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The Quantum Mechanical Theory of Collissions.

I,- In the present course we shall consider the quantum mechanical
treatment of problems of particle interactions in which at least one of
the particles is unbound and therefore able to travel large distances
freely, In effect such particles are able to communicate the results of
their interaction directly to macroscopic detection apparatus. The
interpretation of the resulting data is in general the most direct

way of forming conclusions about the interactions.

A considerable variety of physical phenomena invelves unbound
particles. Among the simplest are scattering processes ; in particular
the deflection of perticles from a collinated beam. More general
collision processes which induce rcactions of various sorts also lie
within the class we shall examine, Qur chief concern will be with the
means of solving problems in which well-.defined models have been
postulated to desciibe the basie interacticns. We shall restrict
ourselves, in fact, to the treatment of fairly simple models, and
shall discuss a number of approaches to the protlems they raise.

We begin by discussing the scatiering of particles by a
simple potential field, fixed in space, The problem of two free
particles with a potential between them of course assumes this form
in the center-of-mass system. By imagining that a beam of particles of
constant strenght is at all times being scattered by the potential, we

sy seek to describe the situation with the stationary-state Schrédinger
equation.




(V4K - 2 Vm) i) = 0

(1)
with £ the

Here\/ (;5 is the given potential function, 1(2= a‘ng
energy and m the mass (or reduced mass) of the iézgident particles,
The solutions of this equation are not specified uniquely until
further conditions are stated. As usual in quantum mechanics, we
must require that the wave function 7/ (/—Z) be quadratically
integrable cover any finite volume.

Assuming that the potentialv (7‘2) is confined to a finite
region, or decrease sufficiently rapidly with increasing radii /( ’
we may, as & final condition on the wave function, specify the form
it must assume outside the region of interaction., It will evidently
be the superposition of a plane wave, representing the initial beam,
and an outgoing,spherical wave representing the scattered particles,

A wave function yk 11) for which the incident beam is travelling

in the direction /( must, at large radii, assume the asymptotic form .

/A {?7 J A~ [_)l /< ; ‘%/(9)‘ Lo (2)
where <‘ ’ a.ndf ({j)) is a complex~valued function which characs
terlzes the distribution of particles scattered through the angle Q .
The way in which it does so may be seen by a loose argument which we
shall render more premsg a llttle later., If the velocity of the
incoming particles is I) %Ti then since the plane wave of (/Z)
has unit amplitude, the incident flux is'ﬁ particles per unit area

per second, The number of particles scattered in the direction 9 ’

per second, lying within the element of solid anele dQ containing 9

/{’(@/ /) The differential cross-~section J.'\T'for -
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scattering within this element is the ratio of this expression te the

incident flux.

oo = [f(Of d O

Some general properties of the scattering amplitude.

The function 7[ (0) can only be found, in general, by actually
solving the Schroedinger-equation (l), a procedure whose difficulty
depends considerably on the nature of the potential\/ (7{;, and en the
incident energy. Before discussing the means by which this is done,
we shall point out certain general relations that the scattering
amplitude f (Q) must satisfy which are independent of both the potential
and the incident energy, and which follow directly from the relations
(1) and (2).

It will be convenient to replace the notation ]C (&9) for the
scattering amplitude by one which contains both)th& /initial and final
directions of particle motion. We shall write% (\/( ’ \) to represei'l_:v
the-implitude for scattering from the direction /( to the directien /</.
( Ik’}:};‘(!; E/\ ) The asy ptotic wave function (2) will then be written

in the form

5 -_/I\:; LN J/( N
% (f[}.:j Cj,( L ..f., ]((kY ; k } wC—F{‘ ,__A (4}

in which /</7 is a propagation veeter in the direction /Z .
The wave equation (1} is satisfied equally well by wave

functions having incident besms in all possible directions, In




particular let us consider the equations satisfied by the wave functlons
% éyk’ corresponding to incident beams in the directions A
/< respectively. If we multiply each of these equations by the ether

wave function and substract we have the identity

/ 2
s.uk'v %*%Vz%<’ =0 (5)

Integrating over the volum: bounded by a sphere S we have, by

Green's theorem.

fm Yo=Y 2 Vi )pfd2=0

If now we give the sphere a sufficiently large radius the wave

functions may be represented on its surface by the asymptotic form (4).
-~

Hence .1/"‘ T a A (/<’l

A -~ = ’/.
0= e AR AL (€ b K 5 -

(kg J:' I<,( ik
- A G R el e

The contributions of the pure plane wave terms to this integral vanish.
This may be secen by writing t}}em in the form

/ ( k + 1</ Y ((7;7:/ < A (L (8)

-o.\ -x.n/

Slnce the vectors ‘ﬁ /g. and { +,< are perpendicular, i.e.

(/< Z . ; (I) / /(2 = O, the average value ef (k / ') .:(\
will vanish when 1%: value of (/( K ) /I is fixed, The terms of

(2) contributed entirely by the scattered waves will be O ( 77—13— )

and we shall drop them, If we defir?“ to be the cosine of the anple




—
betwe 2n the vectorsfz and/( aryw/ » 1o be the cosine of the angle

between/7 and/é , then the remaining terms which are(:) G——-) leave

the relation

O:f //;,,—I(’)/ ’£//< 4) 8(/07//”/( +4)d/"/<

 PHE Ty A

By performing integrations by parts, in which the exponentials
are integrated first the asymptotic forms of these integrals are easily
found. Only the integrated terms necd be retained, the remaining integrals
being a power/z -1 smaller as muy be shoun by a further integration by

ractor ([ k)

parts . We then have apart from

i v

":-’[ / -
The upper limit in the first term, and the lower 1limit in the s€cond

\._./Ap

term both contribute nothing. The resulting identity is
0= 210/ <~ 2 f (11)
or -y S -
/ /
f( -k -/, ) =/B<L /<> (12)
/ /

This relation evidently expreséf%ge reversibility of the scattering

process, that is a beam has the same amplitude for scattering from
/

: /
the direction =/4 t0 « g as frmn]?go < o Cf. fig. 1

{ \

i e
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We have not yet empleyed any knowledge of the potential, In
most problems of interest the potential has symmetry properties ef its
own, In particular, if it is invariant under inversion in the origin,

V (-E) =v (/‘—;), we have another symmetry relation cbeyed by the
scattering amplitude, In that case the scattering amplitude must remain

unchanged when both initial and final propagation vectors are inverted

A

in the origin. Cf. fig. 2. | /
k

L S - K
Pig, 2 > T s

T e U B S PR
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flkG =) = k) @)

Combining this relaticn with the reversikility relation (12) we find that

———

when inversion invariznce prevalls the scavtering amplitude is a
>

«,T'n. /
symmetric function of the two directionsf and f(

N 5\/ -'-"- . \ S NN
f/ Lo ey k') (14)
1 (AN / } s / ( ! / /

Another important identity, independent of the potential may
be obtained by a proczdure similar to the derivation of the reversibility
condition. This time we work w%th the wave function y and the cemplex
conjugate wave function (// ;e By multiplyzng c¢ach v:;vo equation by

TAVAS
the other wave functirn and substractiiag we have

* YAV
(ka, \7 % “‘%\/ ‘%1——-0 (15)

an expression whose volume integral over a large sphere we again




transform té a surface integral by Green's theorem.

/% 9/ %Dﬂ;y )/szﬂ-"-’-o (16)

Once agaln substltuting the asym totic wave functions we have

f {/e Rof Tl K122 6 R R
LR 1

In this case as well the tcerms containing two plane wave factors
contribute nothing since they are represented once more by the vanishing
integral (8). A difference arises in treating the terms contributed
purely by the scattered waves where a cancellation which took place

in the derivation of (9) no longer occurs. Besides terms C) /YJ
whichw;eglcct, the terms containing twe scattering amplitudes

contribute an integrsl 0(*%50 which, as we shall see, woc must

Ay
retain.

0= 2_77’1_[<ff/)(7/ //4(44)//07,4 o
p ALK | 'f//v: X J g d) <A 1y |

- (
o
R D

We require the last term, since as we have seen in deriving (10)
plane wave factors in the integrands of the first two terms

asymptotically contribute additional factors of/]."l.




Integrating the first two tcrms by parts and retzining only the

integrated terms, which are the asymptotically dominant ones we
have

ey p : My -4) T
O_,z%’[ff(,%k)(/ﬁ 4.4)81#75.% 1)/4 »

L[ lh, k- ()@ ’)/
2k

305 1 7:/7?//% Fld 0 (19

Now, evaluating the integrated terms

O= 4// //</<) ;[k j+ 1//},/ ;///1/(/7 ) £). 20

The notation for ths intcpration varnolo /(/? may be improved by
-...\,

s

Il
writting instoad a propagation vector ;«( of the samc magnitude

-

‘l/ P

). ) .

iz ) = '."/, and evting .{;all’be the corresvencing zlement of solid
<

angle, We then bheve the relaticn

4 }0" Py == S S ] S
-:-.... (]! }, -_.{. ! "_"‘-! —— ¢ —\o( /¢ 51‘ / ,
LIRS =y /7‘ K ,dﬂw

The prysicael crigan of this rolaticn is most easily seen in
- S

, —
the special runc f( = i’( . Than equation (15), from which we have

bepun is szunply the coaservation couditicn in a staticnary state fer

the quancam mwaechanical current vector,

‘ (22)

where




The conditions (16) te (21) are then statements that the total flux
through a large sphere must vanish, Obviously the pure plane weve terrs
in the asymptotic form of the current contribute no net flux, But the
pure scattering terms do., The scattered flux nust evidently be balanced
by a term coming fram the interference of the scattered wave with tre
plane wave, an effect which must account for the attenuation of the
incident beam., We shall presently discuss this effectiOn somewhat
greater detail. Meanwhile it is plearﬂﬁhat this balancing is expressed

by the form assumed by (21) forl ~/< , i. e.

c'jwv / ( }:, ./:) = i <;;9~ ////(” /< J[ // (24)

in whichéj&,q means the imeginary part. The intesral standing cn the
right which ic proportional to the scattercd flux is simply the total

cross-secticon (f s whence we have the freaquently uscful relation

-

g7 ‘;" ‘-.ﬂ ]p(i'(,k) . (25)

The morc general form assumed by (21) when <;f/ < suffices
tc prove that the flux through a large sphere vanishes whaen the incident
wave is a supcrposition of two or more plane waves, Somewhat mare
light is shad on the ralation b7y noting ‘hat a quite annlogous statement
is riade in the time-independent approach seattering problems, There the
particle is considored as undergoing a transition in time from an initial
state to 1it3 final one. Since¢ the Hamiltonian is hermitian the operator
S which cffects this transition must be unitary, a condition which
implics particle conservation and that orthogonal initial states lead

to final ones that are arthoronal. In fact the rclation (21) is simply




o 10w~

of-
the unitary condition S 8 = 1, for the matrix S whose representative

(-}:IISD'E):‘S“?:” J_ bk /< f (26)

l.e« we have
>

f(l« SHi)( 15:}2)0112:-8(2_;?) .

The relation (26) may be shown to follow from the time- dependent
procedure.

We shall not, for the present at least, make any detailed
exploration of the time-dependent approzch. Since the temporal
development of scattered waves is in fact never measured, introduction
of the time is for most purposes a needless'complication. The
mathematical problem of finding the distributions of enmergent particles
is much more conciseliy stated in the staticnary approach.

Never the less therce are some simple questions of physical
interpretation in the formulation of the stationary approach which are
best clarified by a brief refercnce to the time~depzadent cnes In
particular we should rote vhal we have spoken rather locsely of the

Lane vave in the asymptotic feorm (2) ac repriosenting the beam of
incident particles. Tais is of course an Zacorrect way of cxplaining
that the total wave function 1s not zormalized io unity. The function
9:{(,’7} can only describe a single parti<ie., In order to seccure a
normalizaeble wave function for an incident particle we must usec a

superpaesition of waves «/. which renders the initial momentum slightly
K
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uncertain, Then since the problem is no longer monoenergetic the
time-dependent Schrddinger equation must be used to describe the
propagation of the wave packet. Viewed in this light, the stationary
formulation is an idealization. The limiting case of precise specifi-
cation of the initial momentum, in which the particle wave function
becomes 992< apart from a normalization constant which vanishes
in the limit.

A further formal difficulty in representing the incident
particles by planc waves of infinite cxtent is that the scattered
waves can never be scparated entirely from the incident ones. The
two parts of the wave function overlap and interferc at all points in
space, Deriving tiue cxpression for the differential cross-~section in
terms of the =scattering amplitude would then in principle require
accumiingfor the interference effects in finding the current through
an element of area, a calculation we omitted in deriving (3). The:

. latter expresdion would in fact stiil be correct since at large
distances the interference effect contributes terms which oscillate
so rapidly with increasing scattering angle that their aversge value
is quite cffectively zero. Still;i%éfining the diffcrential cross

section, the uce of wave packets is substantially more realistic,

’
If we were actually to caorwvy out tho scattering calculztion

using wave packets, 1t wovld convenient to choose an initial wave

packet which represents a very small  renge of momenta in order to

ninimize the spreading of the packet, This would imply a rather extended

packet on tha atomic scale of distsnces (we must in any case choose it
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much larger than the potantial) but it may still be quitc small,
macroscopically speeking, This packet would be pictured as travelling
toward the potantial at the initial 4¢ime cf. fig. 3. At a much later
time, when the packet had passed the potential (cf. fig. 4) the wave
function would contain in addition to the displaced packct, an outgoing
apherical wave with an anglc-
dependent amplitude proportio- AP \ \/
nal to ][’ (@) There is thus § g ;_

no difficulty in showing for . N

all dircetions save nearly % {: ) 3
f 2 -
the forward cne that Ol-‘]‘}; /][( £ )}

Near the forward dirccticn, h

however, the initial wave packet Ve %

e
and the scattered wave Aavu A / /o -
always suvperposed (pro.vided the . , .
scattered waves have not been ‘
greatly delayed within the ! \

potential, a point to which N

we shall later retumn,) It is e¢asy to show, using asymptotic integra- 4.

tions guite analogous to thosc we have alrcady uscd, that interferonce
with the spherical wave leads to a decrease of probability thot the

. . ] 3 (3 . 03 'Ik' 4
particle is within thie inftial wave packet proporiional to J,-‘,' ¥} (0 )
so that parsicle conservasion once again implics (25). We at least
see morc clearly from this approach that the intcrference effeet

which attenuates the initial beam can only involve the forward

scattering amplitude.
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Integral equation formulation.

As the scattering problem has thus far been stated we must
first find the solutions of the Schrédinger equation (1) and then
sclect from among these the one having the asymptotic form.(2).

For many purposcs it is more convenient to impose the two conditions
simultancously by writing an intcgral equation for the wave function.

The Schrdinger equation we wish to solve is

(\7%/;“)%;'{:%) = 9} "m% (7] o

. SRR §
Svppose we know a solution G (/"'[, ,}'[ ') to the much simpler in-

homogecneous wave equation

Wﬂ K 5{/?3’1: - C (27} (29)

Then the functionY(}’? = ”“ r/[’//? /} \\/(’/:(\'/[/]/()?I,/J,‘E'
K

cvidently satisfies the equaulor

(\/ +f‘°/‘>{() {22 (}7)(71{/(/7/ (30)

But XI‘T] is not the most gcneral soluvtion to this equation. The

7 b

-
most genceral solution is obtained by adding to% (,Q) any solution
it & L .
(_,,7! B j of the homogenous wave ejuation (V +‘\ ; ,,.9 Since
7 "" " } is amongz the solutiaons it fellows 4that \”,./ diffcrs from
ff’\ "4 -~
o/ ( n "\ cnly by a free particle wave funchiion [/ (/()
/\.

(f’/ ..\u///) 2121. i( ’}\/(RA’)%(/‘?')&ZT'
(34)
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The ultimate determination of the functions ﬁfyamuicg depends on the
asymptotic form we require 4@4 to takc.
The determination of G{/? /'{ /whlch is usually called the
frec particle Green's function may be undertaken as follows @
We note that we nced onl a p.articular solution of equation
(28) since the most general solution only differs from it by a solution
N
of the homogenous cquation. It suffices to choose a solution G(ﬁ;/’(?
A -
hrd /
which depends only on the argument/?-n/Y « W& then represent the
function as a fourier integral I
. /
A /) “i\\l CMA-RY) S
g - £3 )\
(/(/' ) (277:) I/d(/\ll— 0’ (32)
and, introducing the fourier integral\representation of the é; -function
. NRAY
Sl = FA{1-1) /]
M7= % ) € oy

and equating the tr: 1sforms of both sides of cquation (29) we have

@w

- : / /) - ’
{5 /}]?__ /; 'J = lo/i_ 15(~/ ‘_(_-:«.__.;... e .. (7/ ,\ (33)

The angular pzrt of this integrat..n is casily psrformed by letting

)“1 _/{;" be the polar direction in spherical coordinates nand writing
- - . . ‘ \ ~

MR M- e 8= Ma-2'] 2

d = K’(" /\ /HV'O (.71/\1/4J 2%3/\ d\c,//vi
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L . 2._._ . ._......—..-/ —-— ji_fﬁ\./_? - }7//.. \

Gln-n') SREF AT, N M
¥ e (‘/‘ (r-1']

— R & ) A

( £ 'T(j}’/ /./7 -1 :[Z:/(z -

Qo
To give meaning to this integral we must carefully define the way the
integration is to be performed in the neighborhoods of the poles

/\ =1 ‘( « The residuus at these points however are simply solutions
of the homogenous cquation, so that a varizty of paths nbout the
poles which in effuct simply add .r substract such solutions are pose

sible (cf. fig. 5 and 6.) Z{m_/\ " ,)\.

The contour must of course be ¢ V. k._/
k

FPig. 5

»

closed in the upper half-plane,

That of fig. 5 yields
el

Gr-psCss o)

G n-n'l ¢ Kk

while that of fig. 6 yiclds ! \j/ 4

~ckinon')

6 {/7-/7'} = E-:\) (36)

Liln-pl

These indeed diffeor by

Pig, 6

( At )¢ Ny 'L
2 ‘I-,[; l ;1 -/‘/:? ' l

I'd

, 2 solution of the

homogenous equation, If we substitute (35) for cxemple into equaticn

-

) ] v
(31) the asymptotic form of the intc,;;rra% //(,//7 -7 ‘/V[,L‘ '} l]‘//( (97’)‘//%
for larger is easy to see. Since the potential is assumed to be

localized to the neighborhood of the origin the integral will
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(len
consist asymptotically of an outgoing wave ﬁ-—--. with an anglae-
dependent cmplitude., The choice (36) wbul 4 fournish ingoing waves.
By choosing (35) to represent the Green's functj;on we need only
chooscy’\ (.;;) to We the incidont plans wave € ki in equation

(31) in order to guaranted the correct asymptotic behavior of 9///

/

We have then the integral equation for U/( .

[%/(}-;!:5"'; m. '_/,”' Vi o) de' 6
Lt 270 18 1r-ntl T

. . 1, .
To verify the asymptotic form of L»‘"‘ , W expand the Green's function

g ! F . S
in powcrs of * { /:‘\{ q' /,?t
Glein-nl : ( (,Z - "1’,\,
£ e’ / ‘
S A e (383)
4‘1" {,' ’,.7 - /'? / ‘/;L ;-' ;\(_; }z
7
Then we have
. . - W
ke iFa 7!

r’[/ ~ £ 74 \ /) - “ /‘/ '{;"{'!‘ '
GV S S (‘ e UV i e bl
!I": 1 ;,7—1’}1 I( / (' ! "’!‘ / / i ’C’

which in addition to exhibitimg the correct behavior, fural uhw £n

exnlicit expression for the catterma Ll')lltlldt.. If we llt/ be a

propagsation vector in the dircction }, , ,,\’ = lg ------- ~ , then evidently
- . o /
r Coq
71 .'/";’ // t Pl /? ()’1,.. /) - :!{ /7’\ ! ;( 0
WO gy £ | o \ / al J/ ) d
U C/ e v II :‘/
{

This relation invelvas the unkuowm wave funciion, but only within
the volirwe occupied by the potential a regisn in which it may not,

at times, be too difficult to approximate,
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The Born approximations.

When the scattering potantial is everywhere quite weak the
incident plane wave will be attend very little in its passage through
the potential. We may then expect a good approximation to the scattering
amplitude to result from substituting @ Ltk for the wave function

in ( O\

271 -4[07
ﬂk ”"“27%2 e Ve oyt @

This expression, tlhie first Born approximation, sometimes gilves a

uscful picture of the general behavior of cross-sections., Its frequent

use has, however, been due more to its analytic sinmplicity than its

accvracy, which is rerely adequate for any save the foeblest interactions.
The scattering amplitude (41), fulfills the roversivility

condition (12). When the potential x/ (1) is invariant under *

inversion, it furtrer fulfills the sumnotry condition (14), which is

equivalent to saying that the first Born- approximatior scattcring

amplitude is real, It is clear, however, that the expression ( ’7)

can not satlsfy the unitary relavion (21). The wn“'*s'slon][ (

1 I\’ /(

the polintial sizaaght, Tn facl it must vanish, and clearly do.s so.

// I/ ; could nst identically balance a term quadratic in
/

This means in pavilcular that the first Born approximation docs not
censerve the number of particles in the system, a fact which cnn
lead to grutesquely unphysical results when the potential is no
longer weak., As a Tathor extrome example the cross section of a

square-w:ll of fixed radius would appear to increase without bound
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as the square of its dopth. Unless the depth is quite small in fact,
the absurdly large cross section that results is due to the spontancous
gencration of particles by the Born approximation.

To securs more accuraste results one may in principle computé
corrections to (41) of hisher «rder in the potential strenght. We may
consider (41) as simply the luwest order term in a serics development
of the secattering auplitude in powers of the potential strenght, &~
The required capressgion for L; }1) is obtainad as the Liouville~

4.‘
Nevman solubiion of the intugrcl equation (37 or by iterated substi-
4 ’

tution orf the incident piane wooe
Lo K ) Jlnt
u:‘/,. [’n ) T (J‘ } R..o 5‘1? / ) , i f ‘./7 ,,[ ’\'l
‘I\ - /(‘1(/? /‘ \ ‘,'/E ’, {/,,' (’
EUR I L e L (Pr
L A R ,- ’ K [ ! . " i
T ":(/7 fu’ Vin'tGin i Vintie ™ di! G
g ¥4
a4 > s & & 2 » (L/—Q}
The resulting scries for the scattering weplitude is
- ",) i
! | { {Q.I)ﬂ NF.€l l,«(r)
oo e 2 > f /, 2
7[’/< ki Ay :/w Wﬂ)@ G (42
Lt T n
. R A BN ') P /
.1 « {7 toy ey - g~ Ner
(T F e G Wi he T e
9,113 2 A I~ : L
(200 ) e oy, ] [ SV P PN N
‘f—‘ A.;'_.z_.; 'f J !’ ;v ‘f', ;'.. i _4,'//7 b ! ! g’/.’!".! ‘i f ,/,? /,7 /:/ £>() i (;}‘ A ,{,71?‘(/(' \':‘
N Fa A S tréy S
The srorodination wiich svmn oty vhe fiens /% terms is gencrally

called the n th Rorn aporox retion, ¥Bach such approximation satisfies
the reversibility sond inversicon Snvariance conditions. The second and
higher aroproximations with an inversion-invariant potential are no
longer real. The unitarity condition is only satisficd approximatly,

with a relative error whose order is the power /) - 1 of the potential

-

.o

[
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strenght., The value of the power series (4%) and of the entire procedure
of successive Born approximations is of course limited to potential
strenghls lying within its radius of convergence, a point to which
we shall return. (For determinations of the radius of convergence in
particular cases cf, W. Kchn, Prys. Rev. 77, 539 (1952), and forthcoming

article in the Danish Journal)
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Partial Wave Resolution

II.- The difficuity of svlving directly the three dimensional
Schrdinger equation(l), or the equivalen® integral equaticn (37) is
frequently formidable., By expressing the wave function, hewever, as a
superposition of eigenfunctions for all possible ancular momenta the
three~dimensional .roblem may often be reducedto a sequence of much

simpler one-d:mensional ones.

2
»

. . . . . ik,r .

We begin by resolving the incoming plane wave, e , into
its compenent snoclar momentum eigentiunctioms Since the wave is
cylindrically sveneirical atout the direction k, which mzy be taxen as
the axis of quantizaticn, only the eigenfunctions for wmagnetic guantum

number zero, the Legendre polynomiais, will occur. Letting PL he the

. > > ,
cosine of the angle between k and r we write

(42-) (1)

where

i 4 .
g;\ (I‘) = _];'t-'l_ elKI‘ 'LP'Q (rL ) (].,-L (2)
9 ; N 2

Now fou podiba fzr feown the ovisin the asspmrbocbic deralojaent of (? (1')
(94

may be begun by integraling by parts

21+l | ikep v L O (-
ep (x) v B2 \ ey (] v O
2141 ikr _ (-1)£ (kT 3)

£ (r)a e
4 1
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8o that the asyiptotic development of the incident plane wave is

———

Jkr =1 3 (efo+1) (-1)L o~ ikr -eikr) Py ()
2ikr E (4) ;

The effect of the scattering center on the plane wave can only

be to alter iis outgoing part. We assume t{he interaction is at least
q)

cylindrically symmetric about the dircction k, so that the azimuthal
guantum number is conserved and the scallering remains cylindrically
symeetric. Then since the outguing partial waves individually satisfy
the Schrddinger equation for large. r, the effect of scatterinz can only
be to charge their constant coefficients. This can ke seen directly from
tae esynptotic form { I —CL), by developing the scattering ampiitude

o~

“ﬂ,ﬁ) in Leg:ondre polynomials,

———

Let us suprose that in the presence cf a scatterine genter

the asymotciic wave function is

e

\ Lo :
{0y () - = 5:. (21+1) (('1) o -Cﬁ elkr) 2 ()

b 2ikr
(5)
Then, by subs*racting {1) we have
. 3 o
UR) = oy 2 @1 (0 -1 B () (6)
t = 14
In the more general notation of (I - 4) this is
~ -l , = >
£ (K, k) =~ }*, (21+1) (¢, -1)p, (', k) (7)
2 ik g R

where the latter Legendre function still depends only on the angle

> - oL .
between k and k'. By substituting this expression in the unitariwrelation
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(I _21) we obtain conditions on the coefficients qe. It is necessary

to perform integrals of the form

Wit >
/ Pe (x", k) Pg.(k , k) d—QL\., (8)

Since a spherical harmonic referred to one pole is a superposition of

spherical harmonics of the same order when referred to any other pole,

-

! . Ce s . .
. Por fizxed k it is a spherical harmonic

the intesral varishes forf =L
A ’?7

; ’ . ~
of order (. as a furstion of k', and furthermore depends only on the

. -, S >
angle beiween k and k', It must in fact equal Pg’(k, k') apart from a
-

>
consitant factor which is fired by setting k' = k.

|

- Sy >
f PQ (knv k’) P e k) dj—lkn = 4 TI___ g P (K') k) (9)
£e'

A e 1+ 1 )

+

This is easily demonstrated using directly the addition theorem for
spherical harmonics.

The whirssrity relation (I - 21) then furnishes the condition

Sy : > -
vhe-ay-cher, (kK= 2 lo,-1f° Py (k)
2 % A ﬁ & 8 (" /
from which we have, for all C,
%%
[od? =1 (10)
-+ -
210 2

by
It is custsnary to write C? = e /', calling 55 the Z th phase

N/
shift, Since the unitaritgbndition we have used to derive (10) holds for
interactions more general than static potential, the present analysis holds

more generally as well,
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In terms of the phase shifts we have the familiar results

- Y @) M T 214 ((-1)£ -tk 1kr+21§\P ()
. (11)
~ e STV (2141) iZ eige sin (kr +5’ -Q'-— ) 29 (1)
= (12)
ani
£ {g) = *9-—: \Z (2141 (e 2(? -1) PE/(N)
(13)

f-om the last of whicn we ovtain the differential cross seection. The

tovsl cross cecbion i3
= (‘i 240 = ‘--J o214+ 1) sinigf_ (z4)
J‘ ’Zm

. . , . g .
To find the phase shiftes ), we pust. in goneval solve the
i v

i)

radial Schriédinger equations fer each valve of 4., If we essume an

exprosion of the forn

oom o= Y 2 (=) 2 (9 (15)

oy
tm

-

which has cylindrical symmetry about the direction ki, we are led inmediatly
for the case of a svovcrieally cymretric potentizl to the seguence of

differeutial equations fec the furctions g, {r)

4

: £y
A (2 SE )y (6P - ™ v (r) - =5t 1)

'r_— 4 dr Y 2 gg (r) ©
’ H : (25)

[AOR 1 o]

For easymetric potentials, the wave function %/ X must be written as

a more general expansion in spherical harmonics, and the equations (16)
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become coupled to one another for different wvalues of / and the magnetic

™

v substituting

- (x)
g, () = —n (17)
kY

by

quantum number,

we find somewha® simpler equations for the Y.

e v ( 'L‘) . /ff_l_ ._2.‘..'??.‘ 7 ( o ) - __.gi_g_*).} \JL (I‘ ) = C
"3 r

dx” . f? (18)

it can easily be shoewn that for potentials for which

g\'\”\ \‘“’(t’): 0, the solution &t i2rge distances from the origin is of the

V¥
form UZ, (r)/\/ gin (kr + const). This is indeed the form we have derived
in (12), ard the phrase shirt is to be fond from the constant, If the

wave function is not to be singular . at the origin we musi also require

v,(0) =0 (19)

This condition, “%ogether with the asymptotic tehavior which, apart
’ A » 8P

from a normalizaticn coastant is

: /
U, {r) ~u sin xr + S - -'él ) (20)
b 2

serves *to dehern.ze Loull the wave fmcvion . &xd the phase shift 5 PR

. 3~ o
The normelizaiion constamt which corracsonds {0 ar incoming plane wave is
given by (12).

For the particulaer case V (r) = 0, we evidently have

\?k(r)ze

1k.,r’ and the functions gﬂ (r), properly normalized, are
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3 .
gﬁ(r) =(21+1)14 a'g (kr) (21)

where )
1) = V’ —’5‘?- 1p+ 4 (x) (22)
and for large x
m
jﬂ (x)/\/ sin (x - 3 (23)

o
A,

The phases a£~ hvioucsly vanish,

T: tegral egquztion formuletion

al
An was the czee in (he movs general three-dimensicn formulatlon

of the problem, it is for many purvoses more ccnvenrnient to combine the

racizl dilferenticl equaticns with the bowdery conditions on their
soiutiecns by repleving them bty integral eguations. It is a simple natier
to construct Green's functicns for each of the equations (18>. We define

guch functions as sclutions of the «guation

2 “ 2(1 oy :- \ )
d., AT e T 1 T 1) o8
-2 z . Oy (r, ) =y (z-rt) (24]
< T ’ >
h dr v
~
subject to ihc cerditicn Gy (0, =) =0

I\&,.
Cersilder two linserly infepiident scluticns \52 and.&f;of the

homogeneous equation

=0 (25)
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We may ehoose as two such solutions

V;e‘ = Kkr Ja (]ﬂ‘) and V£ = Kl"(’é (kr) (26)

where
g 0 b Ty

(27)

i.e, j‘eandn pare spherical Bessel functions, Near the origin we have
[

{44
(kr) - 1. 3. 5...{21 -1)

v W -
5"’1. 3. 5esel2 1 + 1) e’v (kr) 4

(28)

and for kr}» e

Cn

wer\; - COS (kr -""“)

‘ In
vzﬁ, sin (kr - 2 )
(29)

We have further the Wronskian relation

Vg dw 2_ -4 v£=k (30)
dr dr
for all walues of r.
If we assume that G 8 ry ') is bounded in the neighborhood of

r = r', then on integrating both sides of equation (24) from r = r' - E

tor =1! +& we secure the condition

1im EEE A &

&-70 :i—'—— G{’ (I‘, rt)] ot -6‘ =1 (31)

Clearly the choice
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(32)

in view of the relations (25) and (30), satisfies the conditions placed
on the Green's functions.

To the integral -;:S-I j/ q(r r') Vv (r")WJ a(r dr' which
evidently satizfies the differential ergzauion (18) we must add a solution
of the frec porticle equation, the soiuticn which would be present for
V (r) = 0. The desired sclution apux’ [rom a normalization constant is
v P(f\ tnd 50 we write

. U ale) =v plr) + 4'(0 (r,r') U '~*‘)*r. (r') ar! (33)
4 f I

vhere we hare set

() = SER V) (34)

The asymptotic form of +.e function U, . unich satisfies (55) ig evidenZly

{
Ue {r) As sin (kr - ____j') - cos (kr = -™~=) —l--(*.r',o(r')ﬁ(r’)
) 2 2 i )

k /

. s - . I
Now in view of (17), we e¥pect the ceymptotic fovm of 0y X r) to di.ffsr

~- r «
: \ Lom LRI o . :
from sia fer o S0 0750 auly Ly a nawel ization constunt. The
- . Ly
!
2 Y
’ N . . .
norimalization coastant is evidenily [ .io ) . By writing
\ £
-

sin (kr + gf& =)

COob 8

12, (r)

~J s8in (kr+ge)+cos (kr+ge) tan{e (36)
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we immediately obtain the exact expression for tan Sk (
1 < .
tan § = - - ( v U ) wy, (7) ar (37)
v K k N i
o

By iterating the integral egquation (53), one may generate a sequence of
Born apprcximations to the wave functions Vg Theze expressions, substi-

tuted in (37) yie?d correspo.ding eoproxi.atioas to tan E; + In the

first appro.smation (37) 1educss to

A
52 R i vz (r; 5 (r) dr (38)

-
O

Auother mears of deriving integral eouations for the radial
funeiloag consists in resol7ing the three-dimensional integrcl eguation

(1 - 23) directly into partial waves, Writing

4/@{(1’) = 2 ge (I‘) PQ (;-A)

v
v

and using the expansion previously dcveloped for a plane wave ile integral
1
equetion becones

o 4
E %Q (r) szffi} « 4 (2141 j’s(kr) P, (ps) L ke
i s 1 L
g ‘ ‘
., r;ii:i ;;'-L"”rif / I / B 12 A .7‘ 4
[ U, v o, Yo gty e z
j o ?" Y \z ) ,la:- g‘i‘) \T ) }-‘(') ;"" } ur (/9)
R ] £

We now exnploy the expansion of the Groen's function in spherical harmonies.
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L o0 Ll L e ) B .
‘?“;} = ik A"":';;gm(21+l) (1+m)§ (? ?)Pve(P—) Ptne('*—)

/4 e {1 )

3 -(Z.(' =) h ol for r (e
N pt (40)
</

A SN !
'( a ler) 5 (vr')  for r
< t-
In this expression (p audi{z ' are zzi-uthal =ngies of ¥ and r' res-
i ¢

o

pectively anl o amd ' are the cocliies o thuuce pelar angles. Further-

acsr the fonsticns h,. the ©i7vical  Hankel
174

Pa

A
more( .,
’ oo omfo
furctions are delined by

h ',_'(x);:j p(x) + 1 ',(:;:) (41)
. 4 - L
For =™ [
7y 4 ix

n (X) ’._."..3.. - e
{)/ \ P < ':A2)

Dy substitutineg the form ( 7\' Tor the Green's funstion into

" a . \ . : > .
the integral ecuation (j‘)), carrying ot the angular integrations, and
equating the coeffi«i-n*s of the corresrernding Losenire polynomials r~n

both sides of the resuliing equation we find the reiations

. ? e ( . . ) . 1"2(11"
ge(r) =(21+1)1 Jﬁ(Kr) - ik .3?’(1{1',:) héi(l.::}) U (r') gQ(r )

in wiien we Lave used the abbreviation

. \
J.iviie) h (kr, ) =
2 »

4
L

If we define the function

Z(r) (45)

(r) =krg

&

t
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the in*egral equation for ¢ O(r) is
i 3]
!

i L
tn(r) =21+ 1)i%wrzf (k) - ikr / j/@(kr\,&) hﬁ (la.) YU () tz (r') r'ar’

v (46)
This integral equation differs frcm (33) in the normalization of the
inhomogeneous term, and in the chcice of the free-partizle sclutions
to (25) from which the Grecn's function is constructed. The choice cf
real functions for ccnstruciing the Green's function (}2) was, in effect,
a perticularly simple one, The esymptotie form of the scluticns tﬂ(ﬂ

rd

is evidenily

~

'é e ikr C Y 1 Vi
$.(r) Ae{2 142001 ein (kr- -b0) o E A ) uizt) t@(r') rer
[/ 5 2

“ L (a7)

B JNn . . . . . .
In view of \.i..;i), it must be possible to writ: this expression in the

form

n o~
A N .
tolr)as (21 +1) 4 e 1% Lsin -\k”gn,.ﬁ_cr.)
Lo

/ 2

L

oH o
e . ikr VN
N(21+l)i"§sin(kr—cn)+e T (eZl"’—e_l)\)‘
- 2 o £+ J
( 1 (48)

Now, an identifying the scattered woves in (47) and (48) we secure the

relation

(4

Qe . m2d - / j.}(r’) U(rt) e (o) ot ot (47)
(22+12)i i L

By rewriting (46) as an integral equalion for the functicen

‘ (I‘): 1 T
/4 G ta() (50)
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we simplify the normalization of the inmhomogenecvs term in the equation
b &) = v glo) - i f OB fe ) U, @) e e (1)
QZ
We then have

L0 P, 2 FORNONE ( ) d (52)

(x) and & A(r) can, of course, only differ

LA
o a 8 w0
e

-

b a conctent factor. It is evident frox an examination sf their asymptotiz

behaviors that

<

.':Z (r) =o" l cos 8 I’U‘ L{r) (53)
£

and substitrtinn of this relation in (52) immediately reduces it to (3',7).
N evertheless the integral enuatious 3 \’)) and (31) remain differant. and
the approximations secured for exazple by iterating them each a given
number of times will generally differ, For the particular case, however,

of the firz* Born apurcximation ("") evidently reduces to (3e).

Yoriaticnal Principles

The integral eguetion (53, uay te used to construct another

T™

forn of expression for tan 2‘,/,) « By multiplying both sides of (jj) o
€

L(_g(r) U (r) and integrating over r we find

- k tan E'g = [\j‘{, CIRINEINTE ﬁ(r) dr (54)

- k tan S [zfu‘?‘z(r) U (r) dr - \‘Lﬁ(” U (r) Gie(r, r') U (r') u_e(r')drdr'

(55)
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N

[}

The idertity chtained by dividirs~ bLoth sices of (55) by the squares of

the correspondine exprecsions in (54) is

B () U ) de oy (0) U () Cp fry £) U (') Wpl(r!)arar

“Q 2
(fg’()u()‘*'e()dr) -

This expression is evidenily independent of the normalization chosen for

the functica I

o
to smell variations of the function iig (r) about the correct soluvticn
v

I4 is easy to verify that it is stationary wiih recapect

to the integral equation (33)« Conversely the condition that the exprossion
ve stationary implies that the function about which variations are taken
satisfies the integral equation.

In practice since the expression (56) involves only the
soilutions within the region occupied by the potential, it furnishes a most
convenient means of vieating potential of short ranze. One substitutes
for L&fi(r) a trtal function containing adjustable perameters, and
correspending to what physical knowledge we have of the solution, e.g.

knowing the chavior OfllTE (r) near the origin we might write

The edjustement of ithe prcameteras to socvre a staticnavr -ialwe o the
L L v

. . . - . .7 .. ..
expression (56) will then provide an estimate of cot O, . While ine

I

aceuracy of this estimate will generally increaze rapiliy - with the
number of parancters uzed, 1t is often sufficrently grea® with the

use of only the crudest of trial functioung. A similar variational




principle may e constructed analogously for the quantity eZiS € .1,

The scattering amplitude in 3 dimensions f (13 ,l‘:) may
also be represented by a z*ationary expression. We multiply the integral
equation (I - %7) by q/_k,(r) U(r), where _Zc' is some direction other than

> ., S s .
kK, and integrate over ?, finding the expression !

- 4y (k. i') = [eik'r U(r)\P o () S (58)

PRSTE 2 /}y_K.u) (IO ANOLOLEED

>
(') \.,/k(r') d?dr' (59)
Now the reversibility relation is

£0E D) =t 0L

4n

- -L / e g P () & 460)

-

\

) ->
Now dividing the product of the two forms (58) and (60) for - 4 k) )

by the expression (59) we obtain

o - ikarle V) g |
drreleh ) = - /e-lk'r U(r) Wy () o /e P el e

/‘7"{.}:;(1‘) 0(r) p \ (r) a? ,/ Y e (7) U6 6(rz?) Ty ()

3 .2 .
(61) dy Jd: ..

k(r) and

This expression is independent of the normalizations c¢f bcth \},/
\'b k,(r), and it exhibits explicitly the symmetry exprcssed by the
reversibility relation, One easily verifies that the expression is

stationary with respect to independent variations of the two functidns
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\Plk_and \%'_k'about the correct solutions to their respective integral
equations, Conversely if the exvression is stationary for variations
aboutl two such functions, then thoy satisfy their integral equations,
The latter fact, together with the syrmetry of (61) constitutes an
alternative proof of the reversibility relation.

Since (61), like (56),involves the wave functions only within
the region occupied by the potentiel, it is well suited for use with
short-range potentials, Some simple illustrations of the use of thes
princicles, first derived ty Schwine«», have been given by G. Chev,
Phvs . Rev. 23, 541 (1954 ;. w0 other f~-ma of variztional principies

Yz

vhagse shifts . - been given by G.Euvlthén, (cf.

Ead
[

for the fwding of
- ) I - . vy v 3 N oy
Mott and Kassey, so2oond editici, p. 123, and b W. ¥oln, Prys. Rev.,

T4 1763, (2043), Some calculations made for +he purpose of comparing

the various rethods are veported by S, Alsschuler, Pugs, Rev, 89, 1278,

4

The fast that thz interaction energy between two nuclecns is
quite laxrge at <lose range l2ats cne to exvect that relatively small
variaticrs in the kinetic energics of the incident nucicorns will wotg
lezd t~ vory poicezble charges in the pzrts of their wave fuacilons lying
withi' e poteutial. Sinee the bluding erayin of the donteron i much
smaster wualy ine Lwoenuvcleon interaciioa o, wWa wmar owneti tie

part ¢f the deutercn wave fuvrneticn withia tue potcintial to¢ be quite

.
similar in o to the correspending part of the wave furction for

'

neutron-vroton scattering at sero energy. We may further expect that

this similarity will be approximaiely preserved for scattering wave




b

A v

functions up to energies of seversl miilion volts., In this case a convenient
trial function o substitute in the variational principle (56), written

for the S-wave phase shift, is the wave function corresponding to zero
energy. This procedure leads to the well-lmown effective range formula

for cot S. o! end constituted its first derivation, by Schwinger. The

method is described im dotail by J. Blatt and J.D. Jackson, Phys. Rev.,

76, 18, 1949. A much more cempact, 2ithough svbseanent; derivation is

given by Bethe in the same journal Fhys. Rev., 7&. 38. (1949).
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