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-
THE STATISTICAL THEORY OF PHASE TRANSITIONS.

The statistical derivation of phase transitions always involves

the evaluation of the partition function ( or sum-over-states ) y^,

of the system over its possible levels iwith energy E. and multiplicity
s.

G. , from which the thennodynamical functions can be derived, since /6 is
*\

*
/-

connected with the free energy H* by

¡y ... -yrikt

For systems ox interacting particles tha summation O can only
CO

be performed in very few caaes .
As examples of phase transitions we mention the behaviour of

ferromagnetic substances ( occurrence of a Curie transition temperature ) :

7; r "I -r t
and the condensation of a gas tyelow the critical temperature T :

For a finite number If of particles 6. is firute and SÍ, i» an

analytic function of T • Transitions can only occur in the limiting case

N •?¦ <>o •In the case of the gas for instance one has to consider

•*y ...
-

.F lk1
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N , f-^ with finite number density H/ v- and for the free energy this

yields

lim. V m-K f (Tt'v),

when s^ ( the free energy per particle ) should only depend on the intensive

variables T and V^ .
The exact solution of this limiting problem has only been carried

out for the 2-dimensional Ising-model of a ferromagnetic substance and the

condensation of a Bcse-Einstein gas «

The. Jelng-jnod?! consists of a given lattice on each of the sites

of which a spin ie situated . The spin parameter S¿ can take the values

+ 1. Each spin is assumed to interact only with its nearest neighbors

( T" in the 2-dim. case ) . The energy of a certain configuration is then

E ="*/£ sis
3 -/'- H

'T
si

'

where ¿¿^ is taken over all interacting pairs ? Note that this is different
n

from the actual ferromagnetic case , where the interaction involves the

scalar product (S. . S. ) and where the S. are q-numbers . The interac-

tion energy jf is the increase in energy if two neighbor ing spins change

from parallel to anti-parallel ( in an anti- ferromagnetic lattice ,7 / 0)?

H is the magnetic field and /^ the magnetic moment of each atom . With

L*77 2 k T and C«^H[k T

the partition function is

li». X = "f(T'^)>

c --i/?: hh a 3 -A*^h.

L * '77 2k i and C= yA T

5 e^-WfC^;
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In the case of a gas , we suppose the intermolecular forces to be

additive and central so that the potential energy can be written as

U.
= X f (r¿¡)

»
- J

and the ( classical ) partition function then is...
L- t

-
-an?» Ir:¦ y <'? ¦-¿p. - -U?..¿ ? e L^ p*/**tL/JAI

*¦ ¦Jv J c •""-¦;¦"".
(1)

./-3 Ñ v( the factor f\ makes /^ dimensionless ) .The rem.' .ning configoratio-

nal integral ingeneral cannot be evaluated exactly , .

(1)

Of course, approximate theories exist for the magnetic problem

( Weiss ) and the condensation problem ( e fg, Van der Waals ). But , apart

from their approximate character , such theories presuppose thermodynamics

( for instance in the use of the so-called Maxwell rule ) which from the

point of view of statistics is rather unsatisfactory , since statistical

mechanics should provide the basis for thermodjmamics ?

In the following we willoutline the main features of the 2-dimen-

sional laing-problem and the Bose-Einstein problem ,Itwill turn out that

the mathematical raechonism in the existing theories is completely different

in these two case:. The question of a unified mathematical method then

arises •

í 1 \

fe
1,-'

fórdír -ÍK-^he* :̂>-'/a"+^r- 4-/i.Ti

'<j

i
- 4-/i.T r fórdír -ÍK-^he* :̂>-'/a"+^

1,-'
fe

í 1 \
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2- THE ISING-PROBLEM.

We first consider the one áomensional case of N lattice points

( linear chain ) taking the lattice

points on a circle, we can identify 12 i Iff

the points H + 1 and 1. If we do not take into account the magnetic

field, the parti tism function is

Considering the 5t5
t

as matrix indices and introducing the matrices

Where \r z I c \

Let A.jfcad A. ,be the eigenvalues of V »On diagonalizing

V > one can write

The secular equation is

-X. I-\
'

i

Since N ie very large » only the largest eigenvalue f\¡ is

important and therefore

12 i »

K,j.eL J; *
o»e haS Z-Z Vs. S>\%S 3

••.^,.Tr».(V^

\r *I C \

/ * A -*- A

* -
k tw 6j A,CT) (~'v)
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from which the entropy , the energy etc ? follow « (v and therefore Jt
are analytic functions of T , so here the Ising-model does not lead to a

phase transition ( in the 1-dimensional case a Curie point never occurs ) .
The two-dimensional Ising-model has been treated along the same

2.
lines by Onsager .With N- M , we consider M yf

/\
each column of Matoms as a unit, interacting f

* f

I • * • • • * *
with neighbouring co&ums . To get rid of

I « « •
?

• *¦
•

boundary conditions we now identify the M
/•««• • •

?

( M +1 )
-

th column with the first one ¦

and the ( M + l) -th row with the first row by winding the lattice on a

iff
torus iEach column interacts with neighbouring ones »each unit has 2

states , which can be denoted by a matrix index (Sj ¿ S^ ¿,# •-*"S^¿) •

Again one can use the matrix method and

1= Trace ( V
'"

)- 2* X
where now V is a 2 x 2

-
matrix * but the determination of the eigen-

values now is a major problem . Onsager developed a method ( simplified

by Onsager and Kaufman ) to determine the largest eigenvalue . For A/*~*"¥ oo

the result is again y (Tj=" A/ ÍT) withV. / T V.

where

» 2 sinh 2L / cosh 2L ,

I. Trace (V'")
-

X^

-^AT^n ¿£1 * ('a til)tit 4*llflf V/^te y/^f,

a 2 sinh 2L / cosh 2L ,
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Now a transition point occurs since SfS (T) has a singular point .
The critical temperature T is determined by

c

At the transition point T the srecificc

heat C ys- becomes infinite .
In Onsager's treatment the largest

eigenvalue turned out to be 2-fold degenerate

up to the temperature T . One might

expect that in other cases, the disconti-

nuity arises from a crossing of eigenvalues

at T in such a way that tin taking the

largest eigenvalues one has to jump over

from one to the other at T .c

The 3-dimensional Ising-problem is

stillunsolved , it is even unknown if C^remains finite in the transition

region *

3
-

THE BOSE -EINSTEIN CONDENSATION .
For a system of N identical non-interacting }articles, obeying

Bose-Einstein statistics and enclosed in a volume v , the statistical

treatment leads for N p OO ws.th constant density to a condensation
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r f phenomenon ;with decreasing specific volume
-t !

">Ssv I !^r at constant temperature the pressure

VS^ \ txarns out to be constant slow a critical

volume V^, , The ( p 3 )- curve has

t „ a ¿¿gcf.^i^jity in the second derivative at

v/'i. . The condensation apcurs for every

isotherm , the locus of the transition

'-^-' —
-x-:-— -^."~r~rr-_ points beix\g p -^- v.'v VssV s5 • With áecrea-

_^ sing temperature at constant v a transition
í O i

occurs at T ( V-) , where the specific

heat C^ shows a discontinuity in the first derivative .
The treatment is slightly different from the discussion, of the

ordinary gas .(For the treatment, starting from an integral like 1 see

Kahnjand TJhlenbeck , Physica 5 (1933) ?99 ) If £ • are the translatory

energy levels of a particle in a relume V and nlthe occupation

numbers of the levels ,the energy k. t$ ¿, n,¿£ ¿ and the partition
i..

function is \/t> T

T*V -fait,+»**'*+- "*]l l

where the prime in S means summation over all occupatic 3

AL,ni s N . Then /^, is the coefficient of X in the ger}eratin^
i.

function ( O without restriction áiid /$ ~ ft^ í ) í

Iis l/b T"
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With A/, "V^—> CO at constant v* "= V / , the energy spec turn

becomes continuous :::s one can therefor-"; replace the sum by an integral :

L ; fe*A

Since /C is the coefficient of ;£ inF/Z.) »we have » intro-

ducing the de Broglie-wavelength

\ ~ K/yZ jfZkT

and taking 7, to be a complex variable ,

according to Caushy's theorem . The closed contour of integration should

enclose 7 »0 •

The integral is known as Kramer's integral ( Kramers ,Leiden comm ?

suppl. N2 83 , 1936 ) and can be evaluated by the method of steepest descent.

We rewrite ( a = « / A j ,;

and consider first the case :

£-/W¿üv£ I. a>> 1. /^{?lis increasi]Q g *&&¦ %-
I—j1
—

j 4
—

¦ has a maximum at Z. Q
giv Iby

A. " 7~
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so the saddlepoint X 0 <^<^ » Taking- the contour through % o ,we can

replace the integral by an integral over Z ~Z -t* c n with h from
—

<to t» -t <?o . Here

with a (Z-Ot a)y Ü and

-'f"/feT
---

A/|. (z0 f
«.y = A/ f (T, ;-;

so for A'—
}

Yr s
- k T/Vt (xOl a.) ~ ÑV'- (T, v-)

where • , *^|is continuous . With p»
-

aHI/ ¿' lis leads to the

decreasing portion of the (fV")« curve for large v^ •

XI, Small vjA . With decreasing \*~ Z f} willgo to 1,which leads

to a critical value of V"(or a ) since %.{ZJ singular at Z» 1. The

critical value a ~ V^ /(V is given by
C G/

ac

"x -X(0-Z S(f) =o?-é,.-..*y t

We now have to consider the contour integral through X O for

Z c —> 1.

f^,,aj.= (Zd) a.)4ylÍ"(zo » "}>
-
'

Yr
-

t^;aj^ a/^ct; vi



10

Since ")C (z) converges -within the unit circle it has an integral

representation which is ( cf. W« OpechovsidL, Physica ( 1937 ) 715 ) .
/CtxJ r- \ PT?, / -~

t cit

\ C
~m+4 integrand is double- valued and

c—
¦ <r ""' has a pole at t = log x> * so one has to

/^
t v

fy

( /' sake a cut along the positive real t-axis

\.j<
"" <v^t

—> "!- and C should not include the point log Z,

For small Z.. the integrand can be deve»«

loped

and since the last integral is the Hankel integral for 2 f /¦§ ) A »v ;.//¦¦¦¦

we again find the original series

If -^ 1 » log 21
—

?• o and C would enclose the pole . But as long

as X <C 1 we have , replacing the path Cby C ,

/=r /+ ( residu in t « log Z )' * -i -f-
"^ (?<^ ?-j

, IX Í tV*

/ f- / ,% -t- fe-i»< ..^ j,t /t ¿é ¿t 5T «"/ .H

/=r /+ ( residu Is t« log Z, )*-/ -f- "¿ ('fe « ;

1 '
y
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Th© integral i3i3 regular around 32, • « X\ and can be developed in powers of

( 1- % ) . Thus one gets i^.

where 6^
- (^-j and Y^X (1) ~ (cí/ •In til9Plane

X - 1 is a branchpoint .
With v s V I

-
7.. we then find

Since a V ~ •*¦ »we !lave I*> á }f *> ® for a <^ a
Q
, so

the integrand £. f has a maximum along the positive real axis and iw « 0

is a saddlepoint in the V
-

plane .We thus can put V'¦ ¿ n and have

¿-¿H / y¿W c c J;

a
- &*..— /r?oí y; c v J J-

7t¿ J L C

¦j- •¦" —|i muí mii!|
,v » X

'
v*• » **», • * /

— --^ I -or/Vr^*^"" /v <
¦rr ' } t t .j>
Ti *- ¿.oo \

\
ifC — >

1

J (Z, 4K.) =ctj+ (l-A.%) y?> ít&íl V,-
3 +

T> Co

<7 cr' •i- / / A/tí! /a ,y)

7r;¿ J l c

— --^ I -or/Vr^*^"" /v < —
¦rr ' } t t .j>
Ti *- ¿.oo \

\
IfC — >
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The saddle point Z,p ~l is a turning point for the path of steepest

descent . Itis reached for v* ~
v^ . ppr V^< v

~
the saddle point

sticks to Z o sb 1. Prom the obtained expression for XL in the case

V <. "^r we find

log % a NQ CL. + terms of order loe A/

so for 'V ~£ ¿>-

r -z. N where -a.CfeT'*"
-

V"¿ AT/^

so for V- <^ V"r the pressure is independent of At v^ *V£ the

pressure and Oi>f9 Va
-

are continuous , but a /3^/ 3v^* is discontinuous .
Since V~ &¿\/yív 7" /^ the locus of transition points is 7~ '°x

There exists no critical temperature since at any T condensation occurs

for sufficiently small v* .
Prom the foregoing itis clear that the mathematical mechanisms

of the Ising-problem end the Bose->]instein condensation are completely

different , A unitary mathematical formalism for both cases of phase tran-

sitions ( the only cases which have been solved in an exact vray ) might

be found in the theory of linear graphs , which we willdiscuss now •

4

-
THE THEORY OF LINEAR GRAPHS.

X» Introduction . A linear gramil is a collection of points and

of lines , joining these points • A graph can be connected or disconnected .

log £> « NoN o ¿L. + terms of order loe A/
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Examples are :

a . Cayley^ trees : linear graphs without cycles *

With 5 points there are only 3 topologi-

t j, xv/-^*'\ calxy difx3rent Cayley trees .
\s • »A *éé

—*
/\/ \ *% or n ŝ °^ graphs, the general

problem is to determine the number of

topologically different graphs . The answer willbe different for distin-

guishable points and for indis tingouishable points .
Cayley investigated the number of isoiaers C n H a+& . The

carbon chains of these isomers form Cayley trees with the restriction that

the maximum number of lines arriving at each point ( the
"

branching number n)

is 4 «In the case of isomers of C-a H ¦+iOH and similar compounds

there is one preferred C-atom , the

r^VA y^\y\ JR a. carbon chain forms a to-called rooted

Cayley- tree . For n« 5 » there

\ / tZJpa-*"* r~s* are evidently Ojy rooted by trees .

«X *V\ \l^
Pr¿~\,~y \/ b ? Cacti : Cayley trees with

r-^_»_^r-^_»_^
-__ trian#le3 a^^ units instead of lines ,

J-'*<*\ r^7^l ¿\fi<3 í-Kr-Á ritn sor 4 triangles there are

¿~> *4 ¦ reap. 2 and 4 cacti .
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c, Husimi trees : Cayley trees arbitrary polygon ¦> as units or also

linear graphs in which each line belongs to at most ene cy< le .In pure Husimi

f^Xs^S^y trees the units are equal, in mixed trees they

are different .
In a general linear graph one can distinguish articulation points .

An articulation point is such that by omitting it, the graph is divided in

two or more parts . A cunnectad graph without articulation points we willcall

a star . Clearly a general connected graph is divided by its articulation

points in stars . If one omits in the stars all the internal lines and draws

only the M outline M, which is a polygon,

JS¿C" Vv / one gets & mixed Husimi tree . In this

\j,x / V^jCt sense, the general connected graph is a

j8 generalization of a Eusimi tree, just as

a star is a gen£ralization of a polygon.

One of the general problems of graph theory is a combinatorial

problem * It arises in various fields of physics and is characteristic for

successive approximation methods , e.g. in the virial deve pment ? An

analogous case is the quantum mechanical perturbation problem , where the

so-called Feynman graphs appear •

5- APPLICATIONTOPHASETRANSITIONS.

I.Tlia condensation problem . As we saw in parag.l , the central

problem is the evaluation of the partition function and in particular the



15

the configuration integral

r r
-

«f*P -* -*
0 » ----je dr drN (1 )

J V J
Assuming, va in § 1 U~ f̂

'T\ & ( r.'¿) we can write ( Meyer )

c ./ ,' c
' lj * 7/(1+ f,.) (2)

The yroblem of developing \ \ is clearly

iI connected with the theory of graphs , since one can

s~^
represent all terms of a certain type by a linear

/ V i,* graph find then determine the number of these terms.***** :
_
—^,'-. .J^—^^J- !*

/ For N« 4 (2 terms ) the different types of

*
l termo are represented by the following graphs ;

:: l: "l;B k ITpT S^n a a

V V V* V V V V V"

( 1)

(2)

We have indicated the number of lir.es in each graph ( ~ number of

factors T in the terms ) and the numbers of ter.u of each type .

TT(u t
' )=r

/kT,-f<rij>
c77»

-ü/kT
tc

dr dr^
/Wü/mm

/"--fe¦ft

- ¿( r ) /W

¦ft /"--fe
mm ü//W

dr dr^

c
-ü/kT
t » 77 c

,-f<rij> /kT
=r TT(u t

' )
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Qw can now be expanded in powers of V. We consider a certain

11 partitio
"

of the N ( numbered ) molecules in m , single molecules , nu

pairs, m, triples ..., m, sets of molecules where

N P
2Í t«,

-
¦ (3 )( 3)

Two special types for N«= 4 are for instance ( 1,2) ( 5»4)

(m =2, B;»üfopßjí Í) and ( 1,2,3) (4) (m^ 1, m, « 1 ) ? In (2)

we take together al~ terms belonging to the considered partitio , that is in

which the given pairs, triples ,... each form a connected graph in the graph

representation . The cluster function U (r
/ ?.., r/ ) is defined as

the sura of all terms represented by connected graphs of Lpoints . For instance:

U2U2
(1,2) = fl2f12

L. lx(1,2,3) = fl2f12 f23f23
+ fl5f

15
f

J2
+ f2lf21 fl3f

13
+ fl2f12 f

2J
f3lf

31
. (5)

+
(1)

n ( 1,2,3,4 ). IC + U + E + D + 0 + S
4 (4) (12) (12) (3) (6) (1)

Itis clearly a symmetric function of r,,..., r/. The cluster integral

is defined by

In the %
- fold integral over the connected graph ye first can perforra the

integration over t -1 molecules and the result "is practically ipdepGn-lcnt

of the position of the t -th molecule since each f is only different from

zero for small distances of the molecules . The integration over the i-th

Ni,
c

N

i í c-> ->V77TJ"";/ dv- dí \ •

N i,
c N
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molecule then leads to a factor V • Therefore for large V ( and fixed C )

the b a willbecome asyciptotically independent of V an¿ 'xc then only

functions of the temperature . Define b a 1 • For a definite partitio we have

the general contribution

TT(v b-e/j-t (4)

Since the partitio with given numbers m can be realized in

N \j(^l\)mi {2\f^ m, !w¿ ....J (5)

different ways, we find

where jj) means summation over all values ma , obeying (3 )•

(4)

(5)

(6)

For instance , for N» 4 the parti tio 4« 2+2, represented by

the single graph
4_^_

,gives a contribution ( V !b2b2 ) and it occurs

3 times . This follows also from ( 4) and (5) for nu * 2, my =0 for ¿ 4 %•

The partitio 4=3+ 1 is represented by the graphs j_ and J\* .
It gives a contribution ( V.. !b, ) ( 7. !b.) and it occurs four times

( since all the permutations of the three connected point» included in

U*). This follows again from ( 4) and (5) with IM-, m-j. * -» m* *5 » Rll

other m/= O .
Qjj has now been expanded inpowers of V- find we are interested in

i
its behaviour for large N . With the assumed intermolecular potential (p

the function f. . willhave a large positive part if the temperature is

1-fiNN t

m ... .(y<vf!b)»4s~C C ""ni/!• •ma!
IN: n i

0!)m '(2!)mz...V

• • » • •«ütra,•*ié •ll)m/(2?)ra^{<f

e¡rV'( vyy'( v V e¡r

f {< ll)m/(2?)ra^
•*ié • ra, t «ü • • » • •

: n i

0!)m '(2!)mz...V
N I

ma! • •
(y<vf!b)»4s~C C ""ni/!

N t

m ... .
N i -f 1
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not too high, and this will lead to b^ >0 . We suppose this to be the case,

so all terms in ( 6) are positive . The terms in ( 6 ) are then of the eafte •

form as the volume in the /
-

space of a gas of N molecules, corresponding

to a certain occupation of cells in the /t -space and, like there, for one

special distribution ( for one set of the m ) the term is extremely large •

We therefore can replace QNQN by this maximum term ,which is the
"

Maxwell
-

Boltzmann distribution M for the m n ? To find this term we calculate the

maximum of

log. f » log. -,*i (vb-JNvb,)"*... =
«a,.ill— • •• • i. C

m N log. N
-

N
-

«£> (m¿Log a^-Bfl) +.*£. m^Log Vb c^,

( here we have applied the Stirling formula to N I and the my !which is

allowed since the small values of m/do not play a part ) with the

auxiliary condition ( J ) ,

<> log* F=- JS log ma dm » + ? logVb/?()mp=0
with £

\ o m o- O .
Applying the Lagrange method of undetermined multipliers, we find

-
log m» + log Vb o + /5 ¿= 0

or •—
/?£ ¿

ma = Vb^e =Vb Z ,

where the parameter ( which depends on the volume ) is determined by

the condition ( 3 ) for the m a ;

log. F*log. :- tyi ¦¦¦ (Vbj^^j^....
» N log. N

-
N

-
«£> (in¿Log ffl^-iJ+^m^log Vb c^,

<> log* Pms *¿ log m *<?ut
- + "¿\ log Vb d () m n = 0

-
log m» + log Vb o + /5 ¿= 0—

fit t



Y
= 7=.^.. {*>e*< ( 7 )

P-st
'

. **
¦¦ . I ¦¦ ¦l_

Thie is the first Mayer equation . By taidng the second variation it can be

verified that y ( nf j? ) is indeed a very sharp maximum • Replacing %. by

P ( m/ ), ire find vith the use of ( 7 ) from the partition function

f»-
ic T logZ= - 4 R T log T + const. NT + KkTlog^-kT vJLb «2 £

P-
-'

( ¥>*--^If?*
»fbf*?**»fV n*

which in view of ( 7 ) yields the second Mayer equation

Tt s^ \^ ' ( 8
'

( 7 )

(8)

The equation of state is now obtained by eliminating z. from

( 7 ) and ( 8 ) . Since ( 7 ) cannot explicitly be solved por 7Z. t this

has to be done by successive approximation and one finds p/k T a¿ a

series in l/v , that is the virial expansion for the eqixation of state •

For largo v ,j£ is small • If we only take the first terms in

( 7 ) end ( 8 ) , we find the first approximation

JL M
* I

i.e., the ideal gas law .The first correction is obtained by inserting

this first approximation for X in the quadratic terns of ( 7 ) and ( 8 ) ;

(7 ) -»1» 1 =Z.+ 2 b2b2
(¿ )2)2 or Z.i- a b2b2

(¿ )2)2

mm

k T

{*
( z.c

H

v fa
N
7

=

fm- *T logZ= - \ R T log T + const. NT + NkTlog;c~kT V^b.

p- - ( #>T

--
HrIf+ **-?v*+ kT vffb^%^

*T
- *

v

(7 )-»¿ =*+2 b2b2
(1)2)2 or Z.i- a b2b2

(¿ )2)2

N
7

=
H

v fa
{*

( z.c

k T

mm
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then -s.pl io i^n

so that in the virial expansion

P a
—
'(1+ y" + + ... )

the second virial coefficient is B s -Nb^ » From our previous definition

of b« f we can express B in terms of the intennolecular potential

Nfi. -¿(r,a> A-Í -»
B (T) »-Nb2

»
-

|J ( c *1) drx dr2
*

*-I? / dr
2 J ( c -1)d ( rx -r2r 2

)
#

where /> « / -r2r
2 *or

'r° 4 ttJ)/k ToT oB( T ) «2TTN J {1.e 7^ '

) jo
2

&f .
From measurements of B at various temperatures one can infer

the parameters ,determining the intennolecular potential .
The question now arises if the above treatment leads to a condensa-

tion , The answer is determined by the behaviour of the series /vW.*?f&?%>i.
occuring in the second Mayer equation , the discussion goes along the ssme

lines as that of the Kramers integral and is given in the paper of Kahn and

Uhlenbeck apd in Kahn's thesis (On the theory of the eg; sion of rtate ,
Utrecht, 19)8 ) » The series plays the seme part as ths scries > :¦ V,f
in the case of the Bose-Sinstein conde: -jsatien . Kahn wea ssl3 to "¿roye that

condensation only occurs ifV ( z ) fulfilled the foilowing conditions

( analogous to the properties of the series in the case of Bose- Einstein

condensation ) :

-nPi id i <* o(B)^e =I.2b2 (1)2 + b2 (I)2 = I(l..-2I (l..-2 )

P a
—'(1+ y" + + ... )

B(T)^Nb
2

= -^!j (c -l) drx dr2
*

*-I? / dr
2 j ( c -1)d ( rx -r2r 2

)
#

j

—
y -S>

r° f/9 /k tot oB( T ) «2TTN J {1.e 7^ '

) jo
2

&f .
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1) yC (z) has a singular point z on the positive real exis

( according to Hadanard's theorem this willbe the case if b •? N- 0 and if

a singular point exists ) ,

2) pC(z ) and yi\i ) finite ,
3) some additional conditions which are satisfied if in a region

around zo
XU) « f (z) +(*

-
a0a
0

) gU)

where o< is not integer and 1 (<< »*¦ in the Bose-Einstein case ) and

f ( z) and g (z) are analytic in this region .
For this case Kahn proved that the isotherm shows a horizontal

portion . But the investigation of 7° (?) involves the study of the cluster

integrals b<? and this problem is in general still far from solved »

From the foregoing, it is clear that the theory of condensation

leads to two different problems :

& • The combinatorial ( or topological ) proble : how nany terms

contribute to the cluster integral ?

b_ • The integral problem : the evaluation of the different M irredu-

cible H integrals .
For the condensation problem it willbe Of special interest to

investigate the situation for large C » since this willdetsmnne the

convergence properties of the series ?6 (z) .
The first problem is now completely solved • Itis a problem of

XU) *f (z) +(»
- *

0
) sU)
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the number of topologically different graphs of a certain type • Cayley was the

first to deal with such problems in a systematic way . but he did not succeed

in finding the complete answer f even for the case of the C&ylsy trees *

Much progress was acliiev aby a p?r~er of Bclvji ( Act*Hath . 68 ( 1958 ) 145)

and the case of Cayley trees was solved by Otter ( Ann. Math. 49 (1948) 583 )

Further literature :

R.J« Riddell, Dissertation ,Univ. of Michigan ( 1951 ) ?

R tJ v Riddell and G^Ei
Mühlenbeck , J. Chem. Phyr _^L ( 1953) 2056

? .... H

G.rW.__Fo£d ,Dissertation ,Univ. of Michigan ( )

6- OTHER APPLICATIONS OF THE THEORY OF GRAPHS .
As was already mentioned before , the determination of the n-th

term in successive approximation methods generally leads to a combinatorial

prcblem ( how rneny contributions ? ) and an integral problem «.Examples a#e :

a. The Ising; problem . The connection with graph theory was given

by van der Waerden (':4s. f. Physik 118 ( 1941 ) 473 ) Í see also the

review article by Newell and Montroll ( Rev. MocUFhys. 2¿ ( 1953 ) 353 ).

The combinatorial problem is : how many different graphs with

given length are possible in a certain lattice ? Consider a square lattice *

The integral problem is very easy :the
Í'"'T

x'\ f f**f**&: TJf J ¿A t-r-rmrl ?L >
¦

írtele.} is 1 for &vbüs closed grajái

—^—-4
—

fw*** r— and zero for every non- closed gravh , The
¡ [

combinatorial problem is to find the avsnber

1 j of closed graphs (1 of angth 4•5 of
«._^^^

—
ISMJ*.
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length. 3 , etc ) •

_b . The connection with the Bose-» Einstein condensation , especially

for systems of interacting particles . The application of graph theory is

presumably possible , though this has not yet been verified ( Butler and

Friedman , Phys. Rev. ,28 (1955) 287,294 ;also Luttinger and Yang ).

SL • Perturbation problems in field theory • Here the problem is

to determine the number of irreducible Peyman diagrams . Ithas been solved

by Hurst (Ploc.Roy.Soc. 21£ (1952) 44) and Riddell (Phys. Rev. ¿1 (1953)

1241) ?

7- THE PRINCIPAL THEOREM .
Passing '.oo to the general method of graph theory, we now give the

principal theorem, due to Pqly_a ( reference above) *

Think of a collection of
"

figures I', each with a certain
"

content' 1

which is described by a set of integers. The content may for instance be a

number k of red balls and a number L of red of white balls . Let us assume

that there are a, a different figures of content, (k, £.) and let the numbers

a,
? be given in the form of a generating function :

t t*,y)
-

JT \c xky^ (i)

fc.fc
( in general a función of n variable? if the content is described by n

integers). We now consider s points in space, to aach of which we will

associate 1 figure so that we obtain a certain configuration . Let Hg be

some permutation group of s points , of degree s and order h •

( 1 )\c xy(*,y) =(*,y) =
\c xy
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Two configurations then willbs considered as equivalent if they

can be transformed into each other by a permutation belonging to H » Thes

content of a configuration is the sum of the contents of c figures ,

Prcblem :Given th:* function f ( x.y ) , find the nustasr &.p

of non-equj.valent confi.guraticns wibli total content ( k ,¿. ) , exprer3ed

by the generating function

1M x, y ).T A / Y
f! (2 )

Solution :Each permutation af H can be written uniquely in

its cyclic representation ( such that each object occurs in one and only

one cycle ) and then consists of j. cycles of 1, jp cycles of 2,..

j cyclv. of s , where

21 "

-*i¦¦ ¦ • s» ( 3 )
k-1

*

(2 )

(3)

With the variables f., , ?.., f ,we introduce the polynomial

the cycle index of E , where g (óIf..j ) is "the ntsmV»er of permutations*****— ¦ s x s

in H with j, cycles of one , *.. ñ cycles of s ar where S1 3hould
si s

be consistent with (3 ) «Also S' g ( jl,j1
,¿v, •••j

a
) -¦ h .

(4 )

TñQ solution of the problem £*j then

( 5 )(5 )

» t'H* >f(x,y)iA*V). •.) fV,t%,yg(ar.os
)S'X 1(x,yF

,1

i

0,
f2f231¿á 2...5s

)«<S1H
s

S,asXz
s

x y\"te
)> yX

f

i!i!
f

X > y )
"te \ x y

s

z X as S,

H
s

S1 «< 31¿á 2...5s
)

0,
f2f2

,1

i

F (x,y X 1 S' g(ar.os
) t%,y ) fV, . •. A*V)» t'H* >f(x,y)i
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We willnot give the proof ( cf. Polya ) , but give rome examples .
1 ) Let the s points be the vertices of an octahedron and the

content of a configuration be 5 red , 2 blue and 1 white ball. In how many

different ways can the 6 balls be distributed over the 6 vertices if two

arrangements which are transformed

r\ s~\ m. into each other by a rotation aro

/íA" *D />"§~VpÍ& i"^\'^O considered the same ? The answer

\ df \Jv^ is 5 * The figures are the 5 types

of balls, the content is 1 red

ball ( 1,0,0 ) 1 blue ball (0,1,0 )

or 1 white ball ( 0,^,1 ).

f ( x,y,?) m x + y+z

s= 6 and H is the octahedron group of retatiens , with h=24 > for whichs

V
-

24" ( fl+6 flf4f4
+ 5 *í4 + 6 f2f2

+ B*f >
SO

*(*,?»•)•|4/ f6f6 ( x,y,z )+6 f 2( x,y,z )f( x^ y4"
a4)a
4) + ?.|

The answer is then the coefficient of x y z , that is 3 .
2 ) The same problem ifno rotation is allowed . This is the

elementary problem to distribute the balls over 6 points and the answer is

6Í
"Í"

Í '2* 5 ?'
* * Again f(x,y, z)~ x+y + z and s =* 6 . Hg is

now the unit element ,h•1. 3(H ) = f-T and P( x,y,z) =(x + y+z) .
*

The coefficient of x y z is 6!
ÍT ¿Oí

f ( x,y,?) m x + y+z

yHJ= iH4+64 +6 f
iu**44**4**f3f3

>

F ( x , y,z ) *¿4/ f6f6 ( x,y,z ) +6 f 2( x,y,s ) f ( x^ y* a4) + ?.|
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5 ) . Number of saturated alcohola C Ho OH { not including""*""""
¦ ¦ n ¿n + x

the stereo-isomers ) . The counting series id F (x) =¿ .A^ A
¿So

Starting with the C-atom that carries the -OH, we see that A is

the number of rooted Cayley trees with n points each of branching number 4

rThe
figures to be placed on the 3 remaining valencies

Í-BL* 3 ) are again rooted carbon chains, including zero

Oft chains, so clearly f (x) = P (x) . Since we do not pay

attention to stereo-isomers , H is the complete symmetric permutation

group G, of 3 objects , which is of the order ha 3 != 6 and for which

'jf< S3S
3

} *Í ( 4+ 3 fx f2f2
+ 2 f

3
) .

Applying Polka's theorem we have to bear inmind that in *;&** f (x)t=*
j f 1

¦ MM G7iF W oftiy * ĉ n**ln**1 remaining C-atoms (to be placed at the 3

valencies of ~ C
-

OH ) are counted . To count also the root we have to

shift all the coefficients in this series to the next pow? of x • TMs is

done"' multiplying the series vdth x ( then adding 1 to account for the

first term A 2 1 ) • So Polya's theorem yields
o

F(x) ml+ x % -^Gy F{x)?»1 + f ))
f
F3(x) + 3 F(x)P(x

¿
) +2 F {x5x5 ) ,

from which F (x) can be found by inserting the counting series ¿^ A x n
i". n

and successively equating the coefficients of equal powers on both sides i

F(x) =I+x + x2x
2 + 2x5 + 4x4 + 8x5 + 17x + ....

4) Number of alcohols C H?
,OH, including stereo isómera*

The derivation is the same as in 3) apart from tho fact the valencias are

( ) -Í (4+3ÍXf2 + 2 f
3

) ,

F(x) ml+ x % F(x)?»1 + f ))
f
F3(x) + 3 F(x)F(x

¿
) +2 F {x3x3 ) ,

F(x) =I+x + x2x
2 + 2x5 + 4x4 + 8x5 + 17x + ....
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now placed according to a tetrahedronánd that now only ro over 120°
around one valency axis are allowed . H is now the cycli ; group S7S 7 of 3s j

objects , of order 5 . This leads to

0a s5s5 ). \ ( é * 2f ) ,
Ú

PW-l+f jF3 (x) +2F( x5x5 )J ,
which yields

F (x) a 1+x+ x2x
2 + 2 x^ +5 x4x

4 + 11 x5x
5 +

5) The Cgyley formula » We now ask for the counting series T(x)

for the number T of rooted Cayley trees ( where the n branching number M

of each point is no longer restricted to 4 as was the case for the saturated

alcohols ). T is the number of these trees with n lines (n + 1 points )

and oo

V -• -Xs^?- T =1, T, a 1, T2T2
= 2,... The lines starting

from the root we call main bran 3a j let a be the

numbor of main branches . The f. to be placed

at the s main branches are again rooted Cayley trees ana the figure series

is again the counting series for these rooted trees . E is the fulls

symmetric group G of s objects , of order s !For this the numbers

g ( .I-.» ...j
o

) of eg. ( 4 ) is

/ . . N Sjs \ j-j* • • • o_; ¦r"i ¦; r*1

F (x) =i+|iF3F 3 (x)(x) +2F( x5x5 )J ,

/\2 3 4 5F (x) a 1 +x + x +2 r +5 x + 11 r +

DO

n=o

/ . . N Sjg v J-j » • • • 0_; =. 4. ¦; r*"
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The factors j.!,j! •.. aocount for the permutations of the j y cycles

among each other, of the jp cycles among each other etc • and the factors

k^k account for the fact that (12 ...k) = (23 . ..k¿ ) » ?. (k...321 ).

The cycle index therefore is

O according to eg. (¿ ) . Applyir-g Po3ya's theorem we find :

T(x) = l+j¿ x
S 9v{g , T (X)j ( 7 )

s=i A i- -j

s
The factor x ensures that we also count the s lines of the root ( cf.
example 3 ) * the summation is over all possible numbers of main branches .
Inserting ( « ) into ( 7 ) we find

T(x)«l +Z-, iV—1 T
f(x)TV) ...

s=l O' I3'I3
' j

f
¡2¿- j^!...

and since s—> cC- the prime can be omitted :

r=l/ jjoj
r=o j

r[i j r=]| c

or ao

r=l
T (x) = c ( 8 )

the Cayley equation , which yields after development

T (x) = 1 ¦*• x + 2j? + 4 y? + 9 x -j- 20 ::5 + 48 x + ....

( 6 )

( 7 )

(8)

One can raise the question whether such a series has only a

T (x) = c
r=l

h)(xrTr
-2^

*¿¡ jjoj
r

=o ij \
T

1(*)T»x
S %h

«o

T(x)

• ••I J2J2
f2f
2J,!...DisGs>¥
kÍ,Is

!(xNU¿aVi
t 1

~ T
f (x)T'(x2) ...

s=l O' I3'I3
' j

f
¡2¿- j^!...

T (x) = 1 ¦*• x + 2x2 + 4 y? + 9 x^ -j- 20 ::5 + 48 x + ....

s I Í, k

¥ Gs> s i D J,!...
I J2J2

f2f
2

• ••

T(x)
«o

x
S %h » T (*)1

T

*¿¡ jjoj
r

=o ij \
-2^

r T (xr )h

r=l
T (x) = c
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formal meaning or it has really a region of convergence . We shall later see

that the series has a region of convergence and that the singular point

which is nearest to the origin in the complex plane lies on the positive

real axis ( as it should for a series with positive coefficients according to

Hadamard's theorem ). We then also return to the connection of the series

with the mathematical formation, of the condensation pfesn¿p©non •

8- GENERALIZATIONS . We wall now use Polyas theorem to count

more complicated graphs • We first introduce the notion of the grcur> of _ a

grajih ,denoted by M: this is the group of covering operations ( all

operations which transform the graph into itself ) . The crder of ( is

the symmetry number of the graph . We consider some examp* 3 .
If the graph is a rectangle , |' is the dicier group V. of

rotations and reflections of a rectangle ( order 8 ) .
Fcrafreet angle with 2 diagonals ( a complete graph of 4 points)

any permutation of the 4 points is allowed and is the symmetric group

ÍS*"*""^ G. of permutations of four objects ( order 4!=24 ) •
\/ ,' 4
y\ ! i"*jt¿_^\j For a rectangle with one diagonal , / consists of the

unit element, the 2'1 flips
"

around the lines 1-3 and 2-4 , and their

Ifoo
——

—^3 product, so is the four group E,(15),(24), (l5)(24)

s \ If we want to keep a given point fixed , the number of—h p
covering operations will be restricted . The:' form a subgroup of I ,

r"?which we will call Mie derived group where q denotes the fixed
i q
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point .In the first two examples / is the same whate* ? the choice of

the point q. In the third example f is different r q»1( or 5 )

and q= 2 ( or 4 ) • Without proof we irention the thgorevj

where the sum is taken over different derived groups ( N..8. Inevaluating

fkk I ) the fixed point a should of cour.se not be included in the

cyclic representation of J . One can easily verify the theorem for the

above examples .

(1)

In considering now more complicated graphs we first suppose all

the
"

"building blocks "to be the same (as the lines in Cayley trees or

/r*—^ ?r"?r" y\ the triangles in cacti and so consider in

general pure star trees ( generaliaation of

Husimi trees ) .
a) Pure rooted star trees . Let T be the number of different

pure rooted star trees of n ( equal ) stars and let us .gain introduce

the counting series t (x) =¿^ T x with T 35 1 ¥c will de: ive
, 31=0

F¿>ol-
«^ ajj iniplicit ecriation for T (x) in two stops,

í\^^r~~*~~' using in each step Polya's theorem .
sc' LAI I. As in ex. 5) of <?7 » we call stars

/rfs
starting from the root ( e.g. the pentagons with 2 diagonals in the figure)

the main branches . If T is the number of trees with n stars and
n m

)<?X'1>fO-2<r,.2<r,. >fO- 1 X'<? )
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m main branches, we can introduce the generating function

T (x) => ""
T xn (2 )

m/ 1n mn=o

and clearly have

T (x) :=>"] T (x) ( T (x)3l) (5 )
m=o

(2 )

( 3 )

We now can reduce T (x) to T. (x) by considering the root asm I

an m-fold point on each of which 1 rooted tree of 1 main branch is hung .
For the configuration the figure series is T- (x) , the number of points

s= m, the group H is the full symmetric group G ( any permutation of

the m rooted subtrees is allowed ) and Polya*s theorem gives us the configu-

ration series

T (x) = XlG, T. (x) Í. (4 )
m A1m { j

(4 )

If we now insert ( 4 ) in ( 5 )» we find ( in the same way as

in § 7 eg. ( 8 ) was derived from eg. (7)

¿3 T, ( xr ) It
T (x) = c T

-
X

'
( 5 )(5 )

11. To find T, (x) , we again apply Polya's theorem • The s

points for the figures are the vertices of the 1 main branch , except the

root ( in the example s = 4 ) the figures series is T (x) , the group H

/p"~~- f~ :.s formed by all the permutations of the points of the
jo~~X V"
v\ i s*' s mal:.'), branch which conserve its structure and keep the

n
ycot root fixsd , that is, ¡ of the star. Polya'a theorem

gives then the configurati cnal series

/:)rx(*lc^1

(x) (Ti6 t-

(x)I

m

(x)S 1o
(<x)Tm

Ht=O

(x)
oO

xT
n m

(x)I

m
I

m
(x) T

n m
x

oO

(x)
Ht=O

Tm
<x) (

o
(x)S 1

I

m
(x)

6 t-
Ti

(x) (

c^1 *l( rx ) /:
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h w - £* y{ft * < * )]. « 6 )

where the factor x compensates the fact that the main branch is not counted

by lj and where the sum should be taken over the topologically different

possible choices of a point of the main branch as the root .
Applying theorem ( 1 ) we can rewrite ( 6 ) as

Ti(x) = x )'i ?• T(x) r (7 >
which combines with ( 5 ) to yield

„ 2 ¿"¡¡'{P.*¿)\/r (8)
T (x) «> c

r-X
Q

( * 8 >

As an example, consider the cese where the stars are rectangles .

The trees are pure Husimi trees and the counting series Q (x) satisfies

¿-t xrh¿ (xr) + Q(xr)Q(x2r ) i/2r
Q (x)

-
c ¿ J

from which one finds

Q ( x )
--

1+ x + 3 x2x
2 + 11 x5x5 + ¿fix4i x4x4x4 + 208 x5x

5 + »..•

1 Por n=2 there are 3 trees , arising from the 3
!

*
i different possible positions of the root •

/"TV /'iV'

( 6 )

(7 )

(8)

b) Mired rooted star tr^es . The stars can now be chosen out of

a given finite collection ( think of polygons with g?.ven r bers of diagonals)

As an example we consider rooted Husimi trees of ru line,, and n, triangles

I*(xr)Tr.¡;'rxz.
as G(x)

i(x)Tr.Í
/

)m X(x)Tl

>!¦XT(V(x)I

I

p.«
4 -jífi-l^*.'***]***}-jW-iK*'*^

£ xr^Q5 (xr) + íd'jíf,21 )I/2r
Q (x) = c

~ ' J

Q ( x )
--

1+ x + 3 x2x
2 + 11 x5x5 + 4¿ x4x4 + 208 x5x

5 + »..•

I

I
(x) V T( X >!¦

Tl
(x) m X)

/

Ír. T (x)i
(x)

z.
as G

rx ;'¡r. T (xr)I*
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and introduce a counting series of 2 variables

H (i,y) =)_ H (n
2

,iv) xniyll},y
11}, (H(0,0 )=1 )

"Vn3n
3

The reasoning is the same as for pure trees : one considers the

counting series R ¿>(x,y ) for this type of trees with k lines an-d £
triangles together forming k + C main branches • At these k+ «- main

branches, we hang the figures . Consider first t- 0 ( on? 7 k main lines )

The figures series is H (x,y ) and thus are k points , ,= C, at: we

would get H. ( x,y )= xk \\ G, .- H ( x^y ) f . Then consider k=o

( only main triangles ) . For each main triangle , the figure scries

would then be the conic igurational series of the raized rooted trees hung on

the 2 remaining cor>urs of that m;iin triangle, that is

"¿U
t
,I<-x,y > ) = § /h2 ( x,y ) + B( x* #*)} "

Using this as the figure series for the figures to be hung on the v- main

triangles, we find

For arbitrary values of X and , we have :

H
kl(x,y) = H

Ko
( x,j ) Ho t (x,y)

and with

H ( x,y) =^H >( x,y)
1- / "- -'-

? C

we find ( along the same lines as was done in §7» ex.s )

H (i,y ) =
/ H (n. .r.) xn4 y% (H(0,0 )= 1 )

VVn
3

'iL% ,H ( x,y )J =|/h2 ( x,y ) + H( S ,y^)J

HHo .|> (x,y )=yi'-y^,j>^ 5
,H(x,y ))/ .

\i(x'y) =\o ( x'y }EoI(«•»)

H ( x,y) =X_H >( x,y)
It,Í

"-
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H(x,y)
- exp|I*-*

H (xr, y
r) +J.^ g)H2 { xxSl7

S) +H(^ tT
n}J])

(9)

which leads to

I 2 3 2 A 3H (x,y) =I+x +y 2x + 3xy +2y+ 4x + lOx y+loxy + 5y + ...

( 9)

c) Pure free star trees ¿We denote the counting series as

n

l) Gayley^trees^ ( star is line ) . Por this cas« Otter ( Ann.

of Math.49 (1948 ) 583 ) derived

t (x). T(x)-| x^T
¿

(x) .T ( x^)J
T (x) is the corresponding counting series for rooted trees . Note that

in this section both t (x) and T (x) are counted according to the number of

stars .
2) Cacti ( star is triangle ) ,Harary and uhlenbeck ( Proc, Hat»

Ac. U.S. ¿2 ( 1953) 315 ) shoved for this case •

t (x) * T (x) -
j Ts(x)T5(x) -T( x5x5 )

5) tfuQii^tree^Jwith '«ctafagléd • Harary and Uhlenbeck deri'^ed

t (x) = T (x) -x11 T4T4 (x) + ¿ T2(x) T (x2)-| 2)^ T(x4)J
Of course, in each oo.se t(x)<^T(x) . Tfca ger^ral answer for arbitrary stars

has been given by Norman ( Mchigan Univ. diss.l9s4 ) :

¿((x)= T(x) -x T(x)I'jr,T(x)J+ x%J f¡T(x)I (10 )
v U

(10 )}r¡T(x>•if!í/(x)-x T(x) j(U)= T(x)

2 2 3 2 a 3H (x,y) a 1+x +y +2x + 3xy + 2y + 4x + lOx y + 10 xy + 5y + ...

n

t (x)= IW-| xJTA (x) -T(r<)J

t(x) m T (x) -i Ts(x)T 5(x) *T( x5x5 )

|M| WJ j* v 1

— ~ —

t (x) -0? (x) -xll T4T4 (x) +iT2(x) T (x2)-IT2(x2).| T(x4) j

(x,y)

J2;

* exp L
rx

r
H Ur,y > +/ , 25 p { xV) +F4 (x

iS

(U)= T(x) -x T(x) jí/(x)•if!r¡T(x> }
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Proof ; Consider a definite star tree H of n equal stars ?

We call two points similar if there exista a covering operation of H which

transforms these points into each other . Let P (H) be the number of dssimilar

points of H , likewise s(h) the total number of dissimilar stars in H

and O' the number of dissimilar points in

(g i¿ ® i-th class of dissimilar st.?.?s .We have the

4 diss. points
A Ijh _

? s(li)
uT 7\* c/ 2

"
stars r.—

-

\ M^a ¡ p(h) -> i« y ( p %
-

1 ) (n)( 11)

Proof, : Consider the er ipoir\t stars of «¡I. They ere of various

classes ? Remove all similar end pcint stars of a definite class, say class 1.

Each of them contains "P¡ dissimilar points . In this way one removes &-1

dissimilar points because an endpoint atar by definition ha3only cne articu-

lation point, and this articulation point must be one of t dissimilar points

and it is not removed by removing the endpoint star . In the remaining tree,

one removes the next class of similar endpcint stars, by which one takes

away PL «I dissimilar points , etc • One finally is left with a tree of only

one class of stars in which there are now "D fv.\ dissimilar points left •

This proves the lenma ?

Consider next the collection of all free FJtre trees of n stars

For each of them ( 11 ) applies . To malee them rooted trees, each of the

dissimilar points can be choosen as the root ? Succming ®q. (i.l) over all

the free trees we therefore obtain <

)iP;-(
s(H)

f

/
13l

1 =p(H)¡ersce :¡ersce : p(H) 1 =
s(H)

f

/
13l

( P;- i)
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v*«Osf¿ -^'^)s^-*« (i2)

n Hn

or for the corresponding counting series ( A(x) ** ¿^ A
n, etc )

n
t(x) = T (x) .A (x) + B (x) ( 13 )

A is the total number of dissimilar points in all the free pure

trees of n stars , each counted k -fold ifit occurs in k dissimilar

stars . B is the total number of dissimilar stare in this collection ofn
n-starred trees . It is equal to the number of ways of hanging rooted star

trees ( altogether n-1 stars ) at the corners of one bas . star, where two

configurations are counted as one if they are transformed into each other by

a covering operation of the group j of the star . We therefore can apply

Polya's theorem to find B(x) . The figure series is T (x) { rooted star

trees !), s« number of points of the star and the group H is precisely/

? The configuration series is therefore yf 1 [ , T (x)/and

B (ft). x % j 0 , X (a) I
{ the factor x ensures that the basic etar is also counted ;one could

also add unity to include B » 1 ,but it would be cancelled by a terra -1

in (lj) resulting from
-

A (x) .We thus see that B (x) of (lj) gives rise

to the last term on the right-hand side of ( 10 ).

(12)

(13 )

In a siffii-ar way ,Norman should that
-

A (x) leads to the second

term on the right-hand side of ( 10 ) .

(x)B+(x)-
AU)Tt(x)

)etc*n,A(x) *3 (

-
BAn

3(H
n
)b

Hn

c 8(v
» t mn¦n

1 V. * «j.
B (*)

-
x Jj f.iWÍ

¦n
» t mn

c 8(v
b
Hn

3(H
n
) An

-
B

3 ( A(x) * *n, etc )

t(x) T U) -
A (x) + B (x)
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9- CONVERGENCE ANDASYMPTOTIC BEHAVIOUROF COUNTING SERIES .
We will exemplify the underlying problems for the case of Cayley

trees for the counting series of which we derived (§ 7, eq.(B) in the case of

rooted trees . *>
O? <—¦ xr T (xr ) h

T(x) -> T
n xn = o (T

o £1 ) (1)

n=o

The convergence and the analytic behaviour of T (x) were first

investigated by Otter .

(1)

a) T(x) converges ,Since the coefficients T are positive f•- —
•••»

— — — —
n

f (xr) S T
r(x) for xS. 0 . From this it follows that for xN O.Thas as

X/T
f<)

a majorant the function / (x) TAhich satisfies» '
Oil

Now

-|yi(i-x/) ,
or

y(x) .(i- \[rr4x"))/4x") ) / 2x .
Hence the convergence radius of y(x) is rr . The convergence radius of

T(x) is therefore at least r- . Furthermore , clearly <?( <^1 , so

b) T ( °í ) ss. a is finite . According to Ha f ard's thecrein

for a series with positive coefficients , the first singui- -¿ point lits on

the positive real axis, it is the point C\ . In order to prove that Lim T(x)

1(T
o r

/r)(xrxr T*¦
MUMIP

n
U) m)

ns=o

y^x)= e^ xr '/r(x)/r/r(x)/r

y
-

/(x)/(x) = e "
i-xy

y(x) = ( 1- \fT^ix)I2x.

Í <*<!¦

U) m)
ns=o

n

*¦
MUMIP xr T (xr ) /r

(T
o r 1
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exists and has a finite value a , we remark

that TU) S> exp ( x T(x)) ( count ains only

,L, L t |__. the first term of ¿L. in for x/^
°

» so

T (x) / 1

h T (x) S *
Since t (x) is raonotonically increasingr » it follows that T(x) bounded

for x ¿Lo(

c) T( c( ) «_ tf(
~ _ Consider the function

M*,y >S.*5r +
2*2Til!!)+ -.y. y (2)

For x <Co( the equation F (x,y) = O has the unique solution y = T (x) and

F(o(,a ) « 0. Around x« <^ ,y * a the function F (x,y )is analytic

in x and in y ( in x since around x ~ a{ <^ 1 , we have x <C o{ , so

T (x ) is analytic , eto ) . From this itfollows that

(T) t) *o (3)
Kyi i¿*
V / y *<íl

Suppose that ( 0 ?/^ y ) were 0. We could then develop t(x# y )

around x« c( » y» a ( where F is analytic ) and from the theory of

implicit functions it then would follow that y exists as an analytic function

of x in this region „ But this is contradictory to the fact that x=Q(

is a singular point for y = T ( x ) .
From { 2 ) and ( 5 ) we find

(~dr) = ix e X3r +
2 x2T (x

'
) + •••• I =o

(2 )

( 3 )* o(~t> r)

o

•• «
:) +(*£T) = c

**+Ix(x,yF

T (x) / 1

4 T (x) x

F (x,y ) = c
**+Ix T (*£:) + •• «

o

(~t> r) * o
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d)_JValue_of c( . Inserting xs o( in ( 1 ) , we obtain

t«). -e 1 + 2^
2 T(

—
which can be solved for successive approximation . The first approxi-

mation would be ¿X ss c =0, 368 ... Otter computed o( to 7 decimals

and found ¿X = 0,3383219 ...
c) C\ i& a branch point of finite order . From (2) it follows

that

C=~:) -sU)ia+ ¿TU
?)+/t'(<?( ) + ... /¿ 0 (4)

'
y=a

'

Since P (x,y )is analytic in x and in y around X m ,y= a f this

implies that in this region x is an analytic function of y , and is a

branchpoint of finite order . ;

y=ci V /y =a

in view of ( 5 ) and ( 4 ).

(4 )

f ) C>( is a branchpoint of order 2 • One easily computes

"t>2 P (¿K ,a )/^ y2y
2 ~o{ • Therefore

Jy = a

and so T (x) must branch as \Iv-/X at x= c^ and around this point

o4i• • •++ T'(£3i )(^')•(*a += X*)1ill)
V '

y=a

'i

t W).i
-

el*!e
1 *!*2 T ( *< )+ •¦"

y » ct V / y «a

Jy = a

ill)
V '

y=a

= X*)1a + •(* (^') + T'(£3i ) + • • • i4 o
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T(x)-¿ +b \fi-?+ R(x) (o/-x )+) + ... , (5)

where R (x) is regular . To calculate b we take the logarithmic derivati^

of ( 1 )

T'(x) / T (x) « x T'(x) +x5x5 T'(x2 ) + .... + T(x) +xT (x2) -»• ..,

so that

xT'(x) - XT(X)|« T(x) 2. Ix^ T(x
*

} +x^ T» (xV +{ )(
With ( 5 ) this gives v a

From this Otter computed b a 7»924780 .

(5)

g ) Asjfogtotio^behaviovr^, In order to find the asymptotic

behaviour of the T we consider the Cauchy integral ( around the origin )

T .i ¿Hi) d2,

and apply the method of steepest descent ? The discussion *.s the seme as

that of the fcramers integral : putting y» \j 2L arounc 2 :i( , one

sees that in the y-plane y=o is a steep maximum along the real axis ,so the

path of steepest descent is the imaginary axis . is again a turning

point for the path of steepest descent in the 21
-

plane • Putting yadij

one finds

/ I -n + \-^ n^ a?jf
'

¡172

• • •) +(ot-JLH(x)4-<k- x+ bw-i

T'(x) / T (x) « x T'(x) +x3x3 T'(x2) + .... + T(x) +xT (x2) + ..,

xT'(x) - xT(x)|= T(x) Z_Ji? T(¿* ) 4-x^^ ¿- (xV +í )¿

i 2 ? if T i ¿ * 2<í

W-ak/I^**

w-i + b <k- x 4- H(x) (ot-JL ) + • • •
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so that the numbers increase exponentially . Already for n » 10 this formula

is quite good : it gives T¿> 2¿ 708 , whereas the exact result is %% » 719

h) Free Cayley trees . As a special case of the Norman formula , we

have for the counting series ( see § 8, c 1 )

t (x).T (x)
-|x j T2T2 (x)

-
1 (x2 )j ( 6 )

So t (x) has the same radins of convergence C\ as T(x) • The b&haviour

around x«o( is sligtly different . Inserting (5 ) into (6 ) one sees

that the coefficient of \l<^ -X*7 cancels and
V

3/2. t(x) = t(o()-D(^-x) +... (7)

ilgain , of is a branchpoint of tha order 2 ,but the behaviour of

t (x) is different . Por D one finds "7 o( b and for the asymptotic

behaviour 5n +
2-

1 4VF T^

( 6)

(7)

i) Generalization . The aboye treatment can be generalized to

include such cases as cacti and pure Husioi trees . The courting numbers then

rise faster and qI is smaller . Ford ( diss. 1954; Michigan ) showed, that

the general behaviour remains the same for arbitrary mixed Husimi trees

( counted according to the number of points ). Even for this case the

behaviour of the counting series is as \fci_xf for rooted troes and as

( e( -
X Y'^ for free trees . And even for all mixed star troco ( counted

again according to the number of points ) this result is found -with the

• ••+
3/2

)
-

D {o(- x)¦ t(x) = t ( o(

-
T (x2)j(x)T-i"

2
(x)(x) « Ttt (x) « T (x) "

2 -iT (x)
-

T (x2)j

¦ t(x) = t ( o( )
-

D {o(- x )
3/2

+ • ••
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restriction that the constituting stars consists of a finite and fixed number

of linoarly independent cycles ?

10- THE POSSIBLE CONNECTION WITH THE CONDENSATION PROBLEM.

In answering ...e question of the connection between graph theory and

the condensation problem, we recall first the Mayer equations ( §5 ) , in

which the cluster integrals

\ (T) jkJ ""]V^ "iP át>~ s\ (1)

occured . The cluster function Up was defined as the sun jfall products

of functions f.. represented by connected graphs of ¿ points and therefore

U£ is symmetric in the r, ....jHS" . This is the first point where £raph

theory comes in.

(1)

Furthermore , inKahn's treatment of the condensation problem the
ri/. v p

necessary conditions for the behaviour of the series x ( Z ) = b/,2" L

( occuring in the second Mayer equation ) were given in order that condensa-

tion should occur . As a matter of fact, we saw that the generating functions

( the counting series) investigated in the preceding section , precisely satisfy

these conditions . This suggests a connection with the theory of graphs ,

Let us first investigate the cluster integrals . Wg then have to

consider all comiec-ad : -:phs of ¿? points :1 we crd^r them first according

to their number of lines . Let this niiaber be k , ".¦¦;' th given -^ i-Lri •

<£- 1 <C k •£? ~ Í(Í-1) . With k = I-
1 , the graph contains no cycles

X••...5 )V r'I-I1w\

i-i .

\ w 1I-IV r' ...5 ) •• X
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and is a Cayley tree . Por k = J¿. , there is one cycle in the graph , which

now is a mixed Husimi tree with 1 cycle ( polygon ) ? Going on in this way ,
we see that if the graphs are ordered according to increasing k , they are

Qr §> at the same time arranged ccording to the

O ¿ number of cycles , which runa from

a • . .0 ( for k. -1 )uptoi(i-1) (t -2) ( for k =*£ ( £-l) -1 )

With given <i and k , we can further distinguish the different

types of such graphs . Let V ( £,k ) be the number of topologically different

connected graphs of ¦£. points and k lines . For y ( £,k) a functional

relation is known .
Consider finally a definite graph iout of the V ( L> k ) diffe-

rent ones é The corresponding contribution to by contains $! / s.( d, k )

equal terms , where s. ( £ ,k )is the sjimmetry number of the connected

graph iwith v points and k lines (JF the order of the group of that

graph ) , since there are J¿ ! permutations of the points and s. (£ , k )

covering operations of that graph . So, we can rewrite ( 1 ) as

, tí*¿> -mv») pi h . (2 )

An extensive discussion of this cluster integrals and the vir-'.al

coefficients ,to which they give rise ,is given by Ridde! and flhl^pbe^k f

J.Chom.Fhyß. 21 ( 1953) 2056 .

k(Í7,ÍÍs^ ¿ ,k)iwlk= -1iV'/«>•

0 ( for k = -1*) up to i(¿ -1) (^ -2) ( for k *kt( f-l)f -l) -1 )

'/«>• iV k= -1 iwl s^ ¿ ,k) ÍÍ(Í7, k
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Consider first the coefficient c. (c,k)f^i/s
i

(C,k), that is

the number of connected graphs with £ individualized points and k lines

of topological class i. Then

o <(/.fc )*¦.'{. c. (¿, k) (3)
isl

is the total number of connected gi:aphs with £ individualized points and

k lines . This number can be found . We introduce the series

N(xv) = ¿~ ' ..J J.3S ¿
/ (4 )

v>l k=o v> ,l,
l V X /

which is the counting series for all graphs ( connected and disconnected )

with v individualized points and k lines , since the binomial coefficient

clearly gives the number of possible ways to take k lines out of i£( 6-1),

which is the maximum number of lines for U points • Analogously , w© intro-

duce co t6(g*Q
k

c U.y) ¦¿^ ¿_ c(C,k ) (5 )
£«1 k^^-1

For these two series the relation

C ( x,y ) * log Í1 +N { x,y ) \ ( 6 )
V j

can be proved ( cf. the above mentioned paper ;a simpler y -oof has- been

given by Ford in &is dissertation ) . The numbers c (t , •:) are therefore

determined by (4) ,(5) and (6) and one fir;d3

(i&(C-i )j 0/*(e-i}(e-2)\
c (jy ,k) =I . y*M k /+/ + correction terms •

( 3)

(4)

(5)

( 6 )\
j

)x,yI+N(r) * logx,y{

X

1(C ,k )

CO¦i(x,y)

X /V
x•

0 r
y
lfc=O£«i

(*,y)N

*>(£,C.k)f¦ac

c (jy ,k) =I . y*M k /+/ + correction terms •

c a ¦k)f C. (£, *>

N (*,y)
£«i

y
lfc=O

x•
0 r V X /

(x,y)

CO¦i (C ,k )
X

1

{ x,y ) * log r I+N( x,y ) \
j
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For large £ , and k. not near to its limits Ü-1 and ¦£ ¿ ( t¿-l) the second

term is very small with . spent to the firstone , which means that in that case

the majority of the graphs are connected , a. platissible result .
In order to find an asympbotic expression for (^,k) we consider

the number ~\ (i_ ,k) of toT'-ological different graphs of 0 points and X lines,

connected or disconnected . Ithas been determined by Polyp In the form of

the counting polynomial

p (y) =y n(M) yk (T)

by means of the Polya theorem . The derivation is as follows •

(7)

Since we coixsider free graphs , the t points are equivalent so

their group is the full symmetric group Gty • We can say that our figure

collection consists of two objects : a line and no line . The figure counting

series ia therefore 1 + y.However ,we do not hang these figures on the^
points. Now every permutation ofV cpoints induces a permutation of the

-g- t (C--l) pairs of points • These permutations therefore form a permutation

group of degree ( number of objects )iB ( £ -1 ) . We will call it the pair

group Jfy . According to Polya's theorem then

\ (y)-p 1. 3tf .1+ y\ (8 )( 8)

To find the cycle index, one has to determine what permutation of

type fi, ip,...?ij_£ i-} ,\\( i-, one- cycles ,io two-cycles , etc ) corresponda

to a permutation of type Í j-, jp, ...^V in G{. . One has J.o dÍ3tir.f-\.d.Bli :

i+ y\t*t1If) =(yp
e

~v (fc
fk) y(y) =(y) = ~v (fc
fk) y

p
e (y ) =If 1 *t t i+ y\
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_a . Points , occuring in one cycle , say of length v • Arrange

,^s. i the w points on a polygon and number

toj^--y -|.. V >Jal / i \ \ them • Now under a cyclic permutation

Xxf\X wS<T> / i»2»"*» ) the point pair 1-2 gees

4 3 into the pair 2
-

5 » which percissly

1 gives rise to a point pair cycle of lengtb

U . Further, pair 1-3 goes into 2-4 , etc, which gives rise to ane :ber

print-pair cycle of length v . So on© can go on one gets :

• for U odd ;i( -̂l) cycles of length uin the pair group ,
.'» v even: i(• f -1 ) M M v tt

" "

and one cycle ( consisting of the main diagonals)

of length 4"

Jb . Points occuring in different cycles •

fB^.f8^. . y^ r--f' If the cycles are all of equal length ( say v )

\<^
*nen they cleanly induce U cycles of length U

¦.¿¿^ "Xl/ "^>.i *n the Pair group •£? the cycles are of unequal

length ( say v/ 4 >UJ then their permutations

will induce cycles of length m(u ,t\ 4
) ¦least common multiplier of {Jía $

IA« and the number of such cycles will be d(U^ »U¿ ) = largest common

divisor of.U+t VAy Remember m( U N̂ v.X2
) d (VA^^A.O * -A^ lA^

te
Since there are B !/|\_k j. ! permutations :? type ( j,»^**'

j )inGo ©ne gets for the cycle index of *J£ ;

-
for U odd ii(*¦' -l) cycles of length uin the pair group ,

11 v even: i(• f -1 ) M M v tt 4>
"
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F,( y ) follows from ( 8 ) and ( 9 ) . For O a 5 , one finds , e.g.,
t

Pc (y) * +y + 2y
2 + 4y5 + 6y4 + 6y5 + 6y6 + 4y7 + 2yS +y9 + ylOy

10

The 4 different graphs of 5 points and 3 lines are :

(9)

From the explicit expression for F • (y) one can also derive the

asymptotic behavior of Tt ( {C >k) • For large £? > and & no^ near to the

end points of its domain (O «=-* i" ( -l)i ene find 3:

which means that the majority of the graphs have no symmetry ( the binomial

coefficient gives the number of connected + disconnected graphs with v

individualized points and k lines , the factor 1/ ¿ !removes the distin-

guishability of the points ) .

( 10)

We see therefore , that for large ¿ and ¦ average M values of k

the majority of the graphs ere connected and have no syacatry , so that

(11)k)(c,)= Xl£i(cC
tí

**¦*¦)k>

/ip (O-i)\i) '=='oko kM

X

y;frt) i C c;
V* ,—S . —

Vy _«.Ifo

Ps(y)P
5
(y) «1+ y + 2y2 + 4y5 + 6yl+ 6y5 + 6y6 + 4y7 + 2y3 +y9 + ylOy

10

Ifo frt) i C c;
V* ,—S . —

Vy _«.
y;

X

M oko k ) '==' i /ip (O-i)\

> k ) **¦*¦

tí
C (c i l£ )= X (c, k)
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Returning to eoJ_2), let us suppose that j.(£,k) /V is approxi-

mately constant (independent of k and L) . The behaviour of b,, would then

be

and

therefore X.("2.) would always be divergent for Z> 0. So we have to loicw

something about the dependence of J .(c- ,k) on k » The integral should

decrease for larger values of k in order thatju(*¿) be convergent . This

will actually be the case since adding a line between two points means that

we introduce a factor in the integrand which requires the ¿wo points to be

less than a certain distance apart . Thus with increasing k the integrand

will differ from zero over a smaller region of the 5v
-

dimensional phase space

11- THE INTEGRAL PROBLEM .§II. THE INTEGRAL PROBLEM . The integrals J .(Z ,k) should cause

the convergence of % ( 7_) by suppressing a large number of configurations .
To study the behaviour of the integral ,we have to introduce a special t¿rpe

of interinóle cular potential, or rather a special choice for the fraction f (r).

For this purpose, it is useful to consider :

jJL. The Gaussian model . In§5» we gave the general behaviour

of f (r) for short-range repulsion 4- long-range attractio: •, e.g. the

Lennard-Jenes potential ) . If we would take f (r) = Ac" with A*> 0

yfffeir-T cce.*>aJ£ IX k /- J; 2

and
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( corresponding to attractive forces only ) we would suppress the negative

part of f(r) and clearly we could net expect % {2) to be convergent . To

include the repulsive part of the interinóle colar force , w> could add a term
- ( 1+ A) c

"p ( remember that f(o) = -
1 ) . However, it is of interest

to consider only one Gaussian

/S^ ,
N .«* r2r

2
f (r) = -

c

corresponding to repulsive forces only .___—^

V^ The motivation of this choice is the striking

_£ ___^-

**^
and paradoxical result of Kirkwood and co-

workers, who showed from the behaviour of the

phase integral and on the basis of the so-

called
"

superposition approximation "
that a gas of molecules with only

repulsive forces ( e.g. elastic spheres ) shows a phase transition :at high

pressure the system ts split up into, two phaser with different density and

entropy ,a solid phase ( arrangements of ordered molecules ) surrounded by

a liquid phase ( series of articles from Kiiwood and Monroe, J. Chem. Phys.j)

( 1941) 514 up to Kirkwood ,Maun and Alder , J.Chem. Phys. 18 ( 1950) 1040 )

Although perhaps hard to believe , one must admit that there is no rigorous

argument which disproves the existence of such a
"

condense ;ion
". In addition

there is the suggestion that perhaps the Kirwood transition has something

to do with the solidification of helium , which is known to occur at tempera-

tures many times the critical temperature ( 5e k ) if the pressure is

high enough .

f (p) m
-

c



This can hardly be ascribed to the weak

/ attractive forces betw ¦ n the helir ¦•. atoms°°
s

s which are of the order of k T . . The>' crit.
y^ ZI, J solidification of a gas is perhaps a general

3¿> -\^ . consequence of the sharp repulsive forces.
Ii*_-, , ,

X f
-——.

xo ie 3o h-c 5o ¦ i*-.v V For heliain the intermolecular force is

z very well knaovn ; as for all chemically

/
s' ncrt-aiffeive j^jiecuies it consists of a Van

der Waals attraction on which a sharp

\ H*, "i ... . , \

XÍ \ /
repulsive core is superimposed ;.

. \ •^ _ > *'
Itmight well be a general fact of

I ±X^l L
_

nature that any assembly of molecules

PHASE DIAGSiH OF Hi:LIOM Can at telr-P^atoe be broueht into

the solid state if one raisesthe pressure high enough ? Even the phase

diagram of water ( where the density of the solid state is less than the

density of the liquid ) shows this behaviour .
? s^ yr If this is indeed a general fact of

/ i'Ojv.i nature the explanation in terms of the

\ intermolecular forces should be found in

¿o*»<L ))
—****

/ Va.püu\ some general feature of these forces .
j

i

-f Such a feati^re is the presence of a sharp

PHASE DIAGRAM OP WATER. repulsive core .

PHASE DIAGRAM OF HELIUM

PHASE DIAGRAM OF WATER.



With only repulsive- forces one would think of

$- * elastic spfcsrea of diameter o~ • However, the
o j

u-

duster integrals are hard to calculate for this

case and the virial coefficients have only been

calculated up to- the 4 th one . Since the kirkwood transition willaccording

to the above discussion be independent of the special form of the repulsive

potential, we will consider the Gaussian model (l) for the function f(:. ) .
We then have to consider for a connected graph of type i

i

i,y.(¿,k ) =£(
'

../• "*»•»
'
r«
'

a?r.. d? (2)( 2 )

with A = -1 , where the sum is over those lines n, m which occur in the

graph . This sum can be written as a quadratic form

1 IP- 7 I2I2 = V A r r (« vn,m
'

n m é~± ~-,
~

nm n m \ 5 ;n=l m=i

where A is given by
nm

• s=
-

1 if the line ( n,m ) occurs

A\ = 0 l%
''

does not occurn m <X
{ a number of lines attached to the point ( » branching number if

n= m

( 2 )

( 3 )

We then introduce the matrix with elements /\ , the graph matrix
«•Am

for this connected graph . ¿\ clearly is symmetric . he diagonal

elements are the branching numbers of the c points , the o "-diagonal

r r
n mrunÁIv

¿
T- f ñm'ív

dr, »• •r/2
mI?! n

I

¦i e
iv/v

)
-\ r

s s=
-

1 if the line ( n,m ) occurs

A\ = 0 l%
''

does not occur
n m <X

{ a number of lines attached to the point ( = branching number if

n= m

-\ r
)

v/v
¦i e
i

I
I?! n r/2

m dr, »• •

v 'í - f ñm

¿
T

Iv Á run r r
n m
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elements are either 0 or -1. As an example , we give the graph matrix for

one special graph cf 4 points :

B ,Properties of the graph matrix . /

_a. The determinant fl¿ í! is zero . This is immediately clear from

the definition of A since by adding all columns to the first-one the" n m

elements of the first column become ( branching number
-

branching number )

= 0 .
Ja. The minors of rank t -

1 are all equal ( in absolute value )•

( For disconnected graphs the complexity is zero ) » Their value is called

the graph complexity d. ( t!,k) ¥e will show this for the *l principal

minors ( obtained by striking «ait the n-th row and column ) . Ifwe take the

position of the first point as the origin , r, = 0 and the first row and

column of ¿\ do not occur in ( 3 ) » the quadratic form thus being deter-

mined by the ( 1,1 ) -
¿ninor . The integration- ever r, then leads to a

factor v and one gets «

-*£ lA. r r

k'We*)-*!)^.)'***
**

n^...drJ =

n 0

«%. ra. r r

it7.(¿, k ) = ¿f^...u to 2 "^ n m n m4... df =
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where d. ($. ,k ) is the minor obtained by striking out tt" first roy and

column in ¿j, Clearly , the same value is obtained by striking out the

n-th row and colrjrai , since the result cannot depend on the choice of the

origin. The £ principal minors have therefore the same absolute value .
With ( r /oc V' 3 2b ( the first virial coefficient, following

from the Gaussian model , then becomes equal to b ) the expression for the

cluster integral becomes

- tftf-a) X(/?,k)
. /0 . \e-l V X T** l i ?*

P ¿fa iii «tli..*) (VT5f
( 4 )

c . For connected graphs with articulation points ( star trees )

the complexity is the product of the complexities of the constituing stars :

dj U,k )'¦- U d star

all stars

This is again obvious from the integral representation •

( 4 )

d . The complexity of a star is equal to the ny ber of different

Cayley trees of £, individualized points that can "be fonred from the £--.

points and k lines , occuring in the star . This theorem was already known

to Kirchhoff ( collected Works) , who derived it in connection with the

theory of electric circuits . The general proof is given by Ford ( dise.l9s4,

Univ. of Ilirhigan ) . sSie idea of the p^cof is to write out the complexity,

then each term corresponds to one Cayaey tree . We give an example :

rdT7^ /21
A

—
i=l

Ak
if(t'-l)

)) e*2 b(\

d± (£ ,k ) = 7T d
star

all stars

\ ( 2 b )) e*
if(t'-l)

Ak A
—
i=l

1

rdT7^ /2
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jZ -1 0 -1, : , -..-,'
fr-,^ -X 2-1 0!

•.— -•« 10 -1 2 -1 1 .*' 1
—

-*»"
A 'I \ U X ¿ "M I j

\ -1 0-1 2 í

c . The maximum value of d.(*£,k) for a given ü.ue of tí-- is——
2,

£.
"""

and is obtained for a complete graph ( all pairs connected,

k~\ '¿ ( '¿-1 ). For a complete graph /\ a¿«lif n = id and •-1

•' ¿-1 -1 -1 ... -1 for n m ? The matrix ¿i has £ rows and

i
" " ... -

¡ columns andh£\!j= 0 whereas forming the
| -1 -1 t-1... -1 ]

'
"

1 • principal minor ,we get a cyclic determinar:
1

*
V a &J*

\-1 -1 -1 U-l¡ the value of which is £. "= d . Using

/) ? "2
the Kirchhoff theorem one can therefore conclude that there are c

Cayley trees with r, individualized points , which is a classical result .
JL* V(¿.kJ ? z i(^-i)(¿-2)

T c.(^,k) d-C^k)./?
1

(5)
i=l k -¿. + 1

The proof of this theory ( due to Ford) is simple . The left-hand side is

the total number of all possible Cayley trees of £ individualized points

and k lines ( including disconnected trees since then d. = 0 ) This number

can also be found by starting with a complete graph of £ points, -j£¦ (¿' -l)

a c -2 /'
lines , From this graph, wé can form r different Ca:~ .-¿r trees ofr.

points, t -1 linos . Consider one cf thaca . From the rem; -.i j(P. -2)

lines, discard k
- £?. + 1 lines . This wrlllead to a Comoctedi graph which

( 5 )

i(^-l)(¿-2)

k
-¿ +1

c^.k)
i~L

f .f .
i~L

c^.k)
i(^-l)(¿-2)

k
-¿ +1
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contains the chosen Cajdey tree and any way of disoard¿*3£ laads to a different

graph . Therefore the chosen Cayley tree vail be contained in/
"I'^-'" > \

different graphs . This leads to the number on the right- md side of (5) .
C. The integral problem . At the end of §10 , we saw that the

integral J .(¿ ,k ) is decreasing if k approaches the maximum of its domain.

Prom ( 4 ) we see that for the Gaussian model one needs to know something

about the distribution of the values of (Cayley tree) and that d =: tf

for k=s if?(r-l)( complete graph ) * For values of k between these limits

there willbe a certain range of d.- values • Suppose we can introduce a

distribution function n (L, k , d ) for the values of d .

/.< i
.* i

i

I ' -^
-, J>^ l,

We know :

¿¿_ n(/^,k,d)=s C(c,k)» total number c C connected graphs

f) - —•'"' ( -l)*
of ¿. individualized points and k lines , asymptotically"^ 2

"

i ,

> dn(K.,k , d ) =y f . ;¦, , according to (5 )
d

"
¡ k:

-
l,-+ i
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So, we know the zeroth and first moments of this distribution function

and if the distribution Fere a Gaussian cne , the knowledge of the second

moment ( or the spread) would be sufficient to determine the complete distri-

bution function .
The Gaussian character has been investigated by tests ( diss.Ford) .

For P,• = 7 there are about 40 values of d for k near the middle of its

domain ( remember that for increasing ¿^ the overwhelming majority of all

graphs have k in the middle ) and the histogram of these values showed

indeed a Gaussian behaviour .
But a rigorous proof of the Gaussian character is pre bly a very

fundamental problem .
12- RESULTS The final answers ere meagre .
I

-
For the Gattasian model of repuJ.ss.v6 farces the first 7 cluster

integrals b can be calculated . For the virial expansion of the equation

/(
-/

}
of state .

,s^ Í- B B

one finds

J^« 1^ + C.257 f2 -0.125 Q.QSB*»
-

0.050^* ...
As far as calcula iad, the sí^ :xes of cluster integrals b #> is alternating

X
( both fcr the Gaussian model and for elastic spheres) .

t> ,7:. ,n , ..1 3L .
kT v v

2 3 4 5 , 6
£-| ,= I•* + 0,257 |a - 0,125 ~> + 0.013 + 0.038 ~r

-
0.030 ...



~r ¦'*"
v, v,2 ¿ h4h4

The coefficient B, was already given by Boltzmann, B. by van Laar and

checked by N^boer and Van Hove ( Phys.Rev. B^. ( 1952 ) 777 ) • was given

by Rü3enbluth ( J.Chem. Phys. 22 ( 1954) 884 ) *

II
-

One can also consider the Gaussian model for purely attractive

forces . With A^>o, the integral j. (¿, k ) and also b,y are always positive

yfi-i With increasing k ( increasing complexity of

""—
~-~-^_ AP

~
*ke graph )£j. (¿,k) decireases . Taking the

maximum value r^ for d in ( 4 ) one

*" then can find lower limits for the b and

it turns out that the series Vl ("5.) = ¿_ b- A¿ is always divergent . So the

integrals J . (í¿ ,k) do not decrease fast enough to overcome the increase

in the total number of connected graphs with ¿Í points .
With purely attractive forces the free energy V^would always be

proportional to the 1.-unbe^ of pairs of molecules ( so'vlr) instead of

proportional to N .
Van Hove ( Physica j¿ (1949) 951 ) has shown that the sharp repulsive

core is necessary for the proportionality of all thermodynamic quantities with

N and therefore for the existence of an equation of state , The divergence of

y^ ( ?--) for the attractive Gaussian model is in agreement Ith Van Ukr 's

result ?

111
-

F^r an attractive interinóle cular force with a repulsive core

g.I+^ + 0.625 ¿ + 0.287 O.U6¿ + ...



f (r) is of the form given in the figure . At low

rf~7j\ temperature the area under the positive part is

I'////\ large with respect to the area under the negative

O'y*l'f f (

'
( -~ part . The integrals for k in the beginning of

_4¿r its domain will then certainly be positive ( graphs

which are Cayley trees, Husimi trees with one cycle , with 2 cycles etc ) .
For larger values of f^ the contributions of smaller values of r become more

and more important { the graph is
"

clustered up v , new factors f require
nm

that the molecules are less than a certain distance apart ) . This will allow

changes in sign of the J . (£, k ) , and for higher values of k they will

be alternating in sign . With many cycles ,it seems therefore likely that the

contributions of all the graphs for the largest values of k willroughly

cancel each other ? This would lead to a certain
"

cut off" ,In his thesis ,
Ford showed that for a reasonable cut off the series 1^( 'J, ) has exactly

the Kahn properties for condensation as a consequence of the theorem mentioned

in § 9 ,ion the counting series of mixed star trees . But, of course, this

should not be considered as a rigorous proof for the occurrence of condensation.

IV
-

With purely repulsive forces there remains the Kirkwood

conjecture . In the Gaussian model A=-1 , so the integrals 7^( £? k) are

alternating in sign with increasing k. Because of the strong cancellation

it is hard to make asymptotic estimates for the b . Ford derived a nusber

of inequalities and estimates . The obtained estimated values of b,t gave risi
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to series X (%>) which had the first singular point on the negative real

axis , which Mould contradict the possibility of a Kirkwood condensation .
But a definite conclusion would only be possible with estimates of b0 ,more

exact than those given by Ford .
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