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Quant um Dynamics

Part 1

"by Julian Schwinger

Quantum Mechanics developed historically as a set of ?fquantiza-

tion rules'* superimposed upon the structure of Classical Mechanics.

In view of the fact that the laws of classical physics are only

limiting laws, it seems advisable to construct a self-contained

quantum theory* The development of quantum dynamics to be outlined

in the following lectures willparallel the development of classical

mechanics from the action principle of Hamilton but willnot be built

upon it„ In addition to improving the logical basis of quantum

mechanics , the theory provides powerful general methods for the solu-

tion of problems. The discussion will be confined to systems of

particles, the extension to fields (i.e., systems with an infinite

number of degrees of freedom) following analogouslyo

We shall start with the mathematical foundation which willnot

be the usual geometrical ba-sis involving vectors in Hilbert spaces ?

etc. We shall develop instead an algebraic basis which is in some-

what closer correspondence with the physical phenomena to be

described, and is constructed as a symbolic representation of the

measuring process in the atomic domain with its characteristic sta-
tistical features-
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I.THE ALGEBRA OF MEASUREMENT

A measurement may be considered as a process by which an assembly

of systems is "sorted" into sub-assemblages characterized by the same

set of numbers representing the property being measiired ( e.g., the

Stern-G-erlach experiment ) c Thus if we intend to "measure' 11 the pro-

perty A whose possible values are a 9
*, aM, ... (denoted generally by

a ? ) then we symbolically represent by M( a f ) the measuring process

which out of an assembly of systems sjbl£9ÍÜ those, for which the pro-

perty A has the values a ? , The meaó-uring process' M ( a ? ) has the fol-

lowing properties :

(i) Ret^rodÓA^íi^itx : If a certain measurement is followed by a

secern measurement of the same property then the results, of the pre-

vious measurement are repeated* Shis is symbolically represented bv

M(a;)M(a ? ) ~ M(a s ) (l.l)(1.1)
¦

(ii) Exclusive negé :If we make a measurement of the property A and

look for the sub-ass emblage having the numbers a ? , and then make a

mea.Gureraent upon this sub- assemblage and look for systems having the
¦

values a" (a" a s ) for A then we will expect to find no such systems

and this is symbolically represented by

M(a*)M(a") = 0 (1.2)

where 0 stands for the measurement process that selects no system*

The properties ( i) and ( ii) may be combined to give

M{a!)M(an) = S (a%a« )M(a« } (1,3)

in which the irüróérs 1 and 0 represent certainty and impossibility of
agreement respectively , for the results of the two measurements,

(;U.i) • If c look for all possible values of A? every

system in the assembly willfall somewhere in that classification,

and we then can write symbolically

£ M(a') = 1 (1.4)
a !

(1.2)

(1.3)

(1.4)
t

M(a r )>

(a%a n )M(a ? )M(a ? )M(a!? )

OM(a"Mía*

a*rs Ma*2L
"HH 2L
" a* rs M a*

Mía* M(a" O

M(a ? )M(a!? ) (a%a n )M(a ? )

> M(a r )
t
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«Hero 1stands for the measurement protes» that selects a|4 systems*

It foUotrs from (1.3) that

2, M(a!)M(aM) = E M(a»)M(a*)= M(a» )
a" a"

so that one can consistently ascribe to 1 the algebraic property of

the unit element •
More precisely, we mean by measurement the determination of the

values of the maximum number of simultaneously determinable quanti-

ties, and we take a1a 1 to represent the set of numbers corresponding to

such a complete measurement. We speak of a system so selected as

being in the state characterized by a 1• This measurement process is

one that selects systems in a particular state and leaves them in that

state, A more general measuring process is one which selects systems

in the state a 1
t say, and leaves them in the different state a M

associated with the same set of properties A, Such a process is

symbolically denoted by H(a' , a H ). In this notation, the previous

simple measurement corresponds to M(a ra f )• Clearly

M(a'a")M(a m a"") = ó'(a", am )M(a'a""). (1.5)

An even more general measuring process is one in which systems with

properties A characterized by the set of numbers a1a 1 are selected, and

are then left in the state characterized by the numbers b f for the

property B, where B and A are not simultaneously determinable. Such

a measuring process is symbolized by 1). Clearly we have

H(a»b f )M(b"c r )
"
« $ (b 1, b")M(a f c f ) . (1.6)

The question now is :What can we say about

M(a rb»)M(c rd')?

This must be proportional to M(a rd T )> since the sequence of measure»

(1.5)

(1.6)b")M(a f o!(b«(a»b f )M(b"c r )

)M(a'a"")ama"óam a"")a'a")M

2 M(a f )M(aM) = E M(a»)M(a*)=M(a» )
a" a"

MCa'b'Mc'd')?

a'a")M am a"") ó a" am )M(a'a"")

(a»b f )M(b"c r ) (b« b")M(a f o!
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ments takes us from a1a 1 to dl.d 1. The constant of proportionality is 1

when c f =b f
9 and 0 when c f =b" ¿b f . In general we know that the

state c f cannot be predicted if the system is known to be in the state
bl,b 1,In fact we get the whole spectrum of values of c !, each value

having a certain probability. Pending a more quantitative probability

interpretation we denote the numerical constant of proportionality in

the above relation by (b* | c ? )> and so write

M(a»b*)M(cMf ) = (b'¡ c!)M(a'd') é (1.7)

In particular

(b* 1 b") = $ (b f , b") . (1*8)

We see that the algebra defined by the measuring process and the

associated numbers is linear, associative and non- commutative. The

last two properties can easily be shown to be true since

MCa'b* )} = MÍa^Hd3 | e'jMCc'f)

= (d' ( e1)(b!(e 1 )(b!( cl)M(c l)M(a f fJ )

while

ÍMÍa'bOMCc'd 1 )JM(e'f ') = (b ? |-c« JMvii'd1 )M(a'f»)

= (b l I c')(d lÍ el)M(e l)M(a J f!)

M(a rbOM(c'd !) = (b } | c'^a'd 1 )
'

M(c!d!)M(a'b') = (d 1 ) a')M(c'b*) (b' | c*)M{&iá')

We jgvjaall now obtain some consequences of this algebra. Thus when

M(al)M(b»c I)M(d f ) = (a' | b f )(c ! d^Ka'd')

(1.7)

(1.8)b"b fb")b f

ic!)M(a'd')(b'lMU'bOMCc'd*)

íí^a^'MlMCc'd'jM'íe'f 1)] = M(a fb 5 )(d ? | eOMCc'f 1 )

= (d' ( e1)(b!(e 1 )(b!( cl)M(c l)M(a f fJ )

ÍMCa'b^MÍc'd' )]M(e'f f ) = (b ? J-c'JMvii'd 1 )M(a'f»)

= (b l I c')(d l ( el)M(e l)M(a J f!)

M(a rbOM(c'd !) = (b } I cOMta'd')
'

M(c!d!)M(a'b») = (d 1 ) a')M(c'b*) (b' | cOMfa'd»)

M(a t )M(b»c l)M(dl) = (a' | b')(c !¡ d^Ka'd»)

MU'bOMCc'd*) (b'l c!)M(a'd') i

b f b") b f b"
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is spumed over a f and d f , then by virtue of (l»4) we got

M(b'c») = V (a!| bOO» 1|d»)M(a'd») (1.9)

a fd»

which is a linear relation giving the connection between two sets

of measurement symbols* In particular ifB and C are the same physical

quantities, and b 1 =c f , then

M(bf ) a¿j (a» |b f )(b» ( dl)M(dl)M(a fdl) .
a'd 1

If we now also take A and D to represent the same set of physical
quantities, we then get

M(b f ) = £ (a f i b')(b f { a M)M(a fa fl) .
a'a*

Now taking

M(al)M(b t )M(c f ) = (a1 ) b» )(b f [ c* )M(alc l)

summing over 'b 1 and using (1.4) we get

M(a')M(c f ) =/£ (a' | b')(b' j c r )) Mia'c 1)

or

(a» f c !)M(alc l) =IT^ (a» |. b» )(b p I c* )) M(a f c f )

so that we infer the numerical relation

(a<| cO* Z I bl)(bl let)l ct ) • i1i 1
-
10

*
b«

Ifwe specialize this to the case where A = C we then get

U (a 1 | b')(b(| a») = S (a-,a») . (l.Xl)
V

(1.9)

(1.10)

(1.11)
b'

(a 1,a")Sa")Ib')(t>((a' I

ht

let)b')(b«I(a-
i*o1)o 1)a<¡

a fd»

dOMÍa'd»v)(o«|(a'|(Ve 1)

M(bf ) a¿j (a» I b')(b' ( dl)M(dl)M(aldl)

a fd!

M(b f ) = £ (a? i k f )(V I a M)M(a'a M )

M(a!)M(b f)M(c f) = (a1) b»)^1) c')M(a'c')

M(a l)M(c f ) =/£ (a !| b')(b' j c r )) Mia'c»)

(a» f c !)M(alc l) =( T^ (a* |. b» )(b r j c1)c
1)) M(a f c f )

(Ve 1) (a'| v)(o«| dOMÍa'd»
a fd»

a<¡ o1)o 1) * i

(a- I b')(b« let)
ht

(a' I b')(t>( I a") S (a 1,a")
b'



6

The Trace

It follows from (1.10) that

(c« \ b») =£, (c f ( d')(d f j a f )(a' Ib») V- (1.12)

This, together with (la9) leads to the result that

M(b'c J ) - (c 1 \ b») =£, (a» | b!)(c f | d1)d 1) f H(a'd»)
-

(d 1 | af)).(l.l3)a f )).(l.l3)

This indicates that if we associate some number with M(b f c*) in a

linear manner, the choice M(b fc') $, (c 1 I b1)b 1) willbe invariant under

the transformation (1.9)*

(1.12)

.(1.13)

We call the associated number the trace of M(b r c!)> so that

Tr. M(b'c') = (c*i b») . (1.14)

We now deduce some properties of the trace :

We find that

Tr. MCc'd^Ua'b 1) = Tr. (d ( ( a')M(c fb»)

= (d f j a») Tr. M(c f b!)

= (d» | a')(b f | c !).

Similarly we have

Tr. Mta'b'Mc'd 1 ) = (b 1 | c')(d fa1)[ a1)a 1 )

so that the trace of a produce of two measuring symbols is indepen-

dent of the order of the multiplicants.

As a consequence of (1*8) we have

Tr. M(a»a») = <f (a 1,a») (1-15)
and

Tr. M(a!) =1.

(1.14)

(1.15)

•1Tr. M(a!)

(a», a»)<TM(a»a") =Tr.

blc1c 1b!c fM!r.

,!to

».al)(a'a 1 )(a' U1)U 1)d'Xd'ji(c 1

—
\

J
b<)1c1c 1

Tr. Mtc'd'Ma'b 1) = Tr. (d ( \ a')M(c fb»)

= (d f j a») Tr. M(c f b!)

= (d» I a')(b !i c !).

Ir.MU'b'Mc'd 1 ) = (b» | o f)(d' Ia!)

c1c 1 1 b<)
—

\

J
(c 1 id'Xd'j al)(a'a 1 )(a' U1)U 1) ».

to,!

M(b'c') (C \ b«)

a'd 1

(a' Ib')(c' Id<) ( Mia'd 1) (d- I a'))

!r. M b!c f c1c 1 bl

Tr. M(a»a") = <T (a», a»)

Tr. M(a!) 1 •
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In addition we have the relation that

Tr. M(a»)M(b»)
#

= (a» | V)(b!| a'). (1.16)(1.16)

The Adjoint

The measurement symbol M(a fV) as written implies a certain

sense, namely the succession of events happens as read from left to

right. The measurement symbol in which the convention is opposite

to the above one is called the ad .joint symbol, and is denoted by

M(a!b» )
+, where

M(a<b')
+ == M(b'a') . (1.17)

As a result of this definition

(M(a rb f )m(c'&*))
+ = MU'c^MCVa 1 )

=M(c td')
+
M(a'b')

+ • Cl.lB)

This can also be written as

[(b»| c»)M(a f ft)]d t )] + = (c'| b»)M(a f d')
+

(1.19)

so that with a reversal in sense (b f ( c f ) is replaced by (c f j b')« If

we insist that no physical result depend upon this convention, the

probability of transition between states a1a 1 and b 1 must involve
(a1| b1)b 1 ) and "(b 1 | a1)a 1 ) symmetrically. A quantity possessing the correct
properties is

p(a',b') = p(b',a f ) = (a 1 I b*)(bf a')
r-i (1.20)
¿j p(a»,V) = 1
b 1

where the latter statement, which follows from (l.ll), is of course
necessary for any probability interpretation. However, a probability
must also be a real non-negative number. If (a 1 | b f ) is considered to
be defined in the field of complex numbers, this willbe satisfied by

(1.17)

(1.18)

(1.19)

(1.20)

!
1p(a',V)

a'b flo 1a1a 1(V,a»P(p(a',b')

b')M(a.'d')
+

(c'|+
c»)M(a fd t )(v|

=M(c td')
+
M(alb')

+

= MÍd'c^MCb'a 1 )(MÍa'bMMÍc'd1))4"

b'a 1 )s M
+

a!b'

a fb 1V(a»MCa'jMCb 1)^r.r.MCa'jMCb 1)^ (a» V b 1 a f

a!b'
+

s M b'a 1 )

(MÍa'bMMÍc'd1))4" = MÍd'c^MCb'a 1 )

=M(c td')
+
M(alb')

+

(v| c»)M(a fd t )
+ (c'| b')M(a.'d')

+

p(a',b') P((V,a» a1a 1 lo 1 b f a'

p(a',V) 1
!
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the following restriction on the measuring algebra,

(b« ( a*) = (a f t *')* (1-21)

i.c,,
p(a!,b') = | (a 1 t b')l 2

0 .
Note the general algebraic property of the adjoint operation deduced

from (1.19) and (1,21)

F(b» | c')M(a'd<)] + = (bM c J ) M(a»d')
+ .

(1.21)

Operators and Matrices

A symbol can be associated with a physical quantity in the fol-

lowing way. We have from (1.16) and (1.20) that

Tr* M(a')M(b r ) = p(a f ,b<) (1.22)

hence we obtain for the expectation value of the physical quantity B

in the state a1a 1

<B >, = £ b'p(a',b») = Tr. BM(a« ) (1.23)
ci b»

where

B= U b'M(b') (1,24)
b»

Other f-^sap follow from

M(b') = 2 (a f i b f )(br | a lt)M(aia"') =2» (a r |V*;)(>»( c'jHCaVo 1)
a ? a" a f c'

B= II(a»|B|a")M(a'a") = 2 (a*|BJc' )H(a^ f ) (l# 25)

(1.22)

(1.23)

(1.24)

(1.25)

o')K(a'o>)h')(b'l(a*1L .
a'c 1

a")M(a<a")b')(b' jI(a*s
a' a"

(V)

c'Ma'c»)(a'VI*afl)M(a f a !t)(a'JBi »

¦M
b'M(b')/J

M(a')Tr.b*p(a',b»)I-B

a f ,b»Pb 1a'Mr»

b»(a'a*b f

0Aí
b»i(a',*')(a»,

[(b f ic')M(a'd')] + = (b 1 \ c J ? M(ald')
+

b f a* (a' b»

(a»,,*') (a' i b»
í A 0

r» M a' b 1 P a f ,b»

B I- b*p(a',b») Tr. M(a')

/J b'M(b')
¦M

(V) s
a' a"

(a* I b')(b' j a")M(a<a") 1L .
a'c 1

(a* h')(b'l o')K(a'o>)

i » (a'JB afl)M(a f a !t) VI* (a' c'Ma'c»)
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where

(a'JBJa 11 ) = 2 (a c jb3 )"b s OMa n ) = Tr# BM(a"a f ) (1*26)

(a ? |B\c ? ) = 2 (a 1 ¡b» )bl(b»\o») = Ir.M(c t a í ) .
Thus a physical quantity is characterized in relation to an arbitrary

measuring process by an array of numbers
—

a matrix. From the general

relation between measurement symbols

M(d?a«) = £ (a p \ b* )M(c!b f )(c» \ d» ) (1.27)
b'c f

we deduce the matrix transformation law

(a'lxld 1 ) = Z (a' | b!)(b'ji:|c !)(c' | d f ) (1.28)
bye!b ye !

with the Buid of the trace formula (1.26).

For the produce of two quantities we have, say

XT = S (a f(X|b f )M(a fb«) £ (b"{Y(c!)M(b"c f )

= £, (^¦¦l.;(-i(i'»>{b?(Y|c l)»Ca*c? f!)

or

(anille') = Z (a'¡XÍb')(b l|Y|c») , f|fp)
b ?

the matrix mult iplicat ion law. In view of the complete corre spondetaee

between the measurement algebra and the conventional mathematical for-

mulation, we shall borrow the usual terminology. Thus we call the

elements of the algebra operators, etc. We have anticipated this con-
nection in speaking of the trace. Thus according to our definition

Tr 0 B=L V = E (a f BJa f ). (1.30)
b 1 a»

'

(1.26)

(1.27)

(1.28)

(1.29)

(1.30)(a'( Bja f ).L
a'

b 111Br0

£ (aMxIVKV-tYlc'jMCa'c»)

Yj (a f(X|b ? )M(a'b') £ (b"[Y(c!)M(b"c!)xr

?(a f j x|iD f ) (b l| YJ c»)L
•h?a^XTJc 1 )

d !b!)(b'jz(c !)(c' |(a'za'Uld» )

Td'C»
d»b'Wc'b 1 )(c» \I(a»i',&(d!a*)

Mica)Ir.(a 1 |bOb ? (b^Q } )a ? |B\c ? )

BM(a"al)Tr.(a c jb3 )"b s (bMa n )¿j
b ?

a'JBJa 11 )a'JBJa 11 ) ¿j
b ?

(a c jb3 )"b s (bMa n ) Tr. BM(a"al)

a ? |B\c ? ) (a 1 |bOb ? (b^Q } ) Ir.Mica)

&(d!a*) i', (a» I b'Wc'b 1 )(c» \ d»
Td'C»

a'Uld» ) z (a' b!)(b'jz(c !)(c' | d !

xr Yj (a f(X|b ? )M(a'b') £ (b"[Y(c!)M(b"c!)

£ (aMxIVKV-tYlc'jMCa'c»)

a^XTJc 1 ) L
•h?

(a f j x|iD f ) (b l| YJ c») ?

r0 B 11 b 1 L
a'

(a'( Bja f ).
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Note also our definition of the adjoint of an operator

X = £ (a'jxlbO^Ua'b»)
namely

X
+ = Z (a'jxlb') 5*5* M(b'a J ) (1.31)

shows that
(b {|x+

| a J ) = (a l|x(b'f . (1.32)
¦

Since the symbols of elementary measurements, M(a!) are self -adjoint

(Hermit ian)

%(&*)* =M(a') (1,33)

this property extends to the operator representing any physical quan-

tity, iic c,, one with real eigenvalues.

(1.31)

(1.32)

(1.33)

Eigenvectors

The measurement symbol M(á*"b f-), describing the transition of a
system from tre state a' to the state bl,b 1, can be analyzed further by

introducing a hypothecal state of non-existence, 0. Thus we may think

of a two-step process equivalent to M(a'b !)?

M(a {b») = M(a!0)M(0b!)

where M(a'O) symbolizes a measurement which selects systems in the

state a* and annihilates them ? while M(0b r ) describes the creation

of a system in the state bl.b 1. We shall use tre notation

M(a'O) = I7I7 (a') (1,34)

M(Oa') = V (a')
+

so that

M(a'b') * J (a>) V (b')
+

(1.35)

(1.34)

(1.35)(b>)"V(a-)
y

«(a't 1 )

(a')
+

VM(Oa')

(a')tM(a'O)

= M(a'S(a')'

(a'lxfb')V)b'lx4

M(b'a s )x|b')*a }z

3YL(a {b') = M(a!0)M(0b !)

z a } x|b')* M(b'a s )

b'lx4V) (a'lxfb')

S(a')' = M(a'

M(a'O) t (a')

M(Oa') V (a')
+

«(a't 1 )
y

(a-) "V (b>)
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The algebraic properties of the adjoint operator then correctly yield

M(a'V)
+ = V Cb») f (a ? )

+
=H(b*a») .

According to the mult iplicat ion law

M(oa')M(b f 0) = (a!jV)M(O)

• V (a')
+ "f (V) = (a'fb'^Q) "'. (1.36)

¦Thus

(a<|b«) = (O|Y (a')
+ V f )¡°) (1i57 )

or with a simplified notation, in which the null state is understood,

(a'|V) =( V (a t )
+

V (V)) c (1.38)

In particular

( V (a')
+

V (a"^ = iaS**") • (1*39)

We infer from (1^38) that

(a' b'f
-

(T (b')
+

XT/ (a')) = (b'ja«)

and from (1.37) that

(aMb«)
-

Tr. V (a ')
+
T (v ) = Tr' if? (b ') T (a

' )+

= Tr, E(b fa') .
Por a general operator represented by

X = (a'|x¡bTf (aí)Y (h')
+

we deduce that

X T(b') = C^(a')(a J jXlb') (1.40)
a f x

(1.36)

(1.37)

(1.38)

(1.39)

(1.40)(a')(a J (x|b»)V2(b')VI

(a', a")í(a"))(a')
+

VV(

c(V))V(a-)V(a'|v)

(b')|O
T/

(a-)(Offa1a 1 jo')

IMVo íVa1a 1 7V

M(a'b*)
+ = T (b») f (a ? )

+
=M(b'a»)

M(oa')M(b f 0) = (a!jV)M(O)

(a' b'f -(y (b')
+
f (a!)) = (b'|a«)

(a s |b«)
-

Tr. V (a
' )

+
T (*') = Tr' (b ') T (a

' )+

= Tr, E(b fa') .

X = £ (a'jXJbTf (a') f (b')
+

V 7a1a 1 V o í V IM

a1a 1 jo') (Off (a-)
T/

(b')|O

a'|v) ( V (a-) V (V)) c

( V (a')
+

V (a")) í(a', a")

IV (b') 2 V (a')(a J (x|b»)
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and

\j/(a')+
X= £ (aMx|b-) y (V)

+

since

V (a')K(O) =*f (a') , M(0) f (b- )
+ = (b')

+ • (l.4l)

In particular, justifying the eigenvector designation ;

A V (a») =a» V (af) V (a!)+A = T (ar)+a ' •

We can also conclude from (1.40) that

+
X jr(b') = (a»|xjb')M(O) (1.42)

whence

(a-|x|b') =( V (:i>)
+

X Xf (b-)) (1.43)

and

(a'|x|b») = Tr. V|/ (a' )
+

X |^(b')
Tr 0 XKL(b!a !) .

As a special case of the measurement symbol transformation equation

(1.9) we have

H(b'O) .= ¿ (a 1 V^'Ua'O) . M(Oa!) =S (a'( b 1 )M(Ob' )

or

V(b! )= £T(aO(a'¡b') íf(*if=Z (a»lb')lf (b»)
+

(1.44)
a1a 1

*
b1

in which the transition amplitudes (a!b') appear most directly as

transformation functions. Conversely the transformation equation

(1.9) follows from (1.44) • Note also the converse derivation of the

(1.41)

(1.42)

(1.43)

(1.44)(b')
+(a'l:*')f

vf(a')
+

9f(a'Xa'ib»)C1C 1
¿ i

a1a 1

(b f )f

(V)f
+xwr/(a'| X|b')

(a'(xjb')M(O)•r(v)(a')
+
2f

(V)(f)1M(O)t(a-)/(a')M(O)

ty (a')
+

X= L (a'Ulb') W (V)
+

x b1

a y (a! ) = a? Y (af ) Y (a! )+A = T (ar )+al

(a»|x|b«) = Tr. V|/ (a' )
+

X "\j/<V)
Tr 0 XM(b!a! ) .

M(b'O) .= ¿ (a 1 b'jMÍa'O) ;M(Oa f ) =£ (a'( b 1 )M(Ob' )
a» b'

(a')M(O) / (a-) t M(O) 1 (f) (V)

f(a')
+
2 •r(v) (a'(xjb')M(O)

a'| X|b') ( / wr+x f (V)

f (b f ) C1C 1
¿ i

a1a 1
f(a'Xa'ib») 9 f(a')

+

v
(a'l:*')f (b')

+
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multiplication law,

M(a»b')H(c'd f ) = V(a ') V (^')
+

V(c')y (d',)
+

Y(aO(^(bO
+
Y(cO)Y(dt )

+

(Vjc'Ma'd')

which involves (l*4l)o

Unitary Transformations

We now look more precisely at the changes in the manner of

description of our system. Consider two descriptions of the system,

one in terms of the properties A, with eigenvalues a!
9 the other in

terms of the properties B with eigenvalues bl.b 1. Since the number of

independent states. of the system is the same in A as in B, we can
¦

establish a one-to-one correspondence between the states a ! and bl.b 1.
After making the association a><j¡ >b f we take M(a!b f ) to refer

'"

to pairs of states put in such a one-to-one correspondence • We now

define the quantity

Uab
= 2 M(a'b') . (1,45)

all pairs
(a'V )

Evidently

Uaa
= M(a?) = X ' (1'46)

ÜbaUba
= £

?
M(b'a') = U+

b
(1*47)

Por sequence transformations a „ > b —^ c, we have

U U, = £ M(a !bo 12 M(b'c') (1.48)
I3G (a'b») (b'c f )

= £ M(a'c') = U
a'c r ac

(1.45)

(1.46)

(1.47)

(1.48)

acMCa'c» )
a'c f

M(b'c')
(b'c f )

M(a !b 5 )
(a'b»)be

U
ab

<M(b'a f )
(a fboba

1M(a ? )
a»aa

M(a T "b f )
all pairs

(alb*)

üab

M(a»b')H(c'd f ) = V(a ') V (^')
+

V(c')y (d',)
+

y(aO(iUbO
+
y(cO)y(dt )

+

(b^c^Hia'd1)

üab
all pairs

(alb*)

M(a T "b f )

aa a»
M(a ? ) 1

ba (a fbo
M(b'a f ) <

U
ab be (a'b»)

M(a !b 5 )
(b'c f )

M(b'c')

a'c f
MCa'c» )

ac
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where the c f written down is the one corresponding to the a f through

the intermediary of b*¿

In particular with c ¦=£ a, we have

Uab
ÜbaU

ba
= 1 (1'49)

and similarly,

ÜbaU
ba

U
ab

= 1

so that

üab <b =<b Uab
= X (lisl>

which characterizes U ¿ as a unitary opera-tor*
aD

¦

It follows from the definition of U , thatao

Uabl/(bl) = f(a<) 'T (a ' )+U
ab

*Y(b ')+ (1'52)

where a* and b f are corresponding states*

The inverse relations are

ÜbaT (a ' ) = Y^'i' b
')\a *Y(a ')+ (1i53)

One can construct the transformation function (a ! bM) as a

matrix element of the operator U, in the 'a! description

(a'|b«) = (y(a')
+

-f(b») = (y(a') \a y(a»)
= (a- (UtJa»)

or the l-b! description,

(a'|b") =(y(a') +
y(b«)) = (M/(b>) \a Y(bn))

(1.5-5)
= o='|u

ba
|b«) .

(1.49)

(1.50)

(1.51)

(1.52)

(1.53)

(1.54)

(1.55)
= (bl Ka i b"> •

Y(b"))Xa(V<bi)=(y(a') +
V^n))(a'\b n)

a")<a
" IVI

V(a")Xa(y(a')yi-K»)(y(a')
+

(a'(t")

*Y(a>)+übaubaywyyYCb».}f(a-)
ba

Y(t-)
+

T (a ')+U
ab>y(a 1)yü>«)üab

ivv;

val)al) v

v; v i

üab yü>«) y(a 1) > T (a ')+U
ab Y(t-)

+

baf(a-) YCb».} y ywy+übauba *Y(a>)

(a'(t") (y(a')
+ yi-K») (y(a') XaV(a")

<a
" IVI a")

(a'\b n) =(y(a') +
V^n)) (V<bi) Xa Y(b"))

= (bl Ka i b"> •
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(1.56)

(1.57)

(1.58)

We now remark that

»(V) =U
ba

M(a')U
ab

'
(1.56)

which follows directly from the multiplication law of the measurement

symbols, or from the eigenvector construction

M(b') =y(f) Tjr(l5)
+ = Uba T(al)lr(al)+Uab

' (1<57)
¦

Accordingly,

B = Sb'MO') = II E b(a')M(a»)U
ba at) (1.58)

'

= U
ba

b(A)U
ab

where the correspondence between eigenvalues enters in writing b 5 as

a function of the corresponding eigenvalue a 1. We have also used

the general definition of a function of an operator,

b(A) = £ b(a')M(a') . (1.59)
a!

In the important situation where A and B have the same spectrum, we

can establish the correspondence so that

a» * b f (1,60)

and therefore

B = U
ba

A U
ab

' A = U
ab

B V (1.61)

+ —1Conversely, let U be an arbitrary unitary operator U = U ,
and construct

A = UAU""1 = £ a» ÜM(a')U'"1 . (1.62)

(1.59)

(1.60)

(1.61)

(1.62)U"a'UMa1a 1= UAU""

>,b A

b fa»

a'
b(a f )M(a')

Übab(A)U
ba

b(A)ü
ab

ÜbaEb(a')M(a>)U
ba

Eb(a')M(a>)ü
abSb'MCb')B

-%f(*')\n&<)\hÜbaU
ba

+= y(t>')M(t)1)

üaba<ba
b fb f

ba a< üab

M(t)1) = y(t>')
+

ÜbaU
ba -%f(*')\n&<)\h

B Sb'MCb') ÜbaEb(a')M(a>)U
ba

Eb(a')M(a>)ü
ab

Übab(A)U
ba

b(A)ü
ab

b(a f )M(a')
a'

a» b f

A,b >

= UAU"" a1a 1 UM a' U"



16

This can be written

A = S a* M(a )

where

5» s a!

and

so that A and A possess the same eigenvalue spectrum and corresponding

eigenvectors are related by the operator U.

(1.63)

For an arbitrary operator

X = £, (a'UJa") M(a r rtf)a tf)

we have

X= v X U""1 = ¿ (a'lxja") M(a«a" )

so that

(afjxja") = (a f |x|a") . (1.64)

Furthermore, all algebraic relations are preserved,

(X~+T) =X + V , (XV) =XV

and

(x)
+ = (?) .

Thus the description resulting from the unitary transformation
is on precisely the same footing as the original description.

(1.64)a"a ra"a f

(I1,I")(^(s')+
\Jí(S-)) = ¿

f
= Y(a')

+
U"1= U\J/(a') , Y&)

+
yes-)

I= Z a* M(i')

a' = a!

X = £ (a'U|a H ) M(a r rtf)a tf )

!= v X U"1 = £, (a'jxja") M(a«a" )

(X~TT) =X + V , (XV) =XV

(x)
+ = (x

+
)

yes-) = U\J/(a') , Y&)
+ = Y(a')

+
U"1 f

(^(s')+
\Jí(S-)) = ¿ (I1,I")

a f a" a r a"
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Infinitesimal Unitary Transformation

Consider the special situation in which A and A differ infini-

tes imally, as obtained from a unitary operator U which is in the

infinitesimal neighborhood of the unit operator :

U=l -|F . (1.65)

Here P is an infinitesimal operator and JÍ is introduced as a constant

with the dimensions of action in order that our physical quantities

be measured in conventional units. Since U is unitary, we must have

U
+ = 1+ JP +

equal to

v"1 =i+J j ,

that is, F must be an infinitesimal Hermit ian operator. We write

f (£') - V(at ) =(U - 1 ) y(a>) = í (1.66)

so that

£~f (a') =- |f r (eL<) (1.67)

and

rf"(a')+ =|Y(a')+
? . (1.68)

For an arbitrary operator X,

I= UXU"=X+ |[X, P] .
This we write as

(1.65)

(1.66)

(1.67)

(1.68)

(1.69)X

P
+iT(a')+

r (a>)pI
8(a-)s-f

1.
Y(a')) Y(a')1ü((a-)(i1 )

•pX1

U
+ = 1 + IF+

u-1 =x+IF '

X= U X U"1 =X + g[X, F]

1 X p •

(i1 ) (a-) ( ü 1 ) Y(a') Y(a')
1.

s-f (a-) I
8

p r (a>)

T(a')+ i +
P

X
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where,

Ij-[x,i?) =rx . (1.70)

Now it follows from (1.64) that

(a'|x|a»)
-

(a 1 |xja") = (a» (X -X)|sff5 ff ) . (X»1l|

(1.70)

(1.71)

For an infinitesimal transformation this becomes, in our notation,

r(a'fx|a") = (a* | £ x|a") (1-72)

where the operator is held fixed on the left side.

An important special case is that in which it is possible to con-

struct o A as an arbitrary infinitesimal multiple of the unit operator,

$ A = Ía

which requires that

|A, (F/ía)] s i$ , (1.73)

Since

iY(¡') = (A-ía)f (¡'J^a'Y (¡')

yields

A~f (a") = (a» + 2Ta) Af (5l >
»

which implies that j(a 1 ) is¿eigenvector of A with the eigenvalue

a1a 1 + ó a, our assumption can be realized only when A possesses a con-
tinuous apectrum . Notice that (1.72) reads

i(a'|A|a") = Ha. s*(a! , a M )

in agreement with the fact that the change in the eigenvectors is
equivalent to increasing the eigenvalues by <T a.

(1.72)

(1.73)
7

itfa)](*/A,

Xla"(a- Ixla")(a'

a"X)X(i'a"(a«a")a'

i rxI*,*]

S A = Ía

iY(á') =(A- £ a) SjT(if ) =a» Y <if)

A~f (i') = (a» + ía) V 5l ) »

í(aMA|a") = $a, s*(a!, a M )

I*,*] rxi

a' a") (a« a" (i' X X) a"

(a' xla") (a- I Xla"

A, (*/ a)] itf
7
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We now examine the effect on a transformation function (a*\b')
(a* and b5b 5 again refer to arbitrarily chosen eigenvalues) of subject-

ing the !a r states to an infinitesimal unitary transformation genera-

ted by F , and the J b f states to an independent transformation genera-
a

ted by P, * Since

(a'jbO = ( f (a')
+

V (b'))

(a')
+

Fa^'a»)) -I(V (áO
+

Fb^/{bV))

S(a>¡b<) =I(aVj (P
a -Pb )| b» ) . (1.74)

Of course, if the same transformation is applied to both types of

states (P = F, ), the transformation function is unaltered,
a d

One may require, more generally, what from ¿ (a 1 b1)b 1) must have,
for any conceivaible alteration that is consistent with the tkree

fundamental properties of transformation functions, namely

£ (a'lbOCb'fc') = (a'lc») ,
b»

(a' ¡a") = cV(a»,a») , (1.75)

(a»|b'f= (b'|a') .
¥c shall write

Í(a'(b') =|(a» \$ ¥abb») | b») (1.76)

which is the definition of the infinitesimal operator 0 W,. According

to the first, composition property, changes in (a'j b*) and (b!(c')
imply a change in (a !(c') given by

(1.74)

(1.75)

(1.76)b fi1£ W -' ab
(a'I(a'U!)

(a>|V)*= (b'|a') .
(a'ja") = ilaSa») ,

b»
>(a* IbOO'lo 1 ) = (a f (c !)

)b1)|P% a
(ali§*(a*¡b!)

(a'¡V) = ( f (a')
+

Y(b'))

¿T(a'jV) =! Cj- (a')
+

i'a Y(fc')) - J (V (a')
+

Fb y(b>))

§*(a*¡b!) i(al % a
P )| b1 )

(a* IbOO'lo 1 ) = (a f (c !) >
b»

(a'ja") = ilaSa») ,

(a>|V)*= (b'|a') .

(a'U!) I(a' 1£ W -' ab i b f
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í(a'lc') = 2 ¿"(a'tb'HVlc") + 2 (a'lb') S (b'|o')

=|2 (a> I 8- Wab |b')(b'|o') +| S(a !U')(b'|Í¥jc')

which is the additive composition property

¥ab
+ <Twbo

= Wac
(1'77)(1.77)

In particular, if c = a, we have from the second fundamental

property,

£"W + ¿X = 0 . (1.78)
ab ba

The third general property of transformation function implies that

or

<J W ,
+ = - S W,

ab ba

= ÍWab
•

that is, O ¥ , is an infinitesimal Hermit ian operator. Of course

these conditions are satisfied by the special form

i
"

Wab =Pa- Fb
• (1'80)

(1.78)

(1.79)

(1.80)FbPa

>ÍWat>

ba
¿ Wab

0+Wab

<Tw+

S"(a 1|o') = Z ¿"(a'lb'Xb'lC) + 2 (a 1 lb' ) (b'|o' )

=|2(a« | *
WaJb')(b>je«) + £ £(a'lb')(b'|ÍW bJo')

=|CVR3" wab+ ,rw
bc |c.)

-|(a'|Sw ab!v)* *!¦{!>?Iíw^faO

+ <Tw

Wab
+ 0

¿ Wab ba

ÍWat> >

Pa Fb
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II.THE DYNAMICAL PRINCIPLE

¥c introduce the time t as a parameter upon which physical quan-

tities depend, and require (principle of time homogeneity) that all

values of t be equivalent, for complete physical systems. This means
that the spectrum of a physical quantity is independent of t, and that

a change of t corresponds to a unitary transformation. Furthermore, we-
assert that, in general, compatible physical quantities refer to the

same time, That is, a state (of maximum information) willbe specified

by the values of a complete set of quantities at a given time, \ (t).

We ¥rite the associated eigenvector as \[/ (^ ? t). A change in des-

cription may consist of choosing a new set of commuting operators at

the time t, or of changing the time for a given set of commuting opera-

tors j or of both alterations» Thus the most general transformation

function is

This describes the relation between states at the two times and thus

contains the entire dynamical history of the system in this interval.

It is the object of quantum dynamics to construct all such transforma-
tion functions, and accordingly, we may expect that the fundamental

dynamical principle will be a differential characterization of this

general transformation function.

(2.1)

According to the work of the last section, we know that for any

change of the transformation function (2*l), "be it of the times t-,

and tp, of the operators t-, and tws or of the physical attributes

of the system in the interval from tn to to, that

where o W-, o is an infinitesimal Hermitian operator with the additive

property

cTw12
+ iw23

= Fw13 .

(2.2)*2ft

2
V*lKVl2:^V12:^f

1s(1t2)H. i.
5.2I\Vi(

t2))2yqiV<$y(¦Vt»

2Í5
i

I*l

ÍW12
+ <Í¥23

= Fwi3

I*l
i

Í5 t»

2 V (¦ y <$ iV yq 2 t2))

( Vi\I H. i.
5.2 t2) 1 ( s f

1*lKVl2:^V12:^ V ft

2 *2
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Another* additivity property refers to composite systems, i.e., two

dynamically independent systems c* and p , which are considered in

conjunction. If the states of oí. and p are described by the eigen-

vectors (V* t) and ( X l t), respectively, the composite

state is described by

f-i'^I.^- t)
- y.<.s*' t) y^p> *> =Y(Sr¡3

'
t} (^'t;

Accordingly

{{
jl bl tin2

j2j
2 t2

) - ()1 h'\j2 t2
){L)itll

J2J
2

t
2

)

and

(Si t]_!X p2p2 2 t2
) = ( tx!X b2b 2 V(V(s

)l tll^tl1^ 2 tl^

where XXa
*

is a physical quantity of the c* system. There is an analogous

statement for X^ .. With the shorthand notation (l) = (lL (l) , we

find

til) Í (!)„ (1)B
+ (1), Hpp

pi w Wl2W12 12
;' ;

which is the additivity property for dynamically independent systems :

Jw¿+ Jir¿ = Sw12

There are two types of infinitesimal changes in the transforma-
tion functions. In the first we adhere to a given dynamical system

and introduce infinitesimal alterations of (t-,) and This

includes changes of t. and tp* These transformations are generated "by

infinitesimal Hermitian operators, P. and P~ , which are functions of

dynamical variables at t, and t?
, respectively a Hence for this type

of change

Wl2W12 *1 *2 '

-f:(^V^-ft)f

t) = Y(<*' t) f-(^' t) =y( Vs'V5' *> (^'t)-

(^ Si tlf b2b
2 J2J 2 *2> "/.Si *IU2 1 *llll?2 V

(t
¡1 t1x |3232 S2S 2 t2

) = (S
1 tllt1lx

w
b2b 2 -t2

)( Ví *iv 2 h1

f (i) = I(i)w (Dg + (D
o ¿"(1)^

yw¿+ Sw¿ =
12

¿Tw = p - p
12 1 2
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In the second type of change, the initial and final states are un-

altered, but some physical characteristic of the system is modified

in the time interval t, t + dt 0 Now

(^txXx X ¡t2) =

l{X
)i*i;i*) '* + dt)d V(^

'* + dt
' '!>

"
t)d "^"^2 12)1

2
) >

which has been written in the form appropriate to continuous spectra.

Transformation functions referring to an interval that does not in-

clude (t ? t + dt) willnot be altered, while, as a special case of (2» 2

E( t
'

t + dt \ X
'

t) = i( t ftf
t +dt IÍL(t)dt |V' t) f

where o L(t) is an infinitesimal Hermit ian function of dynamical

variables at time t, and the differential dt appears to conform with,

the vanishing of the left side for equal times. We conclude that for

this type of change,

6 Wl2W12
= crL(t)dt , (2.3)

or more generally, if we consider a distribution of variations in
physical attributes,

<ÍWl2W12
= / 1 <^L(t)dt •

(2.3)

The form of the infinitesimal operator characterizing a general

change in the transformation function is then

ó Wl2W12 =P1- F2F2
+ J <)l(t)dt ,

or if we construct a function F(t) such that
¦

P(t
1

) =P1
, F(t

2
) »F2

,

¿"L(t)dtwWl2W 12

(Sl ttll b
* + dt)d (^ *+dt I P t)d b (^ *

->2 t2
) '

E(t,'t + dt 1 't)= i( !t+ dt \ ÍL(t)dt1^" t)

<ÍWl2W12
= J 1 <fL(t)dt

t2t2

¿Vl2V
12 =P1- F2F2

+ J c)L(t)dt

*2

E(t
]_) =P1

, F(t
2
) »F2

,

wWl2W 12 ¿"L(t)dt



24

we may write

12 \ Idt

¥g now assume that there are classes of changes for which the

generating operators o Wl2W12 are obtained by appropriate variation of

a single operator Wl2,W
12
,

£ wl2w12
= S (w12) ,

and that W,
o has the form

Wl2W12
¿ J L(t)dt

t2t2

where L(t), the Lagrangian operator, to borrow the classical termino-

logy, is a function of certain fundamental dynamical variables x., in

the infinitesimal neighborhood of t, i.e. ,
L(t) =L (x (t) , Í. x.(t) ,t ) .

\ 1
dt

1 /

The limitation to first derivatives can always be achieved by suitable
adjunctions of dynamical variables. We take L to be a Hermitian opera-

tor, thus imparting the same property to W,«, the action integral

operator, and thereby satisfy the requirement that C W^ 2 be Hermitian.

As indicated by the explicit occur ence of t in the Lagrangian, our

treatment willnot be restricted to complete systems. One should no-
tice, however, that for a system acted on by time dependent external

forces, not every physical quantity has a time independent spectrum.

There willoccur in the structure of the Lagrangian certain

parameters. Any alteration of these quantities is a change in the

nature of the dynamucal system (the addition to a Lagrangian of a

new term can be thought of in this way). The associated / ¥1O
,

t

S.Wjfl = / X
f(Kt))dt

*2

S\ 2
= f1 fí!í!l + SMt) latx¿ JJt2 Iat J

t ¥12
= I(W12) ,

Wl2W12
= J L(t)dt

t2t2

L(t) = L (x (t) , Í_ x.(t) , t )
\ 1

dt
1 /

Ai
í Wl2W12

= J f(L(t))dt
t2t2
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has the form (2.3) with $L = f (L)o On the other hand, for a given

form of the Lagrangian, we may introduce certain infinitesimal

changes of the x.(t), and of t-, and tt p <> This must correspond to the

possibility of altering the nature of -the states, at t, and tp ior a

fixed dynamical system. Hence

°
,12 1 2

This is the operator principle of stationary action since c ? must

be independent of dynamical variables in the interval between t-, and

tp. We shall obtain therefrom equations of motion for the x.(t), and

expressions for P-, and Fp*
We may note here that if we were to replace L with

L= L - _jdL W, ¥ = W(x(t), t)
dt

or W-j 9 with W-. p ,

Wl2W12
= ¥12

- (W
1

-
¥2 ) , ¥1

= ¥(t
1

) , ¥2
» W(t

2
)

we should be adding to W, p operators referring to timßS t, and tp .
Henoe the stationary action principle leads to the same equations of

motion with W-. 0 as with W-,p, and

0 Wl2W12 *1 *2
where

¿w
x

=px -J1
, Sw2

=p2p
2 -P2P 2 .

Hence altering the Lagrandian by the addition of a time derivative

does not change the dynamical system under consideration, but rather

yields new generators of infinitesimal transformations at t-, and t?

Concerning the structure of the Lagrangian, we require t&at the

limitation to first derivatives be maintained under any integration

Ha =Fi
" F2F2

I=L -
-A-. W, ¥ = W(x(t), t)
dt

Wl2W12
= ¥12

- (¥1
-

¥2 ) , ¥1
= ¥(t

1
) , ¥2 « W(t

2)

6 Wl2W12 Jl

¿w
1

=p
1

- íJ
1
, Sw2

-p2p
2 -f2f2

;
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by parts , ice,, the addition of a total time derivative,. This implies

that the Lagrangian is linear in the time derivatives. Accordingly,

we write

dx . dx.
i-i-2»13 (*i-á -¦ 3tS) ¦**<*•*> (2- 4)

where (b. .) is a numerical matrix. This structure remains unchanged

if an integration by parts is performed on the time derivative terms.

The operators x. can be chosen Hermit ian without loss of generality»

In order that L be Hermitian, it is necessary that H, the Hamiltonian

operator, be Hermitian, and that

dx . dx . v „, / dx . dx. \
2b. . (x. -rr1 - -rr± x. =T^.. Ulx.-x.rrik íjIi dt dt 3' 13 1 dt i 3 dt /

/ dx. dx. \
=.-£ b*. x. XT1"

TZ1x.w
jiI i dt dt xj

or

b. . j*
In a—¦ b4b 4 . ,

the b-matrix must be skew-Hermit iano We shall decompose b. . into

anti-symmetrical and symmetrical elements ,

b. . =a . .+s . . ,
ID iJ 13

a..—-"~a.. • s . . —
:s . .

13 31 13 31

which are, respectively, real and imaginary,

a<..
— a., o s.. — —s . . a

13 13 13 13

and assume that the dynamical variables correspondingly decompose into

two kinematically independent sets; variables of the first kind, asso-

(2.4)H(x ? t)•j)
cLx.

dtdt£b..(x.J

dx . dx . v / dx . dx. \
2b. . (x. -rr1 -

x. =T^.. Ulx.-x.rrik íjIi dt dt 3'
°

13 \dt 1 3dt /

/ dx. dx. \
=-Z b*. x. XT1"

TT1x.w
31I 1 dt dt xj

b. . *
13 a

—
b.. ,

"b. . =a . .+s . . ,
ID ij 13

ij Ji 10 31

St..
— a., o s.. — —s . . 9

ID ID J ID Í1
'

J £b..(x. dt

cLx.

dt •j) H(x ? t)
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ciated with a. ;, and variables of the second kind, associated with

s a (employing G-reek indices to distinguish the second set) :

/ dx . dx . \ , /"' dXfl dx, \
¿ '-J 13 Iidie dt i/

v -¿<B \ cit d"C cxj *
vl' &'

¥c have used the phrase ? kinematic ally independent' to mean the decompo

sit ion of the tine derivative terms y as distinguished from
'
dynamically

independent 9 which refers to an additive structure of the entire
Lagrangian, i»e., of the Hamiltonian also.

The action integral associated with the Lagrangian (2» 4) is

¥no
= / \bfc*..( x.dx.

-
dx.x. \-H dt12 jt |^ 2 ijV i j ij/

/ f?; r dx
i

dxi w dtL,
/ in idt dt i) d?
"£•2 I *'

On subjecting this to a variation we may keep the 1S limits fixed,

representing variations of t, and t? by an alteration of the func-

tional relation between t and % • Since £ is not varied we need not

write it explicitly

b Zh-4 .(£x.dx.~ dx_.£x.+ x.djx.- dSx-.xV.) Xll dt -
H dSt

= id
r

l£b ,(x íx. - Ix.x ) -
H StS t I

1 -^-J
-
1
-

J ÍJ }

+ / I2 b. .(Sx. dx . - dx . £x .) - §" Hdt+dH S" t \

The stationary action princip.le requires the vanishing of the second

term 9 which can be expressed as

/ ax • dx . \ , / / dx¿, dx* \

,t
1

¥no
= / ¡I£b. . ( x.dx.

-
dx.x. \-H dt

/ f?; i
dX
Í

dXi .dtL,—
/

—
< » »J.. A. ->_i_

— - , Ji.. •""XI n™T U. b/ in 1 dt dt ij d?
t-2 I -. *#

/¦
-i

iZb, .(íx.dx.- dxi'x.H- x.djx.- díx-.x'.',) - Xll dt -
H dSt

J k

=fa
r

l£b ,(x íx. - ix.x,) -HS t I
+ / I2 b. .(Sx. dx . - dx . Íx.) - §" Hdt+dH X t \
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at 1^ idt ax i- (2#5)

We also obtain

Where

F = -i- X b. .(x. $x. - Jx.x.) -Hot

(206)
= -J- )¦ a. .(x. ox . +o x.x. \

* V / t c \ TT
r,

2 O iV x J i. i) + Hs^n (xa
¿ x

ft
~bx

5 x^ )-Hi t .

(2.5)

(2.6)

The character of the variations to which the principle of stationary

action refers is now made explicit by the statement that the synimetrisa-

tions and ant i-symmetrizat ions oocuring in (2*5) and (2.6) are super-

flYLOus, in virtue of the operator property of ox. and ox . We

infer the commutator and ant i-commutator relations

!^ X3X
3 'xil

= °
> ffx

fr
>:xtt\ * Ó

r dxii r dxJ j

Now we shall obtain from (2»5) expressions for __i and _c\_ as functions
dt *dt

of the dynamical variables, in terms of tfae structure of the Hamiltonian.
The first of the latter conditions is then satisfied if

which gives ó x. the character of an infinitesimal multiple of the
J

(2,

HTt)x ,°
X5X
5

X¿U«.^S^(^+r O X.X. \

3 i)xjSa. .(x.4 V
2 <t*

Hot
-

OX. X. )X.fb. . (x.2 ¿jí

dt
Xc(dt

-dx.dx.

13
v

1 dt*z£tfIH~
dt

dx

dt j'
;

ax.

ij
v
idt

+ ¿j5 t_JJL.~
dtÍH

P1
= p(t

1
) , II12

= p(t
2

)

X3X
3
' Xi]"°

> ff X
fr

' X^| = °
r dx±i r dxJ j
[x

ó
' dTj

=° ' jf x
ft

'
dF"f

= ° *

Isx ? x ~- O

ÍH
_JJL.~
dt 5 t + ¿j

ax.

ij
v
idt

dx

dt j'
;

fIH~
dt £t *z

dx.

13
v

1 dt

dx.
Xc(dt

-
dt

í 2 ¿j b. . (x. f X. -
OX. X. ) Hot

4 V
2 <t* a. .(x. S xj r O X.X. \

3 i)+ S^(^ U«.^ X¿
°

X5X
5

x , )

(2,

HTt
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unit operator. The second of the latter conditions is satisfied with

H-h] '¦«
dxprovided 2 san °^ function of the variables of the second kind.

It is thus necessary that the Hamiltonian be an even function of the

variables of the second kind y but is without restriction in its depen-

dence on the variables of the first kind.

We write

SH = t+Z Ix. +£ ¿ x i¿ ,

or an alternative form in which 'left derivatives' are placed by

'right derivatives 1

Síx HUHU =2 bbrH fc x .
No such distinction occurs for first class variables. The equations

of motion are obtained as

dH J-H
dt 5*

O / Q ti.
_

j
a
id dt ¿x ¿

'

and

F = 2a
id

Xisx j +Ss^ x^ ix^ -H^t .
We now turn our attentmon to variables of the first class.

Sh
-

M *+XI*• IL +Z ¿i l£ ,

ESx HHHH =?] brH S x .

dH = JH
dt 5*

P= S aijxi5x j +Sb^ x^ 5 -HÍt
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The Canonical Form

dx.
±n order that the equations of motion "be solvable for the _JjL ?

i.i.
CL U

the anti-symmetrical matrix (a, .) must "be non-singular,, This requires

that N, the number of the x., be even, Indeed

det a. . = det a.. = (~l)N det a. . 5
.

the determinant vanishes identically for N odd* Hence ,

N = 2n

when the integer n is the number of degrees of freedom* Now a real

anti-symmetrical matrix of even dimension can ? by real lineal trans-
formations, be reduced, to the canonical form

In 0 \
/ \-io /

í /Oil
2 OÍ

\ \-10!

\ J
To show this we consider the bi-linear form

2n 2n n i\
A=.S , a

id
X
i
yr al2(a

12
(x
l
y2- VlJ *XlS alkyk +x2L a2k

y
k

[ 2n I / 2n \ 2n
" S alkxk

y
- I S a2kxk yg

+ £ ax y
[k=3 J y k=3 y x? o=--3 d

°

¥c assume that al2a12
> 0 (if it is negative, then a2l>a21

> 0 and we may

satisfy our assumption by a relabeling) and define the quantities £,-.,

£> i" n± and iii

det a. . = det a.. = (-1) det a. . 5

N = 2n

2n 2n |f 'í-¿
A=

¦
£;., a

i3
Xiyr al2(a

12
(x
l

y2~ X2X2y
l
) +xl alkyk +X2X2 &,Wk

Í 2n I / 2n \ 2n
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± 2n
(2a

12r- P^x^^L. 2, a2kxk

__± 2n
(2a12

)^ I^.^-JL £ a2k
y
k

al2a
12 3-

¦

•
2n

(2a
12r2 f r=x2

+ J^. 2 alkxk
al2a12 3

, 2n
(2a

12
) 2

ll=
= y2y2

+ _J^ alk
y
k

„
al2a12 3

Under this transformation A becomes

2n

A= g^ill'
- |l.V+ *1 -V*«

" (alia2j
" Xi

yj
*

Since the matrix of the 2n
-

2 dimensional form is again anti-symmetrl

cal, we can repeat this process and finally obtain

n

2 ¿"i {hk ik f (k;
X.—1

Por the linear combinations of x. variables associated with the

canonical form we shall write

k= pk f T= %l 9 k= 1, ..., n .
Thus the Lagrangian and the infinitesimal generator P become (we are
considering only the first class variables)

T 19( dq
k

dp
k dqk dpk \ tt

, ..
L=

44 W \\Pk dt"-^ W +
dt~ Pk

"
dt~*k J -H(q, p, t) ,

F = |2(p k^qk
-

kct pk) - Hit ,

1 2n
(2a

12
)~- 2, a2kxkaI2 3

i 2n
(2a12

) 2
=yl " -i- S a2k

y
k

al2a12 3

« 2n
(2a

12
) 2Í, r=x2 +^ 2 alkxk

12 3

i 2n
(2aI2Hn lt

= y2y2
+ alk

y
k

al2a12 3

2n

A = - ll'V+ .^._\&ii~IZ (alia23
-

alja2iM xX*i

n

2 £¿ ll^k ¡k' f (k;

k= pk
' T~ %l 9 k= 1, ..., n

, lpf dq
k

dp
k dclk dp

k \ „, +,i=
44 M\\Pk dt~-*k dT

+
dt" Pk

"
d^^k J "H(q, P, t) ,

F = !?.(p k
£q

k
-

qk^pk) - H^t ,



while the equations of motion .in. the canonical form read

k ¿B_ _k ¿H_ dH uH
dt

~ gp
k

> at
-

k
? dt

-

It will be noted that the derivative terms in the Lagrangian can

be given less symmetrical but simpler forms by the addition of total

time derivatives « Thus

4
l\lpk' dt \ V dt

2u <> X
db j d-é 4 4~!4~!

j ¦ ]

1n I dp
k ] d 1 V i~-

2 j qk^ dt" \ +
dt 4

¿-J |pk» qk |

and correspondingly

|£ (pk ¿»k- ak í Pk
) = EPk

í,
k -SI 12fpk

, qk Vi
I- '-- J j

Hence if we employ a form of L in which only derivatives of the q,
recur.,

' ¦' " L=2Z ' pk ?tfl
~ H »

dq , dp
k_ >< _B_ _k oE_ dH ¿H

dt
=

? at
" J)q, ? dt \)i

1

'

c* / Í d(lv ] [ dPv ] X

44 \ !pk' dt Í V dtVl^ J I JI ¦

2 v X
db dt 4 4~!4~!

j ¦ ]

1n I dp
k ] d 1 V I-"

2 j V dt^!+
dt 4UJ |Pk* qk I

i t ]

I£ (pk
s \ -

pk
} = £pk s q

k -Mizz ip
k« qk) í

=-^ qk" pk
+° [_ 4 S(Pk' Vj •

15 ~21. ' pk ?dFI
~ H <
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that part of F referring to changes in the q1 and p, willbe

¦

. % = £ \% \¦' >

while ifL contains only derivatives of the p
*

3 r Í ' dpk )
L=- 2" j q

k» dt~ í H >

the relevant part of F is

POPP
0P

= " qk Pk
'

The Canonical Commutation Relations

¥c must evidently Interpret J\ as the generator of an infinites!
v C[

mal change of the q, with no alteration of the p,, and conversely for

6p
Hence

,[^k- P¿q] = *¦&.% ' [PPk P¿q] =° '

Since g q, , ¿py commute with all quantities, .i.e., are arbitrarily

infinitesimal multiples of the unit operator, we have

£ ['V P2J ¿ H= i a4k
' S[p

k-
pxl áqx = °

-S [pk
, q^l^P^ -'1 X c)pk

, £[qk
, q^"]¿P;J, = 0

or

[ V
= [»k< p^j

= ° '

\< v% ) = x i^

Sfe =5* p. á q
4q '-i rk

3 V I
' dpk ]

L= "
2 I 4k' F!" H '

hv = - -
qk

-
pk

[%' %] = I}is qk
' [PPk P¿q] = ° '

[pk> %j = Sp
k

, [v^Vp] =° •

£[v p^ j¿ «r l^ 1̂ SK- p x'Vdqx = °

[ q-kq-k- qx] = [pk- px] = ° ''
Vp£ 1 = x *

i^
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where the last canonical commutation relation is consistently obtained

from both generators, Observe that for any change of q, alone that

is compatible with the commutation relations

I $qqv> qv ] * $q^, pY I = 0 ,
¦

and similarly with h Pi • This is cur original hypothesis concerning

the () qlr are o pv? which is thereby shown to be consistent with the

commutation relations derived therefrom. It also follows fren (l0 72)

et« seq^ that the spectra of the q J s and p f s from a continuum.

IfG-(q ? p) is an arbitrary furiction, we have

['*:*s*]-*'¦**«.»
- iií¿l£ '

q*
or

Siicdlarly ?

[_ ?
*

p ¿1
k

%

yields

V Q i r I iI 1£ij = lg & J =jiL G' qk] *

Complete sets of compatible physical quantities (commuting opera-

tors) are provided by the totality of q s s ? or of p!s ? at the same time.

Thus we have two elementary descriptions 9 with the associated eigenvec-
tors VF/ (q T t) and NT/ (p ? t). The transformation generated by F¿ and

i\ have a particularly simple aspect for these eigenvectors :

-$¦% X (q!t) "^ (qlt) (a
'
t} qk >

K.

f C ~x X
-

't

[at%] -i>íqltt .i^¿|Jt a,
k

Ijl -i mr n i if ¡il

fa f pj1 = i]¿ X6X
6 g=i k! cp P <- ¿P^. X

IQ 1 r 1 if -\
£í~

= r¿
Lv & j "2 [Gi %.\

-

-Í q̂ Y (q. t ) =<^ (q -t) ¿X'sjr.y (a't)
k

,

-i% V (ptt) =h V (plt)
-¿éí V (plt)
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whence

Pk \ («•*>-i* |

qk V (P't) = f¿r f (P't) . I
The adjoint equations are

T(<i't)+Pk
= \ h^i^t ,

IfG-(q ? p) is an arbitrary function of the qss?q 5 s ? but a polynomial

in the p 3 s ? we have

+
<i(q p) =&(*',f ) W (qH)

+ .
This follows by induction from its assumed validity for Gk and G~ and

its verification for Ck + G-? and for G-iG-p :

Y(i!t)+
Gx(q p) &2 (q. p) = o^a», | (q't)

+
&2(q p)

combined with the evident truth of the statement for G- = G"(q), and

G- =s p c. On the other hand,

G(q,p) V (q't) =*& (q!,it (q s t)

where the order of all factors is reversed in Gr. The significant part

of the induction proof is

Pk y (git ) = i^4¿ i^t;

*
k Y(p!^)= Í 4 (plt) '

t(í-t)
+

Pk
= } á£^- (4'*)+ '

>r(ü-'t)
+

q, =i JÍ c--r \F í"o ? t)
+

l/ (q't)
+

G(q p) = Hi', f $~r ) V (q!t)
+

Gx(q P) G2
(q p) = ,|J^t) (q ( t)

+
G2(q p)

G(q,p) Y (d!t) ="s (q«, i*£ ¿t) (a s t)



36

Gl(qG
1

(q P) <*
2 (q P) = P) »2^' '* *Str) (q?t)

Notice that if&is a Hermitian function of the q r s and p's with real

coefficients, G? = Cr» The analogous statements for a function that is a

polynomial in the q/s are

+ G(qp)=&(i^^,p I) -<£ (p*t)
+ ,

&(q p) -^ (| , p s ) "f (p f "t) ,

Notice that the effect of 5V on x--x--fy (q :t), and of F^ on \P (p T t)

is just a numerical phase change :

T (p f*) =-1% t (p;t) =i(£p¿ (pit) '

This indicates that the notation \jp (q ? t) ? say, is really incomxolete,

since the change in phase does not alter the eigenvalue q*', but does

yield a different physical state c

Time Displac eme nts

It is evident that

»yt
- -

H StS t

is the generator of the transformation which consists in replacing

dynamical variables at time t by those at t +St* Hence for the func-

tion G- of q(t), p(t) and t, we have

f G, -
H £ t ]= it t &

C^'q p) &2 (q p) ;t) = p) G2(q!,i -^-r) (q't)

= a
1Gg (qs i'jl^r) t (i!t) •

\f (pH)
+

G(q p) =&(it~t , p>) (p ;t)
+ ,

G(q P) f(P't) ='S (| -¿t , p«) f (p.'.t) .

X t <*•*> =-1% f ii1*)1*) =| (£ x 5 (<i!t)
-

q T !t) =-1% t (prt) =i(£p¿ í(1^ (-p ?t > •

ryth
= -

h S %

f G, -
H Ít ]= it $ G-
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when J G- is such that

the unitary transformation has no effect upon t as it occurs explicitly

ifi Q-aWe infer the general aqusition of motion,

dt
~

);'\>
' iS LT> x j

By successively placing G¦¦ ~_ H, q, . « -p, , we check the oonsiistenoy of the

theory by rederiving the equatioiiß of motion originally deduced from the

action principle t

dt .
*

2jf> q
h ? H J =

fp7

C^P> "I \ TT

-at*"it [H» phl =kr •
XX

The time dependence of an eigenvector y ( ? "t) is determined by

whence

-i*i¥ (¦£¦' •*).'- h T(c' :t)

and

i*.&J ( ¿H> + -
V, ( M ,t)+ H .

In particular , ifH is a polynomial function of the p's, we have

ijf.lty k't)
+ =HU.,f ¿r (t) \f (q -t)

+

and

iÜp (q't) = H (q f , i -^r ,t) \U (q H) ,

% - g - la -
3 + /\á2_M ) fuU~ ü- oL-
-

»• d-ud -u t j- -

dG 2> G- 1 n n „i
dt o"0 lk v J

dli i)H_
at

~
ft

Í2fe If ni )U

C^P> "I \ TT=
ill [H» Phl =^ C

-I Fst f ( S !^)= (^ •tí-^íV*)

l,*-&Í ( r- fcyl" = ( s it)+ H •

i}4|T (q>t) = h (q« ,\ t .*) vj> (q't)
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Accordingly if \J/ is the eigenvector of some state not involving _t in

its specification , the 'wave function 1 of that state

Vf (q't) = ( \£ (q't)
+

\£ )

obeys the Schr'ódinger equations

ií£|. V(q.t)=H (q',f¿T, t) vy (q't)

and

When H is a real function, H = H. More generally, if **¥ is a member

of a complete set of eigenvectors, (o^!), the transformation func-

tions ;

(q !t l^«) = \|^ # (q't) , (t*' |q' t) S \|/ f
(q't)*

obeys the Schrb*dinger equations.

Canonical Transformations

We now consider in more detail the freedom of description for a

given system associated with the possibility of replacing a Lagrangia

L by

I=L"
dt W ?

the action integral VLp by

?12?12
= ¥12

" < W1
" ¥2> '

and the generating operator F by

T? = F
- $W

We have seen that one can introduce a canonical form for F,

= ( \£ (q't)
+

\jr )

i^^ V (q't) =H (q-, f¿r , t) y (q't)

it Y («I'*)* = H (q-, iK¿r , t) Y (q't)*

(q't |*«) S Vj^, (q't) , (<*' |q' t) S Mfc (q't)*

i-i-afn ,

\2\2 = Wl2W12
- (W

1
-

¥2 ) ,

7 = F
- $W

P = SP k H - Hit ,
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which implies the canonical commutator relations and the canonical

equations of motion. We ask for the conditions under which J? will

preserve the canonical form, but expressed in terms of new quantities

%' p
h> S p> 9 i#e#>

P=t p
k

iq
k -H StS t

This willyield the canonical form for the commutator relations and

equations of motion obeyed by these new quantities

The difference of the generating operators P and F is the varia-

tion of an operator W,

Sw = £ pk
§q

k
- Hit- £pp

k í5k5k +Ut *

Thus, in terms of a function ¥ (q ? q> "t), we obtain

as the equations defining such a canonical transformation, provided

it is possible to solve without exceptions for the q!s and p's.

An elementary example is provided by

* = 2|[v «* ] " ••
.

We have

so that

5k5k =p
k
' =-

\ ' H = H ?

this is the canonical transformation interchanging the q f s and p!s,
with appropriate signs.

F=!p
k

iq
k

- H StS t

SW = £ pk
§q

k
- H5 t - 2p

k
Sq

k +H ¿ t

p
k

= w "5k
= w

H = H + ¥ ,

w=:2-I Jv 5k5k 1

5W = Zq
k

Sq
k +2 qk Í qk

5k5k
=
\ > h=

-
\ > H = H *



40

The general linear transformation is generated by

w=\sk¿ h
*

a
* P-i3 {v *

3 í + *¿¡ ) : (2
-
7)

We derive

p. = E (<*• • q - + f». . q. )

or, in a matrix notation

The explicit eq-uations of the trans format ion are then

q=aq + b p

p=oq + d p

where

a =
¦

—
p p b = p

The four matrices a, b, c, d satisfy the relation

ad-b c = 1

which, in fact, is just the condition that

[\ > *i\= íhs kí
•

Tüe matrices appearing in ¥ are expressed in terms of the matrices of

the transformation equations by

c* = - b'1 a , (?) = b~X , |=
-

d I)"1

¦

(2.7)6
\
i5i5:5i5:

+¿
¦>

iVr6..1 13
4'q

D*i
c1c11~

2

p . = £"*, (<*. . q , + ft. . q. )
•*! q* 10 J 1J JJ

p. s= C1C1 (A.. q.+X--5-)

a Ifp=<*q+pq,-p=(sq+ j^ q .
q=aq + b p

p=oq + d p

a =
¦

— p p b = /b
""1

c—An/i"I*, d = -^-x .

ad-b c = 1

[5k5k
, vx]=iH kX

<X = - b'1 a , (5 = b~ X , |=
-

d b"1

1~
2

c1c1

*iq
D

4' 6..1 13
r V

¿
¦>

i
+ 5i5:5i5:

\
i 6
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The fact that the x and v' matrices are necessarily symmetrical

implies that

~> r- ~v '~'

ab = bí¿ ,bd =db , cd =dc ,

the first and third of which are the conditions on the "transformation

imposed by the requirements

IV lX]
= [Pk

, Pv ] = 0 .
The transformations function

(q ? t \ 5 ? t) = (^ (q't)
+

% (q«t)

can be constructed from the differential equation

£(q! t ( q' t) =í (q' t) (P - F) j 5' t)

=i(q' t | £w(q, q, t) jq't) ,

by performing the following process, Take the differential expression

& W and, employing the commutation properties of the q's and q ? s ,
arrange the operators so that the q ? s everywhere stand to the left of

the q fs * This ordered differential expression willbe denoted by

W (q, q, t).

That is

<sw(q, 5, t) = <SV(q, q, t) ,
but the ordered operator V/ (q, q, t) obtained by integration is not
equal to ¥ (q, q, t) ? and indeed is not a Hermit ian operator» With

this ordering, we have

¿(q't q't) = Í (q't j^q, 5, t) ) t)

= !<SV(q f, q', t)(q» tjq' t)

~< r- .—' **
ab = bí¿ -, bd= d "b , cd =dc ,

15k> iix] = ip
k
, pv ]= o

(q' t \ 5!t) = C^ (q't)
+ "^ (q't)

# (q> t j q' t) =|(q 1 t } (S1 -f) jq! t)

=|(q' t | lw(q, 5, t) j q't) ,

csw(q ? 5, t) = <SV(q, q, t)

i(q't s't) = |(q't K^q, i, t) j 5' t)

= s', t)(q' t)q' t)
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since the operators now act directly on their eigenvectors. The

solution of this differential equation is

, iif (qS sf,5 f , t)
(q't(q't) = e^

where the constant of integration is additive ly incorporated in W .
It is to be determined from normalization requirements such as

dq'(q<t|q ?it)
- cV(q^-q«) . (2.8)(2.8)

Por the example of the genur.il linear transf ormation we have

'iji=£ £ 4 ( ,v.
±1 q, + p '

q, ) +S U |3 + 5 y )J 5 = S vf.

the ordering operation here is trivial* Henee

ÍV =S(tc* . . q. q . +& . . q. q . +\V . . q\ q. ) + Const .
and

(q' ¡qO = C (f>) e^ P'ij^3 rfijqiqd'

in which we have anticipated that the integration constant does not
depend upon the matrices o< and I'. Notice that the inverse transfor-

nation is obtained from the substitutions q, p<—->q 9 p ;<.x <—^
-

Y J
(i> .< —ft , so that

/ 4r4r(*^ii^i+Pii^isi + Vii:sisl)

This should also be the complex conjugate of the original transforma-

tion function, which is indeed truc if

o( -!>') = 0 (p> j* .
1

d"(q1cVq»t)1dqI(q'tq!t)I(q't

IV (qS q f , t)
(q't q't) == c'A

5 /W=S&q. (o/...q. + j3.. q.) +£(q. &., + a.y ..) J q. =5 w .

í ":.
W = £(!<* q. q. + . q q + i\/ q q) + Const.

(q». qt ) = C (h ) e^ 1¿) X d 10 1 d fl 1J 1 J

(q. 1 q' )=O(- fi ) e 3-0 x O '13 ij SiJ iJ

c( -p>) = c (p )*

(q't I q!t) dqI(q't 1 q»t) cV (q1 d"
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We now compute

whence

„,n o 2 Idet3lC(d )|
-

T27TÍÍT .
The condition (2.8) is now satisfied with

The explicit appearance of iis demanded by the requirement that in

the limit of the identity transformation? the transformation function

approach ó (q ? - q"1 ) . In this limit, ok-~^- (i ? y >~ 6 » |^~ ?

and

/ . \n "1 4-
- «|^ j^.•..i.q!-q!)(a 1.-ii)

(q'l*1 )-* ¿et fi e2^ ! qi^ qj^i(q'-qt)

as it should, For the special case provided by q, =
P^^Ph

~ -^ > we
have (X = V

-
0, (3 = 1, so that

\«d/2 io , ,

v, pI)
_ /-i-V q¿p¿

A simple connection between the Hermit ian operator ¥ and the non
Hermitian ordered operator ]h can be established by treating ii as a

Variable parameter. We must then write the differential characteriza-

J (q'( 5!) di- (s'jqjí) = I C((i ) ¿ c*1
¿ « L J X 3

_,n si 2 IdetSl

0
;
( fS )=|-(_-yjn det^ •

-i \n 2 9VÍ AH-, 4.-;/ »

\«d/2 iti , ,
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t'ipn of a transformation function as

id)-i(\s{s »)|)
whence

( 3/a a ) (i) = i( jwj )

provided ¥ does not involve $ explicitly. However, the ordering pro-

cess that defines ?

/ I
introduces $ into the structure of W 9 so that

i=(>/3|)( |V)

For the example of the general linear transformation

W =5"
f
(t°<

• -q.q. +f- • -q.q. + 4- V • -5-5 •) +o^ log -—tt""! dot & .
which is non-Hermitian :

10 L !J (2fí|í)n

= i)í n(log 2'if j£ + 1 )-;.lj£ log det [i ,
according to the commutation relation

(2.9)oP-X¿(
iHV

S (1) =i{fí( j w)|)
(,•3 /3 J), (i) = i( |w | )

S( = l{ 1 w )

n

W . .q.q. + íí>..q.q. *iY,.<Lq.) + 75^ log ~Tr~! det & o

W -V+ =-1/b i í 5.1- # iog -assjL

=i# n(log 2-rf JÍ + 1 )- 13a log det (i ,

V H i
( P-X¿ o
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low n

so that

Which is indeed equal to W in virtues of the commutator (2 «9)»

The Hamilton- JacobiTransformation

A canonical transformation - the Hamilton-Jacobi transformation
-

is generated by the action integral itself.. If we put ¥ = W,p and

write t-, =s t, t~ = t , where t is an arbitrary fixed time, -we have
1 7 2 o r o

——

that is

i= Fo=£F
0

=£p
k
(t

0
) s*i (%) .

Accordingly, the action integral induces a canonical transformation

from a ( t ), p-, (t)}
,H(t) to q (t ) ? p (t ) , 0o0 o The vanishing of~n xi o o

the new Hamiltbni&tt is required by the fact that the new canonical

variables are independent of t a Thus, the equations describing this

canonical transformation are

the Hamiiton-Jacobi equations. Incidentally sthe new Hamiltonian,

H= 0 , ehoiild not be confused with H(t ) which determines the depen-

dence of Won t Qo
-

¦

TT~
= E (q(t

Q
) ,p(t) , t ) ,

o

n

*7? = s log l^ -fTiij^n "r :i 2

V-* |^= Z^nHH + h¡H«¿ +
-
íaW ~ :t:t

ó W =4 F
-

Fq
,

¥.« P =¿]p. (t ) £q, (t )
o k o k o

H(q, p, t) + |-| = 0 ,

Y^-= h u(to
) , p (t

o
) , t0)t

0
)
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A simple illustration is provided by the system of one degree of
2 /

freedon Hp = p /2iru This is a conservative system, so that W depends

only on t
-

t . and we shall place t == 0* The equations of motion

have the solution

n (t ) = q + -^ p ,•> p (t )- = p

which is a linear transformation. Accordingly the action integral

operator has the value

W'*Úq
-

<Lr Pol ~Ht¦- |r (q - q) 2
O O i cXv c.v 0

which is of the general form (2.7) with

Thus we have the commutation relation

the ordered operator
v

A 2t \^q q
Q

h / 2 o§ v anr
Bnd the transformation function

Ut|q OJ =.c -(2TT^it j c

which satisfies the requirement

(q'o| q"0) « JT (q' - q»)

It is often convenient to employ P^.(t ) rather then qv(t )as an
independent variable in the Hamilton- Jacobitransí ormat ion ? i.e. ?

q(t) = q + —
> t) ¦•> p(t)- = p

W = i|q
-

V Po j -gjt
-

_(d r go)qo
)

«M--0-?
-

fq, qi = ±hi
—

s

V=|T Íq2q 2 -2q q
Q +q^) + £L log (2tT JÍ± |)

(q oiq 0) - e ) e

(q'O q"O) = í (g> - q")
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H + -|~- = O .
The connection between the two generators ¥ and ¥ is provided "by

O
"""

O

W
Vo *£* {qqk(t

o
) , p

k
(t

o
) j ,

namely

W=W + ¥ov qq q p-^o a "o *cro

For our example;
2

qp
o

2 I
"^

J

which again possesses the form (2*7), with */k = 050 5 (3= 1, v^=
-

Henee

[Po 4.J- f ,

V(q, Po
, t) =qp

o
-

t+ |jlog 2^- ,
and

, |V/(qS p-, t) 1 \*Ifq.p. -E¿ t)

Another oxarnple is the one dimensional system with

2 2 o
XT

_ £ , gjo^ 2
f¦ 2m ¦

+
2" q

The equations of motion have the solution

q = q eos U) t +—jp sin co t

p = -
mw q sinoj t + p eos ojt ;

pk -$.q
k

y %¿\ } ~fikrrT

W
Vq =£i fqk(k

(t
0

) , pk(t
o

) j ,

¥=¥ + ¥ov 0,0. 0 vJ"L 0 O 0

2

¥ =-k ) 0 ,, tj I
— -~::;-— t ,

[p
o 4.J- i

'

Vu, pO,p0, t) =q p
o

- §- 1 + Ijlog ,

, |V/(q<, p-, t) / \*. J ((q.p. -E¿ t)

2 2*"
2m

+
2 q

q = q
Q

cos Ut+ipo sin cv t

p = -
mw q sinoj t + p cos <*Jt ;
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a linear transformation. On substituting these solutions, the action

integral is obtained as

1 2= cot Wt j^q2 -
|q, q

0

- j+ q^ j.
Hence «<. =Vm to cot t,p = -

raij osc t*t , and

r i ¿Í
q *Stb sxn M* '

VÍ=Sf cot «t f,2- -^ q ,0,
0]+

%2%
2 +á| log ( sin.t )

(q't|q¿) = Í
V2?V 2?

-
S esc W

-
UJ c'

Constrained Transformations

A special situation is encountered when the canonical transforma-

tion involves one or more relations between the qssq 5 s and c^s, so that

they are not actually susceptible to independent variations» The

simplest example is the identity transformation

5k5k =qk
, p

k =pk

where ¥ (q>q) has the value zero, indicating a relation between the
q*s and q ? s. Nevertheless, one can treat the q? s and q's as independent

variables, and derive the transformation equations from a suitable ¥,

provided one introduces an intermediate transformation not so handicap-
ped and refrains from eliminating the intermediate variables. Thus,

describe the identity transformation as q->p*_>q for which

EW , , f 2 1 f ,1, 2' -i=
T cotwt [5

-; oSSSTt I*' % fio j-

r 1 l}{ .

M^ cot ¿t [,2, 2 -
4.^+ a0

2 + log ( -^«t )

(<l't|q¿) = ív^yr CSC W hj c'

5k5k =qk » Pk =pk

w =2i- fv pk j -* £(v pk| •
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¥c have

Ay = 2 (q
k

-
q
k
) S p

k +£ p
k ídk

- 22 pk «5 5k5k

=£ pk
¿q

k -£ pk
$5k5

k

from which follows the desired equations,,

¦

¦

the appropriate Hermit ian operator ¥ is

W=£ iÍ q
ir

-q
k

(q), Pk|
since

sw= >: (¿
k

- sPk + £ Pk /v,£ *ib^,p L
l ¦*¦ J A

= 2 p
k cT q

k
- Sp

k í5k5k
yields the desired relation between the q's and q!s, and the informa-

tion

The latter expression can also be written

v
- c % °qy ü q

hw = 2 (q
k

-
q
k
) S p

k +£ p
k

Jq
k

- 22 p
k

¿ \

=Z pk
¿q

k -£ pk qk

q
k

-
qk(q.) ,

¥= S iU-k rafcte):» Pk ]

Sw = Í(4k -
qk(-q) ) íPk+£Pkor ,k,k

- £ * ftiJ^pL
I *¦ J A

=Í. p
k

q
k "S p

k
íq

k

A k j^ D ¿Í

X in
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In connection with this example ? note the strict requirement

that the q's and q ? s "be uniquely connected by an everywhere non-singu-

lar transformation* Should these conditions be violated ", the new

variables willnot possess all the canonical attributes» We may then

speak of a quasi-canonical transformation* A familiar example is the

transformation from rectangular to spherical coordinates 9 where the

angle 0 is inly defined mod 2Tf , and the determinant vanishes at r = 0

and at O" = O7l\O 71\ • Thus, spherical coordinates are quasi-canonical,,

A simple dynamical illustration of a constrained transformation
is provided by the one-dimensional system with Hp = p /2m -

Fq ?
¦

described in terms of the transformation function (p s tip!io)*p !i0)* The
equations of motion have the solution

p= p
o

+ F t

q ~ q +— t + 7T" tra 2 ra -

so that there is a relation between the variables of the transforma-

tion function, p and p <> Now7
-

S\,í c c0 V r_~ ~. qh p '+ a 0 p »- H ¿> t- ¿óíCp -
p Ft) - -(p t -i- 4-Ft 2)ryp

- i(-t"D2D
2 +pFt + in2)dt

i x -o /
Ei o ¿ / x o no * o o

- - -'

which requires no explicit ordering to write it as ó Vv « We thus
obtain the differential equation

C^(p f t jpn0)n 0) =c^(p f -p» - Ft) ,-— (p }t \pM0)
4 P »

4'sM t + p,« ii2 + ¿¿i bH iD.0)? 12m
x h p 2m

+
6m JtP ülp 0) ?

which is supplemented by the constraint condition

(pt
_

p.»
_

Ft) (p!t p"0) = 0

p- = PopP
o

+ p t

q = q +— t + 7T~ t

0 W b «. qh p '+ g o p
-

H o t-
-qa( p « p Ft) - t -i- lFt2)rrp - i(^o2 +pFt + 4-F 22t2)í t1 £ -

o /
ci o ¿ / x o m * o o

---
/

<p(p f t jp5? O) =^(p f -p" - Ft) ,-— (p't UUM0)

(pt _p"
_

Ft ) (p!t pffQ) = 0
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The solution is

2 2 2 3\
/., i !!M #, . n s f( 2m

t+p
"

2m" +™m /(p't ip"0) = 0 (p^ - p" - Ft) c
'

\

= ¿ (P....( P. ... p--.pt) ét Sb¿

On placing F - 0, we obtain the transformation function for the system

with Hp = p /2m : o-¿ Eli t
(p f t[ p^O) = ¿"(p 5 ~ p í? ) e]á 2m

Non-Unit ary Trans format ions

Canonical transformations are representadle as unitary transfor-

mations

5h5h =u % u
"x »h= u ph uu

~x

in virtue of the identical spectra of all canonical variables » How-

ever,, for the purpose of preeerving the algebraic structure of the

canonical commutation relations, and thereby the canonical equations

of motion, it is not necessary that U be a unitary operator. Of

course, other features of a canonical transformation willbe sacrificado

An example is provided by the point transformation of the previous

section. We have

o qv c/ q-y \ q /

det ) py ( det ~J \=p / .

-i /e¿
t,.p,p!+ s¿¿)

/ ,'4. i ,
Srt \ ,V / i sí m. \ H \ 2m

*
2m cm ;

(p't ip"0) = 0 (p^ - p" - Ft) c
'

\

= ó (p.
-

p- - It) el» 1' P

2

(p f t( p*O) = 1 -
p í? ) e]á 2m

ih =ü qh n"1 , 3h3h au ph iT

= det 2fl. ) p / de t \ = p ,
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3?or this canonical, non-unitary transformation

'¦(«' it)'"*
and _

q-/
= ü qv U" == qy

Now

\J/(q«) = U ? ) = f ) , q f
-

q(5 5 ) = q(4')
1 1

and

1 1
However

\f:C4i')+ = +
U ( ji \ir (q')

+
IT1)

so tliat the eigenvector orthonormality conditions read

(é (q') \l' (q") = $W -
Í")

¦* -L

where

4 (qV).- +
det

Hence the dual and Hermit ian adjoint eigenvectors are no longer the
same, In virtue of the non-Hermit ian nature of py. it is the dual

U
-

f&et 7a7a I

q\y = Ü qv U" == qy

1 1

A-

\j/ (q'!)
+ = V (q')

+
U ( \£- (5')

+
IT1)

té (q') \l' (q") = S(Í< - d")
¦* -L

& (q 1 ) = VJ/(q')
+

det &_
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eigenvector that satisfies

This non-unitary transformation corresponds to the familiar procedure

of replacing one set of coordinates by another , without transforming

the eigenvectors. The determinant of the transformation then enters

as a weight factor in all integrals and orthonormality statements.

Non-Hermit ian canonical variables are useful in discussing the

harmonic oscillator,, Thus

/.»•&» \* { i \q~a~ \ 2k / (^ q +
mco P J

\
¦PS i]!l a' = -k_J (p + inwq)

are canonical variables ,
¦

¦ .

\a, a
+
j= 1 ,

in terms of which this Haniiltonian can be written

H = -iw{iq , p] = JÍUJiI a, a
+ 1

The canonical equations of motion,

da 1
¿it -W W m

'
a

da
+_ 1 ¿H . , +

dt
""

JJÍ =1v a ?

are solved by
-iWt + + itota = ac ,a = ac «oro r o

1 3(i,í j

/ . mb¡\ *¦
/ i \q= a = -

2¥
-

j ~—yJ

'PS iM a"'" = Í -^A (p 4- imwq)

\a ? a1= 1 ,

H=-ioíi j q , p] =)íwi(afa+ 1

da .1 jMg
dt

~
i¿ oa+

~ ~
1u a

da
+_ 1 ¿H . , +

dt
" ~

i$ "\ + = lv' a ?
f 0 3,

a= a
Q

c
~iUt ,a

+. a
Q

+
eltOt .
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A convenient.. Harailt,on-<laoobi -trans format ion employs a. and a as Inde-
pendent variables o Thus

-
iah

+ -
i a +<X a

-
H t7 00

whence

.; vv .-= ~ I]á c a a c
—
i|í a o a c

- jaw(a a c +f)

and

y (a"h, a. *t)=
-
i% a

+
ao c"I'^1'^ -

iJítot + Const,

If we introduce eigenvectors of a' and a 2 in a purely hauristic

manner, we can express the latter result as

(a+! tfa'O) = e
V)i'V(a+ta»t)

"t^ a
+'a"e "itAjt

-. . c

choosing the multiplicative constant to be unity-, In particular, for
~ 0 v , __i~,,,

(a+Ija-) =e a a"=e
" * .

The transformation functions connecting the eigenvectors of a and

a with the eigenvectors of q can "be obtained from the theory of the

general linear transformation* We find

(q'la-) =0 c< Á q f2+al2-21-;2Xa l2-2l-;2X q'aO

(a
+W ) = C'e "HA <l'2+a+S2 "2 A a'a

+'
j

(a';q')=C»e< A « t2+a '2-2ÍrX^a 'J

(q'j a+i) = c«!eHLAq;2
+a

+'2-2 r2A q. a+'j

where A = m uj /}í.

jj w-
— i]á a ú a » i/ia ó a ** H, o i

.; vv .-= ~ I]á c a a c
—

ip. a O a c ~ Jíw^a a c +t) i>t
¦

V/ (a"' j,. a f t) = -
i}rí a a c"

-
-J* Jácot + Const,

(a tí a"0) = e " v '

2 a a"e= e e

"1 «¦!>

(a | a(l)a(l) = c = c
*

/T j r x n -J-/ A q?q ?2 -ha T2~21;2 Á q»a ? j
(q'ia'j = C c - M-

(a
+|a') = C'e -H A i'2+a+i2 -2^'2"A;

ll^'J

(a'U') =C" eHLA qi2+a. 2-2V"rXq'a.j

(q'ia+i) = 0«v0 «v eHLAcr 2+2+a+I2-2f2A q' a
+'j
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Accordingly (qHaO^ is not equal to (a : jq? )? but rather can be

identified with (ar j q')? provided the eigenvalues of a and a are

complex numbers related by

a1a
1'5 - (a')*

The constant G f - C can then be fixed from the requirement

mii ni2/ IT \«. a+ia'!

This is satisfied with

ÍX \ 1/4
i .1* f

\ fi ¦'

On the other hand» note that

does not exist.

Infinitesimal Canonical Trans format ions

An infinitesimal canonical transformation

=
%c

-
¦"' qk

¦

p, = T),
-

O P,-^k
-

& x k

can be generated by a ¥ which differs infinitesimally from the gene-

rator of the identity transformation,

V
s-

1
¦ -

i
¥=X*t iq

k ~\ ? pk'> ""^p? "^
6

Whether one writes q or q in the infinitesimal operator F is immate-

rial for its value, but is relevant in the derivation of the canonical

transformation» Now

a
'

-; (a ? j"1
"

is

(a+? |a i? ) -,/ (a^'jq'J d ? (q ? | an )

mii ni2/ IT \«. a+ia'!

1"iA '

ÍX \ 1/4
i .1* f

(a'ja+n ) = / (a'jq')d q 1 (q s| a4"")a
4"")

=
Ik

- ''
\

p, = D,
-

o P.¦^k -X
• x k

¥=Vt ) q
k

" q
k ? pk'"

"P^ y p? t^ 6
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= £ pk
áq

k
- E pk 55k -(H-H) Ü t

whence

H(qpt) - S(qp*') *-*fi *(.qpt)

characterise a general infinitesimal canonical transformation;, Vie can
also write

which shows that F is the infinitesimal Hermit ian generator of the

equivalent unitary transformation»
The effect of the transformation on an arbitrary function G-(qpt)

can "be computed directly,

¿G = G(qpt) - S(qpt)
¦

-*»<qtf).-'<X*-J§ ,p + j* ,t) ,
or

¦

which defines the Poisson bracket of two operators o The notation is

symbolic in that 9 say, occurs in definite places in the structure'' Pk
of Go We also have

S G = -rrr jG, ?!

6W -¿> Pk
&q

k ¿i IPk
+

3qk j^q
k

= ), p. <S q, ~: > , X), O q,
- (H

-
Ii)o tLj £ k Hk •—' *k

Hiapt) ~ H(qpt) ».^r P(qpt)

H = ±jf v ? » í' p
k

=ip
k>

p

8 a = G(qpt) - G(¿pt)

= G-(qpt) - G(q - ~
?p + ~ ?t) ,

S& = -rrr iG s ?]
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which expresses the Poisson bracket in terms of the commutator

(G, F) -¿ [6,Fj .
From this connection it follows that

(G, F) = « (P,G) ,
although this is not quite evident from the definition o

We obtain from these results

B(qpt)
-

H(qpt) + (F, H)

= H(qpt) -
p- Í1

or

S(qpt) = H(qpt) - 4: F
- (F,H)

0
"

= H(qpt) --^ ,

in virtue of the Poisson bracket from of the general equations of

motion. This implies that the generator of any transformation that

leaves the form of the Hamiltonian unehfmged is a constant of the

motion *

Parameterized Transformations

Let us suppose that the infinitesimal transformation is that

associated with an infinitesimal change -dT of certain parameters

T , so that F has the form

P= "

V P(r) dTr

and ,

(a, p) =¿ j>, *

(G, F) = « (F,G) ,

H(qpt)
-

H(qpt) + (F, H)

= H(qpt) -
p* Í1

B(qpt) = H(qpt) -¿F- (F,H)

-
H(qpt) -|| ,

F= - C F(r) dtr

"¦ /--.' dt- r
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Thus
4 fV-E*]V á\ \ + L- P(r) d "r

and

¿ (q»t I q«T -d-) =Í (q» rj¿ W¿ r j q tfr -d T ) .
A finite canonical trans formation, (q ? '^-, I"To)? can now c charact

ized 'by adding the generators of an infinite sequence of infinite-

simal transformations 9

w12
=

•"
| Li;¥ dqkj + ¿,F (r) d^ j .

In particular, with the single parameter T = t* and F = - H, we

regain the original action principle»

We compute o \í10
,

p r ]

Wl2W12
= / d j Epk^ qk

+ L F(r)
- r

r!1¿ J I k r l; r

/ r

V!f' ( <^kkdV d*>k
¿ <^+ V (¿F (r)d Vdí(r)6

'rr)
¦

In order that a finite transformation be generated, the coefficients
of the intermediate q, and^ p, must be zero. This yields the

equations of motion

_^M dpk

r *k r
'

which repeat the original assertion that F/ \ d t* is the generator
\tj r

of the infinitesimal change d <¦' inT # Hence

drs
v v s • r .

¥dT=L> 1 V d*k \+^ P(r) dir

b (q't | qq MT
-

d-.V) *-jj(q T Tj¿ W¿ J q."r-d T )

¥12=
;

Í i-^pk^ d^k^ + 'tt F(r) d^r Í

Pr ¦ 1
wl2w12

= / d j Lpk k̂+
T
r |

n
V ! V' (¿P

kkdV dík^V+L^(r)ddVff(rfV

dq^ dp^ Jg
(r)

"dr
~

'ip, ? dt "'}q í
r -^k r

'

/% / dF, N IP/ n \
csw12

-p
1

-p2p
2

-
//^ j dr -~^ i¿í i

r dt s
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where * = )>* b \
+Z F(r) 6Tr

'

The last term of h W allows for the possibility that the transforma-

tion function may depend upon the integration path of the T variables.

Now, according to the significance of F/ \ d"£/ \, we have for any
Vs ) \s )

operator Gr,

¦

dTs
'n:s (s > * *

In particular,

Hence

Ars
-

dT
3

"
dTr

-
ff¡

"

r
+ (F (s)' P(r)^

is anti-symmetrical with respect to the indices r and s. The change

in the transformation function produced by an alteration of the inte-

gration path in thus given by

/ x

hWx^xJ
--
|(^rxl / Ars

*(i>T
r 4t

- jrs dtr
)iq»r2 ) .

wt 2

The simplest possibility is A =0; the transformation functionrs
is independent of the integration path* Second in the hierarchy of
complications is Arg

= ars
(T )> a numerical function^ Here the trans-

* = >">* b + £ F(r) 6T r

fe-^W
dTs

"*rs (s) '

o o

. = f!l£i l!ki i^lrl 'Üisl ? ..', . ,Ars
-

dT
3 -d\

~
¦)T

3

~
Wv

+ (F (s)' P(r) }

r'1

fÚTja-Tg)
--

$ (^rxl / Ars
i(ST

y 4T -irs dtr
)iq»r2 )

wt 2
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formation function depends upon the path only to the extent of a phase

constant which is independent of q1 and q", etc. We shall be content

with the first situation - independence of path. In particular if the

F/ x do not involve the parameters, they must satisfy

f.F(r)
• F (s)J

= ° '

Now suppose that the F/ \ form a complete set of commuting operators

so that we may introduce the eigenvectors V (Ft), The transfor-
mation (F 1 T.. IF" X' ) is determined "by

—
(F!T !fm

~
)as % (F fT iF/ n IF<rr )= 4 F'(F!r '

PH T )

in conjunction with the boundary condition

(F'T 2 1 F*T-2
) = S (F», F») ,

(assuming discrete eigenvalues). Hence

(F^^JF"^) =e^ r r f.(F', F») ,T = -V\ «T^ .
But the canonical transformation function (q'T-, j qL ttT«) can be written

iC*
= L (q- jF') e^

'¦' Fr "
2 (Jt q«)

F 1

or, with a notational change

U'^ky
-
IV (qt) e^ "r^%, (q-)* .x? ¿
r=l F1 IF1

íF(r)
• F (s)J

= °

r

(F'T 2 i FMF M
"
2
) = S (F», F") ,

(F^^iF"^) = c*1 r r f.(F', F») ,T=Tl « T g

U't^d-ig) =¿.; (qITIjF']:i)(F'riIF»T2 )(F»í
2 jq«f2

)

= L (q- jF') e^
'¦' Fr "

2 (F« q») ,
pi

¦ r=l F 1 }p>
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Accordingly if one can construct the transformation function describ-

ing the finite canonical transformation generated by the $(( T
\$ the

expansion of that transformation function in exponentials of the i"

willyield all the eigenvalues and eigenf unctions of the arbitrary

complete set of commuting operators.

We illustrate this with two transformation functions already ob-

tained for a system of one degree of freedom and P~ t, F = -H .
Por the hamonic oscillator

¦

,, - ~ V/t +'
-iVv t

(a
+ t!a-O) = c 2 ea a c

_ & (a
+' )n)n

" jfía**)JÍVt (a .,)n

m=o Vni vn!

so that the eigenvalues of the Hamiltonian are

E^ = (n +i) JtvA/i , h= 0, 1, •••

and

(a jn) = •*——-L-

(nia») = &

which satisfy

(a4
"'

|n ) = (nja«) 4 .

(a
+ tja-O) =c 2 ear 5e

a

_
r5r

5 (a
+
')n

- $»+&*"* ¿a») n

m=o Vni wni

\ = (n +i) Jíva/í , h= O, 1,

Ca+' í n)
- iS&Z

(nja 1) =s—

(a+f jn ) = (nja')&
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The eigenfunctions (q f n) =y. (q f ) can then be constructed from the

transformation function

\r n¿:¿í .2 1 .2 /2m -o , ,
(q'ja») = ¦

y^l c

-!>•."¦'& • .
which is, essentially, the well-known generating function of the

Hermit e polynomials.

Por the particle exposed to a constant force, we found

_ Í 3. / ,3 ?3\
(p'tjp'O) = ¿(p. -p.. -FT) e

*
6QF

'
P P .

If one inserts the integral representation of the delta function,

-
00

one obtains

(p ft|p"O) = / (p'|E)dE e (EÍp n )
—

co

where „

¦ i(Bp, _zL-)
(p'|E) = (2T^)"T e^ 6m ;

for this problem the Hamiltonian has a spectrum ranging continuously

from -oo to oo • Henee H is a canonical variable. In fact, with

m--.-.' .2 i ,2 /2m -^ , ,
(q!|a») = [ yjl c

=
/ H' vq ; - >

(p'tJp"O) = ¿(p- - p« -FT) e
* 6n*

;S(p' -p» -PO=¿ / P

-
00

(p ft p?l0)p ?l0) = / (p ? |E)dE c (Elp")
d—

CO

• ¿(Bp, .til)
(p'JE) = (2ir*ÍP)"T 6m ;
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5.»..
we have

(q, p) = 1

The trans fornation function ((p 1 |pB) can now be constructed fron

hW =-q<Sp+qA p = jr (5 - fjf) + ¡P ;) P •

We get

1 / ID
3

(P.P) =F PP-fe/; + °
OnSt 9

\

and, writing p1 =E,
3

(p 1 E.) = C ef

But

/ /'°° ¿-^-(c-E 1)
/ (EJp !) dp'Cp'JE') = |o! 2 / e^ P dp 1 = ÍCJ-2¥#F¿(E-E*)

{/ if4
-

CD

whence

C = (2!f # P)
"*

Notice that the traris formed function (p!¡E) has a singularity^at
P = 0 , corresponding to the fact that the Hamiltonian H = y~ is

not a canonical variable.

P=H=%z
-

Fq ,
1

q= j p f

(q, 5) =i

hW =- q eS p + q ó p B

-
(J - |—) <^ p + jr P •> P

1 / I)
3 ''¦

(p>p) =
F | p p ~ fe / + Oonst

(t.|«. o.H^-tr>

/ (EJp 1 ) dpl(p'JE') = ¡OÍ 2 / e^ P dp' = ¡Cl-2TT^¿(E-B*)
J l4

CD

C = (2*Tf )í B1)B1) ""^
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Green's Functions

A general method for constructing the transformation function

?„„„„„_

f 4r- (ct fl:U"O) « (q ( T|F(r) (q p) j q-O)

in which the use of the differential operator P/ %(q% «K^t) is only
\r / x oq

illustrative; integral operators can also occur. These equations are

to be supplemented by the boundary condition

(q'O I q"0) = 6 (q» - q«) ..„_.
IH^ (q'tU-O) = H(q', I^Hq't jq"O)(q'Oi q»0)

(q»O|q tto) = £ (ql
-

q») .
Turning to the simpler situation of a single parameter, we note

that the boundary condition can be incorporated into the differential
equations by defining the discontinuous Green's functions :

<Kg! q% t) =j% (q»t|q"O) , t> 0

= 0 ? t< 0 .
Indeed ,

\ 1
jiü¿ -

h U'.f^v) I G(q' q" t) = S (t) h (q- - a") ,

f (gnU wO) « (q»r|F (r)(q p) j qwo)q w0)

= F(r)^ f » f^T)(^t!q«O)

(q'O j q"O) a 6 (q f
-

qM )

IH^ (q'tU-O) = H(q', I^Hq't |q"O)(q'O| qwo)q w0)

(q»O|q tto) = £ (ql
-

q») .

&(q! q% t) = (q't!q«O) , t> 0

=0, t < 0

|i-jí -
h Usf^r) | G(q

-
q- t) = S (t) h (4( 4

- - a") ,
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and we now seek the solution of this inhoinogeneous equation which

vanishes for negative T a if, as we have tacitly assumed ? the Hanil-

tonian is tine-independent, the G-reen's function equation can be given

another, convenient form in terns of the Fourier transform

G(q'q. B,E) = / dt c*1 G(q', q", t) , InS)O

namely

|E "H(qS iW ] \ G(ql> q% E) = ¿ (q' - q») .
We novr desire a solution which, as a function of the complex variable

B, is regular in the upper-half plane» Since

oo .
p -=vEt -

i
G(q'q- f B)> /dte#

'
L W (}

"
Ji^S' (q.)*

H1^ 1 E - E f

here V , in conjunction with the Hamiltonian forms a complete set,
we see that the poles of Cr(q'q"E) as a function of E are the eigen-

values Ef
? and the residues yield the eigenfunctions.

For the general problem of n parameters T , we define

G(q'q"r) * i|) (q« x|q" o) , Tr
> o

= 0 , any Tr
< 0 .

Z0 k Et
G(q !q%E) = I dt e^ G(q», q!t, t) , ImE > 0-

CD

I E - H(a»,|A-)- G(d', q", E) = £(q» - q")

oo .
p -=vEt -

i
a(q-q-, E) = / dte^'igZ, V ,

} -K E'V /..)*
W lja EX E'X1 U ;

E'^|W ;

rñ E'/' E' J1
'

E^>' E
-

E 1

GUV'T)
-

l|j (q'tjq 11 0) , Tr
> 0

= 0 , any
~
r

< 0
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Hence

f ,j o f xi Í \ I /. \ h-1

iir. (i) iq '
2 '¿cl' / q ' ; ;?> -i;\h/ v g o?;i1 \ •¦ 'x

and finally

n
"

íhe Fourier transform

/*' 4 i::'f T
G(q' q», f) = / díe^ rr r G(q s q«,T ) ,Id fp

< O

obeys

and

G(q', q», f) = ¿. -^r S
r. n CfP-P

-Jr
)

The Asympotic Spectrum

If the operations P/ \ are polynomials in the p, , one can easily

construct the transformation function (q. t T+ dT P !T)» The appro-
!

priate ¥ is

w =£iUk(k(r+ dt) -qk (T)( T) , pk(r)j n;*(r) dtr

+£i; ak
(T) , Pk( H j

r w o i/ \i /• \
iIT. (1) 1q ' 2f5? / q ' } ~ d< "l} \h/ U ( íq

°;í?;i
X \ •' 'X

H f^-i(r) N'.í árl- »(u'J) =6 (T)i(q' - a")
r=l{.

'
r v

\
" H /

/' 4 £"í T
G(q» q", f) = / ale" rr r a(q>q«, X) ,Inf

p<o

"fr'Ifr ~ F(r)(q'' 2TF ¡\ G(q '
q"' f) =L^(q ' " qB)

o(q', i". f) = •'-' "-r-
*

i" n (fr
-

f;)
r

W=£iUk(k(T+ dT) -qk
(T) , pfc(|) I +i; Ifc) dTr

+S i|'%(.T.) , Pk(f)|

•/'*.} <lk(lk
( t+ dT) , pk( T) \ + C J(r) d T .
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We compute ¿ W and order it into &V, which nust be explicitly pos-

sible if the F/ \ are polynomials in the p,. Thus,

and

i n/2 IC kgkqkpk
+ Vr((l1' pl)dt

r(q*T+ dT| p»T ) =
2?s c

With the aid of this transformation function, one obtains
y,

(q' T + dT| q" "¦¦ ) = / (q' r + d f |p' T )d p' (p' ! q«)
J

t
1 / dpl et^'^( -i")

kP¿ + 5 ;yq'P')d V
'

(2T#) n
(/

A general application of this fornula involves the computation of the

quantity yielding all the eigenvalues,

/ / .... i. F.i p« r

/ dq' (q'-Jq'T ,) = / dq> 2,.' (q>JF>) e*^ r r (PMq')

</ J

in the limit of infinitesimal T -T„ ye get

/ dq. (q-f: + d tU. T). / áa^iEl J ÍV^'>d rr

1./

) j{ r r r

V* =D cLk(^+ a 'O pk(r) +n r
(q(r+ d t), P ( tí) )d rr

i n/2 if kqipi+ r^*'» p
')d

r

(q' T + dT| q" "¦¦ ) = / (q' r + d Tjp' T )d p' (p' ! q«)
J

f
i / dpl e

t^'(q ( -i")
kP¿ + 5 ;yq'P')dv'

(2 T}í)n ¿I

/ / .... í F.i pi r

/ dq 1 (q'-Jq'T ,) = / dq> 2,.' (q>|F>) e*^ r r (PMq')

F»

/ dq> (q-1: +d%. f) = / áll_d£!.
et Í"r^'P'^ rr

1./

ri é" i
%

F f d "T:
) j{ r r r
p»
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If we write

J ffrf^
= f (F

'
)d* •

F 1 é*K F'+ dF f

# r "r / i¿. F?d f

L c =
/V (F») df e^ r r .

F
'

Evidently for infinitesimal dr , the sun is dominated by the dense,

essentially continuous pa,rt of the spectrum and f (F!) dF 1 is the

number of states in the eigenvalue range dF 1. This can be expressed

by the familiar rule that there is one state per volume (2 n*)i)n of

phase space.

ft
/
I dSÍ4E¿ = P (511 ) ¿F ,
i' (2Tfr ;

F 1 é ;}< F'+ dF f

P )i r r / h E Pdf
¿, c -

,/V (F f ) dF' e^ r r

F
'
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