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A Statistical Associating Fluid Theory (SAFT) for multi-component 

mixtures has been implemented in conjunction with a phase-stability and flash 

algorithm. The model has been extensively tested for various non-associating and 

associating mixtures and comparisons are made with the Peng-Robinson equation 

of state. Both Peng-Robinson and SAFT are equally suitable for simple non-

associating mixtures but SAFT clearly is more accurate when polar mixtures are 

modeled. The phase behavior of methanol-water-hydrocarbon mixtures is studied 

with the SAFT equation and the Peng-Robinson equation and comparisons are 

made with experimental liquid dropout data. The SAFT equation of state is shown 

to give better predictions for methanol-hydrocarbon and methanol-water-

hydrocarbon mixtures over a range of pressures and compositions. The effect of 
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methanol concentration and temperature on dew-point to bubble-point transition 

of a gas-condensate mixture is studied with the SAFT equation of state.  

 

The SAFT equation of state is coupled with the Gradient Theory to 

calculate the interfacial tension of pure components as well as multi-component 

mixtures. Pure component interaction parameters (cii) for the calculation of 

interfacial tension with the SAFT equation have been introduced. A mixing 

interaction coefficient for interfaces (mij) has been defined to satisfactorily predict 

the interfacial tension of certain mixtures such as water-methanol and water-

ethanol systems. The effect of temperature and pressure is studied for a methane-

water mixture and it is shown that no further adjustable parameters need to be 

introduced to accurately predict the interfacial tension over a range of 

temperatures and pressures.  

 

Finally, the SAFT equation of state has also been integrated in to the 

reservoir simulator (UTCOMP) so as to be able to do flow simulations of 

complex polar mixtures. The flow simulations with SAFT have also been 

compared with experimental core flood studies and it is shown that both the PR 

and the SAFT equation give reasonable agreement with experimental data. 

However, it is shown that the SAFT based model predictions are slightly better 

during the methanol injection stage of the experiment. However, significantly 

larger computational time discourages the use of SAFT for such flow simulations. 
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CHAPTER 1 

INTRODUCTION 

1.1 RESEARCH OBJECTIVES 

Polar, associating molecules play a very important role in diverse physical 

systems such as molecular biology, polymer blends, oil recovery and 

microelectronics. Only recently has it been possible to include association effects 

in molecular models for predicting bulk thermodynamic properties. Chapman et 

al., (1988) have proposed a statistical mechanics based equation of state, 

Statistical Associating Fluid Theory (SAFT) which accounts for associating 

molecules. Their approach is to use a reference fluid that incorporates, both the 

chain length (molecular size and shape) and molecular association, in place of the 

much simpler hard sphere reference fluid. The prediction of the interfacial 

behavior of these systems is also dependent on our understanding of 

intermolecular association effect of these systems. There has been relatively little 

work done to develop models for predicting the interfacial behavior of two-phase 

multicomponent systems containing associating molecules. 

 

In this study we extend some of these recent developments in the theory of 

hydrogen bonding into thermodynamic models, to predict the bulk and interfacial 

thermodynamic properties of multi-component mixtures. As part of this work, we 

have implemented a Statistical Associating Fluid theory (SAFT) model for multi-
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component mixtures. The model in conjunction with a phase-stability and flash 

algorithm has been used to study the phase behavior and bulk thermodynamic 

properties of mixtures of associating molecules commonly encountered in 

petroleum reservoir fluids. We have done extensive testing of the phase behavior 

of non-associating and associating binary mixtures using the SAFT model and 

compared its predictions with a popular engineering equation of state. We have 

also extended this model to predict interfacial properties, such as surface tension, 

interfacial tension and interfacial compositions of pure and multi-component 

mixtures of alcohols. We have implemented the SAFT equation of state in a flow-

based reservoir simulator to study the effect of compositional models on the flow 

of hydrocarbon-alcohol-water mixtures. 

 

1.2 OVERVIEW 

 

In Chapter 2 a review of the equation of states for complex associating 

mixtures is presented. Chapter 3 discusses the theory behind the statistical 

mechanical ideas and lays out the formulation for the Statistical Associating Fluid 

Theory (SAFT). The mathematical expressions for various bulk thermodynamic 

terms and also the multiphase equilibrium flash algorithm as implemented in 

UTCOMP a numerical reservoir simulator into which the SAFT model has been 

currently merged are also discussed in this chapter. Chapter 4 provides phase 

behavior results for several binary and multi-component mixtures. In Chapter 5 

the phase behavior of gas condensate-methanol-water mixtures is studied. In 
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Chapter 6 the concepts of associating fluids are extended to develop models for 

interfacial tension.  In Chapter 7 results and discussion for the interfacial tension 

model applied to pure components and mixtures are provided. In Chapter 8 the 

equations required for using SAFT equation in a flow simulation are presented. A 

few example flow simulations with the SAFT equation of state for hydrocarbon 

mixtures are also presented in this chapter. 
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CHAPTER 2 

LITERATURE SURVEY 

 

2.1 CLASSICAL EQUATIONS OF STATE 

 

Equations of state that have been proposed in the literature generally have 

limitations with regard to the range of temperatures and pressures in which they 

are applicable and the fluids that they can be used to model. Some equations are 

better for PVT relations, others for phase equilibria, and still others for enthalpy 

or entropy deviations. Cubic equations of state that are explicit in pressure and 

third degree in volume are among the most successful of the simpler forms. van 

der Waals [1], Redlich-Kwong [2] and Peng-Robinson equations of state [3,4] are 

some of the successful equations in this class. The advantages of these equations 

are that they are easy to implement in computer programs for repeated evaluations 

of properties. The van der Waals and Redlich-Kwong equations are not applicable 

to liquid phases and the Peng-Robinson equation does not do well for low 

temperatures and for polar compounds. The Benedict-Webb-Rubin [5,6] EOS is 

one of the equations that successfully predicts behavior under cryogenic 

conditions. The Lee-Kesler [7] equation has been shown to predict enthalpy 

deviations very well.  
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For liquids, activity coefficient models have been shown to be quite 

successful. The group contribution method has been developed for calculation of 

activity coefficients. In this method the activity coefficient is considered to be the 

sum of the contributions of each individual group and the interaction between two 

groups as determined by matching the experimental phase equilibrium data. These 

methods have been shown to do well for polar compounds as well, but only for 

low pressure systems [7]. The UNIFAC model is the most popular group 

contribution method [8-9]. 

 

2.2  SAFT EQUATION OF STATE 

 

The other main class of equations is those based on intermolecular 

potentials. These are based on the viewpoint that the bulk properties of substances 

are a result of properties of individual molecules and interactions between them. 

Molecularly based equations allow for separating and quantifying the effects of 

molecular structure and interactions on bulk properties and phase behavior. 

Examples of such effects are the molecular size and shape(e.g., chain length), 

association(e.g., hydrogen bonding) energy, and mean field (e.g., dispersion and 

induction) energy.  In the next section we provide some basic concepts of 

obtaining the macroscopic thermodynamic properties from the information on 

molecular forces which falls under the domain of microthermodynamics.  
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2.3 MICROTHERMODYNAMICS 

 

Microthermodynamics is the interpretation of macroscopic 

thermodynamic properties in terms of the molecular potential functions [10]. The 

basic idea is that if we know the spatial distributions of molecules as well as the 

interaction energy among them, we could sum the energies between the molecules 

over the intermolecular distances, as given by the distribution, to obtain the total 

energy. We construct the canonical ensemble for the calculation of the energy. As 

we shall see, for all practical purposes only the pair, and, sometimes the triplet 

correlation functions are needed for a full determination of the thermodynamic 

properties. Higher order correlations are rarely required.  

 

As an example, the internal energy arises due to the interaction forces 

among the molecules within the system. The differential relation in the canonical 

ensemble as 

N V,

N
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For identical particles, u(rij) = u(rkm) for all i,j,k, and m as long as rij = rkm. 

There are N(N-1)/2 distinct pairs in the summation. Thus we have 
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For an isotropic and homogeneous fluid  
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The upper limit can be taken to be infinity when the intermolecular forces 

are short ranged in comparison to the macroscopic dimensions. The above 

equation shows that the macroscopic energy can be obtained in terms of the 

molecular pair potential (u(r12)) and the radial distribution function (g(r12) ), 

which are both microscopic two-body functions. A similar procedure can be used 

to obtain other macroscopic thermodynamic properties. 

 

2.4 LIQUID THEORIES BASED ON HARD SPHERE MODEL 

 

The relation between inter-molecular interactions and bulk properties of 

the system has been established in the previous section. In statistical mechanics 

the structure of a liquid is expressed in terms of a molecular radial distribution 

function. These distribution functions give the time averaged spatial configuration 

of the molecules in the liquid. The radial distribution function is obtained from the 
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knowledge of the intermolecular pair potential using, for example, the integral 

equation theories. The simplest pair potential model is to assume that the fluid is 

made up of hard spheres. By studying the exact molecular dynamics results for 

hard-sphere fluids Carnahan and Starling [11] were able to propose an accurate 

equation for the radial distribution function. Knowing the radial distribution 

function other thermodynamic properties can be evaluated. The basic idea is that 

once the spatial distribution of molecules as well as the interaction energies 

among them is known, the total energy is obtained as the summation of the 

energies between the molecules. 

 

2.5 PERTURBATION THEORY FOR DISPERSION FORCES 

 

In the previous section a simple model of hard-spheres was mentioned. In 

reality the interaction potentials are more complicated. For example, most real 

gases are polar or multi-polar: carbon dioxide is quadrupolar, and hydrogen 

chloride is both dipolar and quadrupolar. In addition, polyatomic molecules are 

nonspherical: the breadth-to-length ratio of bromine is 0.547, and that of carbon 

disulfide is about 0.9. All these factors influence the physical properties of the 

substance. A simple spherically symmetric potential function cannot adequately 

describe these effects. However, simpler models could serve as reference 

potentials, and the additional effects, such as quadrupolar forces, could be treated 

as perturbations on the reference systems. In principle, when the reference system 

chosen is close to the final system, one would also expect the properties produced 
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by adding the perturbations to be close to the final system. This is the basis of the 

perturbation approach. The general theory of perturbation methods was first 

clearly described by Zwanzig[12]. The dispersion term used in this study is a 

power series initially fitted by Alder et al. [13].  This equation also provided the 

basis for the Perturbed Hard Chain Theory of Beret and Prausnitz [14] and by 

Chen and Kreglewski [15] in their equation of state, and was extended to mixtures 

by Simnick et al. [16].  

 

2.6 MODELS FOR ASSOCIATION EFFECTS 

2.6.1 Early Models 

As mentioned in the previous section, perturbation theories give accurate 

results when the reference system chosen is close to the real pair potential. In the 

case of molecules with specific directional associating sites such as alkanols, 

water and acids the simple hard sphere reference fluid proposed earlier is 

inadequate. There have been many attempts in the past to model association 

effects in fluid phase equilibria. The best known concepts in association bonding 

is the chemical theory of Dolezalek [17], which postulates the existence of 

distinct molecular species in solution, which are a result of chemical reactions 

assumed to be in a state of chemical equilibrium. This concept has been adopted 

in many approaches that usually utilize the chemical equilibrium constants 

involving the chemical entropy and enthalpy terms (in effect binary parameters) 

to allow for temperature dependence. These concepts are reviewed in Prausnitz  et 

al. [18].  
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An alternative approach is that of lattice theories based on modeling the 

fluid structure as having essentially a solid-like lattice structure. Guggenheim [19] 

used the quasi-chemical approximation to treat non-random mixtures. Barker and 

Fock [20] used this theory for model mixtures. Several lattice models have been 

proposed to determine the properties of mixtures of strongly interacting 

molecules. There are several equations of state based on lattice theories that are 

popular in chemical engineering. The activity coefficient models applicable to 

nonrandom associating solution, for example, the models of Wilson [21], Abrams 

and Prausnitz [22], and Renon and Prausnitz [23], are based on these ideas.  

 

2.6.2 Statistical Mechanical Models 

 

A more promising route leading to an understanding of associating fluids 

involves theories based on statistical mechanics. One approach has been to 

introduce molecular association into commonly used integral equation theories. 

Cummins and Stell [24], solved the integral equation in the Percus-Yevick 

approximation for the chemical association A+B=AB by using a spherically 

symmetric bonding potential. The model can be solved analytically in the limit of 

an infinitesimally wide and infinitely deep potential well; no effect of bonding 

orientation is included in the theory. Later Cummins and Blum [25] examined the 

directional character of the interaction in a study of the model for water. The 

system was solved in the PY approximation for the limit of surface adhesion.  
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2.6.3 Wertheim’s Association Model 

 

Andersen was one of the first to introduce the geometry of the interaction 

at an early stage of the theory [26, 27].  He proposed a cluster (virial) expansion 

in terms of the total singlet number density (ρ) similar to the conventional 

approaches in simple fluids for obtaining the grand canonical ensemble partition 

function. The virial coefficients in the density expansion are dependent on the 

intermolecular forces. The virial coefficients in the expansion are also referred to 

as graphs in the literature because of the use of pictorial graphs to represent the 

complex integration over volumes involved in these coefficients. The key concept 

in Andersen’s model is that since the interaction is short-ranged and highly 

directional, the repulsive cores will restrict the system to single bonds at each 

attractive site. As a result many of the graphs in the expansion will be negligible. 

Although the incorporation of graph cancellation is cumbersome, Andersen’s 

ideas have influenced later theories on associating fluids. Hoye and Olaussen [28] 

extended Andersen’s approach by using a cluster expansion in terms of the 

monomer density rather than in terms of the overall density. They find that such 

an approach leads to much faster convergence. 

 

The next most important advancement in the modeling of associating 

fluids is by Wertheim [29-32].  Wertheim did the resummed cluster expansion in 

terms of two densities, the total number density and the monomer density. This 
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results in the applicability of the theory over a wide range of densities. Similar to 

Andersen, Wertheim was also able to simplify the complex graphical expansions 

by assuming that the repulsive core of each molecule restricts the orientation-

dependent attractive forces to only single bonds at each attractive site. Some of 

the steric incompatibilities that result in graph cancellations are shown 

schematically in Figure 2.1 to Figure 2.3. The first type involves three molecules: 

when the sites A and B on molecules 1 and 2 respectively get sufficiently close to 

form a bond, then the repulsive cores of molecules 1, 2 and 3 prevent molecule 3 

from coming close enough to bond to either site A or B (Figure 2.1). Another type 

of steric incompatibility prevents a site A on molecule 1 from bonding to two or 

more sites on molecules 2 (Figure 2.2). One can also restrict the bonding between 

molecules to single bonding (Figure 2.3).  

 

Based on the graph cancellations discussed above, Wertheim was able to 

develop a key relationship between the residual Helmholtz energy due to 

association and the monomer density. This monomer density is related to a 

function ∆ characterizing the association strength.  Initially Wertheim had 

developed this theory for systems with a single attractive site but later extended it 

to systems with multiple bonding sites. Wertheim’s theory has been extended to 

mixtures of spheres [33]. 
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2.7 CHAINS OF HARD SPHERES 

 

The origin of the Helmholtz’s free energy contribution due to formation of 

chains can be visualized as m hard spheres at contact formed by imposing strong, 

covalent-like bonds on the hard spheres. In contrast to Wertheim’s model where 

each hard-sphere can have multiple associating sites, for chain-formation each 

hard sphere needs to have two covalent bond forming sites on each of the hard-

spheres in the interior of the chain and one covalent-bonding site on the end 

segments of the chain. With this simplification Wertheim’s theory can be applied 

to chain formation taking into account the strength of the covalent bond. 

Chapman et al., [34] have derived a simplified expression for chain formation on 

the basis of the above formalism. 
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Nomenclature 
 
U  internal energy (Joules) 

ZN  canonical partition function 

β  inverse temperature 1/kT (1/Joules) 

k  Boltzmann Constant (J/K) 

T  temperature (K) 

Λ  de Broglie wavelength (m) 

N  number of particles 

u(r12)  intermolecular potential function  (Joules) 

V  volume of the ensemble ( m3 ) 

M  molecular weight 

ri  radial distance  (m) 

ρ  singlet density ( /m3 ) 

ρ(2)(r1, r2) two body correlation function (/m6 ) 

g(2) (r12) radial distribution function 
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Figure 2.1: Only two molecules can form a bond at a single associating site 
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Figure 2.2: No site on one molecule bond simultaneously to two sites on 
another molecule 
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Figure 2.3: Double bonding between molecule is not allowed 
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CHAPTER 3 

SAFT EQUATION OF STATE FOR MULTICOMPONENT 
MIXTURES 

Ideally, a single equation of state should incorporate all the effects 

described in Chapter 2. Chapman et al., [1,2] proposed such an equation of state. 

The essence of their approach, referred to as the Statistical Associating Fluid 

Theory (SAFT) is to use a reference fluid that incorporates both chain formation 

and association bonding, in place of the much simpler hard sphere reference fluid 

used in most existing engineering equations of state. 

 

The theoretical results underlying the equation of state are given in this 

section which is expressed in terms of the residual Helmholtz energy ares per 

mole, defined as ares(T,V,N)=atotal(T,V,N) –aideal(T,V,N), at the same temperature 

and density. All other thermodynamic quantities can be derived following a 

standard procedure as described, for example, by Topliss [3].  

 

The residual Helmholtz energy is a sum of reference and dispersion parts: 

 

ares =aref + adisp                  (3.1a) 

 

        aref(T,V,N)=ahs(T,V,N) +achain(T,V,N) +aassoc(T,V,N)    (3.1b) 
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3.1 MIXTURES OF HARD SPHERES 

The hard sphere term used is based on a theoretical result obtained by 

Mansoori et al. [4]. The Helmholtz energy is given by, 
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ζκ (k = 0 to 3) are functions of the molar density ρ. Since the reference 

fluid considered here contains hard spheres, which can be bonded to form chains, 

we use the ζ functions proposed by Chapman et al. [2], which are applicable to 

bonded spheres:  

                                  ζk = (π / 6 ) ρ ∑ xi mi ( di )k                  (3.3) 

where x is the mole fraction, mi is the number of segments(hard-spheres) 

per molecule, and di is the effective, temperature-dependent segment diameter.  

 

The temperature dependence of the segment diameter di in the above 

equation is given based on the Barker-Henderson approach [5]. The equation used 

for di is given below based on the work of Chen and Kreglewski [6], who 

obtained di by solving the Barker-Henderson integral equation 

                                                                      (3.4) ∫
∞

=
σ

kT)]drexp(-u(r)/-[1  d i

using a square-well potential. The final expression for d is 
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uo / k (in Kelvin) in the above equation is the well depth, a temperature-

independent LJ energy parameter, characteristic of nonspecific segment-segment 

interactions which will be referred to as the segment energy. Following Chen and 

Kreglewski,  the integration constant C is set to 0.12.  

 

We note that for pure components, Equation 3.2 reduces to 

 

                                     
RT
a

m
RT
a hs

0
hs

=          (3.6) 

 

where the hard-sphere term for pure segments a0, is that proposed by 

Carnahan and Starling [7]: 
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where ζ3 is a segment packing fraction (reduced density): 

 

                    ζk = (π / 6 ) ρ m d 
3   (pure components)                  (3.8) 

Mansoori et al. [4], have also derived the pair correlation function for a 

mixture of hard spheres (which can be approximated for hard segments), which 

shall be invoked later: 
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The hard-segment distribution function in the above equations depends on 

the effective sphere diameter di and on ζk (Equation 3.3). 

 

The corresponding expression for the chemical potential due to the hard–

sphere term for mixtures is given by [8]. 
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           (3.11) 

 

where PCS
hs is the contribution to the pressure from the hard-sphere terms. 

For mixtures, the Carnahan-Starling radial distribution function gives the hard-

sphere contribution to pressure as [8], 
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Note that the above expression for pressure includes the ideal-gas part as 

well. Hence the compressibility contribution from only hard-spheres (zhs ) is, 

 

                                  zhs = m (z0
hs – 1)      (3.13) 

 

and z0
hs is given as, 
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For pure components, the corresponding expressions for the hard sphere 

part are, 
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and 
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3.2 MIXTURE OF CHAINS 

 

The pair correlation function given by Equation 3.9 is used to determine 

the Helmholtz energy contribution due to chain formation: 

 24



 

 

                             ∑ −= ))d(gln()m1(x
RT

a hs
iiiii

chain

    (3.17) 

 

where gii is evaluated for the interaction of two spheres i in a mixture of 

spheres, evaluated at the hard-sphere contact. Equation 3.17 has been derived on 

the basis of the associating fluid theory, where the association bonds are replaced 

by covalent, chain-forming bonds, as given by Chapman et al. [1,2]. 

 

The corresponding expression for chemcial potential is given by, 
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where the partial derivative of the pair correlation function is given by 
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Similarly the contribution to the compressibility factor is given as 
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where 
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3.3 MIXTURE OF ASSOCIATING SPHERES 

 

The Helmholtz energy due to association, for pure components is given by 

Huang and Radosz [9], and is given for mixtures by Chapman et al., [2] and 

Huang and Radosz [9]. 
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where YA
i , the mole fraction of molecules i not bonded at site A, in 

mixture with other compononents, is given by, 
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where ∑Bj is the summation over all sites on molecule j: Aj, Bj, Cj etc., and 

∑i means summation over all components. 
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It is seen that YA
i depends on the molar density ρj: 

 

                                          ρj = xj ρmix       (3.24) 

 

and on the association strength ∆A
i
B

j : 
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where σij = ( σii + σjj ) / 2. The segment radial distribution function in the above 

equation is approximated from Equation. 3.9. The association bonding for 

mixtures in certain is given by: 

 

            jiji BABA εεε =     (3.25a) 

 
        jiji BABA κκκ )a1( ij−=     (3.25b) 

 

The term aij is known as the associating interaction coefficient and is similar to 

the binary interaction coefficient used for non-polar mixtures. 

 

The association contribution to the chemical potential µi
assoc 
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The corresponding expression for the compressibility factor due to association is 
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3.4 DISPERSION TERM 

 

A general expression for the dispersion term is  
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where m is the segment number and a0
disp is the dispersion Helmholtz energy, per 

mole of segments. The a0
disp term is a function of the segment energy u / kT [9].  
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where Djk are universal constants. In this work Djk that have been refitted to 

accurate PVT, internal energy and second virial coefficient data for argon, by 

Chen and Kreglewski [6] have been used. τ=0.74048 is the segment volume 

fraction in a close-packed arrangement. Hence, there are two parameters in the 

dispersion term, u/kT and m that have to be generalized for mixtures. 

 

The mixing rule of the conformal solution [10], van der Waals one-fluid 

theory (vdW1) is used. It defines the molecular energy and size (volume) of a 

hypothetical pure fluid having the same residual properties as the mixture of 

interest. The vdW1 averaging equations are: 
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                             uij = ( 1-kij )(uii ujj )1/2      (3.35) 

 

where kij is an empirical binary parameter, fitted to experimental data. 

 

The temperature dependence of u as given by Chen and Kreglewski, [6] 
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where e/k  is a constant that was related to Pitzer’s acentric factor and the 

critical temperature [6, 11] for various molecules. Since the energy parameter in 

this model is for segments rather than for molecules, e/k is set equal to 10 for all 

molecules. The only exceptions are a few small molecules where the e/k values 

close to those derived by Kreglewski have been used(e/k =0 for argon; 1 for 
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methane, ammonia, and water; 3 for nitrogen; 4.2 for CO; 18 for chlorine; 38 for 

CS2; 40 for CO2; and 88 for SO2 ). 

 

Since the segment volume parameters V∞ and vo are defined on a per-

segment basis and hence do not vary much from molecule to molecule, especially 

for large molecules, we will use the segment number m as a measure of the 

molecular size. Therfore, our mixing rule for m (the average segment number for 

mixtures) is, 
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where  

         mij = ½ (mi + mj )       (3.39) 

 

The corresponding equation for the chemical potential is  
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The corresponding compressibility factor is 
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The equation of state can be presented as the compressibility factor terms Z. 

taking into account all the different contributions can then be written as 

 

             Z=1 + Zhs + Zchain + Zassoc + Zdisp      (3.42) 

 

and the pressure of the system is given as 

 

P = Z ρ K T       (3.43) 

 

The chemical potential of the system can be calculated as 

 

        µi = µi
ideal + µi

hs+ µi
chain+ µi

assoc+ µi
disp     (3.44) 

 

The chemical potential contribution due to the ideal part µi
ideal is given by Reed 

and Gubbins [8]. 

 

                µi
ideal = RTln(ρxi)            (3.45) 

 

The above expressions have been used to correlate vapor-liquid equilibria 

for many real fluid mixtures. 
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3.5 MULTIPHASE EQUILIBRIUM ALGORITHM 

 

Much of the difficulty in multiphase equilibrium calculations lies in 

determining how many equilibrium phases should be considered. The algorithm 

described here for the phase equilibrium calculation is a sequential process. 

Initially, the overall composition of the mixture is tested for stability. If the 

mixture is found unstable, a phase is added, now making a two-phase mixture, 

and a calculation is initiated to find the compositions of the two, assumed, 

equilibrium phases. Had the stability analysis indicated that the mixture of overall 

composition was stable, no further calculations would be done, i.e., we would 

conclude that a single-phase equilibrium mixture exists. 

 

After the compositions of the two phases have been calculated, the 

stability of one of these phases is tested. If the stability analysis indicates that the 

phase is stable, it is concluded that the proper equilibrium state requires only two 

phases. If, however, the indication is that the phase is unstable, a third phase is 

added and a calculation is begun to find the equilibrium compositions of this, 

now, three-phase mixture. A phase is added one at a time and only as necessary. 

 

In summary then, the algorithm implemented here uses a sequential 

procedure outlined by the following steps: 

 

Step 1: Test the overall composition, z, for phase stability. 
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Step 2: If unstable, add a second phase and compute the compositions assuming 

two-phase equilibrium. 

Step 3: Test the stability of the composition of one of the phases calculated in 

Step (2). 

Step 4: If the phase composition is unstable, add a third phase and compute phase 

compositions assuming three-phase equilibrium. 

If phase stability calculations show a phase composition to be stable, 

either in Stdp(1) or Step(3) no further calculations are required. The following 

sections explain Step 1 (phase stability analysis) and the Step 2 the (flash 

algorithm) in detail. 

 

3.5.1 Phase Stability Analysis 

 

A stability analysis calculation for a mixture with overall hydrocarbon 

composition z is a search for a trial phase, taken from the overall mixture that, 

when combined with the remainder of the mixture, gives a value of Gibbs free 

energy that is lower than a single phase mixture of overall hydrocarbon 

composition, z . Mathematically, this condition is written as  

 

                        ∑
=

=∆
cn

1  i
iii  ] )z( - )y( [ n G  µµ                                          (3.46)            

Where µi is the chemical potential of component i and yr  is the mole 

fraction corresponding to the mole numbers nr . Substituting fugacity coefficients 

in terms of µi results in a more usable expression of the change in free energy 
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where yr  and zr  are the mole fraction compositions corresponding to the 

mole numbers n  and the test compositions. 
r

 

 If for any set of mole fractions the value of ∆G at constant temperature 

and pressure is greater than zero, then the phase will be stable. If a set of mole 

fractions can be found such that ∆G < 0, the phase will be unstable. The following 

is an algorithm for minimization of the free energy. 

 

3.5.2 Method of Stationary Point Locations 

 

Michelsen [12] reasoned that not all values of the phase space are 

important. In particular, only those sets of nr  at the stationary points of ∆G need 

to be examined for stability to be established. 

 

The variables ni in Equation (3.47) could be replaced by the product εyi, 

where ε is the sum of all ni. Making this substitution and dividing by ε, the 

function ∆G may be modified to, 

                       

∑
=

+=∆
cn

1  i
iiii  ] h - )y( φln   yln  [ y G       (3.48)  

 35



 

where, 

 

                         hi = ln zi  + ln φi (z) for i = 1, …., nc      (3.49)   

 

The stationary points of ∆G ( yr ) occur where the derivatives with respect 

to the nc – 1 independent variables yi are zero. Differentiating, 
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where, taking ync as the dependent mole fraction 

 

   k = ln ync  + ln φnc (z) – hnc   for i = 1, …., nc                          (3.51) 

 

Note that k is a constant for all the derivative conditions. Substitution of k into 

Equation (3.48) illustrates that at a stationary point, 

 

                                                                   (3.52) k k y G  
cn

1 i
i ==∆ ∑

=

 

and for stability, ∆ G > 0 implies k > 0 

 

Figure (3.1) shows a graphic interpretation of the theory using a Gibbs 

free energy of mixing curve. In this example, the stability of a mixture of 20 mole 

percent carbon dioxide and 80 mole percent ethane is examined. At the overall 
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composition, a tangent to the Gibbs free energy of mixing curve can be drawn. A 

phase of this composition will be stable provided the tangent lies below the curve 

at all other points. Mathematically, the distance between the Gibbs free energy of 

mixing curve at a composition yr  and the tangent is given by the value of the 

function ∆ G( yr ), Equation (3.48). 

 

Also shown in Figure (3.1) is a stationary point. This is a point which is 

either a local maximum or minimum, or a saddle point, of the function ∆G( yr ). A 

tangent to the Gibbs free energy of mixing curve at the stationary point will be 

parallel to the tangent drawn at the overall composition. The distance between the 

two tangents is given by Equation (3.52). 

 

Hence, if this distance is greater than or equal to zero, the phase will be 

stable. In Figure (3.1), the distance is negative for the mixture of 20-mole percent 

carbon dioxide, and therefore, the phase is unstable. The strategy of the method of 

Michelsen, then, is to locate the stationary points and infer phase stability at those 

points. 

 

From the derivative conditions, there are nc equations of the form 

 

          ln yi – k + ln φi ( yr ) – hi = 0    for i = 1, 2, … , nc                      (3.53) 

 

A set of variables Y
r

 can be defined such that  
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                 ln Yi = ln yi – k     for i = 1,2,  …, nc     (3.54) 

 

Equation (3.54) becomes  

    

                ln Yi + ln φi ( yr ) – hi =0  for i = 1,2, …, nc     (3.55) 

 

after substitution of ln Yi , 

 

                                      1       (3.56) ∑∑
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Then with Equation (3.54) 
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which establishes the relationship between the mole fractions yr  and the 

variables Y
r

. Note from Equation (3.56) that for K  0 which indicates a stable 

phase, the sum of the variables Y

≥

i must be less than or equal to one. This then is 

the condition that indicates stability. 
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To locate the stationary points, a set of nonlinear equations is solved for 

the variables Y 

 

                  ln YI + ln φi ( yr  ) – hi = 0 for i = 1, …, nc     (3.58) 

 

where the mole fraction yr  is related to these variables by 

 

                

∑
=

=
cn

1 s
s

i
i

Y

Y  y    for i = 1,…, nc     (3.59) 

  

Once a solution to the above equation is found, stability of the phase is 

inferred by the sum of the variables Y
r

. If the sum is less than or equal to one, the 

phase is stable, otherwise it is unstable.  

 

The numerical solution technique used to solve the above equation is successive 

substitution method for which the updating equation is given by 

 

 Yi
K+1 = exp [ hi – ln φi( yr ) ] for i = 1,…,nC     (3.60) 

 

For the successive substitution method the residual ri can be defined as  

 

    ri = ln Yi + ln φi( yr ) - hi      for i = 1,…, nC     (3.61) 
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The calcualation steps can be summarized as follows 

 

1) Compute variable hi from Equation (3.49). 

2) Estimate values for variable Yi. 

3) Compute φi (y) where yi is given by Equation (3.59). 

4) Calculate the value of the variables r by Equation (3.61). 

5) Check the convergence of the successive substitution iteration by 

satisfying the condition. 

 

     Max | ri | ≤ εcon    for  i = 1,…,nC. 

 

6) Update variable Yi using Equation (3.60) and go to step (3) to continue 

successive substitution iteration. 

7) Calculate the value of the residuals, equation (3.61) and check for the 

convergence criterion. 

8) If it is not converged, go to step (3). 

 

After convergence is achieved, the solution needs to be checked for 

stability of the equilibrium phases. The non-triviality of the solution is checked by 

comparison with the feed composition. A phase composition is considered non-

trivial if the following condition is satisfied 
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      (3.62) 
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If a solution does not satisfy this condition or if convergence is not 

achieved in a certain maximum number of iterations, the entire procedure is 

begun again with a new estimate for Y. A phase is assumed to be stable if all 

initial estimates lead to the trivial solution. 

 

If Equation (3.62) above is satisfied by a converged composition y, a 

second condition is checked to determine stability. A phase is considered to be 

unstable if 

 

          (3.63) stab

n

1 i
i   1 Y

C

ε≥−∑
=

 

Otherwise it is assumed to be stable. If the non-triviality condition is met 

but the above stability condition is not met then the procedure is repeated with a 

different initial estimate of Y. In addition to checking for convergence to a 

nontrivial solution, Equation (3.63) is tested whenever a Y is found such that the 

condition ∆G < 0 is satisfied.  If Equation (3.63) is also satisfied then the phase is 

unstable. 

 

For testing an overall composition for single-phase stability, two initial 

estimates may be used. The first estimate for Y is computed from 

 

      Yi = zi Ki      for i = 1,…,nc      (3.64) 
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and the second estimate is 

 

      Yi = zi / KI       (3.65) 

 

where K-values are computed using the correlation [13] 

 

      )]
T

T
 - 1 ( ) (1 5.37 [ exp 

P
P

 K Ci
i

Ci
i ω+=       for i = 1,…, nC    (3.66)  

 

When testing the stability of a two-phase mixture, the computational 

procedure is the same as that for a single-phase mixture except that now one of 

the two-phase composition is used in Equation (3.46) instead of the overall 

composition. 

 

Four different sets of initial estimates are used 

 

Yi = (1/2) (xi2 + xi3 )   for i = 1,…, nC      (3.67) 

 

   Y1 = 0.999 and Yi = 0.001/(nC -1)    for i = 2,…,nC     (3.68) 

 

YnC = 0.999 and Yi  = 0.001 / (nC – 1) for i = 1,…,nC –1    (3.69) 

 

and  
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            Yi = exp hi    for i = 1,…,nC      (3.70) 

 

Two trivial solutions, which are the composition of the two phases, may 

result. A test analogous to Equation (3.62) should be also done but this time for 

both phase compositions. 

 

3.5.3 Flash Calculation 

 

Once a mixure has been shown to split into more than one phase by the 

stability analysis calculation, the amounts and composition of each phase must be 

found. Two different algorithms are implemented in UTCOMP compositional 

reservoir simulator for flash calculations[14]. One is a flash formulation using K-

values with an accelerated successive substitution method (ACSS) [15]. The 

second method determines phase compositions by minimization of the Gibbs free 

energy using an implementation of the reduced gradient approach described by 

Trangenstein [16].  Perschke [17]  presents the complete formulation for both the 

methods. We present the ACSS algorithm here as it has been the method used for 

flash calculations with the SAFT equation of state. 
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3.5.4 Accelerated Successive Substitution Method 

 

A flash calculation is made to find the composition and amounts of each 

phase of an np phase system. In terms of mole fractions, as is done in conventional 

vapor/liquid calculations, the unknowns are the phase mole frations, xij , and the 

amounts of each phase given as the ratio of moles in a phase to the total number 

of moles in the mixture. This ratio, for phase j, is denoted Lj . Thus, there are np + 

np nc unknowns: Li and xij . 

 

Not all these variables, are independent. The mole fractions are 

constrained by 

 

            for j = 1,2, … n1  x
Cn

1 i
ij =∑

=
P – 1      (3.71) 

 

and the phase distribution is constrained by 

 

1L
Pn

1 j
j =∑

=

       (3.72) 

 

The number of independent variables can be reduced even more by using 

the component molar balance constraints 

 

          for i = 1,2, … n∑
=

=
n

1 j
jiji L x  z C      (3.73) 
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which reduces the number of independent variables by nc . Note that there 

are only np – 1 independent expressions of the form of Equation (3.71) because 

given Equation (3.72) and Equation (3.73), the np th expression may be derived. 

With Equation (3.71), Equation (3.72) and Equation (3.73) the number of 

independent variables can be reduced to nc (np –1 ). 

 

As is done in vapor/liquid calculations, K – values are defined as the ratio 

of the component mole fraction in a reference phase to that in another phase 

 

               
ij

i1
ij x

x  K =     for  i = 1,2, … nc,   and  j = 2,3, …, np    (3.74) 

 

The choice of the reference phase 1 is entirely arbitrary. When the vapor 

phase is chosen as the reference the above equation reduced to the conventional 

vapor/liquid equilibrium constants. 

 

By substituting for the fugacity in the thermodynamic conditions for 

equilibrium, the K-values can be related to the fugacity coefficients: 

 

 ln Kij = ln φij   - ln φi1    for i = 1, 2, …, nc   and j = 2, 3, …, np   (3.75) 

 

With expressions for the fugacity coefficients given by Equation (3.44), 

Equation (3.71) through Equation (3.75) form a set of 2 npnc+ np – nc equations in 
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as many unknowns: Kij, Lj and xij. In the formulation implemented here, the nc (np 

– 1) independent variables are chosen to be Kij for i = 1,2,…, nc and j = 2,3,…, np, 

and the set of nc (np – 1) equations given by Equation (3.75) are solved for these 

variables. 

 

Since the phase distribution variables and phase mole fractions are now 

treated as dependent variables, Equation (3.71) through Equation (3.74) must be 

used in such a way that these dependent variables can be calculated from the K – 

values.  

 

After solving Equation (3.72) for L1 , for example, this expression can be 

substituted in Equation ( 3.73). With the K – value definitions of Equation (3.74) 

and the relations 
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expressions of the following form may be derived 

 

     0  
) 1 - 

K
1 (L  1

) 1 - 
K
1 ( z

  )L ,...,L ,(Lg
c

pp

n

1 i
n

2 k ij
k

ij
i

n32j =
+

= ∑
∑=

=

       for j = 2,3, …, np    

  (3.77) 
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Equation (3.77) is also called the flash equation. For an np phase mixture, 

np – 1 equation of this form can be written. With a given set of K – values , these 

non-linear equations can be solved for the variables Lj, for j = 2,3,…, np. The 

remaining variable L1 can be computed from Equation  (3.72). 

 

Phase mole fractions for the reference phase may be computed once the 

flash equation has been solved from 

 

                  

∑
=

+
=

pn

2 k ik
k

i
i1

) 1 - 
K
1( L  1

z  x    for  i = 1, 2, …, nc – 1    (3.78) 

 

The mole fractions for the remaining phases can be found from Equation 

(3.74) given Kij and xi1. 

 

The numerical technique used for solution of Equation (3.73) is an 

accelerated successive substitution algorithm. In this method, K-values are 

updated by 

 

        )
f
f - ( exp K  K

ij

i11nn
ij

1n
ij

++ = λ     for i = 1, 2, …, nc    and j = 2, 3, …, np   (3.79) 

 

where λn+1 is an acceleration factor computed by method three of Mehra, 

Hidemann, and Aziz[15] . 
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The acceleration factor is computed in a recursive fashion. For n = 0, λ1 is 

set to 1, which implies that a successive substitution step is taken. For n > 1, λ is 

found from 

                       

∑∑∑∑

∑∑

= == =

+

= =+ =
p cp c

p c

n

2  j

n

1  i

2n
ij

n

2  j

n

1  i

1n
ij

n
ij

n

2  j

n

1  i

2n
ij

n

1n

] [s - ] s[s

] [s
 

λ
λ      (3.80) 

 

where 

 

     sij = ln fij – ln fi1  for i = 1,2,…, nc   and j = 2,3, .., np    (3.81) 

 

The acceleration factor is kept within the range 1 ≤ λn+1 ≤ 4. If λn+1 falls 

outside these limits then it is set to the limiting value. 

 

It is essential that a solution of Equation (3.77) be found for each set of K 

– valued computed. In this algorithm, Newton’s method is used. At each iteration 

Lj is updated by 

 

                      Lj
n+1 = Lj

n +  ∆ Lj
n    for j = 2,3, …, np     (3.82) 

 

Where ∆ Lj
n is calculated by the solution of 

 

Jn ∆ Ln = - f n        (3.83) 
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The elements of J, the Jacobian matrix, are given by 
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 -  j         for j,k = 2,3, … , np   (3.84) 

 

and f is a vector whose elements are the function values for gj given in 

Equation (3.77). For a three-phase mixture, J is a symmetric 2 x 2 matrix 

 

Iteration is assumed to have converged when either  

 

          max | gj ( L2 , L3 , … , Lnp ) | ≤ εtol    for j = 2,3,… , np    (3.85) 

 

or  

 

                        max | ∆ Lj
n | ≤ εtol    for j = 2,3,… , np     (3.86) 

 

where εtol has a small value of, for example, 1.0 x 10 –10 

 

Because Newton’s method is used, a good initial estimate must be 

available for convergence to be achieved. Special precautions are taken to locate, 

a small interval containing the solution for two-phase calculations. For a two-
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phase mixture, there is only one equation of the form of Equation (3.84) in one 

unknown, L2. The derivative of this function with respect to L2 is given by 

 

                       ∑
= +

=
cn

1 i 2

i
2

2

i
i
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K
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L d
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hence the function g2 (L2 ) is monotonically decreasing. For a solution to exist in 

the physically meaningful interval of 0 ≤ L2 ≤ 1, then g2 ( 0) > 0 and g2 (1) < 0. 

 

To locate an interval about the solution, a value for L2 is chosen and g2 (L2 

) is computed. Depending on the sign of g2 (L2 ), L2 is either increased, if g2 (L2 ) 

> 0, or decreased, if g2 (L2 ) < 0, until an interval has been located in which the 

value of g2 (L2 ) changes sign. The initial estimate of L2 is taken as the halfway 

point between the interval boundaries.  

 

In summary, one method implemented for calculation of phase amounts 

and compositions is to solve the nc (np – 1) equations given by Equation (3.75) for 

the nc (np – 1) variables, Kij. Equation (3.77), Equation (3.79), Equation (3.71) and 

Equation (3.72) are used to relate the phase distribution and phase mole fractions 

to the K-values. An accelerated substitiution algorithm is used to solve Equation 

(3.88). The procedure is given by the following steps: 
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1. Estimate K-values, either from phase stability analysis results or correlations.  

2. Calculate the phase distribution, Lj, from Equation (3.77) using Newton’s 

method 

3. Calculate the reference phase composition from Equation (3.78) and the 

remaining phase mole fractions with Eauation (3.74) and the given Kvalues 

4. Using the equation of state, compute fugacity coefficients for each phase 

5. Calculate the acceleration factor Equation (3.80). 

6. Update K-values from Equation (3.79) 

7. Check for convergence 

8. Go to step (2) with new K-values if not converged. 

Convergence is assumed when 

 

 max | sij | ≤ εcon  for i = 1,2, …, nc    and j = 2,3, …, np    (3.88)  

 

and  

    conn
ij

n
ij

1n
ij   
K

K - K
max ε≤

+

    for i = 1,2, …, nc    and   j = 2,3, …, np   (3.89) 

 

where sij is given by Equation (3.77). The value of εcon is, for example, 1.0 

x 10-10 . Note that accelerated successive substitution steps are taken only if that 

step reduces the Gibbs free energy. Otherwise a successive substitution step is 

made. UTCOMP is an isothermal, three-dimensional compositional reservoir 

simulator developed at the University of Texas at Austin [14]. The phase behavior 
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aspect of the reservoir simulator (UTCOMP) is incorporated in the subroutine 

FLASH. The algorithm for the working of FLASH is given in Figure (3.2). 

 

3.6 PSEUDO COMPONENT PARAMETER EVALUATION 

 

The average absolute deviation in vapor pressure ( psat ) and liquid molar 

volume ( vliq ) predicted by SAFT is as good as can be usually expected for a 

reasonable, three-parameter equation of state. However, there is an important 

challenge in estimating the equation of state parameters for polydispersed, poorly 

defined pseudocomponents of real fluid mixtures.  Huang and Radosz [9] have 

observed that the pure component SAFT parameters are well-behaved and suggest 

predictable trends with the molar mass of similar compounds. They have shown 

that a single linear relationship holds not only for small n-alkanes, but also for 

macromolecular branched chains, such as polypropylene, polyethylene, and 

polyisobutylene as shown in Figure 3.3. Huang and Radosz have also shown that 

the segment number m increases linearly with increasing molar mass within each 

homologous series. for various homologous series as given in Figure 3.3. The 

chain length m is essentially a linear function of molar mass for different 

homologous series of aromatic molecules, i.e., upon increasing the side chain 

length for alkylbenzenes, alkylnaphthalenes, etc., which is replotted in Figure 3.4. 

This plot suggest that the segment number of all molecules is bounded by the n-

alkane chain length at the upper and by the polynuclear aromatics at the lower 
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end. It can be deduced that for the same molar mass the chain length decreases 

with increasing aromaticity. 

 

The effective segment numbers m reported for hydrocarbons by Huang 

and Radosz are systematically smaller than the corresponding carbon numbers. 

This suggests that the physical picture of a n-alkane therefore is that of a chain of 

overlapping spherical segments where v∞ corresponds to the volume occupied by 

such segments. Expectedly, the segment volume v∞ for methane is the largest 

among alkanes because it corresponds to a single CH4  unit, and it gradually 

decreases upon increasing the chain length, reaching an asymptotic value of 12 

for long chains. 

 

Since v∞ does not vary much with chain length and remains constant for 

long chains and since m is a linear function of the molar mass, the product m v∞ 

(the volume occupied by a mole of molecules in a closed packed arrangement) is 

also a linear function as shown in Figure 3.5.  

 

Finally, a similar correlation can be developed for the segment energy u0 / 

k, which is shown in Figure 3.6. As in the case for m and m v∞, n alkanes and 

plain polynuclear aromatics set the boundaries for uo / k for all hydrocarbons. 

However uo/k varies nonlinearly with the molar mass in contrast to the segment 

number m and the term mv∞. 
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For ease of estimation, m, mv∞ , and uo / k have been regressed as simple 

functions of the molar mass (MM) for many homologous series. For example, 

 

m = A(1) + A(2) MM   for all hydrocarbons (3.90) 

 

m v∞  = A(1) + A(2) MM   for all hydrocarbons (3.91) 

 

uo / k = A(1) – A(2) exp(-A(3) MM) for n-alkanes and poly nuclear 

aromatics (3.92) 

 

      uo / k = A(1) – A(2)MM      for all other hydrocarbons    (3.93) 

 

Equation (3.93) is only a linear approximation that is valid up to the  MM 

of the corresponding n-alkane; for higher MM values, the uo/k is the same as that 

of the corresponding n-alkane. The regression coefficients are reported in Table 

(3.1) to Table (3.4). 

 

3.6.1 Incorporation of Pseudo components in SAFT  

 

The SAFT parameter evaluation for pseudo components is done in the 

subroutine saft_input_values. An extra parameter group is introduced in the input 

data file which indicates the type of the pseudo component. The user inputs the 

type of the pseudo component (whether it is an n-alkane etc.,) and the subroutine 
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calculates the SAFT parameters using equations (3.90-3.93) with the 

corresponding constants obtained from Table (3.1) to Table (3.4).  
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Nomenclature 
 
ares residual Helmholtz free energy per mole of molecules (J/mol) 

atotal total Helmholtz free energy per mole of molecules (J/mol) 

aideal ideal Helmholtz free energy per mole of molecules (J/mol) 

ahs hard sphere Helmholtz free energy per mole of molecules (J/mol) 

achain chain Helmholtz free energy per mole of molecules (J/mol) 

aassoc association Helmholtz free energy per mole of molecules (J/mol) 

ρ density of the mixture (mol/ Cu. A) 

ξi reduced density (dimensionless) 

R gas constant 

T temperature of the system (K) 

P pressure of the system (Pa) 

V volume of the system (Cu. A) 

xi mole fraction of component i 

mi chain length of component i 

gii radial distribution function of component i 

m average chain length of mixture 

di temperature dependent segment diameter (A) 

σi temperature independent segment diameter (A) 

uo/k temperature independent energy parameter (K) 

Phs
CS Carnahan-Starling Pressure conntribution 

µhs hard sphere chemical potential 

Zhs hard-sphere compressibility factor 

µchain chain chemical potential 

Zchain  chain compressibility factor 

YA
i mole fraction of molecules i not bonded at site A 
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∆A
i
B

j association bonding strength between sites Ai and Bj 

εA
i
B

j association energy between sites Ai and Bj 

κA
i
B

j association entropy between sites Ai and Bj 

aij association interaction coefficient between component i and j 

µi
assoc association chemical potential of component i 

Zassoc  association compressibility factor 

uii dispersion energy of component i 

Djk Chen and Kreglewski constants for dispersion potential 

τ closed packing density limit (0.74048) 

kij binary interaction coefficient between component i and j 

µdisp dispersion chemical potential of component i 

Zdisp dispersion compressibility factor 

Z compressibility factor of the system 

zi initial feed composition of component i for flash and stability calculations 

∆G change in Gibbs free energy 

φi fugacity coefficient 

yi mole fraction of i in a trial phase 

hi constant for component i in stability analysis 

Yi independent variable for stability analysis 

J Jacobean matrix  

ε tolerance for iteration to converge 

Lj ratio of moles of phase j to total moles 

Kij equilibrium constant for component i in phase j 

λn+1 acceleration factor for the ACSS method 

fi fugacity of component i 

sij logarithm of component fugacity ratio 

A(i) regression constants used in SAFT equation of state 
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MM molar mass of pseudocomponents 
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 A(1) A(2) MM range in 
fitting 

n-alkanes 0.70402 0.046647 16-619 
Polynuclear aromatics 2.6733 0.014781 78-202 
n-alkylcyclopentanes 0.82360 0.039044 70-140 
n-alkylcyclohexanes -0.010038 0.043096 84-154 

n-alkylbenzenes 0.51928 0.041112 78-134 
1-n-alkylnaphthalene -2.3190 0.054566 128-184 

 
Table 3.1: Correlation of segment number m for hydrocarbons 

 
 
 
 
 
 

 A(1) A(2) MM range in 
fitting 

n-alkane 0.70402 0.046647 16-619 
Polynuclear aromatics 2.6733 0.014781 78-202 
n-alkylcyclopentanes 0.82360 0.039044 70-140 
n-alkylcyclohexanes -0.010038 0.043096 84-154 

n-alkylbenzenes 0.51928 0.041112 78-134 
1-n-alkylnaphthalene -2.3190 0.054566 128-184 

 
 

Table 3.2: Correlation of closed packed molar volume mv∞ for hydrocarbons 
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 A(1) A(2) A(3) MM 
range in 
fitting 

n-alkane 210.0 26.886 0.013341 16-619 
Polynuclear aromatics 472.84 357.02 0.0060129 78-228 

 
 

Table 3.3: Correlation of segment energy uo/k for n-alkanes and polynuclear 
aromatics 

 
 
 
 
 
 
 

 A(1) A(2) MM range in 
fitting 

n-alkylcyclopentanes 239.56 0.085618 98-140 
n-alkylcyclohexanes 278.59 0.31311 98-154 

n-alkylbenzenes 267.39 0.21825 78-134 
1-n-alkylnaphthalene 425.70 0.94111 128-184 

 
 

Table 3.4: Correlation of segment energy uo/k for other hydrocarbons 
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Figure 3.1: Graphical interpretation of phase stability analysis by 

Michelson’s Method 
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Figure 3. 2: Algorithm for phase equilibrium calculation 
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Figure 3.3: Segment number m as a linear function of molar mass for n-
alkanes and long chain polymers (Huang et al.,1991) 
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Figure 3.4: Segment number m for n-alkanes and polynuclear aromatics. 
The branched curves represent n-alkyl derivatives of polynuclear aromatics 
(Huang et al.,1991) 
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Figure 3.5: Close-packed molar volumes m v∞ for n-alkanes and polynuclear 
aromatics as functions of molar mass. (Huang et al.,1991) 
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Figure 3.6: Segment energies uo/k for n-alkanes and polynuclear aromatics 
as functions of molar mass. The branched curves represent n-alkyl 
derivatives of poly-aromatics (Huang et al.,1991) 
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CHAPTER 4 

BULK THERMODYNAMIC PROPERTIES OF MIXTURES 

 

In this chapter we present some results and discuss the effectiveness of 

SAFT for predicting the bulk thermodynamic properties of different types of fluid 

mixtures. We also compare the results with those obtained from the Peng-

Robinson equation.   

 

4.1 PURE COMPONENTS 

 

Figure 4.1 shows the vapor pressure curves for a few alkanes. Alkanes 

have been chosen initially to check the non-associating terms (hard-sphere, 

dispersion and chain terms) in SAFT. It is observed that the percentage average 

absolute deviation (% AAD) from experimental data, in the vapor pressure is 1.9 

% for hexane. Similarly the % AAD for heptane and octane are 1.8 % and 1.6 % 

respectively which can be considered an excellent fit for engineering equations of 

state. In Figure 4.2 the liquid specific volume curves are presented for n-alkanes 

as calculated from the SAFT equation of state. The % AADs for liquid specific 

volumes are also very low: 3.5 % for hexane, 3.4 % for heptane and 3.4 % for 

octane. Table 4.1 lists the SAFT parameters used for non-polar compounds.  
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Figure 4.3 shows vapor pressure curves for ammonia and ethanol each of 

which have association bonding sites on them. Ammonia has three proton donor 

sites and one proton acceptor site. It is assumed that all the different hydrogen 

bonds formed are equivalent in terms of the energy of interaction and the volume 

of the bond. This approximation is aimed at reducing the total number of fitting 

parameters in the equation of state. Only two additional parameters are introduced 

in the equation of state (the energy and entropy of bonding) which along with the 

other non-associating parameters are given in Table 4.2. The % AAD in the vapor 

pressure curve of ammonia is 1.6 %. Similarly ethanol has two proton donors and 

two electron donors and the interactions amongst them are all considered 

equivalent. The % AAD in the vapor pressure of ethanol is 0.86 % which is an 

excellent fit. Figure 4.4 shows the liquid saturated density curves for ammonia 

and ethanol and the respective % AADs are 3.2 % and 0.88 %. Thus SAFT works 

very well even for highly polar compounds. Figures 4.1 to 4.4 confirm the 

usefulness of SAFT for pure components.  

 

4.2 BINARY AND TERNARY MIXTURES 

 

In this section we present SAFT results for binary and ternary mixtures. 

First, we test the system for small molecular weight hydrocarbon mixtures. For 

binary mixtures, we have also compared the SAFT results with phase equilibrium 

data obtained using a conventional three-parameter equation of state such as the 
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Peng-Robinson equation of state. In Figure 4.5, the vapor-liquid equilibrium 

curve for butane-hexane at 293.15 K is presented. Both, SAFT and PR curves 

have been obtained without adjusting the binary interaction coefficient. We see 

that both SAFT and PR predict the liquid phase mole fractions fairly accurately. It 

should be noted that PR equation of state does remarkably well for hydrocarbon 

mixtures. This is because, PR equation of state parameters have been tuned 

particularly well for hydrocarbons.  

 

In Figure 4.6, the vapor-liquid equilibrium for a methane-hexadecane 

system is presented. This mixture has been selected to study the effect of the 

chain-term on the phase-behavior calculation. Hexadecane is a long chain 

molecule with the chain length as calculated from the pure component vapor 

pressure and liquid density data to be 12.3. So the mixture is expected to a show a 

significant effect of the chain term on the vapor-liquid equilibrium predictive 

capability of SAFT. Interestingly, we observe that although SAFT predicts the 

vapor phase mole fractions fairly accurately, the liquid phase methane mole 

fractions are over-predicted. On the other hand, the PR equation of state predicts 

both the vapor-phase and the liquid phase mole fractions very accurately. It is 

seen in Figure 4.7 that when the binary interaction coefficient (kij ) is adjusted to 

0.118, then SAFT predicts both the liquid and the vapor phase mole fractions 

accurately. Once kij has been established the same parameter can be used to 

predict the VLE curve at a different temperature. This is shown by the second plot 

in Figure 4.7, which has been obtained at 623 K. 
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After this analysis of SAFT for non-associating binary mixtures, we tested 

SAFT for associating binary mixtures to evaluate the effect of the association 

term on the vapor-liquid phase equilibrium predictions. In Figure 4.8 the vapor-

liquid equilibrium curve for an ethane-ethanol mixture at 313.4 K is presented. 

We have shown the PR equation of state predictions as well to compare the effect 

of the association term. Both the curves have been obtained without adjusting the 

binary interaction coefficient. It is seen clearly that SAFT predicts both the gas 

phase and the liquid phase mole fraction reasonably accurately. The PR equation 

of state, on the other hand, does not do a very good job of predicting the liquid 

phase mole fractions. This is expected as the PR equation of state has been 

designed for hydrocarbons and thus cannot handle polar components such as 

ethanol.  Figure 4.9 shows the VLE curve for the same mixture at a higher 

temperature of 333.4 K. SAFT without any adjustment of the binary interaction 

parameter predicts the vapor-phase and the liquid-phase mole fractions fairly 

accurately. PR predicts the gas phase mole fraction, but over-predicts ethane 

liquid phase mole fractions. We tested another three-parameter equation of state: 

Redlich Kwong equation of state, for this case. We observe that the predictions 

are even worse. We do not consider this equation of state in further comparisons. 

Figure 4.10 shows the VLE curve for methane-ethanol mixture at 313.4 K. In this 

case we observe that although ethanol is an associating compound, the PR 

equation of state which does not explicitly account for association, does predict 

the liquid phase mole fractions very accurately. On the contrary, SAFT over-
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predicts the liquid-phase methane mole fractions. When the binary interaction 

coefficient is adjusted to 0.05, SAFT is able to predict the liquid-phase mole 

fractions. This trend is again repeated at a different temperature of 333.4 K for the 

same system as shown in Figure 4.11. 

  

Figure 4.12 shows the VLE curve for a CO2-methanol system. Again we 

observe that for associating systems, SAFT shows a better predictive capability 

than the PR equation of state without adjusting the binary interaction coefficient. 

Figure 4.13 and Figure 4.14 show the VLE curve for a CO2-ethanol system at two 

different temperatures. Although SAFT predictions are better than those of the PR 

equation of state are, the CO2 liquid phase mole fractions are still over-predicted 

by SAFT. Figures 4.15 and 4.16 show the VLE curve for a CO2-propanol system. 

Here the improvement in liquid mole fraction prediction by SAFT is only 

marginal. This could be due to the poorer modeling of the non-associating part of 

the model, whose effects become significant for heavier molecules. When the 

binary interaction coefficient is adjusted to 0.062 we get an excellent agreement 

of the vapor and the liquid phase mole fractions. 

  

Figures 4.17 and 4.18 show the VLE curve for a ethane-propanol system. 

SAFT without any adjustment in the binary interaction coefficient predicts the 

liquid phase and the gas phase mole fractions accurately. The PR equation of state 

over-predicts the ethane liquid phase mole fractions.  
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Figure 4.19 shows SAFT predictions for an azeotrope forming mixture of 

methanol-hexane. A binary interaction coefficient of 0.044 captures the azeotrope 

and the liquid and the gas phase mole fractions very accurately. The PR equation 

of state is not able to capture even the correct trend for such azeotrope forming 

mixtures even with the adjustment of binary interaction coefficients. Figure 4.20 

shows the VLE curve for another azeotrope forming mixture of propanol and 

heptane where again SAFT with an adjustable binary interaction coefficient of 

0.018 captures the azeotrope behavior. SAFT without any adjustment of the 

binary interaction coefficient does not do well around the azeotrope 

concentration, but predicts the phase behavior reasonably accurately at very low 

and very high concentrations of propanol. 

 

In Figure 4.21 we present the vapor-liquid equilibrium curve for an 

ethanol-water mixture at 298.14 K. We observe that we have to adjust both the 

binary interaction coefficient (kij) as well as the association interaction coefficient 

(aij) for the SAFT equation of state in order to be able to get a good fit to the 

experimental data. It is also interesting to observe that there are at least two pairs 

of binary and association interaction coefficients which can effectively give a 

good fit to the experimental data. We searched the binary and association 

interaction coefficient phase space and have found two pairs which effectively 

give the same reduction in error with the experimental data. We have done similar 

studies on methanol-water mixtures which we shall present in the next chapter. 
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We now proceed to test SAFT for the phase behavior of ternary mixtures. 

Figure 4.22 shows the VLE diagram of a ternary mixture of methane-ethane-

propane system at –75 C and 100 psia. The SAFT predictions are not accurate in 

the liquid phase. PR equation of state, on the other hand, predicts the liquid and 

the gas phase mole fractions extremely accurately. Figure 4.23 shows the VLE 

curve of the same system at a higher pressure of 200 psia. The deviations in the 

SAFT predictions are even higher whereas the PR equation of state still accurately 

predicts the liquid and gas phase mole fractions. This suggests that the defects in 

the non-associating part of the SAFT formulation become even more significant 

when handling ternary mixtures. The same trend is maintained at 400 psia, 600 

psia and 800 psia as shown in Figures 4.24 to 4.26. It is observed that the two-

phase region shrinks as the pressure is increased.  

 

4.3 PSEUDOCOMPONENTS 

 

Mixture 1 shown in Table 4.3 is a North Sea gas condensate whose fluid 

composition is given by Pedersen[66]. Figure 4.27 shows the variation of the gas 

phase compressibility factor with pressure at a temperature of 155 C. It is seen 

that SAFT consistently under predicts the compressibility factor. The dew point as 

predicted by SAFT is 315 K whereas the experimental value reported in literature 

is 388 K. Figure 4.28 shows the variation of the gas phase compressibility factor 

at 92.8 C for a North Sea black oil whose composition is given in Table 4.4 as 

reported by Pedersen et al., [66]. The gas phase compressibility factor is over 
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predicted by SAFT. There are no theoretical predictions above 100 psi as the 

bubble point is reached at this temperature as against an experimental value of 

260 psi. Figure 4.29 shows the variation of the liquid specific gravity with 

pressure for the same mixture. We note that the SAFT predictions are not very 

good for this case. The general poor agreement between SAFT predictions and 

experimental data could be due to the zero binary interaction coefficients used 

amongst all the hydrocarbons and the pseudocomponents although this is 

generally the norm in the industry when applying a conventional equation of state 

like the Peng-Robinson equation. The only adjustable parameters used in these 

equations are the pseudocomponent molecular weights which cannot be measured 

experimentally with great accuracy. 
 

4.4 CONCLUSIONS 

 

We have developed a SAFT based model for phase behavior of multi-

component mixtures of associating molecules. As shown in the previous section 

we have extensively tested the SAFT model for pure-components and binary 

mixtures. We have extensively studied binary mixtures of non-associating and 

associating mixtures. We conclude that both Peng-Robinson and SAFT are 

equally suitable for simple non-associating mixtures but SAFT clearly is more 

accurate when polar mixtures are modeled. We have also done some testing on 

ternary systems. We have implemented the SAFT parameter evaluation for 
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pseudo-components generally encountered in the modeling of reservoir fluids 

although the predictions for the mixtures with SAFT are generally poor. 

  

We have successfully merged SAFT into an existing compositional 

reservoir simulator (UTCOMP) which helps us in accurate predictions of 

thermodynamic properties in reservoir studies. Phase compositions are obtained 

by flash calculations. A rigorous stability analysis test is done before all flash 

calculations to determine the number of phases. UTCOMP has a three-phase 

calculation capability. The incorporation of an accurate thermodynamic model 

such as SAFT in a reservoir simulator such as UTCOMP as an alternative to the 

existing Peng-Robinson equation of state is expected to greatly enhance the 

prediction of thermodynamic properties of complicated hydrocarbon reservoir 

fluid mixtures. 
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 m v∞ 

(mL/mol) 
u0/k 
(K) 

Methane 1.000 21.576 190.29 
Ethane 1.941 14.460 191.44 
Propane 2.696 13.457 193.03 
Butane 3.458 12.599 195.11 
Heptane 5.391 12.282 204.61 
Decane 7.527 11.723 205.46 

Hexadecane 11.209 12.300 210.65 
Nitrogen 1.000 19.457 123.53 

CO2 1.417 13.578 216.08 
 
Table 4.1: Segment parameters for nonassociating fluids (Huang et al., 1991) 
 
 
 

 M v∞ 
(mL/mol) 

u0/k 
(K) 

ε/k 
(K) 

102 κ 

Methanol 1.776 12.0 216.13 2714 4.856 
Ethanol 2.457 12.0 213.48 2759 2.920 
Propanol 3.240 12.0 225.68 2619 1.968 
Butanol 3.971 12.0 225.96 2605 1.639 

Ammonia 1.503 10.0 283.18 893.1 3.270 
Water 1.179 10.0 528.17 1809 1.593 

 
Table 4.2: Segment and site-site parameters for associating fluids (Huang et 

al., 1991) 
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Weight % Mole % Molecular  
Weight 

Density (g/cm3) 
at 15 C , 1 atm 

N2 0.571 0.6   
CO2 5.031 3.34   
C1 40.667 74.16   
C2 8.126 7.90   
C3 6.254 4.15   

i-C4 1.401 0.71   
n-C4 2.855 1.44   
i-C5 1.306 0.53   
n-C5 1.637 0.66   
C6 2.355 0.81   
C7 3.749 1.20 91.2 0.746 
C8 4.100 1.15 104.0 0.770 
C9 2.577 0.63 119.0 0.788 
C10 2.329 0.50 133.0 0.795 
C11 1.466 0.29 144.0 0.790 
C12 1.458 0.27 155.0 0.802 
C13 1.624 0.28 168.0 0.814 
C14 1.413 0.22 181.0 0.824 
C15 1.165 0.17 195.0 0.833 
C16 1.057 0.15 204.0 0.836 
C17 1.096 0.14 224.0 0.837 
C18 0.729 0.09 234.0 0.839 
C19 1.137 0.13 248.0 0.844 
C20+ 5.896 0.47 362.0 0.877 

 

 

Table 4.3: Composition of Mixture 1 of North Sea gas condensate, (Pedersen, 
1989) 
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Component Weight % Mole % Molecular  Density (g/cm ) 

at 15 C , 1 atm 
3

Weight 
N  2 0.145 0.56   

CO  1.450 3.55   2
C  1 6.757 45.34   
C2 1.531 5.48   
C3 1.516 3.70   

i-C4 0.378 0.70   
n-C4 0.891 1.65   
i-C5 0.489 0.73   
n-C5 0.580 0.87   
C6 1.043 1.33   
C7 2.276 2.73 89.9 0.757 
C8 3.125 3.26 103.2 0.777 
C9 2.342 2.14 117.7 0.796 
C10 2.379 1.94 133.0 0.796 
C11 2.205 1.62 147.0 0.800 
C12 2.179 1.47 160.0 0.815 
C13 2.693 1.69 172.0 0.833 
C14 2.789 1.62 186.0 0.843 
C15 2.937 1.59 200.0 0.849 
C16 2.553 1.30 213.0 0.858 
C17 2.388 1.11 233.0 0.851 
C18 2.885 1.26 247.0 0.856 
C19 2.571 1.07 258.0 0.868 
C20+ 51.898 13.32 421.0 0.914 

 
 
 

Table 4.4: Composition of Mixture 2 of North Sea black oil (Pedersen, 1989) 
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Figure 4.1: Vapor pressure curves of n–alkanes 
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Figure 4.2: Liquid density  curves of  n–alkanes 
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Figure 4.3: Vapor pressure curves for polar compounds 
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Figure 4.4: Liquid densities of polar compounds 
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Figure 4.5: Vapor liquid equilibrium  for butane-hexane mixture at 293.15 K 
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Figure 4.6: Vapor liquid equilibrium  for methane-hexabutane at 462 K 
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Figure 4.7: Vapor liquid equilibrium curve for methane-hexadecane mixture 

at 462 K and 623 K 
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Figure 4.8: Vapor liquid equilibrium curve for ethane-ethanol mixture at 

313.4 K 
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Figure 4.9: Vapor liquid equilibrium curve for ethane-ethanol mixture at 

333.4 K 
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Figure 4.10: Vapor liquid equilibrium curve for methane-ethanol  mixture at 

313.4 K 
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Figure 4.11: Vapor liquid equilibrium curve for methane-ethanol mixture at 

333.4 K 
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Figure 4.12: Vapor liquid equilibrium curve for CO2-methanol mixture at 

313.4 K 
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Figure 4.13: Vapor liquid equilibrium curve for CO2-ethanol mixture at 

313.4 K 
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Figure 4.14: Vapor liquid equilibrium curve for CO2-ethanol  mixture at 

333.4 K 
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Figure 4.15: Vapor liquid equilibrium curve for CO2-propanol mixture at 

313.4 K 
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Figure 4.16: Vapor liquid equilibrium curve for CO2-propanol mixture at 

333.4 K 
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Figure 4.17: Vapor liquid equilibrium curve for ethane-propanol mixture at 

313.4 K 

0

2

4

6

8

0 0.2 0.4 0.6 0.8 1

Mole fraction ethane x,y

Pr
es

su
re

 (M
Pa

)

Expt, Suzuki,1990
SAFT
PR

liquid

vapor

 
Figure 4.18: Vapor liquid equilibrium curve for ethane-propanol  mixture at 

333.4 K 
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Figure 4.19: Vapor liquid equilibrium curve  for methanol-hexane mixture at 

1 atm 
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Figure 4.20: Vapor liquid equilibrium curve  for propanol-heptane at 1 atm 
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Figure 4.21:Vapor liquid equilibrium for ethanol-water mixture at 298.14 K 
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Figure 4.22: VLE curves for methane-ethane-propane system at –75 C,  100 

psia 
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Figure 4.23: VLE curves for methane-ethane-propane system at –75 C,  200 

psia 
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Figure 4.24: VLE curves for methane-ethane-propane system at –75 C,  400 

psia 
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Figure 4.25: VLE curves for methane-ethane-propane system at –75 C,  600 

psia 
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Figure 4.26: VLE curves for methane-ethane-propane system at –75 C,  800 

psia 
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Figure 4.27: Gas phase compressibility factor for Mixture 1(North sea gas 

condensate) in a constant mass expansion study at 155 C 
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Figure 4.28: Gas phase compressibility factor of Mixture 2 (North Sea black 

oil) in a differential liberation study at 92.8 C 
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Figure 4.29: Liquid phase densities of Mixture 2 (North Sea black oil) in a 

differential liberation study at 92.8 C 
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CHAPTER 5 

BULK THERMODYNAMIC PROPERTIES OF GAS 
CONDENSATE MIXTURES 

5.1 INTRODUCTION 

 

Gas condensate reservoirs form a great percentage of gas reservoirs in the 

world. In such reservoirs, a liquid hydrocarbon phase drops out when the pressure 

falls below the dew point of the fluid. This results in a build-up of liquid in the 

reservoir and/or around the well-bore resulting in decrease in the relative 

permeability of gas and thus a sharp decrease in gas productivity.  Afidick et 

al[1].,  have reported field data from the giant Arun field in Indonesia that show a 

reduction in well productivity due to condensate accumulation by a factor of 2 to 

4. 

The phase behavior of gas condensate hydrocarbons has been extensively 

studied (Sarkar et al.,[2] ). There have been very few studies (Kokal [3], Robinson 

[4] ) however on the influence of water on the phase behavior and properties of 

gas-condensate fluids. Recently, experimental studies have shown (Du et al., [5], 

Walker [6] ) that methanol treatment can significantly lower condensate build-up 

near the well-bore and thus increase the gas productivity. There has been no work 

done to model the phase behavior of gas condensate-water-methanol systems, 

using conventional or or any other equation of state. 
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In this study we model the phase behavior of gas condensates using a 

Peng-Robinson equation of state and also an equation of state based on statistical 

mechanics, i.e., the Statistical Associating Fluid Theory (SAFT). An important 

property of interest in gas condensate modeling is the prediction of liquid dropout. 

We also attempt to model the effect of polar compounds such as water and 

methanol to study the changes in condensate dropout . 

 

5.2 PURE GAS CONDENSATE MIXTURES 

 

One of the major objectives of this study is to match the experimental 

liquid dropout data obtained at 145 F by Walker [6] for the gas-condensate 

mixture (Mixture 1) shown in Table 5.1. Figure 5.1 shows the total liquid volume 

fraction curves as predicted by the Peng-Robinson equation. There are no binary 

interaction coefficients used amongst hydrocarbons. We see that the prediction of 

the Peng-Robinson equation is extremely good for pure hydrocarbon mixtures. 

Figure 5.2 shows the liquid and vapor molar density variations with pressure. 

Figures 5.3 and 5.4 show the mole fractions of the different components in the 

liquid and vapor phases respectively. At high pressure the liquid phase contains a 

significant amount of methane but as the pressure is lowered the heavy fraction is 

the only component left in the liquid phase. 
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On the other hand, Figure 5.5 shows the SAFT predictions for the same 

gas condensate mixture with and without adjusting the binary interaction 

coefficient. We observe that the liquid volume fraction curves are not very well 

predicted without adjusting the binary interaction coefficients. Once the binary 

interaction coefficients are adjusted we get a very good fit using the SAFT 

equation as well. Table 5.2 shows the binary interaction coefficients used to fit the 

liquid volume fractions with the SAFT equation.  Since the PR EOS was 

developed for hydrocarbons it is not surprising to see that it fits the data better for  

pure hydrocarbon mixtures. Figure 5.6 shows the liquid and gas molar densities of 

this mixture using the SAFT equation of state without adjusting the binary 

interaction coefficients. Figure 5.7 and 5.8 are the mole fractions of various 

components in liquid and gas phases as predicted by SAFT without binary 

interaction coefficients. Figure 5.9 shows the liquid and gas molar densities 

predicted by SAFT with binary interaction coefficients. Figure 5.10 and 5.11 are 

the mole fraction curves for various components in the liquid and gas phase 

predicted by SAFT after adjusting the binary interaction coefficients. We notice 

that there is no significant change in the component mole fractions and the 

densities but the total liquid volume fraction curves are significantly affected by 

adjusting the binary interaction coefficients. 
 

 

 

 

 100



 

5.3 GAS CONDENSATE-METHANOL MIXTURES 

 

The prediction of these two equations of state for gas-condensate mixtures 

with the addition of a polar solvent (methanol) shows some interesting 

comparisons with data. We have adjusted the overall composition so that 10 % of 

the mixture is methanol and the rest is the original gas-condensate mixture. The 

mixture composition is shown as Mixture 2 in Table 5.1. Figure 5.12 shows the 

liquid volume fraction curves with the adjusted binary interaction coefficients for 

the PR equation of state. Table 5.3 shows the methanol-hydrocarbon binary 

interaction coefficients used in the PR equation to fit to the experimental data. We 

note that only the methanol-hydrocarbon binary interaction coefficients are 

adjusted to get a good fit to data. Figure 5.13 shows the liquid and gas density 

variation for this mixture as predicted by the PR equation. The liquid density 

increases due to the addition of methanol from the pure gas condensate mixture 

values. Figure 5.14 and 5.15 show the liquid and gas phase mole fractions of each 

of the components. The methanol essentially drops off into the liquid phase for 

the entire pressure range at this temperature.  

 

Figure 5.16 shows the SAFT prediction of liquid volume fraction curves 

for a 10 mol % methanol and 90 mol % gas condensate mixture with and without 

adjusting the hydrocarbon-methanol binary interaction coefficients. The 

hydrocarbon-hydrocarbon binary interaction coefficients have not been changed 

from those given in Table 5.2. When we do not adjust the hydrocarbon-methanol 
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binary interaction coefficients the fit to experimental data is not good. Once the 

methanol-hydrocarbon binary interaction coefficients are adjusted, as given in 

Table 5.3, we get a very good fit to experimental data. Figure 5.17 and Figure 

5.20 present the molar density curves without and with the binary interaction 

coefficients for the methanol component. We observe that the magnitude in the 

binary interaction coefficients required is smaller than those required in the Peng-

Robinson equation. Figure 5.18 and Figure 5.21 show the liquid phase mole 

fraction without and with binary interaction coefficients respectively with SAFT. 

Figure 5.19 and Figure 5.22 show the corresponding gas phase mole fractions. 

 

We have matched the liquid volume fraction curves for 10 mol % 

methanol with both the Peng-Robinson and SAFT equations so far. Now, with the 

tuned binary interaction parameters we predict the behavior of these two 

equations for a 50 mol % methanol with 50 mol % gas-condensate fluid. Figure 

5.23 shows the liquid volume fraction curves as predicted by the Peng-Robinson 

equation with the methanol-hydrocarbon binary interaction coefficients tuned for 

the 10 mol % methanol case. We observe that the Peng-Robinson equation under-

predicts the liquid volume fraction curves. Figure 5.24 shows the liquid and vapor 

molar densities. Figure 5.25 shows the mole fractions of the various components 

in the liquid phase, which is essentially concentrated with methanol over the 

entire pressure range. There are trace amounts of hydrocarbons present in the 

liquid phase. Figure 5.26 shows the mole fractions of the various components in 

the gas phase as predicted by the PR equation. Here we observe that the gas phase 
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is mainly concentrated with methane for the entire pressure range. Next we see 

the predictions for the same mixture using the SAFT equation of state. Here again 

we use the binary interaction coefficients tuned to match the 10 mol % methanol 

and 90 mol % gas-condensate mixture. Figure 5.27 shows the liquid volume 

fraction curves. We observe that SAFT slightly over-predicts the liquid volume 

fractions but captures the correct trend with pressure. Figure 5.28 shows the liquid 

and vapor molar densities as predicted by SAFT. The liquid molar density is 

essentially constant over the given pressure range. Figure 5.29 show the mole 

fractions of various components in the liquid phase as predicted by SAFT which 

shows that as the pressure decreases the methanol concentration in the liquid 

phase increases. This is because at lower pressure the hydrocarbons tend to be 

present in the vapor phase. Figure 5.30 shows the mole fractions of the various 

components in the vapor phase which contains mostly methane. 
 

5.4 EFFECT OF METHANOL CONCENTRATION ON GAS CONDENSATE-
METHANOL MIXTURES 
 

In this section we present the effect of varying methanol concentration on 

the liquid-volume fraction curves at various temperatures. Figures 5.31 to 5.33 

show the changes in the liquid volume fraction curves with varying methanol 

concentration in a temperature range of 145 F to 350 F. These plots have been 

generated using the SAFT equation of state with the binary interaction 

coefficients given in Table 5.2 and Table 5.3. In Figure 5.31 the mixture 

temperature is 145 F. We observe that at 10 and 15 mol % methanol 
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concentrations the mixture exhibits retrograde behavior. That is we observe a dew 

point for the system at which the first drop of liquid is seen. There is a transition 

from a dew-point system to a bubble-point system in the methanol concentration 

range of 20 %. At higher methanol concentrations of 30 % and above the mixture 

behaves as a bubble-point system. Figure 5.32 shows the liquid volume fraction 

curves at 250 F. The transition from a dew-point system to a bubble-point system 

occurs between 20 and 25 mol % methanol concentration.  The dew point at 0 % 

methanol concentration is about 2700 psi.  Figure 5.33 shows the liquid volume 

fraction curves at 350 F. We observe that the dew-point to bubble-point transition 

occurs at a still higher concentration of 35-40 mol % methanol in this case. In 

summary we observe that the transition from a dew-point system to a bubble-

point system occurs at a higher methanol concentration as the mixture 

temperature is increased. 
 

5.5 WATER-METHANOL MIXTURES 

 

Figure 5.34 shows the vapor liquid equilibrium curve for a water-methanol 

system at 40 C. We see that the Peng-Robinson equation of state gives a very 

good fit to the experimental data [8] even for a very highly associating system of 

water and methanol just by adjusting the binary interaction coefficient. However, 

we need to adjust the binary interaction coefficient to a negative value. We 

observe that without any adjustment in the binary interaction coefficient or by 

using positive values of the binary interaction coefficient we are able to match the 
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methanol-lean phase but the methanol-rich phase mole fraction predictions are 

very poor. When the binary interaction coefficient is adjusted to –0.1 both the 

methanol-lean phase and the methanol-rich phase mole fractions are predicted 

very accurately. Although the mole fraction predictions are accurate at this 

temperature we are operating in a very low-pressure range in comparison to gas-

condensate phase behavior studies, where the operating pressure range is about 

1000 to 5000 psi. The data available in the literature [8] for methanol-water 

mixtures for this pressure range is the liquid density. Figure 5.35 shows the liquid 

density predictions of methanol-water mixtures at various methanol concentration 

at 140 F. We use the same binary interaction coefficient of –0.1 in the Peng-

Robinson equation. We observe that the predicted liquid densities are less than the 

experimental value. However, it is very important to note that if we use no binary 

interaction coefficient or use a positive binary interaction coefficient, the PR 

equation predicts two separates phases for this methanol-water mixture at these 

high pressures. Clearly, this is an artifact introduced by the improper selection of 

the binary interaction coefficients.  

 

We also present the SAFT predictions of the binary mixture of methanol-

water as shown in Figure 5.34. We observe that even in the case of SAFT the 

water-methanol binary interaction coefficients have to be adjusted to a negative 

value of -0.15, so as to be able to match the experimental data. We have been able 

to cover only a small concentration range with the SAFT equation of state 

whereas with the PR equation of state we have been able to cover the entire 
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concentration range. The binary interaction coefficients have been obtained by 

searching across the entire binary interaction-association interaction coefficient 

phase space and minimizing the error between the experimental and predicted 

values. It is surprising that despite explicitly accounting for association terms in 

the SAFT EOS, the behavior of associating mixtures such as water and methanol 

cannot be adequately predicted without adjusting the binary interaction 

coefficients. 

 

5.6 GAS CONDENSATE-WATER-METHANOL SYSTEMS 

 

Based on the knowledge on the binary interaction coefficient that we 

gained so far, we predict the behavior of the gas condensate-water-methanol 

system. Figure 5.36 shows the gas phase volume fraction curves for a  30 mol % 

water, 17 mol % methanol and 53 mol % gas condensate mixture whose 

composition are as given in Mixture 4 in Table 5.1. The phase volume fractions 

have been measured experimentally at 145 F at various pressures. The solid lines 

are the Peng-Robinson predictions with the water-hydrocarbon binary interaction 

coefficients adjusted. The binary interaction coefficients for hydrocarbon – water 

mixtures have been obtained from Wang et al.,[7] and are as shown in Table 5.3. 

We see that the PR equation fits the phase volume fractions fairly accurately. We 

observe that the system exhibits a two-phase behavior above the dew-point 

pressure of about 2700 psi. Above this pressure the hydrocarbons form a single-

phase whereas water and methanol mix completely to form the heavier liquid 
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phase. Below the dew point pressure the hydrocarbon gas phase drops out to form 

a lighter liquid phase which is consistent with its retrograde behavior.  

 

Figure 5.37 shows the molar densities of the three phases as predicted for 

the above mixture with the PR equation. We observe that the aqueous phase 

density is constant with pressure. The liquid and the vapor phase density are 

similar to the values when the water is not present in mixture. Figure 5.38 shows 

the mole fractions of the various components in the liquid phase as predicted by 

the PR equation. We see that as the pressure is decreased the lighter hydrocarbon 

namely C1 decreases and by corollary the mole fractions of heavier hydrocarbons 

n-C4, n-C7 and n-C10 increases. There are very negligible amounts of water and 

methanol in the lighter liquid. Figure 5.39 shows mole fractions of various 

components in the vapor phase which essentially contains almost 90 % of 

methane and about 10 % of butane. The heavier hydrocarbons, methanol and 

water are present in trace amounts. Figure 5.40 shows the mole fractions of 

various components in the heavy liquid. Almost all of the water and the methanol 

in the original mixture drops out to form this heavy liquid phase. There are very 

trace amounts of hydrocarbons present in this phase. Without the water-

hydrocarbon binary interaction coefficients taken into account the water 

concentration in the vapor phase ranges between 0.5 to 1 % whereas with the 

binary interaction coefficients the water concentration in the vapor phase is in a 

lower range of 0.2 to 0.4 % . These binary interaction coefficients will play an 
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important role at higher temperatures where the concentration of water in the 

vapor phase could become significantly higher. 

 

Figure 5.41 shows a comparison of the PR EOS predictions of the phase 

volume fractions with the measured data for a 13 mol % water, 65 mol % 

methanol and 22 mol % gas-condensate mixture with the overall composition of 

Mixture 5 in Table 5.1. The PR EOS captures the phase behavior qualitatively 

without any adjustment of the binary interaction coefficients, but it does not agree 

with the data quantitatively except it does predict the pressure for the transition 

between two and three phases rather well.  Above pressures corresponding to the 

original gas-condensate dew point pressure of about 2700 psia, the data show a 

gas phase and an aqueous phase rather than just a gas phase as observed without 

the water and methanol components in the mixture. Figure 5.42 shows the molar 

densities of the three phases as predicted for the above mixture with the PR 

equation. Figure 5.43 to Figure 5.45 shows the mole fractions of the various 

components in the liquid, vapor and the aqueous phase respectively as predicted 

by the PR equation. We see that the trends in the mole fraction of the phases are 

similar to those predicted by the PR equation for Mixture 4. 

 

Figure 5.46 shows the phase volume fraction calculations for SAFT 

equation of state for 30 mol % water, 17 mol % methanol and 53 mol % gas 

condensate mixture whose composition are as given in Mixture 4 in Table 5.1. 

Similar to the Peng-Robinson case the water-hydrocarbon binary interaction 
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coefficients only have been adjusted and as expected the SAFT calculations agree 

well with the experimental data for this case. Figure 5.47 shows the molar 

densities of the three phases as predicted for the above mixture with the SAFT 

equation. We observe that the aqueous phase density is different than the 

corresponding calculation obtained from the PR equation of state. Figure 5.48 to 

Figure 5.50 shows the mole fractions of the various components in the liquid, 

vapor and the aqueous phase respectively as predicted by the SAFT equation. The 

trends in the mole fraction of the phases are similar to those predicted by the PR 

equation for the same mixture.  

 

 Figure 5.51 shows a comparison of the SAFT EOS predictions of the 

phase volume fractions with the measured data for a 13 mol % water, 65 mol % 

methanol and 22 mol % gas-condensate mixture with the overall composition of 

Mixture 5 in Table 5.1. The SAFT equation of state shows good agreement with 

the experimental data without any adjustment of the binary interaction 

coefficients from those given in Tables 5.2 and 5.3.  This indicates that the SAFT 

equation of state provides better predictions for mixtures with methanol and water 

as expected from theoretical considerations. Figure 5.52 shows the molar densities 

of the three phases as predicted for the above mixture with the SAFT equation. 

Figure 5.53 to Figure 5.55 shows the mole fractions of the various components in 

the liquid, vapor and the aqueous phase respectively as predicted by the SAFT 

equation. We see that the trends in the mole fraction of the phases are similar to 

those predicted by the PR equation, except in the liquid hydrocarbon phase. In 
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this phase, the methanol concentration predicted by the SAFT equation is 

significantly higher than that predicted by the PR equation. 

 

5.7 HYDROCARBON-METHANOL-WATER MIXTURES 

 

We have also made comparisons with experimental composition data 

available in the literature for hydrocarbon-water-methanol mixtures. Table 5.4 

shows the two different mixtures from a Gas Processors Association Report for 

which experimental Liquid-Liquid-Vapor equilibrium data were measured by Ng 

et al., [9] in the context of gas-hydrate inhibition. Figure 5.56 to 5.58 show the 

phase mole fraction comparisons of both the Peng-Robinson and SAFT equation 

with the experimental data for Mixture 1 given in Table 5.4. The binary 

interaction coefficients for both the equations of state are those given in Tables 

5.2 and Table 5.3 which have been obtained by matching the experimental data in 

the previous section. We observe that both the PR and SAFT equations predict the 

vapor phase mole fractions reasonably well. The methane concentration is slightly 

under predicted in the liquid phase with the SAFT equation whereas the nC7 mole 

fractions are slightly over predicted as shown in Figure 5.56. The nC7 mole 

fraction in the liquid hydrocarbon phase is slightly under predicted with the PR 

equation as can be seen in Figure 5.57. Figure 5.58 shows that in the aqueous 

phase the methanol and water mole fractions are predicted fairly accurately by 

both the PR and SAFT equation of state. The phase volume fractions are also 

reasonably accurately predicted with both the equations for a hydrocarbon-

 110



 

methanol-water mixture at 122 °F. Figures 5.59 to 5.61 show the phase mole 

fraction for Mixture 2 in Table 5.4 which has about 22 % methanol in the feed. 

We observe similar behavior as in the previous case only that the heaviest phase 

contains about 55 % methanol and 45 % water which is again reasonably 

accurately predicted by both the equation of states.  Since the binary interaction 

coefficients obtained so far have been tuned to experimental data at 145 F we 

would like to see how these binary interaction coefficients hold at different 

temperatures. Figures 5.62 to 5.64 show the phase mole fractions for a 11 % 

methanol mixture at 68 °F. We find that the SAFT equation of state predicts the 

phase mole fractions accurately even at this temperature. Interestingly enough, 

even the Peng-Robinson equation of state predicts the phase mole fractions and 

the phase volume fractions accurately although the binary interaction coefficients 

in this case have been obtained by matching a different set of experimental data at 

a different temperature. Similarly, Figures 5.65 to 5.67 show the phase mole 

fractions and the volume fractions at 68 °F and 24 mol % methanol which is given 

as Mixture 4 in Table 5.4. Next we look at still lower temperature of 14 F. Figures 

5.68 to 5.73 show the phase mole fractions for mixtures 5 and 6 at 14 F. Here 

again we see the same trend with both the equations. Interestingly, at this lower 

temperature although the predictions of the PR equation are in line with the 

experimental data, the SAFT prediction tend to deviate more from the 

experimental data especially in the case of the liquid hydrocarbon phase methane 

and nC7 mole fractions. This of great interest in reservoir simulators as Peng-
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Robinson equation of state is widely used for speed and here we show that they 

are accurate for a fairly wide range of temperatures and compositions.  

 

5.8 CONCLUSIONS 

 

We have studied the phase behavior of water-methanol-hydrocarbon 

mixtures with both the Peng-Robinson and SAFT equation of state. The 

methanol-water and methanol-hydrocarbon binary interaction coefficients play a 

very important role in the phase behavior modeling of these mixtures using both 

the equations-of-state. We have also shown the effect of methanol concentration 

and temperature on the dew-point to bubble-point transition of a gas-condensate 

mixture. The transition from a bubble point to dew-point behavior occurs at a 

higher methanol concentration with increasing temperature. We have been able to 

tune the binary interaction coefficients of both the PR and SAFT equations to fit 

the experimental phase behavior data at a given temperature, but as would be 

expected the SAFT equation gives better predictions at different system 

conditions. We have also shown that both the equations of state predict the phase 

mole fractions also really well at different system temperatures. 

 

 

 

 

 112



 

References 
 
1) Afidick, D., Kaczorowski N. J., and Bette., “Production Performance of a 

Retrograde Gas: A Case Study of the Arun Field”, paper SPE 28749 presented 
at the 1994 Asia Pacific Oil & Gas Conference, Melbourne, Australia, Nov. 7-
10 

 
2) Sarkar, R., Danesh A.S., and Todd A.C., “Phase Behavior Modeling of Gas-

Condensate Fluids Using an Equation of State”, paper SPE 22714 presented at 
the 66th Annual Technical Conference and Exhibition of the Society of 
Petroleum Engineers, Dallas, Texas, October 6-9, 1991. 

 
3) Kokal, S., Al-Dokhi, M., and Sayegh, S., “Phase Behavior of Gas 

Condensate/Water System”, paper SPE 62931 presented at the 200 SPE 
Annual Technical Confernce and Exhibition held in Dallas, Texas, October 
2000. 

 
4) Ng, H.J., Robinson, D.B., “The Influence of Water and Carbon Dioxide on the 

Phase behavior and Properties of a Condensate Fluid”, paper SPE 15401 
prepared for presentation at 61st Annual Technical Conference and Exhibition 
of the Society of Petroleum Engineers held in New Orleans, Louisiana, 
October 5-8, 1986. 

 
5) Du, Liangui, Walker, J.G., Pope, G. A., Sharma, M. M., Wang, P., "Use of 

Solvents to Improve the Productivity of Gas Condensate Wells", Paper SPE 
62935 presented at the SPE Annual Technical Conference and Exhibition, 
Dallas, TX (October 1-4, 2000). 

 
6) Walker, J.G., “Laboratory Evaluation of Alcohols and Surfactants to Increase 

Production from Gas-Condensate Reservoirs”,  MS Thesis, The University of 
Texas at Austin,  December 2000. 

 
7)   Wang, P, Pope, G.A., Sepehrnoori, K., "Development of Equations of State for 

Gas condensate for Compositional Petroleum Reservoir Simulation", In Situ, 
24 (2&3) 2000. 

 
8) Sentenac, P., Bur, Y., Rauzy, E., and Berro, C., “Density of Methanol+Water 

between 250 K and 440 K and up to 40 Mpa and Vapor-Liquid Equilibria 
from 363 K to 440 K”, J. Chem. Eng. Data., 1998, 43, 592-600. 

 

 113



 

9) Ng, H.J., Robinson, D.B.,: “The solubility of methanol or glycol in water-
hydrocarbon systems”, Gas Proc. Assn. RR 117, March, 1988. 

 114



 

Component Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 
Water 0.000 0.0000 0.000 0.307 0.128 

Methanol 0.000 0.1000 0.500 0.173 0.654 
Methane 0.800 0.7200 0.400 0.416 0.174 
Butane 0.150 0.1350 0.075 0.078 0.033 
Heptane 0.038 0.0342 0.019 0.020 0.008 
Decane 0.012 0.0108 0.006 0.006 0.003 

 
 
Table 5.1: Overall composition of gas-condensate for various mixtures used 

in this study 
 
 
 
 

 Methane Butane Heptane Decane 
Methane 0    
Butane 0.025 0   
Heptane 0.13 0.05 0  
Decane 0.16 0.1 0 0 

 
 
Table 5.2: Binary interaction coefficients, kij, between hydrocarbons used in 

the SAFT Equation of state 
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 Binary interaction coefficients  
With methanol 

Binary interaction coefficients  
With water 

 PR SAFT PR SAFT 
Methane 0.2 0 0.50 0.2 
Butane 0.4 0 0.47 0.15 
Heptane 0.1 0.05 0.47 0.05 
Decane 0.2 0.05 0.45 0 

Methanol 0 0 -0.1 -0.15 
 
 

Table 5.3: Binary interaction coefficients, kij, between methanol and  water 
with other components with the PR and the SAFT equations-of-state. 

 
 
 
 

Component Mixture 1 Mixture 2 Mixture 3 Mixture 4 Mixture 5 Mixture 6 
Temp (C) 122 122 68 68 14 14 
Press (bar) 1026 1021 1001 1003 1003 1004 
CH3OH 0.1188 0.2446 0.1186 0.2495 0.111 0.2208 

H20 0.3917 0.1864 0.3909 0.19 0.3659 0.168 
CH4 0.2937 0.3412 0.2943 0.3363 0.3139 0.3667 
nC7 0.1958 0.2275 0.1962 0.2242 0.2092 0.2445 

 
Table 5.4: Experimental mixture compositions in GPA RR 117 report (Ng. et 

al., 1988) 
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Figure 5. 1: Liquid volume fraction curves for a gas condensate fluid 

(Mixture 1 in Table 5.1) at 145 F with the PR equation 
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Figure 5.2: Gas-condensate molar density variation at 145 F with PR EOS 
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Figure 5.3: Liquid phase compositions for the gas-condensate fluid at 145 F 

with the PR equation 
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Figure 5.4: Vapor phase compositions for the gas-condensate fluid at 145 F 

with PR equation 
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Figure 5.5: Liquid volume fraction curves for a gas condensate fluid 

(mixture 1 in Table 5.1 at 145 F using the SAFT equation with and without 
binary interaction coefficients 
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Figure 5.6: Molar density curves for gas condensate fluids at 145 F using the 

SAFT equation without binary interaction coefficients 
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Figure 5.7: Liquid phase compositions for gas-condensate fluid at 145 F 
using the SAFT equation without binary interaction coefficients 
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Figure 5.8: Gas phase compositions for gas-condensate fluid at 145 F using 

the SAFT equation without binary interaction coefficients 
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Figure 5.9: Molar density curves for gas condensate fluids at 145 F using the 
SAFT equation with binary interaction coefficients 
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Figure 5.10: Liquid phase compositions for gas-condensate fluid at 145 F 
using the SAFT equation with binary interaction coefficients 
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Figure 5.11: Gas phase compositions for gas-condensate fluid at 145 F using 

the SAFT equation with binary interaction coefficients 
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Figure 5.12: Liquid volume fraction curves for a 10 mol % methanol and 90 
mol %  gas condensate mixture (Mixture 2 in Table 5.1) at 145 F using the 

PR equation of state 
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Figure 5.13: Gas condensate molar density variation for a 10 mol % 

methanol and 90 mol %  gas condensate mixture at 145 F using the PR 
equation of state 
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Figure 5.14: Liquid phase compositions for a 10 mol % methanol and 90 mol 

%  gas condensate mixture at 145 F using the PR equation of state 
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Figure 5.15: Vapor phase compositions for a 10 mol % methanol and 90 mol 

%  gas condensate mixture at 145 F using the PR equation of state 
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Figure 5.16: Liquid volume fraction curves for a 10 mol % methanol and 90 
mol %  gas condensate mixture (Mixture 2 in Table 5.1) at 145 F using the 

SAFT equation 
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Figure 5.17: Molar density curves for 10 mol % methanol and 90 mol % gas 

condensate fluids at 145 F using the SAFT  equation without methanol 
binary interaction coefficients 
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Figure 5.18: Liquid phase compositions for 10 mol % methanol and 90 mol 

% gas condensate fluid at 145 F using SAFT without methanol binary 
interaction coefficients 
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Figure 5.19: Vapor phase compositions for 10 mol % methanol and 90 mol 
% gas-condensate fluid at 145 F using SAFT without methanol binary 
interaction coefficients 
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Figure 5.20: Molar density curves for 10 mole % methanol and 90 mole % 

gas condensate fluids at 145 F using SAFT with methanol binary interaction 
coefficients 
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Figure 5.21: Liquid phase compositions for 10 mol % methanol and 90 mol 

% gas-condensate fluid at 145 F using SAFT with methanol binary 
interaction coefficients 
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Figure 5.22: Gas phase compositions for 10 mol % methanol and 90 mol % 
gas-condensate fluid at 145 F using SAFT with methanol binary interaction 

coefficients 
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Figure 5.23: Liquid volume fraction curves for a 50 mol % methanol and 50 
mol %  gas condensate mixture (Mixture 3 in Table 5.1) at 145 F using the 

PR equation 
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Figure 5.24: Molar density curves for 50 mol % methanol and 50 mol % gas 

condensate fluids at 145 F using the PR equation 
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Figure 5.25: Liquid phase compositions for 50 mol % methanol and 50 mol 

% gas-condensate fluid at 145 F using the PR equation 
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Figure 5.26: Gas phase compositions for 50 mol % methanol and 50 mol % 

gas-condensate fluid at 145 F using the PR equation 
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Figure 5.27: Liquid volume fraction curves for a 50 mol % methanol and 50 
mol %  gas condensate mixture (Mixture 3 in Table 5.1) at 145 F using the 

SAFT equation 
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Figure 5.28: Molar density curves for 50 mol % methanol and 50 mol % gas 

condensate fluids at 145 F using the SAFT equation 
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Figure 5.29: Liquid phase compositions for 50 mol % methanol and 50 mol 

% gas-condensate fluid at 145 F using SAFT with binary interaction 
coefficients 
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Figure 5.30: Gas phase compositions for 50 mol % methanol and 50 mol % 
gas-condensate fluid at 145 F using SAFT with binary interaction coefficients 
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Figure 5.31: Liquid volume fraction curves for gas condensate mixtures at 

145 F with change in methanol concentration 
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Figure 5.32: Liquid volume fraction curves for gas condensate mixtures at 

250 F with change in methanol concentration 
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Figure 5.33: Liquid volume fraction curves for gas condensate mixtures at 

350 F with change in methanol concentration 
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Figure 5.34: Vapor liquid equilibrium of methanol-water at 39.9 C with the 

PR and SAFT equation 
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Figure 5.35: Density of methanol-water(2) mixtures at 140 F with the PR 

equation (Sentenac, 1998) 
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Figure 5.36: Volume fraction diagram for Mixture 4 in Table 5.1 with the PR 

equation at 145 F 
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Figure 5.37: Molar density curves for for Mixture 4 in Table 5.1 with the PR 

equation at 145 F 
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Figure 5.38: Mole fraction of various components in liquid phase for Mixture 

4 in Table 5.1 with PR equation 
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Figure 5.39: Mole fraction of various components in vapor phase for Mixture 

4 in Table 5.1 with PR equation 

0

0.2

0.4

0.6

0.8

1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pressure(psia)

M
ol

e 
Fr

ac
tio

n

CH4O
H2O

 
Figure 5.40: Mole fraction of various components in aqueous phase for 

Mixture 4 in Table 5.1 with PR equation 
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Figure 5.41: Volume fraction diagram for Mixture 5 in Table 5.1 at 145 °F 

with PR equation 
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Figure 5.42: Molar density curves for Mixture 5 in Table 5.1with the PR 

equation at 145 F 
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Figure 5.43: Mole fraction of various components in liquid phase for Mixture 

5 in Table 5.1 with PR equation 
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Figure 5.44: Mole fraction of various components in vapor phase for Mixture 

5 in Table 5.1 with PR equation 
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Figure 5.45: Mole fraction of various components in aqueous phase for 

Mixture 5 in Table 5.1 with PR equation 
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Figure 5.46: Volume fraction diagram for Mixture 4 in Table 5.1 at 145 °F 

with SAFT Equation 
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Figure 5.47 Molar density curves for Mixture 4 in Table 5.1 with the SAFT 

equation at 145 F 
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Figure 5.48: Mole fraction of various components in liquid phase for Mixture 

4 in Table 5.1 with SAFT equation 
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Figure 5.49: Mole fraction of various components in vapor phase for Mixture 

4 in Table 5.1 with SAFT equation 

0.0

0.2

0.4

0.6

0.8

1.0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Pressure (psia)

M
ol

e 
Fr

ac
tio

n

CH4O
H2O

 
Figure 5.50: Mole fraction of various components in aqueous phase for 

Mixture 4 in Table 5.1 with SAFT equation 
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Figure 5.51: Volume fraction diagram for Mixture 5 in Table 5.1 at 145 °F 

with SAFT equation 
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Figure 5.52: Molar density curves for Mixture 5 in Table 5.1 with the SAFT 

equation at 145 F 
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Figure 5.53: Mole fraction of various components in liquid phase for Mixture 
5 in Table 5.1 with SAFT equation 
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Figure 5.54: Mole fraction of various components in vapor phase for Mixture 

5 in Table 5.1 with SAFT equation 
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Figure 5.55: Mole fraction of various components in aqueous phase for 

Mixture 5 in Table 5.1 with SAFT equation 
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Figure 5.56: Vapor hydrocarbon phase mole fractions at 122 F hydrocarbon-

water-methanol (Mixture 1) in Table 5.5 
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Figure 5.57: Liquid hydrocarbon phase mole fractions at 122 F 

hydrocarbon-water-methanol (Mixture 1) in Table 5.5 
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Figure 5.58: Aqueous phase mole fractions at 122 F hydrocarbon-water-

methanol (Mixture 1) in Table 5.5 
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Figure 5.59: Vapor phase mole fractions at 122 F hydrocarbon-water-

methanol (Mixture 2) in Table 5.5 
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Figure 5.60: Liquid hydrocarbon phase mole fractions at 122 F for 

hydrocarbon-water-methanol (Mixture 2) in Table 5.5 
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Figure 5.61: Aqueous phase mole fractions at 122 F for hydrocarbon-water-

methanol (Mixture 2) in Table 5.5 
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Figure 5.62: Vapor phase mole fractions at 68 F hydrocarbons-water-

methanol (Mixture 3) in Table 5.5 
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Figure 5.63: Liquid hydrocarbon phase mole fractions at 68 F for 

hydrocarbon-water-methanol (Mixture 3) in Table 5.5 
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Figure 5.64: Aqueous phase mole fractions at 68 F for hydrocarbon-water-

methanol (Mixture 3) in Table 5.5 
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Figure 5.65: Vapor phase mole fractions at 68 F for hydrocarbon-water-

methanol (Mixture 4) in Table 5.5 
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Figure 5.66: Liquid hydrocarbon phase mole fractions at 68 F for 

hydrocarbon-water-methanol (Mixture 4) in Table 5.5 
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Figure 5.67: Aqueous phase mole fractions at 68 F for hydrocarbon-water-

methanol (Mixture 4) in Table 5.5 
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Figure 5.68: Vapor phase mole fractions at 14 F for hydrocarbon-water-

methanol (Mixture 5) in Table 5.5 
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Figure 5.69: Liquid hydrocarbon phase mole fractions at 14 F for 

hydrocarbon-water-methanol (Mixture 5) in Table 5.5 
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Figure 5.70: Aqueous phase mole fractions at 14 F for hydrocabon-water-

methanol (Mixture 5) in Table 5.5 
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Figure 5.71: Vapor phase mole fractions at 14 F for hydrocarbon-water-

methanol (Mixture 6) in Table 5.5 
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Figure 5.72: Liquid hydrocarbon phase mole fractions at 14 F for 

hydrocarbon-water-methanol (Mixture 6) in Table 5.5 
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Figure 5.73: Aqueous phase mole fractions at 14 F for hydrocarbon-water-

methanol (Mixture 6) in Table 5.5 
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CHAPTER 6 

SAFT BASED INTERFACIAL TENSION MODEL 

6.1 BACKGROUND 

The earliest theoretical models for describing the forces acting near a fluid 

interface were studied as far back as the early 19th century. Laplace [1] was the 

first to describe the intermolecular forces and their effect on capillary phenomena. 

He introduced a concept of internal pressure which is the force per unit area 

needed to separate an infinite body of liquid into two semi-infinite bodies 

bounded by their surfaces. The quantity that arises is the work per unit area that is 

done to separate the two surfaces which is equal to twice the interfacial tension 

because of the creation of two new surfaces.  

 

Young [2] derived a relationship describing the interfacial tension at the solid-

liquid-vapor three phase boundary by introducing the concept of contact angles. 

 

θγγγ  cos  - - lsglssg         (6.1) 

 

The three interfacial forces are in equilibrium at the three phase boundary. When 

the contact angle is zero the liquid completely wets the solid surface and is said to 

be completely spreading on the solid surface. If the contact angle is between 0 and 

90 then the fluid is weakly wetting and the contact angles above represent the 
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degree of wetting. When the contact angle is equal to π then the fluid is known to 

be completely non-wetting. 

 

6.2 SOLUBILITY PARAMETERS AND SURFACE TENSION 

 

The earliest empirical model for prediction of interfacial energy is due to 

Macleod and Sugden using parachors [3,4,5].  The method developed by Macleod 

in 1923 and modified by Sugden in 1932 is given for pure fluids. 

 

         (6.2) 4)]  ( [  ργ ∆Λ=

 

where Λ is the parachor of the fluid and ∆ρ is the density difference 

between vapor and liquid of pure species. The above correlation can be extended 

to mixtures as well [5]. 

 

         (6.3) ∑
=

Λ=
n

1  i

4
ii )]y  -  x ( [  iiii ρργ

 

where  n is the number of species i, Λi, is the parachor of species i, ρII is 

the density of denser phase and ρI is the density of the lighter phase. xi and yi are 

the compositions of the respective phases. 
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Fowkes [6] proposed splitting the interfacial energy term in to non-

associating and associating parts. Drago et al.[7,8], used the concept of splitting 

the enthalpy of adduct formation in acids and bases into weak and strong parts in 

a similar manner.  

    

              (6.4) 
polarpolar-non      γγγ +=

 

The non-polar interaction in the surface tension also referred to in the 

literature as Lifshitz van der Waals interactions (LW) can be further split into 

their constituent forces. 

 
KeesomDebyeLondon        γγγγ ++=LW

       (6.5) 

 

 γLondon is the contribution to the interfacial tension due to dispersion 

forces.  It arises due to the fluctuating atomic dipole caused by the instantaneous 

polarization of electrons rotating around a positive nucleus and thus is common to 

all molecules. γDebye is the interfacial tension contribution due to the permanent 

dipole- permanent dipole interactions and finally γKeesom is the permanent dipole – 

induced dipole interaction. 

 

Fowkes also proposed simple mixing rules for the non-associating part of 

the interfacial tension. This approach has been found to be quite successful for 

many non-associating systems. 
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Van Oss [9] proposed a new set of mixing rules for the polar substrates. 

He introduced new parameters γ+ and γ− in addition to the non-associating 

component γLW to account for the polar component of the interfacial tension also 

known as the Acid-Base contribution (AB).  

 

              −+= γγγ  2  AB         (6.6) 

 

Van Oss compiled a set of γLW, γAB, γ+ and γ- values for several common 

non-polar and polar compounds. It has so far not been possible to extend the 

concepts of γ+ and γ− to a system containing a mixture of several compounds.  

 

Hansen [10] proposed a set of three-dimensional solubility parameters for 

bulk fluids similar to Fowkes approach. However, the solubility parameter of each 

molecule was split into a dispersion, polar and a hydrogen bonding part. The 

dispersion and the polar parts combined together form the non-associating 

component of Fowkes theory.  

 

          (6.7) hpd     δδδδ ++=

 

The solubility parameter above is defined as the cohesive energy density 

 
2/1

mV
RT - H   







∆
=δ         (6.8) 
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 Hansen had compiled the solubility parameters for several non-polar and 

polar compounds.  

Hildebrand [11] proposed an empirical correlation to obtain surface 

tension from solubility parameters.  

 

   
3/1

1/3v
 16.8  






=

γδ         (6.9) 

 

We made an attempt to correlate Hansen solubility parameters for several 

compounds with the solubility parameters calculated using Hildebrand correlation 

for the surface tension components proposed by van Oss. In Figure 6.1 it is seen 

that the LW components correlate reasonably well in both the theories. But there 

is a large discrepancy in the association part as seen in Figure 6.2. This can be 

attributed to the empirical nature of the above theories. In the next section we 

explore the development of the theories for prediction of interfacial tension based 

on statistical thermodynamics. 
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6.3 DENSITY FUNCTIONAL THEORY 

6.3.1 Correlation Functions 

 

In this section we present the basic concepts of the density functional 

theory involving inhomogeneous fluids. The grand canonical ensemble is used to 

develop a formalism for the square-gradient approximation of the free energy 

functionals. It must be noted that much of the theory discussed here is standard 

statistical thermodynamics and is available in the literature [12] 

 

The Hamiltonian for a fluid of N atoms, each of mass m, is 

 

∑∑
==

+Φ+=
N

1  i
iN1

N

1  i

2
i

N )V(r  )r,....(r  
m 2

p  H       (6.10) 

  

where pi is the momentum of atom i and Φ is the total inter-atomic potential 

energy and V(r) is the total external potential. The statistical thermodynamic 

quantity, grand canonical potential (Ω) is a function of the inverse temperature  β 

= (kB T)-1, the volume and the potential function u(r) 

 

V(r) -   u(r) µ=        (6.11)  

 

A series of correlation functions are obtained by functional differentiation 

of Ω with respect to u(r). The first derivative, for example denotes the average 

one-body density 
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u(r) 
 (r)ˆ (r)  (r) )1(

∂
Ω∂

−=≡≡ ρρρ      (6.12)  

 

where < > denotes the ensemble average quantity. 

 

A second derivative yields the density-density correlation function 

 

)u(r  )u(r 
  -  ) r , G(r

12

2
 1-

21 ∂∂
Ω∂

= β      (6.13) 

 

 The grand canonical potential Ω is characterized by the grand canonical 

distribution function, which gives the probability PN({rN, pN}) of finding the 

system with N particles with momenta and positions {rN,pN} in the phase space. 

This distribution function for the grand canonical ensemble with fixed chemical 

potential (µ), Temperature (T) and the volume (V) is given by the following 

equation[13] 

 

Ξ
−

=
N)] (H exp[-

  f N
N

µβ
      (6.14) 

 

where Ξ is the grand canonical ensemble partition function. 

 

We now define an intrinsic Helmholtz free energy functional which is a 

transformation on the grand canonical potential given by 
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)( )u( d -][  ]F[ rrr ρρρ ∫Ω=       (6.15) 

 

A second hierarchy of correlation functions, known as the direct correlation 

function can be generated by differentiating the excess Helmholtz free energy 

function FEx[ρ] = F[ρ] – Fideal[ρ] 

 

)( 
])[F ( -  )(c

Ex
) (1

r
r

ρ
ρβ

∂
∂

=       (6.16) 
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)(c  
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])[F ( -  ),(c

) (1Ex2
) (2

2

1

12
21 r

r
rr

rr
ρρρ

ρβ
∂
∂

=
∂∂

∂
=      (6.17) 

and 

 

)( 
)... ,,(c

   )... ,,(c
) 1-(n

)(n 

N

-1N31
N21 r

rrr
rrr

ρ∂
∂

=      (6.18) 

 

This discussion on distribution functions is completed with the introduction of the 

so called total correlation function and the Ornstein-Zernike equation. The total 

correlation function h(r12) is related to the radial distribution function g(r12) by  

 

1 - )g(r  )h(r 1212 =       (6.19) 

 

and is a measure of the total influence of molecule 1 on molecule 2 at a distance 

r12. Ornstein and Zernike [14]  had proposed the separation of the total correlation 
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function into two contributions: (1) a direct effect of 1 on 2 which is short ranged 

and is characterized by c(r12) and (2) an indirect effect, in which molecule 1 

influences some other molecule c(r13) which in turn effects molecule 2.  This 

indirect effect is the sum of all contributions from other molecules averaged over 

the volume of the system. So the Ornstein-Zernike equation relates the pairwise 

distribution functions and the direct correlation functions, 

 

3233312121 d ),h()( ),c(   ),c(  ),h( rrrrrrrrrr ρ∫+=     (6.20) 

 

Note that the expression as written above is valid even for inhomogeneous 

systems. 

 

6.3.2 Thermodynamic Functions 

 

Once the correlation functions have been defined the appropriate 

thermodynamic functions can be evaluated by the functional integration over the 

density. Consider an initial fluid state with density ρi(r) and a final state with 

density ρ(r) at the same temperature T. Integration of the direct correlation 

equation (6.16) yields 

 

∫ ∫′=
)(

(1)ExEx

i

];[c d  d - ][F   ][F 
r 

 )r  ( r 
ρ

ρ
αρρρβρβ i     (6.21)   
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where c(1) is shown as an explicit function of the density. Making a 

variable transformation 

 

   
)( - )(
 )( - )(

  
rr
rr

i

i

ρρ
ρρ

α
′

=       (6.22) 

     

we have 

 

         (6.23) ∫ ∫=
1

0

(1)ExEx ];[c ) )(  - )( ( d  d - ][F   ][F  )r  (  rrr αρρραρβρβ ii

 

Similarly the integration of equation (6.17) yields [12]  

 

) ];([ )c )(- )((  d  d  ) ];([ c  ) ];([ c 21
(2)

0
21

(1)
1

(1) r,rrrrrr α

α

α ρρραρρ ii ∫ ∫′+=     

             (6.24) 

 

Combining Equations [6.23] and [6.24] we get 

 

    
∫ ∫ ∫∫

∫
′

=
1

0

(2)
2

0
1

(1)ExEx

];[)c )(  - )( ( d  d) )(  - )( (  d  d - 
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)r  ( rr r
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α
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ρρρρβρβ

ii

ii

            (6.25) 

This on further simplification results in 
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           (6.26) 

 

If the integration path is taken from 0 density to the fluid density ρ and divided by 

the fluid volume we obtain the total Helmholtz free energy density 

 

r);(c  d 1)- ( d   ) ( f  ) ( f (2)
1

0

21-
id αρααρβρρ ∫∫+= r     (6.27) 

 

Note that the above formalism is exact and requires the evaluation of the 

second order direct correlation function as c(2) as a function of density ρ(r) which 

is extremely difficult to obtain. Some approximations usually need to be made for 

this quantity. 

 

Several theories have been put forward for the prediction of the interfacial 

tension of non-associating molecules in a lattice framework. Multi-layer 

adsorption theories [15-18] give an accurate picture of the interface. On the other 

hand the mono-layer theories of Defay et al., [19] and Prigogine-Marechal [20] 

are much simpler mathematically and reasonably accurate for the prediction of 

interfacial tension. In recent years there have been several attempts to combine a 

model for the association bonding interaction with the lattice theories to predict 

the behavior of mixtures of associating and non-associating molecules. Suresh et 
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al., [21] have used two theories the chemical theory and the Thermodynamic 

Perturbation Theory with the Prigogine-Marechal lattice model for various 

associating mixtures. 

 

6.4 SAFT BASED IFT MODEL WITH GRADIENT THEORY 

 

The associating lattice theory proposed by Suresh et al., [21] has several 

limitations. Although it gives very accurate predictions, it needs several empirical 

parameters in addition to the SAFT parameters. The radial distribution functions 

in the bulk and the surface are calculated by empirical correlations and are 

assumed to be constant. The number of neighbors in the same plane and in the 

adjacent planes may not be well determined for very complex spatial arrangement 

of molecules. It is often difficult to predict the non-associating part of interfacial 

tension independently from Fowkes theory or van-Oss theory (for e.g., the liquid 

may be completely spreading). Moreover, the theory is most useful when 

comparing the interfacial tension of mixtures with pure component interfacial 

tensions as the assumptions made about the spatial conformations of mixtures and 

pure components cancel out when the IFTs are compared with that of pure 

components. Since the Prigogine-Marechal theory is a close-packed lattice theory 

compressibility effects are not accounted for. The lattice theory of dispersion 

interaction is combined with a statistical mechanical model of association 

bonding, both of which are based on two entirely different physical frameworks.  
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In this section we propose to extend the SAFT formulation to evaluate the 

interfacial thermodynamic properties using a gradient theory approach. This 

allows us to model changes in the radial distribution function across the interface. 

Evans [12] has discussed the foundations of density functional theory. Davis et 

al.,[22] have presented the basic ideas in the use of gradient theory in the 

calculation of interfacial profiles and interfacial tension based on the Cahn-

Hilliard approach. Most density functional methods are based on the idea that the 

free energy in the interfacial phase is a function of the density profile. 

 

As discussed in Section 6.3, the Helmholtz’s free energy can be divided 

into the ideal and the excess parts. 

 

                      F[ρ(r)] = Fid [ρ(r)] + Fex [ρ(r)]      (6.28) 

 

The capital F denotes that we are referring to the total Helmholtz energy 

of the mixture. The ideal gas functional is known exactly. 

  
                    ∑= 1] - (r)[ln kT (r)Nr)]([F i

id ρρ      (6.29) 

 

Ni is the total number of molecules of component i and ρ is the total 

mixture density at the point r in space.  The Helmholtz free energy across the 

interface is given by free energy gradient approximation obtained by assuming 

that the molar free energy f(r) is a function of the local density n(r) and all its 
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derivatives at r and expanding about the homogeneous state to obtain gradients in 

the Cahn-Hilliard form: 

 

jiji,
ji,

i
2

i
i

o nn 
2
1   n 

2
1  n)(f  {n}):f(r ∇∇+∇+= ∑∑ BA     (6.30) 

 

where Ai and Bij are properties of homogeneous fluid. The total free 

energy of the entire inhomogeneous system can thus be expressed as 
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∇∇+=      (6.31) 

 

The chemical potential of species i given by 

 

      
i

i n 
F   

∂
∂

=µ        (6.32) 

 

The chemical potential of component i computed from the integral 

equation (6.31) with minor rearrangement can be written as 
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where ω is a thermodynamic potential defined by 
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      ∑≡
i

ii  n - (n) f (n) µω       (6.34) 

 

Equation (6.33) above is a non-linear ordinary differential equation with 

appropriate boundary conditions which can be solved to obtain the interfacial 

profile of components. The microstructure of the interface, whether it is planar, 

spherical or a thin-film is determined by the total Helmholtz free energy function 

(ω). 

 

For a planar system, ni = ni (x), the partial differential equation (6.33) can be 

reduced to a one-dimensional form, 

 

  K n)(
 xd
n d

 xd
n d

c
2
1

,

+=∑ ωji
ij

ji
     (6.35) 

 

where K is a constant of integration.  

 

For a planar interface, the boundary conditions are n(x = - ∞) = n(1) and n(x = ∞) 

= n(2), which are the bulk compositions of each phase. This implies 

 

        0    
n )(n(i) =

∂
∂

i

ω       (6.36) 

 

and 
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       )(i)ω       (6.37) 0

)

 K   (n =+

 

which on further simplification yields the bulk properties 

 

     for P = 1,n)(n   (P)0
ii µµ = P     (6.38) 

 

and 

 

     for i = 1,nn(P  P (P)
0N = P     (6.39) 

 

These two boundary conditions can be now used in equation (6.35) to obtain the 

following expression 
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from which the interfacial tension of the system is given by Davis et al [22]., as 

 

    dx
 xd
n d

 xd
n d

c
,

j

ji

i
ij∑ ∫

∞

∞−

=γ       (6.41) 

 

Gradient theory is comparatively mathematically simple and presents the physics 

of interfaces very clearly. The homogeneous system free energy and the influence 

parameters for the inhomogeneous fluid are separated clearly. 
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If we consider a one component fluid for a planar interface, the boundary 

conditions are n (x) -> n (1) as x -> -∞ and n (x) -> n (2) as x -> +∞, where n (i) is 

the bulk composition of phase i.  For a one-component system, the above 

boundary conditions simplify as follows, 

 

       
(n)  

dn
2
c dx 

ω∆
=       (6.42) 

 

where ∆ ω(n) ≅ ω(n) - ωB .  

 With the above simplification the interfacial tension for a pure component is 

given by 

 

     [ ] dn (n)   2  
2/1n

n

l

g

∫ ∆= ωγ c       (6.43) 

 

Geometrically ∆ω (n) can be represented as the vertical line between the curve of 

f0 (n) versus n and a straight line touching f0 at the vapor and liquid densities, ng 

and nl.  

 

Another simplifying assumption to the above expression is that the cross 

interaction parameter also known as the influence parameter is taken to be 

independent of the density and hence can be taken outside of the integral. 
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The above equation defines the system for pure components. For multi-

component systems the equation (6.33) can be rewritten as follows 

 

      n1,  i   n)(-n)(  
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µµ      (6.44) 

 

with the boundary conditions 

 

   
∞>>

∞>>

  -x from     n-n  
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II
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      (6.45) 

 

To remain consistent with the one-component system the influence parameter is 

taken to be independent of the density.  

 

The above set of second order non-linear partial differential equations (Equation 

6.44) can not be solved analytically in general. The above equations are usually 

solved numerically using different schemes. 

 

One of the most elegant approaches which has been found to be extremely useful 

is the space transformation first suggested by Carey et al.,[23] 

 

      xy tanh=        (6.46) 

    

Using this transformation the governing equations above can be written as 
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The boundary conditions in the transformed conditions are 

 

           (6.48) 
1    -y  from      n  -n  
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>>

 

It is to be noted that the boundary condition is now over a finite domain rather 

than over the infinite domain in the original formulation. 

 

The cross interaction coefficient cij for mixtures is obtained from the pure 

component interaction coefficient by the following equation. 

 
        jjiiijij c c ) - 1 (  c m=       (6.49) 

 

mij is the mixing interaction coefficient defined for the interfaces. Usually, the 

binary interaction coefficient (kij) for the bulk phases is taken as the mixing 

interaction coefficient (mij) for most cases. In some cases, however, the mixing 

interaction coefficient had to be adjusted to get a good prediction of the 

experimental interfacial tension values. 
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Carey [23] noted that the original formulation allows for inifinite 

solutions. If n(x) is a solution to the original set of differential equations any 

transformation n(x+k) will also satisfy the system of equations.  This is true of the 

new tanh x transformation as well. Nevertheless, this method in combination with 

a general finite difference scheme has been found to be very successful in this 

study. 

 

 Carey et al.[23], and Cornelisse et al.[24], have used the Peng-Robinson 

equation of state as the underlying model for free energy and the chemical 

potential calculation in the equations presented so far. Sanchez et al., [25] have 

used lattice fluid models with the gradient theory to predict interfacial tensions. In 

this study we have used the SAFT equation of state as the basis for the free energy 

model. Although, we still need to obtain the pure component influence parameter 

from the pure component experimental data, it is much simpler than the multi-

parameter fit needed for the Associating Lattice Fluid model. Since we have used 

the gradient theory with the SAFT equation of state it is a more realistic 

representation of polar fluids as against the models based on the Peng-Robinson 

equation of state. 
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Nomenclature 
 
γ  surface tension/ interfacial tension (N/m) 

Λi  parachor of species i 

ρII  density of denser phase (mol/m3) 

ρI  density of lighter phase (mol/m3) 

xi  mole fraction of species i in denser phase 

yi  mole fraction of species i in lighter phase 

δi  solubility parameter of compound i 

vi  specific volume of  compound i (m3 / mol) 

HN  Hamiltonian for a fluid of N atoms 

pi  momentum of atom i 

Φ  total interatomic potential energy 

V(r)   total external potential function 

Ω  grand canonical potential function 

ρ(r)   average one body density (mol/m3) 

G(r1, r2) two body density correlation function 

µ  chemical potential (J/mol) 

V  volume (m3 ) 

T  temperature (K) 

Ξ  grand canonical ensemble partition function 

F(ρ)  Helmholtz free energy functional 

c(n)(r1,r2, …,rN) nth order direct correlation function 

h(r12)  total correlation function 

g(r12)  radial distribution function 

Ni  number of molecules of component i 

µi
0  chemical potential of component i in the bulk homogeneous phase 

 174



 

P0  pressure in the bulk homogeneous phase 

A  interfacial area 

x  distance across the interface 

cij  cross-interaction coefficient between species i and j 

mij  mixing interaction coefficient for interfaces between species i and j 
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Figure 6.1: Comparison of solubility factor calculations from van Oss 

parameters with the  Hansen solubility parameter for the LW component 
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Figure 6.2: Comparison of solubility factor calculations from van Oss 
parameters with the  Hansen solubility parameter for the Acid-Base 

component 
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CHAPTER 7 

INTERFACIAL PROPERTIES OF PURE COMPONENTS AND 

MIXTURES 

In this chapter we present results and discuss the effectiveness of using the 

gradient theory formulation presented in the last chapter together with the SAFT 

EOS for predicting the interfacial properties of two-phase multi-component 

mixtures. 

 

7.1 PURE COMPONENTS 

 

Figure 7.1 shows the interfacial tension of pure CO2 . We observe that SAFT is 

able to predict the interfacial tension using the gradient theory fairly accurately. It 

is to be noted that the interaction parameter (cii ) has been obtained by fitting the 

experimental interfacial tension value at 242 K. Figure 7.2 shows the interfacial 

tension predictions for nitrogen. Again the match with the SAFT equation of state 

is very good. The average absolute deviation between the predicted values and 

experiments is about 1.1 %. Figure 7.3 shows the interfacial tension predictions 

for heptane. The average absolute deviation in this case is found to be 6.9 %. 

Figure 7.4 shows the interfacial tensions for decane. The average interfacial 

tensions in this case were found to be 10 %.  
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Next we examine the effectiveness of the gradient theory combined with 

the SAFT equation of state for polar molecules. In Figure 7.5 we present the 

interfacial tension of methanol. The average absolute deviation in this case is 7.9 

% . So we see that SAFT in combination with the gradient theory can effectively 

describe the interfacial behavior of polar molecules. Figure 7.6 shows the 

interfacial tension predictions for ethanol. We observe that SAFT does a very 

good job of predicting the interfacial tension. The average absolute deviation in 

this case is only 1.7 %.  Figure 7.7 show the SAFT predictions for butanol and we 

find that the average absolute deviation in this case is 7.6 %. Figure 7.8 shows the 

SAFT predictions for water over a wide range of temperature and the average 

absolute deviation in this case is 10 %. The interfacial tension interaction 

parameters for these fluids are shown in Table 7.1. 

 

7.2 BINARY MIXTURES 

Now we present the SAFT-GT predictions of the interfacial tensions of 

mixtures.  Figure 7.9 to Figure 7.12 show the interfacial profiles of CO2 – decane 

mixtures. We observe that for all compositions of the equilibrium mixture the 

interfacial profile of decane is monotonically increasing. CO2 on the other hand 

shows increased surface concentration at intermediate as well as high 

concentrations of CO2. Figure 7.9 show the interfacial profile for a CO2 – decane 

mixture for 344 K and 6.04 M Pa. The interfacial tension for this mixture 

predicted is 8.29 mN/m which compares very well with the experimental values. 

The binary interaction coefficient (kij) for this mixture is 0.14 which is also the 
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value of the mixing interaction coefficient (mij) used for the interfaces.  We see 

that the SAFT based IFT model does a fairly good job of predicting the interfacial 

tension of non-polar mixtures as shown in Figure 7.13. We also show the 

parachor calculations of interfacial tension for this mixture and we observe that 

the parachor predictions are off at very low CO2 concentrations in the liquid 

phase. 

 

Figure 7.14 to Figure 7.22 show the interfacial profiles of an ethanol-

heptane mixture. Note that this is essentially a three component mixture as 

nitrogen is added to the mixture to form a gas-liquid interface. At the system 

pressure of 0.101 MPa and temperature of 298.15 K ethanol and heptane form a 

single phase binary mixture over the entire heptane concentration range, so that 

we measure the interfacial tension over nitrogen. We observe that when there is 

significantly small amount of ethanol present in the liquid phase (Figure 7.14) the 

interfacial profiles of ethanol are monotonously increasing and heptane exhibits a 

slight interfacial activity. Similarly when the heptane concentration is high in the 

mixture then the interfacial profiles (Figures 7.20 to Figure 7.22) of heptane are 

monotonously increasing whereas ethanol exhibits slight interfacial activity. At 

intermediate ethanol concentrations it is interesting to note that; ethanol shows an 

increased interfacial activity whereas the heptane concentration is suppressed in 

the interfacial region. This is because ethanol is a polar molecule so that the polar 

sites tend to be localized near the interface. The binary interaction coefficient (kij) 

is 0.03 which is also the value of the mixing interaction coefficient used for this 
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mixture.  We observe that SAFT together with gradient theory provides very good 

predictions of interfacial tension of the ethanol-heptane mixture as shown in 

Figure 7.23. On the other hand, the parachor calculations significantly over 

predict the interfacial tension of this mixture.  

  

Next we present the results for a methanol-water mixture at 263.15 K and 

0.101 MPa. Here again we introduce nitrogen in the mixture so as to be able to 

calculate the tension of the vapor-liquid interface. In this case the cross-

interaction parameter for the binary mixture had to be adjusted similar to the 

binary interaction coefficients used for predicting the bulk thermodynamic 

properties. It is interesting to note, however, that even for two very different 

values of mixing interaction coefficients (mij = 0 and 1 ), we have been able to 

predict the  interfacial tension of the mixture fairly accurately as shown in Figure 

7.30. We observe that at high concentrations of methanol, Figure 7.24 and Figure 

7.25, the interfacial profiles are monotonic. At low concentrations of methanol 

(Figure 7.27 to Figure 7.29), although the water profiles are monotonically 

increasing the methanol interfacial profiles show increased interfacial activity. 

The mixing interaction coefficient (mij) used to generate the above interfacial 

profiles is zero.  Figure 7.30 also shows the interfacial tension predictions of 

SAFT with gradient theory for methanol – water and also parachor predictions. 

The SAFT predictions are clearly much better than the parachor calculations. 
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Figures 7.31 to 7.35 show the interfacial tension profiles of ethanol-water 

mixtures. The temperature of the mixture is 288.15 K and the pressure is 0.101 

MPa. Nitrogen is present as a third component to provide a vapor-liquid interface. 

The behavior observed in the interfacial profiles is similar to what we have seen 

earlier in the methanol water mixtures. As low concentrations of ethanol (Figure 

7.31) the profiles are monotonic. As we increase the water concentration the water 

profile is monotonic whereas ethanol shows increased interfacial activity. Figure 

7.36 show the interfacial tension predictions with both SAFT – Gradient Theory 

and also the corresponding parachor calculations. The mixing interaction 

coefficient (mij ) is set to zero. We observe that the interfacial tension predictions 

with the adjustment of mixing interaction coefficient are very good. The parachor 

predictions on the other hand are not very accurate. 

 

Figure 7.37 to 7.40 show the interfacial profile of water-methane mixtures 

at 25 C  at high pressures. The interfacial profile have been obtained by adjusting 

the mixing interaction coefficient (mij) to 0.35.  We observe that at pressures even 

as high as 1450 psia methane exhibits interfacial activity. The water interfacial 

profiles are monotonic over the entire pressure range. Figure 7.41 shows the 

SAFT predictions of the interfacial tension with experimental data and parachor 

predictions. SAFT predicts the interfacial tension very well at this temperature 

whereas the parachor predictions are not very good. Next we study the effect of 

temperature on the interfacial tension for this same mixture.  Figure 7.42 to 7.44 

show the interfacial profiles of methane-water mixtures at 106 C. The interfacial 
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tensions predictions with the mixing interaction coefficient of 0.35 are fairly 

accurate as seen in Figure 7.45. We observe similar behavior at still higher 

temperature of 176.6 F. Figure 7.46 to Figure 7.48 show the interfacial profiles at 

this temperature with the value of the mixing interaction coefficient given (mij ) 

given as 0.35.  We are able to predict the variation of the interfacial tension with 

pressure at this temperature without further adjusting the mixing interaction 

coefficient as shown in Figure 7.49.  

 

Figure 7.50 to Figure 7.52 show the interfacial tension profile for a water-

CO2 mixture at 25 C. The mixing interaction coefficient used is 0.15. Figure 7.53 

shows the interfacial tension predictions for this mixture. We observe that the 

SAFT predictions are reasonably accurate. The parachor predictions as expected 

are not very accurate, especially at higher pressures. 

 

7.3 CONCULSIONS 

 

We have used the SAFT equation of state with the gradient theory to 

predict the interfacial tension of pure components and mixtures. We have shown 

that this model predicts the interfacial tension of both non-polar and polar, pure 

components very accurately. We have introduced the pure component interaction 

parameters for the calculation of interfacial tension with the SAFT equation. We 

have also presented interfacial tension calculations for non-polar and polar 

mixtures. We have shown that SAFT with the gradient theory does a fairly good 
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job of predicting interfacial tension. The interfacial tensions of water-ethanol, 

water-methanol and a few other mixtures have been satisfactorily predicted .by 

the SAFT equation of state by introducing a mixing interaction coefficient. We 

have studied the effect of temperature and pressure on a methane-water mixture 

with this and have found that the theory holds well at different temperatures and 

pressures although we need to adjust the mixing interaction coefficients for 

interfaces (mij) initially. 
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Component Interfacial 
Tension 

Parameter (cii ), 
J/m5mol2 

% Average 
Absolute 
Deviation 

Parachor 

Nitrogen 1.38e-20 1.0 35.00 
CO2 2.33e-20 3.5 77.50 

Methane 2.79e-20 5.0 72.60 
Propane 2.33e-20 2.6 150.8 
Butane 2.33e-20 4.4 190.3 
Heptane 4.63e-19 6.9 311.36 
Decane 7.52e-19 10.0 431.20 

Methanol 2.77e-20 7.9 88.80 
Ethanol 5.26e-20 1.8 126.80 
Butanol 1.29e-19 7.6 203.4 
Water 9.32e-21 1.7 52.60 

 
Table 7.1: Interfacial tension parameter for gradient theory with SAFT 

equation of state 
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Figure 7.1: Prediction of interfacial tension with SAFT equation for CO2 
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Figure 7.2: Prediction of interfacial tension with SAFT equation for N2 
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Figure 7.3: Prediction of interfacial tension with SAFT equation for heptane 
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Figure 7.4: Prediction of interfacial tension with SAFT equation for decane 
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Figure 7.5: Prediction of interfacial tension with SAFT equation for 

methanol 
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Figure 7.6: Prediction of interfacial tension with SAFT equation for ethanol 
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Figure 7.7: Prediction of interfacial tension with SAFT equation for butanol 
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Figure 7.8: Prediction of interfacial tension with SAFT equation for water 
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Figure 7.9: Interfacial profile of CO2 -Decane mixture at 344 K and 6.94 

MPa 

0

1000

2000

3000

4000

5000

6000

7000

8000

-6 -4 -2 0 2 4 6
Dimensionles Interfacial Distance (x/m1σ11)

M
ol

ar
 D

en
si

ty
 (m

ol
/m

3)

(1) CO2
(2) Decane

 
Figure 7.10: Interfacial profile of CO2 -Decane mixture at 344 K and .94 

MPa 
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Figure 7.11: Interfacial profile of CO2 -Decane mixture at 344 K and 11.7 

MPa 
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Figure 7.12: Interfacial profile of CO2 -Decane mixture at 344 K and 12.2 

MPa 
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Figure 7.13: Interfacial Tension of CO2 – Decane mixture with equilibrium 

CO2 composition 
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Figure 7.14: Interfacial profile for 10.4 % ethanol - 90.3 % heptane mixture 

at 0.101 Mpa, 298.1 K 
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Figure 7.15: Interfacial profile for 21.6 % ethanol – 78.1 % heptane mixture 

at 0.101 Mpa, 298.1 K 
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Figure 7.16: Interfacial profile for 55.5 % ethanol – 44.3 % heptane mixture 

at 0.101 Mpa, 298.1 K 
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Figure 7.17: Interfacial profile for 66.7 % ethanol – 33 % heptane mixture at 

0.101 Mpa, 298.1 K 
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Figure 7.18: Interfacial profile for 78 % ethanol – 21.8 % heptane mixture at 

0.101 Mpa, 298.1 K 
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Figure 7.19: Interfacial profile for 87.7 % ethanol – 7.47 % heptane mixture 

at 0.101 Mpa, 298.1 K 
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Figure 7.20: Interfacial profile for 88.9 % ethanol – 7.7 % heptane mixture 

at 0.101 Mpa, 298.1 K 
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Figure 7.21: Interfacial profile for 89.8 % ethanol – 7.8 % heptane mixture 

at 0.101 Mpa, 298.1 K 
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Figure 7.22: Interfacial profile for 91.5 % ethanol – 8.5 % heptane mixture 

at 0.101 Mpa, 298.1 K 
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Figure 7.23: Interfacial tension of ethanol-heptane mixture at 0.101 MPa and 

298.15 K 
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Figure 7.24: Interfacial profile for 99.47 % methanol – 0.5 % water mixture 

at 0.101 Mpa, 263.15 K 
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Figure 7.25: Interfacial profile for 87.9 % methanol – 12 % water mixture at 

0.101 Mpa, 263.15 K 

0

4000

8000

12000

16000

20000

24000

-6 -4 -2 0 2 4 6
Dimensionless Intefacial Distance (x/m1σ11)

M
ol

ar
 D

en
si

ty
 (m

ol
 /m

3)

(1) Nitrogen
(2) Methanol
(3) Water

 
Figure 7.26: Interfacial profile for 53.29 % methanol – 46.7 % water mixture 

at 0.101 Mpa, 263.15 K 
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Figure 7.27: Interfacial profile for 10.245 % methanol – 89.75 % water 

mixture at 0.101 Mpa, 263.15 K 
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Figure 7.28: Interfacial profile for 4 % methanol – 96 % water mixture at 

0.101 Mpa, 263.15 K 
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Figure 7.29: Interfacial profile for 1 % methanol – 99 % water mixture at 

0.101 Mpa, 263.15 K 
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Figure 7.30: Interfacial tension of methanol-water mixture at 0.101 MPa and 

263.15 K 
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Figure 7.31: Interfacial profile for 99.5 % ethanol – 0.5 % water mixture at 

0.101 Mpa, 288.1 K 
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Figure 7.32: Interfacial profile for 88.8 % ethanol –11.2 % water mixture at 

0.101 Mpa, 288.1 K 
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Figure 7.33: Interfacial profile for 33.8 % ethanol – 66.2 % water mixture at 

0.101 Mpa, 288.1 K 
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Figure 7.34: Interfacial profile for 4 % ethanol – 96 % water mixture at 

0.101 Mpa, 288.1 K 
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Figure 7.35: Interfacial profile for 0.5 % ethanol – 99.5 % water mixture at 

0.101 Mpa, 288.1 K 
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Figure 7.36: Interfacial tension of ethanol-water mixture at 0.101 MPa and 

288.1 K 
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Figure 7.37: Interfacial profile for methane-water mixture at 25 C and 63.38 

psia 
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Figure 7.38: Interfacial profile for methane-water mixture at 25 C and 

145.03 psia 
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Figure 7.39: Interfacial profile for methane-water mixture at 25 C and 

1450.3 psia 
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Figure 7.40: Interfacial profile for methane-water mixture at 25 C and 

6677.8 psia 
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Figure 7.41: Interfacial tension of Methane-Water mixture at 25 C 
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Figure 7.42: Interfacial profile for methane-water mixture at 106 C and 10 

MPa 
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Figure 7.43: Interfacial profile for methane-water mixture at 106 C and 30  

MPa 
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Figure 7.44: Interfacial profile for methane-water mixture at 106 C and 60  

MPa 
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Figure 7.45: Interfacial tension of methane-water mixture at 106 C 
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Figure 7.46: Interfacial profile for methane-water mixture at 176.7 C and 10 

MPa 
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Figure 7.47: Interfacial profile for methane-water mixture at 176.7 C and 40 

Mpa 
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Figure 7.48: Interfacial profile for methane-water mixture at 176.7 C and 50 

MPa 
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Figure 7.49: Interfacial tension of methane-water mixture at 176.7 C 
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Figure 7.50: Interfacial profile for water-CO2 mixture at 25 C and 1 atm 
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Figure 7.51: Interfacial profile for water-CO2 mixture at 25 C and 50 atm 
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Figure 7.52: Interfacial profile for water-CO2 mixture at 25 C and 60 atm 
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Figure 7.53: Interfacial tension of water-CO2 mixture at 25 C 
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CHAPTER 8 

SAFT BASED PHASE BEHAVIOR MODEL IN A RESERVOIR 
FLOW SIMULATOR 

 

8.1 INTRODUCTION 

 

Reservoir flow simulators are very widely used in the petroleum industry 

and in the environmental engineering community to computationally study the 

flow behavior of oil, gas and water through porous media.  Compositional 

models, which accurately describe the phase behavior of fluids, are very 

important when the fluid properties are dependent on the composition and on 

phase temperatures and pressure. Some examples of reservoir processes where 

compositional models play a key role are miscible flooding by enriched gas, 

carbon dioxide flooding and depletion of gas-condensate reservoirs.  

 

There are several compositional simulators available in the literature. 

Chang et al.,[1] have developed a compositional reservoir simulator, UTCOMP, 

which is a three-dimensional, four-phase, equation of state based compositional 

simulator for miscible gas flooding. The equation of state used in this simulator is 

the Peng-Robinson equation which is very popular for hydrocarbon mixtures. As 

has been shown in the previous chapters, SAFT is based on theoretical 

considerations and does better predictions for methanol-water-hydrocarbon 
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mixtures. In this chapter we adapt the SAFT equation of state so that it can be 

used in a flow mode in a reservoir simulator instead of only being able to do batch 

flash calculations. In the next section we present the basic equations involved in a 

compositional reservoir simulator (UTCOMP) and the phase behavior properties 

that need to be evaluated from the equation of state so as to be applicable in a 

flow mode. In the following sections we outline how the SAFT model has been 

incorporated with the compositional flow simulator. 

 

8.2 BASIC EQUATIONS 

 

The following assumptions have been made in developing the 

mathematical model for the reservoir simulator 

 

1) Reservoir is isothermal 

2) No-flow outer boundary conditions exist 

3) There is no precipitation , chemical reaction or adsorption on the rock 

surfaces 

4) Fluid flow is characterized by Darcy’s law for multiphase flow 

5) The porous media is slightly compressible 

 

The model permits four phases to co-exist in the porous medium namely 

an aqueous phase, an oil phase, a gas phase and an additional nonaqueous liquid 

phase. The model assumes local thermodynamic equilibrium between 
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hydrocarbon phases, and negligible capillary pressure effects on hydrocarbon 

phase equilibrium. With these assumptions, the basic conservation equation for 

component i is given as 

 

0  R- F.  
t

 W
ii

i =∇+
∂

∂         (8.1) 

 

where Wi , Fi and Ri are the accumulation, flux and source terms 

respectively.  The accumulation term can be written in terms of the phase mole 

fraction, phase density and saturations as 

 

∑
=

=
pn

1  j
ijjji  xS    W ξφ         (8.2) 

 

where φ is the porosity, ξj is the molar density of phase j, Sj is defined as a 

fraction of the pore space occupied by phase j, and xij is the mole fraction of 

component i the phase j. 

 

The second term in the conservation equation, flux F, consists of two terms, 

convective flux and dispersive flux, and can be written as 

 

    ijijjj

n

1j
ji  S  - u  F

p

xKxijj ξφξ∑
=

=        (8.3) 
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where ju  represents the superficial fluid velocity of phase j and ijK  is the 

dispersion tensor. The relationship between the pressure gradient across the 

porous media and the flux is governed by the multiphase Darcy’s law. 

 

    ) D   - P  (
k

k -  u jj
j

rj
j ∇∇= γ

µ
        (8.4) 

 

where k  is the permeability tensor, krj is the relative permeability of phase 

j,  (which is a function of saturation), µj is the viscosity of phase j, γj is the 

specific gravity of phase j and D is the depth. 

 

The source terms in Equation 8.1 above arise from the superposition of 

injection/production wells at several locations in the reservoir.  

 

  
b

i
i V

q  R =   for i = 1,…., nc , nc + 1   (8.5) 

 

8.3 PRESSURE EQUATION 

 

Apart from the mass conservation equation the other important equation in 

describing the flow in a reservoir is the pressure equation. The pressure equation 

is derived based on the assumption that the pore volume is completely filled by 

the fluid. 
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P)(V  )NP,(V pt =         (8.6) 

 

The fluid volume is assumed to be a function of pressure and the total 

number of moles of each component whereas the pore volume is assumed to be a 

function of the pressure only. Differentiating both the volumes with respect to 

time and then applying the chain rule on the independent variables we obtain 
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All the above equations are combined to form the basic equations in a 

reservoir simulator. 

 

We observe in the above equation that we have to evaluate the volume 

derivatives with respect to the pressure and with respect to the component moles.  

 

The partial derivative of the total fluid volume with respect to the 

component mole numbers is given by 
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    for i = 1,…..,nc      (8.8) 

 

where vj is the molar volume of phase j. which can be further written as 
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The partial molar volume derivative can be analytically computed from 

the formula 
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    for k = 1,…,nc    (8.10) 

 

The remaining partial derivatives in Equation 8.9 above can be evaluated by 

solving the set of simultaneous equations [1].  
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     for s = 1,…..., nc and i = 1,….,nc 

 

and  
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The details of the above equations are given elsewhere (Chang et al., [1]). 

Similarly, for the evaluation of the total fluid volume derivative with respect to 

the pressure, we need to solve the following set of simultaneous equation 
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and 
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  for k = 1,…., nc     (8.15) 

 

 

Now, that we have shown the significance of the volume and mole number 

derivatives of the fugacity coefficient and the compressibility factor in the flow 

equation, we present these derivatives for a SAFT equation of state. 
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8.4 CHEMICAL POTENTIAL AND COMPRESSIBILITY DERIVATIVES WITH SAFT 
EQUATION 

8.4.1. Hard Sphere Terms 

The hard-sphere chemical potential expressions are given in Chapter 3. 

The chemical potential derivative with respect to the mole number is given as 
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where  
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The derivatives of the reduced molar density ζi with respect to the mole numbers 

is given as 
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The compressibility factor derivative with the mole numbers is 
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In a similar fashion, the volume derivatives of the hard-sphere term are 

determined as 
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Along the same lines as shown above the other derivatives can also be written as 
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The ζk derivatives with the volume are given as 
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The hard sphere compressibility factor derivative with the volume is given as 
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8.4.2. Mixture of Chains Term 

  

 The chemical potential derivatives arising from the chain terms is given by 
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            (8.24) 

where gij is the short hand notation for gij (di , dj )hs defined in Chapter 3  The 

compressibility factor derivative is thus given as 
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Now we present the volume derivatives of the chemical potential and the 

compressibility factor 
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The compressibility factor derivative with volume is 
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The mole number and the volume derivatives of the radial distribution function 

are given as 
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Similarly 
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and 
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The term 
i

jkg
V ρ∂

∂

∂
∂ is similar to the term shown, only the reduced densities are 

derived with respect to the volume V instead of the mole numbers Ni  

 

8.4.3 Mixture of Associating Spheres Term 
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Now we have to evaluate the second derivative of YA
i with mole numbers 
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Note that the abvove expression is a set of non-linear equations which need to be 

solved simultaneously. The compressibility factor derivative with respect to the 

mole numbers is 
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where the derivative of the free energy is given as 
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           (8.34) 

Similarly the chemical potential derivatives with respect to the volume are 
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            (8.35) 

The volume derivative of the free associating bond sites is 
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The compressibility factor derivatives are given as similar to the derivation shown 

above 
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and the association free energy derivative with volume is 
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8.4.3 Dispersion Term 

 The dispersion chemical potential derivatives with mole numbers is 
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Similarly the compressibility factor derivatives with respect to the mole 

numbers is 

 231



 

3
ll

1
3

j

j k
jk

2

l

3
1-j

j k
jk

3
j

j k
jkl

l

disp

d m
6

1
kT
uDkm              

kT
u

nkT
ujkDm              

kT
ukDm

N 
z  

ρ
ττ

ζ

τ
ζ

τ
ζ

Π










+









∂
∂











+











=

∂
∂

−

∑∑

∑∑

∑∑

k

k

k

 

            (8.42) 

 

The derivatives of the 
Tk 

u  in the above equations are given by 
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So the chemical potential deirivatives with respect to volume are 
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and   
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The above equations have been coded with the SAFT algorithm and have been 

linked with the corresponding flow variables in the UTCOMP reservoir flow 

simulator, so that they can be evaluated by the simulator at each time step. 
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8.5 SIMULATION OF CORE FLOOD EXPERIMENTS 

 

We present the results for a few core flood simulations for a hydrocarbon 

mixture with the SAFT equation of state and compare the results with the 

experimental data as well as the simulation results from the PR equation of state. 

The simulation is for a one-dimensional flow in a laboratory core flow 

experiment. Synthetic gas condensate mixtures were prepared using methane 

(C1), n-butane (nC4), n-heptane (nC7) and n-decane (nC10) by Walker et al., [2] 

and Al Anazi et al., [3] to study the extent of condensate blocking in  laboratory 

core flood experiments. The mixture has a measured dew-point of 2795 psia. A 

Corey type relative permeability model with trapping number effect proposed by 

Narayanaswamy et al., [4] and Pope et al., [5], have been used. The relative 

permeability parameters used in this study are given by Rai [6] who has 

extensively studied the simulation of core flood experiments with the PR equation 

of state and has proposed the relative permeability parameters for this system. In 

this work we study the effect of the SAFT equation of state for two different core 

flood experiments and determine the influence of the equation of state, if any, on 

these simulations. The two experiments selected are the Experiment 15 of Al. 

Anazi et al., [3] conducted at a low rate on a low permeability Texas cream 

limestone rock and Experiment 12 conducted at a high rate on a high permeability 

Berea sandstone rock.  The coreflood summary of these two experiments is given 

in Table 8.1 
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 Figure 8.1 shows the pressure profile for single phase gas flow with the 

PR and SAFT equation of state at different times for Experiment 15 of Al Anazi 

[3]. We observe that both the equations give the pressure profile accurately. At 

initial times till 5 pore volume, the pressure drop across the core is 12 psia, which 

is also the value predicted by both the equations. Figure 8.2 shows the pressure 

drop across the core during two phase injection. Here again we observe there is no 

significant advantage in using the SAFT equation of state over the PR equation of 

state in our simulations. Similarly Figure 8.3 shows the pressure drop during 

equilibrium gas injection phase for this mixture. Both the PR and SAFT equation 

are able to predict the steady state experimental pressure drop. We have not been 

able to obtain early time data with the SAFT equation as this data was not 

recorded in the output files. Figure 8.4 shows the same pressure drop during 

methanol injection. The steady state pressure drop predicted by the PR equation is 

220 psi as against an experimental value of 160 psi whereas the SAFT prediction 

is 190 psi. In this case, the SAFT prediction are more in line with the 

experimental values, as expected, because SAFT is better suited for predicting 

properties of polar mixtures. The CPU runtime for the PR equation is 5090 sec 

whereas for the SAFT equation of state this time is 216330 sec on a Pentium III 1 

G Hz processor with 256 MB memory in a Windows based environment. The 

very high CPU time for equation of state is because of large time the simulator 

takes in the flash algorithm.  
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Figure 8.5 shows the pressure profile for single phase gas injection with 

both the PR and SAFT equation of state at different times for Experiment 12 of Al 

Anazi [3]. We observe that both the equations give the pressure profile accurately. 

At initial times till 3 pore volumes, the pressure drop across the core is 1.6 psia, 

which is the value predicted by both the equations. Figure 8.6 shows the pressure 

drop across the core during two phase injection. Here again we observe there is no 

significant advantage in using the SAFT equation of state over the PR equation of 

state in our simulations. In fact the steady-state pressure drop of 22 psia predicted 

by the PR equation is closer to the experimental value of 25 psia than the steady 

state value of 20 psia predicted by the SAFT equation. Similarly Figure 8.7 shows 

the pressure drop during equilibrium gas phase injection for this mixture. Both the 

PR and SAFT equation are able to predict the steady state pressure drop as 2 psia 

whereas the experimental value is closer to 1 psia. We observe that there has been 

no data recorded in this case between 16 and 36 pore volumes of gas injection. 

Figure 8.8 shows the same pressure drop during methanol injection. The steady 

state pressure drop predicted by the SAFT equation is 6 psi which is closer to the 

experimental value of 5 psi whereas the PR prediction is 7 psia. Figure 8.9 shows 

the pressure drop during second condensate accumulation phase. We observe that 

both the PR and SAFT equation of state have not been able to capture early time 

experimental behavior. This may be because of non-equilibrium effects in the 

core during the condensate accumulation stage due to the high rate of injection 

through the core. Although there is a significant amount of scatter in the steady 

state data both the equations give a reasonably good agreement with the 
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experimentally measured pressure drop at late time. Finally, both the PR and 

SAFT equation of state give a steady state pressure drop of 2 psia as against an 

experimentally measured value of 1 psia during second equilibrium gas phase 

injection which is in reasonable agreement within the experimental limits. The 

CPU runtime on a Pentium III 1 G Hz processor with 256 MB memory in a 

Windows based environment for the PR equation is 168 sec whereas the CPU 

time for the SAFT equation of state in the same environment is 70222 sec.  

 

8.6 CONCLUSIONS 

 

We have integrated the SAFT equation of state in a reservoir simulator so 

as to be able to do flow simulations for complex polar mixtures. We have been 

able to match the predictions of a SAFT equation with a conventional PR 

equation of state of pure hydrocarbon mixtures for a typical gas condensate 

problem. We observe that for the experimental core flood studies we have studied 

both the PR equation and SAFT equation give reasonable agreement with 

experimental data but, as expected, there is a slight advantage in using the SAFT 

equation of state during the methanol injection stage of the experiment. However, 

significantly larger computational time does not justify the use of the SAFT 

equation of state currently in such flow simulation problems. 
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Nomenclature 
 
Wi  accumulation of species i (lb-moles/cu. ft.) 

Fi  flux of species i (lb-moles/sq. ft/day) 

Ri  generation of species i (lb-moles/cu. ft/day) 

φ  porosity 

ζj  molar density of phase j (lb-moles/cu. ft/ 

Sj  saturation of phase j 

xij  mole fraction of component i in phase j 

ju   superficial fluid velocity of phase j 

ijK   dispersion tensor (sq. ft/day) 

k   permeability tensor (mD) 

krj  relative permeability of phase j 

µj   viscosity of phase j (cp) 

γj  specific weight of phase j  

D   depth (ft) 

P  pressure (psi) 

VT  total fluid volume (cu ft) 

VP  pore volume (cu. ft.) 

t  time (days) 

Zj   compressibility factor of phase j 

nj  number of moles of phase j 

np  number of phases 

nc  number of components 

nij  number of moles of component i in phase j 

Ni  number of molecules of component i 
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fij  fugacity coefficient of component i in phase j (psi) 

ζ3  reduced density of the mixture 

mi  chain length of component i 

di  temperature dependent segment diameter (A) 

σi  temperature dependent segment diameter (A) 

uo/k  temperature independent energy parameter (K) 

Phs
CS  Carnahan-Starling Pressure contribution (Pa) 

µhs  hard sphere chemical potential (J/mol) 

Zhs  hard-sphere compressibility factor 

µchain  chain chemical potential (J/mol) 

Zchain   chain compressibility factor 

gii  radial distribution function of component i 

YA
i  mole fraction of molecules i not bonded at site A 

∆A
i
B

j  association bonding strength between sites Ai and Bj 

εA
i
B

j  association energy between sites Ai and Bj (  

κA
i
B

j  association entropy between sites Ai and Bj 

µi
assoc  association chemical potential of component i 

Zassoc   association compressibility factor 

uii  dispersion energy of component i 

Djk  Chen and Kreglewski constants for dispersion potential 

τ  closed packing density limit (0.74048) 

kij  binary interaction coefficient between component i and j 

µdisp  association chemical potential of component i 

Zdisp  dispersion compressibility factor 
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 Experiment 15 Experiment 12 

Core Properties   
Rock Type Texas Cream 

Limestone 
Berea Sandstone 

Length (in) 8.01 8.01 
Diameter (in) 0.972 0.972 
Porosity (%) 20 20 

Water Saturation (Sw) 0 0 
Average Permeability (mD) 2.61 245.94 
Single Phase Gas Injection @ 3000 psi  

Injection Rate (lbmol/D) 2.68e-2 3.35e-1 
Pressure Drop (psi) 10.95 1.56 

Condensate Accumulation @ 1200 psi  
Injection Rate (lbmol/D) 1.00e-2 3.35e-1 

Pressure Drop (psi) 16.13 23.93 
Gas Rel. Perm (Kg) 0.17 0.05 
Oil  Rel. Perm (Ko) 0.21 0.19 

Equilibrium Gas Flow @ 1200 psi  
Injection Rate (lbmol/D) 1.88e-2 1.14e-1 

Pressure Drop (psi) 9.16 0.75 
Methanol Treatment   

Injection Rate (lbmol/D) 1.88e-2 3.24e-1 
Pressure Drop (psi) 164.07 5.23 

Condensate Accumulation @ 1200 psi  
Injection Rate (lbmol/D)  3.35e-1 

Pressure Drop (psi)  23 
Gas Rel. Perm (Kg)  0.05 
Oil  Rel. Perm (Ko)  0.2 

Equilibrium Gas Flow @ 1200 psi  
Injection Rate (lbmol/D)  1.14e-1 

Pressure Drop (psi)  0.7 
Gas Rel. Perm (Kg)  0.96 

 

Table 8.1: Coreflood experiment summary for Texas Cream limestone and 
Berea sandstone 
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Figure 8.1: Experiment 15 – Pressure drop across core during single phase 

gas mixture injection ( T = 145 F, P = 3000 psi and Q = 48 cc/hr) 
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Figure 8.2: Experiment 15 – Pressure drop across core during two phase 

mixture injection ( T = 145 F, P = 1200 psi and Q = 18 cc/hr) 
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Figure 8.3: Experiment 15 – Pressure drop across core during single phase 

equilibrium gas mixture injection ( T = 145 F, P = 1200 psi and Q = 99 cc/hr) 
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Figure 8.4: Experiment 15 – Pressure drop across core during methanol 

treatment ( T = 145 F, P = 3000 psi and Q = 99 cc/hr) 
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Figure 8.5: Experiment 12 – Pressure drop across core during single phase 

gas mixture injection ( T = 145 F, P = 3000 psi and Q = 600 cc/hr) 
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Figure 8.6: Experiment 12 – Pressure drop across core during two phase 

mixture injection ( T = 145 F, P = 1200 psi and Q = 600 cc/hr) 
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Figure 8.7: Experiment 12 – Pressure drop across core during single phase 

equilibrium gas mixture injection ( T = 145 F, P = 1200 psi and Q = 600 
cc/hr) 
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Figure 8.8: Experiment 12 – Pressure drop across core during methanol 

injection ( T = 145 F, P = 1200 psi and Q = 300 cc/hr) 
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Figure 8.9: Experiment 12 – Pressure drop across core during second two 
phase gas mixture injection ( T = 145 F, P = 1200 psi and Q = 600 cc/hr) 
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Figure 8.10: Experiment 12 – Pressure drop across core during second 
equilibrium gas mixture injection ( T = 145 F, P = 1200 psi and Q = 600 

cc/hr) 
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CHAPTER 9 

SUMMARY AND CONCLUSIONS 

 

In this work a SAFT (Statistical Associating Fluid Theory) equation of 

state has been implemented with a stability algorithm and a flash algorithm to 

conduct the phase behavior calculations for complex polar mixtures. The stability 

algorithm utilized in this work is Michelsen’s stationary point method and the 

flash algorithm used is the multi-phase version of the Rachford-Rice equation. 

The SAFT equation of state has been extensively tested with binary and ternary 

experimental vapor liquid equilibrium data for both non-polar as well as polar 

mixtures. The Peng-Robinson equation of state calculations has also been shown 

for comparison.  

 

Our results show that the Peng-Robinson equation of state predicts the 

phase equilibrium of non-polar mixtures accurately without any adjustment of 

binary interaction coefficients. On the other hand, the SAFT equation of state 

seems to predict the vapor-liquid equilibrium of non polar – polar mixtures better 

than the Peng-Robinson equation of state without any adjustment of binary 

interaction coefficients. However there are still large discrepancies between the 

experimental liquid mole fractions and those predicted by SAFT. Hence the 

binary interaction coefficients still need to be adjusted for non polar – polar 

mixtures even with the SAFT equation of state. In the case of polar – polar 
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mixtures, both the binary interaction coefficient as well as the association 

interaction coefficient had to be adjusted to get a good fit to the binary vapor-

liquid equilibrium data for certain cases. In the case of ethanol-water mixture two 

sets of binary and association interaction coefficients have been obtained which 

can describe the experimental data equally well.  

 

The relationships suggested by Huang and Radosz for obtaining the SAFT 

parameters for any general component has been implemented in this work to 

study the phase behavior of pseudo components with the SAFT equation of state.  

However, SAFT predictions of dew point and gas phase compressibilities of  two 

North Sea examples are very poor. This may be because the binary interaction 

coefficients have been taken to be zero, which is usually the case for 

hydrocarbons when using the Peng-Robinson equation. The Peng-Robinson 

equation usually predicts the phase equilibrium of mixtures containing pseudo 

components by adjusting the molecular weight of the heavy end which are often 

difficult to measure accurately from experiments.  

 

The phase behavior of methanol-water-hydrocarbon mixtures is studied 

with the SAFT equation of state and the Peng-Robinson equation of state and 

comparisons are made with experimental liquid dropout data. The Peng-Robinson 

equation was able to predict the liquid dropout variation with pressure without 

any adjustment of the binary interaction coefficients whereas with SAFT the 

binary interaction coefficients amongst hydrocarbons had to be adjusted to get a 
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good fit to the experimental data. When methanol is present in the hydrocarbon 

mixture the methanol-hydrocarbon binary interaction coefficients had to be 

adjusted for both the Peng-Robinson as well as the SAFT equation of state. 

However, the SAFT equation of state predicts the liquid dropout behavior 

qualitatively at a different methanol concentration without further adjustment of 

the binary interaction coefficients. In the case of water-methanol-hydrocarbon 

mixtures the additional water-methanol and water-hydrocarbon binary interaction 

coefficient had to be adjusted for the two equations of state. As expected, the 

SAFT equation of state was able to predict quantitatively the liquid-liquid-vapor 

phase equilibrium accurately at a different mixture conditions without further 

adjustment of binary interaction coefficients. SAFT calculations also showed a 

transition from a dew-point behavior to a bubble point behavior with increasing 

methanol concentration and increasing temperature which confirm the earlier 

experimental findings. 

 

Several empirical models available in the literature for the calculation of 

interfacial tension have been explored in this work. We have shown that the non-

polar part of the solubility parameters proposed by Hansen for several compounds 

correlates reasonably well with the non-polar part of the surface tension proposed 

by vas Oss by way of the Hildebrand expression connecting the solubility 

parameter and surface tension. However, the acid-base or the polar part of the 

interfacial tension does not correlate very well between the two theories. This is 

because of the empirical nature of both the models.  
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In this work we have coupled the SAFT equation of state with the 

Gradient Theory to calculate the interfacial tension of pure components as well as 

multi component mixtures. Pure component interfacial tension parameters are 

obtained for both non-polar as well as polar compounds and the average absolute 

deviation is less than 10 % in all cases. For a non-polar mixture of CO2 and 

decane, SAFT with the Gradient Theory calculates the interfacial tension 

accurately whereas the parachor calculations deviate from the measured 

interfacial tensions at low CO2 concentrations. For a non polar – polar mixture of 

ethanol and heptane, again SAFT with gradient theory is more accurate than the 

parachor calculations. In the case of polar – polar mixtures, for methanol-water 

and ethanol-water mixtures the mixing interaction coefficient had to be adjusted 

to get a good fit to the experimental interfacial tension data. In the case of 

methanol-water mixtures two values of mixing interaction coefficient ( 0 and 1) 

can describe the experimental data equally well. For a methane-water mixture the 

mixing interaction coefficient had to be adjusted to fit the experimental interfacial 

tension variation with pressure at 25 C. This mixing interaction coefficient was 

used to predict the interfacial tension at other temperatures also very accurately. 

 

The SAFT equation of state has been integrated into the reservoir flow 

simulator (UTCOMP) so as to be able to conduct flow simulations of complex 

polar mixtures. The flow simulations with SAFT have also been compared with 

experimental core flood studies conducted on two different cores (Texas cream 

limestone and Berea sandstone) as well as the simulations with the PR equation of 
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state. In the initial stage of the core flood when there is single phase hydrocarbon 

gas flowing through the core both the Peng-Robinson and SAFT equation of state 

match accurately with the experimental data. Similarly during the condensate 

buildup stage and the equilibrium gas injection stage of the experiment both the 

Peng-Robinson equation and the SAFT equation give reasonably good agreement 

with the experimental data. During the methanol injection phase of the experiment 

the SAFT equation of state has been found to be slightly better than the Peng- 

Robinson equation. However, the simulations with SAFT equation of state are 

characteristically an order of magnitude slower than the corresponding 

simulations with the PR equation. Thus SAFT is currently not a viable tool for 

large scale field simulations. 

 

9.1 Recommendations and Future Work 

 

The SAFT equation of state has been found to be slower than the Peng-

Robinson equation of state for both phase behavior calculations as well as flow 

simulations. This is because PR equation is a three parameter equation of state in 

which the compressibility factor can be solved analytically for a give pressure, 

temperature and composition condition. On the other hand, with SAFT equation 

of state a complex non-linear equation needs to be solved for the density for every 

given pressure, temperature and composition. This is a computationally expensive 

step as a generalized non-linear equation solver which uses a modified Newton 

method has been used for most part of this work. This algorithm can be improved 
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so as to increase the overall speed of the SAFT equation in the phase behavior 

model. One way to do this is to do a binary search in the closed interval space of 

the reduced density ζ3 as it is known that the reduced density can only vary from 

zero to the closed pack segment volume limit (τ = 0.74048). However, the 

algorithm will still need to account for the possibility of the presence of multiple 

roots in this interval. 

 

It has been found in this work that the SAFT parameters suggested by 

Huang and Radosz  based on fitting the vapor pressure and liquid density are not 

the best parameters when dealing with mixtures of hydrocarbons as binary 

interaction coefficients had to be introduced to fit the experimental data in these 

cases. An alternative approach to obtaining the pure component parameters is by 

matching the critical temperature and critical pressure data of the pure 

components. This is expected to give better predictions especially for 

hydrocarbon mixtures based on similar experiences with the Peng-Robinson 

equation.  

 

Much of the work in the literature regarding calculating the interfacial 

profiles using the gradient theory focuses on planar interfaces. A fairly simple 

extension of the gradient theory can be the calculation of interfacial profiles 

across spherical surfaces such as a liquid drop. This can be easily accomplished 

by choosing the appropriate boundary conditions and the coordinates to solve the 

interfacial profile equations given in Chapter 6. The solution of these equations 
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and subsequent calculation of interfacial tension can improve the understanding of 

the interfacial forces across non-planar surfaces to a great extent. 
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APPENDIX A 

The SAFT equation of state is a volume explicit equation of state, so the 

chemical potential derivatives and the compressibility factor derivative with 

respect to the mole numbers are obtained with the volume held constant. On the 

other hand, the fugacity and the specific volume derivatives in the pressure 

equation (Equation 8.10) in Chapter 8 are evaluated with the pressure held 

constant. The following mathematical relations are useful in converting the 

constant volume derivatives of various thermodynamic properties to their 

corresponding constant pressure derivatives. 

 

If u, as well as z, is a function of x and y, we may then express the total 

differential of z in terms of differential dx and dy given below 
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Since u is a function of x and y we may consider y as a function of u and x.. 
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Combining the two equations above we obtain 
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Rearranging the terms in the above equation we obtain 

 

       du
u 
z dx

 x
y 

y 
z 

 x
z   z d

xuxy








∂
∂

+



















∂
∂









∂
∂

+







∂
∂

=      (A-4) 

Comparing the first term on the right hand side of Equation A-4 with the 

corresponding expression in Equation A-1 we obtain the required relationship. 
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APPENDIX B 

 

UTCOMP is an isothermal, three-dimensional compositional reservoir 

simulator developed at the University of Texas at Austin. The phase behavior 

aspect of the reservoir simulator is incorporated in the subroutine FLASH. The 

algorithm for the working of FLASH is given in Figure (3.2) in Chapter 3. 

UTCOMP uses the Peng-Robinson equation of state and Redlich-Kwong equation 

of state. In this work we have incorporated the SAFT equation of state into the 

existing formulation. The SAFT formulation is used to compute the chemical 

potential of each of the components in each phase and also the compressibility 

factor. It is trivial to compute the fugacity coefficients from the chemical potential 

 

µi - µi
ideal = - RT ln φi                                                     (B-1) 

 

The subroutine “plfc” computes the fugacity coefficients at each step of 

the phase equilibrium calculation. Due to incorporation of SAFT, now “plfc” calls 

the appropriate subroutine “saft_eos” to calculate the SAFT based fugacity 

coefficients. The input to SAFT is the pressure, P, temperature, T and the feed 

mole fractions, at each step of the algorithm. SAFT needs to compute the 

compressibility factor and the chemical potential and return these parameters to 

UTCOMP. The algorithm for implementing SAFT is 
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1) Solve P = f(T, ρ, xi i = 1,…,nc) for the phase density ρ, given the pressure 

P, temperature T and mole fractions xi, i = 1,…,nc 

 

2) Using the density computed in step 1 above calculate the compressibility 

factor, Z from the equation 

 

Z = P / (ρ RT) (B-2) 

 

3) and  also the chemical potential from the equation 

 

µ = f(T, ρ, xi i = 1,…,nC)   (B-3) 

 

The solution to step (1) above usually has multiple roots for density. The 

problem is now to pick the correct root out of the different densities. Traditionally 

the root that minimizes the overall free energy of the phase is selected. The phase 

free energy is given by  

 

         (B-4) ∑
=

=
Cn

1  i
iix G µ

 

The input parameters needed by “saft_eos” at each step to compute the 

fugacity coefficients are the temperature, pressure and the feed mole fractions. 

These are the input variables that UTCOMP needs to supply to SAFT. The 

subroutine “saft_eos” gets access to the above mentioned input parameters from 

 258



 

UTCOMP. These parameters are read into the corresponding SAFT parameters 

using the subroutine “input_values”. Similarly, the return parameters of the 

subroutine SAFT are the compressibility factor and the fugacity coefficients and 

these are again exchanged by using the COMMON statement for UTCOMP and 

module “saft_declare” for SAFT. The subroutine SAFT_EOS is the bridge 

between the UTCOMP and SAFT. 

 

The module named “declare” in the file “saft_declare_deriv.f90” contains 

all the public variable declarations used in the actual SAFT formulation. The 

module “stat_thermo” in the file “saft_module_deriv.f90” contains the SAFT 

formulation. It evaluates the contribution to the Helmholtz free energy, 

compressibility factor, chemical potential and their volume and mole number 

derivatives of the various terms involved in the SAFT equation of state. The 

subroutine “saft_input_values” in the file “saft_input_values.f90” reads the basic 

Huang and Radosz parameters needed to do the SAFT calculations. If there are 

any pseudocomponents involved the type of the pseudocomponent (for e.g., 

alkane or aromatic) is specified in the SAFT input file “SAFT_input.dat” and the 

corresponding Huang and Radosz parameters are evaluated automatically. 
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