north-

eastern margin of the Lake.  

• A thrust belt is located northeast of the Maracaibo basin. Lugo (1991) 

proposed that the thrust front was located north of the town of Carora and was 

advancing to the S-SW over the area of the Maracaibo basin. Audemard (1991) 
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pointed out that the thrust front is evident in the NE part of the Maracaibo basin, 

but it advanced through time toward the SE. 

• Cretaceous slumps and olistoliths in the Eocene rocks surrounding the 

town of Carora have been mapped (Renz, 1981).  

• Paleocurrents from Eocene turbidite outcrops in the Carora area 

indicate paleo flow directions from NE to SW (Mathieu, 1989; Lugo, 1991). 

• N-NE provenance for Eocene clastic rocks in the E-NE part of the 

basin has been interpreted (Lugo, 1991; Castillo, 2001). Parnaud et al. (1995b) 

and Castillo (2001) also described a S-SW source of the early-middle Eocene 

rocks and a W-EW source for middle and late Eocene rocks in the Maracaibo 

basin. Provenance studies by Lugo (1991) indicate a continental source from the 

south during this period. 

• A flexural bulge with absence of Eocene clastic sedimentary rocks is 

located in the southern part of the Lake Maracaibo (Lugo, 1991; Audemard, 1991; 

Parnaud et al., 1995b). 

• Subsidence plots for Eocene clastic rocks in the eastern margin of 

Lake Maracaibo, from Lugo (1991) and Castillo (2001) reveal rapid rates of 

subsidence during the Paleocene-early Eocene following abrupt uplift during 

middle and late Eocene.  

• Lugo and Mann (1995) proposed southwest-prograding clinoforms in 

Eocene clastic rocks in the N-NE area of the Maracaibo basin. Clinoforms are 

middle to late Eocene in age. 
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2.4 DATABASE AND METHODOLOGY USED IN THIS STUDY 

DATABASE: This study uses 2000 km² of 3-D seismic data, located at the 

center of the Maracaibo basin along with approximately 500 km of 2-D seismic 

lines (Fig. 2.2). The 3-D seismic data were collected by PDVSA, S.A. (Venezuela 

national oil company) during the 1980’s. Regional seismic time slices, produced 

by merging all available 3-D seismic surveys of the Lake Maracaibo area were 

also used in this study (Castillo, 2001). Five deep exploratory wells located in the 

central and eastern parts of the basin were used in this study to constraint ages of 

lithologies of seismic sequences (Fig. 2.2). Seismic sequences are described in 

detail in chapter 3 of this dissertation.  

METHODOLOGY: Four regional seismic transects (1-4) were constructed 

using 2-D and 3-D seismic lines (Fig. 2.6) and conventional seismic interpretation 

was carried out. Synthetic seismograms were generated to improve the 

correlations between seismic reflectors and well data. Interpretation of the main, 

regionally continuous seismic reflections and reflection terminations were 

correlated to synthetic seismograms and wells. The main unconformity-based 

sequences were delineated in the basin, and an Eocene isopach map was 

generated using interval velocities derived from sonic logs of the five wells 

located in central Lake Maracaibo (Fig. 2.3). Velocities used for depth conversion 

were: Pre-Cretaceous: 6.2 km/sec; Lower Cretaceous: 5.0 km/sec; Upper 

Cretaceous and Paleocene: 2.8 km/sec; Eocene: 4.0 km/sec; Oligocene-Present: 

3.1 km/sec. Interpretive subsurface seismic time slice maps were constructed 

using age data, unconformity-based sequences, and detailed structural  
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observations from 3-D seismic and regional seismic time slices (Castillo, 2001; 

Escalona and Mann, 2003a; Chapter 3 this dissertation). 

 

2.5 MAJOR EOCENE STRATIGRAPHIC AND STRUCTURAL FEATURES OF 
CENTRAL AND EASTERN MARACAIBO BASIN 

In order to describe the main structural and stratigraphic features of the 

Maracaibo basin during the Paleogene a fence diagram, using 2-D seismic 

transects, was constructed (Fig. 2.6). This fence diagram provides a three 

dimensional view of the stratal geometries in distinct Paleogene depocenters in 

the central and northeastern parts of the Maracaibo basin. Main observations are: 

EOCENE CLASTIC WEDGE: The early Eocene wedge pinches out in the 

central part of the present-day Lake Maracaibo, and thickens up to more than 4 

km toward the northeast (Transect 1 in Figs. 2.6A and 2.7). Figure 2.7 shows an 

interpretation from the N-S transect 1 showing the early Eocene wedge in the 

southern part of the basin (Fig. 2.6A). To the south, the Eocene wedge onlaps 

against a folded Paleocene high (forebulge and/or basal unconformity). Internal 

reflections on Figure 2.7B show truncations of the underlying Paleocene 

reflections against the early Eocene section. Back-stepping onlap of Eocene 

sequences toward the south is interpreted and reflections within the Eocene 

section suggest subaerial exposure of the late Paleocene rocks, with possible 

fluvial incision. Clinoform progradation toward the N and NE is inferred (Figs. 

2.7 and 2.8) is supported by interpretation of the main depocenters in the northern 

parts of the Maracaibo basin.  



24

10

12

-72 -70

GEOLOGICAL GEOLOGICAL 
COLUMNCOLUMN

M
E

SO
ZO

IC

C
R

ET
A

C
EO

U
S

PALEOCENE

EO
C

EN
E

MIOCENE

PLIOCENE

OLIGOCENE

PLEISTOCENE

LOWER

MIDDLE

UPPER

MAASTRICHTIAN
CAMPANIAN
SANTONIAN
CONIACIAN
TURRONIAN

CENOMANIAN
ALBIAN 
APTIAN

BARREMIAN
NEOCOMIAN

PRE-CRETACEOUS

HOLOCENE

5.5

1.6

25.2

36.0

39.4

49.0

54.0

66.5

131.0

TI
M

E 
IN

 M
. Y

.

C
E

N
O

ZO
IC

Se
qu

en
ce

 B
Se

qu
en

ce
 C

Se
qu

en
ce

 D

LEGEND

Sense of displacement 
of the faults

Unconformity

Fault

Inverted fault

Intraformation
reflections

Onlap terminations

NS
Line A

0

1000

2000

3000

4000

5000

Tw
o 

w
ay

 ti
m

e 
(m

se
c)

Enlarged in B

A.
Transect 1

10 Km

4000

3000

Well A Well B

Tw
o 

w
ay

 ti
m

e 
(m

se
c)

B.

4000

3000

Clinoform?

Fluvial 
incision ?

Eocene forebulge

10 km

Figure 2.7. A) Regional seismic transect 1 showing Eocene clastic rocks pinching out southwards in the Maracaibo basin. B) Detail of boxed area shown 
in Figure 2.7A. The Eocene clastic wedge laps out against the Paleocene unconformity and back-steps southward. Incised channels are interpreted at the 
base of the Eocene wedge.

Lake 
Maracaibo

Gulf of Venezuela

Maracaibo basin
0

1000

2000

3000

4000

5000

100 Km
Eocene 
depocenter

Lara nappes

Tr
an

se
ct

 1

Tran
sec

t 4



 25

FAULT INVERSION: At the end of the late Eocene, inverted structures 

formed along the eastern margin of the Lake Maracaibo (Figs. 2.6C and 2.8, 

transect 4). This inversion is also observed along the Icotea fault (Chapter 3; 

Escalona and Mann, 2003b), suggesting that E-W compression was produced as 

the final stage of the folding and emplacement of the Lara nappes in the eastern 

part of the basin, east of the Burro Negro fault, which major vergence was to the 

SE. 

EOCENE SUB-BASINS: Two main sub-basins are interpreted in the Eocene 

Maracaibo shelf: 1) The Icotea pull-apart basin at a left-step along the Icotea fault 

indicates between 0.8 to 2.3 km of left-lateral strike-slip and it is explain in detail 

in Chapter 3; and 2) The Pueblo Viejo basin, that is an inverted rift basin located 

near the eastern margin of the Lake Maracaibo. This basin is bounded by the 

Pueblo Viejo fault on the west and probably the Burro Negro fault on the east 

(Transect 4, Figs. 2.6C and 2.8). The Pueblo Viejo basin is a deep Eocene 

depocenter containing more than 3 km (10000 feet) of Eocene rocks (Fig. 2.4). 

This basin thickens toward the north following the trace of the Pueblo Viejo fault 

(Transect 3, Fig. 2.6B). Inversion of the basin occurred at the end of the late 

Eocene and during the Miocene (Fig. 2.6C). 

The Pueblo Viejo basin was infilled by two different Eocene episodes 

(Fig. 2.6B, C and 2.8): The early Eocene and the middle-late Eocene. The early 

Eocene section onlaps the Paleocene unconformity toward the west, and 

reflections suggest clinoforms prograding east (Figs. 2.8B and 2.8C). Instead, the 

middle-late Eocene section pinches out toward the west, downlaping over the  
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early-middle Eocene boundary (interpreted by well control and as a continuous 

seismic reflection), suggesting progradation toward the west. Also, the early 

Eocene section has a lower percentage of sandstone (low Gamma Ray) toward the 

east (Well D, Fig. 2.8B), whereas the middle and upper Eocene becomes less 

sandy toward the west (Wells C and D, Fig. 2.8C).  

BURRO NEGRO FAULT ZONE: Surface expression of the Burro Negro fault 

can be observed and interpreted in the radar image shown in Figure 2.9. The fault 

is located to the E-NE of the basin and strikes NW-SE following the axis of the 

Trujillo Mountains. Field observations by Mathieu (1989) on map view show the 

Burro Negro fault as a linear fault with associated en echelon folds striking E-W 

(Fig. 2.9).  In cross section the fault is interpreted as a high angle fault dipping 

toward the NE with an associated low angle fault defining the Burro Negro fault 

zone, representing the western topography front of the Trujillo Mountains. Based 

on these field observations, Mathieu (1989) interpreted the Burro Negro fault as a 

right-lateral strike-slip fault with undetermined amount of offset 

On seismic data the Burro Negro fault is a chaotic reflection zone (Fig. 

2.10). Its linear trace and high dip angle on seismic lines is consistent with the 

surface mapping of Mathieu (1989). It remains a high angle fault to a time of at 

least 3 to 4 seconds (Fig. 2.10C and 2.10D). 
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The Burro Negro fault zone divides the eastern Maracaibo basin into two 

different structural provinces: The folded Eocene with Oligocene–Neogene sub-

basins to the northeast and the stable Eocene wedge, with divergent reflections 

toward the south (Fig. 2.6 and 2.10). This change in tectonic regime occurred later 

than the early Eocene and before the Oligocene, because of orientation of folds 

west of the Burro Negro fault during the Eocene indicates NW shortening 

(Mathieu, 1989; Fig. 2.6). The orientation of Oligocene-Neogene basins 

interpreted from the surface geological map in Figure 2.2, and by Boesi and 

Goddard (1991) also suggest ENE-WSW folding. 

To the south of the Burro Negro fault, Eocene rocks form a wedge of 

rocks that thin up toward the south and pinch out against the Paleocene 

unconformity (Fig. 2.6 and 2.10). In this area, deformation is transtensional 

related to the formation of pull-apart basins along N-NE-striking inverted faults 

(e.g. Icotea and Pueblo Viejo faults). Extension is mainly toward the NE as 

interpreted from the NW-SE striking faults (Chapter 3; Escalona and Mann, 

2003b). To the north of the Burro Negro fault zone folding and thrusting of the 

pre-Oligocene rocks is observed (Transects 1, 2 and 3 in Fig. 2.6). The thrust front 

migrated E-SE and produced two pulses of coarse clastic sedimentation 

interpreted by Stephan (1977). The clastic main depocenters were located in front 

of the fold thrust belts (to the SE), east of the Burro Negro fault zone (Mathieu, 

1989). Uplifted Paleocene and Eocene rocks served as a source for the middle-late 

Eocene clastic wedge located in the Pueblo Viejo basin area, and probably 

nourished adjacent areas to the south and west (Mathieu, 1989). The presence of 
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ophiolitic rocks within the deformed Paleocene-Eocene belt east of the Maracaibo 

basin (Lara nappes) suggest thin skinned obduction of fragments of the Caribbean 

plate over the South America margin (Stephan, 1977). 

The Burro Negro fault coincides with the platform margin of northwestern 

South America and a re-entrant of the deep open marine basin of the proto-

Caribbean during the Paleogene (Lugo, 1991; Parnaud et al, 1995b; Fig. 2.4). 

Gonzáles de Juana et al. (1980) defined a hinge zone located along the Trujillo 

Mountains, following the trace of the Burro Negro fault zone (Fig. 2.2, 2.9B and 

2.10). Late Paleocene-Eocene paleogeographic reconstructions (Fig. 2.4) in the 

Maracaibo basin by exploratory wells, outcrop and seismic data (Gonzáles de 

Juana et al., 1980; Mathieu, 1989; Parnaud, 1995b) agreed that this hinge zone 

represents a stratigraphic boundary between the shallow marine environments to 

the south (platform province) and basinal environments, with the presence of 

slumps and turbidites, north of the Burro Negro fault area. Folding of these 

sediments north of the Burro Negro fault zone by the continuing advance of the 

Caribbean plate from the northwest over South America induced the formation of 

slumps interpreted by Stephan (1977) and Mathieu (1989) in the deep basin. 

Pindell and Kennan (in press) interpreted the paleogeography of western 

Pangea from Jurassic rifting to the present. Their main observations are that 

Jurassic rifting produced a serrated crustal margin in northern Venezuela, with rift 

segments oriented approximately N70º and separated by left-lateral transfer faults 

striking ~ N140º. Present-day rift related faults in the Maracaibo basin are 

oriented between N10º to N60º (e.g. Icotea fault, Pueblo Viejo fault Tigre fault 
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and Boconó fault, Fig. 2.2). The Boconó and Tigre fault are oriented ~N60º and 

probably would correlate to the main crustal margin orientation proposed by 

Pindell and Kennan (in press), whereas the Burro Negro fault, which is oriented 

~N140º, would correlate to a Jurassic transfer fault.  

Considering the previous discussion, it can be concluded that the Burro 

Negro fault defines the platform edge between the deep basin located to the N-NE 

and the Maracaibo platform to the S-SW. The shape of the margin may reflect a 

transfer fault inherited from Jurassic rifting (Pindell and Kennan, in press). The 

Jurassic transfer fault was reactivated by oblique collision of the Caribbean plate 

and formed the Burro Negro fault as a lateral ramp fault. Using Mann’s (1999a) 

definition, the Burro Negro fault acted as a lateral ramp fault separating collided 

and uncollided parts of a diachronously forming fold-thrust belt. 

OLIGOCENE-MIOCENE SUB-BASINS AND AREAS OF CHAOTIC 

REFLECTORS: Development of Oligocene-Miocene syntectonic sub-basins (Roure 

et al., 1997) along the syncline axis of the folds is observed on transects 1, 2 and 3 

(Figs. 2.6A, B and D), north of the Burro Negro fault zone. These sub-basins are 

bounded by chaotic reflections defining their main fold axis including the area 

along the Burro Negro fault (Fig. 2.6 and 2.10). Eocene clastic rocks crop out east 

and west of transect 2, as well as the Oligocene and Miocene sub-basins (Surface 

geologic map in Figs. 2.2 and 2.10B). The trend of these sub-basins is WSW-

ENE, paralleling the folds and thrusts north of the Burro Negro fault zone (Fig. 

2.2 and 2.10B). 
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Chaotic zones separating the Oligocene-Neogene sub-basins interpreted 

on seismic lines in Figure 2.10 show similar features to those observed at highly 

fracture fault zones or shale diapirs. Chatellier et al. (1998) first proposed the 

presence of an Eocene shale diapir in northeastern Maracaibo basin based on the 

presence of near-vertical beds and shale diapirs features seen in cores, wells and 

seismic data. The presence of shale diapirs indicates the existence of 

overpressured shales. Sedimentary loading from rapid sedimentation, tectonic 

loading and hydrocarbon generation are some of the primary conditions needed to 

generate overpressured sediments and diapirism (Barber et al., 1986). These 

conditions are plausible along the oblique collisional Eocene margin between the 

Caribbean and South American plates. Active diapirism occurs in northern 

Colombia, the eastern Venezuela basin, the Orinoco delta, and Trinidad (Aslan et 

al., 2001).  

Rapid mud sedimentation in front of the thrust belt deep basin areas of the 

Maracaibo basin (north of the Burro Negro fault) from the Cretaceous to the early 

Eocene provide the right geologic setting for Eocene shale diapirism. The 

presence of olistoliths east of the Burro Negro fault has been attributed to 

slumping in front of the thrust front (Stephan, 1977; Mathieu, 1989). However, 

surface expression of these features can be similar to chaotic deposits composed 

of blocks in a shale matrix in shale diapir provinces (Barber et al., 1986).  

From the seismic data shown in Figure 2.10, I interpreted the chaotic 

zones as highly faulted and shale diapirs zones, where basinal shale is 

overpressured by Eocene compression. Field analysis, well information, and 
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denser seismic lines grid is needed in order to understand better the geometry and 

composition of these chaotic zones in the eastern Maracaibo basin. 

THE PALEOCENE UNCONFORMITY: It represents the basal unconformity 

between the Eocene foredeep and the previously tilted passive margin (Di Croce 

et al., 1999). A Flexural bulge (uplift) is formed as a response of downwarping 

continental lithosphere due to tectonic loading of an active thrust front (Allen and 

Homewood, 1986; Giles and Dickinson, 1995), and the bulge uplift is a minor 

feature compared to the size of the basin as a whole (Crampton and Allen, 1995). 

In the Maracaibo basin the forebulge was previously mapped by Parnaud et al. 

(1995b) and is revealed by the Eocene isopach where thickness becomes zero 

(Fig. 2.4). Southward migration of younger sedimentary rocks onlapping the 

Paleocene unconformity reflects migration of the forebulge toward the south as 

subsidence increases, caused by tectonic loading in the northern Maracaibo basin 

(Lugo and Mann, 1995). Internal reflectors within the Eocene suggest previous 

unconformities surfaces, which may represent either eustatic changes or previous 

tectonic pulses that filled this area with continental to shallow marine deposits.  

THE EOCENE UNCONFORMITY: It is present beneath most of the 

Maracaibo basin. Missing time across the unconformity increases toward the 

south, where Miocene rocks overlay Paleocene rocks (Fig. 2.7). To the north of 

the Burro Negro fault, early to middle Eocene rocks are overlain by Oligocene 

and Neogene rocks (Figs. 2.6 and 2.10), whereas in the east middle and probably 

late Eocene rocks are overlaid by Neogene rocks (Fig. 2.6 and 2.8). 
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By middle Eocene most of the Maracaibo basin was exposed. Isostatic 

rebound and cessation of tectonic loading over the basin are the final stage of a 

foreland basin, producing a regional unconformity (Emery and Myers, 1996). 

This regional unconformity suggests a final stage for the foreland basin in the 

Maracaibo area. The basin was nourished mainly from the south and southwest by 

a main clastic system during the early Eocene (Fig. 2.4 and 2.8). 

TECTONIC LOADING: It is responsible for generating the deep depocenter 

(foredeep) and uplift of the continental lithosphere (forebulge). The early Eocene 

deep depocenter, located in the N-NE of the Maracaibo basin, is related to 

tectonic loading produced by the Caribbean-South American plates Paleogene 

collision in western Venezuela (interpreted from subsidence plots by Lugo (1991) 

and Lugo and Mann (1995)). The only field evidence of the thrust belt that 

formed the foreland basin and the orogenic event is a complex sequence of 

Paleocene and Eocene turbiditic rocks with some ophiolite fragments located 

northeast and east of the Burro Negro fault (Stephan, 1977; Stephan, 1985; 

Mathieu, 1989; Fig. 2.5). This evidence supports the early-middle Eocene 

depocenter, but there is no evidence of late Paleocene-early Eocene thrusting, 

north of the Maracaibo basin. Considering that collision between the Caribbean 

and South American plates moved diachronously from west to east, the location 

of the late Paleocene-early Eocene thrust front must be N-NW of the Maracaibo 

basin (north of the Oca fault), where there is no present-day surface evidence and 

little published data in the area. More field work and subsurface studies are 

needed in this area. 
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THE OCA FAULT ZONE: It is located north of the Maracaibo basin is part 

of the complex strike-slip boundary between the Caribbean and South America 

plates. Its horizontal motion during the late Tertiary is relative small (less than 

100 km, Rod (1956) and Kellogg (1984). The Burro Negro fault intersects the 

Oca fault near the northern margin of the Lake Maracaibo. More intensive work 

of the Oca fault, using well and seismic data will help to better decipher the 

evolution of the basin in this area, and understand the tectonic configuration of the 

Maracaibo basin during the early Paleogene.  

 

2.6 EOCENE BARINAS BASIN 

The Eocene depocenter in the Barinas area is restricted to the middle 

Eocene and thickness can reach up to 1 km (3000 feet) (Fig. 2.3). Location of this 

depocenter is located between 50 to100 km southwest of the Maracaibo basin 

middle Eocene depocenter. The two depocenters are presently separated by the 

80-km-wide Mérida Andes. 

Strike-slip motion along the Boconó fault is interpreted to have begun 

during the late Tertiary. Present-day motion is calculated to be around 7-10 

mm/yr, and lateral displacements of Holocene glacial moraines indicate lateral 

displacement between 60-100 meters (Schubert, 1982; Audemard et al., 1999). 

Total horizontal displacement is still controversial but most authors agree that is 

more than 30 km and less than 100 km (Rod, 1956; Stephan, 1977; Schubert, 

1982; Kellogg, 1984; Audemard et al., 1999). Furthermore, Stephan (1997) 

interpreted the leading edge of the Lara nappes to be south of the Mérida Andes, 
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and that the thrust front was separated from the Lara nappes by 80 km of 

horizontal motion along the Boconó fault (Fig. 2.5B). 

Considering dextral motion along the Boconó fault, the Eocene Barinas 

depocenter was located 50 to 100 km northeast of it present position relative to 

the Maracaibo basin. By removing this displacement, the western edge of the 

Barinas Basin depocenter aligns to the Burro Negro fault south of the leading 

edge thrust front of the Lara nappes as interpreted by Stephan (1977; 1985). The 

amount of the strike-slip motion along the Boconó fault is still controversial at the 

northeast and southwest ends of the fault (Stephan, 1977; Mann and Burke, 1984). 

Also direct evidence for the stratigraphic link between the Maracaibo and Barinas 

Eocene depocenters have been removed by erosion and uplift of the Mérida 

Andes during the late Cenozoic. 

 

2.7 DISCUSSION 

TECTONIC ESCAPE IN NORTHERN VENEZUELA 

Tectonic escape is a strike-slip dominated motion produced of colliding 

continental or arc material toward a nearby oceanic margin or free face (Mann et 

al., 1995). The tectonic escape takes place when changes in the direction of plate 

convergence as the plate underwent terminal collision in one direction is 

reoriented toward a free face by shearing the plate and accreting or forming 

microplates in the collided zone (Mann et al., 1995). Direction of reorientation is 

controlled by location of oceanic versus continental crust in front of the orogenic 

belt (Hippolyte et al., 1999). This process leads to rotation and creation of strike-
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slip faults bounding the mobile thrust belt toward a direction where lithosphere 

can be subducted, and obduction of accretionary terranes along the continental 

margin. 

Oblique collision between the Caribbean and South America plates from 

the Paleogene to Present has evolved from an obliquely convergent zone to a 

more strike-slip boundary along the northern coast of Venezuela as explained 

later in the tectonic model reconstructions (Fig. 2.11). This change through time, 

from west to east, implies that the Caribbean plate is escaping or migrating toward 

the east with respect to South America (Pérez et al., 2001; Trenkamp et al., 2002). 

 Figure 2.1A shows a series of lateral ramp faults and thrusts that have 

been interpreted along the northern margin of Venezuela (Stephan, 1985; Babb 

and Mann, 1999b). These lateral ramp faults, that contributed to obduction of 

accretionary terranes along northern South America, strike more to the SE in 

western Venezuela (i.e. Burro Negro fault), whereas in eastern Venezuela and 

Trinidad their strike has a more eastward component (i.e. Urica fault) (Fig. 2.1A). 

This change in strike along the South America margin reflects the change in 

direction through time of the oblique collision between the Caribbean and South 

American plates, as the Caribbean plate escapes toward the east. Accretionary 

terranes along the Venezuela Caribbean mountain ranges include the Lara 

Nappes, the Tinaco-Tinaquillo complex, The Loma de Hierro ophiolite and the 

Villa de Cura paleo-arc complexes (Stephan, 1977; Mathieu, 1989).  
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PRE-COLLISIONAL PALEOGEOGRAPHY IN NORTHERN VENEZUELA 

The Paleogeographic shape of the northern South America continental 

margin was inherited from Jurassic rifting, and appears to have controlled the 

oblique collision between the Caribbean and South America plates (Pindell and 

Kennan, in press). Transfer faults connected the Jurassic rifted margin and 

controlled the location of re-entrants along the continental margin. I propose that 

these re-entrants were later reactivated as lateral ramps by west–east directed 

oblique collision of the Caribbean plate with the northern margin of South 

America, and allowed accretion of obducted terranes. The lateral ramp faults 

change strike angle from SE to more E in general, as the Caribbean plate escapes 

eastward and a free face stage is reached to the east of the collisional zone. 

 

MODEL FOR THE PALEOGENE TECTONIC EVOLUTION OF THE 

MARACAIBO BASIN 

An integrated reconstruction of the evolution of the Maracaibo basin 

during the Paleogene is summarized in Figure 2.11. Three main stages can be 

described as follow: 

A. LATE PALEOCENE - EARLY EOCENE (Fig. 2.11A):  The Maracaibo 

basin began to downwarp as a response of tectonic loading in the north and 

northeast as the Caribbean plate starts to collide with northern South America. 

Eocene clastic input from the south and southwest infill the basin and onlap over 

the Paleocene platform as tectonic loading continues. A flexural bulge formed in 

the central part of the basin and migrated southwards as a response of the thrust  
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belt located in the north-northwest. Early Eocene rocks onlap the forebulge. N-NE 

striking faults (Icotea and Pueblo Viejo fault) were reactivated as left-lateral 

strike-slip faults developing pull-apart basins along their traces allowing NW 

shortening. The platform margin was located along the Burro Negro fault zone at 

the western margin of the Trujillo Mountains (Fig. 2.11A). 

B. MIDDLE – LATE EOCENE (Fig. 2.11B): Tectonic loading ended in 

central and south Maracaibo basin and produced a regional unconformity by 

tectonic rebound. The thrust front began to move southeastward and was bounded 

to the west by the Burro Negro fault in the northeastern part of the basin. This 

fault, inherited from a Jurassic transfer fault, acted as a lateral ramp fault with 

right-lateral strike-slip motion. A depocenter developed along the trace of the 

Burro Negro fault and along the trace of the reactivated Pueblo Viejo fault. 

Depocenters were developed in front of the thrust front, which was migrating 

southeastward by 100 km east of the Burro Negro fault. Simultaneous, folding 

and uplift of the Paleocene and Eocene rocks in front of the thrust front provided 

the source of sediments for the existent depocenters toward the southwest, south 

and southeast. The Barinas region subsided as a response of the tectonic loading 

caused by the leading edge of the Lara nappes. The forebulge was located toward 

the south and clastic input was from the south. 

C. LATE EOCENE-OLIGOCENE (Fig. 2.11C): Collision of the Caribbean 

plate moved SE-E by tectonic escape that induced right-lateral strike-slip motion 

in the area. Coeval folding continued east of the Burro Negro fault. The thrust 

front reached its final stage in the southeast (Barinas area). In the Maracaibo 
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basin, strike-slip motion moved the thrust front toward the east inducing pull-

apart basin formation in the Falcón area (NE of the Maracaibo basin) above 

previously obducted accretionary terranes. Major right-lateral strike-slip motion 

was probable located north of the Falcon basin (Wheeler, 1963; Muessig 1984; 

Boesi and Goddard, 1991). Shortening directions interpreted in the Falcón basin 

changed from NNW-SSE during the late Eocene to WNW-ESE in the Oligocene-

Miocene (Mathieu, 1989), and appear to be the same during the Pliocene to 

Present (Audemard et al., 1999). Isostatic rebounding exposed the Eocene 

Maracaibo and Barinas basins. Syntectonic sedimentation occurred in the syncline 

axis of the NE trending folds east of the Burro Negro faults, and west of the 

Icotea fault. Interpretation of changes in the compression direction from Eocene 

to Present supports a more west-east strike-slip motion by the Oligocene-

Miocene, where the collisional thrust front moved toward eastern Venezuela. 

D. LATE TERTIARY (Boconó fault; Fig. 2.11D): Uplift of the Mérida 

Andes during the late Tertiary separated the Maracaibo basin from the Barinas 

Basin. Later lateral motion along the Boconó fault displaced the Maracaibo basin 

toward the northeast relative to the Barinas Basin. Horizontal offset of both 

depocenters range from 30 to 100 km. The Burro Negro fault and the leading edge 

thrust front fault are also offset.  
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COMPARISON OF LATERAL RAMPS FAULTS IN WESTERN AND EASTERN 

VENEZUELA 

Eastern Venezuela exhibits a similar pattern of lateral ramp faults to those 

seen in the Maracaibo basin. The Urica fault, located in the Maturin sub-basin, 

northeastern Venezuela (Fig. 2.1A) shows a similar structural and stratigraphic 

setting to that of the Burro Negro fault in the Maracaibo basin (Fig. 2.12). Figure 

2.12A shows an interpreted seismic line through the Urica fault (Munro and 

Smith, 1984; Location in Figs. 2.1 and 2.12A). The fault is interpreted as a left-

lateral strike-slip fault, separating the Maturin sub-basin into a zone of 

compression to the northeast, from one of tension to the southwest (Munro and 

Smith, 1984). By the middle Miocene the Urica fault and the leading edge of the 

thrust front separated shelf deposits from deep marine basin (Di Croce, 1995). 

Figure 2.12B shows an interpreted seismic line through the Burro Negro fault 

located in the Maracaibo basin. As seen for the Urica fault, the Burro Negro fault 

separates an extensional zone to the southwest from a compressional zone to the 

northeast. Other similar features between the two lateral ramp faults are chaotic 

reflections interpreted as mud diapirs located in the compressional zone of the 

Urica fault, formation of syntectonic sub-basins bounded by chaotic reflections, 

and more continuous even reflections toward the tensional zone southwest of both 

faults.  

A main difference between both regions is their age (Eocene vs. Miocene) 

and later inversion of the Maracaibo basin depocenters. Following oblique  
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collision between the Caribbean and northwestern South America in the 

Maracaibo basin area, uplift of the Mérida Andes occurred from late Oligocene 

through Recent. Andes uplift led to development of a foredeep to the south of the 

basin and switched the depocenter from the northeast-east during the Eocene to 

the south during the Miocene (Castillo, 2001). In contrast, the Maturin sub-basin 

has not been inverted by later tectonic events. Another difference can be observed 

in the trends: the Burro Negro fault strikes more to the south-southeast (~N140º), 

whereas the Urica fault strikes more to the east-southeast (~ 120º) (Fig 2.1A). 

The more east-directed strike of the Urica fault than the Burro Negro fault 

suggests major strike-slip motion between the Caribbean and South America plate 

by the time that Miocene collision took place in eastern Venezuela. Also, 

development of the exhumed and inverted Falcón basin as a pull-apart basin 

during the Oligocene-Miocene resembles the present-day Cariaco pull-apart 

basin. Analysis of this areas falls beyond the scope of this study, and further study 

is necessarily in order to have a more integrated interpretation of the collisional 

evolution between northern South America and the Caribbean plates. 

 

2.8 CONCLUSIONS AND RECOMMENDATIONS 

Interpretation of 2-D and 3-D seismic data in central and eastern 

Maracaibo basin, and analysis of the two different models proposed for the 

Paleogene evolution in the basin, allowed me to develop the following 

conclusions: 
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• The Maracaibo basin records several deformations during the collision 

between the Caribbean and the South America plates in the Paleogene: 

a. Late Paleocene-early Eocene: A foreland basin formed with its 

main depocenter located north and northeast of the basin. A forebulge 

formed in the southern part of the basin. Pre-existing N-NE trending faults 

were reactivated. 

b. Middle-late Eocene: Strike-slip motion through a lateral ramp fault 

controlled the middle-late Eocene depocenters and directed the thrust front 

toward the SE, ending the foreland basin stage in most of the Maracaibo 

basin. Major Eocene depocenters were located along the trace of the tear 

fault. Folding of Paleogene rocks within the SE diverted thrust front 

produced Oligocene and Neogene sub-basins within the fold synclines. 

• The Burro Negro fault represents the platform break in the Maracaibo 

basin from Cretaceous to Eocene. The fault separates an unthrusted, asymmetrical 

shallow to deep basin from a thrusted area of deepwater sedimentary rocks. It was 

inverted as a tear fault or lateral ramp fault allowing SE motion of the leading 

edge Caribbean deformation front, east of the Maracaibo basin. When offset along 

the Boconó fault is removed the lateral ramp-thrust geometry of the Burro Negro 

fault connects the Eocene depocenters of the Maracaibo and Barinas basins. 

Because the Burro Negro fault forms a line of separation between shallow to outer 

shelf rocks to the SW and deep marine rocks to the NE, these paleogeographic 

boundaries suggest that the serrated aspect of the margin was inherited from 

Mesozoic rift structures and was subsequently reactivated by Eocene and younger 
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thrusting. Field work is necessarily in order to determine motion and age of the 

fault. This will help to support the evolution model proposed in this dissertation.  

• The presence of chaotic reflections zones NE of the Burro Negro fault 

reveals complex structural features which may have been formed by 

overpressured shales. Further surface and sub-surface analysis of this area is 

recommended to understand the cause of these chaotic zones. 

• Oligocene-Neogene sub-basins are a sub-surface continuation of those 

observed in the surface in the northeast parts of the Maracaibo basin. 

• The Barinas basin formed as a part of the SE thrust front controlled by 

the Burro Negro fault. Later Andean uplift and right-lateral motion along the 

Boconó fault separated the main depocenters of both basins. 

• Interpretation of the Burro Negro fault, located in the Maracaibo basin 

and the Urica fault located in the Maturin sub-basin revealed similar geological 

features. Both faults separated tensional stable shelf areas from highly deformed 

fold thrust belts. Both faults acted as tear faults or lateral ramps that allowed SE 

motion of the thrust front. 

• This study supports the inherited, serrate paleogeographic shape of the 

South America continental passive margin as proposed by Pindell and Kennan (in 

press). 
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CHAPTER 3 

Three-dimensional structural architecture and evolution of an 
Eocene pull-apart basin, central Maracaibo basin, Venezuela 1 

3.1 INTRODUCTION 

The origin, evolution and recognition of strike-slip faults and pull-apart 

basins have been widely studied in experimental models (Hempton and Neher, 

1986; McClay and Dooley, 1995; Gölke and Cloetingh, 1994), as well as in the 

field using outcrops (Wilcox et al., 1973; Reading, 1980; Rodgers, 1980; Mann et 

al., 1983; Aydin and Nur, 1985) and in the subsurface  using well and seismic 

data (Christie-Blick and Biddle, 1985; Harding et al., 1985; Wood et al., 1994). 

Two models are proposed to explain the formation and evolution of transtensional 

basins along strike-slip faults: 1) Formation of transtensional rhombohedral “pull-

apart basins” at stepovers, or discontinuities, along traces of strike-slip faults 

(Mann et al., 1983; Naylor et al, 1986; Sylvester, 1988; Gölke and Cloetingh, 

1994; McClay and Dooley, 1995); 2) Formation of more elongate and rift like 

basins produced by fault-normal extension simultaneous with strike-slip motion 

(Ben-Avraham and Zoback, 1992;). 

The pull-apart model predicts that the two longitudinal sides of the basin 

are bounded by strike-slip faults, and basin-transverse faults are dominantly 

normal. Lengthening of the basin is accomplished by accumulated strike-slip 

displacement along the “master” strike-slip faults, which link transverse normal 
                                                 
1 In Marine and Petroleum Geology, 2003, with co-author P. Mann 
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faults at the ends of the basin (Mann et al, 1983; McClay and Dooley, 1995). In 

contrast, the fault-normal extension model is based on the interpretation that pull-

apart basins are bounded on one side by strike-slip faults and on the other by 

normal faults striking sub-parallel to the transform. This juxtaposition of sub-

parallel strike-slip and normal faults suggests that both strike-slip and normal 

faulting processes occur together as a result of crustal weakness around the entire 

faulted zone (Ben-Avraham and Zoback, 1992).  

The 30,000 km² Maracaibo basin, located in northwestern South America 

(Fig. 3.1A), records a complex geologic evolution history lasting from the Late 

Jurassic to the present (Lugo and Mann, 1995; Parnaud et al., 1995b). One of the 

main structural elements of the basin is the linear ~100 km long, N-S striking 

Icotea fault. Studies regarding the sense of displacement along the Icotea fault is 

controversial and has been interpreted as left-lateral strike-slip with 7.5 to 18 km 

of offset (Krause, 1971; Lugo, 1991; León et al., 1999), thrust with a right-lateral 

oblique-slip component (Munro, 1985; Audemard, 1991) and inverted normal 

fault lacking strike-slip displacement (Castillo, 2001).  

Models of formation of transtensional basins along strike-slip faults, as 

well as the motion along the Icotea fault, are poorly constrained because previous 

interpretations have been restricted by the use of widely spaced 2-D seismic lines. 

Three dimensional seismic data covering an area of approximately 2000 km² 

collected during hydrocarbon exploration of the Maracaibo basin were used to 

place constraints on the three-dimensional structural architecture and evolution of 

the Icotea sub-basin. The objectives in this chapter are to: 
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1. Provide a complete fault description of the evolution of the Icotea pull-

apart basin within its Eocene, oblique collision-related, tectonic framework, 

2. Quantify the amount of normal fault displacement that formed the basin 

using vertical and antithetic shear methods. Both methods yield minimum 

estimates for the horizontal displacement along the Icotea fault that can be 

compared to estimates by previous workers; and 

3. Determine which basin-forming model (pull-apart vs. transform-normal 

extension) best fits observations from 3-D seismic data. 

 

3.2 PLATE TECTONIC SETTING OF THE MARACAIBO BASIN 

The geology of the Maracaibo basin, located in northwestern South 

America, is dominated by complex Mesozoic-Cenozoic interactions between 

North American, South American and Caribbean plates (Fig. 3.1). The basin 

records an evolution from the separation and rifting between North America and 

South America during the Jurassic, followed by migration of the Caribbean plate 

to its present position since the late Paleocene (e.g., Lugo and Mann, 1995). 

Most workers now accept that the Caribbean region originated in the 

eastern Pacific and was transported into its present position between North and 

South American plates along large-offset strike-slip faults and oblique subduction 

zones (Burke, 1988; Pindell and Barrett, 1990; Mann, 1999b) (Fig. 3.1A). The age 

of collisional deformation and sedimentary overlap between the Caribbean plate 

and the passive margin of southern North America and northern South America is 

diachronous, with older Late Cretaceous-Paleocene deformation in western 
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Colombia and Yucatan Peninsula, and younger Oligocene-Recent deformation in 

the east in northeastern South America (Fig. 3.1B). 

The major pulse of tectonically driven subsidence in the central and 

eastern margin of the Maracaibo basin occurred during an oblique collisional 

event between the Caribbean and South American plates (Pindell and Barret, 

1990; Lugo, 1991; Lugo and Mann, 1995; Castillo, 2001). Prior to the collision 

event, the margin was a passive margin characterized by slow, thermally related 

subsidence following Jurassic rifting between North and South America, 

interpreted by the presence of rift related rocks in the Maracaibo basin 

(Audemard, 1991; Lugo, 1991; Lugo and Mann, 1995; Roure et al., 1997; 

Castillo, 2001). 

 

3.3 LATE NEOGENE TO PRESENT GEOLOGIC SETTING OF THE MARACAIBO 
BASIN 

The Maracaibo basin is an actively subsiding, triangular, intermontane 

basin occupying an area of western Venezuela where the northern Andes 

bifurcates into a western branch (Sierra de Perijá) and an eastern branch (Mérida 

Andes) (Fig. 3.2). The topography and elongate geologic outcrop patterns of both 

ranges adjacent to the Maracaibo basin are closely controlled by northwest to 

northeast transpressional strike-slip faults (e.g., Boconó fault).  

GPS results indicate that the triangular area bounded by these faults and 

including the Maracaibo basin (“Maracaibo block” of Mann and Burke, 1984) is 

actively moving north-northeast relative to the rest of the South American plate 

(Pérez et al., 2001; Trenkamp et al., 2002). Present-day plate motion includes a  
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large component of late Neogene east-west-oriented convergent motion across the 

Maracaibo block and surrounding mountain ranges that is thought to be related to 

the collision of the Panama arc against the northwestern corner of South America 

(Taboada et al., 2000).  

Figure 3.2 shows the present-day surface geology of the Maracaibo basin 

and an interpreted seismic time slice at 1.0 second beneath the floor of Lake 

Maracaibo from Castillo (2001). Lake Maracaibo, with a maximum water depth 

of approximately 30 m, forms a shallow topography depression in the central part 

of the basin. The lake occupies approximately 30% of the total area of the basin 

(Fig. 3.2). Subsurface deformation within Lake Maracaibo at the 1.0-second level 

intersects the stratigraphic level from late Miocene to Pleistocene. These Neogene 

rocks dip into a north-south-oriented syncline (“Maracaibo syncline” of Castillo, 

2001) while the surrounding surface geology shows a combination of northeast 

fault and fold trends (Fig. 3.2). The Maracaibo syncline probably reflects active 

east to west convergence as discussed by Taboada et al. (2000) and Trenkamp et 

al. (2002).  

 

3.4 LATE PALEOCENE-EOCENE GEOLOGIC SETTING OF THE MARACAIBO 
BASIN 

During the late Paleocene and Eocene, the geologic and structural setting 

of the Maracaibo basin was very different from the late Neogene to present setting 

previously described. Figure 3.3 shows an interpretation of a seismic time slice at 

3.4 seconds in the present-day geography of Lake Maracaibo, intersecting 

Cretaceous to Miocene rocks. Prominent structural features interpreted include the  
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remarkably linear and sub-parallel N-striking Icotea and Pueblo Viejo faults. 

Most of the N-striking faults terminate before reaching the southern area of Lake 

Maracaibo (Castillo, 2001).  

Another important family of east-west-striking faults is observed, mainly 

in the central area of the lake (Fig. 3.3). These faults are less continuous, but more 

numerous and closer spaced. These faults have been previously interpreted as a 

flexural response to the subsidence of the South American plate due to the 

collision with the Caribbean plate (Roure et al., 1997; Castillo, 2001). The fault 

dips of the EW fault family are mainly to the north and northeast. Other major 

features interpreted on Figure 3.3 are regional unconformities present in the 

Maracaibo basin (e.g., Pre-Cretaceous-Cretaceous unconformity, Paleocene 

unconformity, Eocene unconformity, and a middle Miocene unconformity).  

The location of an Eocene depocenter at a left-step along the Icotea fault, 

interpreted on Figure 3.3, supports the previous interpretation that the fault is left-

lateral in nature, and that the depocenter is a pull-apart basin formed at a left-step 

in the fault traces (Krause, 1971; Naylor et al., 1986; Lugo, 1991; León et al., 

1999). The disappearance of most faults and stratigraphic thickness anomalies 

above the Eocene regional unconformity indicates that most strike-slip movement 

and associated basins within the Maracaibo basin were confined to Eocene time.  

 

3.5 DATABASE AND METHODOLOGY  

DATABASE: This study uses 2000 km² of 3-D seismic data, located at the 

center of the Maracaibo basin (Figs. 3.3 and 3.4). Location and orientation of the 
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lines and crosslines within the 3-D survey are shown in Figure 3.4. Regional 

seismic time slices, produced by merging 3-D seismic surveys that cover most of 

the Lake Maracaibo area (Castillo, 2001), were incorporated (Figs. 3.2 and 3.3). 

Well logs located on the eastern part of the 3-D survey were also incorporated to 

provide age and lithologic control (Fig. 3.4). 

METHODOLOGY: Conventional interpretation of 3-D seismic data was 

carried out.  Generation of synthetic seismograms using well logs to provide 

improved correlations between seismic reflectors and well data was followed by 

interpretation of the main, regionally-continuous seismic reflections and reflection 

terminations (Fig. 3.5). The main unconformity-based sequences were delineated 

in the basin, and isochron maps and a discontinuity map were generated to 

identify major and subtle changes in thickness and to detect fault discontinuities 

from changes in dip and reflection character. Interpretive subsurface time slice 

sections were constructed from the 3-D seismic survey, which incorporates age 

data, unconformity-based sequences, and detailed structural observations. This 

approach allows a systematic analysis of the major deformation events that make 

up a basin, following the methods of Brown (1996) and Castillo (2001) (Fig. 3.4). 

Regional seismic time slices modified from Castillo (2001) were used to place 

regional constraints on the area covered for the 3-D seismic survey. Finally, I 

conducted a structural fault restoration using the vertical shear and 60º antithetic 

shear of a seismic line longitudinally through the Icotea basin. 
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Figure 3.4. C) 3-D view of the seismic cube showing an interpreted seismic time slice at 2200 ms. 
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3.6 SUBSURFACE SEISMIC UNITS IN THE CENTRAL MARACAIBO BASIN 

MAIN SEISMIC SEQUENCES: Four major, tectonostratigraphic sequences 

(A-D), based on major regional unconformities in the Maracaibo basin, were 

interpreted in the area. Their distinct log response and seismic character is 

summarized in Figure 3.5. Following the sedimentary sequence cycle hierarchy 

devised by Vail et al. (1977), the stratigraphic record of the central Maracaibo 

basin consists of one Mesozoic-Recent first-order cycle, with a duration of 

approximately 200 my. Sequence classification in Figure 3.5 is modified slightly 

from Lugo and Mann (1995), Parnaud et al. (1995b) and Castillo (2001): 

A) PALEOZOIC OROGENIC PHASE (PRE-SEQUENCE A): Metamorphic 

basement rocks beneath the Maracaibo basin which crop out in the adjacent Perijá 

and Mérida Andes were deformed during the Appalachian-Ouachita-Marathon 

collision between the Gondwana and Laurentia continental blocks. 

B) LATE JURASSIC RIFTING PHASE (SEQUENCE A ~ 208 TO 131 MY.): 

Linear, north-northeast striking faults, originated as normal faults bounding Late 

Jurassic half-grabens and were reactivated as strike-slip and reverse faults during 

the Paleogene (Lugo and Mann, 1995; Parnaud et al., 1995b; Roure et al., 1997). 

Sedimentary rocks derived from the erosion of continental rift blocks include 

upper Jurassic alluvial and lacustrine sedimentary rocks of the La Quinta 

Formation (Fig. 3.5). These rocks are poorly known in the Maracaibo basin due to 

their great depth beneath the overlying Cretaceous and Cenozoic rocks, but have 

been mapped from outcrops in the surrounding mountain ranges (Schubert et al., 

1979; Gónzales de Juana et al., 1980). 



61

GEOLOGICAL 
COLUMN

M
E

SO
Z

O
IC

C
R

ET
A

C
EO

U
S

PALEOCENE

EO
C

EN
E

MIOCENE

PLIOCENE

OLIGOCENE

PLEISTOCENE

EARLY

MIDDLE

LATE

MAASTRICHTIAN

CAMPANIAN

SANTONIAN

CONIACIAN

TURONIAN

CENOMANIAN

ALBIAN 

APTIAN

BARREMIAN

NEOCOMIAN

PRE-CRETACEOUS

HOLOCENE

C
E

N
O

Z
O

IC

FORMATION NAME

LA QUINTA

MUCUCHACHI

PAUJI

MISOA

LA PUERTA

ISNOTU

LAGUNILLAS

LA ROSA

ICOTEA

GUASARE

DEPOSITIONAL 
ENVIRONMENT

LACUSTRINE

FLUVIAL

PARALIC

MARINE

EOLIAN - LACUSTRINE

MARINE

PARALIC

SHALLOW MARINE

CLASTIC-CARBONATE

MARINE

C
A

R
B

O
N

A
TE

PL
A

TF
O

R
M

ALLUVIAL-LACUSTRINE
MARINE

METAMORPHIC 
BASEMENT

5.5

1.6

25.2

36.0

39.4

49.0

54.0

66.5

131.0

T
IM

E
 IN

 M
. Y

.

FLUVIAL - ALLUVIAL

MITO JUAN

COLON

SOCUY

LA
 L

U
N

A

MARACA
LISURE

APON

RIO NEGRO

MARINE
CLASTIC-CARBONATE

SHALLOW MARINE
CLASTIC-CARBONATE

ICOTEA

PAUJI MARINE

EOLIAN - LACUSTRINE

SE
Q

U
EN

C
E 

C
SE

Q
U

EN
C

E 
D

SE
Q

U
EN

C
E 

B

1 5 0 1 0 0 5 0 1 . 5 2 . 0 2 . 5 - 0 . 3 0 . 3 N o r  P o l 2 9 8 5 2 9 9 0 2 9 9 5 3 0 0 0
GR (API) ILD (ohmm) DT (us/ft) RhoB (g/cc) RC Synthetic Trace 2644

0 5 0 1 0 0 1 5 0 0 2 0 0 4 0 0

EOCENE UNCONFORMITY

PALEOCENE UNCONFORMITY

PRE-CRETACEOUS UNCONFORMITY

127.0

121.0

112.0

98.9

93.5

89.0

85.8

83.5

71.3

Stratigraphic units removed from study area by erosion

Figure 3.5. General stratigraphic column used for the area of study. Typical well log and seismic response for the three main second-order sequences defined in this 
study are shown. Middle Eocene  Oligocene deposits are not present in the area of study, based on palynological data. Formation names, ages and depositional 
environments compiled from Lugo and Mann (1995), Parnaud et al. (1995b) and Castillo (2001). Time scale from Gradstein et al. (1995).



 62

C) CRETACEOUS AND PALEOCENE PASSIVE MARGIN PHASE (SEQUENCE 

B ~ 131 TO 66-54 MY.): Following rifting, a Lower Cretaceous–Paleocene, mixed 

clastic-carbonate platform formed across the present-day Maracaibo basin. 

Thermal subsidence led to sediment accumulation and tectonic quiescence 

resulted in an absence of significant structures during this period (Lugo and 

Mann, 1995). Prominent reflectors in this sequence include the base of sequence 

B (formed by impedance contrast at carbonate-basement rocks or carbonates-red 

beds) and the top of sequence C (impedance contrast at carbonate-clastic contact), 

attributed to a Paleocene unconformity (Fig. 3.5). 

D) LATE PALEOCENE TO LATE EOCENE COLLISIONAL PHASE (SEQUENCE 

C ~66-54 TO 49-36 MY.): Oblique collision between the Caribbean plate and the 

northwestern margin of South America produced a complex wedge of clastic 

sediments and accretionary terranes in the northeastern part of the Maracaibo 

basin (Lara nappes of Stephan, 1977; Fig. 3.2). This collisional deformation 

began in the Maracaibo basin and becomes younger toward the east (Pindell and 

Barrett, 1990; Lugo and Mann, 1995; Mann, 1999b) (Fig. 3.1). This collisional 

phase in the Maracaibo area can be subdivided into different periods: 

Period 1: During the Late Cretaceous and Paleocene, the Caribbean plate 

started to collide with the north-western part of the Maracaibo basin (Fig. 3.1B), 

but most of the Maracaibo basin area remained as a passive margin with only a 

few inverted or newly-developed convergent or strike-slip structures. This period 

is interpreted by Lugo and Mann (1995) and Parnaud et al. (1995b) as the passive 
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to active-margin transition with the development of a foredeep along the NE edge 

of the Maracaibo basin.  

Period 2: Late Paleocene to middle Eocene, development of a foreland 

basin (Lugo and Mann, 1995; Parnaud et al., 1995b) related to continuation of the 

oblique collision between the Caribbean plate and the South American plate. 

Figure 3.6 shows an EW seismic line with the main tectonic elements of the 

Paleogene Maracaibo basin, including: 1) a westward-thinning, asymmetric 

clastic wedge of early to late Eocene; 2) a partially inverted graben within the 

basin (Pueblo Viejo sub-basin); and 3) the Icotea pull-apart basin, close to the 

area where the Eocene sediment rocks pinch out. Paleogene collision is 

characterized by SE migration of the depocenter through time, as shown in 

isopach maps in Lugo and Mann (1995) (Fig. 3.3). A complex angular 

unconformity formed during the end of this period (Fig. 3.6) was probably 

produced by a combination of collision-related folding and thrusting and the 

formation of a flexural bulge due to vertical loading (Audemard, 1991; Lugo, 

1991; Parnaud et al, 1995; Chapter 2). This unconformity is called the Eocene 

unconformity (Fig. 3.5). 

E) OLIGOCENE-RECENT CONVERGENT MARGIN, MARACAIBO SYNCLINE 

(SEQUENCE D 36-25 MY. TO RECENT): This phase of basin development is 

characterized by the uplift of the Sierra de Perijá and the Mérida Andes. The 

formation of the N–S Maracaibo syncline (Castillo, 2001) is the final stage of this 

evolution, and controls the present-day geographic configuration of the basin (Fig. 

3.2). The main convergent structural style developed (in addition to the  
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Maracaibo syncline) is the inversion of Eocene structures in the central part of the 

basin during the Oligocene and early Miocene (Figure 3.6), and uplift of the 

Sierra the Perijá and the Mérida Andes along thrust systems near the bases of 

mountain fronts (Audemard, 1991; Duerto, 1998; Castillo, 2001). This period of 

basin development is of less interest to this study since the Icotea strike-slip fault 

became largely inactive by Oligocene time. 

 

3.7 DESCRIPTION OF THE ICOTEA PULL-APART BASIN 

Interpreted isochron and edge detection maps 

An isochron map of the uppermost Paleocene unconformity is presented in 

Figure 3.7A. An asymmetrical depression (Icotea pull-apart basin), and a major 

elongate uplift, north and east of the sub-basin, bounded by N-NE striking faults, 

is seen on the isopach map.  Edge-detection maps of the top of the Cretaceous 

limestone and the Paleocene unconformity (Fig. 3.7B) highlight the three main 

fault families in the area of the pull-apart: 

• N–NE-striking faults (Icotea, A, B, C, D, E faults) 

• NE–SW-striking faults, evident only in the top of the Cretaceous 

limestone 

• NW–SE-striking faults (F fault) 

The isochron map between the top of the Cretaceous limestone and the 

Paleocene unconformity reflects a constant time thickness, but areas along the 

NW striking faults show subtle thickness variations. This observation suggests  
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that the basin was deformed by late Paleocene NE–SW faults, probably formed 

during extension related to flexural loading (Castillo, 2001). 

The isochron map between the Eocene and the Paleocene unconformity 

(Fig. 3.7C) shows abrupt changes in thickness of sequence C. The asymmetrical 

development of the Icotea pull-apart basin and its related uplifts controlled these 

abrupt thickness changes. Sequence C shows a general wedge shape, thinning to 

the south and thickening to the northeast, but the main area of deformation and 

subsidence occurs in the area between the N–NE-striking faults (Icotea and B 

faults) (Fig. 3.7C). The deformed pull-apart basin area is characterized by an 

asymmetrical depression filled with Eocene rocks in the area adjacent to the east 

of the Icotea fault and by thinning in the uplifted areas.  

Seismic time slices 

The structure of the Neogene and older sedimentary rocks in the Lake 

Maracaibo basin shows the southward-plunging Maracaibo syncline (Fig. 3.2). 

Areas in the central part of the basin show more complex structures during 

Eocene time (Fig. 3.3). I document the Maracaibo syncline and more complex, 

deeper structures using five deeper time slices: 

Seismic time slices at 2200 ms and 2600 ms 

At these intervals, the Maracaibo syncline deforms the Oligocene-

Miocene section (sequence D). For the Eocene (sequence C) and Cretaceous-

Paleocene (sequence B), the syncline is disrupted by a major anticline plunging 

southward. The anticline is bounded by NNE-SSW-striking faults in the northern 

part of the seismic time slice (Figs. 3.13A and 3.13B). Sequence D shows faulting 
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deformation at the level of the Eocene unconformity, whereas sequences B and C 

are affected by folding. Furthermore, NW-SE striking faults interpreted in the 

time maps are recognized beneath sequence D. 

Seismic line 3800 (Fig. 3.8) cuts through the main structural features 

observed in seismic time slices at 2200 ms and 2600 ms. Line 3800 shows a major 

uplift affecting all sequences from pre–Cretaceous sedimentary rocks (acoustic 

basement) to the early stages of sequence D (Fig. 3.8). Sequence B, in general, 

has the same thickness across the whole study area. Sequence C thins in the 

uplifted area, where truncation is interpreted from seismic reflection terminations 

(Fig. 3.8B). Thickening occurs at both sides of the uplift, and lap terminations are 

observed over the basal unconformity. Sedimentation of sequence C appears to be 

syntectonic. 

Seismic time slices at 3400 ms and 3800 ms 

Seismic time slice at 3400 ms shows a major asymmetrical pull-apart 

basin controlling sequence C of Eocene age (Fig. 3.9A). The pull-apart basin is 

bounded by uplifted areas along the N-NE fault trend. The major stratigraphic 

thickening appears to be controlled by the Icotea fault, although faults A, B and E 

are locally important in subdividing the pull-apart basin in different Eocene 

depocenters (Fig. 3.9A). NE-striking normal faults become evident in sequence B, 

whereas faults striking NW are recognized throughout the area, and in all the 

sequences except in the seismic time slice at 2200 ms. 
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Figure 3.9. A) Uninterpreted and 
interpreted seismic time slice at 3400 
ms. Three main trends of faults are 
interpreted: N-NE, NW-SE and NE-
SW. The Icotea pull-apart basin is 
evident, and sinistral strike-slip motion 
of the N-NE faults is interpreted. B) 
Uninterpreted and interpreted seismic 
time slice at 3800 ms. The Icotea pull-
apart basin is encased within the 
basement and bounded by the Icotea 
fault to the west, faults A and B to the 
east, and fault F to the north. Reservoir 
rocks of sequence C are possibly in 
contact with source rock of sequence B. 
Prevalence of three main trending fault 
directions and the development of the 
pull-apart basin and related uplifted 
areas is controlled by the N-NE striking 
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The seismic time slice at 3800 ms highlights the main fault trends already 

interpreted in the overlying seismic time slices (Fig. 3.9B). At 3800 ms, these 

faults also cut the pre-Cretaceous sequence (acoustic basement), which is the 

main stratigraphic unit present at this level. The Icotea pull-apart basin, 

containing sequences B and C, is enclosed in pre-Cretaceous rocks and extends 

between the Icotea fault and fault A. The lower part of sequence B (source rock) 

is in fault contact with sequence C, which is the main reservoir rock in the 

Maracaibo basin (Fig. 3.9B) (Gónzales de Juana et al., 1980).  

Seismic line 3000 cuts transversally through the major depocenter of the 

Icotea pull-apart basin in sequence C (Fig. 3.10). The main boundaries of the 

depocenter are fault B and the Icotea fault. Asymmetry of the depocenters is 

characteristic of Icotea the pull-apart basin, even at its deepest level (Fig. 3.10). 

This asymmetric geometry is controlled by differential displacement of the N-NE 

master striking faults. Syntectonic deposition is inferred from lower Eocene 

growth strata of sequence C during the early Eocene. Middle and upper Eocene 

rocks are likely not to have been preserved. An abrupt change from the deep pull-

apart basin to the adjacent uplift is controlled by fault F, a major NW-SE fault 

(Fig. 3.9A). Sequence B, as interpreted in the time maps and seismic lines, has an 

overall constant thickness. In contrast, sequence D is affected by reactivation of 

underlying structures during its early stages of deposition and, in general, thickens 

to the S-SW (Fig. 3.7). 
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Figure 3.11 illustrates the basin geometry described above in the form of a 

seismic fence diagram. Outside the main area of deformation controlled by the N-

NE fault trend, sequence C thickens toward the N-NE, whereas sequence D 

thickens toward the S-SW (between seismic crosslines 1800 and 2800). These 

thickness variations reflect the change in position of the main depocenters of the 

Maracaibo basin from N-NE in the Eocene to the south during the Miocene. The 

western side of the area shows the NW–SE faults mainly dying out in sequence C 

(seismic crossline 1800), and major faults dipping northwards (Fig. 3.10A). In 

contrast, the eastern side (seismic crossline 2800) shows an increase in the 

inclination of the reflections of sequences C and D (Fig. 3.10A) Sequence C is 

more affected by NW-SE-striking faults inside the area of deformation, 

asymmetry of the pull-apart basin fill along with the juxtaposition of the basin and 

the surrounding anticlines (Figs. 3.9B, 3.13D and 3.13E). 

 

3.8 EXTENSION OF THE ICOTEA SUB-BASIN AND MINIMUM AMOUNT OF 
STRIKE-SLIP DISPLACEMENT 

Pull-apart basin length depends on the horizontal offset of the master 

strike-slip faults, which is transferred into extensional offset of the basin-

transverse faults (e.g., fault F) (Figs. 3.9A and 3.11A). Transverse normal faults 

allow pull-apart basin lengthening, and their extension occurs in a direction 

parallel to the lateral offset.   

Figure 3.12A shows an arbitrary longitudinal seismic line through the 

Icotea pull-apart basin and parallel to the direction of strike-slip motion as the  
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Icotea fault (Fig. 3.11B). This line was used to make a structural restoration at the 

top of the Paleocene in order to calculate the total extension produced by 

transverse normal faults. The seismic line was converted to depth (Fig. 3.12B) 

using interval velocities for the different sequences, derived from sonic logs (Fig. 

3.5 and 3.12). 

Two types of shear were used to restore the faulted, depth converted 

seismic section in Figure 3.12B (Xiao and Suppe, 1992): 1) Vertical shear, where 

the hanging-wall material drops down vertically to fill the void (Fig. 3.12C), and 

2) antithetic shear, where collapse takes place in a non-vertical direction, 

(antithetic to fault F, Fig. 3.12D) along the surface to be restored and the adjacent 

fault block (Worral and Snelson, 1989). Shear angles measured in the laboratory 

using clay box experiments range between 60º and 70º for different rock types 

(Xiao and Suppe, 1992). A 60º maximum fault dip angle was used in the vertical 

shear model. This angle is similar to the measure dip angles of antithetic faults 

within the Icotea basin (Fig. 3.12). Vertical shear was applied to the western block 

of fault F (Fig. 3.12D) because the western block does not exhibit significant 

extension. 

The longitudinal section restored with vertical shear has a total extension 

of 1.3 km (Fig. 3.12C), whereas the Icotea pull-apart basin restored with antithetic 

shear has a total extension of 2.75 km (Fig. 3.12D). However, upper Paleocene-

Eocene rocks were also extended by flexural-loading during oblique collision 

between the Caribbean plate and the northern South America plates (Castillo, 

2001) (Figs. 3.9 and 3.11). Therefore, this previous extensional event needs to be 
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calculated, in order to better estimate the amount of extension provided by basin 

transverse faults within the Icotea pull-apart basin. I calculated a total extension 

of 0.5 km in the area east of the Icotea fault, where sequence C is less deformed 

(Figs. 3.11A and 3.11B, seismic crossline 1800). This minor extension provides 

an estimate for regional extension related to the flexural loading event. 

Therefore, extension localized within the ~15-km-long Icotea pull-apart 

basin ranges between 0.8 and 2.25 km. This amount of extension is a minimum 

estimate of the amount of left-lateral strike motion along the Icotea fault. 

Maximum contribution of extension calculated in the restoration is obtained from 

fault F. This fault defines the northern boundary of the Icotea basin (Figs. 3.7A, 

3.9A and 3.12B).  

 

3.9 DISCUSSION 

As previously proposed by Audemard (1991), Lugo and Mann (1995), 

Parnaud et al. (1995b), and Castillo (2001), the Maracaibo basin formed as an 

oblique foreland basin during the late Paleocene (latest stage of seismic sequence 

B) and Eocene (all the deposition of seismic sequence C) (Fig. 3.5, Chapter 2). 

Deformation ended by Oligocene times following the migration of the Caribbean-

South America collision zone to eastern Venezuela (Fig. 1B). Main NE-striking, 

wedge-like depocenters were located in the north and northeastern parts of the 

basin (Fig. 3.3). Formation of the Icotea pull-apart basin occurred during the early 

Eocene and possibly extended into the middle and late Eocene, because possible 

younger growth strata of sequence C may have been removed by the Eocene 
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unconformity (Figs. 3.6, 3.8 and 3.10). A more precise age of origin is not 

possible. 

Figure 3.13A-E summarizes the main structural stages of the Icotea pull-

apart basin derived from interpretation of 3-D seismic data. The seismic time slice 

succession demonstrates that the pull-apart basin is controlled by N-NE-striking 

master strike-slip faults, strike-slip offset is Eocene in age, and transverse-normal 

faults control localized extension within the basin (Fig. 3.13D). Seismic time 

slices also revealed that the pull-apart basin represents an anomalously thick (~3 

km) Eocene sequence C, in contrast to the surrounding thinner (~1km) 

distribution of Eocene sequence C in this area of  the Maracaibo basin (Fig. 

3.12B), as seen on isochron  maps (Fig. 3.7) and regional time slices (Fig. 3.3).  

The late Paleocene extensional regime pre-dating the formation of the 

Icotea pull-apart basin is produced by flexural loading of the late Paleocene-early 

Eocene foreland basin northeast of the Maracaibo basin. Convergence inversion 

of preexisting normal faults has remained the dominant tectonic process, except 

locally within the Icotea pull-apart basin. Reactivation of the preexisting N-NE-

striking Cretaceous faults during the Paleogene, as left-lateral strike-slip faults led 

to the formation of the Icotea pull-apart basin. Extension within the pull-apart 

basin was controlled by transverse faults as a simple stepover or pull-apart, rather 

than by fault-normal extension (Ben-Avraham and Zoback, 1992). 

Evolution of the three different fault trends described in this paper and 

their role in the formation of the Icotea pull-apart basin is described below and is 

shown schematically in Figure 3.14: 
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1) NNE–SSW faults (Icotea fault and faults A, B, C and D): These faults 

constitute the main structural elements of the study area, and are interpreted to 

have formed during the Jurassic-Cretaceous rifting (Lugo and Mann, 1995; 

Castillo, 2001) (Fig. 3.14H).  

Reactivation of the Icotea fault and other N-NE-striking faults occurred 

during the early Eocene, when the oblique collision between northwest South 

America and the Caribbean plate reached its climax in the northeastern edge of 

the Maracaibo basin.  

There are several previously proposed and conflicting interpretations of 

the age and sense of displacement of the Icotea fault. Lugo (1991) used widely 

space 2-D seismic data, and interpreted the Icotea basin as a pull-apart basin, 

formed by left-lateral strike-slip movement of the Icotea fault and fault E. In this 

study, the Icotea sub-basin has been interpreted as bounded by the Icotea fault to  

the west, and by fault B to the east, as interpreted from the depocenters identified 

in isochron maps (Fig. 3.7) and seismic time slices (Fig. 3.9). My interpretation 

proposed that the most likely process that would develop a sub-basin within the 

central part of the Maracaibo basin during the Paleogene is left-lateral strike-slip 

of the N-NE trending faults (e.g., Icotea, A, B faults, Fig. 3.13), by transferring 

displacement as normal extension to the NW-SE trending faults (e.g., fault F, Fig. 

3.12).  

Inversion is caused by basin compression-transpression, producing uplift 

and partial upward extrusion of the basin (Cooper et al., 1989). The final 

component of inversion is compression, strike-slip or oblique-slip, and depends 



 82

on the changing azimuth of maximum principal compressional stress and the 

direction of original basin trend through time (Lowell, 1995). 

During the Eocene evolution of sequence C of the Maracaibo basin (Fig. 

3.5), the convergence migrated from north to almost east and followed the trend 

of the foredeep. Convergence generated a strike-slip-controlled, early Eocene 

inversion of the N-NE trending faults. These faults continued to invert during the 

middle Eocene as the regional depocenter migrated eastward (Lugo and Mann, 

1995) (Fig. 3.3).  

As a product of convergent inversion, the western block of the Icotea fault 

moved south relatively to the eastern block to form a left-lateral strike-slip fault 

(Fig. 3.14D). Either normal or reverse dip-slip motion accompanying strike-slip 

motion will produce basins or uplifts parallel or within the fault zone (Ryan and 

Coleman, 1992). Between 0.8 to 2.3 km of displacement along the Icotea fault 

formed the Icotea pull-apart basin (Fig. 3.12).  

A gradual change from transpression to compression, produced by 

migration of the convergence from north to southwest, induced the development 

of uplifts north and east of the sub-basin. Positive areas subjected to localized 

erosion were developed in the areas surrounding the pull-apart basin (Figs. 3.8 

and 3.10). 

A main NW-striking normal fault (Fault F) bounds the northern edge of 

the Icotea pull-apart basin and separates its deep basin from an uplifted area (Figs. 

3.9A and 3.12B). The pull-apart basin is asymmetrical with a deeper area to the 

west, and to the east is segmented by N-NE faults (Faults E, A and B) (Fig. 3.10). 
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This observation suggests different displacement of the N–NE faults involved 

during the formation of the pull-apart basin, rather than the type of asymmetry 

suggested by the fault-parallel extension model proposed by Ben-Avraham and 

Zoback (1992). Experimental models of Gölke and Cloetingh (1994) suggest that 

pull-apart asymmetry becomes more pronounced with proximity to the more 

active strike-slip fault. In this interpretation, pull-apart basin deepening occurs 

progressively toward the fault characterized by the largest amount of lateral 

displacement, as I suggest for the Icotea fault. 

Another inversion period is also proposed for the N-NE-striking faults 

(Fig. 3.14B). This inversion occurred during the Oligocene–early Miocene (lower 

portion of sequence D). Inversion is inferred from gentle anticlines along the N-

NE faults (Figs. 3.8B and 3.10B). Inversion seems to be related to the Sierra de 

Perijá uplift west of the basin during the Oligocene and middle Miocene. This 

uplift was the main source of clastic sediments in the Maracaibo basin during 

Oligocene-middle Miocene (Audemard, 1991). 

2) NW-SE normal faults: Castillo (2001) proposed the formation of these 

faults as a response of the downward flexure of the South American plate due to 

load of the Caribbean plate during late Paleocene–middle Eocene convergence. 

Bradley and Kidd (1991) concluded that normal faults will develop as a flexural 

extension deformation and resulted from the bending of convex side of a flexed 

lithospheric plate in collisional settings.  

Following the evolution of the Maracaibo basin during the Paleogene, 

these late Paleocene faults parallel the late Paleocene–early Eocene depocenters 
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(Lugo and Mann, 1995). These Paleocene-Eocene depocenters formed as a 

response of the oblique collision between the Caribbean and South America 

plates. The faults are mostly parallel with the NW-trending thrust front, and dip 

NE toward the foreland area (Fig. 3.3). The NW-SE-striking normal faults formed 

contemporaneously to the late Paleocene-Eocene inversion of the N-NE striking 

faults (e.g. Icotea, A, B, C and D faults). 

A major change in the main fault dip direction, from dominantly 

northward in the west, to dominantly southward in the east, is observed in Figure 

3.11A. Faults on the eastern side of the study area have greater throw (Fig. 3.11A, 

seismic crossline 3000). This difference in throw appears to be controlled by 

strike-slip motion of the N-NE convergence from front north to east during the 

middle Eocene. The block west of the Icotea fault was isolated from the effects of 

the latest stages of the collision during the middle and late Eocene, when the 

depocenter was located to the east of the basin. The block east of the Icotea fault, 

located adjacent to the eastern depocenter, modified its orientation as a result of 

changes from transpression to increasing convergence in the area (Figs. 3.3 and 

3.11A). 

Early Eocene inversion of the N-NE-striking faults occurred during the 

formation of the late Paleocene-early Eocene NW-SE-striking faults, which linked 

the two faults systems. The left-lateral strike-slip movement of the N-NE faults 

reactivated the pre-existing NW normal faults, thus controlling the geometry and 

extension of the pull-apart basin.  Outside the pull-apart basin, extension of the 

NW-SE faults is relatively minor (Fig. 3.11A). 
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3) NE-SW faults: These faults are mainly mapped in the Cretaceous and 

Paleocene level time slices. These faults probably formed during the Permian 

(Appalachian-Ouachita-Marathon orogeny). More regional mapping and better 

seismic resolution of deep structures is needed to corroborate this idea. 

Reactivation of NE-SW-striking faults occurred during the Eocene. 

 

3.10 CONCLUSIONS 

I interpreted the evolution of three different fault trends of Cretaceous-

Cenozoic unconformity-bounded seismic stratigraphic sequences along the Icotea 

left-lateral strike-slip fault zone in the central part of the Maracaibo basin. The 

main conclusions include the following: 

• The three fault trends within the study area include:  

 N-NE faults, during the late Paleocene-Eocene (including the ٭

Icotea fault and parallel faults A, B, C, D and E). These faults are 

reactivated pre-existing Jurassic faults and show left-lateral and reverse 

movement. Strike-slip displacement was driven by NW-SE directed 

oblique collision of the Caribbean plate against the northern South 

American plate.  

 NW-SE-striking, small-offset normal faults: These faults ٭

formed during the late Paleocene during downward flexure of the central 

Maracaibo basin (South American plate) as a result of southeastward 

loading of the Caribbean plate. Strike-slip movement along the N-NE-
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striking faults locally reactivated these faults as normal faults to form the 

Icotea pull-apart basin.  

-NE-SW-striking faults: Normal faults formed during pre ٭

Cretaceous rifting between North America and South America, and were 

reactivated during late Paleocene-Eocene oblique collision between the 

Caribbean and South America. 

• The Icotea pull-apart basin formed in Eocene times between the Icotea 

and B faults as a result of transfer of left-lateral strike-slip motion between the 

Icotea and  A, E and B faults. The pull-apart model explains the formation of the 

small, deep basin formed as a ~10 km wide left-step in the strike-slip faults zone. 

• The Icotea fault can be classified as a crustal intraplate fault 

(Sylvester, 1988) restricted to the crust. The Icotea fault transfers horizontal slip 

to the other N-NE faults, as a result of crustal block motion caused by 

convergence. Normal displacement for the Icotea pull-apart basin on 23 basin 

transverse faults was measured in a range between 0.8 and 2.25 km. Normal 

displacement is localized on pre-existing NW-SE-striking faults formed by 0.5 

km of plate flexure. Down-to-the-west, asymmetry within the Icotea pull-apart 

indicates greater vertical throw on the Icotea fault on the western edge of the 

basin than faults B, C and D on the eastern side. 

• No evidence was seen for significant E-W extension of the basin that 

would support the origin of the basin by a mechanism of fault-normal extension 

(Ben-Avraham and Zoback, 1992). Instead, all extension is concentrated on basin-

transverse normal faults oriented at a high angle to the strike-slip “master faults”.  
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CHAPTER 4 

Sequence stratigraphic analysis of Eocene clastic foreland basin 
deposits in central Lake Maracaibo using high resolution well 

correlation and 3-D seismic data 

4.1 INTRODUCTION 

The stratigraphic record of any sedimentary basin is controlled by three 

variables: eustasy, subsidence and sediment supply. In foreland basins, high rates 

of subsidence characterize the main thrust depocenter, which is formed by 

downwarping the foreland plate by loading. As an elastic response to thrust 

loading, peripheral upwarping occurs distal opposite to the depocenter (at the 

distal margin of the foreland basin), and forms a “forebulge” (Crampton and 

Allen, 1995; Chapter 2). Sediment supply feeds the foreland basin from either the 

flexed plate (craton) or overriding thrust belt. Eustasy and sediment supply 

control the short-term stratigraphic framework, superimposed over low frequency 

tectonosequences. The basal unconformity of the foreland tectonosequence is 

formed by erosion of the progressive migrating forebulge or tilted passive margin 

Di Croce et al. (1999). The upper unconformity of foreland basins is formed by 

tectonic rebound as the tectonic loading dissipates (White et al., 2002).  

The Eocene sedimentary record of the Maracaibo basin was formed in a 

foreland basin setting during an oblique collisional event between the Caribbean 

and South American plates (Lugo and Mann, 1995; Chapter 2; Escalona and 

Mann 2003a). As a result of this collisional event, a major depocenter developed 
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in the northwestern area of the basin. The source of Eocene clastic sediments was 

from the south during the early-middle Eocene. During the middle-late Eocene, 

source areas remain in the south or were in the E-NE in the Pueblo Viejo sub-

basin area (Lugo and Mann, 1995; Escalona and Mann, 2003a; Chapter 2). 

Sequence stratigraphic analysis in the Maracaibo basin has been based 

either on regional or detailed reservoir-scale studies. Regional studies utilize 

widely separated wells to define the main bounding surfaces (Lugo, 1991), 

whereas detailed reservoir-scale interpretations focus on small areas without 

considering the regional evolution of the basin (Maguregui, 1990; Ambrose et al., 

1995; León, 1997). Depositional environments in the Eocene of the Maracaibo 

basin were highly variable and include fluvial, deltaic and marginal marine 

settings with tidal influence (Maguregui, 1990; Ambrose et al., 1995). Seismic 

data resolution and quality are not sufficient to make lateral correlations between 

widely spaced wells. Previous studies by Maguregui (1990), Lugo (1991), 

Ambrose et al. (1995) and León (1997) among others, generally did not consider 

the early-middle Eocene period as a greenhouse climatic setting where eustatic 

changes have small amplitudes, and did not analyze the interaction between the 

rate of subsidence, eustatic sea level change and sediment supply. 

Well data depict vertical stratigraphic variations in detail, but lateral 

correlation is dependent on the amount of wells available. The use of a dense well 

database covering a large area can improve lateral stratigraphic correlations, but 

conventional interpretation methods are inefficient when working with hundreds 

of wells (Carr et al, 1995). The 3-D pseudo-seismic transform technique of Carr et 
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al. (1995) uses visualization methods applied to 3-D seismic data along with large 

numbers of wells. The objective is to maximize lateral correlations and improve 

interpretations.  

The main objective of this study is to use a dense well database (330 

wells) combined with 3-D pseudo-seismic transform and 3-D seismic data for a 

representative area of the Eocene foreland basin setting of the Maracaibo basin to: 

• Generate a high resolution sequence stratigraphic framework in order 

to enhance vertical and lateral correlations in a three-dimensional view.  

• Determine the utility of the 3-D pseudo-seismic log displays in a 

structurally complex, deeply buried clastic stratigraphy. The pseudo-seismic 

approach has previously been applied to shallow water carbonate reservoirs (Carr 

et al, 1995), and regional 2-D cross sections in shallow clastic deposits (Ralph and 

Mitchum, 1997). 

• Understand the interplay between subsidence, eustasy and sediment 

supply in a sequence stratigraphic framework. This approach takes into account 

the basin as a foreland basin, whose main sediment supply was from intracratonic 

areas to the south rather than from the fold-thrust belt to the northeast (Chapter 2). 

• Generate maps and evolutionary models for the Eocene clastic section 

in the central Maracaibo basin. 

• Integrate 3-D seismic and the pseudo-seismic to enhance lateral 

correlations between widely space wells. 
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4.2 STUDY AREA 

Selected for this study is a 500 km² area in the central Maracaibo basin 

(Fig. 4.1) and it is covered by a dense grid of well data on an average of 600 well 

spacing and more than 2000 km² of 3-D seismic data (Fig. 4.1). 

Oil fields in the study area were discovered in the 1960’s, and production 

comes mainly from the Eocene sedimentary rocks located on structural highs 

along NW-SE trending strike-slip faults. Few wells produce from Cretaceous 

carbonates and Miocene clastic intervals. The Eocene section for the central 

Maracaibo basin represents an ideal interval for application of new methodologies 

and concepts of correlations because of the abundant data and the stratigraphic 

and structural complexity of the Eocene basin fill (Chapters 2 and 3).  

 

4.3 DATABASE 

The data used in this study consist of approximately ~2000 km² of 

conventional 3-D seismic reflection data, wireline logs of over 330 wells, and 

lithologic descriptions of approximately 1600 m (5000 feet) of discontinuous 

cores taken from 9 wells. The database was collected by the Venezuelan state oil 

company (PDVSA, S.A) and made available to me for this study. The 3-D seismic 

data and well information (including logs) were provided in digital format, and 

were loaded into a Landmark interpretation system at the Department of 

Geological Sciences, The University of Texas at Austin. 
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4.3.1 3-D seismic data: 

3-D seismic reflection data used in this study were originally part of a 

merged seismic volume that included most of the 3-D seismic surveys collected 

by PDVSA, S.A. in the Maracaibo basin during the late 80’s and the 90’s. Seismic 

data consist of 2000 km², 5 seconds of two-way travel time data, sampled at 4 ms, 

and with bin size of 30 meters (Fig. 4.1). The data available were in an 8-bit 

display format limiting their usefulness for more detailed quantitative analysis. 

For the Eocene interval, the dominant frequency is between 20-35 Hz, giving a 

minimum estimated vertical resolution of about 40 m (~120 feet) and lateral 

resolution of 200 m (~600 feet). These resolution estimates are also dependent on 

processes such as deconvolution and migration (Gil and Trautnitz, 1995). 

 

4.3.2 Well data 

The well data base used in this study contains more than 300 wells (Fig. 

4.1). Most wells reach depths greater than 3 km (~10000 feet) into Eocene 

reservoirs, because these are the most prolific reservoirs in the area (International 

Reservoir Technologies, Inc., 1997; PDVSA E&P Occidente and Veba Oil, 

1998). Few wells reach the Cretaceous carbonate interval, which lies at depths 

over 5 km (~15000 feet). The wells form a NE-SW-trend belt which follows the 

main structural highs controlled by strike-slip faults bounding the Icotea pull-

apart basin to the east (Chapter 2 and 3; Escalona and Mann, 2003b). The 
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minimum well spacing in the Eocene producing interval is 600 meters due to 

governmental drilling regulations. 

All wells used in this study have wireline logs that include gamma ray, 

spontaneous potential and a suite of resistivity logs. About 20% of the wells also 

include sonic, density and neutron logs. Only nine wells have core data in the 

Eocene producing interval and two wells have core plugs (Fig. 4.1). In addition, 

descriptions available for this study include sedimentological, paleontological, 

palynological and conventional analysis. These reports were done by the Instituto 

de Investigaciones Petroleras de La Universidad del Zulia and S.A. Consultores 

C.S.C (see Appendix 1 for more detail on core description). Most of the cores 

described in these reports are archived at the PDVSA core facility, located in La 

Concepción, Estado Zulia, Venezuela.  

Check-shots, or time-depth curves, used in this study include 17 wells. 

Most wells that have sonic and density logs were used to generate synthetic 

seismograms.  

  

4.4 OBJECTIVES, METHODOLOGY AND THEORETICAL CONSIDERATIONS 

The objective of this study is to define the high frequency sequence 

stratigraphic framework of the central Maracaibo basin and to delineate the 

architecture of Eocene clastic reservoirs within the study area by utilizing core, 

well and 3-D seismic data. The method is to the generate maps and models of the 

different Eocene stratigraphic units that allow a better understanding of the 

interplay between the regime variables and the resultant sequence stratigraphy. 
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This approach is necessary because the 3-D seismic data available have poor 

vertical resolution, and the core information is from widely separated wells. 

 

4.4.1 Core data 

I incorporated core observations when possible to better define Eocene 

paleoenvironments, to calibrate log curves, and to provide age control. Most of 

the core data are located in the central part of the study area and does not 

constrain the southern and northern areas (Fig. 4.1). None of the cores are 

continuous and in general do not sample the lower and upper sections of the 

Eocene interval.  

Seven common core lithofacies are interpreted and are color coded on 

Figure 4.2 (based on Instituto de Investigaciones Petroleras de La Universidad del 

Zulia and S.A. Consultores C.S.C, see Appendix 1 for core description). These 

facies can be described in three main groups as following: 

Sandstone facies: range from coarse to fine grained and are dominated by 

cross-stratification, wavy lamination and abundant coal and plant debris (coarse, 

medium an fine grained sandstones; Fig. 4.2). Microtidal influence is observed 

mostly in the fine-grained sandstones represented by uni- and bi-directional, 

small-scale ripples, and wavy lamination. Depositional environments are 

interpreted to be fluvially dominated (i.e., distributary channels) and with limited 

tidal influence (i.e., tidal bars). 

Heterolithic facies: range from sandstone to shale-dominated deposits and 

is the most common facies interpreted from cores (heterolithic, mainly  
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Coarse grained sandstone: Cross-stratification

Medium grained sandstone: Abundant cross-stratification, wavy lamination, thin coal layers, 
massive bedding.

Fine grained sandstone: Predominantly cross-stratification, parallel lamination, wavy lamination, 
tabular lamination, ripples, coal and plant debris, thin coal layers.

Heterolithic, predominantly sandstone (shales and sandstones): Thin layers, cross and parallel 
laminations. Flaser bedding, wavy lamination, ripples, coal and plant debris.

Heterolithic mixed shale and sandstone: Wavy parallel and flaser, parallel lamination, ripples, 
coal laminae, and plant debris.

Heterolithic, predominantly shale: Thin parallel, flaser and wavy lamination, ripples, plant 
debris, and thin coal layers.

Shale: Parallel and wavy lamination, massive, ripples, plant debris and thin coal layers.

Figure 4.2. Lithologic facies used in core data description
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sandstones; heterolithic; heterolithic, mainly shales; Fig. 4.2). Sedimentary 

structures include flaser bedding, wavy lamination, uni- and bi-directional ripples, 

and coal and plant debris. Depositional environments are interpreted as microtidal 

dominated with terrestrial influence (i.e., tidal bars, tidal channels, and tidal flats). 

Shale facies: Is rare in the logs and are characterized by parallel and wavy 

lamination, massive bedding, ripples, and plant and coal debris. Depositional 

environments include lower delta plain to open marine. 

 

Age control in wells is based on pollen analysis, as depositional 

environments are transitional between continental, coastal and shallow-marine 

(Rull, 2002). Palynology considers the ranges of palynomorphs as 

chronostratigraphic markers and is useful when traditional marine fauna cannot be 

used. The prevalent vegetation type based on pollen and salinity ratio of marine 

and freshwater fossils is used to define environment and age (Rull, 2002). Rull 

(2002) studied the palynology of the Maracaibo basin and classified the age of 

Eocene sedimentary rocks in several pollen zones. The early Eocene of the 

Maracaibo basin is represented by a single pollen zone that ends at 49.5 my (zone 

17, Rugutricolporites Felix). This zone is identified in core data from the study 

area (Fig. 4.3A). 

The middle Eocene has been divided into several pollen zones; two are 

recognized in the study area. The first zone ranges from 49.5 my to ~46.5 my 

(zone 18, Echitricolporites Felix); and the second one ranges from ~46.5 my to 44 

my (zone 19, Retitricolpites Magnus) (Rull, 2002). Zone 19 has been identified in 
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two wells and reduces the accuracy for using this zone. Zone 19 has been mostly 

eroded in the south and central parts of the study area, because rocks of this age 

have been mostly eroded at the Eocene unconformity. 

An early Miocene zone has been identified overlying zone 18 and 19 

(Eocene on age). The time gap between the early Miocene and middle Eocene 

rocks accounts for more than 20 my years of non-deposition or erosion (middle-

late Eocene, and the Oligocene intervals). This gap in time is defined as the 

Eocene unconformity which has been regionally interpreted in the Maracaibo 

basin (Lugo and Mann, 1995; Parnaud et al, 1995b; Castillo, 2001; Escalona and 

Mann, 2003b; Chapters 2 and 3).  

Figure 4.3 shows an example of a core analysis of well W12 (see Fig. 4.1 

for well location). Facies description (based on Instituto de Investigaciones 

Petroleras de La Universidad del Zulia and S.A. Consultores C.S.C reports, see 

Appendix 1 and Fig. 4.2), well logs (GR-Gamma ray, ILD-Deep induction 

resistivity and RhoB-density), chronostratigraphic boundaries defined by 

palynology and core photos from León (1997) are also shown. Observations from 

logs (Fig. 4.3A) and core photos (Figs. 4.3B and C), indicate the heterolithic 

facies dominates, representing tidal-influenced coastal plain and shallow marine 

environments. Fluvial facies are located within the main progradational units and 

usually have a blocky, low GR response. In addition, the Eocene unconformity is 

identified by palynological analysis and by changes in the GR and ILD logs. None 

of the wells with core data penetrated the Paleocene unconformity, which is 

assumed to be ~54 my based on previous regional work and seismic correlations  



Figure 4.3. A) W12 well log (GR-gamma ray, ILD-deep induction and RhoB-density) with facies and environment descriptions based on lithofacies of Figure 4.2. Age defined by palynology and 
major regressive-transgressive cycles are shown. B and C) Heterolithic facies showing flaser bedding, mud drapes and herringbone sedimentary structures indicating tidal influence. D) Medium-
to-fine grained sandstone interpreted as distributary channel fill. (Modified from S.A. Consultores CSC (1992) and León (1997)).
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 (Lugo, 1991; Parnaud et al. 1995b; Castillo, 2001; Escalona and Mann, 2003b; 

Chapters 2 and 3). Appendix 1 lists other wells with core data analysis.  

 

4.4.2 Parasequence, parasequence set, genetic sequence and sequence 

Sequence stratigraphic interpretation is based on stacking patterns and 

identification of transgressive and regressive cycles at different scales observed in 

the well logs by using 1-D, 2-D and 3-D stratigraphic analysis. These vertical 

cycles were interpreted using stratigraphic concepts including parasequence, 

parasequence set, and two kinds of sequences: genetic sequence and depositional 

sequence. Definition of these concepts is appropriate in order to understand their 

applicability and usefulness for this study. 

Parasequence: A relatively conformable succession of genetically related 

beds or bedsets bounded by marine-flooding surfaces and their correlative 

surfaces (Van Wagoner et al., 1990) (Fig. 4.4). 

Parasequence set: A succession of genetically related parasequences 

forming distinctive stacking patterns and commonly bounded by major marine-

flooding surfaces and their correlative surfaces (Van Wagoner et al., 1990) (Fig. 

4.4). 

Genetic sequence: A package of sediment recording a significant episode 

of basin margin outbuilding and basin filling, bounded by periods of widespread 

basin-margin flooding (Galloway, 1989; Galloway and Hobday, 1996). 
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Depositional sequence (sequence): A relatively conformable succession of 

genetically related strata bounded by unconformities and their correlative 

conformities (Vail et al., 1977). 

 

Formation of stratigraphic sequences is the product of combining eustasy, 

sediment supply, and subsidence operating at different time scales. Identification 

of parasequences and parasequences sets can be done at the well log scale. 

Parasequences and parasequence sets represent the building blocks of depositional 

systems and the reservoirs (Van Wagoner et al, 1990) (Fig. 4.4). Vertical 1-D 

analysis of parasequences in well logs can be relatively simple, but 2-D analysis, 

(i.e., lateral correlations) is limited by the horizontal separation between wells. 

Figure 4.4 shows different log responses of parasequences and parasequence sets 

in a fluvial to marine setting (Van Wagoner et al, 1990). Stacking patterns are 

used to correlate the different parasequences that contain time and correlation 

lines defined by flooding surfaces. 

The use of genetic sequences (Galloway, 1989) and sequences (Vail et al., 

1977) depends on the kind of bounding surface to be used (i.e., maximum 

flooding surfaces or subaerial erosional sequence boundaries). Time duration of 

these sequences range from 0.5 to 3 my, and contain several parasequence sets. 

Maximum flooding surfaces form a regional characteristic surface in basins and 

usually give a good log response, whereas erosional sequence boundaries may 

record local expressions also dependant on a relative fall in sea level that exposes 

the shelf (Galloway, 1989). Erosional sequence boundaries are easy to recognize 
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when major tectonic events are present. These tectonic sequences are considered 

to be low frequency sequences (i.e., more than 3 my). These sequences can be 

called tectonosequences (equivalent to 2nd order sequences, Chapters 2 and 3) 

because of dominance of tectonics in controlling basin formation. 

The Eocene section of the Maracaibo foreland basin is considered a 

tectonosequence (Lugo and Mann, 1995; Parnaud et al, 1995b, Chapter 3; 

Escalona and Mann, 2003b), which formed in an oblique collisional setting. Two 

major sequence boundaries bound the Eocene interval: the Paleocene and the 

Eocene unconformities (Chapters 2 and 3). Taking into account the high rates of 

subsidence, the recognition of continuous flooding events and the application of 

vertical stacking patterns, stratigraphic interpretation was done in the following 

manner: 

1. Identification of the main bounding Eocene unconformities. 

2. Identification of candidates for maximum flooding surfaces (i.e., 

genetic sequence interpretation). 

3. Interpretation of parasequence sets. 

4. Identification of candidates for sequence boundaries (i.e., sequence 

interpretation). 

 

The first step is to interpret wells that penetrated the entire Eocene interval 

in the study area using core data and 1-D sequence stratigraphic analysis. The 

second step is to perform 2-D and 3-D sequence stratigraphic analysis by applying 

the pseudo-seismic transform technique. The third and final step is to use seismic 
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stratigraphy and mapping of the parasequence sets to build stratigraphic models 

and correlate these models with regional subsidence and seal level charts from 

previous workers. 

 

4.4.3 Pseudo-seismic transform technique 

In order to have a consistent sequence stratigraphic model and to 

maximize the use of the dense well database available (more than 300 wells), I 

applied the pseudo-seismic transform technique to display the log data. The 

pseudo-seismic transform technique of Carr et al. (1995) uses large numbers of 

well logs along with visualization techniques applied to 2-D and 3-D seismic data. 

Methods of conventional well log interpretation are usually time consuming for 

large numbers of wells. Correlation of several wells is limited to the number of 

wells that an interpreter can handled at the same time. Even computer 

stratigraphic interpretations become complex when using more than a dozen 

wells. In conventional methodology, the interpretation is done on a well to well 

basis and does not take advantage of the entire well data set. Seismic data allows a 

different approach: a single seismic line can have hundreds or even thousands of 

traces, and interpretation on either paper or a computer assisted program is quite 

standard procedure (Carr et al., 1995).  

Ralph and Mitchum (1997) generated high resolution sequence 

stratigraphic well cross sections in shallow marine sandstones of the Carthage 

field, Texas. There GR, SP and resistivity logs resemble high resolution inverted 

seismic traces. The pseudo-seismic transform is based on the observation that well 
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logs resemble seismic traces, where time represents depth, log amplitude 

represents seismic amplitude, and well location is related to a 2-D or 3-D seismic 

survey location that represents an area of the subsurface (bin). Thus, large 

volumes of well logs can be treated as seismic traces and interpreted using a 

seismic workstation program, increasing consistency and efficiency of 

interpretations.  

Figure 4.5A shows a conventional well correlation based on well to well 

basis correlations. Figure 4.5B shows a single seismic line which display several 

seismic traces in a small area. In contrast to the well to well basis correlations in 

Figure 4.5A, pseudo-seismic cross sections in Figures 4.5C and D show how 

dozen of wells can be displayed using seismic visualization methods as in Figure 

4.5B, and allow recognition of lateral and vertical stratigraphic and structural 

patterns. One of the most important steps is to define the datum on which the 

cross sections will be hung. Flooding surfaces represent the best markers for this 

purpose because of their lateral continuity and wide distribution, especially in 

tectonically complex areas such as the Maracaibo basin. Sequence boundaries, are 

very irregular erosional surfaces. Depending on the structural complexity of the 

study area, different flooding surfaces can be used as a datum for different 

stratigraphic levels. Sequence boundaries will record the ancestral topography 

upon which the different sequences were deposited. 

PSEUDO-SEISMIC TRANSFORM CODE: A code to transform well log 

format (usually ASCII) to 3-D seismic data format (Segy) was written in Matlab  
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in order to load the wells in seismic interpretation software including Seisworks 

from Landmark®, IEXS® from Geoquest, and Kingdom Suite®. Appendix 2 

shows an example of this code for the 3-D pseudo-seismic lines used in this study.  

The code generates an empty matrix with the dimensions of the seismic line to be 

built (b=Y,X) and fills the matrix with well logs. The process is repeated as there 

are wells in the line. The last step is to output the matrix in Segy format and read 

it in into seismic interpretation software. 

A “3-D seismic survey” was created in the seismic interpretation software 

in order to load the pseudo-seismic lines. Figure 4.6A shows a basemap with the 

location of the well data available. More than 300 wells are displayed. A 500 m² 

bin size was chosen for the 3-D grid in order to maximize the use of the wells and 

to take into account that well spacing is minimum 600 m for the Eocene reservoir 

area (Fig. 4.6B). The main objective is to make one well representative of each 

bin within the 3-D survey (500 m²). This objective requires that wells need to be 

relocated in the center of their corresponding bin.  The well or a combination of 

the wells with best information is chosen to be the center of the bin. 

For the stratigraphic interpretation, a 3-D pseudo-seismic cube using GR 

logs was built and loaded in Landmark software, Seisworks®. A color scheme 

was created, where yellow is low GR (sandstones) and dark green is high GR 

(shales) (Figure 4.4D). Other kinds of well logs are used to create different 3-D 

pseudo-seismic datasets, like deep resistivity to identify the presence of 

hydrocarbons (chapter 5). Volume of shale was not used because of graphic  
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 limitations with the software and log shape preservation for facies 

characterization.  One limitation using any well technique (conventional, pseudo-

seismic, etc.) is that interpretations are biased by the spatial distribution of wells 

in the study area. In this study, wells form an elongate belt along an anticline. 

Lateral correlations outside this belt are poorly constrained and have to be tied to 

local and regional patterns. 

 

4.4.4 Seismic interpretation 

Conventional interpretation of 3-D seismic data began with generation of 

synthetic seismograms using well logs to provide correlations between seismic 

reflectors and well data, followed by correlation of the main, regionally 

continuous seismic reflections. An effort to correlate maximum flooding surfaces 

and unconformities from seismic data within the Eocene interval was not possible 

because of low vertical seismic resolution (~120 feet; ~40 m) and poor detailed 

correlation between the synthetic seismograms and the 3-D seismic data. The 

main maximum flooding surfaces and erosional sequence boundaries were 

projected among the discontinuous reflectors. 

In order to improve the seismic interpretation and extract more 

stratigraphic information within the 3-D seismic cube, two non-conventional 

techniques were applied: 

Seismic cube flattening (Fig. 4.7A): This technique consists of interpreting 

a good quality reflection from the 3-D seismic cube, and flattening the seismic 

cube relative to that reflection (i.e., as a stratigraphic section flattens a datum).  
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The main objective of flattening is to remove structural effects and generate 

seismic time slices which will be parallel to the datum. These surfaces represent 

pseudo-time lines relative to the datum and can highlight stratigraphic features 

(Fig 4.7A). 

Stratal slices (Fig. 4.7B): The technique consists of generating horizons 

parallel to an interpreted horizon by adding or subtracting a constant time 

throughout the interpreted horizon.  Extraction of amplitudes of the newly 

generated horizon will produce a horizon similar to the seismic cube flattening 

technique. Figure 4.7B shows stratal slices 4 ms (the data sample rate) apart from 

each other. 

Another slicing technique is the proportional slice between two interpreted 

horizons (Zeng et al., 1998). All these techniques are based on the assumption that 

seismic reflectors follow chronostratigraphic surfaces (Zeng et al., 1998). 

 

4.5 SEQUENCE STRATIGRAPHY 

The main objective of sequence stratigraphic analysis is to identify and 

regionally correlate genetically stratigraphic units in the central Maracaibo basin 

within a chronostratigraphic framework. Identification of the stratigrtaphic units 

will incorporate understanding of the depositional systems and stratal geometry. 

Interpretation begins with a vertical one-dimensional analysis followed by two 

and three dimensional mapping of the genetic units.  
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4.5.1 One dimensional stratigraphic analysis 

Figure 4.8 shows a comparison of type logs from previous 1-D 

stratigraphic analysis (Fig. 4.8A) and the 1-D stratigraphic analysis performed in 

this study (Fig. 4.8B). Major differences observed are the interpreted bounding 

surfaces and parasequence sets (Fig. 4.8). Previous interpretations proposed 

several intra-Eocene subaerial erosional surfaces (SB=sequence boundaries, Fig. 

4.8A; PDVSA E&P and Veba Oil, 1998) defining depositional sequences. In this 

study, only one intra-Eocene subaerial surface was interpreted (SB41, Fig. 4.8B), 

and flooding surfaces are the main bounding surfaces of the stratigraphic units 

defining parasequence sets and genetic sequences (Fig. 4.8B). Stratigraphic 1-D 

analysis reveals the following characteristics: 

• The Eocene tectonosequence is confined between two major 

unconformities: the basal Paleocene unconformity (Chapters 2 and 3) with an age 

of ~54 my (Fig. 4.8B) and the Eocene unconformity which separates middle 

Eocene (< 44 my) from early Miocene sedimentary rocks (~25.2 my; Rull, 2002). 

• The Eocene tectonosequence is characterized by an aggradational 

succession of sandstones above the Paleocene unconformity followed by a major 

retrogradational succession of shales and sandstones with few progradational 

units and an aggradational succession of sandstones at the top (Fig. 4.8B). 

• Four maximum flooding surfaces (MFS1 to MFS4) are interpreted 

from stacking patterns. These four surfaces define five genetic sequences 

(Galloway, 1989) (Fig. 4.8B). Genetic sequence 1 is bounded at the base by the  
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Figure 4.8. A) Type log of the study area with one-dimensional stratigraphic interpretation before this 
study, showing major bounding surfaces (modified from PDVSA E&P Occidente and Veba Oil, 1998), and 
B) Type log of the study area with one-dimensional stratigraphic interpretation from this study, showing 
the different levels of cyclicity, lithology, age of events, and name of interpreted sequences.
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Paleocene unconformity (SB1), and sequence 5 is bounded at the top by the 

Eocene unconformity (SB2). These two unconformities are the boundaries of the 

Eocene tectonosequence (Chapters 2 and 3). Sequence 6 is interpreted at the top 

of the Eocene interval and is bounded by SB41 (subaerial erosional intra-Eocene 

surface) and the Eocene unconformity. This sequence is not present in all the 

wells. 

•  Progradational, aggradational or retrogradational units are bounded by 

flooding surfaces within each of the five genetic sequences (Fig. 4.8B). By 

definition, these units are parasequence sets, which include several parasequences 

that are bounded by marine flooding surfaces. Interpretation of parasequences was 

not performed due to uncertainties on the lateral facies variability within each 

parasequence set. As noted by Van Wagoner et al. (1990), identification of 

parasequences at the outcrop scale is possible, but lateral correlation may not be 

possible and becomes difficult when working with wells as lateral resolution is 

low. In the study area, seventeen parasequence sets are interpreted (A to Q, Fig. 

4.8B) using major flooding surfaces (FS) or maximum flooding surfaces (MFS) 

within each genetic sequence. Also a sequence is interpreted in the upper part of 

the Eocene section (sequence R, Fig. 4.8B).  

• In average, each genetic sequence consists of 3 to 4 parasequence sets, 

here called sets A to Q (Fig. 4.8B). Assuming linear interpolation between the few 

age control points and an average genetic sequence lasting from 1 to 3 my, the 

duration of parasequence sets is on the order of 300 to 900 ky. 
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4.5.2 Facies associations 

In order to make 2-D and 3-D depositional system and facies 

interpretations within a 2-D and 3-D stratigraphic framework, a facies scheme 

was built to interpret for the Eocene interval. This step integrates core facies 

descriptions, GR log shape and 1-D sequence stratigraphic interpretation. The use 

of these facies associations gives a lateral and vertical predictive tool using 

"Walther’s Law" (i.e., the lateral progression of environments is reflected in the 

vertical progression of facies) (Galloway, 1998). 

Five main GR facies associations (table 4.1) were established; 1) blocky-

fining upward, 2) spiky or mixed, 3) spiky-coarsening upward, 4) erratic and 5) 

blocky. These GR facies associations record environments that range from fluvial 

to marine on the Eocene Maracaibo shelf. The influence of tidal processes in the 

Eocene of the Maracaibo basin has been previously proposed by Maguregui 

(1990) and Ambrose et al., (1995) and has also been observed in core data from 

the study area (Figs. 4.2 and 4.3). Both of these studies agree that the Eocene 

consists of a succession of tide-dominated deltaic cycles and that the main 

lithofacies include distributary channel fills, tidal sand ridges, tidal channel fills, 

and prodelta shelf assemblages. Tide range was micro-to-meso tidal (0.5 to 3 m) 

and wave energy minor. Blocky-fining upward GR facies reflect the main sandy 

units in the early-middle Eocene interval and record the fluvial channel input to 

the shelf. Spiky GR facies show strong evidence of tidal influence and represent 

the transitional environments between middle-lower delta plain to shallow marine 

(shelf). 
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Table 4.1. Gamma Ray facies associations for the study area
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The upper interval is characterized by thick blocky sandstones. Core data 

are not available for this sequence (sequence 6). This amalgamated aggradational 

succession of sandstone seems to correlate with the initiation of tectonic rebound 

in the basin during the middle Eocene. The succession forms a sequence, because 

it is bounded by unconformities at the top and base (sequence 6, chapters 2 and 

3).   

4.5.3 Two-dimensional stratigraphic analysis 

The application of the pseudo-seismic transform technique in generating 

two dimensional sections allows lateral correlation and interpretation of the 

sequence boundaries, maximum flooding surfaces, and flooding surfaces. 

Furthermore, lateral and vertical continuity of lithofacies associations is easily 

depicted using the proper datum within the Eocene tectonosequence. 

 Figures 4.9 and 4.10 show examples of 2-D stratigraphic analysis of 

cross-line 16 and in-line 25 respectively (see Fig. 4.6 for location). As observed in 

Figures 4.9B and 4.10B, the structural complexity within the Eocene section can 

obscure the lateral correlation of surfaces and the continuity of facies associations. 

Lateral correlation of surfaces was done interactively between structural sections 

(i.e. Figs. 4.9B and 4.10B) and stratigraphic sections (i.e. Figs. 4.9C and 4.10C), 

until the optimal correlation was found. The structural framework was imported 

from seismic interpretation (Chapters 2 and 3), and this framework was improved 

by utilizing the pseudo-seismic sections. The best datum was the maximum 

flooding surface MFS2 (Figs. 4.9C and 4.10C), because more than 95% of the 

wells penetrate and contain data for this surface. This maximum flooding surface  



117

Figure 4.9. Pseudo-seismic N-S cross line 16: A) Uninterpreted. B) Structural interpretation and main surfaces. C) Stratigraphic interpretation with datum surface MFS2. D) Facies 
interpretation with datum on surface MFS2. Facies color scheme based on Table 4.1. 
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Figure 4.10. Pseudo-seismic E-W line 25: A) Uninterpreted; B) Structural interpretation and main surfaces; C) 
Stratigraphic interpretation with datum surface MFS2; and D) Facies interpretation with datum on surface 
MFS2. Facies color scheme based on Table 4.1. 
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is continuous and present throughout the study area. Stratigraphically the MFS2 is 

located in the middle of the Eocene interval and records a major flooding event in 

the area. Other maximum flooding surfaces were used to improve correlations 

locally. 

• Stratigraphic interpretation of facies associations in two dimensions 

are based on the following observations: Thicknesses of parasequence sets, 

genetic sequences and sequences increase toward the north. Average thickness of 

parasequence sets is 50 m (~150 feet) in the south and 65 m (~200 feet) in the 

north.  

• Stronger erosion affects the southern Eocene interval than the northern 

area. In general, the early-middle Eocene pinches out to the south against the 

forebulge and increases in thickness toward the basin located north from the 

Burro Negro fault (Chapter 2). Genetic sequence 5 and most of genetic sequence 

4 are both eroded in the southern part of the study area (Fig. 4.9), whereas in the 

northern part genetic sequence 5 and sequence 6 are only partially eroded by the 

Eocene unconformity (Figs. 4.9 and 4.10).  

• When structural highs are present in the study area, missing sections as 

a consequence of erosion at the Eocene unconformity become more numerous.  

• A general retrogradational pattern of parasequence sets is interpreted 

for the Eocene tectonosequence (Figs. 4.9D and 4.10D). Shallow marine/shelf 

facies dominate the northern part of the area, whereas fluvial and tidally 

influenced facies (i.e., tidal bars) are more common in the southern part of the 

area.  
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• Maximum transgressions occurred during MFS3 and MFS4 (~47 and 

46 my respectively, Figs. 4.9D and 4.10D). Facies are characterized by shallow 

marine facies and a few tidal bars in these intervals. 

• Genetic sequence 1 is characterized by an aggradational pattern of 

amalgamated sandstones of ~3 my duration, overlying the Paleocene 

unconformity (4.9 my). Duration of parasequence sets are ~800 to 900 my.  

• Regressive-transgressive cycles characterize genetic sequences 2 to 5. 

Genetic sequences 2 and 4 record the development of deltaic systems, whereas 

sequence 3 and 5 are mainly retrogradational with highly discontinuous sand bars. 

Average duration of genetic sequences are ~1 my, and parasequence sets are 400 

ky. 

• Sequence 6 is characterized by a thick package of amalgamated 

sandstones that incise genetic sequence 5 in an irregular manner below the Eocene 

unconformity (Fig. 4.9D). This sequence thickens abruptly to the north and west, 

and it is not present in most of the southern area. 

 

4.5.4 Three dimensional stratigraphic analysis 

Three-dimensional pseudo-seismic interpretation allows complete use of 

the well data in arbitrary directions (lines, crosslines and arbitrary lines); this 

analysis also includes cross validation of two-dimensional sections interactively. 

Analysis and mapping of parasequence sets throughout the study area were 

performed. Figure 4.11 shows a 3-D fence diagram where lateral and vertical 

continuity of the parasequence sets is observed. Three depositional episodes are  
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interpreted in each crossline. Integrated with the fence diagram is a net sand 

isopach map of parasequence set A. Spatial analysis of stacking patterns of the 

parasequence sets reveals features already interpreted on the 2-D stratigraphic 

analysis: 1) an aggradational succession in genetic sequence 1 followed by 

regressive-transgressive cycles with major transgressions recorded by MFS3 and 

MSF4, 2) two main progradational sets (G and N) within these cycles, 3) the 

erosive character of sequence 6 which laterally associated with the Eocene 

unconformity, and prominent erosion or missing section in the central and  

southern areas. Main progradational direction was N-NE, which is consistent with 

the regional depositional model during the early–middle Eocene (Maguregui, 

1990; Parnaud et al., 1995b; Chapters 2 and 3). 

Normal lateral and vertical successions of facies were interpreted within 

genetic sequences 1 to 5, and unconformable sequence boundaries are not 

observed. Figure 4.12 shows a facies interpretation of three crossline sections (11, 

16 and 19; see Fig. 4.6 for location) with MFS2 taken as a datum. Facies 

interpretation shows the typical wedge shape of the early-middle Eocene foreland 

basin setting. The Eocene interval shows greatest erosion to the S-SW along 

crossline 11 (Fig. 4.12), where sections are missing down to the upper part of 

genetic sequence 3. Blocky sandstone facies of sequence 6 are thicker and more 

deeply incised in this area.  

Fluvial-deltaic facies are mostly sandstone. These sandstone packages are 

observed in the aggradational succession of genetic sequence 1, in progradational 

sets F and G  of genetic sequence 2, and set N of genetic sequence 4 (Figs. 4.11  
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and 4.12). Aggradational patterns of fluvial-deltaic facies are observed to the 

west, whereas progradation from S to N dominates in the center of the study area 

(Figs. 4.11 and 4.12). Marine influence dominates the central and northern study 

areas. Marine flooding was greater in the east for MFS1 and MFS2, whereas for 

MFS3 it was greater in the central-west areas (Fig. 4.12). Highly discontinuous 

sand bars are common in genetic sequences 2, 3 and 4. These sand bars tend to be 

more abundant in retrogradational sets, and thicker in progradational sets (Fig. 

4.12, crosslines 16 and 19). Sand bars lengths vary from less than 1 km to more 

than 4 km and thicknesses range from few meters to 20 m (~60 feet, Figs. 4.11 

and 4.12). 

Net-to-gross and net sand maps were constructed for the parasequence sets 

(Figs. 4.13 to 4.16). High sandstone content is present in parasequence sets of 

genetic sequence 1, 2, 4 and sequence 6, whereas genetic sequences 3 and 5 are 

dominated by shale. Sand counting was done using the GR, where sandstones 

have values between 0 and 90 API units and shales have values higher than 90 

API units. 

GENETIC SEQUENCE 1 (Fig. 4.13):  This sequence comprises sets A, B, C 

and D, and is the sandiest set in the Eocene interval of the study area. As 

described in 1-D and 2-D sequence stratigraphic analysis, the parasequence sets 

tend to be aggradational (Figs. 4.4, 4.8 and 4.9) and are characterized by high 

percentages of blocky sandstones reaching up to 100 m in thickness (Fig. 4.13). A 

general south to northeast sandstone trend is interpreted from maps, but may be 

biased by well distribution.  
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Starting with set A, a main distributary channel complex is interpreted. To 

the northeast, shale percentage increases in the channel area (Fig. 4.13A). Set B 

(Fig. 4.12B) shows a similar trend as set A with the net-to-gross map, but the net 

sand isopach shows the main south-to-northeast channel splitting in several 

distributaries trending to the northwest and northeast (Fig. 4.13E). Maximum 

sandstone thickness is preserved within the main channel in the northeast area, 

similar to set A. Set C shows similar geometries as set B, but there is a decrease in 

the amount of sandstone (Fig. 4.13C). Major preservation occurs in the main 

channel to the south and lateral distributaries are located to the west and east in 

the central part of the area. Aggradational successions within the genetic sequence 

are less common in the northern areas of this set. Set D is strongly affected by 

marine flooding surface MFS1, and sandstone percentages in the northern area are 

less than 50% (Fig. 4.13D). North trending sand bars observed in the net to gross 

map form the dominant sand bodies within the distributary geometries interpreted 

from the net sand isopach (4.13E). Facies interpretation (Fig. 4.12) indicates an 

increase of marine influence during this set. 

GENETIC SEQUENCE 2 (Fig. 4.14): This sequence comprises sets E, F, G 

and H. The entire succession of parasequence sets is a major regressive-

transgressive cycle bounded by maximum flooding surfaces MFS1 and MFS2. As 

in genetic sequence 1, a southwest to north-east trend is inferred. However, 

sandstone percentages and thickness are less, suggesting more marine influence, 

and back stepping of deltaic facies (Fig. 4.14). 
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High percentages of sandstone (75-100%) are common in all the 

sequences, except set H. Set H has less than 50% with the exception of the 

southern area (Figs. 4.14D and E). This set is the major transgression event during 

the Eocene period in the area of study (genetic sequence 3), as interpreted from 

pseudo-seismic sections (Figs. 4.9to 4.12). Sand bars oriented NW-SE are 

common in the central and northern areas and the bars are transitional between 

continental and marine facies. Set G (Fig. 4.14C) represents the maximum 

progradational set within the genetic sequence. Set G’s depocenter was located in 

the center of the area. A southeast-northeast distributary system dominated by 

fluvial facies can be interpreted in sets F and G (Fig. 4.10 to 4.12). Progradation 

of fluvial facies within these two systems did not extend to the northern study 

area, as it did in genetic sequence 1. Fluvial facies are characterized by blocky 

sandstone GR patterns (Table 4.1; Fig. 4.9 to 4.12). Thinner sandstones (10-25 

meters, Fig. 4.14) are characterized by spike GR response, indicative of sandy 

tidal bars and crevasse splays within the continental-marine transitional area 

(Table 4.1). 

GENETIC SEQUENCE 4 (Fig. 4.15): This sequence comprises sets L, M, N 

and O. Erosion affects all of the sets in the central southern part of the study area. 

This regressive-transgressive cycle is less progradational than genetic sequence 2. 

However, a main distributary system is located in the southwestern part of the 

area (Fig. 4.15). Marine influence affects most of the central and northern areas, 

where elongated sand bars oriented mainly in a N-S direction are interpreted. 
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Sets L and O show sand bars that probably where controlled by tidal flow 

energy in the lower delta plain to shallow marine shelf settings. Some of the sand 

bars are isolated in the northern study area (Figs. 4.15A and D). Sets M and N are 

the main progradational systems within this genetic sequence. Although sandstone 

percentages are relatively low, a considerable amount of sand reached the central 

area, as observed from isopach maps (Figs. 4.15B, C and E).  

This may be an indication that: 1) the dispersal system was sand poor (Fig. 

4.3), 2) a decrease in the size of the depositional system from genetic sequences 1 

and 2, and/or 3) increase of tidal influence (Fig. 4.3, table 4.1). Small 

distributaries seem to split to the NW and SE from the main SW-NE channel axis 

become sand bars to the north as observed in the net-to-gross maps in the central 

area (4.15E).  

SEQUENCE 6 (Fig. 4.16): This sequence comprises set R and is 

characterized by sand percentages up to 100% and thickness of more than 150 

meters (400 feet). Sequence 6 is mostly eroded or not present in the southern part 

of the study area, with the exception of the southwestern area and a smaller area 

to the southeast (Fig. 4.16). Sequence 6 is bounded at its base by the sequence 

boundary SB41, which incises set Q and part of set P of genetic sequence 5 (Fig. 

4.9 to 4.12). At the top, sequence 6 is bounded by the Eocene unconformity. 

Major depositional trends of sequence 6 are mainly oriented to the northeast, with 

few trends to the east-west in the central and northern areas. Sub-division of 

parasequences sets was difficult because no age control or core data are available 

and stacking patterns are also difficult to identify. 
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The erosive base of sequence 6 (set R), its aggradational pattern, and its 

absence in the southern area suggests that its formation was synchronous with the 

creation of the Eocene unconformity. Sediment was derived from the eroded 

highlands to the south during tectonic rebound (Villamil, 1999; Chapters 2 and 3).  

Depositional systems are interpreted as amalgamated fluvial systems that extend 

from the exposed highlands in the south toward the basin located in the northeast. 

Sequence 6 infilled the accommodation space produced on the shelf following the 

major Eocene transgression. Estuarine facies may have filled valley-shaped 

incisions during periods of transgression (Fig. 4.16). 

 

4.5.5 Seismic stratigraphy 

Several synthetic seismograms were generated using well logs from the 

study area (Fig. 4.17). A zero phase wavelet provided the best match between 

synthetic seismogram and seismic data with a dominant frequency of less than 30 

Hz. Correlation between major surfaces identified in well data (e.g. flooding 

surfaces and sequence boundaries) was generally poor, except for the main 

tectonosequence boundaries. Poor correlation between both data may be due to 

logging problems. Well log data are sensitive to borehole shape. Caliper data in 

the study area reveals that most of the boreholes contain washouts and slumps 

(Fig. 4.17, caliper-CAL). Washouts can cause significant effects on log response, 

such as spikes in the sonic log affecting synthetic seismogram response. 

Tectonosequence boundaries SB1 and SB2 are recognized throughout the 

Maracaibo basin, and well-to-seismic correlations of these boundaries are good.  
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Both surfaces create strong amplitude troughs in most of the synthetic 

seismograms, and show good continuity in seismic data (Figs. 4.17, 418A and 

419B). These surfaces were used as control points to tie the synthetic 

seismograms with seismic data. Maximum flooding surfaces MFS1, MFS2 and 

MFS4 are characterized by troughs in the synthetic seismograms, whereas MFS3 

is represented by a peak. Correlation with 3-D seismic data is of intermediate 

quality, because lateral stratigraphic variations (Fig. 4.17). Correlation of flooding 

surfaces, defining parasequence set on seismic data, was poor. Seismic reflections 

show high lateral variability and vertical resolution is in the range of the 

parasequence set thicknesses interpreted (~30-50 meters), generating wavelet 

interference in the seismic response (Brown, 1996).  

After the main seismic events were identified from synthetic seismogram 

correlations, maximum flooding surfaces and sequence boundaries were 

interpreted from the 3-D seismic data. In addition, reflection characteristics within 

all sequences were interpreted in order to define the possible stratigraphic 

configurations using 3-D pseudo-seismic profiles. Figures 4.18 and 4.19 show 

examples of two seismic sections in the study area (Fig. 4.1 for location). Seismic 

horizon interpretation is correlated by synthetic seismograms. Main observations 

from the stratigraphic point of view are: 

• The Eocene tectonosequence is interpreted as an asymmetric wedge 

that is thinning to the south, and thickening to the north (Chapters 2 and 3). Lap 

out is observed over the Paleocene unconformity (SB1) within genetic sequence 1 

and truncations are interpreted below the Eocene unconformity (SB2). To the  
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south, the Eocene unconformity (SB2) affects part of genetic sequence 4, most of 

genetic sequence 5 and the entire sequence 6 (Fig. 4.18). 

• Reflections within the Eocene tectonosequence show a high lateral 

variability, making lateral correlation of individual surfaces difficult. However, 

maximum flooding surfaces and sequence boundaries are correlatable. 

• Genetic sequences have a slight increase in thickness to the north as 

interpreted from well data (pseudo-seismic sections). Major thickening occurs in 

genetic sequence 1 and sequence 6. The general trend seems to be divergent and 

reflections within genetic sequences are discontinuous, sub-parallel and are 

characterized by terminations that occur in the direction of convergence (Fig. 

4.18). This configuration may be the result of variations on the rate of deposition 

and/or progressive tilting of the depositional surface (Vail et al., 1977). 

• Continuous reflections are observed in the south, whereas hummocky 

and chaotic reflection patterns are dominant in the north (Fig. 4.18). 

• Reflection patterns suggest lateral variations of the depositional 

environments and lithologies. To the south fluvial and deltaic facies are dominant 

on well logs, whereas to the north, shallow marine/shelf facies are dominant on 

well logs (Figs. 4.9 to 4.12). 

• A few channel-like and clinoform geometries are observed, but they 

usually are not continuous throughout the area. In general, clinoforms show a 

south-to-north prograding geometry and are interpreted as part of genetic 

sequences 4 (Fig. 4.18) and 6 (Figs. 4.18 and 4.19). 
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• Increase in thickness for most of the genetic sequences is observed to 

the west near the Icotea pull-apart basin (Fig. 4.19).  These lateral variations in 

thickness suggest local increases in accommodation space on the Eocene 

Maracaibo shelf.  

• Sequence 6 is characterized by high amplitude reflections, lap out 

terminations, truncations, and few clinoforms showing northward progradation. 

The basal sequence boundary (SB41), interpreted as a peak, becomes highly 

discontinuous to the north, where a few incised geometries are also interpreted. 

The upper part of genetic sequence 5 is eroded as a sub-parallel surface with 

increasing erosion toward the flanks of the anticline structure (Fig. 4.19). 

 

Map view analysis using stratal slicing and seismic cube flattening was 

performed on the 3-D data. This technique was applied to the main surfaces 

(sequence boundaries and maximum flooding surfaces), and in all cases but one, 

no coherent result was obtained. As shown in the seismic interpretation (Figs. 

4.18 and 4.19), most of the reflections within the Eocene interval of the study area 

are highly discontinuous and low quality, making slice interpretations difficult. 

The only surface that showed satisfactory results was the Paleocene unconformity 

(SB1), where both techniques gave similar results. This unconformity is one of 

the better seismic reflectors in the study area with good amplitude and continuity. 

Figure 4.20 shows the results obtained in large areas of the 3-D seismic data. 

Main observations include: 



Figure 4.20. A) Partially interpreted seismic time slices flattened relative to SB1. Numbers in ms represent height above the unconformity SB1. B) Partially interpreted flattened time slice at 12 
ms above SB1. C) Time slice interpretation: Incised channels in unit A over the basal Paleocene unconformity (SB1). The channel to the left cuts through the strike of the faults, and its 
depocenter is located in the Icotea pull-apart basin (high amplitudes at the northern end of the channel); The channel on the right is controlled by N-NE trending strike-slip faults, which were 
active during the Eocene. D) Net sand isopach map of set A showing the N-NE faults controlling direction of the interpreted channel on the flatten times slice.
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• At 8 ms above SB1, discontinuities related to faults are observed. 

These faults are interpreted using conventional seismic time slice methods at the 

Paleocene unconformity (Chapter 2). 

• The succession of flatten seismic time slices relative to the Paleocene 

unconformity (Fig. 4.20A) show two channel systems at 8, 12  and 16 ms.  

• The channel located to the west has low sinuosity and crosscuts the 

NW-SE striking faults (Fig. 4.20B). A high amplitude anomaly, interpreted at the 

northern end of the channel (Fig. 4.20A at 16 and 20 ms), suggests the location of 

the mouth bar. This amplitude anomaly is located in one of the depocenters of the 

Icotea pull-apart basin (Chapter 2). This observation confirms the presence of an 

Eocene depocenter along with its syndepositional character. The sinuosity of the 

channel suggests either a mixed-load system (Galloway and Hobday, 1996), that 

the channel is deflected by NW-SE faults along its path to the depocenter, or tidal 

influence (Galloway and Hobday, 1996). This area is located west of the zone 

control by wells (Fig. 4.20B. 

• The channel located to the east is straight and follows the strike of NE-

SW strike-slip faults associated with the Icotea pull-apart basin (Chapter 2). The 

channel is located in the area with well control (Figs. 4.1 and 4.20C), and have 

good correlation with set A. The isopach map of set A was used to guide the 

interpretation in this particular area. Width of channel from seismic data is 

smaller than the one interpreted using the well data which highlights the 

importance of well control. The straight character of the channel and the thick 

blocky sandstones suggest a bed load system (Galloway and Hobday, 1996). 
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• The strike of faults seems to control sediment paths and depocenters. 

Fault control is interpreted for the linear trends of two channels mapped from 

seismic data and isopach maps of parasequence sets (Figs. 4.20B, C and D). 

• Other small channel-like features can be interpreted, but most of them 

closely follow fault strikes. This suggests that they are: 1) channels that follow the 

strike of the faults, like set A; 2) fault discontinuities; or 3) seismic artifacts (Fig. 

4.20B). 

 

4.6 REGIME VARIABLES 

Understanding the control variables on the formation of stacking patterns 

and cycles in the stratigraphic record of a basin is a key step for spatial and 

temporal prediction of depositional systems. Three main variables have been 

proposed to be and the principal controls of sequence formation at different 

scales: eustatic sea level change, sediment supply and rate of basin subsidence. 

The interplay of these variables defines the stratigraphic architecture of the 

sediments that fill the accommodation space within the basin (Vail et al., 1977; 

Galloway, 1989; Emery and Myers, 1996).  In order to understand the origin and 

stratigraphic architecture interpreted in the Maracaibo basin, these variables are 

discussed below. 

 

4.6.1 Eustasy 

Eustasy is defined as the absolute global change in sea-level relative to the 

center of the earth. Three main components of sea-level change are: glacial, 
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tectonic, and geoidal (Galloway, 1989). Furthermore, eustasy can vary either by 

changing the ocean basin volume or by changing ocean water volume (Pitman III, 

1978). Ocean-basin volume changes are related to plate tectonic interactions, by 

changes in rate of basin subsidence due to tectonic events with duration of 3 to 50 

my or opening and/or closing of ocean gateways (Pitman III, 1978). Also, it is 

generally accepted that water volume changes result from variations in the 

volume of continental ice caps. Volume of ice caps is affected by variations in the 

amount of solar distribution over the Earth’s surface (Miall, 1997). Solar energy is 

controlled by the orbital oscillation of the Earth (i.e., called Milankovitch cycles) 

or by climatic and oceanic circulation changes (Miall, 1997). The duration of 

these cycles is in the order of 0.1 to 0.5 my. No single mechanism can explain 

cycles with duration of million years, although Vail et al. (1977) assume that it is 

due to glacial eustasy. Instead, cycles of this length probably are formed from the 

interplay between tectonics, eustasy and sediment supply. 

The Paleocene, early and middle Eocene periods have generally been 

interpreted to be an ice-free period (Galloway, 1989; Miall, 1997; Abreu and 

Anderson, 1998). Several measurement techniques have been used to calculate the 

magnitude of eustatic changes in order to explain the short term variations in the 

stratigraphy record. Some of these methods include: 1) amount and location of 

sedimentary onlap onto the continental margins (Haq et al. (1988), 2) thickness of 

marine sedimentary cycles, 3) lithospheric stress (Cloetingh, 1986), 4) numerical 

simulations (Kendall and Lerche, 1988), and 5) variations in deep-ocean oxygen 
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isotopes (Abreu and Anderson, 1998). These methods are a proxy to estimate 

eustatic sea-level changes (Kendall and Lerche, 1988). 

There is little knowledge about the effect of eustasy in the Eocene 

stratigraphic record of the Maracaibo basin. Previous works are based on the Haq 

et al. (1988) sea level chart (Lugo, 1991; Pinto, 1991). The Haq et al. (1988) sea 

level chart is based mainly on seismic interpretation of onlap in several passive 

margin sedimentary basins of the world and its reliability is arguable. In this 

study, sea-level proxy curves based on deep-ocean oxygen isotopes by Abreu and 

Anderson (1998) and transgressive-regressive facies cycles by Hardenbol et al. 

(1998) were used to estimate eustatic changes (Fig. 4.21). These curves are 

compared with the Haq et al. (1988) curve in Fig. 4.21. 

The isotope oxygen data gives the most reliable record for sea-level 

proxies. For ancient records sea level is inferred from variations in O18 and O16 

isotopes from unaltered successions of calcite in deep ocean basins. When the 

ocean is enriched in O18 due to growth of large ice sheets the δ18O is heavy, 

whereas when melting of ice sheets occurs then the δ18O is light. Nonetheless, 

these variations can also occur in minor amounts by changing water temperature 

and salinity of the oceans (Abreu and Anderson, 1998; Lear et al., 2000). 

Amplitude changes in the isotope record during middle Eocene correspond 

roughly to changes in sea-level magnitude of ~25 to 55 m (~70 to 150 feet) 

(Abreu and Anderson, 1998). Even smaller amplitude variations are expected to 

be observed for the early Eocene that is representative of a greenhouse period 

(Abreu and Anderson, 1998) (Fig. 4.21). 
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The regressive-transgressive facies cycles of Hardenbol et al. (1998) is 

based on interpretation of facies stacking patterns and shelfal accommodation of 

European basins (compressional, extensional and passive margins), that are 

correlated in time using outcrop, well, core and seismic data. This method 

provides a qualitative indication of magnitude (minor, medium and major) of sea 

level changes controlled by tectono-eustatic effects, and gives an idea of 

stratigraphic architecture in other less studied basins. 

For the Eocene, approximately 2 my duration cycles can be interpreted 

from the oxygen isotope record along with a general increase in O18 from the 

middle to late Eocene (Fig. 4.21). Candidates for maximum sea level fall, with 

amplitudes less than 55 m include: 53.5, 51, 48, 46, 44, 42, 39.5, 37 and 35 my. 

Candidates for maximum sea level rise, inlcude: 54, 52.5, 49, 47, 45, 43, 41, 38, 

36 and 34 my. These cycles show good correlation with the transgressive-

regressive cycles of Hardenbol et al. (1998) during the middle and late Eocene, 

but the early Eocene, 0.5 to 1 my transgressive cycles are inferred. These higher 

frequency cycles probably indicate an increase in tectonic subsidence as proposed 

for the Eocene Maracaibo basin. 

Major flooding events in the study area, interpreted from well cross 

sections and maps, assuming linear time scales between parasequences (Figs. 4.8 

to 4.10), occur: 52, 50, 48.5, 47.6, and 46.5 my. Major progradational sets occur: 

52.5, 50.8, 49, 47 and <44 (sequence 6) my. No correlation is obtained between 

events observed in the study area and the Abreu and Anderson (1998) or the 

Hardenbol et al. (1998) charts in Figure 4.21. Possible reason for this lack of 
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correlation are: 1) relative rise and fall of sea level were dominated by other 

regime variables (subsidence or sediment supply), 2) changes were the result of 

the combination between the three regime variables at any stratigraphic scale, and 

3) ages assigned to events are poorly constraint in the study area. 

 

4.6.2 Sediment supply 

The rate of sediment supply controls the amount and location of 

accommodation space filling. Fluvial systems represent the major transporting 

mechanism from continents to basins. Other mechanisms of sediment 

redistribution to the basin include marine currents which can transport sediments 

for long distances along continental margins (Warne et al., 1999). Variations in 

climate, physiography, and basin configuration can considerably change rates of 

sediment supply to the basin in any time interval (Schumm, 1977; Galloway, 

1996). The sediment variable is usually considered to be constant in sequence 

stratigraphic analysis, but it plays an important role in basin architecture and it is 

comparable with eustasy and subsidence in importance (Galloway, 1989). The 

amount of sediment discharge through time is usually unknown in ancient 

drainage systems. 

Provenance study by Lugo (1991) in the Maracaibo basin indicated a 

southern cratonic source of sediments during the early-middle Eocene. Kasper 

and Larue (1986), Díaz de Gamero (1996), Driscoll and Diebold (1999) and 

Villamil (1999) have all proposed that the location of the north-flowing paleo-

Orinoco River was located in the western Maracaibo basin during the Eocene, and 
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that the paleo-river progressively shifted eastward to its present position in 

northeastern South America.  

Possibly significant amounts of clastic sediment supply from the proto-

Orinoco river during the Eocene have not been recognized. Driscoll and Diebold 

(1999) have proposed that the 14-km-thick depocenter located in the Southern 

Caribbean deformed belt is filled with a large amount of Eocene sedimentary rock 

derived from the proto-Orinoco. Thick Eocene sedimentary rocks (>4 km) were 

recorded in the Maracaibo basin. Regional paleogeographic maps by Villamil 

(1999) show N-S oriented depocenters from southern Colombia to western 

Venezuela. These depocenters were fed by the Guyana shield to the east and 

south, and by uplift of the Colombian Andes to the west. A large paleodrainage 

system with high rates of denudation seems to have existed through the Eocene. A 

possible estimate of sediment supply can be given by present-day rates for the 

Orinoco River. The river is one of the largest drainage basins in the world with an 

estimate of 150 to 212 millions tons/yr of sediment discharge (Warne et al., 

1999).  

 

4.6.3 Subsidence 

The main objective of back stripping analysis is to calculate tectonic 

subsidence by removing the effects of sediment loading, compaction, and eustasy. 

These methods will reveal the tectonic mechanism that controls basin subsidence 

(Miall, 1997). Determination of the type of tectonic activity and timing are 

important in defining the evolution of the basin and its infilling. 
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Figure 4.22 shows subsidence plots in the Maracaibo basin constructed by 

Lugo (1991). These plots show an increase in subsidence rates during the Eocene 

for the northern and northeastern parts of the Maracaibo basin. Calculated 

subsidence rates in the study area for the Eocene are: 55 m/my (~200 feet/my) 

between 54 and 48 my, and 95 m/my (~300 feet/my) between 48 and 40 my. 

From 40 to 25 my, uplift occurred with an equivalent magnitude to the amount of 

previous foreland related subsidence. Uplift explains the loss of ~20 my missing 

sedimentary record at the Eocene unconformity in the study area. 

The Maracaibo basin was formed as a foreland basin during the Eocene 

during oblique collision between the Caribbean and South American plates (Lugo 

and Mann, 1995; Chapter 2). As revealed by subsidence plots (Lugo, 1991; Fig. 

4.22), outcrop (Mathieu, 1989), and seismic lines (Escalona and Mann, 2003a), 

the major depocenter during this time developed in the northwestern area of the 

basin. Therefore, the Eocene sequence is classified as a tectonosequence, where 

subsidence was controlled by plate tectonic interaction. Subsidence history during 

the Eocene Maracaibo shelf can be summarized as follows (Fig. 4.23): 

1. LATE PALEOCENE ~ 60 MY (Fig. 4.23A): The Maracaibo basin was a 

passive margin that underwent tectonic loading from the north-northwest as the 

Caribbean plate approached western Venezuela  The shelf edge was located along 

the Burro Negro fault (Chapter 2) and subsidence rates increased along this 

depositional structural boundary (Fig. 4.22; wells C, D and F). 

2. EARLY EOCENE ~54 MY (Fig. 4.23B): Tectonic loading continued 

from the north, inducing higher subsidence rates on most of the shelf (Fig. 4.22,  
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well B). Flexural loading induced the formation of a forebulge to the south 

(Chapter 2). The Paleocene platform was exposed forming the Paleocene 

unconformity (SB1). Clastic input began to infill the basin in large amounts and 

turbidites were deposited in the deep Maracaibo basin northeast of the Burro 

Negro fault (Trujillo Formation, Mathieu, 1989). 

3. EARLY-MIDDLE EOCENE ~49 MY (Fig. 4.23C): Tectonic loading 

reached it climax with an increase in subsidence rates for the entire basin (up to 

65 m/my on the shelf and more than 150 m/my in the main depocenter; Fig. 4.22). 

Progressive migration of the forebulge southward occurred and clastic sediments 

onlap the Paleocene unconformity. High rates of subsidence induced 

retrogradation of the Eocene tectonosequence. The forebulge was uplifted and is 

estimated to have been 20 to 40 times smaller in magnitude than the subsidence of 

the basin, depending on thickness, density, continuity of the lithosphere, and 

tectonic loading (Crampton and Allen, 1995). For the Maracaibo basin a 

maximum of 10 m/my uplift represents a good estimate for the Eocene forebulge, 

considering subsidence rates of ~150 m/my in the main depocenter. 

4. MIDDLE-LATE EOCENE ~40 MY (Fig. 4.23D): Tectonic loading moved 

eastward (Chapter 2). The lithosphere responded by tectonic rebound 

characterized by uplift rates of 60 m/my (~200 feet/my). Rebound affected the 

entire Eocene Maracaibo shelf (Fig. 4.22). Formation of the Eocene unconformity 

was induced by the tectonic rebound, and generated higher rates of erosion to the 

south (forebulge).  



 152

5. LATE EOCENE-OLIGOCENE ~35-25 MY (Fig. 4.23E): By this time 

period the entire basin was subaerially exposed (Chapters 2 and 3), and erosion 

cannibalized a large amount of sediments (more than 30% to the south, Figs. 4.9 

and 4.10).  

Generally, the Eocene tectonosequence is driven by tectonic subsidence, 

and formation of bounding unconformities. Migration of the forebulge and 

changes in tectonic loading in the main basin depocenter through time controlled 

the asymmetric wedge shape of the basin. 

 

4.7 COMPARISON WITH OTHER AREAS OF THE MARACAIBO BASIN 

Previous sequence stratigraphic analysis of the Maracaibo basin are based 

either on regional tectonosequence evolution (Audemard, 1991; Lugo and Mann, 

1995; Parnaud et al., 1995b), or focused on detailed, reservoir-scale studies 

(Maguregui, 1990; Ambrose and Ferrer, 1997; Raeuchle et al., 1997; Hamilton et 

al., 1998). There are few published studies on the age of stratigraphic units. 

Instead, units are correlated using the standard lithostratigraphic system (i.e., CX 

sands and BX sands; Gonzáles de Juana, 1980). Regional sequence stratigraphic 

interpretation of units by age and surfaces that integrate most of the wells in the 

Maracaibo basin remains to be done. Information, integration, and interpretation 

are needed in order to build a consistent and predictable stratigraphic model, 

which allows a better understanding of the evolution of the Maracaibo basin, and 

the distribution of its reservoirs. 
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Figure 4.24 shows a comparison of two parasequence sets sand isopach 

maps in the study area with equivalent units interpreted by Ambrose et al. (1995) 

(Fig. 4.24A) and  Maguregui (1990) (Fig. 4.24B). Age of parasequence sets in the 

study area is subject to linear interpolation using few palynology markers. Lateral 

time correlation with other areas is based on the vertical location within the 

stratigraphic column and because no age control is available for these 

interpretations. Furthermore, Maguregui (1990) and Ambrose et al. (1995) based 

their stratigraphic framework on continuous shale markers that were inferred to 

represent regional flooding surfaces. They proposed tide-dominated depositional 

systems, whose main lithofacies include distributary channels, tidal sand bars, 

tidal channels, and shelf assemblages.  

Set G (~49 my, genetic sequence 2) is compared with the upper C4X 

sandstones of Ambrose et al. (1995) located 15 km north of the study area (Fig. 

4.24A). Similar sandstone thickness is interpreted from both areas and a NE-

depositional trend is observed, suggesting the same depositional pattern toward 

the deep basin in both systems. The area studied by Ambrose et al. (1995) seems 

to be continuous and fed by a system located to the southwest of the study area. 

This is indicative of a more complex tide dominated deltaic network in the 

Maracaibo shelf, as proposed by Maguregui (1990). 

Sequence 6 (set R, < 44 my) is correlated with interval A of Maguregui 

(1990). Interval A is a possible sub-unit of set R, located a few km NE of the 

study area (Fig. 4.24B). Sequence 6 was not subdivided in the study area because 

of its thickness. Its blocky-coarsening upward amalgamated character (probably 
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related to bed load fluvial systems) makes it difficult to subdivide in subunits. A 

similar NE trend can be interpreted for sandstones of sequence 6 in the northeast 

part of study area and the sandstones interpreted by Maguregui (1990). Fluvial 

facies in the study area pass laterally into deltaic systems to the NE, interpreted by 

Maguregui (1990) as intervals A to G (BX sands). 

 

4.8 ORINOCO DELTA ANALOG (EASTERN VENEZUELA) 

The Orinoco delta is located in eastern Venezuela and represents a 

triangular to trapezoidal depocenter of approximately 22,000 km² (Figs. 4.25A 

and B). At a regional scale, the delta is located in a foreland setting (Eastern 

Venezuela Basin, Di Croce et al., 1999), with the Serranía del Interior and 

Trinidad to the north and the Guayana shield to the south (Fig. 4.25A). Tectonic 

transpression is controlling the region and it is related to the collision between the 

Caribbean and South America plates. To the NW, transpressional structures are 

interpreted trending NW and NE (Warne et al., 1999).  

The fluvial network of the delta comprises six major distributaries 

radiating from the apex to the coast, and comprises a suite of depositional 

environments including: distributaries, swamps and marshes, and tidal channels 

(Figs.4.25C and D).  Distributary channels tend to be straight and widening to the 

coast in a funnel shape (Figs. 4.25B, C and D). Tidal fluctuations are mesotidal 

and affect the main distributary channel up to 100 km upstream. Wave energy is  
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minimal because of the wide, shallow water Orinoco shelf (~100 km wide and 

maximum 100 m deep) (Warne et al., 1999). 

The Orinoco delta represents an excellent analog for the fluvial-deltaic 

system interpreted in the Maracaibo basin during the Eocene because of its scale, 

and structural and stratigraphic setting (Fig. 4.25A). Understanding the 

configuration of the different depositional systems in this modern deltaic system 

is a key for interpreting and understanding the geometries, scales and processes 

that formed ancient systems in the Maracaibo basin. The Eocene of the Maracaibo 

basin is interpreted to have a broad shallow shelf (>100 km; Maguregui, 1990; 

Chapter 2) with tidal and fluvial influence. These characteristics are also observed 

in the modern Orinoco delta. 

The geometries and distribution of facies in the Maracaibo basin were 

compared with those in the Orinoco delta. The study area represents a small area 

of the Eocene Maracaibo shelf (Figs. 4.26 A, B and C). Main observations that 

reflect the four principal depositional systems of the Orinoco delta with the 

parasequence sets of the study area include (Fig. 4.26C): 

• Set A resembles a fluvial-dominated channel system of the upper 

Orinoco delta, where the main distributary is straight with crevasse splays and 

levees. Cross-stratification is a common feature. 

• Set D shows similar geometry of distributary channels located in the 

middle delta plain, where processes have marine influence. The main distributary 

channel splits in several channels, where channels are more sinuous and becoming  
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again less sinuous closer to the coast. Tidal channels and sand bars islands are 

evident and are surrounded by swamps (Fig. 4.25C and 4.26C). 

The lower delta plain of the Orinoco delta is controlled by tides, but also 

by fluvial processes. Peat is a common feature and swamps and marshes are cut 

by a complex network of tidal channels. Large, dip-elongated tidal sand bars are 

observed along the main distributaries characterized by a funnel shape due to tide 

influence (Warne et al., 1999). Set M shows similar geometries to this system, 

suggesting tidal sand bars and tidal channels as main facies, with small sand-to-

shale ratios. Bars are oriented to the NE, which is inferred to be the main 

depositional dip for the Maracaibo basin (Fig. 3.25D and 4.26C). 

• Low sand to shale ratio is typical of the nearshore and inner shelf of 

the Orinoco delta, and coasts are basically mud-flat and mangrove swamps. Also, 

distributaries mouth bars widen due to tidal and marine influence. Parasequence 

set P seems to resemble the mouth bar to outer shelf transition, where open 

marine processes rework most sand from the mouth bar to the basin (4.26C). 

• Tide influence is observed from shelf to the middle-upper delta plain, 

up to ~100 km upstream in the Orinoco delta. Tide influence in the Maracaibo 

basin is interpreted for most of the Eocene facies suggesting a similar range of 

influence. Sediment dispersal processes, facies, and geometries in the Eocene of 

the Maracaibo basin shelf needs regional mapping of parasequences, in order to 

have a better comparison model with modern analogs, and to have a complete 

understanding of the entire system from source to deep basin. 
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4.9 SUMMARY AND DISCUSSION: INTEGRATED EVOLUTION OF THE STUDY 
AREA 

The stratigraphic evolution of the Maracaibo basin during the Eocene is 

controlled by the oblique collision between the Caribbean plate and passive 

margin of South America in western Venezuela, and to a much lesser degree by 

sediment supply and eustasy. The general retrogradational pattern interpreted 

from well data (Figs. 4.9 to 4.12) and from analysis of subsidence plots (Lugo, 

1991; Fig. 4.22) leads to the conclusion that subsidence controls the long term 

relative sea level change. Changes in the stratigraphy was characterized by 

increasing accommodation space between 55-95 m/my (~200 to 280 feet/my) 

during the early Eocene and most of the middle Eocene, and by decreasing 

accommodation space at similar subsidence rates during the late Eocene and 

Oligocene (Fig. 4.22).  

High frequency cycles, including genetic sequences and parasequence 

sets, seem to be controlled by a combination of eustasy and sediment supply.  

However, small changes in the oxygen isotope record (Abreu and Anderson, 

1998) and the lack of major continental ice caps during the early-middle Eocene 

greenhouse period suggest that eustasy played a minor role in high frequency 

cycles observed in the Maracaibo basin. Lateral and vertical continuity of facies 

associations in the study area does not indicate any major erosional surfaces 

within the genetic sequences. This observation is supportive of the idea that the 

Eocene Maracaibo shelf was never subaerially exposed and also supports my 

inference that rates of sea level fall were smaller than subsidence rates (i.e., less 

than 55m/my; Abreu and Anderson, 1998). There is no good correlation between 
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major sea level falls shown in the sea-level charts (Hardenbol et al.; 1998) and the 

age of Eocene progradational units in the Maracaibo basin. 

Instead, sediment supply seems to have had a strong influence over the 

observed high frequency cycles. The area of western South America was an active 

tectonic margin during the Eocene and it is likely that tectonics was an important 

control on morphology, paleodrainage and sediment supply. Climate control has 

also played a major role on sediment discharge as it does in other subtropical 

regions like the Orinoco delta (Villamil, 1999; Warne et al, 1999). Another 

possible cause of high frequency sea level fluctuations was intraplate stresses 

related to tectonic loading as proposed by Cloetingh (1986). Cloetingh (1986) 

proposes that fluctuations of relative sea level can be in the order of 10 m cause 

by sediment loading and thermal contraction on passive margin, or greater than 50 

m cause by active tectonic plate boundaries on a million year cycles. 

Figure 4.27 A to G summarizes the stratigraphic evolution of the study 

area, as interpreted from the 3-D pseudo-seismic data, seismic data and analysis 

of regime variables. Aggradational and progradational units composed of 

distributary channels and deltas characterize the lower Eocene (Figs 4.27A and 

B). These systems are the product of slight shallowing of the Eocene Maracaibo 

basin shelf and formation of a forebulge to the south. Tides and fluvial processes 

are dominant, and tidal influence is enhanced by the shallow, broad shelf. A 

succession of regressive-transgressive cycles with a general retrogradational 

pattern is characteristic of most of the middle Eocene (Figs. 4.27 C to E). Few, 

highly prograding units are observed (sets M and N, Fig. 4.27D) and were formed  
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by a possible regional increase in sediment supply. A long term transgression 

induced by tectonics produced back-stepping of the forebulge and continental 

facies (Fig. 4.23B and C), contributing to an increase in marine influence and tidal 

energy in the shallow Eocene Maracaibo shelf.  

By the end of the middle Eocene (~40 my), tectonic loading ceased, and 

lithospheric rebound affected the basin. Rebound produced migration of the 

shoreline to the northeast and incision of the upper part of older Eocene units in a 

complex network of fluvial systems (Figs. 23D and 4.27F). The deltaic system 

migrated to the northeast near the shelf edge (study area of Maguregui, 1990, Fig. 

4.24B). In this shelf edge setting eustasy and sediment supply played a major role 

in controlling high frequency cycles of the basin. During the late Eocene and 

Oligocene periods, most of the Maracaibo shelf was exposed by a combination of 

tectonic rebound (Fig. 4.22) and higher amplitudes of sea level fall due to increase 

in volume of continental ice caps (Abreu and Anderson, 1998) (Fig. 4.27G). 

Active faulting during the Eocene controlled the orientation of main 

distributary channels and localized intra-shelf depocenters like the Icotea pull-

apart basin (Chapter 2). Thickening of genetic sequence 1, and sequence 6 toward 

the west suggest that the Icotea pull-apart basin was mostly filled during these 

periods of deposition (Figs. 4.10, 4.13 4.20). 

 

4.10 CONCLUSIONS 

Sequence stratigraphic interpretation of a representative area of the 

Maracaibo Eocene foreland basin using an integrated methodology including a 
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dense well data base, core, 3-D seismic, previous works and modern depositional 

system analogs yields to the following conclusions: 

• The stratigraphic architecture of the Maracaibo basin during the 

Eocene was controlled by tectonic subsidence and to a lesser degree by sediment 

supply. Eustasy does not play an important role during the early Eocene and for 

most of the middle Eocene. 

• Continuous shale markers and stacking patterns were used to interpret 

five genetic sequences. These genetic sequences were subdivided into seventeen 

parasequence sets throughout the whole area. A sequence bounded by erosional 

surfaces was interpreted within the Eocene tectonosequence, at the upper section 

of the interval.  

• The lack of sequence boundaries reveals that the Eocene Maracaibo 

shelf was not subaerially exposed during the early and middle Eocene. Instead, 

this period was dominated by a long term retrogradational stacking patterns. 

• The area is interpreted as a transitional environment from delta plain to 

shelf, where fluvial and tidal processes dominate facies architecture. Main facies 

interpreted include: distributary channels, crevasse splays, tidal bars and shallow 

marine facies. Sediments were transported from S-SW to the NNE 

• The vertical stratigraphic succession is characterized by an 

aggradational package, followed by regressive-transgressive cycles in a 

retrogradational trend, and ending with the Eocene unconformity. Associated with 

the Eocene unconformity an aggradational cycle, suggest a shift of the shoreline 

to the NE, of an exposed platform to the south. 
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• The application of the 3-D pseudo-seismic transform technique 

resulted in an excellent visualization and interpretation methodology when 

working with a dense well database. The technique improved lateral and vertical 

correlations, allowed better understanding of the stratigraphy of the area, and 

provided more reliable 3-D geological interpretations. 

• Comparison of facies architecture with modern depositional 

environments aids understanding ancient systems. 
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CHAPTER 5 

Reservoir properties 

5.1 INTRODUCTION 

 Understanding reservoir architecture is fundamental for optimizing 

hydrocarbon production. Eocene clastic rocks of the Maracaibo basin contain one 

of the most prolific reservoirs in the world for light and medium oil. These 

Eocene reservoirs are characterized by complex stratigraphic and structural 

compartments.  

Structural traps are controlled by a variety of features, including normal 

faults, inverted faults on the flexed continental plate (Harding and Tuminas, 1989, 

Chapters 2 and 3), folds within the foreland basin itself, and strike-slip faults 

forming N-S anticlines (Chapter 3). All trap types were charged with 

hydrocarbons from underlying Cretaceous source rocks (Zambrano et al., 1971; 

Gonzáles de Juana et al., 1980). Stratigraphic traps are found in heterogeneous, 

mixed fluvial and tidal-dominated deltaic systems defining regressive-

transgressive cycles on the Eocene Maracaibo shelf (Maguregui, 1990; Ambrose 

et al., 1995; Chapter 4). Major reservoir facies are stacked distributary channels 

and tidal bars with lateral variability depending on the stratigraphic unit to which 

they belong (Chapter 4). 

Reservoirs in central Lake Maracaibo have been producing since the late 

1960’s. More than 1.5 billion barrels of medium oil have been produced from the 



 167

Eocene interval. Current production from the Eocene reservoirs is about ~50,000 

barrels a day with a recovery factor of less than 30% (PDVSA E&P Occidente 

and Veba Oil, 1998). More than 400 wells produce from the Eocene in central 

Lake Maracaibo where well spacing is a minimum 600 m radius by government 

regulations. Prediction of reservoir facies, their connectivity and petrophysical 

properties in the interwell areas are very unreliable. As a result, it becomes 

difficult to define new development areas solely from well control, and the 

success of offset wells and recovery projects is not as high as expected.  

Three dimensional seismic data in the study area have been used to 

continuously depict the structural framework. Stratigraphic interpretations have 

been difficult because of the low vertical resolution of the seismic data (~40 m, 

~120 feet; Gil and Trautnitz, 1995). Seismic amplitude interpretations seem to 

show correlation between stratigraphic attributes and seismic response. León 

(1997) and Escalona and MacDonalds (1998) found that crossplots of Eocene 

sandstone units show a direct relationship between reflection amplitude and net 

oil sandstone thickness and porosity for thin beds. International Reservoir 

Technologies, Inc. (1997) also identified a tentative seismic amplitude correlation 

with net sandstone thicknesses for thin beds. 

To gain a better understanding of the reservoir architecture, the aim of this 

study is to provide an overview of the distribution of Eocene reservoirs in the 

central Lake Maracaibo area and to determine if correlations between seismic 

amplitudes and petrophysical properties exist. The objective is to determine if the 

spatial continuity of the 3-D seismic data can be used in combination with the 
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vertical resolution of the well data to predict reservoir properties in interwell 

areas, mainly in thin layered and unexplored reservoirs. This analysis is based 

upon the high resolution stratigraphic framework built in Chapter 4, which used 

more than 300 wells, covering most of the study area. 

 

5.2 COMMENTS ON PETROLEUM SYSTEMS 

Figure 5.1 shows the distribution of hydrocarbons reservoirs in the 

Maracaibo basin (Zambrano et al. 1971). Most reservoirs are located along and 

between the Icotea and Pueblo Viejo faults south of the Burro Negro fault zone. 

Distribution of the source rocks, migration paths and trapping of hydrocarbons in 

the basin are the result of the structural and stratigraphic evolution of the basin. 

Hydrocarbon reservoirs are Cretaceous, Eocene and Miocene in age. 

Figure 5.2 is a transverse E-W interpreted seismic line in the central 

Maracaibo basin showing the main features of the petroleum system from 

Cretaceous source rock to Eocene and Miocene reservoirs. 

SOURCE ROCKS: Hydrocarbon source rocks in the Maracaibo basin are 

Cretaceous carbonates of the La Luna Formation (Albian-Coniacian) and, in 

lesser amount, Eocene and Miocene shales (Zambrano et al., 1971; Young et al., 

1977). Hydrocarbon generation most likely occurred during the Paleogene, when 

Cretaceous rocks were deeply buried and reached the thermal maturation window 

(Zambrano et al., 1971; Gónzales de Juana et al., 1980) (see subsidence plots in 

Fig. 4.22). Tectonic Miocene inversion of the Maracaibo basin deeply buried 

Eocene and Miocene rocks to the southern part of the basin (Maracaibo syncline,  
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Castillo, 2001) creating an alternative post-Eocene period for hydrocarbon 

generation on Eocene and Miocene shales (Gónzales de Juana et al., 1980). 

MIGRATION AND TRAPPING: Hydrocarbon migration and trapping 

occurred at least in two main phases: 

Paleogene oblique collision between the Caribbean and South American 

plates (Chapters 2 and 3): During this period an asymmetric wedge of fluvial-

deltaic Eocene rocks was deposited in a foreland basin. Pull-apart basins 

controlled by reactivated Jurassic N-S trending faults within the Maracaibo basin 

were formed (e.g., Icotea and Pueblo Viejo sub-basins). These faults served as 

vertical pathways for hydrocarbon migration from the Cretaceous source rocks to 

Eocene reservoirs (Boesi, 1978; Fig. 5.2). Also, vertical displacement of major 

faults allowed lateral contact between Cretaceous source rocks and Eocene 

reservoir rocks, contributing to increase hydrocarbon migration (Fig. 5.2). 

Hydrocarbon traps are associated with anticlines formed during creation of 

the pull-apart basins structures beneath the Eocene unconformity and 

compartmentalized by NW-SE striking faults (Chapter 2 and 3). Regional N-NE 

dip of the basin also contributed to oil migration updip to better quality fluvial and 

deltaic reservoir facies (Chapter 4) and trapping against the Eocene unconformity 

in the central Maracaibo basin (Figs. 2.6, 4.9 and 4.12). 

Post Eocene inversion: This phase of basin development was characterized 

by uplift of the Sierra de Perijá and the Mérida Andes, formation of the N–S 

Maracaibo syncline (Castillo, 2001), and inversion of Eocene structures in the 

central basin. Hydrocarbon migration occurred along fault zones at the Eocene 
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unconformity, or where post-Eocene reservoir rocks are in contact with Eocene 

reservoirs, allowing updip migration to Miocene reservoirs. In contrast to the 

Eocene, the Miocene depocenter was located to the south of the Maracaibo basin 

and continental facies pinch out to the NE, forming a major stratigraphic trap 

(Figs.2.6 and 5.2). Hydrocarbons are mainly trapped in a few inverted structures 

(Fig. 5.2) and stratigraphic wedges outs to the NE (Figs. 2.6 and 5.2) or escaped 

to the surface, forming seeps to the east and west of the Maracaibo syncline 

(Zambrano et al., 1971; Gónzales de Juana et al., 1980; Fig. 5.2).  

 

5.3 MAIN RESERVOIRS IN CENTRAL LAKE MARACAIBO 

Hydrocarbon in the Eocene reservoirs in the study area has API gravity 

between 20 and 30, and is classified as medium oil. The reservoirs are located on 

structural highs and in parasequence sets with high sandstone content. The 

structural highs were formed by strike-slip and inversion of N-NE-striking normal 

faults. NNW-SSE normal faults separate the anticline in different blocks, with the 

lowest structure located in the central part of the study area (Fig. 5.3). 

Figure 5.3 shows six maps of the most prolific units in the area. These 

maps combine the structural map of the upper bounding flooding surface of the 

respective genetic unit, net sand isopach of the reservoir interval, and areas with 

hydrocarbons based on a cutoff of 15 ohm.m in the deep-resistivity log. A bottom 

aquifer is the main drive mechanism for the reservoirs (PDVSA E&P Occidente 

and Veba Oil, 1998). Structural lows to the east and west tend to be wet reservoirs 
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outside the main anticline areas, and also to the south for the deeper genetic units 

(i.e. genetic sequence 1). 

Most of the oil production is located in the central and southern area in 

parasequence sets F, G and N, where a combination of structural highs and thick 

sandstone packages occur. To the north these sets are less productive, probably 

due to an increase in shale content related to an increase of tidal influence 

(Chapter 4). Oil is most likely to be concentrated in the main continuous 

distributary channel facies and sand bars.  

The southern and central areas have been intensely drilled over the main 

anticline structure. Pay zones are generally perforated when resistivities of the 

sandstones are greater than 15 ohm.m. The northern area and flanks of the main 

anticline are poorly drilled and open the opportunity for more infill drilling and 

stratigraphic traps in the central-west part of the study area (Fig. 5.3). 

 

5.4 HIGH RESOLUTION SEQUENCE STRATIGRAPHIC CORRELATION 

The GR pseudo-seismic data provides a visualization technique to 

interpret the continuity of the reservoirs in the study area. The sequence 

stratigraphic framework is based upon the stratigraphic correlation built using a 

dense well data base and on mapping of different parasequence sets (Chapter 4). 

In addition to the GR pseudo-seismic data, a deep-resistivity pseudo-seismic data 

set was built in order to interpret the lateral and vertical distribution of 

hydrocarbons within the different sets. Resistivity logs used include induction (i.e. 

ILD) and resistivity logs (i.e. LLD, LL8). One of the main problems found in the  
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generation of the deep-resistivity, pseudo-seismic data is the variability of the 

magnitude of resistivity measurements, which can range from less than 1 ohm.m 

to more than 2000 ohm.m, depending in the logging tool used.  For the study area 

a cut-off of 15 ohm.m was defined to be the most appropriate value for 

hydrocarbon detection (PDVSA E&P Occidente and Veba Oil, 1998). 

Resistivities between 15 to 200 ohm.m were displayed for visualization purposes 

in the pseudo-seismic data. 

Figures 5.4 and 5.5 show structural pseudo-seismic line 25 and crossline 

17, respectively (the pseudo-seismic display of well logs is discussed in detail in 

chapter 4). In both sections, the main reservoirs are located in parasequence sets 

F, G and N, where high resistivity values are observed (>>15 ohm.m). The main 

reservoirs are distributary channels, trending from S-SW to the N-NE over the 

Eocene Maracaibo shelf (Chapter 4). Hydrocarbons are present on structural 

highs, as observed in Figure 5.4. Toward the E and W flanks of the structure, 

aquifers are present in different sets. A bottom aquifer is interpreted from Figure 

5.5, where the oil-water contact can be located between -3800 to 3870 m (-12500 

to 12700 feet) (depending upon drilled year and reservoir compartment of the 

wells). This bottom aquifer explains why reservoirs of genetic sequence 1 show 

hydrocarbons to the north (Fig. 5.5), whereas to the south sets underneath set F 

(genetic sequence 2) are wet (stratigraphic higher sets).  

Structurally and stratigraphically complex hydrocarbon traps occur in the 

central and northern areas, where highly discontinuous sand bodies are observed 

(Figure 5.5). This observation suggests: 1) a complex hydrocarbon migration 
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pathway allowing trapping in certain isolated stratigraphic or structural traps, but 

leaving areas at the same set or same structural level wet; and 2) genetic 

sequences above genetic sequence 1 shows an increase in shale content (i.e., 

erratic facies, more marine influence) leading to a reduction in the connectivity of 

the sand bodies (sand bars), an increase in capillary pressure and more variability 

in permeability. In such genetic sequences, it is common to interpret different 

aquifers for each reservoir. Likewise reservoirs can be found off structural highs, 

as in genetic sequence 4 (parasequence sets M and N, Fig. 5.3).  

 

5.5 WELL AND SEISMIC DATA CORRELATION 

Prediction of the continuity and petrophysical properties of the reservoirs 

is difficult in interwell correlations in areas where reservoir heterogeneity is high 

(Tyler; 1988). Prediction on heterogeneous tide-influence facies is very poor 

between neighboring wells and even poorer in new development areas 

(Maguregui, 1990; Ambrose et al., 1995).  

Seismic data can be helpful to enhance interpretation of interwell and new 

development areas when seismic vertical resolution is good. In the best case, 

petrophysical properties of reservoirs correlate with seismic properties.  

 

5.5.1 Petrophysical properties of the reservoirs 

Little core data are available from 9 wells in the study area (Fig. 4.1). 

Conventional analysis was performed on most of these core data. This analysis 

was done by the Instituto de Investigaciones Petroleras de La Universidad del 
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Zulia and S.A. Consultores C.S.C, where permeability and porosity were 

measured. Using these data, petrophysical properties were assigned to each facies 

association to estimate reservoir quality.  

Figure 5.6 shows an example of an analysis performed in Well W12. 

Permeability and porosity are displayed in depth and compared with the GR (Fig. 

5.6A). GR facies associations were extracted from log data, in addition to the 

corresponding permeability and porosity of the stratigraphic set. Porosity versus 

permeability plots were generated for potential correlations between these 

properties (Fig. 5.6B).  

Average porosity for the different stratigraphic sets, independent of age 

and facies, is around 20%. Permeability shows more variability, and is different 

for each facies and parasequence set. Reasonable correlations with porosity can be 

inferred (an increase in porosity represents an increase in permeability and vice 

versa). Permeability calculated in the lab was Klinkenberg permeability or 

corrected gas permeability, which is the most representative of reservoir 

condition, rather than air permeability. For spiked or mixed GR facies (crevasse 

splay, tidal bars) permeability ranges from 260 to 420 md. Blocky to fining 

upwards GR facies permeability (fluvial channels, distributaries) range from 500 

to 700 md (with maximum up to 2500 md). Blocky to spiked-coarsening upwards 

GR facies (channels) show the lowest permeability, with average of 160 md. The 

best quality reservoirs are distributary channels and fluvial channels in genetic 

sequence 1 and parasequence sets G and N, followed by tidal sand bars. 

 



 180

5.5.2 Acoustic properties of well and seismic data: Implications for interwell 
correlation using seismic data 

To determine a plausible correlation between well and seismic data, 

seismic properties, synthetic seismograms (sonic and density from well data) and 

cross-plots were analyzed (Torres-Verdin et al., 1999). 

 

Seismic properties and synthetic seismograms 

Synthetic seismograms were built and compared with the seismic data (i.e. 

Figures 5.7 and 5.8). The main objective was to extract the seismic properties 

(frequency, wavelet and phase) and compare the seismic response with the 

acoustic response observed in the wells for the Eocene tectonosequence.  

The seismic data available for the project is sampled at 4 ms, amplitude 

range of 8 bit display, and a frequency band of 8-55 Hz. The dominant frequency 

is between 25 to 30 Hz (Fig. 5.7C). Using an average velocity for the interval of 

interest between 3600 to 3900 m/sec (12000 to 13000 feet/sec) (taken from sonic 

logs), the limit of separability or vertical resolution (Sheriff and Geldart, 1995; 

Brown, 1996) is approximately 40 m (120 feet) (Fig. 5.7C). Unfortunately no pre- 

stack seismic data or stacked seismic data at 16 bit was available, thus reducing 

the probability for interpreting stratigraphic features either from amplitude 

analysis or by improving seismic quality through reprocessing.  

Figures 5.7A and 5.8A show synthetic seismograms for two wells in the 

study area. A reasonable match between seismic and well data is found for the 

main reflection events. The best wavelet extracted from the seismic used in the 

synthetic seismograms for the frequency band of interest was a near zero-phase  
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wavelet shown in Figures 5.7B and 5.8B. Acoustic impedance (green), gamma 

ray (red) and resistivity (blue) logs reveal that most of the reservoirs have 

thicknesses no greater than 30 m (100 feet), which is below the vertical resolution 

of the seismic data. Top and base of set R (between SB2 and SB41) is the 

stratigraphic set which thickness is greater than the vertical resolution (Figs. 5.7A 

and 5.8A). Few hydrocarbons have been discovered for this set. For quality 

control between the synthetic seismogram and the seismic data correlation, 

frequencies of both data were compared (Figs. 5.7C and 5.8C). Also, the sonic 

logs were compared with the slowness log extracted from the checkshot survey 

logs. In general, both analyses show good quality and correlation with the data, 

but seismic resolution does not have enough resolution to characterize the 

individual reservoirs. 

 

Crossplots 

Acoustic impedance (product of density and velocity, Figs. 5.7A and 

5.8A) varies with rock properties including: lithology, porosity, fluid, compaction, 

and fluid pressure (Jason Geosystems BV, 1997). Crossplots between acoustic 

impedance, density and gamma ray shown in Figure 5.9 reveal the different 

acoustic properties of the genetic sequences. The main objective of this aspect of 

the study is to evaluate if the acoustic impedance is able to differentiate lithology 

and fluid content. Two wells are displayed in Figure 5.9 (wells W12 and W16) 

showing their acoustic and lithologic response for the different genetic sequences  
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 interpreted in the study area. These two wells are located no more than 4 km 

apart (Fig. 4.1). Main observations from the crossplots include: 

1. In general, reservoir sandstones can be differentiated from shales by 

the acoustic impedance, as shown by the polygonal areas, representing 

highlighted intervals in the logs. However, partial overlap between both 

lithologies occurs. 

2. Well W12 sandstone (low GR, yellow and red colors) shows high 

acoustic impedance and density values for all genetic sequences (Fig. 5.9A and 

5.9B), except for genetic sequence 4, where sandstones with hydrocarbons (high 

resistivity) can be differentiated from wet sandstones by their low acoustic 

impedance (yellow highlight in the well logs, 5.9B). 

3. In contrast, well W16 show low acoustic impedance and density 

values for all sandstones in the genetic sequences independent of fluid (Figs. 5.9C 

and 5.9D). For genetic sequence 2, acoustic impedance of sandstones is similar to 

the acoustic impedance of the shales making them difficult to differentiate 

lithology on the logs (5.9D). 

 

Seismic and well data resolution implications 

As interpreted from crossplots, acoustic impedance can discriminate 

lithology from the genetic sequences, and in some cases fluid, as the case of 

genetic sequence 4 (Fig. 5.9B). In order to have a definitive answer regarding the 

question of whether seismic data can resolve lithology and reservoirs, the well log 

resolution has to be downscaled to the seismic resolution. The objective is to 
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analyze whether the new lower acoustic impedance resolution can separate shales 

from sandstones and hydrocarbon for water. This process consists in applying a 

high frequency band limiting filter to the well logs (seismic band frequency 

between 8-50 Hz, Figs. 5.7 and 5.8). 

Figure 5.10 shows a comparison between crossplots at well log resolution 

and the crossplots from log data at seismic resolution. The low frequency 

crossplots cannot differentiate the lithology, as the shales and sandstones are 

mixed on the plot. The low frequency acoustic impedance and GR logs cannot 

resolve the thickness of the sandstones. The signature of acoustic impedance in 

separating lithologies is lost as vertical resolution decrease and becomes difficult 

to impossible to interpret stratigraphic features at the reservoir scale using the 

seismic data. The lack of higher frequency content in the seismic data reduces its 

capabilities to resolve most of the Eocene reservoirs. 

Tuning 

The tuning thickness is the bed thickness where amplitude reaches the 

maximum value due to constructive interference between wavelets from top to 

bottom of the bed (Brown, 1996). For beds thinner than the tuning thickness, the 

wavelet stays the same, but its amplitude decreases. This relationship serves to 

correlate the amplitude value with the sand thickness (for thin sands) and can also 

be helpful in defining the spatial continuity of the depositional systems and their 

reservoir properties. The applicability of this attribute is limited by the level of 

noise present in the data, defining what is called the “limit of visibility” (Brown, 

1996). In general, amplitudes respond to changes in the thickness of the rocks and  
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Figure 5.10. A) Crossplots at well and seismic resolution and synthetic seismogram of genetic sequence 2 in well W12. GR and acoustic impedance logs are displayed with the seismic 
frequency. B) Crossplots at well and seismic resolution and synthetic seismogram of genetic sequence 4 in well W16. GR and acoustic impedance logs are displayed with the seismic 
frequency.
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their internal properties. Because the resolution of the seismic data is low (~ 40 

m; 120 feet), interpretation has to be done below the tuning thickness in order to 

apply the correlation between amplitudes and reservoir properties.  

An example of amplitude versus thickness is shown in Figure 5.11. The 

reservoir is located in set M, and was penetrated by three wells (Fig. 5.11A). 

Initial oil production was more than 1000 barrels of hydrocarbon per day in each 

well (Escalona and MacDonalds, 1998). An attempt to follow the top and base 

reflection was done, and amplitude was extracted (Figs. 411B and C). A crossplot 

between thickness and amplitudes from the top of the reservoir show an incipient 

correlation, suggesting that all wells are in the interference zone between top and 

base reflection (i.e., below the vertical resolution). Maximum interference is 

interpreted to be at 25 m (~70 feet) thickness (Fig. 4.11D).  

The value of tuning thickness interpreted from Figure 5.11 is smaller than 

the average vertical resolution calculated for the Eocene in Fig. 5.7 (70 < 120 

feet). This value difference might indicate vertical resolution variability in the 

Eocene interval or that more data is needed to better constraint the tuning 

thickness calculated. This methodology failed as more wells were added and 

showed sparse correlation, probably as a consequence of: 1) acoustic changes in 

the reservoirs (i.e. acoustic impedances variability observed in wells W12 and 

W16), 2) high signal to noise ratio, 3) thin discontinuous reservoirs, and 4) 

amplitudes affected by beds above and below the zone of interest. This suggests 

that tuning may work in small areas and when true-amplitude information is 

preserved in order to correlate reservoir thicknesses below the limit of resolution. 
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Stratal slices 

This technique involved generation of horizons parallel to an interpreted 

horizon by adding or subtracting a constant time throughout the interpreted 

horizon.  Extraction of amplitudes of the newly generated horizon will produced a 

horizon similar to the seismic cube flattening technique, which will represent a 

pseudo-time line relative to the horizon of origin. Another slicing technique is the 

proportional slice, where proportional slices are produced between two interpreted 

horizons. All these techniques made the assumption that seismic reflectors follow 

chronostratigraphic surfaces (Zeng et al., 1998). 

Figure 5.12 shows an example of stratal slices where the northern part of 

the main distributary channel of parasequence set A can be interpreted. The slice 

at 8 ms above the Paleocene unconformity (SB1) (Fig, 5.12D) is able to resolve 

the central part of the channel, because its thickness is greater than the vertical 

seismic resolution (40 m; ~120 feet). When thickness becomes less than the 

vertical seismic resolution, the channel is not shown. This technique worked 

effectively at this interval, because the Paleocene unconformity is a good quality 

reflection. In other intervals, no coherent image was obtained because reflections 

are highly discontinuous.  

The main reservoir in parasequence set A is located in a structural high 

along a N-NE-striking fault (western side of the fault, Fig. 5.12A). Another 

compartment is located in the northeastern side of the fault (Fig. 5.12A). The 

channel follows the strike of the fault on its western side, and in the area where  
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well W27 is located it crossed to the eastern side as interpreted form the net sand 

map. Wells W26 and W27 penetrated more than 30 m (100 feet) of net pay 

sandstone. Other areas of this parasequence set are wet. 

 

5.6 CONCLUSIONS 

After an intensive analysis of the petrophysical properties of the rock 

record in the Eocene tectonosequence, spatial distribution of the reservoirs, and 

the properties of the 3-D seismic data available in the study area, the main 

conclusions of this chapter include: 

• Reservoir occurrence is mainly in distributary channels and sand bar 

facies, which represent good quality fluid flow units (porosity ~20%, and 

permeability dependent on facies with range from 160 to 700 md).  

• Reservoirs in genetic sequence 1 and 2 are affected by a bottom 

aquifer, and hydrocarbon is trapped on the structural highs. For genetic sequence 

4, a more complex interplay between stratigraphy and structure forms isolated 

traps. 

• Lithology and fluid content can sometimes be differentiated by 

acoustic impedance in well logs. The seismic data are unable to resolve the lateral 

and vertical continuity of the reservoirs.  

• The noisy character of the reflections, the low vertical resolution and 

the lithologic heterogeneities reduce the utility of horizon amplitude extraction 

and application of alternative techniques as stratal slices in the interval of study. 
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• Reprocessing the 3-D seismic survey with full dynamic range of the 

recovered data, or acquisition of a higher resolution 3-D seismic survey in the 

area, is recommended. There is a good correlation between acoustic properties of 

the logs and the seismic data, but higher dominant frequency (~50 Hz) and data 

quality are needed to be able to image the reservoirs that are in the range of 10 

meters and up in thickness. 
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CHAPTER 6 

Conclusions 

Integration of the different scales of geological observations, from 

regional to reservoir scale, using subsurface data, yielded a consistent geological 

model of the Eocene clastic sedimentary rocks of the Maracaibo basin, western 

Venezuela. The model links the tectonic evolution of the basin during oblique 

collision between the Caribbean and the South American plates, with the 

structural and stratigraphic architecture interpreted in central Maracaibo basin. 

Tectonic subsidence and fault reactivation are responsible for the complexity of 

the Petroleum systems in the basin. Individual conclusions are: 

1. Interpretation of 2-D and 3-D seismic data in central and eastern 

Maracaibo basin show two major deformational events during the oblique 

collision between the Caribbean and the South American plates in the Paleogene: 

1) During the late Paleocene-early Eocene, a foreland basin, whose depocenter 

was located north and northeast of the basin with a forebulge located in the 

southern part of the basin.; and 2) during the middle-late Eocene strike-slip 

motion through a lateral ramp fault controlled the middle-late Eocene depocenters 

and directed the thrust front toward the SE, ending the foreland basin stage in 

most of the Maracaibo basin. The Burro Negro fault is interpreted as the lateral 

ramp fault, in addition to has been the shelf edge of the Maracaibo basin during 

the Paleogene. The fault separates the Maracaibo basin into an uncollided zone to 

the southwest, from a collided zoned to the northeast. 
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2. In the Eocene Maracaibo shelf, three different fault trends contributed 

to the formation of the Icotea pull-apart basin. The three fault trends within the 

study area include: 1) N-NE faults (i.e. Icotea fault). These are pre-existing 

Jurassic faults reactivated as strike-slip faults with left-lateral and reverse 

movement during the Paleocene-Eocene. Strike-slip displacement was driven by 

NW-SE directed oblique collision of the Caribbean plates against northern South 

America plate. 2) NW-SE-striking faults. These faults formed during the late 

Paleocene from downward flexure of the central Maracaibo basin. Strike-slip 

movement along the N-NE-striking faults locally reactivated these faults as 

normal faults to form the Icotea pull-apart basin. 3) NE-SW-striking faults. These 

normal faults formed during pre-Cretaceous rifting between North America and 

South America, and were reactivated during late Paleocene-Eocene. 

3. The Icotea fault is classified as an intraplate fault (Sylvester, 1988) 

restricted to the crust, transferring horizontal slip to other N-NE faults, as a result 

of differential continental blocks movement, caused by convergence. Normal 

displacement is localized on pre-existing NW-SE-striking faults formed by 0.5 

km of plate flexure. Within the Icotea pull-apart basin normal displacement on 23 

basin transverse faults was measured in a range between 0.8 and 2.25 km. 

4. Sequence stratigraphic interpretation reveals that the Eocene 

stratigraphic framework was controlled by tectonic subsidence and secondarily by 

sediment supply. Eustasy does not play an important role during the early Eocene 

and most of the middle Eocene greenhouse period. Five genetic sequences and 

one depositional sequence were interpreted within the Eocene tectonosequence. 
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These sequences were subdivided in eighteen parasequence sets (sets) and 

mapped throughout the whole study area. The lack of unconformable sequence 

boundaries reveals that the Eocene Maracaibo basin shelf was not exposed during 

the early and most of the middle Eocene. Fluvial, delta, delta plain and shallow 

marine depositional systems dominated. Fluvial systems nourished the basin from 

the SSW to the NNE, interacting with tidal processes in the transitional 

environments of the delta plain and inner shelf. The application of the 3-D 

pseudo-seismic transform technique to a dense well database resulted in an 

excellent visualization and interpretation methodology. This methodology 

improved lateral and vertical correlations, creating more reliable 3-D stratigraphic 

interpretations where 3-D seismic resolution is poor.  

5. Reservoirs in central Lake Maracaibo are concentrated in distributary 

channel and sand bar facies located mainly in structural highs formed by left-

lateral strike-slip faults. These facies represent good quality fluid flow units 

(porosity ~20%, and permeability dependent on facies, ranging from 160 to 700 

md).  

6. Lithology and fluid content sometimes can be differentiated by the 

acoustic impedance in the well logs, but the low vertical resolution of the seismic 

data is unable to image the lateral and vertical continuity of the reservoirs. The 

discontinuous character of reflections in the interval of study reduces the utility of 

horizon amplitude extraction and application of alternative techniques such as 

stratal slices. 
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FUTURE WORK 

After more than 50 years of hydrocarbon exploration and production in the 

Maracaibo basin, a large amount of data including core, thousands of wells, and 

enormous quantities of 2-D and 3-D seismic data sets has been collected. Despite 

these data, high-resolution structural and stratigraphic integration of 

interpretations of the different production blocks, shelf-to-basin correlations and 

modern studies using surrounding outcrops have not been done. It is important to 

unify these data sets and provide an integrated geological model of this mature 

basin in order to increase its hydrocarbon production in coming years.  

Detailed structural mapping can be performed using merged 3-D seismic 

data which now covers more than 30% of the basin. Seismic time slice 

interpretation, described in Chapter 3, provides an accurate regional to local 

picture of basin configuration and evolution for different tectonosequences. 

Detailed sequence stratigraphic mapping of regional chronostratigraphic surfaces 

allow stratigraphic definition of the different depositional systems. 

Future studies need to include the area north of the Burro Negro and Oca 

faults (Fig. 2.2). Few studies have been done in the area, and these areas represent 

part of the main depocenters during the Paleogene (Gonzáles de Juana et al., 

1980; Stephan, 1985; Mathieu, 1989; Lugo and Mann, 1995). The connection 

between the Maracaibo basin depocenter and the deep offshore basins, like the 

Venezuela and Grenada basin, require regional studies of their tectonic and 

stratigraphic evolution. These areas will become increasingly important as 

exploration move offshore in search of new giant oil fields. 
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Apendix 1.1. W3 well log (GR-gamma ray, ILD-deep induction and 
RhoB-density) with facies and environment descriptions (modified 
from S.A. Consultores CSC, 1989)

Appendix 1: Core data
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Mouth bar

Distributary channel, meander

Well W3

Mud plug
Tidal flats, intertidal

Distal mouth bar
Estuarine, meander channel

Tidal channel, Tidal flat intertidal

Estuarine channel, fluvial

Tidal flat, intertidal

Tidal channel, Tidal flat intertidal

Tidal flat intertidal

Tidal flat, supratidal

Tidal flat, supra tidal
Tidal flat, intertidal

Tidal flat, intertidal

Early Eocene 
(55/49.5 my)

Middle Eocene 
(49.5/44 my)

Middle Eocene 
(44/42.5 my)

Core and environment 
description Age (palynology)

Estuarine

-1
25

00
-1

22
00

-1
18

00
-1

15
00

-3
50

0
-3

60
0

-3
70

0
-3

80
0

m
et

er
s

fe
et



200

Apendix 1.2. W5 well log (GR-gamma ray, ILD-deep induction and 
RhoB-density) with facies and environment descriptions (modified 
from S.A. Consultores CSC, 1993)
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Apendix 1.3. W11 well log (GR-gamma ray, ILD-deep induction and 
RhoB-density) with facies and environment descriptions (modified 
from S.A. Consultores CSC, 1991)

Core and environment 
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Apendix 1.4. W18 well log (GR-gamma ray, ILD-deep induction and RhoB-
density) with facies and environment descriptions (modified from S.A. 
Consultores CSC, 1991)

Well W18

Distributary channel

Tidal flat intertidal, tidal channel

Tidal flat intertidal
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Apendix 1.5. W7 well log (GR-gamma ray, ILD-deep induction and 
RhoB-density) with facies and environment descriptions (modified 
from S.A. Consultores CSC, 1996)

Tidal channel and tidal flat
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Tidal flatTidal bar
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Apendix 1.6. W11 well log (GR-gamma ray, ILD-deep induction and 
RhoB-density) with facies and environment descriptions (modified 
from S.A. Consultores CSC, 1991)

Supratidal flat

Well W8

Pro-delta
Distributary Channel

Distributary 
Channel

Marine influence
Distributary Channel

Crevasse splays, mud plugs
Tidal flat and bars

Transgressive sandstone
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Channel
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Intertidal flat, tidal channels

Estuarine channel

Distal bar

Supratidal flat
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APPENDIX 2: CODE FOR PSEUDO-SEISMIC TRANSFORM IN MATLAB 

Code to convert Las format to Segy format and create. 3D pseudo-seismic. 

The transform is done one seismic line at the time. 

 

%Line 5= Line name 

%matrix containing 34 columns=seismic traces on a line 

b=zeros(17000,34); 

%1 well 

[logmat, logmnem, logdesc, wellname, wellid, loc, nullval, dpthunits, 

...kb,tops,ztops,lasheader] = readlas('well1.las'); 

%Counter 

h=1; 

% Substitute values on empty trace of the Line that corresponds with the 

well position, just in the area where there is well information 

f=size(logmat); 

m=(logmat(1,2))*(-1); 

n=f(1,1); 

for i=m:(m+n-1) 

   k=logmat(h,3); 

   b(i,1)=k; 

   h=h+1; 

end  
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%2 well 

[logmat, logmnem, logdesc, wellname, wellid, loc, nullval, dpthunits, ... 

      kb,tops,ztops,lasheader] = readlas('well2.las'); 

%Counter 

h=1; 

% Substitute values on the empty trace of the Line that corresponds with 

the well position, just in the area where there is well information 

f=size(logmat); 

m=round((logmat(1,2))*(-1)); 

n=f(1,1); 

for i=m:(m+n-1) 

   k=logmat(h,3); 

   b(i,9)=k; 

   h=h+1; 

end  

 

filename='Vsh5.sgy' 

line_name=5  

seis=b; 

x=[222250:500:238750]; 

t=[0:1:17000]; 

nullval=0.0; 

xs=x; 
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xr=x; 

a=ones(1,34); 

yr=a.*1071250; 

ys=yr; 

ntr=1; 

offs=zeros(1,34); 

selevs=offs; relevs=offs; 

sdepths=offs; 

cdps=a; 

 

 

code=writesegy(filename,line_name,seis,x,t,nullval,ntr,... 

  xs,ys,xr,yr,offs,selevs,relevs,sdepths,cdps) 
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