


Quantun. Dynanics

Part i

by Julian Schwinger

Quantur: Mechanics developed historically as a set cf "quantiza-
tion rules® superimposed upon the structure of Classical Mechanics.
In view of the fact that the laws of classical physics are only
liriting laws, it seeirs advisable to construct a sclf--contained
quantun theory. The development of quanturm dynanics to be outlined
in the following lectures will parallel the development of classical
mechanics from the action principle of Hamilton but will not be built
upon it. In addition to improving the logical basis of quantun
rechanics, the theory provides powerful general nethods for the solu-~
tion of problexzs. The discussion will be confined to systems of |
particles, the extension to fields (i.e., systens with an infinite
number of degrees of freedon) following analogously.

We shall start with the rathematical foundation which will not
be the usual geownetrical basis involving vectors in Hilbert spaces,
etc. We shall develop instead an algebraic basis which is in soue-
what closer correspondence with the physical phencriena to be
described, and is constructed as a syibolic representation of the
ceasuring process in the atonic domain with its characteristic sta-
tistical features.
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I. THE ALGEBRA OF MEASUREMENT

A measurement may be considered as a process by which an assembly
of systems is "sorted" into sub-assemblages characterized by the same
set of numbers representing the property being measured ( e.g., the
Stern-Gerlach experiment). Thus if we intend to "measure" the pro-
perty A whose possible valucs are &%, a", ... (denoted generally by
a') then ve eymbolizally ronresent by M ( a' ) the mezsuring proces
waicii sut of an essexbly of srsvens gelechts those, for which the pro-
psrty A has the values &', The neasuring process M (
lowing propervies @

\

(] Rowpadnzipility ¢ If a certain measurement is followed by a

seccnd reasurement of the same property then the mesults ¢f the pre-

vious measurement are repeated. This is symbolicelly reprcsented by
M(aiM(a?) = l(at) (1.1)

(ii) Ex xclusiveness: If we make a meesurewsnt of the property A and
look for the sub--assemblage having the numbers a', and then make a
messurerment upon this sub-assemblage and look for systems heving the

valucs a® (a" # a') for A then we wiil expect %o find no such systems

and this is eymbolically represented by

l} 2\'\)’ a =0 (102)

Ma')M{at) = 6 (at,a"(a’) (1.3)
in which the rumbers 1 and O represcnt cerbainty and impossibility of

agreement reaucctively, for the results of the two measurements.
(7ii) Compleizmess @ If we leck for all possihle values of A, every
systen in the essembly will fall somewhere in that classification,
and we then can write sywbolically

ZiM(a’) =1 (1.4)

a
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vhero 1 stands for the measuremont proggse that sslects an systsans,
Tt follows from (1.3) that

}; M(a'M(a") = g M{a®*IM(a?) = M(a?)
so that one can consistently ascribe to 1 the algebraic property of
the unit element.

More precisely, we mean by measurement the determination of the
values of the maximum number of simultaneously determinable quanti-
ties, and we take a' to rcpresent the set of numbers corresponding to
such a complete measurement. We speak of a system so selected as
being in the state characterized by a'. This measurement process is
one that sclects systems in a particular state and leaves them in that
gatate. A more general measuring process is one which selects systems
in the state a', say, and leaves them in the different state a"
associated with the same set of properties A. Such a process is
symbolically denoted by M(a', a"). In this notation, the previous
simple measurcment corrcsponds to M(a'a'). Clearly

M(a'a")M(a"' ann) = ,:S\ (au, am )M(a'a""). (1¢5)

An even more general measuring process is one in which systems with
properties A characterized by the set of numbers a' are sclected, and
are then left in the state characterized by the numbers b'! for the
property B, where B and A are not simultaneously déterminable. Such
a measuring process is symbolized by M(a'b'). Clearly we have

M(a'd')M(b"ct) = d (b', b")M(a'e') . (1.6)

The question now is : What can we say about

M(a'b! M(ctdr)?

This must be proportionel to M(a'd'), since the sequencc of measuree



ments takes us from a' to d'. The constant of proportionality is 1
when c¢' = b', and O when c¢* = b" # b' . In gencral we know that the
state ¢! cannot be predicted if the system is known to be in the state
b'. In fact we get the whole spectrum of values of ¢!, each value i
having a certain probability. Pending a more quantitative probability
interpretation we dcenote the numerical constant of proportionality in
the above relation by (b'} ¢'), and so write ‘

M(a'b')M(c'd?) = (b'] c")M(ardr) . (1.7)
In particular

(b*Lv") = 0 (b', b") . (1,8)

i

We sce that the algesbra defined by the measuring process and the
associated numbers is linear, associstive and non-commutative. The

last two propcrities can easily be shown to be true since

M(atot){M(cra (e’ £')) =M(a'bt)(@’| e M(c'£?)

il

= (d' [ e')(b"| c')M(a'f?)
whilce

'.'LM(a-bf)M(c'd’)1M(e'f') = (b Jc' )M a'd! M(e'f!)

4

(o' cr)(ar| e")m(atfr)
also

M(a'o! )M(c'd')

(b'| c')M(arar)

M(cta')M(a'p') = (a'| a'M(c'd') £ (b'| ct)M(a'd’)

I

We ,mhall now obtain some consequences of this algebra. Thus when

M(a®)M(b'e")M(a') = (a'| b')(c?| a')M(a'ar)
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is summed over a' and d' , then by virtus of (1.4) we get
M(bc') = E: (a'] b*)(e*| a')M(ard’) (1.9)
a'd'

which is a linear relation giving the commection between two sets
of measurcment symbols. In particular if B and C are the same physical
quantitics, and b' = c' , then

M(b') = 2, (a'{b)(b'{arM(arar) .
) atdq!

If we now also take A and D to represent the same set of physical
quantities, we then get

M(b') = 3 (a'|p')(b' | amM(arar) .

a'a®
Now taking
M(a')M(b")M(c') = (a'| b')(b"| c')M(a'c")
summing over b'!' and using (1.4) we get

Matler) = (77 (at| o) gc')) M(ater)
bt '

or

(at} c'M(a'c!) ==( E: (a' | b')(b" cf)) M(a'c')
b'
so that we infer the numerical relation

(2" ') = 3, (a'{B")(b!|c?) . (1.10)
‘bl
If we specialize this to the case where A = C we then get

L@ o) (el am) = & (at,a") . (1.11)
bl



The Trace
It follows from (1.10) that

(c'|b') = 7 (e'|a@aran)(ar vy . (1.12)
gtat ’
This, together with (1.9) leads to the result that
M(bre!) = (e b') = 2: (a" b')(c' | ar) ( M(a'd') - (a'| a”».tl.l3)
atd’

This indicates that if we associate some number with M(b'e') in a
linecar manner, the choice M(b'c')— (c'| b') will be invariant under
the transformation (1.9).

We call the associated number the truce of M(b'c!'), so that

Pr. M(b'c') = (ct] b') . (1.14)

We now dcduce some properties of the trace :
We find that

Tr. M(c'd')M(a'®') = Tr. (d'| a')M(c'b")

1]

(d'{ a') Tr. M(c'p')

it

(@ar|a)(efec).

Similarly we have

Tr. M(a'b')M(c'd') = (b'] c')(d'| a')

so that the trace of a produce of two measuring symbols is indepen-
dent of the order of the multiplicants.
As a consequence of (1.8) we have

Tr. M(ata") = J'(a’,a") (1.15)
and
Tr. M(a') =1 .
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In addition we have the relation that
Tr. M(a'M(b') = (a’'| v')(b* |a'). (1.16)

The Adjoint
The measurcment symbol M(a'b') as written implies a certain

sense, namely the succession of events happens as rcad from left to
right. The mcasurcment symbol in which the convention is opposite
to the above one is called the adjoint symbol, and is denoted by
M(atp')t, where

)+

M(a'p")" 2 M(ptar) . (1.17)

As a result of this definition

M(a'b)M(ctar))t = m(ate! )M(b'ar)

(era ) Mato)t . (1.18)

This can also be written z2s
[(orf enmarar)] * = (erf vrm(aran)”® (1.19)

so that with a reversal in scnse (b'{ c') is replaced by (c!' | b'). If
-we insist that no physical rcsult depend upon this convention, the
probability of transition between states a' and b' must involve

(a'| ') and {b' | a') symmetrically. A quantity possessing the correct
properties is

il

p(a',b') = p(b',a') = (a'| ")(p" | a')

1

s pla',b') =1

b! .
where the latter statement, which follows from (1.11), is of course
nececssary for any probability interpretation. However, a probability
must also be a real non-negative number. If (a'| b') is considered to
be defined in the ficld of complex numbers, this will be satisfied by

(1.20)
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the following restriction on the measuring algebra,
(b'[ at) = (a" b')’ (1.21)

p - P

pla',b') = [(a'lv) 220.

Note the general algebraic property of the adjoint operation deduced
from (1.19) and (1.21)

(') em(aran] * = (o' | c') m(aran)* .,

Operators and Matriccs

A symbol can be associated with a physical quantity in the fol-
lowing way. We have from (1.16) and (1.20) that

Tr. M(a')M(b') = p(a',b') (1.22)

hence we obtain for the expectation value of the physical quantity B
in the state af ’

<B3, = 2, b'p(al,b') = Tr. Bi(a') (1.23)
| 4 b'
where
B=2 DbM(b') (1.24)
b! ;

Otherfintys follow from

!

W) = 7 (@[ e) (e anm(afar) = 2 (a' | o) (o' o' )M(ate")
a?a" alc' ' a®

ie€oy

B= L (2'|Bla")M(a'a") = 4 (a'|Ble’ M(ate!) * (1,25)



where
(at]Bla") = & (at|pi)pi(Bf{a") = Tr. Bi(a"a’) - (1.26)
bl
(2!|Ble') = 2 (a'|{pt)p'(b'|a!) = Ir. EM{c'a’)
b! ‘

Thus a physical quantity is characterized in relation to an arbitrary
measuring process by an array of numbers -- a matrix. From the general
rclation between measurement symbols
!
M(atat) = 2, (a'|b')M(c'bi)(er| dr) {1.27)
bigt
we deducce the matrix transformation law
(at]xfa') = 20 (a'] B")(BYZ|e')(et| @)  (1.28)
'bl )4

c

with the 2id of the trace formula (1.25).

For the produce of two quantities we have, say

XY = 2 (a'|X[o")M(a'd') F, (b"[Y|c')M(b"e")
= 2, (a'|xlor)(pr(Y|e M(ate")
or
(a'| x¥|c') = % CUP S DICHREI I (2,29)

the matrix multiplication law. In view of the complete correspondemec
between the measurcment algebrs and the conventional mathematical for-
mulation, we shall borrow the usual terminology. Thus we call the
elements of the algebra opcrators, étc. We have anticipated this con-

nection in speaking of the trace. Thus according to our definition

Tr, B = §2: b! = Z: (a'lB[a'). (1.30)
B! al
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Note also our definition of the adjoint of an operator

X = & (ar|Xlp)u(arp?)
namely
X" =2 {a' x| ) M(brar) (1.31)
shows that
(otx*ar) = (at| XY . ' (1.32)

Sincc the symbols of elementary measurements, M(a') are sc¢lf-adjoint

(Hermitian)
M(a)" =M(a') (1.33)
this property extends to the operator representing any physical quan-

tity, i.e., one with rcal eigenvalues.

Eigenvectors

The mensurcment symbol M(a'b'), describing the transition of a
system from tre stute a' to the state b', can be analyzed further by
introducing a hypothecal state of non-existcnce, O. Thus we may think
of a two-step process cquivalent to M(a'b'),

M(a'b') = M(a'0)M(0b!)

where M(a'0) symbolizes a measurcment which sslects systems in the
statc a' and annihilates them, while M(Ob') describes the creation
of a system in the state b'. We shall use tre notation

Ma'0) = Y (a') (1.34)

Y (a)*

il

M(0a')

Mav') = Y (a) W o)t (1.35)
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The algebraic propertics of the adjoint operator then correctly yield

M(ae)t = Y () § (an)T = uprar) .

According to the multiplic.tion law

M(02'")M(b*0) = (a'|b*)M(0)

or
Y @t W () = (arfprmo) . (1.36)
Thus

(at{pt) = (1} (@)™ (v')]o0) (1.37)
or with a simplificd notation, in which the null state is understood,
(a']o7) = (Y (@) Y (1) . (1.38)

In parsicular
( ‘y (a;)-{—- -‘\\Pf' (an)) s g (at,&") . (1039)

We infer from (1.38) that

(a' o) = (Y )" T () = (v']ar)

1
and from (1.37) that
(a'{b) = oo Y (a)" Y (o) = 2. [ ()Y (a))*

= Tr. M(b'a')
For 2 gencral operator represcented by

X = (ax[p) (a) Y (o0)F
we deduce that

¥ o0 = S @) arfx(or) (1.40)

a
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and
1

, (a'EX‘b')\}f (b')+

./‘

\Y'(a,)+ X =

~
!

o’

since
Y arm(o) = ¥ (at) , m0) ¥ ()" = ¥ (v)" . (1.41)
In particuler, justifying the cigenvector designation ;
A \If (a') = a' Y (a') \}/ (a')"a = \/ (at)a!
We can also sonclude from (1.40) that
T (an*z Yor) = (ar|xfor (o) (1,42
whence
(a'[x[b') = (Y ()72 (")) (1.43)
and |
(a'| x[b') = Tr. \/ (at)x Y/ (b')
Tr. XM(b'a') .

As 2o special casce of thoe measurcement symbol transformation equation
(1.9) we have

2, (at| p*)M(a'0) ; M(0at) =2, (at| o' )M(0Ob!)
3! b!

M(b'0) .

1l

or ,
V (o)

in which thc¢ transition amplitudes (a'!b') appear most dircctly as

wo

SV e s Fant =L @len Y et a.u
Al ! '

transformation functions. Conversely the transformation equation
(1.9) follows from (1.44). Note also the converse derivation of the
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multiplication law,
M(a'p M(erar) = ¥ (a) W (o) ¥ ()Y (@)
\Vla')(‘ﬁe(b')+‘§f(0'))'§f(d')+
(pf{c'M(a'd)
which involves (1.41).

Unitary Transformations

We now look more precisely at the changes in the manner of
description of our system. Considcr two descriptions of the system,
one in terms of the properties A, with eigenvalucs a', the other in
terms of the properties B with eigenvalues b'. Since the number of
indepcendent states of the system is the same in A as in B, we can
establish a one-to-cone correspondence between the states a' and b'.
After making the association a'e— b' we take M(a'b!) to refer °
to pairs of states put in such a one-to-one correspondence. We now
definc the quantity

Uy = Z M(a'b') . (1.45)
all pairs
(a'®')
Evidently
o« .
U, = < Ma')=1 (1.46)
2 o
and
-
Uba, = }-4 M(b'a'> = U;;b (1047)

(a'dt)
For sequence transformations a —5 b — ¢, we have

U. U, = 2 Mam) 55 Mle') 1.48)
ab “be (a'b') (8. )(b'c') ( ks (

'y M(ate') = U
QTE' ( ) .

i
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where the c' written down is the one corresponding to the a' through
the intermediary of vt

In particular with ¢ = a, we have

Uyp Upy = 1 (1.49)
and similarly,
Upg Ugp = 1 (1.50)
so that
+ +
Uagb Uap = Uap Vagp = 1 (1451)
which characterizes Uab as a unitary operator.
It follows from the definition of Uab that
(bt = I/ (a! 7 (ot )T A/ (p)t
Ugp V(B') = Y(at) , ¥ (a)70,, =Y () (1452)

where a' and b! arce corresponding states.

The inverse relations arc

Uba\y/(a') =.97(b') ’\¥f(b')+Uba &.if(a*)+ (1i53)

One can construct the transformation function (a' b") as a
matrix elcment of the operator Uba in the 'a' description

(at{p") = (/7 (&)™ J(p") = (I (a) YU,V (a")
\f q ‘q ba\{ (1.54)
= (a! *Uba‘ a") :
or the 'b! description,
(a'lbm) = ()" (") = O (b1) U Y (")) (155

= (b' | Upy | B") s



- 15 =
We now remark that
M(b') = UbaM(a’ )Uab (1.56)

which follows directly from the multiplication law of the measurement

symbols, or from the eigenvector construction
M(p') =Y (o) YE) = v, Tla) Ula)v, . (1.57)

Accordingly,

B =9 b'M(b") Uy, T blaM(ar)u,,

(1.58)

Up,,b (A )Uab

where the correspondence between eigenvalues enters in writing b' as
a function of the corresponding eigenvalue a'. We have also used
the general definition of a function of an operator,

bfa) = 5 bla'(a’) . (1.59)
a'

In the important situation where A and B have the same spectrum, we
can establish the correspondence so that

a! = b (1060)

and therefore

B=U,_AT

pat Uap + & = UgyB Upg (1.61)

Gonversely, let U be an arbitrary unitary operator vt = U

and construct

var™t = S ar mi(at )Tt . (1.62)

g
i
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This can be written

where

and

Y GE) = Ye), YEO = YE) U, (e

Y @EryaEn) = 4@EaEn

so that & and A possess the same eigenvalue spectrum and corresponding
eigenvectors are related by the operator U.

For an arbitrary operator
X =2 (a'\xla") M(a'a")
we have
T=uxUt = (ar|x]a") M(3'E" )
so that
(a'1%[a") = (at|x[a") . | (1.64)
Purthermore, all algebraic relations are preserved,

X+Y)=X+Y, (X)) =XY

and
@t =@ .

Thus the description resulting from the unitary fransformation
is on precisely the same footing as the original description.



.

Infinitesimal Unitary Transformation

Consider the special situation in which & and A differ infini-
tesimally, as obtained from a unitary operator U which is in the

infinitesimal neighborhood of the unit operator :
i
U=1-3F . (1.65)

Here F is an infinitesimal operator and ¥ is introduced as a constant
with the dimensions of action in order that our physical quantities
be measured in conventional units. Since U is unitary, we must have

equal to

that is, F must be an infinitesimal Hermitian operator. We write

VYEn -YE)=(v-1)¥(@) =z J§Ya) (1.66)
so that
§¥ @) =-57 ¥ (1.67)
and
§ Yian?* =§i antr . (1.68)
For an arbitrary operator X,
X:UXU-1=X+%[X,F] :

This we write as

T=%xX-8 X (1.69)
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where,
zﬁ—[x,F] =Fx . (1.70)
Now it follows from (1.64) that '
(3'|"3") - (a']x]a") = (B'|X - X)|E" ) . (1.71)
For an infinitesimal transformation this becomes, in our notation,
X(aﬂ{X\a") = (a'| & xlam) (1.72)

where the operator is held fixed on the left side.
An important special case is that in which it is possible to con-
struct <SA.as an arbitrary infinitesimal multiple of the unit operator,

Sa=8&a
which requires that
LA, 7/ §a)] = ik . (1.73)
Since A
IYVE)=a-Fa)YE)=aY @)
yields

AY @) =(ar + da) (B

- v

which implies that ﬂir(a') isieigenvector of A with the eigenvalue

a' + § 2, our assumption can be realized only when A possesses a con-
tinuous apectrum . Notice that (1.72) reads

S(a'lAIa") = §ad(a' , a")

in agreement with the fact that the change in the eigenvectors is
equivalent to increasing the eigenvalues by S a.
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We now examine the effect on a transformation function (a'\b')
(a' and b' again refer to arbitrarily chosen eigenvalues) of subject-
ing the 'a' states to an infinitesimal unitary transformation genera-
ted by Fa, and the 'b! stutes to an independent transformation genera-

ted by P, . Since
atfe) = (F ()T Y (1)
. we get
§arfor) =g Cf @)T B () - 5 (Y @)F 7 (e1)
or

S(atler) =g (a'| (7, - Fy )| ') . (1.74)

of courSe, if the same transformation is applied to both types of

states (Fa = Fb), the transformation function is unaltered.

One may require, more generally, what from ¢ (a' b') must have,
for any conceivable alteration that is consistent with the three

fundamental properties of transformation functions, namely

8 (a'lb‘)(b‘fo') - (atlcv) ,

b (at{a") = d(a',a") , (1.75)
(a'| b) = (b']ar) .
We shall write
§ (atlbr) = % (a' | &y | o) (1.76)

which is the definition of the infinitesimal operator 5 Wab‘ According

to the first, composition property, changes in (a'l b') and (b'{c')
imply a change in (a'|c') given by
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§(atler) = £ & (at{v)(dlet) + 5 (a'ipt) € (ble?)

=§ S| & ufe)eler) + % 5 (a o) (o] §wy fet)
= @IS gy + Swglen)
which is the additive composition property
by -
S, + oW, = Ju_ (1.77)

In particular, if ¢ = a, we have from the second fundamental
property,

(\
Ewab + oW, =0 . {1.78)

The third general property of transformation function implies that

- (e B o) = (or |, )
or
Syt == Sy, -
1.79
= éiwab 4

that is, S‘Wab is an infinitesimal Hermitian operator. Of course

these conditions are satisfied by the special form

(Ywab =F, -PF . (1.80)
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II. THE DYNAMICAL PRINCIPLE .

We introduce the time t as a parameter upon which physical quan-
tities depend, and require (principle of time homogencity) that all
values of t be equivalent, for complete physical systems. This means
that the spectrum of a physical quantity is independent of +, and that
a change of t corrcsponds to a unitary transformation. Furthermorc, we
assert that, in general, compatible physical quantities refer to the
same time., That is, a state (of maximum information) will be specified
by the values of a complete set of quantities at a given time, S (%),
We write the associated eigonVcctof as'gf (S 't). A change in des-
cription may consist of choosing a new set of commuting operators at
the time t, or of changing the time for a given sc¢t of commuting opcra-
tors, or of both alterations. Thus the most gencral transformation

function is

(Y1t 158 t,) = Oy (§ 1807 (58 1,)) . (2.1)

This describes the rclation between states at the two times and thus
contains the entire dynamical history of the system in this interval.
It is the object of quantum dynamics to construct all such transforma-
tion functions, and accordingly, we may expect that the fundamental
dynamical principle will be & differential characterization of this
gencral transformation function.

According to the work of the last section, we know that for any

change of the transformation function (2.1), be it of the times 13

and t2, of the operators Kl and §2, or of the physical attributes

of thc system in the intcrval from t. to t., that

1 2’

(S 1 “w - 1 % T

(gl tl‘ 62 J"-'2) - K( Sitl\gwlzl >5t2 ’ (2.2)
where S\le is an infinitesimal Hermitian operator with the additive
property

+ W =SW .

8wy, 23 13
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Another additivity property refers to composite systems, i.e.,two
dynamically independent systems « and{5 , which are considered in
conjunction. If the states of o« and R are described by the eigen-
vectors TY (‘y*‘ %) and ('S >
stuate is described by

T{ (, i’ v P t) = Erf(% o ! £) ¥Y'(§ B 5) =-qu(?;3' t) (gi't).

t), respectively, the composite

Accordingly

Gt oo b A n ' " oLy «vd;n Py “CphHn
(7 94 [Q 60 = (51 119 #2257 | f’?. ty)
and

o 1 B t o ’ 3 " ¢ " 50 i A
(45 S D S B S S P 3 L P IE S LA

where X¥ is a physical gquantity of the o. system. There is an analogous
statement for XP . With the shorthand notution (1) = (11‘ (1)&
find '

fa)=4¢ @)

o (g + (1), 5,

AR EATE

which is the additivity property for dynamically independent systems :
< o _ S
GWyp + 8W, = Wy,

There are two types of infinitesimal changes in the transforma-
tion functions. In the first we adhere to a given dynamical system
and introduce infinitesimal alterations of Sl(tl) and gz(te). This
includes changes of tl and t2. These transformations are generated by
infinitesimal Hermitian operators, Fl and F2 y which are functions of
dynamical variables at tl and t2, respectively. Hence for this type
of change

TWy, =F - F
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In the second type of change, the initiul and final states are un-
altered, but some physical characteristic of the system is modified .

in the time interval t, t + dt. Now
! [
(§1 615 5 85) =
] ‘uv ] ! ’ " E" n n
f(§1t1.5 t+dtdd § (g t +at| S t)a (1') tl‘§2t2) ,
which has been written in the form appropriate to continuous spectra.

Transformation functions referring to an interval that does not in-
clude (t, t+ + dt) will not be altered, while, as a special case of (2.2

S(¢ s+atl §7 %) =%(§' t +at{dL(s)as |G +)

where 5\L(t) is an infinitesimal Hermitian function\of dynamical
variables at time t, anda the differential dt appears to conform with
the vanishing of the left side for equal times. We conclude that for
this type of change,

~ —
C W, = &L(t)at , (2.3)

or more generally, if we consider 2 distribution of variations in
physical attributes,

t -
Ew12= f 1 fn(t)as .
5y

The form of the infinitesimal operator characterizing a general
change in the transformation function is then

# J/’ S IL(t)at ,

or if we construct a function F(t) such that

F(t,) =P, , PF(t,) =F

‘1 1 2 ?
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we may write
t

Sy, = /tl [df(t) + §L(t) } at .

5 dt R

We now assume that there are classes of changes for which the
generating operators S ng are obtained by appropriate variation of
a single operator wle,

and that W has the form

12 %

1
12 / L(t)dt
12

W

where L(t), the Lagrangian operator, to borrow the classical termino-
logy, is a function of certain fundamental dynamical variables Xi in
the infinitesimal neighborhood of t, i.e. ,

L(t) = I <xi(t) , %’c‘ x, (t) ,t)' .

The limitation to first derivatives can always be achieved by suitable
adjunctions of dynamical variables. We take L to be a Hermitian opera-
tor, thus imparting the same property to le, the action integral
operator, and thereby satisfy the requirement that E'le be Hermitian.,
As indicated by the explicit occurence of t in the Lagrangian, our
treatment will not be restricted to complete systems. One should no-
tice, however, that for a system acted on by time dependent external
forces, not every physical quantity has a time independent spectrum.
There will occur in the structure of the lagrangian certain
parameters. Any alteration of these quantities is a change in the
nature of the dynamucal system (the addition to a Lagrangian of a
new term can be thought of in this way). The associated 5 le ’

X
SW.. = L(t))dt
SV, 4 £ (u(e))
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has the form (2.3) with QL = QT(L)o On the other hand, for a given
form of the Lagrangian, we may introduce certain infinitesimal
changes of the xi(t), and of tl and tzo This must correspond to the
possibility of altering the nature of the states, at tl and t2 for a
fixed dynamical system. Hence

\W., =F, -
My, =F - F, .

This is the operator principle of stationary action since é:le nust
be independent of dynamical variables in the interval between tl and
t,. We shall obtain therefrom equations of motion for the xi(t), and
expressions for Fl and F,.

2
We may note here that if we were to replace L with

I=L-_4a w, W=wx(), t)
dt
or le with W12 ’
W, =W, - (w:L - w2) , Wy = W(tl) y Wy = W(tz)
we should be adding to w12 operators referring to times tl and t2 .

Henoce the stationary action principle leads to the same equations of
motion with le as with W,,, and

5W12 =F -F,

where
5wl=Fl-Fl , bWy, =P, -F, .

Hence altering the Lagrandian by the addition of a time derivative
does not change the dynamical system under consideration, but rather

yields new generators of infinitesimal transformations at t. and t

1 2 *
Concerning the structure of the Lagrangian, we require that the

limitation to first derivatives be maintained under any integration
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by vparts, i.e., the addition of a total time derivative. This implies

that the fagrangian is linear in the time derivatives. Accordingly,

we write
- d%i dxi
ks Y — - —— - M °
L= 5oyl —t = xj) H(x,%) (2.4)

where (bij) is a numerical matrix. This structure remains unchanged
if an integration by parts is performed on the time derivative terms.
The operators x; can be chosen Hermitian without loss of generality.
In order that I be Hermitian, it is necessary that H, the Hamiltonian

cperator, be Hermitian, and that

dx. dx. dx. dx,
gou: N} IR N (i R ._.;L.)
Eoy (% 3 3t Xj) =20 5 (dt X3 " %5 3%

or

b. . &
the b-matrix must be skew-Hermitian., We shall decompose bi' into

Lo . - . -
antvi~-symmetrical and sym.ietrical elements,

which are, respectively, real and imaginary,

* X _
%13 T %15 0 P13 T TPy
and assume that the dynamical variables correspondingly decompose into

two kinematically independent sets; variables of the first kind, asso-



= DT

ciated with ajj, and variables of the second kind, associaved with
Sy (employing CGreek indices to distinguish the second se3) :

/T dx .,
: d“"a‘; d"{f

dx o \
= 1 il S a1 i e et oy T Hix. oX o1
L 3 aij (X,‘ - +ogTt Ay ) vz quﬂ (x@ T 3% J&/ ; H‘xi,xu,

L=

e o Y] 2

We have used the phrase ‘kinematically independent’® to mean the decompo
sition of the time derivative terus, as distinguished from ‘dynamically
independent® which refers to an additive structure of the entire

Lagrangian, i.e.,, of the Hamiltonian also.

The action integral associated with the Lagrangian (2.4) is
P

W.. = l“—*’“b cdx. - de.x. ) - E at|
127 [, L?“ ij 1455 1%5 J
p)
<
1
r dx. dx.
_ _ 5y i -1 _ o 4t
= /; 1_ usij (xi P It Xj> Hdt}dt R
vilo | :

On subjecting this to a variation we may keep the € limits fixed,
representing variations of tl and t2 by an alteration of the funec-
tional relation between t and T . Since g is not varied we need not
write it explicitly

1

Sw,, = [(%Zbﬁ..(gxﬁ.dx.- dx.0x + x.dJx .- alx.x.) -~ §H at - H adt
/L a2 I R Bt A M R 173

=/d [ %—Zbij(xib\xj - Exixj) - H§ t}
r _
J iij bij\éxidxj-dxing)—5Hdt+dHSt‘) .

The atationary action principr.\le requires the vanishing of the second
term, which can be expressed as



dx

_ _aH P , __41 _d
JH =5 St + L bij(é'xi e T ij) _—

dx. ax. dx dx
1 By S s R - ____/s_&cu)
5t + 3, ij((\ X% T Sxi)+LJ Axo(d, 75

We also obtain

P, o= F(ty) , = P(%,)
where
| es A .‘1\ " - - F S
:E_azJ.lj(x S}cj SAlXJ) Ho t
\
§§"a.(x.5za o x.%, ; 5 < ?fb
G PigMa J iTL) o+ ToE g (x,, Xy = 0%, X ) = H&t

The character of the variations %o which the principle of stationary
action refers is now made explicit by the statement that the symmetriza-

tions and anti-symmetrizations occuring in (2.5) and (2.6) are super-

fluous, in virtue of the operator property of Sxi and EXOL « We
infer the comutator and anti-commutator relations
‘;-5 XJ 9 Xl} = {5}(‘3 = O
ax.
i o |
X‘ 9 = O 9 X X ’ \ = O ®
L 7 at hi dt )
Now we shall obtain from (2.5) expressions for f_if_:g and Ezc& as functions
dt dt

of the dynamical variables, in terms of the structure of the Hamiltonian.

The first of the latter conditions is then satisfied if

f
i

(\
which gives 90 XJ. the character of an infinitesimal multiple of the
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unit operator. The second of the latter conditions is satisfied with

[be ,xiJ = 0

provided ifﬂ is an odd function of the variables of the second kind.
It is thugtnecessary that the Hamiltonian be an even function of the
variables of the second kind,; but is without restriction in its depen—'
dence on the variables of the first kind. A

We write

Su=C0 v, 8 x B L8k
ot IxX

or an alternative form in which 'left derivatives! are?blaced by
'right derivatives!

éx 3P -5 §x
o X
No such distinction occurs for first class variables. The equations
of motion are abtained as

- ax . OH
2L a =k ==,
3 ij dt bxi
2T T _ 4 | W
po#p db 0%, ¥y !

and

=2, .
P = aij Xing + (8

“f

We now turn our attentimon to variables of the first class.

X, ) Xh - H 5 t .
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The Canonicsal Form

- . . . - . ax,
In crder that the equations cf motioun be solvable for the i,
q S

iz
the anti~symmetrical matrix (a,.) must be non-singular. This requires
id

that N, the number of the X5y be even. Indeed

det a,. = det a,, = (—1)N det a..
1] Ji 1d

the determinant vanishes identically for N odd. Hence,
N =~2n

when the integer n is the number of degrees of freedom. Now a real
anti-symmetrical matrix of even dimension can, by real linea:n trans-

formations, be reduced to the canonical form

[(2) \

-10

oyt
o
T
',_J
o

To show this we consider the vpi-linear form

- ( )i x, 8 A
A= 0 a . xX.y.=a, (X y,~ X,y,) + X ., ¥, + X n Y
i=1 ij71Y 3 1271 % 2 1 1 =3 1k‘k 2 k=3 ?k k
E? §p \ %P
- B s X v, - >, 8o X } Vo + 2 8:.X.¥: o
=% 1k'k 1 k=% 2k k/ 2 i5=3 ey I Al

1

satisfy our assumption by a relabeling) and define the quantities él,

§ 110 My oEnd Mo,

We assume that a 5> 0 (if it is negative, then a21> 0 and we may



1 2n

Y o 2
(221,02 &9 =2 = L 2\ agX

212 3

1 n

« - — T — ] Ot
(229,077 qq =y = L ey

12 3

2n
(23.12 1= Xy + E;_ Ve Xy
12 3
1 2n
-7 - te |
(280,072 M 0= ¥, + ;—l— S, vy o
12 3
Under this transformation A becomes
2n
_ L S P S
A=3(aM - %1'771) + 123_3\,.&1;1 2, (214855 aljaZi)} ¥5
A 9y =7 : :

Since the matrix of the 2n -~ 2 dimensional form is again anti-symmetri-

cal, we can repeat this process and finally obtain
L . € - £
2 = BTl 5 My

For the linear combinasions of Xi variables associated with the
canonical form we shall write

Z
gk::pk ’ 5k’=qk sy k=1, ooy n .

Thus the Lagrangian and the infinitesimal generator F become (we are
considering only the first class variubles)

. dq dp dq, dp
_15 —k _ —k k. __k -
L= 4“(1’1{ 3t - % 3t T & Pk - 3w % H(a, py t)
1w :
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while the equations of motion in the canonical form read

4

be given less symmetric.:l but simpler forms by the
Thus

time derivatires.

and correspondingly

-

no

i ~

Hence if we employ =

SCCUL,

t will be noted thut the derivative terms in

role=

H o

.

t

r s

adq

.

’ at

.7

the Lagrangian can
addition of total

qu g dp 1\

at {7 e @ )
L ;

{ A i 3 1

t, Py :].g:i lt S S y! ‘ P Ot

y b I de 4 =3 2

1 i !

L J - ;

(‘ dp ( il ‘ “

v ki,  d 1 \

L% &t a7 ) [P Q|
L ! i }
T 8 g - slln] )

k) [ pk 8 qk P‘ t 4 z‘ "kav qk } .1
-7 S| L] 3

o9y % By = [ i 441 Dy qk“} °

L in which only derivatives of the Qe

V! day |

~l Pk ? 3.1:* H ’
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that part of F referring to changes in the Ay and Py will be
= 5 3
g =& P % o

while if L coutains only derivatives of the pk’

(. dp 1
1 k
L=-3% {:J Qs EF"} - H |,
the relevant part of F is
. m o= 5 h
Fop < Qe P e

The Canonical Sommutation Relitions

e Dt e

We wmust evidently interpret qu a8 the gener:tor of an infinitesi-

mal change of the G, with no ulteration of the Py and converscly for

Fbp o
Henve _
l ) -
quﬁ F(\)q = 149 Qe Py Fé'.\q = 0 ,
Cp., P ) = i} S p (0. ,F«. ] = 0
| P Top | ~ kK’ L k8D | °

Since & Qs Espx comrute with all quantities, i.e., are arbitrarily

infinitesimal multiples of the unit operator, we have

2 ‘i:.qkz Px'}a QI=1M5QK ’ }:{—Pkt P11\{3QI = 0
7 J LA

": p,q-\\zﬁp =i}£ap ’ Ay @ C\p = 0
. [P 27 )0%; N

or

——
ie}
e
o]
™~
SR |
Il
[
=
&%
N
.{
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where the last canonical commutation relation is consistently obtained
from both generators. Observe that for any change of Qe alone that

is compatible with the commubation relations
N 1
' QQ~~ v | =

-
P
s i ¢ G 5 Dy

=0 ,

X

and similarly with ? p,.. This is ocur original hypothesis concerning

k
the EBq1 are é>p} waich is thereby shown to be consistent with the
commutaticn relations derived therefrom. Jt also follows from (1.72)
et. seq. that the spectra of the g's and p's from a continuum,

If G(q,p) is an arbitrary function, we have

[ 6 me T osus coiyi oG
!.G’”éqi"*KCqG“lﬁquk

k
or
) i 7
Lae _ 1 . i
g, 1 [G’pk:}“ﬁ!pk’(}f ’
k L J
Similarly,
. N
{G,sz\ =148 G=1KT s Spk
L |
yields

[}
2

) 1 T 1 il
ik SR SLE I

-

r

Complete sets of compatible physical quantities (commuting opera-
tors) are provided by the totality of q's, or of p's, at the same time.
Thus we have two elementary descriptions, with the associated eigenvec-
tors \£/ (¢7t) and '&7’(p9t). The transformation generated by Faq and
Ebp have a particularly simple aspect for these eigenvectors @

. . y
T \ \ ' J T
- g8, W) =< Y (o) =Z.rq}.{ N tate) da

Il

. ) J— '
i / (p't) i 14 - ' \ ' Jg
i VG Y (p7s) 2'55; V' (e'%) dpy



whence
- A
Wo(q't) = 1 B V(g't
P Y (a't) ﬁbq;c ¥/ (a'%)
< ) »
q ¥ (i) = % sop L O

The adjoint equations are

W Sre) e,

il

b ~T I +
L oo (wn)*

+ sl _,)}‘__ "’/ {2 +
\1(13 )qk”l""ﬁpf,\i (0?t) .

If Giq.p) is an arbitrary function of the g's, but a polynomial
in the p's, we have

V(ars)* alq p) = 6{a?, % ) I/

s\t
il L(qt) ;

c/

This follows by induction from its assumed validity for Gl and G2 and

its verification for Gl + G2 and for G1G2 s
)

Viarn)* Gy(a p) Gy(a p) = Gylaf, > Yo7 \f’ (a'%)" ¢, (a p)
, d KO "
= Gl(q ’ Zzg"gq'?'f) G’ (q?, 2 bqv ) ‘:‘r{ ’ + ’

combined with the evident truth of the statement for G = G(q), and
G = On the other hand,

G(q,p) \Y (a') = ¢ (a', 1 ¥ ;;q—. T o(art)

Dye

where the order of all factors is reversed in . The significant part
of the induction proof is



¢ fa B &yla p) Ylait) = @y (a p) Gylatsi ¥ gor) Y la's)
o~ , B ,d . e
= Gz(q ,1 3 ,g‘q—[*) Gl('q‘ ;1A }/-q_"" \i {q %)
S S -
= G1G2 {qt, 1 f'{ :}—CI':') \"r (q t) .
Notice that if G is & Hermitian function of the q's and p's with real

~
coefficients, ¢ = G. The analogous statemsnts for a function that is a

polynomial in the gq's are
a T L /. D . . +
Wit) elap) =6 LT, pY) P )T,

aap) Yt) = G g 2 Y @) .

Notice that the effect of ng on ‘i/ (q°t), and of ng on \i (p't)

is just a numerical phase change :

o V] ’ ) i i/ i " 1 T2 .
¢y V o(a't) = - 7 Py Yo latt) = ¥ (b < py) Yoats)
'/ A (! = - 27: Wit : e -j'- ( 18 ) \:V ?
Oq \:IL/ (.r t) ],”'i F§q \i/ <P t) M \""’pk qu: s (p t’) ®

This indicates that the notation \gf (qg°t), say, is really incomplete,
since the chanrge in phase does not alter the eigenvalue gq', but does

yield a daifferent physical statbe.

Time Displacements

It is evident that
Fy, =-H &%
is the generator of the transformation which consists in replacing

dynamical variables at time t by those at t-+51u Hence for the func-
tion G of q(t), p(t) and t, we have

[G,-HSt]=iM5‘G



when X G ig such that

-

G:G'—-E;‘G?:Grf

the unitary transtformation has no efrect upon 1t as

in G.We infer the general squavion
ac
— 4=
dt

By successively placing G = H. 9y s

theory by rederiving the ecuvatiocns

action principie :

OH

SE

at

day 3
at — iK
dph 1

[

% f {0 & -
whence
_ 3 11f 7 1]
R T G
and \
i M ;‘.(;.1? VT ( ‘/:;; t,\*_ —
In particular, if

st

(Q't) =H (q* ,

-A1.’
eigenvector j/ (

I

Y
H(Q's ?

N
!/d;.@ oG \,5-, "
Vit TSy e s
it occurs explicitly

0T motioz,

Lo cH 1
l-h L Ty P ,}
= Py, we check the coasistency of the

of motion origirelly deduced from the

U

—

- bph

S3H

y ph] = }qh

%ﬂ 't) is determined by

.:-/ ""\,“.-;-
i (&; =

Yy =H (L )
\LI § | _;J\.:‘*‘
1 S _ H .

H is a polynomial function of the p's, we have

st Y (are)?

-

N
ad

iﬁ"\%ﬁ'at) \?(q’t) y
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Accordingly if \{( is the eigenvector of some state not involving t in
its specification , the 'wave function' of that state

Y@ = (O @9y )

obeys the Schrddinger equations

kg Y ev=n@, dd, 0y @y
and
iki;%\}/ (q't)*=§(q',i¥i5%-r,t) \‘J(q“c))’l .

-~/

When H is a real function, H = H. More generally, if “{f is a member

of a complete set of eigenvectors, “ﬂ{ (4'), the transformation func-
tions '

- - %
(@'t {w') = Yo, (a'e) , @' [a' ) =V, (a'%)
obeys the Schrtdinger equations.

Canonical Transformations

We now consider in more detail the freedom of description for a

given system associated with the possibility of replacing a Lagrangian
L by

- 4
L=L-gVW ,

the action integral W12 by

Wip =Wy = (1) - W,)
and the generating operator F by
T=F- oW .
We have seen that one can introduce a canonical form for F,

F=Sp dq - Hdt ,

s
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which implies the canonical commutator relations and the canonical
equations of motion. We ask for the conditions under which P will

preserve the canonical form, but expressed in terms of new guantities
Qs Py» B (@, B, t), i.e.,

F=25 43 -8dt .
This will yield the canonical form for the commutator relations and
equations of motion obeyed by these new quantities

The difference of the generating operators F and F is the varia-

tion of an operator W,
c - - —
Sw-a_.pKqu—HEt-Zpk5qk+HJt .
Thus, in terms of a function W (q, g, t), we obtain
3
= W - ="'=_‘W
d
H—-H+'b—t—w y

as the equations defining such a canonical transformation, provided
it is possible to solve without exceptions for the g's and p's.

An elementary example is provided by
=1 =
W’va {qke qk} L
We have
5W=25k g‘qk +\L’ aké. qk

so that

- -

d =P » Pp=-7q ,H=H ;

this is the canonical transformation interchanging the q's and p's,
with appropriate signs.



A
The general linear transformation is generated by

1o/ (= . )

— e 9; . . > i . RS ) < L
W 2Q<ijqiqj+ ﬁij.q,qa)+?§laqlq3/ (?7)

We derive

Lo}
I
% g
o
l,_l.
fte]
+
>

1
L]
'_l
|
P
o2
C.
l_l
Q
Qs
<
H
c
Q
[}
o —

or, in a matrix notation

‘v
p=%q+ P a , -5=fa+ ya .

The explicit equations of the transformation are then

q=aq+bp

p=cq+dp

]

where
a=-p71 p=pt
c=--%+x/5‘1”‘ a=-ypt .

The four matrices a, b, c, d satisfy the relation

il

o~/

'3.d—bc=l
which, in fact, is just the condition that
- - I g"
L Qs Px] =i}f o k7 .

The matrices appearing in W are expressed in terms of the matrices of
the transformation equations by

a=-bta , Pp=vt , y=-avt .,
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The fact that the . and ‘6 natrices, are necessarily symmetrical

implies that
~ ~ Sl ~/ > St -~
ab=Dbwx , bd=4dbd s d =4 ¢ "

the first and third of which oare the conditions on the transformation

imposed by the requirements

™he tr.nsformations function

(@ t{ 3 ®= (Y @ J @

can be constructed from the differential equation

S| w=F@sieE-0 (31

(Q' tl §W(q, 5, t) ‘ a't) ’

|
=

by performing the following process. Take the differential expression

W and, employing the commutation properties of the ¢'s and gq's ,
arrange the operators so that the g's everywhere stand to the left of
the g's . This ordered differential expression will be denoted by

SW (&, o, %).

That is
(SW(q, a, t) = 5‘Mf(q’ C—h t) ’
but the ordered opersztor \Nﬁ(q, q, t) obtained by integration is not

equal to W (q, q, t) , and indeed is not a Hermitian oper:tor. With
this ordering, we have

Slas @) = & (a5 [FMq, 7, 0 ] T 0

= i‘zg“y/(ql, av, t)(q’ t‘ai t)
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since the operators now act directly on their eigenvectors. The
solution of this differentizl equation is

i . -

;37: « (a' q', t)

(a't[q't) = ¢
where the constant of integr :tion is additively incorporated in ‘v( .
It is to be de¢termined from normzlization requirements such as

[@elae a@@s|as) - S@-q) . (28)

For the example of the gener:l linear transformation we have

e _ > A o S-\ ) - A - _ V/'
the ordering operation here is trivial. Hence

‘x‘."v/ =2 (fa.. q. q. +|/3 .

- iy
i3 *i % i 43tz

and

i bl (+« 1
-(F% .qlq!l +p
(q‘iq:):c({;,)eh 15717 lJ XlJl
in which we have anticipated that the integration const int does not
depend upon the matrices o and v . Notice that the inverse transfor-
metion 1s obtained from the substitutions q, pPe-»Q, P § A e - )’f
ﬂ 14
(5 ey = fs 5 so that
:.‘:.[ (.1_. t ot (2 t atn!
) ~ . —gé(za alal +0B)Lalal + v, Lalal)
This should also be the complex conjugate of the original transforma-
tion function, which is indeed true if

N

c( -p c(ﬁb) .



We now compute

/(q’( 3 ad @am) = le(p) ¢

whence

| o ()2 = (‘,-—;-,v’g

T

c( E? ) = {i( 'é"f}l;i*“)n det tf{) ’

The explicit appcarance of i is demanded by the rcquirement that in

the limit of the identity transformition, the transformation function
N -l

approach ¢ (q' - @') . In this limit, o —- ,—]5 Xg_% ﬁ, %

and

n 1 - &(5 i(aj-ai) (a)-q})
('3t )— (5‘;‘73 det 5| e -

as it should, For the special case provided by ah = ph’ih = —Qy, WC
have K = k = 0, @ = 1, so that

Vs d(q - 3Y)

X iy & qlp} |
(q’(p’)= <2—ﬁ—ﬂ— e o

A simple conncction between the Hermitian operator W and the non-
Hermitizn ordercd opcrator'%[—Cun be cstablished by treating 4 as a

variable paramceter. We must then write the differcentisl characteriza-

-
"
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+ion of 2 tr:nsformation function as

whence

provided W does not involve ¥ explicitly. However, the ordering pro-

cess thot defines,

JEVIIERIERS

introduces ¥ into the structure of \V,9 so that

W

it

(273 )05

!

\. _\)[_M —\-D"-;;{\/”/e

/
[,
For the example of the general linear tronsform:tion
' n
J Koo T 1)
‘\ = \—‘ :‘_:_\,C)( J.> =t o —‘:‘r / i = o—iia (--—n—l‘-—.- b} F)
{2 qu;qJ + [‘ qul J bz 3 ququ) a 21 1OgL Zﬁ'l’i ) det 8

which is ron-Hermitian

{ - L R
[ \}f _\;/'*' = - 2 {5 . [ Qs q)- iK log _.@913_.@._
B (25 H)"

1l

if n(log 2% + 1 )- if log aet > ,

according to the commutation relation

X% Loph., - (2.9)

,5



Now \ﬂ
r - \
{ f?.i&. ,11 ! ( I S R ] v
¥ 5 ;"i = :l 1)&7; lL. ] \-‘- yi} aey 2 J T 2rd 2
so that
Vel \()\'I/ P‘
o W s . = 1y T=y_44 B

Which is indced equal to W in virtuew of the commutator (2:9),

The Hamilbtcon-Jacobi Transformation

A canonical traonsformnation - the Hamilton-Jacobi transformation -
is generated by the action integral itself. If we put W = le and

write tl = t, t2 = to’ where to is an arbitrary fixed time, -we have
™
o

that is

“‘": :g_‘ ,g\\
F=PF =,p(t) &a

()

k o)

Accordingly, the action integral induces a canonical transformation
rom qn( t ), ph(t)” H{t) to g (to) , D (to) ¢ 0. The vanishing of

the new Homiltonian is required by the fact that the new canoniczal

varizbles are independent of t. Thus, the equations describing this

canonical transformation are

D 2y
Pk = Saq ' T p(t)) = EE (t,)
H(q, p: t) + %—f = 0 ,

the Hamilton-Jacobi equutions. Incidentallythe new Hamiltonian,
H=0, shovld not be confused with H(to) which dete¢rmines the depen-~
dence of W on to 5

Bbti\: = H (Q(to) s P (to) ’ to) >
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A simple illustration is provided by the system of one degree of
freedon H = p2/2m0 This is a conscrvative system, so that W depends
only on % - to,'and we shall plzce t = O. The equations of motion
have the solution

= . — (t) = =
a(t) =q  + 2o, » plt)=0p
whicihh is a linear transformation. Acccrdingly the action integral

operator has the value

2
f' . D
- L - L oy _ D _ 2
w = ZJLQ q09 po} 21(;1 -t = zb (Cl Clo)
which is of the general form (2.7) with
_ - _ I
a=Y=-f =3 .
Thus we have the commutation relation
| I t
[qoy q_} = 11?{ o 5
the ordered operator
\,/_ m_ 2 - D X A ‘ ;g Too = M E

and the transformztion function

Lo m o . 2
@h 5%'(Q’“Q")_

i g
=W (gt q",t) .
(q‘t lqno) - @A =(2 )

Al
=]
o
\4‘—/
o}

which satisfies the requirement
(at0] q"0) = T(ar - aqm) .

It is often convenient to employ pk(to) rather then qk(to) as an
independent variable in the Hamilton-Jacobi transformation, i.e.,



- B =

_ 2 _ oW
SN U FACN]

Pk = 29,
+\¢)'t — °
The connection between the two generators qu and qu is provided by
o} o}
f - 1 2
WQOPO =13 {qk t'o) ? pk(to) } ?
namely
w 7 + W .
ap, a4, q,P,
For our exampleg,
2
I ! ‘{ o,
ﬂqp = 2 lq'y po}"‘ 3 P
o}

which again possesscs the form (2.7), with o = O, G=1, Y= 5o

Hence ;
_ 1
[po q] Toi
2
W ¢ t) = S20 4y Bl ot
d, P ’ a P 5 51 g 2-3;},1 7

and
2
i i 3 !
;;Vf(qf, p'y t) i 2 % (q’p’ - Fom £>
(a't] p!) = e = |\ 557 e
o) 2N U
Another cxample is the one dimensional systen with
p2 mwz 2
2 4 °

T Zm

The equations of motion have the solubtion

4 1 i
a=q, cos<»’c+[—;ap sinw t

“eo

P = - mwq, siny t + p, cos Wt
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a linear transformation. On substituting these solutions, the action

integral is obtained as

2 2 -
P o 2\ in 2 W4 ) 2"
_ o _n sin 2 W4 4 l ) .
¥= ( 2m 2 % 249 z 1% Py ﬂ LA G2
_ 2 2 7
T2 Gl gE [Aq cosw t {q, B3 }+ 4 J
Hence & = X’m w cot t ,{5 = ~ mnuwl csc wt , and
r 1 1
l A5 4@ " = oo, Sin 63t ’
_ n 2 _ __2._ 1, ,2 ,id 20Ms oo )
\J’— 5 cot Wt [q -~ ot 4 qu+ d b log ( e sinwd

1 i D N . . 5

7.8 "o voW ¢ - m———e— t s i
(a't{ag) = (5B csc u);>2 M@ °° tle coswt 147t J‘
o/ T A\ 2w ui ~ . ‘

-\

Constrained Transformations

A special situation is encountered when the canonical transforma-
tion involves cne or more relations between the g's and gq's, so that
they are not actually susceptible to independent variations. The

simplest example is the identity transformation

where W (q,q) has the value zero, indicating a relation between the

q's and q's. Nevertheless, onc can treat the g's and q's as independent
variablecs, and derive the transformation equations from a suitable W,
provided onc introduces an intermediate transformation not so handicap-
ped and refrains from eliminating the intermediate variables. Thus,

describe the identity tronsformation as q —s p—q for which

W ::E'% {qkt pk\} - '32" Sra ? pk} L

1*k
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We have

o~
oW

i

-y i o) e
Sy -a)® b+ S Ja - D S
o -— -
=l Cy -5 pkqu
from which follows the desired cquations.
For the general "point trunsformation®,
q = q.(a)
the appropriate Hermitian operator W is

W=y, % Sz q, ~9.(a), pk}

sincc
d Gy (q)
55y

rol-

=Sy -q@Ndp, +S 0, da -5

=9 Py qu' 251{ Jak

yields the desired relation between the g's and q's, and the informa-
tion

2@

Py = 7 < s P ¢
r( k L D (-Iz k
The latter cxpression can also be written
2, (Q) . H NP1

= _ N ... T ...}i
B Cn P A0 &
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In connection with this example, note the strict requirenent
that the g's and ¢’s be uniquely connected by an everywheres non-singu-
lar trainsformation. Should these conditiors be viciated, the new
variables will not possess all the canonical attributes. VWe may then
speak of a guasi-canonical transformation. A fanilinr exanple is theL
transformation from rectangular to spherical coordinates, where the
angle @ is inly defined mod 2% , and the deterninant vanishes at r = 0
and at v = 0, N , Thus, spherical coordinates are ¢uesi-canonical,

A simple dynamical illustration of a constrainced transformation
is provided by the one-dimensionul system with H = p2/2m - Fq,
described in terms of the transformation function (p‘t{ p"0)s The

cquations of motion have the solution

o}
p )
0 F 2 :
Q= q, + n t o+ 2 n K

sn that there is o relation between the variables of the transforma-

tion function, p and Py e Now

b\"‘/r:: - q Xp e C*OC'? pO - H (Y't

" J 2 s .
= —Blp - p_ — Ft) - = CAFt) O p -
qd\p o ) m(pot 4 YPt9) ¢ P,

- . s ’ s o @ s "
which requires no explicit ordering to write it as ¢ W, We thus

obtain the differential cequation

-~

)
o't {p"0) =50 - p" - Ft) 577 (p't |p"0)

 Eh B 2 2,3
i Sfpns s 2% Tt .
"zz°{'éa"“+P’ 2 +‘*6—m‘) s fpm0)

which is supplenented by the constraint condition

(pi - pn _ F‘b) (pi—t p"O) = 0 .
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The solution is

nl 2 2.3

= [ B gy Py + .c’,t

(p't ip"O) = (Y(Di - p" - Ft) e ﬁ ( 2m P 210 &Em
- ___J-___ ( p:3 p"3)

.0
L Dl s
bR S i<
(p't{ »%0) = Jlp* ~p") e ™ »

Non-Tnitary Iransformations

Canonical transformations are representable as unitary transfor-

mations
q,=Uaq UF , B =Up U
1 h

in virtue of the identical spectra of all canonical variables., How-
ever, for the purpose of preserving the algebraic structure of the
canonical commutation relations, and thereby the canonical equations
of motion, it is not necessary that U be a unitary operator. Of
course, other features of a cunonical transformation will be sacrificed.
An exanple is provided by the point transformation of the previous
~secticon. We have

Ja(a)  _ TR dq
Y, Py ___\_;:_:,__ = pl -5 T Klog det =
Td gy Jay q
*~ )
dg ) 7F 2g\T - A
= ( det :‘—% pz (det r‘-‘_g:' j = px o
\ Oq / (\q
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Tor this cancnical, non-unitary transformation

% A
U = (dO‘U 'J'q' ) z
&

and B _
=V Ui=q .
Now
W@ = P@En = W) o, oat=al@) =a@n)
and
Jey N AT
_ 4 Ay v Y%k B9 :
Px \Y (@) ) bd' i quk\j{ (q')
2 U A
= 2= U (g1 i
L g i q1)
Eowever

NZACEPMEE ¥ @) v (4 g @ o1

80 that the eigenvector orthonormality conditions read

where

T ~ d
D (§) = A6 Y et SH.
7 (a \i/ (4)" de Y

Hence the dual and Hermitian adjoint eigenvectors are no longer the

sane., In virtue of the non-Hermitian nature of ﬁl, it is the dual,
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eigenvector that satisfies

N

&g
4

dang - ¥ S=dan .

This non-unitary transformition corresponds to the familiar procedure
of replacing one sct of coordin:tes by another, without transforming
the eigenvectors, The determinant of the trunsformation then enters
as a weight factor in all integrals and orthonormality statements.

Non-Hermitian canonical variables are useful in discussing the
harmonic oscillator. Thus

1 .
- n& \? i
H < 2k ) (q R p‘>

S f’{ -157 |
PE 1K a = (-ﬂ«-) {(p + inwq)

m

re¢ canonical variables,

Il
]

[2: o7

in terus of which this Homiltonian can be written

3, 1

«
£
— —

ey o1 = - 1w a
at T if Tt T T tWc

da* 1 _JH

= = iaat
= o= _— Cm——teims (Sl A
at i N+ ' 2

are solved by
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: : . : + i
A convenient Hamilton-Jacobi-transformation employs a_  and a’ as inde-

pendent variables. Thus

g

: S . + s +
":\‘\\-4:.--1}/;3,‘,8,—»1}43 \’_‘,aoﬂH-.{‘.x‘b

o

whence

\" . \ + -dust i A + L -1t ot -it
:‘.4\*/=-1,lfi<‘>aa Tl i atoa e - Yeila a, e +,4-)-\’5
and

- + ot + Const.

o
©
t
Il
i
&d
=
o]
©
@

" . . s ok ; o
If we introduce eijgenvectors o a and a; in a purely hauristic

naniaer, we can express the latter result as
A o .
ei‘/}“ﬁ‘\wf (a™ a®t)

~Zct 4

5 a ra"e ~3iut
e

chocsing the multiplicative constant to be unity. In particular, for

t =0, ; 1= »
T o -7 P'a
(a+!’a") =% ? =g 2 .

The transformation functions connecting the eigenvectors of a and

a’ with the eigenvectors of g can be obtained from the theory of the

general linear transformation. We find

.- A PR ail
(q’ia’):(}e 2; 7 4 ra 212N qlall

: T 2,2 re okt
ol o gt ~H A B2 21T gt
+5i A q32+8¢,2-—2 ‘{’: 2 '\i: q!al ‘¢

(afiqr) = " &'70

. ,i'. 3 '2 +'2 A:..A..._._.._ +i o
H 1 . 1 : N ‘ i ’ \ ;7 a |
(q) ') = gragtEi A T2V 2 g

where A = o /M.
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Ascordingly (q’;a‘)ﬁ‘ls rot equal to (a'iq?), but rather can be
M ¢ 5 , +
identified with (a" {q'), provided the eigenvalues of a and a  are

complex numbers relaved by

z .~
The constant C! = Cx can then be fixed from the requirement

This is satisfied with

On the other hand, note that
; i | 5 ] 1 "
(atja’) = / (a'iq')d q' (aff a")
does not exiét.

Infinitesimal Canonical Transformations

An infinitesimal canonical transformation

can be generated by a W which differs infinitesimnlly from the gene-

rator of the identity trnsformation,

A

W=

for
N

SO = Qe bl - @ e 8)

Whether one writes q or g in the infinitesimal operator F is immate-
rial for its value, but is relevant in the derivation of the canonical
tromsformation. Now



’ hY
oy \
S =S : - N JFlaopat) oz
OW =7, P O G ~Z, Pt 3 9y ) Ay
X ) o
/ n N\ £
N I‘S‘ ...._.F. \* ‘l}-‘ 5
+ ../i.J { ' qk - I/) 91{ /, J pk D t =
N ‘

waenee
» kY ) « ADlgot)
hq = oiloptl L = Yalant)
-k ) Py ! Fi 0 g
% L

characterize a general infinitesimal canonic.il transformation, We can
also write
i qk lq qu = 9 b pk i}{ pks
which shows that F is the infinitesimal Hermitian gener.tor of the
equivalent unitary transformation.
The effect of the transformation on an arbitrary function G(gpt)
can be computed directly,

Se = e(qpt) - G(gpt)

- e(qpt) - 6(q - A& F2E g
or
v g Yy Yo AP
NG = S S e e == = (@
' T A% [Py JPp D S
\

which de<fines the Poisson bracket of two operators. The notation is
Y

fx da AT : . .
symbolic in that TE— ;s say, occurs in definite places in the structure
1

of G. We also have

= 1 - 3
S =g (6, 7
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which expresses the Poisson bracket in terms of the commutator

(G,F):Eﬁ [e, 7] .

From this connection it follows that

(@, F) = - (F,@) ,

although this is not quite evident from the definition.
We obtain from these results

it

B(qpt) = H(qpt) + (F, H)

¥

p]
H(qpt) - < F

i

or

H(qpt) = H(apt) - P - (F,H)

H(qpt) -

b4

28 e

in virtue of the Poisson bracket from of the general equations of
motion, This implies that the generator of any transformation that
leaves the form of the Hamiltonian unchanged is a constant of the

motion.

Parameterized Transformations

Let us suppose that the infinitesimal transformation is that

agsociated with an infinitesimal change - dftr of certain parameters

Tﬁr, so that F has the form

e .
F==- Ly Py d l”r
r
B o qu ‘
- A s



Thus

and

—

Ela'zighr -av) = % (@' vlivg ja"r -a7v) .

A finite canonical trinsformation, (q’ftl q"Tg),e can now be charact
ized ©y adding the generators of an infinite sequence of infinite-

sim2l tronsformations,

5 K 1 '- Y 1 o ni

; P : i : i

A = ' A ¢ o i !
U12 = ?_k.f. pk, qu; =t :”,F(r) d{r i s

v 2 W ' r =

In perticular, with the single parameter T = t. and F = - H, we

regain the original action principle.

We compute & le "

;! 5 ?
," . { . T ‘
Woo =4 d ¢ L.p, g+ L Fo 7 !
12 7 s S N € T
. - N T
/1 e L
RIS " Lot (& T - 67
j/ = (& pyda, =~ dp, < q )+ - (JF(r)d rOF () )

In order that a finite trunsformation be generated, the coefficients
of the intermediatef*qk and’f‘pk must be zero, This yields the
equations of motion

_ qu _ AF(T) dpk _ AF(P)
= = 3 ’ T N ’
d'r ]pk s 4 + Qg

which rcpeat the original assertion that F(r) d?f is the generator

of the infinitesimal chinge d'; in’Fr. Hence

%

[ 7 dF,  F '
- o/ e T (8) v g1
& le = Fl F2 /,‘/_l dTS }"C’r ).\ T 4 LS

v 8 K
i , ’

4
\
1
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where
=\ b = 5T
P=), P O tf Py T,
The last term of S w& allows for the possibility that the transforma-
tion function may depend upon the integration path of the 7 variables.

Now, according to the significance of F(S) dT(s)’ we have for any
operator G,

i ‘ / )] \
L S T U I L€ S 1 :
ﬂ'"G’F(s) Al gl =040 =~ RN J d T
\
or
aG ‘G
In particular,
Py Tw e
Ty = Wiyt We) » Fiw)
Hence
A - dF(r) _ :‘fF‘gS) - lfF(r) _ "ngz i (F P )
rs 3T aT, )T g T, (s)? “(r)

is anti-symmetrical with respect to the indices r and s. The change
in the transformation function produced by an alteration of the inte-
gration path in thus given by

oy

i

!
$latr ag"r ._.,_.i | / Ly T = 41 T Yig"
&(q rlgq ’2) z (q 1! / Ars (! r dls -S(S d hr)!thé) .
. e
The simplest possibility is Ars = 0; the transformation function
is independent of the integration path, Second in the hierarchy of
complications is A _ = ars(T'), a numerical function. Here the trans-
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formation function depends upon the path only to the extent of a phase
constant which is independent of gq' and q", stc. We shall be content
with the first situation - indepehdence of path. In particular if the
F(r) do not involve the parameters, they must satisfy

Py » o)t =0

Now suppose that the F(r) form a complete set of commuting operators
so that we may introduce the cigenvectors % (F'7v ). The transfor-
nation (F’i‘l iF”'Y2) is determined by

7

G 1
r

v "o _ .1, 1 ! "~ — i ! g~ i i
(F »I}F ) = i (F Py F ) = i FL(E'T I Pv )
in conjunction with the boundary eondition
(1T, B07,) = & (@, Bn)

(assuning discrete eigenvalues). Hence

2‘. "} Py

1 2

But the canonical transformaition function (q’Tli q"Tz) can be written

(a'7yfa"iy) = 1 (@B E ) (@ PO ) (F7 1yl sy)

ey

\
= L (q’

i
i P! T
- JFI ) eﬂ r 2 (P qn)

or, with a notational change
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Accordingly if one can construct the transformation function describ-
ing the finite canonical transforwation generated by the F(r)’ t%e’
expansion of thut transformation function in exponentials of thee,r
will yield all the eigenvalues and eigenfunctions of the arbitrary
complete set of commuting eperators.

We illustrate this with two trinsformation functions already ob-
tained for a system of one degree of freedomn and { = ty, P =<-H .
For the harrmonic oscillator

..j;\‘v./ ! 1\
+, 2 "t '1+ a"e l\Vt

(a” tia"0) = e e

\(EO ga""t zn - —%(n+’1§)}f{\v"t ganln
= A\ - e

———

=0 V n! / n!
so that the eigenvalues of the Hamiltonian arc

En = (n + '%') ki‘.'\" 9 h = O, 1, K

and

+!' \n
t * &
(o™ in) = {a” )

/n!
(nia') = 2”
Vi
which satisfy
(a+'l n) = (n]a')II .
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The eigenfunctions (q' n) = ¥~ " (q') can then be constructed from the
transformation function
¢

: s Lot 42_3 42 ;'52111 S
oy s - 1 q T . L\f/ ; q a
(q’} o ! ) —_ ,‘ %‘T_ﬂ } e ZZ E;

I
~.
b
e
-
~
a3
—
f1e]
-
~—r
-

which is,'essentially, the well-known gencrating function of the
Hermite polynonials.
For the particle exposed to a constant force, we found
i 1 3 3
‘ - % & @7 - )
(pltlpno) - (' (pv - p" - PT) e A 6P .

If one inserts the integral represcntation of the delta function,

.00 i B
. £ Z2(p' - p" -PU)
Sor gt -7ty =gty [ BHT
' ‘Z oo
one obtains
[° g
(p'tjp"0) = | (p'|E)AE e (Elp")
Yo

where

(']B) = (27HF)7% e

o

for this problem the Hamiltonian has a spectrum ranging continuously
frorm -oo to oo . Hence H is a c:unonical variable. In fact, with



2
P=H=%5-7P
- 1
Q=3 P

we have

(‘C-l’ §)=1 .

The transformation function ((p'{p") can now be constructed fron

N
(<%

{ ‘{ - - 1l /= 1 [ = .
Mi=-qop + 30Dp=%5(B-5")op+5p2D -

We get
1 \
- 1/ - :
(Pyp)=‘§§pp-%§j+00n3t -
\
and, writing p' = E,
: 3
i 1 !
% Z(p'E - 2—)
(p']B) =c & ¥ S
But
;2 - X%D L Pl gr)
/ (Blp') ap'(p'|E") = jci® K g T dp' = ic}%2Ty¥F & (B-E")
i “—(D «
whence

c=(ryr) "F .

Notice that the transformed function (p'}E) has a singularityzat

F = 0, corresponding to the fact that the Hamiltonian H = gﬁ is
not a canonical variable. .
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Green's Functions

A general nethod for constructing the transformation function
(q' T‘q"o) is based upon the differential equation

)
£ o)

(a'T{F(py(a p) | 9"0)

1 B | n
JRICLS ¥ RICIRAENS

2
in which the use of the differential operutor F(r)(q', %‘TET) is only
illustrative; integral operators can also occur. These equations are
to be supplemented by the boundary condition

(10} q"0) = d(q' - q") .

In particular,

L (atler0) = e, EZoyare 1amo)aro | 4no)

(q'0lq"0) = L (q' - q")

Turning to the simpler situation of a single parameter, we note

that the boundary condition can be incorporated into the differcntial
equations by defining the discontinuous Green's functions :

G’(Q' q", t)

7 (@tlao) , t o0

=O ] ‘t'\'o »

| P ) o i
1 if53-H (q',%f;,—;-,-}  G(q' " t) =5 () & (¢' - q") ,
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and we now seek the solution of this inhomogencous equation which
vanishes for negative 7. If, as we have tacitly assuued, the Hamil-
tonian is time-independent, the Greenls function eguation can be given

another, convenient form in terms of the Fourier transform

ey i Bt
., 7 \
G‘(qlqnyE) = { dt e G(a', q", t) 4 InkE s Y

L
- 0

namely

1

i Y
;_E - H(q', %,)_of')‘ ¢la'y a", E) = S(q' - q")

We now desire a solution which, as a function of the complex variable
B, is regular in the upper-half plane. Since

0o

{} 'j';E't \"t N gt i
1 J H - 7 E't -
¢(q'q", E) = / dt GM 5" S ' A R nyX
Uo ?L-IZEn)n BT (a') e ‘Et/yfl(q )
N s
- ‘! B1Yt (q*) \‘LE:’;:,’v (Q“)ﬂ
B E’T'é,' E - B ’

here ¥ , in conjunction with the Hamiltonian forms a complete set,
we see that the poles of G(q'q"E) as a function of E are the eigen-
values E', and the residues yield the eigenfunctions.

For the general problem of n parameters’Tr, we define

n
(' tiq"0) , T,.>» O

.\
=
— ~——-"-

i

G(q'q""t')

L

il

(&
-
‘v
]
<
2
o



Hence

I o \ | s . h-1
r k({__{?__._ P L E._Lj._.\', G ! I‘) =(§f(’:’7' )1.3:.) ( 1 ign0) ] =
b o] s =t () e,

and finally

. | i 1

n J A
=l g 7 i R : :
| t%—i—- Py [ 2 ;—q—tl 6(aa',T) =6 (M (a' - q")
r:l f: "r ‘\\ v 7 l
The Fourier transforn
[ & Le
G(q' q"’ f) =/ d T e rrr G(qiq", T) " I o fr<o
4
obeys
2|/ o, \! . .
T T Fioyla'y 307 /1 ¢lat a" £) =a(a" - ")
Ir= P ) ) 3 P
and
' ty 1 X
1 " - 'F’(q ) V F'(q")
G(q q ] f) i Lot P -
B! b (£, = F1)
‘r r Ir

The Asympotic Spectruz

If the operations F(r) are polynoriials in the Pys One can easily
construct the transformation function ('T + deip'if). The appro-
priate W is

i :
_ ".. vi R, 'T - o »TJ { & sl
W= ey ‘l‘ : qk( U4 47 ) qk ( T ) ’ pk( i ) K + 1% F(I‘) a [.r
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We compute § W and order it into &', which nust be explicitly pos-
sible if the F(r) are polynoi.ials in the Pye Thus,
W=D (Tran) p (V) + L F (a(Tear), p(F) ) ar,
and
i~ v S b Bl . obYEE
; n/2 A APy + (e, pr)aT

1y Tipt =
('7+dTip'71) = %

With the aid of this transformation function, one obtains

/)
j ,
(@v+atfg" ") =/ (a' v +drfp'v)ap(p'!q")
i
it
i-.- - Y. 3 tot)g e 3
L_ [ ap HT (a'=a")ypy +tpla'ptiars

(27" |/
A general application of this formula involves the conputation of the

quantity yielding all the eigenvalues,
T
{ BT = Fl i
,,} dq!' (qa ;lfqt'j’z) = {/ daq' ,‘ (q’éF') e}Z r r (F'iq')
d J
—— L " [
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in the lirit of infinitesinal 7, -~ o We get
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If we write

’

P! £ +< F'+ aF!?

*his rcsult becores
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Evidently for infinitesiral d!‘r, the sum is dominated by the dense,
essentially continuous part of the spectrun andf’(F’) dF' is the
nunber of states in the eigenvalue range dF'. This can be expressed
by the faniliar rule that there is one atate per volume (2 TY)™® of
phase space.
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