
Copyright

by

Anukal Chiralaksanakul

2003

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UT Digital Repository

https://core.ac.uk/display/5178035?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The Dissertation Committee for Anukal Chiralaksanakul
Certifies that this is the approved version of the following dissertation:

Monte Carlo Methods for Multi-stage Stochastic Programs

Committee:

David Morton, Supervisor

John Hasenbein

Paul Jensen

Douglas Morrice

Elmira Popova

Monte Carlo Methods for Multi-stage Stochastic Programs

by

Anukal Chiralaksanakul, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2003

Dedicated to my parents and grandparents.

Acknowledgments

I am, and will always be, grateful to my advisor, professor David Morton,

for introducing me to stochastic programming, and for his support and guidance

throughout my doctoral study at the University of Texas at Austin. I have realized

that his approach to stochastic programming is practically intuitive. It is the least

to say that working with him is truly an enlightening and inspiring experience. His

meticulous proofreading greatly improves readability of this dissertation.

I sincerely thank professor John Hasenbein, Paul Jensen, Douglas Morrice,

and Elimira Popova for serving on my doctoral committee, and for their help

throughout my study at the University. I also thank several graduate student

colleagues, Guzin Bayraksan, Stefcho Dokov, Praveen Korapaty, Feng Pan, Yong

Min Wang, and Xinhui Zhang, for insightful discussions on operations research and

stochastic programming, from which this dissertation benefits.

Occasionally, my study and research seem to be insurmountable. Many

friends and Laurel House mates deserve a lot of thanks for getting my through those

times as well as for sharing good times and making my stay in Austin a pleasant

one.

As it has been for any of my endeavor, my spirit is kept high through constant

love and encouragement from my parents and grandparents. I cannot write and say

enough words to express my gratitude for everything they have provided me.

v

Monte Carlo Methods for Multi-stage Stochastic Programs

Publication No.

Anukal Chiralaksanakul, Ph.D.

The University of Texas at Austin, 2003

Supervisor: David Morton

Stochastic programming is a natural and powerful extension of deterministic

mathematical programming, and it is effectively utilized for analyzing optimization

problems when the problem’s parameters are not known with certainty. These un-

certain parameters are treated as a random vector with a known distribution in the

stochastic programming framework. Typically, the size of stochastic programming

models is large due to the number of dimensions and realizations of the random vec-

tor. With recent advances in optimization algorithms and computing technology,

an increasing number of realistically-sized two- and multi-stage stochastic program-

ming models are being successfully formulated and solved. Despite these successes,

multi-stage stochastic programs in which the random vector has a large number of

dimensions and/or realizations (or is even continuous), still remain a computational

challenge primarily because of the exponential growth of the model’s size with re-

spect to the number of stages. In this dissertation, we exploit special structures in

order to attack these computationally difficult problems.

Our research can be broadly divided into three parts. First, we propose two

Monte Carlo sampling-based solution methods for multi-stage stochastic programs.

vi

Both methods exploit special structures for a particular class of multi-stage prob-

lems, and result in feasible solution policies. These policies have desirable asymptotic

properties, but, of course, in practice are generated using finite scenario trees. As

a result, in the second part of the dissertation, we develop Monte Carlo techniques

to determine the quality of an arbitrary feasible policy. In particular, we build a

statistically-based point estimate for a lower bound of the optimal objective function

value for a minimization problem, and use it to construct a confidence interval on

the solution’s quality. In the third part, we aim to develop procedures to reduce the

bias associated with the lower-bound estimator, thereby improving our ability to

construct a reasonably tight confidence interval on the solution’s quality. Towards

this goal, we vary the number of descendants in the sample tree to reduce the bias in

the context of American-style option pricing and stochastic lot sizing. All proposed

methodologies are numerically tested on problems from the literature.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables x

List of Figures xii

Chapter 1. Research Overview 1

1.1 Background and Motivation . 1

1.2 Research Objectives . 6

1.3 Dissertation Organization . 7

Chapter 2. Stochastic Programming Review 9

2.1 Introduction . 9

2.2 Two-stage Recourse Models . 10

2.3 Multi-stage Recourse Models . 15

2.3.1 Problem Statement . 15

2.3.2 Scenario Tree . 20

2.3.3 Deterministic Equivalent Formulations 23

2.4 Solution Methods . 25

2.4.1 Exact Methods . 27

2.4.2 Approximation Methods . 39

2.5 Epi-convergence . 44

Chapter 3. Policy Generation and Testing Policy Quality 46

3.1 Introduction . 46

3.2 Sample Scenario Tree Construction 47

3.3 Two Policy Generation Methods . 50

viii

3.3.1 Linear Problems with Interstage Independence 50

3.3.2 Problems with Interstage Dependence 54

3.4 Policy Cost Estimation . 55

3.4.1 Scenario-based Estimator . 56

3.4.2 Tree-based Estimator . 57

3.5 Lower Bound Estimation . 58

3.6 Confidence Interval Construction . 62

3.6.1 Separate Estimator . 62

3.6.2 Gap Estimator . 63

3.7 Computational Results . 64

Chapter 4. Bias Reduction Techniques 73

4.1 Introduction . 73

4.2 Reducing Bias in Pricing American-style Options 75

4.2.1 Problem Statement . 75

4.2.2 Dynamic Programming Solution Procedure 78

4.2.3 Bias Characterization . 80

4.2.4 Sample Tree Construction . 85

4.3 Reducing Bias in Stochastic Lot Sizing 88

4.4 Computational Results . 98

4.4.1 American-style Option Pricing Problem 99

4.4.2 Stochastic Lot-sizing Problem 106

Chapter 5. Conclusions 109

Bibliography 117

Vita 132

ix

List of Tables

2.1 A notation for the scenario tree in Figure 2.1 22

3.1 The characteristics of three test problems used in the computational
experiment. 64

3.2 Computational results for STFOR (z∗ = −43868.93): 95% confidence
interval on the optimality gap of feasible policies constructed by using
P1. Each confidence interval is formed by separate estimators of the
policy cost and the lower bound with ν = 30. 68

3.3 Computational results for STFOR (z∗ = −43868.93): 95% confidence
intervals on the optimality gap of feasible policies constructed by
using procedure P1. Each confidence interval is formed by the gap
estimator with ν = 30 (L̄30 and W̄30 are based on the same 30 sample
trees). 69

3.4 Computational results for DVA: 95% confidence intervals on the op-
timality gap of feasible policies constructed by using procedure P1.
Each confidence interval is formed by the tree-based gap estimator
with ν = 30. 70

3.5 Computational results for WATSON (z∗ = −1959.64): 95% confi-
dence intervals on the optimality gap of feasible policies constructed
by using procedure P2. Each confidence interval is formed by the gap
estimator with ν = 30, i.e., L̄30 and W̄30 are based on the same 30
sample trees. The sample size for subtrees in P2 is determined by (A)
and (B), whose details are given in Table 3.6. 71

3.6 Sample size used for generating subtrees in procedure P2 for WAT-
SON test problem. 72

4.1 Optimistic-bound estimators for the value of an American call option
on a single asset based on 50 uniform trees with 20, 000 branches.
Each row corresponds to the estimate obtained for the specified grid
size. “common” and “indep.” refer to whether the common- or independent-
samples method is used. The analytical value of the option price is
11.341. 100

4.2 Estimates of the value of an American call option on a single asset
based on ν = 10, 000 uniforms tree generated by the common-samples
method. 100

x

4.3 Estimates of the value of an American call option on a single asset
based on ν = 10, 000 uniforms tree generated by the independent-
samples method. 101

4.4 Estimates of the value of an American call option on a single asset
based on ν = 10, 000 sample trees. Sample trees are constructed by
the procedure in Figure 4.1 using the independent-samples method.
The estimates of µt and σt are obtained separately from a independent-
samples uniform trees with 20, 000 branches. 104

4.5 Estimates of the value of an American call option on a Sample trees
are constructed by the procedure in Figure 4.1 using the independent-
samples method. The estimates of µt and σt are obtained separately
from independent-samples uniform trees with 10 branches. 104

4.6 Estimates of the value of an American call option on a single asset
based on ν = 10, 000 sample trees. Sample trees are constructed by
the procedure in Figure 4.1 using the independent-samples method.
The estimates of µt and σt are obtained separately from an independent-
sample uniform trees with 20, 000 branches. 105

4.7 Data parameters of the stochastic lot-sizing model used in the com-
putational experiment. 106

4.8 Optimistic-bound estimators of the optimal objection function value
of the stochastic lot-sizing test problem based on 1,000 uniform state-
based sample trees (with independent samples). 107

4.9 Optimistic-bound estimators of the optimal objective function value
of the stochastic lot-sizing problem based on 1,000 non-uniform state-
based sample trees (with independent-samples) constructed by the
procedure of Figure 4.2 with ninit = 10 and nadd = 5. 108

xi

List of Figures

2.1 An example of a four-stage scenario tree. 22

2.2 The multi-stage L-shaped algorithm using the fastpass tree traversal
strategy for a T -stage stochastic linear program. 36

3.1 A procedure to generate a feasible policy for a T -stage stochastic
linear program with relatively complete recourse when {ξ̃t}Tt=1 is in-
terstage independent. 52

3.2 A procedure to generate a feasible policy for a T -stage stochastic
program with relatively complete recourse. 55

4.1 A procedure to generate a state-based non-uniform sample tree for
the American-style option pricing problem in order to reduce the bias
associated with the optimistic-bound estimator. 86

4.2 A procedure to generate a state-based non-uniform sample tree for
the stochastic lot-sizing problem in order to reduce the bias associated
with the optimistic-bound estimator. 97

4.3 Comparison between an estimate of bias approximation, b̂1, and an
estimate of bias, β̂1 for uniform sample tree with 10 branches. . . . 102

4.4 Comparison between an estimate of bias approximation, b̂1, and an
estimate of bias, β̂1 for uniform sample tree with 30 branches. . . . 102

5.1 Policy generation for multi-stage stochastic programs. 112

5.2 Scenario-based estimation of the policy’s cost. 113

5.3 Establishing the policy’s quality with the gap estimator. 114

5.4 Instances of a sample tree with common and independent samples. 115

xii

Chapter 1

Research Overview

1.1 Background and Motivation

Deterministic mathematical programming has been successfully used for

modeling and analyzing a wide variety of systems requiring optimization. One of

its assumptions is that the parameters in the models are known with certainty. In

many important applications, this assumption is quite restrictive and usually vio-

lated because of the inherent randomness in the system. For instance, in planning

the capacity of a telecommunications network, the future demand pattern under

which the system will operate is typically not known with certainty. In financial

portfolio management, one chooses to invest in financial assets whose future returns

are not yet realized. In these settings, an optimal network design or investment

policy obtained via a deterministic mathematical program is not satisfying because

it either completely disregards or does not capture well the underlying random ef-

fect. In other words, the deterministic model does not take possible future scenarios

into account when specifying an optimal solution. Consequently, stochastic pro-

gramming models are developed in order to directly incorporate uncertainty into a

mathematical program, hence enabling its optimal solution to better hedge against

possible future scenarios.

Stochastic programming was first introduced in 1950’s. Specifically, stochas-

tic linear programming with recourse was proposed by Beale [6] and Dantzig [32] and

chance-constrained programming by Charnes and Cooper [27]. Since then, these two

1

types of models have developed into the two most widely-studied classes of stochas-

tic programming models. An extensive treatment of chance-constrained models is

provided by Prékopa [107]. This dissertation focuses on stochastic programming

with recourse.

In a two-stage stochastic program with recourse, the uncertainty in the sys-

tem is modeled by a random vector with known probability distribution. The se-

quence of making decisions and observing a realization of the random vector occurs

as follows. The first stage decision is made before the uncertainty is revealed. Then,

a realization of the random vector becomes known, and the second stage decision is

made correspondingly. The first and second stage decisions may be subject to con-

straints, and there are costs associated with these decisions. The objective is to find

a first stage decision such that the expected value of a specified performance mea-

sure is optimized. The term recourse arises because we adaptively take corrective

actions via the second stage decision. In this respect, the recourse model captures

the dynamics of the decision-making processes under uncertainty. An example of

a two-stage stochastic program with recourse is the capacity planning problem for

the telecommunications network mentioned earlier. There, the first stage decision

is how much capacity to install on each link of the network with only probabilistic

knowledge of the network’s demand pattern, and the total installation cost must

satisfy a budget constraint. After the installation, the realized demand is routed

optimally in the network through the second stage decision. One possible goal is to

minimize the expected number of unsatisfied demands for a given budget.

The two-stage stochastic program with recourse generalizes naturally to a

multi-stage program to capture the time-dynamics of a more complex sequential

decision-making process under uncertainty. In the multi-stage case, the uncertainty

is modeled by a sequence of random vectors that forms a stochastic process, and

2

a decision is made alternately with observing a realization of a random vector. In

particular, the decision at the current stage is made before observing any of the

future realizations, and must only depend on the known decisions and observations

of the random vectors from previous stages. Then, a realization of the next stage’s

random vector is observed, and the next stage’s decision is made and so on. The

decision in each stage can be subject to constraints. Again, the goal is to find a

sequence of decisions so that the expected value of a specified performance measure

is optimized. This dissertation is primarily concerned with the development of

solution methods, in particular approximation methods, for multi-stage stochastic

programs.

An example of a multi-stage stochastic program with recourse is a discrete-

time asset-allocation problem arising in financial portfolio management. In such

a problem, the goal is to find an investment policy that maximizes the expected

utility of wealth at the end of the horizon. A portfolio of assets is formed at the

beginning of the first stage when only probabilistic knowledge of each asset’s future

return is available. Then, the portfolio is subsequently re-balanced at the begin-

ning of every stage after each asset’s return for that stage becomes known. At

the beginning of the last stage, all assets in the portfolio are sold. Whenever the

portfolio is re-balanced, asset balance and possibly some other trading constraints

must be satisfied. In fact, managing financial systems, including asset-allocation

and asset-liability management, is one of the most popular applications of multi-

stage stochastic programming today. Specific applications work in finance includes

[11, 17, 21, 22, 23, 30, 68, 69, 70, 96, 97]. For an overview of such systems and

additional references see, e.g., [129].

Many other important real-world applications that involve sequential deci-

sion making under uncertainty, also fit very well in the modeling framework of a

3

multi-stage stochastic program. In the electric power industry, multi-stage stochas-

tic programs arise in managing hydro-thermal systems [74, 101, 102] and in unit

commitment problems [61, 104, 116, 117]. In addition, there is growing interest

in combining financial and electric-power systems via stochastic programming, e.g.,

[53]. Katok et al. [80, 81] solve, via a heuristic, a multi-stage stochastic program for

evaluating the benefits of flexibility in a production system. Other multi-stage mod-

els motivated by production systems include stochastic lot-sizing models [64, 89],

related capacity planning models [1, 2, 49], and melt-control in the steel industry

[42]. Other applications of multi-stage stochastic programming include work in ve-

hicle allocation [29, 39, 54, 106], forestry [56], and military logistics [94]. Further

applications can be found in Birge and Louveaux [16], Dupačová [45], Dupačová et

al. [41], Kall and Wallace [78], King [83], and Prékopa [107].

The size of a stochastic programming model depends on the dimension, and

the number of the realizations, of the model’s random vector. When the underlying

random vectors are of high dimension and have a continuous distribution, or finite

support with many realizations, it is usually impossible to evaluate the expected

total cost exactly, even for a fixed first stage decision. This is true for one- and

two-stage stochastic programs. Computational difficulties are further compounded

in the multi-stage setting, in which the problem size grows exponentially with the

number of stages. Thus, solving a multi-stage stochastic program with a large num-

ber of scenarios and a moderate-to-large number of stages can be a computationally

challenging task, despite the recent advances in optimization algorithms and com-

puting technology. We develop practical approximate solution methods for this class

of models and also test their computational viability in this dissertation.

Instead of solving a stochastic program, one could replace the random vector

with a deterministic vector such as its mean and regard an optimal solution of the

4

resulting deterministic model as an approximate solution to the original problem.

Birge and Louveaux [16, §1.2] give examples showing that this type of strategy can

lead to a very poor solution. Wallace [121] argues that sensitivity analysis of math-

ematical programs and parametric programming are not appropriate paradigms for

decision making under uncertainty because they do not explicitly recognize uncer-

tainty as an element of the decision problem and completely ignore the timing of

decisions, e.g., the first stage decision must be made prior to observing a realiza-

tion of the random vector. Examples are provided in [121] to demonstrate that

an optimal solution to a two-stage stochastic linear program with recourse cannot

be constructed from optimal solutions of the deterministic models resulting from

replacing the random vector with each of its realizations, and that a solution con-

structed in such a way can perform poorly. In addition, these examples show that

there does not exist, in general, a deterministic vector such that when it replaces the

random vector in the two-stage recourse model, an optimal solution to the original

stochastic model can be recovered.

The subject of optimizing under uncertainty has been extensively studied

for many years in areas other than stochastic programming, including statistical de-

cision theory, stochastic optimal control theory, stochastic dynamic programming,

Markov decision processes, and robust optimization. To a large extent, the theory

and methods of these areas have developed independently of those of stochastic pro-

gramming. While they are related, we do not discuss these other methods explicitly

in this dissertation except that we apply stochastic dynamic programming to solve

a special class of multi-stage stochastic optimization problems in Chapter 4. Birge

and Louveaux [16, §2.8] discuss differences and similarities of these other approaches

and stochastic programming while Dupačová and Sladký [43] provide a comparison

between discrete-time stochastic dynamic programming and multi-stage stochastic

5

programming with recourse.

1.2 Research Objectives

The objectives of this research are three-fold: (i) to develop methods to solve

multi-stage stochastic programs with a large number of scenarios and a moderate-

to-large number of stages, (ii) to develop an effective method to determine the

quality of an arbitrary feasible solution to such problems, and (iii) to demonstrate

the computational viability of our methodologies.

A solution to a multi-stage stochastic program is a policy that specifies what

decision to make at stage t, given the history of realizations of the random vectors

up to that stage. So, achieving goal (i) involves systematic ways to construct good

policies. We develop two Monte Carlo-based approaches for constructing such poli-

cies depending on the underlying problem structure. These two procedures generate

feasible policies for multi-stage stochastic programs and hence can be viewed as so-

lution methods for this class of problems.

When policy construction is rooted in Monte Carlo sampling, one way of

justifying such an approach is to show that it is consistent, i.e., the policies are

asymptotically optimal as the number of samples grows large. However, in practice,

our polices are constructed without having the number of samples growing to infinity,

and thus they are only feasible. In order to determine their quality, we develop Monte

Carlo-based techniques to estimate the quality of an arbitrary policy, and this is

what we pursue in goal (ii). Achieving goal (ii) involves building point estimates

and confidence intervals for the objective function value (e.g., the cost) when using

a feasible policy, and for z∗ or a lower bound on z∗ (assuming we are minimizing),

where z∗ denotes the optimal objective function value. These confidence intervals

are combined to construct confidence intervals on the optimality gap of the feasible

6

policy. For the techniques in goal (ii) to be effective, we want the confidence interval’s

width to be as small as possible for a specified computational budget. As as a result,

we apply a variance reduction technique known as common random numbers when

the confidence interval is constructed, and also develop techniques to reduce the bias

associated with the lower bound estimator of z∗. Towards goal (iii), a collection of

problems from the literature are used to test our methodologies.

1.3 Dissertation Organization

Chapter 2 establishes notation and provides a review of stochastic program-

ming. Two-stage stochastic programming with recourse is introduced in Section 2.2,

and its extensions to multi-stage stochastic programming are detailed in Section 2.3.

Solution methods for stochastic programs are reviewed in Section 2.4. Technical

tools for establishing convergence of Monte Carlo approximation are presented in

Section 2.5.

Chapter 3 develops policy generation methods and procedures to establish

the quality of a policy for a multi-stage stochastic program. We begin by describing

a procedure to construct a sample scenario tree in Section 3.2. Then, we develop

two Monte Carlo-based methods for two classes of multi-stage stochastic program

with recourse in Section 3.3. Procedures to estimate the cost of using a policy are

discussed in Section 3.4. We then develop a lower-bound estimator in Section 3.5,

and show how a confidence interval on the optimality gap can be constructed from

the policy-cost and lower-bound estimators in order to establish the quality of a

policy in Section 3.6. We present computational results of these procedures in

Section 3.7.

Chapter 4 concerns reducing the bias of the lower-bound estimator devel-

oped in Chapter 3. We begin by developing in Section 4.2 a procedure for building

7

non-uniform sample trees, i.e., sample trees with varying number of descendants,

in the context of pricing an American-style option. In Section 4.3, we extend the

methodology to build non-uniform sample trees for the stochastic lot-sizing prob-

lem. We report computational results of the sample tree building procedures in

Section 4.4.

Chapter 5 concludes the dissertation. We review our research objectives,

summarize the sampling-based procedures we develop, and provides future research

directions.

8

Chapter 2

Stochastic Programming Review

2.1 Introduction

This chapter reviews concepts and the literature of stochastic programming

related to our proposed methodologies, and establishes notation for subsequent chap-

ters. The review of basic concepts is not intended to be comprehensive. We refer

the reader to the books by Birge and Louveaux [16], Dupačová et al. [41], Kall and

Wallace [78], and Prékopa [107], and references therein for a more thorough review

of the subject.

Let (Ω,F, P) be the probability space on which the random vector ξ̃ is de-

fined. A general formulation (see, e.g., Ermoliev and Wets [51]) for a stochastic

program is

min
x

E ψ0(x, ξ̃)

s.t. E ψi(x, ξ̃) ≤ 0, i = 1, . . . ,m (2.1)

x ∈ X ⊆ Rd,

where E denotes the mathematical expectation operator, ψi denotes a mapping ψi :

X×Ξ→ R, i = 0, . . . ,m, and Ξ is the support of ξ̃. The general formulation in (2.1)

covers a wide range of stochastic programs, including the chance-constrained and

the recourse models. We assume that the probability distribution P of the random

vector is known and does not depend on x. Dupačová [44] surveys applications of

stochastic programming under incomplete knowledge of the distribution P . In our

9

notation, we put a tilde over an entity to denote a random element, and omit it

when refering to its realization. Throughout the dissertation, we use the terms cost

and objective function interchangeably to refer to ψ0.

To ensure that (2.1) is well-defined, we assume that (i) both the expectation

in the objective function and constraints are finite for all x ∈ X, (ii) the feasible

region of (2.1) is non-empty, and (iii) a minimizer of (2.1) is achieved on its feasible

region. When we specialize the general formulation to a multi-stage stochastic

program with recourse in Section 2.3, we will provide sufficient conditions to ensure

these assumptions.

It will become clear that many terminologies and concepts of a two-stage

recourse model can be extended in a straightforward fashion to a multi-stage recourse

model. To ease the understanding of the concepts and notation, we therefore begin

by considering a two-stage model in Section 2.2. Then, in Section 2.3, we extend

the discussion to a multi-stage model, which is of main interest in this dissertation.

We turn to solution methods in Section 2.4, and review technical tools needed for

establishing convergence properties of Monte Carlo methods in Section 2.5.

2.2 Two-stage Recourse Models

A two-stage stochastic program with recourse can be formulated as

min
x1

Eφ1(x1, ξ̃2) (2.2)

s.t. x1 ∈ X1,

where

φ1(x1, ξ2) = min
x2

φ2(x1, x2, ξ2) (2.3)

s.t. x2 ∈ X2(x1, ξ2).

10

Model (2.2)-(2.3) capture the type of dynamics that arises in many real-

world decision-making processes. In particular, the first stage decision x1 must be

made before the realization of the random vector ξ̃2 is known. After a realization

of the random vector ξ̃2 is observed, an adaptive or recourse decision x2 is then

made. The associated cost of decisions x1 and x2 under realization ξ2 is given by

φ2(x1, x2, ξ2). The requirement that the decision x1 be made with only distributional

knowledge of the random vector ξ̃2 is known in the stochastic programming literature

as nonanticipativity. The two-stage stochastic program with recourse is a special

case of (2.1) in which constraints involving ψi, i = 1, . . . ,m, are not present, X = X1,

and ψ0 = φ1, defined by the second-stage program (2.3).

The first stage constraints of (2.2) are fixed and do not explicitly depend

on the random vector ξ̃2. However, the random vector ξ̃2 can constrain x1 through

so-called induced constraints because not all decisions x1 lead to a feasible second

stage program under a certain realization of ξ̃2. Let K be the set of induced con-

straints and adopt the following definition: K = {x1 ∈ Rd1 : ∃x2 such that x2 ∈

X2(x1, ξ̃2), wp1}. Two alternative equivalent definitions of K are presented by

Wets [123]. A two-stage stochastic program is said to be infeasible if X1 ∩K = ∅.

If K = Rd1 , then the program is said to have complete recourse. This means that

any x1 ∈ Rd1 will yield a feasible second stage program. A weaker assumption,

known as relatively complete recourse, is only concerned with decision x1 ∈ X1, and

can be stated as X1 ∩ K = X1. In other words, for each x1 ∈ X1, there exists a

feasible solution x2 to the second stage program (2.5), wp1. By using penalty-based

formulations to capture infeasibility, most real-world problems can be formulated so

that they have relatively complete recourse.

Relatively complete recourse is a desirable, and arguably necessary, property

for the solution techniques based on Monte Carlo sampling we develop in Chapter 3.

11

To approximately solve (2.2), we can, for instance, sample n observations of ξ̃2 and

solve the resulting n-scenario version of (2.2). The associated solution may be

viewed as an estimate of an optimal solution to (2.2). If the original model (2.2)

does not have relatively complete recourse, the approximate optimal solution is not

necessarily feasible to the original problem since the approximating problem contains

only a subset of scenarios from the sample space. For similar reasons, we may have

that X1 ∩K = ∅ for the true problem while the n-scenario approximating problem

may be feasible. Thus, without the assumption of relatively complete recourse, it

may be difficult to justify this type of approximation scheme.

To have (2.2)-(2.3) well-defined (i.e., its optimal objective function value is

finite), it is sufficient to assume that (2.2)-(2.3) have relatively complete recourse,

and that φ1, φ2, X1, X2, and the distribution of ξ̃2 satisfy certain properties. We

defer the discussion of these properties to Section 2.3.1. There, we give sufficient

conditions for multi-stage models that include (2.2)-(2.3) as a two-stage special case.

The realization of ξ̃2 can be viewed as a scenario tree that contains only the

root node in the first stage (defined by the first stage’s deterministic parameters),

and leaf nodes in the second stage, each of which corresponds to a realization of

ξ̃2. Since scenario trees play a lesser role in the two-stage than in the multi-stage

setting, we will discuss in detail the notion of scenario tree in the context of multi-

stage models in Section 2.3.2.

An important special case of (2.2)-(2.3) is a two-stage stochastic linear pro-

gram with recourse, which can be stated as

min
x1

c1x1 + Eh(x1, ξ̃2)

s.t. A1x1 = b1 (2.4)

x1 ≥ 0,

12

where

h(x1, ξ2) = min
x2

c2x2

s.t. A2x2 = b2 −B2x1 (2.5)

x2 ≥ 0,

and ξ̃2 is the vector of the random variables in Ã2, B̃2, b̃2, and c̃2. The dimensions

of vectors and matrices are as follows: A1 ∈ Rm1×d1 , b1 ∈ Rm1 , c1 ∈ R1×d1 , A2 ∈

Rm2×d2 , B2 ∈ Rm2×d1 , b2 ∈ Rm2 , and c2 ∈ R1×d2 . We define h(x1, ξ2) = +∞ if the

second stage program is infeasible for the given x1 and ξ2 combination. In this linear

special case of (2.2), X1 is {x ∈ Rd1 : A1x1 = b1, x1 ≥ 0}, and φ1 separates into

the first stage cost, c1x1, and the stochastic second stage cost, h(x1, ξ̃2), defined by

the second-stage linear program (2.5). Again, we defer the discussion of sufficient

conditions under which (2.4)-(2.5) are well-defined to Section 2.3.1 where we discuss

a multi-stage linear model.

In the stochastic programming literature, Eh(x1, ξ̃2) is called the recourse

function, and Ã2 is called recourse matrix. A two-stage stochastic linear program

is said to have fixed recourse if the matrix Ã2 is non-stochastic, and is said to have

simple recourse if the second stage decision vector x2 is solely used to capture the

magnitude of constraint violation in (2.5). Specifically, let x2 = (x+
2 , x

−
2), c2 =

(c+2 , c
−
2), and A2 = (I,−I) where I is the identity matrix. By substituting these in

(2.5), we obtain

h(x1, ξ2) = min
x+
2 ,x−2

c+2 x
+
2 + c−2 x

−
2

s.t. Ix+
2 − Ix

−
2 = b2 −B2x1 (2.6)

x+
2 , x

−
2 ≥ 0,

where ξ̃2 is the vector of random variables in B̃2 and b̃2. We assume c+2 + c−2 > 0

so that (2.6) is bounded. The simple recourse model, defined by (2.4) and (2.6),

13

has complete and fixed recourse and is a static optimization model. The aircraft

allocation under uncertain demand problem of Ferguson and Dantzig [52] is an

early example of a two-stage stochastic linear program with simple recourse. More

examples and analyses of simple recourse models are given by Ziemba [128].

Assuming that stochastic program (2.4)-(2.5) has relatively complete re-

course, {x1 ∈ Rd1 : A1x1 = b1, x1 ≥ 0} is not empty, and ξ̃2 has finite support, we

can express (2.4)-(2.5) as a large scale linear program known as the deterministic

equivalent program:

min
x1,xi

2

c1x1 +
n∑

i=1

pici2x
i
2

s.t. A1x1 = b1

Ai
2x

i
2 +Bi

2x1 = bi2, i = 1, . . . , n (2.7)

x1 ≥ 0

xi
2 ≥ 0, i = 1, . . . , n,

where superscript i on an entity in (2.7) denotes its value under realization ξi
2, and

pi is the probability mass of ξi
2, i.e., pi = P (ξ̃2 = ξi

2). The second stage decision

x2 adapts with the realizations of ξ̃2. The nonanticipativity constraints on x1 is

implicit in (2.7), i.e., linear program (2.7) allows only one decision x1 for every

realization of ξ̃2. We can express these nonanticipativity constraints explicitly for

(2.7) by duplicating x1 for each realization of the random vector, and requiring, for

example, that xi
1 = xi+1

1 , i = 1, . . . , n− 1.

In the next section, we describe a generalization of (2.2)-(2.3) to the multi-

stage setting in which decisions and observations of the random vectors are made

alternately over time, and then discuss the notion of scenario tree and determin-

istic equivalent formulations of multi-stage recourse models under finite support

assumption.

14

2.3 Multi-stage Recourse Models

2.3.1 Problem Statement

We consider a T -stage stochastic program in which a sequence of decisions,

{xt}Tt=1, is made with respect to a stochastic process {ξ̃t}Tt=1 as follows: at stage t,

the decision xt ∈ Rdt is made with only the knowledge of past decisions, x1, . . . , xt−1,

and of realized random vectors, ξ1, . . . , ξt, such that the conditional expected value

of an objective function, φt(x1, . . . , xt, ξ̃1, . . . , ξ̃t+1), given the history, ξ1, . . . , ξt, is

minimized. Decision xt is subject to constraints that may depend on x1, . . . , xt−1,

and ξ1, . . . , ξt. We assume that ξ̃1 is a degenerate random vector that takes value

ξ1 with probability one, and that the probability law governing the evolution of

{ξ̃t}Tt=1 is known and does not depend on {xt}Tt=1. Adopting the notation used by

Frauendorfer [55] and others, we use a superscript t on an entity to denote its history

through stage t; for example, ξt = (ξ1, . . . , ξt) and xt = (x1, . . . , xt). Let Ξt be the

support of ξ̃t and Ξt be that of ξ̃t for t = 1, . . . , T . The conditional distribution of

ξ̃t+1 given ξ̃t = ξt is denoted Ft+1(ξt+1|ξt). A T -stage stochastic program can be

stated as

min
x1

E[φ1(x1, ξ̃
2)|ξ1] (2.8)

s.t. x1 ∈ X1(ξ1),

where

φt−1(xt−1, ξt) = min
xt

E[φt(xt−1, xt, ξ̃
t+1)|ξ̃t = ξt] (2.9)

s.t. xt ∈ Xt(xt−1, ξt),

for t = 2, . . . , T − 1, and

φT−1(xT−1, ξT) = min
xT

φT (xT−1, xT , ξ
T) (2.10)

s.t. xT ∈ XT (xT−1, ξT).

15

We take φt, t = 1, . . . , T , to be real-valued functions. The constraint set Xt depends

on the history of both xt−1 and ξ̃t. Note that (2.8)-(2.10) is a special case of

the general formulation (2.1) where constraints involving ψi, i = 1, . . . ,m, are not

present, and ψ0 is defined as a nested optimization problem. When T = 2, (2.8)-

(2.10) reduce to the general two-stage stochastic program with recourse defined by

(2.2)-(2.3). Relatively complete recourse of a T -stage stochastic program means

that for any feasible sequence of decisions from stage one to stage t, xt, there exists

a sequence of feasible decisions, xt+1, . . . , xT , wp1.

An optimal solution of (2.8)-(2.10) is specified by an optimal policy. A policy

may be viewed as a mapping, xt(ξt), with domain Ξt and range in Rdt , t = 1, . . . , T .

Restated, a policy is a rule which specifies what decision to take at each stage t of a

multi-stage stochastic program for each possible realization of ξ̃t in Ξt, t = 1, . . . , T .

We only consider policies that satisfy the nonanticipativity requirement, i.e., stage t

decision, xt, can only depend on ξt and not on subsequent realizations of the random

vectors. Therefore, a policy x̂T (ξ̃ T) = (x̂1(ξ̃1), . . . , x̂T (ξ̃ T)) is said to be feasible if

it is nonanticipative, x̂1(ξ̃1) ∈ X1(ξ̃1), and x̂t(ξ̃t) ∈ Xt(x̂t−1(ξ̃t−1), ξ̃t), wp1, where

ξ̃t = (ξ̃t−1, ξ̃t), t = 2, . . . , T .

In order to have (2.8)-(2.10) well-defined, we make the following assumptions:

(A1) (2.8)-(2.10) has relatively complete recourse, and X1(ξ1) is non-empty.

(A2) X1(ξ1) is compact, and for all feasible xt−1, Xt(xt−1, ξ̃t) is compact, wp1,

t = 2, . . . , T .

(A3) φT (xT , ξ̃ T) is lower semi-continuous in xT , wp1.

(A4) Eφ2
T (xT , ξ̃ T) <∞ for all feasible xT .

16

Recall that a real-valued function f : Rd → R is said to be lower semi-

continuous at x ∈ Rd if

f(x) ≤ lim inf
ν→∞

f(xν)

for every sequence {xν} converging to x. Feasibility of (2.8)-(2.10) is guaran-

teed by (A1). Compactness of X1(ξ1) 6= ∅, coupled with lower semi-continuity of

E[φ1(x1, ξ̃
2)|ξ1], ensures that its infimum is achieved on X1(ξ1). These conditions

on X1(ξ1) are included in (A1) and (A2). Lower semi-continuity of E[φ1(x1, ξ̃
2)|ξ1]

results from:

(i) Compactness of Xt(xt−1, ξ̃t) and lower semi-continuity of E[φt(xt−1, xt, ξ̃
t+1)|ξ̃t]

in xt−1 and xt, wp1, ensure lower semi-continuity of φt−1(xt−1, ξ̃t), wp1. (See

Rockafellar and Wets [109, Theorem 1.17].)

(ii) Lower semi-continuity of φt−1(xt−1, ξ̃t) and E
[∣∣φt−1(xt−1, ξ̃t)

∣∣|ξ̃t−1
]
<∞, wp1,

ensure lower semi-continuity of E[φt−1(xt−1, ξ̃t)|ξ̃t−1], wp1. (See Wets [126,

Proposition 2.2].)

The lower semi-continuity assumption of (A3) provides the base case in the induction

argument from t = T to show lower semi-continuity of E[φ1(x1, ξ̃
2)|ξ̃1] via (i) and

(ii). The preservation of lower semi-continuity under the expectation in (ii) uses

the finite expectation hypothesis, i.e., E
[∣∣φt(xt, ξ̃t+1)

∣∣|ξ̃t
]
< ∞ for all feasible xt,

wp1, for t = 1, . . . , T − 1, which follows from (A4). The stronger assumption of

continuity in place of (A3) is a natural assumption for multi-stage stochastic linear

programs, but lower semi-continuity can arise when considering integer-constrained

problems. As it will become apparent, the finite second moment assumption in (A4)

also allows the use of the central limit theorem in the construction of a confidence

interval.

17

For ease of exposition, we implicitly incorporate the constraint set in the

objective function by using an extended-real-valued representation as follows.

ft(xt, ξt+1) =
{
φt(xt, ξt+1) if xt ∈ Xt(xt−1, ξt)
∞ otherwise

(2.11)

for t = 1, . . . , T − 1, and

fT (xT , ξT) =
{
φT (xT , ξT) if xT ∈ XT (xT−1, ξT)
∞ otherwise.

(2.12)

The T -stage stochastic program defined by (2.8)-(2.10) can now be re-stated as an

unconstrained optimization problem:

z∗ = min
x1

E[f1(x1, ξ̃
2)|ξ1] (2.13)

where

ft−1(xt−1, ξt) = min
xt

E[ft(xt−1, xt, ξ̃
t+1)|ξ̃t = ξt], (2.14)

for t = 2, . . . , T − 1, and

fT−1(xT−1, ξT) = min
xT

fT (xT−1, xT , ξ
T). (2.15)

This extended-real-valued formulation will be used in our development throughout

the dissertation.

An important special case of (2.8)-(2.10) is a multi-stage stochastic program

with recourse in which the objective function has an additive contribution from each

stage and the underlying optimization problems are linear programs. A T -stage

stochastic linear program with recourse can be expressed in the following form:

min
x1

c1x1 + E[h1(x1, ξ̃
2)|ξ1]

s.t. A1x1 = b1 (2.16)

x1 ≥ 0,

18

where, for t = 2, . . . , T ,

ht−1(xt−1, ξ
t) = min

xt

ctxt + E[ht(xt, ξ̃
t+1)|ξ̃t = ξt]

s.t. Atxt = bt −Btxt−1 (2.17)

xt ≥ 0,

and hT = 0. The components of the random vector ξ̃t consist of the random elements

from Ãt, B̃t, b̃t, and c̃t. The dimension of vectors and matrices are as follows: ct ∈

R1×dt , At ∈ Rmt×dt , Bt ∈ Rmt×dt−1 , and bt ∈ Rmt , t = 1, . . . , T . We now return

to assumptions (A1)-(A4) and describe sufficient conditions in linear programming

context to ensure (A1)-(A4). Relatively complete recourse carries over naturally to

the constraints of (2.16) and (2.17) and is assumed to hold. We assume that the

feasible region of (2.16) is nonempty and bounded and that of (2.17) is bounded

for all feasible xt−1, wp1; hence, (A1) and (A2) hold. Continuity of ht(xt, ξ̃
t) in xt,

wp1, results from a basic linear programming property, i.e., the optimal objective

function value is a piecewise linear convex function of the right-hand-side vector in

the constraints (see, e.g., Bazaraa, Jarvis, and Sherali [5, §6.3]); hence, (A3) holds.

Finally, we assume that the distribution of ξ̃T is such that (A4) holds. When T = 2,

the formulation of the T -stage stochastic linear program above reduces to that of

the two-stage stochastic linear program given by (2.4)-(2.5).

In a T -stage stochastic linear program, the stage t recourse function depends

on the history ξt since it is defined in terms of a conditional expectation (except

for t = 1 where ξ̃1 is known with probability one). Solution methods of such a

model must take this dependency into account. If the stochastic process {ξ̃}Tt=1 is

interstage independent, i.e., ξ̃t and ξ̃t′ are independent for any t, t′ = 1, . . . , T and

t 6= t′, then all the conditional expectations in a T -stage stochastic linear program

become unconditional ones. Thus, the stage t recourse function does not depend on

19

the history ξt under interstage independence of {ξ̃}Tt=1. One of the solution methods

we develop in Chapter 3 is designed to exploit this interstage independence structure.

2.3.2 Scenario Tree

Realizations of {ξ̃t}Tt=1 form a scenario tree that represents all the possible

ways that {ξ̃t}Tt=1 can evolve, and organizes into a tree the realizations of the se-

quence {ξ̃t}Tt=1 that have common histories up to stage t. Scenario trees play a key

role in multi-stage stochastic programs. So, we introduce their notation here. From

a computational perspective, we limit ourselves to finite scenario trees, i.e., trees

arising from {ξ̃t}Tt=1 whose supports Ξt are finite, t = 1, . . . , T , so that realizations

of ξ̃t can be enumerated as ξt,1, . . . , ξt,nt .

With this notation, a scenario tree has a total of nT leaf nodes, one for each

scenario ξT,i, i = 1, . . . , nT . Two scenarios ξT,i and ξT,j , i 6= j, may be identical

up to stage t. The number of distinct realizations of ξ̃T up to stage t is denoted

by nt so that the scenario tree has a total of nt nodes at stage t, corresponding to

each ξt,i, i = 1, . . . , nt. The unique node in the first stage is called the root node.

For a given node, there is a unique scenario subtree, which is itself a tree rooted

at that node and represents all possible evolutions of {ξ̃t′}Tt′=t given the history ξt.

We denote this subtree Γ(ξt). Note that Γ(ξ1) is the entire scenario tree and the

subtree of a leaf node is simply the leaf node itself, i.e., Γ(ξT) = ξT .

Consider a particular node i in stage t < T with history ξt,i. Let n(t, i)

denote the number of stage t+1 descendant nodes of node i. These descendant nodes

correspond to realizations ξt+1,j where j is in the index set Di
t = {k + 1, . . . , k +

n(t, i)}, and

k =
i−1∑
r=1

n(t, r), (2.18)

20

and
0∑

r=1
≡ 0. The subvector of ξt+1,j , j ∈ Di

t, that corresponds to the stage t + 1

realization is ξj
t+1, j ∈ Di

t. The ancestor of ξt,i is denoted by ξt−1,a(i). In this

case, a(i) is an integer between 1 and nt−1. With our notation, a(j) = i, ∀j ∈ Di
t.

The ancestor operator a(i) = at(i) has a stage dependency that we suppress for

notational simplicity. The realization ξt can be expressed in terms of the original

random vectors and matrices. Suppose ξt = vec(At) in the stochastic linear program

(2.16)-(2.17), then

ξt,i = vec(At,i)

= vec(Aat−1(i)
1 , . . . , Ai

t)

where the notation ak(·) means that the ancestor operator a(·) is applied k times.

Ai
t is the realization of Ãt corresponding to node ξi

t in the scenario tree. The total

number of nodes in each stage can be recursively computed from

nt =
nt−1∑
r=1

n(t− 1, r), for t = 2, 3, . . . , T (2.19)

where n1 ≡ 1. Note that Di
t

⋂
Di′

t = ∅ for i, i′ ∈ {1, . . . , nt} and i 6= i′, and
nt−1⋃
i=1

Di
t = {1, . . . , nt} for t = 1, . . . , T − 1.

In Chapter 3, we will represent the conditional expectation given the history

of {ξ̃t}Tt=1 at a generic stage t node in our statistical lower bound development. To

facilitate this, we denote the number of immediate descendants of a generic stage t

node, ξt, by n(t) = |Dt|, where Dt is the index set of the stage t+ 1 descendants of

node ξt. In addition, ξj
t+1, j ∈ Dt refers to the subvector of stage t+ 1 realizations

of a generic stage t node ξt.

We illustrate our scenario tree notation by applying it to the four-stage

scenario tree in Figure 2.1. The root node R corresponds to the unique stage 1

21

R

A B

C D E F G

t = 2

t = 1

t = 3

t = 4

Figure 2.1: An example of a four-stage scenario tree.

realization ξ1. Table 2.1 gives examples of the history notation and the number

of immediate descendants for nodes A, . . . ,G. The subtree with its root at node

A is represented by Γ(ξ2,1). The branches of that subtree are darkened in Figure

2.1. The index set of the immediate descendants of node B is D2
2 = {3, 4, 5}, and

the corresponding stage 3 realizations are ξ33 , ξ
4
3 , and ξ53 . Using (2.19), we obtain

n2 = n(1, 1) = 2 and n3 =
2∑

r=1
n(2, r) = 2 + 3 = 5. We refer to a generic node in the

second stage, either A or B, by ξ2, and a generic subtree rooted at ξ2 by Γ(ξ2).

A B C D E F G
ξt,i ξ2,1 ξ2,2 ξ3,1 ξ3,2 ξ3,3 ξ3,4 ξ3,5

n(t, i) 2 3 3 1 2 3 1

Table 2.1: A notation for the scenario tree in Figure 2.1

22

2.3.3 Deterministic Equivalent Formulations

Computational solution methods in stochastic programming, including the

methods we develop in Chapter 3, often rely on the ability to solve a T -stage stochas-

tic linear program defined on a finite scenario tree with a moderate number of scenar-

ios. As for a two-stage stochastic program with recourse, we can formulate a T -stage

stochastic linear program, (2.16)-(2.17), as a deterministic linear program in a couple

of ways assuming that (A1)-(A4) hold, and that the supports of ξ̃t, t = 1, . . . , T , are

finite. Different deterministic formulations are suitable to different solution methods

that we discuss in Section 2.4.1.

For a finite scenario tree, the expectation operator in (2.16)-(2.17) can be

expressed as a summation; therefore, (2.16)-(2.17) can be stated as

min
x1

c1x1 +
n2∑
i=1

p
i|1
2 h1(x1, ξ

2,i)

s.t. A1x1 = b1 (2.20)

x1 ≥ 0,

where for all j ∈ Di
t, i = 1, . . . , nt, t = 2, . . . , T ,

ht−1(xt−1, ξ
t,j) = min

xt

cjtxt +
∑

k∈Dj
t

p
k|j
t+1ht(xt, ξ

t+1,k)

s.t. Aj
txt = bjt −B

j
txt−1 (2.21)

xt ≥ 0,

realization ξt+1,k = (ξt,j , ξk
t+1), k ∈ Dj

t , and hT = 0. The conditional probabil-

ity mass function p
j|i
t is defined as pj|i

t = P (ξ̃t = ξj
t |ξ̃t−1 = ξt−1,i), j ∈ Di

t, i =

1, . . . , nt, t = 2, . . . , T, and pj|i
T+1 = 0, ∀i, j.

Instead of expressing a T -stage stochastic linear program as recursions (2.20)-

(2.21), we can enumerate all linear programming subproblems corresponding to each

23

scenario and express, as in the two-stage model, its deterministic equivalent program

as follows:

min
T∑

t=1

nt∑
i=1

pi
tc

i
tx

i
t

s.t. Bi
tx

a(i)
t−1 +Ai

tx
i
t = bit, i = 1, . . . , nt, t = 1, . . . , T (2.22)

xi
t ≥ 0, i = 1, . . . , nt, t = 1, . . . , T

where pi
t = P (ξ̃t = ξt,i), B1

1x
a(1)
0 ≡ 0, and xa(i)

t−1 is the decision vector at the stage t−1

ancestor node of ξt,i. The size of the deterministic equivalent program grows with the

number of scenarios, which in turn grows exponentially with T . Nonanticipativity

constraints are enforced implicitly through the ancestor operator in (2.22). This

deterministic formulation (2.22) possesses a special structure in its constraint matrix

amenable to methods that decompose (2.22) by time stage, e.g., the well-known L-

shaped method [119].

To express the nonanticipativity constraints explicitly, we duplicate all deci-

sion variables for each scenario, and denote its scenario dependence by xt(s), where

s corresponds to the scenario index of ξ̃T,s, s = 1, . . . , nT . Thus, a T -stage stochastic

linear program can be stated with explicit nonanticipativity constraints as

min
nT∑
s=1

T∑
t=1

p(s)ct(s)xt(s) (2.23a)

s.t. Bt(s)xt−1(s) +At(s)xt(s) = bt(s), s = 1, . . . , nT , t = 1, . . . , T (2.23b)

xt(s) ≥ 0, s = 1, . . . , nT , t = 1, . . . , T (2.23c)

xt(s) ∈ Nt, s = 1, . . . , nT , t = 1, . . . , T − 1, (2.23d)

where (At(s), Bt(s), bt(s), ct(s)) is given by (AaT−t(s)
t , B

aT−t(s)
t , b

aT−t(s)
t , c

aT−t(s)
t) in

our notation, p(s) is the probability of scenario ξT,s, i.e., p(s) = P (ξ̃ T = ξT,s), and

Nt is the nonanticipativity constraint set in stage t.

24

The nonanticipativity constraint sets, Nt, t = 1, . . . , T − 1, can be alge-

braically expressed in a number of ways but all have the effect of requiring xt(s)

and xt(s′) to be identical if ξt,aT−t(s) and ξt,aT−t(s′) are identical. Different expres-

sions of Nt lead to different dual formulations and a particular expression may be

desired for certain solution methods. More details can be found in [10, 25, 67],

and references cited therein. Performing a Lagrangian relaxation with respect to

the nonanticipativity constraints separates (2.23) by scenario and there are solu-

tion methods that exploit this structure, e.g., the diagonal quadratic approximation

algorithm [98], and the progressive hedging algorithm [108].

Although larger than (2.22), formulation (2.23) is often easier to formulate

a stochastic program, especially a multi-stage stochastic program with recourse, by

explicitly expressing nonanticipativity constraints in modeling languages for math-

ematical programming such as GAMS and AMPL.

2.4 Solution Methods

To solve a T -stage stochastic program (2.8)-(2.10), at each stage t we must

optimize an objective function that is a multi-dimensional integral. For the special

case of a stochastic linear program (2.16)-(2.17), the stage t objective function is

convex but, in general, non-smooth. While algorithms for optimizing such functions

typically require an ability to evaluate (sub)gradients, it can be difficult or impos-

sible to perform even a single exact function evaluation of E[φt(xt, ξ̃t+1)|ξ̃t]. The

degree of difficulty depends on both the nature of the stochastic process, {ξ̃t}Tt=1,

and functions φt, t = 1, . . . , T . For instance, when each of the random vectors from

{ξ̃t}Tt=1 is continuous and of high dimension, evaluating the recourse function re-

quires a high dimensional numerical integration, which may be impossible to carry

out exactly, even for a given policy x̂T (ξ̃T). On the other hand, if φt is separable

25

in each component of ξ̃t+1, the conditional expectation becomes a one-dimensional

integral and can be easy to evaluate numerically. Accordingly, solution methods for

stochastic programs are tailored to the specific nature of {ξ̃t}Tt=1 and φt, t = 1, . . . , T ,

as we will indicate when reviewing each class of solution methods.

We classify a solution method as either an exact or approximation method.

In our classification, exact methods include both analytical solution methods and

those methods that algorithmically solve a stochastic program (without approximat-

ing its multi-dimensional integral objective function) to yield an objective function

value that is arbitrarily close to the optimal objective function value. These exact

methods are reviewed in Section 2.4.1.

We divide approximation methods into three types. The first type contains

approximation methods arising from using Monte Carlo sampling to approximate a

multi-dimensional integral objective function. The solution methods we develop in

Chapter 3 for a multi-stage stochastic program involve both an “exact” decomposi-

tion algorithm from large-scale optimization, and Monte Carlo sampling. The second

type are methods that form either distributional or functional approximations of the

multi-dimensional integral objective function through deterministic bounds derived

from certain inequalities, e.g., Jensen’s inequality. These bounds can be sequentially

improved to yield a deterministic statement regarding the optimal objective function

value of the original problem. We only give a brief review for this type of methods

since they do not play a central role in our subsequent development. The third

type contains methods that attempt to approximate the underlying scenario tree.

Here, the primary motivation is to reduce the number of scenarios in the scenario

tree so that the resulting deterministic formulation of a stochastic program is of

manageable size, and can be readily solved by existing solution methods developed

for moderate-sized stochastic programs. All three types of approximation methods

26

are reviewed in Section 2.4.2.

2.4.1 Exact Methods

Exact solution methods for stochastic programs provide an exact optimal

solution to a stochastic program, either analytically or algorithmically. Two-stage

stochastic programs for which an optimal solution is analytically available are (i) the

newsboy problem, which may be viewed as a stochastic linear program with simple

recourse with a scalar decision variable (see, e.g., Birge and Louveaux [16, §1])

and (ii) stochastic programs with simple recourse (2.6) in which all parameters are

deterministic except for b̃2 whose components have marginal distributions of some

special type, e.g., uniform [7], exponential [122]. Although the optimal value in

some cases of (i) and (ii) can be analytically derived, we often still need to evaluate

it either numerically or algorithmically. For example, an optimal solution of (i)

with a normally-distributed random demand is expressed in terms of the normal

cumulative distribution function, which must be numerically evaluated. An optimal

value in case (ii) when b̃2 is uniformly distributed and the constraints are linear can

be obtained by solving a convex quadratic program.

When the support of the random vector is finite with a relatively small

number of realizations, a stochastic program can be expressed as a deterministic

equivalent program and solved “exactly” via an optimization algorithm (within a

numerical tolerance). If it is a linear program, then it might be solved directly by

the simplex method or by an interior point algorithm, and by a branch-and-bound

procedure if it is a mixed-integer program.

For a problem with a larger number of realizations, a direct application of

generic linear programming algorithm can fail due to the size of the deterministic

equivalent program. However, in the linear programming setting, the special struc-

27

ture of the deterministic equivalent program allows application of large-scale opti-

mization techniques, e.g., decomposition methods, which can still solve the deter-

ministic equivalent program within a numerical tolerance. Decomposition methods

are important tools for solving stochastic linear programs with a moderate number

of scenarios.

In stochastic programming, we can categorize decomposition methods into

two types. The first type decomposes a problem by stage and each stage t then has

a collection of subproblems corresponding to each stage t node in the scenario tree.

The L-shaped method [119] falls into this category. The second type decomposes a

problem by scenario. Methods in this category are primarily based on Lagrangian

relaxation of nonanticipativity constraints resulting in single-scenario deterministic

mathematical programs corresponding to each scenario in the tree. Implementations

of by-stage decomposition methods can incorporate multiple stages in a subproblem

(instead of just one) and implementations of by-scenario decomposition methods

can incorporate multiple scenarios in a subproblem.

Multi-stage stochastic optimization problems that can be modeled with only

a few state variables (e.g., 2 or 3) and simple constraint sets can be solved by

dynamic programming (see, e.g., Bellman [8] and Bertsekas [12]). Two multi-stage

stochastic optimization problems we study in Chapter 4, an American-style option

pricing problem [18] and a stochastic lot-sizing problem [63, 64], are solved via

dynamic programming. The curse of dimensionality (due to a large number of state

variables) limits the general applicability of dynamic programming.

Frequently, approximation methods use, in some manner, decomposition

methods. For example, a stochastic program that has an “unmanageable” number

of scenarios can be approximated with one that has a modest number, and then a

decomposition method is applied to solve the modest-sized approximating problem.

28

Unmanageable problems arise when discrete probability distributions have a very

large cardinality, or infinite, sample space. Thus, decomposition methods certainly

play a key role in the solution of such problems. The approximation methods for

multi-stage stochastic programs we develop in Chapter 3 also rely heavily on the

L-shaped method, and so we provide a detailed review and establish associated

notation before reviewing Lagrangian-based decomposition methods. Again, we

begin by considering the L-shaped method for a two-stage stochastic linear program

with recourse, and extend our discussion to the multi-stage L-shaped method for

ease of exposition.

The L-shaped Method

The L-shaped method proposed by Van Slyke and Wets [119] is a decomposi-

tion technique that exploits special structure of the deterministic equivalent program

of a two-stage stochastic linear program. It is closely related to Benders’ decompo-

sition method [9] for mixed-integer programming and Kelly’s cutting-plane method

[82] for non-linear programming. The L-shaped method is one of the most important

exact solution methods for solving stochastic linear programs with discrete distribu-

tions [45, 114]. To develop the algorithm, consider a two-stage deterministic linear

program of the form

min
x1

c1x1 + h(x1)

s.t. A1x1 = b1 (2.24)

x1 ≥ 0,

29

where

h(x1) = min
x2

c2x2

s.t. A2x2 = b2 −B2x1 : π (2.25)

x2 ≥ 0.

Dual variables on constraint A2x2 = b2−B2x1 are the components of π. We assume

that for every x′1 ∈ {x1 ∈ Rd : A1x1 = b1, x1 ≥ 0}, subproblem (2.25) is feasible and

has a finite optimal solution. By linear programming duality, we can write (2.25) as

h(x1) = max
π

π(b2 −B2x1)

s.t. πA2 ≤ c2

= max
1≤i≤L

π(i)(b2 −B2x1)

where π(i), i = 1, . . . , L, are all the extreme points of Π = {π : πA2 ≤ c2}. Thus, the

two-stage deterministic linear program can be equivalently written as

min
x,θ

c1x1 + θ

s.t. A1x1 = b1

θ ≥ π(i)(b2 −B2x1), i = 1, . . . , L (2.26)

x1 ≥ 0.

The constraints on θ are called cuts; −π(i)B2 and π(i)b2 are cut-gradient vectors

and cut-intercepts, respectively. Linear program (2.26) is known as the full master

program, which has a total of L cuts corresponding to the L extreme points of Π.

When the number of cuts is less than L, the full master program becomes a relaxed

master program. The form of the full master program suggests an algorithm where

only a subset of extreme points, {π(1), . . . , π(l)}, and hence cuts, are sequentially

30

generated from solving the second stage program at values of x specified by solving

the relaxed master, which is iteratively updated with additional cuts.

Note that if x1 ∈ Rd1 , then only d1+1 cuts are needed to identify an optimal

solution, and typically d1 � L. However, we do not know a priori which cuts are

required and have no control, in general, of which ones are to be generated. Thus,

in the worst case, we will need to generate all of them. In practice, the termination

criterion is based on the gap between a lower and upper bounds on the optimal

objective function value. In an iteration, the lower bound is given by the optimal

objective function value of the relaxed master program, while the upper bound is

obtained by evaluating (2.24)-(2.25) at an (x̂1, x̂2) pair that comes from sequentially

solving the relaxed master program for x̂1 and then the subproblem (2.25) for x̂2,

given the master solution x̂1. The gap between lower and upper bounds identifies an

(x̂1, x̂2) pair that yields an objective function value within a prespecified tolerance

of the optimal objective function value.

With appropriate definitions of A2, B2, b2, c2 and x2 in (2.24)-(2.25), the L-

shaped method can be directly applied to the deterministic equivalent of (2.4)-(2.5).

Applying the decomposition scheme described earlier to (2.7) yields the following

master problem and subproblems:

min
x1,θ

c1x1 + θ

s.t. A1x1 = b1

eθ ≥ ~Gx1 + ~g

x1 ≥ 0,

where e is the vector of all 1’s, each row of the cut-gradient matrix ~G is

G = −
n∑

i=1

piπiBi
2, (2.27)

31

each component of the cut-intercept vector ~g is

g =
n∑

i=1

piπibi2, (2.28)

and πi, i = 1, . . . , n, are optimal dual solutions of sub(i):

min
x2

ci2x2

s.t. Ai
2x2 = bi2 −Bi

2x1 : π

x2 ≥ 0.

In our development of the L-shaped method, we assume (2.24)-(2.25) has

relatively complete recourse. Under such an assumption, it is not possible to gener-

ate a first-stage decision which results in an infeasible second stage subproblem. All

of the test problems we use in this dissertation have relatively complete recourse.

That said, it is possible to modify the L-shaped method so that it generates so-

called feasibility cuts to handle problems not satisfying the assumption. Birge and

Louveaux [16, §5.1] describe the L-shaped method for problems that do not have

relatively complete recourse.

There are two important variations to the basic L-shaped method that we

have just described: a variant that uses multi-cut and a variant that adds a proximal

term in the master program. In our development in Chapter 3, we do not use these

other variations directly. However, they can be easily incorporated in our solution

methods with a straightforward modification of our methods. We briefly discuss the

basic idea of these variations.

In a multi-cut variant of the L-shaped method [15], multiple cuts are ap-

pended in each iteration, i.e., every sub(i) adds its own cut to the master program

instead of combining the dual solution of each sub(i) to generate a single cut. The

32

master program of the multi-cut variant is

min
x,θi

c1x1 +
n∑

i=1

piθi

s.t. A1x1 = b1

eθi ≥ ~Gix1 + ~g i, i = 1, . . . , n (2.29)

x1 ≥ 0,

where each row of the cut-gradient matrix is Gi = −πiBi
2, and each component of

the cut-intercept vector is gi = πibi2. Note that Gi and gi are the cut gradient and

intercept computed from a dual extreme point of sub(i).

The multi-cut master program has increased resolution of the recourse func-

tion. However, the number of cuts and decision variables in the multi-cut master is

larger than that of the single-cut master program. For both single-cut and multi-cut

variants, as the number of cuts grow, the master problem can be more difficult to

solve. Thus, it is practically important to control the size of the master program.

This can be done by limiting the number of cuts maintained in the relaxed master

program. For example, cuts that have not been active for the largest number of

iterations or the cut with the largest surplus can be dropped.

The second variant, proposed by Ruszczyński [111], is to add a proximal

term in the objective function of the master program:

min
x,θ

c1x1 + θ + ρ ‖ x1 − x̂1 ‖22

s.t. A1x1 = b1

eθ ≥ ~Gx1 + ~g

x1 ≥ 0.

Here, the proximal term penalty weight ρ is positive and can be dynamically modi-

fied during the algorithm, and x̂1 is the incumbent or best feasible solution known

33

so far in the course of the algorithm. The purpose of the proximal term is to dis-

courage x1 from moving too far from x̂1, and this can speed convergence of the

L-shaped algorithm significantly, especially for problems in which the dimension of

x1 is high. However, the computational effort also increases because the master

program is now a quadratic program. Other techniques to improve the efficiency of

the L-shaped algorithm can be found in Birge and Louveaux [16, §5.4], Gassmann

and Wallace [59], Ruszczyński and Świetanowski [113], Wets [124, 125].

The Multi-stage L-shaped Method

Birge [13] proposes the multi-stage L-shaped method for T -stage stochastic

linear programs. Under the assumptions we provide for the multi-stage stochastic

linear program with recourse, given by (2.20)-(2.21), in Section 2.3.1, we review

the multi-stage L-shaped method for (2.20)-(2.21). By applying the (single-cut)

L-shaped method to stage t subproblem under realization ξt,i, we can express this

subproblem, denoted sub(t, i), as

min
xt,θt

citxt + θt (2.30a)

s.t. Ai
txt = bit −Bi

tx
a(i)
t−1 (2.30b)

e θt ≥ ~Gi
txt + ~g i

t (2.30c)

xt ≥ 0, (2.30d)

for i = 1, . . . , nt, t = 1, . . . , T −1. Each row of the cut-gradient matrix, ~Gi
t, and each

component of the cut-intercept vector, ~g i
t , are computed from sub(t+ 1, j), j ∈ Di

t.

Formulae for these computations are similar to those of a two-stage recourse model,

given by (2.27) and (2.28), except that each component of the cut-intercept vector

contains an additional term since sub(t, i), i = 1, . . . , nt, t = 1, . . . , T − 1, contain

cut constraints, and the conditional probability mass function is used instead. In

34

particular, let πt and αt be dual row vectors associated with constraints (2.30b) and

(2.30c), respectively. We use (πi
t, α

i
t) to denote an optimal dual solutions of sub(t, i),

i.e., (πi
t, α

i
t) is an optimal solution of

max
πt,αt

πt(bit −Bi
tx

a(i)
t−1) + αt~g

i
t

s.t. πtA
i
t − αt

~Gi
t ≤ cit

αt e = 1 (2.31)

αt ≥ 0,

for i = 1, . . . , nt, t = 1, . . . , T−1. Then, we form each row of the cut-gradient matrix

and each component of the cut-intercept vector of sub(t, i) by

Gi
t = −

∑
j∈Di

t

p
j|i
t+1π

j
t+1B

j
t+1, (2.32)

and

gi
t =

∑
j∈Di

t

p
j|i
t+1π

j
t+1b

j
t+1 +

∑
j∈Di

t

p
j|i
t+1α

j
t+1~g

j
t+1. (2.33)

Since ξT,i, i = 1, . . . , nT , are leaf nodes, sub(T, i), i = 1, . . . , nT , do not

contain cut constraints and the variable θT . Accordingly, the components of the

cut-intercept vectors, g i
T−1, i = 1, . . . , nT−1, do not contain the last term in (2.33).

A statement of the multi-stage L-shaped method for a T -stage stochastic

linear program is given in Figure 2.2. Multi-cut and proximal-term variants of the

multi-stage L-shaped method are available. We refer the reader to Gassmann [57]

and Ruszczyński [112] for further details since we do not use these variants in our

implementation.

The scenario tree can be traversed in a different ways when we use the

multi-stage L-shaped method. The algorithmic statement in Figure 2.2 illustrates

the fastpass tree traversal [127] in which an optimal solution from each stage is

35

Step 0 Define toler ≥ 0 and let z =∞ (upper bound).
Initialize the set of cuts for sub(t, i) with θ ≥ −M,
i = 1, . . . , nt, for t = 1, . . . , T − 1.

Step 1 Solve sub(1, 1) and let (x1, θ1) be its solution.
Let z = c1x1 + θ1 (lower bound).

Step 2 Do t = 2 to T .
Do i = 1 to nt.

Form the right-hand side of sub(t, i): bit −Bi
tx

a(i)
t−1.

Solve sub(t, i). Let xi
t be its solution.

If t = T , also let πi
T be the optimal dual vector.

Let ẑ = c1x1 +
∑T

t=2

∑nt
i=1 p

i
tc

i
tx

i
t.

Step 3 If ẑ < z then let z = ẑ and xi,∗
t = xi

t,∀i, t.
If z − z ≤ min(|z|, |z|) · toler then stop: xi,∗

t ∀i, t is a policy
with an objective function value within 100 · toler% of the
optimal value.

Step 4 Do t = T − 1 downto 2.
Do i = 1 to nt.

Augment sub(t, i)’s set of cuts with θt −Gi
txt ≥ gi

t.
Form the right-hand side of sub(t, i): bit −Bi

tx
a(i)
t−1.

Solve sub(t, i). Let (πi
t, α

i
t) be the optimal dual vector.

Augment sub(1, 1)’s set of cuts with θ1 −G1
1x1 ≥ g1

1.
Goto Step 1.

Figure 2.2: The multi-stage L-shaped algorithm using the fastpass tree traversal
strategy for a T -stage stochastic linear program.

passed down to all its corresponding descendants until the last stage is reached, and

then the cuts formed by the descendants at each stage are passed back up to the

corresponding ancestor subproblems until the first stage is reached. This process

repeats until the algorithm terminates. Another alternative is that at stage t the

cuts are not passed back to the stage t − 1 ancestor until an optimal solution is

obtained to the problem defined by the subtree rooted at the stage t nodes. This

type of tree traversal strategy is called shuffle [93]. A third strategy is to not pass

a stage t solution down to the stage t + 1 descendants until the cut that would be

36

passed back to the stage t − 1 ancestor is redundant. This type of tree traversal

strategy is known as cautious [127]. Experiments have suggested that the fastpass

strategy is the most efficient strategy [57, 93, 127]. So, we only implement the

fastpass tree traversal of the multi-stage L-shaped method in this dissertation.

Lagrangian-based Decomposition Methods

We only give a brief overview of Lagrangian-based decomposition methods

in stochastic programming since the solution methods we develop in Chapter 3 do

not directly involve this type of decomposition. For further details of Lagrangian-

based decomposition methods, we refer the reader to [24, 62] and references cited

therein.

The motivation of applying Lagrangian relaxation in stochastic program-

ming is the same as that in deterministic mathematical programming. Specifically,

the relaxation of complicating constraints decomposes the original problem into sub-

problems that can be solved efficiently. For example, nonanticipativity constraints,

(2.23d), in a deterministic formulation of a T -stage stochastic linear program can

be viewed as complicating constraints, and are typically dualized in a Lagrangian-

based decomposition method. If (2.23) possesses a network structure, the resulting

single-scenario subproblems of such relaxation are deterministic multi-stage network

programs for which an efficient algorithm may be readily available. Gröwe-Kuska et

al. [62] apply a Lagrangian-based decomposition method in stochastic programming

to relax power and demand constraints instead to achieve subproblems for which

specialized algorithms are developed.

One computational disadvantage of Lagrangian relaxation methods is due

to slow convergence of the subgradient search algorithm when the associated La-

grangian dual problem (a non-smooth convex optimization problem) is optimized.

37

One remedy is to use instead an augmented Lagrangian, which contains a quadratic

proximal term, to help speed up the convergence. In stochastic programming,

Lagrangian-based decomposition methods that use augmented Lagrangian includes

progressive hedging algorithm [108], diagonal quadratic approximation method [98],

and methods proposed by Rosa and Ruszczyński [110]. However, these methods need

to approximate the quadratic proximal term such that the scenario decomposition

is still achieved.

For non-convex problems, such as stochastic mixed-integer programs, Lagran-

gian-based decomposition methods can yield a lower bound on the optimal objec-

tive function value, or can be combined with other search techniques or heuristic

to find an optimal, or near-optimal, solution. Carøe and Schultz [24] integrate a

Lagrangian-based decomposition method with the branch-and-bound procedure for

two-stage stochastic mixed-integer program and report encouraging results. Gröwe-

Kuska et al. [62] develop a Lagrangian-based heuristic to obtain a near-optimal

solution for a multi-stage stochastic mixed-integer program. Haugen, Løkketangen

and Woodruff [64, 88] apply the progressive hedging algorithm and the tabu search

heuristic to multi-stage stochastic mixed-integer programs.

In summary, exact methods solve stochastic programs either analytically or

algorithmically (within a numerical tolerance). Analytical solutions are available

for only a few classes of stochastic programs. When the cardinality of the sample

space is small, we can apply deterministic optimization algorithms to solve the

deterministic equivalent program directly. Dynamic programming can be applied to

multi-stage stochastic optimization problems with simple constraint sets when the

number of state variables is small. Decomposition methods such as the L-shaped and

Lagrangian-based algorithms can extend the size of problems that we can address,

but the total number of scenarios still must be relatively modest. Decomposition

38

methods also play an important role in the solution methods for stochastic programs

with a large number of scenarios. In such situations, decomposition methods are

used to solve approximating problems with a modest number of scenarios.

2.4.2 Approximation Methods

Monte Carlo Sampling-based Methods

In numerical integration, Monte Carlo method is regarded as the method of

choice for numerically estimating difficult high-dimensional integrals or summations.

Therefore, solution methods for stochastic programs, whose objective function is a

high-dimensional integral or summation, naturally incorporate Monte Carlo sam-

pling. Such stochastic programs can arise, for example, when each random vector

of {ξ̃t}Tt=1 is of high dimension and continuous or discrete with a large number of

realizations. A recent survey on the use of Monte Carlo sampling in stochastic

optimization is given by Morton and Popova [92].

In stochastic programming, Monte Carlo sampling is performed either “in-

side” or “outside” of the optimization algorithm. Internal sampling-based methods

replace computationally expensive or difficult exact computations with Monte Carlo

estimates during the execution of the algorithm. In the two-stage stochastic program

(2.2), internal sampling procedures replace exact evaluations of Eφ1(x1, ξ̃2) and/or

its (sub)gradient with the standard sample mean estimator. For example, stochas-

tic quasi-gradient algorithms use a sampling-based estimate of a (sub)gradient of

Eφ1(x1, ξ̃2) and may be regarded as a sampling-based steepest-descent algorithm.

Ermoliev describes stochastic quasi-gradient methods in [50]. A sampling-based L-

shaped method developed by Infanger [72] and the stochastic decomposition method

developed by Higle and Sen [66] employ sampling to estimate cuts of Eφ1(x1, ξ̃2) in

the L-shaped method for two-stage stochastic linear programs.

39

Several variants of internal sampling-based L-shaped methods are developed

for multi-stage stochastic linear programs. Their differences lie in the use of Monte

Carlo estimation in different steps of the L-shaped algorithm depending on the

characteristics of the underlying stochastic process. Pereira and Pinto [102] estimate

the objective function by sampling in the forward pass of the L-shaped method for

interstage independent linear problems that have many stages but a manageable

number of scenarios per stage. Objective function cuts are computed exactly in

the backward pass, and can be shared among subproblems in the same stage due

to interstage independence. Donohue [39] enhances this algorithm with a better

scheme for selecting feasible solutions in the forward pass. Dantzig, Glynn, and

Infanger [33, 34] employ importance sampling in both forward and backward passes

for interstage independent linear problems with possibly larger number of scenarios

per stage and report considerable variance reduction. Chen and Powell [28] employ

sampling within the L-shaped method to construct deterministically valid cuts for

the objective function in each stage of the problem whose random parameters appear

only in the right hand side of the constraints.

In external sampling-based methods, the underlying stochastic process is

approximated by a finite empirical scenario tree constructed through Monte Carlo

sampling. An approximate optimal objective function value is obtained by solving

a stochastic program defined on an empirical scenario tree. This type of method is

also known as sample average approximation [115] in the stochastic programming

literature. Under appropriate assumptions, strong consistency of the approximate

optimal objective function value for the multi-stage problems is ensured by the re-

sults in [35, 39, 79, 115], i.e., as the number of samples at each node of the sample

scenario tree grows large, the approximate optimal objective function value con-

verges to the true optimal objective function value with probability one. For finite

40

sample trees, we will show in Chapter 3 that the approximate optimal value pro-

vides a lower bound, in expectation, to the true optimal value. This lower bound

has been independently developed and applied in various settings [18, 91, 99, 115]

for establishing solution quality in stochastic programming. The value of using a

lower bound to establish a solution quality for a minimization problem is widely

recognized in other areas of optimization. In the context of employing Monte Carlo

techniques in stochastic programming, exact lower bounds are not available; in-

stead the lower bound are statistical in nature. A lower bound estimator is used

to construct a confidence interval on the optimality gap to determine the quality

of a feasible solution by Mak, Morton, and Wood [91] for two-stage stochastic pro-

grams, and by Broadie and Glasserman [18] for the American-style option pricing

problem. Recently, Linderoth, Shapiro, and Wright [87] and Verweij et al. [120] re-

port encouraging computational results of this approach for different classes of two-

stage stochastic programs. Norkin, Pflug, and Ruszczyński [99] develop a stochastic

branch-and-bound procedure in which a lower bound estimator is used in internal

fashion for pruning the search tree.

As is frequently the case with Monte Carlo estimation, the method is more ef-

fective if the variance of estimators is small. Many standard variance reduction tech-

niques have been applied in conjunction with Monte Carlo sampling-based methods

for stochastic programs. Dantzig, Glynn, and Infanger [33, 72] employ importance

sampling in sampling-based cutting-plane algorithms. Mak, Morton, Wood [91] em-

ploy the common random numbers technique to reduce variance for the external

sampling procedure they develop. Linderoth, Shapiro, and Wright [87] use Latin

hypercube sampling in their empirical study of a external sampling-based proce-

dure, while Bailey, Jensen, and Morton [4] use Latin hypercube sampling to reduce

variance in estimating the recourse function. Higle [65] studies the effectiveness

41

of various well-known variance reduction techniques for two-stage stochastic linear

programs.

Bounding Methods

This type of approximation method attempts to deterministically bound the

optimal objective function value of a stochastic program by either approximating

the distribution of the random vector or the objective function so that the multi-

dimensional integral objective function is easier to compute. The resulting bounds

can be sequentially refined to sufficient accuracy provided that the dimension of the

random vector is moderate. In such situations, bounding methods are attractive

options when the random vector is continuous or the cardinality of its sample space

is too large for exact computation.

The validity of the bounds typically requires specific properties of the objec-

tive function, notably convexity with respect to the random vector. For example,

bounding methods developed for a two-stage stochastic linear program with recourse

whose objective function is convex with respect to the random vector, i.e., (2.4)-

(2.5) with random elements appearing only in B̃2 and b̃2, employ the classical lower

and upper bounds for the expectation of convex functions, which based on the in-

equalities of Jensen [75] and Edmundson-Madansky [48, 90]. We refer the reader

to Dokov and Morton [38], and references therein for a literature review, and to

Kall [77] for a tutorial on the bounding methods. Much of the work on this class

of methods has been in two-stage stochastic programming. Bounding methods for

multi-stage stochastic program with recourse include those methods developed by

Edirisinghe [46], Edirisinghe and Ziemba [47], and Frauendorfer [55]. For a special

class of multi-stage stochastic programs known as dynamic vehicle allocation prob-

lems, Cheung, Frantzeskakis, and Powell [29, 54] develop bounding methods based

42

on functional approximation.

Scenario Tree Approximation-based Methods

This type of approximation method attempts to approximate a scenario tree

that has a large number of scenarios with a modest-sized tree so that the result-

ing approximating problem can be solved by a decomposition method. Dupačová,

Gröwe-Kuska and Römisch [40] and Pflug [103] construct modest-sized approxi-

mating scenario trees such that its approximation error, quantified via probability

metrics, is minimized. Consigli, Dupačová and Wallace [31] and Høyland, Kaut

and Wallace [71] apply statistical techniques such as cluster analysis, importance

sampling, and moment matching, in scenario tree approximation. Pennanen and

Koivu [100] use a low-discrepancy sequence in sample tree construction to reduce

the approximation error. The methods of [31, 40, 71, 100, 103] attempt to approx-

imate the stochastic program by focusing primarily on properties of the stochastic

process {ξ̃t}Tt=1.

Dempster and Thompson [37] construct non-uniform sample trees whose

number of descendants is determined dynamically by an estimate of the expected

value of perfect information (EVPI). Korapaty [85] constructs sample trees with

varying number of descendants at each node to reduce bias of an upper bound

estimator associated with an American-style option pricing problem. For multi-

stage stochastic linear programs with random right-hand-side, Casey and Sen [26]

attempt to approximate both the underlying stochastic process and problem struc-

ture by applying the sensitivity analysis of linear programming to guide scenario tree

construction. The methods of [26, 37, 85] take both the properties of the stochastic

process {ξ̃t}Tt=1 and the underlying problem’s structure into account to approximate

the scenario tree. The goal of all the scenario tree approximation-based methods

43

is to construct an approximate scenario tree such that it yields the “best” approxi-

mating problem while keeping its size within a given computational budget.

2.5 Epi-convergence

Approximation methods of stochastic programming often generate and solve

a sequence of approximating problems. It is important to know whether an approx-

imation method can asymptotically yield an optimal solution to the original prob-

lem. Epi-convergence is rooted in convergence of epi-graphs of functions, and is a

powerful approach to establish convergence for approximation methods of stochas-

tic programming. Rockafellar and Wets [109] provide an extensive development of

epi-convergence. An excellent elementary review is also provided by Kall [76].

A sequence of real-valued function {fν} where fν : Rd → R is said to epi-

converge to an epi-limit f if for each x ∈ Rd

∃ {x̂ν} such that x̂ν → x with lim sup
ν→∞

fν(x̂ν) ≤ f(x),

and ∀{xν} such that xν → x, f(x) ≤ lim inf
ν→∞

fν(xν).

Epi-convergence does not imply, in general, pointwise convergence, and vice versa.

An important implication of epi-convergence is that if a sequence approximating

objective functions epi-converges to that of the original problem, then a limit point,

if it exists, of the associated sequence of approximating optimal solutions solves the

original problem. This important result is summarized in the following theorem.

Theorem 1. Suppose that {fν} epi-converges to f . Let x̂ν be an optimal solution

of

inf
x
fν(x), ν = 1, 2,

If there is a subsequence {x̂νk
} of {x̂ν} converging to a limit point x̂, then

f(x̂) = inf
x
f(x) = lim

k→∞

(
inf
x
fνk

(x)
)
.

44

Consequently, to establish convergence of an approximation method via epi-

convergence, one must show that its sequence of approximating objective functions

epi-converges to the original problem. King and Wets [84, Theorem 3.1] provide

sufficient conditions under which convergence of Monte Carlo sampling-based meth-

ods can be achieved, via epi-convergence, for a general class of convex optimization

problems that include two-stage stochastic linear programs with recourse as a special

case. Donohue [39] extends the results of King and Wets [84] to multi-stage stochas-

tic linear programs under the assumption that {ξ̃t}Tt=1 is interstage independent with

finite support.

The following special case of results by Attouch and Wets [3, Theorem 6.2]

is useful for establishing convergence of Monte Carlo sampling-based methods for a

certain class of two-stage stochastic programs through epi-convergence.

Theorem 2. If (i) f(x, ξ̃) is lower semi-continuous for each x ∈ X ⊂ Rd, and

bounded below by a constant, wp1, and (ii) Ef(x̂, ξ̃) < ∞ for some x̂ ∈ X, then

ν−1
∑ν

i=1 f(x, ξ̃i), where ξ̃i, i = 1, . . . , ν, are iid samples of ξ̃, epi-converges to

Ef(x, ξ̃), wp1, on X.

Convergence of Monte Carlo sampling-based methods are also obtained un-

der the notion of uniform strong law of large numbers for multi-stage stochastic

programs. See Kaňková [79] and Shapiro [115]. Dempster [35] develops an approx-

imation method that uses importance sampling and provides its convergence for

multi-stage stochastic linear programs.

45

Chapter 3

Policy Generation and Testing Policy Quality

3.1 Introduction

We develop Monte Carlo sampling-based methods that exploit special struc-

tures to solve two classes of computationally difficult multi-stage stochastic pro-

grams. As described in Chapter 2, a solution to a multi-stage stochastic program is

a policy that specifies what decision to make at each stage under each realization of

the stochastic process. The first method we consider applies to multi-stage stochas-

tic linear programs with relatively complete recourse whose stochastic parameters

exhibit interstage independence. It is an external sampling-based procedure that

uses the multi-stage L-shaped algorithm to solve an approximating problem asso-

ciated with an empirical scenario tree (with interstage independence) to obtain an

approximation of cuts, which are used to generate a policy. These (approximate)

cuts can be shared among the subproblems in the same stage similar to the methods

developed in [33, 34, 39, 102]. We also indicate how the first method can be extended

to handle a particular type of interstage dependency through cut-sharing formulae

from [73]. The second method we consider is more computationally expensive but

applies to a more general class of multi-stage stochastic programs with recourse. A

caveat for this procedure is that it requires the ability to solve that general class

of problems with a moderate number of scenarios, i.e., the approximating problems

based on an empirical scenario (sub)tree. As we will indicate, asymptotic optimal-

ity of both methods can be inferred from strong consistency results in [39, 79, 115].

However, in practice we can only solve stochastic programs with finite empirical

46

scenario trees. As a result, we develop techniques to determine the quality of an

arbitrary feasible policy. In particular, we develop a lower bound estimator and use

it to construct a confidence interval on the optimality gap to establish the policy

quality in a general multi-stage stochastic programming context in the same spirit

as that of [18, 91].

The remainder of this chapter is organized as follows. Section 3.2 details sam-

ple scenario tree construction, which plays an important role in our methods. The

first policy-generation method is discussed in Section 3.3.1 for multi-stage stochastic

linear programs with interstage independence or with a special type of interstage

dependence. Section 3.3.2 discusses the second policy generation method, which

applies to a more general class of multi-stage problems. Estimating the expected

cost of using a specific policy is discussed in Section 3.4. A statistical lower bound

on the optimal objective function value is developed in Section 3.5. Procedures for

constructing confidence intervals on the optimality gap of a given policy are de-

scribed in Section 3.6, and associated computational results are reported in Section

3.7.

3.2 Sample Scenario Tree Construction

To construct a sample scenario tree, we perform the sampling in the following

conditional fashion: we begin by drawing n(1) = n2 observations of ξ̃2 from F2(ξ2|ξ1)

where ξ1 is the known first stage realization. Then, we form the descendants of each

observation ξ2,i, i = 1, . . . , n2, by drawing n(2, i) observations of ξ̃3 from F3(ξ3|ξ2,i).

This process continues until we have sampled n(T − 1, i) observations of ξ̃T from

FT (ξT |ξT−1,i), i = 1, . . . , nT−1. The notation developed in Section 2.3 for a generic

finite scenario tree applies to a sample scenario tree. The number of descendants

of a node ξt,i is now determined by the sample size n(t, i). The total number of

47

nodes in stage t + 1 is nt+1 =
∑nt

r=1 n(t, r), and n(t) = |Dt| is the number of

immediate descendants of a generic stage t node, ξt. The subtree associated with

each descendant of node ξt,i is Γ(ξt+1,j), j ∈ Di
t.

In addition to the above structure for constructing a sample scenario tree, we

require for the purposes of the estimators developed in Section 3.5 that the samples

of ξ̃t+1 be drawn from Ft+1(ξt+1|ξt) such that they satisfy the following unbiasedness

condition

E[ft(xt, ξ̃t+1)|ξ̃t] = E
[1
n(t)

∑
i∈Dt

ft(xt, ξ̃t+1,i)|ξ̃t
]
, (3.1)

wp1, t = 1, . . . , T − 1. The simplest method for generating ξ̃i
t+1, i ∈ Dt, to satisfy

(3.1) is to require that they be (conditionally) independent and identically dis-

tributed (iid).

Within this framework there are different types of sample scenario trees that

can be generated. Consider the case when {ξ̃t}Tt=1 is interstage independent. One

possibility is to generate a single set of iid observations of ξ̃t+1 and use this same set

of descendants for all stage t nodes ξt,i, i = 1, . . . , nt. Another possibility is to gener-

ate mutually independent sets of t+1 descendant nodes for all stage t nodes. We say

the former method uses “common samples” and the latter “independent samples.”

Both methods of generating a scenario tree satisfy (3.1). The independent-samples

method introduces interstage dependency in the sample tree, which was not present

in the original tree while the common-samples method preserves interstage inde-

pendence. Another advantage of the common-samples approach (relative to an

independent-samples tree) is that the associated stochastic program lends itself to

the solution procedures of Pereira and Pinto [102] and Donohue [39]. On the other

hand, because of increased diversity in the sample, one might expect solutions under

the independent-samples tree to have lower variability. We return to this issue in

Section 3.7 on computational results.

48

Sampling schemes that generate non-iid descendants can also be used in our

framework. In particular, a number of schemes designed to reduce variance sat-

isfy (3.1) and have been successfully used in sampling-based solution methods for

stochastic programming. We give a literature review of variance reduction tech-

niques in stochastic programming in Section 2.4.2.

When using the common-samples approach the number of descendant nodes

within each stage must be identical but the cardinality of Dt could vary with stage.

In the independent-samples approach, we have freedom to select different sample

sizes at each node in the scenario tree. Dempster and Thompson [37] use the ex-

pected value of perfect information to guide sample tree construction. Korapaty [85]

and the procedures we develop in Chapter 4 select the cardinality of descendant sets

to reduce bias.

Provided that sampling is done in the conditional manner described above,

with (3.1) satisfied, the methods we develop here can be applied to trees with non-

constant sizes of descendant sets. That said, in our computation (Section 3.7) we

restrict attention to balanced, uniform trees, i.e., n(t, i) = |Di
t| is constant for all i

and t.

Given a sample scenario tree, an approximating problem for multi-stage

stochastic program (2.13)-(2.15) can be stated as

ẑ∗ = min
x1

1
n(1)

∑
i∈D1

f̂1(x1, ξ̃
1,Γ(ξ̃2,i)) (3.2)

= min
x1

1
n2

n2∑
i=1

f̂1(x1, ξ̃
1,Γ(ξ̃2,i)),

where

f̂t−1(xt−1, ξ̃t−1,Γ(ξ̃t,j)) = min
xt

1
n(t, j)

∑
i∈Dj

t

f̂t(xt−1, xt, ξ̃
t,j ,Γ(ξ̃t+1,i)), (3.3)

49

ξ̃t,j = (ξ̃t−1, ξ̃j
t), j ∈ Dt−1, t = 2, . . . , T − 1, and

f̂T−1(xT−1, ξ̃T−1,Γ(ξ̃T,j)) = fT−1(xT−1, ξ̃T,j) (3.4)

= min
xT

fT (xT−1, xT , ξ̃
T,j),

ξ̃ T,j = (ξ̃ T−1, ξ̃j
T), j ∈ DT−1. The value function at a stage t node ξt depends on

the stochastic history (known at time t), ξ̃t = ξt, the associated decision history,

xt, and the sample subtree Γ(ξt). In going from (2.13)-(2.15) to (3.2)-(3.4), we are

approximating the original population scenario tree by a sample scenario tree.

One of the policy-generation methods we develop is for multi-stage stochastic

linear programs and so we explicitly state the associated approximating problem of

multi-stage stochastic linear program (2.16)-(2.17):

min
x1

c1x1 +
1
n2

n2∑
i=1

ĥ1(x1, ξ̃
1,Γ(ξ2,i))

s.t. A1x1 = b1 (3.5)

x1 ≥ 0

where for all j ∈ Di
t, i = 1, . . . , nt, t = 2, . . . , T ,

ĥt−1(xt−1, ξ̃
t−1,Γ(ξt,j)) = min

xt

cjtxt +
1

n(t, j)

∑
k∈Dj

t

ĥt(xt, ξ̃
t,j ,Γ(ξt+1,k))

s.t. Aj
txt = bjt −B

j
txt−1 (3.6)

xt ≥ 0,

ξ̃t,j = (ξ̃t−1, ξ̃j
t) and ĥT ≡ 0.

3.3 Two Policy Generation Methods

3.3.1 Linear Problems with Interstage Independence

In this section, we develop a procedure to generate feasible policies for the

multi-stage stochastic linear program (2.20)-(2.21) when {ξ̃t}Tt=1 is interstage inde-

50

pendent. Our method works as follows: First, we construct a sample scenario tree,

denoted Γc, using the common-samples method described in Section 3.2. Then, the

instance of (3.5)-(3.6) associated with Γc is solved with the multi-stage L-shaped al-

gorithm of Figure 2.2. When the algorithm stops, we obtain a policy whose expected

cost is within 100 ·toler% of optimal objective value for (3.5)-(3.6). We now describe

how we use this solution to obtain a policy for the “true” problem (2.16)-(2.17).

When the algorithm of Figure 2.2 terminates, each sub(t, i) contains the set

of cut constraints generated during the solution procedure. Since Γc is constructed

with the common-samples scheme, the sample subtrees rooted at the stage t nodes

are all identical, i.e., the sample scenario tree Γc exhibits interstage independence.

Thus, the cuts generated for a stage t node are valid for all other nodes in stage

t. We will use the collection of cuts at each stage to construct a policy to problem

(2.16)-(2.17).

Let ~Gi
t,c and ~g i

t,c denote the cut-gradient matrix and cut-intercept vector for

sub(t, i) when the multi-stage L-shaped method terminates. Then, we define a stage

t optimization problem used to generate the policy for (2.16)-(2.17) as follows:

min
xt

ctxt + θt

s.t. Atxt = bt −Btxt−1

− ~Gi
t,cxt + e θt ≥ ~g i

t,c, i = 1, . . . , nt (3.7)

xt ≥ 0,

for t = 2, . . . , T . For t = 1, (3.7) does not contain the term B1x0 in the first set

of constraint. A policy must specify what decision, x̂t(ξt), to take at each stage

t for a given ξt. Our policy computes x̂t(ξt) by solving (3.7) with (At, Bt, bt, ct)

specified by ξt, and with xt−1 determined by having already solved (3.7) under ξt′ ,

t′ = 1, . . . , t − 1. Such a policy is nonanticipative because when solving (3.7) the

51

Step 1 Construct a sample scenario tree Γc with the common-samples
procedure (Section 3.2).

Step 2 Solve (3.5)-(3.6) based on Γc with the multi-stage L-shaped
algorithm (Figure 2.2).

Step 3 When the algorithm stops (Step 3 of Figure 2.2), store the
cut-gradient matrix, ~Gi

t,c, and the cut-intercept vector, ~g i
t,c,

associated with each sub(t, i), ∀t, i.
Step 4 Do t = 1 to T

Solve optimization problem (3.7) under ξt with xt−1 equal
to x̂t−1(ξt−1), and denote its optimal solution x̂t(ξt), where
ξt = (ξt−1, ξt).

Figure 3.1: A procedure to generate a feasible policy for a T -stage stochastic linear
program with relatively complete recourse when {ξ̃t}Tt=1 is interstage independent.

process {ξ̃t}Tt=1 is known only through stage t. Relatively complete recourse ensures

that x̂t(ξt) will lead to a feasible decision in stages t + 1, . . . , T . The superscript

on the cut-gradient matrix and the cut-intercept vector in (3.7) denotes the index

of stage t node in Γc from which we obtain the cuts, and nt is the total number of

stage t nodes in Γc. So, if sub(t, i) in Γc has Ki
t cuts then the total number of cuts in

(3.7) is
∑nt

i=1K
i
t . We refer to this procedure as P1 and summarize it in Figure 3.1.

The solution procedure, as we have described it above, is a naive version of

the multi-stage L-shaped method because it stores a separate set of cuts at each

sub(t, i) when solving (3.5)-(3.6) under Γc. Because Γc is interstage independent,

we instead store a single set of cuts at each stage. This speeds the solution process

and aids in eliminating redundant cuts when forming (3.7).

We have described the method for generating cuts at each stage by solving

(3.5)-(3.6) under Γc exactly (or within 100·toler%) using the algorithm of Figure 2.2.

However, this may be computationally expensive to carry out if Γc is large. If T

is large but the number of descendants at each stage t node is “manageable” then

52

we could instead employ the algorithm of Pereira and Pinto [102], or better, its

computationally-enhanced version due to Donohue [39]. See Section 2.4.2 for a

description of these algorithms. We note that we do not pursue this possibility in

our computational results.

Procedure P1 exploits convexity and interstage independence to generate fea-

sible policies. Interstage independence plays a key role since the set of cuts generated

as an approximation to E[ht(xt, ξ̃
t+1)|ξ̃t = ξt] can also be used for E[ht(xt, ξ̃t+1)|ξ̃t =

ξ
′t] when ξt 6= ξ

′t because these two functions are identical. Generalizing P1 to han-

dle problems with interstage dependency requires specifying how to adapt, or modify,

cuts generated for E[ht(xt, ξ̃t+1)|ξ̃t = ξt] to another cost-to-go function conditioned

on ξ̃t = ξ
′t. For general types of dependency structures, this may be difficult (and

so we develop a different approach in the next section). However, such adaptations

of cuts is possible in the special case where {ξ̃t}Tt=1 consists of {(c̃t, Ãt, B̃t, η̃t)}Tt=1,

which is interstage independent and {b̃t}Tt=1 has the following dependency structure:

b̃t =
t−1∑
j=1

(Rt
j b̃j + St

j η̃j) + η̃t, t = 2, . . . , T. (3.8)

Here, Rt
j and St

j are given deterministic matrices with appropriate dimensions. (3.8)

is a generalization of vector ARMA (autoregressive moving average) models; see,

e.g., Tiao and Box [118]. With this probabilistic structure, Infanger and Morton [73]

derive cut sharing formulae to be used in the L-shaped method. These results can be

applied to modify Step 3 and 4 of P1. In Step 3, we store scenario-independent cut

information, i.e., cut gradients, independent cut intercepts, and so-called cumulative

expected dual vectors (see [73]) obtained from the multi-stage L-shaped algorithm

in Step 2. Then, in Step 4, for a given ξt, scenario-dependent cuts in (3.7) can be

computed using the analytical formulae of [73, Theorem 3].

53

3.3.2 Problems with Interstage Dependence

The method of Section 3.3.1 can handle linear programs with interstage

independence, or a special type of dependence. In this section, we propose a differ-

ent approach, which is computationally more demanding but allows for nonconvex

problems with relatively complete recourse and general interstage dependency struc-

tures. In particular we consider the general T -stage stochastic program defined by

(2.13)-(2.15) under assumptions (A1)-(A4) given in Section 2.3.1.

Our feasible policy construction for (2.13)-(2.15) works as follows: For a

given ξt, we obtain x̂t(ξt) by solving an approximating problem (from stage t to T)

based on an independently-generated sample subtree, denoted by Γr(ξt). Specifi-

cally, for a given ξt and xt−1, Γr(ξt) is constructed by the conditional sampling pro-

cedure described in Section 3.2 (either the common-samples or independent-samples

method can be used). Then, x̂t(ξt) is defined as an optimal solution of

min
xt

1
n(t)

∑
i∈Dt

f̂t(xt−1, xt,Γr(ξ̃t+1,i)), (3.9)

where

f̂τ−1(xτ−1, ξ̃τ−1,Γr(ξ̃τ,j)) = min
xτ

1
n(τ, j)

∑
i∈Dj

τ

f̂τ (xτ−1, xτ , ξ̃
τ,j ,Γr(ξ̃τ+1,i)),

ξ̃τ,j = (ξ̃τ−1, ξ̃j
τ), j ∈ Dτ−1, τ = t+ 1, . . . , T − 1, and

f̂T−1(xT−1, ξ̃ T−1,Γr(ξ̃ T,j)) = min
xT

fT (xT−1, xT , ξ̃
T,j),

ξ̃ T,j = (ξ̃ T−1, ξ̃j
T), j ∈ DT−1.

Our policy, which computes x̂t(ξt) by solving (3.9), is nonanticipative. None

of the decisions made at descendant nodes in stages t + 1, . . . , T are part of the

policy. Decisions in these subsequent stages (e.g., t+1) are found by solving another

54

Do t = 1 to T
Independently construct a sample subtree Γr(ξt).
Solve approximating problem (3.9) with xt−1 equal to
x̂t−1(ξt−1), and denote its optimal solution x̂t(ξt), where
ξt = (ξt−1, ξt)

Figure 3.2: A procedure to generate a feasible policy for a T -stage stochastic pro-
gram with relatively complete recourse.

approximating problem (e.g., from stage t+1 to T) with an independently-generated

sample tree. Similarly, the decisions at previous stages needed to find xt−1 are also

computed using independently-generated sample trees. Relatively complete recourse

ensures that x̂t(ξt) will lead to feasible solutions in stages t + 1, . . . , T . We denote

this policy-generation procedure by P2 and summarize it in Figure 3.2. Although P2

is applicable to a more general class of stochastic programs than P1, we still need a

viable solution procedure to solve (3.9). In a non-convex variation of (3.9), finding

its optimal solution can be computationally difficult.

3.4 Policy Cost Estimation

Under scenario ξ̃ T , the cost of using a given feasible policy, x̂T (ξ̃ T), in

(2.13)-(2.15) is fT (x̂T (ξ̃ T), ξ̃ T). Because this is a feasible, but not necessarily op-

timal policy, EfT (x̂T (ξ̃ T), ξ̃ T) ≥ z∗. In general, it is impossible to compute this

expectation exactly. In this section, we describe a scenario-based method and a

tree-based method to estimate EfT (x̂T (ξ̃ T), ξ̃ T). These estimation procedures can

be carried out for any feasible policy but, when appropriate, we discuss specific

implementation issues for policies generated by P1 and P2.

55

3.4.1 Scenario-based Estimator

Using P1 or P2 for scenario ξT , we can obtain a sequence of feasible solutions,

x̂1(ξ1), . . . , x̂T (ξT) (see Figures 3.1 and 3.2). The cost under scenario ξT is then given

by fT (x̂T (ξT), ξT). In case of a T -stage stochastic linear program, this cost is

fT (x̂T (ξT), ξT) =
T∑

t=1

ct(ξt)x̂t(ξt). (3.10)

Again, we emphasize that with both P1 and P2, x̂T (ξT) is nonanticipative because

when we carry out the procedures of Figures 3.1 and 3.2 to find x̂t(ξt) the remaining

portion of the scenario (ξt+1, . . . , ξT) is not used (in fact, in implementation it need

not even be generated yet).

In order to form a point estimate of EfT (x̂T (ξ̃ T), ξ̃ T) whose error can be

quantified, we generate ν iid observations of ξ̃ T , ξ̃ T,i, i = 1, . . . , ν. To form each

ξ̃ T,i, observations of ξ̃t are sequentially drawn from the conditional distribution

Ft(ξt|ξt−1,i) for t = 2, . . . , T . Then, the sample mean estimator is

Ūν =
1
ν

ν∑
i=1

fT (x̂T (ξ̃ T,i), ξ̃ T,i). (3.11)

Let S2
u be the standard sample variance estimator of var fT (x̂T (ξ̃ T), ξ̃ T). Since

EfT (x̂T (ξ̃ T), ξ̃ T) = EŪν ,

P

{
EfT (x̂T (ξ̃ T), ξ̃ T) ≤ Ūν + tν−1,α

Su√
ν

}
= P

{√
ν(Ūν − EŪν)

Su
≥ −tν−1,α

}
,

where tν−1,α denotes the (1−α)-level quantile of a Student’s t random variable with

ν − 1 degrees of freedom. By the central limit theorem for iid random variables,

lim
ν→∞

P

{√
ν(Ūν − EŪν)

Su
≥ −tν−1,α

}
= 1− α.

Hence, for sufficiently large ν, we infer an approximate one-sided 100 · (1 − α)%

confidence interval for EfT (x̂T (ξ̃ T), ξ̃ T) of the form (−∞, Ūν + tν−1,α
Su√

ν
].

56

3.4.2 Tree-based Estimator

The scenario-based estimation procedure of the previous section generated ν

iid observations of ξ̃T . The estimation procedure in this section is instead based on

generating ν iid sample scenario trees. Later, in Section 3.5, we turn to estimating a

lower bound on z∗. That lower bound is based on sample scenario trees and can be

combined with either the scenario- or tree-based estimators to establish the quality

of a solution policy. As it will become apparent, the tree-based estimator in this

section can be coupled with the lower-bound estimator in a manner not possible for

the scenario-based estimator.

Let Γ be a sample scenario tree generated according to the conditional sam-

pling framework of Section 3.2, and let nT be the number of leaf nodes. Then, Γ may

be viewed as a collection of scenarios, ξ̃ T,j , j = 1, . . . , nT , which are identically dis-

tributed but are not independent. An unbiased point estimate of EfT (x̂T (ξ̃ T), ξ̃ T)

is given by

W =
1
nT

nT∑
j=1

fT (x̂T (ξT,j), ξT,j). (3.12)

The numerical evaluation of fT (x̂T (ξT,j), ξT,j), j = 1, . . . , nT , under policies P1 and

P2 occurs in an identical manner to that described in Section 3.4.1.

To quantify the error associated with the point estimate in (3.12), we gen-

erate ν iid sample trees, Γi, i = 1, . . . , ν. Each of these iid trees is constructed

according to the procedure described in Section 3.2 (again, under either the common-

samples or independent-samples procedure). The number of scenarios in each Γi is

again nT , and the scenarios of Γi are ξT,ij , j = 1, . . . , nT . The point estimate under

Γi is

W i =
1
nT

nT∑
j=1

fT (x̂T (ξ̃ T,ij), ξ̃ T,ij), (3.13)

57

i = 1, . . . , ν, and W i, i = 1, . . . , ν, are iid by construction. So, the tree-based point

estimate of EfT (x̂T (ξ̃ T), ξ̃ T) is

W̄ν =
1
ν

ν∑
i=1

W i.

Let S2
w be the standard sample variance estimator of varW . Because EW̄ν = EW =

EfT (x̂T (ξ̃ T), ξ̃ T), a confidence interval under the tree-based approach is constructed

in a similar manner as in the scenario-based case, i.e., (−∞, W̄ν + tν−1,α
Sw√

ν
] is an

approximate one-sided 100 · (1− α)% confidence interval for EfT (x̂T (ξ̃ T), ξ̃ T).

3.5 Lower Bound Estimation

In this section, we develop a statistical lower bound for z∗, the optimal value

of (2.13)-(2.15), and describe how to use this estimator to construct a confidence

interval. Again, the motivation for forming such a confidence interval is to estab-

lish the quality of a feasible policy, including those generated by P1 or P2. The

optimality gap of a policy with expected cost EfT (x̂T (ξ̃ T), ξ̃ T) is defined to be

EfT (x̂T (ξ̃ T), ξ̃ T)− z∗.

The lower bound estimator requires little structure on the underlying prob-

lem; therefore, we derive the lower bound using the notation of Section 2.3. First,

we state the lower bound result for (2.13) when T = 2 in Lemma 3. In this case,

(2.13) becomes a two-stage stochastic program with recourse, and the approximating

problem, (3.2)-(3.4), reduces to

ẑ∗ = min
x1

1
n2

n2∑
i=1

f1(x1, ξ̃
i
2), (3.14)

where

f1(x1, ξi
2) = min

x2

f2(x1, x2, ξ
i
2),

for i = 1, . . . , n2.

58

Lemma 3. (Mak, Morton and Wood [91]) Let z∗ be defined as in program (2.13)

when T = 2 and ẑ∗ be defined as in program (3.14). If ξ̃12 , . . . , ξ̃
n2
2 satisfy

E[f1(x1, ξ̃2)|ξ1] = E
[1
n2

n2∑
i=1

f1(x1, ξ̃2,i)|ξ1
]
,

i.e., condition (3.1) with t = 1, then

z∗ ≥ Eẑ∗.

Proof. The lower bound is obtained by exchanging the order of expectation and

optimization:

z∗ = min
x1

E[f1(x1, ξ̃
2)|ξ1]

= min
x1

E
[1
n2

n2∑
i=1

f1(x1, ξ̃
2,i)|ξ1

]
≥ E

[
min
x1

1
n2

n2∑
i=1

f1(x1, ξ̃2,i)|ξ1
]

= Eẑ∗.

Theorem 4. Assume that (A1)-(A4) hold and let z∗ and ẑ∗ be defined as in (2.13)

and (3.2), respectively. If the sample tree Γ(ξ1) is constructed so that the observa-

tions of each descendant satisfy the unbiasedness condition (3.1) for t = 1, . . . , T−1,

then

z∗ ≥ Eẑ∗,

i.e., the estimator ẑ∗ of z∗ has a negative bias.

Proof. It suffices to show, for a given ξ̃τ = ξτ , that

fτ−1(xτ−1, ξτ) ≥ E[min
xτ

1
n(τ)

∑
i∈Dτ

f̂τ (xτ−1, xτ , ξ̃
τ ,Γ(ξ̃τ+1,i))|ξτ], (3.15)

59

for τ = 1, ..., T − 1. Recursion (2.14) with t = 0 is f0(x0, ξ1) ≡ z∗; hence, (3.15) is

equivalent to the statement z∗ ≥ Eẑ∗ when τ = 1. We proceed by induction, begin-

ning with the base case, τ = T−1. For a given ξ̃ T−1 = ξT−1, fT−2(xT−2, ξT−1) is the

optimal objective value of a two-stage stochastic program with recourse; therefore,

by Lemma 3 and (3.4), the following relationship holds.

fT−2(xT−2, ξT−1) ≥ E[min
xT−1

1
n(T − 1)

∑
i∈DT−1

fT−1(xT−2, xT−1, ξ̃
T−1, ξ̃i

T)|ξT−1]

= E[min
xT−1

1
n(T − 1)

∑
i∈DT−1

f̂T−1(xT−1, ξ̃T−1,Γ(ξ̃ T,i))|ξT−1],

where ξ̃ T,i = (ξT−1, ξ̃i
T). For the inductive part, we show that if (3.15) holds for

τ = t then (3.15) holds for τ = t− 1. For τ = t− 1, we express the left-hand side of

(3.15) by using (2.14) for a particular descendant, say ξt−1,k = (ξt−2, ξk
t−1), k ∈ Dt−2,

of node ξt−2 as

ft−2(xt−2, ξt−1,k)

= min
xt−1

E[ft−1(xt−2, xt−1, ξ̃
t)|ξt−1,k]

= min
xt−1

E[
1

n(t− 1, k)

∑
i∈Dk

t−1

ft−1(xt−2, xt−1, ξ̃
t,i)|ξt−1,k]

≥ min
xt−1

E[
1

n(t− 1, k)

∑
i∈Dk

t−1

E[min
xt

1
n(t, i)

∑
j∈Di

t

f̂t(xt, ξ̃t,i,Γ(ξ̃t+1,j))|ξt,i]|ξt−1,k].

(3.16)

We use the unbiasedness condition (3.1) and the fact that ξt,i = (ξt−1,k, ξi
t) to

obtain the second equality, and the inductive hypothesis that (3.15) holds for τ = t

to obtain the last inequality.

The outer conditional expectation in the last line of (3.16) is taken with

respect to all immediate descendant nodes ξ̃t,i, i ∈ Dk
t−1 of a given node ξ̃t−1,k =

ξt−1,k, while the inner expectation is with respect to all the subtrees Γ(ξ̃t+1,j), j ∈

60

Di
t, which are rooted at each of the descendants of a given node ξ̃t,i = ξt,i. By

combining these expectations and using recursion (3.3), we can write (3.16) as

ft−2(xt−2, ξt−1,k)

≥ min
xt−1

E[
1

n(t− 1, k)

∑
i∈Dk

t−1

f̂t−1(xt−2, xt−1, ξ̃
t−1,k,Γ(ξ̃t,i))|ξt−1,k]

≥ E[min
xt−1

1
n(t− 1, k)

∑
i∈Dk

t−1

f̂t−1(xt−2, xt−1, ξ̃
t−1,k,Γ(ξ̃t,i))|ξt−1,k],

where the conditional expectation is with respect to all the subtrees Γ(ξ̃t,i), i ∈ Dk
t−1,

each of which roots at the immediate descendant of a given node ξ̃t−1,k. Since the

descendant node ξ̃t−1,k of node ξ̃t−2 is arbitrarily chosen, the inequality

ft−2(xt−2, ξt−1) ≥ E[min
xt−1

1
n(t− 1)

∑
i∈Dt−1

f̂t−1(xt−2, xt−1, ξ̃
t−1,Γ(ξ̃t,i))|ξt−1]

holds for any node in stage t− 1.

In summary, ẑ∗ is the optimal value of the approximating problem (3.2)-

(3.4), and z∗ is the optimal value of the original problem (2.13)-(2.15). Theorem 4

states that if the sample scenario tree associated with (3.2)-(3.4) is constructed so

that its observations satisfy the unbiasedness condition (3.1) then ẑ∗ is an estimator

of z∗ with negative bias, i.e., Eẑ∗ ≤ z∗. In Section 3.6, we show how to use this

result in conjunction with a given feasible policy to construct a confidence interval

on its optimality gap.

To assess the error associated with estimator z∗ we generate multiple repli-

cations of ẑ∗. In particular, we construct iid sample trees, Γ1, . . . ,Γν , according to

the procedure explained in Section 3.2, and then form the standard sample mean

estimator as

L̄ν =
1
ν

ν∑
i=1

ẑ∗,i,

61

where, for i = 1, . . . , ν,

ẑ∗,i = min
x1

1
n2

n2∑
j=1

f̂1(x1,Γi(ξ̃2,j)).

Let S2
l be the standard sample variance estimator of var ẑ∗. Since z∗ ≥ Eẑ∗ = EL̄ν ,

P

{
z∗ ≥ L̄ν − tν−1,α

Sl√
ν

}
≥ P

{
EL̄ν ≥ L̄ν − tν−1,α

Sl√
ν

}
= P

{√
ν(L̄ν − EL̄ν)

Sl
≤ tν−1,α

}
.

By the central limit theorem for iid random variables, we infer, for sufficiently large

ν, that [L̄(ν)− tν−1,α
Sl√
ν
,∞) is an approximate one-sided 100 · (1− α)% confidence

interval for z∗.

3.6 Confidence Interval Construction

Confidence intervals on the optimality gap can be constructed in a number

of ways depending on how the policy cost estimators developed in Section 3.4.1 and

3.4.2 and the lower bound estimator developed in Section 3.5 are used together. We

suggest two approaches: separate and gap estimators.

3.6.1 Separate Estimator

Our first approach to form the confidence interval is by using a policy cost es-

timator and a lower bound estimator that are separately estimated. We have a choice

of combining either the scenario-based or the tree-based estimator with the lower

bound estimator. We begin with the case of the tree-based estimator, and denote

the sampling errors associated with the tree-based estimator and the lower bound

estimator by ε̃w = tν−1,α
Sw√

ν
and ε̃l = tν−1,α

Sl√
ν
, respectively. From their confidence

intervals, the probability of the events {L̄ν−ε̃l ≤ Eẑ∗} and {EfT (x̂T , ξ̃ T) ≤ W̄ν+ε̃w}

62

are (individually) approximately 1− α. So, if the two events are independent then

P
{
L̄ν − ε̃l ≤ Eẑ∗, EfT (x̂T , ξ̃ T) ≤ W̄ν + ε̃w

}
≈ (1− α)2, (3.17)

and if they are dependent, then

P
{
L̄ν − ε̃l ≤ Eẑ∗, EfT (x̂T , ξ̃ T) ≤ W̄ν + ε̃w

}
≈ (1− 2α). (3.18)

The dependent case follows from the Boole-Bonferroni inequality (see, e.g., Law

and Kelton [86]), and can arise, for instance, if policy x̂T is constructed from the

solutions of (3.2)-(3.4), which are used in forming the lower bound estimator. P1

and P2 generate policies without using such techniques, and so we focus on the

former case. We know that Eẑ∗ ≤ z∗ ≤ EfT (x̂T , ξ̃ T), and so

P
{
L̄ν − ε̃l ≤ Eẑ∗, EfT (x̂T , ξ̃ T) ≤ W̄ν + ε̃w

}
≤ P

{
(W̄ν − L̄ν)+ + ε̃l + ε̃w ≥ EfT (x̂T , ξ̃ T)− z∗

}
,

where (·)+ = max{· , 0}. From this, we can infer that [0, (W̄ν − L̄ν)+ + ε̃l + ε̃w] is an

approximate confidence interval at level (1−α)2 level for the independent case. The

scenario-based upper bound estimator can also be combined with the lower bound

estimator to form a confidence interval on the optimality gap in a similar manner.

To do so, we just replace W̄ν and ε̃w with Ūν and ε̃u = tν−1,α
Su√

ν
, respectively, in the

development above.

3.6.2 Gap Estimator

A natural way to form the confidence interval on the optimality gap is to

combine the tree-based and lower bound estimator that are formed through the same

set of sample trees. In simulation, this approach is referred to as using the common

random numbers and is used to reduce variance (see, e.g., Law and Kelton [86]).

63

Interstage Average size of stage t LPProblems
indep.

T nT Rows Columns Non-zeros
STFOR yes 7 512 18 17 35
DVA yes 4 1.4× 10331 104 446 875
WATSON no 10 512 34 60 113

Table 3.1: The characteristics of three test problems used in the computational
experiment.

We define a gap estimator for a given sample tree, Γ, by

G = W − ẑ∗.

Note that G ≥ 0, wp1, and

EG = EfT (x̂T , ξ̃ T)− Eẑ∗ ≥ EfT (x̂T , ξ̃ T)− z∗ ≥ 0.

Thus, we can form the confidence interval on the optimality gap by generating sam-

ple trees, Γi, i = 1, . . . , ν, and estimate EG by the standard sample mean estimator

given by

Ḡν =
1
ν

ν∑
i=1

Gi,

where Gi = W i− ẑ∗,i is formed by using Γi. Let S2
g be the standard sample variance

estimator of varG. Again, for sufficiently large ν, we can infer from the central limit

theorem for iid random variables that [0, Ḡν + ε̃g] is an approximate (1−α) · 100 %

confidence interval for EfT (x̂T , ξ̃ T)− z∗, where ε̃g = tν−1,α
Sg√

ν
.

3.7 Computational Results

We present computational results of the proposed procedures on three test

problems from the literature; all three are multi-stage stochastic linear programs.

The characteristics of the test problems are given in Table 3.1. The first prob-

64

lem, STFOR, is a stochastic forest harvesting model from Gassmann [56]. The

second problem, DVA, is a variation of the dynamic vehicle allocation model of

Chueng and Powell [29], and is built on a network flow model with side constraints.

Donohue [39] adapts the original model to allow the demand to be backlogged and

the cost to be stochastic, and provides a modified model-generation procedure in

which the problem’s parameters and the distribution of the random vector are ran-

domly generated. We use Donohue’s procedures to create an instance of DVA. For

ease of solution, we relax the integrality requirement. The third problem, WAT-

SON, is an instance of the asset-liability management model developed by Demp-

ster [36]. Unlike STFOR and DVA, WATSON does not have interstage indepen-

dence. A collection of WATSON test problems in SMPS format [14, 58] is available

at www-cfr.jims.cam.ac.uk/research/stprog.html. Two scenario files (SMPS

stoch file) are provided for each instance of WATSON; one is constructed from an

independent scenario generation method, and the other from the conditional sce-

nario generation method. Both methods generate a scenario tree that is interstage

dependent. Description of these methods are provided at the web address above.

We use an independent-scenario version of WATSON because the earlier computa-

tional results (also available at the web address above) show that its expected value

of perfect information is larger than that of the conditional-scenario version.

Although the 512-scenario STFOR and WATSON problems can be solved to

optimality with the multi-stage L-shaped method, we apply P1 and P2 to generate

feasible policies in order to verify our procedures. In addition, we choose to use

STFOR and WATSON with 512 scenarios in our computational experiments so

that we can asymptotically test our procedures, P1 and P2. So, for STFOR and

WATSON, we construct sample trees with the same 512 scenarios as those in the

underlying scenario tree, but assign probability weight of each node to an empirical

65

one obtained from sampling. In this way, we can increase the sample size as large

as we would like without increasing the computational effort needed to solve the

approximating problem.

Balanced and uniform sample trees are used through out our testing, i.e.,

trees which have the same number of descendants at every node. We adopt the

notation in Consigli et al. [31] to denote the tree structure, e.g., 46 denotes a 7-stage

scenario tree in which every node has four descendants. In addition, the letter “c” or

“i” is appended to refer to the common- and independent-samples methods (Section

3.2), respectively. All computational results in this chapter are performed on a Dell

Precision 530 (two 1.8 GHz processors) with 1GB of memory running SuSE Linux

7.3 operating system. The multi-stage L-shaped method is implemented with C

programming language and CPLEX 7.5 callable library; all are compiled by GCC

2.95.3. Throughout our experiment, we only use one processor.

Table 3.2 reports computational results for STFOR under policy generation

method P1, using separate estimators (Section 3.6.1) for the tree-based policy-cost

estimator and the lower bound estimator. Column (1) indicates the size of the

scenario tree Γc, either 46c or 106c, used in forming the policy. The size and type

of the sample trees Γi, i = 1, . . . , 30, used in evaluating policy quality are given in

column (2). The confidence intervals on the optimality gap are specified in column

(6). There three sources of errors contributing to the width of the confidence interval:

(i) the bias of the lower bound estimator, (ii) the suboptimality of the policy, and

(iii) the sampling error. Estimates of each error are given in columns (3), (4), and

(5), respectively. We can compute estimates for (i) and (ii) because we can solve

STFOR exactly for z∗. Note that the estimate of (ii) in the first three rows of Table

3.2, when the size of Γc is 106c, is negative, i.e., W̄30 is smaller than z∗. This is

because the small-sized evaluation trees Γi (26c, 26i and 46c) have a large sampling

66

errors relative to EW̄30 − z∗, which is small because the large policy-generation

tree (106c) yields a near-optimal policy. Column (7) gives the confidence interval

width as a percentage of z∗. Column (8) gives the CPU time in seconds for the

computation of each confidence interval, including time required to generate the

policy.

In Table 3.2, three independent random number streams are used for: (i)

Γc, (ii) Γi, i = 1, . . . , 30, used to compute W̄30, and (iii) Γi, i = 1, . . . , 30, used to

compute L̄30. The same random number stream is used to compute L̄30 when the

size of Γc is 46c and 106c; therefore, the bias results in the top and bottom half of

Table 3.2 are identical. Similarly, the same set of trees Γi, i = 1, . . . , 30, are used

to compute W̄30 when the size of Γc is 46c and 106c. So, the smaller values in the

bottom half of the table are primarily due to increased quality of the policy due to

the larger policy-generation tree.

Table 3.3 lists similar numerical results to Table 3.2, but the confidence

intervals are constructed via gap estimators (Section 3.6.2), i.e., the same set of

trees, Γi, i = 1, . . . , 30, are used for both L̄30 and W̄30. The random number streams

to generate Γc and Γi, i = 1, . . . , 30 for Table 3.3 are the same as the ones used for

Γc and W̄30 in Table 3.2. The gap point estimate Ḡ30 may be obtained by adding

columns (3) and (4) (see Section 3.6.2). Column (9) in Table 3.3, denoted “VR”, is

computed by (ε̃w+ε̃l
ε̃g

)2, where ε̃w + ε̃l is from Table 3.2 and ε̃g from Table 3.3. This

ratio indicates the approximate number of times that ν must increase in Table 3.2

to have the sampling errors in Table 3.2 and 3.3 be in the same order of magnitude.

The CPU times in Table 3.3 are consistently smaller than those in Table 3.2.

From Table 3.2 and 3.3, we observe that the quality of feasible policies

generated by P1 improves as the sample size of Γc increases. The bias in column (3)

decreases as the size of Γi increases. Independent-samples method usually gives lower

67

Γc Γi z∗ − L̄30 W̄30 − z∗ ε̃w + ε̃l 95% CI % z∗ min.
(1) (2) (3) (4) (5) (6) (7) (8)

26c 781.42 650.92 2107.08 [0, 3539.42] 8.07 9
26i 672.53 417.63 1114.77 [0, 2204.93] 5.03 9
46c 719.96 262.67 985.38 [0, 1968.01] 4.49 10

46c 46i 384.01 784.77 580.22 [0, 1749.00] 3.99 10
106c 143.90 684.68 714.64 [0, 1543.22] 3.52 11
106i 233.42 496.40 260.52 [0, 990.34] 2.26 11
506c 116.53 564.09 266.40 [0, 947.02] 2.16 12
506i 41.22 540.17 155.08 [0, 736.47] 1.68 13
26c 781.42 -91.41 797.03 [0, 1487.04] 3.60 13
26i 672.53 -41.72 681.84 [0, 1249.65] 2.94 14
46c 719.96 -22.02 602.93 [0, 1300.87] 3.02 14

106c 46i 384.01 109.84 327.75 [0, 821.60] 1.87 15
106c 143.90 128.52 424.16 [0, 696.58] 1.59 15
106i 233.42 50.23 161.95 [0, 445.60] 1.02 16
506c 116.53 80.45 164.56 [0, 361.54] 0.82 16
506i 41.22 74.27 82.60 [0,198.09] 0.45 17

Table 3.2: Computational results for STFOR (z∗ = −43868.93): 95% confidence
interval on the optimality gap of feasible policies constructed by using P1. Each
confidence interval is formed by separate estimators of the policy cost and the lower
bound with ν = 30.

sampling error than the common-samples one (the only exceptions are row 106c/26

and 106c/506). The sampling error is further reduced when the gap estimator is used

due to the variance reduction effect of the common random numbers technique.

In further experiments, we use the scenario-based estimator for the expected

policy cost in place of tree-based estimators reported in Table 3.2. We do not report

these results in detail, but only indicate that obtaining a similar value of ε̃w can be

accomplished with a slightly smaller ν. However, the associated CPU time (again,

to achieve similar value of ε̃w) is substantially larger than that associated with the

tree-based estimator. This is due to an increased number of subproblems needed to

be solved to form the scenario-based policy-cost estimator.

68

Γc Γi z∗ − L̄30 W̄30 − z∗ ε̃g 95% CI % z∗ min. VR

(1) (2) (3) (4) (5) (6) (7) (8) (9)
26c 923.87 650.92 1430.17 [0, 3004.96] 6.85 8 2
26i 900.99 417.63 621.07 [0, 1939.69] 4.42 8 3
46c 640.90 262.67 406.36 [0, 1309.93] 2.99 9 6

46c 46i 308.05 784.77 287.56 [0, 1380.38] 3.15 9 4
106c 193.79 684.68 299.41 [0, 1177.88] 2.68 10 6
106i 136.83 496.40 90.94 [0, 724.17] 1.65 10 8
506c 6.17 564.09 100.08 [0, 670.34] 1.53 11 7
506i 12.81 540.17 60.23 [0, 613.21] 1.40 12 7
26c 923.87 -91.41 188.92 [0, 1021.38] 2.33 13 18
26i 900.99 -41.72 205.63 [0, 1064.90] 2.43 13 9
46c 640.90 -22.02 123.65 [0, 742.53] 1.69 14 24

106c 46i 308.05 109.84 60.73 [0, 478.62] 1.09 14 29
106c 193.79 128.52 82.48 [0, 404.79] 0.92 14 26
106i 136.83 50.23 26.87 [0, 213.93] 0.49 15 36
506c 6.17 80.45 17.66 [0, 104.28] 0.24 16 87
506i 12.81 74.27 19.36 [0, 106.44] 0.24 16 18

Table 3.3: Computational results for STFOR (z∗ = −43868.93): 95% confidence
intervals on the optimality gap of feasible policies constructed by using procedure
P1. Each confidence interval is formed by the gap estimator with ν = 30 (L̄30 and
W̄30 are based on the same 30 sample trees).

Based on the computational results for STFOR, we only use the gap estima-

tor in DVA and WATSON to construct 95% confidence intervals, and Γi, i = 1, . . . , ν,

are constructed by the independent-samples method. Table 3.4 reports computa-

tional results for DVA. Policy generation is again done by procedure P1 with the size

of Γc indicated in column (1) and that of Γi, i = 1, . . . , 30, in column (2). Columns

(3)-(5) contain the gap point estimate, sampling error, and resulting 95% confidence

interval. In DVA, we cannot separate the bias and quality of the policy in the gap

estimate since we cannot solve DVA exactly for z∗. The width of the confidence

interval as a percentage of the magnitude of the policy cost estimator is given in

69

column (6). The CPU time is given in minutes in column (7). Again, this CPU time

includes time required to generate policy. Due to the independent-samples method

of tree construction and the common random numbers effect in the gap estimator,

the sampling error in DVA is, again, relatively small compared to the magnitude

of the gap estimator. Overall, the computational results for DVA are qualitatively

similar to those of STFOR discussed previously.

Γc Γi Ḡ30 ε̃g 95% CI % |W̄30| min.
(1) (2) (3) (4) (5) (6) (7)

23i 8183.86 428.09 [0, 8611.95] 3.74 11
73c 43i 5821.40 270.06 [0, 6091.46] 2.66 39

73i 4668.25 121.69 [0, 4790.14] 2.08 178
103i 4202.30 107.88 [0, 4310.18] 1.88 542
23i 6826.28 545.25 [0, 7371.53] 3.18 30

153c 43i 4335.62 217.13 [0, 4552.75] 1.98 61
73i 3147.82 106.08 [0, 3253.90] 1.41 205
103i 2664.00 103.50 [0, 2767.50] 1.20 541

Table 3.4: Computational results for DVA: 95% confidence intervals on the opti-
mality gap of feasible policies constructed by using procedure P1. Each confidence
interval is formed by the tree-based gap estimator with ν = 30.

Table 3.5 gives computational results for the WATSON test problem, which

does not have interstage independence. Hence, we can only use P2 to form a policy.

One key issue in forming the policy is the size of the subtree Γr(ξt) constructed at

each node in each stage to generate x̂(ξt) to form a policy (see Section 3.3.2). In

Table 3.5, we construct Γr(ξt) such that it has the same number of leaf nodes for

all ξt, t = 1, . . . , T − 1, except for Γr(ξT). Two sizes of Γr(ξt) are used and these are

denoted “Method (A)” and “Method (B)” in Table 3.5 and Table 3.6. The structure

of subtree Γr(ξt) is given in Table 3.6. To read Table 3.6, for example, a subtree

Γr(ξ 8) rooted at a node in stage 8 has a constant number of descendants of 45 and 44

for a stage 8 and a stage 9 node, respectively, under method (A). The bias, sampling

70

error, and quality of the policy associated with WATSON computational results in

Table 3.5 are also qualitatively similar to those of STFOR and DVA.

Subtree size Γi z∗ − L̄30 W̄30 − z∗ ε̃g 95% CI % z∗ min.
(1) (2) (3) (4) (5) (6) (7) (8)

29i 309.86 70.66 53.45 [0, 433.97] 22.15 98
method 49i 241.60 -40.94 29.50 [0, 230.16] 11.75 142

(A) 109i 39.29 55.19 8.76 [0, 103.24] 5.27 183
509i 5.64 31.46 2.53 [0, 39.63] 2.02 185
29i 309.86 37.68 50.37 [0, 397.91] 20.31 120

method 49i 241.60 -63.11 23.41 [0, 201.90] 10.30 165
(B) 109i 39.29 49.69 9.00 [0, 97.98] 5.00 207

509i 5.64 25.03 2.13 [0, 32.80] 1.67 208

Table 3.5: Computational results for WATSON (z∗ = −1959.64): 95% confidence
intervals on the optimality gap of feasible policies constructed by using procedure
P2. Each confidence interval is formed by the gap estimator with ν = 30, i.e., L̄30

and W̄30 are based on the same 30 sample trees. The sample size for subtrees in P2

is determined by (A) and (B), whose details are given in Table 3.6.

71

Stage of the subtree Number of samples in each stage
root node method (A) method (B)

1 4, . . . , 4 10, . . . , 10
2 42, 4, . . . , 4 102, 10, . . . , 10
3 43, 4, . . . , 4 103, 10, . . . , 10
4 43, 42, 4, . . . , 4 103, 102, 10, . . . , 10
5 43, 43, 4, . . . , 4 103, 103, 10, . . . , 10
6 43, 43, 42, 4 103, 103, 102, 10
7 43, 43, 43 103, 103, 103

8 45, 44 105, 104

9 46 106

Table 3.6: Sample size used for generating subtrees in procedure P2 for WATSON
test problem.

72

Chapter 4

Bias Reduction Techniques

4.1 Introduction

In Chapter 3, we propose two procedures to generate feasible policies for

two classes of multi-stage stochastic programs. We use a lower bound estimator (of

a minimization problem) to establish the quality of these policies by constructing

approximate confidence intervals on their optimality gaps. In our procedures, the

width of the confidence interval on the optimality gap is determined by three factors:

(i) the quality of the policy, (ii) the bias of the lower bound estimator, and (iii)

the sampling error. It is desirable that the contribution from (ii) and (iii) to the

confidence interval’s width be as small as possible so that when a given feasible policy

is tested, we can effectively determine its quality by the width of the confidence

interval. From our computational experiments on three test problems from the

literature in Chapter 3, we observe that the contribution of the sampling error to

the width is relatively small, especially when we construct the confidence interval

using the variance reduction technique known as common random numbers. In

addition, there are other well-known variance reduction techniques that have been

successfully applied in Monte Carlo sampling-based methods for stochastic programs

to control the sampling error. We give a literature review of such variance reduction

techniques in Section 2.4.2.

The contribution from the bias, on the other hand, is relatively large in

our three test problems in Chapter 3, and can be, in general, large for multi-stage

73

stochastic programs. This is true in the two-stage setting as shown by the nu-

merical results reported in [87, 91, 95, 120]. Although the bias, under appropriate

assumptions, tends to zero as the number of scenarios in the sample tree grows,

the computational effort required to solve a multi-stage approximating problem in-

creases exponentially with tree size. As a result, we are motivated to try to reduce

the bias associated with the lower bound estimator for a given computational re-

source. The motivation is analogous to that of developing an effective variance

reduction procedure for a limited computational resource. Effective variance and

bias reduction will result in a confidence interval whose width more closely reflects

the quality of the policy being tested. Throughout this chapter, we will refer to the

lower-bound estimator (of a minimization problem) developed in Chapter 3 as the

optimistic-bound estimator to avoid confusion when we develop our bias reduction

procedure for an American-style option pricing problem, which is generally formu-

lated as a maximization problem. In such a situation, the bias is instead associated

with an upper-bound estimator.

In this chapter, we attempt to reduce bias in multi-stage stochastic opti-

mization problems by the way we construct sample scenario trees. In Chapter 3, we

use uniform sample trees in our computation, i.e., sample trees that have the same

number of descendants at every non-leaf node. The procedure we propose generates

sample trees with varying number of descendants, depending on an estimate of each

node’s contribution to the total bias. The resulting non-uniform tree is designed to

reduce the bias of the optimistic-bound estimator associated with that tree. Our

method for estimating bias at a node and allocating samples to reduce this bias

extends earlier work of Korapaty [85]. We give a literature review on scenario tree

approximation methods in Section 2.4.2.

We begin by characterizing the bias of the optimistic-bound estimator for a

74

relatively simple multi-stage stochastic optimization problem known as an American-

style option pricing problem. In this setting, the optimisic bound estimator can be

computed by applying dynamic programming (DP) to solve an approximating prob-

lem defined on a sample tree as proposed by Broadie and Glasserman [18]. The main

drawback of their method is that the computational effort grows exponentially with

the number of exercise opportunities; thus, they propose a stochastic mesh method

[19, 20] in which the computational effort is linear both in the number of exercise op-

portunities and DP state variables. Nonetheless, we adopt the DP-based approach

of Broadie and Glasserman [18] for our research since it gives us insights on bias

characterization that can be useful in handling more complex multi-stage stochastic

programs.

Instead of using a sample tree in the DP-based procedure, we use a “state-

based” sample tree, which based on the notion of DP state variables. This is ap-

propriate in our development because we derive a bias estimate at all (discretized)

values of the DP state variables. We develop this procedure in detail in Section 4.2.

In Section 4.3, we extend our results to a stochastic lot-sizing problem in which

the optimistic-bound estimator is also computed using DP and state-based sample

trees. Computational results on American-style option pricing problem, and the

stochastic lot-sizing problem are reported in Section 4.4.

4.2 Reducing Bias in Pricing American-style Options

4.2.1 Problem Statement

A call option on an asset gives its holder the right to buy the asset at a

set price K called the strike price. The asset price is a stochastic process denoted

{S̃t}Tt=0. If the asset price is higher than the strike price at the time t of exercise,

the holder makes a profit of St−K. If the asset price is lower than the strike price,

75

the holder does not need to exercise the option, and the option value is zero. The

payoff of the call option is then (St−K)+ where x+ ≡ max{0, x}. A European-style

option allows the holder to exercise only at the time of maturity T ; thus, its payoff

is just (ST −K)+, while an American-style option allows exercise any time before

maturity. The price of an American call option is given by

C = max
τ≤T

E[e−rτ (S̃τ −K)+], (4.1)

where r is the riskless rate of interest and E is the expectation with respect to the so-

called risk-neutral measure. The optimization is carried out over all stopping times

τ that are less than T . This is a continuous-time optimization problem, but we will

instead consider the case when there are a finite number of exercise opportunities,

i.e., t ∈ {t0 = 0, t1, . . . , td = T}, where t0 < t1 < · · · < td. The discrete-time problem

can be viewed either as an approximation of the continuous-time pricing problem

or as its own problem known as a Bermudan option. In addition, under certain

assumptions regarding dividend payments, the continuous-time problem simplifies

to a discrete-time problem. See Broadie and Glasserman [18, §4.2] for more details

and for other types of option pricing problems that have a finite number of exercise

opportunities. For notational simplicity, we sometimes index with i, instead of ti,

a variable associated with stage ti. For example, the asset price at stage ti can be

written as either Si or Sti .

By assuming that the asset price process {S̃t}Tt=0 is Markovian, i.e., the

future evolution only depends on the current asset price St but not on the past

values, {St′}t−1
t′=0, we can express the discrete-time problem using DP recursions

with the asset price as a state variable as follows. Given that the asset price S̃t = St

at stage t, the decision to be made is either to exercise or to continue to hold the

option in order to maximize the conditional expected option value at stage t. Let

76

ft(St) denote the option value at time t given that the asset price is St, i.e.,

ft(St) = max {ht(St), gt(St)} , (4.2)

where gt(St) is the expected continuation value of the option given by

gt(St) = E[e−rt+1ft+1(S̃t+1)|S̃t = St], (4.3)

and ht(St) is the payoff from immediate exercise given by

ht(St) = (St −K)+. (4.4)

The terminal value is fT (ST) = hT (ST). Under risk-free interest rate r, the dis-

count factor between stage ti and ti+1 is e−rt+1 ≡ e−r(ti+1−ti). For a given initial

(deterministic) asset price S0, the pricing problem is to find f0(S0).

The expectation in (4.3) is taken with respect to the price process {S̃t}Tt=1,

which is governed by a risk-neutral measure derived by applying no-arbitrage argu-

ments to a geometric Brownian motion price process. For S̃ti = Sti , the resulting

risk-neutral price process is given by

S̃ti = Sti−1 exp((r − δ − σ2/2)(ti − ti−1) + σ
√
ti − ti−1 Z̃ti), (4.5)

for i = 1, . . . , d, where Z̃i is a standard normal random variable, δ is the dividend

rate, and σ > 0 is the volatility. The price process in (4.5) is Markovian.

The problem as described is a well-solved problem. Geske and Jonhnson [60]

give an analytical solution to this discrete-time pricing problem for a single under-

lying asset. Our goal in using this problem is to gain insight on how to construct

sample scenario trees in order to reduce bias, in the hope that this insight can be

generalized to more complex problems. That the true value is known for pricing

Bermudan options helps in assessing the ability of our procedures to accomplish our

goal in a simple setting.

77

Broadie and Glasserman [18] propose a sampling-based methodology to con-

struct a confidence interval on the optimality gap of an exercise policy for this

discrete-time pricing problem. In their approach, a lower bound on f0(S0) is ob-

tained via the suboptimality of a particular exercise policy. After repeatedly simu-

lating this exercise policy, a lower bound estimator is formed by the standard sample

mean of the simulated option price. The optimistic-bound estimator is formed by

the standard sample mean of the option price computed by applying DP on scenario

trees generated via Monte Carlo sampling. Then, a confidence interval on the opti-

mality gap is constructed from the lower and optimistic-bound estimators. Uniform

sample trees are used in [18] to compute the optimistic-bound estimator in much

the same way as in our procedure developed in Chapter 3.

In Section 4.2.2, we describe the underlying DP solution procedure applied

to a state-based sample scenario tree (instead of the standard sample scenario trees

used in Chapter 3, and in [18]). In an attempt to reduce the optimistic-bound

estimator’s bias, we derive in Section 4.2.3 an analytical approximation for the bias

that arises when using sample scenario trees, and use the result to allocate sample

sizes to build a non-uniform sample scenario tree in Section 4.2.4.

4.2.2 Dynamic Programming Solution Procedure

Broadie and Glasserman [18] construct sample trees in the same manner

that we describe in Section 3.2. In particular, let Ft(St|St−1) be the conditional

distribution governing S̃t. Using the scenario tree notation of Section 2.3.2, we

generate n(0) iid observations of S̃1 from F1(S1|S0) at stage t0. Then, we form

descendants of each stage t1 observation Si
1, i = 1, . . . , n1 = n(0), by drawing n(1, i)

conditionally iid observations of S̃2 from F2(S2|Si
1), i = 1, . . . , n1. The total number

of stage 2 nodes is n2 =
∑n1

i=1 n(1, i). The process continues until all stage T

78

observations are generated. The computational effort of solving a DP on this type

of sample tree grows exponentially with the number of exercise opportunities, but

not with the number of assets or state variables.

Instead of using the above approach, we generate what we call a state-

based sample tree, which is built on a discretized grid of DP state variables. In

the American-style option pricing problem, we use the asset price as the state vari-

able. The support of S̃ti in (4.5) is discretized as follows: we replace Z̃ti with a

truncated standard normal random variable with support [−Φ−1(c),Φ−1(c)], where

Φ is the cumulative distribution function of the standard normal (in our compu-

tation, c takes a value of 5). This induces a bounded support for S̃ti . Let mt be

the number of stage t cells. We partition the (bounded) support of S̃ti into cells

[Gj
ti
, Gj

ti
+ ∆S], j = 1, . . . ,mti .

Given this discretization, a state-based tree is constructed as follows. For

stage t0, generate n(0) iid observations of S̃1 from F1(S1|S0). For stage t1 cell i,

generate n(1, i) conditionally iid observations of S̃2 from F2(S2|S̃1 = Gi
1 + ∆S), i =

1, . . . ,m1. Then, continue until the stage T observation is generated. Typically,

one would use the midpoint of a cell to condition on in generating observations

for the next stage. We instead condition on Gi
1 + ∆S from cell [Gi

1, G
i
1 + ∆S]

because this ensures that the resulting estimator maintains its optimistic (high)

bias. (As in Chapter 3, this is key to our constructing confidence intervals on

solution quality.) For the same reason, we use Gi
1 + ∆S as the “representation

point” from cell [Gi
1, G

i
1 + ∆S] when evaluating gt and ht (see (4.3) and (4.4)) in

the DP solution of the state-based tree. Clearly, the magnitude of the error induced

depends on grid size ∆S and we investigate this issue in our computational results

of Section 4.4.1. The computational effort of solving a DP on such a state-based

tree grows exponentially with the number of states, but linearly with the number of

79

exercise opportunities.

Similar to the construction of a sample scenario tree in Section 3.2, we need

mt−1 sets of iid standard normal observations of S̃t from Ft(St|S̃t−1 = Gt−1 +

∆S), t = 2, . . . , T , to form a tree. As described in Section 3.2, we can use two

schemes: independent-samples and common-samples. In the independent-samples

scheme, each set of n(t − 1, i) iid standard normal observations are generated in-

dependently for i = 1, . . . ,mt−1, t = 2, . . . , T . In the common-samples scheme, we

generate one set of n̄(t − 1) iid standard normal observations where n̄(t − 1) =

max{n(t − 1, 1), . . . , n(t − 1,mt−1)}. Then, for each cell i = 1, . . . ,mt−1, we use

the first n(t − 1, i) of n̄(t − 1) standard normal observations to compute Sj
t , j =

1, . . . , n(t − 1, i), t = 2, . . . , T . We investigate the effect of these two sampling

schemes on the bias and variance of the optimistic-bound estimator in Section 4.4.1.

Although we describe our tree building procedure in terms of sample state-

based trees, this procedure can be directly applied to both ordinary and state-based

sample trees. Therefore, in what follows we use the state variable S̃t to refer to

the node and cell interchangeably. In particular, the node at which S̃t = St on the

ordinary sample tree corresponds to the cell in the state-based sample tree such that

S̃t ∈ [Gt, Gt + ∆S].

4.2.3 Bias Characterization

Consider a node S̃t = St, and replace gt(St) in (4.2) and (4.3) with a sample

mean estimator. Then, we can form

f ′t(St) = max
{
ht(St),

1
n(t)

∑
i∈Dt

e−rt+1ft+1(S̃i
t+1)

}
, (4.6)

where Dt is the index set of the descendants, S̃i
t+1, i = 1, . . . , n(t), of St (see the

description of scenario tree notation in Section 2.3.2). These descendants are iid

80

observations of S̃t+1 drawn from Ft+1(St+1|St). Of course, it is not possible to

evaluate ft+1(S̃t+1) exactly for S̃t+1 = St+1; instead, it must be estimated. Doing

so, we are lead to recursively define, for t = 0, . . . , T − 1,

f̂t(St) = max
{
ht(St),

1
n(t)

∑
i∈Dt

e−rt+1 f̂t+1(S̃i
t+1)

}
, (4.7)

and f̂T (Si
T) = fT (Si

T),∀i. This allows us to recursively compute f̂0(S0) which is

the optimistic-bound estimator of f0(S0). Broadie and Glasserman [18] show that

f̂0(S0) is biased high and is consistent under the assumption that, for some q > 1,

E|ht(St)|q <∞ for all t, and all nodes in the sample tree have the same number of

branches, i.e., these results do not require that {S̃t}Tt=1 is governed by (4.5).

The bias at node S̃t = St is given by

βt(St) = Ef̂t(St)− ft(St), (4.8)

and depends on the sample subtree on which f̂t(St) is defined. The subtree depen-

dency of βt is identical to that of the optimistic-bound estimator in the case of a

multi-stage stochastic program with recourse described in Chapter 3. Ideally, we

want to obtain an analytical expression for βt(St), but it may not be possible due

to the nested expectation and optimization involved. Therefore, instead of dealing

directly with βt(St), we approximate βt(St) with

bt(St, n(t)) = Ef ′t(St)− ft(St) ≥ 0. (4.9)

This approximation ignores bias introduced in future periods by replacing f̂t+1(S̃i
t+1)

in (4.7) with ft+1(S̃i
t+1), but as we will see bt(St, n(t)) still yields a useful approxi-

mation of βt(St). Nonnegativity of bt follows directly from Lemma 3 in Chapter 3.

The expectations in (4.8) and (4.9) are conditional expectations on S̃t = St, and we

do not explicitly express their conditional parts for notational simplicity.

81

To evaluate bt(St, n(t)), we must solve an optimization problem that defines

ft(St) in (4.6), which requires the knowledge of the correct decision at the node S̃t =

St. Below, we show in Proposition 5 that bt(St, n(t)) can be expressed analytically

without an explicit solution of that optimization problem, i.e., we do not need to

know the correct decision at the node. This turns out to be a key step in formulating

an optimization problem for sample allocation described in Section 4.2.4.

Proposition 5. Let ft, gt and ht be defined in (4.2)-(4.4). Define f ′t(St) as in (4.6),

where S̃i
t+1, i = 1, . . . , n(t), are iid observations of S̃t+1 generated from Ft+1(St+1|St).

Let

Wt =
X̄t − µt(St)
σt(St)/

√
n(t)

,

where

X̄t =
1
n(t)

∑
i∈Dt

e−rt+1ft+1(S̃i
t+1),

µt(St) = E[e−rt+1ft+1(S̃1
t+1)|S̃t = St], and σ2

t (St) = var [e−rt+1ft+1(S̃1
t+1)|S̃t = St].

If the distribution function of Wt is symmetric, then bias approximation bt(St, n(t)),

given in (4.9), can be expressed as

bt(St, n(t)) =
σt(St)√
n(t)

Emax

{
−|ht(St)− µt(St)|

σt(St)/
√
n(t)

,Wt

}
. (4.10)

In addition, bt(St, ·) is convex on R+. If we further assume that Wt is a standard

normal with cumulative distribution function Φ, then

bt(St, n(t)) = −
∣∣ht(St)− µt(St)

∣∣ Φ
(
− |ht(St)− µt(St)|

σt(St)

√
n(t)

)
+

σt(St)√
2πn(t)

exp
(
− (ht(St)− µt(St))2

2σ2
t (St)

n(t)
)
. (4.11)

Proof. To simplify the notation, we suppress the dependence on St in the proof

82

(except for bt(St, n(t))). Using the definitions given in the hypotheses, we can write

Ef ′t = Emax
{
ht, X̄t

}
= µt + Emax

{
ht − µt, X̄t − µt

}
= µt +

σt√
n(t)

Emax
{ ht − µt

σt/
√
n(t)

,Wt

}
. (4.12)

The “max” in (4.12) represents the decision to hold or exercise and so we consider

these two cases. First, if ht ≥ µt, then the correct decision is to exercise. Thus,

ft = ht, and

bt(St, n(t)) = Ef ′t − ht

= µt − ht +
σt√
n(t)

Emax
{ ht − µt

σt/
√
n(t)

,Wt

}
. (4.13)

The second case is that ht < µt. In this case, ft = µt, and

bt(St, n(t)) = Ef ′t − µt

=
σt√
n(t)

Emax
{ ht − µt

σt/
√
n(t)

,Wt

}
=

σt√
n(t)

Emax
{
−

∣∣ht − µt

∣∣
σt/

√
n(t)

,Wt

}
. (4.14)

Consider the case when ht ≥ µt, and let a =
√
n(t)(ht − µt)/σt ≥ 0. From

83

(4.13),

bt(St, n(t)) = −|µt − ht|+
σt√
bt
Emax {a,Wt}

=

∞∫
−∞

−|µt − ht|φ(u)du+

a∫
−∞

(ht − µt)φ(u)du

+
σt√
n(t)

∞∫
a

uφ(u)du

=

∞∫
a

−|ht − µt|φ(u)du+
σt√
n(t)

∞∫
a

uφ(u)du

=

−a∫
−∞

−|ht − µt|φ(u)du+
σt√
n(t)

∞∫
−a

uφ(u)du (by symmetry)

=
σt√
n(t)

Emax

{
− |ht − µt|
σt/

√
n(t)

,Wt

}
. (4.15)

To show convexity of bt(St, ·), rewrite (4.15) as

bt(St, n(t)) = Emax
{
−

∣∣ht − µt

∣∣, X̄t − µt

}
.

Observe that X̄t is convex in n(t) and is the only element that depends on n(t).

Since the “max” function of a finite collection of convex functions is convex, and

the expectation of a convex function is also convex, we have that bt(St, ·) is convex

on R+.

If Wt is a standard normal random variable, we obtain (4.11) by carrying

out the integration in the last line of (4.15) using the standard normal density

function.

The symmetry of the distribution function of Wt is asymptotically justi-

fied since when n(t) grows large, by the central limit theorem we know that the

84

distribution function of Wt converges to that of the standard normal. Note that

bt(St, n(t)) is maximized when ht = µt; namely, the bias is high when the decision

either to hold or to exercise is not obvious. Under the normality assumption of Wt,

bt(St, n(t)) is an increasing function of σt since its first derivative with respect to σt

is non-negative.

In general, the true value of µt(St) and σt(St) in (4.10) and (4.11) are not

known and must be estimated. We denote b̂t(St, n(t)) the estimated bias approxi-

mation resulting from using estimates µ̂t(St) and σ̂t(St) in (4.10) and (4.11). The

impact of replacing µt and σt with estimators on the effectiveness of the tree building

procedure (described in Section 4.2.4) is numerically tested in Section 4.4.

4.2.4 Sample Tree Construction

Using the bias approximation in (4.11) for a given node, we can form an

optimization problem to determine the number of branches emanating from each

grid point in the DP solution method so that the total expected bias is minimized.

We begin by considering allocation within a single stage t by assuming that a total

number of nt+1 stage t+ 1 observations of S̃t+1 may be drawn, and that each grid

point i must have at least n(t, i) stage t + 1 samples. Let n(t, i) be the number of

stage t+ 1 samples allocated to cell i = 1, . . . ,mt, and p̂i
t be an estimate of pi

t, the

probability that S̃t is in cell i at stage t. We formulate the stage t optimization

problem as

min
n(t,1),...,n(t,mt)

mt∑
i=1

p̂i
t b̂t(S

i
t , n(t, i))

s.t.
mt∑
i=1

n(t, i) = nt+1 (4.16)

n(t, i) ≥ n(t, i) , i = 1, . . . ,mt.

85

Since bt(St, ·) is convex on R+, (4.16) is a convex program. Although we can

compute pi
t exactly from the marginal distribution of the asset price process given

in (4.5), we use its empirical estimate, p̂k
t , from the sample tree being constructed to

form the objective function of (4.16). Our motivation is that only the cells in which

observations of stage t asset price fall, should be included in the objective function

of (4.16). Note that for ordinary sample trees, pi
t is equal to the probability that

S̃t = Si
t , i = 1, . . . ,mt = nt, the total number of stage t nodes.

Solving (4.16) provides an allocation decision for a specific stage t. To build

a T -stage tree, we sequentially solve (4.16) from t1 to td−1 since this scheme is

not useful for choosing samples out of stage t0 and not needed for stage td. An

algorithmic statement of the non-uniform state-based sample tree building procedure

is summarized in Figure 4.1.

Step 1 For a given c and ∆S, construct a DP grid for stage t0, . . . , td.
Step 2 At stage t0, draw n(0) = n1 iid samples of S̃1 from F1(S1|S0).

Compute estimates p̂i
1, i = 1, . . . ,m1.

Step 3 Do t = t1, . . . , td−1

For a given nt+1, solve (4.16) for n∗(t, i), i = 1, . . . ,mt.
Draw n∗(t, i) (conditionally) iid samples of S̃t+1 from
Ft+1(St+1|Si

t = Gi
t + ∆S) for each cell i = 1, . . . ,mt.

Compute estimates p̂j
t+1, j = 1, . . . ,mt+1.

Figure 4.1: A procedure to generate a state-based non-uniform sample tree for the
American-style option pricing problem in order to reduce the bias associated with
the optimistic-bound estimator.

To quantify error associated with the optimistic-bound estimator, we inde-

pendently replicate the procedure in Figure 4.1 ν times and form the estimator of

f0(S0) with the standard sample mean, i.e.,

f̄0(S0) =
1
ν

ν∑
i=1

f̂ i
0(S0),

86

where f̂ i
0(S0) is the option value computed from sample tree i. This allows confidence

interval construction as described in Section 3.5.

Instead of specifying computational budget for each stage, one can specify

the total budget for building a sample tree, and then try to compute the optimal

allocation of the budget both between stages and between cells in the same stage.

There are two issues. First, the value of p̂i
t is not known until the sampling of S̃t is

done. Second, we do not know how the bias from stage t+1 propagates back to stage

t. To circumvent these two problems, we use the true probability weight pi
t computed

from the marginal of S̃t in (4.16), and assume that the bias propagation is additive.

As our numerical results indicate, this assumption is (numerically) justified.

Specifically, for a given total budget N , we solve the following optimization

problem to allocate the total budget among stages.

min
n(t,i)

T−1∑
t=0

mt∑
i=1

pi
t b̂t(S

i
t , n(t, i))

s.t.
T−1∑
t=0

mt∑
i=1

n(t, i) = N (4.17)

n(t, i) ≥ n(t, i), i = 1, . . . ,mt, t = 1, . . . , T − 1.

Instead of using the optimal solution of (4.17) directly to build a sample tree, we

compute the budget for stage t = 1, . . . , T , with

n∗t =
mt∑
i=1

n∗(t− 1, i),

where n∗(t, i) is an optimal solutions of (4.17). Then, we apply the procedure in

Figure 4.1 to build a sample tree with the stage-wise budget (n∗1, . . . , n
∗
T). This

has the benefit of adapting the sample size, n(t, i), to different sample trees when

replicating the procedure in Figure 4.1, instead of using a fixed n∗(t, i) directly for

every replication. We relax the integer requirement when we solve (4.16) and (4.17),

87

and round off their solutions such that their computational budget constraints are

satisfied. We present computational results of these procedures in Section 4.4.

4.3 Reducing Bias in Stochastic Lot Sizing

In this section, we extend the results of Section 4.2.3 to a stochastic lot-

sizing problem. Deterministic lot sizing is a well-studied problem, and the stochastic

variant we will describe is a well-solved problem via DP. Again, our intention is to

gain insights to bias characterization and the sample tree construction to be used

for more complex multi-stage stochastic optimization problems.

Since there is a large volume of literature on lot-sizing problems, we review

only those involving with the stochastic programming literature. In the context

of multi-stage stochastic mixed-integer programming, Haugen, Løkketangen and

Woodruff [64] develop a heuristic that combines the progressive hedging algorithm

with the tabu search to obtain a near-optimal solution. Lulli and Sen [89] propose a

branch-and-price decomposition method for a stochastic lot-sizing model. Ahmed,

King, and Parija [1] develop a dynamic capacity expansion model that contains a

stochastic lot-sizing substructure, and propose a lower and upper bounding heuristic

to be used with a branch-and-bound search to obtain a global optimal solution.

We adapt the deterministic formulation of Pochet and Wolsey [105] to the

stochastic setting. At stage t, let xt denote the binary decision of whether to pro-

duce, yt the number of items to be produced, st the number of items in the inventory

at the end of stage t, and rt the level of backlogged demand at the end of stage t.

88

We can express the stochastic lot-sizing with the following recursion:

z∗ = min
x1,y1,r1,s1

a1x1 + c1y1 + g1r1 + q1s1 + Eh1(s1 − r1, d̃2)

s.t. y1 + r1 − s1 = d̃1 + r0 − s0

y1 ≤ Kx1 (4.18)

x1 ∈ {0, 1}

y1, r1, s1 ∈ Z+,

where, for t = 2, . . . , T ,

ht−1(st−1 − rt−1, d̃t) = min
xt,yt,rt,st

atxt + ctyt + gtrt + qtst + Eht(st − rt, d̃t+1)

s.t. yt + rt − st = d̃t + rt−1 − st−1

yt ≤ Kxt (4.19)

xt ∈ {0, 1}

yt, rt, st ∈ Z+,

and hT ≡ 0.

Data parameters at, ct, gt, and qt denote the deterministic set-up, per unit

production, backlogging and holding costs, respectively. We assume that the de-

mand process, {d̃t}Tt=1, is interstage independent; thus, we do not use conditional

expectation in (4.18) and (4.19). An initial demand d̃1 is a degenerate random

variable taking value d1 with probability one. We denote the probability density

function of the random demand by Ft(dt), and assume that the support of each d̃t

is a finite set of nonnegative integers. If the capacity K is large enough, e.g., larger

than the sum of the largest demand realization in each stage, then the problem is

said to be uncapacitated. This is the case that we use in our computational experi-

ments. The stochastic future cost at stage t is ht(st− rt, d̃t+1). We use an inventory

89

position at the beginning of stage t as the state variable for DP. The inventory

position at stage t is denoted It, and is defined as

It = st−1 − rt−1 − dt, (4.20)

for d̃t = dt. The inventory position forms a random process, {Ĩt}Tt=1, and I1 is

deterministic.

Only one binary decision is made at each stage t, i.e., to hold or to exercise

the option, in the American-style option pricing problem, while two decisions are

made at each stage t in the stochastic lot-sizing problem, i.e., we need to decide

whether to produce, and if so, how many items to produce. The stage t objective

function for a given inventory position Ĩt = It is denoted

ft(It, xt, yt) = atxt + ctyt + gtrt + qtst + Eht(st − rt, d̃t+1).

From (4.19) and (4.20), st− rt = yt + It. If yt + It ≥ 0, then st = yt + It and rt = 0.

If yt + It < 0, then rt = −(yt + It) and st = 0. So, values of st and rt are determined

by the value of It, xt, and yt; hence, ft needs not be expressed as a function of st

and rt. In the derivation of the bias approximation formulae later in this section, it

is also convenient to use only It, xt, and yt as arguments to ft.

As in the American-style option pricing problem, we form an optimistic-

bound estimator by solving a DP on a state-based sample tree. The procedure to

construct the state-based sample tree described in Section 4.2.2 needs to be modified

slightly for the lot-sizing problem, and we return to this issue later in this section.

The stage t objective function based on the state-based sample tree, for Ĩt = It, is

f̂t(It, xt, yt) = atxt + ctyt + gtrt + qtst +
1
n(t)

∑
i∈Dt

ĥt(st − rt, d̃i
t+1), (4.21)

where d̃i
t+1, i = 1, . . . , n(t), are iid observations of d̃t+1 drawn from Ft+1(dt+1), n(t)

is the number of branches emanating from a generic node It, and the approximating

90

future cost function at stage t is recursively defined as

ĥτ−1(sτ−1 − rτ−1, d̃τ) =

min
xτ ,yτ ,rτ ,sτ

atxτ + cτyτ + gτrτ + qτsτ +
1

n(τ)

∑
i∈Dτ

ĥτ (sτ − rτ , d̃i
τ+1)

s.t. yτ + rτ − sτ = d̃τ + rτ−1 − sτ−1

yτ ≤ Kxτ (4.22)

xτ ∈ {0, 1}

yτ , rτ , sτ ∈ Z+,

for τ = t + 1, . . . , T , and ĥT ≡ 0. To obtain (4.22), the expectation in (4.19)

is replaced with the standard sample mean estimator associated with the sample

tree. We define the bias of a stage t optimistic-bound estimator for the stochastic

lot-sizing problem by

βt(It) = min
xt,yt

ft(It, xt, yt)− Emin
xt,yt

f̂t(It, xt, yt) ≥ 0. (4.23)

Again, we approximate βt(It) with

bt(It, n(t)) = min
xt,yt

ft(It, xt, yt)− Emin
xt,yt

f ′t(It, xt, yt) ≥ 0, (4.24)

where

f ′(It, xt, yt) = atxt + ctyt + gtrt + qtst +
1
n(t)

∑
i∈Dt

ht(st − rt, d̃i
t+1), (4.25)

and d̃i
t+1, i = 1, . . . , n(t), are iid observations of d̃t+1. In the definition of f ′t, we

ignore the bias in stages t+1, . . . , T − 1, by replacing ĥt(st− rt, d̃i
t+1) in (4.21) with

ht(st − rr, d̃i
t+1). Nonnegativity of βt and bt follows from Theorem 4.

Denote the optimistic-bound estimator by

ẑ∗ = min
x1,y1

f̂1(I1, x1, y1).

91

To obtain an analytical expression for bt, which will aid in allocating computational

resource in sample tree construction in order to reduce the bias associated with ẑ∗,

we re-write (4.24) as

bt(It, n(t)) = min
xt,yt

ft(It, xt, yt)− Emin
xt,yt

f ′t(It, xt, yt)

= min {ft(It, 0, 0), ft(It, 1, 1), . . . , ft(It, 1,K)} −

Emin
{
f ′t(It, 0, 0,), f

′
t(It, 1, 1), . . . , f ′t(It, 1,K,)

}
. (4.26)

Let y∗t and ŷ∗t satisfy

ft(It, 1, y∗t) ≤ ft(It, 1, yt), yt = 1, . . . ,K, (4.27)

and

f ′t(It, 1, ŷ
∗
t) ≤ f ′t(It, 1, yt), yt = 1, . . . ,K. (4.28)

At node Ĩt = It, if ft(It, 0, 0) < ft(It, 1, y∗t), then the correct decision is not to

produce, and (4.26) reduces to

bt(It, n(t)) = ft(It, 0, 0)− Emin
{
f ′t(It, 0, 0), f ′t(It, 1, ŷ

∗
t)

}
= ft(It, 0, 0)− Ef ′t(It, 0, 0)− Emin

{
0, f ′t(It, 1, ŷ

∗
t)− f ′t(It, 0, 0)

}
= −Emin

{
0, f ′t(It, 1, ŷ

∗
t)− f ′t(It, 0, 0)

}
. (4.29)

The last equality in (4.29) follows from the definition of f ′t in (4.25), which

implies Ef ′t(It, 0, 0) = ft(It, 0, 0). On the other hand, if ft(It, 0, 0) ≥ ft(It, 1, y∗t),

then the correct decision is to produce y∗t , and (4.26) reduces to

bt(It, n(t)) = ft(It, 1, y∗t)− Emin
{
f ′t(It, 0, 0), f ′t(It, 1, ŷ

∗
t)

}
= ft(It, 1, y∗t)− Ef ′t(It, 1, ŷ∗t)

−Emin
{
f ′t(It, 0, 0)− f ′t(It, 1, ŷ∗t), 0

}
.

(4.30)

92

We show in Proposition 6 that the bias approximation in (4.29) and (4.30) can

be expressed as a function of n(t) that differs by a constant (independent of n(t))

under assumptions that the decision ŷ∗t = y∗t , wp1, and the distribution function

of a random variable associated with f ′t(It, 1, ŷ
∗
t) − f ′t(It, 0, 0) is symmetric. By

assuming ŷ∗t = y∗t , wp1, we ignore the bias associated with the decision variable yt

since Ef ′t(It, 1, y
∗
t) = ft(It, 1, y∗t).

Proposition 6. Let y∗t and ŷ∗t be defined by (4.27) and (4.28), and ŷ∗t = y∗t , wp1.

Define f ′(It, xt, yt) as in (4.25) where d̃i
t+1, i = 1, . . . , n(t), are iid observations of

d̃t+1. Let

Wt =
X̄t − µt(It)
σt(It)/

√
n(t)

,

where

X̄t = f ′t(It, 1, y
∗
t)− f ′t(It, 0, 0),

µt(It) = EX̄t, and σt(It) = var X̄t. If the distribution function of Wt is symmetric,

then

bt(It, n(t)) =

 − µt(It) + b′t(It, n(t)) if ft(It, 0, 0) < ft(It, 1, y∗t)

b′t(It, n(t)) if ft(It, 0, 0) ≥ ft(It, 1, y∗t),
(4.31)

where

b′t(It, n(t)) = − σt(It)√
n(t)

Emin
{
− µt(It)
σt(It)/

√
n(t)

,Wt

}
. (4.32)

In addition, b′t(It, ·) is convex on R+. If we further assume that Wt is a standard

normal with cumulative distribution function Φ, then

b′t(It, n(t)) = −µt(It) Φ
(
− µt(It)
σt(It)

√
n(t)

)
+

σt(It)√
2πn(t)

exp
(
− µ2

t (It)
2σ2

t (It)
n(t)

)
. (4.33)

Proof. We suppress the dependence on state It (except for bt(It, n(t))) for notational

93

simplicity. Consider the case when ft(It, 0, 0) < ft(It, 1, y∗t), and re-write (4.29) as

bt(It, n(t)) = −Emin
{
0, X̄t

}
= −µt −

σt√
n(t)

Emin
{
− µt

σt/
√
n(t)

,
X̄t − µt

σt/
√
n(t)

}
= −µt −

σt√
n(t)

Emin
{
− µt

σt/
√
n(t)

,Wt

}
Under the hypothesis that ŷ∗t = y∗t , wp1,

Ef ′t(It, 1, y
∗
t) = ft(It, 1, y∗t).

This follows from the definition of ft and f ′, and that fact that d̃i
t+1, i = 1, . . . , n(t),

are iid observations of d̃t+1. So, we can re-write (4.30) as

bt(It, n(t)) = −Emin
{
− X̄t, 0

}
= µt −

σt√
n(t)

Emin
{−X̄t + µt

σt/
√
n(t)

,
µt

σt/
√
n(t)

}
= µt −

σt√
n(t)

Emin
{
−Wt,

µt

σt/
√
n(t)

}
. (4.34)

Let a = µt

√
n(t)/σt. We write (4.34) as

bt(It, n(t)) =

∞∫
−∞

µtφ(u)du −
−a∫

−∞

µtφ(u)du +
σt√
n(t)

∞∫
−a

uφ(u)du

=

∞∫
−a

µtφ(u)du − σt√
n(t)

−a∫
−∞

uφ(u)du (by symmetry)

= − σt√
n(t)

Emin
{
− µt

σt/
√
n(t)

,Wt

}
.

So, we have shown that bt(It, n(t)) is given by (4.31).

To show convexity of b′t(It, ·), we re-write (4.32) as

b′t(It, n(t)) = −Emin
{
− µt, X̄t − µt

}
.

94

Observe that X̄t is a convex function of n(t), and is the only element in the above

equation that depends on n(t). Using the fact that the negative of a “min” function

of a finite collection of convex functions is convex, and that the expectation of a

convex function is also convex, we conclude that b′t(It, ·) is convex on R+.

If Wt is a standard normal, we can evaluate the expectation in (4.32) using

the normal density function, and obtain (4.33).

The values of µt(It) and σt(It) must be estimated. We denote these estimates

by µ̂t(It) and σ̂t(It), and the resulting bias expression based on these estimates by

b̂t and b̂′t. As before, let nt+1 denote the total number of samples of d̃t+1 (of all

stage t nodes), and

pi
t = Pt(Ĩt = Ii

t), i = 1, . . . ,mt,

where Pt is the marginal probability distribution of Ĩt, and mt is the number of DP

grid points in stage t. The marginal Pt is induced by Ft, and we need to know an

optimal solution of (4.18)-(4.19) at all the DP grid points in order to compute it.

So, we use instead its estimate, which we describe below how to compute. Based on

the estimates of pi
t and bt(It, n(t)), we can state the stage t optimization problem

for sample size allocation as

min
n(t,1),...,n(t,mt)

mt∑
i=1

p̂i
t b̂t(I

i
t , n(t, i))

s.t.
mt∑
i=1

n(t, i) = nt+1 (4.35)

n(t, i) ≥ n(t, i), i = 1, . . . ,mt.

Since only the terms that depend on n(t) are relevant in the sample allocation

decision of (4.35), in our implementation we replace b̂t(Ii
t , n(t, i)) with b̂′t(I

i
t , n(t, i)).

Since b̂t(Ii
t , ·) is convex on R+, (4.35) is a convex program. Due to the finite integer

95

nature of the demand process and optimization models, the state variable It is a

finite integer, and we do not need to discretize it or make other approximations when

we construct the DP grid. As before, we can use (4.35) to allocate sample size in

a sequential fashion. However, the fact that the state variable of the stochastic lot-

sizing problem depends explicitly on decision variables in the previous stage prevent

us from directly employing the procedure described in Figure 4.1 for the state-

based sample tree construction of the American-style option pricing problem. In

particular, we cannot compute the estimate of pi
t since we need to know an optimal

solution of (4.18)-(4.19) at all stage t− 1 inventory positions in order to obtain the

realization of Ĩt through (4.20).

We therefore modify the procedure in Figure 4.1 by constructing an initial

uniform state-based sample tree to obtain an estimate of an optimal solution at each

cell. Then, the initial sample tree is refined by drawing additional samples for each

cell based on the solution of (4.35) for a given additional computational budget.

The statement of the modified procedure is shown in Figure 4.2 for a given number

of tree refinement iterations, imax ≥ 1. We denote nadd an additional computational

budget for each cell.

The estimates of µt(It) and σt(It) can be obtained in a similar manner as in

the case of the American-style option pricing problem. Specifically, an independently-

generated uniform sample tree is constructed and solved to obtain µ̂t(It) and σ̂t(It)

at each DP grid point. However, we alternatively obtain the estimates of µt(It) and

σt(It) as follows. Initial estimates are obtained after solving the lot-sizing problem

based on the uniform state-based sample tree constructed in Step 1 of the proce-

dure in Figure 4.2. The initial estimates, µ̂t(It) and σ̂t(It), are then updated after

the sample tree is refined in Step 5 and the approximating problem is re-solved in

Step 6. We refer to this alternative procedure as being dynamic. The procedure

96

Step 0 Set iter = 0.
Step 1 Build an initial uniform state-based sample tree in which

every node has ninit branches. Set the number of samples
n(t, i) to ninit for i = 1, . . . ,mt, t = 1, . . . , T − 1.

Step 2 Solve an approximating problem based on the sample tree
constructed in Step 1. Store the resulting optimal solution
at each node as an incumbent solution.

Step 3 For the first stage, draw additional nadd iid samples of d̃2

from F2(d2). Compute estimates, p̂i
2, i = 1, . . . ,m2, based

on the incumbent solution stored at each node. Let η2 be
the number of nodes that have non-zero p̂k

2.
Step 4 Update the number of samples by n(1, 1)← n(1, 1) + nadd.
Step 5 Do t = 2, . . . , T − 1

Let nt+1 = ηt · nadd +
∑mt

i=1 n(t, i).
Set the lower bound n(t, i) = n(t, i), i = 1, . . . ,mt.
Solve (4.35) for n∗(t, i), i = 1, . . . ,mt.
If n∗(t, i)− n(t, i) > 0, then draw n∗(t, i)− n(t, i) iid
samples of d̃t+1 from Ft+1(dt+1) for i = 1, . . . ,mt.
Update the value of n(t, i) to n∗(t, i), i = 1, . . . ,mt.
Compute p̂j

t+1, j = 1, . . . ,mt+1, using the incumbent
solution.

Step 6 Solve the approximating problem based on the refined
sample tree.
Store the resulting optimal solution as a new incumbent.

Step 7 iter ← iter + 1. If iter < imax, goto Step 3. Otherwise, stop.

Figure 4.2: A procedure to generate a state-based non-uniform sample tree for
the stochastic lot-sizing problem in order to reduce the bias associated with the
optimistic-bound estimator.

97

described in Figure 4.2 can be modified in a number of ways; for example, instead

of using incumbent solutions to compute p̂j
t+1 in Step 5 (during the Do loop), the

approximating problem can be re-solved and the resulting optimal solution can be

used instead to compute p̂j
t+1. Also, nadd can be changed from iteration to iteration.

These modifications are numerically tested in Section 4.4.2.

To quantify the error associated with ẑ∗, we generate iid replications of ẑ∗,

and construct its sample mean estimator as

z̄∗ν =
1
ν

ν∑
i=1

ẑ∗,i,

where ẑ∗,i is computed from sample tree i = 1, . . . , ν. This allows confidence interval

constructions as described in Section 3.5. We relax the integer requirement when we

solve (4.35), and round off its solution such that the computational budget constraint

is satisfied. We present computational results of the sample tree building procedure

we propose for the stochastic lot-sizing problem in Section 4.4.2.

4.4 Computational Results

We present numerical results on the methods developed in the previous sec-

tions. Sampling-based DP solution procedures for pricing American-style options

and lot-sizing problems are implemented in the C programming language. We use

MINOS 5.4 as a subroutine to solve the sample size allocation problem (4.16), (4.17),

and (4.35). All computations for the American-style option pricing problem in Sec-

tions 4.4.1 and for the stochastic lot-sizing problem in Section 4.4.2 are performed

on an IBM PC (1.2 GHz) with 512 MB of memory running Windows ME.

98

4.4.1 American-style Option Pricing Problem

We consider a 4-stage American-style option pricing problem in which T is

the length of one year, and ti, i = 0, 1, 2, 3, correspond to each quarter of the year.

The problem’s parameters are taken from [18]: S0 = 110,K = 100, r = 0.05, δ = 0.1.

We choose S0 = 110 since it gives the highest percentage of the bias when fixing

other parameters. The analytical value of this option is 11.341 and is obtained

by using the analytical result of Geske and Johnson [60]. We set the truncation

parameter c to be 5.0 for all stages (see Section 4.2.2). We first investigate the bias

resulting from the discretization error, and the use of common- and independent-

sample schemes (see Section 4.2.2). We use ∆S = (∆S1,∆S2,∆S3) to denote the

cell’s width for t1, t2, and t3, and is constant for all cells within a stage. Table 4.1

shows the value of the estimate of f0(S0) based on a uniform tree in which we set

n(t, i) to a relatively large value of 20, 000, for i = 1, . . . ,mt, t = 0, . . . , 2. As the grid

becomes finer, the error decreases, but the computational effort increases. Although

the true value of the option is f0(S0) = 11.341, we use the estimate in Table 4.1

under the large uniform sample size of 20, 000 as our reference when we compute

the bias because our goal is to focus on the bias due to sampling, not discretization

of state variables. In particular, for the remainder of this section, we use the grid

size of (0.7, 0.7, 0.7); thus, the reference value (from independent-samples column)

is 11.729. “DP minutes” in Table 4.1 is the CPU time to compute f̄0(S0), which

includes the time to generate and solve DPs.

Next, we construct uniform sample trees with n(t, i) = 10, . . . , 50,∀i, t, using

the common- and independent-samples scheme in order to compare the bias associ-

ated with f̂(S0). Using ν = 10, 000 sample trees, we report computational results for

common- and independent-samples method in Table 4.2 and 4.3, respectively. The

“95% HW” columns denote the half width of the 95% confidence interval on f̄(S0).

99

f̄(S0) 95 % HW DP minutes∆S
common indep. common indep. common indep.

(1,2,2) 12.195 12.193 0.024 0.016 28.6 33.8
(.7,.7,.7) 11.737 11.729 0.023 0.019 186.3 184.7
(.5,.5,.5) 11.624 11.616 0.023 0.016 836.6 856.2
(.3,.3,.3) 11.512 11.503 0.023 0.017 3647.6 3653.8

Table 4.1: Optimistic-bound estimators for the value of an American call option on a
single asset based on 50 uniform trees with 20, 000 branches. Each row corresponds
to the estimate obtained for the specified grid size. “common” and “indep.” refer to
whether the common- or independent-samples method is used. The analytical value
of the option price is 11.341.

The last column in Table 4.3 gives the percentage of bias reduction achieved by

using the independent-samples method in comparison to the results of the common-

samples method reported in Table 4.2.

branch f̄(S0) bias 95% HW DP minutes
10 13.150 1.421 0.064 2.5
20 12.489 0.760 0.045 7.1
30 12.255 0.526 0.037 13.2
40 12.108 0.379 0.032 18.6
50 12.039 0.310 0.029 25.2

Table 4.2: Estimates of the value of an American call option on a single asset based
on ν = 10, 000 uniforms tree generated by the common-samples method.

From Table 4.2 and Table 4.3, we observe that the independent-samples

method outperforms the common-samples method. The value of f̄(S0) computed

from sample trees with independent samples has both lower variance and bias. We do

not have a rigorous proof for bias reduction under the independent-samples method.

Our intuitive explanation is that the independent-samples method generates sample

trees with greater variety of scenarios; therefore, the optimization is harder since

an optimal decision needs to hedge against more variety of scenarios. As shown

100

branch f̄(S0) bias 95% HW DP minutes %reduced
10 12.863 1.134 0.051 2.5 20.19
20 12.345 0.616 0.037 9.2 18.95
30 12.150 0.421 0.031 13.6 19.96
40 12.036 0.317 0.027 20.7 16.36
50 11.969 0.240 0.024 28.7 22.58

Table 4.3: Estimates of the value of an American call option on a single asset based
on ν = 10, 000 uniforms tree generated by the independent-samples method.

in Table 4.3, the percentage of bias reduction tends to decrease as the number of

branches grow, except the last row with the number of branches being 50.

To investigate the quality of our approximation, bt(St, n(t)), of the true bias

function, βt(St), from Proposition 5, we plot an estimate of βt(St) against an esti-

mate of bt(St, n(t)) for t = t1 in Figures 4.3 and 4.4. Estimate b̂1 is computed from

(4.11) with µ1 and σ1 estimated from a uniform sample tree with 20,000 branches.

Estimate β̂1 is an average of the bias over 10,000 uniform sample trees. To compute

the bias estimate, β̂1, we estimate the optimal value at each grid point using a uni-

form sample tree with 20,000 branches, and it is the same uniform sample tree that

we use to estimate µ1 and σ1.

Figure 4.3 and Figure 4.4 suggest that the shape of the approximation func-

tion of bias, bt(St, n(t)), matches very well with the true bias, βt(St). The difference

between the two functions plotted in Figure 4.3 results from the fact that bt(St, n(t))

ignores bias introduced in stages beyond t. When the number of branches increases

to 30, both plots are almost identical. The plots for other stages are similar to those

for stage t = t1. The fact that the plot of the bias approximation and the true bias

matches reasonably well indicates that the use of our approximation function in the

sample size allocation optimization problem, (4.16) or (4.17), may be effective.

101

0.00

0.50

1.00

1.50

2.00

2.50

54 69 84 99 114 129 144 159 174

Asset Price

B
ia

s

estimate of b_1

estimate of beta_1

Figure 4.3: Comparison between an estimate of bias approximation, b̂1, and an
estimate of bias, β̂1 for uniform sample tree with 10 branches.

-0.20

0.00

0.20

0.40

0.60

0.80

54 69 84 99 114 129 144 159 174

Asset Price

B
ia

s

estimate of b_1

estimate of beta_1

Figure 4.4: Comparison between an estimate of bias approximation, b̂1, and an
estimate of bias, β̂1 for uniform sample tree with 30 branches.

102

Next, we present computational results for the procedure in Figure 4.1 from

Section 4.2.3. Table 4.4 gives computational results when we estimate the value of

µt and σt by using an independently-generated uniform sample trees with 20, 000

branches, while Table 4.5 gives results when using a uniform tree with 10 branches.

The percentage of bias reduction in Tables 4.4 and 4.5 shows how the accuracy of

the parameters affects the procedure. The percentage of bias reduction in the last

two rows of Table 4.5 is negative because the bias estimates are larger than those in

the corresponding rows of Table 4.3. CPU times are separated into the time to solve

DPs, and the time to solve nonlinear convex programs for sample size allocation.

These CPU times are denoted in Tables 4.4 and 4.5 with “DP” and “NLP”, respec-

tively. To obtain estimates of µt and σt for each cell in each stage t, we solve an

approximating problem associated with an independently-generated uniform sample

tree for the values of µ̂t and σ̂t needed in the procedure of Figure 4.1. In general,

this strategy may be impractical because we need to initially solve a relatively large

uniform sample tree to obtain accurate estimates of µt and σt. We describe an

alternative approach to dynamically obtain these estimates in Section 4.3.

In order to be able to compare the computational results in Table 4.4 and

Table 4.5 with those in Table 4.3, we compute the average number of stage t cells,

denote Kt, into which the observations of S̃t fall, when we conduct our experiments

for Table 4.3. We then set stage t budget, nt, in (4.16) to Kt×neff when constructing

sample trees associated with the computation of each row in Table 4.4 and Table 4.5.

So, the bias in each row of Table 4.4 and Table 4.5 is comparable to that in the

corresponding row of Table 4.3, i.e., the row with neff being equal to “branch.” Note

that the neff columns in Table 4.4 and Table 4.5 do not give the actual number of

branches for each cell.

Finally, Table 4.6 gives computational results of the procedure described in

103

CPU minutes
neff f̄(S0) bias 95% HW

DP NLP
%reduced

10 12.802 1.073 0.052 2.7 212.0 5.38
20 12.249 0.520 0.037 9.6 519.6 15.58
30 12.058 0.329 0.030 14.5 734.0 21.85
40 11.955 0.226 0.027 20.9 901.3 28.71
50 11.870 0.141 0.024 29.7 1043.2 41.25

Table 4.4: Estimates of the value of an American call option on a single asset based
on ν = 10, 000 sample trees. Sample trees are constructed by the procedure in Figure
4.1 using the independent-samples method. The estimates of µt and σt are obtained
separately from a independent-samples uniform trees with 20, 000 branches.

CPU minutes
neff f̄(S0) bias 95% HW

DP NLP
%reduced

10 12.779 1.050 0.052 2.5 206.4 7.41
20 12.313 0.584 0.037 9.7 480.5 5.19
30 12.147 0.418 0.031 15.9 681.7 0.71
40 12.047 0.318 0.027 20.7 852.2 -0.32
50 11.973 0.244 0.024 27.2 1014.3 -1.67

Table 4.5: Estimates of the value of an American call option on a Sample trees are
constructed by the procedure in Figure 4.1 using the independent-samples method.
The estimates of µt and σt are obtained separately from independent-samples uni-
form trees with 10 branches.

104

CPU minutes
neff f̄(S0) bias 95% HW

DP NLP
%reduced

10 12.637 0.908 0.043 2.9 283.7 19.93
20 12.107 0.378 0.037 7.9 607.8 38.64
30 11.966 0.237 0.022 12.7 841.9 43.71
40 11.877 0.148 0.019 19.2 1042.9 53.31
50 11.832 0.103 0.018 234.0 1213.1 57.08

Table 4.6: Estimates of the value of an American call option on a single asset based
on ν = 10, 000 sample trees. Sample trees are constructed by the procedure in Figure
4.1 using the independent-samples method. The estimates of µt and σt are obtained
separately from an independent-sample uniform trees with 20, 000 branches.

Figure 4.1 when the budget for each stage is obtained from solving (4.17). Similarly,

we compute an average of the total number of branches (for all stages) when we

conduct experiments for Table 4.3. Then, we set N in (4.17) to that value so that

the bias in Table 4.6 is comparable to that in Table 4.3, Table 4.4, and Table 4.5.

We observe larger percentage of bias reduction in Table 4.6 due to better sample

size allocation between stages.

In Tables 4.4, 4.5, and 4.6, the time to solve DPs is approximately the same

as that of Tables 4.3. However, the time to solve nonlinear programs for sample

size allocation listed in Table 4.4, 4.5, and 4.6 is much larger than the time to solve

DPs. We anticipate such difference because solution time for a nonlinear program

generally dominates that of a DP (with one state variable). Our motivation is to

develop a sample size allocation procedure for multi-stage stochastic programming.

In such setting, we instead expect solution time of a multi-stage stochastic program

will dominate that of a nonlinear program (with one constraint).

105

4.4.2 Stochastic Lot-sizing Problem

We generate a 4-stage instance of the stochastic lot-sizing model described

by (4.18)-(4.19) using the data parameters in Table 4.7. Backlogging is not allowed

in stage 4, i.e., r4 = 0.

t at ct gt qt
1 300 1.80 7.50 1.50
2 250 2.10 18.00 3.63
3 350 2.20 15.00 3.13
4 200 2.40 18.00 3.46

Table 4.7: Data parameters of the stochastic lot-sizing model used in the computa-
tional experiment.

We set r0 = s0 = 0, and d1 = 1. The random demand for stage t = 2, . . . , T ,

is assumed to be independent and distributed as a truncated Poisson random vari-

able with mean equal to 12. We truncate any realization that has probability mass

less than 10−4 (and adjust the probability mass so that it adds up to 1.0). The

resulting support of the demand random variable is {2, . . . , 26}. As indicated in

Section 4.3, the DP grid for the stochastic lot-sizing problem is exact since the

state variable It is integer. This problem can be solved exactly, and by doing so

we obtain the optimal objective function value to be 548.174. Optimistic-bound

estimators using uniform sample trees with different numbers of branches are given

in Table 4.8.

Table 4.9 reports the values of optimistic-bound estimators based on the

sample trees constructed by the procedure described in Figure 4.2. We compute the

estimates of µt and σt needed in the procedure from an independently-generated uni-

form state-based sample tree with 25 branches at each grid point. In the procedure,

we begin with an initial uniform sample tree that has ninit = 10, and use nadd = 5

106

branch z̄∗1000 95% HW bias DP minutes
10 540.566 0.471 7.607 1.8
15 543.508 0.386 4.666 2.6
20 544.943 0.314 3.231 3.4
25 545.635 0.278 2.539 4.2

Table 4.8: Optimistic-bound estimators of the optimal objection function value of
the stochastic lot-sizing test problem based on 1,000 uniform state-based sample
trees (with independent samples).

to increase the tree size at each iteration. In order to compare the bias column in

Table 4.8 and that in Table 4.9, we choose ninit and nadd in such a way that the

total number of branches of a uniform sample tree used for Table 4.8 and that of a

non-uniform sample tree used for Table 4.8 is approximately the same. So, the bias

in each row of Table 4.8 is comparable to the bias in each row of Table 4.9 if the

value of “branch” is equal to neff . The percentage of bias reduction is accordingly

computed from the corresponding rows. We also experiment with other variations

of the basic procedure (as explained in Section 4.3). When the estimate of µt and

σt are obtained dynamically, the resulting bias is approximately the same as that

of the uniform sample tree. Changing values of nadd from iteration to iteration or

additionally re-solving the sample tree in Step 5 of Figure 4.2 does not really alter

the bias reduction percentage given in Table 4.9.

We separate the time to solve DPs from the time to solve nonlinear pro-

grams to compute sample size in Table 4.9. The time to solve DPs in Table 4.9

is approximately the same as that in Table 4.8. The time to compute sample size

allocation is, however, larger than the time to solve DPs (with one state variable)

because it involves solving nonlinear programs. Again, we expect that if the sample

size allocation procedure is to be used for multi-stage stochastic programming, the

solution time of a multi-stage stochastic program will dominate that of a nonlinear

107

CPU minutes
neff imax z̄∗1000 95% HW bias %reduced

DP NLP
15 1 544.902 0.343 3.272 29.89 2.1 3.9
20 2 546.223 0.313 1.951 39.62 3.8 6.4
25 3 546.414 0.280 1.761 30.66 4.0 9.6

Table 4.9: Optimistic-bound estimators of the optimal objective function value of
the stochastic lot-sizing problem based on 1,000 non-uniform state-based sample
trees (with independent-samples) constructed by the procedure of Figure 4.2 with
ninit = 10 and nadd = 5.

program.

108

Chapter 5

Conclusions

We conclude the dissertation and provide future research directions in this

chapter. Throughout the dissertation, we focus on multi-stage stochastic programs

that have a large number of scenarios and a moderate-to-large number of stages.

As discussed in Section 1.1, this class of models can be applied to many important

applications, but is often computationally difficult to solve in spite of recent advances

in optimization algorithms and computing technology. The first research objective of

developing methods to solve such multi-stage stochastic programs is accomplished

in Chapter 3. There, we develop two Monte Carlo sampling-based methods to

generate a feasible policy for two classes of multi-stage stochastic programs. The

first policy-generation method is applicable to multi-stage stochastic linear programs

that exhibit interstage independence. To form a policy, it uses cuts generated by

solving an approximating problem with the multi-stage L-shaped method. With a

minor modification, certain types of dependency can be handled. The second policy-

generation method is applicable to problems with general interstage dependency and

does not require convexity of the underlying problem. However, we must be able to

solve that class of problems with a modest number of scenarios.

In this dissertation, we adopt a view that a solution of a multi-stage stochas-

tic program is a policy that generates a feasible decision at every stage under each

scenario. In a closely-related area of stochastic control, this is a widely-accepted

view for a solution of an optimization problem involving sequential decision making

109

under uncertainty. Alternatively, one may adopt a view that a solution of a multi-

stage stochastic program is merely specified by a first stage decision with a rationale

that a decision maker needs to know only what action to take now, and that future

decisions are irrelevant at the current stage. Many approximation methods, such as

those reviewed in Section 2.4.2, for multi-stage stochastic programs often take this

view; as a result, they are designed to produce only a first stage decision. Never-

theless, we can still construct a policy solution from those approximation methods

by applying them in a rolling forward fashion.

The second research objective of developing effective methods to determine

the solution’s quality is also accomplished in Chapter 3. In particular, to estimate

the expected cost of an arbitrary policy, we propose two policy-cost estimators:

scenario-based and tree-based estimators. Combining these policy-cost estimators

with the optimistic-bound estimator developed in Section 3.5, we construct a con-

fidence interval on the optimality of an arbitrary policy to establish the policy’s

quality. We propose two ways to combine these estimators to form a confidence

interval: separate and gap estimators. The procedures to determine the policy’s

quality for multi-stage stochastic programs is a new contribution to the field. In

our approach, the quality is measured by the objective function value; therefore,

two different policies that yield the same expected cost are of the same quality. To

determine the solution’s quality when only a first stage decision is specified (and is

not applied in a rolling forward fashion) is an open problem.

To accomplish the third research objective of demonstrating computational

viability of our solution methods, we conduct computational experiments of the

procedures we develop. Our preliminary computational results suggest that both

policy-generation procedures are computationally viable, and that the procedure to

determine the policy’s quality via the gap estimator may be more effective due to

110

the variance reduction achieved by the common random numbers. In addition, the

independent-samples method for sample tree construction produces an estimator

with lower variance.

Practically speaking, the Monte Carlo sampling-based procedures we de-

velop in Chapter 3 address three important issues that a decision make faces when

using multi-stage stochastic programming for decision support. These three issues

are (i) how to obtain a policy to operate a system, (ii) what the expected cost is

under a given policy, and (iii) how well a given policy performs. We summarize our

results using flowcharts as shown in Figures 5.1, 5.2, and 5.3 along the line of these

issues. For issue (i), the flowchart in Figure 5.1 suggests when it is appropriate to

apply procedure P1 or P2 (Section 3.3) to construct a policy for a given multi-stage

stochastic program. For issue (ii), although we describe two estimators in Section 3.4

to estimate the expected cost of using a policy, as shown in the flowchart in Fig-

ure 5.2, we recommend using the scenario-based estimator if the policy’s quality is

not of interest. For issue (iii), we describe two estimators in Section 3.5 to estimate

the optimality gap of a given policy, but recommend using the gap estimator to

determine the policy’s quality. In the flowchart in Figure 5.3, we only take a policy

generated by either P1 or P2 as an input. It is, however, straightforward to modify

the procedure for an arbitrary policy. Either sample trees with common or inde-

pendent samples can be used in P1, and an instance of each type is illustrated in

Figure 5.4. As an example, to determine the quality of a policy constructed under

P1 as shown on the second line of Table 3.4 in Section 3.7, we generate one uniform

sample tree with 7 descendants using the common-samples method in order to con-

struct a policy, and then generate 30 uniform sample trees with 4 descendants using

the independent-samples method in order to form the gap estimator.

The methodology we propose may be important in solving multi-stage stochas-

111

Start

Input: Multi−stage model

Is the number of

scenarios large?
Apply solution methods

reviewed in Section 2.4.1

Is this a linear model with

interstage independence?

Apply policy−generation procedure P

(Section 3.2.2)
2

End

Output: A solution policy

Apply policy−generation procedure P1
(Section 3.2.1)

NO

NO

YES

YES

Flowchart FC1

Figure 5.1: Policy generation for multi-stage stochastic programs.

112

Start

Input: (1) Multi−stage model

 (2) Policy

Generate scenarios

the scenarios (Section 3.4.1)

Compute the policy’s cost under

End

Output: Confidence interval on

the policy’s cost (Section 3.4.1)

Flowchart FC2

Figure 5.2: Scenario-based estimation of the policy’s cost.

113

Start

the choice of policy

See flowchart FC1 for Input: (1) Multi−stage model

 (2) Policy P or P
1 2

Construct sample trees with either

common or independent samples
(Section 3.2)

Construct sample trees with

independent samples
(Section 3.2)

2Is this policy P or P ?1

Output: Confidence interval on

the optimality gap (Section 3.6.2)

End

P1 P2

the sample trees (Section 3.6.2)

Compute the gap estimator from

Flowchart FC3

Figure 5.3: Establishing the policy’s quality with the gap estimator.

114

2 11 2 11 21 2 2 1 2

common samples independent samples

Figure 5.4: Instances of a sample tree with common and independent samples.

tic programs with a moderate-to-large number of stages and a large number of sce-

narios. Extensions that make this methodology more effective are therefore valuable.

To obtain a confidence interval of the gap estimator, multiple replications are used

otherwise asymptotic normality of the gap estimator is not guaranteed under prac-

tical assumptions. This can be inefficient because each replication involves solving a

multi-stage stochastic program defined on a sample tree, and can be computation-

ally demanding. One improvement of our methodology is then to apply a recent

result (of two-stage stochastic programs) showing that a confidence interval on the

optimality gap can be constructed with a single replication procedure. Under certain

circumstances, this single replication may be more efficient.

In our policy generation methods, we use “naive” sample trees in generating

a feasible solution at each node. A natural extension is to construct a “smart”

sample tree so that an approximating problem yields a high quality policy with

approximately the same computational effort. Other important improvements of

the methodology include developing techniques to reduce the variance and bias of

the gap estimator so that the width of the confidence interval on the optimality gap

115

is as small as possible for a fixed computational resource. These improvements will

enable us to distinguish a policy with high quality in a more effective manner.

With this motivation, we investigate in Chapter 4 how to reduce the bias of

the optimistic-bound estimator for multi-stage stochastic programs. We begin by

studying bias reduction in a relatively simple multi-stage stochastic program known

as American-option pricing problem. Under mild assumptions, explicit formulae for

the bias approximation are derived. Using these formulae, we set up a convex op-

timization problem to allocate sample size to construct a sample tree with varying

number of descendants to reduce the bias of the optimistic-bound estimator. Then,

we extend the methodology to stochastic lot-sizing problem. From our computa-

tional results, the percentage of bias reduction of the optimistic-bound estimator

in the American-style option pricing and the stochastic lot-sizing problems ranges

from 5% to 57%.

An extension of these results to construct sample trees with varying number

of descendants for a general multi-stage stochastic program with recourse is valu-

able since, as explained above, reducing the bias of the optimistic-bound estimator

will improve the effectiveness of the policy’s quality testing procedure, which may

serve as a viable tool for a decision maker to solve real-world multi-stage stochas-

tic programs with a large number of scenarios. At this point, we are, however,

not optimistic in being able to directly extend the bias approximation formulae for

multi-stage stochastic programs that involve more than one binary decision variable.

Instead, we seek a heuristic procedure to allocate sample size using the insights ob-

tained from American-style option pricing and stochastic lot-sizing problems.

116

Bibliography

[1] S. Ahmed, A. J. King, and G. Parija. A multi-stage stochastic integer pro-

gramming approach for capacity expansion under uncertainty. Journal of

Global Optimization. To appear.

[2] S. Ahmed and N.V. Sahinidis. An approximation scheme for stochastic integer

programs arising in capacity expansion. Operations Research. To appear.

[3] H. Attouch and R.J.-B. Wets. Epigraphical processes: Laws of large numbers

for random lsc functions. In Séminaire d’Analyse Convexe, volume 20, pages

13.1–13.29, Department Des Sciences Mathematiques, Universite Montpellier

II, 1990.

[4] T.G. Bailey, P. Jensen, and D.P. Morton. Response surface analysis of two-

stage stochastic linear programming with recourse. Naval Research Logistics,

46:753–778, 1999.

[5] M.S. Bazaraa, J.J. Jarvis, and H.D. Sherali. Linear Programming and Net-

work Flows. John Wiley and Sons, second edition, 1990.

[6] E.M.L. Beale. On minimizing a convex function subject to linear inequalities.

Journal of the Royal Statistical Society, 17B:173–184, 1955.

[7] E.M.L. Beale. The use of quadratic programming in stochastic linear pro-

gramming. RAND P-2404, RAND Corporation, 1961.

[8] R.E. Bellman. Dynamic Programming. Princeton University Press, 1957.

117

[9] J.F. Benders. Partitioning procedures for solving mixed-variables program-

ming problems. Numerische Mathematik, 4:238–252, 1962.

[10] A.J. Berger, J. Mulvey, and A. Ruszczyński. An extension of the DQA

algorithm to convex stochastic programs. SIAM Journal of Optimization,

4(4):735–753, 1994.

[11] M. Bertocchi, J. Dupačová, and V. Moriggia. Sensitivity of bond portfolio’s

behavior with respect to random movements in yield curve: A simulation

study. Annals of Operations Research, 99:267–286, 2000.

[12] D.P. Bertsekas. Dynamic Programming and Optimal Control, Volume 1 and

2. Athena Scientific, Belmont, Massachusetts, 1995.

[13] J.R. Birge. Decomposition and partitioning methods for multistage stochastic

linear programs. Operations Research, 33:989–1007, 1985.

[14] J.R. Birge, M.A.H. Dempster, H.I. Gassmann, E.A. Gunn, A.J. King, and

S.W. Wallace. A standard input format for multiperiod stochastic linear

program. COAL Newsletter, 17:1–19, 1987.

[15] J.R. Birge and F.V. Louveaux. A multicut algorithm for two-stage stochas-

tic linear programs. European Journal of Operational Research, 34:384–392,

1988.

[16] J.R. Birge and F.V. Louveaux. Introduction to Stochastic Programming.

Springer-Verlag, New York, 1997.

[17] G.C.E. Boender, P. van Aalst, and F. Heemskerk. Modelling and management

of assets and liabilities of pension plans in the Netherlands. In W.T. Ziemba

and J.M. Mulvey, editors, Worldwide Asset and Liability Modeling, pages 561–

580. Cambridge University Press, Cambridge, United Kingdom, 1998.

118

[18] M. Broadie and P. Glasserman. Pricing American-style securities using sim-

ulation. Journal of Economic Dynamics and Control, 21:1323–1352, 1997.

[19] M. Broadie and P. Glasserman. A stochastic mesh method for pricing high-

dimensional American options. Working Paper, Columbia University, 1997.

[20] M. Broadie, P. Glasserman, and Z. Ha. Pricing American options by simula-

tion using a stochastic mesh with optimized weights. In S.P. Uryasev, editor,

Probablistic Constrained Optimization. Kluwer Academic, 2000.

[21] D.R. Cariño, T. Kent, D.H. Meyers, C. Stacy, M. Sylvanus, A.L. Turner,

K. Watanabe, and W.T. Ziemba. The Russell-Yasuda Kasai model: An as-

set/liability model for a Japanese insurance company using multistage stochas-

tic programming. Interfaces, 24:29–49, 1994.

[22] D.R. Cariño, D.H. Meyers, and W.T. Ziemba. Concepts, technical issues,

and uses of the Russell-Yasuda Kasai financial planning model. Operations

Research, 46:450–462, 1998.

[23] D.R. Cariño and W.T. Ziemba. Formulation of the Russell-Yasuda Kasai

financial planning model. Operations Research, 46:433–449, 1998.

[24] C. Carøe and R. Schultz. Dual decomposition in stochastic integer program-

ming. Operations Research Letters, 24:37–54, 1999.

[25] T.J. Carpenter, I.J. Lustig, and J.M. Mulvey. Formulating two-stage stochas-

tic programs for interior point methods. Operations Research, 39:757–770,

1991.

[26] M. Casey and S. Sen. The scenario generation algorithm for multistage

stochastic linear programming. Working paper, University of Puget Sound,

2002. http://www.math.ups.edu/∼mcasey.

119

[27] A. Charnes and W.W. Cooper. Chance-constrained programming. Manage-

ment Science, 6:73–79, 1959.

[28] Z.L. Chen and W.B. Powell. Convergent cutting-plane and partial-sampling

algorithm for multistage stochastic linear programs with recourse. Journal of

Optimization Theory and Applications, 102(3):497–524, 1999.

[29] R.K. Cheung and W.B. Powell. An algorithm for multistage dynamic net-

works with random arcs capacities, with an application to dynamic fleet man-

agement. Operations Research, 44(6):951–963, 1996.

[30] G. Consigli and M.A.H. Dempster. Dynamic stochastic programming for

asset-liability management. Annals of Operations Research, 81:131–161, 1998.

[31] G. Consigli, J. Dupačová, and S. Wallace. Generating scenarios for multistage

stochastic programs. Annal of Operations Research, 100:25–53, 2000.

[32] G.B. Dantzig. Linear programming under uncertainty. Management Science,

1:197–206, 1955.

[33] G.B. Dantzig and P.W. Glynn. Parallel processors for planning under uncer-

tainty. Annals of Operations Research, 22:1–21, 1990.

[34] G.B. Dantzig and G. Infanger. Multi-stage stochastic linear programs for

portfolio optimization. Annals of Operations Research, 45:59–76, 1993.

[35] M.A.H. Dempster. Sequential importance sampling algorithms for dynamic

stochastic programming. Judge Institute of Management Working Paper

32/98, 1998.

[36] M.A.H. Dempster and G. Consigli. The CALM stochastic programming

model for dynamic asset-liability management. In J.M. Mulvey and W.T.

120

Ziemba, editors, World Wide Asset and Liability Modelling, pages 464–500.

Cambridge University Press, 1998.

[37] M.A.H. Dempster and R.T. Thompson. EVPI-based importance sampling

solution procedures for multistage stochastic linear programmes on parallel

MIMD architectures. Annal of Operations Research, 90:161–184, 1999.

[38] S.P. Dokov and D.P. Morton. Second-order lower bounds on the expecta-

tion of a convex function. Stochastic Programming E-Print Series, 2001.

www.speps.info.

[39] C. Donohue. Stochastic Network Programming and the Dynamic Vehicle Allo-

cation Problem. Ph.D. dissertation, The University of Michigan, Ann Arbor,

1996.

[40] J. Dupačová, N. Gröwe-Kuska, and W. Römisch. Scenario reduction in

stochastic programming: An approach using probability metrics. Mathe-

matical Programming, To appear.

[41] J. Dupačová, J. Hurt, and J. Štěpán. Stochastic Modeling in Economics and

Finance. Kluwer Academic Publishers, 2002.

[42] J. Dupačová and P. Popela. Melt control: charge optimization via stochastic

programming. In S.W. Wallace and W.T. Ziemba, editors, Applications of

Stochastic Programming. MPS-SIAM Series in Optimization. forthcoming.

[43] J. Dupačová and K. Sladký. Comparison of multistage stochastic programs

with recourse and stochastic dynamic programs with discrete time. ZAMM·Z.

Angew. Math. Mech., 82:753–765, 2002.

121

[44] J. Dupačová. Application of stochastic programming under incomplete in-

formation. Journal of Computational and Applied Mathematics, 56:113–125,

1994.

[45] J. Dupačová. Mutistage stochastic programs: The state-of-the-art and se-

lected bibliography. Kybernetika, 31(2):151–174, 1995.

[46] N.C.P. Edirisinghe. Bound-based approximations in multistage stochastic

programming: Nonanticipativity aggregation. Annals of Operations Research,

85:103–127, 1999.

[47] N.C.P. Edirisinghe and W.T. Ziemba. Tight bounds for stochastic convex

programs. Operations Research, 40:660–677, 1992.

[48] H.P. Edmundson. Bounds on the expectation of a convex function of a random

variable. Technical report, The Rand Corporation Paper 982, Santa Monica,

California, 1956.

[49] G.D. Eppen, R.K. Martin, and L. Schrage. A scenario approach to capacity

planning. Operations Research, 37:517–527, 1989.

[50] Y. Ermoliev. Stochastic quasigradient methods. In Y. Ermoliev and R.J.-

B. Wets, editors, Numerical Techniques for Stochastic Optimization, pages

141–185. Springer-Verlag, Berlin, 1988.

[51] Y. Ermoliev and R.J.-B. Wets. Stochastic programming, an introduction. In

Y. Ermoliev and R.J.-B. Wets, editors, Numerical Techniques for Stochastic

Optimization, pages 1–32. Springer-Verlag, Berlin, 1988.

[52] A. Ferguson and G.B. Dantzig. The allocation of aircraft to routes: an exam-

ple of linear programming under uncertain demands. Management Science,

3:45–73, 1956.

122

[53] S.-E. Fleten, S.W. Wallace, and W.T. Ziemba. Hedging electricity portfolios

via stochastic programming. In C. Greengard and A. Ruszczynski, editors,

Decision Making Under Uncertainty: Energy and Power, IMA Volumes on

Mathematics and Its Applications, pages 71–94. Springer-Verlag, 2002.

[54] L.F. Frantzeskakis and W.P. Powell. A successive linear approximation pro-

cedure for stochastic, dynamic vehicle allocation problems. Transportation

Science, 24:40–57, 1990.

[55] K. Frauendorfer. Barycentric scenario trees in convex multistage stochastic

programming. Mathematical Programming, 75:277–293, 1996.

[56] H.I. Gassmann. Optimal harvest of a forest in the presence of uncertainty.

Canadian Journal of Forest Research, 19:1267–1274, 1989.

[57] H.I. Gassmann. MSLiP: A computer code for the multistage stochastic linear

programming problem. Mathematical Programming, 47:407–423, 1990.

[58] H.I. Gassmann and E. Schweitzer. Proposed extensions to the SMPS input

format for stochastic linear programs. Dalhousie School of Business Admin-

istration Working Paper, WP-96-1, 1996.

[59] H.I. Gassmann and S.W. Wallace. Solving linear programs with multiple

right-hand sides: Pricing and ordering schemes. Annals of Operations Re-

search, 64:237–259, 1996.

[60] R. Geske and H.E. Johnson. The American put options valued analytically.

Journal of Finance, 39:1511–1524, 1984.

[61] N. Gröwe, W. Römisch, and R. Schultz. A simple recourse model for power

dispatch under uncertain demand. Annals of Operations Research, 59:135–

164, 1995.

123

[62] N. Gröwe-Kuska, K. Kiwiel, M. Nowak, W. Römisch, and I. Wegner. Power

management in a hydro-thermal system under uncertainty by Lagrangian re-

laxation. IMA Volumes of Mathematics and its Applications, 128, 2002.

[63] G. Hadley. Nonlinear and dynamic programming. Addison-Wiley, 1964.

[64] K. Haugen, A. Løkketangen, and D. Woodruff. Progressive hedging as a meta-

heuristic applied to stochastic lot-sizing. European Journal of Operations

Research, 132:103–109, 2001.

[65] J.L. Higle. Variance reduction and objective function evaluation in stochastic

linear programs. INFORMS Journal on Computing, 10:236–247, 1998.

[66] J.L. Higle and S. Sen. Stochastic decomposition: an algorithm for two-stage

linear programs with recourse. Mathematics of Operations Research, 16:650–

669, 1991.

[67] J.L. Higle and S. Sen. Multistage stochastic convex programs: Duality

and its implications. The Stochastic Programming E-Print Series, 2002.

www.speps.info.

[68] M.R. Holmer. The asset-liability management system at Fannie Mae. Inter-

faces, 24:3–21, 1994.

[69] M.R. Holmer. Integrated asset-liability management: An implementation

case study. In W.T. Ziemba and J.M. Mulvey, editors, Worldwide Asset and

Liability Modeling, pages 581–605. Cambridge University Press, Cambridge,

United Kingdom, 1998.

[70] M.R. Holmer and S.A. Zenios. The productivity of financial intermediation

and the technology of financial product management. Operations Research,

43:970–982, 1995.

124

[71] K. Høyland, M. Kaut, and S. Wallace. A heuristic for moment-matching sce-

nario generation. Computational Optimization and Applications, To appear.

[72] G. Infanger. Monte Carlo (importance) sampling within a benders decomposi-

tion algorithm for stochastic linear programs. Annals of Operations Research,

39:69–95, 1992.

[73] G. Infanger and D.P. Morton. Cut sharing for multistage stochastic linear

programs with interstage dependency. Mathematical Programming, 75:241–

256, 1996.

[74] J. Jacobs, G. Freeman, J. Grygier, D. Morton, G. Schultz, K. Staschus, and

J. Stedinger. Socrates: a system for scheduling hydroelectric generation under

uncertainty. Annals of Operations Research, 59:99–133, 1995.

[75] J.L. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs

moyennes. Acta. Mathematica, 30:175–193, 1906.

[76] P. Kall. Approximation to optimization problems: An elementary review.

Mathematics of Operations Research, 11:9–18, 1986.

[77] P. Kall. Bounds for and approximations to stochastic linear programs with

recourse. In K. Marti and P. Kall, editors, Stochastic Programming Methods

and Technical Applications, Lecture Notes in Economics and Mathematical

Systems, volume 458. Springer, 1998.

[78] P. Kall and S.W. Wallace. Stochastic Programming. John Wiley & Sons,

Chichester, 1994.

[79] V. Kaňková. A note on multistage stochastic programs: Markov dependence.

Reseach Report 2020, Academy of Sciences of the Czech Republic, Institute

of Information Theory and Automation, Prague, Czech Republic, 2001.

125

[80] E. Katok, W. Tarantino, and T.P. Harrison. Investment in production re-

source flexibility: An empirical investigation of methods for planning under

uncertainty. Naval Research Logistics. To appear.

[81] E. Katok, W. Tarantino, and R. Tiedeman. Flexibility planning and technol-

ogy management at Jeppesen Sanderson Inc. Interfaces, 31:7–29, 2001.

[82] J.E. Kelley. The cutting plane method for solving convex programs. SIAM

Journal of Industrial and Applied Mathematics, 8:703–712, 1960.

[83] A. King. Stochastic programming problems: Examples from the literature.

In Y. Ermoliev and R.J.-B. Wets, editors, Numerical Techniques for Stochastic

Optimization, pages 543–567. Springer-Verlag, Berlin, 1988.

[84] A.J. King and R.J.-B. Wets. Epi-consistency of convex stochastic programs.

Stochastics and Stochastics Reports, 34:83–92, 1991.

[85] P. Korapaty. Constructing scenario trees for pricing American-style options.

The University of Texas at Austin, 2001. M.S. Report.

[86] A.M. Law and W.D. Kelton. Simulation Modeling and Analysis. McGraw-

Hill, Boston, third edition, 2000.

[87] J. Linderoth, A. Shapiro, and S. Wright. The empirical behavior of sampling

methods for stochastic programming. Technical report, Computer Sciences

Department, University of Wisconsin-Madison, February 2001.

[88] A. Løkketangen and D. Woodruff. Progressive hedging and Tabu search

applied to mixed integer (0,1) multistage stochastic programming. Journal of

Heuristics, 2:111–128, 1996.

126

[89] G. Lulli and S. Sen. Stochastic batch-sizing. In D.L. Woodruff, editor,

Network Interdiction and Stochastic Integer Programming. Kluwer Academic

Publishers, Boston, 2003.

[90] A. Madansky. Bounds on the expectation of a convex function of a multivari-

ate random variable. Annals of Mathematical Statistics, 30:743–746, 1959.

[91] W.K. Mak, D.P. Morton, and R.K. Wood. Monte Carlo bounding techniques

for determining solution quality in stochastic programs. Operations Research

Letters, 24:47–56, 1999.

[92] D. Morton and E. Popova. Monte Carlo simulations for stochastic optimiza-

tion. In C.A. Floudas and P.M. Pardalos, editors, Encyclopedia of Optimiza-

tion. Kluwer Academic Publishers, 2001.

[93] D.P. Morton. An enhanced decomposition algorithm for multistage stochastic

hydroelectric scheduling. Annals of Operations Research, 64:211–235, 1996.

[94] D.P. Morton, J. Salmerón, and R.K. Wood. A stochastic program for op-

timizing military sealift subject to attack. Stochastic Programming E-Print

Series, 2003. www.speps.info.

[95] D.P. Morton and R.K. Wood. On a stochastic knapsack problem and general-

izations. In D.L. Woodruff, editor, Advances in Computational and Stochastic

Optimization, Logic Programming, and Heuristic Search: Interfaces in Com-

puter Science and Operations Research, pages 149–168. Kluwer Academic

Publishers, Boston, 1998.

[96] J.M. Mulvey. Generating scenarios for the Towers Perrin investment system.

Interfaces, 26:1–15, 1996.

127

[97] J.M. Mulvey, C. Gould, and C. Morgan. An asset and liability management

system for Towers Perrin-Tillinghast. Interfaces, 30:96–114, 2000.

[98] J.M. Mulvey and A. Ruszczyński. A new scenario decomposition method for

large-scale stochastic optimization. Operations Research, 43:477–490, 1995.

[99] V.I. Norkin, G.Ch. Pflug, and A. Ruszczyński. A branch and bound method

for stochastic global optimization. Mathematical Programming, 83:425–450,

1998.

[100] T. Pennanen and M. Koivu. Integration quadratures in discretization of

stochastic programs. Stochastic Programming E-Print Series, 2002.

www.speps.info.

[101] M.V.F. Pereira and L.M.V.G. Pinto. Stochastic optimization of a multireser-

voir hydroelectric system—a decomposition approach. Water Resources Re-

search, 21:779–792, 1985.

[102] M.V.F. Pereira and L.M.V.G. Pinto. Multi-stage stochastic optimization

applied to energy planning. Mathematical Programming, 52:359–375, 1991.

[103] G.Ch. Pflug. Scenario tree generation for multiperiod financial optimization

by optimal discretization. Mathematical Programming, 89:251–271, 2001.

[104] A.B. Philpott, M. Craddock, and H. Waterer. Hydro-electric unit commit-

ment subject to uncertain demand. European Journal of Operational Re-

search, 125:410–424, 2000.

[105] Y. Pochet and L. Wolsey. Lot-size models with backlogging: strong reformu-

lations and cutting planes. Mathematical Programming, 40:317–335, 1988.

128

[106] W. Powell. A comparative review of alternative algorithms for the dynamic

vehicle allocation problem. In B.L. Golden and A.A. Assad, editors, Vehicle

Routing: Methods and Studies. North-Holland, New York, 1988.

[107] A. Prékopa. Stochastic Programming. Kluwer Academic Publishers, Dor-

drecht, 1995.

[108] R.T. Rockafellar and R.J.-B. Wets. Scenarios and policy aggregation in opti-

mization under uncertainty. Mathematics of Operations Research, 16:119–147,

1991.

[109] R.T. Rockafellar and R.J.-B. Wets. Variational Analysis. Springer-Verlag,

Berlin, 1998.

[110] C.H. Rosa and A. Ruszczyński. On augmented Lagrangian decomposition

methods for multistage stochastic programs. Annals of Operations Research,

64:289–309, 1996.

[111] A. Ruszczyński. A regularized decomposition method for minimizing a sum

of polyhedral functions. Mathematical Programming, 35:309–333, 1986.

[112] A. Ruszczyński. Parallel decomposition of multistage stochastic programming

problems. Mathematical Programming, 58:201–228, 1993.

[113] A. Ruszczyński and A. Świetanowski. Accelerating the regularized decompo-

sition method for two stage stochastic linear problems. European Journal of

Operational Research, 101:328–342, 1997.

[114] S. Sen. Stochastic programming: Computatinal issues and challenges. In

S. Gass and C. Harris, editors, Encyclopedia of OR/MS. Kluwer Academic

Publishers, 2001.

129

[115] A. Shapiro. Statistical inference of multistage stochastic programming prob-

lems. Optimization Online, 2002. http://www.optimization-online.org.

[116] S. Takriti, J.R. Birge, and E. Long. A stochastic model for the unit commit-

ment problem. IEEE Transactions on Power Systems, 11:1497–1508, 1996.

[117] S. Takriti, B. Krasenbrink, and L.S.-Y. Wu. Incorporating fuel constraints

and electricity spot prices into the stochastic unit commitment problem. Op-

erations Research, 48:281–293, 2000.

[118] G.C. Tiao and G.E.P. Box. Modeling multiple time series with applications.

Journal of the American Statistical Association, 76:802–816, 1981.

[119] R.M. Van Slyke and R.J.-B. Wets. L-shaped linear programs with applications

to optimal control and stochastic programming. SIAM Journal on Applied

Mathematics, 17:638–663, 1969.

[120] B. Verweij, S. Ahmed, A. Kleywegt, G. Nemhauser, and A. Shapiro. The

sample average approximation method applied to stochastic vehicle routing

problems: a computational study. Computational and Applied Optimization,

24:289–333, 2003.

[121] S.W. Wallace. Decision making under uncertainty: Is sensitivity analysis of

any use? Operations Research, 48(1):20–25, 2000.

[122] R.J.-B. Wets. Programming under uncertainty: The complete problem.

Zeitschrift für Warscheinlichkeitstheorie und Verw. Gebiete, 4:316–339, 1966.

[123] R.J.-B. Wets. Stochastic programs with fixed recourse: The equivalent deter-

ministic program. SIAM Review, 16:309–339, 1974.

130

[124] R.J.-B. Wets. Stochastic programming: Solution techniques and approxima-

tion schemes. In A. Bachem, M. Grötschel, and B. Korte, editors, Mathe-

matical Programming: State-of-the-art 1982, pages 560–603. Springer-Verlag,

1983.

[125] R.J.-B. Wets. Large-scale linear programming techniques in stochastic pro-

gramming. In Y. Ermoliev and R.J.-B. Wets, editors, Numerical Techniques

for Stochastic Optimization. Springer-Verlag, Berlin, 1988.

[126] R.J.-B. Wets. Stochastic programming. In G.L. Nemhauser, A.H.G. Rinnoy

Kan, and M.J. Todd, editors, Handbook on Operations Research and Manage-

ment Science, volume 1, pages 573–629. North-Holland, 1989.

[127] R.J. Wittrock. Advances in a nested decomposition algorithm for solving

staircase linear programs. Technical Report SOL 83-2, Systems Optimization

Laboratory, Stanford University, Stanford, California, 1983.

[128] W.T. Ziemba. Stochastic programs with simple recourse. In P.L. Ham-

mer and G. Zoutendijk, editors, Mathematical Programming in Theory and

Practice, pages 213–273. North-Holland, Amsterdam, 1974.

[129] W.T. Ziemba and J.M. Mulvey, editors. Worldwide Asset and Liability Mod-

eling. Cambridge University Press, Cambridge, United Kingdom, 1998.

131

Vita

Born on June 23, 1971, in Bangkok, Thailand, Anukal Chiralaksanakul is a

son of Lertnarong Chiralaksanakul and Notha Chiralaksanakul. After completing his

study at Triamudomsuksa High School, Bangkok, in 1988, he entered Chulalongkorn

University, Bangkok, where he earned a B.S. in Mechanical Engineering with a

second-class honor in 1992. He had worked as a mechanical engineer at Sedco-Forex

(Schlumberger) in Thailand and Pakistan until he began his graduate study at the

University of Texas at Austin in 1994.

After receiving a M.S. in Mechanical Engineering in 1997, Anukal Chiralak-

sanakul continued his graduate study in Operations Research. Currently, he is a

doctoral candidate in the Graduate Program in Operations Research at the Uni-

versity of Texas at Austin. His dissertation research draws upon techniques from

large-scale optimization and Monte Carlo sampling to develop computational meth-

ods for a class of computationally difficult models known as multi-stage stochastic

programs with recourse. He has worked as a summer intern at Southwestern Bell,

Schlumberger, and i2 Technologies on various projects related to resource planning

and scheduling, and as a teaching assistant to courses in optimization, probability,

and statistics.

Permanent address: 2230/3 Narathiwat 18
Bangkok 10120, Thailand.

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special version of
Donald Knuth’s TEX Program.

132

