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THE STATISTICAL MECHANICS OF NON-EQUILIBRIUM PHENOMENA

-

1. The problem of Boltzmann.

2,

How can one possibly "explain" the irreversible behaviour of
thermodynamical system from a strictly reversible mechanical model?

This will be the theme for my first set of lectures. It is properl)
called the problem of Boltzmann, since he struggled with it during his
whole life. Of course after his work and the further developments by
Gibbs, Einstein, Smoluchowski, Ehrenfest and others, the essential feature
of the solution have become quite clear and well known. However, it may
be good to review the situation, because especially for non-ideal gases
the concrete questions of how to deduce the non—-equilibrium properties
of the system from its molecular constitution are still far from a
satisfactory solution.

I will restrict myself by using :

(a) Classical mechanics. It is time that the quantum mechanics,
especially thru the act of measurement, adds a new feature (perhaps a
"time" irreversibility) to the problem, and it is also true that often
the quantum theory is formally simpler, but I think the essential
questions arise already in the classical theory, and since I am most
familiar with it I will restrict myself to the classical theory.

(b) Point molecules interacting thru short-range central forces
which have the additivity property (no many-body forces). One must
think of a van der Waals or molecular potential
IV“ﬂ but I will often consider the case of repulsive
t LS forces only (elastic spheres or repulsion

\\/////”* ~ 1/r5, the Maxwell molecules).

The kinetic method and the H-theorem.

The central question is the explanation of the second law of
thermodynamics; however, it is simple to see that if one can explain
one typical irreversible event, and specifically the approach to thermal
equilibrium, then everything follows. This is the reason why the proof
of the Maxwell-Boltzmann distribution law has such importance. Can one
show for a gas that the distribution functions

f(t, T ¥) df 47 = number of molecules in js =space cell df av

approaches in course of time the M. B. distribution
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where { = potential of outside forces, and A is determined by total
number of molecules?

I now have to remind you of the so-called kinetic proof of Boltzman
The starting point is the basic continuity. Equation :

N - -»> I/ - | L B A1 (1)
D Eéi + 9 ‘Vrf 1»Q.V.g 3 A ’(dﬂx &‘3,0)({ {'..{6)

Dt ot

where a = acceleration of outside forces; index 1 and prime refers to
tae velocity variable only, so that f, = f (ry v4y 1) etcos

(¥, ¥¢) < (?', Vi4) are the direct and restituting collisions;

g 2l¥y = V| 'lV'1 =v'! ;I (g,0) is differeniial cross section for
au ming tho ro‘aulve ve1001ty over an angle § '"in solid argle dr". For
instance for elastic spheres
Volume cylinder :

D 6 g a2, cos L 2 sin 0. a @ do
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For Maxwell molecules, force law k/r5,
one finds :

81 (s,0) -|2E 7 (0),

independent of g. F(B) is complicated, is monotonic decreasing; for

rest.coll's

small § , ]
(O - VF;% ! 35
r(1) ‘ F(0) - 357 (1+2MB+...)
\\\' N ' It is well approximated by :

‘;‘X’f:-f i\\Q : C o 5 {ETT 1
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The usual jusitification of (1) is famllldr; f changes for two
reasons : the streaming in | —space, and the collisions. The collision terr
. is ecrucialj; it produces the irreversibility. It is based on the Stoszzahl
‘Ansalz, which is an assumption of ‘& non-mechanical nature. It is Twhere
the statistics comes in! Note the 10J10w1n llmltatlons g

A (a) Some uniformity is assumed. Strictly, the positioms of the
colliding molecules should. not be the same, and variations over distances
of the order of a mean free pauh are perhaps already doubtful. Thus very
fast varying phenomena as high frequency sound (freq. of order of collisior
frequency, or wavelength of order of free path) may not be correctly des-
cribed.
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(b) Only birarr collision= ave assumed "ﬂd %) r‘nrrelatvon‘~ of the

reisolty dilcections is taken iy me Loat sCs are proessant,

’

Clearly Boltzmana had ¢“mc sort of a quccessive aphroximation idea

implies that in zero. approx. 1h¢ /::ues &3 nﬁvAeCVed a-d the gas is
ideal. The collisions dependiig cn pairs of molecules are the next approxi
ation. and are respornsible ”nr tue transmort phonceena (viscosity, oot
ﬁnmﬂf) and also for ‘he fiuwst deriaiion (dnd virial co.7¥: :ient) of the
ideal gas law.

The approach to equilitriun is proved by means of the H-theorem.
Soltrmann defines :

() = SS F log f dr av (2)

and he proves

o H ¢ of fd B d H)
1) “@t - Sgtﬁf log 2 dr &¥ = \d"% /streaming™\ d t | collisions

Due t~ the streaming of the H function doss not change. This is a special
use o" a vennral thoarams Ir *here are no collisions (so no forces) then
stateo or \)tlou'ff('rncn Cendlng e DOLnt in%to the phasc space; systems
are row thc molecules, ransie £33ce .5 o -3pace). The Liouville thecrem
states tuat the ssireamihg in such a case is as an incompressible fluid
(or is an "equivolumic tx ~ansformation"). Therefore a any integral of the
form

(-cos F (p) dq1 ee e dpn
must be independent of the time.

2) ™ue %o tko colligicns T always decroccis, and dH/df iz nnly
zoro if for all possitis collisionn

f £y =£ 2, (3)

This determines the dependence of f on the velocitics; log f must
be a ‘inear function of the quantities conserved in a collision, which
leads to

. \2 N
£=A e'rjg'éw'u") s

(4)

Tn every volume elem. in velucity spsce the approach to (4) is

mqgo suilice Toe aypoot.n to toe M. L. Usizibution in coordinate space
is much moze complicated. In (4) +he quantitiecs A, Uy Vos W, can still
e fraciions of x, y, z and t, which must follow from

%%N.v,na.v,{ o (5)
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Only for sufficiently general outside forees (which include shape of the
vessel) is the solﬁnon unique and corresponds to 3 = const, U =Ve =W

=0and A = A e For special forces there are a host of special
solutions, which can even be time depondent. See

Boltzmann, Wiss. Abh.II, p.83
Since such golutions are not well known, allow me to mentlon one of
them. Consider the case of a harmonic attractive force so that 2 = w2 T.
Writing

>

logfs—hvz-o-k.;r’-‘-n
-
m "4 m 2
[h:%—; k=(3mvo; nzlogk-@—e-voi-

One gets from (5) :

0 P
7—)% ~ul)(&'id O (a) \‘
?_‘_'iﬁ_ﬁuzkao (v) ‘(
o M X (6)
E-( 1-&)-5;'&:0 (e)
* bx, X ) é
_b.L.\.', =0 (a)
d ¥, /
So h is a function of t alone, and :
F=[ﬁx?]+c?’+3.‘”‘c+c; (7)
at '

the mo&w on is combination of rotation, radial expansion, and translationj
1 ¢y can still be functions of t. Eq (7) is still general, independent-
ly of outside forces. From (6a), (6b), one gets : &) = const. and

d{“‘wza.'/ ¢ tbw eczo
by eliminating n. Take for example the case :
-’
4 - o ¢z ¢, €05 2wt

This gives @
heho 352 sn2wt,

2w

and thea @

S .
2 \1 we,r ¢ th.

2
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If h,y is large enough, one gets a Gaussian density distribution with a
curious "breathing" motion, accompanied by periolic temperature changes. In
additicn there can be rotations and translatory motions in which the center
of the Gaussian gas cloud oscillates around the origin.

-
'y

\ ! ERE S
Already for an anisotropic hermonic potential i/ == Loy X4 g fadg Heos

One proves from eqs.(6) that h is constant in time, and -% and ¢ are zero.
Oscillatory solutions are still possible. They will disappear if
arharmonic terms are added.

The reason for the curious solutions is clearly the isochronic pro-
perty of harmonic forces, which prevent them from producing the proper
mixing.

3) Excursion on the linearized Bcltzmann equation.

Since the H-theorem does not tell us the approach to equilibrium in detail,
and also to show the different nature of the approach to equilibrium in the
velocity and the space coordinates, it is good to look at the case in whieh
the disturbance from equilibrium is small. Putting :

C,.e(273
,":foz"{»ﬁ(n‘,vlt)j (8)
one gets the linear problem :

N ! )
: ; (0 (e T abCVLf ity -h-by, )
o .y nh -V by 4 Nv, {4 ke ¥ {.%(-)’(c- ain o, h-h,)

f |
LA 5(h) v (h) (9)

Consider first the case of no outside forces,; and a disturbance dependent
on s and t alone. | . A¢ -EmooA
/ "gc"L‘L e
3 C(h) is an isotropic operator, in fact one can show that
it has the form ;3

Ve 4T Kl s Bk
C ('ﬂ): “'fj-(\'—)l/'l + )dv: ,J\ .\VI "y e 4:) 3\ (\/'

As a result the eigenfunctions of C, defined by
¢ ("‘i/. b e A Vfr/ (10)
must have the form :

: v i
Wi, hw.&w) biw (U,'t)!

using polar coordination in vel. space. The eigenvalues lr; are at least
21 + 1 fold degenerate. There are 5 zero eigenvalues A«",'Kg¢ , and Ao
corresponding to the eigenfunctions f{, Vi, Vi * . 17Ty and \r" - % , which
are orthogonal. This is a consequence of the five conservation theorem.
All other eigen Xalpeg are negative. Proof :
, ‘ e V. T

At ‘_Whi;mj%rth:;ﬁfiiim (11)

\1‘ {' lxz"r(
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using the same triek as used in the H-theorem. This shows that the distur
bance decays monotonically to zeroy the / r¢ are the decay constants of
the different modes. Developing :

WV, E) 72 A (t) Wre [ F)

one gets . \

For Maxwell molecules, ﬁ-L(%J()>is independent of g, and since the
transformation of the velocities in a collision is linear, it is clear
that if h is a homogeneous polynomial in Vs ¥4 5 Y3, then C(h) must also
be a homogeneous polynomial of the same degree. So it should be possible
to f%nd the eigen-polynomials, which turn out to be the Sonine polynomia
in C<, so :

Yoo ~ S0 (. Y8 0) (12)

B
*

-] - %2
S(m)(x) is the coefficient of 2" in (1 - ) e % , and
the corresponding eigenvalues are : ; N
. P R T '/_rf(,& o f'~.nr.\l=?-)
/\,-Q LW] ( E}i\m S !‘(t')) l ) ; 4\ e O
"0 . O = .)
L. 3* "Q 9 ) ' W { { h ’ !
.l, LR -Z Pe (\./'.\!N» -l:- ) - ( P+ 4 i O¥o )...' ( )
13

They form a discretc set going to =72 _. Note that in (12) and (13)
all velocities are measured in units of Ulﬁ<77:nand the collision operator

is defined with the dimensialess F ( ). As a result, the times are
measured in units *L\<?ﬁ,' and since the cross sections are now (x =kappa)
——n s iy 1
N S - ST
T ‘Lﬁiftngth" the time unit is 77 vIWT s Which is of the order
{ rere '
of the time between collisions. The first negative eigenvalue
' YL U P i) (14)
= = Yo v L - A { 4
/{ 2D )\" ‘ ‘ ¥ Lo} CL v ) “‘94'

is the relaxation time of the gas already computed by Maxwell.



Whether for other force laws the eigen-value spectrum has the same
character is not known but it is likely. However the approach cf Ayt 7
is proovably due to the infinite range of the x/r5 force and the corresponding
infinite value of the total cross sectisn, I expect, say for elastic spheres,
a finite lower bound, but I can't prove it.

Turning naw to the streaming cperator & (h), clearly the eigen-values
will in general not be real since S (h) is not self adjoint. In fact for the
harmcnic force one can write @

.,!, A,

{ ;o _:‘)..—‘.- - Ly X “L ‘) f.‘ . ) { - /\‘\ ‘,\
(RS VIOTY 3 U e B
,'_ 7] l‘. 7 - (}.J
(15)

( %t the leff are three rotatien operators in the (vx, x), (Vy’ Y) and
Vgy 2) 80 clearly :

N Sto

A =1 (my, +m+ m3) W (16)

so that they are pure imaginary.

For Maxwell molecules it may be possible to determine the combined eigen
functions and eigen-values of S (h) + C (h), since polynomials in r and V remain
pclynomials in r and v~ of the same degree,

The main qualitative point to remember is, that the approach in velocity
and in space are quite different., The approach to the local Maxwell distribution
is monotonic and guite fast (time of order of time between collisions) while
in space the apprcach will usually have a damped periodic character (depending
cn cutside forces) and goes slowly,

.

4. The criticism of the kinetic method and the answer of Bzltzmaun.

The criticism is directed tcward the H-theorem, and is an expressicn of
the feeling of discomfort that somehcw, using reversible mechanical models,
Boltzmann sueceeded in showing that H decreases mcnotonically till the equili-~
brium state is reached, that is, a typical irreversible bhehavior. These criticisms
have been crystallized in %wo famous objections, the Umkehr-eindwand of Leschmidt
and the Wiederkehr-eindwand of Zermelo., Especially thelatter, based on theorem
of Poincaré which says that a bounded mechanical system is always quasi-pericdie,

o seems decisive. On the energy surface the

e ST ST point in . ' space represents the state af
:@\ the gas will return after the Poincaré
I

—

? s = cycle to any surrounding of the initial positie
| il o v The Hi must therefore sometime increase.

‘/ i .
{ i S ; Beltzmann's answer was not well understoed
i e in his time, probably because of his rather

e e et RSICE S ~

uncritical use of probabilistic terms., It
amounts to this : note that a distribution in, (i -space of a finite number of

mclecules required finite cells Wir Woeees The number in cell Wy
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must be appreciable. With a distribution Z in m ~sDaCS aorrespoude in
{" -space a whole volume (3 N-dim.)

ka
wiz)- o m T N C”z (17)

Now one proves that with the accessory conditions

2; W { 2 Qx' hy = E

. . = -pt
the M.B. distribution he ¢ /& Lo e

t

"

overwhelmingly maximixes W(Z). If one therefore assumes that there is no;
priori preference for the motion of the r‘-point for any portion of the
energy surface, then one can conclude that :

1. If the gas is not in the M.B. dlstrlbutlon it almost always
will go into ite.

2. Once it has the M.B. distribution it almost always will stay
there.

Clearly in this way there is no conflict with the Poincaré
theorem. The further development of this statistical method of Boltzmann,
leads to a completely satisfactory description of the equilibrium properti
in the first place of gases, and then by considering more complicated
systems as a large molecule to the prescription for the calculation of
all thermodynamic properties from the partition function of the system.

However, the details of the approach to the equilibrium state
are lost. The relation to the kinetic method is dark, and there is
therefore no general method for complicated systems (say dense gaezs

for instance) to derive the non-equilibrium properties from the molecular
picture.

5. Excursion on stochastic processes.

The wbole situation has been further clarified by an example of
Ehrenfest and by the work of Smoluchowski on the concentration fluctuation
of colloidal suspensions.

The example of Ehrenfest : Consider two urns A nd B, containing



NA and NB balls respectively. Suppose

N, +Ny = 2R | } t |
NA - NB =2 K &jA ﬁhﬁ
At fixed intervals a ball is chosen at random
from among the NA + NB and moved from its urn
to the other. This is a kind of model for temperature or concen-

tration equalization between two reservoirs. It is also interpretable as
a random walk problem with attracting center. llost complete discussion :

M. Kac : Amer. Math. M. 54, 369, 1947.

Analogue to Boltzmann statistical method :
/{/" o }'_ f.\.‘_-“ _‘-\
WK) = R 1) (18)

Most probable state (= Equilibrium state) Ny =Ny or k = O and this is
very sharp if R is large. In fact, then :

]
,“>~‘

P

\\’ ( ‘. ) & (—“___ :,‘_, -

One can now go farther, because there is a "probability mechanism" which
allows one to describe how k changes; the different k-values form a
discrete random series.

Analogous is the situation in the concentration fluctuations :

? T Smoluchowski, Phys. 5S8..17, 557-585 (1916)

Yo ¢ 3
i { L f 5 552 on [\.""V\
i b st T e o vl SRR ¥
| - \\J “ '\L) e, b CN"’\.V f 1 with p = T__,..

3

e v
Zguilibrium state n = N’iF?. Transition by the
"mechanism" of a jumping chance.

Clearly the k or n correspond to the distribution (n, n,...)
for the gas, and the behavior of k is just like the behavior according
to Boltzmann of the state of the gas. Any value of k between - R to R
will occur, but of course extremely rarely (and the Poincaré cycle is
correspondingly long) if k is far from equilibrium. And there is no
distinction between the future and the past. Irreversibility is a
human illusion, or as Smoluchowski expresses it :

A process will be considered either irreversible or reversible
according to whether the initial state has a recurrence time (Poincaré
cycle) which is long or short compared to the time of observation. And
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one should say in addition, that there is such a sharp variation of the
length of the recurrence time (due to the large ntmber of molecules)
with the degree of deviation from equilibrium that the two alternatives
are almost a discontinuous funciion of the deviation.

6. Discrete Markoff series.

Of course if one knows the "probability mechanism" one can go
further, as I said before, and one can get some idea of how fast
the equilibrium state is reached. The situation is especially simple
for the so-called Marikeff prccesses, of which the EBhrenfest model
(but not the concentration fluctuation) is an exazple.

In general, one describes a random series k., k, ... by the
. B . 1’ 72
set of distribution functions :

W1(k) = probability of finding k
w, (k1, ko3 s) = probability of finding a pair kyy ks
s steps apart; etc.

A Markoff series is the next simplest to the purely random series (where
all k's are independent of each other, so that W, (k) gives all

the information). In a Markoff series all information is contained

in the second distribution function which of course implies the first.

One can also say that the probability of finding a value k depends

only on the previous value of k. Introducing the conditional probability
distribution P(n/h, s), the probability of finding m after s steps starting
with n, one has Fur a Markoff series 3

o i | {
P (n/m, s) =\ | l;)(h ( K} :,~5.. ) P(’\ f.m ) ?) (19)

Call P(k/m, 1) = Q(k, m); then since 7 ., Q(k, m) = 1, one can write
(19) in the form (suppressing n) : =2~

e

i, 57w i\
P(m, s) = 4{.‘ H(V\/S"’Cﬁ.t‘\,h‘)
. "(' .
T 1D VN V. :i;-/,(i‘{v[ i
= / ; ™ ¥ R ' )
) / ' 4 ¢ Ty v‘\) \ o
or P
\ \ N \) {4 y " Iru(\ UZ (x(l‘ '(" \
. 7 - S~ BN v NTH \ }
P (’w“ () - P | m \<—‘) e b (m , X1 ] \ 520)
i .

This smells like the Boltzmann equationj; the rate of change of P with
"time" (= s) is equal to the gains due to transitions from k to m minus
the losses due to transitions from m to any value different from m.
However, note that the variavle m corresponds in thegas case to the

swvare. B0
-
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set of numbers (n,s N, «os)s It is therefore really an equation on a
higher level than the Boltzmann equation (which tells how each n

changes because of the collisions). Equation (20) really corresponds

to a2 kind of "master equation" which would have to tell how the probabil-
ity of a distribution (n,, n2...) changes with time. Note also that

(20) is a linear equation.In“equation 520) one has to suppcse that

Q(k, m) is knwon. 1t describes the basic "probability mechanisu'.

One then has to solve Equation (20) for P(m, s) assuming an "initial"
condition, say F(m, o) = (n, m).

For the Ehrenfest model in each step the k can only change with

one, and o
(j '/ i\ €.:~ ; ; ‘]‘5" “-t"“"{;" \ .\/ // - ; 'V: ) 4‘ ":?‘?l S{I Kp ? l } K )
KA Tt ) R A S < (21)

LAY

so that (19) becomes

;/\

N
~—~ N
NN

\ . o _'

oo - \ "( e b T ! = )

) { i L ,;{‘,:‘_'l:‘,_.t I- ].’. ( v o+ | 2 = } """""":":'"' = \) r\ .-',
P LS ,.' ; } h = , 3 I i :

One proves easily that

©
—~
k2
vy
P
3]
S

i 4 \ . '
/«,'v-.‘;i,,'.)’):.‘ 2w ’-l—*{')<w‘k%-')>

so that if initially one is sure that m

n g

. | >
, P .o i !
4 o H k‘ y & -y ‘\ t = =~ )
: g ;\ .

This exponential approach of the average value from n to the equilibiium
value zero is the analogue of the monotonic approach of any velocity dis-—
tribution to the Maxwell distribution. One can now of course also cal=-

culate the square average and show :

¢ 3 S i / WS
Collay Y o2 [ g _ 2% rTRriq i 2T
(m“(s)7= n° 1 R/, +2RL1 ;_\1 5/
e v 2 R . 3 .
so that for s-—o%, \ m (s):7"9 5 which is the value which follows from
W1(m). In fact, one can show that any distri-
bution P(m, s) approaches for s — % the first probability distribution

W,(m) monotonically. In general, the proof goes as follows : from the basic
equation :

a0

P nfw, s)zr Pl ) Gl ™)

one sees that one gets P(n / m, s) by successive matrix multiplication of
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Q(x, m), which fulfills the conditions :

- b : . r. . -
(\)} (b"{ "W\ } ’; (: K,) () { k’(_ ‘4,;.,\ ) o- ‘

x, P

It is obvious to introduce the eigenvalues of Q(k, m). Note, however,
that Q(k, m) is no% symmetric, so cune must consider the iinear equations:

. ~N N

/". \z" - / \i j’ ) \|

AN S T ey e i

.. . , 2
together with the adjoint couations (24)
| L .
N, T/ (2, L
P LA /

J & - ,L‘r/‘c

The secular determinant

; s K
. _ (25)
leads to the eigenvalue Ai , and to ;k;zcorresPonds
\ | Xk
/‘ 5 s\,}. f: k = 1, 2 s s c
\‘( (/\ 3
\,Q/I"‘I h = 1, 2 s e
and one has the two orthogonality and normalization relations :
.\'—'- / A S . ‘\-:v S.. “
7/ XK o= )y yi /i X - = g
L. Tk /\/"‘/ Yy L. Yis ¢ ")
¥ l z ! %
ll( '—> +~
By adding all columns to the first, one sees that/g = 1 is an eigenvalue;

call it A , then from (24) one verifies that

\ ¢ "'. i
N Y { K J. i - j
Afx AR

One can prove further that all otaer eigenvalues are in absolute value
less than onej in fact, for the Ehrenfest model Kac has proved that
.

Sy =R o0 R « i &SR, and he has determined also all the eigenvectors:
' : , VR4 B i
-~ L - |~ H -
Ao Tk e Mg s L g
KT e K s e — + R
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where the symbol Cg is defined by :

(1 - 2)B7P (44 ) s 02 z
“m=0

From the orthogonality relations follows then in the standard

way .
3 N N )
I = 3 7 M Y\"
.“YKV\'». e ‘! {j“d Jl”
¥ {-'
L v 5 V4
Plogm, )2 A v X
] j vy 4 (26)
\ \ ‘g .
o \ v, ( ro ) ‘4£~ /K]. \4‘? 3(11ﬂ
y 2! -
?zn‘w ;=3 WL )

so that for s --» O

7. The mean recurrence time.
One can give now also further details about the recurrence and

persistence time. Basic paper is
Smoluchowski, Wiener Ber. 124, 339, 1915.
For Markoff processes everything can be done very elegantly. Define

P'(n * n, s) = probability, given n, that after s steps n
occurs for the first time

I3
.

Then clearly g:J
P(n {n, s) =P (n ]n, s) + £ - P'(n / n, k) P(n / n, s=k) (27)
k_
Introduce now the generating functions : '
! o ?l ; :_,.:‘ \‘ (' iy ' S ) Z ‘

Then from (27) : ) .
v 7 2 P (] k)¥’b¢h;%-k)

b : o i A=



- 14 -

Ir couble sum, interchange and call s-k = r :

£ ] e o 303 4T [
o) ¥ e i~ .
" e e . N
- V:? = -\' - /; N
e ——— m-—- .-—-. ) :"‘ ————
T ¥t i Kt K= r =)

so it becomes

v:'.v"ﬁ)

k : w Ly
— ) Voo e = N =/ ! N { ! I FIC A

- i g N / = - (Y L o A
S Pinfn, KR TN r) 2 g e 2 )
w = P | ’

and therefore :

‘ ,.‘. TR - ‘r‘ (“h‘fé)
5} (l ,’*', 2,) [ '\(‘*(i':,’-) (28)

z 1= !
‘i P+ l’»(l'\;;‘r.,'l)

i

Using now the form (26) for P(n n, z), then clearly s
Wiin) '3)

“ ¢ 2

| = 2 ’

P4 lyingn,2) =

where p(zj is regular around z = due to the fact that all eigenvalues

1,
28) one thus sces that

A are < 1, cxcept A.. From (
Tl )
! i = —< T i . ‘i
. i T - D b £ =
Lim G i mil : Z b T g ! {pwp\ Y

/__ ——? l 2! : L !

P'(n/n, s) is therefore a bona fide probability. Further :

so that :
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This gives the mean recurrence time T (n), since

Lan"2

= LN e -
| [h)‘=L,;w‘3j Kh]h L . . * N , 5
A=) o ’ 2 \i 3 \o'\/~ (h) ( 9)

The mean square recurrence time depends already on all the eigenvalues

and can therefore only be calculated for special models like the
Ehrenfest model.

The concentration fluctuations of a colloidal suspensions as
analysed by Smoluchowski do not form a Markoff process. However, the
result (29) (with appropriate definition of T(n) is still valid. It
is interesting to sce how it compares with experiment (Svedberg). In
these experiments ¥ = 1/33 min.; the average 3mber<n/- Vo o= 1.55;

the first probability distribution W (n) y €Ty 0 (Poisson)
n!
n obs Tcalc
0 6.08 554 The check is therefore pretty good. The
1 3.13 3.16 value n = 7 was observed only orage; T(7)
2 4.11 4.05 would be 110577 = 27 min., while the
3 7.85 8.07 whols series_of observations was about 600.
4 18.6 20.9 For n = 17, T = 500,000 years!, so %ke

transitions from n = 17 would certainly be
judged to be irreversible.
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The Ideas of Gibbs

8. The notion of an ensemble.

In the Ehrenfest example I pointed out already that the random
variable k corresponds in the case of the ideal gas to the whole distri-
bution (n,, n,, +..) in ge/-space. To describe the change of k in the
Ehrenfest mod8l we introduced the probability distribution Pk, t) of
which we proved that it approached monotonically the "equlllbrlum" dis~

wodbetien W1(k) =(%E—E>(~%) A « In order therefore to describe in more
detail how - i the Maxwell-Boltzmann distribution is
reached for the gas, one must introduce the notion of the probability

P(n , 1 ..t) of a certain state (nl, nh..J, or, using the description
%he state of the gas by a point™Q ifi -space, one must introduce

a probablllty distribution P(Q, t) = (xl ee X, t) in { -space.

(Fotation : x, = (q ’ p ) = coordinate afid momentum of the i*h particle.
This can onlylmean A that one considers not only the given system but
a large number of copies of it; an ensemble, in the language of Gibbs.

Slmllarly, in the Ehrenfest model, to test the result (say, of Z)
for P /k t), one must consider an ensqggig of experiments. In each
the Jnlulal distritution is determinsd by k,, but the successive values
would be different and one would obtain Z sequences of k-values, from
which at any time the distribution P(k, /k, t) can be found. Analogously,
if one starts with a distribution (n,, n,...), corresponding to a region
on the energy surface in the f" —-space ol the gas, the different memters
of the ensemble (represented by points in this region) would move quite
differently and provide different sories of successive states; or, in
the language of Gibbs, one has a streaming of the ensemble "fluid" over
the energy surface. Of course there is also an essential difference;
in the Ehrenfest model the "probability machanlsm" is known, while in
the case of the gas the motion of the point 1n{ -space is in piinciple
completely determined by the laws of mechanics and the differences in
behavior are due to the different initial positions on which the motion
depends very sensitively because of the sharp short-range interactions
between the molecules.

In the Ehrenfest model P(k,/k, t) approaches W, (k). If one ex—
presses the basic idea of the statistical method of Boltzmann for the
gas, now, by saying that the a priog; probability of some state of the
gas is determined by the volume in ’-space to which the state corres-
ponds, then one can expect that the P(nl, n ...,t) will, for t =¥ o<,
monotonically approach

N l \;. N L Ty
1’\‘! B i —}-\[

(where ! is the volume of the whole phase (.« )space), so that the over-
whelming majority of the members of the ensemble will have a Maxwell
Boltzmann distribution. Or, in the language of Gibbs, one can expect
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that any initial density distribution of the censemble over the energy
surface (which for an ideal gas is of course the hypersphere

< ] 0
7’ § SN EZ will approach the uniform distribution (i.e.,

== 1 am
uniform between the surfaces E and E + dE), or, as Gibbs call it,
the micro~canonical distribution. That the volume in phase space, or
the "statistical factor" in the problem of partition of the cnergy
E between N independent particles leads for large N to the Maxwell
Boltzmann distribution is perhaps not quite fagiliar (although given
by Maxwell). The proof is as follows : since p dp~ V% d¢§ , the prob-
ability that one particle has energy between 51 and &1 + d{_1 is

- s s

{('ﬁ,)it;, ~ .',L.E,if—%;’,{_.)'o\‘c',hm 4 &, \/:&ﬁqu

where the integral is to be taken over all values so that
i 2 - 1D -
€ Zkifﬁ*' Ly © = -t . By induction or otherwise one get:s

(dropping index 1) :

where A, is a normalization factor. This gives z-= E/N (Maxwell's proof
of equipartition), and it is easy to prove that for large N :

.
4

fle)de =AVE ¢ TT de

the lr xwell-Boltzmann distribution.

Of course one now can generalize to more oomplicated systems than
ideal gases, and in fact GibYs introduced the microcanonical ensemble
(now better defined as the uniform distribution between two neighboring

energy surfaces E and E +/\E in the | ' -space :
L AR
e - dote that these surfaces need not
//// E be parallel).immediately for general
Pl - . .
////’ systems. It was one of his aims to
give a more deductive and lucid

presentation of the methods of

Boltzmann, and in this he
certainly succeeded! I will not discuss the further developments, such
as the other special ensembles (canonical, grand ensemble, the string
of theorems connecting them with each other, the thermodynamic analogies
etc.). They lead again to the basic relation between the free energy of
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the system and the partition function , which gives in principle the
solution of all the problems of statistical physics (connection between
macroscopic properties and the molecular structurc and interactions) for
systems in thermodynamic eguilibrium. -

It should be emphasized that, while in the EFhrenfest model the
equal a priori probability of the two boxes (from which W,(k) follows)
is put into the problem, for the gas the assumption of Boltzmann must
be considercd to be a property of the mechanical system. One calls it
the ergodic property. What it implies for the mechanical motion can
be explained as follows : in the Ehrenfest model, clearly the different
series of k-values of the ensemble can also be considered as successive
large chunks of a very long single series in timej; therefore for any
quantity the timc average will be.the same as the ensemble average, and
the same must be assumed for the gas. That is,

Mootime  Croe.oad p 17 Y R

] | Kep 32
; g ensemble

I
RN

where .. (8) is the microcanonical probability distribution. This property,
although very plausible because of the erratic motion of the | -point, is
of course not proved. It can be reduced to the assumption of metrical
transitivity (from which the ergodic property then follows) but although
an advance, it docs not help the physicist!

9. The approach to the microcanonical distribution and the Gibbs
H-theorcm.

See Gibbs, Chapter 12.

As I said, it is very plau51ble that any distribution of the ensemble
"fluid" between the nergy surfaces % and E + A E, will monotonically
become thoe uniform or microcanonical distribution. It is appropriate
here to make some comments on the question of the approach.

a) First, the monotonic approach is not in conflict with the
Poincaré theorem. Each member of the ensemble has a quasi periodic motion,
and one can prove (see M. Kac, Bull. Amer. lath. Soc. 53, 1002, 1947) that
for intermittent observation and for a metrically transitive meohanlcal
system the average recurrence time (or Poincaré cycle) is -~ (where

-~ 1s the area on the energy surface), quite analogous to the result
T = W ( ) for the Ehrenfest model.
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b) It is not true that the uniform distribution is the only
stationary distribution. To find the most general stationary distrib-
ution I have to remind you of a general characteristic of the streaming,
expressed by the Liouville theorem : the streaming of the "ensemble
fluid" is like that of an incompressible fluid. The proof is so simple
that I shall give it :

-3
Proof : The "velocity" \/ (with components d1... bN ) fulfills
the condition :

— 7 &0 o - — z b -
Ca 215 Y Do, \ LS <“D H ;2_”Llwh. =g
)

- 1 D0 FLAU S oo E
pIvy Y | W YR BT
L P 2.2 Dpidg,

by virtue of BHamilton's equations. Since one always has the continuity
equation :

égzlﬁ: Ch %4 I; = ()
ot ' F

one has therefore :

(1

(the Poisson bracket of H and ).

The most general stationary density distribution is therefore a
distribution where f is constant along stream lines (lines of constant
H), but not necessarily the same constant along different stream lines.

c) Since f’ remains constant if one moves with the fluid, the dis=-
tribution can only become uniform in a '"coarse-grained'" sense, as
pointed out by Ehrenfest : If the density initially is constant in
different regions (say P,, P2...),
then because of the distortion due
to the streaming the average density

P 3S~'»£P<ix,4 dxy
AX, . DX,

y over the fixed regions will become
7 equal. This can be shown analytically




- 20 -

by the Gibbs H-theorem.
We define this H-function by :

H(, E P log a (Ax"" AXN)'m: & "SAX,u('k-l(N;PQ('%P

t U] /

. , WA
T . s }K ‘LX. . {L)\'N l \Lt\‘ 1 (2)

5T, Jdax, . BAN),

Lo s 1

is the volume of the mth cell.

Now start with a non-uniform cnsemble, in which the density is
actually constant in the set of regions $7,, 4 ¥, «.s So at t = 0, the
fine-grained and coarse-grained densities are identical and

H :H(,)-: ‘ !% log (1:, (l)(' . 'f;_x,\‘

i

Now consider at a later time t :

Ho=He o§ B h = AR ) dx. b
SR AT ST

/ & /

r-,
'
L
~+
R
4
———
e
>
=
%
&

-~

where we have used

NN
—_
-
——
<
~
e
>
2
]
N e
—
r U
e.".';—-
>x
Cice
>
r=4

by normalization and :

}..inQMjﬁ_&xlw4&KN:i‘-jéféfidx,“.&XN

because of Liouville.
Using the lemma that P (x,y= =x log x - x logy - X +y, O (zero only
for x = y), one sees that =

H, - B, 7 O

and that HG is smallest for the coarsely uniform ensemble.
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10. = Criticism of the Gibbs Theorem.

Ehrenfest1 expressed the opinion that the time for the approach
to the uniform distribution may well be several Poincaré cycles. If
80, it clearly would have nothing to do with the actual approach to
equilibrium. I must confess that this is one of the few points I do
not understand in the Encyclopedia article. I think the time of
approach has nothing to do with the Foincaré cycle. It will, rather,
depend on the size of the coarse-grained cells; the larger they are
chosen the sooner they will become roughly uniform.

In my opinion the important objection is that the theorem has
little to do with real irreversible processes since it does not tell
which coarse-grained density "corresponds to our knowledge" of a cer—
tain initial non-equilibrium situation. Of course this is connected
with the difficulty of using an ensemble for the description of a
single system. The justification must lie in the fact that a macros~-
copic description of a system is so rough that a very large number
of microscopically different states of the system correspond to it.
One must then assume that the actually observed macroscopic changes
of state are the same for the overwhelming majority of the ensemble,
so that the average of some quantity over the (non-stationary) en-
semble as a function of time will represent the change of the quantity
with time for the single system.

The trouble is, not only that such statements are hard to prove,
but there is no hint or guess on how to construct such non-ecquilibrium
ensembles. As a result there is no general theory for non-equilibrium
phenomena in Gibb's scheme. Of course, in view of the enormous variety
of characteristic times involved (especially if solids are present),
such a general theory is probably too much to ask for. However it
should be possible; say for densc gases, to show how in principle
typical transport quantities (like for instance, the heat conductivity)
are related to the intermolecular forces.

11, = "Riickblick" on the kinetic method of Boltzmann?

In particular for nearly ideal gases one would like to know how
the ..."Stoszzahl Ansatz" and the Boltzmann equation discussed in the
first lecture fit into the general scheme of Gibbs.

A rather obvious idea is to interpret the Stoszzahl Ansatz as an
assumption for the transition probability between the different states
fnl, n,) of the ideal gas. I proposed to do this in some analogous
statisfical problem in the theory of cosmic ray showers (Physica, T
344, 1940; Phys. Rev. 62, 497, 1942), and it was then taken up by
Siegert (Phys. Rev. 76, 1708, 1949) and recently much further developed
by ul. Kace.

1. inziclopedia,; F.061
2. footnotd ¢n next page.
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Let n,, n,e... be the number of molecules in the different velocity-
cells 6, ) eoo Assume the distribution in space to be uniform, and no

outside forces. Let the probability per unit time of a collision
(i, 3) ~> (k, 1) be : afil? n, n.; then it follows that the probability
distribution P(n,, n,es%. I3 Y t), which, recall, is analogous

to P(k, t) in the Ehrenfest model, will satisfy the "master equation" :
(fnalogous to the Smoluchowski equation for the Ehrenfest casg (20)

p-10)

"y (5,“ "N, IL) i :. { . l. 1 ; ‘ Yoy s
3 . ;7 [ ’ 4 Coon 4 b Vi1 2y R TR
N]iJA:.m*wm.~~f~”“‘ = j; £, { LL%Q Pyt ')\{W f!) ! L)‘; sy T T
ot “iptka =
\ l{l- .-")' . A‘l
. s W 3 ~f “ -t
A‘.l':-!"n}~ :',. : ,t)'/.'_\.l ”"”./ { {“I-,/‘- ’\JJ!

(1)

acsumption. By summing over all values of Ny5 Noees w}th the condition
2 n = N, and assuming microscopic reversibilify : afl = aii , and

s AL . .. _ ij

noting the symmetry in (ij) et (k 1); furthermore -
a?% =0 and in (1) i, J # k, 1, «rs ~ sees that

’ [
—_—
te

.A :' " "_")s w " .' 5 ‘\' (:/\ (2)

7 . L ¥ ) %0

T

(where S' means that one is to sum over all Ny Dy eeo subject to
Ze, = N) so that the normalization S'P (n1, Nyeses 3 t = 1is conserv-

ed. For the rate of change of the average numberl ng o= St nSP(n1, nz..;t)
in cell .., one then finds :
- - Kt ; \ \ , ,
(‘)‘“3 ) —l'_ \/, i l';-‘ i. "\.,‘ - ,: :;'F\! + 3) ’.( ,l"l,\ *‘,"‘ + I, ",“‘("}"j ]l"
. - t— - ’ ._-_1 h 7 ¥ i . . v ? -
q 1 < .__,K( K. .
/
5 -
SRTOT T T O Y ¢ H
s d A\ GALFIRRLE g

One must distingui«h in the"straight" sum the cases where s is different
from i, j, k, 1 (which are all different from each other) and where it

is equal to any one of the i, j, k, 1. Changing the summations in the firs*
"round" sum back to Dy By ni, nj, one then easily finds that the third

2(Foot—note from page 21). This constrats strongly with the kinetic
method of Boltzmann, where the approach to equilibrium can be found in
detail, since the process is probalistic, rather than dynamical. The
natural question then is : Can we "fix up" Boltzmann's method now that
we have more insight into the naturc of the difficulties? Gibbs, in
his famous chapter 12, tells us nothing on this point.
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order terms in the n's always cancel, and one gets :

;——;_. B -0”7::. ~\ ; \;.' S ". . i /

£ i Th ! (3)
This w guld be, just the Boltzmann equation if one could put n n, = H;’ﬁi
and n. n. = n, n, that is, if one could neglect the correlatioils,

which” prasumably would be permissible if all the occupation numbers are
largec.

Siegert has shown that (1) leads, for t , to the equilibrium
distribution N! o A, just as we saw in the Ehronfest
n,! nolese L J cxample that P(k, t) for t -

approaches the first probability distribution W (k) which is proportlonal

1 !
to NI /NA' Np!

12. ~ Formulation of the master cquation on the energy surface.

It is nicer and more concrete to express the same idea in the "Gibbs"
way. For the ideal gas, the enerJy surface is a 3N~-1 dimensional hyper-
spherical surface /=« - E : 1mbeddod in 3N-dimensional

space. Assume that on the energj surface the {7 —point has a random walk
motion where the probability of a step in time dt is again determined
by the "Stoszzahl Ansaiz'". Since momentum is also conserved, one can put
- si= 0, so the motion is really on a 3N-3 dlmen51onal sphere
(agaln onlv the vbloc*ty distribution will be cons1dered)

Let ,g‘(ﬁ, t) be the probability that the 7 '-point is at R at time t,
where R =/ | Sy, 4

Consider a collision between molecules i and j. To represent it, we
use a "colllslon operator" A. 4 colllslon 1s rotation of the vector

-
deflne ‘\ J( - !’\ Ly ,"‘ ; .,..”x = :,;.J,N'/‘.‘-.l’ /.b,,.: ‘{).J;") 3‘) g "}.'v‘ )
-
N2> - L Z 2
,l as the rotated vector; ﬂ ;- Uy =y

‘line of centers > . . . . .
4 ~Iunit vector in the perihelium dir-

T, e, molecules g ection. If total volume is V,
- R then according to the Stoszzahl
NTE?* st Ansatz, the problem per second
of a specific collision is

i (abG) oA and one has
o et [ B therefore
e Ly AL
v AT ) e 1 o I
4 *-"\‘“"* .= 4_>__J ."} l”llj‘i—L{ﬁm U}kp/\{/}\lt)— J:U\/t))
N
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Note again that this is a linear equation. Furthermore if thc N particles

are indistinguishable onc should only allow symmetric functions ¢{{r .1, t)
. By contraction ( = integration over all v's except, say,

V. +.sV, , Where k is arbitrary) one gets the partial velocity distrib-

u%ion of groups of particles. In particular fox

(N)

[
[ g
A

. >
SN DU F R S S
t/— ) ‘ (}‘!(i o L‘N l ( K )

o i

/:

(in the integral, energy and momentum conditions must of course be taken
into account) one gets the Bcltzmann-like equaticn

{ ' ; ;b T & -~ « xR +
gy, iy v NV o7 igna Iy 9}
N N TR Raals A ;
I VAR
i
: . N) e 1
Ny » I S . o | IV v ¢ i X ]‘
o N Lf - ;/ ( N i : ';‘,? 3+ / 7 @ ’ 7 ,\ \ - iﬂ U, (/’2 :t' )} i\
ar (v ‘\\-g’b; Je 7y \(‘G = '// L . (i T (5)

(We have chosen the subscript 2 for the collision "partner" of 13 of

course it is arbitrary). In the proof onc must distinguish again the

cases i, j # 1 which give no contribution, and i = 1, j # 1; i A1,
j = 1, which give the two terms in (5). Eq. (5) would become the

Boltzmann cquation if one could assume

Ny (ol kI

T )= e B ()

t T

and if onec could then introduce the average number of particles

- Af ,.',vl. = o /'T
{<v4* = t’# Kb’t> instead of f?h)‘

H i 4
hAgain it can be expected that for large t the & (R,t) becomes
the uniform distribution (microcanonical ensemble), which as we saw,
leads for large N to the M.B. distribution for fl(v).

Marc Kac has been able to go further. To do this, he considered
a simplified version of the basic equation (4); it is a kind of one-
dimensional Mamwell model. Let R = XyKpeeeey Xy and
: 3§ . K “ = E q":\‘ N RS ’\ A *
ALJ(")'/\ . & %y s XI_:,'X( (e (’/’ Q.\(i N e,/ : }")(L Dum S f)(—' ....r.ul!.. )N

L
/

1, _ }
CBLij
% C_ - / ."1\

where L, . is the infinitesimal rotation operator in the 1ij planeg.
Assu.e iHat the probability for such a rotation deperds only on &/ .
Tke random walk is excecuted on the sphere x% + xg.‘... + x§ = N,

and the master equation then is 3 , N
" "Pk A ) 63 S (e F o~ L8 . S d- i . = . 3
e I S L V)R DR Lt
N 2 TR s : YRR LE : ST P C I
N B ,‘2, N /::__; ) : {‘ 9’) k}\ L7 '7\ (?J Y /'\ L A ‘) "‘(\ i L oy \t) \\ « }? '

\

'

4a)
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t . \
We can write (4a) as {§+ 4> =h£1“t;;

where o <, : '\; L LJ \)
i) E e R ('p' - —~'j A
AN i\ &

The Boltzmann equation analogous to (4a) is
e T

1{(_{11) ) & L S ""/‘.Q".)"J @’E . 6*3 ,}.;Me)t)-{(—x B +y wb,t)

{
¢l L oo - s s \ 3
! ¥ 2 \- i
~toA F )y
Fa .
[ 114
The "collision cross section" will be JM 3 {(9"id, and we will assume it

. . . . - 4 Y o
to be finite, and it is also appropriate to assume F ( {} ) an even function

of { -
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FURTHER RESULTS OF KAC; THE BASIC QUESTTON

I3, = The Propagn*lon of the "Boltzmann property!.

Let p,‘_-k .;/ be a sequence of probability density ‘uﬂctlons. defined

on the sphere oy o Y which have the “"Boltzmann property’
;SU'. a I iN) .
Lim 4= C X 4. X 3] brrldm { lye ) (1)
as "B & L LR I
by : g B ! s
i
r + ) . ﬁi\ l:.. '} 1
Then Kac was able to prove that the seguence of funetions +:' ™. " 1 which

are the sulutions of {he master eguations with .f. /7

1B as initial values,
also have the Boltzmann properiy, ice: '”

R P G I - S (2 a)

oo ' T

This theorem, of which the proof is still rather complicated, is of interest
because it elucidates what, previcusly was hidden under the assumption cof
molecular chaos, Clearly A%" n t ) contains in general much more information
than f (x t). However one must expect that all correlations are “broken" very
quickly; and the state of molecular chaos (for whlch the Boltzmann property
holds) is established and then persists (1n tnme;. The non—llnearlty of the
Boltzmann equation is from this point of view, due only to the special initial
distribution; the basic prohlem (= the initial value problem for themaster
equation; is a linear problem,

14, - The approach to tke uniform distribution.

It is again very plausible that for t — 2%, D (R,t) will go over into
the microcanonical distribution

e ) »-::;4_.4_

1
A x .
/T) [ R,
[ o /i Y %
= o LY !‘J i
— WY E

(2)

S\T (r) = surface area of N-dimensional sphere of radius r), which leads for
th% one-particle distribvution to ¢ —

'Y o .
[ . * ——— ‘
; ol 4

: \ A :
T 5~ LT s b
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which in turm gives the M.B., distribution for N —% 00

A - A {'4;

fod=m= )

The approach to (2) will be monotoniec as can be seen by an analogue of the
H-theorem., In fact one does not need the function

s 1R (: i L& .
H )= y o *jf' log {D()Lﬁ ‘ (4)

one can show the monotonic decrease already for the simpler quantity

o i Pk
Kr)=z] i ds

\ (5)

where dS = dxl «se. dx, = element of surface area (on the sphere)o

In fact :
17
\ . (I B I T { A Corh e 1\ hD) 1
(E[; : v /) dOF (U) ;?\I Vo J) (“:”ZZP‘-A‘/“”“\:‘i)’ ’b(m)\
_ ‘ﬁ L, !

Put;

Ay (O)R =R Rk [-0)R".

Use R' and 9' = - @ as new variables, and add the new result to the original
form and divide by two; one gets then :

L
b\ .",/ ’a\f ( = .h . ( e ( { 3 g ') \." ’)'
d‘]: . “'%"“}\j i Oy (@/\_ X j\(:,{ > H@ \ /4\.;}- R‘{ )~g“f'\,t H |

| T L7 S g

P2 : .}. —
dt (6)
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and the equality sign is only obtained for the uniforu distribution,

The proof for H(t) goes exactly the same way; in fact any function of ¢
which is concave upward would do. The exceptional property of the H-function
is that with the Boltzmann property, clearly

¢
|
r

, Jvt 10ef (7)

s

1
7

S P L | : v ;
> Y d S \‘? log ‘.‘b 7 const. ‘}"

which is what one expects for the entropy of an ideal gas, and which sh ows
the connectionm between the Gibbs and the Boltzmann H~furctions,

It still needs further argument to show rigorously that "any" . (R,t)
goes over into the uniPorm distribution as t ~-» (X , Kac was a¥%le to do this
in the following sense : he proved that for every integrable function ( R?
on the sphere

R T aund

A Y 3y i X Q } ! &
Lim \ L}) ( N ) 1 ’\ A ( ‘l » b ’ g I L - D
el T Yol FIN )

NA g

.t

15, = The relaxation time.

It would be of interest to kmow the spectral decomposition of the ope-
rator - in the master equation,

A -~

A
v...\....-'. L= * )
gt
which can be written as :
- [ 7 : 7 l H L' { d \\
e Ve ez (e ~1), (s)
) I N "y
"I'l
i = -L..- 1’ Y., ".\. IR _)..,. "\
where L~L} TSN Ty 4ax; 7 is the infinitesimal rotation operator. The

question of the spectrum of JjL has not
been quite settled yet. Clerly zero is an eigenvalue, with eigen-function ([.
= cbnst., and the other elgen functions must be parical harmonics on the N-
dimensional sphere. Let H (xlti”' xN) be the solid harmonics of degree K,
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which are in addition symmetrie in X19 Xyp aes xN; There may be sevreal

of them which are linearly independeiit, %hich is"indicated by the index .
Clearly ... will be a linear combination of such spherical harmonics of the
same degree, so that for each k one has to solwe a finite secular problem to find
the spectrum. This seems feagible, but has not been accomplished yet. One can
argue that if functions  (R) which fulfill the Boltzmann property are a
sufficiently complete set of functions, then the spectrum of {1 should bethe
same as the spectrum of the Boltzmann non-linear collision operatoe. This spec-
trum in turn should be, for the first eigenvalues (which determine the last stages
of the approach to equilibrium when the deviation from equilibrium has already
become small), identical with the spectrum of the linearized Boltzmanm equation,
obtained by putting

This is the linearized form of the Boltzmann equation
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It is easy to prove that the eigen-vald of :3'11) are the Hermite polynomials
‘ I .
o o . v e
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AN (AR S S /(1.. ) 5 o \ A ,. Y 9.y
LR (O A e pve s LA T L g

2
(defined with ¢~* as weight function for Hkﬂx) ).



Using the addition theorem ¢

K F o . (10)

The eigenvalue zero is doubly degenerate (k 0, k = 2) corresponding to the sonser-
vation of number and erergy. All other eigenvalues are negative, and have the

value v ¢ L6 ¥ ‘t) as limit point. For instance with F(@) = 1 for . <\¢?=\'%E_
zero otherwise, one gets ¢
: Ly
\ . ‘ "o T i
Ao A, \ e mwer ] ez ‘-- S
Ie} L A i -l N
. et v i }
|A x
A S T N LU SR
= o i lcl i '—::;.. -..4,. . ’
vt ! ( ,l:. e f:\-, t ’/‘) A
. . . Y P
The even and odd A *s form monotonic decreasing sequences with ~ 'V as limit

point, The eigenvalue nearest to zero is *, - ~ W .. which is therefore the

analogue of the inverse of the relaxation time.

Larger disturbances form equilibrium will die down with expomential factors
which will consist of linear combinations of the eigenvalues A. o This may
well pr?avce an almost continuous spectrum beyond a value which must be bigger
than ' 2 ~. . A few discrete values, and especially A itself, will

clearly remain.

16, - Pinal Remarks.

The master equation approach shows conclusively, in my opiniom, that the
kinetic method of Boltzmany, properly interpetated, is in harmony with the
statistical method and with the ideas of Gibbs. It leads to interesting mathema-~
tical problems, which still need a lot of work. However, there remains the basic

question ¢

What is the relation between the master equation 7. ¢' = Q)-(P and the
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basic dynamical equation \t P < { b f> (Liouville theorem), which
determines the streaming over the energy surface ?

In other words : how can one "derive" the probability assumptions form
the special features whlch caracterizes the streaming under the influence of
the short range intermolecular forces? Cleerly what the master equation implies,
is that with sufficient dilution, one can omit the intermolecular forces in H,
and replace the streaming by the "jumping" with a probability determined by the

Stozzahl Ansa tz, i.e. the "master equation" approach is, strictly, applicable
only to an ideal gas,

Because the connection with the dynamics is mret established; the master
equation approach does rot allow one to answer the quest*ons of phys*cal interest @
l) What are the limitations of the kinetic method; especially with revard
to rapidly varying phenomena (high frequency soxﬁd for instance)?

2) How should ome extend the kinetio method so as to teke 1riblb and higher
multiple collisions into account, (i.e.)} to dense sysveme)9



The Hyvdrodvnsuical Eguations

17, ~ The general conservakion laws,

Going back to the Boltzmann equation with outside forces :

I would like to outline the further development (due to Maxwell~Chapman, Lorentz=
Hilbert-Enskog) partially because it still is the only rigorous theory for a

class of non-equilibrium phenomena, and also in order to point cut the peculiar
features of the approximation method.

The first step is to derive from (l) the so-called transport equation

for a quantity & 4. § ) wnich a molecule can carry "on its back". Defining :
;_""‘ !'
. ;5;{‘ i 1\ ! :
: N = L i L
PO I A R T Y
prooon i e b '

where n(x, y, 2z; t) = number density (nm= {* ), one gets 3

\ °s '\) / \ \ ‘_;'\;
."(’" ( T + ';’;:. \ v iy JJ P VoA on o
N L )X ™ VR
:\ M
gL
- ! ‘
bl — — ‘\ y ; ;‘ I‘ % & J ! i : T H
' N i By b - - Y k = +
- 3 5 ] \ o 5 '.\ A sl ‘[.“‘ i il " 4; !\‘i T f'.'» P,
o ) | X i
(2)
k) . . U g S T L —~\
For & equal to any of the five quantities ™~ ' RO A I - T

S L
which are conserved in a collision, the right-hand side of (2) vanishes, and one
gets the five general hydrodynamical equations :
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e A < e [N
o~ ~ \ T . D
O el E ) v div G e 1943 (3)
TV Lo ! :
where
X, =X, ¥y, 2 ¢ coordinates

o - z ¥

21 't ) 1 velocity components

u, ==u, v, w ! average velocity

1 e
“
X ./‘
Ui = U, V, W= thermal velocity
= S(' T My
X =
i

s Ly Z = outside foree (per unit mass)

X
Q =%v v = thermal energy density
5 :

3= UT'U = stress tensor
J i
9 = + Ui U2 = heat current density
Ay 22 s,
Dij =% (i B e ' ) = rate of strain (deformation) tensor
5 X LR N
end, as indicated,
3 3
.D—- - .“L" 'f . vl s
Dt s d oA

The equations (3) express the conservation laws of number, impulse and
energy, and are still an empty frame since we do not know yet how to express
y 4. in terms of the average (flow) velocity, the density, andthe temperature.
Iﬁa o%her words, one still has to derive the Newton and Fourier phenomenological
laws for friction and heat conduciion.

18, - The Hilbsrt-Enskog development (l).

To do this one has to solve the Boltzmann equation. Hilbert introduces
a formal parmater O, and writes :

pa1e0 1), o2
o

In addition (this is Enskog's contribution) it is necessary to decompose

(1) Chapman and Cowling, "The Mathematical Theory of Non-uniform Gases".
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the time

the time derivative in parts of successive order of approximation by writing

_.2‘.- . £ \'1 4
2 L g §] s
S -)...
Calling i/ = 242X, AR y and the collision operator
7z fl)’ one gets from {1}, by equating equal powers of &,
i 5 /
5 (280 fl\")) = 0 _—
A\ \
(.’! :\ ) ’\\‘ \ 7 \
. -+ Iy f(o) -3 (f(o) f.(o, o) f,1(0) ) 53
R “t . -
BT N S ) o @), ) @), g2 4 (o
.:;-—:_. . {\' \'*; 1 /‘ (L J (I fl 4 f fl VAR 11( ) ) (6)

a) First approxiration.

The development is clearly so arranged that (4) is the first approxim.
‘ation, of which the general solution is ¢ o
( ) Ay /2 ) ','"'.:’:i- " G i ‘ 4 l “, A )- + l::) . /‘k_':

£ o (CFET P2 2 (7)

s B

the local Maxwell distribution, which contains still the five macroscopic quan-
tities n, Uy T which are functions of X, ¥y, 2; t and remain undetermined,

b) Second approximation.

W _ (o) b (1)

Writing f one easily sees that (5) becomes

~ R U I
e Bt T )
\ ﬁt‘ . - ! K (Sa)
where lj{‘f) is the linear isotrozic operator \
== : . ,/\ I (.\ ‘) i :'.»:}
f o) HETEE T PN b e o = th — i $
T {ib) i_k d % % 1 \'L {q g( )’(} + L} @ f Yoo,
SRS 00 / ‘

. L (1
Equation (Sa) is aninhcmogeneous integral equation for ¢ ( ). The homogeneous

par® has clearly as solutions the five conserved quantities ﬁ”g =1, ¥, =7

‘\y. ~ Wy k;i" - l' ‘..A.(." = S - " '-,.-}"‘ v A

R ] ] o e ¢ S g B, -
In order that the inhomogeneous equation have a solution, the inhomogeneous part
must be orthogonal to the five solutions *t, . This leads to the five integra-

bility conditions @
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which are the ideal fiuwid, or first order hydrodynamical. eguations fur n,
1., Ty or as Enskog expresses it : in fi.st order the time derivatives
A

A ) . N
BRI . s b
._.‘.{, - -f:-—;-—-o‘ ; -“—%\L.._ must be.izzon to be given bv the ideal hydrodyramical

equat ona. One can also say that in first order one can calcusaies the average
values in the general bydrodyuam_m squations (5) with the iccal Maxwel fo
Boltznann dis trlbut: on (,), giving the Euler equations

— o\ (o) _
Piss Qg = 0,

: . . & § s bia N
Note that p =+ ukl is given by the :deal gas law, If (bb) g fulfilled |
has a solution, which is determined except for an erbitrary iinear compir
of the five solutions ‘. of jhe¢ humogeneous cqua,_om However, we_will
omi® this conbiraticn and make £% 7«/ sfinite by requiring :

Ve =0 (5¢)

c\L Solution of §5 a).

: - G Fer . I
Tee lefi~hand side bedomes, using ({) and eliminating the ), / :.-}! terms
with (5 ) ,

MY o v e
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From the linearity of the operator I it follows that one can decompose b
. ( 2 K“"F U ,
wrltlng £l0) = pe= one can pui
L b T f . % 1.
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is recognized as the Jlinearized Boltzmann operator. Sirce I' is an isot

operator, 1} ; and o}

The two functions &

and Xr.

are determined by (5 4).

= 6, =

7
L)
S

l.) _ [ ‘?Z, - (5 d)
(o :- v

<

ropic

i3 must be, respectively, an isotropic vecotor and an

isotropic tensor in the velocity space Ui’ so0 that they must have the form :

73 g K (V

The solution is im-

mediate if one knows the eigenfunctions and eigenvalues of the operator I. This

is the case for llaxwell molecuies; for

and A\
of 1
infinite
of which

the 1/7° repulsion,

4)_Third approximetion.

{61
Putting f(z) = fQO’
equation (6) becomes :

—t+
2t
\-/

b (2)

other interactions one develops ¥

in Sonine polynomials, which are the orthogonal elgenluncflone
' ) for Maxwell moilecules. (See Equation (9); pege5). The resuliing
set of linear equations can be solved by convergent series expansions,

the pavameter is a measyre of the deviation of the force law from

, and keeping in mind that {£° £, Q') £0 fo W’,

ORI

|
At
"
£
o
P~
N

1
- (6 a)

Again the leTt- hand sicde is known and must be orthogonal to the five solutions:
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where g 1is the relative velocity in uniis

o+ oy A N . . 3
called trarnsport cross seoticn
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the first order time derivatives of n, uj
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(6a) has a solution determined up to a linear combination of the\wJ p
which again we omit, fixing the f 2) by the requirements

i»"L\ -3

The f(z) can then be determined by the same method as used for f(1),

and in this way one can go on. The integrability conditions for the
fourth approximation are the PBurnett, or third ogder hydrod, ical
equations, also obtainable from (3) by using £(0) 4+ £(1) + ??2§

the calculation of the average values. They are still of the 533§3

orier in the time derivatives but now contain higher order space deri-
vatives of the macroscopic quantities Y , uj and T, and new gas constants
analogous to . and i appear. '

General discussion of the development

a. - The development can be said to be in powers of fkl where A is of

the order of the mean free path and the gradient operator scte on
the macroscopic quantities. In fact, from (5d) one sees that J ?
contains terms of order :

1 1w A N
i T T3 T Tx
and
{ s "‘ u b )\ ’;1 u
ne KT 4 x Tx

sound vel.

where '~ is some kind of collision cross section. The dovelopment is
therefore in the uniformity of the macroscopic quantities g s o T
and one can say that the Hilbert parameter ™ is a measure of the
uniformity.

b. - The development is so arranged that at any stage the equations are
of first order in the time derivatives of \ , uj and T (by Jleaving
off the homogensous solutions). Therefore the initial values of \ y Uy
and T determine the "state" of the gas. This macroscopic causality
theorem (Hilbert) is of course not a theorem but an "Ansatz". It seems
paracoxical because from the Boltzmann equation it clecarly follows
that one nceds initially £(35.1.5 , xyz, 0) (which contains of course
much more information than the five moments n(xyz), ui(xyz), T(xyz) do.)
to0 dotermine the further state of the gas.

One must expect, therefore, that an arbitrary initial velocity
distributionf( ¢ ., j Xyz, O) in a very short time (of order of the
time between ‘ collisions, A/ kT

= ) degenerates into a normal
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state" detormined through the local Maxwell-Bol+tzmann distridbution by

the macroscopic quantitice. g s Ui, T, and that the further slow equalizatio
or adjustmant of the spatial non-uniformities proceeds acsording to the
hydrodynamical equations and in harmony with the macroscoplc causality
requirement.

¢« — The development does not distinguish between the magnitude of the
éisturbance and the scale of the disturhance from equilibrium. In
any physical problem these cam te well distinguished. For instance, in
the propagation of sound they are measured by the intensity and the wave-
length of the sound wave, respectively. Especially for the discussion of
what happens at low pressures (that isy, for large mcan frce paths) the
Hilbert-Enskog development is not appropriate. For the theory of the
transition between the "Clausius gas regime" (at moderate pressures) and
the "Knudsen gas regime" (at very low pressures) it is better to make
a straightforward perturbation expansion of the Boltzmann equation by
putting

f=i‘o(1+h)

where £ is {the complete equilibrium distribution and the perturbaticn

.0 : .
h satisfies the linezr homogencous equation s

I i s

é‘l_ + 0 Ok = i (&)

'2; 2 # 3 X

in the absence of outside forces. For various special cases this can be
solved in detail, allowing for a discussion of the dependence on the scale
or Knudsen number (% A /L, where L = representative length) for small
disturbances or small lMach number.

The idea of the wvirial expansion.

The classical result that the viscosity and heat conduction coeffi-
cients are independent of the pressure of the gas is clearly a consequence
of the limitation to binary collisions. Presumably for higher densities one
may expect that for slowly varying phenomena the Stokes-Navier cquations
remain valid, but that the i« (and i/ ) will become functions of the density,
which are developable in the form :

PYREE N W TP U IR I S A R
ST G RN (1)
analogous to the well-known virial development :

»w=14+B + 0
h i ¥ .'_ ﬁ '_;; :;2' + es o0 (2)
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of the equation of state, with v = X' = E « In (2) one .2

_ R R .
knuws how to express the virial coeff icicnts in terms of the intermole-
cular force { / -} Cne has
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(3)

And so on! B involves the interaction of a pair of molecules, C of
a triple, and so forth.

The A, is the viscosity coefficient derived in the previous

section

T ———— !
) i TS :
e, T PTH BT oo s s
.’l 20 f i by -2 , - L N\ \
{ . o~ A L
\, d /3 q [RITR l‘, b
v IJ " .~ l,
3 . / k
IR | 5
o ‘ S AR R SN b By I ))
( g = relative velocity in units | 4kT/m; Q. = &7 ﬁfl* s L .(Jb,“,

') the intermolecular force @ (r) between

j a2 pair of molecules. It is therefore

J . rclated to the second virial coefficient B.
: The relation is very implicit, but by

j assuming a form for ¢ (r), as for instance
a two-parameter Lennards-Jones potential

It involves through the I(g,t

AN

e 7~ i bk I, ¢ 3 ) o - £,
l. N s CA i Cose e © (t"“[ — f

s b Ll E L oo, ] b e R R

one can calculate B(T) and it  (T) and see whether one can reproduce

the data adapting i and X' . Such calculations have been made by
Hirschfclder and eoworkers with success. The agreement is very good,

especially for the inert gases.
Analogously one must expect that AY, involves the interaction of

the molecules in triples, so that it would be related to the third virial
coefficient C. However, no gencral formulae fOrlﬂb,, A, 9 ees are known.

21. The virial expansion for the equilibrium state.
Although this is well known, and a little aside from our main
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topic, I will give a derivation of (2) and (3) by following Bogolubov
(Journal of Phys. 10, 256, 1946). It is an introduction to the method

he proposes in a following paper (Journal of FPhys. 10, 265, 1946) for the
virial cxpansion of non-equilibrium properties. Start frem the canconical
distribution in co-ordinate space

—— ~, P sy =8 i
pig ! ERENEEN T

ilj)rd i.(pz . (;buJ ) = 7§L'”' £ ’ (4)

| )

N T £ : P g [RT
&”' -“:‘; rUR ’)/ ('/\'\5 v} ‘ l (}(l d Y

D, is symmetric in @, ... Qy; and normalized to unity. One can form partial
distribution functions by intcgrating: let 1 Fs(ql... qs) be the
probability of finding an s-tuple in ql..qssbfs

o~ i ‘ ; Y * ‘
- 2 Ny 1 iy LSV A4 oo 2N s
be. \ $ - 1 v Yn
Now observe that DN fulfilils
AD v ey s )
Tt N LR al '\‘ _ /.“ ‘ :,":. s ¥ ‘! 3‘ .I
it S TSt o _.L Eo o t ! 5
A O s " (5)
;'} .i,ll g A 4 ;/ i 4

by logarithmic differentiation of (4). Integrate (5) over SVSRTRE Gy

then one gets for Fs in the limit N — -, VV — = , v = V/N finite:

;'1 ‘:’ 3 i l‘ . ; S . : ) . (*‘ . N
by L \}._‘ ~ 4 -‘ WU | o\ 7 \ l \“ 1’1...-.&:549 Iﬁ « ¢
3 LT \ % T Your e 5% b ’ .—,-‘W: ’ e {\,.
‘fﬂﬂi ‘Qa H‘b.g it | o gr:& A (6)
t
where : i ; ' ~ A4
TR /\l)&!(} = =7, -
\ = _./,__J L o T e L
EEN S k J J

Proof

o

YRR L2 Gt 2, b

=\ S 5 '\ A ,_,} o

From the U  part of Uy in (5) one gets the first two terms in (6). If i, j

are both > s, differentiation by (ﬁk& gives zero; the only terms
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remaining which give a non-vanishing contribution are iF ..y With j > s.

Becausc of the symmetry of DN’ one gets for all the N - s values
of j the same expression, namely :

)

-

B e
l/\ ‘I" '\:ﬁ ! !

s

‘ IY 3l

,/) [Vx L Ak
so that in the limit we have (6) { .lﬁ.:ljl- —_— ) .
\ S

One can now say that the hierarchy of eqs. (6) for the successive
distribution functions must be solved with the conditions

=" i Y- — = v ) v
F\ \{’r'/’ll\> \-T.T: r\'l ) S—n (,\ (7)

'i/" - 'y; ! [T - P

Now make the development in powers of-—l- :
o — {3 Ao i .
Fo=F "t rt—=—F +.
§ td ] . {7 ¢ 7 ~ (8)

Then one gets from (6) :

","\, l“ il | 1 ; _ -

.__:‘_..-'-._\.-- --‘-::' -, :;-:\:.., rxi ) - (“*‘ \

Y KT 0 - (
PR \ - o ,
b " ! dily U j ‘5¢L¢LLL :“({ '{ N
e oA tq'f’ ‘ 5 a '&:71 \ d th+ \”'ﬁi‘p l \i U
dif. A1 oY C 0y tat

which can now be solved successively. The development (8) must also
be used in (7), giving :

T()c v -" - /(.\) f" % ,
A IRy TR ) — 0,
i < e N T = il

rS “/Tsz F ‘/t‘3 P . ’{%<)'

(10)
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etc. Finally, one must require, since } ¥ (s }'ug =V s that :
l i B
| S f / Py
. I . cooe M
Lim - I, 4 | Lim == 1
. -~ A/ i, = & \S L
V= v

| (q,)(iﬁ': ¢ (11)

Eqs. (9), (10), (11), suffice to determine all F(r)

\"‘ __{; ’:“.i \:'

For instance in

eroth approximation : from (9) it follows, putting:
— ('1} a i'.)) \ ¢ ! \
L g a, . .. € };"‘( v».'“k)- k )
’:\, %, 1 t t: gl'“ s ’ \ (’/ T ;
that
s o 17
5 G N
o .
t /Yv(
(o
so C

3 = const.
condition (10),

(o)

(bccause of symmetry roquirement). From boundary

(clghys

and from normalization (11) C( ) 80
F(0)= 1, F(o) = exp (-Ug /kT). (12)
In first approximation, putting again Fé ) ( \ /
one gets from (9), using the symmetry
requirsment : ; .
SHE 3 A"ET'EL i ’g
(5 = \\ d (‘V‘\ 4t l &- =t - j " + 5
N ' ‘ . 5 S
X ' [ 4 ) -, —L ' -
B, is a constant. If !q:; A }*“T S i o
one sces that
.) :} L ,t ‘ s
=\ 2 ‘_ ,‘\"'—,’- "" e ' + D‘;
r.\ “", \ ”-.w k —~l ) |
Since :
ORI o b :
i % ’ : { ')(T ‘f b ~
=Ty, Y SR
, | R T )

one gets from the boundary condition (10), that B,
the normalization condition (11) =

sBr . Finally from
T’bs:'\u\z i{ '“'Td)"’“* "
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giving o YR

N U
FiY-0, B o-¢ n _\,d‘w” (!

where for abbrevation :

4. _ ¢ (r) ik T

And so on. To get the equation of state one only has to use the general
virial theorem which leads to :

-,

where r = 47 -~ 9ps in which one must then substitute the successive
approximation for

F2(a1, ap) which one has found. Using the
zeroth and 1st approximations

(12) and (13) gives the equation of state
up to the third virial coefficient.

i

22. The Kirkwood - Born — Green development.
For non—equlllbrlum situations the probablllty distribution
D (x s eee XN’ t) in ( -space (x = q ’ p ) is of course not
1
known.
All we do know is that DN must be symmetric in Xyy Xy eee X
and that it fulfills Liouville's equation :
/"ﬂ‘_ ’\ ; ~
Lék'N 3 ? \“}j> &
.',\/' - = ’ (14)
Moo : = , 5
Vo< H D JHOAN N L NIRS
SLN ) EFI il Lol N o L Ty ey b2 ¢ e,
\ \I ]“‘} ‘:v' {\’}. (r \' !,"L '/3’*‘ “ ) 1 ) {l", ‘/\‘(‘t )
2
T (p) = ~£ 3 U (g) = outside force, in which one must include the "wall
2m

potential" is the gas is enclosed in a vessel of volume V.

One still can introducc the partial distributions
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and then (14) is equivalent to a hierarchy of equations. These were
written out at about the same time by Kirkwood, Born and Green, and
Bogolubov, and I will follow the last. In the limit N —» o , Vi
v = V/N finite, one gets : '

Vh Ch masLid, (< .
> SH Feb 2N dy 0y ¢ 1
/B-t B ( “{S 1 S) !,F > >!‘ + ! /\‘l..-‘. Jr ; S+ , F;" ; ) . ( 5)

HS is the Hamiltonian of the s-—tuple of particles :

L
F“& N 2;* ~r(¥72)*'4LJ ‘ 4)[j

o idia) s

where there are no outside forces, and the wall potential can also be
omitted if V is very ‘large.

The proof of (15) is quite similar to that of (6). In fact one
gets immediately

; . M
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Since D must be assumed to vanish for large s and q.,, one easily sees
that in the last term only the terms with the intermdlecular potential
with i < s and j > s will give a contribution. For such a term
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where the prime means that dx, is omitted. Because of the symmetry of D,
one can always put j = s + ¥ and one has N - s equal terms :
[ s f ¥ \ e ;
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Altogether one gets therefore :

N-= (. VS - )
———— /\,dlsr‘ >’ i#‘»‘ ,! F l

(I o N L ! S B
§ i
\/ S )

which in the limit gives the last term in (15).

Of course no real advance has been made. The set of equations
(15) is equivalent to the Liouville thcorem. Note that for s = 1, (15)
becomes

A T .+
3 Flyp )

T I T o
g de 20T ST D8 (phpy
\ ! ‘ () {7'."'..4 ,) YJ,‘ (158.)

which "smells" like the Boltzmann equation, but the connection is still
far from clear.



The idecas of Bogolubov . II.

23. General ideas.

One is tcmpted to imitate the virial expansion for the equilibrium
state, starting now from eq. (15). This is not a good idea, because
in the zeroth approximation one would get

47 7
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which means that F(o) changes in time according to the interactions
between the s partfoles, without ccllisions with other particles.
Such an expansion can thercfore be valid only for very short iimes,
small compared to the time t, = A /U4, between collisions.

In fact the order of magnitude of successive terms in such an
expansion after time t would be :

t i

.~ ) L%, o b b

B it .. 5 A K o
l\"" "‘:4‘ '/"'\ A ‘ 2

i

(n = 1/v = nuaber of particles / cc 3 r = range of inter-
molecular forces; )\ 2 —— = mean free pa%h).
A B yre T

e

Yet one must somchow obtain the Boltzmann equation in first
approximation. One might think that at low densities somchow the state
of the gas can be described by the first distribution function
P, (x, t) and that all higher ones are products of F.; at higher

densities one would need both F, and F,, the higher distrib-
ution should be expressible in these, and so one. I thought along ther
lincs for some time, and also Kirkwood follows this idea. Success has (
been very mcagre- at best one can "derive" the Boltzmann cequation
from (15a), but no one has really gone any further.

Bogolubov argues in a different way. He distinguishes in the tempo-
ral development of the gas three stages :

2. Initial mixing : from an arb-trary initial distribution D(x ...xﬂ,O}
he supposes that very gquickly {in a time of tho order '

——
‘

= T /Uav = the igteractloﬂ time, or time of a collision; T is very

L

small compared to t_ = /U o Which is the mean free time or time
between collisions, at lc&¥t for modcrate densities), a (first)
”smoo*hlng" process occurs, and that from then on the development depends
only on F.(x, t). The initial detailed knowledge is lost, so that

after this initial period the further development depends only on Fl‘

b. Kinetic stage. This describes the development of Fl’ for which
one assumes a kinctic equation of the form :

—
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(1)

while 211 the higher probability distributions depend oa the time only

through F1. One puts

Fit x, X y=Foix o X FY=F %% o« F )
$ - ‘ ( X, . <, !T:— \));‘ ‘. (2)

for s > 2. One keeps the egs. (15) relating the distribution func-
tions, and the problem is to find A(x, F,). It must of course be so
arrangcd that AO describes the streaming, A1 the Boltzmann binary
collision tcrm, A2 the triplc collision term, ctc.

After a while, in a time of order t_ (the mean frec time), but
small compared to macroscopic relaxation times, a second smoothing
process occurs, SO that from then on one does not nced F,, but only
the five momentis (U, U, and T. Again one can say that some kncwledge
is loat, and that the further development now depends only on the value:
of P U, and T afjor this second period.

c. Hydrodynamical stage. This describes the development of p,—ﬁ, and
Ty io* which one assuaes hydrolimanmical eas. of tho general fowm s

A ! i E 2o T

Ny T

. - A

s I

A L R

Vo £,

] 2 ; .

N+ T HERE : \ (3)

One keeps the kinetic equation (1) prev1ously derives, but one assumes
that F1 depends on the time only through p, u, T, so :
(t, q’_ﬁ) = F1 (a, ﬁa b ﬁ’ T).

The problem is to find the functions R, U, & . Like Hilbert
and Enskog, Bogolubov uses an uniformity parameter in
all functions are developed, so that this part is rather analogous
to the Hilbert-Enskog development, except that now in principle
the virial type of development can be obtained for the viscosity
and heat conduction coefficients also. There are no results as yet.
But there is a whole program !

The kinetic equation.

s R re by e Al ol

Using the general equation (15)

¥
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and the expansions (1) and (2), one gets for S = 1 :

[ . - YT )
v \('! '7§ N (A: P

!
t o i 3 -
SETRE e

;
,; oY (4)

e
N

etec. Ao is therefore the streaming term, as expected. For s L. 2,
one gets :

- (0] > o) -
4. FPLep, R0 -0
! s 4 Ly
A (53)
’ -1y {1} ) ; o Gy
FET R A = e A s o 5D Db '\ }) s }
!_’:. j I A ‘.S lv-)’..- ‘ \ ‘L‘, }"J .r-\f}\)‘ﬁ 5 12_‘( \t".\,,') .‘ e \\' (Sb)

etc. Here the dlfierentlatlon operation D écting on any function
‘q}[ Xy _'{' ) means
L4 NI

| - .‘:\. ‘4’ il oy
VE AT \} (6)

dr -

since all time dependences occur through F,. The program is now to solve

equation (5a), which then from (4b) would = give A,, then solve (5b)
whick would give A2 .y &tc.

However, to solve (5a) one needs some boundary conditions. Bogolubox
demands that for any function F, and for all F_ (s > 2) s
R T X, ig,; ? Yo T 7N @ — .
. ' A t . A ,‘ 5 ...“T ! i ( /) ( '7 L/

W -——J

-~

FOT | e 3azi (7

Excursion on the operator S(:)z
Suppose that the motion of the s particles under the influence

of their mutual interactions (with Hamiltonian H ) is solved, so
that one knows the phases :

Vosaitox, ) Crhzos

\ R

i of the s points as functions of t and the initial phases X eee Xgo
t "
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Define the "streaming operator" Sﬁs) acting on a function f (xl... xs)

by (s)
L o | N\ = / i j
E)t *’k X Xy) = f‘\ X,) Ky oo Vs >,
PSS N X (8)
In particular, of course, o 1Y {": 0 and also clearly
Sgslt _ Sﬁs) . Sgs) - With the help of S(:) one can "integrate"
1 T 1 2 :

partial differential equations of the form :

°

Yot % x)

O TR r i \“ oy
s : £ (). Hj::\"‘l" 4; * A{- (*/k i '\!-"\

where f is known. Namely, one can write equation (9) in the form
D& D . . P ;
37?:_ = f‘(f’ Xy owee xs) S uubstan§1a¥wd?ffe¢cntlatlon quoticnt).
Therefore, i (t,x,..-lx ¥ = q;(g} Ko v - be) + i (O, vy Xyy ),
where the initial positions x ... x__ and the positions at time | ,
Xy o X ¢ , must be -onsidered as functions of t and the X eeeX
(which are the positions at time t). Therecfore : g
! \ x = "\_ { 4 '\;“_\' X \.?\) « Y
,){('/XM)' ’ 3:5) = Vv N ot ",)
% as)f,) ,J/k . .
- "‘_t ‘»& ] ,) \>
and analogously :
o [ ,
:\, ’:"T"\‘}n ; T Cal *—’\-,;\t."-l\\l.r{l“c\: x&)c

Hence the solution of (9) can be written in the form s
)

. . ( Y o . . ) \'\ ‘ ] .
(? {At»w ’, ‘) Y . J {«unvi Co X o) 3 l A T “{(t - Jt {‘T Y 'YS)'

Condition (7) somehow says that before the s-tuple Coiiisivi wue o
is a product of the F,(x,). I must say that it is not clear to me, but it
works, and it is perhaps best to show how one can now determine the
Ai(x; F1) successively.

First note that with the expansion (2), the condition (7) is equivalenti

to
Y " ) 1N
(s . e = o % [T £
L { s s W g ; o RS \e i Y 4 T e
(\) ‘: l'" ( X v * o ‘—)-]‘ i ' ) = “ E” ] L ! & \\ k‘{ -3 0 1 S '\L/
== - ' T .
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etc. Now one can start.

Fi.rst approximation.

We have tg solve (5a). Singe (5a) must hold for any function
F,, put in P.° the function S(1)Fy for Fi. Then one secs that
-7

N ) Ol ey CO) e\
Dy Foln, N =2 FU7 (kg Oag 1)

v~
1 ¢

because
A i)
1)' e 4 f~ . i)
v B g {‘)‘ l‘*( .
T T OYTETRY O
and
_.3.. g 1 F - _)}~ . (7‘59‘ F ‘\ -A (v F )
AT T "("”'ﬁ"i!‘\rt)".%' o= T
so one just gets DoFgo) according to the definition (6) of the operator
D_. Therefore (5a) becomes :
‘ _ e 01
’A :m{u); R ‘ i ~ (¢}, N = ?
:7:' L3 LK KSf >_T-Fj)"11433 FS (k""xﬂ’ "T')»Xg
whence (using the first term of the general solution (10)),
(L) SN o8 oy f"):‘ =
so @
! ':ﬂ’} {'I f
kil o\ - = N ¢ N F
b k(f \-’.v'i»‘ \T s '\"Xa' "(31 ’Trl‘)-

e
i

This holds for arbitrary y and since the left-hand side is independent
of T , one can go to ¥ — = , and using (7a) one gets :

L) ' P2
i £ ¢ e P 2 )
\ 'V 5 + TN L ‘ v )
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On the other hand :

/Cft‘ Fl(yk)‘:F’{(V{ "‘--E—t‘-,f'j\)» '

-

M

’ (5) o “) — G ‘/ . “*) ] T NES ,f))
\_ o ,lr ’.’. (Q\ ) e ‘]-T !"’: \ \"T (#,‘. t S—‘r }/3; .’”\‘”‘I ,Pl').
= ‘ :

"" (.\‘;$)f3
¥ _— Aoy YA, N |,.. B
PY00 - 20s e v (19

Pgs) is the constant initial impulsc of the i-th particle in the s-
t&ple collision (governed by Hs)’ which leads to the configuration
X, see Xg at time zero. The transition from p. to P, goes fast

('in a time of order of the interaction timeT = 1ro/Uai‘r), at least
for small s), and since :
T (¢
(' /
S\})/ ¢ - \\ T, \&‘ ! FL
‘v\ e i
- ]
one can see that for T =%, S,#y‘ v mr-T{?‘ will go to
the limit 3
o

(12)

Qgs> is the position the i-th particle in the s-tuple collision
8t time zerpo.would have had if the particle had gone on with the initial
momentum Pis) . With the definitions (11) and (12), one has therefore:

L

A ~ \,(g) y (N
F gy B R AGCRDY)

! } p=

and according to (4b) this leads to

C I S PN N PN

/

We will show the relation of this expression to the Boltzmann collision
operator presently. However, let us first look at the :
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Second approximation.
To determine FS) (s 2 2), onc has from (5b) :

where we have put
JV = - D I (v 22, @ 6
Clearly W is known. In fact from the definition (6) of D, one gets

‘\/ (’( )[“ )- ) —__ A (( (<) f\,(() )7—- r((\(s\ Pm)

14
°

;

‘)

|
S s (o0 e
o 5 (TR
—:" ) B (16a)

l i~

againi then one gets

, . (v}
fk}ixl‘._){l" 'Y.‘.»}B’T F:‘

J/ ’

Now put in (15) 851% F1 for F,
D F, g, S F ) PHO R

e

Using now the complete solution (10), one gets :

Y F )= SR B 8

(i),
FS (X' \ y -’,“'T «( £y
i ‘ - (1 =
po \ »1T \n- oy Wi, xs S :,))
o
or (also changing T- V'to T°7) :
e (\ “'() f
}'}f‘){.,l‘ F;) | ( Xy )‘V T F)+
v‘ I _'7"» \ e (') }»
+Sd &> J’(\" AR ISERNY
X

The left-hand side is again independent of | , so by going to the limit
“T -oty, and using the boundary condition (7a), one gets :

.

A

(v — _ : Y ; v L(‘) o
s U‘-"XM‘"’)‘S ATS*"‘.\%\S (i on )—',) (17)

which inserted in {4) gives for the triple collision term in the basic

Q
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R
R

kinetic equation (1)

\

. {18)

ATULGF) < $dke b VAT S2Y, (1, X SR Y

It is now clear how the successive approx1mat10n method clicks along.

Pe

25. The Boltzmann equation.

We conclude with Bogolubov's proof of the equivalence of the ex-
pression (14) for A, (11; F1) with the Boltzmann collision operator.
This equivalence is only rigorously true for the case where
F, depends only on the impulse. In this case we will write w(t, p)
for F, (t, x). Of course in this case A, (x; F ) { T (p), w(t,p)} =0
Now note that in general

s - ‘"! (‘5) 713) }N/
%Fhlx,--’“);{‘\!{)‘ , ]‘L/ (19)

where f is an arbitrary function and the P(g) are defined by (11). The
proof follows by observing that the Poisson bracket (19) must have

the samc form whether expressed in the variables X,... X_ or ., in the
variables S X4 , because the transition from X, o u(s ’K

———

is a contact trans¢orm1g10n and the Poisson bracket is 1nvar1ant under
such transformations. But for T —» f’“jHS will not depend on the

coordina*tes since the particles are then far apart, and the Poisson
bracket of two functions of the momenta is zero; hence (19) follows.

T(py) + T(p,) +¢1 5
F(X)J(L)‘ )

]

Apply (19) for two particles)W1th H(x1, x )
and T (;) 2)’ LY( )) = 4 ("t ) P L)

then one gets from (14)

/.\‘(\Xﬂ@ ) L \ ‘\"L:,z (t"ul., \«f(t, P.(l)‘)\mfﬁ,e_m)}

1y

= = t)L\J('L ‘iT‘\{")*'T(P‘) ) \\f(ft IPM)\/\I’/J[,PI))}‘
(7 SP»* yX PN ‘ —»(L) o ()
:%}‘lﬂitx'l {1::’3{%A *'7:§ \%L‘N,” (t r(t/iz ).

Since Pg2) and Pég)depend only onl aé -‘a? { (central forces!)

771\‘: NG . Take cylindrical coordinates now for the dg
integration, 1th the origin in '51 and axis in the direction of theé
relative velocity 73 (;i -5 ) 3 call the coordinate along this

axis E, ; then :



P T G P | ! oy (1) J . e Hei. @A N
R o ol ? - . : P2 ; , ‘
Lol 2o (8P (0 RIS Y e g e
2% ()/t ik . ’ \ d Ly % r/ A ST ')‘b( o P /'.,,
One now can integrate over 5 + Remember that P(i)(x1, xz) and

Péz)(x1, x2) are the impulses with which the two bodies_start off in the

- collision which goes through the phase Xy Xpe Therefore

% }'.: {1](1!)11.)}”-: ot Pl ) \' .’PL.IL(X")Xi \t"j:“"”’ = FZ'

\'L) . ‘_ x o 'L), }
R el } ¥ e, DA w
‘(r‘\ (’“v)xl)/(z”\m o \QPL (/()x,){.;

o

= IDL)F
< A
&
5> )
(pl, PZ)' Since because of the axial symmetry d a = 27p dv d%>
wherg b Is the impact paramoter), one gots :

whcre pf, pg are the impulses of the "restituting collision” (pf, P

O = , g + A N *
Ay B =2 THIF abippw (b el J(tp)-
) s \\.
- wi(t IJ.) ""'|t’r‘/)‘ (20)
with :
LR T rbdbe 27Dl 6 6
iy ;»T“" Pt Lrbab-l 3 s ; 50 (20)

is just the Boltzmann collision operator.

For the general case in which F, depends also on the coordinates,
Eq. (14) is orly equivalent to the Boltzmann collision operator if one
neglects the difference in the positions of the two collision "partners".
during a collision. Otherwise one gets correction terms (described by
Bogolubov as a kind of "inter-ference'" betwcen the streaming and the
collision terms), which contribute to the equation of state (remember
that the Boltzmann equation leads to the ideal gas law!) and also pre-
sumably to the At; correction in the viscosity. For elastic spheres

thsi was already noticed by Enskog (sce Chapter 16 in Chapman and
Cowling).

For the discussion of the hydrodynamical stage, I have to refer to 1
the book =

N. Bogolubov , Problemy Dinamicheskoi Teorii v Statistichestoi
Fizike




Addition to Ch. 9
in. except of the paper of Kac. Consider first.
whic:: need not be

a . Stationary, discrete stochastic series ,

7 for this more general case .

Markoffian . We will extend the result ¢i Ch,
o~
Denote by 1y " net n, ", so tha* for instance ¢
- _ - . ..'—;— "
Wy ( n ) = 1 Y ( n; )
J#k
. Then,from the

, end choecse a fixed value of n

etec .

distribution functions , onc sees :
~t
L (n, ..ng,, n) = L ( n,\n.,.n J - LA ( n’\E;:'n )
k e k+L
o ~ ~~ ~d
Wk+ ( n, ‘g,'.',’_g,/) = Wk. . (&'{1_\:;:_'_11.) - ( Jn -.:‘3 )
k .k K+l
k 2 ( n, '1. .\‘o 1’1 ) k+1 ( Il,, o‘v'y‘>n ) - u}{-‘-z ( I_l:_‘-‘.‘ n )
k-1 kil k+2
Calling for abhieviaticn @
- (F...7)

w, = W
s 8

Drop the index i
stationarity , and tha general comsistency relations between the successive

(a)

(v)

(c)



one gets by combining .a) , {Y and {c; , the basic lemma :

W, (n,5..5n)
2 (WBenn) =w, -2w o o+ W, (1)

For k=0, (@ and (O are still valid ; _b) becomes :
~, A
LN (n) = LA (n) - W (n)

also true if W 1 . So 1} remains valid for k =0 .

Theorem 1a s For each n :

D
i ~ ~J
,r'-’:....,P (n)noobn,n) =l (2)
k=0 k2
Proof : The conditional probability P 42 is defined by
il ( m;n... nln }
~Nd B ? ? »
P2 ( n!n... 'x‘{‘, n) o 2
¥, (n)
From (1) one gets easily :
<y (n5.fn) =1-W (3) +
vea = - W. - W,
2, Vw2 L TR 1 N2 T YN
k=0
-~J
Now Vil >/ Wy, o Bince N+2 successive n -values must be less probable

then N+1 values, and the w's are not negative and bounded, so lim.
N

) = 0, from which 12)

.
N
exists, and therefore 1lin v, - W,
’ o ( N+2 N+1
N zeo )
follows .
Eq. £ 2) i3 the Wiederkehr theorem for discrete stochastic series.

It says , that it is certain that an n-value will come back after some

time k T .



Theorem 2, . If :lim. W (n..w)=0 (3)
= N-ew

then the average recurrence time of the state n is given by :

, e
) = o (4)
3
f : Since by definition :
P
<7 o
3 (n) =4~0 (ke 1)TP , ( n/n ceal y 0 )
k=
cr2 has to show :
i_/j
‘,/_:\__O ( k+ 1) WK+2 ( n, nouosi n) = 1
k:_:

From ;‘D one gets easily :
N

N-1

2 W (n,;.'..ﬁ;n)zl-{N(w-w )+w-(
=0 k+2 N N+l Nj

Now , since the left side is a non decreasing sequence , N (wN - "N+1) Y
forms a non increasing sequence of positive teris, so that the limit for
N ~—¢~ exists . Since lim wy exists according to @ ’ lim.l\'(x_»:,,\l- Vi )

exists . Now, the series of non negative terms S ( Wy W ) converges
e

e =1 = i J:
: 'Tqi"c') ( "N - wN+1 ) =1 wM+l s and !141:1‘” wM+l =0 j s &and therefore

if the limit of N ( Wy = WN-'-l) exists ( and we know that it does ) the limit
must be zero . This completes the proof . Consider now :

. o
b. The sireaming in '- scese , say Letwesn *wo en v surfaces

E and E+AE . Cail the total votune S2 =1, and -t A be n small

region . ( We will speak abcut a regior, by which we mean the small
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cylindrical volume betw.:n the two energy surfaces ) . Let T be a volume
preserving transformation of the [ l -gpace into itself ; say T is the
streaming of the ensemble fluid in the tim. T . Successive transformations
will be denoted by T" . One then has :

Theorem 1, . ( Poincaré's theorem ) : For almcst all points £t

b
in A there exists an n 3 1, such that ™ is again in A .

Proof : Let £ (& ) be the characteristic function of the region
A ( whichmeans : f (W) =1 if ) dis in A , and zero otherwise ) .
The sequence : f (W), f (Tw), £ ( T W ) ... can be considered as
a discrete, stationary stochastic series . Each variable can have the values
one or zero with probability fAjand 1 - TA}, if{ Al is the volume of A .
( 1,0...0 ,1 ) ie the volume of those points in A which after k+l

wk+2

steps return'to A . Theorem 1  applies , and the statement Lim§f{ 1,0.. 0,1) #

a k—"P s .WI“
means that the' to*al volume'of points ¢y  which eventuaily will return to %’
A 1is equal to the volume of A , so that almost all points will return

( " almost " because a set of points of measure zero may be an exception )

Theorem .. If T is metrically trengitive ( or if the motion

is ergotic ) , and if n (') is the first n . 1 for which , if W is

74
in 4, T (W is againin A, then :

=

)n(w)d‘z_ =1

A

or the ensemble average of the length of the Poincaré cyc® 3 ¢

0 "'c]li] .(A n(W) ay ‘{H]



which is analogous to 4

Proof : One has to show that the metrical tranmsitivity implies

condition 3 . Now condition ( 3) is in the dynamical case
n

Lim. f.c; E, (1 -¢f (Tl’w))

Ny 2

]
[«

(5)

which means that the volume of the points in (). which are never reached

by any - poi.fit in A is zero . Clearly this will be the case if the motion

e
is ergodic . According to the Kix-':h'tbff ergodic theorem'implies that the

time average of any function of the motion is equal to the ensemble average.

Therefore especially , for any point ¢ in ) :
n
e L oo e (T ) o4 (6)
bosen B k=L "L ]
Let B be the set of poin:3 , which is never reached by any point in A .

So , if a point {U is n mB f( ™ w ) =0 and therefore

lim % f (Tkw ) =0 ; so B must have measure zero, since we know
n . S

from ( 6 ) that for all (J ( except for a possible set of measure zero )

the limit is [A] .

Additions to Ch. I8 and 19 .

I. - The Chapran - Erskog theory is limited because of the

following three Le:.¢ ~ aptions vwica ha - Lien mode 2

-

a - Centrel forces , which liz'ts the theory to mono- eiciic

gases .



b - Small value of the development parameter L LE&%%%EQ%%; ’
which limits the theory to slowly varying phenomena { no shock waves , or
very high frequc..: sownd |, where the wavelenzht becomes comparable with L Y
Also Knu§§en gases, where L is comparable with macroscopic dimensions ,
can not be treated .

¢ - Binary collisions , which limits the theory to gases of low
density . %his last restriction is the most difficult to remove , since one
has to extend the Boltzann equation in a fundamental and i1l Bogolubov

unknown way . It is dealt with in the last part of the ncies .

2 . - The extension to poly etomic gases . The interest lies

especially in the apolicaticn !> tre propagation of sound . Already in I881
Lorentz remarked thet for polyetomic one must expect besides the viscosity
and heatconduction coeificients (4« and ', a third gas constant connected
with the transfer of translational eaergy to internal energy , and that this
should heve some effect on the propagation of sound . For low frequency
where the equilibrium between translational and internsal degrees of freedom
has time to adjust itself all the time , the velocity of sound will be given

by the :lassical formula :

If we assume however that the transfer of energy needs on the average a time

~d

L , so that one has an equation ~f the form :

4%nt  Utrans1.
dat = Tt

- U int. (1)
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( enalogous to Newten's law of cooling ) , then for frequencies (0>, !

Y
’/u

the internal energy Ui wili remain unaffected , and the gas will behave

nt
as a mono-atomic gas , so that :

- S KT
Voo =} 3 m
One gets a dispension region around :lf,
i . " ’
"/ e o accompanied with an absorption o< .
/0N X
i A -“- o ~AE L
- Tt (-&)

This effect was actually discovered by Kneser in the late twenties

sor 002

( Rutgers, Herzfeld- Riee, Rourgin , Landau- Teller 2 . 0 ) See the

, and since the theory has been considered by various authoss

review of W.T.Richards , Rev. of Mod.Ph.II , 36 ( I939 ) . There remained
the task to incorporate these developments into the general Chapman-Enskog
theory . Already in 1922 this was tried by Pidduck ( see Chapman and Cowling,
Ch.11 ) . Pidduck assumed thet:the molecules were rough elastic spheres,

so that incacollision translational energy could be transformed into tota-
tional energy . For this model the Chapman-Enskog theory can be generalized,
but the model is so artificial that it is hard to see what it has to do with
reality . FPurth:-. s . the dispersion of sovd is usually caused by the
difficulty of the transfer of translational into vibrational energy , and
only rcoently the so-called rotail -m' ¢ o dlauarsion has been observed
for hydrogen .

The origin of the difficulty to extend the theory to more realistic
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molecular models lies in the fact that in tlue ciacsical theory with non-
spherical molecules the probabilities for the direct and restituting collisions
are in general not equal to each other . It is well known “hat this fact

( also first pointed out by Lorentz ) already causes diff: ulties in tie

proof of the Maxwell-Boltzmann distribution . It forced Boltzmann to genera-
live his proof of the H-theorew by considering cycles of collisions ( see

last chapter of Vol. ;T in the Gos theorie of Boltzrmemn ) . Dr. C.S. Wang
Chang and myself have evaded this difficulty by describing the internal

degrees of freedom of the molecule quantum mechanically .(1) Instead of

one distribution function f , we now describe the state of the gas by a

series of distribution functions :

-
fif f(rps ’Ei’t)

-~ =
giving the mumber of molecules in the phase-cell dr dS which are in the

ith quantum state with internal energy Ei . The Boltzmann equation becomes:

’ 7 ary t
Dt chfd)”dilgi \s.a.f)z_fk 1 flfiaf (2)
i}
The ka( g, 4, 10 ) is the differential collision cross-section for a
P
i}

collision of twq molecules in the states Ei and Ej , where after collision
they are in the states Ex » Eo and where the relative - locity has turned
over the angles O, (0, in the solid angle d .7 . The m -nitude of :ne
relative velocity -hanges in general too ( because of coussrvation of

energy ) , say to g ' However the principle of microscovic reversibility



remains valid , so that :

kL ij
q = J (3)
g ,L = g P
ij xf
This relation is the reason why the semi quantum theoretic: description is
80 much simpler than the classical deseription . Finally in ( 2 )
—
fi;jf‘ f(r, 5 , Ej , t) and £ f:C are defined analogously .
Especially fcr the applicaticn to the propagation of sound it is
convenient to distinguish the two limiting cases :
& - The inelastic collision cross section is of the same order

of magitude as the elastic cross section .

- Tinelast & 1

elast.
and to arrange the successive approximations in these two cases differently .

We begin with :

& . Transfer of translational te internal energy goes easy .

The treatment is the very similar to the mono-atomic case . In zero h

approzimation , one starts from the complete, local equilibrium distribution:

(o)_ /m____ >3/2 : 1 X r__}. /(.l. E"_ (1)2 B 1:7
BT X o (a0 A ER ]

-?
dependent on the five macroscopic¢ quantities n, u, and T , which are still
functions of x,y,z and t . In this approximation one agai: zets the E:ler
equations, only now the therman energy Q depends more ccn :ticatedl: un T ,

since the internal specific heat Ci is in general temperature dependent.

nt.
In first approximation one also gets the Navier-Siokes equations



but now :
¢ 1 (
Pij:"poij-z/“(nij-? Da("’(ij) \({id D_. ;
(4)
Iy = C"T
1i= -(Atr+Ahw.)'5%

The only differences with the case of the mono-atomic gas are, that the

heat conductivity consists of two parts , and that , as Lorentz said , a new
constant , the so-called dilatational viscosity coefficient ) appesrs . The
K vhich
1J
are supposed to be known . They can be in principle calculated if the molecular

constants /\tr ; /\int’ and | can be expressed in the I

model and the interaction law are knmown ,although in practice this is- usually

a very difficult task . As example I only give the expression for G

2 e - =&. ) 2
) 4 /T (%) ﬁ
ot = o ‘Ei'fj[dfzd ¢ (A8)F P % (5)
ijkf is
where 51 = Ei/kT and Q&= ‘Ek + é"‘, -5‘1 - & i Because of

the factor (A &) 2 clearly only the inelastic collisions give a contribue
tion to ),

Applied to the propagation of sound , in the validity of this first
or Navier-Stokes approximation , one does not get any dispersion of the sound.
The di}atational viscgsity only ~ives a contribution to the classical

"

{ Kirchoff ) or " cbsorption . One finds for the absorptica

coefficient :

wé ' 4 %) e 1\\ (6)
.oni (( 5[*’4' - + Cpcv/ ]
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The effect of K can therefore not be separated from the classical causes
of sound absorption through the viscosity and the heat conduction , S—
b - [Transfer of translational to internal energy is difficult .
In this case, it can occur easily that in perturbations of the equilibrium ° t
state the temperature of the translational motion difrers from the temperature
of the internal degrees of freedom . It is therefore better to describe the
state of the gas by six instead of five macroscopic'quantitiea s namely
£. Uy T oaner, @4 T, By taking the inplastic collisions into
account in a one higher approximation than before, .one gets in ze*ro"‘Ch
epproximation again the Euler equations topether with DTy nt/ DT =0.1In
first approximation however one does not get the Navies-Stokes equations ,
but the equations first put forward by Herzfeld and Rice ( Phys. Rev. 31 ,
691 , 1928 ) on phenemenological grounds . One obtains , :sides the conti-

nuity equation and the equation of motion ( in which the vressure temsor has

ncr the same form as for a mono-atomic gas , therefore without a diletational

viscosity term ), two energy ejuetions , which determine the changes of Ttr

and Tint The really new equation is :
T. ’ c
int m Aint A T + _int
Cint. ot = P . v ( Tor = Ting ) (7.)

The physical interpretation is clear . There are again four gas
k
ij’

In the (\ tr and /{A,. occurs now only the elastic coriilsion cross-scctian,

constants }"tr y P\int ’ /1,\ and C , which can te expressed in I

so that just as in the mono-atomic case one has with good approximaticn :

~

/\tr = % /U' Cor.
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In the relaxation +ime ¢ occurs only th~ inelastic collision cross-
section , and the expression for " is very amalogous to the expression ( 5 ) .

for }{; Formally in fact :
3
c.
int.
’{: = ;E——’ nkT (8 )
tot.

Applied to the propagation of sound ( as done alread; by Herzfel( and
Rice ) one gets a dispersion region around the frequency 1 , ac.ompanied
by an absorption band , which is well separated from the " ' absorption'
region caused by the viscosity atd hea* conduction , for which one gets eq.(6)

II - Extension to fas+ varying phenomena . The question is , what
to do when the Chapman-Enskog development parameter : L:§L£;%%%£;§% ) is
not more small , as will be the case for Knudsen gases , and for fast varying
phenomena ( structure of shock waves , propagation of high frequency sound ) .
Of special interest are the experiments of Greenspan ( J.Acoust. Soc. 22 ,

56 ( 1950) on the dispersion and absorption of high frequency ( up to 1 mH)

sound in Helium at low pressures ( about 0.1 mm of Hg. ) . Greenspan plots

his result as function of the dimension less parameter G = _t*; s which is
v &él , where the collision “»~queney ¢4/ v 2:. 'QIFbr Maxwell
(AG
molecules, with L. the trensport mean free path, one gets G = %—H LY

W
Biggest value of G is about 10 , so one really has extrrr= conditionc .

For G = 10 , the velocity has increased to about 3 V° , Wh' e for =2

the absorption coefficient is already 0.5 , so that the incensity drops by



a factor 1/e in 2 cm .

_a. Omne can ., to -~vitend the theory by cirrying the development further.
It is to be noted that the successive order hydrodynemical equations ( Euler,
Navier.S*okes, Burnett, etc ) are 21l of the firut order in the time deriva-
tives of the macroscopic quantities jU)J&L and T , and are of successive
order in the space derivatives . Therefore to solve the in‘*ial value problem
it is always sufficient to give the initial values of a) L] and T This
fact is called the macroscopic eausality theorem ( Hilbert ) . It is paradoxi-
cal because from the Boltzmann equaticn it would appear that one would need
the initial value of the whole -dctribution f, which is much more than the
first five moments ( in the'velocity ) j)' A, and T . One must say the
causality fheorem is not a theorem but an " Ansatz " . Starting from an
arbitrary initial velocity distribution one must assume that in a short time
( of order L/ ??) tﬁe gas reaches a " normal * state, from which the
further temporal development proceeds according to the macroscopic causality
theoren ( Compare the hydrodynamical stage in the Bogolubov theory , Ch. 23 ) .

b. There zre fow practical applications of the Burnett equations .
The propagation of -.und has been considered by Primakoff and by C.S. Wang
Chang . The result can be found simpler in an other way , which we will

discuss in a moment . It is clear anyway ,that as soon as the parameter

L—-<:z-£E§%§£Z%2-) is comparable with one, the Chapman-Iliskog development

will be of little use .

c. It is good to remember & remarlk made by Osborne Re 10lds . One knows
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that for viscous en: incompressible fluids all dimension less numbers { of
drag, lift , etc ) can only be fu.ction of the Reynolds number ® . For instance

for the flow through a circular tube the recistance coefficient C , defined
by Vz
L ¥
PpoPp=C§x 73

( P,s P, are the pressures at the ends of the tube of len h' l. , radius R

s V are density and average velocity of the fluid ) i3 a functien of

SUR
it // = viscosity ccafficient . The function C ( R ) summarizes all the

experiments about the flow ; fur low spced one has (Poisemble)
ds e
J c ( R ) 16

% while for large & one gets the turbu

S -

a,ﬁaz

lent regime with a different law for C .

Now, from the kinetic theory for a gas

fosﬁ f"NPLV

if v 1is an average molecular velocity . Thereforc :

Y R
‘R,\J'L

is really the product of two dimensionlless nurhers . Only if V/ v
and R/L >> 1 will they enter the theory as the product .

In general ( at high speeds , or for.low preoisures \ ¥nudsengas ) one
must expect that both nuubers will enter independent of es  othar . W=

will call L/ R the Knudsen pumber ; since the sound v..ocity is OF seme
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order as the average molecular velocity \// v can be talen as the Mach
number .

_d. In general, one can say that in any non equilibrium situation
one can distinguish between :

1. The magnit. ¢ of the disturbance from equilibrium , and measured
by a " Mach " number, and 2 the scale of the disturbence from equilibrium ,
which is measured by the Knudsen number . Examples : & propagation of
sound, magnitude of the disturbance is determined by the intensity , the
scale by~tne wave length of the sound ; b motion of a sp re through a gas,
magnitude of disturbence is determined by the speed ( heasived by the .sual
Mach number ) , the scale by the size of “he sphere comp. to the mesn free
path ; ¢ heatflux between two parallel plates with temperatures ‘1‘l and T2 ]
magnitude of disturbance is d=*.zoined by the * Mach" number ( T, - Tl) /
F ( T, + T, ) , the scale by the Knudsen mumber L. /d , if & = distance
betresn plates .

It seems to me unlikely , that there exist macroscopic equations ,
which would be valid for all values of both the Mach and the Knudsen number .
It also seems better to make developments in either the Mach or in the Knudsen
number , and not in the combination M / K as is done in the Chapman-Enskog
develorment .

e . For .81l Agturbarces ; one oo always wcite @

.
LR

f = fo(1+n(r,5‘ t)

where f = is the complete ( therefore not the local ) equilibriuvm
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distribution and h is *"> disturbance . If % 1 , one gets the homogeneous

equation :

/m 2 n 2n -

\ZkT;:;—;-f-Co(,;jxa(: n,L(h) (l)
with :

2
T(n)= 1-,1—2 fdc cjd,ogl'(g,a)(} +h', =h-h)

is the linearized collision operator , and where we use a7 :in the diuaensionless

1

velocity c; \Lé—-T . E *« No assumption is made about the scale of the
DA

disturbance .

For example , for the propagation of sound of low intensity but
arbitrary wavelength onc has to solve ( 1 ) , if h has the form :

4 3 .
h(C) & ;(L«—t-O-Z)
—>
with (J real and ¢ = ¢, - 10, . Developing h { C ) in the eigenfunctions
-

£ T (n):
v h =Zar£ %r{(c)

(1) becomes the infinite system of linear homogeneous equations @

-,

-y

" s |
i\/ (A)ar{- ial’;'ﬁ‘MrC5 rrf1 B 1= nhr{arf (2)

2kT

where : M -
ré,r'f’ < dec cy i"ellpr'é‘

is the matrix ele'nent of cZ and \, ¢, are the eigenvaluer of T(h ) . For

Maxwell molecules ,the ‘ﬁe ' >\.y€ are known ( see Ch. 3  and the f‘/] Y 4

1

can easily be evaluated . The condition of solubulity of 1 e set (2 ) is that



the determinant :
[[¢ 0l - A Sporg 2 Mo g © L2

which gives a relation between () and C  , which is the dispersion law of

the gas . One finds ( always for Maxwell moleculss , force law k /v > >

o ———

™m
using dimension less frequency W, = W/ ny -?:Ti- and propagation constant

J ———
— (on
0:) "\‘l'-}l:;T- » =~ for the beginning of the infinite determinant ( 3 )
K flr-r ¢y O 1 | 2 I 3
N\ L} © 1 o | a2 177 3
. < y e
—_ BN S e B e .
| Lo o
Clotol Wy 3 a, . @) ¢ o
— — -
b g - O— — ;_Z. &
1 ] () i . (r (“‘ro ,r (@] V' = o O (_
i va. o v3 3 o
{ Lo | o o Lo
0l ; @) = “o "o '\7' N o
&—ﬂ—— ‘ =3 1] 2 3
. 1 . ] N .
o [ e €T 8 .,u.-?'(A,» - 0" -— a-
9. C) i. O V{ o (. J (&) Ol J,'f < //0 (8] )
P e | .
do G S ) HFet
11t 0 C W% ‘o7 Jo | wh* \q o
F
310f ¢ o O 3 7 0o w+<ﬂ.
. JT& o Q o3
i i

We were only ablc to go further by ucing a breaking - ¢fi procedurs , in

which we were guided by the Chapman-Enskog development . We used successively



= B <

33 5X 5, 8X8, 11 X 11 terms . At each stage one has an algebraic
relation between (Jy; end &, . One can then treat these reletions iu two
different ways . The first and realiy consisient way is to develop

O"; =CZ,"I - 1OT as a function of oy in powers of . , which amounts to a
development in powers of the Gre.aspan parsmeter G . In each approximation

one retains those powers of G of which the coefficients are not charged in

the next approximation . One thus gets @

o _iz‘ R 25 @ , 4115101 o4
_Vo 27.3417 esvaen

—

2.99 56.7

p c[% -ifgg % + 310.5 G4-...:(

C. =
‘=

<15

<

wlt?

11.9

These series are the same as obtained from the successive order hydrodynamical
equations , but the derivation is much simpler . Because 7 the expected
slow convergence they are of little use for the comparisor with Grec.ispan's
experiments .

The seconl or1 lecs consin*2nt way is to solve in each approximatiom
O as functicn of €7 exantiy ana coupare the successive curves with
experiq-it .

With the 11 X 11 dzterm: ol ons than gets afnro“frﬂte agreement

with experiment ( see figure ; () are the experimentzl points ) Lowaver
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Y ) since one has no idea
Vs gL
/ N about the convergence
€L A
7 AN of the procedure,this
21 T s
P /’@ © agreement may not mean
) ,/,/f A .
I . anything .
00y 0.4 ‘;;
1 G

- ADDITION TQ CH.22 .

From the Born-Green-Kirkwood- Yvon - Bogolubov !’ erarchy of equa-
tions ( 15) it is possible to derive general hydrodynamic  equations ,
analogous to but more general thsn Egs. (3), Ch.17 . Esps:ially from the
first equation ( 15a) of the hierarchy follows ( if one includes outside

forces ) almost immediatly the continuity equation :

%/—J-»f div(‘/.\?(")=0 (1)

S = m = mNj-Fl(p,q)d'g

) P YD (] : -2

-y s F etk d e j ~e C!l 7
P = Xy = 5 ¢ Els (8} (2)
with

o — e -

P,.= f° U L. = kinetic stress tensor and :
lJ » t J



- D Nz" - >
n, (q.Q)--'"J[dpdr'f‘ (s QP )
is the pair density distribition . It is possible to write the last term in

( 2 ) as the divergence of the symmetric tensor :

2
14 a:(é\R
Pj a[ RR—== d\f’k n(ﬁkP\ kk’ w,\) (5)
/0
- -> -
where ¥. is a unit vector pointing from q to Q . This was first pcinted

ouc by Enskog . As a result one can corbine the last two terms in ( 2 ) to

J ¥ J

of a k1net1c and an intermolecular foice part . The physical interpretation

(}‘P 2 jel P'“:"LD{‘ e + + isti
, 7 y where /= ~  + Fis the total stiress tensor consisting

of ( 3 ) is clear . The formal proof is as follows 3

Last term of ( 2 ) is of the form :

- - =
A = fdQ'iF(q.Q)

2
-9 s :)5;.’
where F is a scalar and symmetric funciion of q and Q . Now : Ai =
&g
x
with
LD R >
4 e e T N
S..=S.=%(d3’.R2{{d‘k dA kkF(q+KA-kR,q+ kK A)
lJ jl J{) H =~ J
Proof ¢ Verify :
L Y
e =4 ar|[ ak //Ak -
04,

~NT 0
F is a functicn of q + l( A and K KR , so that

gl
AT

":l

k..:)_..
2q



Therefore :

(24
D r - N =
.......“.=sj-deRZJ/d‘(ki(F(qz:"-k)K) -F(c{-lgﬁ ’q )}

In the last integral ,one interchenges the two points , which changes the
_.a;.

direction of K . Since F is smmetric one thus gets the same result as

the first integral , so that :

2

ds - > -
i X { 2( C 3 wp =
= dRR Lk K. F k R
?qu( ‘é j[ $ (Q1q+ R)

e ) - & ?
which is just Ai( put origin of @ integration in q , and use polar

3
e

N

coordinates ]
In an amalogous way , one can generalize the energy equation

( Comp . last of egs. (3) , Ch 17 ) to :

2 _D/& , | oo - -
oy IR O Z - ?)';"5 "D"(/l 4
with D, = + ( Qléi + Q;& | \ , P.. = total stress tensor , and :
J o = LJ ,
1 o/
Q = %7 U, = density of the kinetic thermal energy .

P >
9‘) =%2gf¢(1?-m)rz( % P Q P)d?d?dg

= potential energy density .
Finally , in (4 ) en*ers the +-*al energy flux dernity (’; )f:‘n.ich Just as the

?{_ J congists of two parts : LL = qi +q

vhere q = ﬁ-f u.; u* M,{ = kinetic thermal energy flux density , and



« T =

!
7 . is the contribution aue to the intermolecular forces . One finds @
TN .

R
qz_njdqgﬁ k k"(j dde }, Q,;L(po(-—g;) Fz(?-;}:’?/\-?ii,

W g

%>+k2\,p P)+ cuag,(tzz/dpd’s 2 -1, )

1 1

FZ ( 9, ps; 0, P ) . ( 5 )
2 2 = . .
with dQ = R  dRd k . For the physical interpretation of (5) see

Kirkwood .
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