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THE STATISTICAL MECHANICS OF NON-EQUILIBRIUM PHENOMENA

1. The prob lem of Boltzmann.

How can one possibly "explain" the irreversible behaviour of
thermodynamical system from a strictly reversible mechanical model?

This willbe the theme for my first set of lectures» It is properlj
called the problem of Boltzmann, since he struggled with it during his
whole life. Of course after his work and the further developments by
Gibbs, Einstein, Smoluchowski , Ehrenfest and others, the essential feature
of the solution have become quite clear and well known. However, itmay
be good to review the situation, because especially for non-ideal gases
the concrete questions of how to deduce the non-equilibrium properties
of the system from its molecular constitution are still far from a
satisfactory solution.

Iwill restrict myself by using t

(a) Classical mechanics. It is time that the quantum mechanics,
especially thru the act of measurement, adds a new feature (perhaps a
"time" irreversibility) to the problem, and it is also true that often
the quantum theory is formally simpler, but Ithink the essential
questions arise already in the classical theory, and since Iam most
familiar with itIwill restrict myself to the classical theory.

(b) Point molecules interacting thru short-range central forces
which have the additivity property (no many-body forces). One must

think of a van der Waals or molecular potential'*"'
but Iwilloften consider the case of repulsive

f forces only (elastic spheres or repulsion

2. The kinetic method and the H-theorem.

The central question is the explanation of the second law of
thermodynamics 5 however, it is simple to see that if one can explain
one typical irreversible event, and specifically the approach to thermal
equilibrium» then everything follows. This is the reason why the proof
of the Maxwell-Bolt zmann distribution law has such importance. Can one
show for a gas that the distribution functions

f(t, "r*, v*) dr* dv*» number of molecules in u -space cell dr dv*

approaches in course of time the M. B. distribution

f(t, "r*, v*) dr* dv*» number of molecules in u -space cell dr dv*
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where V = potential of outside forces, and A is determined "by total
number of molecules?

Inow have to remind you of the so-called kinetic proof of Boltzman
Tho starting point is the "basic continuity. Equation s

K s |i +Z.vr \ t i.vv ( .pvjdni^OHfr-if,)
(1)

where a = acceleration of outside forces; index 1 and prime refers to
the velocity variable only, so that f, 5 f (r, v-j ? t) etc» 5 -, •

(v, v^t^i'^'s are c (üreü
't a^¿ restituting collisions^

g slv-i =vj ={v!^ ss v? { 5 I(g 5 0 )is differential cross section for
turning tho relative velocity over an angle Q "in solid angle dr" • For

t instance for elastic spheres s
by Volume cylinder %

7f^mo%@^+~ S d 2« cosí 2hsin£di d¿

/ &/'.'' \ direct
/ .^^ 1 collisions =gll d n

Sm^ -**¦ For Maxwell molecules, force law k/r-5,
\M one finds i
Vfc'-'i rest .coil's

P ci (g,O) =^ f (9),
independent of g. F(Q) is complicated, is monotonic decreasing; for

small Q ,

(1)

n&) F ((3) m-& J™ (1 + |f^0 + ...)

¦' . \ \ . , . It is well approximated "by s

".'• .
'

,
' '

¦ rt '-? ' • ¦

\ ¦•.'¦ . :• ••¦ :. , ¦.

The '¦usual- justification of (i) y$ familiar} f changes for two
reasons s the streaming in p -space, and -th;?' a^llisions* The collision ten... is crucial |it produces the irreversi"bility. It is based on the Stol&zzahl

\jAnsalz, v/hich is an assumption of a non-mechanical nature. It is where
the statistics comes in! Note the following limitations s

(a) Some uniformity is assumed» Strictly, the positions of the
'

colliding molecules should. not_ be the same, and variations over distances
of the order of a mean free path are perhaps already doubtful. Thus very
fast varying phenomena as high frequency sound (freq. of order of collisior
frequency, or wavelength of order of free path) may not be correctly des-
cribed.

f.)-í4-wrt;1A rir¦tJ.vj•M+61
ütr

f0
= A c"" kT< 2 UUJ )

si (6,0) =y^ f (0),

61
ütr

+ •M tJ.vj ¦ r A ri1 4-wrt; -í f.)
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(b) Only bir.ary collisions are assumed y. and no norrelationn of the
veloj.Lt^ directions is taken '\w:j a.c,v-.~-i.J-:>

n •cS'-uffh forces are present ,

Clearly Boltzmann had coxae sort of a successive approximation idea
in mind. Already the description of the state of the gas by f (r, v*, t )
implies that in zero, approx» tho .'crocs ara neglected a::d the gas is
idéalo The collisions depending on pairs of molecules are the next approxi
atioru and are responsible for the transport phenomena (-viscosity,, j.ea.t

oor.rtf) and also for the firat du/iation (2nd virial co ,y.f.± -ient) of the
ideal gas law.

The approach to equilibrium is proved "by means of the H-theorem.
Eoltr.mann defines s

H (t) 3 (( F log f dr dv (2)

and ho proves

,v r. H f{ '^"f . .**¦*¦¦.> /d H x /d H\1) •. ¦—¦ = \i log fdr o.v ¦v-r ) . -H TT -,-,•¦c. t j! ¿£
°

ydv d i; /streaming \d t / collisions

Due to the streaming of the H function does not change. This is a special
use o:° a general theorem* If there are no collisions (so no forces) then
the gp.s is a:.i ejßsejnble (copies of identical systems each in different
states of notion arid each rending or.c point into the phase space 5 systems
are now thj molecules, pho;e space :-.a ;.; -space). The Liouville theorem
states tkat the streaming in such a case is as an incompressible fluid
(or is an "equivolumic transformation"). Therefore any integral of the
form

|.'..j f (p) ... dPn

must be independent of the time.

2) "Oue to thn collisions IIalways decree üzn 7 and dH/dt is
zoro if for all possi"bl3 collisions s

ffi =f
•

f», (3)

This determines the dependence of f on the velocities; log f must
be a linear function of the quantities conserved in a collision, which
leads to

f.Ac -> (4)

In every volume clem. in velocity space the approach to (4) is
monot unf.o » Tho app^oajh to the 5-« !i., listribution in coordinate space
is much more complicated. In (4) the quantities A, v , v , w can still
b9 functions of x, y, z and t, which must follow from

M. 4?.V f
( + a.Vr^ .o (5)

(2)

(3)

(4)

(5)zs
+ a.*r\? ?.<M

c % C >
Af

• ''.f1*1f

\ d J¿ /' streaming"^ d t / collisionsdr£ ilog(Í —<> if
provesheand

d^'
dffP logsiH (t) a

I... I F (p) dq^ ... dpn

H (t) a si P log f
'
df d^

and he proves

<> if (Í —
log £ idr \ d J¿ /' streaming"^ d t / collisions

f *1 f1 • ''.

f A c % C >

? ?.<M + a.*r\ zs



4

Only for sufficiently general outside forces (which include shape of the
vessel) is the solution unique and corresponds to 3 "¦ const, v » v0v0

* w
m 0 and A« A e"^ • For special forces there are a host of special
solutions, which can even be time dependent • See

Boltzmann, Wiss. Abh.ll, p.83

Since such solutions are not well known, allow me to mention one of
them. Consider the case of a harmonic attractive force so that a » w^ r.
Writing :

2
"* -*

log f * -
hv -fk.v + n

[ h -8^- 5 k -(3m v
Q 5 n

-
log A

- (*§- vv
Q

2 j.

One gets from (5) *

IS- •<*%«* -o w.j
bt dX{ V (6)

MrO (d)

So h is a function of t alone, and :

?.[¿".?] ? cí +J» &*?*, «)

the motion is combination of rotation, radial expansion, and translation;
CT c, d can still ho functions of t. Eg (7) is still general, independent-
ly of outside forces. From (6a), (6b), one gets s A = const. and

A : + o/A; *O, C + ¿, CO C t O

by eliminating n. Take for example the case s

This gives :

kr. k o 4£JL. S¿K. tot .

and thcci :

Vl/.^
1

.i...Su.t.

(6)

(7)C4**iti+ 3c r4'}X.[&

\

V

y

(a)

W

(o)

(*)
<t

rA •¦ 1 V If /A

it
-

w *«
** •°

2
"* -»

log f*-hv -fk.v + n

[ h »(|SL. . k -(3m v
Q 5 n

-
log A

- (*§- vvq
2].

(i- fw^i íO, C ti^ttO

Á~ O C- Co COS- 3 Cjü t

kr. k o 4Ü- S¿K. Í (ot .
2u,

rv , .v)H
orS^ si*. 2 cut.

rA •¦ 1 V If /A

it
-

w *«
** •°

<t

(a)

W

(o)

(*)

\

V

y

.[& X '} 4 c r + 3 iit ** 4 C
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If h0 is large enough, one gets a Gaussian density distribution with a
curious ""breathing" motion, accompanied "by periodic temperature changes. In
addition there can be rotations and translator^ motions in which the center
of the Gaussian gas cloud oscillates around the origino

1 ! *• i- A *"
Already for an anisotropic herrnonic potential U r-"£r-"£ (-^\ X, •? r "*"••

One proves from eqs.(6) that h is constant in time, and Jt and c are zero.
Oscillatory solutions are still possible. They will disappear if
anharmonic terms are added.

The reason for the curious solutions is clearly the isochronic pro-
perty of harmonic forces, which prevent them from producing the proper
mixing.

3. Excursion on the linearized Boltzmann equation.

Since the H-theorem does not tell us the approach to equilibrium in detail,
and also to show the different nature of the approach to equilibrium in the
velocity and the space coordinates, it is good to look at the case in whioh
the disturbance from equilibrium is small. Putting s

f a f.£• *<(<Vt)J (8)

one gets the linear problem i t .• ¡ ;
' , ¡ \

1Í -6(H) + c(M (9)

Consider first the case of no outside forces, and a disturbance dependent
on / and t alone, t -¿\ p

- &_'_.".
y-^y
-^

5 C(h) is an isotropic operator, in fact one can show that
it has the form 5

Q /fry) 5
- O-(v-) h+\J Zf X {-, W{ ) h (^^

As a result the eigenfunctions of C, defined by

(. (^ ' r^% (10)

must have the form s

using polar coordination in vel. space. The eigenvalues Ar£ are at least
21 + 1 fold degenerate. There are 5 zero eigenvalues A,. -, -\<^ , and X u>
corresponding to the eigenfunctions I, v,<v ',< ,V7* i'-ri and \r"

-
f ? which

are orthogonal. This is a consequence of the five conservation theorem.
All other eigen values are negative. Proof s

\ ,. LIÍI2.ÍÍJ LQl'já fu)
/vrU Tj,"T r v, 1

(11}
)d •»• jo in

(8)

(9)

(10)

(11)TUXrL

.'
*)

lit j?l^

have the form tmust

*,C C'f'-A
tyof C, definedresult the eigenfunctionsAs a

(9)

f(i^fíi^^i1(7. «i'J
blem %

c(>)

linear pro!

-V • %

ie 1ts th

jt)-5 -*•

¦r.-V,u+¦i
("

ó

«he form 5 ~^

ó

("
i +¦ u -5 -*•

¦r.-V, t) j
ts thie 1linear pro!

-V • %

blem %

c(>)
i'J (7. « 1(i^fíi^^if

(9)

As a result the eigenfunctions of C, defined ty

C C'f'-A *,
must have the form t

lit j?l^
*)

.'

XrL TU



numerator is W? fa 'IU•& f Lif9) fo f.i W'+ -<X jf

using the same triok as used in the H-theorem. This shows that the distur
the A re are the deoay oonstants of

one gets ,
(X

fe.
* Are '^,-c

¿ Foi>Ma^ellmolecules, I^0;is independent of g, and since thetransformation of the velocities in a collision is linear, it is clearthat ifhis a homogeneous polynomial in V «J¿ thGn c(h ) must algo
be a homogeneous polynomial of the same degree. So it should be possible
to find the eigen-polynomials, which turn out to be the Sonine polynomiam t£, so j .

1^ ~Si>i (c
¿). c}Yt^{&¿) (12)

S(m^(x) is the coefficient of Zm in (1
- Z)""n

"1 c" andthe corresponding eigenvalues are s
'

A,e' it| ''i c vi« ü f( w ) | i-o
lrtt ÁP, (¦*«|)

"v
"

¦ .

(U)

(12)

(13)

They form a discrete set going to
-

00 . Note that in (12) and (13)
all velocities are measured inunits of yrfcTJSana the collision operator
is defined with the dimensioiess F < .)•. As a result, the times aremeasured 3 n units ±\fig ¦

sinoe the pross seotions ap¿
»I?

' -i-* .' v'
'"

j r
—
r^"^

'
's-'iC 'i.Ei'v'irf' the time unit is "vil??" , which is of the order

of the time between collisions. The first negative eigenvalue

XU*K=
V!&;iúe:¿S.9fiQ) (14)

is the relaxation time of the gas already computed hy Maxwell.

(14)
&

IS)1.9.Fl.9.Fh'sM'i&
ÍLX,,A i3

¿fo)](l^r.Bp ¡. 6 \í.p ? 6
4-

)4 p¿ (-'r4u->ir
*(tfc>sí.> t¡ F {tí)ré

)¿V-^IGc\).c(¿if*+%t

Numerator is }<J?.y<f'£ (<* A f X(|'0if*f.. H'(7 '+ '^''Mf '«f. j"

M^t)*il*rc(t)

(X t¿
* ÁÁ re e

%t f*+¿i ( c \). c V-^IG¿ )

ré fc>sí.> t¡ F {tí) t u->ir
*(

4 p¿ (-'r4 )

4-
í.p ? 6 Bp ¡. 6 \ (l^r.¿fo)]

A i3
X,, L Í

i&h'sM'
1.9.Fl.9.F IS)

&
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Vlhether for other force laws the eigen-value spectrum has the same
character is not known but it is likely. However the approach of Ait •»*
is probably due to the infinite range of the x/r^ force and the corresponding
infinite value of the total cross section, Iexpect, say for elastic spheres,
a finite lower bound, but Ican't prove it.

Turning nc/w to the streaming operator S (h), clearly the eigen-values
willin general not be real since S (h) is not self adjoint» In fact for the
harmonic force one can write ;

:>¡, ;¿.,,v v

At the left are three rotation operators in the (v , x), (v , y) and
(v2

, z) so clearly : y

-^ st.
/( =i(rn-j^, + up? +mO w (l6)

so that they are pure imaginary.

(15)

(16)

For Maxwell molecules itmay be possible to determine the combined eigen
functions and eigen-values of S (h) + C (h) ? since polynomials in r and V remain
polynomials in r and w of the same degree»

The main qualitative point to remember is, that the approach in velocity
and in space are quite different» The approach to the local Maxwell distribution

s mono tonic and quite fast (tine of order of time between collisions) while
in space the approach w5.1l usually have a damped periodic character (depending
en outside forces) and goes slowly»

4. The criticism of the kinetic method and the answer of Boltzmann.
The criticism is directed toward the H-theoren ? and is an expression of

the feeling of discomfort that somehow, using reversible mechanical models }

Boltzmann succeeded in showing that H decreases mcnotonically tillthe equili-
brium state is reached^ that is, a typical irreversible behavior. These criticisms
have been crystallized in two famous objections, the Umkehr~ejjidwand of Lcschmidt
and the Wiederkehr _»-gindwand of Zermelo» Especially thelatter, based on theorem
of Poincaré which says that a bounded mechanical system is always quasi-periodic,

seems decisive. On the energy surface the
_.___-

*"* *~ point in¡ i

'
space represents the state of

.'
""

_
?.

L the gas will return after the Poincaré
?——"¦""*

*******
"¡ í.? cycle to any surrounding of the initial posiüp»

t
i-Cpí / Í The HH must therefore sometime increase.

/ S~'
\•, ¦- , Boltzmann 's answer was not well understoé*
:

'
¡2Z-——-"** "^ -J n s me > probably because of his rather

uncritical use of probabilistic terms. It
amounts to this :note that a distribution in/.b- -space of a finite number of
molecules required finite cells w,, w^.... The number in cell w.

w»)+ m2+ in?(m1,ZS Í

•
A

s

CO
l!

--i

f• ,
¦.

?rixe ;can w>neionic iorce o;

?. X-
rrn

I
rrn

I
ionic iorce o;

?. X-
>ne can w?rixe ;

f• ,
¦. !

--i

l
CO

A
s •

ZS Í(m1, + m2+ in?») w
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must be appreciable. With a distribution Z inyv*
—

ei>aoe joor respond© in
I -space a whole volume (3 N-dim.) A

t i|

Now one proves that with the accessory conditions

the M.B. distribution T
— - A M

~^

overwhelmingly maximixes W(Z). Ifone therefore assumes that there is no^
priori preference for the motion of the P -point for any portion of the
energy surface ? then one can conclude that :

(17)

1. If the gas is not in the M.B. distribution it almost always
will go into it.

2. Once it has the M.B, distribution it almost always will stay
there ?

Clearly in this way there is no_ conflict with the Poincaré
theorem. The further development of this statistical method of Boltzmann,
leads to a completely satisfactory description of the equilibrium properti
in the first place of gases, and then by considering more complicated
systems as a large molecule to the prescription for the calculation of
all thermodynamic properties from the partition function of the system.

However, the details of the approach to the equilibrium state
are lost. The relation to the kinetic method is dark, and there is
therefore no general method for complicated systems (say dense gases
for instance) to derive the non-equilibrium properties from the molecular
picture.

5. Excursion on stochastic processes.

The whole situation has been further clarified by an example of
Ehrenfest and by the work of Smoluchowski on the concentration fluctuation
of colloidal suspensions.

The example of Ehrenfest ¡Consider two urns A nd B, containing

¿A^'^6J,'
/wt

¡ 'vvj...)W (2

M- .£us ~íf (V.MjÍ* if

7—7
— - A ~P*

W (2 )
/wt

¡ 'vvj... 6J,' ¿A^'^
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N. and N^ balls respectively. Suppose

HAHA +NBNB
=2R | j |

At fixed intervals a ball is chosen at random
from among the N. + N^ and moved from its urn
to the other. This is a kind of model for temperature or concen-
tration equalization between two reservoirs. It is also interpretable as
a random walk problem with attracting center. Most complete discussion s

M. Kac s Amer. Math. M. ¿4, 369, 1947.

Analogue to Boltzmann statistical method ;

W(K) * ¡ri4ñ \j) (18)

Most probable state (= Equilibrium state) L = li^ or k = 0 and this is
very sharp if R is large. In fact, then z

w(n * =L=^ ¿¦ -

One can now go farther, because there is a "probability mechanism" which
allows one to describe how k changes 5 the different k-values form a
discrete random series.

(18)

Analogous is the situation in the concentration fluctuations :

I Smoluchowski , Phys. 55..17, 557-585 (1916)
j \r~ i

" .
W V J /v.!(M-h) ! V With p = r-r-

I -v- v
V

Equilibrium state n = IT TT1^ • Transition by the
"mechanism" of a jumping chance.

Clearly the k or n correspond to the distribution (n, n?
...)

for the gas, and the behavior of k is just like the behavior according
to Boltzmann of the state of the gas. Any value of k between

-
R to R

will occur, but of course extremely rarely (and the Poincaré cycle is
correspondingly long) ifk is far from equilibrium* And there is no
distinction between the future and the past. Irreversibility is a
human illusion, or as Smoluchowski expresses it s

A process will be considered either irreversible or reversible
according to whether the initial state has a recurrence time (Poincaré
cycle) which is long or short compared to the time of observation. And

1 z y
iR 1V(K)

W(\>- ;i(SQ! f5f5 V with P =

V(K) iR 1
1 z y
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one should say in addition , that there is such a sharp variation of the
length of the recurrence time (due to the large number of molecules)
with the degree of deviation from equilibrium that the two alternatives
are almost a discontinuous function of the deviation.

6. Discrete Markoff series.

Of course if one knows the "probability mechanism" one can go
further 5 as Isaid before , and one can get some idea of how fast
the equilibriam state is reached. The situation is especially simple
for the so-called Markoff processes, of which the Ehrenfest model
(but no_t_ the concentration fluctuation) is an example.

In general ? one describes a random series k,, k? ... by the
set of distribution functions ;

W.(k) = probability of finding k

Wp (k^ 9 kpj s) = probability of finding a pair k,, kp
s steps apart; etc.

A Markoff series is the next simplest to the purely random series (where
all k's are independent of each other, so that W. (k) gives all
the information). In a Markoff series all information is contained
in the second distribution function which of course implies the first.
One can also say that the probability of finding a value k depends
only on the previous value of k. Introducing the conditional probability
distribution P(n/m, s), the probability of finding m after s steps starting
with n, one has for a Markoff series s

P(n/ra, s)=T" P(, t, -S~Oe(K|«n , 0 ( 19)
¦~"

r^-

Call P(k/m, 1) = Q(k, m) °, then since / . Q(k, m) = 1, one can write
(19) in the form (suppressing n) s '%£*

P(m 7 s) = "y\ P/K , Í'I)(X (iit^)
if'

t^ oí '¿ p f v + pin, s- \ÍM\4ú

or

This smells like the Boltzmann equation j the rate of change of P with
"time" (* s) is equal to the gains due to transitions from k to m minus
the losses due to transitions from m to any value different from nw
However, note that the variable m corresponds in thegas case to the

(19)

(20)J V |2O)X, S-O(J(*.!•(p\~"f

C .'
,-!)(/KP(P

.y^or

¦-

- ! )P ( /

-/)a(ii>i2 pf^*'4."P(m, s)

01/>«P(K;
V

;i(p(hb)(n/m,pp (n/m, b) p(h i( ;

V

;P(K />« 1 0

P(m, s) 2 pf^*'4."-/)a(ii>i

P ( /
¦-

- ! )

or .y^

P ( P (/K ,-!) \~"f

C .'
p•( X, S-O(J(*.! J V |2O)
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set of numbers (n, ? n^ ..•)«. It is therefore really an equation on a
higher level than the Boltzmann equation (which tells how each n,

changes because of the collisions). Equation (20) really corresponds
to a kind of "master equation" which would have to tell how the probabil-
ity of a distribution (n., n?...) changes with time* Note also that
(20) is a linear equation. ln equation 520) one has to suppose that
Q(k ? m) is knwon » It describes the basic "probability mechanist" .
One then has to solve Equation (20) for P(m, s) assuming an "initial"
condition, say P(m, o) - (n, in).

For the Ehrenfest model in each step the k can only change with
one, and

r->/i/ i/ \¦ R + r /•/ _ ¡ irU R "^
C / it t\, « )

I* VV K
0 IM ) R uV

*
0

< , ¿ X
*

,• (21)

so that (19) becomes

One proves easily that

<*(o> -->". ~ fi ŝ )M'^)6,(s-i)}
s. v . j¦ ¿..

—
• -

¡-^ y

so that if initially one is sure that m = n s

This exponential approach of the average value from n to the equili"bj?ix:m
value zero is the analogue of the monotonic approach of any velocity dis-
tri~bution to the Maxwell distribution» One can now of course also cal-
culate the square average and show %

. <-> O ' O \ A i O'' i

Cm (s)/= n t-51 + -
2
-

Ej 1 -, 1-fJ |

so that for s ->'¦>"% \ m (s) /-^/ -^ tt which is the value which follows from
W.(m). In fact, one can show that any distri-
bution ?(m, s) approaches for s ~* ;>~' the first probability distribution
Wj(m) monotonically. In general, the proof ¿£oes as follows s from the basic
equation :

one sees that one gets P(n /m? s) by successive matrix multiplication of

(21)

(22)(*jpi,.,,,X- r I
r

Z- X
-I)\

I!p ( 'V* ,

Í

JXKJt!
iM^

ft + k'p
15/

!

<m(s)/= n M--, +2"R } 1 -( 1 -
5 -J j

!

5/ 1
ft + k'p M^

!
iKJt XJ

Í

p ( 'V* , ! I

\ -I) X- r I
r

Z- X
pi,.,,, (*j
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Q(k, m), which fulfills the conditions í

It is obvious to introduce the eigenvalues of Q(k, in) * Note, however,
that Q(k, m) is not symmetric 9 so one must consider the linear equations?

(2A)
together with the adjoint equations s v '

;
'

Vi
"
L.ÁH f V j
t *¦ /

The secular determinant

íí Á^-u^fl
-

O
(25)

leads to the eigenvalue A' , and to A corresponds

. _
_.^ / k = 1 s 2 ...

¦ X L/{.Jh.; h= 1, 2 0..
and one has the two orthogonality and normalization relations i

By adding; all columns to the first, one sees that/. = 1 is an eigenvalue 5
call it A ? then from (24) one verifies that

AU. 1
-

/ / h/

One can prove further that all other eigenvalues are in absolute value
less than ones in fact, for the Ehrenfest model Kac has proved that

A,. =rr ,-R^i^R, and he has determined also all the eigenvectors 1

v
- r - Mi .

~~ y:l c

(24)

(25)

o!!nX!

equations %adjointthetogether with

. _
_.^ / k = 151 5 2 ...

¦ X L/{Jh. ; h = 1, 2 0..

Xi ? W./'^.); V -4AU. i
-

/ / hi

/ I\A 4 & _£i

m». -rv r R

Xt* 1 T L k t k

together with the adjoint equations %

! X n !! o
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where the symbol C is defined by s

2E .
(1

_ zf~n (1 + Z)E+fl =/. C^ Zm

From the orthogonality relations follows then in the standard
way s

so that for s --> o^ r(Mjw, , ; ) --
•-.? W (X%) ,

(26)

7. The mean recurrence time.

One can give now also further details about the recurrence and
persistence time. Basic paper is

Smoluchowski, Wiener Ber. 124, 339, 1915 •

For Markoff processes everything can be done very elegantly. Define s

P'(n ) n, s) = probability 3 given n, that after s steps n
occurs for the first time

Then clearly s

P(n | n, s) = P' (n In, s) + ¿_ P' (n / n, k) P(n / n, s-k) (27)
1 ! k-1

Introduce now the generating, functions %

h UK i)"¿_ ?¦ (*l^\**)
S z >

Then from (27) :

(27)s-k)n,/P(nk)n y/+ L— P'(n
k-1

s)]n,(npis)
i

\
yarl2

P(n

f»M>.
_

Wts ••¦-> <>aforthatso

| ¡V)>J VI-
= Vv; /i, ) ,

Vr
> A

'
Vs)P (-j *,

¡j'J 1"Aj

2R

(1
_

z)RR~n (1 + z)R-
hn = 7 encn zm

Then from (27) :

Aj ¡j'J 1"

P (-j *, s) r
> A

'
V V

= Vv; /i, ) ,
I- >J V | ¡V)

so that for s ••¦-> <>a t

_
W f»M>.

arl2
P(n

y i

\ s) pi (n ]n, s) + L— P'(n
k-1

/ n y k) P(n / n, s-k)
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In double sum, interchange and call s-k = r i

iÍ
-
£ ¿ * £ £

So » teco,es .
and therefore s

ij(hh, 2)
(,¡!^[) (28)

\

Using now the form (26) for P(n n, z); then clearly §

i
"" ¿

where p(z) is regular around z = 1, due to the fact that all eigenvalues
A are x 1S except ,A,. Prom (28) one thus sees that

P 1 {n/n, s) is therefore a "bona fide probability. Further s

so that s

(28)

•] - 1
! + i-.ÍH'., i)

i

111 1 M''/h l^)0c\ (h( hIh,

. .xi ex- '::-. C?-J

f¦>¦• ,c 2
--

£ J

Lim a U,U-_ ¿ } ->" p ! ( hfh rÍ)
'*

I

Lim i|rJ-

c\ (h( hIh, 0 111 1 M''/h l^)

•] - 1
! + i-.ÍH'., i)

i
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This gives the mean recurrence time T (n), since

Oí

! lh)
--

1¿LAI \Nk-J~ c 2^, --4
--

~-r- (29)

The mean square recurrence time depends already on all the eigenvalues
and can therefore only be calculated for special models like the

Ehrenfest model.

(29)

The concentration fluctuations of a colloidal suspensions as
analysed by Smoluchowski do not form a Markoff process. However, the
result (29) (with appropriate definition of T(n) is still valid. It
is interesting to see how it compares with experiment (Svedberg). In
these experiments ~£ = 1/33 min.j the average number <[nn s

/= V = 1.55»
the first probability distribution W,(n) .£!Zj£JÍL. (Poisson)

1 n!

n "T , T ,
obs £^l£_

0 6.08 5» 54 The check is therefore pretty good. The
1 3•133 • 13 3 «16 value n = 7 was observed only oroé;
2 4.11 4-05 would be 110517= 27 mm., while the

v;

3 7«85 8.07 whole series__of observations was about 600.
4 18.6 20.9 For n = 17, T = «100,000 years!, so the

transitions from n = 17 would certainly be
judged to be irreversible.

4.05
8.07

20.9

4.11
7.85

18.6

2
3
4

5«54
3.16

6.08
3.13

O
1

T .caleobsn

i*
4 ¿>

LimP'(h|t,,i)sT
A *J

T'íh)
-- OíOí

T'íh)
--

A *J
P'(h|t,,i)sT Lim i*

4 ¿>

n obs T .cale

O
1

6.08
3.13

5«54
3.16

2
3
4

4.11
7.85

18.6

4.05
8.07

20.9
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THE IDEAS OF GIBBS

8. The notion of an ensemble.

In the Ehrenfest example Ipointed out already that the random
variable k corresponds in the case of the ideal gas to the whole distri-
bution (iii,n?

, ...) in /•*/'-space. To describe the change of kin the
Ehrenfest model we introduced the probability distribution P(k, t) of
which we proved that it approached monotonioally the "equilibrium" dis-
tribution .„ /, \ /2S \/1I2H T , .W,(k) =

tT~IC }/ 5) • In order therefore to describe m more
detail how \

"~

J\ J the Maxwell-Boltzmann distribution is
reached for the gas, one must introduce the notion of the probability
P(n

1 ? Hp«.t) of a certain state (n,, n0...)$no ...)$ or, using the description
of the state of the gas by a point Q in f

'
-space, one must introduce

a probability distribunion P(Q,, t) = P(x.. ... x^, t) inI'-space,
(dotation % x. = (q.. j p. ) = coordinate and momentum of the i^k particle.
This can only mean that one considers not only the given system but
a large number of copies of it| an ensemble, in the language of Gibbs.

Similarly, in the Ehrenfest model, to test the result (say, of Z)
for P(k o/k, t), one must consider an of experiments. In each
the initial distribution is determined by kO,k

0
, but the successive values

would be different and one would obtain Z sequences of k-values, from
which at any time the distribution P(k o/k, t) can be found-, Analogously,
ifone starts with a distribution (n-,, n^»».), corresponding to a region
on the energy surface in the f -space oi the gas, the different members
of the ensemble (represented by points in this region) would move quite
differently and provide different series of successive states $ or, in
the language of Gibbs, one has a streaming of the ensemble "fluid" over
the energy surface. Of course there is also an essential difference 5
in the Ehrenfest model the "probability mechanism" is known, while in
the case of the gas the motion of the point in/

'
-space is in pi?nciple

completely determined Joy the laws of mechanics and the differences in
behavior are due to the different initial positions on which the motion
depends very sensitively because of the sharp short-range interactions
between the molecules.

In the Ehrenfest model P(k o /k, t) approaches W, (k). If one ex-
presses the "basic idea of the statistical method of Boltzmann for the
gas, now, "by saying that the a priori probability of some state of the
gas is determined by the volume in / -space to which the state corres-
ponds, then one can expect that the P(n^ , nr>...;t) will, for t -** ex- ,
monotonically approach

Hi t±iL\"/b±Yl»0«^ \j\) {.-LJ
(where.*! is the volume of the whole phase (/¦.• )space), so that the over-
whelming majority of the members of the ensemble will have a Maxwell
Boltzmann distribution. Or, in the language of Gibbs,'one can expect

mí <±í¿\"(b±Yl

Ou1 \j\) {.\J
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that any initial density distribution of the ensemble over the energy
surface (which for an ideal gas is of course the hypersphere

/\- -¦;.
~ ["_! will approach the uniform distribution (i.e.,

uniform between the surfaces E and E + dE), or, as Gibbs call it,
"kke micro-canonical distribution» That the volume in phase space, or
the "statistical factor" in the problem of partition of the energy
E between N independent particles leads for large N to the Maxwell
Boltzmann distribution is perhaps not quite familiar (although given
by Maxwell). The proof is as follows s since pdp '^ I-X d¿ , the prob-
ability that one particle has energy between L¿ and £, + d¿ , is s

¦

where the integral is to be taken over all values so that

IL.¿ ?* • cpj *v. wf ,By induction or otherwise one gett
(dropping index 1) s

where A.T is a normalization factor. This gives v_ = E/N (Maxwell's proof
of equipartition) , and it is easy to prove that for large IT s

X {i)l\
--

A ft t"IX Á£

the Mr xwell-Boltzmann distribution.

Of course one now can generalize to more complicated systems than
ideal gases, and in fact Gib'bs introduced the microcanonical ensemble
(now better defined as the uniform distribution between two neighboring
energy surfaces E and E +¿X E in the I

1
-space ;

¿' t At -
riote that these surfaces need not

y^ /\~ be parallel) -immediately for general
y S systems. It was one of his aims to

/ X give a more deductive and lucid
/ presentation of the methods of

/ Boltzmann, and in this he
certainly succeeded! Iwill not discuss the further developments, such
as the other special ensembles (canonical, grand ensemble, the string
of theorems connecting them with each other, the the rmodynamic analogies
etc.). They lead again to the basic relation between the free energy of

f(t,)¿e.,-. A£,á,f--j^^ •¦•UMU
M hiiy~XM

¦f. L

|íüú --Ml c IT cU



18

the system and the partition function , which gives in principle the
solution of all the problems of statistical physics (connection between
macroscopic properties and the molecular structure and interactions) for
systems in thermodynamic equilibrium»

It should be emphasized that, while in the Ehrenfest model the
equal a priori probability of the two boxes (from which ViL(k) follows)
is put into the problem, for the gas the assumption of Boltzmann must
be considered to be a property of the mechanical system» One calls it
the ergo die property» What it implies for the mechanical motion can
be explained as follows i in the Ehrenfest model, clearly the different
series of k-values of the ensemble can also be considered as successive
large chunks of a very long single series in timej therefore for any
quantity the time average will be\the same as the ensemble average, and
the same must be assumed for the gas. That is,

1 T

,'i(x x v = Lim TfUkfU.... V(*)JAt ;
C T \ !

¦'
'

«/ time 'j
-

¦;.¦¦
¦ ¿.f j > L '

T

) ! cNi w J v / ensemble

where 0 (S) is the microcanonical probability distribution.. This property,
although very plausible because of the erratic motion of the / -point, is
of course not proved. It can be reduced to the assumption of metrical
transitivity (from which the ergodic property then follows) but although
an advance, it does not help the physicist!

9. The approach to the microcanonical distribution and the Gibbs
H-theorem.

See Gibbs, Chapter 12.

As Isaid, it is very plausible that any distribution of the ensemble
"fluid" between the nergy surfaces S and E + l\E, willmonotonically
become the uniform or micro canonical distribution. It is appropriate
here to make some comments on the question of the approach.

a) First, the monotonic approach is not in conflict with the
Poincaré theorem. Each member of the ensemble has a quasi periodic motion,
and one can prove (see M. Kac, Bull. Amer. Math. Soc. jj_3, 1002, 1947) that
for intermittent observation and for a metrically transitive mechanical
system the average recurrence time (or Poincaré cycle) is "-J^r,- (where
Si* is the area on the energy surface), quite analogous to the result

n? = ¦• y-,- for -¿he Ehrenfest model.

.-Lit x v = Lim TfUfx.íü.,. Vi*)]*1"

Cy \ !¦'
'

«/ time 'j
-

¦;.¦¦
¦ ¿.f j> L '

T

-i-¡U. .l*A-<r(E)*<U»i ¦ K^>) |c Ni n J v y ensemble
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-^ s no^ 'true that the uniform distribution is the only
stationary distribution. To find the most general stationary distrib-
ution Ihave to remind you of a general characteristic of the streaming,
expressed by the Liouville theorem s the streaming of the "ensemble
fluid" is like that of an incompressible fluid. The proof is so simple
that Ishall give it i

Proof s The "velocity" \J (with components &.*••• p« ) fulfills
the condition %

by virtue of Hamilton's equations. Since one always has the continuity
equation :

Dt !

one has therefore :

de _ 7) p + T í ¿. A£ + p. A
"—

; "rr Tí
—

I X r~" + Pt —- -• O

i.e. s

>. 4 I I

(1)
(the Poisson bracket of H and ).

(1)

The most general stationary density distribution is therefore a
distribution where f is constant along stream lines (lines of constant
H), but not necessarily the same constant along different stream lines.

c) Since V remains constant if one moves with the fluid, the dis-
tribution can only become uniform in a "coarse-grained" sense, as
pointed out by Ehrenfest :If the density initially is constant in. different regions (say P., P-...),—

7 then because of the distortion due
srT

—
T "to the streaming the average density

/ f- over the fixed regions willbecome
/_ equal. This can be shown analytically

y
(•PH\

¡13-
2i

¦J?. -f p¿\ v V * 0
Dt !

D£ _ 7) f + T í Ó. A£ + n. n
—

; "rr Tí
—

I X r~" + Ft —- -• Oj>-t it ¿ V
'

I

13-
2i

\
¡ H •P y

(
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"by the Gibbs H-theorem.

We define this H-function by i

H^E P logI(,ax,,. ¿x w )^= 1.-.L-UíP^p
-' \- ¦¦jR ¦ I (2)

this the volume of the m cell.

Now start with a non-uniform ensemble, in which the density is
actually constant in the set of regions ¿7.', , tj X"L ••• So at t= 0, the
fine-grained and coarse-grained densities are identical and

H*H0
* jpo iog A*,-. .4x N

Now consider at a later time t ;

¦

where we have used \ . ¦
( j:^ <U ,•• • 4 N

r \ '*'] h ¿ Xi
'' ' XNXN

1

by normalization and s

because of Liouville.

Using the lemma that F (x,y= = x log x
-

x log y
-

x + y) O (zero only
for x = y), one sees that

Ho
-

H.t
> 0

and that Hp is smallest for the coarsely uniform ensemble.

(2)'H
¦ lx(-.<Í.-í<^pCc^ Pi/ hiX,AlosZi^'-H(7

H*H0
* jpíos (i I*, 4xN

4 KftM^h^ Î*'1*' tl/w '

' : -
1

J.. jpt h^ U,.:l<*T \-- JjlfypA*'-^*

Ho
" H

fc
> 0

H(7 losZi^'- A X,
/ hi i ¦ lx(-.<Í.-í<^pCc^ P

'H
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10. Criticism of the Gibbs Theorem.
¦j

Ehrenfest expressed the opinion that the time for the approach
to the uniform distribution may well "be several Poincaré cycles. If
so, it clearly would have nothing to do with the actual approach to
equilibrium. Imust confess that this is one of the few points Ido
not understand in the Encyclopedia article» Ithink the time of
approach has nothing to do with the Poincaré cycle. It will5 rather ,
depend on the size of the coarse-grained cells \ the larger they are
chosen the sooner they will "become roughly uniform.

In my opinion the important objection is that the theorem has
little to do with real irreversible processes since it does not tell
which coarse-grained density "corresponds to our knowledge 11 of a cer-
tain initial non-equilibrium situation. Of course this is connected
with the difficulty of using an ensemble for the description of a
single system. The justification must lie in the fact that a macros-
copic description of a system is so rough that a very large number
of microscopically different states of the system correspond to it.
One must then assume that the actually observed macroscopic changes
of state are the same for the overwhelming majority of the ensemble ,
so that the average of some quantity over the (non-stationary) en-
semble as a function of time will represent the change of the quantity
with time for the single system.

The trouble is, not only that such statements are hard to prove,
but there is no hint or guess on how to construct such non-equilibrium
ensembles. As a result there is no_ general theory for non-equilibrium
phenomena in Gibb's scheme. Of course, in view of the enormous variety
of characteristic times involved (especially if solids are present),
such a general theory is probably too much to ask for. However it
should be possible, say for dense gases, to show how in principle
typical transport quantities (like for instance, the heat conductivity)
are related to the intermolecular forces.

11. "Rückblick" on the kinetic method of Boltzmann.

In particular for nearly ideal gases one would like to know how
the o.."Stoszzahl Ansatz" and the Boltzmann equation discussed in the
first lecture fit into the general scheme of Gibbs „

A rather obvious idea is to interpret the Stoszzahl Ansatz as an
assumption for the transition probability between the different states
(n, 9 n~) of the ideal gas. Iproposed to do this in some analogous
statistical problem in the theory of cosmic ray showers (Physica, J_,
344? 1940 5 Phys. Rev. 62_, 497? 1942), and it was then taken up by

"

Siegert (Phys. Rev. J6_, 1708, 1949) and recently much further developed
by LI» Kac <>

1. ¿nziclopedia, P.61
2. Footnote on next page.
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Let 114, n?... "be the number of molecules in the different velocity-
cells 6.1, *&••• Assume the distribution in space to "be uniform, and no
outside

'
forces * Let the probability per unit time of a collision

(i, j) --> (k, l)be t b?7 q. XL. n,.j then it follows that the probability
distribution P(rij, n^»»»» I? J t), which, recall, is analogous
to P(k, t) in the Éhrenfest model, will satisfy the "master equation" :
(Analogous to the Sino luchow ski equation for the Éhrenfest caso (20)

Note that this is a linear equation that is given by the Stosszahl Ansatz
assumption. By summing over all values of n.,, iy.. with the condition
Jj.n = N, and assurüing microscopic reversibility s a^l = a¿j , and
noting the symmetry in (ij) et (k l)j furthermore
a^l = 0 and in (1) i, j 1, cks sees that

ti i

(v/here S 1 means that one is to sum over all n», n^ ... subject to
£.«» =N) so that the normalization S'P (n,, np.j_.. 5 t = lis conserv-
ed. For the rate of change of the average number tt = S!n P(n., n?

.«st)
in cell '?.'¦. one then finds s

One must distinguish in the"straight" sum the cases where s is different
from i, j,k, 1 (which are all different from each other) and where it
is equal to any one of the i, j,k, 1. Changing the summations in the first
"round" sum back to n, , n, , n., n., one then easily finds that the third

k. 1 1 3

(1)

(2)

p
(Foot-note from page 21). This constrats strongly with the kinetic

method of Boltzmann, where the approach to equilibrium can be found in
detail, since the process is probalistic, rather than dynamical. The
natural question then is s Can we "fixup" Boltzmann's method now that
we have more insight into the nature of the difficulties? Gibbs, in
his famous chapter 12, tells us nothing on this point.

0)t"''
!)r^)K(b.

á i

•--v -!,'•',- ¡- •- t.)-<-^ lV 11I'/
' {Í'

4 > ia.''(>v +i )íhr H)P(!S +i,^H ¦•'5 P( n'/'V' v^)
"1i
'5 P( n'/'V' v^)
"1i 4 > ia.''(>v +i )íhr H)P(!S +i,^H ¦•

•--v -!,'•',- ¡- •- t.)-<-^ lV 11I'/
' {Í'

á i
K(b. )r^) "''

! t ) 0
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order terms in the n's always cancel, and one gets 1

'hi .) a° ¡i^ii,-h7ñ, )
At 0 '/ v l

¦

' '
0)

This_jvgujd be^ .jiist the Boltzmann equation if one could put n, n = nL.
n-¡n -¡

and nc n. =n^ n» that is, if one could neglect the correla%ions,
which"presumably 1would be permissible if all the occupation numbers are
large.

(3)

Siegert has shown that (1) leads, for t , to the equilibrium
distribution Jtfj / t^?i \n

- , just as we saw in the Ehrenfest
n,! nJ... \~T' J example that P(k, t) for t ~~» ;-^

approaches the first probability distribution W (k) which is proportional
to N!/NA !N_! X

12. Form ulation ofthe master equation on the energy surface.

It is nicer and more concrete to express the same idea in the "Gibbs'
way. For the ideal gas, the energy surface is a 3N~I dimensional hyper-
spherical surface •¦•'," *- '?."**'¦ ' '"••¦' * -'

¦•
•"'"¦ ]

': imbedded in 3N-dimensional
space» Assume that on the energy surface the / -point has a random walk
motion where the probability of a step in time dt is again determined
by^.the "Stoszzahl Ansaiz". Since momentum is also conserved, one can put

;•' ¦ -\
" }

tj
= 0, so the motion is really on a 317—3 dimensional sphere

(again only the velocity distribution will be considered).

Let , i' (R, t) "be the probability that the ; '-point is at R at time t,
where R 5 ( •-

, "•:,_, •
? j •

Consider a collision between molecules iand j. To represent it, we
use a "collision operator" A. A collision is rotation of the vector n>

as the rotated vector 5 v\ z l'{
"" uj

->"v"v - / line of centers -*
T ». . .* .. .* ?-v. '/--¦"-. j. -i -i •j

• -"-unit vector m the perihelium dir-
vx ¦•-.

** between colliding
"

, . XJ
, , - f ,r. ¦-¦•-. / ti ,7 ection. If total volume is V,-

, molecules ,JA .. ?
,

? o , 7, n
¦--... , -^^•w^, .-ak^ then according to the Stoszzahl

'*¦ . \ _...
*""¦' Ansatz, the problem per second

of a specific collision is
< r [ a (-) ) >> and one has

...^. .-4- (i ji- ¦

therefore

*'>Á+ )
'

"T i1n 1 ri/i m\ LtiA;R+U- é ÍR t UA~ - >^jijlljWj'e)^A^ ]t J n '
(
j
4)(4)•%

—
J«í¿j. cn <íAi í̂

-tJ n '
(
J
4)

¦

¡1 r [ a (-) ) >> and one has
....^. j. (t j*• ¦

therefore

>, v / line of centers -*
T ». . .* .. ,* ?-v. '/--¦"-. j. -i -i •j
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vx ¦•-.
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"
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Note again that this is a linear equation. Parthermore if the Mf particles
are indistinguishable one should only allow symmetric functions •••'/,/.)

.By contraction ( = integration over all v!s except, say,
v, ...v, , where k is arbitrary) one gets the partial velocity distrib-
ution of groups of particles. In particular for

(in the integral, energy and momentum conditions must of course be taken
into account) one gets the Bcltzmann-like equation s

¦ .lv) -? ... ? -, ? ,-> -, ? x c' {N)
i

-* ~t i. \ I

(We have chosen the subscript 2 for the collision "partner" of 1$ of
course it is arbitrary). In the proof one must distinguish again the
cases if j¡l1 which give no contribution, and i=l, j 1j i 1,
j = 1, v/hich give the two terms in (5)« Eg. (5) would become the

Boltzmann equation if one could assume

and if one could then introduce the average number of particles
f(Ji ) - & i;i;'NÍ

J v-,t instead of f{»).
Again it can be expected that for large t the <f> (R,t) becomes

the uniform distribution (microcanonical ensemble), which as we saw,
leads for large N to the M.B. distribution for f_ (v).

1

(5)

Marc Kac has been able to go further. To do this, he considered
a simplified version of the basic equation (4)j it is a kind of one-
dimensional MaiEwell model. Lot R = x.Xp...., y and

A;. (ft) Rtf,; • tf,;X¿
(

•¦\.„,, x • uí 0 t-Xj .v* fe7 .y- y • />¡* 0I- Xj ü>.> 0, ¦• , '

where L.. is the infinitesimal rotation operator in the ijplane.
Assume xnat the probability for such a rotation depends only on Q •
The random walk is executed on the sphere x? + x2.e.«. +x2= U,

12 v >

and the master equation then is :

(4a)
ti;-

)
(D)K,t9:;: (9)i\

¦

-
If"

L
—

:
1<K¿,t >

\(¿^ í A'XLal U,&2í, aE_I.L - Mzl
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1!^

Aij(fi)R•^^¿,'" X.-:K .-:^ X
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-
If"
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We can write (4a) as ,-). (P ~ \L.r^-
..i5(,'4.i)

The Boltzmann equation analogous to (4a) is s

lililí] .ki¿U ( p /pVi fO < ;«6t n (V.9,1)/ (-v »«& w>6(t)

The "collision cross section" will be j r
• - '

l •', and we will assume it
to be finite, and. it is also appropriate to assume F ( Q ) an even function
of 9 .

1 ' • i

.!£¦¦¦¦ -111 IC -*• •' .

líillÜ.v \ íÍm \f¡P-Vl fU < ;o fct n />- 9,1)/ (-v t¡s w6,t.)
.-, .. " u

| 0 /
'

\ '¦'/
-

¦•' / ('J / ¦ x (I
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FURTHER RESULTS OF KAC; THE BASIC QUESTION

13. The Propagation of the "Boltzmann property".
Let (bjg Í X Q) be a sequence of probability density functions 9 defined

on the sphere 1 3 _
;\< y which have the "Boltzmann property"

?u

^ X 11 x -¦• ¦ -^."^^í,f
(vj.^- (i)

Then Kac was able to prove that the sequence of functions 'fy IrS, ¦ ; which
are the solutions of the master equations with ;p ¡A f}j as initial values }

abo have the Boltzmann property, i.c: : •'

Lim 4. {- V, f) = //' Mm f |A ; t j (l a)

because it elucidates v/hati previously was hidden under the assumption of
SSI^SHiSr. chaos „ Clearly :-\Kj {£\ t ) contains in general much more information
than fj (x,t), However one must expect that all correlations are "broken" very
quickly f and the state of molecular chaos (for which the Boltzmann property
holds) is established and then persists (in time). The non-linearity of the
Boltzmann equation is from this point of view, due "^° c special initial
distribution; the basic problem (= the initial value problem for themaster
equation) is a linear problem,,

(1)

(1a)

14. The approach to the uniform distribution.
Itis again very plausible that for t -r*+-COf $ (R,t) will go over into

the micro canonical distribution

(2)

(3 (r) = surface area of N-dimensional, sphere of radius r), which leads for
the one-particle distribution to 1 . -.

T (*K (( ] -Tf ) * s
' '

(2)
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which in turm gives the MOM OB 9 distribution for N ~"
*

00

The approach to (2) willbe monotonic as can be seen by an analogue of the
H-theorem» In fact one does not need the function

Hit}*J ¦• j<f log f¿6 : (4)

one can show the monotonic decrease already for the simpler quantity

K(tjs-j.-]f^ (5)(5 )

where dS = dx^ ..«,. dx = element of surface area (on the sphere)*
In fact

Put;

Use R1 and 0' = -
0 as new variables, and add the new result to the original

form and divide by two; one gets then :

At (6)

(3)

(4)

(5)

(6)
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and the equality sign is .onlv_ obtained for the uniforü distribution.

The proof for H(t) goes exactly the same way; in fact apv^ function of <£
which is concave upward would do. The exceptional property of The H-function
is that with the Boltzmann property, clearly

¦

'¦¦ '?, , r" .

I-•• \¿S S log hhr— r const. fH\ ¿X f log { (7)

which is what one expects for the entropy of an ideal gas, and which sh ows
the connection betwee-n the Gibbs and the Boltzmann H~functions»

(7)

Itstill needs further argument to show rigorously that "anyst 0 (R yt)
goes over into the uniform distribution as t '¦> Ü0 # Kac was ai*le to do this
in the following sense :he proved that for every integrable function (R;
on the sphere

'

15. The relaxation time.

It would be of interest to know the spectral decomposition of the ope-
rator J-- in the master equation,

<\b \ ¦- --
r>

0 {
-

which can be written as :

,~ . , PL. i . \-=x !,s e -(eiz, c
-
-1), «

"
'I

! :: -L(\ 2, .j£¡1\
where »—*tJ

""
¡/-i' 'Kj -' Ji; ; is the infinitesimal rotation operator. The

question of the spectrum of jl has not
been quite settled yet. Clerly zero- is an eigenvalue, with eigen- function (j>.
= crónst., and the other eigen functions must be parical harmonics on the N-
dimensional sphere. Let H^ (x x^) be the solid harmonics oñ degree X,

(8);
\i
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which are in addition symmetric in x,, x_ f ... x ¿ There may be sevreal
of them which are linearly independent, which is indicated "by the index •
Clearly J• . willbe a linear combination of such spherical harmonics of the
same degree, so that for each k one has to solve a finite secular problem to find
the spectrum. This seems feasible, but has not been accomplished, yet. One can
argue that if functions ,p (r) which fulfillthe Boltzmann property are a
sufficiently complete set of functions, then the spectrum of A should be the
same as the spectrum of the Boltzmann non-linear collision operator. This spec-
trum in turn should be, for the first eigenvalues (which determine the last stages
of the approach to equilibrium when the deviation from equilibrium has already
become small), identical with the spectrum of the linearized Boltzmann equation,
obtained by putting

.

and neglecting quadratic terms in h. This gives :

. .t (;t ,;,0. i<r>>;t )- M*)- Mv!U B¿(h>

(9)

This is the linearized form of the Boltzmann equation

ii,-Bih)^^^)r^n^)^-Oi-(V.t)-fu)f(^|.

Itis easy to prove that the eigen-vald of '¦ ) (l) are the Hermite polynomials

L(x =-H> 11""*1 1""* ) A ¦•-¦ '-; -
i /<¦/¦¦¦ om !
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; ( a ~,úK^ .

-x2x
2
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Using the addition theorem :

one easily finds for the spectrum :

A *
--T

'
V (10)

The eigenvalue zero is doubly degenerate (k = 0, k = 2) corresponding to the sonser-
vation of number and energy. All other eigenvalues are negative, and have the
value v" fi6 i: [{:)as limit point. For instance with F(q) = 1for

-
<fí/¿.<S

zero otherwise, one gets :

i- ! f~lt^ *]
¦/''»¦.•• v ¡ |'v, *•¦%.) j

The even and odd /' '"s form monotonic decreasing sequences with "~ <• tf as limit
point. The eigenvalue nearest to zero is '•, * "**.v/m which is therefore the
analogue of the inverse of the relaxation time.

(10)

Larger disturbances form equilibrium will die down with exponential factors
which will consist of linear combinations of the eigenvalues /\ tt. © This may
well produce an almost continuous spectrum beyond a value which must be bigger
than ¦ 2 ./. • A few discrete values, and especially A itself, will
clearly remain.

16.Final Remarks.

The master equation approach shows conclusively, in my opinion,, that the
kinetic method of Boltzmansi, properly interpetated, is in harmony with the
statistical method and with the ideas of Gibbs. It leads to interesting mathema-
tical problems, which stillneed a lot of work. However, there remains the basic
question :

What is the relation between the master equation -L y
"

-J L W and the

)
f
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f
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"basic dynamical equation o\ 1
*

( ;'•' J ) (Liouville theorem), which
determines the streaming over the energy surface ?

In other words ;how can one "derive" the probability assumptions form
the special features which caracterizes the streaming under the influence of
the short range intermolecular forces? Clearly what the master equation implies r
is that with sufficient dilution, one can omit the intermolecular forces in E9E 9

and replace the streaming by the "jumping" with a probability determined by the
Stozzahl Ansa tz ? i.e. the "master equation" approach is, strictly? applicable
only to an ideal gas*

Because the connection with the dynamics is n«t established, the master
equation approach does not allow one to answer the questions of physical interest %

1) What are the limitations of the kinetic method, especially with regard
to rapidly varying phenomena (high frequency sound, for instance;?

2) How should one extend the kinetic method so as to take triple and higher
multiple collisions into account? (i,e o ) to dense systems }?
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THE HYDRODYNAMICAL EQUATIONS

17. The general conservation laws.

.ing... the Mt

_
equations outside forces:

MllTun,n,e)(H, !
-. tO (1)

Iwould like to outline the further development (due to Maxwell-Chapman, Lorentz-
Hilbert-Enskog) partially because it stillis the .onlv_ rigorous theory for a

class of non-equilibrium phenomena, and also in order to point out the peculiar
features of the approximation method.

(1)

The first step is to derive from (l) the so-called transport equation
for a quantity ¿V -, .C ) which a molecule can carry "on its back 11 » Defining s

f '
'' '

!
'

where n(x;y, z; t) = number density (n m = P ), one gets :

(2)

J • •'•"
-t

'- -,/'-. ,-~-\
For (p equal to any of the five quantities ivi

(
h- ¦_.¦ ( *_ ! S *• ¦ j t¿ ¡

which are conserved in a collision, the right-hand side of (2) vanishes, and one
gets the five general hydrodynamieal equations :

i£_ + div ( c v = 0

1- iliti.= p ', ¡Ji.. + ,¡. grad if " V^> ~ ~

(2)
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where

x. =x, y, z : coordinatesx

= ¦-". ,' [ ¦') i velocity components

v. =s=u, v, w : average velocity

'.
-' <

ZL = U, V, W = thermal velocity

X. = X, V, Z = outside force (per unit mass)

Q = \ $Xj = thermal energy density

P. . = y U. U. = stress tensor

ck ={ \ Ü. IT = heat current density

D.. = •§¦ ( •;'—¦— f .-..-.. «- ) = rate of strain (deformation) tensor

Bnd, as indica ted,

JL -i- í v
~¿-

The equations (3) express the conservation laws of number, impulse and
energy, and are still an empty frame since we do not know yet how to express
P. ., q. in terms of the average (flow) velocity^ the density, andthe temperature,
Irr other words, one still has to derive the Newton and Fourier phenomenological
laws for friction and heat conduction.

(3)

18. The Hilbert-Enskog development .
To do this one has to solve the Boltzmann equation. Hubert introduces

a formal parmater 0y and writes :

9

In addition (this is Enskog's contribution) it is necessary to decompose

(l) Chapman and Cowling, "The Mathematical Theory of Non-uniform Gases".

div (.;
¦ y

T)O.íell

11
•*

and, as indica ted,
tensor(deformation)£). . = •§¦ ( •;'¦--"- f --'.-'.- ¿- ) = rate of strain

1^ V ' M¿

P. . = v U. U. = stress tensor

q. = •§• \ U. XT = heat current density

Q = \ $Xj = thermal energy density

X. = X, V, Z = outside force (per unit mass)

= U, V, W = thermal velocity

v. sssxu, v, w : average velocity

= ¦-". ,' i ¦') i velocity components

x. =x, y, z : coordinatesx

9

ell í O. ) T div (.;
¦ y

x. =x, y, z : coordinatesx

= ¦-". ,' i ¦') i velocity components

v. sssxu, v, w : average velocity

= U, V, W = thermal velocity

X. = X, V, Z = outside force (per unit mass)

Q = \ $Xj = thermal energy density

P. . = v U. U. = stress tensor

q. = •§• \ U. XT = heat current density

£). . = •§¦ ( •;'¦--"- f --'.-'.- ¿- ) = rate of strain
1^ V ' M¿

(deformation) tensor

and, as indica ted,

11
•*
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the time derivative in parts of successive order of approximation by writing :

'¦¦¦ /J v d-1

Calling J.7s ;:>
A }yA

IIV -j y and the collision operator

J (f f,)f one gets from (l), by equating equal powers of Q9Q9

3 (f(o) y m 9 . (4)

( |: ,d) f(o)f(o) = j (f(o) f^(o) + f
(:.) f^(o) j (5)

15- y(h-rD)f-
J (f(o) (2) + f(l)f

(l)
f,

(l)+ f
(2)

f,
(o) ) (6)

etc o

(4)

(5)

(6)

a) First approximation.

The development is clearly so arranged that (4) is the first approxim-
ation, of which the general solution is s

f(o)f
(o) = n(r^T )3/2)3/2 t (7)

the local Maxwell distribution, which contains still the five macroscopic quan-
tities n, v. j T which are functions of x, y, z; t and remain undetermined.

(7)

b) Second approximation•

Writing f '= f (p one easily sees that (5) becomes :

T ( Awhere -- ;v| ,-' is the linear isotropic operator

I(<|>UU5,(A n.^li^Cj/d^.-f-^)!^;^

1 (l)
Equation (sa) is aniiihcmogeneous integral equation for *f • -

he homogeneous
part íLas clearly as solutions the five conserved quantities '4' , a 1? •=. -^
M'j» r) ,H\ ' , ¦!> =¦>*¦•¦ v!tf^
In order that the inhomogeneous equation have a solution, the inhomogeneous part
must be orthogonal to the five solutions f A

o This leads to the five integra-
bility conditions :
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which are the ideal fluida or first order hydrodynamical» equations foss n,
v. <-, T, or as Enskog expresses it ¡in fi-'Bt order the time derivatives

._:'_':..'_ ; .¿~~Jli
?

ü¿L-,'.. must be.tei:en to be given by the ideal hydrodynamical
)1 Q t "} t

equations» One can also say that in first order one can calculate the average
values in the general hydrodynamical equations (3) with the local MsxwelX-
Boltzinarm distribution (?)? giving the Suler equations

p(°) _tj \ o(o)o
(o) ._ 0

id -T.J 1

Note that p -•= nkT is given hj the ideal gas law., If (sb) is fulfilled (5aJ
has a solution y which is determined except for an arbitrary linear combination
of the five solutions (f'..s of "phe homogeneous equation* However, jfe_.wi3.l
omit tMs combißation and make f\l) definite by requiring !

(5b )

( 5 c)

c) Solution of Í5 a)«

The left-hand side becomes, losing (?) and eliminating the %/ v f terms
with (5 "b) ,

V f
'

( 0
From the linearity of the operator Iitfollows that one can decompose <Pm 2
writing f\°i = Ae~ one can put
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T" £
where 11 .t Ü . . ara functions of the U. determined by :

X 2.J 1

and ;

, -
».•¦)¦>

is recognized as the linearized Boltzmarm operator,, Since I' is an isotropic
operator, ll • and (h . . must be, respectively, an isotropic vecotor and an

isotropic tensor in the velocity space U., so that they must have the form s

._

The two functions V and \ . are determined by (5 d), The solution is im-v £3, • D

mediate ifone knows the eigenfunctions and eigenvalues of the operator I.This
is the case for Ilaxwell molecules ; for other interactions one develops X.
and /(, inSonine polynomials r which are the orthogonal eigenf unctions a

of ICo.- ) f°r Maxwell molecules.. (See Equation (9) ? pages)., The resulting
infinite set of linear equations can be solved by convergent series expansions,
of which the parameter is a me as '¿re of the deviation of the force law from
the I/3H repulsion.

(5 d)

(5e)

4) (Third,approximation»

Putting f(2'2' =fW iN 9 a.nd keeping in mind that (f° f°.tf )^r° f?,^',
equation (6) becomes 2

U V'Vl
•> ! l

- l< l »v / L ' J (6 a)

Again the left- hand side is known and must be orthogonal to the five solutions;

(6 a)i
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("by the ltßoltzmann tl transformation) and

J
' '

tt r
"because of (s&)j dn-edn-e only has to fulfill:

]yi\^%T)( (l))n--o (6.)

One can say that (6b) determines (note that f % is completely known)
the first order time derivatives of n, v. and J. One finds that the
zero and firat timo derivatives together fulfill the Stoke s-Havier or
second order hydro dynaagic equations, which therefore appear- as the
intBgra"bility conditions for trie third approximation.. The .sara© equations
are obtained by calculating the average values in the general hydrodynamical
equations (3) using for the distribution function f'%0 > + fi~)« One finds s

(1) r . j X

- (i) d T
J
-

.•
~
i/_• • -ví \-^ "

¦ •1 ~> *> ». >.. :.¦ •
j-J í1 4.J ~ V s\ ?-.

which are the Newton and Fourier laws. When the stree tensor g;iven "by
Newton's law is inserted in the equations of motion (the middle ones of
(3))> the Navier-Stocke3 equations result. The vir'copity coefficient yHr'
and heat conduction coefficient y are certain integrals over ths functions

o ¦ o
X (^)i X v(T-7") an¿ in ¿"irst approximation (exact for Maxwell molecules T

are given by z

M"t
'

I!" '^'
CjL,s*-fn m

• (8)

V ¦5/2 Cv/
,

where g is the relative velocity in units \ 4 kT/m and Gf: is the so-
called transport cross section t

T

Q.. (g) = 2 "IT Idfi sin3ei(g, ©).
r ¦

'
p

If the first order time derivatives of n, u^ and T are fixed "by (Bib)\ then

(6b)

(8)

= 5/2 C iA.\/
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(6a) has a solution determined up to a linear combination of the y^ ,
which again we omit, fixing the f(2) by the requirements :

The f^ '
can then be determined by the same method as used for f(^),

and in this way one can go on. The integrability conditions for the
fourth approximation are the Burnett, or third order hydrodynamical
equations, also obtainable from (3) by using ft0 / + f(1) + f(2) in
the calculation of the average values. They are still of the first
order in the time derivatives but now contain higher order space deri-
vatives of the macroscopic quantities V , u¿ and T, and new gas constants
analogous to m. and \- appear.

19. General discussion of the development

a»
-

The development can be said to be in powers of A v where A is of
the order of the mean free path and the gradient operator acts on

the macroscopic quantities. In fact, from (sd) one sees that d> \ ')

contains terms of order s

1 1 '}¦ T • V Á ')> T
rTT" "T "T7~~ T~ "i x

and

t ? v n A v
2kT

'

sound vel. x

where (V is some kind of collision cross section. The development is
therefore in the uniformity of the macroscopic quantities )' , u[ , T
and one can say that the Hilbert parameter 6 is a measure of the
uniformity.

b.
-

The development is so arranged that at any stage the equations are
of first order in the time derivatives of V , u¿ and T (by leaving

off the homogeneous solutions). Therefore the initial values of \? , u¿
and T determine the "state" of the gas. This macroscopic causality
theorem (Hubert) is of course n_ot_ a theorem but an "Ansatz", It seems
paradoxical because from the BoTtzmann equation it clearly follows
that one needs initially £{%t"<\& } xyz, 0) (which contains of course
much more information than the five moments n(xyz), Uj_(xyz), T(xyz) do.)
to determine the further state of the gas.

One must expect , therefore, that an arbitrary initial velocity
distribution^ M, ; xyz, 0) in a very short time (of order of the
time between collisions, A| JkT \ ,'-

Ivf-
—

) degenerates into a normal

Hi ¿Í'O

1 1 '}¦ T • V Á }: T

n
" 2kT ' x

"

sound vel.
;! x
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state" determined through the local Maxwell-Bolt zmann distribution "by
the macroscopic quantities . 9 , Uj_, T9T 9 and that the further slow equalizatio
or adjustmant of the spatial non-uniformities proceeds according to the
hydrodynamical equations and in harmony with the macroscopic causality
requirement.

c.
-

The development does not distinguish between the magnitude of the
disturbance and the scale of the disturbance from equilibrium. In

any physical problem these can be well distinguished. Por instance, in
the propagation of sound they are measured by the intensity and the wave-
length of the sound wave, respectively. Especially for the discussion of
what happens at Ijdw pressures (that is, for large mean free paths) the
Hilbert-Enskog development is not appropriate o Por the theory of the
transition between the "Clausius gas regime" (at moderate pressures) and
the "Knudsen gas regime" (at very low pressures) it is better to make
a straightforward perturbation expansion of the Boltzmann equation by
putting g

f = f (1 + h)
o v '

where f is the oomplete equilibrium distribution and the perturbation
h satisfies the linear homogeneous equation s

in the absence of outside forces o Por various special cases this can be
solved in detail, allowing for a discussion of the dependence on the scale
or Knudsen number (~ A. /L, where L = representative length) for small
disturbances or small Mach number.

20. The idea of the virial expansion.
The classical result that the viscosity and heat conduction coeffi-

cients are independent of the pressure of the gas is clearly a consequence
of the limitation to binary collisions. Presumably for higher densities one
may expect that for slowly varying phenomena the Stoke s-Navier equations
remain valid, but that the k*j (and ~V ) will become functions of the density,
which are developable in the form :

r /
°

/ ¦ > * l) (1)

analogous to the well-known virial development :

1
* !*~ kT v i? + "" (2 )

(1)

(2)•
o*o

C++ B_
v

1
kT•f!i.

.. 1
í

1 i'.-•o
>

A/--

f = f (1 + h)

Ak.+ c XL. -
I(ü)

A/--
>

o 1 i'.-•
í

.. 1

i. ! •f kT
1 + B_

v

+ C •
o*o
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of the equation of state, with v = _ = "_ .In (2) one **&*,*

Her
'

knolls how to express the virial coefficients in terms of the intermole-
cular force (j) /' r--j. One has s

vc j i
• -

f
1 -* f Ii ¦

, TP \
'P ¿- j \ I j. /¦)~ iH \ \ r i

'""
< *~ c A '

/

( , -//3 yJ at fr- f(o t i !̂ tff;~";i.^
(3)

And so on! B involves the interaction of a pair of molecules, C of
a triple, and so forth.

(3)

TheyU- 0 is the viscosity coefficient derived in the previous

section %

(g = relative velocity in units y ¿T/m 5
'

Q = ¿if j4 J* ftp- )
It involves through the l(g,':';) the intermolecular force v (r) "between
i a pair of molecules. It is therefore
i | related to the second virial coefficient B.

j j The relation is very implicit, but by
! | assuming a form for <p (r)j as for instance

I _f" a two-parameter Lennards- Jones potential

/ ft"' 1 - Li;'/-O (,-./,-)¦•/

one can calculate B(T) and /a o (T) and see whether one can reproduce

the data adapting C and V . Such calculations have been made by
Hirschfelder and ooworkers with success. The agreement is very good,
especially for the inert gases.

Analogously one must expect that /S involves the interaction of
the molecules in triples, so that it would be related to the third virial
coefficient C. However, no general formulae for v,, , <,v ¿

, ... are known»

21. The virial expansion for the equilibrium state.

Although this is well known, and a little
'

aside from our main

fI"--!!.)i/
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'
Q = ¿T) l^'v'1' X1^ ) J

It invol^os through the l(g,':';) the intermolecular force v (r) between
i a pair of molecules. It is therefore
i | related to the second virial coefficient B.

j j The relation is very implicit, but by
! | assuming a form for <p (r)j as i"0^ instance

I _f" a two-parameter Lennards- Jones potential
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topic, Iwill give a derivation of (2) and (3) by following Bogolubov
(Journal of Phys. JK), 256 , 194b). It is an introduction to the method
he proposes in a following paper (Journal of Phys. _10_ ? 26 5, 1946) for the
virial expansion of non-equilibrium properties. Start from the canonical
distribution in co-ordinate space

V* %)-¡r t'"'"\ <4)

J V v

D«. is symmetric in q, ... q^j and normalized to unity. One can form partial
distribution functions by integrating: let 1 Pg(q^... q) be the
probability of finding an s-tuple in q.,..q s s^/ s

Now observe that D^ fulfills

iA.. t. .1- ilk ;o
t:
;o («t »"..).*) (5)

by logarithmic differentiation of (4)« Integrate (5) over ay ,-]••• Q^w?
then one gets for F in the limit N—^ , V

—
•* *: , v = V/N finite?

i

where s ._..„ i /",, t \ -¦
•" A

- j

Proof : ..__ _.. . .

Prom the U part of U^ in (5) one gets the first two terms in (6). If i, j

are both y*1 s, differentiation by C?,|©*. gives zero 5 the only terms

(4)

(5)

(6)
cl»cl»5 ;^<

-y\;i
X ir

4
j

kT
4-

,M.)e( = i<(Ü.D,
3 V. 'i< T

fIRíL

-Iv/kTLHñ \ íí 1 o
~ u. •))*u. *% \

7-* I
• ¿l/ii ) rVi'

11

Vi' 7-* I
• ¿l/ii ) r

u. *% \ í 1 o
~ u. •))* ñ \ íH L-Iv/kT

IRíL f
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X ir
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remaining which give a non-vanishing contribution are tf> . ? with j J> s.

Because of the symmetry of D , one gets for all the N
-

s values
of j the same expression, namely s

so that in the limit we have (6) / ..'}: ¿ JL- )

One can now say that the hierarchy of eqs. (6) for the successive
distribution functions must be solved with the conditions s

ifall i "7
v

. ... ,

Now make the development in powers of :

ls M
'

i.r { StS t "^T w r'- (8) .

Then one gets from (6) z

!o±l ,J~ Sis- f^ n "1

which can now be solved successively. The development (8) must also
be used in (7) ? giving s

C itJ <Z. rr( * ) / / \ -tt~- rr Ui .
n

s

(6)

(7)

(8)

(9)

(10)
i 0/ \F(l!iF (l!i
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I
etc. Finally, one must require, since j*•({( } ÜQ

'
? that s |

V
' f

Lim J- Ft

(°>i r j Lim
—- (|=! ?

'
((]( (] )¿. * Q (11)

Eqs. (9), (10), (11), suffice to determine all F^r^.

(11)

For instance in zeroth approximation t from (9) it follows, putting?

¦

that

¦',)C.
'

~~ - o(I ty.*

so G* = const, (because of symmetry requirement) . From boundary
condition (10),

c'°'= (c(°)) s , and from normalization (11) C^ o', so ss i

f(o)= 1 , F(o) = exp (-Us /kT). (12)
s ( , i _?

In first approximation, putting again F\
* ) ~C <. &V \

-- / Al -w
one gets from (9) 5 using the symmetry
requirement sts t

Bg is a constant. If | ¿J/, *¿^ j
—«» , ItV1 tV L'J t;^-; '' '

one sees that s

i

Since s

one gets from the boundary condition (10), that B = sßr . Finally from
the normalization condition (11) §

¦o -_\ A. s(, ~éh,i _t\

(12)
r \ <

exp (-Us /kT).—
1 , F(o)

s
f(°)=

osoc(o)
0 J(11)from normalizationand(g(o))b fS

0f%)cl^="p\
i

v"
V

Limjr: (°) ¡I
V

Lim

rs("^r5
("^ CrH-- i~U/k'T)

(I

'ii S
is a constant. If | fy,

"*
¿^ j—^ , ItV1 tV L'J }

~
J
' ' /

r'° ¦ "^> ( i f o"fpf0 "fpf i,, v +* , \ tße
i

fc.'-JM»'*'"1-^

Lim
I
V

r: (°) ¡ j Lim
V

\
i

v"

p f%)cl^=" 0

S
(g(o))b f and from normalization (11) c(o)

0 J so o

f(°)= 1 , F(o)
s
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giving s ._i:L / i CTT / ¦/ \

-1-¿ f ( i-, -i(,., ) }
where for abbrevation s

d> (r- ) X T

And so on. To get the equation of state one only has to use the general
virial theorem which leads to s

where r =q.
-

in which one must then substitute the successive
approximation for

"
q2) which one has found. Using the n

,'*r.
zeroth and Ist approximations (12) and (13) gives the equation of state
up to the third virial coefficient»

(13)

22. The Kirkwood
- Born

-
Green development.

¦^or flon-equiliijrium situations the probability distribution
IU (x., ... x», tJ~in p"1 -space (x. ~ qf.,"p. ) is of course not
known.

All we do know is that !)„must be symmetric in x,, x? ... x

and that it fulfills Liouville's equation s

:n l 5 (14)

2
2» (p)

_ _JL . v (q) a outside force, in which one must include the "wall
2 m

potential" is the gas is enclosed in a vessel of volume V.

One still can introduce the partial distributions :

4- R(t,x,---<s) ? i--ÍA' x̂i».'-- <u^
y/ s ;¦¦¦¦¦¦ • ••

(14)(14)

1
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and then (14) is equivalent to a hierarchy of equations. These were
written out at about the same time by Kirkwood, Born and Green, and
Bogolubov, and Iwill follow the last. In the limit N —"' -"j/- , VV 1

—
>**&

v = V/N finite, one gets :

H is the Hamiltonian of the s-túple of particles s

H-¿ T(f;)+1,

where there are no outside forces, and the wall potential can also be
omitted if V is very large.

(15)

The proof of (15) is quite similar to that of (6). In fact one
gets immediately s

3 t I '
t'ethiS

Since D must "be assumed to vanish for large p. and q., one easily sees
that in the last term only the terms with the intermolecular potential
with i <^ s and j > s willgive a contribution. Por such a term :

where the prime means that dx. is omitted. Because of the symmetry of D,
one can always put j = s + 3 and one has N

-
s equal terms s

ifs..í

(£¿v,IJL
jIWj(

(IS
1-t

3 t I '
t'ethiS

IS
1-t

(

(Wj I jI
JL ¿v, (£

í
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Altogether one gets therefore í

which in the limit gives the last term in (15)»

Of course no real advance has "been made. The set of equations
(15) is equivalent to the Liouville theorem. ITote that for s = 1, (15)
"becomes s

¿(Atu;^ i±í!¿S¿ l^fa^f.f,

which "smells" like the Boltzmann equation, but the connection is still
far from clear.

(15a)
•.1^ i^)^f>Cir^af^|,

¦fE* ;1

v ¦ tm ¦¦¦• ¡

-
.'

1 E* ;

¦f

r^af^|, .1^ i^)^f>Ci •



47

THE IDEAS OF BOLGOLUBOV . II.

23. General ideas.

One is tempted to imitate the virial expansion for the equilibrium
state, starting now from eg« (15)° This is n_ot_ a good idea, because
in the zeroth approximation one would get s

which means that F"
'

changes in time according to the interactions
between the s particles, without collisions with other particles»
Such an expansion can therefore be valid only for very short times,
small compared to the time to

-
A/U.a v between collisions.

In fact the order of magnitude of successive terms in such an
expansion after time t would be s

( n = 1/v = number of particles /cc 5 r ¦range of inter-
molecular forces 5 \"y «J— = mean free path).

Yet one must somehow obtain the Boltzmann equation in first
approximation. One might think that at low densities somehow the state
of the gas can be described by the first distribution function

F^ (x, t) and that all higher ones are products of F_ 5 at higher
densities one would need both F. and F?

, the higher distrib-
ution should be expressible in these, and

'
so on. Ithought along then*

lines for some time, and also Kirkwood follows this idea. Success has <

been very meagre; at best one can "derive" the Boltzmann equation
from (15a), but no one has really gone any further.

Bogolubov argues in a different way. He distinguishes in the tempo-

ral development of the gas three stages s

a * Initialmixing s from an arbitrary initial distribution 3>(y. •?^,o]
ho supposes that very quickly (in a time of the order "

~T = r/u = the interaction time, or time of a collision^ ~£ n s very

small compared to t = A /Uo . which is the me an freo tim e or time
between collisions, at least for moderate densities) , a (first)
"smoothing" process occurs, and that from then on the development depends
only on F. (x, t). The initial detailed knowledge is lost, so that
after this initial period the further development depends only on F-,.

k # Kinetic stage. This describes the development of Fl,F
1
, for which

one assumes a kinetic equation of the form s

IL..KU,F, ) = A,, U.J,)* -1 A ,[*,F.) ¦? ¿v A¿ C*j F, )t ¦F,) +(*,?u¿A¿(XiP.)? ~ A)U,f;Ao(".FJk9 r

>t. v
'

¦" )

1. y \ •-. . ¿ + "2^- J- -._

—
V'

9 r k (".FJ Ao U,f; ) ? ~ A (XiP.) ?u¿A¿ (*,F,) +
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(D

while all the higher probability distributions depend on the time only
through F,. One puts i

for s 2. One keeps the eqs. (15) relating the distribution func-
tions, and the problem is to find A(x, F.). Itmust of course be so
arranged that A describes the streaming, A. the Boltzmann binary
collision term, Ap the triple collision term, etc.

(1)

(2)

After a while, in a time of order t (the mean free time), but
small compared to macroscopic relaxation times, a second smoothing
process occurs, so that from then on one does not need F,, but only
the five moments p, v, and T. Again one can say that some knowledge
is lost, and that the further development now depends only on the value:
of fi>, v, and T af^or this second period.

c * Hydrodynamical stage. This describes the development of p,"v, and
T, for which one assumes hyárodynamícal ess« of the general form s

57 -.R f» r ¦¦¦ 1)

¿| .Cli,¡ Ü.T)

¦yT
:' íi'V-P v, !j. (3)

One keeps the kinetic equation (1) previously derives, but one assumes
that F. depends on the time only through p, v, T, so s

P1 (t, q, p) = »1»1 (q, Í9 y ,U, T).
¦"¦'¦¦

The problem is to find the functions R, U, . Like Hubert
and Enskog, Bogolubov uses an uniformity parameter in . ..
all functions are developed, so that this part is rather analogous
to the Hilbert-Enskog development, except that now in principle
the virial type of development can be obtained for the viscosity
and heat conduction coefficients also. There are no results as yet.
But there ij3 a whole program !

(3)

24.The kinetic equation.

Using the general equation (15) :

T ) .Ur
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and the expansions (1) and (2), one gets for S = 1 ¡

etc. A is therefore the streaming term, as expected. For s J.. 292 9

one gets s

etc. Hore the differentiation operation D acting on any function

'11/ ( X x . t ¦ f) means

DJ^^^/F,) (6)

since all time dependences occur through F,. The program is now to solve
equation (5&), which then from (4"b) would give A., then solve (s"b)
which would give A^:., etc.

However, to solve (5&) one needs some boundary conditions. Bogolubo T>

demands that for any^ function F. and for all F (s >2) s

Six j ivC*--- *\ , F.)- Tí Í -7 V, (vJ)\ -^ o

for T >atf (7)

(4)

(5a)

(5b)

(6)

(7)

Excursion on the operator S v , y s

Suppose that the motion of the s particles under the influence
of their mutual interactions (with Hamiltonian H ) is solved, so

that one knows the phases s

y, -x;¡;t f
x, -x.) ¿--!>, s

of the s points as functions of t and the initial phases x., ... x •
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Define the "streaming operator" S| s / acting on a function f (x..... x )
*y ' (si . ,

,(v), V (8)
In particular, of course, X::A

(
, and also clearly

siS!+ siS^ • S|S^
8 With the helP of s^!^ ons can "integrate"

t.-+Xp
= X j X2 X

partial differential equations of the form s

-"-L
;r-f---~- s LHi^í+ fl-t^r- fir) (9)

where f is known. Namely, one can write equation (9) in the form

P J = f (t, x,j ... xg
) (^ ¦substantial differentiation quotient).

Therefore, §[i,,x ?, .*s ) m( ;) x,,¦ X )+ \ (T;V,T.
•

¦ t¿r )
where the initial positions x .o. xcxc and the positions at time (.. ,

X' , r • X.t , must be * onsidered as functions of t and the x, •..x
(which are the positions at time t). Therefore s

and analogously s

f {T,*lX . X-r
-

S.(t-t)'t (t,3f # .. <
&).

Hence the solution of (9) can be written in the form %

T .?
~
lt -

(10)

(8)

(9)

(10)

Condition (7) somehov/ says that before the s-tuple coüiüíou u^ ¿"'

is a product of the P,(x. ).Imust say that itis not clear to me, but it
works, and it is perhaps best to show how one can now determine the
A.(xj F,) successively.

First note that with the expansion (2), the condition (7) is equivalent
to s

S ;\;\ •*.• *ri5) Fh ó >\ s t¦•-* (~i v(7a)¦c»---1'v¿ T-")->a¿ . »r to p.*r> j) hs fi)

T-^X .t*¿)¦ r 'i-,)-ir.tO
•>5 ; !:>^r

(10)
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etc. Now one can start.

First approximation.

We have to solve (sa). Since (sa) must hold for anjf function
El.,E1., put in P(® ) the function SÍOf-i for Ph. Then one sees that1 ? *

s
-

C

because

-ir-, JjZL.I s(0s
(0

f

and

hAoú^)
. ' v

so one jjast gets D F^0 ' according to the definition (6) of the operator
D . Therefore (sa) becomes s

life, <
s ,s.^f;)--{h1,fs

w(x,-Aíí'Íf)]
whence (using the first term of the general solution (10)),

so s

This holds for arbitrary , and since the left-hand side is independent
of T , one can go to "*t

—
s- o¿ : , and using (7^) one gets ;

0 *-

st^f;-[h.,f,}* F'}'Ao(*iF,)

Cli, -¦• iF. )>S!" F>'V ¦••¦*!! s t"^.)-

S^l-, U.O' FÁiy^ iír 'r • pO .'
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On the other hand ¡

Sü s riV a\ a)

S^TS^Fl',)^! F ( S. TÍ;tiS^ ?\,PO.

Call now :

PPt

U\x,. *
0^ $S¿-^tP¿. (11)

P> s' is the constant initial impulso of the i-th particle in the s-
tuple collision (governed by H ), which leads to the configuration
x, ... xs at time zero. The transition from p. to P. goes fast
(in a time of order of the interaction time TV = ro/Uav^ J at leas "fc
for small s), and since s

one can see that for X , Xr/}1 ¡-v, '--t < *
willS° to

the limit s

Q- K-^-^^Uf? -^Pv5 dT
(18) .

Q. is the position the i-th particle in the s-tuple collision
at time zero would have had if the particle had gone on with the initial
momentum p(s ) . With the definitions (11) and (12), one has therefore?

and according to (4"b) this leads to :

A, (>. , F. )-\l^1<f„.,F, (e WT;'1') ((í'/^l?)} (14,

We will show the relation of this expression to the Boltzmann collision
operator presently. However, let us first look at the s

(11)

(12)

(14)(Cp (")ñ(cp;;!í)íh)<XtX
{i.Xi)Ri!*,A,

ci)nl^n 1^ c«y¦>

<?
*s)^V

If:%¦J-

'0 =r,i¿)

Si- 1 F, (*vj*Fi ( (V: r~r i-lo^'

f;lv

r,i¿)
'0 =

¦J- % f:I

V *s)^
<?

¦> nl^n 1^ c«y ) ci

A,!*,
i R ) i.Xi

X
{<Xt ) h í (Cp (")ñ(cp;;!í)



53

Second approximation.

To determino F^ ' (s > 2), ono has from (st>) :

j>
o r$

w(y 1
...xi»F,)«^S,F, <l)

J+Y> lx,..yj¡ FO, (15)

where we have put

inClearly \|/ is known. In fact from the definition (6) of D, one gets s

y i^ri
'

j;| J J J (16a)

Now put in (15) Si ~L £\ for F, again; then one gets

Using now the complete solution (10), one gets 1

F;t)^
íX

>
ÍV..V.F,)t

".O
or (also changing "f-T. to T* ) : (>,

+ • -j<j)S^ F,)
The left-hand side is again independent of I, so by going to the limit
T -¿o¿ , and using the "boundary condition (7a), one gets s

(1T)

which inserted in {4) gives for the triple collision term in the basic

(15)

(16)

(16a)

(17)
o

)f;
¦
—^(*•¦¦¦ I¿s ¡FOr(.'),<Fs U, ...

Pfs+l))lP
fs+1))l(V

p/')FO^A, ( Q i, r' ¡
i. -

i

'r. ) =
%

ift.dx >+1
c

¦\

—
(a)

i-5
(

£,%

);F,iJ + TjÍX,..F>t\ Hi\F tI

—
i» ) .

D

t'l i \

1f;u.-^í^fO'(Hs 'Fí'Vv^'"'ViS^^

".O
or (also changing "f-T. to ¦ "T" ) i . %

D
—

i» ) .
I F t

\ \ Hi t F> J + TjÍX,.. i F, );

% £,
—

(a)
i-5

(
¦\

c dx >+1 ft. i

%
'r. ) =

i. -
i

A, ( Q i, r' ¡FO^ p/')

V ( Pfs+l))lP
fs+1))l

r(.'),<Fs U, ... FO (*•¦¦¦ I¿s ¡ ¦
—^ f;)

o
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It is now clear how the successive approximation method clicks along.

(18)

25. The Boltzmann equation.
We conclude with Bogolubov's proof of the equivalence of the ex-

pression (14) for A. (x,| F.) with the Boltzmann collision operator.
This equivalence is only rigorously true for the case where
F, depends only^ on the impulse. In this case we will write w(t, p)
for F, (t, xJTOf course in this case A.

Q
(x$ F.) ¦Í.-T (p) f w(t,p)V =0

Now noto that in general

;v*s),f(; v*$),f(P
Ift!-..1

ft!-..Piil)>}-Di

il)>}-D (i 9)

where fis an arbitrary function and the P .' are defined by (11). The
proof follows by observing that the Poisson bracket (19) must have
the same form whether expressed in the variables x.,... x or in the
variables C^5^ V¿ , because the transition from x. fo S\ s )oC¿
is a contact transformation and the Poisson bracket is invariant under
such transformations. But for X ~~* *°ÍH willnot depend on the

coordinates since the particles are then far apart, and the Poisson
bracket of two functions of the momenta is zero 5 hence (19) follows.

Apply (19) for two particles with H(x,, x?
) = T(p ) + T(p ) + tf/

andf (PC2>,l^)) =w(t/F;lt))=w-(t,pft> <Fi(V,)JJiL) i-);
'

then one gets from (14)

Since P \ '
and P^ 'depend only on! qp -q^ ( (central forces!)

3^l^ ''} ®ji.c\ * Take cylindrical coordinates now for the dq
?

integration, with the origin in ~q*, and axis in the direction of the
relative velocity ~r (J^

—
t> ) 5 call the coordinate along this

axis fr, 5 then s

(19)•; orP
is)

)
¦

t » * v 'fit•*s),U,Ms

ÍvM*yL¡)
-

o C
\ku,*ru,<f,)

S.

Apply (19) for two particles with H(x,, x?
) = T(p ) + T(p )+$ ,

p

-. --)cU,.(Tip,),T (fl);w(t ,P w)vr^,ís}

S.

*ru,<f,) \ku,
)

-
o C vM*yL¡ Í

Ms U, •*s),fit ¦

t » * v ' P
is)

)ro•;
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One now can integrate over J . Romember that A9x^) and

P^ (x., Zp) are the impulses with which the two bodies^ start off in the
• collision which goes through the phase x,, Xp. Therefore,

-
¦

and ...

where p., p2p2 are the impulses of the "restituting collision" (p,, P2P 2 )

(p1? Pp)« Since because of the axial symmetry dq_ = 2 T/"b db d^(where Id is the impact parameter), one gets s

A , ÍX,, f, )-¿ TT \ tJ^t J bivvr Ít,pf,)vr (t( t „ )-
- wr(t,p,) ur(t/^)},:

(20)

with s

is just the Boltzmann- collision operator.

(20)

For the general case in which F. depends also on the coordinates,
Sq. (14) is only equivalent to the Boltzmann collision operator ifone
neglects the difference in the positions of the two collision "partners",
¿uring a collision. Otherwise one gets correction terms (described by
Bogolubov as a kind of "inter-ference" between the streaming and the
collision terms), which contribute to the equation of state (remember
that the Boltzmann equation leads to the ideal gas law!) and also pre-
sumably to the /U',. correction in the viscosity. For elastic spheres
thsi was already noticed by Enskog (see Chapter 16 in Chapman and
Cowling).

For the discussion of the hydro dynamical stage, I" have to refer to 1
the book

N. Bogolubov ,Problemy Dinamicheskoi Teorii v S4a±istiob.estoi
Pizike

)-

Í2O
wr( t, p,) vr tjjpi)^—
i

(

\

!
.1

1i)r,UnIA

¦

{P,%.,*>)\,«,':f>. , \^i'v»},-^ -p.

(?,'%'.>}¿-'^

A IUn r, ) i1
(

\

!
.1 —

iwr( t, p,) vr tjjpi)^
)-

Í2O
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Addition to Ch. 9

An except of the paper of Eac. Consider first.

Sl • Stationary, discrete stochastic series , which need not be

Karkoffian . We will extend the result oí Ch. 7 for this sore general case .
Denote by n.

"
net n.

" , so that fo.c instance :

wx ( n^ )
-
i•-;>: v ( nj )

W ( n,, n. ) -= -"_ V?
(n, n. )

etc • Drop the indax i, and choose a fixed value of n . Then, from the

stationarity , and tha general consistency relations between the successive

distribution functions , one sees :

W^ (n, ¿a y*,>,n) = Wk+lWk+1
(n, ) - W

k+2
(n, ,£-3, ) (a )

k k k+l

Wk+
(n, n.^.,) • WWk

_ C^n >»¦>«,;
-

Wk+lW
k+1

( n^.^nj (b )

k . *k toil

\\+2
(n» sUl£) ¦ \+i

( }"V2( £.;:£> (• )
k-i-1

¦ k+l k+2

Calling for abbreviation :

s

(a)

(b )

( c )(
(n... n ]

k+2

Wk+2
{ n ... n ;k+l

n, .n... n.) =
"-—

v
k-i-1

(rr
k+2

(M8 J
k+l

\-.SBn."•£..> )

k

n,(w

[ n, ..n,;\\+2
•> —^A

—*'(n) = W. ,'
k+l

k

(w

Wx (n
t

)
-

1-^V ( ná
)

W ( n., bu )
-

<"-_ V? ( n., n )
J y- X

fc> O
—

S

w (

k

n) = W. ,'
k+l

( •> —^A
—*' \\+2

[ n, ..n,;

w ( n, n."•£..> )

k

SB \-. (M8 J
k+l

rr
k+2

( n, .n... n.) =
"-—

v
k-i-1

k+l
{ n ... n ; Wk+2

(
(n... n ]

k+2
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one gets by combining ?J) ,-Q and (c) , the basic lemma :

WK+2 (n,n. .íín) = Wj£ -2 Vl + (1 )

For k= O , (a) and (c) are still valid ; c
b) becomes :

Wl
(n) ¦ Wo

'Wl®
also true if W 1 .So (£) remains valid for k= 0 .

Theorem 1 : For each n :a - .
CD

P ( »/«r.v Si a) -X (2 )

Proof ; The conditional probability P 2 is defined by :

P ( njn... n, n ) «= -^t¿
k+2 Wx (n)

From (l) one gets easily :

JR.,
wwk+2

( *»*•«:^ n } ¦x•¥x ®+V2-Vi
k=so

' wN+-)w
N+ -)

' a^n<í^ N4^ successive n -values must be less probable

then N+l values, and the w's ere not negative and bounded, go- Xim. .ww

exists, and therefore ltn ( wM 9 -ww , ) = 0 , from which (2)

follows .

( 1 )

(2 )

Eg. Qz) ±3 the Wiederkehr theorem for discrete stochastic series-

It says , that it is certain that an a-Talua will come back after some

time k"¿ •

2(= 1)nn,•«•(.»/»
fc+2

P
CO

k=:0

ja
i nFor each• ,>rem 1leoreni

wk+24-k+l
-

2(ntn. ,n,n)'*rt

Wl
(n) = Wo & -Wl®

Proof ; The conditional probability P k
~ is defined by :

P ( njn... n, n ) «=
—

2*s
k+2 W (n)

JR.,
wwk+2

( ***•*:5:5 n } ¦x•¥x ®+V2-Vi
k=so

'*rt (ntn. ,n,n) -
2 k+l 4- wk+2

leoreni>rem 1 • ,For eachi n
ja

CO

k=:0
P

fc+2
(.»/» •«• n, n ) = 1 ( 2
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Theorem 2. . If : lim. WMWM ( n ...n )= 0 (3 )

then the average recurrence time of the state n is given by :

Proof : Since by definition :

0 (n>«-2 (k+l)rP
k+2

(n/'n..,n f a)

one has to show :

( k+ l)W.~ ( n, n...n", n) = 1

From /1) one gets easily :

N-l
¿ Wk+2

( n,i...n, n)=l-\t ( wN
-

wN+lwN+1
) + «Nj

Now , since the left side is a non decreasing sequence ,N (w», -w^ ))+vrTi

forms a non increasing sequence of positive terms, so that the limit for

N o-^¿o exists . Since lim w^ exists according to (J) , lim.N(w«~ ¥TJ . )

exists • Now, the series of non negativo terms ¿> ( w«
-

ww , ) converges

l^> 7 ( w.T -wH,) = 1
-

w i and lim. ww =0 / , and thereforenfco N N+l M+l m-^^ M+l J
if the limit of N ( w.T

-
w ) exists ( and we know that itdoes ) the limit

must be ¡zero . This completes the proof . Consider now :

( 3 )

(4 )

}?• The steaming; xn ¦

-
3 cace , say Letv/eyn two er 7j surfaces

E and E +4E . Call the total volume i2i2 =1 , and ¿.¿t A be n small

region . ( We will speak about a regior^ by which we mean the small

\Jn¡m~)(n)

) =•• .n.n(W
Hlim.•If•JiIheorem

Proof : Since by definition :

0 (n)=^ (k+l)tP
k+2

(n/'n..,n f a)
£=0

( k+ l) W 3
( n, n.-.n", n) = 1

N-l

¿g W 2̂
( n,nV..n; n ) .I•\% ( wN

-
wN+lwN+1

) + wNj

Iheorem Ji • If • lim. W
H

( n •• .n. ) =

~)(n) m \Jn¡
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cylindrical volume between the two energy surfaces ) . Let T be a volume

preserving transformation of the J -space into itself ;say T is the

streaming of the ensemble fluid in the time rt . Successive transformations

willbe denoted by T . One then has :

Theorem 1. . ( Poincaré *s theorem ) :For almc ¿t all points CO

in A there exists an n 1, such that T r--O is again in A.
Proof ;Let f {hJ ) be the characteristic function of the region

A ( which means :f ( t*) ) =1 if r<; is in A , and zero otherwise ) •

The sequence : f (a? ) , f ( Tv? ), f ( T U> ) ... can be considered as

a discrete, stationary stochastic series . Each variable can have the values

one or zero with probability j^Ajand 1
- TaJ ,if¿a} is the volume of A .

W, o ( 1,0. ..0 ,1 )is the volume of those points in A which after k+l

steps returrr to A. Theorem 1 applies , and the statement Limsj( 1,0.. 0,l) ara k-**** -yfa
means tiiat the' to+rd voj.ume :of*points oj which eventually will return to *

A is equal to the volume of A » so that almost all points will return

( "
almost

"
because a set of points of measure zero may be an exception )

Theorem 2v ... If T is metrically transitive ( or if the notion

is ergatic ) , and if n (l\) ) is the first n V. 1 for which ,iflO is

in A, T OO is again in A , then :

jn(u;)ál =1
¿1

or the ensemble average of the length of the Poincaré cycl 3 :
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which is analogous to 4

Proof : One has to show that the metrical transitivity implies

condition 3 • Now condition (3) is in the dynamical case

n

Urn. ftt7T( 1 " t í =0 (5 )

which means that the volume of the points in jQL which are never reached

by any
-

point in A is zero . Clearly this willbe the case if the motion

X y
is ergodic . According to the Kii-vh'off ergodic theorem'" I

'
implies that the

time average of any function of the motion is equal to th< ensemble average.

Therefore especially , for any point LO in S\— :
n

Let B be the set of points , which is never reached by any point in A .
So ,ifa point {jj is ¿>i m B f( T CO ) -

0 and therefore

lim
~

f jTü) ) =0; so B must have measure zero, since we know
n y*

n V
from ( 6 ) that for all (jl) ( except for a possible set of measure zero )

the limit is £a 1.

( 5 )

( 6 )

Additions to Ch. 18 and 19 .
I.

-
The Chapman

-
Enskog theory is limited because of the

following three b&r-.io p.* options vvJLca ha- ¦¦- ?¿en mad 3;

_a
-

Central forces , which Hniits the theory to mono- atoXic

gases .

¦M)Tk ú)(t511

l.AtfQ
n

(t'-uD)-
f1(7T¿v

'.*>**>•
dm.dm.

'.*>**>•
¿v 7T ( 1

-
f (t'-uD)

1

l.AtfQ
n

51 t ( Tk ú) ) ¦M
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b.
-

Small value of the development parameter L
-^ma — ><3U< ,

r r macr. qu.

which limits the theory to slowly varying phenomena ( no shock waves , or

very high frequency so^M , where the wave3.enght becomes comparable with L )•

also Knudsen gases, where L is comparable with macroscopic dimensions ,

con not be treated .
£

-
Binary collisions , which limits the theory to gases of low

density . 2his last restriction is the most difficult to remove f since one

has to extend the Boltzann equation ina fundamental and illBogolubov

unknown way . It is dealt with in the last part of the ncte3 •

2.. - The extension to poly atomic gases . The interest lies

especially in the application to the propagation of sound . Already in 1881

Lorentz remarked that for polyatomic one must expect besides the viscosity

and heat conduction coefficients /a. and V f a third gas constant connected

with the transfer of translatiaual energy to internal energy , and that this

should have some effect on the propagation of sound . For low frequency

where the equilibrium between translational and internal degrees of freedom

has time to adjust itself all the time , the velocity of sound willbe given

by the classical formula :
¦ - v-/i -"

ov C m

If we assume however that the transfer of energy needs on the average a time

C , so that one has an equation of the fono :

dU. U. . -
U int. / , \int transí» ( 1 j

dt
"* •-- ( 1 )

V'

U, . -
U int._ transí,dUint

dt

ov C m

dUint
dt

U, . -
U int._ transí,

V'
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( analogous to Newten's law of cooling ) , then for frequencies to \)-¿, '
the internal energy Ü. wilj remain unaffected ,and the gas willbehave

as a mono-atomic gap. , so that :

V i/SL SiV-:oV -:o =13 m

One gets a dispension region around ?L
AV^ 1 accompanied with an absorption <X •

v: ~~/jl_ ?-

This effect was actually discovered by Kneser i.i the late twenties

for C09
, and since the theory has been considered by various authcxa

mm

( Rutgers, Herzfeld- Rice, Bourgin ? Landau- Teller a . 0 ) See the

review of W.T.Richards ,Rev. of Mod.Ph.H. , 56 ( 1939 ) . There remained

the task to incorporate these developments into the general Chapoan-Enskog

theory . Already in 1922 this was tried by Pidduck ( see Chapman and Cowling,

Ch.ll ) . Pidduck assumed thf tithe molecules were rough elastic spheres,

so that infAcollision translational energy could be transformed into r-ota-

tional energy . Por this model the Chapman-Enskog theory can be generalized,

but the model is so artificial that it is hard to see what it has to do with

reality . Further. \e . the dispersion of scmd is usually caused by the

difficulty of the transfer of translational into vibrational energy , and

only recently the so-celled rotó:? •-- ••' c,.-: ¦• 0 ur^rsion has been observed

for hydrogen .
The origin of the difficulty to extend the theory to more realistic

v-:ov -:o =13 m
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molecular models lies in the fact that in Lie classical theory with non-

spherical molecules the probabilities for the direct and restituting collisions

are ingeneral not equal to each other . Itis well known this fact

( also first pointed out by Lorentz ) already causes diff; ulties in tie

proof of the Maxwell-Bolt zmann distribution . It forced Boltzmann to genera-

lise his proof of the H-theore.i¡ by considering cycles of collisions ( see

last chapter of Vol. 71 in the Gas theorie of Boltzraenn ).Dr. C.S. Wang

Chang and myself have evaded this difficulty by describing the internal

degrees of freedom of the molecule quantum mechanically . Instead of

one distribution function f , we now describe the state of the gas by a

series of distribution functions :

f 5 t (¦"?,|,E
i

, t )

giving the number of molecules in the phase- cell 4r d % which are in the

i quantum state with internal energy B. . The Boltzmann equation becomes:

"rt'3c -Afii'd•"•c
~l~

l
*

(«•( «• &' f)¦ff\sa¦fifia / (2)

The ( g, &y ) is the differential collision cross-section for a

collision of two molecules in the states E. and E. , where after collision
i- J

they are in the states E ,E/j and where the relative locity has turned

over the angles fy cp , in the solid angle dl 7. The m, -mitude of -he

relative velocity changos in general toj ( because of cons arvatiun of

energy ) , say to g !However the principle of microscopic reversibility

(2 )'»j-h1 k ,1V)O*( s*
y r r» r TjcD f.

i
D f.
i

D t

f 5 fCÍ.f ,E
i

, t )

D f.
i

D t

D f.
i

y r r» r Tjc
( s* O* V) 1 k ,1-h '»j
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remains valid , so that :

>
ij k£

This relation is the reason why the semi quantum theoretics description is

so much simpler than the classical description ,Finally in ( 2 )

f¿á
£t( r , ,Ej> t ) and f'^, f» are defined analogously .

( 3 )

Especially for the application to the propagation of sound it is

convenient to distinguish the two limiting cases :

ja
-

The inela: tic collision cross section is of the same order

of magitude as the elastic cross section .— "
inclast elast.

and to arrange the successive approximations in these two cases differently .
We begin with :

a. . Transfer of transnational to internal energy goes easy .
The treatment is then very similar to the mono-atomic case . In zero

approximation , one starts from the complete, local equilibrium distribution:

*i(oi
(o)=4mT -sr *, , i

exp f-&ftm </¦ +\i/i V¿7m/ J> exp (-E /kT) L (¿( ¿ "
7 /

5 s

dependent on the five macroscopic quantities n, v, and T , which are still

functions of x,yjZ and t ? In this approximation one agar ¿iets the E-.iler

equations, only now the therman energy Q depends more cc: licatedr, an T ,

since the internal specific heat C. is in general temperature dependent.xnv•

In first approximation one also gets the Navier-Stokes equations

kf3

1J1g'
X

X

-í

*i(oi
(o)=4mT sr \t , expr±ftm (i- +\ {il \¿IIKLJ J> exp (-E /kT) L (¿( ¿ <* X

t I
5 s

-í X

X

g' 1 1J

3 kf
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but now :

p
íó

- *^r2a ( \j
- k »«Ji¿ >-k^ *

M
)

i j (4)( 4 )

%x s
-

(^
tr

+ Aint. J rS^ )

The only differences with the case of the mono-atomic gas are, that the

heat conductivity consists of two parts , and that , as Lorentz said t a new

constant , the so-called dilatational viscosity coefficient . The

constants A. , /\. ? and iCcan be expressed in the I.. ,whichxr xnx ij

are supposed to be &nown. They can be in principle calculated if the molecular

model and the interaction law are known ,although inpractice this is* usually

a very difficult task ?Aa example X only give the expression for )O

)C-pSÍJi7Ifmiff (.> /

ijk£ J) v
where E^ m B^^/kT and £k+¿ p

-
¿^

-
£ • Because of

the factor (¿3 £.) clearly only the inelastic collisions give a contribu»

tion to )(.

(4 )

( 5 )

Applied to the propagation of sound , in the validity of this first

or Navier-Stokes approximation , one does not get any dispersion of the sound.

The diiatational viscosity only t-*ivest-*ives a contribution to the classical

v Kirchoff ) or
"

W absorption . One finds for the absorption

coefficient :

jv {«>»¦* \W] (6>( 6)

iXC C
P v

+ft/M. X){u>¿

i.l

2> 2

(4?) 2

)-¿i[5?
Jsl" c

V ifmiff1
2K=lCtotJ

!D^-K^j)

%í"
-

<*tr + Aint.
)%í"

-
<*tr + Aint.

)

) -K^j D^ !

K=lCtotJ
1
2 V ifmiff

Jsl" c

[5? -¿i)> 2

(4?) 2

2

i.l

u>¿

{ft/M. X) +
C C

P v
Xi
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The effect of V^ can therefore not be separated from the classical causes

of sound absorption through the viscosity and the heat conduction # .._

£, ~ Transfer of translational to
i
internal energy is difficult •

In this case, it can occur easily that in perturbations of the equilibrium t

state the temperature of the translational motion differs from the temperature

of the internal degrees of freedom . It is therefore better to describe the

state of the gas by six instead of five macroscopic quantities ,namely

y ? XL' *T t ansí an L̂ TintT int
'By tafcLn£ tne inelastic collisions into

account in a one higher approximation than before, one gets in zero"

approximation again the Euler equations together T,dth DT. ./ DT « 0 • In

first approximation however one does not get the Navies-Stokes equations ,
but the equations first put forward by Herzfeld and Rice ( Phys. Rev. Q 9

691 , 1928 )on phenemenological grounds . One obtains , ¿sides the conti-

nuity equation and the equation of motion ( in which the pressure tensor has

now the same form as for a mono-atomic gas , therefore without a diletational

viscosity term ), two energy equations ,which determine the changes of T.

and T. . The really new equation is :
inc•

C. %lm =-n*|nt ¿J, T ? fiat ( v ( j
xnt. ?) t f X tr int

' v ' '

The physical interpretation is clear . There are again four gas

constants ?^ tr » /Vint » ¿A, and , which can be expressed in I?•

In the (\ . and ÁA, occurs now only the elastic collision cross-sectirn,

so that just as in the mono-atomic case one has with good approximation :

=
2 M- °tr.

(7 )T
-

Ttr int
(

C
int
X

+T.int»A_int «nAlnt
?)t

=
p

I

int.

"
2 /A- Ctr.

I

int.
_int «nAlnt
?)t

=
p A T.int»

+ C
int
X

( T
-

Ttr int
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In the relaxation +-*^c c occurs only the inelastic collision cross-

section , and the expression for tf is very analogous to the expression ( 5 )

for J(T Formally in fact :
3

X
-

-J*fc nk T (8 )
tot.

Applied to the propagation of sound ( as done already by Herzfelc and

Rice ) one gets a dispersion region around the frequency 1/ , ac.ompanied

by an absorption band , which is well separated from the
" " absorption'-

region caused by the viscosity and heat conduction , for which one gets eg.(6)

with k = 0 .

(8)

II
-

Extension to fas* varying phenomena , The question is , what

to do when the Chapman-Enskog development parameter : ( V \ rcacr.qu ) ¿s**~ macr. qu«

not more small , as willbe the case for Knudsen gases , and for fast varying

phenomena ( structure of shock waves , propagation of high frequency sound )

Of special interest are the experiments of Greenspan ( J.Acoust. Soc. 22 ,
56 ( 1950) on the dispersion and absorption of high frequency (upto 1mH)

sound inHelium at low pressures ( about 0.1 mm of Hg, ) • Greenspan plots

his result as function of the dimension less parameter G » f~
—

* , which is
'IFor Maxwell

r <•* V 3Hr wmolecules, with L. the transport mean free path, one gets G » *•*•* -a{-

Biggest value of G is about 10 , so one really has extr^r,& conditionc .
For Gs 10 , the velocity has increased to about 3 V , wh c for C-2

the absorption coefficient is already 0.5 , so that the intensity drops by

tot»

n k T
C int.

C2C2

C int.

C2C2
n k T

tot»
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a factor l/c in 2 cm

a. One can ii¿ to "Ttend the theory by carrying the development further,

Itis to be noted that the successive order hydrodynamical equations ( Euler,

Navier- -Stokes, Burnett, etc ) are all of the first order in the time deriva-

tives of the macroscopic quantities ¡J M: and T , and are of successive

order in the space derivatives . Therefore to solve the initial value problem

it is always sufficient to give the initial values of (¿; v • and T This
J J <"

fact is called the macroscopic causality theorem ( Hubert ) . Itis paradoxi-

cal because from the Boltzmann equation it would appear that one would need

the initial value of the whole fiistfibution f, which is much more than the

first five moments (in the velocity ) ú AJL¿ and T . One. must say the

causality theorem is not a theoreia but an
"

Ansatz
". Starting from an

arbitrary initial velocity distribution one must assume that in a short time

( of order L/ ;. ) the gas reaches a
"

normal
"

state, from which the

further temporal development proceeds according to the macroscopic causality

theorem ( Compare the hydrodynamical stage in the Bogolubov theory , Ch. 23 )

]). There are few practical applications of the Burnett equations .
The propagation of ?ound has been considered by Primakoff and by C.S. Yang

Chang . The result can be found simpler in an other way , which ye will

discuss in a moment . It is clear anyway ,that as soon as the parameter

/
y
\f \ ir?cr ol^o 1^ }¿__ •¦ -a

—
'- • * -.- / ¿g comparable with one, the Chaptnan-I&iskog development

macr.qu. l

willbe of little use •

c. Itis good to remember a remark made by Osborne Rt. lolds . One knows
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that for viscous and incompressible fluids all dimension less numbers ( of

drag, lift, etc ) can only be function of the Reynolds number <R . For instance

for the flow through a circular tube the resistance coefficient C ,defined

( pl,p
1
, po are the pressures at the ends of the tube of len h L , radius R ;
i ¿

P, V are density and average velocity of the fluid ) ¿3 a function of

if fJ s viscosity coefficient * The function C ( & ) summarizes all the

experiments about the flow ; for low spe^d one has (Poisemble)

4N. f¿&(%&v{' while for large fil one gets the turbu

lent retrae with a different law for C •

.t.t
Now, from the kinetic theory for a gas

if V is an average molecular velocity . Therefore :

is really the product of two dimensionlless numbers . Only if V/ v <^1
and R/L rf*1 will they enter the theory as the product .

Ingeneral ( at high speeds , or for^l-ow pressures £ Kmidsen&as ) one

must expect that both numbers will enter independent of c© other *Vs

will call L/ R the Knuds^n number ; since the sound v. :.ocity is Of seme

„ L *¿

R
- -£VV~R-

c(«)-^

it***pLy

« ~l - !
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order as the average molecular velocity \[f v can be taken as the Mach

number .
_d. Ingeneral, one can say that in any non equilibrium situation

one can distinguish between :

JL* Th3magniti ,o of the disturbance from equilibrium , and measured

by a
"

Mach
"

number, and _2 the scale of the disturbance from equilibrium ,
which is measured by the Khudsen number . iSxamples : £ propagation of

sound 4 magnitude of the disturbance is determined by the intensity , the

scale byTne wave length of the sound ; t> motion of asp re through a gas,

magnitude of disturbance is determined by the speed ( iheas> red by the ;sual

Mach number ) , the scale by the size of J:he sphere comp. to the mean free

path ;jc heatflux between two parallel plates with temperatures T and T?
;

magnitude af disturbance is dstttrained by the •' Mach" number ( 1L
-

T.) /
¦J- (T,+ T?

) , the scale by the Khudsen number L. /d, if á = distance

betnean plates .
It seems to me unlikely , that there exist macroscopic equations ,

which would be valid for all values of both the Mach and the Knudsen number •

Italso seems better to make developments in either the Mach or in the Khudsen

number , and not in the combination M / X as is done in the Chapman-Engkog

development •

£ . Por : all listurban c^s s one c-r . always write :

f = fo
(i+ h {rtJ- t )

where f is the complete ( therefore not the local ) equilibrium
o

~~~

f = fo
( i+fa (rx X t )
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distribution and h is tbg disturbance *If h 1, one gets the homogeneous

equation :

V2~lr + C^TC
« » J- (» ) (1 )

with : -
c 2

J( h ) =^3/2 fdcj© XJdilg J( g, 0) (I+h^-h
-

h^
is the linearized collision operator , and where we use afiin the d:uiensionlesa

/ m "?**velocity c. -TZTTm * v
' • No assumption is made about the scale of the

disturbance •

(1 )

m c 2

J ( h ) =^3/2 f^e XJdilg J( g, ( 1 + h'x
-

h • hx)

For example , for the propagation of sound of low intensity but

arbitrary wavelength one has to solve ( 1 ) , if h has the form :

h(c) m il**-<rti —;>
with ¿J real and C = C,

- • Developing h ( C ) in the eigenfunctions

of X ( h ) :

(l) becomes the infinite system of linear homogeneous equations :

where i v,

is the matrix element of c 7 and /%..,£ are the eigenvalues of^¿ (h ) . For

Maxwell molecules ,the 'f^Pt A- 0 are to^own ( see Ch. 3 the m, / r 'j? <

can easily be evaluated . The condition of solubulity of tlw set ( ? ;is that

( 2 )arI?'=n?1?' =n?1 rrifarí'r'^iOJ ar£-J2J 2k T

h)J(ns=c _2h+lüV -J2.
2 kT

h(c') e
i^t-<r¿)

•• -Z^ifii?)

V -J2.
2 kT

lü + c _2h
s= n J( h)

J2J 2k T
OJ ar£- r'^i arI?'=n?1?' =n?1 rrifarí'
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the determinant :

which gives a relation between cj and C , which is the dispersion law of

the gas . One finds ( always for Maxwell molecules , force law k /f
** ,

using dimension less frequency v)
Q

= Co / ay™ and propagation constant

(jT =s f kT & / \
O \~\

— • *"or "^n8 beginning of the infinite determinant (3 ) :k n

\M±U
°

i i [ A _j _J
XVt|; o i__ o f _p~ I í j_

-T
°

.-?,- L-J. 2* !_ / g
"' J It"

~~i—--..—.—
--- —

j- **f"~ ¦*¦

oo o (ú
Q rfc&¿ o O ó o

o í O ¿¿ó r
0 O fáor o

1' [

'
We were only able to go further by using a breaking

-
cff pro<jedi:ro , in

which we were guided by the Chapman-Enskog development . We used successively

(3)

i
I

%+ ¿KSKS
-3 r
{to

°oO
ic>3

o!
OiV\\ls úH^

i
—

O
¦¿rcr0jf<zoo9.
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rSTv3

OO
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oüO
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™
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5X3j 5Y 5 , BXB, 11 Xllterms . At each stage one has an algebraic

relation between cJo and ¿TU . One can then treat these relations in two

different ways • The first and really consistent way is to develop

O~
0 s£T

-
icTT as a function of uj in powers of CO * which amounts to a

development in powers of the Greenspan parameter G . In each approximation

one retains those powers of G of which the coefficients are not changed in

the next approximation • One thus gets :

V Vo £ 72 G +
27>34-7 ]

M II

2*99 56.7

11.9

These series are the same as obtained from the successive order hydrodynamical

equations ,but the derivation is much simpler • Because ? the expected

slow convergence they are of little use for the comparison with Gree:ispan rs

experiments ?

11.9

The second ar.-l less consis^nt way is to solve in each approximation

Q~ as function of OJ exactly ana compare the successive curves with

experiment ?

With the 11 X 11 determ- ;mt arm than gets a^rr^-ir^te agreement

with experiment ( see figure ; Q are the experimental points *) II:T.;3var

* - ir-
1

~
vr

* +
27>34-«7

G4
-

2i
J

2*99l 56.7

A
—

-y- G
5? i6 432

G
2 + 310.5 G4 -

« •« }
J
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Dv since one has no idea

y'
;/ about the convergence

y' / °f *ne procedure» this

agreement may not mean

? -*¦• anything .

Addition to Ch.22.

Prom the Born-Green-Kirkwood- Yvon
-

Bogolubov I"erarchy of equa-

tions ( 15) it is possible to derive general hydrodynamic. equations ,

analogous to but more general than Eqs. (3), Ch.l7 • Especially from the

first equation ( 15a) of the hierarchy follows ( ifone includes outside

forces ) almost immediatly the continuity equation :

¿p£- + div (;O U) m 0 (1 )

= mn = mN J F1
( p,q )d p

and the equation of motion :

XX 1

with

p. . = P tx. • Li• a icinetic stross tensor and :

(1 )

( 2 )

P. . s P tx. • L¿ • =s icinetic stross tensor and

with

( q,Q )n2n2

*'-'-
a y 2?:- fat lélllzJLl

D t ; i 9^ J nq.J>

it( P,q ) d
'—

\n
U
i

dfFx ( p,q ) «mX j :mnP m

0div {pU)
ot

+
ot

+ div {pU) 0

P m mn mX j :Fx ( p,q ) «df
U
i n

'—
\ ( P,q ) dit

J>
*'-'-

a y 2?:- fat lélllzJLl
D t ; i 9^ J nq. n2n2

( q,Q )

with

P. . s P tx. • L¿ • =s icinetic stross tensor and
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n2n2
(í o") =| jTd?5? 2

( q,p ; Q,P )

is the pair density distribition . Itis possible to write the last term in

( 2 ) as the divergence of the symmetric tensor :

where X- is a unit vector pointing fro*iqto Q ,This wa.j first pointed

ouc by Enskog . As a result one can combine the last two terms in ( 2 ) to

Ot,v Io a * where /i:
~

,-f h¦/ is the total stress tensor consisting
LC* /

¦

7--/ j j 7
of a kinetic and an i^termolecular force part » The physical interpretation

of ( 3 ) is clear . The formal proof is as follows :

( 3 )

Last term of ( 2 ) is of the form i

r -> -* -»
At

*- !d Q •. F(q, Q )

where F is a scalar and symmetric function of q and Q . Now :A. = rr
1 s<?«5 <?«

with :

Sij
= Sjt=i[d-R2([ d le /d A k,k¿F (q+k A- ,t+fc A )

Proof : Verify :

P is a function of "q/ + k \ and /c R , so that

**X)
¦>

-fcR,Hh^iFi^vs^

n2n2
it,t)-f l/d?*?^ ( q,p ; Q,P )

At
*- Jd Q F(q, Q )

Sij
= Sjt=i[d

-
R2R2 // dle/d A k,k¿F (q+k A- fc? , q"+ fc X )

F is a function of "q/ + k. X and ¡C R , so that

Hh^iFi^vs^ -fcR,
¦>

**X)
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Therefore r

Í idR E2jjdk k/r ( I.Í+k7^ )„p(t-kK,q )j
In the last integral ,one interchanges the two points ,which changes the

direction of /C . Since P is rrrrmitric one thus gets the same result as

the first integral , so that :

«g^
-

jdRinfit k ¿ F ( q,q + k )

r° •* ->
which is just A. j put origin of Q integration in q , and use polar

coordinates .|
In an analogous way , one can generalize the energy equation

( Comp . last of eqs. (3) , Ch 17 ) to :

with D. . = \\~& + OU.¡ \ , p. , a total stress tensor , and :
1J [dy __ií¿ /

'
J

Q = T<° UU = density of the kinetic thermal energy »v <X cat.

= ~ [ ( (lq - Ql) P2
( q, PÍQ,P)d p d P d Q

5= potential energy density .
Finally ,in (4 ) enter 3the total energy flux density ¿r? T^ioh just as the

<: ,' consists of two parts : v/ , « q, +q.

where q. • •Jr é/^ = kinetic thermal energy flux density , and

(4)

5= potential energy density .

Q, P) d p d P d Qp ;"a iff Ql) P2
( q'

a

p. , a total stress tensor , and :

density of the kinetic thermal energy

j

Q at % O [ill

= -
% ( 4)%s*\(% + H + ai"

o*7 .. «.

J^y=iÍdX E2jjd k k/F ( Zt+kit )-F (t- £*> ,q )y

«g^ -jdß*J í ¡- k ¿ F ( q,q +k X )

s*\(% + H + ai" % = -
% ( 4)

Q at % O [ill

j p. , a total stress tensor , and :

density of the kinetic thermal energy a

"a iff Ql) P2
( q' p ; Q, P) d p d P d Q

5= potential energy density .
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/
0 is the contribution aue to the intermolecular forces. . One finds :

1
¿

m fdQ^ (R)/jfd'Jd ? ( p
i

-p, )

P2(q,pÍQ, P ) • ( 5 )

with dQ = R dR dk.. For ths pliysical interpretation of (5 ) see

Kirkwood .

(5 )\,V-)' í Qq» p(V

I -(P
t -^)l)+2-mf &tf(S.)Jfivi1 , p>,/»<tt +*

F2F2
( q +/sA-/t ÁJr-i fd ÍS±"

2 «j dR\\ -i fd ÍS±"
2 «j dR

F2F2
( q +/sA-/t ÁJr

<tt +* >,/»1 , pl)+2-mf &tf(S.)JfiviI -(P
t -^)

V( q» p' í Q\,V-)


	THE STATISTICAL MECHANICS OF NON-EQUILIBRIUM PHENOMENA
	THE STATISTICAL MECHANICS OF NON-EQUILIBRIUM PHENOMENA
	1. The problem of Boltzmann.
	Illustration p. 1

	2. The kinetic method and the H-theorem.
	Illustration p. 2
	Illustration p. 2
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)

	3. Excursion on the linearized Boltzmann equation.
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)
	(14)
	(15)
	(16)

	4. The criticism of the kinetic method and the answer of Boltzmann.
	Illustration p. 7
	(17)

	5. Excursion on stochastic processes.
	Illustration p. 9
	Illustration p. 9
	(18)

	6. Discrete Markoff series.
	(19)
	(20)
	(21)
	(22)
	(24)
	(25)
	(26)

	7. The mean recurrence time.
	(27)
	(28)
	(29)
	Table p. 29


	THE IDEAS OF GIBBS
	8. The notion of an ensemble.
	Illustration p. 17

	9. The approach to the microcanonical distribution and the Gibbs H-theorem.
	Illustration p. 19
	(1)
	(2)

	10. Criticism of the Gibbs Theorem.
	11. "Rückblick" on the kinetic method of Boltzmann.
	(1)
	(2)
	(3)

	12. Formulation of the master equation on the energy surface.
	(4)
	(5)
	(4a)


	FURTHER RESULTS OF KAC; THE BASIC QUESTION
	13. The Propagation of the "Boltzmann property".
	(1)
	(1a)

	14. The approach to the uniform distribution.
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)

	15. The relaxation time.
	(8)
	(9)
	(10)

	16. Final Remarks.

	THE HYDRODYNAMICAL EQUATIONS
	17. The general conservation laws.
	(1)
	(2)
	(3)

	18. The Hilbert-Enskog development.
	(4)
	(5)
	(6)
	(7)
	(5a)
	(5b)
	(5c)
	(5d)
	(5e)
	(6a)
	(6b)
	(8)

	19. General discussion of the development
	20. The idea of the virial expansion.
	(1)
	(2)
	(3)

	21. The virial expansion for the equilibrium state.
	(4)
	(5)
	(6)
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)

	22. The Kirkwood – Born – Green development.
	(14)
	(15)
	(15a)


	THE IDEAS OF BOLGOLUBOV. II.
	23. General ideas.
	(1)
	(2)
	(3)

	24. The kinetic equation.
	(4)
	(5a)
	(5b)
	(6)
	(7)
	(8)
	(9)
	(10)
	(7a)
	(11)
	(12)
	(14)
	(15)
	(16)
	(16a)
	(17)
	(18)

	25. The Boltzmann equation.
	(19)
	(20)


	Addition to Ch. 9
	(a)
	(b)
	(c)
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)

	Additions to Ch. 18 and 19.
	Illustration p. 62
	Illustration p. 69
	Illustration p. 74
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(1)
	(2)
	(3)
	Table p. 72
	Formula p. 73

	Addition to Ch. 22.
	(1)
	(2)
	(3)
	(4)
	(5)


	Illustrations
	Illustration p. 1
	Illustration p. 2
	Illustration p. 2
	Illustration p. 7
	Illustration p. 9
	Illustration p. 9
	Illustration p. 17
	Illustration p. 19
	Illustration p. 62
	Illustration p. 69
	Illustration p. 74

	Formulas
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)
	(14)
	(15)
	(16)
	(17)
	(18)
	(19)
	(20)
	(21)
	(22)
	(24)
	(25)
	(26)
	(27)
	(28)
	(29)
	Table p. 15
	(1)
	(2)
	(1)
	(2)
	(3)
	(4)
	(5)
	(4a)
	(1)
	(1a)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(5a)
	(5b)
	(5c)
	(5d)
	(5a)
	(6a)
	(6b)
	(8)
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	(10)
	(11)
	(12)
	(13)
	(14)
	(15)
	(15a)
	(2)
	(3)
	(4)
	(5a)
	(5b)
	(6)
	(7)
	(8)
	(9)
	(10)
	(7a)
	(11)
	(12)
	(14)
	(15)
	(16)
	(16a)
	(17)
	(18)
	(19)
	(20)
	(a)
	(b)
	(c)
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)
	(8)
	(1)
	(2)
	(3)
	Table p. 72
	(1)
	(2)
	(3)
	(4)
	(5)




