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Abstract 

During the last decade, noroviruses have gained media attention as the cause of large 

scale outbreaks of gastroenteritis on cruise ships, dormitories, nursing homes, etc.  Although 

noroviruses do not multiply in food or water, they can cause large outbreaks because 

approximately 10 - 100 virions are sufficient to cause illness in a healthy adult.  Recently, it was 

shown that the activity of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) enzyme may 

be important in norovirus infection.  In search of anti-noroviral agents based on the inhibition of 

ACAT1, we synthesized and evaluated the inhibitory activities of a class of pyranobenzopyrone 

molecules containing amino, pyridine, substituted quinolines, or 7,8-benzoquinoline nucleus.  

Three of the sixteen evaluated compounds possess ED50 values in the low M range.  2-

Quinolylmethyl derivative 3A and 4-quinolylmethyl derivative 4A showed ED50 values of  3.4 
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and 2.4 M and TD50 values of >200 and 96.4 M, respectively.  The identified active 

compounds are suitable for further modification for the development of anti-norovirus agents. 

 

Key words:  acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1), caliciviruses, norovirus, 

anti-noroviruses, pyranobenzopyrones. 

 

Noroviruses, category B bioterrorism agents, are the leading cause of food- or water-

borne gastroenteritis outbreaks. Studies have shown that noroviruses are responsible for 

approximate 90% of epidemic non-bacterial food-water-borne gastroenteritis outbreaks with an 

estimated 23 million cases annually in the US causing 50,000 hospitalizations and 300 deaths.1-3 

Norovirus belongs to the Caliciviridae family, and may infect an individual with as few as 10 

viral particles.  Outbreaks often occur in closed environments such as dormitories, cruise ships, 

hospitals, and care facilities.  Caliciviruses (Family Caliciviridae) are small, non-enveloped 

RNA viruses of 27-35 nm in diameter. They possess a single-stranded, plus-sense genomic RNA 

of 7-8 kb, which encodes a nonstructural polyprotein, a major structural capsid protein of 58-80 

kD (VP1), and a small basic protein (VP2).4  Currently, there are no specific drugs for norovirus 

infection. Vaccine development for human noroviruses have faced challenges because 

noroviruses do not grow in cell culture, show high diversity, and immunity from heterologous 

strains do not seem to confer protection.5  Furthermore, repeat infections in adults indicate that 

long-term immunity may be absent.  Consequently there is an urgent need for the development of 

effective anti-noroviral drugs.  The recent development of replicon-harboring cells for 

norovirus6,7 has made possible the study of norovirus replication in cells.  DNA microarray 

analysis of norovirus replicon-harboring cells (HG23) by an Affymetrix Gene Chip showed the 



3 
 

up regulations of acyl-coenzyme A:cholesterol acyltransferase-1 (ACAT1) and other cholesterol 

modulating genes (> ±1.5 fold).9 Moreover, commercially available ACAT inhibitors were 

shown to inhibit norovirus replication.9 These findings suggest that cellular ACAT may be a 

potential therapeutic target for norovirus infection. Previously, we reported a class of 

pyranobenzopyrones that possesses ACAT inhibitory activity.10 Hence, anti-norovirus activities 

of pyranobenzopyrones were investigated.  Herein, we report the synthesis and anti-norovirus 

activity of a small library of sixteen pyranobenzopyrones containing amino, pyridine, quinoline, 

and 7,8-benzoquinoline nucleus (Figure 1).  Among the pyranobenzopyrones, several 

compounds possess anti-norovirus activity in low micromolar concentrations in vitro with 

therapeutic index values of > 40. 
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Figure 1.  Synthesized and Bioevaluated Pyranobenzopyran Compounds 1 - 8.
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The synthesis of pyranobenzopyrones 1 – 7 stems from a reductive amination reaction11 

of amine 10 and various aldehydes, 11 – 17 as depicted in Scheme 1.  Initially, amine 10 was 

prepared via a four-step sequence of reactions starting from pyranobenzopyrones 9 by 

hydroboration-hydroxylation reaction followed by mesylation, displacement with sodium azide, 

and reduction with H2/Pd.10  The synthesis was simplified by a one-pot hydroboration-amination 

reaction of 9 with BH3•THF followed by hydroxylamine-O-sulfonic acid12 in 50% yield (Scheme 

1).  A mixture of two diastereomers in a ratio of 1:1 resulted at the newly created carbon center 

C12 from the hydroboration reaction indicated by its 1H and 13C NMR spectra.  The 

diastereomers are separable by HPLC but not silica gel column chromatograph.  Alkylation of 
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amine 10 with 1 equivalent each of aldehydes 11 – 17 separately in methanol followed by 

sodium cyanoborohydride afforded amines 1 – 7, respectively.  Yields of compounds 1 - 7 range 

from 47 – 66%.  Pyridinecarboxaldehydes, various substituted quinolinecarboxaldehydes, and 

7,8-benzoquinoline-4-carboxaldehyde (17 or 4-azaphenanthrene-1-carboxaldehyde) were used in 

the reductive amination reaction, and functional groups such as primary alcohol, ester, and 

trioxane are stable under the reaction conditions. 
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Amide 8 was synthesized from the coupling reaction of quinoline-4-carboxylic acid (18), 

1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), and amine 10 in 65% yield (Scheme 2).  

Aldehydes 11, 12, and 13A and carboxylic acid 18 along with various methylquinolines were 
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obtained from commercial sources.  Aldehydes 14A, 15, and 16 were prepared by benzylic 

oxidation with selenium dioxide13 or bromination followed by hydrolysis/oxidation14 of 

methylquinolines, and aldehydes 13B, 13C, 14B - 14F, and 17 were achieved from free-radical 

heteroaromatic trioxanylation15,16 with trioxane-t-BuOOH-ferrous sulfate (Schemes 2 – 4).  

Hence, oxidation of 4-methylquinoline (19) with SeO2 under refluxing toluene gave quinoline-4-

carboxaldehyde (14A) in 73% yield along with a small amount of over oxidized carboxylic acid 

18 (Scheme 2).  Similarly, quinoline-6-carboxaldehyde (15) was obtained from 6-

methylquinoline (20) in 54% yield after the treatment with SeO2 in refluxing xylene.  To our 

surprise, oxidation of 8-methylquinoline (21) under similar reaction conditions provided only a 

trace amount of 8-quinoline-carboxaldehyde (16).  Apparently, methyl group appended on ring A 

of quinoline is activated toward oxidation, but methyl group on ring B is not, and a sluggish 

oxidation resulted.  To overcome the problem, benzylic bromination of 21 was carried out.  

Treatment of 21 with N-bromosuccinimide (NBS) and a catalytic amount of 

azobisisobutyronitrile (AIBN) followed by aqueous hydrolysis accompanying air oxidation gave 

aldehyde 16 (37% yield)14 along with the hydrolyzed product, 6-hydroxymethylquinoline (22) 

(53% yield).  Oxidation of alcohol 22 with o-iodoxybenzoic acid (IBX) and DMSO17 furnished 

16 in a 79% yield.  
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Scheme 2.  Syntheses of Compound 8 and quinolinecarboxaldehydes 14A, 15, and 16.
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Substituted quinolinecarboxaldehydes 13B, 13C, 14B - 14F,  and 7,8-

benzoquinolinecarboxaldehyde (17) were obtained from heteroaromatic trioxanylation reactions 

(Schemes 3 and 4).15,16 Treatment of 2-methylquinoline (23) with trioxane, t-butyl hydroperoxide 

and trifluoroacetic acid (TFA) in the presence of a catalytic amount of ferrous sulfate afforded 

trioxanylquinoline 24, which underwent acidic hydrolysis to give aldehyde 14B.  2-

Hydroxymethyl-4-quinolinecarboxaldehyde (14D) was obtained from the benzylic oxidation of 

24 with selenium dioxide followed by the hydrolysis of the resulting trioxanyl aldehyde 25 with 

2 N HCl to give dialdehyde 26.  Subsequent reduction of 26 with sodium borohydride afforded 

14D.  In the reduction process, regioisomer, 4-hydroxymethyl-2-quinolinecarboxaldehyde (27) 

and 2,4-di(hydroxymethyl)quinoline (28) were also isolated.  Acetylation of the hydroxyl 

function of 14D with acetic anhydride and zinc oxide18 produced acetate 14C (Scheme 3).  
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Scheme 3.  Syntheses of quinolinecarboxaldehydes 14B - 14D.
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 Similar trioxanylation of 4-methylquinoline (19) furnished 2-trioxanequinoline 29 in 43% 

yield along with a small amount of 4-methyl-2-quinolinecarboxaldehyde (13B) (3% yield), 

which derived from the hydrolysis of the trioxane moiety of 29 with TFA and water in the 

reaction mixture (Scheme 4).  Alternatively, aldehyde 13B can be achieved in 50% yield from a 

two-step trioxanylation of 19 followed by acidic hydrolysis with 10% aqueous sulfuric acid of 

the resulting trioxane without purification.  2-Trioxanyl-4-carboxaldehyde (14E) was obtained 

from the benzylic oxidation of 29 with selenium dioxide.  Similar to the selenylation reaction of 

8-methylquinoline (21), trioxanylation of 6-methylquinoline (20) appeared to be sluggish.  
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Hence, the reaction of 20 with trioxane, t-butyl hydroperoxide, TFA and ferrous sulfate followed 

by acidic hydrolysis furnished a mixture of regioisomers, 6-methyl-4-carboxaldehyde (14F) 

(17% yield) and 6-methyl-2-carboxaldehyde (13C) (16% yield), which were separated by silica 

gel column chromatography.  The spectral data of compound 13C are similar to that reported,19 

and the assignment of regiochemistry of 14F is based on its 1H NMR spectral data.  The 

chemical shift of C2-H of 14F appears at  9.14 ppm as a doublet with coupling constant J value 

of 4.3 Hz, and that of C3-H at  7.77 ppm as a doublet with J value of 4.3 Hz, which are similar 

to that of 4-quinolinecarboxaldehyde (14A).  Formylation of 4-azaphenanthrene (30) under 

similar reaction conditions followed by hydrolysis with 2 N HCl afforded 7,8-benzoquinoline-4-

carboxaldehyde (17).  Hence, methylquinolines can either be oxidized to the corresponding 

quinolinecarboxaldehydes or formylated to methylquinolinecarboxaldehydes. 

 

Scheme 4.  Syntheses of quinolinecarboxaldehydes 13B, 13C, 14E, 14F and 7,8-benzoquinolinecarboxaldehyde (17).
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From our initial screening of the effects of pyranobenzopyrone compounds on the 

reduction of NV replicon-harboring cells (HG23 cells), 3-pyridyl analog 1 showed promising 

results with ED50 value (effective dosage at reducing NV genome levels by 50% at 24 h post-

treatment) and TD50 value (cytotoxic dosage in killing 50% HG23 cells at 48 h post-treatment 

determined by cytotoxicity assay at 48 h of treatment)7,9,20 of  4 and >200 M, respectively.  

Hence, a small library of pyridylmethyl, quinolylmethyl, quinolylcarbonyl, and 4-

azaphenanthrenylmethyl derivatives along with their synthetic precursor, amine 10, was 

evaluated for their anti-norovirus activities.  Results of the inhibition of NV RNA replication are 

summarized in Table 1.  To our surprise, amine 10, 4-pyridylmethyl 2, 8-quinolylmethyl 6, and 

2-acetoxymethyl- and 2-hydroxymethyl-4-quinolylmethyls 4C and 4D have ED50 values >10 

M.  Due to high ED50 values, TD50 values of these compounds were not determined except 

compound 10.  Other quinolylmethyl, substituted quinolylmethyl, and 4-azaphenanthrenylmethyl 

derivatives along with 4-quinolyl amide 8 possess ED50 values ranging from 2 – 8 M and TD50 

values of 61 – >200 M.  In particular, 2-quinolylmethyl 3A, 4-quinolylmethyl 4A, and 6-

methyl-4-quinolylmethyl 4F possess the strongest anti-norovirus activities with respective ED50 

values of 3.4, 2.4, and 3.4 M and TI (therapeutic index; derived from TD50/ED50) values of 

58.8, 40.2, and 18.0, respectively.  6-Methyl-2-quinolylmethyl 3C on the other hand showed a 

lower ED50 value of 8.1 M.  Hence, addition of substituent at C6 or ring B of 4-quinolylmethyl 

analog appears to retain its antiviral activity and substituent on ring A diminishes its activity. 
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Table 1.  Effects of pyranobenzopyrone compounds on the reduction of NV RNA replication 

(ED50) and toxicity (TD50) in HG23 cells (NV replicon-haboring cells) and their therapeutic 

indexes (TI). 

 

Compound ED50 value in µM TD50 value in µM Therapeutic index (TI) 

1 

2 

3A 

4A 

5 

6 

4B 

4C 

4D 

4E 

3B 

4.1 

9.6 

3.4 

2.4 

8.1 

>10 

8.2 

9.7 

9.5 

8.4 

5.3 

>200 

ND* 

>200 

96.4 

ND 

>160 

ND 

ND 

ND 

ND 

>200 

>50 

 - 

>58.8 

40.2 

 - 

>16 

 - 

- 

- 

- 

>40 

4F 3.4 61.2 18.0 

3C 8.1 83.7 10.3 

7 5.3 >200 >40 

8 

10                                        

5.5 

>10 

103.5 

>200 

18.8 

- 

 
* ND: not determined due to high ED50 values. Each value is the average of at least 2 

independent tests. 

 

In conclusion, various pyranobenzopyrone molecules containing pyridine, quinoline, or 

4-azaphenanthrene nucleus were synthesized and evaluated.  4-Quinolylmethyl analogs 4A and 

4F and 2-quinolylmethyl analog 3A possess the strongest anti-norovirus activities having ED50 
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values of 2.4 – 3.4 M and TI values of 18.0 – >58.8.  The identified hits are suitable for further 

optimization via medicinal chemistry and molecular modeling. 
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Supplemental Materials. 

Experimental Section. 

I.  General Methods.  NMR spectra were obtained from a 400-MHz spectrometer (Varian Inc.), 

in CDCl3, unless otherwise indicated, and reported in ppm.  Infrared spectra were taken from a 

Nicolet 380 FT-IR instrument (Thermo Scientific) in solid forms and are reported in wave 

numbers (cm
-1

).  Low-resolution mass spectra were taken from an API 2000-triple quadrupole 

ESI-MS/MS mass spectrometer (from Applied Biosystems).  High-resolution Mass spectra were 

obtained from a LCT Premier (Waters Corp., Milford MA) time of flight mass spectrometer.  

The instrument was operated at 10,000 resolution (W mode) with dynamic range enhancement 

that attenuates large intensity signals.  The cone voltage was 60 eV.  Spectra were acquired at 

16666 Hz pusher frequency covering the mass range 100 to 1200  and accumulating data for 2 

seconds per cycle.  Mass correction for exact mass determinations was made automatically with 

the lock mass feature in the MassLynx data system.  A reference compound in an auxiliary 

sprayer is sampled every third cycle by toggling a “shutter” between the analysis and reference 

needles.  The reference mass is used for a linear mass correction of the analytical cycles.  
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Chemicals such as sodium cyanoborohydride, 4-hydroxy-6-methyl-2-pyrone, (S)-perillaldehyde, 

hydroxylamine-O-sulfonic acid, pyridine-3-carboxaldehyde (11), pyridine-4-carboxaldehyde 

(12), 2-quinolinecarboxaldehyde (13A) and 4-quinolinecarboxylic acid (18) were purchased 

from Fisher Scientific and Aldrich Chemical Co.  (5aS,7S)-{7-Isopropenyl-3-methyl-1H,7H-

5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (9) was prepared as described.21 

II.1. (5aS,7S)-7-[(1R) and (1S)-2-Amino-1-methylethyl)-3-methyl-1H,7H-5a,6,8,9-

tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (10).  To a cold (0oC) solution of 5.0 g (19.4 

mmol) of compound 9 in 100 mL of THF under argon was added 10 mL (9.7 mmol) of 

BH3•THF complex (1.0 M in THF) dropwise.  After stirring the solution at 0oC for 2 h and 25oC 

for 12 h, the borane solution was added to 3.3 g (29.2 mmol) of hydroxylamine-O-sulfonic acid 

under argon via a cannula followed by the addition of 20 mL of chloroform.  The reaction 

mixture was heated to reflux for 7 h, cooled to 25oC, diluted with 300 mL of ethyl acetate, and 

extracted with 2 N HCl (100 mL each) twice.  The combined HCl layer was washed three times 

with ethyl acetate (100 mL each), basified carefully with 5% sodium carbonate until pH = 9 ~ 

10, and extracted three times with dichloromethane.  The combined dichloromethane layer was 

washed with brine, dried (anhydrous Na2SO4), and concentrated to give 2.7 g (50% yield) of 

compound 10, whose 1H and 13C NMR spectra are identical to that reported.10  

 
General procedure for the synthesis of compounds 1 – 7 via the reductive amination 
reaction. 

 
II.2. (5aS,7S)-3-Methyl-7-(1-(pyridin-3-ylmethylamino)propan-2-yl)-1H,7H-5a,6,8,9-

tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (1).  A solution of 85 mg (0.31 mmol) of amine 

10 and 33 mg (0.31 mmol) of 3-pyridinecarboxaldehyde (11) in 5 mL of dry MeOH was stirred 

under argon at 25oC for 12 h, added acetic acid (5 drops) and a solution of 68 mg (1.1 mmol) of 
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NaBH3CN in methanol.  After stirring for 1 h, the reaction solution was diluted with 40 mL of 

5% aqueous ammonium hydroxide and extracted three times with dichloromethane, and the 

combined organic layer was washed with brine, dried (MgSO4), concentrated, and column 

chromatographed on silica gel using a gradient mixture of CH2Cl2 and MeOH as eluant to give 

68 mg (60% yield) of 1 as a solid.  1H NMR δ 8.57 (s, 1 H), 8.51 (d, J = 4 Hz, 1 H), 7.70 (d, J = 

7.5 Hz, 1 H), 7.28 (dd, J = 7.5, 4 Hz, 1 H), 6.05 (s, 1 H), 5.71 (s, 1 H), 5.11 – 4.98 (m, 1 H), 3.81 

(s, 2 H), 2.67 – 2.57 (m, 1 H), 2.53 – 2.38 (m, 2 H), 2.19 (s, 3 H), 2.08 – 1.91 (m, 2 H), 1.74 – 

1.46 (m, 4 H), 1.29 – 1.06 (m, 1 H), 0.91 (d, J = 5.0 Hz, 3 H); 13C NMR δ 163.3, 162.6, 161.6, 

149.7, 148.5, 136.0, 135.6, 132.8, 123.5, 109.1, 99.9, 97.4, 79.7, 79.5, 53.1, 53.05, 51.5,  39.2, 

38.7, 38.5, 37.7, 37.6, 36.7, 32.4, 32.3, 31.0, 28.4, 20.2, 14.7, 14.6;  MS (electrospray ionization) 

m/z 367.2 (M+H+); HRMS calcd for C22H27N2O3
+ (M+H+) 367.2022, found 367.2017 (100%). 

II.3. (5aS,7S)-3-Methyl-7-(1-(pyridin-4-ylmethylamino)propan-2-yl)-1H,7H-5a,6,8,9-

tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (2).  From 85 mg (0.31 mmol) of amine 10 and 

33 mg (0.31 mmol) of 4-pyridinecarboxaldehyde (12), 72 mg (64% yield) of compound 2 was 

obtained as a solid.  1H NMR δ 8.54 (d, J = 4.5 Hz, 2 H), 7.26 (d, J = 4.7 Hz, 2 H), 6.06 (s, 1 H), 

5.70 (s, 1 H), 5.11 – 4.98 (m, 1 H), 3.80 (s, 2 H), 2.63 – 2.55 (m, 1 H), 2.50 – 2.39 (m, 2 H), 2.18 

(s, 3 H), 2.09 – 1.91 (m, 2 H), 1.75 – 1.47 (m, 4 H), 1.35 – 1.05 (m, 1 H), 0.92 (d, J = 6.6 Hz, 3 

H); 13C NMR δ 163.3, 163.3, 162.6, 161.6, 149.8, 132.8, 123.1, 109.3, 99.9, 97.4, 79.7, 79.6, 

53.4, 53.3, 53.0, 39.3, 38.8, 38.7, 38.0, 37.9, 36.9, 32.5, 32.4, 31.1, 28.6, 20.2, 14.8, 14.7;  MS 

(electrospray ionization) m/z 367.2 (M+H+), 139.0, 121.2; HRMS calcd for C22H26N2O3Na+ 

(M+Na+) 389.1841, found 389.1844 (100%). 

II.4. (5aS,7S)-3-Methyl-7-(1-(quinolin-2-ylmethylamino)propan-2-yl)-1H,7H-5a,6,8,9-

tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (3A).  From 60 mg (0.22 mmol) of amine 10 
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and 35 mg (0.22 mmol) of 2-quinolinecarboxaldehyde (13A), 54 mg (60% yield) of 3A was 

obtained as a solid.  1H NMR δ 8.11 (d, J = 8.6 Hz, 1 H), 8.04 (d, J = 8.2 Hz, 1 H), 7.79 (d, J = 

8.2 Hz, 1 H), 7.69 (t, J = 7.4 Hz, 1 H), 7.50 (t, J = 7.4 Hz, 1 H), 7.43 (d, J = 8.6 Hz, 1 H), 6.04 (s, 

1 H), 5.67 (s, 1 H), 5.08 – 5.00 (m, 1 H), 4.09 (s, 2 H), 2.69 (dd, J = 11.7, 5.8 Hz, 1 H), 2.59 – 

2.50 (m, 1 H), 2.41 (d, J = 14 Hz, 1 H), 2.16 (s, 3 H), 2.10 – 1.91 (m, 2 H), 1.78 – 1.45 (m, 4 H), 

1.27 – 1.04 (m, 1 H), 0.93 (d, J = 6.2 Hz, 1.5 H, CH3), 0.92, (d, J = 6.2 Hz, 1.5 H, CH3) (2 

diastereomers at C12); 13C NMR δ 163.4, 163.4, 162.7, 161.6, 160.1, 147.8, 136.6, 133.0, 132.9, 

129.7, 129.0, 127.7, 127.5, 126.3, 120.7, 109.2, 99.9, 97.5, 79.8, 79.7, 55.9, 53.7, 53.6, 39.3, 

38.7, 38.6, 37.9, 37.8, 36.8, 32.5, 32.4, 31.1, 28.5, 20.2, 14.8, 14.7;  MS (electrospray ionization) 

m/z 417.3 (M+H+);  HRMS calcd for C26H29N2O3
+ (M+H+) 417.2178, found 417.2164 (100%). 

II.5. (5aS,7S)-3-Methyl-7-(1-(quinolin-4-ylmethylamino)propan-2-yl)-1H,7H-5a,6,8,9-

tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (4A).  From 1.28 g (4.65 mmol) of amine 10 

and 0.73 g (4.65 mmol) of 4-quinolinecarboxaldehyde (14A), 1.25 g (65% yield) of 4A was 

obtained as a solid.  1H NMR δ 8.88 (d, J = 4.3 Hz, 1 H), 8.14 (d, J = 7.4 Hz, 1 H), 8.12 (d, J = 

7.0 Hz, 1 H), 7.73 (t, J = 7.6 Hz, 1 H), 7.58 (t, J = 7.8 Hz, 1 H), 7.45 (d, J = 4.3 Hz, 1 H), 6.07 (s, 

1 H), 5.70 (s, 1 H), 5.06 – 4.95 (m, 1 H), 4.27 (s, 2 H), 2.75 – 2.67 (m, 1 H), 2.63 – 2.55 (m, 1 

H), 2.44 (d, J = 14.4 Hz, 1 H), 2.19 (s, 3 H), 2.07 – 1.88 (m, 2 H), 1.75 – 1.47 (m, 4 H), 1.30 – 

1.08 (m, 1 H), 0.94 (d, J = 6.6 Hz, 1.5 H, CH3), 0.93 (d, J = 6.6 Hz, 1.5 H, CH3) (2 diastereomers 

at C12); 13C NMR δ 163.4, 163.37, 162.7, 161.7, 150.4, 148.4, 146.0, 132.8, 130.3, 129.3, 127.3, 

126.6, 123.6, 120.1, 109.3, 99.9, 97.5, 79.8, 79.7, 53.9, 53.8, 50.7, 50.7, 39.3, 38.8, 38.6, 38.0, 

37.9, 36.9, 32.5, 32.4, 31.1, 28.6, 20.3, 14.9, 14.8;  MS (electrospray ionization) m/z 417.5 

(M+H+),139.1;  HRMS calcd for C26H29N2O3
+ (M+H+) 417.2178, found 417.2162 (100%). 
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II.6. (5aS,7S)-3-Methyl-7-(1-(quinolin-6-ylmethylamino)propan-2-yl)-6,7,8,9-

tetrahydropyrano[4,3-b]chromen-1(5aH)-one (5). From 0.15 g (0.53 mmol) of amine 10 and 

83 mg (0.53 mmol) of 6-quinolinecarboxaldehyde (15), 104 mg (47% yield) of 5 was obtained as 

a solid.  1H NMR 8.87 δ (d, J = 3.9 Hz, 1 H), 8.12 (d, J = 8.2 Hz, 1 H), 8.06 (d, J = 8.6 Hz, 1 H), 

7.76 (s, 1 H), 7.71 (d, J = 9.0 Hz, 1 H), 7.38 (dd, J = 8.4, 4.1 Hz, 1 H), 6.02 (s, 1 H), 5.66 (s, 1 

H), 5.01 (dd, J = 10.9, 4.7 Hz, 1 H), 3.99 (s, 2 H), 2.70 – 2.62 (m, 1 H), 2.55 – 2.46 (m, 1 H), 

2.40 (d, J = 14.1 Hz, 1 H), 2.15 (s, 3 H), 2.05 – 1.88 (m, 2 H), 1.74 – 1.42 (m, 4 H), 1.26 – 1.01 

(m, 1 H), 0.90 (d, J = 6.3 Hz, 1.5 H, CH3), 0.89 (d, J = 6.3 Hz, 1.5 H, CH3) (2 diastereomers at 

C12); 13C NMR δ 163.4, 163.36, 162.7, 161.6, 150.3, 147.7, 137.4, 136.2, 132.7, 132.7, 130.4, 

129.6, 128.3, 126.9, 121.5, 109.2, 99.9, 97.4, 97.4, 79.7, 79.5, 53.5, 52.7, 52.7, 39.2, 38.7, 38.5, 

37.4, 37.3, 36.7, 32.4, 32.3, 31.0, 28.4, 20.2, 14.7, 14.6;  MS (electrospray ionization) m/z 417.5 

(M+H+), 142.0;  HRMS calcd for C26H29N2O3
+ (M+H+) 417.2178, found 417.2174 (100%). 

II.7. (5aS,7S)-3-Methyl-7-(1-(quinolin-8-ylmethylamino)propan-2-yl)-1H,7H-5a,6,8,9-

tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (6).  From 43 mg (0.15 mmol) of amine 10 and 

24 mg (0.15 mmol) of 8-quinolinecarboxaldehyde (16), 34 mg (53% yield) of 6 was obtained as 

a solid.  A mixture of ethanol and THF (2:1) was used as solvent in the reaction.  In the column 

chromatographic separation, the column was deactivated with 2% triethylamine in hexane prior 

to the loading of the crude product.  1H NMR δ 8.87 – 8.83 (m, 1 H), 8.12 (d, J = 8.2 Hz, 1 H), 

7.69 (d, J = 8.2 Hz, 1 H), 7.61 (d, J = 7.0 Hz, 1 H), 7.44 (t, J = 7.4 Hz, 1 H), 7.37 (dd, J = 8.2, 

3.9 Hz, 1 H), 5.99 (s, 1 H),  5.65 (s, 1 H), 5.01 – 4.91 (m, 1 H), 4.30 (s, 2 H), 2.58 (dd, J = 11.7, 

5.8 Hz, 1 H), 2.50 – 2.42 (m, 1 H), 2.35 (d, J = 12.9 Hz, 1 H), 2.13 (s, 3 H), 2.02 – 1.82 (m, 2 H), 

1.69 – 1.38 (m, 4 H), 1.30 – 0.99 (m, 1 H), 0.82 (d, J = 6.2 Hz, 3 H);  13C NMR δ 163.4, 163.35, 

162.7, 161.6, 149.5, 147.0, 136.8, 133.0, 132.9, 129.6, 128.6, 127.5, 126.5, 121.3, 109.2, 109.14, 
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99.9, 97.5, 79.8, 79.7, 53.1, 53.0, 51.7, 51.67, 39.4, 38.5, 38.45, 37.5, 37.4, 36.7, 32.5, 32.4, 31.1, 

28.2, 20.3, 14.7, 14.63;  MS (electrospray ionization) 439.5 (M+Na+), 417.3 (M +H+), 142.1;  

HRMS calcd for C26H29N2O3
+ (M+H+) 417.2178, found 417.2173 (100%). 

II.8. (5aS,7S)-3-Methyl-7-(1-((2-methylquinolin-4-yl)methylamino)propan-2-yl)-1H,7H-

5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (4B). From 43 mg (0.15 mmol) of 

amine 10 and 26 mg (0.15 mmol) of 2-methyl-4-quinolinecarboxaldehyde (14B), 40 mg (60% 

yield) of 4B was obtained as a solid.  1H NMR δ 8.01 (d, J = 8.6 Hz, 2 H), 7.65 (t, J = 7.6 Hz, 1 

H), 7.47 (t, J = 7.6 Hz, 1 H), 7.31 (s, 1 H), 6.03 (s, 1 H), 5.68 (s, 1 H), 5.04 – 4.94 (m, 1 H), 4.18 

(s, 2 H), 2.73 – 2.63 (m, 1 H), 2.71 (s, 3 H), 2.59 – 2.52 (m, 1 H), 2.41 (d, J = 14.5 Hz, 1 H), 2.16 

(s, 3 H), 2.05 – 1.86 (m, 2 H), 1.75 – 1.44 (m, 4 H), 1.26 – 1.05 (m, 1 H), 0.91 (d, J = 6.6 Hz, 1.5 

H, CH3), 0.90 (d, J = 6.6 Hz, 1.5 H, CH3); 
13C NMR δ 163.4, 163.3, 162.7, 161.6, 158.9, 148.0, 

145.8, 132.81, 132.80, 129.3, 129.3, 125.7, 125.4, 123.3, 120.9, 109.2, 99.9, 97.4, 79.7, 79.6, 

53.8, 53.79, 50.6, 50.61, 39.3, 38.7, 38.5, 37.9, 37.8, 36.8, 32.5, 32.3, 31.1, 28.5, 25.5, 20.2, 14.9, 

14.7;  MS (electrospray) 431.4 (M+H+), 144.2;  HRMS calcd for C27H31N2O3
+ (M+H+) 

431.2335, found 431.2320 (100%). 

II.9. 4-((2-((5aS,7S)-Methyl-1-oxo-1,5a,6,7,8,9-hexahydropyrano[4,3-b]chromen-7-

yl)propylamino)methyl)quinolin-2-yl)methyl  acetate (4C).  From 43 mg (0.15 mmol) of 

amine 10 and 34 mg (0.15 mmol) of quinolinecarboxaldehyde 14C, 50 mg (66% yield) of 4C 

was obtained as a solid.  A mixture of ethanol and THF (2:1) was used as a solvent for the 

reaction.  1H NMR δ 8.09 (dd, J = 8.2, 3.1 Hz, 2 H), 7.71 (t, J = 7.6 Hz, 1 H), 7.56 (t, J = 7.6 Hz, 

1 H), 7.52 (s, 1 H), 6.05 (s, 1 H), 5.70 (s, 1 H), 5.37 (s, 2 H), 5.06 – 4.96 (m, 1 H), 4.25 (s, 2 H), 

2.75 – 2.67 (m, 1 H), 2.61 – 2.54 (m, 1 H), 2.43 (d, J = 14.0 Hz, 1 H), 2.19 (s, 3 H), 2.18 (s, 3 H), 

2.07 – 1.88 (m, 2 H), 1.73 – 1.48 (m, 4 H), 1.31 – 1.06 (m, 1 H), 0.94 (d, J = 6.6 Hz, 1.5 H, 
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CH3), 0.93 (d, J = 6.6 Hz, 1.5 H, CH3) (2 diastereomers at C12);  13C NMR δ 170.9, 163.4, 

163.4, 162.7, 161.7, 156.0, 147.9, 147.0, 132.8, 130.1, 129.7, 126.8, 126.5, 123.5, 118.5, 109.3, 

99.9, 97.5, 79.8, 79.6, 67.8, 53.9, 53.9, 50.8, 50.8, 39.3, 38.8, 38.7, 38.0, 37.9, 36.9, 32.5, 32.4, 

31.1, 28.6, 21.2, 20.3, 15.0, 14.8;  MS (electrospray ionization) 511.2 (M+Na+), 489.2 (M+H+);  

HRMS calcd for C29H32N2O5Na+ (M+Na+) 511.2209, found 511.2184 (100%). 

II.10. (5aS,7S)-7-(1-((2-(Hydroxymethyl)quinolin-4-yl)methylamino)propan-2-yl)-3-methyl-

6,7,8,9-hexahydropyrano[4,3-b]chromen-1(5aH)-one (4D).  From 43 mg (0.15 mmol) of 

amine 10 and 29 mg (0.15 mmol) of (2-hydroxymethyl)quinoline-4-carboxaldehyde (14D), 42 

mg (61% yield) of 4D was obtained as a solid.  Ethanol was used as a solvent in the reaction.  1H 

NMR δ 8.09 (d, J = 8.2 Hz, 1 H), 8.07 (d, J = 7.8 Hz, 1 H), 7.72 (t, J = 7.6 Hz, 1 H), 7.56 (t, J = 

7.6 Hz, 1 H), 7.35 (s, 1 H), 6.06 (s, 1 H), 5.70 (s, 1 H), 5.06 – 4.97 (m, 1 H), 4.91 (s, 2 H), 4.25 

(s, 2 H), 2.76 – 2.66 (m, 1 H), 2.63 – 2.54 (m, 1 H), 2.43 (d, J = 14.0 Hz, 1 H), 2.19 (s, 3 H), 2.08 

– 1.88 (m, 2 H), 1.77 – 1.47 (m, 4 H), 1.33 – 1.06 (m, 1 H), 0.94 (d, J = 6.6 Hz, 1.5 H, CH3), 

0.93 (d, J = 6.6 Hz, 1.5 H, CH3);  
13C NMR δ 163.4, 163.37, 162.7, 161.7, 159.0, 146.9, 146.7, 

132.8, 132.79, 129.6, 129.5, 126.5, 126.4, 123.5, 117.1, 109.3, 99.9, 97.5, 79.8, 79.6, 64.3, 53.9, 

53.86, 50.7, 50.65, 39.3, 38.8, 38.6, 38.0, 37.9, 36.8, 32.5, 32.4, 31.1, 29.9, 28.6, 20.3, 14.9, 

14.8;  MS (electrospray ionization) 469.3 (M+Na+), 447.3 (M+1), 142; HRMS calcd for 

C27H31N2O4
+ (M+H+) 447.2284, found 447.2284. 

II.11. (5aS,7S)-7-(1-((2-(1,3,5-Trioxan-2-yl)quinolin-4-yl)methylamino)propan-2-yl)-3-

methyl-6,7,8,9-tetrahydropyrano[4,3-b]chromen-1(5aH)-one (4E). From 102 mg (0.37 mmol) 

of amine 10 and 91 mg (0.37 mmol) of aldehyde 14E, 88 mg (47% yield) of compound 4E was 

obtained as a solid.  Ethanol was used as solvent in the reaction.  1H NMR δ 8.16 (d, J = 8.2 Hz, 

1 H), 8.14 (d, J = 7.6 Hz, 1 H), 7.84 (d, J = 1.6 Hz, 1 H), 7.72 (t, J = 7.6 Hz, 1 H), 7.59 (t, J = 8.1 
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Hz, 1 H), 6.11 (s, 1 H), 6.05 (s, 1 H), 5.69 (s, 1 H), 5.46 – 5.39 (m, 4 H), 5.07 – 4.98 (m, 1 H), 

4.27 (s, 2 H), 2.75 – 2.66 (m, 1 H), 2.63 - 2.54 (m, 1 H), 2.43 (d, J = 14.1 Hz, 1 H), 2.18 (s, 3 H), 

2.07 – 1.87 (m, 2 H), 1.78 – 1.46 (m, 4 H), 1.33 – 1.06 (m, 1 H), 0.92 (d, J = 6.8 Hz, 1.5 H, 

CH3), 0.92 (d, J = 6.8 Hz, 1.5 H, CH3) (2 diastereomers at C12);  13C NMR δ 163.4, 163.37, 

162.7, 161.7, 155.2, 147.7, 147.5, 133.0, 130.5, 129.7, 127.5, 127.3, 123.7, 117.3, 117.2, 109.3, 

102.3, 99.9, 97.5, 93.9, 79.8, 79.7, 54.0, 53.9, 51.0, 51.0, 39.4, 38.6, 38.5, 38.0, 37.9, 36.8, 32.6, 

32.4, 31.2, 28.5, 20.3, 14.9, 14.8;  MS (electrospray ionization) 527.4 (M+Na+), 505.6 (M+H+), 

445.1, 199.3, 139.0;  HRMS calcd for C29H33N2O6
+ (M+H+) 505.2339, found 505.2340. 

II.12. (5aS,7S)-3-Methyl-7-(1-((4-methylquinolin-2-yl)methylamino)propan-2-yl)-1H,7H-

5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (3B).  From 43 mg (0.15 mmol) of 

amine 10 and 26 mg (0.15 mmol) of 4-methyl-2-quinolinecarboxaldehyde (13B), 35  mg (53% 

yield)  of compound 3B was obtained as a solid.  Ethanol was used as solvent in the reaction.  1H 

NMR δ 8.03 (d, J = 8.1 Hz, 1 H), 7.96 (d, J = 8.2 Hz, 1 H), 7.67 (t, J = 7.4 Hz, 1 H), 7.51 (t, J = 

7.4 Hz, 1 H), 7.27 (s, 1 H),  6.03 (s, 1 H), 5.67 (s, 1 H), 5.12 – 4.97 (m, 1 H), 4.02 (s, 2 H), 2.75 - 

2.60 (m, 1 H), 2.68 (s, 3 H), 2.59 – 2.231  (m, 2 H), 2.16 (s, 3 H), 2.11 – 1.86 (m, 2 H), 1.78 – 

1.39 (m, 4 H), 1.31 – 1.04 (m, 1 H), 0.92 (d, J = 6.4, Hz, 1.5 H), 0.91 (d, J = 6.4, Hz, 1.5 H);  13C 

NMR δ 163.4, 162.7, 161.6, 156.0, 147.7, 144.7, 133.0, 129.6, 129.3, 127.5, 126.0, 123.9, 121.4, 

109.2, 99.9, 97.5, 79.9, 79.7, 56.0, 53.8, 53.7, 39.4, 38.7, 38.5, 38.0, 37.8, 36.8, 32.6, 32.4, 31.2, 

28.5, 20.2, 18.9, 14.9, 14.7.  MS (electrospray ionization) 429.1 (M-1).  HRMS calcd for 

C27H31N2O3
+ (M+H+) 431.2335, found 431.2308 (100%). 

II.13. (5aS,7S)-3-Methyl-7-(1-((6-methylquinolin-4-yl)methylamino)propan-2-yl)-1H,7H-

5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (4F). From 85 mg (0.31 mmol) of 

amine 10 and 53 mg (0.31 mmol) of 6-methyl-4-quinolinecarboxaldehyde (14F), 82 mg (62% 
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yield) of compound 4F was obtained as a solid.  A mixture of ethanol and THF (2:1) was used as 

a solvent in the reaction.  1H NMR δ 8.78 (d, J = 4.3 Hz, 1 H), 8.01 (d, J = 8.6 Hz, 1 H), 7.85 (s, 

1 H), 7.53 (d, J = 8.6 Hz, 1 H), 7.39 (d, J = 4.3 Hz, 1 H), 6.05 (s, 1 H), 5.69 (s, 1 H), 5.05 – 4.94 

(m, 1 H), 4.21 (s, 2 H), 2.75 – 2.66 (m, 1 H), 2.62 – 2.54 (m, 1 H), 2.56 (s, 3 H), 2.43 (d, J = 14.0 

Hz, 1 H), 2.17 (s, 3 H), 2.07 – 1.88 (m, 2 H), 1.74 – 1.47 (m, 4 H), 1.31 – 1.07 (m, 1 H), 0.94 (d, 

J = 7.0 Hz, 1.5 H, CH3), 0.93 (d, J = 7.0 Hz, 1.5 H, CH3) (2 diastereomers at C12); 13C NMR δ 

163.4, 163.35, 162.7, 161.6, 149.5, 147.0, 145.2, 136.5, 132.8, 131.5, 130.0, 127.2, 122.4, 120.0, 

109.3, 99.9, 97.5, 79.8, 79.7, 53.9, 53.8, 50.7, 39.3, 38.8, 38.7, 38.0, 37.9, 36.9, 32.5, 32.4, 31.2, 

28.6, 22.1, 20.2, 14.9, 14.8;  MS (electrospray ionization) 431.4 (M+1), 156.2, 144.3; HRMS 

calcd for C27H30N2O3Na+ (M+Na+) 453.2154, found 453.2151. 

II.14. (5aS,7S)-3-Methyl-7-(1-((6-methylquinolin-2-yl)methylamino)propan-2-yl)-1H,7H-

5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (3C).  From 43 mg (0.15 mmol) of 

amine 10 and 26 mg (0.15 mmol) of 6-methyl-2-quinolinecarboxaldehyde (13C), 37 mg of 

compound 3C (56% yield) was obtained as a solid.  Ethanol was used as a solvent in the 

reaction.  1H NMR δ 8.04 (d, J = 8.2 Hz, 1 H), 7.94 (d, J = 8.6 Hz, 1 H), 7.57 (s, 1 H), 7.53 (dd, J 

= 8.6, 1.6 Hz, 1 H), 7.40 (d, J = 8.6 Hz, 1 H), 6.05 (s, 1 H), 5.69 (s, 1 H), 5.10 – 5.02 (m, 1 H), 

4.08 (s, 2 H), 2.73 – 2.65 (m, 1 H), 2.59 – 2.49 (m, 1 H), 2.53 (s, 3 H), 2.43 (d, J = 14.4 Hz, 1 H), 

2.18 (s, 3 H), 2.10 – 1.93 (m, 2 H), 1.77 – 1.46 (m, 4 H), 1.29 – 1.07 (m, 1 H), 0.94 (d, J = 6.6 

Hz, 1.5 H, CH3), 0.93 (d, J = 6.6 Hz, 1.5 H, CH3) (2 diastereomers at C12); 13C NMR δ 163.5, 

163.4, 162.8, 161.6, 159.1, 146.4, 136.2, 136.1, 133.0, 132.99, 132.0, 128.7, 127.5, 126.7, 120.7, 

109.2, 100.0, 97.5, 79.9, 79.7, 55.9, 53.7, 53.6, 39.4, 38.7, 38.5, 37.9, 37.8, 36.8, 32.6, 32.4, 31.2, 

28.4, 21.7, 20.3, 14.9, 14.7;  MS (electrosprary ionization) 431.4 (M+1), 156.1, 129.2;  HRMS 

calcd for C27H31N2O3
+ (M+H+) 431.2335, found 431.2309 (100%). 
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 II.15. 5aS,7S)-7-(1-(Benzo[h]quinolin-4-ylmethylamino)propan-2-yl)-3-methyl-1H,7H-

5a,6,8,9-tetrahydro-1-oxopyrano[4,3-b][1]benzopyran (7).  From 51 mg (0.18 mmol) of 

amine 10 and 38 mg (0.18 mmol) of 7,8-benzoquinoline-4-carboxaldehyde (17), 54 mg (62% 

yield) of compound 7 was obtained as a solid.  Ethanol was used as a solvent in the reaction.  1H 

NMR δ 9.32 (d, J = 7.4 Hz, 1 H), 8.96 (d, J = 4.3 Hz, 1 H), 8.03 (d, J = 9.0 Hz, 1 H), 7.92 (d, J = 

7.4 Hz, 1 H), 7.85 (d, J = 9.4 Hz, 1 H), 7.78 – 7.68 (m, 2 H), 7.56 (d, J = 4.7 Hz, 1 H), 6.05 (s, 1 

H), 5.64 (s, 1 H), 5.05 – 4.94 (m, 1 H), 4.30 (s, 2 H),  2.76 – 2.66 (m, 1 H), 2.64 – 2.56 (m, 1 H), 

2.43 (d, J = 14.4 Hz, 1 H), 2.18 (s, 3 H), 2.04 – 1.89 (m, 2 H), 1.76 – 1.46 (m, 4 H), 1.43 – 1.06 

(m, 1 H), 0.95 (d, J = 7.0 Hz, 1.5 H, CH3), 0.93 (d, J = 7.0 Hz, 1.5 H, CH3);  
13C NMR δ 163.4, 

162.8, 161.6, 148.8, 146.7, 145.7, 133.4, 132.9, 132.0, 128.3, 127.9, 127.8, 127.3, 125.1, 124.9, 

121.3, 121.1, 109.2, 99.9, 97.5, 79.8, 79.6, 53.8, 53.7, 51.1, 39.2, 38.8, 38.6, 38.0, 37.8, 36.8, 

32.5, 32.4, 31.1, 28.7, 20.3, 15.0, 14.8;  MS (electrospray ionization) m/z 467.6 (M+H+), 192.3;  

HRMS calcd for C30H31N2O3
+ (M+H+) 467.2335, found 467.2335 (100%). 

II.16. N-(2-((5aS,7S)-3-Methyl-1-oxo-1,5a,6,7,8,9-hexahydropyrano[4,3-b]chromen-7-

yl)propyl)quinolie-4-carboxamide (8). A mixture of 43 mg (0.15 mmol) of amine 10, 42 mg 

(0.24 mmol) of quinoline-4-carboxylic acid (18), 56 mg (0.36 mmol) of EDC, and 2 mg (0.02 

mmol) of DMAP in 5 mL of dichloromethane was stirred under argon at 25oC for 12 h.  The 

reaction mixture was diluted with 100 mL of dichloromethane, washed with water, and brine, 

dried (MgSO4), concentrated, and column chromatographed on silica gel using a gradient 

mixture of hexane and ethyl acetate as eluant to give 43 mg (65% yield) of compound 8, as a 

solid.  1H NMR δ 8.82 (d, J = 4.3 Hz, 1 H), 8.16 (d, J = 8.6 Hz, 1 H), 8.08 (d, J = 8.6 Hz, 1 H), 

7.73 (t, J = 7.6 Hz, 1 H), 7.57 (t, J = 7.6 Hz, 1 H), 7.34 (d, J = 4.3 Hz, 1 H), 6.72 (br. s, 1 H, 

NH), 5.97 (s, 1 H), 5.68 (s, 1 H), 5.09 – 4.98 (m, 1 H), 3.63 – 3.52 (m, 1 H), 3.42 – 3.29 (m, 1 
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H), 2.43 (d, J = 13.3 Hz, 1 H), 2.14 (s, 4 H), 2.06 – 1.90 (m, 1 H), 1.87 – 1.71 (m, 2 H), 1.71 – 

1.51 (m, 2 H), 1.43 – 1.11 (m, 1 H), 0.99 (d, J = 6.6 Hz, 1.5 H, CH3) 0.98 (d, J = 6.6 Hz, 1.5 H, 

CH3) (2 diastereomers at C12); 13C NMR δ 167.7, 163.5, 162.7, 161.8, 149.9, 148.7, 142.4, 

132.4, 130.2, 129.9, 127.8, 125.4, 124.6, 118.5, 109.4, 99.9, 97.4, 79.6, 79.4, 43.9, 39.2, 38.8, 

38.7, 38.0, 36.9, 32.4, 32.3, 31.1, 28.6, 20.2, 14.5, 14.4;  MS (electrospray ionization) m/z 453.3 

(M + Na+), 431.1 (M+H+);  HRMS calcd for C26H27N2O4
+ (M+H+) 431.1971, found 431.1957 

(100%). 

General procedure for the syntheses of compounds 14A, 15, 14E, and 25.13 

II.17.  Quinoline-4-carboxaldehyde (14A).  A solution of 5.0 g (35 mmol) of 4-

methylquinoline (19) and 5.0 g (45 mmol) of SeO2 in toluene under argon was heated to reflux 

for 24 h.  The reaction mixture was diluted with dichloromethane, washed with brine, dried 

(MgSO4), concentrated, and column chromatographed on silica gel using a mixture of hexanes 

and ethyl acetate (4:1) as eluant to give 4.0 g (73% yield) of compound 14A,13 as a solid.  1H 

NMR δ 10.54 (s, 1 H), 9.22 (d, J = 4.3 Hz, 1 H), 9.04 (d, J = 8.6 Hz, 1 H), 8.24 (d, J = 8.2 Hz, 1 

H), 7.84 (t, J = 7.6 Hz, 1 H), 7.81 (d, J = 4.3 Hz, 1 H), 7.76 (t, J = 8.0 Hz, 1 H); 13C NMR δ 

193.1, 150.7, 149.5, 137.0, 130.4, 130.3, 129.6, 126.0, 124.7, 124.1.  MS (electrospray 

ionization) m/z 158.0 (100%) (M+H+), 130.2. 

II.18.  Quinoline-6-carboxaldehyde (15).  From 0.50 g (3.5 mmol) of 6-methylquinoline (20), 

0.12 g (54% yield based on recovered compound 20) of 1513 as a solid and 0.30 g of 20 was 

recovered. 1H NMR δ 10.20 (s, 1 H), 9.05 (dd, J = 4.3, 1.6 Hz, 1 H), 8.35 (s, 1 H), 8.32 (dd, J = 

8.2, 1.9 Hz, 1 H), 8.23 – 8.17 (m, 2 H), 7.52 (dd, J = 8.2, 4.3 Hz, 1 H); 13C NMR δ 191.6, 153.3, 

151.1, 137.6, 134.5, 133.8, 131.0, 127.9, 126.9, 122.4.  MS (electrospray ionization) m/z 157.9 

(100%) (M+H+). 
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II.19.  2-(1,3,5-Trioxan-2-yl)quinoline-4-carboxaldehyde (14E).  From 0.30 g (1.3 mmol) of 

29, 96 mg (35% yield based on recovered 29) of compound 14E was obtained as a solid and 40 

mg of 29 was recovered.  1H NMR δ 10.53 (s, 1 H), 9.08 (dd, J = 8.0, 1.2 Hz, 1 H), 8.26 (dd, J = 

7.8, 0.8 Hz, 1 H), 8.25 (s, 1 H), 7.86 (ddd, J = 7.8, 7.0, 1.6 Hz, 1 H), 7.78 (ddd, J = 7.8, 7.0, 1.6 

Hz, 1 H), 6.21 (s, 1 H), 5.49 – 5.45 (m, 4 H);  13C NMR δ 193.0, 155.8, 148.3, 138.0, 130.7, 

130.2, 130.1, 124.7, 124.3, 124.0, 101.3, 93.8.  MS (electrospray ionization) m/z 268.3 (100%) 

(M+Na+). 

II.20.  4-(1,3,5-Trioxan-2-yl)quinoline-2-carboxaldehyde (25). From 0.70 g (3.0 mmol) of 24, 

0.60 g (81% yield) of 25 as a solid.  The reaction was conducted at 80 °C for 15 h.  1H NMR δ 

10.24 (s, 1 H),  8.32 (d, J = 9.0 Hz, 2 H), 8.31 (s, 1 H), 7.85 (ddd, J = 8.5, 7.1, 1.2 Hz, 1 H), 7.75 

(ddd, J = 8.4, 6.6, 1.2 Hz, 1 H), 6.47 (s, 1 H), 5.51 – 5.46 (m, 4 H);  13C NMR δ 193.5, 152.5, 

148.6, 142.1, 131.3, 130.6, 129.8, 127.0, 124.6, 115.5, 99.1, 93.9.  MS (electrospray ionization) 

m/z 267.9 (100%) (M+Na+), 245.9 (M+H+).  See Experiment II.26. for a direct conversion of 24 

to dialdehyde 26. 

General procedure for the syntheses of compounds 13B, 14F, 13C, 17, 24, and 29. 

II.21.  4-Methylquinoline-2-carboxaldehyde (13B).  To a solution of 0.95 g (8.4 mmol) of 

trifluoroacetic acid and 1.0 g (7.0 mmol) of 4-methylquinoline (19), were added 3.6 mL (28 

mmol) of 70% tert-butyl hydroperoxide, 78 mg (0.28 mmol) of FeSO4•7H2O, 20 mL of 

acetonitrile, and 20 g of trioxane.  The reaction mixture was heated to reflux for 12 h, cooled to 

25 °C, basified with 5% NaOH, and extracted three times with diethyl ether.  The combined 

organic layer was washed with brine, and concentrated.  The residue was diluted with 100 mL of 

10% H2SO4, heated to reflux for 5 h, cooled to 25 °C, basified with 10% NaOH, and extracted 

three times with diethyl ether.  The combined organic layer was washed with brine, dried 
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(MgSO4), concentrated, and column chromatographed on silica gel using a gradient mixture of 

hexane and ethyl acetate as eluant to give 0.38 g (50% yield based on recovered 19) of 13B15,16 

as a solid and 0.37 g of 19 was recovered.  1H NMR δ 10.19 (s, 1 H), 8.24 (d, J = 8.2 Hz, 1 H), 

8.06 (d, J = 8.2 Hz, 1 H), 7.86 (s, 1 H), 7.81 (ddd, J = 8.4, 6.8, 1.2 Hz, 1 H), 7.70 (ddd, J = 8.2, 

7.0, 1.2 Hz, 1 H), 2.78 (s, 3 H);  13C NMR δ 194.3,152.4, 147.9, 146.2, 131.2, 130.3, 130.25, 

129.1, 124.2, 118.1, 19.1.  MS (electrospray ionization) m/z 172.0 (100%) (M+H+). 

II.22.  6-Methylquinoline-4-carboxaldehyde (14F) and 6-methylquinoline-2-carboxaldehyde 

(13C).  From 1.5 g (10.5 mmol) of 6-methylquinoline (20), 0.24 g (17% yield based on 

recovered 20) of 14F and 0.23 g (16% yield) of 13C20 as solids, and 0.31 g of 20 was recovered. 

Compound 14F:  1H NMR δ 10.51 (s, 1 H), 9.14 (d, J = 4.3 Hz, 1 H), 8.83 (s, 1 H), 8.12 (d, J = 

8.6 Hz, 1 H), 7.77 (d, J = 4.3 Hz, 1 H), 7.67 (dd, J = 8.6, 1.9 Hz, 1 H), 2.63 (s, 3 H); 13C NMR δ 

192.8, 149.2, 147.7, 139.6, 135.8, 132.2, 129.4, 125.8, 123.7, 123.1, 22.0;  MS (electrospray 

ionization) m/z 172.0 (100%) (M+H+), 144.1. 

Compound 13C:  1H NMR δ 10.21 (s, 1 H), 8.21 (d, J = 8.2 Hz, 1 H), 8.14 (d, J = 9.4 Hz, 1 H), 

8.00 (d, J = 8.6 Hz, 1 H), 7.67 (s, 1 H), 7.66 (dd, J = 8.0, 2.0 Hz, 1 H), 2.59 (s, 3 H); 13C NMR δ 

194.0, 152.2, 146.8, 139.9, 136.8, 133.1, 130.4, 130.3, 126.9, 117.7, 22.1.  MS (electrospray 

ionization) m/z 172.0 (100%) (M+H+). 

II.23.  Benzo[h]quinoline-4-carboxaldehyde (17).  From 0.50 g (2.79 mmol) of 

benzo[h]quinoline (30), 90 mg (18% yield based on recovered 30) of 1722 as a solid and 85 mg 

of 30 was recovered.  1H NMR δ 10.50 (s, 1 H), 9.26 (d, J = 7.8 Hz, 1 H), 9.16 (d, J = 4.3 Hz, 1 

H), 8.74 (d, J = 9.4 Hz, 1 H), 7.94 – 7.84 (m, 2 H), 7.80 – 7.68 (m, 3 H); 13C NMR δ 192.9, 

148.9, 147.8, 136.5, 133.3, 131.2, 130.9, 129.0, 127.9, 127.7, 125.0, 124.9, 122.9, 120.8.  MS 

(electrospray ionization) m/z 208 (M+H+), 186.2. 
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II.24.  2-Methyl-4-(1,3,5-trioxan-2-yl)quinoline (24).15,16  From 10.0 g (70 mmol) of 2-

methylquinoline (23), 5.3 g (50% yield based on recovered 23) of 24 and 3.5 g of 23 was 

recovered.  1H NMR δ 8.05 (d, J = 8.6 Hz, 2 H), 7.66 (t, J = 7.8 Hz, 1 H), 7.55 (s, 1 H), 7.49 (t, J 

= 7.8 Hz, 1 H), 6.33 (s, 1 H), 5.44 – 5.36 (m, 4 H), 2.73 (s, 3 H); 13C NMR δ 159.0, 148.4, 140.4, 

129.4, 129.39, 126.1, 123.6, 123.3, 119.5, 98.8, 93.8, 25.5.   MS (electrospray ionization) m/z 

232.2 (M+H+), 172.0, 144.1. 

II.25.  4-Methyl-2-(1,3,5-trioxan-2-yl)quinoline (29).15,16  From 5.0 g (35 mmol) of 4-

methylquinoline (19), 3.0 g (43% yield based on recovered 19) of 29 and 0.24 g (4% yield) of 

13B, along with 0.70 g of 19.  1H NMR δ 8.11 (d, J = 8.2 Hz, 1 H), 7.92 (d, J = 8.5 Hz, 1 H), 

7.67 (t, J = 7.6 Hz, 1 H), 7.61 (s, 1 H), 7.52 (t, J = 7.6 Hz, 1 H), 6.04 (s, 1 H), 5.41 – 5.33 (m, 4 

H), 2.66 (s, 3 H); 13C NMR δ 154.9, 147.0, 145.9, 130.1, 129.5, 128.4, 127.0, 123.7, 118.9, 

102.2, 93.7, 18.9.  MS (electrospray ionization) m/z 270.2 (M+K+), 254.1 (M+Na+), 232.2 

(M+H+), 172.0. 

II.26.  2-Methylquinoline-4-carboxaldehyde (14B).15,16 From 0.50 g (2.2 mmol) of 24, 0.29 g 

(79% yield) of 14B was obtained as a solid.  1H NMR δ 10.49 (s, 1 H), 8.97 (dd, J = 8.6, 1.2 Hz, 

1 H), 8.13 (d, J = 8.6 Hz, 1 H), 7.80 (ddd, J = 8.3, 7.0, 1.6 Hz, 1 H), 7.70 (s, 1 H), 7.68 (ddd, J = 

8.5, 6.8, 1.2 Hz, 1 H), 2.88 (s, 3 H); 13C NMR δ 193.0, 159.2, 149.0, 137.0, 130.2, 129.2, 128.3, 

127.2, 124.3, 122.2, 25.3.   MS (electrospray ionization) m/z 172.0 (100%) (M+H+). 

II.27.  Quinoline-2,4-dicarboxaldehyde (26).  From 0.70 g of 24, 0.38 g (68% yield in two 

steps) of compound 2623 was obtained as a solid. Hydrolysis with 2 N HCl was used.  1H NMR δ 

10.53 (s, 1 H), 10.28 (s, 1 H), 9.11 (dd, J = 8.2, 1.2 Hz, 1 H), 8.40 (s, 1 H), 8.35 (dd, J = 8.0, 1.4 

Hz, 1 H), 7.92 (ddd, J = 8.2, 7.0, 1.6 Hz, 1 H), 7.87 (ddd, J = 8.4, 7.0, 1.6 Hz, 1 H); 13C NMR δ 
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192.9, 192.7, 153.0, 149.2, 138.1, 132.3, 131.3, 131.2, 125.6, 125.2, 122.8.  MS (electrospray 

ionization) m/z 186.1 (M+H+), 172.0. 

II.28.  Quinoline-8-carboxaldehyde (16).  A solution of 0.50 g (3.5 mmol) of 8-

methylquinoline (21), 1.87 g (10.5 mmol) of N-bromosuccinamide (NBS), and 50 mg (0.3 mmol) 

of azobisisobutyronitrile (AIBN) in dichloroethane was refluxed under argon for 30 h.  The 

reaction mixture was diluted with 150 mL dichloromethane, washed three times with 2 N NaOH, 

and brine, dried (MgSO4), and concentrated. The residue was refluxed in 50 mL of water for 4 h, 

cooled to 25 °C, diluted with 50 mL of 2 N NaOH, and extracted three times with diethyl ether. 

The combined organic layer was washed with brine, dried (MgSO4), concentrated, and column 

chromatographed on silica gel using a gradient mixture of hexane and diethyl ether as eluant to 

give 0.20 g (37% yield) of 1614 and 0.30 g (53% yield) of 2224 as solids.  Compound 22 was 

converted to compound 16 by treating with IBX and DMSO in 79 % yield.  Compound 16: 1H 

NMR δ 11.45 (s, 1 H), 9.04 (dd, J = 4.3, 1.9 Hz, 1 H), 8.32 (dd, J = 7.0, 1.6 Hz, 1 H), 8.24 (dd, J 

= 8.4, 1.8 Hz, 1 H), 8.08 (dd, J = 8.2, 1.6 Hz, 1 H), 7.67 (t, J = 7.6 Hz, 1 H), 7.51 (dd, J = 8.4, 

4.1 Hz, 1 H); 13C NMR δ 192.8, 151.5, 147.8, 136.5, 134.4, 131.9, 129.5, 128.5, 126.4, 122.0.  

MS (electrospray ionization) m/z 158.0 (M+H+), 128.1. 

Compound 22:  1H NMR δ 8.77 (dd, J = 3.9, 1.2 Hz, 1 H), 8.07 (dd, J = 8.2, 1.2 Hz, 1 H), 7.65 

(d, J = 8.2 Hz, 1 H), 7.55 (d, J = 7.0 Hz, 1 H), 7.40 (t, J = 7.6 Hz, 1 H), 7.32 (dd, J = 8.2, 4.3 Hz, 

1 H), 5.20 (s, 2 H);  13C NMR δ 149.0, 146.8, 138.2, 136.7, 128.3, 127.5, 127.3, 126.4, 121.1, 

64.2.  MS (electrospray ionization) m/z 160.3 (M+H+), 142.0, 141.1. 

II.29.  2-(Hydroxymethyl)quinoline-4-carboxaldehyde (14D).  To a solution of 0.30 g (1.62 

mmol) of 26 in 15 mL of dichloromethane and ethanol (3:1) at 0 °C under argon, was added 15 

mg (0.40 mmol) of NaBH4, and the solution was stirred for 1 h.  The reaction mixture was 
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diluted with 50 mL of brine, extracted twice with dichloromethane, dried (MgSO4), concentrated, 

and column chromatographed on silica gel using a gradient mixture of hexane and ethyl acetate 

as eluant to give 73 mg (32% yield) of 14D, 81 mg (35% yield) of 27, and 38 mg (16% yield) of 

2825 along with 72 mg of recovered 26.  Compound 14D:  1H NMR δ 10.53 (s, 1 H), 9.00 (dd, J 

= 8.4, 1.0 Hz, 1 H), 8.20 (d, J = 8.2 Hz, 1 H), 7.84 (ddd, J = 8.6, 7.0, 1.6 Hz, 1 H), 7.75 (s, 1 H), 

7.73 (ddd, J = 8.6, 7.0, 1.6 Hz, 1 H), 5.06 (s, 2 H); 13C NMR δ 192.8, 159.7, 148.1, 137.8, 130.7, 

129.4, 129.1, 124.7, 123.8, 123.5, 64.5.  MS (electrospray ionization) m/z 188.3 (M+H+), 128.2, 

115.2. 

Compound 27:  1H NMR δ 10.24 (s, 1 H), 8.30 (d, J = 8.6 Hz, 1 H), 8.19 (s, 1 H), 8.05 (dd, J = 

8.2, 0.8 Hz, 1 H), 7.85 (ddd, J = 8.5, 6.9, 1.4 Hz, 1 H), 7.73 (ddd, J = 8.4, 7.0, 1.4 Hz, 1 H), 5.29 

(d, J = 0.8 Hz, 2 H); 13C NMR δ (CDCl3 and DMSO-d6) δ 193.1, 151.6, 148.9, 146.7, 130.1, 

129.2, 128.3, 126.8, 122.5, 113.4, 59.7.  MS (electrospray ionization) m/z 188.3 (100%) (M+H+), 

115.1. 

Compound 28:  1H NMR δ 8.12 (d, J = 9.0 Hz, 1 H), 7.94 (d, J = 8.2 Hz, 1 H), 7.75 (ddd, J = 8.4, 

6.8, 1.2 Hz, 1 H), 7.58 (ddd, J = 8.4, 7.0, 1.2 Hz, 1 H), 7.46 (s, 1 H), 5.25 (d, J = 3.5 Hz, 2 H), 

4.93 (d, J = 3.9 Hz, 2 H); 13C NMR (DMSO-d6) δ 162.2, 148.0, 146.5, 129.1, 128.9, 125.8, 

124.6, 123.3, 115.7, 65.0, 59.8.  MS (electrospray ionization) m/z 190.2 (100%) (M+H+). 

II.30.  (4-Formylquinolin-2-yl)methyl acetate (14C).  To a mixture of 50 mg (0.27 mmol) of 

14D, 5 mg (0.05 mmol) of ZnO in 8 mL of dichloromethane under argon, was added 0.28 g (2.7 

mmol) of acetic anhydride.  The reaction mixture was stirred at 25oC for 2 h, diluted with 100 

mL of dichloromethane, washed with brine, dried (MgSO4), concentrated, and column 

chromatographed on silica gel to give 52 mg (85% yield) of compound 14C as a solid.  1H NMR 

δ 10.53 (s, 1 H), 8.99 (d, J = 8.2 Hz, 1 H), 8.18 (d, J = 8.6 Hz, 1 H), 7.87 (s, 1 H), 7.82 (t, J = 7.6 
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Hz, 1 H), 7.73 (t,  J = 8.2 Hz, 1 H), 5.48 (s, 2 H), 2.23 (s, 3 H); 13C NMR δ 192.9, 170.8, 156.8, 

149.0, 137.8, 130.7, 130.0, 129.6, 124.5, 124.5, 123.5, 67.2, 21.1.  MS (electrospray ionization) 

m/z 230.1 (M+H+), 216.5. 

Bioactivity assay of pyranobenzopyrone compounds. 

The antiviral effects of each compound were examined in NV replicon-harboring cells (HG23 

cells). The detailed procedures for studying the antiviral effects using HG23 cells were reported 

elsewhere. Briefly, One-day old, 80 - 90% confluent HG23 cells were treated with varying 

concentrations of each compound (0 [mock-DMSO] - 10 µM) to examine their effects on the 

replication of NV.  At 48 hrs of treatment, the NV genome was analyzed with real time qRT-

PCR. The ED50 of each compound for NV genome levels was determined at 48 hrs post-

treatment. HG23 cells were also treated with varying concentrations (0 [mock-DMSO] - 200 

µM) of each compound to assess the cytotoxic effects.  Cell cytotoxicity assay kit (Promega, 

Madison, WI) was used to calculate the median toxic dose (TD50) at 48 hrs of treatment. 
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