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The actin, microtubule and intermediate filament cytoskeletal polymer as-

semblies, along with their accessory proteins, govern the mechanical or structural

response of an eukaryotic cell to an external stress. Using statistical mechanics

tools, this dissertation investigates the molecular properties, such as mesh size, per-

sistence length and filament length, that determine the structural strength of the in

vivo polymer networks, with an emphasis on the actin network or the cortex of cells.

Our study of actin shows how the wide range of shear moduli from 1 Pa to 1 kPa that

spans the viscous sol-like state to the elastic gel-like state witnessed in eukaryotic

cells can be achieved through transient crosslinking and the spatial distribution of

actin and actin crosslinking proteins alone. Thus, this gel-sol transition is achieved

without the action of any severing or capping proteins that depolymerize the actin

network.

In order to understand how the microscopic quantities controlling the struc-

tural properties of these in vivo polymers are related to the deformation of a cell

observed experimentally, a cell model is created by us. It starts with modeling the
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actin cortex as a thick shell and increases in complexity to include microtubules

and the nucleus. Our cell model predicts that the structural response of the cell

amplifies changes in molecular properties such as the in vivo actin concentration.

Hence, the sensitivity of the structural response to cytoskeletal changes can be used

to distinguish between different cells such as normal and cancer cells and can serve

as an indicator of disease.

x



Table of Contents

Acknowledgments v

Abstract ix

List of Tables xiv

List of Figures xv

Chapter 1. Introduction 1
1.1 Composition of the Cytoskeleton . . . . . . . . . . . . . . . . . . . 1

1.2 Some Cell Elasticity Experiments, Their Model Adjuncts and the
Missing Piece . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Polymer Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Our Structural Model for a Eukaryotic Cell . . . . . . . . . . . . . . 16

Chapter 2. Red Blood Cells in the Optical Stretcher 25
2.1 Models for Red Blood Cells . . . . . . . . . . . . . . . . . . . . . . 25

2.2 Modeling Red Blood Cells in the Optical Stretcher . . . . . . . . . . 27

2.3 Shear Modulus Values Extracted from Different Red Blood Cell Ex-
periments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.4 Summary and Implications . . . . . . . . . . . . . . . . . . . . . . 33

Chapter 3. Thick Shell Model for a Eukaryotic Cell Deforming in the
Stretcher 35

3.1 Modeling Eukaryotic Cells . . . . . . . . . . . . . . . . . . . . . . 35

3.2 Modeling a Eukaryotic Cell with a Predominant Actin Cortex De-
forming in the Stretcher . . . . . . . . . . . . . . . . . . . . . . . . 36

3.3 Predictions of the Shell Model . . . . . . . . . . . . . . . . . . . . 51

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

xi



Chapter 4. The Role of Isotropic Actin Networks in Cells 55
4.1 Isotropic Actin Networks . . . . . . . . . . . . . . . . . . . . . . . 55

4.2 Quantifying the Strength of the Actin Cortex . . . . . . . . . . . . . 58

4.2.1 Uncrosslinked Actin Network . . . . . . . . . . . . . . . . . 60

4.2.2 Fully Crosslinked Actin Network . . . . . . . . . . . . . . . 61

4.2.3 Partially Crosslinked Actin Network . . . . . . . . . . . . . . 62

4.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . 70

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Chapter 5. Models for a Eukaryotic Cell in the Stretcher 79
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.2 Modeling a Eukaryotic Cell in the Optical Stretcher . . . . . . . . . 80

5.2.1 Linear Elastic Analytical Model . . . . . . . . . . . . . . . . 80

5.2.2 Linear Elastic Finite Element Model . . . . . . . . . . . . . 83

5.2.3 Nonlinear Thick Shell Finite Element Model . . . . . . . . . 89

5.3 Extraction of Structural Parameters from the Stretcher Experiment
Using Viscoelastic Models . . . . . . . . . . . . . . . . . . . . . . 91

5.3.1 Extraction of Viscoelastic Parameters without Incorporating
Cell Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.3.2 Extraction of Viscoelastic Parameters Incorporating Cell Ge-
ometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.4 Results and Discussions . . . . . . . . . . . . . . . . . . . . . . . . 101

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

Chapter 6. Conclusions and Future Work 106

Appendices 110

Appendix A. Appendix for Red Blood Cells 111
A.1 Extraction of Structural Parameters from Some Red Blood Cell Ex-

periments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

A.1.1 Micropipette Aspiration of Cells . . . . . . . . . . . . . . . . 111

A.1.2 Electric Field Deformation of Cells . . . . . . . . . . . . . . 113

A.1.3 Optical Tweezer . . . . . . . . . . . . . . . . . . . . . . . . 114

xii



A.1.4 Flicker Spectroscopy in Red Blood Cells . . . . . . . . . . . 117

A.2 Ray Optics Calculations to Determine the Surface Stress on a Cell
in the Stretcher Set up . . . . . . . . . . . . . . . . . . . . . . . . . 118

A.3 Bending and Membrane Energy of a Thin Shell . . . . . . . . . . . 121

A.4 Deformation Equations for a Thin Shell . . . . . . . . . . . . . . . . 123

Appendix B. Appendix for Thick Shell Model of a Eukaryotic Cell De-
forming in the Stretcher 126

B.1 Deformation Equations for a Thick Shell . . . . . . . . . . . . . . . 126

B.2 The Elastic-Viscoelastic Correspondence Principle . . . . . . . . . . 131

B.3 Extraction of Structural Parameters from our Deformation Experi-
ment - the Optical Stretcher . . . . . . . . . . . . . . . . . . . . . . 133

B.4 Extraction of Structural Parameters from Other Cell Deformation
Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.4.1 Cell Poker . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

B.4.2 Atomic Force Microscopy (AFM) . . . . . . . . . . . . . . 135

B.4.3 Microplate Manipulation . . . . . . . . . . . . . . . . . . . . 137

B.4.4 Magnetic Bead Microrheometry . . . . . . . . . . . . . . . . 137

B.4.5 Micropipette Aspiration of Cells . . . . . . . . . . . . . . . . 140

B.4.6 Microstructural Models of the Cytoskeleton for Adherent Cells141

B.4.6.1 Open Cell Foam Networks . . . . . . . . . . . . . . 141

B.4.6.2 Prestressed Cable Nets . . . . . . . . . . . . . . . . 143

Appendix C. Appendix for the Role of Isotropic Actin Networks in Cells 145
C.1 A Network of Actin Filaments and Bundles . . . . . . . . . . . . . 145

Appendix D. Appendix for Models for Eukaryotic Cells 151
D.1 Buckling of Microtubules . . . . . . . . . . . . . . . . . . . . . . . 151

D.2 An ABAQUS Program or Finite Element Model of a Thick Shell
Subjected to a Uniform Stress . . . . . . . . . . . . . . . . . . . . . 152

Bibliography 165

Vita 195

xiii



List of Tables

1.1 Concentration of Key Actin Proteins in Certain Cells, taken from
[151]. Only a part of the total actin in the cell is in the polymerized
form due to the action of sequestering proteins such as Thymosin
�-4 and Profilin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.2 Cell Deformation Techniques, Structural Parameters Extracted and
the Model Adjunct. The structural parameters extracted depend on
the experimental technique, cell type and the model adjunct . . . . . 20

1.3 Rheological Data from Crosslinked Actin Networks. The rheolog-
ical constants measured depend on both the actin and crosslinker
concentrations and the filament length . . . . . . . . . . . . . . . . 23

4.1 Actin Filament Length in Different Cells . . . . . . . . . . . . . . 73

4.2 Concentrations of Actin and Actin Crosslinking Proteins in Certain
Cells . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3 Rheological Data from Crosslinked Actin Networks. The rheolog-
ical constants measured depend on both the actin and crosslinker
concentrations and actin filament length . . . . . . . . . . . . . . . 75

4.4 Cell Deformation Techniques, Shear Modulus Extracted and the
Model Adjunct. The effective shear modulus extracted for a cell
depends on the experimental technique, cell type and the model ad-
junct . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.5 Rate Constants and Time Constants of Key Actin Processes. The
time scale associated with transient crosslinking is� �

��
, while that

associated with severing or capping is � �
�����������

. . . . . . . . . 78

5.1 Results from the Numerical Thick Shell FEM Model . . . . . . . . 104

xiv



List of Figures

1.1 The cytoskeletal polymer filaments . . . . . . . . . . . . . . . . . . 4

1.2 An attached cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Actin crosslinking proteins . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Actin crosslinking protein - Filamin or ABP . . . . . . . . . . . . . 7

1.5 Actin crosslinking protein - Fascin . . . . . . . . . . . . . . . . . . 8

1.6 Rheology results from actin and actin-myosin networks . . . . . . . 9

1.7 Rheology on the different cytoskeletal elements . . . . . . . . . . . 12

1.8 Rheology on an actin solution . . . . . . . . . . . . . . . . . . . . 14

2.1 The Optical Stretcher . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Stress profile for a red blood cell in the stretcher . . . . . . . . . . . 29

2.3 A red blood cell deforming in the optical stretcher beam geometry . 30

2.4 Red blood cell deformation results from the stretcher . . . . . . . . 31

3.1 Actin cortex of a normal and cancerous fibroblast . . . . . . . . . . 37

3.2 Different surface stress profiles on a cell in the stretcher . . . . . . . 40

3.3 Plateau shear modulus of a tightly entangled, crosslinked actin net-
work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4 Geometric factor for a thick shell deforming in the stretcher as a
function of relative shell thickness . . . . . . . . . . . . . . . . . . 45

3.5 Geometric factor for a thin shell deforming in the stretcher as a
function of shell thickness and Poisson’s ratio . . . . . . . . . . . . 46

3.6 Relative radial displacement on a tightly entangled actin shell, as a
function of relative shell thickness and polar angle . . . . . . . . . . 47

3.7 Relative radial displacement as a function of polar angle and a
tightly entangled, crosslinked actin concentration . . . . . . . . . . 48

3.8 Relative radial displacement as a function of polar angle and per-
sistence length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.9 Relative radial displacement for � � �� ���
���� on a tightly entan-

gled, crosslinked actin shell, as a function of polar angle . . . . . . 50

xv



3.10 Plateau shear modulus of a tightly entangled, uncrosslinked actin
network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.1 Phase diagram for an actin network . . . . . . . . . . . . . . . . . . 59

4.2 Plateau shear modulus for uncrosslinked and fully crosslinked actin
networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.3 Shear modulus of a fully and a partially (transiently) crosslinked,
tightly entangled actin network . . . . . . . . . . . . . . . . . . . . 63

4.4 The fraction of networked actin filaments in an Acanthamoeba cell . 67

4.5 The plateau shear modulus and strain energy potential of an Acan-
thamoeba cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 Three layered structural model for a eukaryotic cell . . . . . . . . . 81

5.2 Finite element model of a cell . . . . . . . . . . . . . . . . . . . . 85

5.3 Contribution of actin to cell strength . . . . . . . . . . . . . . . . . 87

5.4 Effect of an increase in microtubules on the observed deformation
of a model cell . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.5 Effect of an increase in microtubule modulus on the observed de-
formation of a model cell . . . . . . . . . . . . . . . . . . . . . . . 89

5.6 Nonlinear thick shell model for a cell with a predominant actin cor-
tex being deformed in the stretcher . . . . . . . . . . . . . . . . . . 91

5.7 Experimental results for fibroblasts deformed in the stretcher . . . . 93

5.8 Voigt element with a dashpot in series and its response to a step stress 95

5.9 Experimental data and model fit for a normal fibroblast in the stretcher 96

5.10 Experimental data and model fit for a cancerous fibroblast in the
stretcher . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A.1 Hemispherical cap model for micropipette aspiration . . . . . . . . 112

A.2 Thin shell model for a red blood cell deforming in an axisymmetric
electric field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

A.3 Elastic thin shell model for an osmotically swollen, spherical red
blood cell deforming in a tweezer . . . . . . . . . . . . . . . . . . 115

A.4 Membrane model for an unswollen, discoid red blood cell deform-
ing in a tweezer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

A.5 Membrane model of a red blood cell to analyze its flicker phenomenon117

A.6 Ray optics calculations for the surface stress on a cell in the stretcher 118

A.7 Thin shell model for the deformation of a red blood cell in the stretcher125

xvi



B.1 Thick shell model for a eukaryotic cell in the stretcher . . . . . . . . 128

B.2 Liquid drop model for a cell poker tip probing a cell . . . . . . . . . 135

B.3 Incompressible neo-hookean model for a cell poker tip probing a cell 136

B.4 Hertz model for an atomic force microscope (AFM) tip probing a cell137

B.5 Three-element mechanical model for a cell being deformed by two
parallel microplates . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B.6 Model of a cell used to analyze magnetic bead microrheometry data 139

B.7 Half-space model for a solid cell being aspirated in a micropipette . 141

B.8 Open cell foam model . . . . . . . . . . . . . . . . . . . . . . . . . 142

B.9 Six-strut tensegrity model . . . . . . . . . . . . . . . . . . . . . . . 144

C.1 Shear modulus of a network of filaments and bundles, with no in-
teraction between the two networks . . . . . . . . . . . . . . . . . . 148

C.2 Shear modulus of a network of filaments and bundles, with an in-
teraction between the two networks . . . . . . . . . . . . . . . . . . 149

C.3 Shear modulus of a network of filaments and bundles, with an in-
teraction between the two networks . . . . . . . . . . . . . . . . . . 150

D.1 Buckling of microtubules . . . . . . . . . . . . . . . . . . . . . . . 152

xvii



Chapter 1

Introduction

1.1 Composition of the Cytoskeleton

A eukaryotic cell is a complex, compound material, consisting of many

structures made of proteins, lipids, carbohydrates and nucleic acids. One main

structure in the cell that spans its interior and accounts for most of the protein found

in vivo is the cytoskeleton - a polymer network of protein fibers. As the scaffold on

which the cell is built, the cytoskeleton provides a pathway for organelle transport

and signal transduction and is vital for cell motility and cell division [16], [111].

Not surprisingly, it also determines the structural response of the cell. This physics

dissertation focuses on the polymer physics of the cytoskeleton, with the aim of un-

derstanding how the structural response of the cell to an arbitrary, external stress is

governed by the cytoskeleton’s microscopic polymer properties. Fundamental poly-

mer quantities such as persistence length (the distance over which the filament can

bend in two independent directions), mesh size (a measure of the polymer concen-

tration) and filament length, which describe the structural strength of the network,

are related to macroscopic, observable quantities such as the deformation measured

experimentally. With this understanding, the study intends to quantitatively explain

applied stress versus deformation curves observed from our cell deformation exper-

iment. Another related aspect of this study is the correlation between cell structure

and cell function, which means a quantitative understanding of how changes in the

1



cell’s structural response can be related to cytoskeletal changes. In cancer cells,

the cytoskeleton is altered, due to malignant transformations [66], [154], [12] and

consequently so are their mechanical properties. Hence, this study investigates the

validity of using the cell’s structural response as a marker of malignant changes.

The uniqueness of this work lies in its breadth - bringing together many var-

ied fields to gain an understanding of the mechanical properties of biological cells.

Our study begins with geometrical optics to calculate the stresses on a cell placed

between two laser beams. The structural response of the cell to such a stress is

obtained from continuum mechanics - by solving the differential equations of de-

formation analytically or numerically (using finite element methods). The observed

deformation is a reflection of the unique structural properties of cellular biopolymer

networks, which are unrivaled by any synthetic polymer. Polymer physics lends

us thermodynamics and statistical mechanics to calculate the structural strength of

static polymer networks. But, some of these biopolymer networks, far from be-

ing static, are dynamically (transiently) crosslinked and this effect, on strength, is

understood with chemical rate kinetics. A knowledge of all these fields combined

with experimental data enables us to create a much more complete structural model

of a cell than before. This makes it possible to extract structural parameters such

as the shear modulus, which can be unique to cell types, and enables us to vali-

date our models and differentiate between different cells - for example, normal and

cancerous cells.

In order to pursue the above research goals, a thorough understanding of the

key players of cellular mechanics - the cytoskeletal polymers and the accessory pro-

teins within - is required and I start by describing their salient features [16], [111].

The cytoskeleton is made of three types of polymer filaments, called actin, micro-
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tubules and intermediate filaments (Figure 1.1). Eukaryotic cells have an actin net-

work just beneath the cell membrane, and microtubules and intermediate filaments

in the interior (Figure 1.2). Actin, a semiflexible biopolymer (persistence length ��

= 17 �m), is made of actin protein monomers 7-9 nm in diameter. The three di-

mensional network beneath the cell membrane, called the actin cortex, has a mesh

size ranging from 50 nm to 300 nm. Microtubules are rod-like polymers (�� = 5.2

mm) made of tubulin protein subunits, which are 25 nm in diameter. They radiate

like spokes from the centrosome or microtubule organizing center, located close to

the nucleus, and extend towards the cell membrane. Intermediate filaments have a

diameter of 8 to 12 nm, which is in between that of microtubules and actin. They

are flexible polymers in the interior of the cell. In cells such as fibroblasts, they are

colocalized with the nucleus. Intermediate filaments are made of subunits of either

keratin, vimentin, desmin (�� = 0.1-1 �m) or neurofilament protein. In addition to

these three in vivo assemblies, actin bundles called stress fibers are present only in

attached cells between focal adhesion points.

The cytoskeletal filaments are crosslinked in vivo by various proteins. Actin

filaments can assemble into two main forms - a network (cortex) or bundle (stress

fibers and focal adhesion points), depending on the size of the crosslinking or

bundling protein. The main proteins which transiently crosslink actin filaments

(with a certain binding time) are 	-actinin, filamin and fascin (Figure 1.3). 	-

actinin and filamin have at least two binding sites and crosslink different F-actin

filaments to form a 3D actin network as in Figure 1.4 (instead of a bundle as in

Figure 1.5), due to their large size. 	-actinin, found in a wide variety of cells, is

an antiparallel, rod-shaped homodimer. It is 3-4 nm wide, 30-40 nm long, and 100

KD in weight (each subunit). Non-muscle filamin or ABP-280(KD) is a homod-
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Figure 1.1: The three cytoskeletal polymers - actin (left), microtubules (center) and
intermediate filaments (right) - taken from [89]. The cytoskeletal filaments interact
to create a composite network that spans the interior of the cell and performs crucial
cell functions such as organelle transport, signal transduction, cell motility and cell
division.

imeric, actin-binding protein, 160 nm in length. Fascin is a small 55 KD molecule,

with a 3.2 nm hydrodynamic radius, that binds actin filaments into bundles. Arp

proteins (actin related proteins), which crosslink actin filaments and form branched

networks at a fixed angle of 70�, are found only at the leading edge of motile cells

[134]. Microtubules bind to one another and to actin filaments through proteins

called MAPS (microtubule associated proteins) or MIPS (microtubule interacting

proteins). Some MAPS also connect microtubules and intermediate filaments [145].

Intermediate filaments bind to one another and to actin and microtubules with the

help of IFAPs (intermediate filament-associated proteins). Without the crosslinking

and binding proteins in vivo, the network would be fluid-like [228].

In addition to the crosslinking proteins in the cell, there are also actin motor
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Figure 1.2: In this image of an attached cell, taken from [42], different fluores-
cent markers have been used as tags for different cellular components. The main
structural components of the cell include the actin cytoskeleton (red) seen beneath
the cell membrane, the microtubules (green) - observed to radiate outward from
the microtubule organizing center towards the cell periphery - and the cell nucleus
(stained in blue). There is no staining for intermediate filaments in this image.

proteins such as the myosin family and microtubule motor proteins such as dynein

and kinesin. Myosin is involved in cell contraction and motility by the movement

of a myosin molecule along an actin filament. Dynein and kinesin are involved in

the movement of microtubules. While some investigations conclude that myosin

strengthens actin networks [16], others conclude that it fluidizes the actin network

(Figure 1.6 [86]). Although these studies do not agree in their conclusions, they

clearly show that the motor proteins influence the mechanical properties of cells.

Other important proteins in vivo are the actin sequestering proteins like thymosine-

beta 4 and profilin and severing proteins and capping proteins, which control length,

like Cap Z, severin and gelsolin (Table 1.1).
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Figure 1.3: The structure of four actin crosslinking proteins, taken from [2]. Each
crosslinker shown has two binding sites (red), in order to couple two actin filaments.
The distance between these binding sites determines whether the crosslinkers form
tight actin bundles, loosely packed bundles or actin networks.

The composite cytoskeletal polymers, including the accessory proteins, de-

termine the structural response of a eukaryotic cell. In this dissertation, I have

constructed a model of a eukaryotic cell, by taking into account the geometry of the

cell, the architecture of the cytoskeleton (seen from micrographs taken in our group

and other groups studying the cytoskeleton) as well as the polymer properties of

the cytoskeleton. Before describing my model and the cell deformation experiment

that motivated it, I discuss the existing deformation experiments, their models and

the missing piece in these models.

1.2 Some Cell Elasticity Experiments, Their Model Adjuncts
and the Missing Piece

Many ingenious experiments have been devised to apply a known force or

stress to a eukaryotic cell and measure its deformation - these include the cell poker

[232], atomic force microscopy (AFM) [117], microplate manipulation [196], mag-

netic bead microrheometry [10], [11] and micropipette aspiration [96]. While some
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Figure 1.4: The structure of the three dimensional gel-like network formed by the
actin crosslinking protein filamin, taken from [2]. a) Filamin is a homodimeric
protein, 160 nm in length. Hence, it is very flexible and can tether two actin fila-
ments even at large angles. b) An actin mesh or network crosslinked by filamin is
structurally strong.

of these techniques deform local regions of the cell (local deformation techniques)

and extract structural properties, others deform the whole cell (global deformation

techniques). The cell poker and AFM are similar deformation techniques on at-

tached cells, where a hard indentor is used to apply a local force to probe the cell

and measure its deformation. In the whole cell deformation technique of microplate

manipulation, a spherical cell is seized between a rigid glass plate at the bottom and

a flexible glass plate at the top, which acts as a force sensor. The deformation of

the cell is then measured by subjecting it to various controlled forces, such as a

step force or a sinusoidal force of a certain frequency. The viscoelastic properties

of cells can be obtained in the magnetic bead microrheometry technique from the

local deformation response of attached magnetic beads to force pulses. The mi-

cropipette aspiration of cells involves applying a known local pressure to suck a

cell into a pipette and measuring the resulting extension into the pipette.
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Figure 1.5: The structure of actin filaments bridged by the actin crosslinking protein
fascin, taken from [111]. Fascin is a short, stiff crosslinker that binds actin filaments
into a parallel alignment - a tightly packed bundle.

Suitable accompanying models have been created to analyze the experimen-

tal deformation of eukaryotic cells and extract structural parameters, such as the

shear modulus and viscosity (Table 1.2 and Appendix B.4). The table also includes

models for red blood cells (which are not eukaryotic cells, as they have only a pe-

ripheral 2D spectrin cytoskeleton and no interior structure or nucleus), since the

next chapter discusses and compares our simple red blood cell model with these

other models. However, our interest lies in eukaryotic cells and their models. These

range from a simple continuum mechanics model for the micropipette aspiration

of neutrophils [28] to open-cell foam networks and prestressed cable net models
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Figure 1.6: Rheology results from actin and actin-myosin networks (36 �M actin,
0.14 �M myosin), taken from [86]. G’, the storage modulus, measures the elastic
strength of the network, while G”, the loss modulus, measures the viscous com-
ponent. The modulus G’ is lower for the myosin-actin network than for the actin
network alone. Hence, the addition of myosin fluidizes the actin network.

[182], which explore the connection between deformability and internal cellular

structure (Appendix B.4 explains how some of these models link the two proper-

ties). The cell poker experiment mentioned earlier relates the structural properties

of the cytoskeleton (modulus and viscosity) to its leukocyte data with a model of a

hyperelastic sphere deformed by a rigid indentor [232], while the AFM experiment

on fibroblasts uses a variation of the Hertz model [117] to analyze its data. The

shear modulus and viscosity of a fibroblast deformed in the microplate experiment

are obtained from a 3-element micromechanical model [196]. In the magnetic mi-

crorheometry experiment of Bausch et al. [10], the displacement of the magnetic

beads, along with the model of the fibroblast cell as an elastic plate coupled to a
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fixed viscoelastic layer, yields a bulk shear modulus. The micropipette experiment

models a chondrocyte as an elastic, homogeneous half space, subjected to an ax-

isymmetric force by the micropipette, in order to associate Young’s modulus and

aspirated length [96].

The shear modulus and viscosity extracted from the different experiments

vary due to the assumptions inherent in the model, to suit the experimental condi-

tions. Also, the continuum models used are macroscopic in nature - they extract one

shear modulus for the whole cell from experiment and hence do not consider the

underlying microscopic polymer physics of the cytoskeleton. This is precisely the

missing piece or gap this thesis aims to bridge - to explain how the strength of the

cell extracted from the models can be accounted for by strength of the individual

cytoskeletal polymer assemblies and then their interactions. Before discussing our

structural model based on the polymer networks, I discuss what is already known

about the strength of these polymer networks.

1.3 Polymer Networks

There have been in vitro experimental studies [92], [214] on the struc-

tural response of the individual cytoskeletal polymer networks, which compare the

stress-strain relations and the strain and frequency dependence of the shear mod-

ulus of the different polymer networks. Rheology, a common experimental tech-

nique to study the structural properties of in vitro reconstituted polymer networks,

is the easiest and first way to understanding cellular mechanics - the strength of in

vivo networks is hard to measure experimentally. The rheology experiments on the

different cytoskeletal networks, shown in Figure 1.7, reveal that the structural prop-
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erties of the individual networks seem well suited to their function and location in

the cell. Crucial cell functions that actin and microtubules are involved in include

cell motility and cell division respectively, while intermediate filaments maintain

cell shape. The peripheral actin cortex has a high shear modulus, which enables it

to withstand stresses from the outside, while the interior intermediate filament net-

work has a lower shear modulus at low strains [92]. Microtubules are stiff and have

a much higher shear modulus than actin, due to their large persistence length. These

in vitro studies on the individual cytoskeletal networks have also determined that a

composite network possesses structural properties that cannot be achieved by the

individual polymers alone [92]. Therefore, a higher level of complexity in model-

ing is attained by studying cytoskeletal interactions and the role and contribution of

individual cytoskeletal components in determining the overall structural response

of the cell. Classical concepts in polymer physics do not elucidate how all these

filaments, together with various proteins, give the cell its structural strength [113]

- the deformation results from the whole cell experiments have not been related to

the polymer properties of the cytoskeleton.

The rheology experiments yield a value for the structural strength of the

polymer networks, which is now discussed. Rheology can be performed by either a

stress relaxation or an oscillatory shear experiment. A stress relaxation experiment

consists of subjecting the polymer sample to a constant initial strain and observing

the stress relax as a function of time. From this data, the shear modulus of the

polymer as a function of time,
���, is obtained. In an oscillatory shear experiment,

the sample is subjected to a constant amplitude sinusoidal shear, which yields data

to calculate the complex shear modulus as a function of frequency, 
���. The

two shear moduli 
��� and 
��� are Fourier transforms of each other. Further,


��� can be decomposed into an elastic component 
� (storage modulus) and a
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Figure 1.7: Stress-strain characteristics for the different cytoskeletal elements
(actin, microtubules and vimentin) from rheology experiments, taken from [92].
Actin has a high shear modulus at low strains, while intermediate filaments play a
structural role only at much higher strains.

viscous component 
�� (loss modulus). Whether represented as a function of time

or frequency, the shear modulus
 of a polymer network is not constant. It displays

a viscoelastic behavior instead of a simple elastic behavior, which means that the

shear stress �����	 applied to the network is related to the shear strain 
����	 by the

relation
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However, a network may display a constant shear modulus (plateau shear modulus)

or elastic characteristics over a certain time or frequency range. An in vitro actin

network behaves elastically at low frequencies (between 0.02 and 100 Hz) and our

further studies that assume the actin network is elastic are carried out in such a

regime.

Rheology experiments have been performed on both uncrosslinked as well

as crosslinked actin networks [90], [91], [92], [93], [94], [98], [86], [164], [81],

[133], [193], [171], [236], [55], [114], [140], [141], [163], [204], [225], [227],

[229], [121], [54]; theories have also been developed to explain the structural prop-

erties of in vitro tightly entangled, uncrosslinked and crosslinked actin networks

[116], [128], [129], [113], [114]. Actin rheology experiments have yielded a plateau

shear modulus (low frequency behavior between 0.02 and 100 Hz) ranging from

0.1-0.2���� (or Pa) [133] to 0.2-2 Pa [209] for a 1 mg/ml uncrosslinked solution.

Joint rheology experiments on uncrosslinked networks from the labs of Janmey and

Pollard [224] have shown that a 1 mg/ml solution of freshly purified actin, 6 �� in

mean length, has a plateau modulus of � 0.5 Pa, as shown in Figure 1.8. The cor-

responding theoretical prediction for a 1 mg/ml uncrosslinked network, 4.25 �� in

length, is 0.1 Pa [129]. While both experiment and theory predict a high frequency

behavior (� 200 Hz) of 
��� � �������, they differ in magnitude by a factor of

4 [129], [114]. Rheology experiments have also been performed on an actin net-

work crosslinked with 	-actinin or filamin, and the modulus value measured is

higher than that of an actin network alone and depends strongly on the crosslinker
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concentration used (Table 1.3). Microtubule and intermediate filament rheology ex-

periments [165], [214] have been performed, although much less extensively than

actin rheology.

Figure 1.8: Rheology to find the shear modulus G’ of a freshly prepared actin so-
lution (black circle), taken from [224]. The rheological properties change with an
increase in the storage time of the actin solution (open circles and black squares)

Although, the rheology of in vitro polymer networks is the first step to un-

derstanding cellular mechanics, there are important differences between them and

in vivo networks. For example, the filaments in actin rheology are typically polydis-
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perse in length - between 2-70 �� [113], 1 mg/ml in concentration and immersed

in an artificial cytosol-like environment. The in vivo cortex, in contrast, is made

of short filaments - between 0.1 and 3 ��, 5-10 mg/ml in concentration and is a

transiently crosslinked, dynamic actin network. One example of dynamic behavior

observed in vivo is treadmilling - the process by which actin filaments polymerize

at the positive end and depolymerize at the negative end, at a constant rate. Also,

the reconstituted actin networks show a phase transition, at physiological concen-

trations, to the nematic phase, while the in vivo actin cortex of suspended cells

seems to be fairly isotropic. However, the extent of the plateau shear modulus (in

frequency space) and its transition to a frequency dependent behavior in the high

frequency internal dynamics regime are observed to be the same in in vitro actin net-

works, artificial cells (actin coated vesicles) [79] and eukaryotic cells (fibroblasts)

[117], which demonstrates the importance of actin in cytoskeletal response.

A way to study the strength of in vivo networks, although not quantitatively

precise, is the use of cytoskeletal drugs. Drugs that affect individual cytoskeletal

components are employed, to get an insight into each network’s contribution to

the cell’s structural response. The use of cytochalasins and latraculin, to disrupt the

actin network, results in a marked decrease in cell strength [162], [213], [230] which

again indicates that actin is a key player in cytoskeletal mechanics. Disrupting

microtubules with depolymerizing drugs seems to have a much smaller effect on

the structural response [162], [213]. Recently, an in vivo experimental estimate

for the shear modulus has been obtained in the perinuclear and lamellar regions of

COS7 epithelial cells, by analyzing the Brownian motion of endogenous particles

in these areas [230]. This study shows that the strength of the in vivo actin network

is necessary but not sufficient to explain lamellar mechanics.
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Since actin is considered to be the main player [187], [166], [35] out of the

three in vivo polymers, our cell model, described below, starts with incorporating

the actin network. However, we use models of increasing complexity, by starting

with actin and successively adding the other cytoskeletal polymers, whose strengths

are based on theoretical estimates. Our final model includes the actin cortex, the

rod-like microtubules and the nucleus.

1.4 Our Structural Model for a Eukaryotic Cell

Our structural model for a cell, motivated by our cell deformation technique

called the optical stretcher - explained in detail in Chapter 2, is developed to study

and utilize the differences in the cytoskeletal polymers of normal and cancer cells,

to detect malignant changes. Initially, a thick (hollow) shell model has been con-

structed for a cell with a predominant actin cortex. The spoke-like microtubules

are then included in our model, to observe how they strengthen the structure and

affect the structural response. Intermediate filaments play a role at large deforma-

tions [214] and have not been considered in our model. The nucleus of the cell, a

fairly spherical object of Young’s modulus � 1000 Pa [72], has also been finally

included in our structural model. A preliminary understanding of the strength of

stress fibers or actin bundles is gained by modeling an isotropic network of actin

filaments and bundles and estimating its strength. The contribution of different cy-

toskeletal filament interactions to structural strength has not been studied in this

thesis.

Our study of actin estimates the structural strength of the cortex by using

isotropic actin network models with physiologically relevant parameters, such as
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actin and crosslinker concentrations and filament length. This is an approximation

to the cortex, which can show local inhomogeneity and anisotropy, but since there

is no direct method to determine the cortex’s strength, this is our starting point to

quantify it. To find the contribution of actin to cell strength, the shear modulus of

cells is compared with our calculated shear modulus of a permanently crosslinked

actin network of cellular concentration. For a homogeneous, actin network through

the entire cell, the modulus obtained is much lower than the shear modulus of fi-

broblasts, epithelial cells, macrophages etc. (Table 1.2). Soft cells such as neu-

trophils have a much smaller shear modulus and may be explained by this calcu-

lation. However, if a high ‘effective’ concentration of both the in vivo actin and

crosslinking proteins is achieved due to localization into a cortex, the calculated

shear modulus of the network is high even for a transiently crosslinked network,

and can explain the observed in vivo moduli of fibroblasts and other cells. Thus,

our theoretical study shows that the spatial distribution and transient crosslinking

of actin crosslinking proteins enable cells to change the structural strength of actin

networks over a wide range, from fluid-like to solid behavior, without using capping

or severing proteins to depolymerize actin.

Our cell model has been used to investigate how the sensitivity of structural

parameters to changes in the cytoskeletal networks’ properties can be used as an in-

dicator of disease. The cytoskeleton is a dynamic material, whose architecture and

structural composition reflect cell function. The cytoskeleton of cancer cells indi-

cates their state of malignancy - cancer cells have a much lower actin content than

normal cells (� 35 percent lower) [66], [9], [185]. Polymer models of crosslinked

actin networks have shown that the network’s shear modulus has a nonlinear de-

pendence on the actin concentration (shear modulus � ������������������� [113].

By assuming the same concentration-modulus relation for the in vivo cortex, our
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model predicts that the deformation of the cell will show the same sensitive depen-

dence on the cortex’s actin concentration - hence, the structural response can be

used to distinguish non-cancerous and cancerous cells. There has been previous ex-

perimental evidence for differentiating cell types from the micropipette aspiration

of non-cancerous and cancerous white blood cells [144] as well as the micropipette

aspiration of a panel of nontransformed and malignantly transformed rat fibroblasts

[216]. The experiments and model by Paulitschke et al. [144] find that the elastic

rigidity of white blood cells in the resting phase from chronic myeloid leukemic pa-

tients is much lower than that from healthy donors. Ward et al. [216] report that the

structural parameters extracted from their transformed cell data are approximately

fifty percent lower than those extracted from their nontransformed cell data and

conclude that there exists a direct correlation between an increase in deformability

and the progression of tumorigenecity. Recent experiments have been performed

to deform normal and cancerous fibroblasts with the optical stretcher [169], [221]

and the viscoelastic parameters extracted from the data point to a difference in the

structural response of normal and cancerous fibroblasts. In summary, our model and

experiments suggest that the structural response of cancer cells is a good parameter

to characterize them.
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Table 1.1: Concentration of Key Actin Proteins in Certain Cells, taken from [151].
Only a part of the total actin in the cell is in the polymerized form due to the action
of sequestering proteins such as Thymosin �-4 and Profilin

Protein Acanth- Dictyo- Neutro- Xeno- Plate- S.
concentration amoeba stellium phil� pus let� cerevisiae

(�M) egg
extract

Polymerized 100 90 100 4 330 2
actin

Unpoly- 100 160 300 12 220 0.01
merized actin

Profilin 100 5 present
Thymosin �-4 absent absent 20 550 absent
ADF/Cofilin 20 �100 3 30 present

Arp2/3 2-4 present 10 9 present
Complex
Capping 1 1 1-2 5 1
protein

Gelsolin absent 5
	-actinin 4 3
Filamin absent 6

ABP 120 absent 6

� The data for the neutrophil and platelet cells are reported for the unactivated state.

2. The actin concentration in fibroblasts is estimated to be 8.4-11.3 mg/ml. This

range is obtained with a knowledge of the concentration of unpolymerized actin in

fibroblasts [135] and the ratio of unpolymerized to polymerized actin in these cells

[23].

19



Table 1.2: Cell Deformation Techniques, Structural Parameters Extracted and the
Model Adjunct. The structural parameters extracted depend on the experimental
technique, cell type and the model adjunct

Technique Cell Rheological Model Refe-
Type Constant Adjunct rence

AFM Fibroblast G’=300 Hertz [117]
G”=200

Fibroblast E=��� ��� Hertz [161]
stable edge

E�(3000-5000)
leading edge

Platelet E=��� ��� ��� Hertz [152]
Epithelial E=7500-9700 Hertz [109]

Normal cell

E=300-1000
Cancer cell

Endothelial E=1300-7200 Hertz [122]
Rat liver E=100-1000 Hertz [160]

Macrophage

1. E=Young’s Modulus, V= Viscosity, G= Shear Modulus, K1 = Bulk Modulus, K

= Bending modulus G’, G”= Storage and Loss modulus. 
 � 

������

, where � is

Poisson’s ratio.

2. E, G, G’ and G” are in ���� or Pa, and V is in Pa.s unless specified.
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Table 1.2 Continued

Technique Cell Rheological Model Refe-
Type Constant Adjunct rence

Micropipette Chondrocyte E=650 Finite [96]
Aspiration Element

Endothelial E=400 Infinite [194]
Homogeneous

Half Space
Platelet E=170 Endothelial [73]

V=1000 Type
Leukocyte E=0.75-23.8 3 Element [190]

Mechanical
Hair Cell E=���� ���� Elastic Shell [177]

Theory
Neutrophil G=36 ���� Liquid [110]

V=150 Ns/m Drop
Red blood G=� ���� mN/m Shell [37]

Cell K1=500 mN/m Theory
K = ����� Nm

Whole Cell Dictyostellium G’=200 Direct [34]
Rheometry G”=20 Measurement

Wild type
G’=100

No 	-actinin
Magnetic Fibroblast G=��� 4 Element [10]

Bead V = ��� Mechanical
Micro - Macrophage G=343 4 Element [11]

Rheometry V=210 Mechanical
Bead Fibroblast E=1700 Kelvin-Voigt [153]

Microrheology V=� ��	

1. E=Young’s Modulus, V= Viscosity, G= Shear Modulus, K1 = Bulk Modulus, K

= Bending modulus G’, G”= Storage and Loss modulus. 
 � 

������

, where � is

Poisson’s ratio.

2. E, G, G’ and G” are in ���� or Pa, and V is in Pa.s unless specified.
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Table 1.2 Continued

Technique Cell Rheological Model Refe-
Type Constant Adjunct rence

Laser Tracking Epithelial G’=72 Direct [230]
Microrheology Cell G”=38.2 Measurement

Microplates Fibroblast E=1000 3 Element [196]
V=��� Mechanical

Cell Poker Neutrophil G=118 Secant [232]
Lymphocyte G=291

Tensegrity Adhered E=18-92 Six Strut [87]
Model Cell Tensegrity [182]

Electric Field Red Blood G=� ���
 N/m Elastic Theory [97]
Deformation Cell V=� ���� Ns/m of Shells

Red Blood G=	�� ���
 N/m Elastic Theory [36]
Cell V=
�� ���� Ns/m of Shells

Optical Red Blood G=��
 ���	 N/m Thin Shell [68]
Stretcher Cell Theory
Optical Red Blood G=��� ���
 N/m Elastic Shell [80]
Tweezer Cell Theory

Red Blood G=� ���� N/m Elastic Shell [178]
Cell Theory

Flicker Red Blood K=� ����� Nm Flicker [189]
Spectroscopy Cell Eigenmode

Decomposition
Red Blood K=� ����� Nm Flicker [238]

Cell Eigenmode
Decomposition

Red Blood K=� ����� Nm Flicker [14]
Cell Eigenmode

Decomposition

1. E=Young’s Modulus, V= Viscosity, G= Shear Modulus, K1 = Bulk Modulus, K

= Bending modulus G’, G”= Storage and Loss modulus. 
 � 

������

, where � is

Poisson’s ratio.

2. E, G, G’ and G” are in ���� or Pa, and V is in Pa.s unless specified.
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Table 1.3: Rheological Data from Crosslinked Actin Networks. The rheological
constants measured depend on both the actin and crosslinker concentrations and
the filament length

Crosslinker(CL): Amoeba-	-actinin
���
�� Actin ��� Rheological Frequency Temp Refe-
�� Length �� Constant Hz �� rence

�� ����

15 0.1 
�=0.15 3 ���� 25 [208]

�=0.3 1.9 ���� 25

15 0.3 
�=10 ���� 25 [209]

�=30 1 25

24 1.6 G’=4.7-100 ���� � � 25 [137]
G”=0.06284-0.1987

24 20 1.8 
�=4 ��	 ���� � ��	 23 [140]
2.4 
�=6-20 ��	 ���� � ��	 23

Crosslinker(CL): Chicken-	-actinin

���
�� Actin ��� Rheological Frequency Temp Refe-
�� Length �� Constant Hz �� rence

�� ����

15 0.1 
�=5 3 ���� 25 [208]

�= 4.5 1.9 ���� 25

15 0.3 
�=3 ���� 25 [209]

�=3 1 25

15 0.03 
�=2-3 ���� � � 25 [225]

�=4-5 ���� � � 15

24 10-15 0.48 G(t)=2-10 t=0.01-10 sec 25 [229]
G(t)=4-10 t=0.1-100 sec 15

1-3 � strain

1. G(t)= Relaxational Shear Modulus, G’, G”=Storage and Loss modulus, 
� ��
�
�� �
����

2. 1 mg/ml of actin = 24 �M
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Table 1.3 continued

Crosslinker(CL) Actin Binding Protein (ABP)

���
�� Actin ��� Rheological Frequency Temp Refe-
�� Length �� Constant Hz �� rence

�� ����

96 1.5-2.5 0.768 G’=2.5 
 ���� [233]
38.4 0.28 G’=20 ���� � ��� 20 [137]

G”=0.7-5
10 5-6 0.033 G’=0.3 1 [64]

G”=1
0.1 G’=0.6 1

G”= 1.2
0.2 G’= 1.0 1

G”= 1.5

1. G(t)= Relaxational Shear Modulus, G’, G”=Storage and Loss modulus, 
� ��
�
�� �
����

2. 1 mg/ml of actin = 24 �M
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Chapter 2

Red Blood Cells in the Optical Stretcher

2.1 Models for Red Blood Cells

Our initial modeling and experimental work on cells has been carried out

on red blood cells, due to the simplicity of their structure. This chapter details

the experimental technique and accompanying model developed by us to study the

structural properties of red blood cells. Their mechanical properties have been char-

acterized extensively in the literature, both theoretically and experimentally. The

main experimental techniques that have been developed to study these properties

are osmotic swelling [48], fluid shear deformation [82], micropipette suction [156],

electric field deformation [36] and optical tweezers [80], [178].

All the above experiments involve applying a force or stress to the cell and

using the resulting deformation of the cell to obtain information on its structural

properties. The easiest method to apply stress on a red blood cell without any in-

strument is by osmotically swelling it in a hypotonic solution [48]. A balance is

then established between the osmotic pressure, elastic stresses in the cell mem-

brane and surface tension. Another way is to stretch cells by adhering them to the

surface of a flow channel and applying a fluid shear stress [82]. A simple and in-

genious instrument to deform cells, devised a long time ago but still in standard

use, is the micropipette [156]. Micropipette aspiration involves applying a pressure
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differential across the pipette, to suck a part of the cell into it. More recently, a

high frequency electric field has also be used to deform red blood cells [36]. A

much more recent development to study red blood cells is the optical tweezer [80],

[178]. The optical tweezer set up to stretch a red blood cell uses a double beam

trap (two focused laser beams) to hold and deform the cell by applying forces to

silica beads attached to its membrane. Finally, there is a technique to characterize

red blood cells structurally without the application of a stress, which is based on a

phenomenon detected in them quite some time ago [14]. Red blood cells exhibit a

flicker (brownian motion), whose measurement at a minimum of two points on the

cell membrane is correlated to calculate structural properties.

To analyze the data and extract structural parameters such as the shear mod-

ulus, these experiments have been accompanied by theoretical and modeling work.

Simple continuum models - where the cell is modeled as a continuum structure

as opposed to a discrete structure with various components - exist to interpret the

deformation of blood cells using the micropipette technique [37]; Evans [37] has

developed equations to describe the local deformation of the cell, as it gets aspi-

rated into the circular head of the pipette. The models used to extract structural

parameters from other techniques are discussed in detail in Appendix A.1.

Many of the deformation techniques discussed above are invasive - the very

act of measurement could change the observed response and structural parameters

extracted. For instance, both the micropipette and the tweezer apply high local

stresses on the cell to deform it, and this affects the linear modulus extracted from

data. Also, the widely accepted micropipette technique and the tweezer method,

which stretch a single cell at a time, are slow measurement processes. So, a new

method of deforming red blood cells and other cells has been developed by us, and
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a different accompanying model created to analyze the structural properties of a

cell subjected to a radiation force on the entire cell. Our set up called the optical

stretcher (Figure 2.1) uses two counter-propagating divergent laser beams to trap

and stretch individual suspended cells placed between them [68], [69]. This is a

non-invasive technique, where a large number of cells can be deformed per hour by

flowing them at a constant rate through a microfluidic channel placed between the

two laser beams. Also, due to the low energy density of the unfocused beams, cells

can be deformed without damage even at high laser powers (200 mW for red blood

cells). Hence, the stretcher is a versatile tool to study the mechanical properties of

cells.

2.2 Modeling Red Blood Cells in the Optical Stretcher

At first, the fact that a cell gets stretched, and not squeezed, in the optical

stretcher set up seems counter-intuitive. However, the phenomenon of stretching

can be understood once the cell surface stress is determined using geometrical op-

tics. This is done by employing the principle of momentum conservation and calcu-

lating the momentum transfer to the cell at each point on its surface, due to a light

ray hitting it from each of the two laser beams (the rays from the laser are consid-

ered parallel and only a single reflection at each surface is taken into account). This

calculation, shown in detail in Appendix A.2, proves that the total force on the cell

at every point is outward and normal to the surface [68], [69].

With the aim of validating the calculated stress profile, a model for red blood

cells deforming in the stretcher has been created. Red blood cells lack a complex

internal structure such as a 3-D cytoskeleton and a nucleus, unlike eukaryotic cells.
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Figure 2.1: Schematic figure of the optical stretcher set up, showing a cell being
deformed by two counter propagating and divergent laser beams

They have a simple structure of a homogeneous liquid interior surrounded by a

thin 2-D cytoskeletal network beneath the plasma membrane. This network, called

spectrin, is the main structural element of red blood cells. The ratio of the cell radius

to membrane thickness of a red blood cell is approximately 100. The red blood cells

are swollen osmotically into a perfect spherical shape for the experimental study.

Due to the above properties, the red blood cell has been modeled by us as a thin

shell (spherical membrane). The linear membrane theory of shells [124] applies

to a thin isotropic shell with Young’s modulus  , Poisson’s ratio � and thickness

to radius ratio smaller than �
��

. Also, in a thin shell, there are no normal stresses

and the bending forces are negligible compared to the stretching (membrane) forces

(Appendix A.3). With these assumptions, membrane theory can be used to calculate

the stresses and displacements in a spherical shell under a given state of loading.

Linear theory is used to analyze the structural response of red blood cells, as high

stress levels are not reached in the experiment (��


� ��� � ���� � ���� [102]).

The stress acting on the cell, deforming in the stretcher, is rotationally sym-

metric about the laser axis and is perpendicular to the surface of the cell. Figure
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Figure 2.2: Typical stress profile for a red blood cell in the stretcher (laser beams
along ! axis) when the half-width of the laser beam at the cell and the cell radius are
approximately equal. The calculated surface stress on the cell (arrows) is outward
and normal

2.2 shows a typical surface stress profile for a red blood cell. This polar plot is

the functional form closest to our calculation from ray optics - �	 � �� ���
����,

where �	 is the radial stress, ��, the peak stress along the z-axis and � is the po-

lar angle ([68], Figure 3). Figure 2.3 shows a blood cell deforming in the optical

stretcher beam geometry. The radial displacement resulting in the cell due to the

stress is measured as the laser power is increased. Cell stretching is observed using

a microscope; the images of the unstretched and stretched cell are stored in a com-

puter and the stretching of the membrane can be calculated using a fit program on

the images [68]. This experimental result for deformation is then compared with

the prediction from membrane theory, which is described below. Figure 2.4 is a

graphical depiction for � 50 cells of the correlation between the experimental and

calculated values of the relative radial displacement in the cell along the beam axis

and perpendicular to it, as a function of the peak stress (which is related to the laser

power). The deformations are plotted for  �" � 
�
 � ���	 ���� (Young’s mod-
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Figure 2.3: A red blood cell deforming in the optical stretcher beam geometry at
laser powers of 49, 78.5 and 112.5 mW (Courtesy J. Guck). The deformed cell
shape is elliptical

ulus.Thickness of membrane) and a Poisson’s ratio of 0.5 (the spectrin network is

assumed to be incompressible). The good correlation between experiment and the-

ory suggests that the red blood cell satisfies the assumptions of a thin shell and can

be modeled as a spherical membrane.

The problem of modeling red blood cells as a membrane and calculating

deformations, which can be compared to experiment, lends itself naturally to spher-

ical coordinates - any point on the spherical membrane is characterized by �, the

distance to the point from the center, �, the polar angle and #, the azimuthal angle

(Figure A.7, Appendix A.4.). In the case of an non-axisymmetric load on a spher-

ical membrane, there are three displacements: the radial displacement $ along the

radial direction, the meridional displacement � along the polar direction and the

hoop displacement %, along the azimuthal direction. However, for an axisymmetric

loading (about the z axis), only the meridional and radial displacements exist and

they depend on the polar angle � only. From membrane theory, � and $ are shown

to be as follows (Appendix A.4).

���� �
�

 "
��� � &����� (2.1)
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Figure 2.4: Correlation in radial displacement between experiment and theory of a
cell in the stretcher. The dark lines are the prediction for radial displacement from
linear membrane theory while the dots and squares are experimental data points
[68]. At high laser powers (350 mW), linear membrane theory does not explain the
data

$��� �
�

 "
��� ����� �� � ��

'�

�����
� � �	 � & ����� (2.2)

where

�� �

�
�

����
��� � ���� �	 �

� '�

�����
���� (2.3)
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�

�	 ���( ���( �( (2.4)

and �	 is the radial stress, �, the radius of the membrane, ", the shell thickness,  ,

Young’s modulus and � is the Poisson’s ratio.

For the stress distribution , �	 � �� ���
��, acting on a red blood cell trapped

in the stretcher,

���� �
����
 "

��
� � �

�
� ���� ����� (2.5)

and

$��� �
����
 "

��
� � �

�
� ��������

� � �

�
� (2.6)

The constant& in the equations for meridional and radial displacement is evaluated

by using the appropriate boundary conditions: � � � at � � �
�

for rotationally

symmetric loading. The equations for the radial and meridional deformation are

now complete. However, only the radial deformation observed experimentally is

compared with membrane theory calculations. The meridional displacement cannot

be measured experimentally in any easy way.

2.3 Shear Modulus Values Extracted from Different Red Blood
Cell Experiments

The shear modulus extracted for red blood cells from the optical stretcher

experiment is ��
 � ���	 N/m. The commonly used micropipette technique mea-
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sures shear moduli values in the range 	� 
 � ���
 N/m [83]. Two different exper-

iments on red blood cells with tweezers obtain very different values for modulus.

Henon et al. [80] report a value in the range of ������
 � ���
 N/m for both discotic

and osmotically-swollen cells, while Sleep et al. [178] report � � ���� N/m, which

is a factor of hundred higher than Henon’s value. Electric field deformation of cells

yields a shear modulus of � � ���
 N/m [97]. Possible reasons for the variation in

the values measured from different experiments are discussed in the next section.

2.4 Summary and Implications

This chapter has discussed modeling red blood cells in the optical stretcher

- as a thin shell. The thin shell model has been used to calibrate the stretcher and

extract the shear modulus of red blood cells from experiment. The shear modu-

lus extracted by us for red blood cells is compared with that from other experiments

and is especially close to the highest value extracted from micropipette experiments

[83], the accepted standard in cell deformation. However, there is a variation in the

modulus values extracted from different red blood cell experiments [5]. This may

be partly due to the different stress state of the cell in each experiment, from a high

local stress in the micropipette experiment and a point force in the tweezer experi-

ment to a more uniform stress in the optical stretcher experiment. Although a point

force is applied at the poles in the tweezer experiment by Henon et al. [80], their

data are taken at polar angle 90�, where the deformations are small and likely to be

in the linear regime. Hence, they suggest that the shear modulus from micropipette

experiments is higher than their value because high local stresses applied by the

micropipette could place the cell in the nonlinear regime. However, the modulus

from the tweezer experiment by Sleep et al. [178] is ten times higher than that

33



from micropipette experiments. This result is ascribed by them to the fact that the

micropipette can pull hard enough on the cell to decouple the red blood cell mem-

brane - a measurement of the modulus of the membrane can yield a very low value,

as compared to that of the spectrin polymer network below. From strain hardening

arguments and the stress state of the cell, it may be concluded that the modulus from

the stretcher experiment should be the lowest, followed by the tweezer and then the

micropipette. Since the data do not show this trend, simple arguments such as strain

hardening alone cannot be used to explain the variation in modulus extracted from

different experiments. Other factors such as dynamic cross-linking, complex non-

linearity, internal architecture adaptation, and additional internal ”support”, such

as from actomyosin complexes in network repair, may also play an important role

[26]. For instance, recent atomic force microscopy results for the force-extension

curve of a single spectrin chain reveal its complex nonlinear behavior - the curve

shows an axisymmetric saw tooth pattern, due to the periodic occurrence of a peak

and then a drop in the extension force as the chain elongates. These molecular ef-

fects, including the unfolding of spectrin and the role of the myosin motor proteins

in the spectrin cytoskeleton, are yet to be incorporated in a mechanical model for

red blood cell elasticity [26].

The next chapter deals with modeling eukaryotic cells which have a much

more complex internal cytoskeletal structure than red blood cells - they too exhibit

a variation in the modulus extracted from different experimental techniques for the

same cell type (Table 1.2). However, our experience gained in modeling red blood

cells is used to create as comprehensive and complete a model as possible for eu-

karyotic cells.
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Chapter 3

Thick Shell Model for a Eukaryotic Cell Deforming in
the Stretcher

3.1 Modeling Eukaryotic Cells

The cytoskeleton of eukaryotic cells spans their whole interior and deter-

mines their structural response. The aim of our study is to understand how the

cell’s structural response can be related to the microscopic polymer properties of

the cytoskeleton. This will enable a quantitative explanation of the stress applied

versus deformation curves observed from our cell deformation experiment.

A modeling framework has been created by us, in order to probe the struc-

tural properties of eukaryotic cells in depth. The previous chapter discusses a simple

thin shell or membrane model created by us for red blood cells [68], [69]. How-

ever, a different model is required to account for the extensive 3D cytoskeleton of

eukaryotic cells. So, this chapter discusses a more complex 3D thick shell contin-

uum mechanics model for spherical eukaryotic cells in suspension, suitable for cells

deformed in the optical stretcher set up. The present study is concerned with the

structural response of a cell only to an external stress (passive elasticity or viscoelas-

ticity) and not to any intracellularly generated force (active response) as discussed

in [196].
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The main assumption of this chapter is that the semiflexible actin polymer

network beneath the cell membrane plays a key role in determining the structural

response of the cell [187], [166], [35], [162], [213]. Therefore, our model is de-

signed for the deformation of a cell in which the actin cortex predominates. This

has been observed in fluorescence images of cancer cells where the actin cortex is

seen as a much thinner ring than in normal cells (Figure 3.1), while the interior

seems to be negligible. The actin cytoskeleton in cancer cells is altered [154], [12]

and the total actin content is lower than in normal cells [66], [9], [185], [99]. So,

these cells present us with an opportunity to study the actin network in isolation and

to estimate the effect of malignant changes on the structural response of cells. By

modeling the actin cortex as a shell, this chapter performs a parameter study, to un-

derstand the effect of a variation in shell thickness and in actin concentration of the

cortex on the deformation of the shell. Our shell model predicts that the structural

response of the cell amplifies changes in the actin concentration and is a sensitive

parameter to distinguish normal and cancerous cells.

3.2 Modeling a Eukaryotic Cell with a Predominant Actin Cor-
tex Deforming in the Stretcher

Our model for a eukaryotic cell in the stretcher combines the geometry of

the cell with a knowledge of polymer properties from theoretical and experimental

studies, to understand how the structure and properties of cellular polymer net-

works, at a molecular level, relate to macroscopic observable quantities. Therefore,

fundamental polymer quantities such as persistence length, mesh size and filament

length are related to the observed deformation.
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Figure 3.1: Fluorescence image of the actin cortex of a normal (left) and cancerous
fibroblast (right) (Courtesy J. Guck). Image size is 15 �m in both cases. The actin
cytoskeleton in cancer cells is altered and the total actin content is lower than in
normal cells

Initially, our model makes this connection by considering only one cy-

toskeletal polymer network - actin - and starts with a eukaryotic cell in which the

actin cortex is the main component and the interior is assumed negligible. A thick

shell (hollow inside) continuum model is used to model such a cell and to study its

deformation to an arbitrary surface stress. The thickness of the actin cortex varies

from five percent to twenty percent of the radius of the cell (as seen in fluorescence

images taken in our group).

While the present chapter considers only the actin cortex, the interior net-

work of microtubules and intermediate filaments is present in most cells and needs

to be considered in our further models (Chapter 5). Experimental evidence [78]

suggests that such cells can be modeled structurally as a three layered solid, with

the three layers being the outermost actin cortex, the interior network of micro-

tubules and intermediate filaments and finally the nucleus. The structural analysis
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of the thick shell model and the three layered solid model can be carried out by

reducing these problems to the deformation of a solid sphere and a spherical cavity,

both of which are analytically tractable. The radial deformation of a thick shell

(Figure B.1, Appendix B.1.) with a hollow interior is a superposition of the radial

displacement of a solid sphere (radius ��) and that of a spherical cavity (radius ��,

which is less than ��) [112]. The principle of superposition can be applied, since

linear elastic theory is used throughout the analysis. The radial deformation for any

axisymmetric stress on the shell is calculated by the method described in Appendix

B.1. and is of the form

���
��

�
)����* ��* �* ��



* (3.1)

where 
 is the shear modulus of the shell material and )� is the geometric factor

that arises from the spherical geometry of the cell and the effect of the applied stress

on it. So, )� depends on the shell thickness " (" � ��� ��, where �� and �� are the

inner and outer shell radii respectively), the Poisson’s ratio � of the shell material

and �, the polar angle where it is measured. Hence, the radial deformation is the

product of a factor that contains only the material property (
) and a factor that

contains only the geometry of the cell ()�). The exact deformation for a given

stress is obtained by evaluating the boundary conditions of the problem, namely the

radial and meridional stresses at the outer surface �� and inner surface �� of the shell

(equations shown in Appendix B.1.).

Before this section describes a parameter study of the radial deformation
�	�
	�

as a function of variables that the geometric factor )� and the shear modulus


depend on (such as the shell thickness �
	�

and the actin concentration � respectively),
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it discusses )� and the calculation of 
. To calculate the effect of cell geometry

()�) on the deformation of a thick shell, the surface stress acting on a cell needs

to be specified. Our calculations consider the stress acting on a cell in the optical

stretcher set up, which is rotationally symmetric about the laser axis and is perpen-

dicular to the surface of the cell [68]. The surface stress profile depends on the ratio

of �, the half width of the laser beam at the cell, to �, the radius of the cell ( �
�
).

In this chapter, a structural analysis has been performed for the functional forms

closest to our calculations from ray optics for two typical stress profiles, shown in

Figure 3.2 - �	 � �� ���
�� ��

�
� ���� and �	 � �� ������

��	 ��
�
� ����, where

�	 is the radial stress, �� is the peak stress along the ! (laser) axis and � is the

polar angle. In order to demonstrate the generality of our model, calculations are

also performed for a point load acting on the cell (example, tweezer experiment on

red blood cells by Henon et al. [80]) by using the stress profile �	 � �� ���
����,

shown in Figure 3.2. The functional form ����� is used to fit the stress profiles from

ray optics calculations, due to the assumed spherical geometry of the cell and the

applied axisymmetric stress. Given any of the above surface stress profiles, the geo-

metric factor )� of a shell can be calculated from equations B.2 to B.4 in Appendix

B.1. by setting 
 � �.

In order to calculate the structural response of an elastic, actin shell (hollow

inside) of variable thickness, subjected to the different external stresses, an under-

standing of the material property of the actin cortex (
) is also required. The cortex,

however, displays a time dependent behavior or a viscoelastic modulus 
���. The

elastic-viscoelastic correspondence principle allows us, though, to use the deforma-

tion solution of the elastic shell to calculate the structural response of a viscoelastic

shell (Appendix B.2). If $���, the time dependent radial displacement, is known

from the optical stretcher experiment, the shear modulus 
��� of the actin cortex
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can be extracted (Appendix B.3). Our approach here is the opposite - to estimate


��� from theoretical studies of the polymer physics of actin networks and then

predict $���. A knowledge of the linear viscoelastic properties of permanently

crosslinked [113] and uncrosslinked actin networks [128], [129] enables us to es-

timate 
��� and study the sensitivity of $��� to a variation in the concentration

(���" ��!� � �������������������) of the actin cortex. Applying isotropic actin

network models to the cortex is an approximation, but a starting point to quantify

the cortex’s strength. The implications that this assumption leads to regarding the

cortex’s strength are discussed in the next chapter.

The cortex’s strength is estimated using two models or theories, as limits

to the partially (transiently) crosslinked cortex: a tightly entangled permanently

crosslinked actin network [113] and an uncrosslinked actin network [128], [129].

The strength of a permanently crosslinked network is first considered here - it has

been determined that even a small number of crosslinks in this network leads to

a broad and high elastic plateau in the shear modulus 
���� at low frequencies.

In the plateau region (�100 Hz), the shear modulus (plateau modulus 
�) is time

independent and the network behaves exactly as an elastic solid does. Our analysis

below is concerned with the plateau regime. At frequencies greater than the plateau

region (at frequencies � 200 Hz) is the internal dynamics regime. In the internal

dynamics regime, the shear modulus is time dependent and obeys a scaling law. At

high frequencies (� 1000 Hz), the network’s structural behavior displays a viscous

or loss modulus that is much greater than the elastic or storage modulus.

The plateau modulus is calculated using parameters that closely match phys-

iological conditions. This polymer physics calculation shows from thermodynamic

and scaling laws that the plateau modulus depends on the concentration of the net-

41



8 9 10 11 12

400

600

800

1000

1200

Actin concentration, ρ (mg/ml)

lp = 21 µm

lp = 17 µm

lp = 19 µm

lp = 15 µm

lp = 13 µm

P
la

te
au

 s
he

ar
 m

od
ul

us
, G

p 
(N

/m
2)

Gp
  ~  ρ2.2 lp1.4

Figure 3.3: Plateau shear modulus, 
�, of a tightly entangled, crosslinked actin
network [113] as a function of the two parameters it depends on - persistence length,
��, and actin concentration �. Due to the nonlinear dependence of 
� on �, even a
small change in � results in a significant change in 
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work and the persistence length of actin filaments (see Figure 3.3) and is given by


� �
��� �

�
�

������
[113], where +� is Boltzmann’s constant and , is temperature. As-

suming 10 mg/ml concentration of crosslinked actin, persistence length �� = 17 ��

(typical in vivo values), entanglement length �� = 0.875 �� (calculated using �� and

�), 
� is � 670 ����.

With an estimate of 
� for an actin network (and a knowledge of )� for a

given stress profile), the radial displacement of a thick actin shell can now be deter-

mined for any axisymmetric stress - the deformation is of the form ��
�
	�

� �	�
	�

�

����
��

. A parameter study is, then, performed to observe the effect and relative im-

portance of cell geometry ()� which depends on the shell or cortex thickness and

the Poisson’s ratio of the shell material) and of material property (
� which depends

on the actin concentration and the persistence length) on the radial deformation, for

different stress profiles. Figures 3.4 and 3.5 depict the variation in the geometric

factor )� with shell thickness and Poisson’s ratio respectively - for a thin shell

and a ����� stress, )� depends inversely on shell thickness - )� � � �
	�
���, and

weakly on the Poisson’s ratio of the material - )� � �����	. The change in de-

formation with shell thickness is shown as a polar plot in Figure 3.6 for the same

surface stress, while Figures 3.7 and 3.8 depict the dependence of deformation on

the concentration and persistence length respectively. These calculations help us

understand the relative contributions of the concentration �, shell thickness �
	�

and

persistence length �� in determining the deformation of the shell. Our study shows

that, in the parameter range studied, changing the concentration by a factor of two

(�	�
	�

� �����) is equivalent to changing the shell thickness by a factor of four

(�	�
	�
� � �

	�
��� for a thin shell). Varying the persistence length affects the deforma-

tion as �����
� . However, the persistence length of actin has been measured accurately

in vitro (��=17 �m) and may not be significantly different in vivo. Hence, of the
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given parameters, the actin concentration is the most sensitive parameter control-

ling the deformation, and varying it appears to be an important way for a cell to

regulate its structural response. The range of concentration used is determined by

the conditions for the network to be in the tightly entangled regime, bounded by the

loosely entangled and nematic regimes [128], [27]. The effect of various applied

stresses on the cell is now analyzed in Figure 3.9, which shows the deformation

for the three stress profiles on the same plot, using typical values. For example, a

shell thickness of 5 percent, Poisson’s ratio 0.45, stress profile � � � ����� yields

a relative radial deformation of 1 percent along the laser axis. For the same total

force (on one hemisphere), the stress profile � � ������� yields a deformation of

6.5 percent.

At frequencies higher than the plateau regime (internal dynamics regime), if

the form of the time dependent shear modulus 
��� of a crosslinked actin network

is known, the elastic-viscoelastic correspondence principle can be used to find the

viscoelastic deformation of a cell with mainly the actin cortex (Appendix B.2).

An uncrosslinked actin network is our next model for the cortex. The

plateau modulus of such a network (between 0.02 and 100 Hz) is determined by

the curvature and orientational stresses in the deformed network and is given by


� �
�����
	��

� �����
	�

[128], [129], where � is the filament length. Figure 3.10 shows

the variation of the plateau modulus with persistence length and actin concentra-

tion. With the same parameters used for crosslinked networks, a plateau modulus

calculated for an uncrosslinked network is two magnitudes lower. For such a small

value of the plateau modulus, the linear thick shell theory predicts a very large de-

formation (30 percent relative deformation for a thick shell of 20 percent thickness

subjected to a stress � � �����). These large deformations are not observed in
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Figure 3.5: Geometric factor, )�, for the relative radial displacement along laser
(z) axis at � � � for � � 
 ������� as a function of relative shell thickness, �

	�
,

and Poisson’s ratio, �, for a thin shell. The geometric factor depends weakly on the
Poisson’s ratio of the material in the thin shell - )� � �

����	, and inversely on shell
thickness - )� � � �

	�
���.
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Figure 3.6: Relative radial displacement, �	�
	�

, magnified by 100/�� imposed on a
unit reference sphere, for � � �� ���

���� on a tightly entangled actin shell, as a
function of relative shell thickness, �

	�
and polar angle, �, for �� � 
, � � ����,

� � �� mg/ml and �� � �� ��. The radial displacement of an actin shell and shell
thickness are inversely related (�	�

	�
� � �

	�
��� for a thin shell).
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Figure 3.7: Relative radial displacement, �	�
	�

, magnified by 100/�� imposed on a
unit reference sphere, for � � �� ���

����, as a function of polar angle, � and a
tightly entangled, crosslinked actin concentration, �, for a persistence length, �� �
�� ��, �� � 
, �

	�
� ��� and � � ����. The radial displacement has a sensitive

dependence on actin concentration, �, in the shell and is given by �	�
	�
� �����.
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Figure 3.8: Relative radial displacement, �	�
	�

, magnified by 100/�� imposed on
a unit reference sphere, for � � �� ���

����, as a function of polar angle, � and
persistence length, ��, for a tightly entangled crosslinked actin concentration, � �
�� mg/ml, �� � 
, �

	�
� ��� and � � ����. The radial displacement is related to the

persistence length, ��, of actin filaments in the shell by �	�
	�
� ��

����.
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Figure 3.9: Relative radial displacement, �	�
	�

, magnified by 10 imposed on a unit
reference sphere, for � � �� ���

���� on a tightly entangled, crosslinked actin shell,
as a function of polar angle, �, for �

	�
� ���, � � ����, � � �� mg/ml and �� � ��

�m. For each stress profile, the total force on one hemisphere is the same, and the
effect of a local versus global stress on the actin shell can be observed.
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Figure 3.10: Plateau shear modulus,
�, of a tightly entangled, uncrosslinked actin
network [128], [129] as a function of persistence length, ��, and actin concentration
�. The modulus of the uncrosslinked network depends on actin concentration as

� � ���� - a much less sensitive dependence than that of a crosslinked network
(
� � �

���).

experiments which apply similar stresses on cells and suggest that an uncrosslinked

actin network has too low a shear modulus to describe cellular mechanics [24].

However, it is also to be noted that linear elasticity does not hold for such large

deformations.

3.3 Predictions of the Shell Model

Our study relating the structural response to the geometry of the cell as well

as polymer properties clearly indicates that the concentration of the actin network

51



(�	�
	�

� �����) plays a more important role than the thickness of the actin cortex

(�	�
	�

� � �
	�
��� for a thin shell), in determining the response. It has been observed

in cancer cells that both the thickness of the cortex and amount of actin are reduced

[106], [192], [12]. The total actin content in cancer cells can be 35 percent lower

than in their non-cancerous counterparts [66], [185], [9]. Our model predicts that

even a small change in the actin concentration of cells results in a large change in

their structural properties - hence, the structural response is a good parameter to

characterize normal and cancerous cells.

The above observation is in agreement with previous experimental studies

on cancerous and non-cancerous cells [144], [216]. The micropipette experiments

and work by Paulitschke et al. [144] compare the mechanical properties of white

blood cells from healthy and chronic myeloid leukemic patients. The structural pa-

rameter used in this study is elastic rigidity, defined as ����

�����
, where �' is the step

aspiration pressure, -�, the inner radius of the micropipette tip and .�, the aspi-

rated portion of the white blood cell after one minute. It is found that the elastic

rigidity of white blood cells in the resting phase from chronic myeloid leukemic

patients is much lower than that from healthy donors (� 60� decrease in rigidity

for lymphocytes and � 30� for granulocytes) . Ward et al. [216] have performed

experiments on a panel of nontransformed and malignantly transformed rat fibrob-

lasts and have analyzed their data using a standard solid model. The study reports

that the viscoelastic parameters extracted from their transformed cell data using a

standard solid viscoelastic model are � 50� percent lower than those extracted

from their nontransformed cell data and concludes that there exists a direct corre-

lation between an increase in deformability and the progression of tumorigenecity

(metastasis). Recent experiments have been performed to deform normal and can-

cerous fibroblasts with the optical stretcher [169], [221], as discussed further in
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Chapter 5. The data show distinct time regimes in the structural behavior - when

these cells are stretched for approximately a second, they behave elastically at short

time scales (�� 0.2 seconds) and viscoelastic beyond this time. The viscoelastic

parameters extracted from the data using a simple 3 element mechanical model as

well as a thick shell model (which incorporates cell geometry) point to a difference

in the structural response of normal and cancerous fibroblasts. In summary, our

model and these experiments suggest that the structural response of cancer cells

reflects the molecular changes in their actin cytoskeleton, such as the concentration

and distribution of actin, and can be used to distinguish normal and cancer cells.

3.4 Summary

Cell deformation experiments require an appropriate accompanying model

to extract and study structural properties. Here, a 3D thick shell model has been

created for a spherical eukaryotic cell, with mainly the actin cortex, for the optical

stretcher experiment. The approach followed has been to calculate the shear mod-

ulus from the polymer physics of isotropic actin networks and to then predict the

mechanical response of the shell to an arbitrary surface stress. Therefore, our model

relates microscopic quantities such as persistence length and mesh size of the actin

polymer network to macroscopic quantities such as the observed deformation. Our

structural analysis studies the individual effect of the geometry of the cell and the

constitutive properties of the actin polymer network on cell deformation. Applied

to cancer cells, it predicts that the sensitivity of the structural response to changes in

their actin cortex, particularly the actin concentration, can be used to differentiate

them from normal cells.

Our model indicates that the actin cortex may be able to explain the qua-
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sistatic structural properties of cells only under the tight localization of actin and

the actin crosslinking proteins into a thin shell (Chapter 4). Also, the simple model

does not capture features such as nonlinear structural responses, the withstanding

of much higher stresses by osmotically swollen cells and other effects. In order to

explain these effects, the structural contribution of microtubules and intermediate

filaments [214] in the interior of the cell needs to be considered. Also, the effect of

interactions among the various cytoskeletal polymers that are considered important,

for example the actin-microtubule interaction [176], may need to be included.
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Chapter 4

The Role of Isotropic Actin Networks in Cells

4.1 Isotropic Actin Networks

The actin cortex, along with its accessory proteins, has long known to be an

important contributor to cytoskeletal structural response [187], [166], [35], [162],

[213]. This in vivo (inside the cell) network’s ability to change its structural strength

by transitioning from a gel-like (solid) state to a sol-like (liquid) state is also crucial

for cell motility [92]. There are many possible mechanisms by which the dynamic

in vivo network can achieve this transition. One way is to depolymerize actin using

severing, fragmenting and capping proteins such as severin, gelsolin and CapZ. To

better understand these complex processes that govern the structural strength of the

in vivo actin network, there have been experimental and theoretical estimates of the

strength of in vitro actin networks. However, there is no direct estimate of the cor-

tex’s strength, using in vivo values. This chapter predicts the cortex’s strength using

theories of uncrosslinked, fully crosslinked and partially (transiently) crosslinked

actin networks with in vivo parameter values, as an approximation to the cortex and

a starting point to quantify its strength. This is done by calculating bounds for the

plateau shear modulus of the transiently crosslinked cortex, using the above theo-

ries. The cortex’s contribution to the structural strength of the whole cell is found

here by comparing the calculated plateau shear modulus values to the elastic shear

modulus commonly extracted from whole cell deformation experiments. With these

assumptions for the cortex, our study, using values from the acanthamoeba cell,
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shows that the calculated plateau shear modulus values of a partially crosslinked

actin network can vary from 1 Pa (viscous network) to 1 kPa (solid network) de-

pending on the spatial distribution of actin and the crosslinker protein - the modulus

value is close to that of cells under the condition of tight localization of the in vivo

actin into a cortex of 13 percent thickness and the crosslinking proteins into a cortex

of 5 percent thickness. Hence, our work reveals that transient crosslinking - a dif-

ferent mechanism which does not involve depolymerizing the actin network - can

also achieve the dynamic range of shear moduli observed in eukaryotic cells [3].

The actin cortex is a transiently - crosslinked polymer network and is com-

posed of short, rod-like actin filaments, ��� � � � 
�� �m in length (Table 4.1).

It lies just beneath the cell membrane, as a thick shell-like structure, whose radius

can vary from 5 to 20 percent of the cell radius. Actin is a semiflexible polymer,

whose persistence length (distance over which the filament can bend in two inde-

pendent directions) is 17 �m and whose concentration in various cells differs from

4 mg/ml to 14 mg/ml [151] (Table 4.2). Inside a single cell, the mesh size ( =

(concentration)����) of the crosslinked cortex increases from 50 nm at the edge of

the cell to 300 nm towards the end of the cortex. The transient crosslinking of

the short filaments in vivo is achieved by various crosslinking proteins such as 	-

actinin and filamin. Both 	-actinin and filamin form a 3D actin network, instead of

a bundle, due to their large size.

The first step towards understanding the structural strength of this in vivo

actin network (actin cortex) is to study the strength of an in vitro actin network

through rheology, where the network’s strength can be determined by a stress re-

laxation or oscillatory shear experiment. Rheology has been performed on both

uncrosslinked as well as crosslinked actin networks, to obtain values for structural
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strength. Theories have also been developed to understand the structural properties

of tightly entangled, uncrosslinked and crosslinked isotropic in vitro actin networks

[128], [129], [113]. The filaments in rheology are typically 2-70 �m in length and

1 mg/ml in concentration, immersed in an artificial cytosol-like environment. Joint

rheology experiments on uncrosslinked networks from the labs of Janmey and Pol-

lard [224] have shown that a 1 mg/ml solution of actin, 6 �m in mean length, has

a plateau shear modulus 
� (low frequency behavior between 0.02 and 100 Hz) of

0.5 Pa (�����. The corresponding theoretical prediction for 
� of a 1 mg/ml, 4.25

�m network is 0.1 Pa [128], [129]. While both experiment and theory predict a

high frequency dependent behavior (� 200 Hz) of 
��� � �������, they differ in

magnitude by a factor of 4 [129], [114]. Rheology experiments have also been per-

formed on actin networks crosslinked with 	-actinin or filamin, and the modulus

measured is higher than that of actin networks alone (Table 4.3). However, even for

a high concentration of actin and short filament lengths (96 �M actin concentration

and 1.5-2.5 �m filament length [233]), the shear modulus is only 2.5 Pa [233]. The

theoretical prediction of the strength of a 1 mg/ml crosslinked actin network is �5

Pa [113].

The extent of the plateau shear modulus (in frequency space) and its tran-

sition to a frequency dependent behavior in the high frequency internal dynamics

regime are observed to be the same in in vitro actin networks and in cells [117].

However, the homogeneous and isotropic networks of rheology differ from the tran-

siently crosslinked dynamic actin cortex, which can change its properties quickly.

Nevertheless, interpreting the results obtained by using isotropic actin network the-

ories for the cortex, with in vivo parameters, is a start to quantify the cortex’s struc-

tural strength, which is important for the following reasons. The ability of the cell

to perform its normal functions is closely interlinked to the state of its cytoskeleton.

57



Hence, cell functioning also reflects the state of the actin cortex and its strength via

crosslinking. For example, cells lacking actin crosslinker proteins are found to dis-

play impaired cortical stability and motility [24], and reduced strength [34]. Also,

tumorigenicity has been correlated to and controlled with the amount of actin [66]

and actin crosslinker protein [59] in the cell. Another in vivo structural property yet

to be understood is the actin cortex’s high modulus of 30,000 Pa at the leading edge

of motile cells such as fibroblasts, which is thirty times the cortex’s strength in the

cell body [118].

4.2 Quantifying the Strength of the Actin Cortex

Our structural study of the cortex considers three static actin networks as ap-

proximations to the cortex, and estimates the plateau shear modulus of each network

with in vivo values, to establish bounds for cortex strength. The three networks are:

1. a tightly entangled, uncrosslinked actin network 2. a tightly entangled, fully

crosslinked actin network and 3. a tightly entangled, partially crosslinked network

[4]. The partially crosslinked network is our most realistic approximation to the

cortex and our calculated results presented here for the numerical range of its shear

modulus use in vivo values of actin, 	-actinin concentrations and other parameters

from the acanthamoeba cell. Before studying the strengths of these tightly entan-

gled networks, the phase diagram of an actin network is discussed.

The phase diagram in Figure 4.1 depicts the existence of different phases

of actin depending on its concentration and filament length - the loosely entangled,

tightly entangled, nematic phases and the tightly entangled-nematic coexistence

phase. Our interest lies in the tightly entangled isotropic regime, since the actin

cortex is believed to be isotropic and not nematic [98]. Also, a loosely entangled
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Figure 4.1: Phase diagram for an actin network, showing the loosely entangled
regime, tightly entangled regime [128], nematic regime and coexistence regime of
tightly entangled and nematic phases [27]. The shaded region shows the range of
filament length possible for in vivo concentrations greater than 10 mg/ml
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network provides negligible structural strength. In the tightly entangled regime,

the filament length range becomes narrower and almost monodisperse as the actin

concentration increases till this phase disappears at � 27 mg/ml, as seen in the

shaded region for in vivo concentrations higher than 10 mg/ml. Our results for the

strength of the actin network assume that the filament length lies in the entangled

regime for the concentration considered. However, our numerical results which

require a specific actin filament length use 1 �m - in this case, it is assumed that

there is length control of filaments in vivo due to the action of severing and capping

proteins.

4.2.1 Uncrosslinked Actin Network

At frequencies � between 0.02 and 100 Hz, an uncrosslinked, tightly en-

tangled actin network has a low shear modulus (called plateau shear modulus), in-

dependent of time and behaves like a solid. At frequencies � � 200 Hz, the shear

modulus increases with a power law dependence ����. This chapter focuses only on

the elastic low frequency plateau regime. For an uncrosslinked network, the plateau

shear modulus is determined by the curvature and orientational stresses. It is given

by 
� � 
��	 ���� �
�	���
��� �
��	 ���

	��
� ��	 ���

	�
[129], where +� is Boltzmann’s

constant, , is temperature, �� is the concentration of the actin network, ��, the en-

tanglement length (�� � �����
���
� /

���
� , with �� the persistence length of actin and

/� its tube diameter) and �, the actin filament length (assumed 1 �m) (Figure 4.2).

Figure 4.2 shows that even at actin concentrations similar to those found in vivo -

for example at 4.16 mg/ml (100 �M), which is the concentration of polymerized

(filamentous) actin in both an acanthamoeba and neutrophil cell (Table 4.2) - an

uncrosslinked actin network has too low a plateau shear modulus to describe cel-

lular mechanics: as mentioned earlier, crosslinkers are crucial for cell stability and
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Figure 4.2: Plateau shear modulus, 
, for uncrosslinked [128], [129] and fully
crosslinked [113], tightly entangled actin networks (�� = 17 �m, � = 1 Hz), as a
function of filamentous actin concentration

motility [24].

4.2.2 Fully Crosslinked Actin Network

A fully crosslinked, tightly entangled actin network has a high plateau shear

modulus at low frequencies � 100 Hz). Here, 
� is given by 
� �
��� �

�
��	

��

, where

�! is the typical distance between crosslinks, which is �� in this case [113]. Since

�� � �
��	
� �

���	
� [128], [129], 
� ultimately depends only on the concentration of the

network and the persistence length of actin filaments as
� � +�, �
���
� �

���
� . Figure 4.2

shows the range of shear moduli calculated for a crosslinked network using in vivo

values for concentration and other parameters - 17 �m is used for the persistence
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length �� while the filament length is considered to be in the entangled regime for the

corresponding concentration (the formula does not have any explicit dependence on

filament length). At an in vivo concentration of 4.16 mg/ml, the shear modulus of

a crosslinked network is � 100 Pa - this value is compared in the following section

to the moduli extracted for various cells.

4.2.3 Partially Crosslinked Actin Network

The transition between an uncrosslinked and a fully crosslinked network is

a partially crosslinked, percolated network [61]. An uncrosslinked polymer net-

work, which is fluid-like, undergoes a transition to a solid-like network at a critical

crosslink density equal to the number of filaments in the system. Such a network is

a percolated network. For an in vivo actin concentration of 4.16 mg/ml, the number

density is ��	 ���� filaments/���. Therefore, the number of crosslinkers needed to

achieve the liquid-solid phase transition is ��	 ���� crosslinkers/���. According to

percolation theory, the ratio of crosslinkers to filaments needed for the transition to

occur is one [61]. Our calculations for the partially crosslinked network discussed

later in the section are based on the actin crosslinking theory developed by Spiros

et al. [180], which is valid above the percolation threshold.

Before obtaining a quantitative estimate of the structural strength of a par-

tially (transiently) crosslinked actin network, this study considers, in Figure 4.3,

the qualitative difference in the structural response of a fully crosslinked and a par-

tially crosslinked actin network of the same concentration - Figure 4.3 a) shows the

relaxational shear modulus 
��� versus time � and Figure 4.3 b) shows the shear

modulus 
�$� versus frequency $ of the two networks. At very short time scales,

less than the average binding time of the crosslinker, a fully crosslinked and par-
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Figure 4.3: Qualitative behavior of the shear modulus of a fully and a partially (tran-
siently) crosslinked, tightly entangled actin network as a function of time (Figure
a) and a function of frequency (Figure b)

tially crosslinked network show the same structural behavior with a high plateau

modulus after an initial relaxation. However, even beyond the binding time of the

crosslinker, the fully crosslinked network cannot relax its stress, since its crosslinks

are permanent, while the partially crosslinked network begins to display the tran-

sient nature of its crosslinks. It, then, behaves structurally like an uncrosslinked

network and displays another plateau, due to the presence of entanglements. This

plateau has a low modulus value and is difficult to measure experimentally. At time

scales beyond the reptation time 0� (the time it takes for a filament to diffuse a

distance equal to its own length), the partially crosslinked network behaves like a

fluid. Figure 4.3 b) shows the structural behavior of the two networks in frequency

space.

In order to finally quantify or calculate the strength of a partially (tran-

siently) crosslinked actin network in acanthamoeba, a tightly entangled, crosslinked

actin network and the number of crosslinking points need to be considered now in

63



greater detail. Firstly, from the phase diagram of Figure 4.1, if an actin network

whose filaments are 1 �m in length is to be tightly entangled, its concentration

must lie between 7.2 and 12 mg/ml. So, for an in vivo network of 4.16 mg/ml to

be tightly entangled, it has to be concentrated in a much smaller volume of the cell

(into the cortex), to achieve an effective concentration between 7.2 and 12 mg/ml

(��"" � ��	 ��
���#��

, where ��� �� is the original concentration and 1 is the ratio of the

inner radius to outer radius of the shell in which the actin network is concentrated).

The plateau modulus of the crosslinked network increases, in this case, by a factor

of � �
���#��

����.

Secondly, a rough estimate of the number of crosslinking proteins per fil-

ament can be computed from experimental data on both in vivo crosslinker and

actin concentrations. This experimental estimate can be compared with the maxi-

mum number of crosslinks per filament from theory [129], which gives us an idea

of whether there is enough crosslinker protein in vivo to achieve the maximum

crosslinking predicted theoretically. From theory, the number of entanglement

points per filament is Round[l/��] + 1. The number of entanglement points cal-

culated per filament of length 1 �m for an actin concentration of 7.2 - 12 mg/ml is

two. Therefore, the maximum number of crosslinking points per filament is two for

this concentration range. The experimental estimate for the number of crosslinkers

per filament is obtained in Table 4.2 for acanthamoeba and other cells by dividing

the total crosslinker number density in vivo by the total number density of actin fila-

ments in vivo (1 mg/ml = 3.8 ���� actin filaments/���). To account for the fact that

two filaments are connected by one crosslinker, the calculated crosslinker/filament

ratio can be multiplied by two. The calculation does not consider the probability

for a specific crosslinker to be in the right position and orientation, to connect two

filaments. This estimate is, therefore, an upper bound. The estimate also assumes
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that all the crosslinker protein present is bound, which is not true.

So, the number of bound crosslinkers per filament is now calculated, using

the following formula in terms of the number densities of actin and the crosslinker

[180].

2�%�� ��������+��

����� �����
�

	

3$ � 	
(4.1)

where 	 is the number density of free crosslinker and 3$, the equilibrium disso-

ciation constant of the crosslinker is ��
��

, where +� is the dissociation rate constant

and +� is the association rate constant of the crosslinker. Using the number den-

sity of actin and 	-actinin in acanthamoeba and3$ for acanthamoeba 	-actinin, an

estimate of �1 is obtained for the ratio of bound crosslinker to polymerized actin.

This value suggests that unless the in vivo actin crosslinking protein is localized in

the cell, there is not enough crosslinker protein to achieve maximum crosslinking

(from theory).

However, following Spiros et al. [180], a further improvement in the cal-

culation can be made, by estimating the amount of actin in the filamentous form

and in the network form [3]. This allows us not only to calculate the ratio of bound

crosslinker to networked actin, but also to finally estimate the plateau modulus of

a partially crosslinked network (only the amount of networked actin contributes to

strength). The following calculation to obtain � , the number density of actin in

network form, takes into consideration, in a simple manner, the position and ori-

entation allowed for two filaments to connect, and solves the following coupled

equations numerically.
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����� � ��, ��!%)
� � �!%Æ)� � 4��� (4.2)

�)��� � ������ (4.3)

where � is the number density of actin in network form, while ) is the number

density in filamentous form, , is the total actin density, 4� � &
'��

, 4 is the disso-

ciation constant, �� � ��(
)�

, Æ is a constant = 0.25 and �!% is the volume fraction

of crosslinkers in the right position and orientation to bind. Note that both F*(K

convolved with N) and N*(F convolved with K), a measure of crosslinkers in the

right position and orientation to bind [180], are written by us as �!%�) . The di-

mensionless diffusion coefficients of translation and rotation 
� and 
� in Spiros

et al. have been estimated by us with in vivo parameters and are neglected, since


� � ����. Using data from acanthamoeba, Figure 4.4 depicts the volume fraction

of networked actin (�* � *
�

) for different values of �!% and actin concentration,

�� and crosslinker concentration ���. The data from Figure 4.4 can be used to find

the ratio of bound crosslinker to networked actin, which is a factor �
��

higher than

the ratio of bound crosslinker to total polymerized actin. �* can also be used to

estimate the modulus, as discussed below.

The objective of the above calculations is to understand actin’s contribution

to structural strength quantitatively. An upper bound for the cortex’s strength is the

plateau shear modulus of a fully crosslinked network (
� �
��� �

�
��	

��

, where �!, the

typical length between crosslinks, is ��), which can be compared to the shear mod-

ulus of cells. Table 4.4 shows the shear modulus of a typical cell (fibroblast, which
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has a thick actin cortex) as well as the modulus of an epithelial cell, macrophage and

neutrophil. For 4.16 mg/ml of polymerized actin as in the acanthameoba and neu-

trophil cells, the value obtained from a fully crosslinked actin network distributed

homogeneously throughout the cell is � 100 Pa. While the shear modulus of an

acanthamoeba cell does not seem to be reported in literature, our calculated value

is close to the shear modulus of a neutrophil of 118 Pa [232]. 100 Pa is, however,

much lower than the shear modulus extracted from cell deformation experiments

on fibroblasts. Furthermore, if a partially crosslinked network is considered, the

fraction of networked actin can be used to estimate the effective distance �! be-

tween crosslinks, which increases by a factor of �* (�! � ��
��

). The modulus

of the partially crosslinked network, consequently, decreases from that of a fully

crosslinked network, since 
�
��	
����+ �	��������$ � ��* �


�
"���+ �	��������$, as shown in

Figure 4.5. If both the effective concentration (��"" � ��	 ��
���#��

, due to the spatial dis-

tribution of actin into a cortex) and the fraction of networked actin are considered,

then 
�
��	
����+ �	��������$ � � �

��#�
���� � ��* � 
�

"���+ �	��������$ (in this case, there is

a change in the modulus from the �� dependence as well as from �!). Figure 4.5

shows that a value of 1000 Pa, close to that extracted for fibroblasts, is reached in

acanthamoeba only when all the in vivo actin is localized into an actin cortex of 13

percent thickness and the crosslinking proteins into a cortex of 5 percent thickness.

Finally, the time scale of transient crosslinking of 	-actinin � +��
� (where

+� is the dissociation rate constant) is compared in Table 4.5 to other processes

mentioned earlier that can depolymerize the actin network and change its structural

properties, namely the association of an actin filament with gelsolin, capping pro-

tein or ADF/Cofilin. The dissociation rate +� is obtained from in vitro networks and

is assumed to be the same in vivo. Beyond the time scale, +��
� , the network behaves

like an uncrosslinked network (Xu et al., 2000). For 	-actinin, +��
� at 25 degrees is
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0.37 secs. The time scales of association of an actin filament with gelsolin, capping

protein or ADF/Cofilin can be found approximately by calculating �
�������

and are

0.4, 0.286 and 0.27 secs for gelsolin capping protein, ADF/cofilin respectively. As

can be seen, transient crosslinking occurs on the same time scale as these other phe-

nomena. Since it is just as fast, it may be an alternative or competing mechanism

which can control the dynamic structural response of cells - it is likely that the cell

has redundant pathways or processes to restructure its actin cytoskeleton.

4.3 Results and Discussion

In this work, our knowledge of isotropic actin network models has been

applied to cells, to study their implications to cell strength. Our theoretical calcu-

lations, with in vivo parameter values, suggest that an uncrosslinked network has

too low a plateau shear modulus to explain cellular mechanics. Our calculated

plateau shear modulus value for a homogeneous, fully crosslinked actin network

of 4.16 mg/ml, as found in acanthamoeba and neutrophils, may be able to explain

the modulus value of a neutrophil. However, this calculation for a fully crosslinked

network, while already an upper bound, is much lower than the shear modulus of

cells such as fibroblasts, epithelial cells and macrophages - experimental results

from rheology on in vitro crosslinked actin networks, even at a high actin concen-

tration and short lengths (96 �M, 1.5-2.5 �m), also yield shear modulus values

much lower than those of cells. When the spatial distribution of the actin network

into a cortex or shell is considered though (which results in a high effective concen-

tration of the actin and crosslinker protein), the theoretical values from both fully

and partially crosslinked actin networks are closer to the shear modulus of cells.

Thus, our calculations show that the spatial distribution and transient crosslinking

of actin and crosslinking proteins enable cells to change the elastic strength of actin
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networks over a wide range (1 Pa to 1 kPa), from a fluid-like to solid behavior, with-

out using any capping or severing proteins like severin or gelsolin to depolymerize

actin. Our results are supported by experiments on gelsolin-null fibroblasts [220]

and severin-lacking dictyostelium mutants [6] that show cell motility and other nor-

mal cell functions. However, the range of values obtained still cannot explain the

30,000 Pa measured at the leading edge of motile fibroblasts [118]. This observa-

tion and our calculations are in agreement with findings by Yamada et al. [230],

that actin alone is unable to explain lamellar mechanics.

4.4 Summary

Out of the three cytoskeletal elements, actin is considered to be the most

important contributor to cellular mechanics [187], [164], [35]. Experiments with

cytoskeletal poisons which selectively kill a certain in vivo polymer network lend

evidence that depolymerizing the actin cytoskeleton leads to a drastic reduction in

the structural strength of the cell, while disrupting the microtubule network does

not alter it significantly [162], [213]. Also, the viscoelastic response of in vitro

actin networks, artificial cells [79] and eukaryotic cells (fibroblasts) [117] exhibits

similar characteristics in the plateau regime and in the transition to the internal dy-

namics regime. To quantitatively understand the role and contribution of the in vivo

actin network to cell strength, this study uses isotropic actin network models with

in vivo values to calculate actin’s shear modulus. Our calculations show that the

localization and reconfiguration of actin and actin crosslinking proteins, along with

transient crosslinking, can explain the wide range of shear moduli and viscoelas-

tic behavior witnessed in eukaryotic cells - actin does play an important role in

cell dynamics. However, the high shear moduli measurements at the leading edge

or lamellipodium of fibroblasts cannot be explained by actin alone [118] and the
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effect of other structural elements, from stress fibers in the lamellipodium to micro-

tubules and intermediate filaments in the interior, on the cell’s dynamic response

needs to be investigated. Actin’s contribution is undoubtedly crucial but may still

not be sufficient to explain all of cellular mechanics.
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Table 4.1: Actin Filament Length in Different Cells

Cell Type In vivo Actin Filament Refe-
Length (�m) rence

Resting Human 2000 actin filaments [77]
Platelet 1 �m length

Dictyostelium 0.2 �m mean length [148]
Discoideum

71 � F-actin mass and
96 � pointed ends

0.22 �m mean length
14 � F-actin mass and

3 � filaments
1.3 �m mean length

15 � F-actin mass and
0.3 � filaments

13 �m mean length
Polymorpho- 4 ��	 actin filaments [17]

nuclear 0.27 �m mean length
Leukocytes

Bovine Arterial 3 �m for confluent cells [125]
Endothelial Cells 0.5 �m for subconfluent cells

Melanophores 0.2 - 3 �m [159]
Macrophages 0.1 �m [75]

Cells � 1 �m [188]
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Table 4.2: Concentrations of Actin and Actin Crosslinking Proteins in Certain Cells

Cell ���
�� �����
�� �,�
���� �,	���� �,-� Cross- Refe-
�M �M �M �M �M linking rence

sites
per

filament
Human 120� 1 2 [24]

Melanoma
Acanth- 200 100 4 2-4 - 7 [151]
amoeba
Dictyo- 250 90 3 6� 19 [151]
stellium
Platelet 550 330 9 6 3 [151]
Neutro- 400 100 10 [151]

phil
Macro- 300� 43 [186]
phage

� The actin and ABP(280) concentrations in the melanoma cell [24] is reported not
in absolute values but as �,-� :���
�� = 1:120
� The total actin concentration in the macrophage [186] is reported in absolute val-
ues and the ratio of �,-� :���
�� = 1:7 is also included.
� Dictyostellium has only ABP(120) [151].
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Table 4.3: Rheological Data from Crosslinked Actin Networks. The rheological
constants measured depend on both the actin and crosslinker concentrations and
actin filament length

Crosslinker(CL): Amoeba-	-actinin

���
�� Actin ��� Rheological Frequency Temp Refe-
�� Length �� Constant Hz �� rence

�� ����

15 0.1 
�=0.15 3 ���� 25 [208]

�=0.3 1.9 ���� 25

15 0.3 
�=10 ���� 25 [209]

�=30 1 25

24 1.6 G’=4.7-100 ���� � � 25 [137]
G”=0.06284-0.1987

24 20 1.8 
�=4 ��	 ���� � ��	 23 [140]
2.4 
�=6-20 ��	 ���� � ��	 23

Crosslinker(CL): Chicken-	-actinin

���
�� Actin ��� Rheological Frequency Temp Refe-
�� Length �� Constant Hz �� rence

�� ����

15 0.1 
�=5 3 ���� 25 [208]

�= 4.5 1.9 ���� 25

15 0.3 
�=3 ���� 25 [209]

�=3 1 25

15 0.03 
�=2-3 ���� � � 25 [225]

�=4-5 ���� � � 15

24 10-15 0.48 G(t)=2-10 t=0.01-10 sec 25 [229]
G(t)=4-10 t=0.1-100 sec 15

1-3 � strain

1. G(t)= Relaxational Shear Modulus, G’, G”=Storage and Loss modulus, 
� ��
�
�� �
����

2. 1 mg/ml of actin = 24 �M
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Table 4.3 continued

Crosslinker(CL) Actin Binding Protein (ABP)

���
�� Actin ��� Rheological Frequency Temp Refe-
�� Length �� Constant Hz �� rence

�� ����

96 1.5-2.5 0.768 G’=2.5 
 ���� [233]
38.4 0.28 G’=20 ���� � ��� 20 [137]

G”=0.7-5
10 5-6 0.033 G’=0.3 1 [64]

G”=1
0.1 G’=0.6 1

G”= 1.2
0.2 G’= 1.0 1

G”= 1.5

1. G(t)= Relaxational Shear Modulus, G’, G”=Storage and Loss modulus, 
� ��
�
�� �
����

2. 1 mg/ml of actin = 24 �M
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Table 4.4: Cell Deformation Techniques, Shear Modulus Extracted and the Model
Adjunct. The effective shear modulus extracted for a cell depends on the experi-
mental technique, cell type and the model adjunct

Whole In vivo Measurement Model Refe-
Cell Structural Technique Adjunct rence

Constant
Fibroblast G’=300 AFM Modified [117]

G”=200 Hertz
G=� ��� AFM Hertz [161]

stable edge

G �(1000-1666)
leading edge

G=566 Bead Kelvin- [153]
V=4 ��	 Microrheology Voigt
G=��� Bead 4 Element [10]
V=��� Microrheology Mechanical

G=333.33 Microplates 3 Element [196]
V=��� Mechanical

Epithelial G=2500-3233 AFM Hertz [109]
Normal cell

G=100-333
Cancer cell

Macrophage G=343 Magnetic 4 Element [11]
V=210 Bead Micro- Mechanical

rheometry
Neutrophil G=118 Cell poker Secant [232]

1. G=shear modulus in Pa , G’,G”=storage and loss modulus in Pa and V=viscosity
in Pa.s

2. The above calculations use a Poisson’s ratio of 0.5 to convert from Young’s
modulus to shear modulus.
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Table 4.5: Rate Constants and Time Constants of Key Actin Processes. The time
scale associated with transient crosslinking is � �

��
, while that associated with

severing or capping is � �
�����������

Protein Associ- Dissoci- 3$ �
��
��

��	�
��� +� � ��	�
��� Refe-
ation ation Acanth rence

Rate +� Rate +� amoeba
������� ��� �M ���

F-Actin 1.3 (p)� 0.8 (p) 0.61 �M 100 [150]
11.6 (b)� 1.4 (b) 0.12 �M 100

Capping 3.5 3 ���� � ��� nM 1.0 3.5 [168]
Protein
CapZ
ADF +�=0.037 0.035 20 3.7 [157]

(Cofilin) �������

+�=130
�������

Gelsolin 2.5 1.7 ���� 0.07 nM 1.0 2.5 [173]
excess (imag.)
EGTA�

10.0 ���� 0.01 nM 1.0 10.0
presence (imag.)
of ����

	-actinin 1.0 2.7 2.7 �M 4.0 [209]
Filamin 1.3 0.6 0.46 �M 1.0 [63]

(or ABP) (imag.)
Arp 2/3 1-10 0.5-5 0.5 �M 2-4 [134]

� p - pointed end of actin filament and b - barbed end of actin filament
� EGTA condition - 1 mM MgCl�, 100 mM KCl, pH 7.5, 37 degrees C
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Chapter 5

Models for a Eukaryotic Cell in the Stretcher

5.1 Introduction

Chapter 3 discusses a linear thick shell (hollow interior) continuum model

for a cell with a predominant actin cortex, assuming that actin is the main and only

contributor to the structural response of the cell. However, the exact contribution

of an isotropic actin network to cell strength and the conditions under which it

can explain the cell’s entire strength are described quantitatively in Chapter 4. Al-

though Chapter 4 acknowledges the dynamical structural behavior of an isotropic

actin network and its important role in cell strength, an actin network is not the only

structural element in a cell. Hence, this chapter discusses the continuum and finite

element (FEM) structural models created by us for a cell deforming in the stretcher,

in order to incorporate the interior assembly of microtubules, and the nucleus and

study their contribution to the structural response. Our continuum model also in-

cludes to first order the interaction between the actin cortex and the microtubules,

by varying the boundary conditions.

All the above analytical and FEM models for a cell in the stretcher are linear

elastic models. If actin is assumed to play a key role in the structural response of

cells, a linear model is valid as long as the laser power used in the optical stretcher

experiment does not stretch the cell beyond actin’s linear response. In vitro rheolog-

ical studies on actin filaments have shown that the material nonlinear properties of
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actin (strain hardening) become important at strains greater than 10 percent [141].

An in vivo actin network may behave non-linearly beyond a different value of strain,

but for large deformations, a nonlinear model which takes into account both the ma-

terial nonlinearity and the geometric nonlinearity is required. So, this chapter also

briefly explores how a nonlinear FEM model for a cell with a predominant actin

cortex might be created.

Finally, recent viscoelastic data obtained by deforming normal as well as

cancerous fibroblasts in the optical stretcher are analyzed by us with a three-element

mechanical model. The structural parameters extracted are then used to gain an

understanding of the polymer properties of the cytoskeleton - in particular, the actin

cytoskeleton. The analysis of structural parameters from the mechanical model

can also be combined with the deformation response of our analytical or FEM cell

models, to incorporate the geometry of the cell. This permits an extraction of elastic

and viscous parameters from experimental data, which include the effect of cell

geometry.

5.2 Modeling a Eukaryotic Cell in the Optical Stretcher

5.2.1 Linear Elastic Analytical Model

Our study develops a model for a eukaryotic cell, which takes into account

not just the actin cortex but other structural elements in the cell as well, to observe

their role in cellular mechanics. Experimental evidence from Heidemann et al. [78]

suggests that one possible structural model for the whole cell is a three-layered

solid, with the three layers being the outer actin cortex, the interior network of mi-

crotubules and intermediate filaments and finally the nucleus (Figure 5.1). Such a
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structural model, thus, assigns effective, homogeneous structural properties to each

of the continuum layers: the actin cortex, the interior polymer network and the nu-

cleus. As in the thick shell model, our continuum cell model (three-layered sphere

model) calculations yield deformations for any rotationally symmetric stress acting

on a cell in the stretcher set up. However, the calculations and results presented

here are for only one typical stretcher-induced stress profile on the cell surface -

� � �� ���
�� (Figure 2.2).

nucleus

interior network

actin cortex

Figure 5.1: A three layered structural model of a eukaryotic cell, with the three
layers being the actin cortex, the interior assembly of microtubules and finally the
nucleus

The analytical techniques used to obtain the deformation of this model cell

to such a stress are very similar to that of the thick hollow shell [112], where the de-

formation is calculated using legendre polynomials as the basis and using the princi-

ple of linear superposition too. Here, each layer can be treated individually as a ring

(the cortex and the interior network layers) or as a sphere (nucleus), both of which

can be solved analytically. The complexity of this problem lies in dealing with

multiple boundary conditions. For each of the three layers, the boundary conditions

must be satisfied everywhere on the interface. At each interface, no-slip boundary
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conditions are used if the two layers are rigidly attached (non-penetrating). The no-

slip conditions involve matching the radial and meridional displacements ($ and �)

and also the radial and meridional stresses (�	 and �	�) on the boundary.

However, in order to create a continuum model which incorporates to first

order the interaction between the actin cortex and the interior assembly of micro-

tubules [74], slip boundary conditions, written as follows, can be used.

$� = $�

��	�� = ��	��

��	��� = ��	���

��	��� = 0,

where 1 and 2 are two surfaces with a common boundary.

More realistically, the mixed boundary conditions (combination of slip and

no-slip conditions) given below are used in the problem, to incorporate the actin-

microtubule interaction.

	��	�� � ��$� � $��

	��	��� � ���� � ���

��	�� � ��	��

��	��� � ��	���*

where the parameters 	 and � can be adjusted anywhere between 0 and 1 to obtain

a boundary condition that varies from no-slip to slip.

Numerical values for the radial deformation of our whole cell continuum

model are now calculated for both the no-slip and the mixed boundary conditions
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by using representative values. The value used for the Young’s modulus of the

actin cortex is 500 Pa, while that used for the microtubules is 50000 Pa. Interme-

diate filaments are believed to play a role in the structural response only at large

deformations [214] and are not considered in our structural model. From Guilak et

al.’s work [72], the Young’s modulus of the nucleus is taken to be 1000 Pa. The

Poisson’s ratio used for all the layers is 0.45. The actin cortex is assumed to be

twenty percent of the cell radius, the interior network fifty percent and the nucleus

thirty percent of the cell radius of 10 �m. With the above parameters and a stress

of � � ����� on the cell (�� � �), the radial deformation obtained from the model

at the outer layer, along the laser axis (� � �) is � 4.35 nm with no-slip boundary

conditions and � 80 nm with mixed boundary conditions (	=1/2, �=1/2 for the

actin-microtubule interface), which shows that the boundary conditions used are

important in determining the deformation.

5.2.2 Linear Elastic Finite Element Model

To incorporate cytoskeletal architecture, numerical FEM models for a cell

have also been created by us, using the commercial FEM package ABAQUS [1].

An ABAQUS program involves specifying the geometry of the model (mesh), the

structural properties of the model’s material, boundary conditions and the distribu-

tion of the applied load. The output of the model that interests us is the displacement

observed for the prescribed stress.

The linear elastic FEM models created by us include a thick shell model to

study the actin cortex alone, a layered thick shell model (with each layer having

slightly different structural properties) for the actin cortex, a thick shell and rods
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model for the cortex and microtubules respectively and finally a model for the cor-

tex, microtubules and nucleus. All our FEM models which include microtubules

enable us to model the structure of the microtubules, as hollow rods, more realisti-

cally than in the continuum model. Also, an analytical model for a thick shell with

several rods does not seem easily solvable and a numerical FEM model seems to

be required. For computational ease, our whole cell model consists of only half

a sphere, with a thick shell for the actin cortex, a small nucleus in the center and

rod-like microtubules that emanate from just above the nucleus to the inner surface

of the actin cortex, as shown in Figure 5.2.

Before discussing our whole cell model, our thick shell FEM model is ex-

plained (Appendix D.2 contains our input file - named vtshell.inp). The shell is con-

structed using several twenty-node brick elements (ABAQUS element C3D20R).

The thickness of the shell can be changed by varying the number of layers (of brick

elements) and by varying the size of the brick elements used to construct the shell.

The model consists of only one eighth of a shell, due to the axisymmetry of our

problem (rotationally symmetric stress on a cell in the stretcher). So, the boundary

conditions constrain the nodes in the XY plane to move only in the XY plane (no

motion in the z direction); similar boundary conditions apply to the nodes in the

YZ and XZ planes. Any axisymmetric stress can be applied to the FEM shell with

an ABAQUS subroutine to define the stress on the entire shell. The deformation of

this model, on which all our other cell models are based, is quantitatively compared

with that of the analytical continuum thick shell model, detailed in Chapter 3, for

two stress distributions (a uniform pressure of 1 Pa on the cell and a non-uniform

pressure distribution of �����) and for various structural parameters. These results

are shown for different mesh discretizations and layers of the thick shell, along with

error calculations, in Table 5.1. Table 5.1 reveals that the error or difference in de-
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Figure 5.2: Finite element model (FEM) of a cell which includes three structural
components - the actin cortex (red), microtubules (blue) and nucleus (black). The
number of microtubules estimated in vivo is � ����. However, the number of rods
(microtubules) seen in this figure is much less (� 60), for clarity

formation predicted by the analytical model and the FEM model is very small even

for the coarsest mesh discretization used (12 squares seen on the surface of one-

eight of a shell). This error decreases as the mesh is made finer but at successively

smaller rates, while the computational time increases significantly for finer meshes

with more layers. Hence, the mesh chosen depends on the accuracy required of

the solution (for instance, in the optical stretcher experiment, there is a minimum

detection error in the deformation of 1 pixel or � 0.6� for a 100X magnification

objective, which is much greater than the error of our FEM model). The high accu-

85



racy of our FEM thick shell model, as seen from Table 5.1, enables us to build upon

it, to create more complex models such as a whole cell model.

In our whole cell FEM model, the actin shell is created as before with

twenty-node brick elements. The nucleus is modeled as a sphere using twenty-

node brick elements, while the microtubules are modeled as hollow rods with an

outer radius of 12 nms and a thickness of 5 nms (ABAQUS element B31, which

is a Timoshenko beam that can be used as a slender or thick beam and can carry

transverse shear). All the rods have two nodes, with a common node located at the

top of the nucleus and another node on the inner surface of the thick shell. The

moduli and sizes of the cortex, microtubules and nucleus are the same as those used

in the continuum model. With these parameters and the stress � � ����� on the

model, the radial deformation along the laser axis can be obtained. This deforma-

tion, however, also depends on the number of rods (microtubules) in the model. So,

the number of microtubules in vivo has been estimated by us, with a knowledge

of the amount of tubulin found in vivo [138] and the microtubule structure and is

found to be� 1500. A cell model with a thick shell and� 1500 microtubules, then,

yields an extension of 65 nm along the laser axis. The observed deformation from

our model with the cortex and microtubules can be used to get an idea of the con-

tribution of microtubules to the entire structural response of the cell - by comparing

it to the deformation from our model with the cortex alone (thick shell model) and

attributing the response in each case to that of a homogeneous sphere. For a model

with a twenty percent thick actin shell of Young’s modulus 500 Pa and Poisson’s

ratio 0.45 and microtubules of Young’s modulus 50000 Pa, the contribution of the

microtubules to cell strength is estimated to be 20 percent but is only 5 percent for

a cortex of modulus 3000 Pa (Figure 5.3).
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Figure 5.3: Contribution of actin to cell strength from studies with the FEM model
with the actin cortex and microtubules, assuming  .��	�
������ � ����� Pa

The numerical model has also been used to study the effect of an increase

in microtubules from 0 to 1500 (Figure 5.4, with  .��	�
������ = 50,000 Pa) and

a change in their modulus (Figure 5.5, for 1500 microtubules) on the observed

deformation. A model with a thick shell, nucleus and 2000 microtubules (the in

vivo microtubule estimate increases due to the space occupied by the nucleus) also

results in an extension of � 65 nm along the laser axis. Both our analytical and

numerical calculations imply that a peak stress �� much higher than 1 ���� needs

to be applied to a normal cell in the stretcher, for the radial extension to be easily

detectable or measurable - the extension must be� 1 pixel, which is� 130 nms for
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the 100X magnification objective used in the experiment.
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Figure 5.4: An increase in the number of microtubules leads to a lower deformation
or stiffening of the model cell (thick shell and microtubules) along and perpendicu-
lar to the laser axis

Another effect studied by us in our whole cell FEM model (with half a

sphere), which would be very difficult to study in an analytical model, is the effect

of asymmetry of the nucleus. Many images of cells show (J. Guck, unpublished

data) that the nucleus is not situated symmetrically (right in the center) in the cell.

Our whole cell FEM model allows us to displace the nucleus anywhere in the XY

plane. The results obtained suggest that the effect of the asymmetry on structural

response is not significant.
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or stiffening of a model cell (thick shell and microtubules), subjected to a stress
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5.2.3 Nonlinear Thick Shell Finite Element Model

As the laser power in the stretcher is increased, the cell’s structural elements

may respond nonlinearly - as mentioned earlier, actin displays a strain hardening be-

havior at high strains (� 10 percent). Therefore, at these strains, a nonlinear thick

shell model for the cortex, with a strain-hardening stress-strain behavior is required.

Creating an analytical nonlinear model to analyze deformations is extremely diffi-

cult, since the principle of linear superposition, relied on to solve the linear problem

analytically, does not hold any longer. Therefore, a numerical FEM model using
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ABAQUS has been created. ABAQUS has available certain potentials (derivative

of potential with respect to strain is stress) that satisfy this condition - for exam-

ple, the Mooney-Rivlin, Odgen and Arruda-Boyce potentials are strain-hardening

at high strains. The main reason for using the Arruda-Boyce is its inherent stability.

The Arruda Boyce potential has the form

5 � ��
�

�
�6� � 
� �

�

��7�
�6�� � 
� �

��

����7�
�6�� � ��� �

�
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/
�
8�
�� � �

�
� ��8��� (5.1)

where 7, � and / are the three material (fit) parameters in the potential, which are

calculated by the program, once the stress-strain data are given as input. 6� is the

first deviatoric strain invariant, while 8 �� is the elastic volume ratio. The nonlinear

model also takes into account geometric nonlinearities at high strain. Figure 5.6

shows that the deformation obtained from the nonlinear model at � � � is 1.75

percent lower than that from the linear model.

However, the nonlinear model and the potential considered may not be re-

alistic for a cell model. Also, the potential used is perturbative - the modulus ex-

tracted from it at small strains is the same as the linear modulus, while at higher

strains, there are positive higher order corrections to the modulus. At high strains,

though, if the brownian fluctuations of the network are overcome and the filaments

straightened, the network becomes extremely rigid (like stiff rods). Due to these

limitations, the nonlinear model proposed here mainly gives an idea of how such a

model might be created and solved using numerical FEM techniques.
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Figure 5.6: Preliminary results from a nonlinear thick (actin) shell model (Arruda
Boyce potential) for a cell in the stretcher - Radial deformation versus polar angle
of a thick shell of Young’s Modulus 500 Pa, Poisson’s ratio 0.45 and shell thickness
20�, subjected to a stress of � � �� �����. The deformation at � � � is 1.75
percent lower than that from the linear model

5.3 Extraction of Structural Parameters from the Stretcher Ex-
periment Using Viscoelastic Models

5.3.1 Extraction of Viscoelastic Parameters without Incorporating Cell Ge-
ometry

The previous chapters and sections have discussed the deformation and

other predictions of our cell models, based on our knowledge of the structural prop-
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erties of the cytoskeletal polymer networks, with an emphasis on actin. This section

analyzes the viscoelastic experimental data from the optical stretcher experiment

[169], [221], to extract structural parameters using the models developed by us and

to gain an understanding of the behavior of the in vivo cytoskeletal polymer net-

works. Normal NIH-3T3 and BALB-3T3 fibroblasts as well as cancerous SV-T2

fibroblasts (fifty cells of each type) have been deformed for approximately one sec-

ond in the stretcher with 1.7 Watts in each laser beam. The peak stress on the cell

depends on the laser power as well as other factors and experimental conditions

such as the cell size and the distance between the fiber ends. However, an average

estimate of the peak stress on the cell for the laser power used is 10-13 Pa.

As the first step to understanding the data and the difference in the structural

response of the three cell types, the average maximum deformation (of the fifty

cells) of each cell type is plotted (Figure 5.7). Figure 5.7 shows that the cancerous

SV-T2 fibroblasts have a higher average deformation than the normal NIH-3T3 and

BALB-3T3 fibroblasts. To extract structural parameters from the data for a prelim-

inary estimate of cell strength, the cell is modeled as a homogeneous elastic sphere

- the model yields the following mean shear moduli for the normal and cancerous

cells: G = 36�10 Pa for the NIH fibroblasts, G = 33�19 Pa for the BALB fibrob-

lasts and G = 18�4.5 Pa for the SV-T2 fibroblasts. However, more data are required

to reduce the error or variability in measurement and help clearly differentiate the

normal and cancerous cell types. Hence, presently, work is underway to automate

the stretcher experiment, to acquire a large amount of data in a short period of time.

The structural analysis above with the homogeneous sphere model assumes

an elastic behavior of the cells, while the observed behavior of the cells to the

applied step stress is viscoelastic. The cells show a sharp increase in deformation
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Figure 5.7: The average deformation of NIH, BALB and SV-T2 fibroblasts de-
formed in the stretcher [221], [169]. The average deformation of the SV-T2 cancer-
ous cells is higher than that of the normal NIH and BALB cells

along the laser axis due to the applied stress, for approximately 0.2 seconds after

the laser is switched on and then display a slower increase or viscous behavior

for the remaining time that the laser is on. Deformation data are also taken along

the laser axis for one second or more after the laser is switched off, to study the

relaxation behavior of the cell. Such viscoelastic data are commonly analyzed using

a mechanical model, which is a combination of springs and dashpots. Different

mechanical models can be tried, in order to fit the data; a Voigt model (model with

a spring and dashpot in parallel) with a dashpot in series (Figure 5.8) is the simplest

model found to fit the observed viscoelastic behavior. The additional dashpot is

used since the cell does not relax fully even after several seconds, when the laser is

off. Figures 5.9 and 5.10 show the model’s fit (line) to the experimental data (dots)
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of a representative normal cell and a cancerous cell. The exact mathematical form

of the model equations used to fit our cell deformation data and extract elastic and

viscous parameters is as follows.

�����

�
�
��
 
��� ���
�
��
�/�� �

�� ��� ���

9�
��� �� � � � �� (5.2)
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where �	�
�
	

is the relative deformation,  is the elasticity of the spring, 9� and 9�

the viscosities of the two dashpots, �� is the time the laser is switched on (�� � � in

our experiment) and �� is the time the laser is switched off.

Our evaluation of the stretcher data using macroscopic mechanical models,

such as the modified Voigt model, is now explained in detail. A total of three elas-

tic constants and two viscous constants are extracted from the data, to describe the

deformation and relaxation behavior of the fibroblast cells. As mentioned earlier,

the cells show an elastic behavior for the first 0.2 seconds of stretch. This elas-

ticity arises, most likely, from the fact that the actin filaments in the cortex are

crosslinked on this time scale, and this allows the network to behave like an elastic,

permanently crosslinked gel - the binding time of known actin crosslinkers, such as

	-actinin, ABP/filamin and the Arp 2/3 complex, is �0.2 seconds. So, a spring of

elasticity  ����
�� is used by us to model the cell’s behavior in the first 0.2 seconds.

Beyond this time scale, the transient nature of the crosslinks comes into play; as

the crosslinkers begin to unbind from the actin filaments, the cell starts to display

a viscous behavior. This viscoelastic deformation or creep is seen in Figures 5.9
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Figure 5.8: a) Mechanical model - Voigt element with a dashpot in series - used
to fit the viscoelastic data from the stretcher experiment b) The structural response
curve (strain) of this model for a step stress. The strain does not decay to zero even
at longer times due to the response of the dashpot

and 5.10 and is fit with Equation 5.2 of the modified Voigt model (red line). The

modulus of the spring,  �, obtained from the fit is close to  ����
��, because a stress

applied to the model first extends the spring, and then acts on the dashpots. In ad-

dition to  �, the fit yields the viscosities 9� and 9� of the dashpots. The relaxation

behavior of the cell after the laser is switched off can be seen in Figures 5.9 and 5.10

and can also be modeled using the modified Voigt model (Equation 5.3). However,

it is found that Equation 5.3 fits the relaxation phase of the behavior, only if the

elasticity of the spring in the model is changed from  � to  � (the dashpot values

are still held at 9� and 9�). A possible explanation for the change in elasticity after

the deformation is the effect of the deformation itself on the structural state of the

cell. The values of  ����
��,  � and  � and also 9� and 9� for the three cell types

(NIH, BALB and SV-T2 fibroblasts) obtained with the models are summarized in
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Figure 5.9: Experimental data points and fit using the voigt model with a dashpot
in series for a representative NIH fibroblast being deformed in the stretcher

the tables below.

Cell Type  ����
��  �  �

Pa Pa Pa
NIH 414.89 � 39.5 421.12 � 35.18 43.3 � 7.34

BALB 366.16 � 47.14 333.48 � 38.32 37.01 � 8.55
SV-T2 228.6 � 17.87 216.13 � 19.99 13.24 � 5.47

Cell Type 9� 9�
Pa.s Pa.s

NIH 31.6 � 4.86 1645.75 � 337.22
BALB 33.67 � 6.08 1734.98 � 411.78
SV-T2 15.89 � 1.39 971.73 � 134.59

The above numerical values for elasticity (of fibroblasts), extracted from

the mechanical model, are now understood from the polymer physics or molecular
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Figure 5.10: Experimental data points and fit using the voigt model with a dashpot
in series for a representative SV-T2 fibroblast being deformed in the stretcher

properties of the cytoskeleton - specifically the actin cytoskeleton, with the par-

tially (transiently) crosslinked actin network model developed in Chapter 4. The

network model is employed to find a realistic parameter set of actin and crosslinker

concentrations and cortex (shell) thickness that can explain the stretcher data. In

conjunction with an assumed actin concentration that is physiologically relevant

(between 8.4 and 11.3 mg/ml for fibroblasts - see Table 1.1) and a given elasticity,

the model yields an estimate for the actin crosslinker concentration in vivo. An actin

concentration of 10 mg/ml is postulated for the NIH cells, since the elasticity,  �,

extracted from the stretcher data is the highest for this cell type, while a concen-

tration of 9.5 mg/ml is assumed for the BALB fibroblasts (since their elasticity is

slightly lower than that of the NIH cells). Finally, an actin concentration of 9 mg/ml

is used for the SV-T2 cells, which show the lowest elasticity. A corresponding actin

crosslinker concentration is, then, calculated for each cell type, from the partially
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crosslinked network model, and the values obtained for crosslinker concentration

are found to be physiologically relevant. Also, if both NIH and BALB cells are

inferred to have a cortex thickness of �20 �, from fluorescence images of these

cells taken in our group, then the shell (cortex) thickness of SV-T2 cells is com-

puted by considering the total actin content in cancerous fibroblasts to be �35�

lower than in their normal counterparts. So, if the presumed actin concentration of

9 mg/ml in the SV-T2 cells is integrated over the shell, the shell thickness of 13�

obtained for these cells is smaller that that of the normal fibroblasts. By obtaining a

realistic parameter set that explains the data, our analysis suggests that the transient

crosslinking of actin networks controls the deformation response of cells. The table

below summarizes the parameter set obtained from our analysis.

NIH BALB SV-T2
���
�� 10 mg/ml 9.5 mg/ml 9 mg/ml

��� corresponding 10.01 �M 9.75 �M 8.7 �M
to  �

��� corresponding 3.62 �M 3.66 �M 2.49 �M
to  �

Shell thickness 20� 20� 13�

5.3.2 Extraction of Viscoelastic Parameters Incorporating Cell Geometry

The material constants extracted from the stretcher data with mechanical

models do not consider the geometry of the cell. Although this study does not

present final values for these structural parameters, that incorporate cell geome-

try, it proposes a method to approach the problem. Our analysis here assumes,

for simplicity, that the modified Voigt model can be used to fit the stretcher data

with the same value for the elasticity of the spring,  , in the deformation and
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relaxation phases. In this case, only three material constants are required to de-

scribe the data, namely,  , 9� and 9�. An equation for the relaxational modu-

lus 
��� can, then, be obtained, by inverting the strain or deformation equation

(Equation 5.2), to relate the stress of the model to an applied unit step strain (since

.�
����.�8���� � �
������ ��

, where . is the Laplace Transform, 8��� is the time

dependent creep or unit strain and �, the Poisson’s ratio of the material [105]). For

our model, the relaxational modulus calculated is the following.
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Since our study uses the modified Voigt element to model the cytoskeleton,

Equation 5.4 for 
��� provides insight into the material property or relaxational

modulus of the in vivo cytoskeletal polymer network. However, to incorporate the

spherical geometry of the cell, the structural response of one of our cell models,

such as the thick shell model, the three-layered sphere model or the FEM model,

needs to be considered. If the thick shell model is considered (for simplicity), its

geometric effect along the laser axis (geometric factor )�) can be obtained from

Figure 3.3. Figure 3.3 shows that the geometric factor )� (along the laser axis)

for a given stress profile depends on the shell thickness and Poisson’s ratio (for

a homogeneous sphere, )� � 0.58 along the laser axis for a ����� stress and a

Poisson’s ratio of 0.45). From our knowledge of the linear elastic-viscoelastic cor-

respondence principle (Appendix C.3), a material property function (equation for


���) that incorporates both viscoelasticity and geometry is then equal to the ex-

pression derived for 
��� from the mechanical model (Equation 5.4) multiplied by

the geometric factor )�, or mathematically, it is
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The above calculation shows that, if a structural response function for the

material or data can be determined, then the effect of material geometry can be in-

corporated by multiplying each viscoelastic parameter extracted ( , 9� and 9�) by

the geometric factor )�. It is difficult to deduce such an equation for the stretcher

data, since the elasticity of the spring  in the modified Voigt model is found to

change on cell deformation; so, no further analysis of the data has been carried

out to relate the observed deformation to the molecular properties of the actin cy-

toskeleton (such as actin and crosslinker concentrations, cortex thickness), by in-

cluding cell geometry. However, the above example illustrates how a mathematical

function that incorporates viscoelasticity and geometry can be derived and used to

differentiate the structural response of the normal and cancerous cells. For exam-

ple, the geometric factor of the cancer cells is different than that of the normal cells,

if they have a thinner cortex (shell) or are smaller in size. Also, Figures 5.9 and

5.10 indicate that the viscoelastic response itself (model fit) of the normal and can-

cer cells is different. Hence, it is possible to use the viscoelastic response alone or

the combined material property behavior (linear viscoelasticity and geometry) as a

signature to distinguish these cell types. However, if the cancer cells deform be-

yond the linear regime (say �10 percent), a nonlinear equation for their structural

response will have to be developed and used. The difference between the nonlinear

response equation for the cancer cells and the linear equation for the normal cells

(whose smaller deformations are more likely to be in the linear regime) may clearly

separate the two cell types.

100



5.4 Results and Discussions

Our three-layered continuum model for a cell shows that the boundary con-

ditions used in the analysis are important in determining the deformation. If mixed

boundary conditions are used at the actin-microtubule interface in the three-layered

model, the value obtained for the radial deformation is not much lower than the

value obtained with a thick shell model for the actin cortex alone. The deformation

results of our thick shell FEM model show a low percent error, when compared with

the analytical thick shell results (Table 5.1). This model has been tested for vari-

ous stress distributions on the shell, mesh discretizations and number of layers and

hence can be used as a basis for creating more complex FEM models. Our whole

cell FEM model incorporates observed cytoskeletal architecture such as the rod-like

microtubules and a displaced nucleus. This numerical model shows quantitatively

(Figures 5.4, 5.5) how the addition of microtubules results in a stiffening behavior

or a smaller observed deformation, but no analytical result or scaling law for how

the stiffening of the structure depends on the number of rods (microtubules) in the

model has been established here. However, for a fixed number of microtubules, an

estimate can be obtained of the contribution of microtubules to cell strength, which

shows that their contribution diminishes as the cortex strength or modulus increases.

In our model, the nucleus can be placed asymmetrically about the origin and this

is found to have an insignificant effect on the structural response. Our analytical

and numerical models show that only a much higher peak stress �� than 1 ����

on a normal cell results in a deformation that can be easily detected or measured.

In the case of the optical stretcher experiment, this implies the use of higher laser

powers (greater than 1.5 Watts in each beam) while stretching fibroblasts and other

eukaryotic cells.
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Our experiments in the stretcher on deforming normal and cancerous fibrob-

lasts by applying a step stress with 1.7 Watts in each laser beam shed light on the

viscoelastic behavior of cells. To enable a quantitative understanding of the ob-

served structural response, our study extracts elastic and viscous material constants

from the stretcher data, using a mechanical model. With the help of such viscoelas-

tic parameters, our work is beginning to shed light on the molecular properties of

the in vivo cytoskeletal polymer network of these different cell types; it suggests

that the transient crosslinking of actin can help explain the dynamic behavior ob-

served in the stretcher data and is a sensitive parameter controlling the strength of

cells. Our preliminary results also indicate that these material constants can be used

to differentiate normal and cancerous cells.

5.5 Summary

By combining both analytical and numerical techniques, it has been possible

for us to create a variety of models for a eukaryotic cell that take into account both

its geometry (spherical shape) and architecture (rod-like microtubules and nucleus).

Using these models, the effect of different cellular features has been studied - these

range from a first order model for the interaction between the cytoskeletal polymers

incorporated in our continuum model to the asymmetry of the nucleus studied with

our FEM model. A study of these effects, in conjunction with our study of the

cytoskeletal polymers, enables us to create a comprehensive structural model of a

cell and to begin relating the structural properties of the individual in vivo polymer

assemblies and their interactions to the macroscopic deformation of the whole cell.

So, the model has then been used to predict or quantify the observed deformation of

a cell in the optical stretcher subjected to an arbitrary, rotationally symmetric stress.
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From the experimental side, it has also been possible to extract and analyze struc-

tural parameters from the optical stretcher data on normal and cancerous fibroblasts.

These viscoelastic parameters, which reflect the state of the cytoskeleton, may be

the key to distinguishing cell types, such as normal and cancerous cells, at an early

stage.
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Table 5.1: Results from the Numerical Thick Shell FEM Model

Discretization of the thick shell mesh

Thickness of shell = 20 % Thickness of shell = 10 %
Young's modulus of shell = Young's modulus of shell =

500 Pa 3000 Pa

Uniform Stress

Mesh No of Deformation Deformation Deformation Deformation
layers nms nms nms nms
in thick φ=90 Error % φ=0 Error % φ=90 Error % φ=0 Error %
shell

4 by 4 5 19.272 -0.2020 19.257 -0.2796 7.7380 0.0918 7.7340 0.0401
10 19.261 -0.2589 19.247 -0.3314 7.7370 0.0789 7.7334 0.0323
15 19.258 -0.2745 19.245 -0.3418 7.7367 0.0750 7.7333 0.0310
20 19.257 -0.2796 19.245 -0.3418 7.7364 0.0711 7.7333 0.0310

6 by 6 5 19.289 -0.1139 19.286 -0.1295 7.7294 -0.0194 7.7282 -0.0349
10 19.280 -0.1605 19.275 -0.1864 7.7286 -0.0298 7.7274 -0.0453
15 19.277 -0.1761 19.272 -0.2020 7.7284 -0.0323 7.7273 -0.0466
20 19.275 -0.1864 19.271 -0.2071 7.7283 -0.0336 7.7273 -0.0466

8 by 8 5 19.301 -0.0518 19.301 -0.0518 7.7294 -0.0194 7.7289 -0.0259
10 19.295 -0.0829 19.293 -0.0932 7.7286 -0.0298 7.7280 -0.0375
15 19.292 -0.0984 19.290 -0.1087 7.7283 -0.0336 7.7278 -0.0401
20 19.290 -0.1087 19.288 -0.1191 7.7282 -0.0349 7.7276 -0.0427

10 by 10 5 19.307 -0.0207 19.306 -0.0259 7.7299 -0.0129 7.7298 -0.0142
10 19.303 -0.0414 19.302 -0.0466 7.7293 -0.0207 7.7290 -0.0246
15 19.300 -0.0570 19.299 -0.0621 7.7290 -0.0246 7.7287 -0.0285
20 19.299 -0.0621 19.297 -0.0725 7.7289 -0.0259 7.7286 -0.0298

12 by 12 5 19.309 -0.0104 19.309 -0.0104 7.7303 -0.0078 7.7303 -0.0078
10 19.307 -0.0207 19.306 -0.0259 7.7299 -0.0129 7.7297 -0.0155
15 19.305 -0.0311 19.304 -0.0362 7.7296 -0.0168 7.7294 -0.0194
20 19.304 -0.0362 19.303 -0.0414 7.7295 -0.0181 7.7293 -0.0207

Analytical 19.311 19.311 7.7309 7.7309
Result
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Thickness of shell = 20 % Thickness of shell = 10 %
Young's modulus of shell = Young's modulus of shell =

500 Pa 3000 Pa

cos2
φ stress

Mesh No of Deformation Deformation Deformation Deformation
layers nms nms nms nms
in thick φ=0 Error % φ=90 Error % φ=0 Error % φ=90 Error %
shell

4 by 4 5 82.967 0.0434 -31.862 0.1666 31.143 0.0900 -11.711 0.1625
10 83.005 0.0892 -31.887 0.2452 31.151 0.1157 -11.716 0.2053
15 83.026 0.1146 -31.899 0.2829 31.154 0.1253 -11.717 0.2138
20 83.037 0.1278 -31.905 0.3018 31.156 0.1318 -11.717 0.2138

6 by 6 5 82.901 -0.0362 -31.810 0.0031 31.116 0.0032 -11.696 0.0342
10 82.900 -0.0374 -31.815 0.0189 31.118 0.0096 -11.697 0.0428
15 82.904 -0.0326 -31.818 0.0283 31.119 0.0129 -11.698 0.0513
20 82.907 -0.0289 -31.821 0.0377 31.120 0.0161 -11.698 0.0513

8 by 8 5 82.909 -0.0265 -31.805 -0.0126 31.112 -0.0096 -11.692 0.0000
10 82.903 -0.0338 -31.806 -0.0094 31.112 -0.0096 -11.693 0.0086
15 82.902 -0.0350 -31.807 -0.0063 31.113 -0.0064 -11.693 0.0086
20 82.902 -0.0350 -31.808 -0.0031 31.113 -0.0064 -11.693 0.0086

10 by 10 5 82.918 -0.0157 -31.806 -0.0094 31.113 -0.0064 -11.692 0.0000
10 82.913 -0.0217 -31.806 -0.0094 31.112 -0.0096 -11.692 0.0000
15 82.910 -0.0253 -31.806 -0.0094 31.112 -0.0096 -11.692 0.0000
20 82.909 -0.0265 -31.806 -0.0094 31.112 -0.0096 -11.692 0.0000

12 by 12 5 82.923 -0.0096 -31.807 -0.0063 31.113 -0.0064 -11.692 0.0000
10 82.919 -0.0145 -31.807 -0.0063 31.113 -0.0064 -11.692 0.0000
15 82.917 -0.0169 -31.806 -0.0094 31.113 -0.0064 -11.692 0.0000
20 82.916 -0.0181 -31.806 -0.0094 31.113 -0.0064 -11.692 0.0000

Analytical 82.931 -31.809 31.115 -11.692
Result

'Effective Cell'

From the error analysis above, a 8 by 8 mesh with 5 layers for a thick shell seems
a reasonable model.
To take into account the effect of the rods and nucleus, the thick shell of 20% would have to have
an effective Young's modulus of 625 Pa (25% change), while the thick shell of 10% percent
would have to have an effective modulus of 3300 Pa (10% change)
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Chapter 6

Conclusions and Future Work

In this thesis, a detailed structural model of a eukaryotic cell has been cre-

ated, by incorporating the molecular properties as well as the architecture of the

cytoskeletal polymers, namely the actin cortex and the microtubules. Our modeling

work starts with creating a thick shell continuum model for a cell in which the actin

cortex predominates and goes on to more complex models (numerical finite element

models) that incorporate the rod-like microtubules and the nucleus. These models

have been used to study the individual contribution of the polymer assemblies to

the entire structural response of the cell and to obtain the deformation of the model

cell to an arbitrary rotationally symmetric surface stress, as in our cell deformation

experiment - the optical stretcher.

Our model cell allows us to extract structural parameters for different cells

such as normal and cancer cells and show theoretically that the strength obtained

depends sensitively on cytoskeletal polymer properties such as actin concentration

and cortex thickness - hence, the structural response of cancer cells versus nor-

mal cells is a good parameter to distinguish them. Experimental evidence from

the stretcher and other experiments indicates that the structural response of normal

and cancerous cells differs considerably, due to the altered cytoskeleton of cancer

cells. This observation has been quantified in our study by extracting elastic and

viscous parameters from the optical stretcher data on normal and cancerous fibrob-
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lasts. Our preliminary analysis of these viscoelastic parameters in various time

regimes shows that they can be used to differentiate normal and cancer cells. An

attempt is then made to relate the structural constants extracted to the molecular

properties of the actin cytoskeleton of these two cell types - specifically the actin

and crosslinker concentrations and the cortex thickness. Our results suggest that the

transient crosslinking of actin can help explain the dynamic (viscoelastic) behavior

seen in the stretcher data and is a sensitive parameter controlling the strength of

cells. With such a mathematical approach, the structural properties of the in vivo

polymer assemblies and their individual contribution to the structural response of a

cell are just beginning to be understood from the data.

Our study of the cytoskeletal polymers suggests that the actin cortex can

account for the structural properties of the cell, only under tight localization of the

actin in the cell and its crosslinking proteins. The shear modulus of cells is much

higher than our estimate for the modulus of a fully crosslinked actin network of

cellular concentration, distributed homogeneously through the cell. However, when

all the in vivo actin in acanthamoeba (assuming homogeneous filaments one micron

long) is in a cortex of 13 percent thickness and the crosslinking protein in a shell

of 5 percent thickness, the cortex has a modulus of � ���� Pa, close to the shear

modulus of fibroblasts. The addition of the rod-like microtubules to our FEM model

results in a stiffening of the cell structure. However, the addition of microtubules

alone may not be enough to account for the versatile structural properties of cells.

The intermediate filament network has not been studied in this thesis.

Hence, possible future directions to this work, include a structural study of

intermediate filaments and its subsequent incorporation into our model. Another

important step is an experimental as well as a theoretical study (through polymer
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physics, and not simple boundary conditions) of the structural contribution of cy-

toskeletal interactions. There is sufficient experimental evidence [176] for the in-

teraction of actin filaments and microtubules via MAPS (microtubule associated

proteins) and other proteins and hence the actin-microtubule interaction could be

a starting point for the study. First, an in vitro rheology experiment could be per-

formed to obtain the strength of a mixture of actin and microtubules. The value ob-

tained could be compared to the strength of an actin or microtubule network alone

from rheology, to estimate the effect of interaction. In order to study the actin-

microtubule interaction theoretically, a form of the interaction potential is required

- either experimentally or otherwise. It is then possible to calculate stress, strain,

and modulus from the potential and hence its effect on the structural strength. The

next step would be to study the interaction in vivo, but this seems a huge challenge.

The other interactions (actin-intermediate filaments, microtubule-intermediate fila-

ments) could also be studied similarly. A different interaction not captured in our

model is that between polymer filaments and active motor proteins - for example

between actin filaments and myosin motors. The influence of these motor proteins

on the structural response of the cell could be investigated in further models.

Further modifications and improvements can be made to our model too, al-

though our thick shell analytical model and finite element models are quite versatile

and accurate. The thickness of the shell in our hollow, 3D thick shell model can be

varied. So, it can be used to model a red blood cell with a thin 2D cytoskeleton

as well as a fibroblast and other eukaryotic cells with a much more extensive 3D

cytoskeleton. When the shell is very thin, the deformation of the shell model is

exactly that of a thin shell or membrane, and when it is very thick (inner radius

almost zero), the deformation is the same as that of a solid sphere. Also, the de-

formation of our finite element thick shell model compares very accurately to that

108



of our analytical thick shell model. However, all these models are linear, elastic

models and no detailed non linear model for a cell undergoing large deformation

has been presented in this thesis. Such a model may be required for the stretcher

experiment on cancer cells, since their average radial deformation is greater than

that of normal cells. In addition, we have modeled the viscoelasticity of cells with

a simple mechanical model. It is possible, though, to create a more sophisticated

viscoelastic FEM model of a cell. The structural elements of the cell such as the

actin cortex and the microtubules could be assigned viscoelastic properties and the

interior of the cell could be filled with a viscoelastic medium.

An extension to modeling a spherical suspended cell is to model the me-

chanics of an attached cell (which has a non regular shape), including the effect of

the actin stress fibers. As opposed to the isotropic actin cortex, the stress fibers are

anisotropic, long, actin bundles. Modeling the mechanics of these anisotropic bun-

dles is one step in a complex model for an attached cell. Our work on the structural

response of single cells could also be extended to studying the structural response

of two interacting cells. It could then be used as the basis for multicellular studies,

to understand the mechanical properties of tissue. Another application of our cell

model is in tumor growth and its dynamics. The damaging effect of a tumor arises

when its hard elastic spherical interior pushes on the surrounding polymer network

- the results of our single cell model could be valuable in creating a suitable tumor

growth model. Hence, the extensions and applications of our cell model and stud-

ies on polymer networks to other problems in this new field of modeling complex

biophysical phenomena are numerous, varied and exciting.
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Appendix A

Appendix for Red Blood Cells

A.1 Extraction of Structural Parameters from Some Red Blood
Cell Experiments

This appendix discusses how the models created to accompany different red

blood cell deformation experiments are used to extract structural parameters.

A.1.1 Micropipette Aspiration of Cells

There are cells which behave structurally like a solid, while others can be

modeled as a liquid surrounded by an elastic cortical shell. For example, neu-

trophils and red blood cells are considered to be soft cells, while chondrocytes and

endothelial cells are more rigid. Therefore, the model for a cell being aspirated into

a micropipette, depends on the type of cell.

Extraction of the cortical shear modulus � and the cytoplasmic viscosity 9

(����) for a Red Blood Cell

A red blood cell is modeled as a Newtonian liquid of viscosity 9 surrounded

by an elastic shell or membrane, which is defined by a cortical shear modulus, �

(where � � 
�, where 
 is the conventional shear modulus (����) and � is the

shell thickness (�)) and Poisson’s ratio, �. In order to analyze the deformation
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of a red blood cell aspirated in a pipette and extract structural parameters from

experiment, a model of an infinite plane membrane being sucked into a cylindrical

pipette is used (Figure A.1). The model also assumes that the deformation takes

place at a constant surface area, which results in the following equation relating the

aspiration pressure and the observed deformation [37], [22], [217].

�'-�

�
� ����

.�

-�
* (A.1)

where ��
��
� �, �' is the negative pressure drop within the pipette, associated with

aspiration, .� is the net axial extension into the pipette and -� is the radius of the

pipette. Experimentally, a plot of �' versus .� yields �.

Figure A.1: A hemispherical cap model for an infinite plane membrane being
sucked into a cylindrical pipette of radius -�, taken from [22]. The problem is
analyzed in terms of cylindrical coordinates
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The viscosity, 9 is given by

9 �
-��'

����-��-�
$��
$


* (A.2)

where� is a constant obtained from theory (� 6 for red blood cells),- is the initial

radius of the cell and $��
$


is the initial rate of cell extension into the pipette.

A.1.2 Electric Field Deformation of Cells

The deforming force on a cell stretched by a high frequency electric field

arises due to the polarization of the cell [97], [36]. The elongation of the cell is

proportional to the square of the electric field, for small deformations. The shear

modulus of a red blood cell is extracted using thin shell theory to calculate the defor-

mation [36] of a sphere into an ellipse, under an axisymmetric stress (Figure A.2).

The shear modulus is given by � � ��
�&��$0
$1
�
�
, where 5 is the applied voltage

and : is the ratio of the long axis to the short axis of the deformed ellipse. & is given

by &� � ���� 
 
� ����
�, where �� is radius of the spherical cell, 
 is the permittivity

of the medium in which the cell is present and � is a constant of the instrument,

which can be calculated (s=1.1 in Engelhardt et. al.’s experiment). Therefore, by

calculating the initial slope of the 5 versus : data plot and by calculating &, � can

be determined.

In order to calculate the viscosity, jump experiments are performed, which

relate : and �, from which the response time of the cellular deformation 0 can be

found. The viscosity 9 is then given by � 0 .
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Figure A.2: Thin shell model for the deformation (� and $ - meridional and radial
deformations) of a red blood cell deforming in an axisymmetric electric field

A.1.3 Optical Tweezer

Henon et al. [80] use an optical tweezer to deform swollen as well as dis-

coid, unswollen red blood cells and extract structural parameters from their experi-

ment with the following models.

An osmotically swollen red blood cell is modeled as a spherical thin shell

(Figure A.3). In an optical tweezer, two silica beads, placed at the poles, are each

pulled by a point force ) ; the deformation of a thin shell in the direction perpen-

dicular to these point forces is given by
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/ � /� �
)

�;�
* (A.3)

where / is the equatorial diameter of the stretched cell, /�, the original diameter,

) , the applied force and � is the shear modulus in ���. The slope of the graph of

the deformed cell diameter, /, versus the applied force, ) , gives �.

Figure A.3: Elastic thin shell model for an osmotically swollen, spherical red blood
cell in a tweezer, deforming under diametrically-opposed loads at the poles, taken
from [80]

A discotic, unswollen red blood cell of diameter /� is modeled by two

parallel discs (Figure A.4). The deformation of the discs is calculated under the

action of two opposing forces ) at two ends of the disc diameter. The deformation

perpendicular to ) is given by

/ � /� �
)

�;�
�� � ���

;

�
�
�

3
�* (A.4)
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where/ is the stretched diameter,/�, the original diameter, ) is the applied force,

� is the shear modulus in ��� and 3 is the area compressibility modulus. For a

red blood cell, �	 3, and so

/ � /� �
)

�;�
� (A.5)

The slope of the graph of deformed cell diameter,/, versus applied force, ) , gives

�.

Figure A.4: Membrane model for an unswollen, discoid red blood cell deforming
in a tweezer, taken from [80]. The membrane thickness is assumed to be constant
and the problem is purely two dimensional
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A.1.4 Flicker Spectroscopy in Red Blood Cells

A measurement of the flicker phenomenon of red blood cells, measured at

two points (correlation function), can be used to estimate the area compressibility

modulus of a red blood cell [14], [189], [238]. The correlation function is charac-

terized by a length scale 7�, which is a function of frequency$ and can be obtained

experimentally. In order to relate 7� to the curvature modulus 3, Brochard et al.

[14] model the red blood cell as two thin membranes separated by a distance �,

which is filled with a Newtonian fluid of viscosity 9 at velocity � (Figure A.5). A

detailed analysis of this model gives us the following relation

7� � �
3��

��9$
���
� (A.6)

Therefore, a knowledge of �, 9 and 7 at a particular $ leads to a determination of

3.

d

L

v

Membrane 1

Membrane 2

η

Figure A.5: Membrane model of a red blood cell to analyze its flicker phenomenon
or thickness fluctuations
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A.2 Ray Optics Calculations to Determine the Surface Stress on
a Cell in the Stretcher Set up

α
β

β

n1 n2

α

α

2β − α

αα − β
incident

reflected

ransmitted

Figure A.6: Ray optics is used to calculate the surface stress on a cell in the
stretcher. Shown here is the path of a beam from the laser, on the left side, hit-
ting a cell at an angle 	

Since the cell size (microns) is much greater than the wavelength of light

used in the experiment (785 nms), ray optics is used to explain the normal, out-

ward, stretching force experienced by a cell placed between two counter propagat-

ing laser beams [68], [69]. The physics lies in the net outward momentum transfer

that occurs when a beam of laser light both enters and leaves the cell. The initial

momentum of the beam <� is <� �  ��, where  is its energy and � is the velocity

of light. If it hits the cell at an angle 	 (Figure A.6), it will be refracted according

to Snell’s law, �����	 � ������, where �� is the refractive index of the medium
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surrounding the cell, �� is the refractive index of the cell (� � ��
��

) and � is the angle

of the transmitted ray. The momentum of the initial ray changes in magnitude and

direction, upon hitting the cell. Due to the conservation of momentum, the differ-

ence in momentum �< between the incident ray and the reflected and transmitted

rays (�< � <� � <	 � <
) is experienced by the cell as a surface force ) � ��
�


.

The momentum �< transferred to the cell can be decomposed into a parallel

and perpendicular (perp) component as follows:

�<��	�����"	��
 � �������- ����; � �	�� � ���-� �����; � 	� ��

� � �-�	� �����	�� � ��� -�	�� ����	� ��

� �<"	��
�	� ���� (A.7)

and

�<��	�"	��
 � �������- ����; � �	�� � ���-� �����; � 	 � ��

� -�	� �����	� � � ��� -�	�� ����	� ��

� �<"	��
�	� ���� (A.8)

where � is the angle between the beam axis and the direction of momentum trans-

ferred, -�	�, the reflection coefficient is calculated as -�	� �
	�
�
�(��	���(�

�
- ��

and �� are the reflection coefficients for TE and TM fields when interacting with

surfaces.

Similarly, for the back surface, the following equations are obtained for the mo-

mentum components.
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�<��	��������� � ��� -�	�� �� ����	� ��

� � -�������
� � 	�� ��� -���� �����	� ����

� �<�����	����� (A.9)

and

�<��	����� � ���-�	�� ��� ����	 � ��

� � -��� ����
� � 	�� ��� -���� �����	� ����

� �<�����	� ���� (A.10)

The total magnitude of the transferred momentum is now given by

�<"	��
������	� �
�
���<��	�����"	��
������

� � ��<��	�"	��
������
�� (A.11)

while its direction is given by

�"	��
������	� � �������
�<��	�"	��
�����

�<��	�����"	��
�����

� (A.12)

Using the above equation for ��	�, it can be shown mathematically that �<�	� is

always normal to both the front and back surfaces and outward for every incident

angle 	.

Finally, the surface stress on the cell, as a function of the incident angle 	 is
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�"	��
������	� �
���<"	��
������	�6�	�

�
(A.13)

where the light intensity 6�	� � ��
����2�

����������(�����2�, ' is the laser power, �, the

beam waist of a gaussian beam and �, the radius of the cell.

Thus, the cell surface stress considered above due to a single laser beam

depends on the ratio �
�

and �. There is a net force on the cell due to a single laser

beam, which accelerates the cell. However, if the cell is hit by two equal counter

propagating beams, the surface stresses are additive, while the net force on the cell

is zero. Hence the cell remains stationary or stably trapped and the axisymmetric,

normal surface stress deforms the cell.

A.3 Bending and Membrane Energy of a Thin Shell

As mentioned in Chapter 2, membrane theory assumes that the bending

forces are negligible compared to the membrane forces. This is valid when the

changes in curvature of the shell are small and the moment terms in the equations

for equilibrium are considered to be unimportant. The formulae for the bending

energy 5� and membrane energy 5. of a thin shell are as follows [206].

The Bending Energy 5� is given by

5� �
/

�

� �
,

��1� � 1%�
� � ���� ���1�1% � 1

�
�%���=�� (A.14)
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Using spherical coordinates, due to the the geometry of the problem (Figure A.7),

the governing equations for axisymmetrical loading are

1� �
�

��
�
�

��
�� �

�$

��
�� (A.15)

1% � �� �
�$

��
�
����

��
(A.16)

/ �
 "�

����� ���
(A.17)

where 1� and 1% are the changes in curvature in the � and # (polar and azimuthal)

directions respectively, 1�% is zero and �, $ are the meridional and radial displace-

ments respectively. Also, as before,  is the membrane’s Young’s modulus, � is the

material’s Poisson ratio, �, the shell radius and " its thickness.

The Membrane Energy 5. is given by

5. �
 "

���� ���

� �
,

��
� � 
%�
� � ���� ���
�
% �

�

�
4�%�

���=�� (A.18)

The relevant equations in spherical coordinates for axisymmetric loading

are the following.


� �
�

�
�
��

��
� $� (A.19)
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% �
�

�
�� ����� $� (A.20)

where 
� and 
% are the strains in the � and # directions respectively and 4�%, the

shear strain, is zero.

The equations for the bending and membrane energy of a thin shell are now

used to calculate their ratio explicitly for the stress profile �	 � �� ���
��. The

meridional and radial deformations for this stress profile are

���� �
����
 "

��
� � �

�
� ���� ����� (A.21)

and

$��� �
����
 "

��
� � �

�
� �� ������

� � �

�
� (A.22)

and the ratio 0�
0�

is proportional to ���

���
, which is � ���� for red blood cells.

A.4 Deformation Equations for a Thin Shell

The total energy of a thin shell subjected to an axisymmetric radial stress

�	 consists of the membrane energy and the work done due to �	. Neglecting the

bending energy, the total energy is then given by [124], [206]

> � �;��
�
�

 "

���� ���
�
�� � 


�
% � ��
�
%�� �	 $����� ��* (A.23)
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where  is the Young’s modulus of the thin shell, � is the material’s Poisson ratio,

�, the shell radius and " its thickness. The strain in the polar or � direction 
� and

the strain in the azimuthal or # direction 
% due to the applied stress can both be

expressed in terms of the meridional and radial displacements (� and $) of the shell

as follows.


� �
�

�
�
��

��
� $� (A.24)


% �
�

�
�� ����� $�� (A.25)

If the variational principle (Euler’s equations) is used to extremize the total

energy > with respect to � and $, the two equations obtained are

�

�

�

��

�)

���
�
�)

��
� � (A.26)

�

�

�

��

�)

�$�
�
�)

�$
� �* (A.27)

where ) is the integrand of the energy functional > , � � � �
�
$ 
$�

and $� � �
�
$�
$�

.

The differential equations obtained in terms of � and$ and their derivatives,

when the form of ) is substituted, are given below.

��

��
� � ����� � $ �

������ ��

 "
(A.28)
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���

���
� ����

��

��
� �� � ��

�$

��
� � ������ � � � �� (A.29)

These coupled differential equations can be solved for � and $. Note that the form

of the equations from membrane theory (Equations 2.1 and 2.2) used by us to solve

for � and $ are different. They are obtained from the two stress equilibrium equa-

tions. If the equilibrium equations are combined with the stress-strain relations,

the equations obtained are the same as the equations derived from the variational

principle (Equations A.28 and A.29).

ρ

laser axis

h

axisymmetric stress

φ
θ

εφ, w

εθ, v

Figure A.7: The deformation of a red blood cell in the stretcher is modeled as a thin
shell under an axisymmetric stress, where 
% and 
� are the meridional and radial
strains respectively and � and $ are the meridional and radial displacements
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Appendix B

Appendix for Thick Shell Model of a Eukaryotic Cell
Deforming in the Stretcher

B.1 Deformation Equations for a Thick Shell

A thick spherical shell of outer radius �� and inner radius �� (hollow interior)

subjected to an axisymmetric load displays a radial deformation$ and a meridional

deformation �, as shown in Figure B.1. The radial deformation is considered here,

since it alone can be observed experimentally. The general expression for the radial

deformation due to an axisymmetric stress is [112]

$ � �&������ � ����� � � ��� �?������'�������

� �
�

��
��� � 
� ����

/��� ��

����
�'������� (B.1)

where � is the radial distance from the center of the sphere, �, the Poisson’s ratio of

the material and � is the polar angle. For an axisymmetric stress, the solution does

not depend on the azimuthal angle #.

To obtain $ for a specific problem, the external radial stress applied at the

outer surface �� and the internal internal radial stress applied at the inner surface

�� is written as a linear combination of Legendre polynomials '�, which form a

complete basis. In the optical stretcher set up, only an external axisymmetric radial
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stress is applied. The applied shear stress is written in terms of the derivatives of

the Legendre polynomials, but is zero in the optical stretcher experiment. The total

radial displacement $ is a summation over �, where � is the order of the Legendre

polynomial in the nonzero coefficients of the radial stress expansion. The constants

&, ?, �, / are solved for every � by evaluating four equations - the radial and

meridional stresses, �	 and �	� respectively, at � � �� and � � ��. These are given

below.

�

�

�	 � �&��� ����� � �� �� ����� �?���� �������'�������

� ��
��

����
��� � 
�� ��� �

/��� ����� ��

����
�'������� (B.2)

�

�

�	� � �&��� � ��� � � ����� �?��� �������

�

��
'�������

� �
�

����
��� � � � ����

/��� ��

����
�
�

��
'������� (B.3)

Here, below the meridional deformation � is also included, for the sake of com-

pleteness and for its use in our continuum models in Chapter 5.

� � �&������� �� ��� �?�����
�'�������

��

� �
�

��
���� �� ��� �

/

����
�
�'�������

��
(B.4)
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Figure B.1: A eukaryotic cell with a predominant actin cortex deforming in the
stretcher is modeled as a thick shell. The axisymmetric deformation of a thick shell
of outer radius �� and inner radius �� is shown. $ is the radial deformation and �,
the meridional, while � is the polar angle and #, the azimuthal angle

The thick shell deformation equations developed in this appendix for any

axisymmetric stress are implemented in the mathematica program below, to extract

structural parameters from experimental data.

Mathematica Program to Extract the Shear Modulus of a Thick Shell from

Experimental Data

�������
��2��� � ��

@��/����������� � ����%��������������

<��+���� � -���.��������������*


�%�2��*�%�2��*�%�2��*�%�2��*�%�2��*�%�2��*�%�2�����
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r0 = radius of cell in [m],

r1 = inner radius of cell/shell (I consider a hollow shell) 10-20% thickness of actual

diameter,

m = ���, where � is the poisson’s ratio,

x = polar angle,

G = shear modulus,

ytot = deformation at every point on the shell,

yt1 = deformation at the pole / along the laser axis

obsdefper = experimentally observed deformation in percent

peakstress = peak stress calculated from program ”stress profile (dimension like in

”stress profile”)

x = exponent for cos (gotten with stressprofilecurrentfib.m)
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B.2 The Elastic-Viscoelastic Correspondence Principle

When the Laplace transform of the linear viscoelastic boundary value prob-

lem (stress-strain relation, strain-displacement relation, momentum conservation

equations and boundary conditions constitute a boundary value problem) is consid-

ered, it takes the same form as that of the linear elastic boundary value problem

under the following replacements [105]

1. L[viscoelastic variable] = elastic variable (where L[s] is the Laplace transform).

2. s L[G(s)] = 
����
�� (shear modulus)

s L[K(s)] =3����
�� (bulk modulus) and similarly for other structural parameters.

Thus, the Laplace transformed solution to the viscoelastic boundary value prob-

lem can be obtained from the solution to the corresponding elastic boundary value

problem. The final viscoelastic solution is obtained by taking the inverse Laplace

transform.

If, for example, the elastic solution for the radial displacement, $, of an

object is a function of 
, � and �, the surface stress, the corresponding viscoelastic

solution $��� can be found by taking the Laplace transform of the equation for

radial displacement. Also, as noted above, 
 is replaced by �.�
�, � by �.��� and

� by .���. It is assumed here that the time dependencies of 
, � and �, and hence

their Laplace transforms, are known, as the equation must be expressed in terms

of known structural quantities. The final result for $��� is obtained by taking the

inverse transform.

The viscoelastic response of a cell with mainly the actin cortex (assume a

crosslinked network) can be calculated similarly from the elastic solution, when

131




��� is known. The correspondence principle can be applied to an entangled actin

network in its linear viscoelastic regime - the network is found to be linearly vis-

coelastic till a strain of 10 percent at a concentration of 1 mg / ml (uncrosslinked

network [141]). Hence, our linear viscoelastic shell model for the cell is appropriate

as long as the strain or deformation in our stretcher experiment is in this regime.

In the internal dynamics regime, for high frequencies, 
��� � ������
���.


��� can be obtained by using Abel’s Theorem, which states that

)��������2� �
�

��!�
�2��D���* (B.5)

where D��� is the heaviside step function; the result is 
��� � ���
����. The corre-

spondence principle then yields the following in the internal dynamics regime; the

time dependent radial displacement of a cell with mainly the actin cortex, subjected

to an axisymmetric stress is of the form

$���

��
� �����

���)���* �* �* ��* ��� (B.6)

where ��, �� and �� are constants and )���* �* �* ��* ��� is known from the cor-

responding elastic solution. The solution above for $��� is valid only for small �

(� � ����� sec), as the form of 
��) used to calculate it is valid for large �. At

intermediate time scales (����� � � � ���� sec), a recent theoretical derivation for


��� of a solution of relatively stiff actin filaments (. � .�) (Pasquali et al., 2001)

shows that 
��� � ��	��. The radial displacement, $���, at intermediate times can

be obtained with an analysis similar to that in the internal dynamics regime. At

a longer time (� � ���� sec), the structural response of the actin shell is elastic,

as 
 has no time dependence in the plateau region. Hence, the deformation of a
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crosslinked actin shell is predicted to be dominantly elastic. Finally, it is impor-

tant to note that although AFM data reveal that the extent of the rubber plateau

and the transition to the internal dynamics regime are the same in both cells and in

vitro actin networks [117], there are additional factors that create a difference in the

viscoelastic response of a cell and an actin shell [230].

B.3 Extraction of Structural Parameters from our Deformation
Experiment - the Optical Stretcher

The correspondence principle described in Appendix B.2 can be used to

extract structural parameters from the stretcher experiment, for any form of the

stress profile (generally, the relaxation modulus 
��� is obtained only under con-

stant strain conditions, but this method enables us to obtain 
��� for any stress

profile). Consider the elastic solution for $, the radial displacement of a thick shell

subjected to a stress profile � � �� ���
����, which is of the form

$

��
�
��


)���* �* �* ��* ���� (B.7)

Here, ��, the peak applied stress can be time dependent and )���* �* �* ��* ���, the

geometric factor, is a function of �, the radial distance from the center of the sphere,

�, the polar angle, ��, the inner radius of the shell, ��, the outer radius of the shell

and �, the Poisson’s ratio.

The Laplace transform of the above equation is performed to obtain the

following viscoelastic solution.
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.�$� �
.����

�.�
�
�.�)���* �* �* ��* ����� (B.8)

This Laplace equation can be used to obtain 
 as follows. .�$���� is known from

the optical stretcher experiment, and so is ��, the peak stress applied. Also, if �

is constant, .��� � �
�
. Hence, the above equation can be inverted to extract the

structural parameter 
���.

B.4 Extraction of Structural Parameters from Other Cell De-
formation Experiments

Many experimental techniques have been developed to deform cells. This

section describes how the models created to accompany different experiments are

used to extract structural parameters.

B.4.1 Cell Poker

The cell poker experiment [232] is an older version of the AFM experiment

and consists of a poker of radius �, which probes a cell of radius -. In order to

obtain force-indentation curves, two models are considered: a liquid drop model

(Figure B.2) and a neo-hookean model (Figure B.3). An analysis of the two mod-

els leads to a dimensionless force indentation curve which is, for the liquid-drop

model �
����

versus �
�
, where ) is the indenting force, , is the tension, and for the

neo-hookean model, �
4��

versus �
�
, where ) is the applied force and � is the shear

modulus. The force applied is calculated by multiplying a typical indentation with

the stiffness, which is the initial slope of the experimental force-indentation curve.

Hence, a knowledge of the force applied and the force-indentation curves of the
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neo-hookean model enables an estimation of the shear modulus �.

Figure B.2: A liquid drop with constant surface tension being deformed by a rigid
indentor, as a model for a cell probed by the cell poker tip, taken from [232]

B.4.2 Atomic Force Microscopy (AFM)

The Hertz model or a variation of it has been commonly used for an AFM

tip probing a cell to study its structural properties [117], [152], [109], [160], [161].

As shown in Figure B.4, the Hertz model comprises an elastic half-space being

indented by a hard axisymmetric indentor. The cell surface is approximated as an

elastic half space, under the assumption that the indentation depth is much less than

the radius of the cell. The tip is modeled as a paraboloid of radius - at the contact
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Figure B.3: An incompressible hyperelatic (neo-hookean) sphere being deformed
by a rigid indentor, as a model for a cell probed by the cell poker tip, taken from
[232]. It is assumed that the contact between the poker, sphere and substrate is
smooth

point. From the analysis of this model, the relation that emerges for the indentation

Æ versus the applied force ) is

) �
�



-��	Æ��	 �* (B.9)

where - is the radius of the tip and  � is the effective Young’s modulus given by

 � � 
����

��������
, where ����� is the Poisson’s ratio of the cytoskeleton. Therefore, the

indentation versus force curve allows an estimation of the effective modulus (and

hence the Young’s modulus of the cell).

136



Infinite Plane
δ

FRRigid, Axisymmetric
Indentor or Tip

Figure B.4: The Hertz model - a rigid axisymmetric identor exerting a force F on
an infinite plane, causing an indentation Æ - for an atomic force microscope (AFM)
tip probing a cell

B.4.3 Microplate Manipulation

The microplate experiment by Thoumine et al. [196] uses a 3 element me-

chanical model to extract two elastic moduli and a viscosity from their traction ex-

perimental data and oscillatory tests. They use a Kelvin model, as shown in Figure

B.5, with one spring of elasticity +� (in ����) in parallel with a series combina-

tion of a second spring of elasticity +� and a dashpot of viscosity �. The slope of

the stress-strain curve from traction data gives the sum +� � +� of the two elastic

constants, while the stress relaxation curve gives gives the time constant 0 (0 � 4
��

)

and the spring constant +�. +�, +� and � can also be extracted from oscillation data.

B.4.4 Magnetic Bead Microrheometry

In order to extract structural parameters from their magnetic microbead mi-

crorheometry data, Bausch et al. [10] use the 4-element mechanical model (Kelvin

model with a dashpot in series) shown in Figure B.6 a). The viscoelastic response

of the cell can be characterized by three parameters, by reducing the four parame-
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σ(t)

ε(t)

k1

k0

µ

Figure B.5: Three-element mechanical model for a cell being deformed by two
parallel microplates

ters of the mechanical model: an effective elastic constant + � +��+�, a relaxation

time 0 � &��������
����

and a viscosity 4�. These viscoelastic parameters are obtained

by analyzing the experimental creep response and relaxation curves. To relate +,

0 and 4� to the viscoelastic moduli of the cell, the cell membrane and actin cor-

tex together are modeled as a thin elastic plate of shear modulus �� coupled to the

cytoplasm, which is modeled as a viscoelastic layer (viscosity 9�) fixed to a solid

support on the opposite side (Figure B.6 b). �� is obtained from the displacement

of the magnetic beads and the effective elasticity + of the viscoelastic model. The
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3D shear modulus of the cell envelope is then related to �� by � � 4�
�

, where " is

the thickness of the membrane and cortex. The viscosity of the cytoplasm is con-

nected to the mechanical model parameter 4� by the relation 9� �
&�$�
��� , where - is

the radius of the contact area between membrane and bead and �� is the thickness

of the viscous medium the bead moves in (cytoplasm).

σ(t)

ε(t)k1

k0

γ1

γ0

a)

b)
actin cortex of top membrane

actin cortex of bottom membrane

bulk cytoskeleton (ηc)

solid substrate

lipid bilayer

lipid bilayer

composite
membrane (µ*)

d
c

Figure B.6: a) 4-element mechanical model of a cell used to analyze magnetic
bead microrheometry data. b) Cell model used to relate the viscoelastic parameters
obtained from the mechanical model to those of the cell
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B.4.5 Micropipette Aspiration of Cells

There are cells which behave structurally like a solid; for example chondro-

cytes and endothelial cells are more rigid [96], [194]. Therefore, the model for a

cell being aspirated in a pipette, depends on the type of cell.

Extraction of  (Young’s modulus) and 9 for a Chondrocyte or Endothelial

cell

A solid cell being aspirated in a micropipette is modeled as an infinite half

space [194]. The loading due to the micropipette of inner radius � is represented

as a constant pressure in a circular region (of radius �) on the half-space, while the

contact between the cell and the micropipette is represented as a stress in the annular

region � � � � 2 (2� � is the micropipette thickness), as shown in Figure B.7. The

model uses two boundary conditions in the annular contact region � � � � 2

(force model and punch model) but gives the following identical relation between

the suction pressure �' and the extension of the cell into the pipette .� in both

these cases.

�' �
�;




 .��

-�
* (B.10)

where  is the Young’s modulus and � depends on the ratio of pipette wall thick-

ness to radius of the pipette (a typical value of � is 2.1 and so ���
�

is 4.4). The slope

of �' versus ��
��

divided by 4.4 gives  . The calculation assumes that both the

radius and thickness of the micropipette are smaller than the thickness of the cell or

half space.
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To obtain viscosity, 9, $��
$


is measured from experiment. An analysis of the

half-space model along with the standard viscoelastic model yields 9.

Figure B.7: The half-space model with the boundary conditions used to represent
a solid cell being aspirated in a micropipette, taken from [194]. � is the half-space
representing the cell and � is the boundary of �. �22 and �	2 are the stresses in
cylindrical coordinates (r,z), while %2 is the displacement along the ! axis. � and 2
are the inner and outer radius of the pipette.

B.4.6 Microstructural Models of the Cytoskeleton for Adherent Cells

B.4.6.1 Open Cell Foam Networks

The open cell foam network depicts the actin cytoskeleton as a network of

interconnected struts, as shown in Figure B.8 [182]. The contribution of the network

to the structural response of the cell is calculated by considering the bending of the
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struts to an applied force on the cell and is as follows [182]

 � � � ��* (B.11)

where � is a constant approximately equal to 1,  is the Young’s modulus of an

individual actin filament,  � is the effective Young’s modulus and � � ��

�
, the ratio

of the mass density of the actin network to that of the individual filament.

Figure B.8: Microstructural unit of an open cell foam as a model for the elastic
properties of the actin cytoskeleton, taken from [182]
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B.4.6.2 Prestressed Cable Nets

In the prestressed cable net model, the initial tension in the actin filaments

determines the overall mechanical response of the cell. The actin filaments are

thought to be cables, which carry a prestress, due to the actomyosin function, os-

motic pressure and cell spreading. This prestress is balanced partly by other cellular

structures such as microtubules and the nucleus. Taking into consideration the pre-

stress or the normal force transmitted by the cables across a unit area, an expression

for the Young’s modulus  � can be found and is as follows.

 � �
)�

���;
* (B.12)

where ) is the uniform tensile force in the cables, � is the filament radius and � is

the volumetric fraction of actin in the cells.

The tensegrity structure, shown in Figure B.9, is a special form of the pre-

stressed cable structure, where the cable tension is initially balanced entirely by

the local compression of the supporting struts. For a model in which six struts are

interconnected with 24 cables by frictionless pin joints, and in which the struts are

elastic and buckle beyond the critical value of compression force,  � is calculated

as follows

 � �
����) �� � �
�

���� � ��
�
* (B.13)

where ) is the initial cable tension, � is the initial length of an individual cable

and 
 is the initial cable strain. This formula highlights the importance of the initial
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tension and microstructural geometry of the actin network. The above two formulae

can be used to calculate bounds for  �.

Another way of expressing  � is as follows.

 � �
	��' �� � �
�

.��� � ��
�
* (B.14)

where . is the initial strut length and ' is the initial compression in the cable. This

formula highlights the importance of buckling of compression bearing elements.

Figure B.9: Six-strut tensegrity model to represent cytoskeletal mechanics, taken
from [182]. The cables - shown as thin lines - carry a tensile force initially which is
balanced by compression in the struts - gray columns
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Appendix C

Appendix for the Role of Isotropic Actin Networks in
Cells

C.1 A Network of Actin Filaments and Bundles

Here, the strength or shear modulus of an isotropic network of a mixture of

actin filaments and bundles is estimated by us [4], by modifying existing isotropic

polymer network theories for the strength of an isotropic, permanently crosslinked

actin network of filaments [113], [103]. Our calculation for the strength of a net-

work of actin filaments is based, as before, on MacKintosh et al.’s theory of a per-

manently crosslinked network [113], which estimates the entropic elasticity of an

actin network by considering the force-extension relation of a filament segment

‘pinned’ between two entanglement points. Their assumption that the applied force

is parallel to the filament length seems reasonable in vivo, where the short actin

filaments (whose lengths � are of the order of their entanglement length ��) can

align themselves continuously along the load direction, when crosslinked by flex-

ible crosslinkers such as 	-actinin and ABP. In order to calculate the strength of a

network of actin bundles, our study modifies Kroy et al.’s theory of a permanently

crosslinked network (Kroy et al., 1996). This theory generalizes MacKintosh et al.’s

work and considers a variable angle between the applied load and filament length

and hence (in addition to entropic elasticity) the bending of long filaments (� � ��)

‘clamped’ at their entanglement points - the Kroy et al. model reduces to the MacK-
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intosh et al. model, if the variable angle # between the filament and load in the Kroy

model is assumed to be 0. Thus, the Kroy et al. model seems more appropriate for

a bundle of long filaments than MacKintosh et al.’s model, due to the joint stiffness

of the bundles. Our strength calculation differs from Kroy et al.’s theory as each

filament is considered to be a bundle - a continuum approach is used to model each

bundle as a cylinder of radius -. Hence, the number of filaments in each bundle

depends on the value of the bundle size-, which can be varied. The parameters that

change for a network of bundles, from Kroy’s theory for a network of filaments, are

the mesh size and persistence length which become -*mesh size of a network of

filaments and -�*times persistence length of a filament in a network of filaments.

The total strength (shear modulus 
) of this network of a mixture of filaments and

bundles is then given by



�
�� � 
"���.��
 �
���$��� � � �
"���.��
 �
���$���



�
�� �
���

���� E�. ��
� ��

�
���

���� ��;�
� �E.����� ��� ��
� � �
"���.��
 �
���$���

(C.1)

where the mesh size of the network of filaments is E. � �� ��� =�����	, the mesh

size of the networks of bundles is E.� � -�� =����	, where � is the actin concen-

tration and ��� =� is the fraction of total actin in the network of filaments and = is

the fraction in the network of bundles. The entanglement length for the network of

filaments is �� � ��
�	�� E��
. ����� (�� � ��) and that of the network of bundles is

��� � ��
�	�� E��
.� �
���
�� (��� � �� -�). Also, � is a parameter that characterizes the

interaction between filaments and bundles.

Figures C.1, C.2 and C.3 show our results for the total shear modulus G’

of a network of filaments and bundles for different values of -, the bundle size,
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and for different values of the interaction parameter �, as a function of the fraction

of total actin that forms the network of bundles (=). The total concentration of

actin (in the network of filaments and the network of bundles) is assumed to be 10

mg/ml in our calculations. Our results show that if there is no interaction between

the network of filaments and bundles, the modulus of a network of filaments alone

is always greater than the modulus of a network of filaments and bundles. As the

bundle size- increases, the bundles sap the actin filaments and degrade the strength

of the network of filaments. Although the strength of the network of filaments and

bundles increases beyond a certain fraction of bundled network (= � =� (say)), the

rapid decrease in strength before =� cannot be overcome, even when the network

is made of bundles alone (= � �) - bundled networks are not inherently stronger

than filament networks. Now, if there is an interaction between the filaments and

bundles, there is a possibility that the strength of a network of filaments and bundles

is greater than that of a network of filaments alone. The graph with � � ���� is not

very different from the graph with � � � (no interaction). However, when � � ����,

and - = 1.5,3 and 5, there is a local maximum in the strength of the network, for

slightly different values of the fraction of bundled network = in each case.
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Figure C.1: Shear modulus, 
�, of a network filaments and bundles, with no inter-
action between the two networks
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Figure C.2: Shear modulus, 
�, of a network of filaments and bundles, with an
interaction between the two networks (interaction parameter �=0.01)
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Figure C.3: Shear modulus, 
�, of a network of filaments and bundles, with an
interaction between the two networks (interaction parameter �=0.05)
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Appendix D

Appendix for Models for Eukaryotic Cells

D.1 Buckling of Microtubules

This appendix deals with a simple calculation to estimate the deformation of

a cell in the stretcher which can cause the in vivo microtubules to buckle. Assuming

the microtubule to be a thin beam, the deformation Æ�	�
���� at which a beam buckles

is obtained from Euler’s bucking criterion and is given by

Æ�	�
���� �
 6;

. ��
* (D.1)

where  6 is the flexural rigidity of the beam (microtubule), . its length and � is

radius. Substituting the values for microtubules of  6 = 2.2 ����� Nm [55], .

= 8 �� and � = 12.5 nm [16], the formula above yields Æ�	�
���� of 1 ��. The

maximum compression, and likelihood of buckling, of a microtubule in a cell being

deformed in the stretcher occurs at the equator (perpendicular to the laser axis). The

compression at the equator of a cell subjected to a stress � � ����� is of the order

of a few tens of nms from our analytical model (without the microtubules) and our

FEM model (with the microtubules). So, the buckling limit of microtubules is not

reached for linear deformations of a cell in the stretcher.
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Figure D.1: Schematic figure to depict the possible buckling of a microtubule in
our cell model (thick shell and microtubules) or in the optical stretcher experiment

D.2 An ABAQUS Program or Finite Element Model of a Thick
Shell Subjected to a Uniform Stress
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