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The Quantum Mechanical Theory of Collis3ions.

I»- In the present course we shall consider the quantum mechanical

treatment of problems of particle interactions in which at least one of

the particles is unbound and therefore able to travel large distances

freely. In effect such particles are able to communicate the results of

their interaction directly to macroscopic detection apparatus* The

interpretation of the resulting data is in general the most direct

way of forming conclusions about the interactions.

A considerable variety of physical phenomena involves unbound

particles» Among the simplest are scattering processes ;in particular

the deflection of particles from a collinated beam. More general

collision processes which induce reactions of various sorts also lie

within the class we shall examine, Our chief concern willbe with the

means of solving problems in which well-defined models have been

postulated to describe the basic interactions. We shall restrict

ourselves, in fact, to the treatment of fairly simple models, and

shall discuss a number of approaches to the problems they raise.

We begin by discussing the scattering of particles by a

simple potential field, fixed in space» The problem of two free

particles with a potential between them of course assumes this form

in the center-of-mass system. By imagining that a beam of particles of

constant strenght is at all times being scattered by the potential, we

cay seek to describe the situation with the stationary-state Schrb'dinger
equation.



(1)

Here y (p/ is "the given potential function, ¡( = ¦

2 with £* the

•ríenergy and m the mass (or reduced mass) of the incident particles.

The solutions of this equation are not specified uniquely until

further conditions are stated. As usual in quantum mechanics, we

must require that the wave function v/ (/¿) be quadratically

integrable over any finite volume.

Assuming that the potential V (/t) is confined to a finite

region, or decrease sufficiently rapidly with increasing radii Jj ,
we may, as a final condition on the wave function, specify the form

itmust assume outside the region of interaction. Itwill evidently

be the superposition of a plane wave, representing the initial beam,

and an outgoing,spherical wave representing the scattered particles.

A wave function r'T* (hi) for which the incident boam is travelling

in the direction must, at large radii, assume the asymptotic form

(2)

where / Î=/^, andr {rj)is a cotípiex~valued function which charac*

terizes the distribution of particles scattered through the angle y .
The way in which it does so may be seen by a loose argument which we

shall render more precise a little later. If the velocity of the
~* k kincoming particles is if =? •«*-—

? then since the plane wave of (/£ )

has unit amplitude, the incident flux isv particles per unit area

per second. The number of particles scattered in the direction ,
per second, lying within the element of solid angle (X.-^*- containing £7

is fv\\ w)jJill» The differential cross-section otT*for
—

(1)

u/Jn}^y c +7(0)^- (2)
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scattering within this element is the ratio of this expression t« the

incident flux.

(3)

Some general properties of the scattering amplitude»

The function r (£7) can only be found r in general, by actually

solving the Schroedinger-equati on (l), a procedure whose difficulty

depends considerably on the nature of the potential/ (/£), and 4n the

incident energy. Before discussing the means by which this is done,

we shall point out certain general relations that the scattering

amplitude f (0) must satisfy which are independent of both the potential

and the incident energy, and which follow directly fr^m the relations

(l) and (2).

It will be convenient to replace the notation -r (gO for the

scattering amplitude by one which contains both the initial and final

directions of particle motion. We shall writeJ (fc t fc) to represent
/ yV

the amplitude for scattering from the direction /< to the direction /< .
¦i '«lift*

( lj!<'/= j^Lk ) The asy ptotic wave function (2) will then be written

in the form

(4)

f

——
?

in which k is a propagation vector in the direction Jj .
The wave equation (l/'la satisfied equally well by wave

functions having incident beans in all possible directions. In

rfr»)f o¿ Í2

in T,n« luna

%(^c ik\f(k^£P. <4?
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particular let us consider the equations satisfied by the wave functions

{¿/r*1" and y L
'

corresponding to incident beams in the directions X
Tk ¡' f

~ K
and /< respectively. If we multiply each of these equations by the other

wave function and substract we have the identity

(5)

Integrating over the volum-3 bounded by a sphere S we have, by

Green's theorem.

(6)

If now we give the sphere a sufficiently large radius the wave

functions may be represented on its surface by the asymptotic form (4).

(7)

The contributions of the pure plane wave terms to this integral vanish»

This may be seen by writing them in the form

(8)

Since the vectors /< -/c,1 and \d +j< are perpendicular, i»6,

(/< -k ) . (k +'< )=k 2 - /< 2 =0, the average value ef (/^ +/<.') ./¿

willvanish when tfca value of (/< - /c ') »/? is fixed. The terms of

(2) contributed entirely by the scattered waves willbe 0 ( « j )

and we shall drop them. If we define 14 to be the cosine of the angle

= 0 w

fjt^-j>-%i^h2<iti=o«

Hence Tl/ -* ,"t"A /fc A

CtTX'Yt Jfcf'j* inr \l< +!< ;)l £
'

dIL (a)
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between the vectors/^ and/<, &n&/M.s to be the cosine of the angle

between # and/c , then the remaining terms which axe(s ("75"") leave

the relation^. . ' / . / iá j\

(9)

By performing integrations by parts, in which the exponentials

are integrated first the asymptotic forms of these integrals are easily

found. Only the integrated terms need be retained, the remaining integrals

being a power^7
*

smaller as may be shoun by a further integration by

parts . We then have apart from a factor ( / fcJ(T

(10)

The upper limit in the first term, and the lower limit in the second

term both contribute nothing. The resulting identity is

(11)

or

(12)

This relation evidently expres#?6ie reversibility of the scattering

process, that is a beam has the same amplitude for scattering from

the direction -/< to -|<as from /< to \c • Cf. fig. 1Fig. 1

the relation •/ / . ¡\

jdc.. ..' M*-a

*lffírV)-Zf(Í%)
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We have not yet employed any knowledge of the potential. In

most problems of interest the potential has symmetry properties tf its

own. In particular, if it is invariant under inversion in the origin»

v (-/| ) -y (/7)> we have another symmetry relation obeyed by the

scattering amplitude. In thai» case the scattering amplitude must remain

unchanged when both initial and final propagation vectors are inverted

in the origin. Cf. fig. 2. | /

Fig. 2

(13)

Combining this relation with the reversibility relation (12) we find that

when inversion invariance prevails the scattering amplitude is a

symiDetric function of the two direction sk^ and /<f

(14)

Another important identity, independent of the potential may

be obtained by a procedure similar to the derivation of the reversibility

condition,. This time we work with the wave function y an^ c complex

(i,
* 'k

conjugate wave function \i/ .. By multiplying each wave equation by

Ik
the other wave function and substractxng we have

(15)

an expression whose volume integral over a large sphere we again

f/V Ti ~ f¡t~k') <*>

y;vK-%vyk =o
-
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transform té a surface integral i>y Green *s theorem.

(16)

Once again* substituting the asymptotic wave functions we have

(11

In this case as well the terms containing two plane wave factors

contribute nothing since they are represented once more by the vanishing

integral (8), A difference arises in treating the terms contributed

purely by the scattered waves where a cancellation which took place

in the derivation of (9) no longer occurs. Besides terms Q ( -^-O
we /yo

which neglect, the terms containing two scattering amplitudes

contribute an integral 0(-~^-) which, as we shall see, we must

retain.

(18)

We require the last term, since as we have seen in deriving (lo)

plane wave factors in the integrands of the first two terms

asymptotically contribute additional factors ofh .

ifit-^MW^o «
vuuc a^axííA auuscixuxing tne asymptotic wave functions we have

-»"-»
' S v/t a (17)
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Integrating the first two terms by parts and retaining only the

integrated terms, which are the asymptotically dominant ones we

have

(19)

Now, evaluating the integrated terms

(20)

7
The notation for the integration variable f/* may be improved by

iM
wr.itting instead a propagation vector /«$• of the same magnitude

I ;,£ I-
•( > and letting iJL-A^/^be the corresponding- element of solid

angle» We then have the relation

(21)

The physical origin of this relation is most easily seen in

the special case /< = /< . Than equation (15), from which we have

begun is simply the conservation condition in a stationary state fcr

the quantum mechanical current vector,

(22)

where

(23)

-4>

á[fm-ñwj

N7. T s./?J- (22)

l-iiífn'-^r) <!i)
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The conditions (l6) to (21) are then statements that the total flux

through a large sphere must vanish. Obviously the pure plane weve terns

in the asymptotic form of the current contribute no net flux. But the

pure scattering terms do. The scattered flux roust evidently be balanced

by a term coming fr^m the interference of the scattered wave with fie

plane wave, an effect which must account for the attenuation of the

incident beam. We shall presently discuss this effectiQn somewhat

greater detail. Meanwhile it is clear that this balancing is expressed

by the form assumed by (2l) forK =/<. i.e.

(24)

H
m which q/v)--) means the imaginary part. The integral standing en the

right which is proportional to the scattered flux is simply the total

cross-section <f , whence we have the frequently useful relation

(25)

The more general form assumed by (21) when K^/\ suffices

to prove that the flux through a large sphere vanishes when the incident

wave is a superposition of two or more plane waves. Somewhat mare

light is shed on the relation by noting1 that a quite analogous statement

is nade in the tine-independent approach scattering problems. There the

particle is considered as undergoing a transition in time from an initial

state to its final one. Since the Hamiltonian is hermitian the operator

S which effects this transition must be unitary, a condition which

implies- particle conservation and that orthogonal initial states lead

to final ones that are orthogonal. In fact the relation (21) is simply

3™ /•(?>] s kifcLQifW

/< "T . t
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the unitary condition S S= 1, for the matrix S whose representative

is *.

(26)

i.c« we have

(27)

The relation (26) may be shown to follow from the time- dependent

procedure.

We shall not, for the present at least, make any detailed

exploration of the time-dependent approach. Since the temporal

development of scattered waves is in fact never measured, introduction

of the time is for most purposes a needless complication* The

mathematical problem of finding the distributions of emergent particles

is much more concisely stated in the stationary approach.

Never the less there arc same simple questions of physical

interpretation in the formulation of the stationary approach which are

best clarified by a brief reference to the time-dependent one. In

particular we should note thai we have spoken rather loosely of the

plane wave in the asymptotic form (?) as representing the beam of

incident particles. This is of course an incorrect way of explaining

that the total wave function is not normalized to unity. The function

T¡ (ft i can only describe a single particle. In order to secure a
Ik" *'
normalizable wave function for an incident particle wo must use a

superposition of waves UA which renders the initial momentum slightly

(tisfa-sfafyiitodbmk) M

f(hs+\kW\s¡í)cihW-t} *¡
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uncertain. Then since the problem is no longer monoenergetic the

time-dependent Schrodinger equation must be used to describe the

propagation of the wave packet. Viewed in this light, the stationary

formulation is an idealization. The limiting case of precise specifi-

cation of the initial momentum, in which the particle wave function

becomes WlsWIs 3-part from a normalization constant which vanishes

in the limit.

A further formal difficulty in representing the incident

particles by plane waves of infinite extent is that the scattered

waves can never be separated entirely from the incident ones. The

two parts of the wave function overlap and interfere at all points in

space * Deriving the expression for the differential cross-section in

terms of the scattering amplitude would then in principle require

acccrVr.tingfor the interference effects in finding the current through

an element of area, a calculation we omitted in deriving (3). The

latter expression would in fact still be correct since at large

distances the interference effect contributes terms which oscillate

so rapidly with increasing scattering angle that their average value

is quite effectively zero. Stills/defining the differential cross

section^ the use of wave packets is substantially more realistic.

If we were actually to carry out the scattering calculation

using wave packets, it would convenient to choose an initial wave-

packet which represents a very small range of momenta in order to

minimize the spreading of the packet. This would imply a rather extended

packet on tha atomic scale of distances (we must in any case choose it
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Fig.3

much larger than the potantial) but itmay still be quite small,

macros copically speaking; This packet would be pictured as travelling

toward the potantial at the initial time cf. fig. 5. At a much later

time, when the packet had passed the potential (cf. fig. 4) the wave

function would contain in addition to the displaced packet, an outgoing

spherical wave with an angle-

dependent amplitude proportio- /"'"""i ( ( \'
nal toi(Q). There is thus \) j J) /

no difficulty in showing for s

all directions save nearly ) i'tQ
•<

the forward one that OvTtlfftyjl
Near the forward direction, h

however, the initial wave packet / y \ \

i/ / _
v \ \

always superposed (provided the 1 / / , \/* \ a

scattered waves have not been \ \ \ \ '/ i~~T"*'\\\\
'
iI,

greatly delayed within the \ \ \_ ¦?-/'
—
/
—

-f
potential, a point to which \ /

we shall later return,) It is easy to show, using asymptotic integra- LL

tions quite analogous to those we have already used, that interference

with the spherical wave leads to a decrease cf probability that the

h r \
4

particle is within the initial wave packet proportional to J/\Y\ (0 }

so that particle conservation once again implies (25). We at least

see more clearly from this approach that the interference effect

which attenuates the initial beam can only involve the forward

scattering amplitude.

Fig.4
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Integral equation formulation.

As the scattering problem has thus far been stated we roust

first find the solutions of the SchrSdinger equation (l) and then

select from among these the one having the asymptotic form. (2).

For many purposes it is more convenient to impose the two conditions

simultaneously by writing an integral equation for the wave function,

The Schró'dinger equation we wish to solve is

(2s;

Suppose we know a solution Q) (fj }'¡') to the much simpler in-

homogeneous wave equation

(29;

Then the functionV(/I) =-%f /feft fr)\j(h'IWi ĵQ^
evidently satisfies the equation F>

(30:

But ][l)j\is not the most general solution to this equation. The

most general solution is obtained by adding to / {/}) any solution

{.Qlfi)of the homogenous wave equation (S/ +(^ ¿jy SuiCÉ
J \ /

\U ( ft N' is among the solutions it fellows that
'tiv, differs from

*y ( ft ) only by a free particle wave function (,// (A¿ ).
A.

V"
7

(U\

ltf+kl)%m *ifrVMlfclAl (as)

(v^^s^íi=-S(^-^') m

(vV)'X^=%V(^%^ m
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The ultimate determination of the functions ~j (,!) depends on the

asymptotic form we require U/j. to take.

The determination Qf(y(/l( /7 /which is usually called the

free particle Green's function may be undertaken as follows :

find
We note that we need onlyya particular solution of equation

(28) sines the most general solution only differs from it "by a solution

of the homogenous equation. Itsuffices to choose a solution (jr^/I/¿ J** *$> /
which depends only on the argument /J ~tj .We then represent the

function as a fourier integral «¿> .^ -a-

(52)

and, introducing the fourier integral representation of the O -function

and equating the transforms of both sides of equation (29) we have

(33)

The angular part of this integration is easily performed by letting

h— h
"

be the polar direction in spherical coordinates and writing

ítion as a fourier integral .A „>» -a-

and
4-f -~x
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(34)

To give meaning to this integral we must carefully define the way the

integration is to be performed in the neighborhoods of the poles

J\ r=
-

l^ , The residuus at these points however are simply solutions

of the homogenous equation, so that a variety of paths about the

poles which in effect simply add ?r substract such solutions are pos-

sible (cf. fig. 5 and 6.) •
\

1/ /I
The contour must of course be

closed in the upper half- plane.

That of fig. 5 yields

while that of fig. 6 yields

Fig. 5

Fig. 6

(35)

(36)

iA ¿Vi kl-7" tilThese indeed differ by
*

/V'KP '» I'f—¿l-0f—¿1-0- a solution of the

homogenous equation. If we substitute (35) for example into equation
/}

(jl) the asymptotic form of the integral /£//?-/? '/J//V) Wi iVMiT
for larger is easy to see. Since the potential is assumed to be

localized to the neighborhood of the origin the integral will

x
._ 4 r^-A>\ii(W¡//i-/i'íJ yzy /UU (34)

G/W'J»¿~— -
77 (35)

bl/I'fl' *&¦ - - (56)

kt¡h-n'\
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consist asymptotically of an outgoing wave with an angle-n
dependent cnsplitude. The choice (36) woul d fournish ingoing waves.

By choosing (35) to represent the Green's function we need only

choosey (yj) to be the incident plane wave £ in equation

(31) in order to guar anted the correct asymptotic behavior of W^V,

¥c have then the integral equation for K¡L •

(37)

To verify the asymptotic form of \¥. , we expand the Green's function

in powers of
'
ff[ , n. h 1

(38)(58)

Then we have

(s9}
which in addition to exhibiting the correct behavior, furnishes an

explicit expression for the scattering amplitude. If we lit/< be a

propagation vector in the direction t] f//= j< -'-—
f then evidently

M)

This relation involves the urJcioin wave function, but only within

the volume occupied by the potential a region in which itmay not,

at times, be too difficult to approximate.

%to^-atsf£TvM%«>«'">
era of /;/ n

*-:
--

/V k" (38)
A'?'" / # hf / ;'7-' h

¦Tv
— ----- - --

/ 1
*

i\ h
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The Born approximations*

When the scattering potential is everywhere quite weak the

incident plane wave willbe attend very little in its passage through

the potential. We may then expect a good approximation to the scattering

amplitude to result from substituting £J for the wave function

in (40)•

(41)

This expression, the first Born approximation, sometimes gives a

useful picture of the general behavior of cross«sections« Its frequent

use has, however, been due more to its analytic simplicity than its

accuracy, which is rarely adequate for any save the feeblest interactions.

The scattering amplitude (41)? fulfills the reversibility

condition (l2). VJhen the potential y (/? ) is invariant under 1

inversion, it further fulfills the sunanetry condition (l4)j which is

equivalent to saying that the first Born- approximation scattering

amplitude is real. It is clear, however , that the expression (41)

can not satisfy the unitary relation (2l). The expression r ( /< , /< )

1/1 í't- t /!( U ) could not identically balance a term quadratic in

the potential strenght. In fact; itmus-f vanish, and clearly does so.

This means iñ particular that the first Born approximation does not

conserve the number of particles in the system, a fact which can

lead to grotesquely unphysical results when the potential is no

longer weak. As a r.rt her extreme example the cross section of a

square-well of fixed radius would appear to increase without bound

my¡-^%!fe k
'
a VMe''k/1o¡rl <"»
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as the square of its depth. Unless the depth is quite small in fact,

the absurdly large cross section that results is due to the spontaneous

generation of particles by the Born approximation.

To secure more accurate results one may in principle computé

corrections to (41) of higher «.rder in the potential strenght. We may

consider (41) as simply the Iciest order term in a series development

of the scattering amplitude in powers of the potential strenght.
' —

The required expression for y (/? ) s obtained as the Liouville-'!<
Neuman solution of the integral equation (3?), or by iterated substi-

tution of the incident p]ane wave

fb% ]

The resulting series for the scattering amplitude is

(43j

The approximation which suimn only "¿he first /",<) terms is generally

called the n th Born approximation» Each such approximation satisfies

the reversibility and inversion invariance conditions. The second and

higher approximations with an inversion-invariant potential are no

longer real. The unitarity condition is only satisfied approximatly ,

with a relative error whose order is the power 'Y\
-

1 of the potential

ikln-> z e -
jfJG(n,nIV¡a 'le d r

t/-fff /4(/?(^< Vin1) G (/?>''] VMe^'w
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strenght. The value of the power series (4s) and. of the entire procedure

of successive Born approximations is of course limited to potential

s trench* a lying within its radius of convergence, a point to which

we shall return. (?or determinations of the radius of convergence in

particular cases cf. W. Kchn, Phys, Rey. r?7> 539 (1952), and forthcoming

article in the Danish Journal)
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Partial Wave Resolution

11.- The difficulty of solving directly the three dimensional

Schroáinger equation(l), or the equivalent integral equation (37) is

frequently formidable. By expressing the wave function, however, as £

superposition of eigenfunctions for all possible angular moments the

three-dimensional problem may often be reduced to a sequence of much

simpler one-dimensional ones.

Ik i*We begin by resolving the incoming plane wave, e~
* , into

its component angular momentum eigenfunctiors Since the wave is

cylindrically symmetrical about the direction k, which nay be taken as

the axis of quantization, only the eigeiofunctions for magnetic quanturr

number zero, the Legendre polynomials, will occur. Letting U be the

cosine of the angle between k and r we write

(i)

where

(2)

Wow for polixts far from the -oi-.i^Jn the «a^rupti >+.!<• flo"vol.i>i«'ao.tii: of ps (?)
v

may be begun by integrating by parts

(3)

,ik,r mei*pm £ (x)p (1)

G J V-l 0 f

(r)O/ ieikr'MP; ( fi)}
"l + O (J-)

Í7 2ikr w Í r 3 -1 r2r
2

/ \ 21 + 1 / ikr /,\ Í- -ikr \ /_\
g (r)Ay (c - (-1) c ) (3)

£ 2ikr
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so that the asymptotic development of the incident plane wave is

(4)

The effect of the scattering center on the plane wave can only

be to alter its outgoing part. We assume the interaction is at least

cylindrically symmetric about the direction k, so that the a^imuthal ¦

quantum number is conserved and the scattering remains cylindrically

symmetric» Then since the outgoing partial waves individually satisfy

the Schrodinger equation for large, r, the effect of scattering can only

be to change their constant coefficients. This can be seen directly from

the asymptotic form ( I- JJ , by developing the scattering amplitude

"A0 ) n i^g^ítáre polynomials.

Let us supuose that in the presence of a scattering center

the asymptotic wave function is

(5)

Then, by substractirig (4) we have

(6)

In the more general notation of (i ~ 4) this is

(7)

where the latter Legendre function still depends only on the angle

between k and k'. By substituting this expression in the unitariVrelation

2ikr t (4)
' '

I(r) rj._1_ 2(21* 1) ((-1)
1

c"ikr<eikr j F. (/Ü
1 x

2ikr ,' í-
(5)

f (g) „ _
T
lr 2(21+ 1) (C -1) P? (ft) (6)

f (k", k) «
—i— f¡(2l+1) ( C -1) p- (id^) (7)

2 ik ¿^ O
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(i 2l) we obtain conditions on the coefficients C». It is necessary
I

to perform integrals of the form

(8)

Since a spherical harmonic referred to one pole is a superposition of

spherical harmonics of the same order when referred to any other pole,

the integral vanishes for£ j£"£. For fixed k it is a spherical harmonic

of order ¿Í as a function of k!7 and furthermore depends only on the

an ;^le between k and kr. Itmust in fact equal ?p (k, k1)k 1 ) apart from a
-» %

constant factor which is fixed by setting k' = k.

(9)

This is easily demonstrated usin^ directly the addition theorem for

spherical harmonics.

The uii-Parity relation (i-
21) then furnishes the condition

(10)

2 iS -P <~ /:>/:>Itis customary to write G? = c V, calling gu the ¿- th phase

shift» Since the unitari condition we have used to derive (lo) holds for

interactions more general than static potential f the present analysis holds

more generally as well.

/p, (k* £) PA,(k», k) a XL,, (8)

( P fl (k% k«) P t (kil, k) dSX m 4TT C Pfl
(k»,k) (9)

j X I k 21 + 1 °/£'

from which we have, for all C*

i^!2 =i do)
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In terms of the phase shifts we have the familiar results

¦"y
•

(11)

(12)

ani

(13)

from the last of which we obtain the differential cross section. The

total cross section is

(-4)

To find the phase shifts £.* we aunt, in ger&v&L solve the

radial Schrb'&inger equations for each value of C , If vie assume an

expansion of the form

(15)

which has cylindrical syicnetry about the direction k, we are led ijmnediatly

for the ca.-3e of a spherically symmetric potential to the sequence of

differential equations f*r the functions gs. (r)

(16)

For asyraetric potentials, the wav? function u> , must be written as

a more general expansion in spherical harmonics, and the equations (l6)

tk
(r)/V~?fe- S(2l + 1) ((^1) £ e- Íkr

-eikr + 2ií¿U (H(H )
£ V fll)

~--2(21 + 1) i
¿ e^ e sin (kr +r -

F¿ ()l )
kr £L (12)

f(8 )
- -J— E(2l+ 1) (c 2i*|-1) Pq (|J )

2 ik P v
(13)

0-= fU| 2 dXI=-^ V (2 1+ 1) ala2 (14)

vp (?) = r g,, (r) P; (¡-L) (15)
ft 0

2 . lr ctp <¦¦¦ + AJC l-'¿ iXx) 2 j gí¡ r) " c
r dr ÍX r / v
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become coupled to one another for different values of £ and the magnetic

quantum number,, By substituting

(17)

we find somewhat simpler equations for the L*£ :

(18)

It can easily be shewn that for potentials for which

uv>V\ p»( <¦")-, o, the solution at large distances from the origin is of the

form Ut (r)/\y sin (kr 4- const). This is indeed the form we have derived

in (l2), and the. phase shift is to be found from the constant. If the

wave function is not to be singular •at the origin we must also require

(19)

This -condition, together with the asymptotic behavior which, apart

from a normalization constant is

(20)

serves to determine bocli the -.rave function \Ja and the phase shift •

The normalization constant whidi corree ponds to an incoming plane wave is

given by (12).

For the particular case V (r) =s 0, we evidently have

\J/ , (r) = ce1
* *r, and the functions gj) (r), properly normalized, are

eg w - -^
(17)

-*-- U (r) + /k2 - -¿-^-
7 (,) - i^lfii)Uf (r) = £

tf (18)

U ( 0 ) = 0 (19)

U. (r) sin (kr + 6.,
- IzJL- ) (20)

í. 2
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(21)

(22)

(23)

c
The phases Op obviously vanish.

Integral equation formulation

al
Ai\ was the case in the more general three- -dimension formulation

of the problem y it is for many purposes more convenient to combine the

radie! differential equations with ths boundary conditions on their

solutions by replacing them by integral equations. It is a simple mattei

to construct Green's functions for each of the equations (18), We define

such functions as solutions of the equation

(24 y

subject to the conditicu G/j (o? r:) ••-. 0

Consider two linearly independent solutions \Ja and tk/~of the

homogeneous equation

(25)

g n(r) =(21 +l) 1 J|( kr) (21)(21)

where

¡Ax) =\i -K~ j_g + ¿ (x)( x) (22)

and for large x n

i,UL. sIX (x '~T] (23)

"d-|"
d
-| +:':' ¦•

r
¿ Í B,(r, r') =$ (r-r-) (24?

] ¿r J
**

v

faL. +k2. ixiii)) /Vt\ 0 (25)

. r JIWe !
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We may choose as two such solutions

(26)

(27)

i.e. ¿ aandK) jpare spherical Bessel functions, the origin we have

(28)

(29)

We have further the Wronskian relation

(30)

for all values of r.

If we assume that G* (r, r1)r1) is bounded in the neighborhood of

r = r1 then on integrating both sides of equation (24) from r= rf - £
to r= r!+X we secure the condition

(51)

Clearly the choice

vp =kr jo (fcr) and = krT) ft (kr) (2&)( 2&)

where

r (27)

v,,
< te>- „ «W

- !¦?. 5,..(2 1-1)

3. 5. ..(21 + 1}
*

(kr)L

(28)

and for kr>\ £, In \ /, ¿TTv
Y D/^J sin (**~

/ vO^Jv 0^J
~ cos ikr i

4> 2
(29)

t« -^i-«j,1
-

t» =k (30)
& dr í *dr v

d r ( .J =1 (51)
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(32)

in view of the relations (25) -and (50), satisfies the conditions placed

on the Green's functions.

To the integral -*-—?¦ /G ( ) V (r»)U n(r f ) dr
'

which

evidently satisfies the differential equation (18) we must add a solution

of the free particle equation, the solution which would be present for

V (r) = Qa The desired solution apart from a normalization constant is

v ft(r); and so we write

(53)

where we have set

(54)

The asymptotic form of t <e function U,
v

which satisfies (35) is evidently

((7/y)

Now in view of (l?)j we expect the asymptotic form of y« (r) to differ

fron sin (Jcr -:- Xj^ ¦¦
--"•••—' only liy a nciiar*!!sation constant. The""

w 2
"

r
normalisation constant is evidently o ) .By writing

(36)

o£(p, r»)-^-' •
*

(32)

U «(a?) s ví(p) + Íg/(p,pO U (r')Uf (r')dr' (33)
vvy v v

U (r) = -?^ V (r) (34)

P-nr Orr if
\jA (r) *sj sin (kr - —~~ ) -

cos (kr - -*JL ) -^-\ v^(r')u(r!)
g 2 2 .k / €

U (P!)( P!) (55)

sin (kr 4- ) + cos (kr +¿- ) tsn^ (36)
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we immediately obtain the exact expression for tan a (

(37)

By iterating the integral equation ($3); one may generate a sequence of

Born approximations to the wave functions t!*« nei3e expressions, sufesti-

tuted in (3"1 ) yield corresponding eppr oxidations to tan a .In the

first approximation ($7) ieduces to

(3«)

Another mear-3 of deriving: integral equations for the radial

functions consists in reco-Vring the three-dimensional integral equation

(i- SS) directly into partial vaves* Writing

and =using the expansion previously developed for a plane wave the integral

equa tion bec omes

(39)

We now employ the expansion of the Green's function in spherical harmonics

tan £ =- ~~ | vfl (r) U (r) t^ to dr (37)

"O

s"g M--1
- jf >/ (r) U (r) d^ (5B)

k Jo

*^Z0
(r) P, (pj r Í(2Ul)i ¿

0
(to) P^ ífi)--^

j..e_
_

y (r> ) (Tí) p (^,) ¿í .» (59)( 59)
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(40)

In this expression Cp and/-?
'

are azimivfchal of r and r r res-
S )

pecrtively and r and ?¿J are the cociii-s of their polar angles. Further

more/-.. si and the functicca b,. the Hankel
?. m/- 0 6

functions are defined by

(41)

(42)

By substituting the form (• }> for the Green's function into

the integral equation ($9)» carrying out the angular integrations, and

equating the coefficients of the corresponding Logendre polynomials on

both sides &f the resulting equation we find the relations

(43)

in v;IJ.-'-h we V.aye used the abbreviation

(44)

I£ we define the function

(45)

c.lkJ ?T' ¦ ik E i.(2 x + 1) 7r
:-i--L °- *<f-?> pV^ 1-0

lr-r 5 A
m (1 +m) 1 l 1 --O v

» ¦ } m

/.j <kr) h g(kr') for r r'

1 h Jkr) j (kr«) for rVr'
(40)

h ,(x);rj (x) + i^l (z) (41)

For "N\ 0''
v ix

t i * (42)

r^ f % 1

IP (r)
-

(2 1 + 1) i• jjikr)- ik/ ¿,(kr^) h,,(kr) U (r») flf « (r-« ))r
*
.

(43)

/ j
fi
(lcr) h r< rl

j., (tel h (kt> )« / ¿ ¿ (44)
1 h -(kr) j p(kr') r>r^

t r (r) = kr g At) (45)
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the integral equation for t At) is

(46)

This integral equation differs from (33) in the normalization of the

inhomogeneous term» and in the choice of the free-parti cle solutions

to (25) from which the Green's function is constructed. The choice cf

real functions for constructing the Green's function (32) was, in effect,

a particularly simple one. The asymptotic form of the solutions t At)

is evidently

(47)

In view of (l2 )? itmust be possible to writ; this expression in the

form

(48)

Now, on identifying the scattered waves in- (47) and (48) we secure the

relation

(49)

By rewriting (46) as an integral equation for the function

(50)

ti

t (r) =(21 + l)íki icró{;(kr) -
Her T j

/
¿(kr < ) h* (kr> ) U (r«) t^(r') r'dr'

(46)

A^(2 1 + l)i em (kr- ) - -~—
I"g M

v 2 r ;
(4?)

t9(r)aj (2 1+l)ic ll'.U'si2: (kr +S ñ
- )

-t/ ¿2

fV(2 14-1) ií:f 3in (kr-^2 ) + ¿í—
¦
- (e 2i^-i)V

2 2. £ + L j
I "

(48)

e2iSÍ _
i -T^Li f . (r!) u (rt) t (ri) f.. ar i (49)(49)

(2i + :)ie / ¿ *•

(21 +l)i* í
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we simplify the normalization of the innomogeneous terra in the equation

(51)

We then hare

(52)

Tho functions sX. (r) and („{., n(r) can } of course, only differ

b a constant factor. It is evident from an examination of their asymptoti

behaviors that

(53)

and substitution of this relation in (52) immediately reduces it to (57)

N evertheless the integral equations (j?) and (51) remain different, and

the approximations secured for example by iterating them each a given

number of tines willgenerally differ, For the particular case, however,

of the first Born approximation (52) evidently reduces to (38).

VariationalPrinciples

The integral equation (.53/ oay ¿c used to construct another

form of expression for tan Aa. By multiplying both sides of {$,) by
•C

l^L />(r) LTLT (r)( r) s:rl^ integrating over rwe find

(54)

(55)

én M= v A?)
-

ikr fjAr ) h ¿kr ) u(r'U (r«) r» dr' (5l)
£ -O y i, x '-6 >

'v£

e2e
2i'í ¿-1 = - 2í- f v (r)(r) u (r) I (r) dr (52)(52)

4rl(r)4r1 (r) =e
ií)¿

eos J ,u_ (r) (55 )

-
k tan Jp = j (r) U (r)U. dr (54)

-
k tan g -fa 2 (T)( T) ü (r) dr -/^ -(r) U (r) G ,(r, r«) ü (r«) U/iír1 )drdr»

(55)
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The identity obtained by dividing both sides o:C (55) by the squares of

the corresponding expressions in (54) is

(56)

This expression is evidently independent of the normalization chosen for

the function ¡4^ It is easy to verify that it is stationary with respect

to small variations of the function lLr> (r) about the correct solution

to the integral equation (3j)« Conversely the condition that the expression

be stationary implies that the function about which variations are taken

satisfies the integral equation.

In practice since the expression (56) involves only the

solutions within the region occupied by the potential, it furnishes a most

convenient means of treating potential of short range. One substitutes

for U. a W a tibial function containing adjustable parameters, and

corresponding to What physical knowledge we have of the solution, e.g.

knowing the behavior of(JL^ (r) near the origin we might write

(57)

The adjust ement of the pirametera to secure a stationary val'.ie for the
>•>

expression (56) will then provide an estimate of cot £^ . While the

accuracy of this estimate will generally increase rapidly;- with the

number of parameter» used, it is often sufficiently great with the

use of only the crudest of trial functions,, A similar variational

ÍU? (r)( r) tj (r) dr ~J\JL» (r) U (r) G* (r, r») U (r») U/>(r')drdr>
4. V *

?.

• '
't' v. _ &¦'.

k n ( (rn Wv (r) U..-W &) 2

\)¦¦« g J (56)

N

U,(rW £7 crj (57)
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principle may be constructed analogously for the quantity c » . «i.

The scattering amplitude in 3 dimensions f (k',k) may

also be represented by a stationary expression. We multiply the integral

-i
equation (i- 37) by \U k

»(r) U(r), where k1 is some direction other than

k, and integrate over r, finding the expression :

(58)

(59)

Now the reversibility relation is

460)

Now dividing the product of the two forms (58) and (6o) for
-

4- TTf(k¿ it)

by the expression (59) we obtain

(61)

This expression is independent of the normalizations of bethUA (r) and

\h ,(r), and it exhibits explicitly the symmetry expressed by the

reversibility relation. One easily verifies that the expression is

stationary with respect to independent variations of the two functions

-4ir f(-?, -t') = J eik
'r U(r) Ap _

k
, (r) d? (58)

-4rrf(-k, -t') = (f_k
,(r) D(r)fk(r) d*+/fy_kl

(r) U(r) G(r,r')

U(r') V^ k
(r') dr'dr' (59)

f (.S; -?') = f (?, k)

-- -i- f c-ik!n U(r) d» k (r) dt (éo)
4n y Tlc

,* / -
ik? V(t)4> (r) d? /lÍk'rÚ(r')^-k.(r') d?

4 rrf(kS k) = - '
c

'
k

'^ r k

A^.U)U(r)
k
(r) d? Yty _

k
,W tJ(r) Gf(r.r')-BÍrO^ÍJ-)

(61) d?Jr ' ;
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vL/ and y *tabout the correct solutions to their respective integral

equations. Conversely if the expression is stationary for variations

about two such functions, then they satisfy their integral equations.

The latter fact, together with the symmetry of (6l) constitutes an

alternative proof of the reversibility relation.

Since (6l), like (26^. involves the wave functions only within

the region occupied by the potential, itis well suited for use with

short-range potentials, Some simple illustrations of the use of these

principles, first derived by Schwin^er, have been given by S, Chew,

Physo Pw9v. 9¿. 541 (1954,/- T*ato other foiTK) of variational principles

for tha finding D.f pliaae sMfto .¦. ¦ been f;iyen by 3. E'ulthén, (cf.
Mott and iiv-assey, bqzotA editicu^ p-, 128) and by W, Kolin, Fhys, Rev..,

J;i ?
1763yI 763y {1945)-, Some calculations astds for the piorpose of comparing

the various methods are reported by 8, Altschuler, Pb/s. Rev. _G9 y 1275,

1953)-

The fact that the interaction energy between two nudeces is

quite large at close range leads one to expect that relatively snail

variations in the kinet ñ c energies of the incident nudeces «ill -cot

lead tó vory noticeable charges in the pavts of their wava functions lying

within the potential* Since Vie binding er..srgy óf the deoteron is iiiuch

smaller thas the two-nucleon interaction energy, we ffiB¿" expect the

part of the deutercn wave function within the potential to be quite

similar .in for to the eprrespo£idir.g part cf the wave function for

neutron» pro ton scattering at zero energy. We may further expect that

this similarity willbe approximately preserved for scattering wave



35

functions up to energies of several million volts. In this case a convenient

trial function +o substitute in the variational principle (56), written

for the S-wave phase shift, is the wave function corresponding* to zero

energy* This procedure leads to the tve11-known effective range formula

for cot d ;and constituted its first derivation, by Schwinger. The

method is described in detail by J, Blatt, and J«D. Jaolcson, Phys. Rev.,

76, 18; 1949 « A much more compact, although subsequent, derivation is

given l>y Bethe in the saroe .journal Phys. Rav M 2i.r >8> (1949)»
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