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=1 -~ THE STATISTICAL THEORY OF PHASE TRANSITIONS.

The statistical derivation of phase transitions always involves

the evaluation of the pertition function ( or sum-over-states ) ,Z:
Z=85G k]
Q e
of the system over its possible levels i with energy Ei and multiplicity

L
Gi s from which the thermodynamical functions can be derived, since &, is

connected with the free energy EP’ by
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For systems or interacting psrticles the summation \S‘ can only
)

be performed in very few cases .
As examples of phuse transitions we mention the behaviour of

ferramagnetic substances ( occurrence of a Curis transition temperature ) :
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and the condensation of a gas.pqgow the critical temperature Tc $
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For a finite number N of particles Gi is fir.te and Z is an

snalytic function of T . Transitions c°n only occur in the limiting case

N —=2 &2, In the case of the gas for instance one has to consider



N , v =20 with finite number density N/v- and for the free epergy this
yields
lm. f7 = N (Tow,

Ny 1=em 00
when )L ( the free energy per particle ) should only depend on the intensive
variables T and V7 .

The exact solution of this limiting problem has only been carried
out for the 2-cdimensional Ising-model of a ferromagnetic substance and the
condensation of a Bose-Einstein gas .

The Tsing-model consists of a given lattice on each of the sites
of which a spin is situated . The spin parameter S5, can take the values
+1 . EFach spin is assumed to interact only with its nearcst neighbors
( lt in the 2-dim. cese ) . The energy of a certain configuration is then

E 3-%6]")"‘ Si Sj = H‘i: Si s

n .
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where ,Z__, is taken over all interacting pairs . Note that this is different
from thenactual ferromagnetic case , where the interaction involves the
scalar product ( S - Sj ) and where the S ; 6re g-numbers . The interac-
tion energy 7 is the increase in energy if two neighbov "ing spins change
from parallel to anti-parallel ( in an anti- ferromagnetic lattice , 7( o).

H is the magnetic field and A4« the magnetic moment of each atom . With
L = ,7/ 2 Rk T and C =/(/., H//K T-
¢ ;

the partition function is



In the case of a8 gas , we suppose the intermoclecular forces to be

additive and central so that the potential energy cen be written as
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and the ( classical ) partition function then is
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( the factor A

makes ;Z dimensionless ) .The rem' .ning configuratio-
nal integral in general cannot be evaluated exactly . . |

of course, approximate theories exist for the magnetic problem
( Weiss ) and the condensation problem ( e,g, Van der Waals ) . But , apart
from their approximate character , such theories presuppose thermodynemics
( for instance in the use of the so-called Maxwell rule ) which from the
point of view of statistics is rather unsatisfactory , since statistical
mechanics should provide the basis for thermodynamics .

In the following we will outline the main features of the 2-dimen=-
gional Ising-problem and the Bose-Einstein problem . It will turn out that
the mathematical mechonism in the existing theories is completely different
in these two case.  The question of a wnif’: ' mathematical method then

arises .



Wo firet consider the one domensional case of N lattice pointa
( linear chain ) taking the lattice o ..
points on a circle, we can identify 1 2 i ¥
the points N+ 1 and 1 . If we do not take into account the magnetic

field, the partitism function is
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Considering the .5“- as matrix indices and introducing the matricdes
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Let A_.and A 4 be the eiganvalues of V™ . on disgmalizing
V' , one can write
N

A

The secular equation is
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Since N 1is very large , only the largest eigenvalue ""'\: is

important and therefore

f“ = -k N &; A.(T) (fv/\/)
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from which the entropy , the energy etc .. follow . )\, and therefore }
are analytic functions of T , so here tine Ising-model does not lead to a

phase transition ( in the 1-dimensional case a Curie point never occurs ) .

The two-dim2rsional Ising-model has been treated along the same

lines by Onsager . With N = M2 , we consider el B =
each column of Matoms as a unit, interacting ? ot R
with neighbouring colums . To get rid of f . : :
boundary conditions we now identify tha M

\L s = & s SR

( ¥ 41 ) - th column with the first one
and the ( M 4 1) ~th row with the first row by winding the lattice on a
torus . Each column interacts with neighbouring ones ,esch unit has 2“

states , which can be denoted by a matrix index (.‘?,,_', R '5,,“-) .

Again one can use the matrix method and

M
2 M
7 = Trace (“\f‘m)=%’ /\K

where now V is a 2M b4 2M - matrix , but the determina.ion of the eigen=-
values now is a major problem . Onsager developed a method ( simplified
by Onsager and Kaufman ) to determine the largest eigenvalue . For N oo

the result is again i{‘ (T) =Ny (T) with

k/3 . R
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Now a transition point occurs since '/ (7) has a singuler point ,

The critical temperature Tc is determined by

sinh 2L, = 1 (Lc = 0.1407 ..)
S .
/ ; \ At the transition point T_ the srecific
// : \ heat (. becomes infirite .
// | ; \\‘__ In Onsager's treatment the largest
. ,‘Lc - eigenvalue turned out to be 2-fold degenera‘e
up to the temperatire T * One might
———:<~ >< expect that in other cases, the disconti-
...,_T...__: : nuity arises from a crossing of eigenvalues
.,_.-_..:‘_.._..,: | at Tc in such a way that , in taking the
E : largest eigenvalues one has to jump over
"‘_1‘:.“'”} TL -t from one to the other at T .

The 3-dimensional Ising=-problem is
still unsolved , it is even unkncwn if C,.remains finite in the transition

region .

- 3 < THE BOSE ~EINSTEIN CONDENSATION .

For a system of N  identical non~interacting ;articles, obeying
Bose-Einstein siatistics and enclosed _u a volume V , the statistical

treatment leads for N — <2 with consteut density to a condensation
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P \ ! phenomenon ; with decreasing specific volume
. !
‘(\\ i V" at constent temperature the pressure
_.__;\\ | X
\ \\'\. turns cut to be corstant :low a criticael
I N
Sl voluxe Y. . The ( P, V" )- curve has
of eI )
_ ' T a disccatinuity in the second derivative at
¥
Cw . 1 Yo Fal
Vi« The conlensatlicn accurs for every
isotherm , the locus of the transition
A ".\\\.\ . ) ~ 5/ . .
—5" i / - - ST points being P S /9 . Vith aecrea-
ER :
T. - sing temperature at constant v a transition
3

occurs at T (V) , where the specific
heat C. shows a discontinuity in the first derivative .
The treatment is slightly different from the discussion of the
ordinary gas .(For the treatment, starting from an integral like 1 see

Kahn and Uhlenbeck , Physica § (1933) 399 ) If & . are the translatory

energy levels of a particle in a vslume VYoeand n . the occupation

numbers of the levels , the energy (s Ay and the partition
¢

.
[

function is
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where the prime in 5 " meens summation over all occupatic s ,setisfying

~ N
Lot = N, Then ,Z is the coefficient of Z in the generating
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with N , "\/‘;-‘) 0 at constant V- * \ / N s the energy spectum

becomes continuous : .5 one can thevesr: replace the sum by an integral :
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where X (z ) } 2"
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Since A is the coefficient of 2  in F(zj» ve have , intro-
ducing the de Broglie-wavelength

N = KA RT

and taking Z. to be a complex variable ,
Z, __,L- Adz /V\')C/ /(\

=dme § € =57, fd=z e "t )30 - by z)
according to Caushy's theorem . The closed contour of integration should

enclose 2 =0.

The integral is kmown as Xramer's integral ( Kramers, Leiden comm .,

suppl. N¢ 83 , IG36 ) eand can be evaluated by the method of steepest descent.
.
We rewrite (a = ./ A )

X = QTLJ. ™9 (2:2) with 3(2,,&): a X(x) - (oal

and consider first the case :

[_\'T Z“’o /éLn¢ .I_' _)Z_ 1. ]_(z}is increasing and f,t,
: ' has a maximum at "Zo giv- : by

NDZ




Taking the contour through Z , We can

so the saddlepoint T <L 1 -
replace the integral by an integral over Z =7 _ -+ (4 with n from
— o2 o+ o9 . Here

)Z 9 (o er)t -

g4 (%o, @)= g(xo,@)

with ‘ Ze, al > O and
% ( /7 .
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where ‘- (T, V) is continuous . With p= - ¢ SV 1is leads to the

decreasing portion of the (@,¥) - curve for large \~ .

»

will go to 1 , which leads

ITI. Smell Vv . With decreasing Y % "
to a critical value ¢f W ( or a ) since )(’,(Z) singular at Z =1 . The
critical value By & ‘»’*’c / (\3 is given by
2 .
o= X (1) —;i i T S{F) =2 €=y,

ler the contovr integral ‘arough 7 o for

We now have to conside

"~
Lo —> 1.
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Since )C (z) converges within the unit circle it has an integral

ropresentation which is ( of. ¥. Cpechowski, Physica (1937 ) 715 ) .

2' i + /3 '
X (z) = " I” ’:f: ! T d U
Q) v/ # oz
'
t lar\.(‘. .
e The integrand is double-valuedand
7~
,_/._.-—“v--.é—--—-m——-"--*' has a pole at t = log 7 , @0 one has to
rd B9 TON— ——
e ¢ meke a cut along the positive real t-axis
et
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B e and C should not include the point log =
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For small 2. the integrand can be deves
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If % -—>1, log Z —> o and C would enclose the pols . But as long

as Z <{_1 we have , replacing the path Cbdy €,
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The integral is regular around XZ =1, and can be developed in powers of

(1:-2). Thus one gets

YT >
- s !, = i —-
Xy=d-y(-z)t oot 3 (1-=)
¢ pea R x. (3
where (¢ = ) and X-/- «'\‘L) s (E)
Z =1 is a branchpoint .
With j boall ¥ T T‘Z we then find
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Since a, Y =1 , we have l-ay >0 for a < 8, 1 80

the intezrand ng has a mesimum along the positive real axis and v = 0

is g saddlepoint in the \) ~ plane . We thus can put 1/ -
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The saddle point =1 is a turning point for the path of steepest
descent , It is reached for v = Vi . For v Ve the suddle point
'n
sticks to Z4 =1 . From the obtained expressicn for &  in the case

Vs < \.-“& we find

log Z. = /V ¢ . + terms of order log N
so for V'~ =
gy e - ( Iy R
¥ =NY whers " = -« c.(/{ L T/&

md L O/ = SkT/A,

so for W < \"C the pressure is independent of W, At = ve the
4 ! A o
pressure and 2 f /? V- are continuous , but 2 e /© v “ is discontinuous .
3 P -2 -
since VZ = A/y ~T /A the locus of transition points is ~T &
i

There exists no critical temperature since at any T condensation occurs

for sufficiently small v~ .

From the foregoing it is clear that the mathematicel mechanisms
of the Ising-problem erl the Bose-Hinstein condensation are completely
different . A unitary mathematical formalism for both ceses of phase tran-
sitions ( the only cases which have been solved in an ezact way ) might

be found in the theory of linsar graphs , which we will discuss now .

- 4 - THE THECRY OF LIVIAR GRATES .

I. Introduction . A linear granh is a ccllection of point:s and

of lines , joining these points . A graph can be connecied or disconnected .



Examples are :
a . gay%ey'trges_: linear graphs without cycles .
With 5 points there are only 3 topologi-
s ‘\Zr/ﬁ\. cally diffzrent Cayley trees .
/\/’\. :: For all kinds of graphs, the general
problem is to determine the number of
topologically different graphs . The answer will be different for distine
guishable points and for indistingouishable points .

Cayley investigated the number of isomers C’n Han +2 - The
carbon ¢hains of these isomers form Cavlev trees with the restriction  that
the maximum number of lines arriving at each point ( the " branching number ")
is 4 . In the case of isomers of C’n Han 41 CH and similar compounds

there is one preferred C-atom , the

A L - " o
] \/\ _)‘K/\ y )9,\/\ carbon chain forms a to-called rooted
Cayley-tree . For A =5, there

- foy) .
E{--»—' 5 are evidently 3« rooted by trees .

N
A WS NA Ny

VQW . V b . Cacti : Cayley trees with
[)"\‘7

triangles as units instead of lines ,

| {ﬂ % [éfm AY] With 3 or 4 triangles there are

" resp. 2 and 4 cacti .




« W =

¢, Husimi trees : Cayley trees arbitrary polygo' : as units or also :

linear graphs in which each line belings to at most cne cycle . In pure Husimi

[: 5////<§:;r trees the units are equal, in mixed trees thew

A\
A\* are Cifferant .

In a gererel linear graph one can distinguish articulation points .

An articulatzon point is such thot by omitting it , the graph is divided in
two or more parts . A cunnectzd graph without articulation points we will call
a star . Clearly a general connected graph is dividdd by its articulation
points in stars ., If one omits in the stars all the internal lines end draws
only the " outline ", which is a polygon,
one gets a mixed Husimi tree . In this
sense, the general connected graph is a

generalization of a Husimi tree, just as

a star is a generalization of a polygon.

One of the general problems of graph theory is a combinstorial
problem ., It arises in various fields of physics and is cheracteristic for
successive approximation methods , e.g. in the virial deve pment . An

analogous case is the quantum mechanical perturbation probism , where the

so-called Feynman graphs appear .

- 5 - APPLICATION TO_PHASE TRANSITIONS.

T = " ot

I.Tha conlensation problem . As we saw in parag.l , the central

problem is the evaluaticn of the partition function and in particular the



the configuration integral
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e dz--d-%r (1)

§1 U= '<j’;(r .) we can write { Meyer )

e-U/kT = ~T7‘ e-fp(rij) = —YYP(1+ £, ) (2)
143 1<

where . e-fi(rij)/k'l'-l

The wroblem of dev:loping '!-i is clearly
connected with the theory of graphs , since one can
rerrzsent all terms of a certain type by a linear
gravh and then determine the number of these terms.
=% {eP

For N terms ) the different types of

terms are representzd by the fcllowing graphs

34 ) '{“:-1‘{'"31'7?4
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*F in the terms ) and the nuxbers of teras of each type .
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QN can now be expanded in powers of V ., We consider a certain
" partitio " of the N ( numcered ) molecules in m , single molecules , m,

pairs, m3 triples ..., my sets of molecules where

= f’m,-N (3)

Two special types for N = 4 are for instance ( 1,2) ( 3,4)

(m2=2,m£'=oform;é ) and ( 1,2,3) (4) (ml=l,m =1).1In(2)

3

we take together 2i. terms belonging to the ccmazidered partitio , that is in

which the given pairs, triples , ... each form a connected graph in the graph
- —

revresentation . The cluster function U{- (2, woney ¥ { ) is defined as

the sum of all terms represented by connected graphs of _/ points . For instance:

u, (1,2) = £

2 12

. A,

5 1t L-—. L\

Uy (102,3) = £, £y5 4 B35 35 + £y ), 4+ 8 D5 5 = (57 + (£3
U, ( 1,2,3,4 ) = e A o = P =«
(+) (12) (12) (3) (6) (1)

- =
It is clearly a syurctric function of r, ,..., ry. The cluster integral

is defined by

b 2 }[ =i

= ———— [ e e T ... dr .

t {1+ / ‘ ¢ L

In the { - fcld integral over the connected grarh ve first can perform the

integration over { -1 molecules and the vresnlt ig praliically iniegerdent

of the position of the {~th mblecule since each f is only difrerent ircm

zero for small distances of the molecu.léé . "he integration over the f -th
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molecule then leads to a factor V . Therefore for large V ( and fixed C )
the blz_will become asymptotically independent of V anc¢ 're then only
functions of the temperature . Define b, 1 . For a defim:te partitio we have

the general contribution

T(T(vb{E!)"é (4)

Since the partitio with given numbers m can be redlized in

)

N s/{( )MEO™  m ! om j (5)
different ways, we find

Qi : A
= N ! 4 AT mf= S N !
%= 0™ (21)" )cT(" frol =0 7(7' (o 4 °4(6)

1...81'! m\z! L} ~ m’! m;\...

'
where ;S; means summation over all values my o obeying ( 3 ).

For instance , for N = 4 the partitio 4= 242, represented by

the single graph ::;: , gives a contribution ( V2 ! b2 )2 and it occurs
3 times . This follows also from ( 4) and (5) for m, =2, my = 0 for 42

The partitio 4 = 3 + 1 is represented by the graphs Lm: and I::; 5
It gives a contribution ( Vj ' b5 ) ( v, ! bl) and it occurs four times

( since all the permutations of the three connected points =re included in
Us) . This follows again from ( 4) and (5) with N=4, m) = ., my =3, eil

other mt£= 0.

QN has now been expanded in powers of V.- dnd we are interested in
its behaviour for large N . With the assumed intermolecular potential 95

the function fi will have a large positive part if the temperature is

J
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not too high, and this will lead to b ¢ >0 . We suppoge this to be the case,
80 all terms in ( 6) are positive . The terms in ( 6 ) are then of the ceame .
form ag the volume in the F - space of a gas of N molecules, corresponding
to a certain occupation of cells in the ft-space and, like there, for one

special distribution { for one set of the m ) the term is extremely large .
We therefore can replace QN by this maximum fem y which is the " Maxwell «
Boltzmann distribution " for the m x To find this term we calculate the

maximum of

log. F = log. T—y———
dl- 2'.

(I (Vbl) (Vbz) cee =
= N loge N=- N -Z (mﬁlog my - m{ ) +Zm{log Vb,L,
£ . £
( here we have applied the Stirling formula to N ! and the m { ! which is
allowed since the smell values of mpdo not play a part ‘' with the

auriliary condition ( 3 ) ,

¢ “ 5
Q log. =-Zlogm’£c(;{+2 long{fm’z:o
vith £ S
é-/—i { zgm 9= 0 .
7 {
Applying the Lagrange method of undetermined multipliers, we find
-log-rz{+ log Vbp+ ‘[){f_-:o
or
- el4 4
] Vbr' -{ i Vb Z

where the parameter 2 ( which depends on the volume ) is detervined by

the condition ( 3 ) for the m ya



T

N

This is the first Mayer equation . By tcking the second variation it can be
verified that F (m ), ) is indeed a very sharp maximum . Replacing Q by

m , we find wi e use o rom the ition function
F( ) find with th £ ( 7 ) from the partition functi

.tz;a-leogZ=-%RTlogT+const.N‘T+Nk'rlogz.-k'l‘v%be

hence
Q‘P NkT '31 £ ¢-1 dz

which in view of ! 7 ) yields the sec:ni Mayer equation

—--:71» (8)

=
The equation of state is now obtained by eliminating = from
(7)end (8) . 8ince ( 7 ) cannot explicitly be solved ‘or X , this
has to be done by successive approximation snd one finds P /&T a.a
geries in 1/v , that is the yirial e al expension for the equation of state .

Por largs v , 2 is small ., If we only take the first terms in

(7)and { 8), we find the first approximation

&
’E,F-zz =

<4 |~

$.e., the ideal gas law . The first correction is obtained by inserting

this first approximation for Z in the quedratic terms of (7 ) and (8 ) s

(7)—9-—=z+2b(1)2 or zal-ab( )2

v
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then

-4

2

(8) g =2-2b, (£)P+n, (2)2-2(1.2)

< -

so that in the virial expansion
RT B C
P'V_(1+V+V2+°" )
the second virial coefficient is B = ~ N b2 + From our previous definition

of b2 y we can express B in terms of the intermolecular potential

B(T):-Nb2="zv~’!j (e ) -l)drldr2 =
- -So/f)/k'r > >
a—.-%}- d1‘2[(e -1 d(ri-rz) .
|“> -
where ° « | Ty =¥, s 0OF
) 4
)/ xrT
B(T):ZTTN[(J.-e? )Pzdf:.

From measurements of B at va:%.ous temperatures one can infer
the parameters , detvrmining the intermolecular potential .

The question now arises if the above treatment leads to a condensa-
tion . The answer is determined by the behaviour of the series Y\Z)=}E_Etz5
occuring in the second Mayer equation , the discussion goes along the same
lines as that of the Kramers integral and is given in the paper of Kahn and
Uhlenbeck apd in Kahn's thesis ( On the theory of the e tion  of .“*ate ,
Utrecht, IS)8 ) . The series vlays the ssme part as the rurics .—): § 6/ _(/5/ 2
in the case of the Bose-Binstein cenderzaticn . Ka'm wese wplz 190 vrove that |
condensation only occurs if 7( ( 2z ) fulfilled the following couditions
( analogous to the properties Of the series in the case of Bose- Einstein

condensation ) :
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1) 7( (z) has a singular point z, on the posi*ive real cxis
( according to Hadamard's theorem this will be the case if b P > 0 and if
& singular point exists ) ,
s 1 .
2) 7(,(20) and X (zo) finite ,
3) some additional conditions which are satisfied if in & region

around 2
ouno

X
K(z) =t (2) +(z2-2 )" g(2)
where o is not integer and > 1 (« =% in the Bose-Einstein case ) and
f (z)end g (z) are analytic in this region .
For this case Kahn proved that the isotherm shows a horizontal
portion . But the irvestigation of )(— (z) involves the study of the cluster

irnfegrals b {7 and this problem is in generel still far from solved .

From the foregoing, it is clear that the theory of condensation
leads to two different problems :

a . The combinatorial { or topological ) proble : how many terms

contribute to the cluster integral ¢

b . The integral problem : the evaluation of the different " irredu-
cible " integrals .

For the condensation problem it will be of special interest to
investigate the situaticu for large E , 8ince this will detzrunine the
convergence properties of the series :)C (z) .

The first problem is now completely solved . It is a problem of
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the number of topologically different graphs of a certain type . Cayley was the

first to dezl with such problems in a systematic way , but he did not succeed

in finding the complete answer , even for the case of the Cayley trees .

Much progress was achic. . by a paver of Pciva ( Acta Math . 68 ( 1938 ) 145)

end the case of Cayley trees wes solved by Otter ( Arn. Math. 49 {I948) 583 )
Further literature

R.J. Riddell, Dissertation , Univ. of Michigan ( I951 ) .

R.J. Riddell and G.E. Unhlenbeck , J. Chem. Phy- 21 ( I953) 2056 .

G.W. Ford , Dissertation , Univ. of Michigan ( :954. )

- & 6 . QmMHMER APPLICATIONS OF THE THEORY OF CRAPHS .

As was already mentioned before , the determination of the n-th
term in successive aprrovimation methods generally leads to a combinatorial
prcblem ( how meny contributions ? ) and an integral problen . Examples ax2

_a. The Ising problem . The connection with graph theory was given
by van der Waerdan ( Zs. f. Physik 118 ( 1941 ) 473 ) ; see also the
review article by Newell and Montroll ( Rev. Mod.Phys. 25 ( 1953 ) 353 ) .

The combinatorial problem is : how many different graphs with
given length are pessible in a certain lattice ? Consider a square lattice .

The integral vproblem is very easy : the

a=< 8

irtearel iy 1 for every closed graph

b
i

ena zer: for overy nor-closed graph . The

corbinatorial problem is to find the aumber

- ‘ ‘ of closed graphs ( 1 of 2ngth 4 , 3 of




lenstn 8 , ete ) .

b . The connection with *‘he Bose-Einstein condensation , especially

for systems of interacting particles . The application of graph theory is
presumebly possible , though this has not yet been verified ( Butler and

Friedman , Phys. Rev. 98 (1955) 287,294 ; also Luttinger and Yang ).

¢ . Perturbation problems in field theory . Here the problem is

to determine the number of irreducible Feyman diagrams . It has been solved
by Hurst (Ploc.Roy.Soc. 214 (1952) 44) and Riddell (Phys. Rev. 91 (1953)
1241) .

& 7 . THE PRINCIPAL THEOREM .

PasSing .op to the general method of graph theory, we now give the

principal theorem, due to Polya ( reference above) .

Think of a collection of " figures', each with a certain " content"
which is described by a set of integers. The content may for instance be a
number k of red balls and a number [ of red of white balls . Let us assume
that there are = , different figures of content (k, £.) end let the numbers
ake'be given in the form of a generating function :

£ (x,y) = Z a . xy b (1)
k,2

( in general a funrtion of n variables if the content is described by n
integers). We now consiuer s prints in spzce, to sach of which we will
associate 1 figure so that we obtain a certain configuration . Let Hs be

some permutation group of s points , of degree s and order h .
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Two configurations then will be considered as equivalent if +hey
can be transformed into each other by a permutetion belonsing teo Hs . The
content of a configuration is the sum of the contents of =2 figures .

. . 54
of non-equivalent configuraticne with total counient ( % ,f; ), exprersed

by the generating funcilon

; by ¥ £
Plx,y )= A& Xy~ (2)
k,0

Sclution @ Each permutation of HS can re written uniquely in
its cyclic representation ( such that each object occurs in one and only
one cycle ) and then ccncists of jl ¢ycles of 1, 32 cycles of 2,..
Jg cyel-c of s , where

S

<

d/ kj = 8, ( 3 )
T & fa
Y-l

With the varisbles fl, ssey fs y We introduce the polynomial
- 3 4 3
4 =L qr : e Y 5
- ( Hs ): kl ’S } g ( jl’jz”‘Js) fl fz oo-fs ( 4 )
¢ NEx
the cynle index of Hs , where g (jl"'js) is the number of permutations
in HS with Jl cyclae of ons , ... js cycles of s ar where S!' should

be consistent with ( 3 ) .Also S' g { yr dpr eeedg Y =h .

The selutica of the problen 24 then

1 & o)

BN J ‘.
Flxy)=¢ 5 &(i..d) f(xy)s Tt P . 25,0 ié.zls,r(x.y)z

(5)
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We will not give the proof ( cf. Polva ) , but give rome examples .

1) Let the s points be the vertices of en octahedron and the

content of a configuration be 3 red , 2 blue and 1 white ball. In how many
different ways can the 6 balls be distributed over the 6 vertices if two
arrangements which are transformed
into each other by a rotation are
congicerad the same ? The enswer

is 3 . The figures are the 3 types

of balls, the content is 1 red
ball { 1,0,0 ) 1 blue ball (0,1,0 )
or 1 white Ball ( 0,n,1 ).

£ (x,97,2) = X+v+ 2
'8 =6 and Hs is the octahedron group of rctaticns , with h = 24 , for which

%(H8)=§i-(f16+6f12f4+3fff22+6f3+8f32' )

S0
F(x,y2) =‘12‘4{ £ (xy,2) + 62 xy,2) £ ( x‘i’ yh )+ }

The answer is then the coefficient of x y2 z , that is 3 .

2 ) The same problem if no rotation is allowed . This is the
elementary problem to distribute the balls over 6 points and the answer is

6} : . .
172137 = 60 + Again f (X, ¥y, z)=x+y+zenis =6. B, is

now the unit element , h = 1 . 3 { ns) = ff’ ad F( x,y,2) =(x + y + 2 )6.
3 4

The coefficient of x yzz is bl

-~

1t 2ind
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3 ) . Number of saturated alcohols ¢, B ,, H { not including
the stereo-isomers ) . The counting series id F (x) =§1A,’xn with 4 = 1.
Staerting with the C-atom that carries the - OH , we ses that 4 i is
the number of rooted Cayley trees with n points each of branching number 4.

\/

i (.s.= 3 ) are again rooted carbon cheins, including zero

The figures to be placed on the 3 remaining valencies

OH chains, s¢ cleerly f (x) = F (x) . Since we do not pay
attention to stereo-isomers , Hs is the complete symmetric permutation

group G} of 3 objects , which is of the order h =3 ! = 6 and for which
,2(('_3) e (fi+3f1f2+2f3).

Applying Polya's theorem we have to bear in mind that in ?_x; 3 s £ (x) =

- 2\ )G,,F (x)j only the n-1 remaining C-atoms ( to be niaced at the 3

valencies of - >C - OH ) are counted . To count also the root we have to

shift all the coefficients in this series to the next powe of x . This is

doné":émltiplying the series with x ( then adding 1 to account for the e

first term A = 1 ) . So Polya's thecrem yields

3,

n

F(x) = 1+x-)l3,F(~c)?_l+ lF(x)+5F(x)F(x)+2F(x

from which F (x) can be found by inserting the counting series Z 4 x
14

and successively equating the coefficients of equal powers on both sides :

3 4 5

P(x) = 1+x+x° +2% + 457 + 8x +l7x6+ cene

4) Number of alcohols C, H, ., 0H, incluling stereo isomers.

The derivation is the same as in 3) apart from the fact the valencias are
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now placed according to a tetrahedroqhnd that now only ro ‘:ions over 120°
around one valency axis are allowed . Hs is now the cycli: group S} of 3
objects , of order 3 . This leads to

(s

1 3
3)=5(f1+2f3),

F{x)=l+°§{FB(x)+2F(x5)§ ,
vwhich yields

3 4 5

P(x) =1+x+ L2204 5% + 11 X7 + ceeee

5) The Coylev formula . We now ask for the counting series T(x)

for the number Tn of rooted Cayley trees ( where the " branching number "

of each point is no longer restricted to 4 as was the case for the saturated

alcohols ) . T, is the number of thesc trees with n lines ( n+ 1 points )

and oo
g TW A
e n=0
[ \ / \:7;;r\ . .
A £ with To = 1, Tl =1, T2 =2,... The lines starting

from the root we call main bran 3s ; let 8 be the

nunter of main branches . The f. jures to be placed
at the & main branches are again root~. Cayley trees anu the figure series
is again the counting meries for these rooted trees . HS is the full
symmetric grovp Gs of s «ubizcts, of order s ! For this grcup the number

€ ( jl, °"js ) of €q. ( 4 ) is

s !

g ( jl"" JS) Sk

4% de 331 SEIE N E N P
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The factors ,j, !’jz! «.. aocount for the permutatiens of the j‘ s Ccycles
among each other) of the j2 ¢ycles among each other etc . and the factors
k¥ account for the fact that { 12 ,..k) = (23 ...kf) = ... (k...321 ).
The cycle index therefore is

/ s ! i &
t 3 4 - f f e e ( 6 )
o Jn oV 31 5 1 i 2
‘ 32 s v Jl . J& so e

) . Applying Polya's theorem we find :

4(¢6) =
J

/
(5 according to eg. (

o j=

o

72

D=1+ £2{c 1@}
2e) =1+ 2 g,{Gs T ()| (7)

18

The factor x° ensures that we zlso count the s lines of the root ( cf.
exanple 3 ) , the summation is over all possible numbers of main branches .

Inserting (6 ) into ( 7 ) we find

= 3, +23, + +s$
St | Tedy TreTRNg
?(x) =1 + /L 2t >

I — T (x) T () ..
s=1 (/1" j,}2 25t

and since s -—> 0C the prime can be omitted

e

<2 OA"‘! hy r 'Ejr ?&
T (x) = | "./,—-4 1 1:__2:.‘_(_;)__( - 'T exr (&) /r
= T3 3,1 o
or o0
2 ' £ 75 /e
r=1
P(x) = e (8)

the Cayley equation , which yields after development

4 5

T(x)=1-x+2.{2+4y.3+9x 420X +48):6+....

One can raise the question whether such a series has only a
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formal meaning or it has really a region of couvergence . We shall later see
that the series has a region of convergence and that the zingular point
which is nearcst to the origin in the complex plane lies on the positive
real axis ( as it shcu?d for a series with positive coefficients according to
Hademurd's theorem ) . We then also return to the counection of the series

with the mathematical formatiai. of the condensation phenimenon .

§ 8_. CENFRALIZATIONS . We will now use Polyhs theorem to count

more complicated graphs . We first introduce the notion of the groun of a
Zrarh , denoted by r—’: this is the group of covering operations ( all
operations which transform the graph into itself ) . The crder of {7 is

the symmetry number of the graph . We consider some examp. 3 .

If the graph is a rectangle , || is the dieler group D, of
h——s__q.

rotations end reflections of a rectangle ( order 8 ) .

Fera.rectangle with 2 diagonals ( a complete graph of 4 points)

any permutation of the 4 points is allowed and is the symmetric group
ﬂ“g"g)?’ G, of permutations of four objects (order 4 ! =24 ) .
{L_’\J For a rectangle with one diagonal , r' consists of the

unit element, the 2" flips " around the lines 1-3 and 2-4 , and their

I'T_‘\'” product, so is the four group E,(13),(24), (13)(24) .

! j If we want to keep a given point fixed , the number of

ccfverlng opzlau.c*ls will be restricted . Ther form a subgroup of r‘

1
which we will cail ‘the derived group r q where q denotes the fixed
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point . In the first two examples }’1 is the same whatew » the choice of

the point q . In the third example {’L is different r q=1( or 3 )

-~

32(’)5;%?(/”:2}2(@) (1)

¥

G

where the sum is taken over diffcrent derived groups ( N.B. In evalvuating
c;j fJ ) the fixed poirt g should ¢f course not be included in the
]
cyclic representation of [’L . One can easily verify thc¢ theorem for the

above examples .

In considering now more complicated graphs we first suppose all

the " building blocks " to be the seme ( as the lines in Cayley trees or

T ;S;;;K the triangles in cacti and so consider in
(:\iéﬁ“:>/) general pure star trees ( generalisation of
<
\\\Qvl Husimi trees ) .

a) Pure rooted star trees . lLet Tn be the number of different

pure rooted star trees of n ( equal ) stars and let us :gain introduce

; S n . . .
the counting series t (x) = 2, T X' with T =1 We will de ive
n=0

root’ —, //Yﬁ:%x an implicit ec:ation for T (x) in two stups,
N s
/§ﬁ§7, — using in each step Polya's theorem .
gl
22( /£l_ I . Ac in ex. 5) of §7 , we call strrs

: I
starting from the rpot ( e.g. the pentagons with 2 diagonals in the figure)

the main branches . If Tn . is the nuvmber of trees with n stars and



m main branches,we can introduce the generating function

e,
T (x) =7 I X" (2)
. b B

and clearly have
[ ]

T ) =7t () (T (D=1  (3)

m=0
We now can reduce T_ {x) to T, (x) by considering the root as
an m-fold point on each of which 1 rooted tree of 1 main branch is hung .
For the configuration the figure series is ‘I‘1 (x) , the number of points
s = m, the group Hs is the full symmetric group Gm ( any permutetion of
the m rooted subtrees is allewed ) and Polya‘s theorem gives us the configu-
ration series -
T (x) = ';"\JG,T (x) (. (4)
- A
" (5 C ! |
If we now insert ( 4 ) in ( 3 ), we find ( in the same way as
in § 7 eq. ( 8 ) was derived from‘eq. (71
oy
éz:: T (x5 ) /o
T (x) = o™ ’ (5)
II. To find T, (x) , we 2gain apply Polya's tr2orem . The s
~ints for the figures are the vertices of the 1 main branch , except the

root { in the exemple s = 4 ) the figures series is T (x) , the group H

b 14 ; ; .
S “'r' ‘s fermed By 211 the permutations of the points of the
t
/ \
¢Zf-///’\ ma’» branch vhicoh concerve its strustire aud kesp the
\N”
rool- root fixsd , thet is, | a of the stew, Polya's ilheor>m

gives then the confliguraticnal series
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n @ -] x ’Z{Q,T(nf, (6)

where the factor x compensates the fact that the main branch is not counted
by Z}' and where the sum should be taken over the topologically different
possible choices of a point of the main branch as the root .

Applying theorem ( 1 ) we can rewrite ( 6 ) as

7, (x) =x9'{ f’,w(x)j (1)

which combines with ( 5 ) to yield

& .
G2y h e fa (&)

?(x) =¢

As en example, consider the cese where the stars are rectangles .
1 a1 fh o2 2 alal 143
1=D4 ancl()(})-%)ifl +of )+ 3 42 soé(;)=2{fl+flf21)

The trees are pure Husimi trees and the counting series Q (x) satisfies
(]

& A a@a(F) {/a

Q(x) =e ™
from which one finds

(x)=1+x+3x2+11x3+4514+208x5+....

For n=2 there are 3 trees , arising from the 3
é\‘ different pessible positions of the root .
S

b) Mired rooted star trees . The sta>s can now be chosen out of

a given finite collection ( think of polycons with given r Dbers of d:agonals)

As an example we consider rooted Husimi trees of n, linei, and n3 triangles



and introduce a counting scries of 2 variables

H(xy) = > H (n, ""5) 3 y™3,  (H(0,0 ) =1 )

W
L3
The reasoning is the same as for pure trees : one considers the

n

ccunting series HL( E (x,y ) for this type of trees with k lines angd .é’,
triangles together forming k + f main branches . At these k-&-! main
)

brenches, we hang the {igures . Consider first [ =0 ( or"v k main lines )
The tigures series is H (x,y ) and thus are k points , s= 6 an we
roul ( ) k'?f" (~‘?' Th ider k
would get Hko Ly )=x A 98 H( x5y, . Then c.nsider =0

gL J
\ caly main triangles ) . TFor cach main triangle , the figare s.cies

would then be the configurational seiiez of the miusd rooted trees hung on

the 2 rem=iniag corners of that min triacgle, that is

}{Gl , H( x,v )) =%—/{H2 ( x,y )+ H(x"* ,_yQ)).

Using this as the figure series for the figures to be hung cn the ﬁ mein

triangles, we find

Ho,(/(x,y)=yt'g,f4(,5@a,H(x,y)} .

For arbitrary values of K and £ , We have

He ¢ (x,y) = B, (xy) K ) (x.7)

and with

- \ \75“ {
B (xy) =< H ,(zy)
[ 2

ey

we find ( along the sare lines as was done in § 7, ex.5 )



i o 1
H(x,y) = exp 4_ X H (5, y°) + s:f ;2; [)) (5% (xls ,yzs)j;)
(9)
which leads to
H (x,y) =

z2 3 2 4 3
L4x +y +2X + 3xy +2y + 45 + IOX Yy + IO Xy + 5% + .un

c) Pure free stor trecs . We dencte the counting series as

t (x) =Z tn Xn
n

1) 6ayley trees

( star is line ) . For this case Otter ( Amn
of Math.49 (1948 ) 583 ) derived

t (x) = T(x)-% X£Tz(x)—T(xz)§

P (x) is the corresponding counting series for rooted trees .

Note that
in this section both t (x) and T (x) are counted according to the number of
stars .

2) Cacti ( star is triengle ) . Harary and Unlembeck ( Proc. Nat.
Ac. U.S. 39 ( 1953) 315 ) showed for this cese .

t (x) =1 (x) --% T3(x) -1 x )

3)  Husini treed with rectanglsd ,

Harary and Uhlenbeck deriwed

E@ =T @243 1 P (D) 2RERE T(y“)?‘

Of course, in each .use t(x) <:T(x) . Tl.e gzo~al answer for arbitrary stars

has been given by Norman ( Michigan Univ. diss.I954 )

H(x)= 2(x) -x T(x)% Metole x dgf'w(x)} 10)
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Proof : Consider a definite star tree H of n equal stars ,

We call two points similar if there exists a ccvering cperation of H which
transforms these points into each other . Let P (H) be the number of dssimilar
points of H , likewise s(H) the total number of dissimilar stars in H

ard f& the numter of dissimilar points in “he

i-th class of dissimiiur stors . We have the

4 diss.pcints

2 " gtars S(H)
Leemz ¢ PH) ~1= T ( P~- 1) (11)
=3 , =2 ' “3

Froof : Consicer the eripoint stars of .I . They ere of various
clesses . Remove all similar endpcint stars of a definite class, say class 1.
Fach of them conteins Tﬂ dissimilar points . In this way one removes fz-l
dissimilar points because an endpoint star by dofinition has only cne articu-
lation point,and this articulation point must e ore of t dissimilar points
and it is not removed by removing the endpoint star . In 1.ae remaining tree,
one removes the next class of similar eripcint stars, by vhich one takes
away'?a-l dissimilar points , etc . One finally is left with a tree of only

one class of stars in which there are now gy, dissimilar points laft .,

|” «(H)

This proves the lemnz .

Consider next the collection of 211 free pure trees of n stars .
For each of them ( 11 ) applies . To make them rcctel trzes, each of the
dissimilar points can be choosen as the root . Suuming eq. (11) over all

the free trees we therefore obtain



o(H ) -
Tn-tn=ﬁj§f( -?swn) = -3 (1)
n
n

or for the corresponding ccmn'.tin.g series ( A(x) = Z Ay xn, etc )
4
t(x) = T(x) -4(x) + B(x) (13)

A n is the total number of dissimilar pointa in all the free pure
trees of n atars , each counted k -fold if it occurs in k dissimilar
stars . Bn is the total number of dissimilar stars in this collection of
n-starred trees . It is equal to the number of ways of hanging rooted star
trees ( altogether n-l1 stars ) at the corners of one bas . star, where two
configurations are counted as one if they are transformed into sach other by
a covering operation of the group F of the star . We therefore can apply
Polya's theorem to find B(x) . The figure series is T (x) ( rooted star
trees ! ), 8= mmber of points of the star and the group B is preciselyr,

. The configuration series is therefore ’2/ { r, , T (x)({and

B (x) = x?l} r’,u,.>§

{ the factor x ensures that the basic star is also counted ; one could
also add unity to include Bo =1, but it would be cancelled by a term ~1
in (13) resulting from - 4 (x) . We thus see that B (x) of (13) gives rise
to the last term on the right-hand side of ( 10 ) .

In a si...ar wvay ,Norman shcald +'ot - A (%) leads to the second

term on the right-hand side of ( 10 ) .



w 3T =

§ 9. CONVERGEN7:3 AND ASYMPTOTIC RiF.AVIOUR OF COUNTING SERIES .

We will examplify the underlying problems for the case of Cayley

trees for the counting series of which we derived (§ 7, eq.(8) in the case of

rootad trees . wf-
(2% c_-r=l <7 (5) /r
n -
(x) =/7 Tn X =@ (To" 1) (1)

‘=0
The convergence and the enalytic behaviour of T (x) were first
investigated by Otter .
a) T(x)_ converges . Since the coefficients T, are positive ,

T (x!‘) < T (x) for x > 0 . From this it follows that for x> OT

a majorant the function Y(x) hich satisfies

r
%x):eé YACINE:

Now
) =e-‘8n(l-x>/) _ 1
Tl - x)’
or
=7
_}[(x)=(1- l1-4x)/ 2x.
Hence the convergence radius of y(x) is e 2 . The convergence radius of

4
T(x) is therefore at least & . Furthermore , clearly o( ( 1, 8o

L L« )

4
b) T(X) = a is finite . According to Ha- -ard's therrem
for a series with positive coefficients , the first singul » roint 1i:¢3 on

the positive real axis, it is the point ’\ . In order to prove that Lim T(x)
X Dag
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exists and has a finite value a , we remark
that -{(-x) > exp ( x T(x))( countains only
the first term of Z in (1) for x > 0, so

$ +
(o]
’?’h T (x) x
Since t (x) is monotonically increasing , it follows that T(x) bounded
for x éo(

c) Mo )= X '1_ Consider the function

1.2, ,2
—_ Xy +=x T IX%) % ...
Flx,y )= A -y (2)

For x £ { the equation F (x,y) = O has the unique solution y = T (x) and
P(X,a)=0.4Around x=o ,y=a the function F (x,y ) is analytic
in x and in y(inxsincearoundx:a((l,wehave xzéa(,so

T (x2) is analytic , etc ) . From this it follows that

:_) L (3)

V) 1%

Suppoae that (B F/dy ) were # 0 . We could then develop ¥ ( x, y )
eround x =  , y =a ( where P is analytic ) and fram the theory of
implicit functions it then would follow that y exiets as an analytic function
of x in this region . But this is contradictory to the fact that x =

is a singular point for y=T ( x ) .

From ( 2 ) and ( 3 ) we find

ﬁ(} \ ={xexy+%x2’l‘(:€)+.... ; -0
\',3'&-", x - 1
/¥

o

«
a



- 39 -

d)__Vglx_xe.ogQ(_. Inserting x =9 in (1 ) , we obtain
1,2 L
)= - o1tz T % s
which can be solved for { by successive approximation . The first ~pproxi-

mation would be X = e ko 0, 368 ... Otter computed of to 7 decimsals

and fourd o = 0,3383219 ...

e) X i. a brench point of finite order . From (2) it follows

- e s EE = wm W e M ee e v Gm ew em s o Em wm e =

B 5 3 1

X=o

y=a '
Since F (x,y ) is enalytic in x and in y around x= 4 , y =& , this
implies that in this region x is an analytic function of y , and 0( is a
branchpoint of finite order .

d x ; er
. = o
dy "3: /)X x=,,(

Y = Q, y =8

in viewof ( 3 ) and ( 4 ) .

- as e e e - e e m w es

—_—
and so T (x) must branch as \J X= &t x=d and around this point
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T(z):i- +b \}.;‘:;’-» R(x) (£ -x)+ ... " (5)

where R (x) is regular . To calculate b we take the logarithmic derivative
of (1)

T (x) /T (x) =xT(x) + 2 T x2) # eeee (x) +xT (12) ¥ wis

so that

x T'(x) »{ l-x T(x)}: (x) Z_ Ai T( Y + XZ?V)' g (x'h, 'y )§

with ( 5 ) this gives

2 5 1, < V ) £at IR
dd 2at]as/ f o 2o om0
1’19"—

From this Otter computed b = 7,924780 .

g ) Asymptot: . behaviowr . In order to find the asymptotic

behaviour of the '1‘ we consider the Cauchy integral ( around the origin )

. jé_u .

and apply the method of stecpest descent , The discussion s the same as
that of the Kramers integral : putting y= \}_,{‘-.—27 aroun¢c 2 = o , One
sees that in the y-plane y=0 is a steep maximum along the reel axis ,so0 the
p2th of steepest descent is the imaginary axis . ¢ is again a turning

point for the path of steepest descent in the Z - plane . Putting 7 -_-..i'ft

one finds
J -n + '3-
.»"". Tn 1 C;j_ 3‘). . d—_v-
S———— = - z
a4 \ 2\ n° 2
Y-pane Z-plane
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50 that the numbers increase exponentially . Already for n = IO this formula
is quite good : it gives Tg X 708 , whereas the exact result is Ta = 719
h) Free Cayley trees . AS a special case of the Norman formula , we

have for the counting series ( see § 8, ¢ 1)

t(x):'l‘(x)-% xj(‘TZ(x)-T(xz)j (6)

So t (x) has the same radins of convergence ¢{ as T(x) . The bahaviour
around x = &  is sligtly different . Inserting ( 5 ) into { 6 ) one sees
that the coefficient of \Sa( -x-.‘ cancels and

2
.t(x)=t(0()°D("(~x)3/+--- (7)

Again , o is a branchpoint of t'> order 2 , but the behaviour of

t (x) is different . For D one finds i c ‘33 and for the asymptotic

3
behaviour y i g_
t ’—! —l-D—- .
n-l 4 V‘ﬁ' v 572

i) gegega%iga}_:ign_. The above treatment can be geeralized to
include such cases as cacti and pure Husimi trees . The cow::ing numbers then
rise faster and () is smaller . Ford ( diss. I954; Michigan ) showed, that
the general behaviour remains the same for arbitrary mixed Husimi trees
( counted acoording to the number of points ) . Even for this case the
behaviour of the counticg series is as \m for rootedl trees and as
( £ - X )5,’2 for free *rees . And even Zor ell mixaed s+zr tuces( cownted

again according to the number of points ) tiis result is found with the



restriction that the constituting stars consists of a finite and fixed mumber

of linnarly independent cycles ,

§ 10 . THE_POSSIBLE_CCNNICYION WITH TR CONDENSATION PROBIEM .

T —

In answering ..z questira of the connectiom between graph theory and
the condensation problem, we recall first the Mayer eguations ( §5 ), in

whicn the cluster integrals

b (1) 2-1]-)- f"‘;(ue(?,‘ 3‘) d}j..cﬁi (1)

occured . The cluster function U£ was defined as tne sw. of all prclucts

of functions fij represented by comnnected zraphs of .Q ~oints anc therefore
Up is symmetric in the '?T ....;ﬁ? . This is the first point where sraph
theory comes in .

Furthermore , in Kahn's treatuent of the condensation problem the

necessary conditions for the behaviour of the series }{( Z) = 31\1’_. by ze

( occuring in the second Mayer equation ) were given in order tiat condensa-
tion should occur . As a matter of fact, we saw that the generating functions

( the counting series) investigated in the preceding section , precisely satis®y

these conditions . This suggests a conmnection with the theory of graphs .

Let us first iaveetigate the cluster integrals . We then have to
consider 811 cornc. =24 <phe of £ points - 1 we ~rdz» them fivet according
to their numbcr of lines . Let this mumber be k. With givoa~ inn -

2.. 1 é k & % E( {Z-l) . With k = ﬁ -1, ta2=2 grzoh contaius ne cycles
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and is a Cayley tree . For k = .2 , there is one cycle in the graph , which
now is a mixed Husimi tree with 1 cycle ( polygon ) . Going on in this way ,
we see that if the graphs are ordered according to increasing k , they are

: '*“—? at the same time arranged ccording to the
l | k=£-
)

P A L.

!o.—I ? i/i k-t
0(fork= -1)uptog (£ -1) (f -2) (forx=4& (f-1)-1)
With given £ and k , we can further distinguish the different

number of cycles , which runs from

types of such graphs . Let b/ ( € ,k )} be the number of topologically different
connected graphs of J po;mts and k lines . For X ( 3 , k ) a functional
relation is known ,

Consider finally a definite graph i out of the Y ( {, k ) diffe-
rent ones . The corresponding contribution to b Z contains E,' / si( (Z. k )
equal terms , where s; ( e ,k ) is the symmetry number of the connected
graph i with ﬁ pointa and k lines ( = the order of the group of that
graph ) , since there are ,2 ! permutations of the points and s, ( € , k)

covering operations of that graph . So, we can rewrite ( 1 ) as

H00 yiw  pi
1 — ".\ 7 . . i
b’z(T)-:W A A ) gc(k,l!) (2)

-l i=1 1

An extensive discussiop of this cluster integrals and the vir‘al
coefficienta , to which they give rise , is given by Ridde! . and Tk’ uberk ,

J.Chem,Phys. 21 ( 1953) 2056 .
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Consider first the coefficient e, (0, )e é’z/ 8y (f k) , that is

the number of connected graphs with g individualized points and k 1lines

of topological class i . Then
3;\_({,'«}»
C([ak)! 2._ ci(g,k) (3)

i=l
is the total number of connected graphs with f individualized points and

k lines . This number can be found . We introduce the series

v g
i L
5‘) .é'\::“( K A /. )‘, L (e - ,) \
¥ (xy) =6~ £ - J. | j (4)
\..'=l ko i \ K y;

vhich is the counting series for all graphs ( connected and discommected )
with Q individualized points and k lines , since the binomial coefficient

clearly gives the number of possible ways to take k lines out of 4 & ( g-l).
‘;)/

vhich is the maximum number of lines for points . Analogously , we intro-

duce C "2 e {‘.{‘ \) Kk

\ X ¥
o=l 0 o) T (5)

e:l“ k=( -1
For these two series the relation
C(x.y)=log{l+N(x.y )}> (6)
J
can be proved ( cf. the above mentioned paper ; a simpler y-cof has been
given by Ford in kis dissertation ) . The numbers c ({ <) are ther fore

determined by (4) ,(5) and (6) ard ore fi~s

FC 1)) fF (@ -1 -2)
¢ (8 ,k) =( 2 . }_{)( N }’+ correction terms .
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For large £ , and k not near to its limits (,, -1 and % € (f‘,-—l) 1.';he second
term is very enall with . speet o the firsi‘;one , which means that in that case
the mejority of the graphs are connecied , & plawsible result .

In order to find an asyupcotic expression for N (\', ,k) we consider

‘S

the number { ( k) of topological different graphs of ! points and X lines,

connected or disconnected . It has been determined by Polye in the form of

the counting polynomial o
1) .
F (y)= _ R (F,k)y (7)
=
by means of the Polya theorem . The derivation is as follows .
Since we consider free graphs , the { points are equivalent so
their group is the full symmetric group Gy . We can say that our figure

collection consists of two objects : a line mnd no line . The figure counting

series is therefore 1 + y . However , we do not hang these figures on the!,

rl

the s
points. Now every permutation otV zpoints induces a persutaticn of the
% € (€ -1) pairs of points . These permutations therefore form a permutation
group of degree ( number of objects ) + & (£-1 ) . We will call it the pair

group df . According to Polya's theorem then

E (y)=},»-1:3'<.t .1+y} (8)

To find the cycle index, one has to determine what permutation of
type {il, 12,....,1_;_.; (7.1 )\}( i, ome-cyaies , i, twe-cycles , etc ) coxresponds
- 2 .J

to a permutation cf type g’;jl, 32, ‘“’j?,} in G{. . One has %o distinguich @
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a . Poinva , occuring in one cycle ; say of lenzth 1 . Arrange

4 .
AN 4 the « points on a polygon and number

© - / !i 5 ‘\ o \‘\\ 4
“i{f'm'? ‘ /-,;;Z // / ‘\\4_-, them . Now under a cyclic permutation

L ,."' . ."// i ‘\ ‘~' ‘\ 7 !

: “,\ AT 7.><‘( / (1,2,..., + ) the point pair 1-2 gces

Ll i ,I“‘:\ \{/ \‘\,/
g T&—;f;’ o q'-"'""-“g into the pair 2 - 3 , etc, which perciszly

gives rise to a point Hair cycle ~f length
V. . FPurther, pair 1-3 goes into 2-4 , etc, which gives r se to anc her
point-pair cycle of length w . So one can go on .Clearly one gets :
- for w odd : % (v <1) cycles of length -/ in the pair group ,
- " « even: ¥ (tel1) ™ A I
and one cycle ( consisting of the main diagonals)

of length ¥\ .

_b . Points occuring in different cycles .
If the cycles are all of equal length ( say i )
then they clearly induce { cycles of length .

in the pair group . If the cycles are of unequal

length ( say ,, ,\.,42) then their permutations
will induce cycles of iength n (\,{1 i ?‘) = least common multiplier of Uy,

LA, and the number of such cycles wiil be d (u 4 v\, ) = largest common
divisor of ii,, \.A . Remember m{ WAy, A,) d (\;A1 ,Lk) ="h, Ay

Since there are ¥ ! /T k kj ! permutations ¢ type ( jl'jg"'

K
3 } in Gp ene gets for the cycle index of B g



e | . .
Q (Yn\ 4 { 4 T'-r )i } ',\-1} -T .‘ 2 .‘.j (V )",) /
€ = e S l \ t / iy 1 4

/ /' gt ) B . o, Y ) ‘.“K (I

e ) R K Rosda R oevim
9
i \ [)4"6‘.. ‘\3" 1«)": i ga‘\ é.& A (.2
* 3:" - g m (X 2) (’9)

Ft'( y ) follows from ( 8 ) and (9 ) . For % =5, one finds , e.g.,

5 9 10

(+2y8-:-y + ¥y

5 +6y6+4y

FS(y) =1l+y+ 2y2 + 4y’ + 6y4+ Cy

The 4 different graphs of 5 points and 3 lines are :

/ g ’\
o s & LA
N ./

A —————
.

From the explicit exprecsion for F_ (y) one can also derive the
asymptotic behavior of T{ ( e k) + For large e s and k not near to the
end points of its domain (OA-; ¥ ( -1)} cne finds :

(8 k )= bk ,: (1)

s

which means that the majority of the graphs have no symmetry ( the binomial
coefficient gives the number of connected + disconnected graphs with e.:
individualized points and k lines , the factor 1/ ¢ ! removes the distine
guishability of the points ) .

We see theref.»e , that for large e. and ®* averaga " values of k

the majority of the grapls ere cornectied ond have no symmatry , so thot

y (B )55 o, )Tl k) (11)
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Returninz .5 en.(2), let us suppose That i(ﬁ , X) A/ is approxi-

mately constant ( independent of k and { ) . The behaviour of bk’ would then
be
— ,P '¢- Viai H
e FA gy e
and 4 L

- $0(¢-1) ¢
Lo

X (2) ~i% 2
tharefore '3( (z_) would a.lwegfs be divergent for Z 3 0. So we have to mow
something about the dependence of :1(‘: ,X) on k . The integral shouild
decrease for larger values of k in order that \.(Z) be convergent . This
will actually be the case since adding a line between two points means that
we introduce a factor in the integrand which requires the #wo points to be
less than a certain distance apart . Thus with increasing k the integrand

will differ from zero over a smaller region of the 38— dinensional phase space .

§ 17 . THE INTEGRAL PRODIEM . The integrals (% ,k) should cause

the convergence of ™ ’Z.) by suppressing a large number of configurations .
To study the behaviour of the integral ,we have to introduce a special type
of intermolecular potential, or raiher a spccial shoice for the fuuziion £ (r).
For this purpose, it is useful to consider :
A. The Gaussian model . In § 5 , we gave the general behaviour

of f (r) for short-range repulsion + long-range attractio:. - e.z. the

2
<

Lennard-Jenes potential ) . If we would take f (r) = Ae " with 477 O



( corresponding to attractive forces only ) we would suppress the negative
part of f(r) and clearly we could nct expect ¢ (2) to be ronvergent . To
include the repulsive part of the intermolecular force , w. could add &« term
~(1+4)e -F = ( remember that f(o) = ~ 1 ) . However, it is of interest
to consider only one Gaussian
R

-t

f(r): - e

corresponding to repulsive forces only .

o The metivation of this choice is the striking

«”’,/’/// and paradoxical result of Kirkwood and co-

workers, who showed from the behaviour of the

phase integral and on the basis of the so-
called " superposition approximation " that a gas of molecules with only
repulsive forces ( e.g. elastic spheres ) shows a phase transition : at high
pressure the systen s split up into two phases with different density and
entropy , a solid phase ( arrangements of ordered molecules )} surrounded by
& liquid phase ( series of articles from Kirwood and Monrce, J. Chem. Phys.9
( 1941) 514 up to Kirwood , Maun and Alder , J.Chem. Phys. 18 ( 1950) 1040)

Although perhaps hard to believe , one must admit that there is no rigorous

argument which disproves the existence of such a " condens: ;ion " . In ~ddition

there is the suggestion that perhaps the Kiqyood transitior has something
t~ do with the solidification of helium , whica is kn-wn to occur at t-mpera-
tures many times the critical temperature ( 5 2 k ) if the pressure is

high enough .
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This can hardly be ascribed to the weak
attractive forces betw: a the heliv~ atoms

which are of the order of k TC The

Tit%a
solidification of a gas is perhaps a general
consequence of the sharp repulsive forces.
( For helium the intermolecular force is
very well knezown j as for all chemically
neie-aesive nolecules it consists of a Van
der Waals attraction on which a sharp
repulsive core is suverimuosed ) .

It might well be a general fact of

nature that any assembly of molecules

can at any temperature be brought into

the solid state if one raisesthe pressure high enougn . Even the phase

@iagram of water ( where the density of the solid state is less than the

density of the liguid ) shows this behaviour .

- i
Soi-&, /"/\/0“ ¢
DUy
/ L

fr
PHASE DIAGRAM OF WATER.

If this is indeed a general fact of
nature the explanatior in terms of the
intermolecular forces chould be found in
some general feature of these forces .
Such a feature is the presence of a sharp

rerulsive core .
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Ay
With only repulsiwc forces ore would think of

& 2 elastic sph:res of ’‘ismeter O . However, the

Qo
J ‘[ cluster integral: are hard to calculate for this

case and the virial coefficients have only been
calculated up to the 4 th one . Since the kirkwood transition will according
to the above discussion be independent of the special form of the repulsive
potential, we will consider the Gaussian model (1) for the  unction £(.) .

We then have to consider for a connected graph of type i

o

e

e - -2
N ] g 2 )I‘ 'I‘/
108y = & je BRI e (2)
“F ¥ ¢ I ! ¢
¢ \" J‘ s

with A = -1 , where thie sum is over those lines n, m which occur in the
graph . This sum can be written as a quadratic form

. 2 4

\ I
L[ ¥ [f= S DAY r T
n,m n m = =1 nm n m ( 3 )

where /\ it is given by

]

-1 if the line ( n,m ) occurs

0 h y” does nut occur

b |

number of lines attached to the point ( = branching number if
n=m

We then introduce the matrix with elements A o the graph moteix
for this connected graph . 7\ nm clearly is symmetric . ~he diagonal

elements are the branching numbers of the é’points , the ¢ “-diagonal



elements are either 0 or -1 . As an example , we give the graph matrix for

one special graph cf 4 points :

J 3 -1 -1 "1\
!

[ .1 2 -1 0\ 4‘3‘“—,1‘
\ -
-1 -1 3 -1 1 . saad
i K ?

-1 0 -1 2 |

/

a. The determinant WAl is zero . This is immediately clear from
the definition of A B B since by adding all columns to the firstbne the
elements of the first column become ( branching number - bra.nchiné number )
=0 .

b. The minors of rank € -1 are all equal ( in absolute value ).
( For disconnected graphs the complexity is zero ) . Their value is called
the graph complexity d ( k) We will show this for the/’ principal
minors ( obtained by striking out the n-th row and column ) . If we take the
position of the first point as the origin , r, = O and the first row and
column of ;\ do not occur in ( 3 ) , the quadratic form thus being deter-

mined by the (1,1 ) - ginor . The integration over r, then leads to a

1
factor Y and one gets " P
J Za
o - 212 5‘2 £ r 7
/ { ' n:= m= nn nom o poc
-]'":Yi(g’k)::A_/’\,....;e Q-2 s e dr‘? =
3/2 (4 -1) 3/2
k Y -
= 4 ( o?-) ,}'\ dl (f),k ! t
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where d; (£ ,k ) is the minor obtained by striking out th first ro: and
column in Kl . Cleerly , the same vziue is obtained by striking out the
n-th row and colurn , since the result canrot depend on the choice of the
origin . The é? principal minors have therefore the same absolute value .
with (r /x )2 - 2 b ( the first virial coefficient, following
from the Gaussian model , then becomes equal to b ) the expression for the

cluster integral becomes

¢ 3(-1) 7 (7,k)

=1 = k S ad 1 i

b! =( 2 b ) P, A i T 7 ;/2
/ k=¥ -1 i=1 Si( X ’K) { d’i( ¥ 9*)}:

(4)
_¢ . FPor comnected graphs with articulation points ( star trees )
the complexity is the j:oduct of the complexities of *the constituing stars :
0 T tar
g (£x)= /1 a°®
all stars

This is again obvious from the integral representation .

_d . The complexity of a star is equal to the mu ber of different
Cayley trees of é{ individualized points that can be forred from the él
points and k 1lines , occuring in the star . This theorem was already known
to Kirchhoff ( collected Works) , who derived it in connection with the
theory of electric circuits . The general proof is given by Ford ( aiss.1954,
Univ. of lMichigan ) . Tue idea of the prcof is to write out the complexity,

then each term corresponds to one Caymey tree . We give an exumple :



(2 -1 0 =1 : t -‘
' 2 ;' i !. ..... L e
b -1 2 -1 o
.E b= ja =4
4\\...~ \il ‘v O -1 2 -1 i.! - '{ .

3 l o ST Y

\ =l 0 =1 24

e . The maximum value of di( Z,k) for a given 1lue of £ is

Ir, ‘=2 and is obtained for a complete graph ( all pairs connected,
k=% o (%=1 ) . For a complete graph N m = {i -1 ifn=mand = -1
S e B B | for n # m . The matrix (_\ has 'ﬁ; rows and

\
-l ", ‘-1 -l see -l

4 columns and{,’,\fl = 0 whereas forming the
-1 —l {, -1 see -1

principal minor ,we get a cyclic determinant,
i ’

; § A
. =1 -1 =1 sievaei=l] the value of which is 7. ° 2 =d . Using

the Kirchhoff theprem one can therefore conclude that there are ? €-2

esevcaes e oGP sse0 e

e e e s

-

Cayley trees with ﬁ, individualized points , which is a classical result .

£ Y (£ ) ' p HED(E-2)
2 gl e f=f . (5)
i=l k-2 +1

The proof of this thecr_ i ( due to Tord) is simple . The left-hand side is
the total number of all possible Cayley trees of{f individualized points
and k 1lines ( including disconnected trees since *hen di =0 ) This number

can also be found by starting with a complete grarh of # points, * £ (£ 1)

s
.
p =2

lires . Irom this gragh, w* cen form # Ga*fferent Ca; :r trees of /‘
A .
points, £ -1 lines . Cousider oue cf them . From the rem »ing ¥ -.,(# -2)

lines, discard k - e + 1 lincs . This will lead o a coiiacted grapan which
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contains the chosen Cayley tree and any way of discardinyy lzads to a dirferent
_ “
zi-1)(E-2)

] k-£41 )
different graphs . This leads to the number on the right- wnd side of (5) ’

.

graph . Therefore the chosen Cayley tree will be contained in{

C._The integral problem . At the end of § 10 , we saw that the
integral z/l( ¢,k ) is decreasing if k approaches the maximum of its domain.
From { 4 ) we see that for the Gaussian model wne needs to know something
ebout the distribution of the values of (Cayley tree) and that d = €-2
for k = ¥ (£ -1) ¢ complete graph ) . For values of k between these limits

there will be a certain range of di- values . Suppose we can introduce a

distribution function n (., k , 4@ ) for the values of d .

)
v
[ / '
;d . # /'/ i
.v‘. '///v
N L A
i,l “4 Lyt g
;y. f ,4)
We know :

-

< n (p ,k,a)=C (€, k) = total number ¢ ' connected zraphs
4 e 30 (1)
of é) individualized points and k 1lines , asymptotically = } i
s S, ) 1 k
Do ¥ (Z-1)(/ -2) ‘;

< 73 y / .
_a d n(=,k,da)=" } Ko iel according to ( 5 )
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S0, we know the zeroth and first moments of this distribution function
and if the dis*tribution were a Gaussizn cne , the knowledge I +he second
monent ( or the spread) would be sufficient to determine the complete distri-
bution functien .

The Gaussian character hss heen invewx’igated by tests ( diss.Ford) .

For é? = 7 there are avout 40 val'es of d for k near the middle of its
domain { remember that for increasing él the‘overwhelming najority of all
graphs have k in the middle ) and the histcoram of these values showed l
indeed a Gaussian behaviour .

But a rigovous prcof of the Gaussian character is pre bly a very

fundamental problem .

§ 12 , RESULTS . The final aucwers =re mesgre .

I - For the Gaussian model _of repulsive forces the first 7 cluster

integrnls b coa te calculaited . For the virial expansion of the equation

il,‘),i,‘”
o7 of slete .

T
i & B2 33
? i - e —— -
.t./' X T = 1+ - + v + seeve

one finds
2 3 4 5 .6
S b . . b . .

REoa1aDy o5 B o-0as Beoos e ooz o 005024 .

As far as walculuicd, the s¢-ies of cluster integrals gﬂ is alternating

( both for tue Gaussian model end for elostic spheres) .



e

T 2 o3 o4

-1 %:1,»%:.(\52 32+0287 0+0116

The coefficient 35 was already given by Boltzmann, B 4 by van Laar and
checked by Nyboer and Van Hove ( Phys.Rev. 85 ( 1952 ) 777 ) . 35 was given

by Rosenbluth ( J.Chem. Phys. 22 ( 1954) 884 ) .

II - One can also consider the Gaussian model for purely attrastive

forces . With A> 0, the integral g i ({:7, k ) and also bg are always positive.

}/ }\ p With increasing k ( increasing complexity of
e ~4 “f :
e A 0 the graph )U'i (6 [;k) decreases . Taking the
T~ maximum value F. 2 for @ in (4) one

! 1 then can find lower limits for the b and
it turns out that the series )l ( é,) 2 b 6 is always divergens / Son the
integrals j ( E ,k) do not decrease fast enough to overcome the increase
in the total number of connected graphs with £ points .

With purely attractive forces the free energy ?would always be
proportional to the ..mber of pairs of moleculsc ( so 'sz) instead of
proportional to N .

Van Hove ( Physica 15 (1949) 951 ) has shown that the sharp repulsive
core is necessary for the proportionality of all thermodynamic quantities with
N and therefore for the existence of an equation of state . The divergence of

"/¢ ( 3) for the asiractive Gaussian medel is in agreement 7th Van Hoe 's
result .

1

III ~ For an ettractive intermolecular force with a_repulsive core
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f (r) is of the form given in the figure . At low
temperature the area under the positive part is

large with respect to the area under the negative

§— part . The integrels for k in the beginning of

its domain will then certainly be positive ( graphs
which are Cayley trees, Husimi trees with one cycle , with 2 cycles ete ) .
For larger wvalues of k: the contributions of smaller values of r become more
and more important ! the graph is " cluctored up " , new factors fhm require
that the molecules are less than a cer%ain distance epart ) . This will allow
chenges in sign of the :71 (f?, k ) , and for higher values of k they will
be alternating in sign . With many cycles , it seems therefore likely that the
contributions of all the graphs for the largest values of k will roughly
cancel each other ., This would lead to a certain " cut off" . In his thesis ,
Ford showed that for a reasonable cut off the series 76('§;) has exactly
the Kahn properties for condensation as a consequence of the theorem mentioned
in § 9, i on the counting series of mixed star trees . But, of course, this

should not be considered as a rigorous proof for the occurrence of condensatien.

IV - With purely repulsive forces there remains the Kirkwood

conjecture . In the Caussian model A ==1 , so the integrals :71( £, k) are
alternatiwg in sign with increasing k . Because of the strong cancellation
it is hard to meke asvmptotic estimates for the b | o Td dexa—al g nurher

d

of inequalities and estimates . The obtained e¢stimated v:luecs of 22 gove rnse
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to series X (8,) which had the first singuler point on the pegative real
axis , which would contradict the posgibility of a Kirkwood condensation .
But a definite conclusion would only be possible with estimates of b 2’ more

exact than those given by Ford .
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OF _PHASE TRANSITIONS
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ERRATA
Page  Line Pead :
2 1 N,V 206  veo N/ V
3 liw Y
NV w00
5 1 b 1 ard therefore ...
2 from below Jn 72
©
13 eee like (1) sce ...
8 5 add : (/2/41)

1 from below «oe glven by
A,
8'(zo,a) . ax(zo)-zo =0 or zo/(’(zo) =%
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